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Abstract
The interpretation of aerial photographs requires a lot of knowledge about the scene

under consideration. Knowledge about the type of scene: airport, suburban housing
development, urban city, aids in low-level and intermediate level image analysis, and will

*: drive high-level interpretation by constraining search for plausible consistent scene
*. models. Collecting and representing large knowledge bases requires specialized tools. In

this paper we describe the organization of a set of tools for interactive knowledge

acquisition of scene primitives and spatial constraints for interpretation of aerial imagery.
These tools include a user interface for interactive knowledge acquisition, the automated
compilation of that knowledge from a schema-based representation into productions that

are directly executable by our interpretation system, and a performance analysis tool that
generates a critique of the final interpretation. Finally, the generality of these tools is
demonstrated by the generation of rules for a new task, suburban hbuse scenes, and the
analysis of a set of imagery by our interpretation system.

1. Introduction
In this paper we describe a collection of software tools, ISCAN/RULEGEN/SPATS, for

*" interactive acquisition of spatial knowledge, automated compilation of this knowledge into
a rule-based scene interpretation system, and the production of performance analysis
statistics to aid in incremental refinement of spatial knowledge. This work is focused on
knowledge acquisition and performance analysis tools for SPAM, a knowledge-based system
designed to interpret aerial photographs for mapping and photo interpretation. We have

reported on SPAM research results in the context of airport scenes 1' 2

We address a broad set of topics within the overall framework of knowledge acquisition.
First and foremost we are interested in automating the process by which an interpretation
system, such as SPAM, can collect and represent new knowledge to improve performance

on existing interpretation tasks, or in attempting to begin to become proficient in new
ones. For the airport task we primarily relied on spatial constraints found in books on
airport design 3 '4, 5 and, to a lesser extent, by observations of relationships found in aerial
imagery. Other task domains, such as suburban house scenes, do not appear to have

codified spatial organizations, although they exhibit similar patterns across many
examples. In lieu of such information the ability to indicate and measure spatial
relationships in representative imagery becomes more important. ISCAN is our first

attempt to provide a graphical user interface, appropriate in an image-based domain,
which has a model of the types of knowledge required by SPAM during the interpretation
process. Such an interface may also provide individuals such as cartographers, remote
sensing and photo interpreters, and other non-programmers with a mechanism for adding
knowledge to SPAM without a detailed understanding of the underlying system.

A second research goal is to explore the generality of the SPAM architecture for a variety
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of tasks within the general domain of aerial image interpretation. I('I,I"(IN is a tool that
compiles spatial and structural knowledge, stored as collections of rule schemata, and

generates productions that are executed by SPAM. RULEICN was partly motivated by
difficulties encountered in extending and generalizing SPAM, which was developed to

interpret airport scenes, to interpret simple suburban house scenes. Many of these
difficulties impacted our ability to easily add and delete rules to measure the effect of
knowledge in various phases of the interpretation process. Changes in the knowledge base
often generated unforeseen interactions between the control of rule execution within the

interpretation phases. In a-system with over 500 productions the management of such
changes became a significant burden. As we began to address these issues it became clear

that the solution was to view SPAM as an interpretation architecture within which we
could embed specific task knowledge. RULEGEN was developed to automatically generate

the core task-independent evaluation and control functions that represent the SPAM

interpretation architecture and to take task-dependent knowledge in the form of rule

schemata and compile productions whose execution was embedded within this core.
Therefore, the performance system, SPAM, can be completely generated by RULEGEN when
it is supplied with appropriate task-dependent knowledge.

ISCAN RULEGEN SPAM SPATS
w-"KNOWLEDGE MACHINE PERFORMANCE PERFORMANCE

ACQUISITION TRANSLATION SYSTEM ANALYSIS

Figure 1-1: Overview of Knowledge Acquisition For SPAM

* Finally, SPATS was motivated by a need to automate the evaluation of the
interpretations produced by SPAM within the context of idealized human photo

interpretation. The goal was to measure the size of the interpretation space explored by
SPAM, the number of competing hypotheses, and the correctness of those hypotheses

during each interpretation phase. By varying the image segmentations presented to SPAM
* or by generating SPAM systems with different types of spatial knowledge we can now more

rigorously evaluate and explore knowledge effects using SPATS. Figure 1-1 is an abstract
overview of the relationship between these tools. While this particular focus on
acquisition, compilation, and performance evaluation might appear to be somewhat
parochial, we believe that these issues will be seen to be central to other researchers in

computer vision working along similar lines.

Section 1.1 briefly outlines some related research and describes our views on knowledge
acquisition for computer vision. Section 1.2 gives the layout of the remainder of the paper.

0A
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1.1. Knowledge Acquisition For Vision

Previous efforts to investigate knowledge acquisition -'.Ahifn the context of systems for
image interpretation have pr'marily focused on spectral properties of objects in the image
or viewpoint specific spatial relationships. Early work by Barrow and Popplestone 6

addressed the problem of describing relations between picture elements with predicates
like ADJACENT(x,y) or AIIOVE(x,y). Using this methodology "rules" could be formulated
from these predicates and attached to individual elements of a picture. For example, in
the context of face recognition, a nose would be defined by the rule: "ABOVE(x,mouth) and

LEl'T-OF(x,right-eye) and RIGIIT-OF(x,left-eye)". These rules were to be embedded into a
resolution theorem proving paradigm. This work was a basis for the ISIS 7 system which

added the use of an interactive segmentation system. It allows a user to interactively
specify representative regions with a particular interpretation, and then invoked an
intensity classification segmentation process to attempt to extract the remaining parts of

the scene.

Recently, the VISIONS system 9 has reported similar attempts to make interpretations
by propagating low-level process output, such as lines or regions, up to an intermediate
level, which combines the low-level output with computed attributes such as color,
texture, or orientation. Interpreted objects are defined in terms of these intermediate
elements. Loosely speaking these classification systems use "knowledge" such as the sky
has a pizel intensity greater than 30 but less that 125 in the blue band. In fact, one must
resort to density weighting functions much as in statistical pattern recognition for remote
sensing. This "knowledge" is highly sensor and scene dependent. Other measures such as
height, size (in pixels), and relative spatial position (e.g. sky is above the house and grass

is below the house) are also employed. Again, these viewpoint dependent quantities will
vary, not only from domain to domain, but from image to image. Ultimately sky is blue

and grass is green allows for a direct mapping between regions and the associated high-
level interpretation. However, this mapping represents a rather shallow use of knowledge
whose robustness is questionable. For example, consider the effect of averaging the RGB

components of a color image into a monochromatic image. While the scene geometry

remains unchanged, without the direct mapping of region spectral properties into a
semantic interpretation (sky is blue) it is difficult to see how to operationalize much of the

spatial knowledge. Thus, although there appears to be a spatial component, it is
predicated on strong mapping between color and interpretation.

In our work with SPAM we have attempted to identify sources of knowledge that did not
suffer from these drawbacks, and utilize spatial relationships in such a way that a chain of

reasoning exists, generated from the application of many constraints across multiple levels

of interpretation. While spectral knowledge can play a role in certain domains we believe
that there are many types of spatial knowledge that can be expected to be more effective

in driving the knowledge-based interpretation of aerial imagery. In terms of acquisition

I
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and utilization, we believe that Figure 1-2 lists 5 types of knowledge that are available and
appear to us to be effective in aerial image interpretation tasks.

Type 1: Knowledge for the determination and definition of appropriate scene domain
primitives. This includes knowledge of the image segmentation process, the image
analysis tools that can reliably extract these primitives, and the appearance of the
primitives in the image.

Type 2: Knowledge of spatial relationships and constraints between the scene domain
primitives.

* Type 3: Knowledge of model decompositions that determine collections of primitives
which form "natural" components of the scene. These components can be
characterized as sub-models that accumulate support for local interpretations and
provide a context within which global analysis can be performed.

* Type 4: Knowledge of methods for combining these components into complete scene
interpretations.

Type 5: Knowledge of how to recognize and evaluate conflicts between competing
interpretations.

Figure 1-2: Types Of Knowledge Utilized In SPAM

1.2. Layout of the Remainder of Paper
In the following section we briefly describe the architecture of SPAM. We discuss the

kinds of knowledge- that SPAM utilizes and therefore needs to be acquired for an
interpretation task. In Section 3 we describe the ISCAN/RULEGEN/SPATS tools and in
Section 4 give an example of the schemata produced by ISCAN and usea by RULEGEN to
generate a SPAM interpretation system. Finally, in Section 5 we give an example of
suburban house scene interpretation by a SPAM system generated using the
ISCAN/RULEGEN/SPATS tools. We also compare the structure of the original hand
generated SPAM system with those generated using these knowledge acquisition tools.

2. The SPAM Architecture
SPAM represents four types of interpretation primitives, regions, fragments, functional

areas, and models. SPAM performs scene interpretation by transforming image regions
*into scene fragment interpretations, aggregating these fragments into consistent and

compatible collections called functional areas, and selecting sets of functional areas that
* form models of the scene. Loosely speaking there are four phases of interpretation. Each

of these four phases operationalizes one or more of the five types of domain knowledge. In
order to build a SPAM system we must be able to acquire knowledge for each interpretation
phase as described in Figure 2-1.

As shown in Figure 2-2 each phase is executed in the order given above. SPAM drives
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Phase 1: Region-to-fragment
Assigns the image region data a set of fragment interpretations based solely on local
properties (2-D shape characteristics, texture, 3-D depth/height, etc.) and
knowledge about the classes of objects found in the scene.

Phase 2: Local-consistency-check

Pair-wise tests are performed on the fragment interpretations that utilize spatial
knowledge about the scene under consideration. The confidence of those
interpretations supporting one another are incremented based on the quality of the
test.

Phase 3: Functional-area

Sets of mutually consistent interpretations that share similar functions or are spatial
decompositions of the scene are grouped into cliques called functional areas.

Phase 4: Model-generation
Sets of functional areas are grouped together into scene segments. The segments
with the largest number of functional areas become distinct scene models. Any
conflicts encountered when combining functional areas are resolved by a default
strategy, using the accumulated support for each interpretation, or by specific
knowledge added by the user.

Figure 2-1: Interpretation Phases In SPAM

from a local, low-level set of interpretations to a high-level, more global, scene
interpretation. There is a set of hard-wired productions for each phase that control the
order of rule executions, the forking of processes, and other domain-independent tasks.
However this "bottom-up" organization does not preclude interactions between phases.
For example, prediction of a fragment interpretation in functional-area phase will
automatically cause SPAM to reenter local-consistency phase for that fragment. Other
forms of top-down activity include stereo verification to disambiguate conflicting
hypotheses in model-generation phase and linear alignment in region-to-fragment phase.
Figure 2-3 shows the refinement/consistency/prediction paradigm used in SPAM within

each interpretation phase. Knowledge is used to check for consistency among hypotheses,
to predict missing components using context, and to create contexts based on collections of
consistent hypotheses. Prediction is restrained in SPAM in that hypotheses cannot predict
missing components at their own representation level. A collection of hypotheses must
combine to create a context from which a prediction can be made. These contexts are
refinements or spatial aggregations in the scene. For example, a collection of mutually
consistent runways and taxiways might combine to generate a runway functional area.
Rules that encode knowledge that runway functional areas often contain grassy areas or
tarmac may predict that certain sub-areas within that functional area are good candidates
for finding such regions. However, an isolated runway or taxiway hypothesis cannot

directly make these predictions. In SPAM the context determines the prediction. This
serves to decrease the combinatorics of hypothesis generation and to allow the system to
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MODEL MODEL GENERATION RULES (50)

GENERATION AND GROWTH POTENTIAL: SMALL
EVALUATION

FUNCTIONAL FUNCTIONAL AREA GENERATION RULES (23)

AREA FUNCTIONAL AREA REFINEMENT RULES (28)
GROWTH POTENTIAL: MODERATE

FRAGMENT CONSISTENCY RULES (263)
INTERPRETATION GROWTH POTENTIAL: LARGE

S UB C LASSINTSEUBEATION LOCAL EVALUATION RULES (30)

GROWTH POTENTIAL: MODERATE
CLASSINTERPRETATION REGION-TO-INTERPRETATION RULES (35)

GROWTH POTENTIAL: SMALL - MODERATE

SEGMENTATION

REGIONS

Figure 2-2: Interpretation Phases In SPAM

focus on those areas with strong support at each level of the interpretation.

2.1. Knowledge Acquisition In SPAM
In order to automate knowledge acquisition for SPAM we must be able to identify the

kind of knowledge required for each of the interpretation phases described in the previous
section. In this section we describe this with respect to the 5 types of knowledge defined in
Figure 1-2.

The type of knowledge required in region-to-fragment phase is the definition of the
shape and appearance properties of objects in the task domain, organized as coarse classes
of similar objects with specializations based on finer intra-class distinctions. For example,
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SREFINEMENT/SPECIALIZATION

4...
<-> CONSISTENCY EVALUATION

( PREDICTIONS FROM CONTEXT E L J

Figure 2-3: Refinement, Consistency, and Prediction in SPAM

in a coarse sense, linear features such as roads, runways, taxiways can be grouped in one
class, while hangars, maintenance buildings, control towers, and terminal buildings would

be another coarse class in an airport interpretation task. Each of the members of the class
can be specialized with constraints such as runways are never curved, while roads may be

* curved. Heights, sizes, and specific shape criteria might be used to specialize the building

class. This type of knowledge is best represented as Type 1 in Figure 1-2.

Q. During local-consistency-check phase knowledge of the structure or layout of the task

domain, i.e. airports, suburban housing developments, is used to provide spatial
constraints for evaluating consistency among fragment hypotheses. Type 2 knowledge is
required from the user or other sources. For example, 'runways intersect taziways', and
terminal buildings are adjacent to parking apron' are the kinds of knowledge in terms of
spatial relationships that we would like to capture for an airport interpretation task. It is
important to assemble a large collection of such consistency knowledge since these tests
are used to assemble fragment hypotheses found to be mutually consistent as contexts for

further interpretation.

There are two types of knowledge necessary to perform functional area phase. The first
is primarily Type 3 knowledge which defines collections of objects that form spatial
decompositions within the task domain. For example, knowledge that runways, taziways,

and the grassy areas that separate them from the area where planes takeoff and land can
be used as one partition of the overall airport scene. Within this context Type 5
knowledge aids in prediction of missing components, selection of competing hypotheses, or
in defining methods for disambiguating conflicting interpretations. For example, 'if a

runway functional area has been formed and it contains a terminal building fragment then

use stereo verification to confirm or refute that fragment hypothesis.' In other cases

knowledge that simply selecting the competing fragment with the highest confidence
based upon cumulative application of region-to-fragment and local-consistency-check

rules may be appropriate.
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Finally, during model generation phase, Type 4 knowledge consisting of how to combine
spatial decompositions and Type 5 knowledge consisting of how to recognize and evaluate
conflicts that arise during this aggregation must be acquired. However, much of this is
simply selecting a strategy, i.e., 'use the functional areas with the highest confidence that

have no conflicts', or 'find the maximal set of compatibles regardless of confidence'. The

process for performing these alternative combinations is, in some sense, hardwired in the

SPAM architecture as a set mutually exclusive methods and only the method is directly
specified during knowledge acquisition. In the following section we describe the
restructuring of the SPAM organization necessary in order to represent these kinds of

knowledge.

2.2. Schematization of SPAM
In order to to make SPAM amenable to knowledge acquisition our approach has been to

reduce the SPAM architecture to a set of generic control productions supported by scene-

specific knowledge that can easily be generated by a program. Experimentation with the
system architecture is now straightforward since the actual production generation is
centralized in one program. Each piece of knowledge is encoded as a schema, with

different schemata used to represent different types of knowledge. Schemas can easily be
collected (or partitioned) to form new knowledge bases. Since the schemas are simply text
files, it is trivial to combine different schemata to produce more complete knowledge
bases. A discussion of this representation can be found in Section 4, a detailed description
of the internals of schemata is found in Appendix I, and examples of the generation of

productions from a schema is illustrated in Appendix I.

This implementation has restructured SPAM such that within any interpretation phase,
no rule has to know of the existence of any other rule. These intra-phase interactions were
difficult to identify in the hand generated system, and made it very difficult to perform
large wholesale changes to the knowledge base. Since there is a uniform interface to all
rules within a particular phase, it is easier to allow users to specify interphase events such

as calling consistency-checking within model-generation phase. The functional-area phase
is an example of one part of the system that required some generalization for use on other
domains. Originally developed with airports in mind, functional-areas had no shape
constraints. However we have found cases in our suburban house scene experiment where
shape constraints in addition to compatibility constraints are required. RULECEN gives us
the opportunity to easily propagate these changes to the different systems we have built.

In the following section we briefly describe the ISCAN/RULEGEN/SPATS system
organization.
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3. Tools For Knowledge Acquisition In SPAM
There are several reasons why knowledge acquisition for SI'AM appears to be relatively

straight-forward. First, SPAM uses simple, pairwise tests to represent spatial consistency.
Second, it is ordinarily easy for humans to characterize situations where special
knowledge, either derived from further image analysis, or from additional consistency
testing, can be used to disambiguate conflicting hypotheses. For example, if the two
hypotheses differ in that one suggests there is an object above the ground plane, e.g.. a
hangar or building, and the other is at the ground plane, a runway or road, then invoke an
image analysis tool, stereo verification, to determine the preferred hypothesis.

The implication of the first observation is that the user is not forced by the architecture
to conceptualize complex spatial consistency rules encompassing many primitives. For
example, SPAM represents, runways intersect taxiways that are oriented towards the
tarmac as two independent tests. One is an geometric intersection test between runway
and taxiway fragment hypotheses, the other is an orientation test between taxiways and
tarmac hypotheses. This is done to accommodate errorful image segmentation data which
may not produce all of the primitives required for a more complex match. Therefore,
partial matching on pairwise primitives is preferred since at least pairwise consistency can
be recognized and propagated as necessary. A second, more pragmatic reason, is the desire
to not require complex matching of productions in our implementation language,
OPS510, 11. The second observation is a function of the task domain, the available image
analysis tools, and our design of the SPAM architecture. A small set of several dozen
geometric tests appear to suffice to represent the spatial relations that human users
characterize as important for describing relationships between scene domain objects.
Finally, we believe that it is possible to find images for a class of scenes, say, 20
commercial airports, which would allow us to acquire a cross-section of spatial
relationships representative of commercial airports. This approach also lends itself toward
exploring systems that would automatically synthesize interesting properties and learn the
importance of various spatial relationships.

Knowledge acquisition systems range from interactive user dialogue via structure editors
to acquisition systems that are tightly coupled with a task performance system. The
degree to which the knowledge acquisition system itself utilizes knowledge may range from

enforcing a particular knowledge representation, to a system which decides what to ask a
user and asks for as little information as necessary to remedy specific problems12 ' 13, 14
ISCAN falls somewhere in this continuum, toward the former method. It primarily enforces
a particular schema representation for various types of knowledge utilized by SPAM.
However, it also uses knowledge of the SPAM architecture to recognize conflicts and

*missing or incomplete information. But it performs as an observer and does not elicit or
suggest remedies. It is also decoupled from the performance system, partly do to the long
execution times of SPAM 1, and partly due to what we believe is a complex task domain
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which makes credit assignment for particular actions of the system difficult to analyze.

In the remainder of this section we describe our first attempt at knowledge acquisition

for aerial image interpretation using the ISCAN user interface, the RUIEGEN compiler, and

the SPATS performance analysis tool. Figure 3-1 shows a detailed organization of the

knowledge acquisition system overview presented in Figurel-1.

r -
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Figure 3-1: Knowledge Acquisition For SPAM
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3.1. The ISCAN User Interface
ISCAN currently supports two methods of knowledge acquisition. The first method is

that of a structured editor which allows users to add, delete, or modify knowledge
represented as schemata. The second method is the use of interactive image segmentation

to generate metric information such as area, perimeter, distance, and shape descriptions.
This information is then integrated into the schemata as values or ranges of values for
various constraints. In either case the output of ISCAN session is a file containing the task
specific schemata necessary to compile a SPAM system.

As a structured editor ISCAN allows the addition, deletion, and modification of schemata
for each phase in SPAM. It assists the novice user, asking questions to define the set of
attributes for each schema and allowing example schemata to be displayed. ISCAN
accommodates the-more experienced user by foregoing the question/answer sessions and
permitting the attributes to be entered directly. It maintains certain specific meta-
knowledge such as knowing which attributes of a region must be computed and which can
simply be matched. Much of the bookkeeping specific to the SPAM architecture is
automated, thereby allowing the novice to concentrate on the task domain and not on
whether attributes are filled in correctly. For example, some region attributes are
precomputed, but some are too expensive to precompute for every region. It is really an
implementation detail to know which attributes must be computed and which are
precomputed.

Because the nature of the interpretation task is visual, ISCAN also provides a graphical
interface for defining spatial relationship and performing measurements directly on an
image. The user displays a representative image containing classes of objects or a
particular site such as an airport. Associated with each image is a camera model15 ' 16 that
allows the graphics interface to generate constraints in terms of metric values rather than
in image specific coordinates. For example a representative road width constraint can be
specified as between 10 and 15 meters rather than between 10 and 15 pixels. The actual
measurement is performed by ISCAN and is reported to the user. SCAN can gather

* statistics over many examples to allow for a more robust range of constraints.

Since the measurements are always in terms of ground distances this allows for complete
independence between the scale of the image under interpretation and the acquired
knowledge base. This independence is a basic requirement for robust scene interpretation
systems. With the scene constraints in mind, the user displays an image with
characteristics of the general type of scene that is to be interpreted. After making
measurements on the image directly, the user is questioned about the classes of objects in
the scene, the shape characteristics of those objects, and their spatial relationships to one
another. If this is a scene type that has previously been analyzed, it is possible that generic
knowledge applicable to that scene can be applied. This can be added to the knowledge

4 ' 7 '+
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base being built. An example of this from the airport domain might be that every airport
has at least one runway. This generic knowledge, if any, is coalesced with the knowledge
about the scene given by the user.

ISCAN recognizes potential inconsistencies that may be generated during an interactive
44., session or those that exist at the end of the session. It provides limited help in correcting

such problems, a topic for future work. Some of kinds of inconsistencies recognized
include:

" The inconsistent definition of class and subclass fragment interpretation and
the violation of class hierarchies.

" The lack of a local-consistency schema for a class or subclass fragment

ipterpretation.
* Multiple local-consistency schemata with identical fragment interpretations

which potentially can generate inconsistent constraints.
9 The omission of a subclass fragment interpretation from all functional areas.
* The definition of functional area descriptions and recognition of inconsistent

combinations of component fragment interpretations.
* The specification of conflict resolution tests must be unique.

* The definition of model generation components that do not specify a method

for selection.

We feel that the use of representative imagery to acquire general spatial relationships

greatly increases a users ability to add such constraints to SPAM. This is primarily due to
the ability to query ISCAN to display existing constraints involving fragment hypotheses

and to detect conflicts or duplication than in a textual environment. Because the nature of
our task is inherently visual, and visual tasks are done almost effortlessly by people, it
appears that an it is easier for a person to give examples than to explain what is being

extracted.

However, an area for future research for automating knowledge acquisition beyond user
interaction is via learning by example. As we have discussed, our current work is focused
on tools that aid in the translation of a users model of the task constraints into schemata.

There are other sources of spatial knowledge that are amenable to automated extraction of
constraints without user involvement. Figure 3-2 shows hand segmentations generated for
use in performance analysis as ground truth data for Dulles International and Andrews

AFB. Figure 3-3 illustrates a similar type of ground truth data, but perhaps not as
detailed as the hand segmentations. It is generally available to aircraft pilots a Flight
Information Publications, or FLIPcharts 5, published by the FAA and the Defense Mapping

Agency. The goal of such research is to uncover spatial constraints by examining a large
number of examples of airports whose spatial relationships are made explicit in either of

, LMi lIiilll'l iI
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these formats. Such a system must not only develop reasonable ranges of values such as

'airports have at least one runway, but no more than 7' but must develop the subset of

useful spatial relationships from the set of all possible relationships. We plan to explore
this approach as a method to expand the scope of knowledge acquisition in ISCAN.

3.2. The RULEGEN Compiler
With the scene knowledge encoded as schemata, we need to put it into a form that can

be utilized by our interpretation system. RULEGEN is a compiler which performs schema-
to-production translation. This compiler has procedural knowledge of the SPAM control

structure. Some of the functions the compiler must perform include:

* Efficiently initializing each rule so that large conflict-sets do not slow down the

OPS5 conflict resolution process.
e The automatic generation of error-checking productions to make the system

more robust, and trace productions for performance analysis.

* Managing control productions to efficiently match all the desired data in
working-memory.

" The generation of interface functions for computations such as image analysis
and geometric computation performed outside of OPS5 environment.

I ., " The generation of data-structures representing the boundary values of the

scene constraints.

In the SPAM architecture, region interpretations come mostly bottom-up, with top-down

prediction and verification. With processing going in two directions, the management of

control in a production system is non-trivial. RULEGEN handles the rule interactions and
the order of rule firings by generating appropriate control rules to achieve the desired

results. The data-structures and control productions vary from phase-to-phase because
the type of processing that occurs in each phase is very different. Appendix II gives some
detailed examples of the actual expansion of a schema into a collection of productions

executable by SPAM.

3.3. SPATS: Automating Performance Analysis
An often overlooked component of any interpretation system are tools that aid in

incremental refinement of knowledge and in the measurement of the effects of various
types of knowledge within the performance system. As a part of our work in knowledge

* acquisition we have developed a performance analysis program, SPATS, that gives us some

insight into the overall accuracy of the scene interpretation. SPATS uses a region-based

hand segmentation with correct interpretation attributes associated with each region as a
baseline with which to compare the SPAM interpretation. In the case of machine-

segmented data, we compute region overlap with hand-segmented data in order to

generate a correct interpretation. In some cases, ambiguous results must be resolved

0 llfi dlllI dlIl1111Illlmn Inr..
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Figure 3-2: Ground Truth Segmentations
For Dulles and Andrews AFB

IC I

' " Dulles

AL

4 Andrws AFB3



AUTOMATING KNOWIIx;I ACQt:!I ['ION FOIt AEII.LI, IMACE, iNTEi.,u'if EI'ATION 1

Figure 3-3: Flight fnformation Charts With Airport Layouts
For Dulles and Andrews AFB
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manually before statistics can be generated. A log file generated by SI'AM at each phase of
interpretation is used to acquire the internal state of the SI'AM interpretation. At a gross

level we need a consistent method to measure the accuracy of scene interpretations

generated with alternative or refined knowledge. In terms of the 'debugging' of

knowledge, we require an indication of where one might spend time improving the
knowledge base to improve scene interpretation. SPATS attempts to summarize the

important performance statistics in a succinct manner for each phase of processing by

SPAM.

For the region-to-fragment and local-consistency phases, we require statistical

measures that accurately reflect the performance of geometric knowledge in classifying the

initial image segmentation. Factors such as the number of competing hypotheses, as well

as the number of correct and incorrect hypotheses, are most useful. SPATS provides this
information in tabular form (see Appendix III). This information can be compared within,

as well as across class and subclass boundaries, to give some indication of the effectiveness
of the geometric constraints. One measure, the correct branching factor, defines how

many interpretations there were, on the average, for each correct interpretation. This
branching factor increases from zero (with zero signifying no correct interpretations) as

the number of competing hypotheses increases. As this number increases, the effectiveness
of the associated geometric knowledge decreases. To rectify this problem, we would then

try to isolate which class or subclass constraints were too weak and attempt to tighten

them, or look for new sources of knowledge that would increase our ability to discriminate.

For the functional-area phase, SPATS checks the integrity of the functional-areas
generated by SPAM. This involves using the functional area declarative knowledge to

check that all the fragment interpretations fit the definition of that functional-area type.

Statistics giving the correctness of each functional-area, the number of compatible and
incompatible fragment interpretations contained within the boundary of the functional
area, but not found to be components of the functional area, are generated. This gives us

a measure of the cohesiveness of the functional area. One would expect small numbers of

* incompatibles to be present, with some compatibles. If a large number of compatible

fragment interpretations are present questions about why they did not participate as

members of the functional area can lead to the modification of geometric consistency rules

or the recognition that knowledge of new relationships should be sought. Finally, these
mismatches between functional area definitions and geometric consistency can indicate
whether the user's definition of a functional-area is appropriate.

'For model-generation phase, the constituent functional-areas of the various scene

models are compared. This is done as a first attempt at quantifying the differences

between each of the scene models, if more that one consistent model is generated by SPAM.

Currently a complete analysis involving the accuracies of the included interpretations has

0 4
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not yet been completed in SI'ATS.

As a general methodology for the evaluation of a knowledge base we have found that
running SPAM on hand-segmented ground truth region data is a valuable test of the
interpretation process. It presents to SPAM a "perfect" low-level segmentation, effectively
decoupling the low-level image analysis. The results from this type of experiment can be
used to argue the issue of whether the interpretation problem i! fundamentally one of
dealing with errorful segmentations and should be remedied by working to improve the
segmentation. Even a 'good' low-level segmentation requires significant high-level
knowledge in order to generate a scene interpretation. The use of ground truth data also
makes it easier to avoid a common problem exhibited by computer vision systems of
unknowingly developing intermediate and high-level vision components which rely on
machine segmentations that can be characterized as over-segmented or under-segmented.
In our view, one should at least make explicit these assumptions if they are a factor in the
interpretation process.

SPATS is a useful tool for indicating gaps, weaknesses, or inconsistencies in various types
of knowledge in SPAM. A statistical approach must be used due to the large number of
segmentations involved in the interpretation process, as well as the inaccuracies in
assigning interpretations to those segmentations. Future research is being focused in the
refinement and addition of new measures, particularly in model-generation phase, and
looking at techniques for making performance analysis a more active component of SPAM.

In the following Section we give some detailed examples of the schema-based knowledge
representation generated by ISCAN and used by RULEGEN to compile SPAM systems.
Section 5 describes the use of ISCAN/RULEGEN to generate a SPAM system for a new
suburban house scene task.

4. A Schema-BasedKnowledge Representation
Our schema-based knowledge representation is one method for linking knowledge

acquisition as performed in ISCAN with knowledge utilization in SPAM. The focus of this
work was to develop an intermediate representation for the domain specific knowledge
used by SPAM as a target description for knowledge acquisition and as a source description
for automatic generation of the interpretation system. Therefore, some important
properties for the representation are as follows:

* Sufficiently general to represent the kinds of knowledge and spatial
relationships utilized in each of the SPAM interpretation phases.

* Could be compiled into our target production system language, OPS5.
e Easily organized or partitioned into independent knowledge sets.
* The format is understandable by non-programmers. The knowledge and its
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purpose should not be obscured by the implementation language.

The schema-based representation has been conducive to experimentation. It is far easier
to add and delete knowledge and to measure the effect on system performance, as the rule

0generation is performed automatically; only the control productions that embody the
SPAM architecture are hand crafted. Improvements in structuring rules are easy to
propagate. If an improved method is developed, the generating functions in RULEGE,.N are
modified appropriately and all generated productions are updated. Since our goal is to
produce a working system that handles a variety of aerial interpretation tasks it is easier
to test the generality of the SPAM architecture if we can generate task specific systems.
Hand generation of SPAM is not an attractive alternative, especially in light of our
requirement to perform experimentation by adding and removing specific types of domain
knowledge. In the following examples of schemata for various interpretation phases it
should be emphasized that users do not directly edit this textual representation. ISCAN
generates and enforces the schemata syntax, designed to simplify parsing by RUIEGEN,
during user interactions.

4.1. A House Fragment Rule
The following is an excerpt from the RULEGEN schema file for the region-to-fragment

phase of SPAM, used to interpret suburban-housing scenes. This set of attribute-value
pairs will generate data-structures and productions allowing fragment interpretations for
regions of type 'house' to occur.

'CLASS' - 'house'

'REGION-DEPENDENCES' -
'FRAG-DEPENDENCES' = 'object-type compact && hypothesis unknown'
'SHAPE-CONSTRAINT' - area && 50.00 <- value <- 150.00'
'SHAPE-CONSTRAINT' ' ellipse-length && 12.00 <= value <= 18.00'
'SHAPE-CONSTRAINT' a 'ellipse-width && 10.00 <= value <- 20.00'
'SHAPE-CONSTRAINT' a 'elllpse-llnearity && 0.00 <- value <- 3.50'

Each of the schema attributes are described below.

CLASS

Determines the class of object to which this set of constraints is applicable. In this
case, the rule defined will apply to houses.

REGION-DEPENDENCES
Makes sure that a given set of attributes have been computed before any house

interpretation rules can be fired. In this case, there are no computed attributes that
must exist before this rule can fire.

FRAG-DEPENDENCESAllows a constraint rule to depend on the success of a previous constraint rule. In

this case, the constraint rule for the object type "compact" must have previously
executed successfully (e.g. a compact interpretation created) in order for this rule to

b4
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fire.
SHAPE -CONSTRAINT

Defines the actual constraints that comprise the class definition. Any number of
these constraints can occur here. Currently, 2-D shape characteristics, intensity
characteristics, depth measures, and texture measures fall into this category. In this
case, four constraints completely define the class-type house. For example, the first
constraint limits houses to have areas between approximately 50 and 150 square
meters.

The first three attributes generate a small set of control productions that determine if this
rule applies to a given region. Each SHAPE-CONSTRAINT generates a single production for
the particular constraint given.

When this rule becomes applicable, an initialization production fires and creates a
subtask which is matched by each of the constraint productions. All of these productions
are allowed to fire, each determining the "goodness" of the match for a single constraint.
Finally, a domain-independent production looks at the accumulated scores and decides
whether a house interpretation should be made. Appendix I gives a detailed description of

the each schema-type and spatial constraint currently available in ISCAN. Appendix II
contains the actual productions generated by RULEGEN for each of the schemata in Section

S""4.1 and Section 4.2.

-4.2. A House-Road Consistency Rule

For the second phase of SPAM, local-consistency-check, RULEGEN uses a new set of
attributes to define a rule. The basic idea, as discussed in Section 2, is to generate pairwise
tests that exploit the fact that although there may be a large number of errorful fragment
hypotheses, only small numbers will be mutually consistent. The following is one such
local consistency test, houses-are-parallel-to-roads, others might include, proximity of
houses to each other, distance from roads, orientation of a house to a driveway, etc.
'RULENAME' 'houses-are-parallel-to-roads'

'CONFIDENCE' = '0.8'
'HYPOTHESES' = 'house && road'
'GEOMETRICS' = 'orientation'U 'SUBTYPES' = 'parallel'
'BOUNDS' = '0.00 <- value <= 0.50'

RULE NAME

Attaches a unique, human-readable name to the rule, so we know what it does. In
this case, this rule will determine whether a road is parallel to a house.

CONFIDENCE
Assigns a confidence value to this rule, which describes its discrimination ability. It
is a number between 0 and 1, with a value of 1 implying that the rule can perfectly

5 2 #
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(uniquely) determine that the participating interpretations are correct. In this case,
the rule is believed to be a good characterization of one spatial relationship between

houses and roads in suburban house developments and is given a confidence value of

0.8.

HYPOTHESES

Defines the classes of interpretations to which this rule applies. In this case, the rule

applies to the relationship between houses and roads.

GEOMETRICS

Translates the high-level spatial relation into a low-level geometric test. In this case,

"parallel" is translated as "orientation".

SUBTYPES

Further defines the translation of the high-level spatial relation. In this case,
"parallel" implies that the orientation of the interpretations is being tested (see the

previous description), and that the particular type of orientation test should be

"parallel".
BOUNDS

Completes the definition of the high-level spatial relation by defining the error

tolerance. In this case, the geometric test has a tolerance of 0.5 radians.

The first three attributes define the high-level significance of this rule. The last three

attributes describe, in low-level terms, the high-level intentions. For this example, the rule

may be read as houses being parallel to roads means for a particular house, a road must be
oriented parallel to that house, within a tolerance of 0.5 radians. Thus, a house fragment

hypothesis and a road fragment hypothesis will support each other if this test is successful.

4.3. A House Functional-Area Definition Rule

The functional-area phase of SPAM groups individual hypotheses into mutually
supporting collections of hypotheses that represent meaningful sub-parts of the overall
scene model. The knowledge in this phase defines these scene sub-parts.

'FA-NAME' - 'house-area'
'SEED-REGION' a 'house'
'DEFINITION' - 'driveway && grassy-area'

FA-NAME

Assigns a name to this functional-area defmition.

SEED-REGION

Defines the principle hypothesis of a functional-area. If this type of hypothesis does
not exist, no functional-area of this type can exist. Here, we designate the

interpretation type 'house' as our seed region.

DEFINITION

Enumerates the possible constituents of this type of functional-area. The functional-

area 'house-area' can contain only houses, driveways, and grassy-areas.



AUT'OMATIING K NWIII)(;I; .\QIISITI(N I"(R AI"IIAI, IMAGI. INTIII'II.1'AI'ON 21

4.4. A Suburban-Scene Model Rule
For the final phase of processing, model-generation, SPAM combines functional-areas

together to form models of the entire scene. During this process, conflicting
interpretations will be identified and must be resolved in order to obtain a final, consistent

" model. Knowledge about the types of conflicts, and ways to disambiguate them, is
encoded in this phase.

'CONFLICT' = 'house && driveway'
'RESOLUTION' = 'function && stereo'

CONFLICT

This attribute specifies the name of the conflict type that needs special attention in
order to be disambiguated. In the example at hand, house-driveway conflicts will be

specifically addressed.
RESOLUTION

Defines the type of process to use to do the disambiguation. In this case, we know
that houses have height and driveways do not, therefore invoke a stereo process to
determine whether or not the region has height.

Those conflicts not enumerated are handled by a default resolution strategy that takes
into account the confidences of the individual interpretations, as well as the amount of
support for each interpretation in the context of the current scene model.

5. A New Task Domain For SPAM
In this section we will give a brief example of one of the interpretation tasks used in our

experiments to date. We show some results of the interpretation of a suburban house
scene by SPAM built completely using the ISCAN/RULEGEN system. Figure 5-1 is a
photograph of three of the suburban house scene images used by Hwang 17 at the

University of Maryland. Our intent was to replicate this work using the ISCAN/RULEGEN
system to generate a SPAM with spatial knowledge of suburban house scenes. Figures 5-2
and 5-3 show a human segmentation and machine segmentation of one of the six suburban
house scenes used in this experiment. This replicates work performed by Hwang 17 on this
image set. The goal is to segment and identify the houses, roads, grassy areas, and
driveways in the aerial image. This is a somewhat simpler task that the original airport
scene interpretation task performed by SPAM, but it turned out to be of reasonable scale to

evaluate and refine ISCAN/RULEGEN.

The SPAM knowledge base for these images were developed with measurements using
ISCAN on two training images from the set. The knowledge base was refined iteratively,

first using the hand segmented set of regions, then modified using machine segmentation
data. Currently, SPAM has been run on using both hand and machine segmentations for
three of the six images, the two training and one test image. The image in this example is
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the test image.

The purpose of the hand segmentation is to provide "ground truth" for our automated
analysis programs that are used to generate region-by-region interpretation statistics used
to' measure SPAM's performance in region labeling and overall scene interpretation. We

have also found it useful to run the hand segmentations through SJ'AM in early phases of
rule development in order to completely decouple the low-level image analysis from the
interpretation system. This noise-free approach allows us to uncover gross omissions or
unexpected interactions between the local consistency rules. Figure 5-3 is the result of
running our image segmentation system, MACItINESEG 18 , which uses region-growing and
shape extraction simultaneously to look for characteristic linear, compact, and blob
regions. Although the image is relatively uncomplicated several houses are missed, some
are only partially segmented, and the roads and driveways are oversegmented into
multiple pieces. However, this is reasonable in the context of current computer vision
segmentation capability. Figures 5-4 and 5-5 show functional areas generated by SPAM for
houses and roads, respectively. Figure 5-4 shows the functional area generated from the

* hand segmentation in Figure 5-2 including regions whose fragment interpretation were
'house' or 'grassy area' Figure 5-5 shows the functional area including 'roads' and
'driveway' hypotheses for the machine segmentation in Figure 5-3. We feel that the
functional areas are quite good good in both cases and are similar to results generated by
Hwang 17. While direct comparisons of two knowledge-based systems using different
methodologies are not the subject of this paper, it is important to point out that these
results were generated by automatic compilation of user-defined knowledge tailored to the
suburb house scene task within the framework of the SPAM interpretation architecture.

5.1. Structural Differences In Hand versus Machine Generation
One goal for RULEGEN was to be able to reproduce the hand crafted version of SPAM

reported on in1,' 2 for airport scenes. This system, which we will call SPAM-1, contained
over 500 hand-crafted OPS5 productions, and was used to interpret airport scenes of
National Airport, Los Angeles International and NASA AMES Moffett Field. In contrast

SPAM-2 was built with the RULEGEN compiler by manually extracting the primitives and
constraints from SPAM-1 and encoding them as schemata. SPAM-2 was verified on the same
airports as SPAM-1 giving quite similar results. It has since been used on other airports, not

tested with SPAM-1, such as Dulles International, Andrews Air Force Base, and San
*Q Francisco, with mixed results. SPAM-2 is now the basis for future work in airport scene

analysis. SPAM-3 is the suburban house scene system and was built entirely using ISCAN
%, and RULECEN.

Figure 5-6 gives a breakdown of productions comprising each of the SPAM interpretation
phases for each of the three systems. With this data, we will try to characterize some of

7the differences between SPAM-1 and SPAM-2 and characterize the emergence of domain

6
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Figure 5-1: Suburban House Scene Imagery
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Figure 5-2: A Hand segmentation of a suburban scene

Figure 5-3: A Machine segmentation of a suburban scene

.CD

Figure 5-4: A House functional-area result from hand segmentation

independent knowledge as a result of the restructuring of the SPAM architecture as
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Figure 5-5: A Road functional-area result from machine segmentation

Interpretation Phases
Task RTF LCC FA MG MISC

(SPAM-i) Airport (Hand) 120 304 23 50 16
(SPAM-2) Airport (Rulegen) 54 297 1 6 0
(SPAM-3) Suburb (Rulegen) 32 99 1 1 0

Rulegen Domain Independent 37 7 11 35 7

RTF: region-to-fragment phase
LCC: local-consistency check phase
FA: functional area phase
MG: model generation phase

MISC: miscellaneous interphase control

Figure 5-6: Rules generated by Interpretation Phase

described in Sections 2.2 and 4. To do a proper comparison of SPAM-1 to SPAM-2, one must
add the number of domain-independent productions to the number of generated
productions for SPAM-2. For example, if we do the comparison for the region-to-fragment
phase (RTF), we find that there are 120 productions in the hand-crafted system and 91 (54
domain + 37 domain independent) productions in the machine generated system.

The decrease in the number of productions is somewhat due to the experience gained in
during the hand-coding of SPAM-1 11 applied to RULEGEN. In addition, the desire to
generalize the SPAM architecture forced us to consider how to gain efficiency as well as
generality. The decoupling of domain-dependent knowledge from the SPAM control rules
actually lead to a decrease in the number of OPS5 productions being generated. In the case

V of the last two phases, functional-area and model-generation, it is clear that most of the
knowledge is now encoded by the domain-independent rules or migrated to procedural
knowledge. This is due to the more abstract functions provided by these phases, such as
grouping, merging, and splitting which appear to be task independent and are not
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AIRPORT SCENE TASK

Classes Subclasses

linear runway, taxiway, road
compact hangar-building, terminal-building
small-blob parking-apron, parking-lot
large-blob grassy-area. tarmac

Functional-Area Types Definition

runway taxiway, grassy-area, tarmac
road grassy-area
hangar-building parking-apron, tarmac, road
terminal-building parking-apron, parking-lot, road

SUBURBAN-HOUSING SCENE TASK

Classes Subclasses

linear driveway, road
compact house
blob grassy-area

Functional-Area Types Definition

road driveway
house driveway, grassy-area

Figure 5-7: Class, Subclass, and Functional Area

Definitions For Both Tasks

knowledge intensive. Thus the bulk of the domain knowledge appears to be in the
region-to-fragment and local consistency phases. Once fragment interpretations are
generated along with associated chains of consistent relationships the aggregation of these
fragments into functional areas is now mostly procedural. What knowledge remains is the
definition of the functional area groups, model definitions, and methods to resolve
conflicts. The net result is a more general system with fewer productions and, though not

explicit from this data, faster execution times.

For the suburban-house scene task, the amount of knowledge required appears to be
significantly less than for the airport task. This is not surprising since the number of

productions in the region-to-fragment and local-consistency phase is directly related to
the number of geometric and spatial constraints used to interpret the scene. Figure 5-7
gives a comparison of the two tasks in terms of the number of interpretation classes,
subclasses and functional areas. A simpler scene type intuitively implies that fewer scene
primitives are present and that a smaller number of spatial constraints are available. One
would expect, therefore, that the amount of knowledge required to interpret the less
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complex scenes would decrease from that required for the more complex ones. This is

exactly the case for comparisons of SIAM-2 and SI'AM-3. It should be noted that we

currently have preliminary SI'•AM systems configured with larger numbers of subclasses,

primarily to increase the number of types of buildings, taxiways, and roads, in order to

remedy problems faced in the interpretation of additional airports by SIAM-2. Thus, the

amount of knowledge required for more general airport interpretation, and the difference

between tasks, may be significantly larger than is indicated by these comparisons. It is

unlikely that we will have to make similar increases for other suburban house scenes.

Even with this disparity in the absolute amount of knowledge, the preponderance of

knowledge in both tasks, as reflected in the number of productions, appears to be in the

first two interpretation phases regardless of inherent task complexity. A more precise

characterization of the amount of knowledge needed to interpret a particular scene type,

related to a measure of apparent task complexity, would be an interesting result from this

work. This may become possible as more task domains are implemented within the SPAM

architecture.

6. Conclusion
The SPAM project is an experiment in the use of large amounts of knowledge in aerial

image interpretation. To do significant exploration requires tools for knowledge

acquisition. In this paper, we have described a collection of tools for knowledge

acquisition, automated compilation of knowledge, and performance analysis. Several

types of knowledge that are required for aerial image interpretation systems are described.

The use of knowledge in SPAM and its representation as schemata for knowledge

acquisition and compilation is discussed. The results of a completely automated

generation of a SPAM system for a new task domain are described and show the generality

of the knowledge acquisition tools. Some preliminary analysis of the effects of decoupling

domain-independent knowledge from the interpretation system are presented,

In summary, by focusing on automated knowledge acquisition and compilation we have

generated a more manageable interpretation system for experimentation and

measurement. This flexibility gives us the capability to investigate the automated

construction of knowledge-based image interpretation systems for a variety of tasks. It is

difficult to envision how SPAM could have progressed from its initial hand crafted version
to a more general system capable of performing multiple tasks without the development of

these tools.

Future research includes expanding the range of aerial image interpretation tasks

performed using the new SPAM architecture. We are also interested in the development of

techniques for further automation of the knowledge acquisition process by using

collections of hand-segmented imagery and existing large scale databases such as the
FLIPcharts described in Section 3.1. One goal is to investigate the use of more knowledge
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intensive techniques for knowledge acquisition toward systems capable of automatic

selection of scene primitives and important spatial relationships.
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Appendix I
A short description of the attributes available for each phase, and their legal values,

follows. The available geometric and spatial relationships are also given.

Region- to-Fragment

For the region-to-fragment phase, knowledge about the expected shape of the classes of
objects appearing in the scene is encoded. The <region-attribute> is a characteristic

computed for each of the segmentation regions coming from the segmentation process,
whether hand or machine.

'CLASS' = '<hypothesis>'
'REGION-DEPENDENCES' = '<any string>'
'FRAG-DEPENDENCES' = '<any string>'
'SHAPE-CONSTRAINT' = '<region-attribute> && <range>'

<any number of shape-constraints>

The following is a sample region-to-fragment schema used by the suburban-house scene
version of SPAM. RULEGEN uses this schema to produce productions that define, via

* shape-characteristics, the subclass "house" within the SPAM system.

,°

'CLASS' = 'house'
'REGION-DEPENDENCES' = '
'FRAG-DEPENDENCES' = 'object-type compact && hypothesis unknown'
'SHAPE-CONSTRAINT' = 'area && 50.00 <= value <- 150.00'
'SHAPE-CONSTRAINT' = 'ellipse-length && 12.00 <= value <= 18.00'
'SHAPE-CONSTRAINT' = 'ellipse-width && 10.00 <= value <= 20.00'
'SHAPE-CONSTRAINT' = ellipse-linearity && 0.00 <= value <= 3.50'

The attributes available to characterize the geometric constraints for a single scene
primitive are summarized below. Most of these attributes are precomputed prior to being

loaded into the interpretation system. The others are computed as they are needed. For
example, if texture measures are used only to discriminate between the different subclasses

* of the class called blob, then texture need only be computed for that much smaller subset
of regions that are interpreted as blob regions.

<region-attribute> <range> <status>

texture-low [0 - 100] dynamically-computed
texture-moderate [0 - 100] dynamically-computed
texture-high [0 - 100] dynamically-computed
location-lat [0 - 10000000] precomputed

, location-lon [0 - 10000000] precomputed
orientation [0 - 2pi] precomputed
ellipse-width [0 - 5000] precomputed
ellipse-length [0 - 10000] precomputed
mbr-width [0 - 5000] precomputed
mbr-length [0 - 10000] precomputed
depth-low (0 - 100] dynamically-computed
depth-moderate [0 - 100] dynamically-computed
depth-high [0 - 100] dynamically-computed
curvature [0 - 1] dynamically-computed
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ellipse-linearity [0 - 1000] precomputed
nbr-linearity [0 - 1000] precomputed
compactness [0 - 1] precomputed
fractional-fill [0 - 1] precomputed
area [0 - 10000000000] precomputed
perimeter [0 - 10000000] precomputed

Local- Consistency

We now describe the attributes and geometric relations used in defining a local-
consistency rule. The knowledge represented makes explicit ambiguous spatial/relational
concepts such as "close-to", "oriented-toward", or "far-from". This is done by imposing
bounds on each spatial relation, and using a confidence function to smooth out the

discontinuities associated with simply using thresholds.

'RULENAME' = <any string>'
'CONFIDENCE' = [0 - 1]'

, HYPOTHESES' = '<hypothesisi> && <hypothesis2> &&
'GEOMETRICS' = <spatial-relation>'
'SUBTYPES' = '<sub-relation>'
'BOUNDS' = '<range>'

- An example local-consistency schema follows, which defines the rule that houses should be
- parallel to roads.

'RULENAME' = 'houses-are-parallel-to-roads'
'CONFIDENCE' = '0.8'
'HYPOTHESES' = 'house && road'
'GEOMETRICS' = 'orientation'
'SUBTYPES' = 'parallel'
'BOUNDS' = '0.00 <= value <= 0.50'

The set of possible primitive spatial relations are listed below. This small set has been
found to be expressive enough to describe local-consistency relations for the scenes SPAM
has interpreted thus far i.e. the airport and suburban-housing scenes.

* <spatial-relations> <sub-relations> <range>

distance centroid [0 - 10000]
average
least
greatest

orientation toward [0 - pi]
parallel
perpendicular

intersection nil [t, nil]
overlap nil [0 - 1]

Functional-Area
The knowledge encoded in the functional-area phase is somewhat implicit. It is
represented by the associations made between hypotheses when one defines a functional-
area type. The associated objects are located in close, physical proximity to one another
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and have similar functions. Each of the FA-NAME attributes defines a functional-area type
which will be used as a part of the overall scene model.

'FA-NAME' = '<any string>'
'SEED-REGION' = '<hypothesis>'
'DEFINITION' = '<hypothesisl> && <hypothesis2> && .

The following functional-area schema defines the functional-area type terminal as being
composed of terminal-building, road, parking-lot, and parking-apron hypotheses.

'FA-NAME' = 'terminal'
'SEED-REGION' = 'terminal-building'
'DEFINITION' = 'parking-lot && parking-apron && road'

The SEED-REGION attribute forces the interpretation system to create terminal functional-
areas only if a terminal-building hypothesis exists that is consistent with one or more
hypotheses of the types occurring in the DEFINITION attribute.

Model-Generation
The knowledge embedded in the model-generation phase has to do with using the context
in which a particular region is found to determine which of several conflicting
interpretations are correct. Commonly occurring conflicts can be enumerated, and more
expensive knowledge-intensive operators can be applied to resolve these conflicts in the
context of a particular scene model. The general syntax of a model-generation schema
looks as follows:

'CONFLICT' = '<hypothesis1> && <hypothesis2>'
'RESOLUTION' a '<keyword> [&& <keyword-data>]'

<any number of resolutions>

For example, consider the following schema:

'CONFLICT' X 'hangar-building && parking-lot'
"2 'RESOLUTION' a 'function && stereo'

*This schema will invoke a stereo operator to decide whether or not a region has height, so
that the interpretation system can decide between the hangar-building or the parking-lot
hypothesis.
<keywords> <keyword-data>

default none
function name of a function used to do resolution
conclusion name of a function used to combine results

If there is more than one resolution specified, then there must be a conclusion resolution
specified. The conclusion will take the results of all of the resolution strategies and
determine what the final result will be.
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Appendix II
Some examples oF the productions generated by IULICI,;N are now given. Because the

high-level rule descriptions were given along with the schemata in the previous appendix,
here we will attempt to describe how the productions actually implement semantics of
each rule.

Region-to-Fragment
Using the example schema for the region-to-fragment phase given in Appendix I, the
system generated OPS5 productions defining the 'house' subclass. The first production
finds an uninterpreted region in working-memory, and sets up a subtask which constrains
OIPS5 conflict-resolution to the productions in the given group only. These other
productions apply the geometric constraints and leave the results of each test in a special
LISP data-structure. Finally, domain-independent productions finalize this process by
doing the final test evaluations, deciding whether or not an interpretation should be
created, and removing the now obsolete subtask.

(p RTF::HS::initialize-HS-attributes
(rtf-task ^region <name> -data <token>)

0 (region -symbolic-name <name> -house nil)
(fragment ^symbolic-name <name>

-object-type compact
-hypothesis unknown)

(make rtf-subtask "ruleset HS: :match-HS-attributes
-region <name> "data <token> house)

(p RTF::HS::match-HS-area
(rtf-subtask "ruleset

%'A { <ruleset> = HS::match-HS-attributes )
-region <name> -data {} <hyp>)

{ (rtf-rule-constants "ruleset <ruleset>
^attribute area) <constants> }

(region -symbolic-name <name> -area <value>)

(bind <index> (litval constants))
(call OPS::match-score <name> <hyp> <value>

(substr <constants> <index> inf))
0)

(p RTF::HS::match-HS-ellipse-length
(rtf-subtask "ruleset

( <ruleset> = HS::match-HS-attributes
^region <name> -data () <hyp>)

{ (rtf-rule-constants "ruleset <ruleset>
^attribute ellipse-length) <constants> )

(region "symbolic-name <name>
"ellipse-length <value>)

(bind <index> (litval constants))
(call OPS::match-score <name> <hyp> <value>

(substr <constants> <index> inf))
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(p RIF::HS::match-IIS-ellipse-width
(rtf-subtask -ruleset

( <ruleset> =HS: :match-HS-attributes}
4 -region <name> -data () <hyp>)

((rtf-rule-constants -ruleset <ruleset>
^attribute ellipse-width) <constants>}

(region ^symbolic-name <name>
^ellipse-width <value>)

(bind <index> (litval constants))
(call OPS::match-score <name> <hyp> <value>

(substr <constants> <index> inf))

(p RTF::HS::match-HS-ellipse-linearity
(rtf-subtask -ruleset

( <ruleset> = HS: :match-HS-attributes}
-region <name> ^~data () <hyp>)

{(rtf-rule-constants -ruleset <ruleset>
-attribute ellipse-linearity) <constants>}

(region -symbolic-name <name>
-ellipse-linearity <value>)

(bind <index> (litval constants))
(call OPS::imatch-score <name> <hyp> <value>

(substr <constants> <index> inf))

Local- consistency
Another example schema from Appendix~ 1, for the local-consistency phase of SPAM,

* produces a set of productions defining the spatial relationship constraining houses to be
K parallel to roads. The first two productions, call and in it, establish a subtask which,

again, constrains the conflict- resolution process to the current production group. The next
two productions, i nvaIi d- type and no- rulIe-constrai nts, do error checking. The next
production, exit, removes the current subtask so that the remaining local- consistency
rules can fire. The next two productions, choose-RD and stop-choosing, implement a
loop in OPS5, so that all the computations can be performed at one time. At this point,
domain- independent control productions take over and coordinate the spawning of sub-
processes to do the low-level spatial calculations. When these processes have completed,
the results are placed into working memory and control is allowed to pass back to this
production group. Finally, the last two productions, satisfied and unsatisfied, will
match this result data and create subtasks that will be used by domain-independent
productions to update confidences appropriately.

(p LCC::houses-are-parallel-to-roads::Ocall1
(cons istency-task

-hypothesis house -fragment <id>
-region <name> '-msc <con>)

(make lcc-subtask
-rulename HS: :houses-are-paralle1-to-roads
-hypothesis house -fragment <id>
-region <name> -misc <ccon>)
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(p LCC::houses-are-parallel-to-roads::OinitO
( (cc-subtask

rul1ename
(<rulename> =HS: :houses-are-parallel-to-roads
^hypothesis house ^fragment <id> -region <name>

-' misc <con>) <subtask> )
(1cc-rule-constants -rulename <rulename>)

(call OPS::dumpstate)
(remove <subtask>)
(make 1cc-rule-set -rulename <rulename>

-hypothesis house -fragment <id>
-region <name> -misc <con>)

* (make 1cc-chain -r-ulename <rulename>
'taskname start-choose-mode)

* (p LCC::houses-are-parallel-to-roads: :invalid-type*
{(lcc-subtask.

-rulename
{<rulename> HS::houses-are-parallel-to-roads
^hypothesis {<hyptype> <> house 1) <subtask>}

(remove <subtask>)
(write (crlf) (tabto 9)

<rulename> -- Invalid hypothesis
<hyptype> for this ruleset.
(crlf))

(p LCC::houses-are-parallel-to-roads: :no-rule-constantso
{(lcc-subtask

-rulename
f<rulename> - HS::houses-are-parallel-to-roads
^hypothesis house) <subtask> )

-(1cc-rule-constants ^rulename <rulename>)

(remove <subtask>)
(write (crlf) (tabto 9)

<rulename> -- No rule constants
for this ruleset.
(crlf))

(p LCC: :houses-are-parallel-to-roads: :'exlt*
{(1cc-rule-set

'-rulename HS::houses-are-parallel-to-roads)
<ruleset>

-(geometry)

-(queue)

(remove <ruleset>)

(p ICC: :houses-are-parallel-to-roads: :chooso-RD*
(1cc-chain -rulename

< rulename> - HS::houses-are-parallel-to-roads}
'taskname start-choose-mode)
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(1cc-rule-set ^rulename <rulenamne> -region <name0>
-fragment <idO> -misc <cantO>)

(fragment ^lcc-participant yes -hypothesis road
-symbolic-name ( <nainel> <> <nameo> )
-fragment-token <idi> -confidence <confl>)

(1cc-rule-constants -rulename <rulename>
^constants <threshO-1> }

(call OPS::queue-task orientation parallel <nameO>
<namel> <threshO-1> <idO> <confO> <1dl> <confi>)

(p LCC::houses-are-parallel-to-roads::stop-choosilg*
{(1cc-chain -rulename

{<rulename> = HS::houses-are-parallel-to-roads
'-taskname start-choose-mode) <chain>)

(1cc-rule-set -rulename <rulename>)

(remove <chain>)

(p LCC::houses-are-parallel-to-roads::*satisfied*
(1cc-rule-set

-rulename
(<rulename> -HS::houses-are-parallel-to-roads

4 -fragment <ida>)
(1cc-rule-constants -rulename <rulename>

-constants <min> <max>)
((geometry -type orientation -subtype parallel

-frag1 <idT> -conl <ci> '-frag2 <id> -con2 <c>
-values (<value> >- <min> <- <max>

<geometry>}
(fragment -fragment-token <idO>)

(remove <geometry>)
(bind <score>

(OPS::geometric-score 0.0 <threshold> <value>))
(bind <eltien> 3)
(make 1cc-updates -rulename <rulename>

-elt-len <eltlen> -fragment <idT>
-data <id> <c> <score>)

(make 1Icc-updates -rulename <rulename>
'elt-len <eltlen> -fragment <id>
^data <idT> <cT> <score>)

(p LCC::houses-are-parallel-to-roads::*unsatisfied*
(1cc-rule-set

-rulename
(<rulename> - HS::houses-are-paralle I-to-roads )
(1cc-rule-constants -rulename <rulename>

-constants <threshold>)
f (fragment -fragment-token <ldT> -test-count <count>)

<fragment> )
( (geometry ^type orientation -subtype parallel

-fragI <idT>) <geometry>

(modify <fragment>
-test-count (compute <count> + 1))

(remove <geometry>)
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AppendLx III
Figure 1 is an example of the output generated by SPATS for the region-to-fragment

phase of SiPAM. The explanations are generated as part of the final output for easy
reference.

Id: Moffettl

Column Explanation

Class/Subclass: Class/Subclass to be analyzed
GndTth: # of occurrences of the class/subclass in gnd truth table.

Each class entry is the sum of its subclass entries.
WMEs: # of region WMEs whose symbolic names match the subclass's

gnd truth IDs and that have subclass or class interps.
NOTE: The difference between the class entry and the sum
of its subclass entries is the # of region WMEs with only
class interps.

CorrWMEs: # of the aforementioned WMEs which contained the
correct subclass or class interpretation.

IncorrWMEs: # of the aforementioned WMEs which did not contain
the correct subclass or class interpretation.
NOTE: The sum of the CorrWMEs and IncorrWMEs entries for
each class or subclass should add up to its WMEs entry.

CorrBF: The branching factor for the correct interpretations
of the subclass or class. The BF shows how many
interpretations, there were. on the average, for each correct
interpretation. If a class/subclass has a Corr8F of 0, then
it had no correct interpretations.

IncorrBF: The branching factor for the incorr-ect interpretations
of the subclass or class.

Class/subclass GndTth WMEs CorrWMEs IncorrWMEs CorrBF IncorrBF
linear 40 40 40 0 6.65 0.00

runway 2 2 2 0 3.00 0.00
taxiway 36 36 36 0 6.89 0.00
road 2 2 2 0 6.00 0.00

compact 9 9 5 4 7.00 6.00
hangar-building 9 9 5 4 7.00 6.00
terminal-building 0 0 0 0 0.00 0.00

small-blob - 6 6 4 2 8.50 4.00
parking-apron 3 3 1 2 7.00 4.00
parking-lot 3 3 3 0 9.00 0.00

large-blob 12 12 12 0 5.92 0.00
grassy-area 11 11 11 0 6.09 0.00
tarmac 1 1 1 0 4.00 0.00

Final Stats: 67 67 61 6 6.66 5.33

Figure 1: Example SPATS output for region-to-fragment phase.

From these statistics, one can see that the system was able to correctly interpret the linear

and large-blob classes without any any misinterpretations at all. For the compact class,

notice that the number of hangar-building interpretations is identical to the number of

compact interpretations. This shows us that the geometric constraints for the subclass
hangar-building are not discriminatory enough. This shows up in the correct branching

factor as well.
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An example of the output for the functional-area phase is given in figure 2. This

summarizes all the correct and incorrect hypotheses participating in the created
functional-areas. We can use this information to determine the status of the high-level
groupings generated by SPAM. If it is recognized that many incorrect interpretations are
being uscd to support correct interpretations (or visa-versa) when creating a functional-
area, then the local-consistency knowledge is at fault, as it is not properly characterizing
the spatial layout of the scene.

Id: Moffetti

Functional Area Type: All functional areas
Functional Area ID: All functional areas
Total # of functional-areas: 83
Total # of fragments (from FA, consistent-fragments,

and inconsistent-fragments lists): 60
Total # of the above fragments found in ground truth file: 60
Fragments composing FA(s):# of correct fragment hypotheses: 60

# of incorrect fragment hypotheses: 17

Consistent-Fragments:
# of correct fragment hypotheses: I
# of incorrect fragment hypotheses: 4

Inconsistent-Fragments:
# of correct fragment hypotheses: I
# of incorrect fragment hypotheses: 15

Correct fragment hypotheses table:
Ground Truth Types

RW TW RD HG TB PA PL GA TM
RW 2 0 0 0 0 0 0 0 0
TW 0 38 0 0 0 0 0 0 0
RD 0 0 23 0 0 0 0 0 0

Frag. HG 0 0 0 3 0 0 0 0 0
Types TO 0 0 0 0 0 0 0 0 0

PA 0 0 0 0 0 6 0 0 0
PL 0 0 0 0 0 0 13 0 0
GA 0 0 0 0 0 0 0 27 0
TM 0 0 0 0 0 0 0 0 0

Incorrect fragment hypotheses table:
Ground Truth Types

RW TW RD HG TB PA PL GA TM
RW 0 4 1 0 0 0 2 0 1
TW 0 0 0 0 0 0 1 0 0
RD 0 8B 0 5 0 0 5 0 2

Frag. HG 0 19 0 0 0 0 1 0 0
Types TB 0 73 5 12 0 0 1 0 6

PA 0 13 a 11 0 0 3 38 9
PL 0 88 0 39 0 9 0 83 2
GA 0 14 0 11 0 3 6 0 1
TM 0 0 0 4 0 1 1 8 0

Figure 2: Example SPATS output for functional-area phase.
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