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1. Introduction

A speech recognition system is a device which takes as input the acoustic waveform

*" produced by the speaker using the device and produces as output the sequence of words

corresponding to the input waveform. Speech recognition is a difficult task because it is

uncertain what words will be spoken to the system, and because it is uncertain what acoustic

waveform will be produced given that certain words have been spoken.

A speaker has a choice of what topic to discuss. For example, he might be dictating

an article on algebraic geometry, or be talking to someone at an airline reservation counter.

Once the general topic has been resolved there is still uncertainty in what message the

speaker will convey. He may inquire about flights to Cleveland, or he may cancel his

reservation to Kampala. In a natural language like English there are many different syntactic

forms which can be used to communicate the same message. Once the topic, message, and

syntactic form have been resolved a speaker still has the choice of what words to use. These

examples of semantic, syntactic, and lexical uncertainty all contribute to the uncertainty

of what words will be spoken to a speech recognition system. A formal measure of this

uncertainty is the entropy of the recogniser's language.

The acoustic uncertainty also has many components. There is the uncertainty of accent

in a speaker-independent system. The vowels of speakers from different geographic locations

and from different ethnic backgrounds differ to a large extent. There is uncertainty as to

what the general quality of a speaker's voice will be. This is what separates a song sung by

Chuck Berry from one sung by Rudy Vallee. A given speaker may speak loudly or softly. He

.4' may speak quickly or slowly. He may be relaxed or under stress. His mouth may be close

"* to or far from the microphone. He may be in the cockpit of a jet fighter, or in a soundproof

room. He may have a cold. All of this uncertainty must be taken into account.

*There are two sources of information which can be used to recognize a word, the words

which have been spoken previously, and the acoustic signal. A speech recognizer uses a

language model to extract information from the previous words spoken, and a family of

acoustie models to extract information from the acoustic signal.

By extracting information from previous words a recognizer attempts to minimise the

uncertainty, prior to examining the acoustic signal, of what the current word will be. On

average, this uncertainty is bounded from below by the per-word entropy of the recognizer's

language. If the recognizer knew the true model for its language, then it would be able to

achieve this minimum uncertainty. If the recogniser's model is not correct, its uncertainty

Imom



2 1. Introduction

will be greater. Speech recognition systems that use an artificial grammar do so in order to

set this uncertainty by fiat, thereby ensuring that their task, will not be too difficult.

After information has been extracted from the previous words spoken, any remaining

uncertainty must be minimized by extracting information from the acoustic signal. As we

shall discuss in detail, a formal measure of the maximum amount of information about a

word that can be gleaned from an acoustic signal is the mutual information between the

signal and the word. But, assuming the true language model is known, this upper bound

can be obtained only by discovering the true models which specify with what probability a

particular acoustic signal will be generated by a speaker pronouncing a particular word. If

the acoustic models used by the recognizer are inaccurate, it will not be able to extract as

much information.

The performance of a speech recognition system depends on the extent to which it

0 can reduce the uncertainty of what a word is given an acoustic signal and a sequence

of previous words. A system's performance, therefore, depends on the accuracy of both

the system's language model and its acoustic models. Consequently, research in automatic

speech recognition is divided into two basic areas, language modeling and acoustic modeling.

In this thesis, I shall be concerned exclusively with acoustic modeling.

In the early days of speech recognition, acoustic models were created by linguistic

experts, who attempted to express their knowledge of acoustic-phonetic rules in programs

which analyzed an input speech signal and produced as output a sequence of phonemes

*. [Dixon 76]. It was thought to be, and no doubt is, a simple matter to decode a word

S- sequence from a sequence of phonemes. It turns out, however, to be a very difficult job to

*-"*. determine an accurate phoneme sequence from a speech signal. Although human experts,

such as Victor Zue [Cole 80], certainly do exist, it has proven extremely difficult to formalize

their knowledge in such a way that it can be incorporated into a computer program.

.P During the past fifteen years, an alternative, statistical, approach to acoustic modeling

.has been developed. This approach confronts the inability of human experts to completely

formalize their knowledge by employing statistical methods that are capable of learning

acoustic-phonetic knowledge from samples of speech. The predominant class of models that

has been used in this statistical approach is referred to as hidden Markov models.

Hidden Markov models were first applied to automatic speech recognition in the early

1970's [Baker 75] [Bakis 76]. During the last decade, the hidden Markov modeling approach
has become increasingly popular and successful. Today, it dominates the field. The reason

for the success of this approach is that hidden Markov models are complex enough to begin

4t



1. Introduction 3

to represent speech as a sequence of acoustic-phonetic events of variable duration, and yet

simple enough that their parameters can be estimated automatically from sample speech.

The method of parameter estimation that has been used with hidden Markov models is

maximum likelihood estimation (MLE). There are many very important properties of MLE,

but most of them stem from an implicit assumption of model correctness. The justifications

for using MLE to estimate the mean and variance of a Gaussian distribution, for example,

presume that the sample data has indeed been generated by a Gaussian. Currently we do

not know of a correct model for speech. We can be almost certain that the assumptions

made by any existing model of speech are not totally correct. We must, therefore, question

the use of MLE. The objective in MLE is to do as good a job as possible of deriving the

true model parameters But if the assumptions implicit in the class of models for which

parameter estimates are being derived are not true of the sample data, then it is not clear

what true parameters would be. If there are no true parameters, then it is also no longer

clear jn it what the rationale for MLE is. In this thesis, I shall present an alternative

method of parameter estimation, mazimum mutual information estimation (MMIE), which

does not derive its rationale from presumed model correctness. In particular, the objective
of MMIE is to find a set of parameters in such a way that the resultant acoustic models

allow the system to derive from the acoustic signal as much information as possible about

* the corresponding word sequence.

We will see that MMIE can lead to a performance improvement over MLE. It is impor-

tant to understand, however, that assuming the true language model is known, the upper

bound on the acoustic information available in a system based on incorrect modeling as-

sumptions is necessarily less than the mutual information between the acoustic signal and

the word sequence. Only a system based on accurate assumptions about speech can achieve

this mutual-information limit. Thus it is still of primary importance to improve the accu-

racy of the modeling assumptions made about speech. As these assumptions become more

accurate, the performance advantage of estimates derived by MMIE over those derived by

MLE will disappear.

The speech recognition group at IBM's Watson Research center has been using hidden

Markov models since its inception in 1972. The IBM 20,000 word natural-language speech

recognizer is generally accepted as being the most advanced speech-recognition system in

the world today. In this thesis, I describe my attempts improve the performance of this

system both by improving the acoustic-modeling assumptions in the system, and by using

MMIE to reduce the impact of modeling inaccuracies which remain.

4



2. An Information Theoretic Approach

2.1 Entropy and Mutual Information

An intuitively plausible measure of the uncertainty in a random event X is the average

number of bits necessary to specify the outcome of X under an optimal encoding scheme.

By the fundamental theorem of information theory, also known as the noiseless coding

theorem, this measure is the entropy of X [Shannon 481:

H(X) -- Pr (X = z)logPr(X = z). (2.1)

Similarly, a formal measure of the uncertainty in a random event X given the outcome

of a random event Y is the conditional entropy of X given Y:

H(X I Y) = -ZPr(X = z,Y = y) log Pr (X = z I Y = y). (2.2)

An intuitively plausible measure of the average amount of information provided by the

random event Y about the random event X is the average difference between the number of

bits it takes to specify the outcome of X when the outcome of Y is not known and when the

outcome of Y is known. This is just the difference in the entropy of X and the conditional

entropy of X given Y:

5 I (X; Y) H (X) - H (X I Y)
Pr(X = z,Y = y;) (2.3)

= X = z,Y = )log Pr(X = z)Pr(Y = y)

Since I (X; Y) = I (Y; X), I (X; Y) is referred to as the average mutual information between

X and Y.

Let W be a random variable over sequences of words. Let Y be a random variable over

sequences of acoustic information. On average, the uncertainty of a word sequence given a

sequence of acoustic information is the conditional entropy of W given Y:

H(W IY) =H(W) -I(W;Y). (2.4)

In order to understand H (W I Y) more clearly, consider the following situation. Jack

wants to communicate a message in a sequence of words, w, to Jill. He does this by

;r eeo, " . - Lk
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2. An Information Theoretic Approach 5

speaking the words, thereby producirg the acoustic signal y. He knows that Jill hears y,

but wants to make sure that Jill gets the message in wo. To do this he sends her an additional

string of bits, b, of length IbI. The fundamental theorem of information theory tells us that

IbI > H (W I Y). To achieve this average minimum length of b Jack uses his knowledge of

the the conditional probability of a word sequence given an acoustic signal, and he assumes

that Jill has the same knowledge. The fundamental theorem tells us, specifically, that

Jack's optimal encoding scheme uses - log Pr (W = w I Y = y) bits to tell Jill about the

particular string, wn, given that she has received the particular acoustic signal y.

Suppose that Jack and Jill do not know Pr(W = wn I Y = g), but instead use a pos-

sibly incorrect probability distribution. Suppose they compute their probabilities with a

model, m, and think that Pr (W = wn I Y = y) is actually Prm (W = w I Y = y). Let p(y),

p(w, y), p(w I y), and q(wn I y) be abbreviations for Pr(Y = y), Pr(W = w, Y = y),

Pr(W = wn I Y = y), and Prm(W = wn I Y = y), respectively. After Jill has received y,

Jack will use - log q (in I y) bits to tell Jill that the message is Wn. On average, the number

of bits Jack will have to send her will be

Hm(W I Y)=- p p(w,y)logq(wn Iy)
WI

- p ( , Y) log p (W Y)) p(wy)logp(i(Wy)

I--''
- p(w, Y) log (q -y +H(W IY)WI (q / (2.5)

>-q(wp( y, y) (tnY)- I +H(WIY), sincelogz<z-I

- p(y)q(wtI y) + 1 + H(W IY)
WIN

_H(WIY).

O Furthermore, because z - 1 = log z only if z = 0, Hm (W I Y) > H (W I Y) unless for all wn

and y, q (in I y) = p (in I ). t In other words, if Jack and Jill do not know the probabilities

accurately, it will, on average, require more bits to make sure that Jill gets the message in w.
Since [ W4 -, -log 1! 9- Y increases monotonically with Iq(w I y) - p(w I )I,

6 the extent to which the average length of b is greater than H (W I Y) depends on how far

the q's are from the true probabilities. If Jack and Jill want to keep their messages short,

they should use as accurate an estimate as possible of the probability distribution of word

strings given acoustic signals.

t This inequality is just a special case of what is known as Jensen's inequality.

.. ow



6 2. An Information Theoretic Approach

Because Jill cannot do a perfect job of decoding w from y, she needs the additional

information in b. The amount of additional information she requires to be sure of the

identity of w is Ibi bits. The average length of b, Hm (W I Y), is a measure of her average

uncertainty of a word string w after having received the acoustic data y. The better Jill's

model of the probability distribution of words given speech, the more certain she will be of

the identity of the word string which has been spoken to her.

Let us now replace Jill by a speech recognition system. Suppose, as is normally the

case, that the speech recognition system receives no additional information. Following

--.- Nadas [Nadas 83], the recognizer can be thought of as a decoding function f y -w w. The

probability that it will decode a word sequence correctly is

V(f) = "Pr (W =f (y), Y = Y). (2.6)

Since

ZPr(W - f(y),Y = y) < maxPr (W = wY = y), (2.7)
V 1

an optimal recognizer will choose f(y) such that

-'.- Pr(W = f(y) I Y = y) = maxPr(W= w Y =y). (2.8)

Because a real-life recognizer does not actually know the true probabilities, but instead

estimates Pr (W = w I Y = V) by Prm (W = w IY = y), it will choose f(y) so that

Prm (W f(y) I Y = y) = max Prm (W = w IY y). (2.9)
IW

To increase the chance that the recognizer will guess a.word correctly, it should use a model

in which Prm (W = w I Y = y) is large when the speaker is likely to have spoken the word
sequence w while generating the speech y, that is, when Pr (W = w, Y = y) is large. We

%' can see from equation (2.5) that such models will tend to make Hm (W I Y) small, since

the logarithm is a monotonically increasing function. Decreasing the recognizer's average

uncertainty Hm (W I Y) will thus tend to increase its probability of guessing a correct word

sequence.

* Traditionally, the model m used in a speech recognition system is partitioned into two

components, a language model, and an acoustic model. In order to see how these two

components determine the recognizer's output f(y) for a given input y, we can use Bayes'

rule to reformulate equation (2.9) as

Prm(Y = I W = f (y))Prm(W =f(y)) max Prm(Y=y IW=w)Prm(W= w)

Prm (Y y) Wx Prm (Y y)
(2.10)

I _..-



2. An Information Theoretic Approach 7

Here Prm (W = w) is the prior probability that a word sequence w will be spoken, and is

computed with the language model. Prm (Y - I W = w) is the conditional probability

that the speaker will produce the acoustic signal y given that he will speak the word

sequence w, and is computed with the acoustic model. Prm (Y = y) is independent of any

particular to and therefore does not effect the system's behavior.

We would like to choose the model, m, to minimize Hm (W I Y). Analogous to equation

(2.4) we have

Hm (WIY) = Hm (W)- Im (W;Y), (2.11)

in which

Hm(W) = - jPr(W = w)logPrm(W = w), (2.12)
W

and

Firm (W = w, Y = ) (.
Im(W;Y) = Pr(W = w,Y = y)log Prm(W = ,) Prm(Y = Y)"

Wl

Although in certain tasks it is possible to search for a model with the goal of minimiz-

ing H (W IY) directly [Hinton 86], in speech recognition, the problem of minimizing

Hm (W I Y) is normally divided into two separate subproblems: finding a language model

which minimizes the first term Hm (W), and finding an acoustic model which maximizes

Im(W;Y).

-." Let us first briefly consider the language model. By a derivation similar to (2.5),

it is easily seen that Hm (W) is bounded from below by H(W) and can be minimized

by choosing Prm (W = w) to be as close as possible to Pr (W = w), for each sequence

-" of words w. In a system with an artificial grammar, the Pr (W = w)'s are known and

Hm (W) can, in fact, achieve its lower bound if the system simply uses these probabilities.
In a natural language system, the true probabilities are not known. Hm (W) cannot be

computed outright, but must, instead, be estimated from a large sample of text, and the

, language model should be designed to minimize this estimate. In this thesis, I will not be

* -. further concerned with the language modeling problem. I will just assume that the system's

language model, accurate or not, is given.

Once a language model has been chosen, the acoustic modeling task is to find an acoustic

model which maximizes Im (W; Y), which is just a measure of the average number of bits of

information about a word string , w, a recognizer is able to extract from an acoustic signal

y using the model m. As in the language modeling task, the true probabilities are not

known, and In (W; Y) cannot be computed outright, but must, instead, be estimated from
-..' ,
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sample data. In this case the sample data consists of a sample of text and of a sample of

speech. The speech, y, is the acoustic signal which was produced when the word sequence,

w, was spoken. The goal of acoustic modeling is to maximize the estimate of [m (W; Y)

on whatever sample data have been collected, in an effort to derive a model with which the

system can extract as much information as possible from a test acoustic signal about the

corresponding test word sequence.

For our purposes, an acoustic model is a probability distribution which models the

phonological and acoustic-phonetic variations found in the speech presented to the recog-

nizer. It is impossible for a human being to write down an accurate and complete acoustic

model. For this reason, when designing an acoustic model, one normally develops a family

of possible distributions, parameterized by a vector of parameters, 9, which is estimated

from sample speech. For example, one might decide that the conditional distribution of an

acoustic signal given a word is a member of the family of multivariate Gaussians. Each

such Gaussian distribution would be parameteried by a mean and covariance matrix. The

model, m, which we have been discussing is specified by specifying the distribution family,

and by specifying the set of parameters which identify a particular distribution within the

family. Deciding on the family is the art in speech recognition; deciding on the parameters

is the science.

The issue of whether to account for an acoustic phenomenon in the constraints inher-

ent in the distribution family, or to account for it in the particular values of the model

parameters is an important one. If the family is over-restrictive, it may be incorrect. If it

is under-restrictive, there may be too many model parameters to estimate reliably from a

reasonably sized sample of speech. Ideally, one would like to use a family of distributions

which is based on true assumptions about speech and has as few free parameters as possible.

* •In practice, the best one can hope for is a compromise in which some model assumptions are

inaccurate but not wildly inaccurate, and in which parameter estimates may be off, but not

way off. In subsequent chapters, we will consider a particular class of distribution families

in detail. In the remainder of this chapter, we will consider the problem of estimating a

vector of parameters, 9, from a training sample (w,y). A parameter estimation method

can be thought of as a function g : (W, y) - 9. In this thesis, we will compare two methods

of estimating the parameters of an acoustic model: maximum likelihood estimation and

maximum mutual information estimation.
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2.2 Maximum Likelihood Estimation

In maximum likelihood estimation a parameter vector, 9 g(w, y), is derived so that

Prb(W = w,Y = y) = maxPr 9 (W = w,Y = y), (2.14)

where Pro (W = to, Y = y) is the probability that the model parameterized by 0 in the fam-

ily under consideration will generate the sample (w, y). By factoring Pro (W = w, Y = y)

as

Pro(W = w, Y = y) = Pre(Y = y I W = to)Pro(W = w), (2.15)

we can see that acoustic model parameters and language model parameters can be estimated

separately by choosing the language model parameters tn maximize Pro (W = to) and by

choosing the acoustic model parameters to maximize Pr9 (Y = y I W = to).

In the previous section, we saw that if the true acoustic and language models were

known, we could construct an optimal speech recognition system. This suggests that the

closer the estimator g(w, II) is to the true parameter vector, 9, the closer the performance

of the recognizer will be to optimal performance. Arthur Nadas [Nadas 83] has shown that

this argument, when fleshed out formally with the appropriate assumptions, leads one to

maximum likelihood estimation. Because maximum likelihood estimation is by far and away

the most common method of parameter estimation in pattern recognition, we will briefly

review the primary argument for its use.

An estimator, g(to, y), is a function of samples of the random variables W and Y, and is

therefore itself a random variable, with a distribution determined by the distributions of W

and Y. Let 6 be the parameter vector of the true distribution of (w, y). It can be shown that,

if 1) the sample (to, y) is a sample from the assumed family of distributions, 2) the family of

distributions under consideration is well behaved, and 3) the sample (to, y) is large enough,

then the maximum likelihood estimator, gMLB, has a Gaussian distribution with mean 9,

and variance of the form 1/(nB2, 1 ), [Wilks 61], where n (in a sense that is not important

for this argument) is the sise of the sample, and Bw,1 , the Fisher Information, is a quantity

determined solely by 9 and (to, Y). UMLN is therefore conuistent: limn-- gML(D, y1 ) =0

Furthermore, it can shown that no consistent estimator has a lower variance. This means

that if the three above conditions hold, no estimator will, on average, provide a closer

estimate of the true parameters than will the maximum likelihood estimator. If, in addition,

we assume that 4) the performance of a system can not get worse as its parameters get closer

to the true parameters, then a system using maximum likelihood estimation will, on average,

perform as well as a system using any other form of estimation.

0
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There is also a Bayesian argument for maximum likelihood estimation which is worth

considering. From the Bayesian point of view, the true parameter vector is thought of as

a random sample from some prior distribution. For the moment, let us assume that the

prior is known. In place of the fourth assumption above, assume that 4) the performance

of a system can not get worse as its parameter vector becomes more probably the true

parameter vector. In this case, clearly, we want to use an estimator, MAP(w, y), which has

the greatest probability of being the true parameter vector a posteriori:

Pr(e = gMAP(W,Y) I W = WY = Y) =max Pr (e = e Iw = w, Y =y). (2.16)
9

By Bayes' rule, this is equivalent to using a gMAP(to, Y) Such that

Pr9MA(w,y) (W =w, Y = y) Pr (e = gMAP(to,Y)

I0). 

(217

-maxPrg(W = wY = y) Pr(e )

If the prior, Pr (0 = 9), is not known, it is sometimes possible to assume that the prior

comes from a given family for which the parameters can be estimated by either using

additional training data, or by tying distributions [Jelinek 801, [Brown 83] and [Stern 83].

Another alternative, if there is no information from which to estimate a prior, is simply to

assume what is the least informative prior, the prior with the greatest entropy, the uniform

distribution. Substituting a uniform prior into (2.17), we find that 4MAP(thY) is such that

Pr (W = w,,Y,= y) = mxPr (W = w, Y = y).(

Maximum a posteriori estimation with a uniform prior, is just maximum likelihood estima-

tion.

pa In summary, if we assume that: 1) the family of distributions of y given wo is known,

2) the training sample is large, 3) the true language model is known, and 4) the perfor-

I

"+ mance po, syte w i not eroat as thspometes bomsbe osue taortae mror

.cp roly th tru aml o wihte parameterstechoiga acutcaa m etmte v eitoe mai-g

'-' amitironal yI =t) o training data, rby(in i tribsanotmluehdofetmtion fok80,Irw 8]ad[t r8]

speech recognition.

'O

.0,

speech re&cgiton
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2.3 Maximum Mutual Information Estimation

Let us consider the validity of the premises which justify maximum likelihood estima-

tion.

The first premise states that the true distribution of speech is one of the assumed

family of distributions. An accurate model of speech must accurately model the vocal

tract, the mouth, the nasal cavity, the lips, and the acoustic channel between the lips and

the microphone. At the present time, we are not even close to being able to accurately

model such a complex acoustic device. Any family of distributions based solely on true

assumptions will have to have an enormous number of free parameters. If, as the second

premise requires, the training sample from which these parameters are to be estimated is

large enough to apply asymptotic theory to estimation arguments, an unreasonable amount

of training data will be required. In other words, our understanding of speech is at such a

primitive stage that if we are to use a model whose parameters can be reliably estimated,

we will have to include some assumptions about speech which are simply false, thereby

invalidating the first premise. The third premise states that the true language model is

known. Our knowledge of the syntax and semantics of natural languages, such as English,

is at an even more primitive stage than our knowledge of the acoustics of speech. As a result,

in a natural-language speech recognition system we will not know the true language model,

and this third premise will not be valid. The fourth premise states that the performance

of a system will not deteriorate as the parameters become closer to the true parameters.

While this assumption is, on the whole, probably true, it is unclear exactly what it means

if we are considering a family of distributions in which there are no true parameters.

In the first section of this chapter, we argued that given a language model the goal of

acoustic modeling was to develop a model of speech which maximizes the mutual information

between the sample speech signal 1# and the sample word sequence w. We saw that if the

language model is correct, the true acoustic model would maximize this information. This

then led to the investigation of a method of parameter estimation, maximum likelihood

estimation, which is designed to find parameters which are as close to the true parameters

as possible. However, as we can now see, the justification for this method is based on

premises which, at the present time, are simply not valid. But there is nothing wrong

with our original goal of maximizing the mutual information between the sample acoustic

signal and the sample word sequence. In this section we consider a method of parameter

estimation, maximum mutual information estimation (MMIE) which attempts to choose
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parameters that maximize this mutual information, regardless of whether the language

model and family of acoustic models are correct.

Suppose that a language model, 1, is given. We would like to choose a vector of acoustic

parameters, 0, to maximize

11 o(W;Y) = Pr(W = wY y)log Pri (W= w) Pr,o(Y 2.)

where the I and 9 subscripts indicate which models and parameters are used in the com-

putation of the subscripted probabilities. Since we do not know Pr (W = w, Y = y), we

must instead assume that our sample (t, y) is representative and choose 9 to maximize

fMMB () =log Prl o ( W  = W, Y = Y)

IMMIH(9) = log P - Pr,(Y -y) (2.20)

= log Pro (Y = y I W = ,w) - log Pr1,0 (Y = y).

Choosing 0 to maximize the first term on the right is the same as finding the maximum

likelihood estimate of 0. The difference between MLE and MMIE is in the second term.

To understand how this second term makes a difference, let us first expand it in terms

of the language model, 1, which is assumed given, and the acoustic parameter vector, 0,

Pr1 9q (Y = Y) E Pro (Y = Y W = i',)Pr1 (W = ti). (2.21)

Letting

IWA OPre(Y y W w) (2.22)

consider the derivative of fMmIH (9) with respect to 9i

ODMMIE(0) _

89i

QO( ) ( PrI(W) to) I ( Ietbw (W = ) ()
PrO (Y = V I W = w) Pr1,# (Y = V)

,I.: Pri (Ww ,) Qo (y1 Iii) Pri (W = b)
:.. ... ~Q# (Y I Wg)Pr(Y 1 W )-r O Y 1)- -

Pr(Y = W = w) Pr1 9 (Y= y Pro (Y = y)

(2.23)

Compare this expression to the derivative of the objective function used in maximum like-

_.- lihood estimation, fML3 = Pro (Y = y I W = w),

lIMLR I (2.24)

The first term in the MMIE derivative is in the same direction as the MLE derivative. The

role of the second term is to subtract a component in the direction of Qo (y 1 4) for each

0 -
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incorrect word sequence o 74- w. In MLE, one tries to increase Pro (Y y W = w) for the

correct word sequence o. In MMIE, one similarly tries to increase Pro (Y = y I W = Wo),

but also tries to decrease Pro (Y = y I W = iv) for every incorrect word sequence so

wo. This indicates a fundamental difference between MLE and MMIE; in MLE only the

correct word sequence comes into play, in MMIE every word sequence is taken into account.

Furthermore, the greater the prior probability, Pr I (W = ti), of a word sequence iv, the

more important it is in determining the MMIE 0. This makes good sense, because the

greater the probability that the system assigns to a sequence of words, fV, a priori, the

greater the chance the system will misrecognize to as ti. In MLE, a set of parameters

is chosen to maximize the probability of generating the sample acoustic data given the

corresponding sample word sequence. In MMIE, a set of parameters are chosen with the

explicit aim of discriminating the correct word sequence from every other word sequence.

Arthur Nadas [Nadas 83] points out that if the language model and the distribution

family assumed in the acoustic models are correct, then both MLE and MMIE will be

consistent estimators, but that MMIE will have a greater variance. This implies that if

the language model and the acoustic distribution family are close to correct, and there

is limited training data, then MLE will outperform MMIE. If, on the other hand, either

is inaccurate, we might suspect that MMIE will outperform MLE, since MMIE does not

presuppose model accuracy. Furthermore with a large amount of training data, we would

always expect MMIE to perform as well as MLE, since the variances of both estimators

vanish as the amount of training data becomes infinite.

We can test these predictions empirically in an experiment suggested by both Arthur

Nadas [Nadas 86] and Nick Patterson [Patterson 86]. Consider the very simple problem of a

2-input 2-output decoder. Let the inputs be 1 and 1/2, and the outputs be w, and w 2 . The

problem is completely characterized by the language model parameter Pr (W = wl), and

the two acoustic model parameters Pr (Y = /I = w 1 ) and Pr (Y = y2 I W = W2 ), since

Pr(W = W2 ) = I - Pr(W = Wl), Pr(Y = 12 W = ) 1 - Pr(Y = Y1 W = wt), and

Pr(Y =y I W = W2 ) = 1 - Pr (Y = Y2 fW = W2 ). Suppose that these parameters have

the following values:

Pr(W =wl) =.6 Pr(Y =pl I Ws ) =.6 Pr(Y = Y2 I W = w2 )=.8. (2.25)

The resulting joint probabilities are shown in Table 2.1.

There are only four possible decoders in this problem. From equation (2.8), we can see
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Y1 Y2

W1  .36 .24

% 12 .08 .32

Table 2.1: Joint Probabilities of Words and Acoustic Signals

that the optimal decoder, IoPT, will be such that

fOPT (Y1) = t01 and IOPT (Y2) = w2. (2.26)

From equation (2.6), we can see that the performance of fOPT is

V r(OPT) - Pr (Y = Y W = fopT (y)) Pr (W = foPT (Y)) = .68. (2.27)

4.-I.

The acoustic parameter estimation task is to find estimates for Pr(Y = yl I W = wl)

and Pr (Y = Y2 I W = w2) from a sample of w and y pairs, assuming some language model

parameter Pri (W = wl). We can compare MLE and MMIE on this task by randomly

generating training samples, computing MLE and MMIE acoustic parameter estimates,

and then using these estimates to compute decoding accuracies. By doing this for a large

number of sample sets we can compare the average performance of an MLE decoder and

an MMIE decoder.

First, suppose the true language model is known. Table 2.2 shows how MLE and

MMIE compare for varying sample sizes. As expected, the performance of both estimators

improves with increasing sample size. Furthermore, MLE outperforms MMIE until they

both have converged to optimal performance at 1024 (w, y) pairs per sample.

Sample Size MLE Performance MMIE Performance

4 .620 .611
8 .637 .632

16 .659 .646
32 .666 .658
64 .674 .663

128 .678 .671
256 .680 .677
512 .680 .679

1024 .680 .680

Table 2.21 MLE vs. MMIE, Assuming True Language Model is Known

,-I
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Now, suppose that our estimate of the language-model parameter is way off. The joint

probabilities computed with a language model in which Pri (W = wl) = .2 are displayed in

Table 2.3.

Y1 Y2

W1  .12 .08

102 .16 .64

Table 2.3: Joint Probabilities Computed with Incorrect Language Model

Performance results using this inaccurate language model are shown in Table 2.4. As in

the previous example the performance of MMIE improves with increasing sample size until

it reaches the optimal performance of 68 percent accuracy. The performance of MLE, on

the other hand, actually decreases with increasing sample size, and is worse than the MMIE

performance for all sample sizes greater than 4. Because the decoder is using the wrong

language model parameter, as MLE homes in on a better estimate of the true acoustic

model parameters, it homes in on the sub-optimal decoder

/MLE (I/i) = W'2 and fML8 (Y2) = W2. (2.28)

By examining Table 2.3 we can see that this sub-optimal deocder has a performance of

VfMLE) = , Pr (Y = yIW = fMLR (Y)) Pr (W = foPT (Y)) = .40. (2.29)
Y

Sample Size MLE Performance MMIE Performance

4 .575 .574
8 .539 .609

16 .512 .658
32 .499 .678
64 .474 .680
128 .452 .680

256 .429 .680
512 .409 .680

1024 .402 .680

Table 2.41 MLE vs. MMIE, Assuming Incorrect Language Model
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* The choice, then, of whether to use MLE or MMIE depends on the accuracy of model

assumptions and on the amount of training data available relative to the number of param-
eters to be estimated.

In the chapters which follow, we will explore a particular class of acoustic models, and

compare the performance of MLE and MMIE in real speech recognition experiments.

°'-

N
N-p



3. Hidden Markov Models
.J..

3.1 Basics

This section consists of a description of what has become the predominant class of

acoustic models, hidden Markou models.

A sequence of random variables X = X 1 , X 2 ,... is a first-order n-state Markov chain

provided that for each t, X t ranges over the integers 1 to n and further that

Pr (Xt+1 =t+11 = Xt = Pr (Xt+ = t+1 IX= zt) , (3.1)

where the abbreviation X! is used to represent the sequence Xi, Xi+I,...,X,. Equation

(3.1) is known as the Markov assumption. In words, it states that the probability that the

Markov chain will be in a particular state at a given time depends only on the state of the

Markov chain at the previous time.

The parameters of a Markov chain are

AA
aij = Pr (Xt+ 1  j I Xj i) , (3.2)

and

Ci = Pr (XI = i). (3.3)

We say that a transition from state i to state j occurred at time t if the Markov chain was in

state i at time t and in state j at time t + 1. The transition probability aij is the probability

of making the transition to state j at time t given that the chain was in state i at time t.

In a stationary Markov chain, we assume that this probability is independent of the time

at which the transition occurs. The initial-state probability ci is the probability that the

Markov chain will start in state i. Since the initial-state probabilities and the transition

probabilities are probabilities, they must all be non-negative, and for every state, i, they

must satisfy the following constraints:

n n

aii = 1, and E i = 1. (3.4)
j=1 j=1

In a hidden Markov model a sequence of random variables Y' is a probabilistic function

of a stationary Markov chain X. There are two cases to consider. X is a hidden Markov
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model for a sequence of discrete random variables, , provided that for each t, Y ranges

over a discrete space, and further that

Pr y = -I It- 1 = yt-1, XT T = pr (ry t I Xt= ,t, XA +t = zt+). (3.5)
, p.

X is a hidden Markov model for a sequence of continuous random variables , provided

that for each t, Y ranges over a continuous space, such as RN, and further that

_• " (x r)
f. % f = ,I t- = I-, f (y , I X, =zt, Xt+1= z,+,) (3.6)

where f (Yt = yt) is the probability density at yg.

The sequence l, y2.... is the observed output of the hidden Markov model. The state

sequence zT is not observed; it is hidden. In this thesis, equation (3.5) or its equivalent (3.6)

will be referred to as the output-independence assumption. It states that the probability

that a particular output will occur at a given time depends only on the transition taken at

that time.

In addition to the initial-state probabilities and the transition probabilities, the param-

eters of a hidden Markov model for a discrete sequence include the output probabilities

'pbi. (k) Pr (Y = k I Xi = i, Xt 1  j). (3.7)

Each bii (k) must be non-negative, and for each transition i -*j,

E bi (k) = 1. (3.8)
k

*2 In the continuous case, the output distributions in (3.6) are usually parameterized. For

example, they may be assumed to be Gaussian. In which case, each output distribution

* would be parameterized by a mean and covariance matrix. The constraints on the parame-

ters depend on the particular type of output distributions. For Gaussians, for example, the

,,.-".. covariance matrices must all be positive-definite. The parameters of a hidden Markov model

of a continuous sequence are then the initial-state probabilities, the transition probabilities,

and the parameters of the output distributions.

In order to avoid making every point twice, once for the discrete case, and once for the

continuous case, let us generalize the Pr notation to stand for both the probability of an

event, and for the probability density at a point:

f r Pr (Y = yj), in the discrete case;
Pr (Y( = vi) I= (3.9)

.f (Y = ye), in the continuous case.

'P..
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In the same way let us also use the term bij (yt) to refer to both a probability in the discrete

case and a probability density in the continuous case:

A Pr (1' = yI I Xt = i, X+ 1 = j) , in the discrete case; (3.10)
b (yt) (310

f (Yt = yt I Xt = i, Xt 1 = j) in the continuous case.

I shall refer to the probability of generating some event or sequence of events, y, in the

discrete case to mean the probability of sampling yr, and in the continuous case to mean the

probability density at y. Observations which are clearly vectors of continuous parameters

will be denoted by bold-faced variables. Discrete observations will be denoted by ordinary

variables. Generic observations, which may be either from a discrete or a continuous space

will also be denoted by ordinary variables. Variables which denote whole sequences will

always be in a bold-faced type, except when the bounds are listed explicitly as in yT

The Markov assumption and the output-independence assumption are made so thai

the number of parameters in a hidden Markov model will be relatively small, and so that

certain computations can be performed rapidly. An important example is the computation

of the probability that a hidden Markov model will generate a particular sequence y1 * Since

we do not know which path was taken through the model when generating 1T we must

sum over all possible paths containing T transitions:

Pr (Y1 i~ E Pr (Xi Z r ( I ,TX1+ I~ . (.1
T+1

The computation of Pr (XT = Z) can be simplified with the Markov assumption:

T
Pr X(XT = X) Pr(Xj = z1 ) H Pr (x,+= I = zt

tT (3.12)

= Pr(X 1 = z1) Hl Pr(Xt+i = zt+1 I = zt)-
t=1

The computation of Pr yT IT = ZT+) can be simplified with the output-

independence assumption:

'SPr (YT = T T+ 4+1)j. xY, I X1lI
"-'" T

=Pr(Yi=piIIXT+1  ZT+1) H Pr (Yt =, lxT+l =zT+'yi - 1 - (3.13)

T

=H Pr(Y = yt I Xt =z, Xi+ = zt+i) .
t=1
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~~yft. ~Substituting (3.12) and (3.13) into (3.11), we find that Pr ( Y - 11T se ult

T

E Pr(X 1  z1 )rl Pr (Xi+l Zi+1 Xi X0)Pr (Yi = YtI Xt z, Xt+1 = z J
T+I t=1 

(.4

Since the number of paths of length T through a Markov model grows exponentially with

T, it may appear that the computation in (3.11) grows exponentially with T. However,

because each factor Pr (Xt+l = zut.1 I Xj = zi) Pr (Yi = ytI X= zt, Xt~l = zg+l) only
involves yi, zi, and zL.4<1, Pr (y1 T = t4 can be computed recursively in linear time. Let

ai W Pr Y t X(3.15)

SW Then for all states, :,

*i a(0) =Pr (XI = ) =ci, (3.16)

and for t > 0

a1i (t) = a1 (t - 1) a,,bii (1,). (3.17)

Clearly Pr (I.T - T) Ei ai (T).

Another important example of a problem that can be solved quickly by taking advan-

tage of the Markov and output-independence assumptions is the determination of the most

probable state sequence given a particular output sequence y.Similar to the definition of

ai(t) given above, define vi(t) to be the joint probability of taking the most probable state

sequence~~~~~~~~~~ enigavtt ttm 1 n eeaigy.i can be computed in linearsequenc eniga tt- ttm ,adgnrtn t

time with the following recursion:

=iO ci (3.18)

aq(i) =max vi(i - I)aiibii(3,j). (3.19)

pi(t), the most probable state sequence ending in state i at time t +4 1 given yi can then beI computed in linear tine by noting that

pi(i) = P1 .(l)(i - 1) II(3.20)

where

iri(i) =argrnax. L,(i - 1)aiibji(yI), (3.21)
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and denotes sequence concatenation. The most probable state sequence given /i s

then pk(T), where

k argmax vi(T). (3.22)
i

This algorithm was discovered by Bellman [Bellman 57]. It was then rediscovered and

applied to problems in information theory by Viterbi [Viterbi 67]. I shall refer to the

resultant alignment between output sequence and transition sequence as a Viterbi align-

ment.

3.2 Modifications to the Basic Model

In this section we shall consider a few simple modifications to the basic hidden Markov

model that is described in the previous section. These modifications do not extend the class

of probability distributions beyond the basic model, but are introduced because they are

convenient when applying hidden Markov models to speech recognition.

The number of states in a Markov chain is a measure, albeit crude, of the complexity of

the finite-state grammar represented by that chain. As Jim Baker points out, the modeling

of speech by a hidden Markov model should not be regarded as a statement that the

intricacies of speech are best described by a finite-state grammar, but rather the intricacies

- of speech should be regarded as a "prescription to be followed in the formulation of the

state space", [Baker 79].

In succeeding sections, we will discuss the estimation of hidden Markov model parame-

ters from sample speech. As in all kinds of parameter estimation, the number of parameters

that can be reliably estimated is a function of the size of the training sample. Therefore,

with a limited training sample, it is necessary to limit the number of parameters in the

model.

On the one hand, then, we would like to use a large number of states and transitions in

an underlying Markov chain in order to model complex phonetic events. But on the other
hand, we would like to keep the number of transition probabilities and output distributions

small because we are faced with limited training data. One way to address these conflicting

requirements is to impose constraints which force transition probability distributions on

sets of transitions originating at different states to be the same, and which force output

distributions on different transitions to be the same. By doing this, the state space and

*number of transitions can be made arbitrarily large, while the number of parameters in the

model can be kept arbitrarily small.
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Two transition probabilities are tied if they are constrained to be equal to one another.

Denote the set of all transitions which have transition probabilities that are tied to the

transition probability on the transition i - j by 'Tj The distribution of transition prob-

abilities at state i is tied to the distribution of transition probabilities at state ) if there

is a permutation, 7r, such that for all k, aik is tied to ajr(k) . Denote the set of all states

which have transition probability distributions that are tied to the transition probability

distribution at state i by Si. The output probability distributions on transitions i --+ j

and k - 1 are tied if for all outputs, ye, Pr (Y = yj I Xj = i, X+ 1 =;) is constrained to

be equal to Pr (Y= I = k, I). Denote the set of all transitions which have

%output probability distributions that are tied to the output probability distribution on the

- P. transition i -- j by Djp Tying induces an equivalence relation on transition probabilities, on

transition probability distributions, and on output probability distributions in the obvious

ways.

Another way of reducing the number of free parameters in a hidden Markov model

is simply to require that certain parameters have specified values. We may, for example,

require that certain transition probabilities be zero, thereby prohibiting the associated tran-

sitions. Similarly, by fixing certain initial-state probabilities at zero, we can ensure that all

state sequences with non-zero probability begin in some set of initial states.

We will also want to insist that all state sequences end in a set of final states. The

set of final states in a Markov model are all those states from which all transitions are

prohibited. The probability of a state sequence z T is zero unless zi is a final state. A

Markov model with at least one reachable final state then defines a probability distribution

on state sequences of varying lengths.

In models with prohibited transitions, we can often further reduce the number of allowed

* ; transitions required to adequately model an acoustic process by using null transitions, which

allow the model to change state without producing any output. The incorporation of null

transitions into hidden Markov models is discussed in detail in [Bahl 83]. If certain transition

probabilities are required to be zero, then, when computing the probability of a sequence,

0., we need not sum over states sequences that involve those transitions. When this savings is

taken into account, it can be seen that the computation of the probability of a sequence is

linear in the number of transitions, null or ordinary, with non-zero transition probabilities.

Throughout this thesis, diagrams of hidden Markov models will be presented. In these

figures, transitions that have their transition probabilities fixed at 0 will not be shown, and

null transitions will be represented by dashed arrows. There will usually be one initial state,

.4"
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which wi!l be the state at the far left, and one final state, which will be the state at the far

right. For example, in figure 3.1 the transitions I -. I and 2 -. 2 are ordinary transitions.

The transitions I -. 3, 2 -. 1, 3 -. 1, 3 --. 2, and 3 --, 3 have transition probabilities that

are fixed at 0. State I is the single initial state, and state 3 is the single final state.

1 2 3
Figure 3.1: Sample Hidden Markov Model Diagram

Thus far, we have referred to a transition in a Markov model as a pair of states, an

origin and a destination, which makes sense because in an ordinary Markov chain it is of

no use to contemplate more than one transition between two states. On the other hand,

in a hidden Markov model with parametric distributions it does make sense to consider

two separate transitions between a pair of states. Consider a hidden Markov model in

which all output distributions are assumed to be Gaussian, for example. If there are two

different transitions with different output distributions between the states i and j then the

output probability distribution given that a transition from i to j has occurred is a mixture

of two Gaussians. We can thus implement output distributions which are mixtures in a

straightforward manner by allowing multiple transitions between states.

While these modifications to the basic hidden Markov model are important in the

application of hidden Markov models to speech recognition, with the exception of tying, they

are not crucial to the issues which will be addressed in the rest of this thesis. Furthermore,

although it is straightforward to incorporate fixed probabilities, null transitions and multiple

transitions between states into the models we will be discussing, it significantly complicates

many of the formulas relating to these models. As a result, we will only amend our basic

model by the inclusion of tied probabilities and tied distributions. It is left as an exercise

for the interested reader to include the other modifications.

When applying hidden Markov models to speech recognition, it will be convenient to

consider a family of models. There might be one model for each word, for example. Let

* M = (ml, m 2 ,... , m,) be a family of hidden Markov models. The parameter vector of M

.. -"
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is defined to be 0 = (01,02 ... ,O,.) where 9 i is the parameter vector of mi. The concept

of tying is extended to include probabilities and probability distributions from different

members of the family. Thus, we say that the transition probability on transition -

in model m is tied to the transition probability k -, I in model m', if atj is constrained

to be equal to a'. We extend the concept of tied transition probability distributions and

tied output distributions in the same manner. In addition, we say that the initial-state

probability of state i in model m is tied to the initial-state probability of state j in model

-Mi if ci is constrained to be equal to c?, . Because of tying or other constraints on 0, it may

be that any change to the parameter vector of one of the members of a family, say m, will

necessitate a change to the parameter vector of some other member of the family, say m

When this is the case, we say that m entails m. A member, m, is representative of a family

if it is entailed by each member of the family. A family which has a representative member

is said to be close-knit [Bahl 86].

The concept of a close-knit family is important when estimating the parameter vector

of a family of hidden Markov models. This is because the parameters for all members

of a close-knit family can be estimated from a sample which is assumed to have been

generated by a representative member. If we have a method of estimating the parameters

for that representative member, then we have a way of estimating parameters for the whole

.1 family.

3.3 The Forward-Backward Algorithm

Hidden Markov models owe their current popularity to the existence of a fast algorithm

for computing maximum likelihood estimates of their parameters, the forward-backward

algorithm. In this section, we will describe this algorithm.

Let us first consider the problem of finding the maximum likelihood estimates of the

. transition probabilities in an ordinary Markov chain. In this case, we simply observe in

the training sample the state sequence and hence the transition sequence. The probability

of generating the training data is just the product of the transition probabilities for the

transitions reflected in the sample. Let ni1 be the number of times a transition with a

transition probability that is tied to the transition probability on the transition from state

i to state j occurs in the training data. It is easy to show that the maximum likelihood

V-p
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estimato for the transition probability aij is
; ', ni i

- ni (3.23)

What makes MLE for hidden Markov models more complicated is that in a hidden

Markov model, the underlying state sequence is not observed, and it is therefore not possible

to count how many times each transition occurred. If we knew the sequence of transitions,

then we could estimate the transition probabilities for a hidden Markov model as they are

estimated for an ordinary Markov chain, and we could estimate the parameters in an output

e. distribution, d, from the collection of all y, which were generated while a transition with

an output distribution tied to d occurred. The problem is we don't know what we need to

know to obtain the maximum likelihood parameter estimates.

This problem is an instance of the general problem of finding maximum likelihood

estimates when the data observed are incomplete. Suppose we observe training data, y. In

order to determine the vector of parameters, 9, which maximizes Pri (Y = yi), we would

., also like to know some additional data, z. The method we will use will be to assume a vector

-. of parameters G and estimate the probability that each z occurred in the generation of y. We

can then pretend that we had in fact observed an (z, y) pair with frequency proportional to

- the probability that z occurred, given y and our assumed parameter vector, 9, to compute a

new vector of parameter estimates, 9. We can then let 9 be this new vector of estimates and

repeat the process, in an effort to iteratively improve our estimates. In a very important

theorem, Leonard Baum proved that Pri (Y = y) > Pro (Y = y), with equality if and only

if 9 9 [Baum 72]. This technique has since been adopted by other statisticians and is

referred to as the EM algorithm [Dempster 77]. We will now prove this theorem using a

version of Baum's proof which has been presented by Issac Meilijson [Meilijson 85].

First we introduce the unobserved data, z, into our objective function:
(Pro (X = Z

• ,, ~Pri (Y =yI) =r er(Y =yI) !-r X ,Y
" ' ' Pr Pr (X = Z, Y = I)(.4

Prb (X zY y)
. .P r# (X = z I V = y)

A' Now take the conditional expectation of log Pri (Y = y) over X using an assumed vector

of parameters 9:

. log Pri (Y = y) = log Pri(X = z,Y = y) - log Pri (X = z I Y = y), (3.25)

Ee [log Pr(Y = y)] X == Pro (X = I I = Y)log Pr (Y = )

• (3.26)
= log Pr6 (Y y),
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where Eo [f]xi',=Y denotes the expectation of the function f over the random variable X,

given that Y' - y, and computed with the parameter vector 0. Therefore,

log Pri(Y =y) = Eq log Prj (X, Y = Y Xl= - Ee [log Pri(X I

(3 27)

By a derivation similar to (2.5) we find that

E19 logPro(X I' = V) XIY= -Pro(X =z Y = y)logPr*(X = z IY = Y)

_ Pro(X = z Y = y)log Pr 9 (X = z Y = y)
r

= Eg[log Pro (X IY = Y))XIY=Y

(3.28)

with equality if and only if 0 = 9. Therefore, if we choose 9 so that

te E 0 [log Prj (X, Y =)]XY=y -> Eq [log Pro (X, Y y ')IXIY=y (3.29)

" then

log Pri (Y = y) > log Pro (Y = y). (3.30)

This proves that the following algorithm will converge to a local maximum, or at least to a

saddle point, of the likelihood function.

I. Guess an initial vector of parameters, 9.

* 2. Choose 9 to maximize Ea [log Prj (X,Y = Y)]X y =Y

3. Set 9 to be i.

4. If a convergence criteria is not met, go back to step 2.

Let us now consider the application of the EM algorithm to hidden Markov models.

The observed training sample y is simply the output of the model. The unobserved data Z

is the state sequence, or transition sequence, taken while generating y. In step 1, we assume

a vector of parameters, 9, consisting of initial-state probabilities, transition probabilities,

and output distribution parameters. Step 2, can be performed in two parts. First, at every

time, compute the probability that each transition is taken at that time while generating

y. Second, use these probabilities to find a new vector of parameters, 9, which maximizes

" Eo [log Pri (X, Y = v)] XI= *

As in the previous section, let

ai (t) Pr =Pr t1  (3.31)

Let
'"B() Pr (yT T 'I I X,+I =j) (3.32)

04
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Then

Pr (YT T, , i X a,(t I )a,)h,, (Yt)L(o) (3,3)

In words, the probability that a particular transition i -. ; is taken at time t, and that

the entire training sequence yT is generated is equal to the probability of generating the

sequence i1 and arriving at state i, times the probability of taking the transition i

times the the probability of generating yj while taking the transition i -. , times the

probability of generating the sequence y T having started at state j. We have seen, in

section 3.1, that all the oi (t)'s can be computed in linear time. There is also a recursion

which allows the Oi (t)'s to be computed in linear time: for all states, t,

.3i(T) = 1, (3.34)

and for t, 0 < t < T,

2/ 3a () = b aij(yi +I)Oj(t + 1). (3.35)

In the first part of the second step above, we need to compute the probability that a tran-
Tsition i- j occurred at time t given that the model generates y . Denote this probability

by

.i (t) Pr (Xi = i, X +I = -Y1T)

ai (t - I )"i bij (yj) 0i(f) (3.36)

- = kak(T)

Using the above recursions for the a's and 3's, these probabilities can be computed in time

which is linear in T [Baum 72].

We now want to use these probabilities which have been computed using a vector of

parameters, 0, to choose a vector 6 which maximizes

* Ee [log Prj (X,Y = Y)] 1jY = ZPro(X = :1 Y = y)log Pr(X = ,Y Y).

(3.37)

This is equivalent to choosing 9 to maximize

.',fPro (X = = - )Pr(X3IYV). (3.38)

' It is useful to think of (3.38) as the probability of generating a sequence, S 1V, of in-

dependent samples (z, y), each of which occurs Pro (X = r I Y = y) times. In other

words, there are Pr9 (X = Z I Y = Y) (2, y)'s for each state sequence r in Sy. Of course,

Pro (X = Z I Y = Y) is not a whole number, so one must think of a sequence occurring a

'S'S . . . .
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fractional number of times. The probability of generating S. is just the product of a lot of

initial state probabilities, transition probabilities, and output probabilities. The number of

-" times a transition, -. j, occurs at time t in S1 is just -Y'j (t). We can choose the initial

. state probabilities to maximize (3.38) by setting each ei to be proportional to the number

Sof ties i is the first state in (V) samples in Sy

, d-~ Z v",(l) (3.39)

We can choose the transition probabilities to maximize (3.38) by setting each aij to be

% ~ proportional to the number of times a transition in T occurs in Sy

Tk. I "kl(t)k' = Iks EE. , t (3.40

We can maximize (3.38) with respect to 0, the vector of parameters of the output distri-

bution associated with transitions that are tied to i -. j, by choosing 0 to maximize the

probability, or equivalently the log of the probability, of generating all the yt which occur

with a transition with an output distribution tied to that on i -. j in Si. This amounts to

choosing 4 to maximize

T

00~) Y2 -YkI(i) log Pro (Yt = YOi, (3.4])
k-EDi, t=1

subject to whatever constraints may apply to e0.

In the discrete case, 0 consists of a vector of discrete probabilities. For each discrete

output symbol, m, there is a parameter

-. b(m) = Pro()' = m). (3.42)

*, The vector of the probabilities must satisfy

* Lbo(n) = 1. (3.43)

Using the LaGrange multiplier A and solving the set of simultaneous equations, one for each

IV .. m, of the form

SZ Z "k/()lg Pr(-M ) - 1 0, (3.44)5..* vb*(n) k-.ED,, t=1 m

we find that
,,-.lE, X.,= 'klt

bo(m) = (3.45)

Reestimation formulas for the continuous densities that will be discussed in this thesis

are presented in the appendices.

1.%.
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S.4 Maximum Mutual Information Estimation

Let M be a close-knit family of hidden Markov models, parameterized by 9. Let M also

denote a random variable ranging over the members of the family M. In order to keep the

formulas short, let us leave the random variables out of the formulas when it is clear what

they should be. Thus, we write Pr (m) as an abbreviation for Pr (M = in). Let Prm (IT)

denote Pre (y1T A IM = m) the probability of generating yT from model m using the

parameter vector 9. Suppose that we are given the training sample (m, l/T), and that m is

representative of the family M. In maximum mutual information estimation, we would like

to choose e so as to maximize the mutual information between m and yT

le (m ,) -log Pre(YT - )TPM =m)

-~~ Ir ( Y1T r(n (3.46)

log (Prm (?T)) - log E Prm (uT) Pr (m').

The forward-backward algorithm which was described in the previous section is a hill-

climbing algorithm for maximum likelihood estimation. Its primary advantage over gradient

descent is that it produces a direction and step size which are guaranteed to improve, or

at least not to worsen, the likelihood function. Unfortunately, no such method is known

for maximum mutual information estimation, and we must therefore resort to the use of

traditional maximization techniques, such as gradient descent.

Let us begin, then, by examining the derivative of lo (i n YT) with respect to 8, a

component of 9,

%*". Ole (ma,u T)_ -i8rm (T) - ,'n Pr (in') APrra, ( r (3.47)
prm T)  m' Pr (m') Prm (T)

*G To compute this derivative, we need to be able to compute the derivative of the probabilility

that a model, m, will generate yT,

(TTOPrm l/Ij) ' T
9 = - E Pr(zl) Ij Pr (yp zi, zt+i) Pr (j+ij zI)- (3.48)

.l"+1 t=1

Let us suppose, first, that 9 is a transition probability. Let T be the set of all transitions

with transition probabilities tied to 0. To shorten the formulas which follow, define 7 as

-2
1 (tl,12) _ I Pr (yiz, zi) Pr (zi+l I zi) . (3.49)

i=tl

I"
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Letting 6(b) be I if the Boolean condition b is true and 0 otherwise,
8Ptm (FT)

-" Z Pr(z 1 ) 6 (zj - z1 +I E T9 ) 77(1, i-i )Pr (?/t z, 1 ) /(t+ l,T)
-1TT

L 'Pr (z )E6 (x - xj44 E T-9 ) 1 (1, t- 1) Pr (yx,g z ,i) 7 (ti+ 1,T) .50

.

T--1 f=T+

Since 6 (zt -- + E T) is non-zero if and only if the transition probability on the tth

transition in zT + 1 is tied to 0, for each time, t, we are summing over all paths, z+1, in

which the transition probability on the tth transition is tied to 0. We can therefore rearrange

this equation and sum over all transitions with a transition probability tied to 9, and over

all paths which take such a transition at time t,

OPrm (y) T:..:. "/ - , _, _,Pr(zt) 71(1, t- 1) bij(y/t)i(t + 1, T).
i..:tl j-.Ti 4 r+ t ~ ~ +

(3.51)

The inside sum is the sum over all state sequences which take the transition i -- j at time

t of the joint probability of the state sequence and the output sequence. As we have seen in

the last section, this is just the probability of taking the state sequence from an initial state

to i and generating y/-1 times the probability of generating y/j given the transition i -, j,

times the probability of taking any sequence from state j and generating ykt+1. Recalling

the definitions of a and 0, we have

8Prm (lIT) _T

= 89 E ai - l)bi (yt)i3 3 (t). (3.52)
t=1 i-jET

Similarly if 9 is an initial state probability, and 10 is the set of all initial state probabilities

tied to 0, then
) ' "OPm T)891 = F f(O). (3.53)

If 0 is a parameter in an output probability distribution, and Do is the set of all i -4 j that

have that output distribution, then

(Prm T) T - \a
(YI i~t- Iaij biiyt)(3.54)

04
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In the discrete case, if 0 = bij(k), then

8 PrM_"'- T) ~cr~_Y i~ 1)aij j/ t. (3.55)
88',t:yt=ki-ED# (.5

The derivatives needed in (3.54) for the continuous densities discussed in this thesis are in

the appendices. Plugging (3.52), (3.53), and (3.54) into (3.47), we can compute the gradient

of the mutual information between yT and m, and use it in a gradient-based hiil-climbing

algorithm.

Notice the similarity between the derivatives of the likelihood function Prm (T,') andIY
the reestimation formulas in the forward-backward algorithm. In the forward-backward

algorithm, we attempt to maximize the likelihood of the training data while maintaining

certain constraints on our parameters. For transition probabilities, for example, we can do

this by maximizing

4 /F (e1, A) = Prm (y, ) + Ai I (l aij (3.56)

as a function of the aii in 19 and the LaGrange multipliers, A,. Setting the derivatives equal

to 0, we find that

Ai j (PAi Ba )) s,. (3.57)

If we pretend we know aij on the right, we can solve for a new estimate, dip on the left.

Solving also for A1 , and substituting into (3.52), we end up with the forward-backward

reestimation formula for transition probabilities. So the forward-backward cz-13 style com-

putation is identical in both MLE, when the forward-backward algorithm is used, and in

MMIE, when gradient search is used.

Note that although the computation for each individual model is essentially identical
in the two cases, in MLE, we need only do it for the model m in the training sample to

estimate the parameters for the whole close-knit family M, whereas in MMIE we must

perform this forward-backward computation once for every model in the family. So if the

. family M is large, the hill-climbing step in MMIE will involve much more computation than

is performed in MLE, unless there are certain relationships between the different models in

M which can be exploited.

If we are considering maximihing I (Y T' m by hill-climbing, a natural question to ask

is how much computation is required to compute the Hessian of a likelihood, Prm (iT)'

I
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which is what is needed to compute the Hessian of 14 (9,m). By carrying out the same

differentiations here, it can be seen that what is needed to compute this Hessian for an

n-state hidden Markov model is the probability of generating the subsequence yt2 while

starting in state i and ending in state j for all < tl < t2 < T and for I < i,j !5 n,

which involves computation of the order n3 t 2 . For the application we will be considering

this amount of computation is not possible.

There are a number of sophisticated hill-climbing techniques which do not use the

Hessian, such as conjugate gradient methods, and quasi-Newton methods. In almost all

varieties of these methods, a step is taken in the following manner:

1. Compute the gradient.

2. Compute a direction to move in from information in past steps.

3. Perform a line search to optimize the objective function.

The analyses of these techniques almost always assume that the line search is done

perfectly. To do a line search involves many computations of the objective function. This

is often not that expensive in comparison with a computation of the gradient. In our

case, however, to compute the value of the objective function we need to compute all the

different a's. To compute its derivative we need to compute the a's and the O's. So,

it is only twice as much computation to compute the derivative as it is to compute the

objective function itself. Another more important way that our case differs from the cases

that these standard hill-climbing techniques were designed for is that we can not afford

to take nearly as many steps per parameter as normally are taken. In the applications

to speech recognition that will be discussed in the following sections, we will see that it

involves roughly an hour of mainframe computer time to compute I (Y T, m , and we will

typically have a few thousand parameters. A quasi-Newton method normally requires a

d number of steps roughly equal to the dimension of the space to get a good estimate of the

Hessian, which is out of the question in our case. As a result of these two peculiarities of

our application, we will simply use straightforward gradient descent.

As we iteratively step to new parameter vectors, we must make sure that we maintain

*whatever constraints there are. As we have seen above, the tying constraints are main-

J% tained by summing the partial derivatives of each tied parameter, and then updating tied

parameters simultaneously. We can maintain linear constraints, such as

Zaiq 1 (3.58)

by projecting the gradient as computed above onto the constraint plane. Inequality con-
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straints, such as the requireme,t that covariance matrices be positive definite and that

each transition probability be non-negative can be maintained in two ways. One is to repa-

rameterize the problem in such a way that there are no such constraints. For example,

every symmetric positive definite matrix can be rewritten as the square of an ordinary

symmetric matrix. The other method applies if the constraining inequalities are linear; it

consists of taking a series of steps along the projections of the gradient onto planes which

are boundaries of the constraints.

a..
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4. The IBM Experimental Speech Recognizer

In this chapter, the application of hidden Markov models to speech recognition will be

discussed through a description of the experimental speech recognition system which has

been developed at the IBM Thomas J. Watson Research Center. This system will serve as

the laboratory in which the techniques suggested in this thesis will be tested.

The IBM Continuous Speech Recognition Group has been in existence under the lead-

ership of Fred Jelinek since 1972. Its approach to speech recognition has been based on

hidden Markov models from the start. The system which this group has developed is a

natural-language speaker-dependent system. In 1981, a decision was made to implement a

real-time recognizer. In order to do this with the computational resources then available,

the task, which had always been continuous-speech recognition, was shifted to isolated-word
recognition. Although this shift in task was made, the system is still based on continuous-

* speech techniques. The current real-time system has a vocabulary of 20,000 words, and a

per-word recognition accuracy of roughly 95 percent.

Speech is captured by a Crown PZM-6S pressure-zone microphone, and sampled at

20,000 Hertz with a 12 bit A/D converter. Every centisecond a 512-point FFT is applied

to the Hamming-windowed digital waveform. A critical band filter bank is simulated by

taking linear combinations of the 256 energies resulting from the FFT. There are twenty

filters which are placed linearly from 250 and 1000 Hertz, and logarithmically from 1000 to

7500 Hertz.

Long-term estimates of signal and noise are kept, and log energies from the filters

- ,are individually normalized to have constant long term levels and dynamic ranges. The

next signal-processing step is the application of a model which attempts to model the

hair cells in the human ear. Log energies are processed so that ear model filter outputs

decrease in steady-state regions and peak sharply at transitions [Cohen 87]. The final

signal-processing step is vector quantization. Each centisecond the 20-parameter ear-model

output is compared to each of 200 templates using a Euclidean distance measure. The name

of the closest template becomes the output of the signal processing during that centisecond.

The 200 speaker-dependent templates are constructed automatically by K-means clustering
'.4 [Nadas 81]. Each codeword is referred to as an acoustic label.

The 100 bytes of acoustic labels output each second by this signal-processing module

are input to an acoustic-modeling module which is based on hidden Markov models. Each

word is composed of a sequence of phones, each of which is associated with a hidden Markov
4ab
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model. Each phone model has a single initial and a single final state. A word model is

constructed from a sequence of phone models by making the initial state of the first phone

model the initial state of the word model, making the final state of the last phone model

the final state of the word model, and by creating null transitions from the final state of the

ith phone model to the initial state of the (i + I)th phone model. In the same way, hidden

Markov models for words can be concatenated to form a single hidden Markov model for

a sequence of words. More sophisticated methods of combining small models into large

ones are also used. Phonetic rules governing the coarticulation of sounds can be modeled

by using phone models with multiple initial and multiple final states, and by connecting

adjacent phone models with null transitions in a manner which depends on the identities of

the phones as well as other nearby phones.

Each non-nul transition in a phone model is labeled with an output-distribution num-

ber. Transitions that are labeled with the same output distribution number have tied

output distributions. The transition labels in a word model are inherited from the phones

in the word. Therefore, in the model for a word like Mississippi which contains more than

one instance of a phone, there will certainly be transitions with tied output distributions.

Transition-probability distributions associated with states in different instances of the same

phone are also tied in a sinilar fashion. Typically, the system uses 1000 distinct transition
probabilities and 200 different output distributions. Each output distribution is a discrete

distribution over the 200 different acoustic labels used in the vector quantization step. The

system, thus, has on the order of 40,000 parameters in its acoustic models.

These 40,000 parameters are trained with the forward-backward algorithm, using a

training sample consisting of 100 naturally occurring sentences, which can be spoken in

about 20 minutes. Normally, three iterations of the forward-backward algorithm are used,

followed by a fourth smoothing iteration that is designed to smooth out the parameter

estimates in an effort to avoid biasing them too strongly towards peculiarities in the training

sample [Jelinek 801. This smoothing process can, in fact, be seen as an instance of empirical

Bayesian estimation, in which maximum likelihood estimates are converted to maximum a

posteriori estimates using an empirical prior.

The prior probability of a word sequence JI is computed with a language model which

is founded on the following assumption:

Pr (W = - = 0t1-1) = Pr (Wi = wiI Wt_ 2 = Wt-2, Wt-I = Ulgl). (4.1)

q.~*****.N ~ -.-.-.-
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Using this assumption, and leaving out the random variables for brevity,

T
Pr (WT?) =Pr (wj)Pr (w2  w1) H Pr (wi I wi- 2, wt - ). (4.2)

t=3

The transition probabilities in this second-order Markov model are estimated from a sample

of 25 million words of text using a scheme described by Katz. [Katz 87].

Recognition is performed using a stack search algorithm [Bahl 83]. The search relies

on two basic components: a fast match, which provides a list of candidate words that can

begin at a given point of time, and a detailed match, which evaluates each candidate word

in detail. This thesis is concerned almost entirely with the detailed match.
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5.1 The Quantisation Problem

The information entering a recognizer is the acoustic waveform picked up by the recog-

nizer's microphone. Ideally, we would like the recognizer, as a whole, to use models which

permit it to extract as much information as possible from this input waveform about the

corresponding word sequence. The analog waveform, however, is not modeled directly. It is

first digitized so that it can be manipulated with a digital computer. Because the resultant

digital signal can be reconverted to an analog signal which is indistinguishable to the human

ear from the original signal, we can assume that little, if any, information relevant to the

recognition of the speaker's words is lost by this step. Note, however, that had the analog

signal been sampled at, say, 4,000 Hertz with a 4-bit A/D converter, there would have

been a noticeable difference between the original and the reconstructed acoustic signals.

Furthermore, it is likely that a person would have some difficulty recognizing reconstructed

speech, because certain relevant information would have been lost. What determines the

sampling rate and word size of the A/D converter is the principle that no relevant infor-

mation should be discarded by the conversion. This principle, in fact, applies to the signal

processor as a whole. By the data-processing theorem, the sequence which is output by

the signal processor contains no more information about the spoken word sequence than

exists in the acoustic waveform which is received by the microphone; signal processing can

only destroy information [Gallager 681. The obvious question, then, is why do any signal

processing at all, beyond converting the waveform to a form which can be processed by a

digital computer. In Chapter 9, we will, in fact, describe an attempt to model the digitized

waveform directly. However, we will find that the results of this attempt are discouraging,

and will be forced to conclude that we do not, at the present time, know of a family of

statistical models with a relatively small number of parameters that is capable of directly

modeling speech waveforms accurately. The goal of the signal processing module is to con-

vert the acoustic waveform into a form that we do have some idea of how to model, while, at

the same time, destroying as little information as possible. A model of the signal-processed

output will then indirectly serve as a model of the original waveform.

After the waveform has been digitized, the next sequence of steps in the IBM system is,

in essence, to extract the energy in 20 filters every 10 milliseconds. The placement and the

- '?~. . ~:
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width of the filters is determined by the principle of not discarding information about the

word sequence. Thus, it is deemed relatively unimportant whether there is energy at 6900

Hertz as opposed to at 7000 Hertz. Similarly, because human articulators have inertia, it

is assumed that the transfer function of the vocal tract does not change rapidly, and that

no important information will be lost by assuming that the signal is steady-state over a

one-centisecond interval.

The final step in the signal processing is vector quantization. This step makes it possible

to use nonparametric, discrete output distributions, which cannot be inherently inaccurate

because they assume nothing. The disadvantage to this step is that there may be some

information lost. The amount of information lost can be made negligible by using a large

enough number of codewords in the vector quantizer. As the number of codewords increases,

so does the amount of training data needed to reliably estimate the output distributions.

If the training data is of limited size, then the size of the codebook used by the vector

quantizer must also be of limited size. But with a small codebook there may be some

information lost.

An alternative to having to make the best out of this trade-off, is to use the 20-parameter

vectors that are the output of the ear model and the input to the vector quantizer directly.

By doing this, we can be sure that we do not lose any information by vector quantization.

To make use of the additional information in the 20-parameter vectors, however, we must

use output densities which are accurate.

There have been a number of speech recognition systems built which use continuous-

parameter hidden Markov models. Recently, for example, Poritz and Richter have reported

U' significant performance improvements using such models [Poritz 86]. There have also been

a number of previous attempts to remove the vector quantization from the IBM system

, [Bahl 81]. But despite the success of others working on other tasks with other systems, all

these previous attempts to incorporate continuous-parameter models into the IBM system

have failed; the performance of the system has always deteriorated. It must have been that,

either the families of output densities were inaccurate, or they had too many free parameters.

The danger of using inaccurate densities was particularly acute because in every attempt,

parameters were estimated with MLE, which, as we have seen, derives its justification from

an implicit assumption of model correctness. This is, then, an ideal situation in which

we would hope to benefit from the application of MMIE which does not presume model

correctness. In subsequent chapters, we will see that the performance of the IBM system

can, in fact, be improved by using MMIE in conjunction with continuous parameters.

. - b.... .., . . ,.. . .,, " - . - .,. . -., . .U
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5.2 Output Densities

The obvious first candidate for a family of output distributions is the family of mul-

tivariate Gaussians, since 1) by the central limit theorem, the distribution of the sum of

a large number of independent random variables tends towards a Gaussian, 2) a Gaussian

distribution has the greatest entropy of any distribution with a given variance, and 3) if

some random variable has a Gaussian distribution then so does any linear transformation

of that variable.

An n-dimensional multivariate Gaussian density with mean, p, and inverse covariance

matrix TV has the following form

I W 1 1 -/.2
N(z : p, W) - (__)_/e

(2ir)n/2

Notice, that 1) the number of steps to compute the density at a point for an n-dimensional

Gaussian increases as the square of n, 2) the density is unimodal, with the mode at the

mean, p, and 3) the probability density at a point drops off exponentially in the square of

the distance of the point from the mean.

Typically, a speech recognition system will use 200 20-dimensional output distributions,

and typically, a density at each one of these distributions will have to be evaluated 100 times

*. .-a second. If full-covariance Gaussians are used, the system will have to perform roughly 4

million multiply-adds per second just to evaluate output densities. While not a prohibitive

amount of computation, it is certainly not negligible. One way to drastically reduce this

computation is to assume that the off-diagonal terms in the covariance matrices, and, as

a result, in the inverse covariance matrices, are 0. Using the same typical numbers, we

find that a system whic' uses such diagonal Gaussian output distributions will only require

*, 400,000 multiply-adds per second to compute output densities. This is a reduction by a

factor of 10 in the amount of computation reqiired for full-covariance Gaussians. Another

advantage to using diagonal Gaussians is that the number parameters to be estimated is

also reduced by a factor of 10, which means that less training data and time will be required.

The disadvantage is that the assumption that different elements of the observation vector

are uncorrelated may be so inaccurate as to significantly degrade a system's performance.

pThe extent to which this is the case clearly depends on the signal processing and, as we shall

see, on the word models used in a particular system. It is therefore an empirical issue as to

whether the computational expense of a full-covariance Gaussian is worth the performance

improvement, if any. Results of experiments comparing the performance of different output
Zd
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distributions to one another are presented in Chapter 11.

It is worth noting that a similar computation-versus-modeling-accuracy trade-off can

occur in a system which uses discrete output distributions. In the IBM system, for ex-

ample, vector quantization is performed with a Euclidean distance metric. If observation

parameters are correlated with one another, this metric will be inappropriate. Yet it is used

precisely because a decision has been made that modeling the correlation is not worth the

additional computation and training data.

Another point worth mentioning here is that if we have prior information about our

parameters, then it may be possible to use models which take advantage of this information.

For example, suppose our parameters were the energies in different spectral bands. We

wouid expect energies in adjacent bands to be more correlated with one another than

.- energies in bands which are noA adjacent. Let p(i,J) be the correlation between the energy

in band i and the enegry in band j for a given distribution. We might be able to adequately

model the structure of a covariance matrix of these parameters by assuming that p(i, i + 2)

- ". p(z, + l)p(t - 1, i + 2). Such a model has many fewer parameters than a full-covariance

model, but may be almost as accurate.

The extent to which unimodal output densities in a speech-recognition system are

adequate depends on both the signal processing in the system, and on the shapes of the

word models used by the system. Consider a speaker-independent system, for example.

Because the vocal tracts of women are normally shorter than the vocal tracts of men, the

formant frequencies for a given sound will tend to be higher in a woman's voice than in

a man's. One can imagine, then, that the distributions of energy at a given frequency
- for a particular sound will be bimodal: one mode for men, the other for women. But, if

the signal processor successfully performs some sort of long-term speaker normalisation,

0 . this difference between men's and women's voices will be removed, and unimodal models

- -. will be accurate. Alternatively, multimodal distributions can be modeled as mixtures of

-' unimodal distributions and, as we have seen, output distributions which are mixtures of

other output distributions can be modeled by using hidden Markov models with multiple

0,7 paths between states. Consider the word the, which can be pronounced with either a

short or long vowel. Consider the two possible word models for the in Figures 5.1 and

5.2. In the simple model, unimodal output densities on the vowel transitions would surely

.. be inadequate. In the complicated model, however, they may be perfectly adequate, since

the different pronunciations of the vowel are modeled by different paths. Note that in the

discrete case, it makes no difference which model is used since a mixture of non-parametric
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discrete distributions is also discrete. From this example, we can see, then, that more care

must be paid to the design of word models when using parametric continuous-parameter

output distributions than when using nonparametric discrete output distributions.

TH E

TH E

Figure 5.1: Simple Model for the

LONG E

I,

SHORT E

Figure 5.2: Complicated Model for the
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The next point we observed regarding Gaussian densities is that the probability density

drops off exponentially in the square of the distance from the mean. This means that a

Gaussian in not particularly robust to outliers A spurious sample can result in an extremely

small output probability. As a result, outliers in the training data will tend to have a

relatvelv large effect on parameter estimates, and outliers in the test data will tend to

have a relatively large effect on acoustic model probabilities. The robustness problem and

various models which are robust to outliers are described by Peter Huber [Huber 81J.

One approach to this robustness problem is to use a mixture of Gaussians For example,

there could be one with a relatively small variance, which models most samples, and another

with a relatively large variance, which models a small number of outliers. The problem

with this approach is that a mixture of two Gaussians contains more than twice as many

parameters as are in a single Gaussian of the same dimension. If we have more parameters,

we will need more training data. Another drawback is that it involves twice as much

cormputation to compute the probability density when using a mixture of two Gaussians as

it does when using a single Gaussian.

At a recent conference, Alan Richter suggested using a mixture of Gaussians in which

the means of the individual Gaussians are constrained to be identical, and in which the

covariance matrices are constrained to be multiples of one another IRichter 861. I will refer

to such a mixture as a Richter model. The density of a Richter model is of the form

Rw u, It,'nc A 1, N tA 52
,i'o.

Because the quadratic forms in each of the individual Gaussians are just multiples of one

another, the amount of computation of the density at a point using a Richter model is

essentially the same as the amount of computation using a single Gaussian. The number

of free parameters in a Richter mixture of m Gaussians is only 2m - 2 greater than the

number of free parameters in a single Gaussian.

In figure 5.3, the solid line depicts the density of a Richter model with m 3, c1  I,

e 2, c3  4, Al .773, A2 
= .191, and A3 = .036. The c's were held fixed, while the

A's were estimated using MLE on actual speech data. The dashed line depicts the density

of an ordinary Gaussian which has parameters that were estimated from the same speech

data. The horisontal axis is scaled in standard deviations from the mean. Clearly, the

densities are extremely close to one another. In the plot of the log densities of the same two

distributions, it is obvious that the tails of the Richter model drop off much more slowly

than those of the ordinary Gaussian. So we can see that for this data the Richter model is
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extremely close to an ordinary Gaussian except in the tails. By using such a mixture we

can have all the benefits of a Gaussian and, in addition, have a model which is significantly

more robust to outliers.

6y -5 It 3- 1 0 6

IFigure 5.t Richter (solid line) vs. GaussianLo Density (dashed line)
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" Figure 5.4: Richter (solid line) vs. Gaussian Log Density (dashed line)

i Parameters for a hidden Markov model with Richter output densities can be estimated

by treating a single transition with a Richter distribution as a collection of m parallel

transitions with individual Gaussian output distributions. The forward-backward algorithm

is then run in the usual way except that during the reestimation step, it is necessary

to impose the constraint that the individual Gaussians must have the same means, and

I
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variances which are multiples of one another. The MLE reestimation formulas along with

the derivatives necessary for MMIE hill-climbing for hidden Markov models with Richter

output distributions can be found in Appendix 13.4.

5.3 Mixtures

There is a problem with estimating all the parameters in a Richter model with MLE.

Consider a Richter mixture of two Gaussians which is to be trained from the sample yT

Suppose that Al > 0, and, for some i, I < i < T, p = yi. As c 1 -+ 0, the probability density

at yj will go to infinity. If c 2 > 0, A2 > 0, and JW-II > 0, then the probability density at

every other sample point will be greater than 0. So the probability density at yT will be

_* infinite, even if t = yi is a point which is wildly different from all the other sample points.

In order to avoid this problem, we will simply leave the ci's fixed and not reestimate them.

This problem is not restricted to Richter models. It can occur in many kinds of mixtures.

.. Consider a hidden Markov model with one state and two self loops with different output

distributions. Again, if the probability density at one sample point is infinite for one of the

distributions, and the density of every other point is non-zero for the other distribution,

then the density of the training data as a whole will be infinite.

As another example, consider the problem of estimating the parameters of the hidden

Markov model shown in Figure 5.5. If distribution A has infinite density at the first sample

point, yl, and B has non-zero density at yT, the density at yT will be infinite.

A B

<.A ___ B

,. Figure 5.5: Simple Model with Mixture Problem for MLE

This problem, has the potential of occurring in any hidden Markov model in which it
is possible to account for a single yi with one distribution and all other yj's with other dis-

tributions. Unfortunately most hidden Markov models that are used for speech recognition

are of this nature.
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One way to avoid these ugly estimates is to impose artificial limits on the parameters

of the output distributions. Limiting variances is the obvious example of this. What is

often done however is to simply ignore the problem. This tends to work out all right

because the forward-backward algorithm is usually not run for enough iterations to find

one of these nasty points. Nonetheless, this is all very unsettling. On the one hand, the

forward-backward algorithm is used because it attempts to maximize the likelihood of the

training data, while, on the other hand, one must hope it never really succeeds.

Intuitively, we feel that it is ridiculous to use a whole subdistribution to model one and

only one sample point when estimating the parameters of a mixture of distributions. Why

is this? After all, such an estimate does maximize the likelihood of the sample.

One reason for this strong intuition is that if we move the one sample point by a

small amount, one entire subdistribtuion will no longer contribute to the probability of

generating the training sample, and the probability density of the training sample wil

drop dramatically. When we use parametric densities like Gaussians, we assume that the

probability density of a sample will be a continuous function of the sample, and therefore

that a small perturbation to the sample will result in a small perturbation to the probability

density.

In order to understand another more important reason why such estimates seem ridicu-

lous, let us examine the purpose of making any estimates in the first place. In our case, we

estimate parameters in order to classify acoustic signals as being associated with one word

or another. If we use an entire subdistribution to model one sample point which represents

a centisecond example of an acoustic signal, it is likely that we will do a very good job of

classifying a section of the acoustic signal around that centisecond. But unless there are

other examples of the exact same acoustic parameter values in the training sample, that

subdistribution will be of no use in classifying any other section of the acoustic signal. One

subdistribution will have been used to classify a small section of the training data extremely

well, but will not help at all in classifying the rest of the data. Normally the number of

words represented in the training data will be significantly greater than the number of sub-

distributions in the collection of models. For the purpose of speech recognition, then, it is

a bad idea to use an estimate which uses an entire subdistribution to model one and only

one centisecond sample because although such an estimate will provide a lot of informa-

tion about one word or phrase, it will provide relatively little information about the whole

sequence of words which is the training script.

This reasoning suggests that if we use MMIE we will not encounter this problem with
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mixtures because the objective will be to maximize the information provided about the

whole training script. The problem with MLE is that it is possible to make the likelihood of

any one sample point infinite. But with MMIE, it is not possible to provide more information

about a word than minus the log of the prior probability of that word. Unless either the

per-word entropy of the recognizer's language is very large, or the number of words in the

training sample is very small relative to the number of subdistribtutions in the collection

of acoustic models, MMIE should estimate the parameters of mixtures in such a way that

the resultant models will be useful in recognizing new speech. This is very comforting since

almost all t,,- continuous-parameter hidden Markov models used in speech recognition are

mixtures of one form or another.

0 ,
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6. Parameter Reduction

6.1 The Parameter Reduction Problem

As we have discussed in previous sections, there is an important trade-off between the

complexity of an acoustic model and the quality of the estimates of the parameters in that

model. On th- on- hand, the greater the number of parameters in a model, the greater

the poLenbial the model will have to represent complex acoustic events. On the other hand,

the greater the number of parameters in a model, the more variance there will be in the

estimates of the probabilities of these acoustic events.

Let us examine this problem in the context of the dimension of the acoustic-observation

vectors produced by the signal-processing component of a speech-recognition system. As-

sume we have a fixed number of acoustic vectors of training data. Suppose we are using

diagonal Gaussian output distributions. The log of the probability density in a distribu-

tion with mean vector p and standard deviation vector a at an n-dimensional acoustic

observation vector y is

,,2 FY _ \k21
log b(y) 2 E ~ log (2o) ( Ilk P 61

Assuming that the variance of the estimates of the #k's and ak's are independent of k

and n, the variance of log b(y) will increase linearly with n, the dimension of the acoustic

observation vectors. If the output distribution was a full-covariance Gaussian, the variance

of the log of the density estimate would increase with the square of the dimension.

We would like the signal processing to communicate fine details of the acoustic spectrum

every centisecond, so that we can accurately estimate the probability that the sound in a

particular centisecond was generated from a particular phone. But if the signal Processing

represents this detail in a large number of parameters, we will be stuck with large variances

in our estimates of these probabilities.

_' Ideally, we would like the signal processing to output only a small number of parameters

every centisecond, and we would also like these parameters to be as informative as possible

about what sound is being spoken. One way to move towards this goal is to apply a trans-

formation which maps the signal-processing output to a smaller dimension while preserving

as much information as possible about the sound which has been spoken.
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6.2 Linear DiscrimLinants

Let us consider the parameter reduction problem in a general setting in which we have

a collection of input vectors and associated class labels. In speech recognition the input

vectors are the vectors output by the signal processor every centisecond, and the associated

classes may be, for example, the phones that the speaker is presumed to have uttered. We

would like to find a transformation which maps input vectors to output vectors of lower

dimension and which preserves as much information as possible about the classes associated

with the input vectors. For simplicity we will restrict ourselves to linear transformations.

The method most commonly used for this purpose is principal component analysis.

The first principal component of a sample vector is the projection of that sample onto the

direction along which there is the largest variance over all samples. The rationale behind

the use of principal components is an assumption that the direction along which there is the

most variation is likely to contain the most information about the classes associated with

the input vectors. Because we want the nth principal component to contain information

which is not already found in the first n - I components, we select the nth component to

be the linear combination which has the largest variance given the constraint that it must

be uncorrelated with the first n - I components. We will see, below, that the nth principal

component is the eigenvector with the nth largest eigenvalue of the overall covariance matrix

of the signal-processor output vectors.

One problem with principal components is that they are not independent of parameter

scale. If we multiply the nth parameter of each input- vector by some constant, it cannot

" possibly effect the amount of information contained in the nth parameter about the classes

which are associated with the input vectors. But, as we multiply the nth parameter by larger

* and larger values the variance of this parameter will become larger and larger and the first

principal component will approach this scaled-up nth parameter. For this reason, when

principal components are used in pattern recognition the input parameters are normally

scaled to have unit variance. This trick makes the resulting principal components invariant

to linear transformations of the input samples by diagonal matrices. Unfortunately, it does

not make them invariant to arbitrary full-rank linear transformations.

Figure 6.1 depicts another problem with using principal components in pattern recog-

nition. Suppose our data consists of samples from two 2-dimensional Gaussian classes, and

that the covariance matrices for the two Gaussians are identical. The ellipses represent con-

tours of equal probability density for the two Gaussians. The solid line is in the direction

% %
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4 Figure 6.1: Two Gaussian Classes

of maximum variance for each of the Gaussians. In this example it is also in the direction

of maximum variance for the mixture of the two Gaussians, and therefore in the direction

of the first principal component. But a projection onto this line contains no information

as to which class a sample is likely to belong. The most information can be found in a

projection along the dashed line which is perpendicular to the first principal component.

The problem is that it is not necessarily true that the direction of greatest overaUl variation

contains the most information about class membership. In particular, the variations within

the individual classes must also be taken into account.

One way of attacking both of these problems with principal components is to choose

4 projections which maximize the ratio of the overall variance to the average within-class

variance [Wilks 61] [Friedman 67]. I shall refer to the projections which maximize this

ratio as principal disceriminants. Any full-rank linear transformation of the input samples

will appear in both the numerator and the denominator of this ratio, and will divide out,

leaving the ratio unaffected. Principal discrimninants are thus invariant to all full-rank linear

transformations of the input. Now reconsider figure 6.1. Since the means of the two classes

have the same projection onto the solid line, the overall variance in the direction of the solid

line is equal to the average within-class variance in that direction. This means that the ratio

of total to average variance of projections onto the solid line will have the smallest possible

value, 1, which is what we want since, as we noted above, there is no information along

.1
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this line. It has, in fact, been shown by Nadas [Mercer 86] that under certain Gaussian

assumptions the projections which maximize this ratio are also those which maximize the

average mutual information between the projections and the classes.

V. Suppose we have a sample of n p-dimensional elements, with ni elements in class i.

Assume that this sample has zero mean. In practice, we can ensure that this is the case

by subtracting off the mean from the sample elements. Let T be the covariance matrix of

the entire sample, and W1 be the covariance matrix of the ith class. Let W be the average

'* within-class covariance matrix

W .=wi. (6.2)
n .

The variance of the projection of the sample onto a vector v is v'Tv. We would like to find

a vector v which maximizes
• ,' .(6.3)

We can do this by maximizing v'Tv while constraining v'Wt to be equal to some constant,

such as 1. Using the LaGrange multiplier A, we want to choose v to maximize

f(V,A ) = V'Tv - A(v'Wv - 1). (6.4)

This amounts to choosing v and A such that

V"'WV = 1, (6.5)

and

Tv = AWv. (6.6)

Equation (6.6) is the general eigenvector equation, and is solved by p eigenvectors with real

eigenvalues, due to the symmetry of T and W. The solution which maximizes V'Tv is the

eigenvector with the largest eigenvalue. This is because the variance of a projection onto

an eigenvector v is
vOTv = v'AWv = A. (6.7)

Let r, and 92 be eigenvectors with eigenvalues A, and A2 . We have

A2 v4 Wv 2 = t4Tv2 =v2Tvi = A1v12Wt 1  \ 1 r1JWv 2. (6.8)

Assuming that \ 1 # A2 ,

" = ,(6.9)
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and

V'Tr2 A2 vltv 2 = 0. (6.10)

So the projection of the sample onto v1 is uncorrelated with its projection onto v2 . Let Vn

be the eigenvector with the nth largest eigenvalue, and normalize v, such that swvn 1.

Then t, maximizes v' Tv, subject to the constraint that v? Wvn = 1, and to the constraint

that the sample's projection onto vn be uncorrelated with the its projection onto vi, where

i < n. We can define vn, then, to be the nth principal discriminant.

If we wish to reduce the number of dimensions of our sample from p to q using linear

discriminants, we project the p-dimensional sample elements onto the first q principal dis-

criminants. If we have k classes, then all but the top k - 1 eigenvalues will be equal to 1,

since any contribution to T not included in W must come from variance of the class means

which lie in a k - I dimensional plane. Therefore, if we are reducing data from k classes

down to q dimensions, q must be less than k.

After having projected the sample data onto a set of principal discriminants, the off-

diagonal terms of the sample covariance matrix will be 0. We might, therefore, also expect

the off-diagonal terms of the sample covariance matrices for the different classes to be

relatively small. This will tend to be the case if the original sample class covariance matrices

are very similar to one another, but will not be the case if they are not. The relevance of this

point is that it xmay be that after the data has been projected onto principal components

or principal discriminants, the different class distributions can be modeled adequately with

diagonal Gaussians.

Another point worth mentioning here is that after projecting our original parame-

ter vectors onto linear subspaces, we do loose information regarding which parameter is

what physical measurement. But, as long as we are using output distributions, such as

a full-covariance Gaussians, which do not take advantage of prior information about the

peculiarities of our original parameters, the loss of this information will not matter.

-" . Recognition results with different output distributions and various numbers of param-

eters are presented in Chapter 11.

6.3 Application to Speech Recognition

As was described above, our problem is to reduce the dimensionality of the param-

eter vectors output by the signal processor, while at the same time preserving as much

information as possible about the sounds which have been spoken.
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In order to apply linear discriminants to this problem, we would like to know which

sounds correspond to which acoustic parameter vectors, so that we can compute the covari-

ance matrices for the different sounds. Because we know the training script, we know what

" words were spoken while the acoustic data in our training sample was produced, but we do

not know which sections of the acoustic data correspond to which sounds. If we think of

each sound that is of interest to us as being represented by an output distribution, and if

we think of the acoustic data as being generated by the hidden Markov model correspond-

ing to the training script, then the forward-backward algorithm will allocate a section of

speech to an output distribution according to the probability that that section of speech was

generated using that output distribution, and, by so doing, will enable us to compute the

covariance matrices we need. In fact, if we are using full-covariance output distributions,

then the output distributions computed in the final pass of the forward-backward algorithm

will contain these covariance matrices.0
We begin, then, by using the forward-backward algorithm to compute covariance ma-

trices for the different sounds in our models. We then use these matrices and the covariance

matrix of the whole training sample to compute a set of principal discriminants. Finally,

we add a step to our signal processor which projects the original signal processor output

vectors onto a subset of these principal discriminants. We can then proceed with these

new vectors in the usual way using whatever estimation and recognition scheme we would

otherwise use.

One minor problem with this scheme is that some sounds occur much more frequently

than others. The sound representing background noise, for example, occurs very frequently,

particularly in isolated speech. As a result, the average within-class covariance matrix will

be dominated by the covariance matrices of a few output distributions. It might be argued

*that this is as it should be because it is more important to discriminate between sounds

that occur more frequently. But it is not clear that long lasting sounds, like vowels, are

more important than consonants in discriminating between different words. In isolated

speech, for example, there is usually as much silence as there is speech, and, as a result,

0 the contribution to the average within-class covariance matrix from the sound representing

background noise will be much greater than that from any other sound. Yet, this distribution

for the most part only helps determine where words begin and end; it does not play a large

role in discriminating one word from another. Although one can no doubt improve the

basic principal discriminant scheme by weighting sounds according to their importance in

discriminating words from other words, in the work described in this thesis I will only do

@-
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the bare minimum in confronting this problem by excluding background noise from both

the total and average within-class covariance matrices. A more powerful approach which

biases the components so that they discriminate between certain pairs of sounds more than

others is described by Brown [Brown 84].

There is another minor problem with the scheme outlined above. We want to use

principal discriminants in order to reduce the dimensionality of the acoustic vectors so that

we can better estimate the parameters in the output distributions in our hidden Markov

models. To do this we use the covariance matrices from output distributions that are

*estimated using our original parameters. But it is precisely because we don't trust these

estimates that we want to compute principal discrLlinants in the first place. This problem

can be attacked by stepping down from a large dimension to a small dimension gradually.

-', Although, initially, we may not have particularly good estimates of the covariance matrices

.0 for the different sounds, it is still likely that the few components which have the lowest

eigenvalues can be safely discarded. After doing this, we can then use the forward-backward

algorithm again to estimate covariance matrices for the new acoustic data which has vectors

of slightly smaller dimension. These covariance matrices will be somewhat more accurate

than the previous ones, and we can again hope to safely discard the few components with

the smallest eigenvalues. We can continue in this fashion until arriving at our desired

dimension.

The question of what is the best dimension to reduce the acoustic parameter vectors to

must be addressed on a case-by-case basis. The answer will depend, among other things, on

the number of output distributions, the type of output distributions, the amount of training

-, data available, the amount of computer power available, and on the importance of achieving

different performance rates.

'-°
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7. Adjoining Acoustic Parameter Vectors

Certain acoustic events in speech are distinguished by phenomena that occur over time.

Consider, for example, those phones which are referred to as labials because they are pro-

duced with the lips. The acoustic signatures of these phones can be very similar to those

of other phones. It is, for example, often difficult to distinguish the labials b, m and p from

the alveolars d, n and t. An important property of a labial is that it often pulls down the

formants of the sounds surrounding it. Thus, the formants of a sound preceding a labial

tend to descend in frequency going into it, and the formants of a sound following a labial

tend to rise in frequency coming out of it. An important clue, then, to the presence of a

labial is found in information of how the acoustic spectrum is changing in time.

In many systems, including IBM's, the parameters output by the signal processing re-

flect some function of the energy in different frequency bands during a short interval of time.

* There is virtually no information about how this short-term spectrum is changing in time.

The only way for such a system to model time-derivative information at some time t is for it

to remember the spectrum from time t - 1. In a system which uses hidden Markov models,

this spectrum must somehow be represented by the state that the underlying Markov chain

is in at time t - 1. The problem with this is that the spectrum of the preceding sound

might vary considerably. If the system is to remember all the different variations it must

have a tremendous number of states and output distributions. So, for example, in figure

7.1 the simple word model for the word am on the left would have to be converted to a

more complicated model like the one on the right. If the word models are made significantly

more complicated in this way, to model this derivative information properly they will need

to contain significantly more parameters, which will significantly increase the variance of

the probability estimates that are made from them.

0 An alternative to remembering the spectrum from the previous time in the state of

the Markov chain is simply to include it in the parameter vector that is passed from the

signal-processing component of the system to the acoustic-modeling component. The orig-

inal acoustic parameter sequence, li, /2, ... 1YT, would thus be converted to the sequence

Y1 Y2, Y2Y3, ... ,TIYT, by adjoining the spectra from adjacent frames. Time-derivative
information could then be modeled directly with multivariate output distributions. Alan

Poritz and Alan Richter have, in fact, recently used this technique to improve the perfor-

mance of an isolated-word recognition system [Porits 86].

There are clearly all kinds of variations to this scheme. Poritz and Richter, for example,

%"%
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Figure 7.1: Time-Derivative Modeling by Machine Alteration

found that they maximized their performance by adjoining the current acoustic parameter

vectors with the ones which had been produced eight centiseconds earlier. One might also

consider adjoining three or more sets of parameters together.

The only problem with this technique is that it increases the dimension of the parameter

vectors that are to be modeled by the acoustic models, and, as we discussed in the previous

section, this increases the variances of the probability density estimates that are obtained

from these models. Fortunately, however, this is a problem for which we have an antidote; we

can extract from these adjoined vectors of parameters a small number of information-bearing

components by projecting them onto principal discriminants. If it turns out that the time-

derivative information is less important than the information in the original spectrum then,

hopefully, this information will be discarded. If, on the other hand, it is more important

than some of the original spectral information, then it will be retained and some of the

original information will be discarded. The parameter-reduction method described in the

previous section, therefore, allows us to adjoin acoustic-parameter vectors freely without

having to worry about overdoing it.

i
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8. Conditional Models

8.1 The Correlation Problem

In Chapter 3, we described one of the basic assumptions of hidden Markov models, the

output-independence assumption. It states that the probability that an acoustic observa-

tion, yg, will occur at time, t, depends only on the output distribution on the transition

taken at time t. In this chapter, we will examine this assumption and certain alternative

assumptions.

Consider a system which uses one output distribution for each English phone or al-

lophone. Assuming an alphabet of, say, 50 phones, the system would have 50 output

distributions. From the point of view of such a system, speech would be generated by using

the language model and the word models to generate a sequence of phones, and then by

generating an acoustic observation sequence from the phone sequence. The transition prob-

abilities in the phone models would be used to determine the durations of each instance

of a phone. The acoustic observation at a given time would be generated randomly from

the output distribution for the phone that was being produced at that time. The fact that

the observation vectors produced each centisecond by the signal processor are correlated in

time would be modeled by the transition probabilities from one phone to another, and more

importantly by the transition probabilities which determine the durations of the different

phones. The problem with such a system is that for a number of reasons, there is normally

a significantly larger amount of correlation than can be modeled in this way.

The tongue and the other articulators have inertia; they do not move instantly from

one position to another. As a result, the sound which is produced at the beginning of a

phone depends on the previous phone, the sound which is produced at the end of a phone

depends on the following phone. Whole phones can be nasalized if nearby phones are nasals.

Different speakers speak differently, and the quality of a speaker's rendition of a particular

sound effects the whole rendition. The quality of an individual speaker's voice can also

change from rendition to rendition. If a speaker is speaking loudly, he will stay speaking

loudly for some time, he doesn't alter the volume of his voice randomly on a centisecond by

centiqernnd basis as the above model assumes. The environment varies slowly over time. If

a fan is on in the background, it will be on for a while, and will not be turned on and off

randomly each centisecond. There are all kinds of slowly varying processes which can effect

.......-.
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the acoustic features produced by the signal processing component of a speech recognizer.

Ideally, one would like to use some sort of sophisticated signal processing which produces

features that are independent of long-term acoustic effects. To some extent this is what has

been attempted in the ear-model component of the IBM signal processing. At the moment,

however, no one knows how to do this well, and until someone does, the acoustic models

used in a speech recognizer will be faced with the problem of modeling the influences of

long-term acoustic phenomena.

One might try to alleviate this correlation problem by introducing more states into

the hidden Markov models. So, for example, instead of using just one set of states and

one output distribution to model the i phone, one might consider using models in which

there are different output distributions and sets of states, for loud i's, soft i's, i's with

fans in the background, nasalized i's, nasalized i's with fans in the backgro~lnd, and so on.

The problem with this approach is that it would require a tremendous number of states

* and output distributions. This, in turn, would create a need for an exorbitant amount of

training data and computational horsepower.

The only way to avoid using separate sub-phones which represent many different vari-

ations in the pronunciation of a phone, is to alter the output-independence assumption. If

we want to model long-term phenomena which cause the output of the signal processing

component during one centisecond to resemble the output during the previous centisecond,

without explicitly modeling each possible combination of such phenomena, then we must

do away with the assumption that given the output distribution at time t, the acoustic

observation at time t is independent of that at time t - 1. The replacements for the output-

independence assumption that one might consider depend on whether the system is based

on a family of discrete or of continuous hidden Markov models, and we shall therefore

" consider the two cases separately.

8.2 The Continuous Case
.

We would like to alter the output-independence assumption to capture the fact that

with a small number of output distributions, the way that Yt-I differs from the mean of

the output distribution from which it is generated influences the way that yu differs from

the mean of the output distribution from which it is generated. One could do this directly

by conditioning the probability of generating yj on the transition at time t, the transition

at time t - I, and on yi-t. The output-independence assumption in Chapter 3 would then

,i *
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be replaced by

Pr t T T)(8.1)

Pr (Y( = t Xt-I X(-- ,X = zt, Xt I z 1 1,Y- 1  Yt-I

To incorporate such an assumption into a hidden Markov model, it would, in effect, be nec-

essary to square the number of output distributions, and, in addition, to increase the number

of parameters in each output distribution. If we assume no tied output distributions and

no Zeroed-out transition probabilities the computation in the forward-backward algorithm,

as applied to models incorporating the output-independence assumption, increases linearly

with the number of transitions in the model. If we, instead, use a model incorporating (8.1),

then the computation will increase as the square of the number of transitions.

An alternative to (8.1) is to condition only on the transition taken at time t and on the

output produced at time t - 1. This could be done by replacing the output-independence

assumption with

t Pr(Y ,yY -  XT-xT =zT)
... 1(8.2)

= Pr(Y = t = zt, Xt+l Zt+l,Yt-_1 =i-1) .

From a computational view this assumption is much more attractive because it does not

involve increasing the number of output distributions, only the number of parameters in each

individual output distribution. From a modeling point of view, however, this assumption

is much less attractive because if we don't know the distribution from which yt-I was

generated, we don't know how Yt-1 differs from its mean.

In order to get a better feeling for this assumption, let us examine the form of an output

distribution that might be used in a model based on (8.2). Assume that the n-dimensional

random variables yt-I and yi are jointly Gaussian. It is shown in Appendix 13.5 that d,

the distribution of Yt given Yt-1, is of the form

Pr (Y = lt I Ye-I = YI-1)

1W 1/2 - (,-(,,c(,- 1 ,)))'w(Y,-v(,+c(t-$A I))), (8.3)

- (2,r)n/2e

which is just an n-dimensional Gaussian with mean 12 + C (Yt-I - jl) and covariance ma-

trix W-1. Note that there are less than three times as many parameters in this distribution

as there are in an ordinary n-dimensional Gaussian. The forward-backward reestimation

formulas for Jul, M2, W, and C are in also in Appendix 13.5, as are the derivatives necessary

for MMIE.

.- A3



8. Conditional Models 59

The observation vector yt is assumed to have been sampled from a Gaussian, d, with

a mean that depends on how yi-I deviates from jl. But because the model does not

remember which output distribution was used at time t - 1, jAI is not necessarily the mean

of the distribution from which yl was actually sampled. Rather pl is an average of all

the samples which precede by one unit of time a sample generated from d. Let i be a state

which serves as the origin for a transition which has output distribution d. Let j be another

such state. If it was true that the distributions for all the samples which contributed to 1A,

had the same mean, then the word models would be such that all the means of the output

distributions on all transitions entering both i and j would be the same. Hidden Markov

models which have such a property either have very limited tying of output distributions,

or have very uninteresting graph structures. In either case such models are not very useful

for large vocabulary speech recognition. Equation (8.2) will, therefore, be inaccurate when

applied to large vocabulary speech recognition.

Nevertheless, it is bound to be more accurate than the original output-independence

assumption. Normally, in models used for speech recognition, acoustic observation samples

tend to be generated from the same output distribution for a number of consecutive time

frames. In such models the ,'l's will tend to be averages of samples generated from the

d's, and most of the time they will be close to what they should be. So, although we

know that (8.2) is bound to be inaccurate, it may not be that much less accurate than

(8.1), and certainly is much more favorable from the point of view of estimation error and

computation. It is an empirical question whether or not the increased potential accuracy

of a model based on (8.2)can be realized in a system which must estimate parameters from

limited training data.

8.3 The Discrete Case

There is strong evidence, at least in the IBM system which uses discrete hidden Markov

models, that the output-independence assumption is inaccurate. This evidence comes from

examining two different types of models. The first is the standard IBM family of models.
Using the method described in the Chapter 3, we can compute the probability of generating

a sequence of acoustic labels with this family given the word sequence in the corresponding

script. This is done by concatenating word models together according to the script to form

one large model, and then using the forward-pass of the forward-backward algorithm to

compute the probability that this model will generate the acoustic label sequence. Now

I
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consider a second acoustic model which simply models a sequence of acoustic labels as a

first-order Markov process. We can obtain maximum likelihood estimates for this model

simply by counting occurrences of pairs of acoustic labels in a training sample. We can also

Tuse this model to compute the probability of a speech sample, y

T
Pr (yT = T) Pr(Y = ) H- Pr (1Y I -i = ) . (8.4)

i=2

Unlike the family of standard models, this model has no concept of word or phone and is

therefore useless for speech recognition. Yet it turns out that the probability of a sample

of speech as computed with this second model is generally significantly greater tha. the

conditional probability of the same sample given the sample script as computed with the

family of standard models. Clearly, then, the output-independence assumption as used in

the IBM system is not accurate.

If the output-independence assumption is replaced by (8.1) in a discrete hidden Markov

model, in essence, there will have to be a separate output distribution for each original pair

of output distributions. Furthermore, each such output distribution will have to provide

a probability for every pair of acoustic labels. This amounts to effectively squaring the

number of output distributions, and squaring the number of parameters in each distribution.

The IBM system which contains approximately 200 output distributions, each with 200

parameters has approximately 40,000 free parameters. If (8.1) were put into the IBM
system, the system would then have approximately 1.6 billion free parameters, which is

clearly too many. So again, we must consider alternatives.

As in the continuous case, we can drop the conditioning on the previous distribution

and only condition on the previous acoustic label. In this case, the only change is to square

the number of parameters in each output distribution. There would then be approximately

8 million free parameters in the IBM system. This is still too many.

. - Somehow, we must tie certain probabilities together so as to reduce the number of

• "..* parameters in the models. One method would be to tie whole conditional distributions

together. So, for example, in output distribution d, we might insist that for acoustic labels

i and j

Pr (Y = It = i) = Pr (Yi = l't I j) (8.5)

More generally, for each distribution d, we could define a function which maps acoustic label

i to a class of acoustic labels Cd(i). We could then insist that

Pr. Y ,- Yt- 1)= Pr (Y= I -1 E Cd(yi)) (8.6)

;.
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At one extreme, if we have only one class per distribution, then we will discard all the

information that an acoustic label at time t - 1 can provide about an acoustic label at time

t, except that which is retained in the state of the Markov chain. At the other extreme,

if we have as many classes as there are acoustic labels, we will be stuck with an enormous

number of model parameters that can not be reliably estimated, making the information we

do have inaccurate. If we have an average of n classes per distribution, then the number of

parameters in the models would be increased by a factor of n. We can thus choose n to give

us whatever position we desire on the trade-off curve between a model which is inherently

inaccurate and one which has so many free parameters that it will be inaccurate in practice.

We may also want to have different numbers of classes for different distributions.

Let us now address the problem of determining the classes of acoustic labels. Suppose we

are given a sample of training data: a script of the words spoken, and a sequence of acoustic

labels which represents the system's representation of the speech in the sample. To make our

6. model as accurate as possible, we would, ideally, like to define our classes in such a way that

we maximize the average amount of additional information that the class of one acoustic

label provides about the next acoustic label. For simplicity, assume that we know which

centisecond-long frames in the sequence were generated from which output distributions.

We can make a reasonable assignment of frames to output distributions by obtaining a

Viterbi alignment between the frames and the transitions in the model corresponding to

the training script, as described in Section 3.1. Given such an assignment, our problem

then reduces to determining for each output distribution a set of classes of acoustic labels

which maximizes the average information between the class of a label and the next !abel,

% where this average is taken over all frames assigned to that output distribution.

We can now produce classes of previous acoustic labels for a given distribution, D, in

a greedy fashion. We begin by assigning each acoustic label to its own class. If we have an

alphabet of A acoustic labels, then, initially, we will have A classes. For each class we can

compute from our training sample the conditional distribution of current labels given that

class. From these distributions, we can compute the average mutual information, between

*i the current label and the class of a previous label. Now, suppose we merge two classes. On

average, we certainly cannot gain any information by forgetting to which of these two classes

an acoustic label belongs. Furthermore, if the conditional distributions corresponding to

these two classes differ, then we will necessarily lose some information. So, in general, if we

decrease the number of classes by merging two classes together, we will also decrease the

average mutual information between the current label and the class of the previous label.

.4.
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For our purposes, it will, therefore, be best to merge the two classes which minimize this loss

of information. Each time we merge two classes together, we decrease the number of classes

for a given distribution by one. We can produce n classes for distribution D by performing

A - n such merges. This method of creating classes was originally formulated by Robert

L. Mercer. Together with John Lucassen, he also developed a fast implementation of his

method which is described in [Lucassen 82J.
For some distributions, we will lose more information by reducing to a fixed number of

classes than for others. It seems reasonable that for these distributions it would be better,

in fact, to have more classes. An alternative to creating a fixed number of classes for each

distribution, would be to reduce the mutual information by a fixed percentage for each

distribution. Another alternative would be to merge classes for all distributions at once by

choosing the distribution and the pair of classes to merge according to which results in the

least loss of information across all distributions, and all pairs of classes.

Peter V. deSouza and I tested a conditional model of the type described above by

modifying the detailed match in a 2000-word-vocabulary, speaker-dependent, isolated-word

experiment. Both the training and the test samples consisted of 207 sentences, each con-

taining 10 random words. A language model with a uniform distribution was used to decode

the test sentences. The word models used in this experiment contained a collection of 200

output distributions, and an alphabet of 200 acoustic labels was used by the signal pro-

cessing component of our system. For each distribution, we used the program developed by

Mercer and Lucassen to merge classes of acoustic labels until we had fewer than 6 classes,

and had lost at least half the average mutual information between an acoustic label and the

class of the previous acoustic label. This resulted in an average of 2.5 classes per output

distribution, and increased the number of free parameters in the collection of output distri-

butions from approximately 40,000 to 100,000. The forward-backward algorithm was run

for 3 iterations to train the statistics in the resultant conditional hidden Markov models. A

fourth smoothing iteration was then performed using the method of interpolated estimation

described in [Jelinek 80]. In comparing this conditional model to the original unconditional

model, the probability of generating the training data increased from an average of .098

per frame to an average of .117 per frame. This is no surprise in itself since the conditional

model has 2.5 times as many parameters as the original model, but it does indicate that the

conditional model is potentially more accurate. On the 2070 words of test data the number

of errors made by the detailed match decreased from 46 to 34, which strongly indicates that

the conditional model is, in fact, a more accurate model.
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8.4 Run-Length Adjustment

In this section, we will consider another very simple attack on the correlation problem

in the discrete case. One major effect of the correlation problem is that steady-state regions

of speech tend to receive too much emphasis. Consider vowels, for example. Although

there are a variety of ways that a given vowel might be produced, a given production often

*-. contains a relatively long period of steady-state sound. If, during the production of a vowel,

a few consecutive centiseconds of a particular acoustic label are observed, then it can often

be predicted with fairly high reliability that during the next centisecond that particular

label will again be observed. If this vowel is modeled by a single output distribution then

because this output distribution must model all the different ways that the vowel can be

pronounced, it will tend to assign too small a probability to the label produced during this

centisecond. If we think of the cost of generating a word as the negative of the logarithm

of the probability of generating the word, then a large part of the cost of generating words

with hidden Markov models which are based on the output-independence assumption will

-" be associated with the production of vowels; a much larger cost than should be associated

with them. This observation is corroborated by examinations of the errors which are made

by the IBM system. There is a strong feeling among the people working on this system that

* "it puts too much emphasis on vowels. It tends to ignore gross differences in consonants but

rarely misses vowels. No doubt vowels are simpler acoustic events than consonants, and

can therefore more easily be modeled and discriminated from one another. But the point

here is that we would have predicted this anyway from an understanding of the correlation

problem.

If we are right about the effect of the correlation problem in steady-state regions of

speech, then we would expect to observe longer runs of aco .stic labels than would have

been predicted by our models. This is something that can be tested empirically. If we take

a sample of speech and a corresponding script, we can use the forward-backward algorithm

to estimate the parameters of a hidden Markov model corresponding to the training script.

01 We can then randomly generate an acoustic-label sequence using the transition and output

probabilities in the trained model. For each acoustic label, i, we can compute the average

run length of strings of consecutive i's in this random sequence. We can also determine

the average run length of strings of consecutive i's in the training sample. Table 8.1 shows

averages of ratios of sample run lengths to IBM-model run lengths for one speaker. The

sample for this experiment was recorded in an environment which was relatively noise-free.

04.y
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Acoustic labels were associated with the phones that they tended to be produced from most

often, as determined by a Viterbi alignment. They were then grouped into classes according

to the identity of the phones. The maximum ratio observed was 4.2 for a label which was

most often associated with the vowel in put. The minimum ratio observed was .94 for a

label which was most often associated with background noise. Notice that, as predicted,

the ratios tend to be high in vowels and other steady-state sounds, such as semivowels,

and lower in shorter sounds, such as fricatives and stops. As we should expect in a sample

which is free of long-term noise the ratios for the noise patterns are all very close to unity.

Overall, the average ratio is 1.6 which is large enough to serve as strong evidence that our

models do, indeed, suffer from a correlation problem.

Class Mean Standard Deviation

Vowels 1.80 .439

Semnivowels 1.81 .358

Nasals 1.69 .402

Fricatives 1.55 .323

Stops 1.31 .300

Noise 1.00 .066

Table 8.1: Average Ratios of Observed to Predicted Run-Length

In order to understand a simple adjustment that can be made for this effect, consider

the following hypothetical example. Suppose we have. a 3-state, 2-transition machine that

generates sequences of length 2. The first transition, I - 2, generates the first element

in the sequence, and the second transition, 2 - 3, generates the second element. Suppose

that for the data this machine is modeling, every time label I appears as the first element,

it also appears as the second element. After training the machine, the probability, p, of

each transition generating label I will be equal to the probability of the sequence being a

sequence of two consecutive L's. Suppose further that such a sequence of I's is relatively

rare so that p is relatively small. The observed average run length of sequences of I's will

be twice as great as that predicted by the model. Furthermore, the machine will generate

a sequence of I's with probability p, even though the true probability of such a sequence

is p. If the sequences of L's had been always of length n, and we were using a similar model

with n transitions, then the ratio of observed to predicted run lengths would be n, and

the probability of generating a sequence of L's with the model would be the nth power of
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8. Conditional Models 65

what it should be. This suggests that we can perform a rough correction for the correlation

problem by raising the output probabilities of a label I to the R(l)th power, where R(1) is

the ratio of predicted to observed average run lengths of sequences of 's. The argument

given above is very heuristic and changes if we, for example, change the machine shape or

the distribution of sequences of consecutive I's. The resulting correction is therefore very

crude, and the probabilities that the resultant models assign to acoustic label sequences

will, no doubt, be inaccurate. However, the probabilities assigned to these sequences by

the uncorrected models are certainly way off, and some improvement, albeit crude, would

be better than none. Furthermore, it is a simple change, and only increases the number of

free parameters by the size of the acoustic alphabet, which in the IBM case amounts to an

increase by less than half a percent.

Following the argument above, if we do not take any probabilities to any powers, on

average the probability of generating an acoustic sequence, given a word sequence, will be

4 some power of what it should be. When decoding, we multiply the acoustic match prob-

ability, Pr (-T = I W = WT) by the language model probability, Pr WTi = W), to

obtain the joint probability, Pr (i1 T 
-

T , WT = w T ) as described in Section 2.1. But if

Pr (Y 1T = T I WT = WlT ) is some power of what it should be, the language model com-

ponent will be given short shrift. Empirically, it has been found in the IBM system, that

better results are obtained when the following approximation is used [Bahl 80]

Pr - YT WT J z: Pr YT T = WT), 2 1 Pr (IT = WT) (87)

The exponent of .25, which is referred to as the language model match factor, further

indicates that the correlation problem is, in fact, a serious one in the IBM system.

The run-length correction described above can be thought of as adjusting the language

model match factor according to the amount of unaccounted for correlation in ,1 , according

to the acoustic labels in J. It can be implemented in the following steps. First, estimate

the parameters in a family of hidden Markov models with the forward-backward algorithm

in the normal way. Next, use the resultant models and the training sample to compute

ratios of predicted to observed average run lengths for each acoustic label. Raise all output

'41 probabilities for an acoustic label to the run length ratio for that label. Finally, use the

adjusted output probabilities in the normal way to recognise speech. It also makes sense

to retrain the transition probabilities in the model after the output probabilities have been

adjusted. In practice, however, it was found that this retraining has little effect.

It may seem troublesome that after adjustment the probabilities of generating different

acoustic labels in an output distribution no longer sum to unity, and as a result, the sum over
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66 8. Conditional Models

all label sequences of the probability of generating a sequence also no longer sums to unity.

The adjusted model, then, is no longer a true probability model. Although it certainly

unacceptable in the long run, this problem is not as serious as it seems. The reason the

sum is no longer unity is that the probabilities of all sequences have been increased. The

probabilities of the speech-like sequences have been increased as they should be However,

the probabilities of the sequences that are not speech-like, those containing shorter runs,

have also been increased, whereas they should have been decreased. In practice, we only care

about the speech-like sequences, and the fact that our models incorrectly model sequences

which are not representative of actual speech is of secondary concern.

An initial experiment with run-length adjusted statistics was performed on the random-

word task that is described in the previous section. In this experiment the number of
detailed-match errors was decreased from 46 to 32. This is even a slightly larger reduction

in the error rate than was obtained with the conditional models described in the last section.0
Although the model is less sophisticated here, it may have performed as well as the model

in the previous section because it has significantly fewer free parameters.

Next, an experiment on a 20,000-word-vocabulary, speaker-dependent, isolated-word,

natural-language task with a trigram language model was performed. Four speakers were

tested, each reading training and test scripts of 100 sentences. In this experiment, which

used an informative language model, the language model match factor was increased from

.25 to .4 to account for the fact that much of its job was already being done by the output

probability adjustments which averaged .625. Originally, before adjustment, there were 44,

.4 60, 84, and 45 errors for the four speakers. After adjustment according to the procedure

described above the numbers of errors decreased to 42, 50, 79, and 38, respectively. The

", total number of errors across the four speakers dropped from 233 to 209, which amounts to

reduction in the error rate of the system from 3.43 percent to 3.08 percent.
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9. An LPC-Based Waveform Model

9.1 The Framing Problem

Throughout this thesis we have approached the problem of acoustic modeling in speech

recognition as that of extracting as much information as possible from a speech sample

about the corresponding word sequence. In Chapter 2 it was shown that this information

is bounded from above by the mutual information between the input speech signal and the

corresponding word sequence. The fact that human performance is currently significantly

better than machine performance is strong evidence that we are not currently achieving this

upper bound' We have seen that there are two possible reasons for this: either our acoustic

models are inaccurate, or we art discarding information in the signal-processing component

of the system.

Ideally, the signal-processing component of a speech recognizer will convert the acoustic

signal it receives into a form which can be modeled accurately and which contains as much

information about the corresponding word sequence as does the original waveform. There

is evidence, however, that in the IBM system the signal-processing component is discarding

information. In one experiment it was observed that nearly half of the recognition errors

involved nasalized d endings in word pairs such as plan and planned, an and and, and contain

and contained. The d bursts, which were clearly present in the original waveforms, were

difficult, if not impossible, to see in the spectra produced every centisecond and could not

be detected in the acoustic labels. In another experiment involving the speaker-independent

recognition of the four letters b, d, e and v researchers at IBM were having trouble getting

* their system to approach human performance which had been measured at 94 percent. In an

-'f effort to determine where their problems were located, they synthesized speech waveforms

from the spectra computed every centisecond in the signal-processing component of the

recognizer. Human performance on these synthesized waveforms dropped to 75 percent.

o Furthermore, the dominant human error was the same as the dominant error made by the

computer, b being misrecognised as v.

One explanation for these results is the random placement of the signal-processing

window with respect to the b and d bursts. Recall that the signal-processing component

of the IBM system begins by sampling the analog waveform at 20,000 Hertz, and then by

computing a series of short-term spectral estimates. Each spectral estimate is computed
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68 9. An LPC-Based Waveform Model

over a window of 512 sample points. This window is moved forward by 200-point increments

so that a fresh spectral estimate is computed every centisecond. Because acoustic events

are in no way synchronized with the system clock, the placement of this window, or frame,

with respect to an. acoustic event such as a b burst is purely random. Furthermore, the

effective size of the Hamming window does not vary with respect to the acoustic events

. - that are being windowed. The contributions to the spectrum of short-duration events such

as b and d bursts are often averaged together with the contributions of surrounding events

because the window is so long that it does not isolate the short-duration events in time.

The fixed size of this window cannot simply be decreased, however, without losing spectral

resolution in steady-state events such as vowels.

Ideally, we would like to window acoustic events with windows that are placed and sized

according to the events themselves. Although it should be possible to obtain an improve-

ment by attempting to window the speech waveform in an event-synchronous fashion, such

an approach suffers from a common problem in pattern recognition: in order to detect an

event, one would like to know what event it is that is being detected, but in order to decide

what the event is, one would like to know where it is. If it were possible to decide with

certainty in the signal-processing module that an event such as a d burst had occurred, then

we would barely need the acoustic-modeling and language-modeling components which con-

stitute the rest of the recognizer. If, on the other hand, this module can not be sure whether

or not it has detected such an event, then it risks discarding information by assuming that

it has.

The essence of this framing problem is that in order to extract just the right information

from the acoustic signal the signal-processing component must make certain hard decisions

without having at its disposal all the information relevant to such decisions. The probability

that an acoustic event has occurred at some point in the acoustic signal depends not only

on that particular section of the signal, but also on the surrounding acoustic and linguistic

events. In fact, it depends on just those events that the rest of the system is designed to

model. This suggests that we may find an answer to this problem by embedding the signal

processing into the statistical models used by the rest of the system.

r-° If we model the digitized acoustic waveform directly, we know that no relevant infor-

mation will be lost in the signal-processing component of the system because there will be
1no separate signal-processing component. There will be no framing, and hence no framing

%, problem. If the underlying Markov model makes a state transition each waveform sample,

K? then an event such as a d burst will be detected just when the model transits into a d-burst
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state, and this will be influenced by all the power of the rest of the recognizer, including,

for example, the language model. Events will be detected and recognized simultaneously.

While these potential benefits are no doubt very large, in order to realize such a model we

have to face up to a nasty problem: modeling the waveform directly.

9.2 Linear Predictive Models

By far and away the most popular class of statistical distributions which is capable of

directly modeling a speech waveform in a sample-by-sample fashion is the class of distri-

butions used in linear predictive coding (LPC) [Markel 76] [Makhoul 75]. In an nth-order

linear predictive model, a waveform sample is predicted as a linear function of the previous

n samples:
n

y = Eajy_j + q. (9.1)

The error term et is assumed to have a Gaussian distribution. The coefficients a, . . .an

are referred to as linear prediction coefficients.

Linear predictive models have been successfully used for speech compression, vocoding,

and speech synthesis for over a decade. In 1973 Itakura obtained impressive results using

linear predictive models in speech recognition [Itakura 75]. In his system, and in the many

similar ones which have followed, it is assumed that short intervals of speech are generated

from stationary linear predictive models. Each centisecond, or so, a set of linear predic-

tive coefficients is estimated from a short window, or frame, of speech. Frames of speech

are then compared to sound templates with what has come to be known as the Itakura

metric, which is an approximation, see [Thomson 85], of the ratio of the probability that

the speech in a frame was generated from an LPC model based on a predetermined set of

coefficients to the probability that the speech was generated from an LPC model based on

the coefficients estimated from the speech itself is then computed. Notice that although

these systems use LPC models, they are not based on waveform models in the sense that

we have been discussing. In particular, they still window the acoustic signal in a manner

which is independent of the recognition of acoustic events.

Nevertheless, the basic LPC model does model a speech waveform sample by sample,

"1" and in this respect, it is just what we need. A hidden-Markov LPC-based waveform model

could be constructed in the following manner. Each sample of the waveform, the under-

lying Markov chain would make a state transition, and given that a sample is generated

I



70 9. An LPC-Based Waveform Model

from a particular transition, the probability density at that sample would be determined

from a linear predictive output distribution which is associated with that transition. The

parameters for each output distribution would be a set of linear prediction coefficients and

a variance for the error term. Consider an output distribution with coefficients a1 , an

and error-term variance of 2. Using this output distribution, the error term at a waveform

sample yt would be

f: : -t - E aj yt-j. (9.2)
j=1

The probability density at yt would be

_2

N (f: 0,0'2)(9.3)

The transition probabilities, the prediction coefficients, and the error-term variances

* can be estimated either with the MLE or MMIE, in the usual way. Forward-backward

reestimation formulas for such a linear predictive model, as well as the derivatives for

MMIE hill-climbining can be found in Appendix 13.6.

The LPC model describes the output of a series of n lossless acoustic tubes driven

by Gaussian noise. While this model is taken quite seriously as a model of speech, it has

various flaws. One particularly serious one is that it does not model the periodic driving

function of the vocal chords during voiced speech. Following a suggestion of John Makhoul's

.Makhoul 861, we can attempt to overcome this problem by using a pitch-period detector

and placing a few coefficients around waveform samples one pitch period, P, samples, away.

The model then becomes

Y. ajy.. + E b3 y(j- 4 .3 ) +eC. (9.4)
* j=1 j=-M

The effects of this pitch-period modeling can be seen by examining the three figures on

the next page. In these figures the z-axis is in samples, where the sample rate is 20,000 Herts.

The top figure shows the first few centiseconds of the acoustic waveform for a rendition of

the letter r. The next two figures display the log of the probability of producing each sample

from the state that a hidden Markov model was most probably in at the time of that sample.

% The two LPC-based hidden Markov waveform models in this example were trained with the

forward-backward algorithm. Figure 9.2 shows these log probabilities for an LPC model

corresponding to equation (9.1) with n = 30. Figure 9.3 shows these log probabilitites for

an LPC model corresponding to equation (9.4) with n 30 and m = 2. The pitch periods

I
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% for this model were computed with a standard autocorrelation pitch tracker. Both models

change from a state which models background noise to a state which models the v fricative

at about the 340 sample point. Since the noise distributions have tighter variances than

-. . the other distributions in these models, the upper bound on the probabilities drops at this

point, as is clear in the figures. In Figure 9.2 the log probabilities are extremely low around

the high amplitude speech in the beginning of the vowel. Each new pitch period comes as

" a complete shock to this model. In Figure 9.3, however, this effect is greatly diminished.

-:. There are still a few samples which are modeled very badly, but not nearly so many as in

the preceding case.

There is another problem with LPC waveform models which can not be so easily reme-

died. In the current IBM system, a state transition occurs every centisecond, and output

probabilities are simply looked up In the waveform model described here, 20,000 state

transitions occur each second, and the evaluation of an output probability density involves

a, say, 40-point dot product, in addition to the evaluation of a Gaussian density. This is

roughly 10,000 times as much computation as is involved in the current system. This is a

serious problem. It is not simply that it will be difficult to create a real-time system based

on a waveform model, but it will be difficult to run experiments at all.

Nonetheless, the idea of of modeling the speech waveform directly has so many potential

advantages that a very small and very preliminary experiment was conducted. The task

was the speaker-independent recognition of the four letters b, d, e and v. Although this

task only has a 4-word vocabulary, these four words are particularly difficult to discriminate

*'-'. from one another, as is evidenced by the 80 percent performance of the current IBM system

on this task. In order to reduce the amount of computation required, salient sections

were clipped out of the speech waveforms. Using a Viterbi alignment produced by the

standard IBM recognizer, the transition into the vowel was located for each sample word.

Fifteen consecutive centiseconds of speech were extracted from each word, ten before the

vowel transition, and five after. These 15-centisecond-long waveform segments became the

samples for this wavtorm-model experiment. Since the speech signal was sampled at 20,000

-0e Hertz, each such segment consisted of 3000 points.

In a waveform model, acoustic events are modeled on a much smaller scale than in the

standard IBM system. It is, therefore, not clear at all what the shapes of the finite-state

machines for the individual words should be. We would like them to have many states

in order to model the detail in transitional events. But, as we have seen time and time

again, the quality of our density estimates diminishes with the number of parameters in
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the system. Furthermore, the computation increases with the number of transitions in the

machines, and in this experiment we have to be Very careful about computational increases.

Each phone in a set of phonetic word models was modeled with a four-distribution machine

as shown in Figure 9.4. The phonetic spellings for the four words are shown in Table 9.2.

Note that it is not necessary to model the vowel trail-offs or end-of-word silences because

the final sections of the words have been cipped out.

Figure 9.4: Waveform Phone Machine

Word Phonetic Representation

b Noise Onset, B E

d Noise Onset 1 D E

e Noise Onset 2 E

v Noise Onset 3 V E

Table 9.11 Phonetic Spellings for Waveform Experiment

Each word was uttered twice by 100 different speakers. Once for the training data, and

* once for the test data. Words which were clearly misspoken were discarded, leaving 372

words of training data and 396 words of test data. The basic LPC model of equation (9.1)

with n = 30 was tested, as well as a version of the model described in equation (9,4), with

n = 30 and m = 2. The pitch periods, the pt's, were determined by an autocorrlation-based

pitch-period detector. Parameters were estimated with the forward-backward algorithm.

MMIE was implemented, but was found to involve a prohibitive amount of computation

for this preliminary experiment. The performance on test data of the basic model was 64.9

percent, and the performance of the pitch-period enhanced model was 65.4 percent.

There are a number of potential explanations for these disappointing results. First, as

we can see from the log probabilities in Figures 9.2 and 9.3, error terms do not seem to

.4
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have Gaussian distributions. In particular, there are many more outliers even in the model

which attempts to model the periodicity of the source. This is just the situation for which

Richter models are designed, and in any future attempt, it would be reasonable to try to

model the error term as a Richter mixture of Gaussians. A second potential source of poor

performance may be the word models. When attempting to discriminate between b, d, e

and v with models in which the vowel distributions are tied together, all that matters are

the consonants and the transitions into the vowels. But it is certainly far from clear how

many states and output distributions are needed to model these rapidly varying acoustic

events on a sample-by-sample basis. Unfortunately, developing accurate word models is

to a large extent a matter of trial and error, and at the present time we do not have the

computational resources to perform the necessary trials. In chapter 7, we suggested that it

may be important to model the variation of the spectra in time. We saw that to do this by

remembering previous spectral frames in the states of the underlying Markov models meant

using models that have too many free parameters. This led to the idea of modeling time-

derivative information by adjoining adjacent spectral vectors. Unfortunately, it is not clear

how to model such information as straightforwardly in an LPC waveform model of the type

we have been discussing. Another problem is that the error terms are likely to be correlated

and this correlation is not modeled. Since the models here require the computation of 200

times as many output probabilities per second as the standard IBM models, this correlation

problem is likely to be far more "erious than in with the standard models. If the acoustic

signal is disrupted for a brief amount of time by some noise event, for example, it may

effect only a couple of the standard model's centisecond-long frames, but will effect a few

hundred waveform samples. Finally, there is the inadequacy of assuming the speech can be

modeled as the output of a series of lossless acoustic tubes. There are a number of problems

with this asumption. One commonly mentioned example is the inability of such a model

to account for zeros in the transfer function that can be introduced by the nasal cavity.

In summary, although modeling speech waveforms directly on a sample-by-sample ba-

sis has some extremely attractive features, the simple LPC-based hidden Markov models

described above have a number of serious problems. The further assessment and evalu-

ation of possible solutions to these problems will involve conducting a large number of

waveform-model experiments. It is unfortunate that the computational resources for these

experiments do not now exist. But as we look forward to a future with faster and faster

computers, we can also look forward to the possibility of speech recognition systems in

" " which all components are uniformly integrated into one elegant statistical engine.
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10. Implementation

10.1 Thresholding the Forward-Backward Computation

In this section, we will examine a method of reducing the amount of computation in

MLE and MMIE for hidden Markov models by thresholding the forward-backward compu-

tation. This computation consists of two passes over the data. In the forward pass, for each

time, t, and for each state, i, we compute ai (t), the probability of generating the sequence

Y1 , and ending up in state i at time t. In the backward pass, for each time, t, and for each

state, i, we compute 3 i (t), the probability of generating the sequence yT+J, having started

in state i. We saw that the a's at time t can be easily computed from the a's at time t -

by taking advantage of the following recursion:

OI
" .(t )  aj(t 1)ajibji(yt) (10.1)

where aji is the prior probability of making the transition from state j to state i, and bji (ye)

is the probability of generating the observation yt from the output distribution associated

with the transition j -+ i. Similarly the 3's at time t can be easily computed from the /3's

% at time t+ I by taking advantage of the following recursion:

_ /(t) = ZaiJbi" (yt+1) Oj (I + 1). (10.2)

In both MLE and MMIE the a's and the O's are computed in order to compute, for

every pair of states i and j, and for t = I to T, -yij (t), the probability of having made the

*" transition i - j at time t given that the sample y, was generated by the model. As is

described in Chapter 3, these 7's serve as coefficients of terms which are summed together

in various ways. The resultant accumulations are then used to compute reestimates of the

model parameters.

*If certain y's become very small relative to other y's, terms associated with these

small j's will in general not affect the final reestimates, or at least they will not affect the

objective function as computed with the reestimated model. As an example of how the

reestimates may be affected but not the objective function consider the following situation.

Suppose that it is very unlikely to ever visit a particular state, i. The y's associated with all

transitions from i will then be relatively small. Reestimated probabilities of the transitions
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from this state certainly will depend on these small -y's, but since the state is rarely visited

these transition probabilities will have a very minor effect on the performance of the model

on the training sample.

Since an a appears as a factor in each y, if during the course of the forward pass we

notice that certain a's are becoming very small relative other a's, we can simply assume that

these small a's are zero without significantly affecting the performance of the model which

is derived by our training procedure, be it MLE or MMIE. An efficient way of implementing

this thresholding is to set to zero all a's at each time, t, which are significantly less than

the maximum a at t. Define x (t) to be the largest alpha at time t,

1C (t) = maxai(t) (10.3)

Then, given a threshold r, for each i such that ai (t) < rr. (t), set ai (t) equal to zero before

* moving on to compute the a's at time t + 1. At time t + I only those a's from time t which

are greater than zero will enter into the computation. Those which have been set to zero

can be ignored. If the state-space of the underlying Markov chain is large, this thresholding

will be very important in reducing the computation to a manageable size. This technique,

which is implemented in the IBM system, is essentially a variant of the beam search as

performed by the Harpy system, [Lowerre 76].

The backward pass can be thresholded in the same manner. In addition, we can further

threshold this pass by noticing that if the probability of generating yt and arriving in state

i at time t is very small, then it is irrelevant for our purposes what the probability of

generating y,_, 1 having started in state i at time t is. Therefore, we need only compute

3i (t) on the backward pass if ai (t) was not zero, or not set to zero, on the forward pass.

The appropriate value of the threshold r must be determined empirically. If r is too

large, more computation than necessary will be performed. If r is too small, paths which

contribute significantly to the probability of generating yq will be prematurely thresholded

out of consideration. If this happens, the probability of generating j , as computed on

the forward pass, will be inaccurate, the conditional expectations used in the reestimates in

the forward-backward algorithm will be inaccurate, and the derivatives of the probability

of generating y3Tused in MMIE will be inaccurate. One easily detectable example of such

over-thresholding occurs when a model is used in which not all states are final states.

With such a model, if ai (T) is zero for every final state,i, then clearly the forward-pass

computation has been over-thresholded. Similarly, if on the backward pass Oi (0) is zero

for every initial state, i, then the backward-pass computation has been over-thresholded. If
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neither the forward pass nor the backward pass was over-thresholded, then the probability

of generating yT as computed on the forward pass should be equal to the probability of

generating yT as computed on the backward pass.

Let us examine this problem of over-thresholding in more detail. Suppose the probabil-

ity of generating an observation yj from any output distribution associated with a transition

to state i is small when compared to the probability of generating yj from distributions as-

sociated with other transitions. Then, all else being equal, paths which arrive at state i at

time t will tend to be less probable, given yT, than other paths. But suppose, as is usually

the case, that all else is not equal. In particular the probability of generating yT hav-

ing started in state i may be much greater than the probability of generating /T having

started in any other state. Then in the thresholding process we are likely to set a i (t) to

zero because we have not yet examined yT As a result, we may end up setting most of

the probability of generating y T to zero.

This danger is particularly acute when modeling observations from a continuous space.

As we observed in Chapter 5, the tails of a Gaussian drop off very rapidly, and as a result,

output densities at many observations in a sequence can be extremely small. Furthermore,

when using continuous-parameter models, it is often the case that in the sequence of output

probabilities along the most probable path given J/T, there are a few extremely small values.

This is because there are usually even more such small values along less probable paths.

Empirically, this phenomenon is often so severe when modeling observations from a contin-

uous space that in order to avoid over-thresholding, -r must be greater than the dynamic

range of the floating-point representation of numbers used by the system. For example,

in the IBM 370 architecture positive floating-point numbers range from 10-78 to 1075. In

many continuous-parameter hidden Markov model experiments this dynamic range of 154

orders of magnitude has been found to be too small. It is not simply that the probability

of generating a sequence becomes smaller and smaller as the length of the sequence grows;

this problem can be easily circumvented by normalizing the a's and O's after all the states

at a particular time have been processed. Rather, it is that certain a's, or O's, which we

do not want to be zero at a particular time, become very small relative to other a's, or O's,

at that time. Even if there is no explicit thresholding, unless an alternative representation

of probabilities is used, the dynamic range of the system can impose an implicit threshold

which is often too severe.

6
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10.2 Representing Probabilities by Their Logarithms

Consider the criteria we would like of an alternative representation of the probabilities,

or probability densities in the forward-backward computation. First, since we are represent-

ing probabilities, we only need to represent positive numbers. Second, as we have just seen,

the dynamic range of whatever representation we choose must be large, on the order of 1000

orders of magnitude. Third, we do not require a lot of precision in the representation of

our probabilities, because the algorithms used in both MLE and MMIE are extremely well

conditioned. If, during the course of the computation, probabilities are off by a few percent,

it will normally only alter the final parameter estimates by very small amounts. Finally,

because the estimation of parameters for models of speech with either MLE or MMIE can

be computationally very expensive, it is important that we be able to perform the adds,

multiplies, and compares in the forward-backward computation rapidly.

A simplified version of the sign/logarithm number system presented by Swartzlander

and Alexopoulos meets all of these criteria [Swartzlander 75]. In their system, numbers

are represented by a sign bit and an integer logarithm. Since we do not have to represent

negative numbers, we can dispense with the sign bit. In this system, a positive number, z,

will be represented by w (z), an integer approximation to the logarithm of z to a base E:

W(Z) logf z + . (10.4)

Using this definition,

_ 1W (z) - logz < .. (10.5)

If, for example, = 1.01, then f&3(') will be within one half of one percent of z. If W (z)

is an n-bit integer, this representation will have a dynamic range of 2n loglo orders of

magnitude. If n = 32 and b = 1.01, there will be a dynamic range of over one million orders

N': of magnitude.

-'- Let z and y be two positive numbers. Let the integers k_ and ky, and the numbers e,

and ey be such that

k- logf z1 < e., and ky- logf y < ey. (10.6)
,

X?, Since
k. 1k,+k, (10.7)

we define multiplication in this representation as

k 2 ® k,__Ak,:+k/ (10.8)

04
k_. o ky *c + -
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Multiplication can thus be implemented with one integer add instruction. Since errors

accumulate in the logarithm of the product

(k, I ky) - loge X Y I z + fy. (10.9)

Addition is slightly more complicated. Define the function V; as

An
(n) = w(1 n(10.10)

Since

+ I = + (10.11)

we define addition in this representation as

k :, ED k:y= kc 9 -0 (ky - k,) . (10.12)
k ,t

The function 7 can be implemented by table lookup. If E > 1, then as n --, -00,

(l+ ) 1, and 0(n) -40. In fact, if (log (1 +n) + 1) < 1, then -0(n) = 0. If we

redefine E as
k, 0f kb(k - k,) , ifky !Sk,k, EDky {= ® % k)'i%_ (10.13)

I ky ® 0 (k - ky) , otherwise,

then the argument to 0 will always be nonpositive, and we can reduce the size of the table

needed to implement V. Table 10.1 lists table sizes for different values of . Addition can

thus be implemented with one integer add instruction, one subtract, two compares, and one

table lookup. Since the table lookup adds an additional round-off error to the logarithm of

the sum,

(k ED ky) -log (z + y) < + max (exz,y)• (10.14)

S Table Size

1.01 533

1.001 7,606

1.0001 99,041

1.00001 1,220,614

Table 10.1t ip Lookup Table Sizes

In the experiments described in the next chapter, this representation system was used

with 1.0001, and with the logarithms stored as 32-bit integers.
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10.3 Maximum Mutual Information Estimation

In this section, we will examine the implementation of MMIE in speech recognition.

Given a language model, 1, an acoustic parameter sequence, y = , and corresponding

word sequence, , = w't the goal of MMIE" is to choose a vector of parameters, S, which

enables a family of Markov models to maximize an estimate of the mutual information

between to and y,

fMmIB (0) = log Pro (Y = y I W = to) - log Prl~e (Y =) (10.15)

The probabilities in (10.15) can be computed by assigning a hidden Markov model to each

word sequence to. For example, if m is the model corresponding to the word sequence to,

then

Pri(Y= yIW =w) =Pri(Y=IM= m) (10.16)

Proe (Y y) is computed by summing over all possible word sequences

Pr1,e (Y = y) = Pre(Y = y I W = i)Pr(W = i). (10.17)

We can drastically reduce the computation involved in computing the derivative of

fMmR (0) by making two assumptions. First, assume that the training data y can be

segmented into n subsequences, y(1),... , (n), one y(i) for each wi in w , and that for any

word sequence xp,

Pre (Y = yIW = m) = F r,71 Pre (Y() = y(') I W = w,), if m = n; (10.18)

0, otherwise.

Second, assume that for any word sequence in,

m
Pri (W = fil) Pri (Wi = i2 ). (10.19)

Using these two assumptions, we rewrite Prte, (Y = i) as

Prje (Y = Y) = 1- fl Pro (Y(') = y(') I Wi = aib) Pr1 (Wi = ti). (10.20)

6 Furthermore, since the sum is over all possible word sequences, and since every word can

appear in every position,
,', n

Prt,e(Y y) = n Ei Pre (Y(') = V(W) wi t) Prt(Wi tb)

i=1 t (10.21)
n

= fl Prj', (Y() -
i=1

P4e ,1611!-
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Each segment of speech can now be handled separately since

rn"".fMMjE (0) --- log Pre (y (i) _ = U(t) I i t wI )  -_log Pri,49 (y (I) - t1(i))'. (10.22)

The first assumption, equation (10.18), is certainly not a good one in continuous speech.

It ignores errors which occur across word boundaries. For example, commonly in continuous

speech recognition a word like opportunities is misrecognized as the pair of words oppor-

tunity is. In equation (10.18), it is assumed that an acoustic sequence either sounds like

opportunities or opportunity is, but not like both. Another problem with (10.18) is that

it prevents the modeling of coarticulation across word boundaries. Suppose w consists of

the word sequence gas shortage. It is very likely that a speaker will pronounce w as gash

shortage. In this situation equation (10.18) will not be accurate, because the probability

that whatever is deemed to be the first acoustic subsequence, y(1), is an acoustic realization

of the word gas very much depends on the identity of the following word. If the following

-r' word was station, for example, it would be very unlikely that gas was pronounced as if the

speaker was saying gash. In the isolated-word experiments described in this thesis, these

types of problems were assumed to be minor, and (10.18) was assumed to be true in order

to simplify the implementation of MMIE. Acoustic subsequences were determined from a

Viterbi alignment of the training data with the training script.

The second assumption, (10.19), is also certainly not true, at least of any natural

language like English. However, it is not clear that even if we could tackle the computational

problems associated with a complicated language model, we would want to. In general,

the size of the training script used when estimating acoustic-model parameters is far less

than that needed to reliably estimate language-model parameters. As a result, we will

not be able to hope to correct for deficiencies in a language model in the estimation of

* acoustic-model parameters. Normally, acoustic-model parameters will be estimated from

the acoustic realization of a script of about 1000 words. In a large-vocabulary system, this

will not even be enough words to ensure that each word in the recognizer's vocabulary

occurs in the training script. Ideally, we would like to estimate acoustic parameters so that
.4 the resultant models discriminate well between words that are likely to occur in the same

linguistic contexts. If only a small fraction of the words in the recognizer's vocabulary are

found in the training script, we must hope to do this by estimating acoustic parameters

so that phones, or some other sort of sub-word units that are shared among words, are

discriminated from other phones. In such a situation, it is not at all clear which language

model probabilities will ensure that acoustic parameters are chosen so that phones are

' !
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discriminated from other phones to the appropriate extents. By using a unigram language

model, as in equation (10.19), and by assuming that each phone occurs in many words in

the training script, we can hope that the importance assigned to discriminating between a

pair of phones will be roughly approximated by the product of the unigram probabilities of

the phones. Actually, we can hope for even more, since when parameters are estimated to

discriminate words from other words, it will be important to discriminate between different

phones that occur in similar acoustic contexts.

A better alternative to using a static unigram model in equation (10.21) is to vary the

unigram probabilities according to the words in the training script. At each position, i,

we can average over all linguistic contexts in which the word wi can appear to determine

varying unigram language model probabilities which can then be used in the expression of

Prj,e (Y = y) For (10.21) we would use

Prj, 0 (Y = iY) = f E Pre (Y(t) y1(i) wi=) Prj (Wi i), (10.23)
i=1 i

where Pri (W = ri), is the probability that zbi occurs in a context in which wi can occur.

The Pri (Wi = tb's can be precomputed from 1. By doing this, we will, in essence, be

pretending that we had a large enough training sample to have seen every word, in every

linguistic context, the appropriate number of times.

Let us consider one final simplifying assumption. In practice, for each acoustic seg-

ment, y(i), there is a relatively small set of words Ai, which contribute significantly to

, Pri (Wi = 6) Pre (Y(i) = y(i) Iwi = b), and it reduces the computation in MMIE

to assume that

E Pr(Wi = b)Pre (y(i) = M(') I tb)

= Y pr(Wi = 1b) Pre (y(i) =-(i) j wi =1b) (10.24)

tbEA,

Each set, Ai, can either be precomputed from a list of words confusable with wi, or can be

. computed by examining y(i). When estimating the detailed-match parameters for a large-

vocabulary system, it is convenient to determine the Ai's from lists of words produced by

the fast match.
a

,I
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11. E-Set Experiments

.5

11.1 Previous Results

This chapter describes a series of experiments testing the ideas which have been dis-

cussed in previous chapters. It was important to find a small task for these experiments,

since many of these techniques involve a large amount of computation. It was also impor-

tant, however, that the task be difficult enough for there to be room for improvement. The

task chosen was the isolated-word, multi-speaker recognition of the e-set, the letters b, c, d,

e, g, p, t, v and z. The task is small since it is an isolated-word task with a vocabulary of

nine one-syllable words. Yet it is also difficult: the standard IBM system has a performance

of only 79 percent on this task.

A number of other groups have also experimented on the e-set. While the tasks and the

data used by the different groups differed in important ways, making it difficult to assess

the relative merits of the techniques used by these groups, it is nonetheless of interest to

briefly review their results.

Rabiner and Wilpon [Rabiner 79] examined the performance of a dynamic time warping

system on a 39-word task which included the e-set. Their purpose was to investigate clus-

tering techniques as a means of determining the templates for their system. They recorded

100 talkers, 50 male and 50 female, speaking their 39-word vocabulary. Words were spoken

in isolation in a soundproof booth over dialed-up phone lines. They used 3 sets of test data.

The first two sets consisted of samples from speakers who were not in the original group of

100. The third set consisted of new samples from speakers who were in the original 100.

In discussing their results, we will merge the results from these three test sets. In addition

to the e-set their vocabulary contained other letters, the digits, and the words stop, error

and repeat. In the three test sets taken together, there were 252 samples from the e-set.
Of these 252 samples, only 6 were misrecognised as any of the 30 words not in the e-set.

If we exclude these 6 words, they recognized 56 percent of the words in the e-set correctly.

While this might seem like a relatively poor result, it is important to keep in mind that

the 3200 Hi cutoff in telephone speech makes it particularly difficult to distinguish English

consonants from one another.

In 1981, Waibel and Yegnanarayana [Waibel 81] experimented with a variety of dynamic

time warping algorithms on the e-set. Their task was a speaker-dependent, isolated-word

---~ -, -N~* -v~ 4-.- ~. -- ~ & -~ - - - - --
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task, and their data was recorded with a close-talking lip mike. The average performance

across speakers of their best warping algorithm was approximately 60 percent. Using the

same algorithm to recognize the ten digits, they obtained a performance of 98 percent. The

difference in these two numbers demonstrates that the words in the e-set are extremely

confusable with one another.

An improvement to classical dynamic time warping results on the c-set was obtained in

1982 by Bradshaw, Cole and Li [Bradshaw 82]. They investigated a variant of a technique

suggested by Rabiner and Wilpon [Rabiner 813. Utterances were first classified into confus-

able classes, and then recognized with an algorithm which assigns weights to frames so as

to discriminate between words within a given class. They evaluated their algorithm on a

task with a vocabulary of the e-s t and the word three. Utterances were spoken in isolation

using a close-talking lip mike. 8 speakers, 4 male and 4 female, uttered 5 instances of each

word for training data, and an additional 5 instances for test data. Using their two-pass

6 approach they improved system performance from 63 percent to 84 percent. After having

obtained this improvement, they augmented their system with a module which produced

a set of linguistically motivated features for each utterance. By treating these features as

an additional frame in their recognizer, they were able to increase the performance of their

system to 90 percent.

In subsequent years, the speech recognition group at Carnegie-Mellon has continued

to explore this feature-based approach to speech recognition. They removed the template

matching module from their system entirely, and constructed a recognizer built around a

decision tree. At each node in the tree, the recognizer asks a question about the features

which have been extracted from the utterance to be recognized. It then uses the answer to

this question to classify the utterance into one of a few disjoint sets of words. Associated with

each leaf of the tree is a set consisting of a single word. They have tested this recognizer on a

speaker-independent isolated-word e-set task using lip-mike data, and obtained recognition

rates of 83, 88 and 90 percent [Lasry 84, [Cole 86], [Stern 87).

d A e ne, h
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11.2 Data

This section describes the data that was used in the experiments that are presented in

this chapter.

One hundred male speakers were recorded, each speaking the 26 letters in the alphabet

twice, once for training data, and once for test data. The 26 letters were spoken in 3 random

sentences, so that each speaker spoke 6 sentences. Speakers were instructed to leave brief

pauses between the words in their sentences. Due primarily to speaking errors, a fraction

of the sentences had to be discarded. After the words in the e-set were extracted from the

remaining sentences, there were 836 words of training data and 886 words of test data.

The recordings were made in offices and labs at the IBM Thomas J. Watson Research

Center in Yorktown Heights, New York. The speech was recorded with a pressure-zone

microphone which was mounted next to the screen of a PC-AT. It was digitized in real time

at 20,000 Hz. No effort was made to suppress the noise from the fans and disks on the PC

or from other equipment in a speaker's work environment. As a result the data is relatively

noisy. An estimate of the signal-to-noise ratio for this data was made by first using a Viterbi

alignment to assign each 10-centisecond frame of speech to a phonetic category, including a

noise category, and then by computing the ratio of the average signal power in each of the

categories to that in the noise category. The fifteen phonetic categories used are listed in

Table 11.1. Table 11.2 lists the spellings of the words in the e-set in terms of the categories.

In Table 11.3 the signal-to-noise ratio in decibels for each of the categories is presented.

The relatively low ratio for the D phone is probably due to d-speech being misaligned with
the E phone. If we average over all frames which were not mapped into an onset or trail-off

category, we obtain an average signal-to-noise ratio of 16.4 decibels. We see, then, that this

data is very noisy when compared with normal lip-mike data, which has a signal-to-noise

ratio of about 50 decibels.
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Name Description

Noise noise

OnB onset of voiced consonant such as b

OnE onset of vowel in e

OnS onset of sibilant such as j

OnV onset of consonant in v

B consonant in b

D consonant in d

3 consonant in g

P consonant inp

S consonant in s

T consonant int

V consonant in v

Z consonant in z

E vowel in e

1'rE tiail-off of the vowel in e

Table 11.1: Phonetic Categories for E-Set Experiments

Word Phonetic Representation

b Noise OnB B E TrE Noise

C Noise OnS S E TrE Noise

0d Noise OnB D E TrE Noise

e Noise OnE E TrE Noise

g Noise OnB DiJ E TrE Noise

*p Noise P E TrE Noise

t Noise T E TrE Noise

ii Noise OnV V E TiE Noise

z Noise OnS Z E TrE Noise

Table 11.2: Phonetic Spellings for E-Set Experiment
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Phonetic Category Signal to-Norse Ratio

E 17.5

TrE 7.0

OnB 4.3

B 17.5

D 5.9

OnE 7.6

Onk' 3.7

V 14.7

OnS 4.5

S 18.8

J 15.9

- P 13.1

* T 15.4

Z 15.9

Table 11.3: Signal-to-Noise Ratios in Decibels

11.3 Models and Methods

In this section we describe the word models and certain details of the methods used in

the series of experiments performed on this e-set data.

The speech was processed with a slight variant of the standard IBM signal-processing

algorithm that is described in Chapter 4. The only modification was to perform the long-

term adaptation separately for each speaker. This long-term adaptation was performed in
two passes. In the first pass, long-term signal averages were computed from all 26 letters

uttered by the speaker, and then used in a second pass to extract the ear-model parameters.

% The training and test data were, of course, processed separately. The acoustic labels used in

the discrete-parameter experiments were obtained by the standard IBM labeling program
,•:that is also described in Chapter 4. In the cont inuous- parameter experiments, parameter

vectors that had not already been projected onto linear discriminants were rotated with

'4 principal components in an attempt to make the off-diagonal terms in the covariance ma-

trices as small as possible. This was important when diagonal Gaussian distributions were

used. It also affected the convergence rate of the gradient search methods used in MMIE.

%6" Except where noted, word models were constructed by concatenating phonetic models

0..
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according to the phonetic spellings in Table 11.2. The phonetic models were of three

varieties. All onset phones were modeled with finite-state machines like the one shown in

Figure I1 1. The trail-off phone, TE, was modeled with a machine similar to that used for

onset phones, except that each of the three output distributions was allowed to occur up to

four as opposed to two times. All other phones were modeled with machines like the one

shown in Figure 11.2. Since each of the 15 phone models contained three different output

distributions, there were a total of 45 distinct output distributions.

- --- -

Figure 11.1: Onset Phone Machine

AB C

Figure 11.21: Nonset Phon Macin

A. .. . . . .. . . . .. . . . .. . . ...- '
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11. E-Set Experiments 89

Hidden Markov model parameters were estimated with both MLE and with MMIE.

MLE was performed by running the forward-backward algorithm for 6 iterations. At the
%

end of these 6 iterations, it was always observed that the probability of generating the test

data was increasing by less than one percent per iteration. This is by no means a guarantee

that the algorithm is close to convergence. Empirically, however, it is usually the case that

the size of the improvement in the likelihood decreases with successive iterations.

MMIE was performed by gradient search starting at a vector of parameters derived

by MLE. The step size of the hill-climbing algorithm was adjusted automatically using

an ad-hoc method which is based on an assumption that the magnitude of the projection

of the gradient onto the last direction stepped is a quadratic funtion. Suppose the hill-

climbing routine had just taken a step from the parameter vector b to the parameter vector

0. Denote the gradient of the objective function, f, at b by vf ( , and similarly the

gradient at 0 by vt (0). If f (0) < f ) , then the step size was reduced by a factor of

three, and the next step was taken from b in the direction of Vf () . If, on the other hand,

the objective function improved on the last step, the next step was taken from 0 in the

direction of Vf () . The step size for such a step was determined by first computing the

magnitude of Vft (), and the magnitude of the projection of Vf (0) onto Vf (b). If the

projection of Vf (0) onto Vf (e) was greater than the magnitude of Vf () itself, then

the previous step size was doubled. Otherwise, it was assumed that the magnitude of the

projection of the gradient onto Vf () was a quadratic function of the distance stepped,

and the step size was adjusted to be equal to the distance to the minimum of this quadratic

function, except that it was never altered by more than a factor of two on any iteration.

The hill-climbing was terminated when for each of ten consecutive iterations there was less

p than a two-percent improvement in the objective function. This normally occurred after

about 50 to 100 iterations.

Once the model parameters had been trained, test data was decoded using a unigram

language model with a uniform distribution over the the nine words. Since each word

occurred either 98 or 99 times in the test data, this language model was nearly perfectly

accurate.
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11.4 Resources

In this section we briefly describe the resources that were used to conduct the e-set

experiments.

These experiments were conducted on an IBM 3090. The 3090 runs IBM 370 assembly

language with a cycle time of 18 nanoseconds. It is Whetstone-benchmarked at 14 MIPS.

It runs the Dongarra LINPACK routine at 7 megaflops. The 3090 that was used for these

experiments was also equipped with an IBM 3090 Vector Facility. This vector processor

runs the Dongarra LINPACK at 12 megaflops.

The IBM CMS operating system was used. All programs ran within an 8-megabyte

address space.

The quadratic forms in fuli-covariance distributions were computed with programs writ-

ten in FORTRAN for the vector processor. All other routines were written in PL.8, and run

in scalar mode. PL.8 is a PL/I derivative for which there is an extremely efficient compiler.

There are approximately 10,000 lines of PL.8 and 100 lines of FORTRAN.

The number of CPU hours it takes to run an experiment is very much determined by

the type of output distributions, the type of parameter estimation, the dimension of the

parameter vectors in continuous-parameter experiments, and by the number of transitions

in the word models.

Discrete output probabilities can be computed by table lookup, and are, therefore, es-

sentially free. It takes approximately n adds and 2n multiplies to compute an n-dimensional

diagonal Gaussian density. It takes approximately n2 adds and .5n 2 multiplies to compute

an n-dimensional full-covariance Gaussian density. A similar amount of time is required

to compute the density of a Richter mixture of full-covariance Gaussians. n-dimensional

conditional Gaussian densities can be computed with approximately 2.5n 2 multiply-adds.

Each MLE accumulation, for a given frame and for a given distribution, involves roughly

the same amount of computation as the evaluation of a probability density for the same

Idistribution. Each MMIE accumulation involves roughly three times as much computation

as a density evaluation.

It takes roughly twice as much computer time to perform the forward-backward com-

putation which is used in MLE and MMIE as it does to perform the forward-pass which is

used in decoding. In MLE, the forward-backward computation is only performed for the

correct word sequence. When decoding, unless an initial fast-match is used, the forward

a. pass must be run for every possible word sequence. Since words were processed in isolation,

6l
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*. and since the e-set task involves a nine-word vocabulary, the forward pass was performed

nine times during decoding for each word of speech. MMIE estimation was performed by

first decoding each word of speech, and then by using the forward-backward computation

to evaluate derivatives for all words with a forward-pass score that was within one percent

of the forward-pass score for the correct word. If this list only included the correct word,

then it was not necessary to perform any forward-backward computations. On average,

one MMIE iteration required roughly as much computer time as a decoding iteration and

an MLE iteration together. In both MLE and MMIE, the computer time involved in the

actual updating of the parameters was negligible in comparison with the time it took to

accumulate the statistics from which the updates were made.

Decoding, MLE and MMIE are all approximately linear in the number of transitions

in the word models, and are linear in the number of frames of speech data. The actual

topology of the word models is also very important, but it is difficult to give a rule of

thumb which will help to estimate computer time as a function of word-model topology.

The word models described in the previous section were used in all of the experiments

discussed in this chapter. There were 110,000 frames of training data and 115,000 frames

of test data.

Accurate records of the amount of computer time to run each experiment were not

kept. The following table is based on the author's recollections of approximately how long

it took to run a few typical experiments. The continuous-parameter experiments in the

table are for hidden Markov models which used 20-dimensional full-covariance Gaussian

distributions.
.4

Task 3090 CPU Hours

d Discrete Decoding less than 1

Discrete MLE less than I

Discrete MMIE 15

'.: Continuous Decoding 1

* Continuous MLE 2

Continuous MMIE 70

W, Table 11.4: Approximate IBM-3090 CPU Hours for Experiments

5%
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11.5 Results

In this section we examine the results of the experiments run on the e-set data described

in Section 11.2. A complete list of the results from this series of experiments can be found

in Table 11.7. The abbreviations appearing in this table are defined in Table 11.6. In the

discussion which follows, I will refer to experiments by the experiment numbers in Table

11.7.

First, a benchmark experiment was performed using discrete output distributions and

observations which were selected from a codebook of 200 acoustic labels. This experiment

was performed to simulate what is currently the standard IBM recognizer. After training

with the forward-backward algorithm, a performance of 79.0 percent correct was obtained.

It was argued in the previous chapters that MMIE will not counter deficiencies in

discrete output distributions, since discrete distributions do not make any assumptions

which can be false. However, there is still the possibility that MMIE will perform better

than MLE due to other invalid assumptions. In fact, in a previous 2000-word vocabulary

experiment, Lalit Bahl, Peter deSousa, Robert Mercer and I did find that MMIE can

lead to a performance improvement with discrete output distributions [Bahl 86]. In that

experiment, as in these experiments with the e-set, we did not attempt to correct for

an inaccurate language model. Therefore, the performance improvement must have been

caused by acoustic-modeling inaccuracies. In particular, it is an important but difficult

job to construct accurate word models for a large vocabulary speech recognizer. This is

especially true when distributions are shared across many different words, because it is

difficult to be sure that a sound in one word is really the same as a sound in another word.

It is very possible that it was the use of inaccurate word models which prevented MLE from

performing as well as MMIE in this earlier experiment.

Although in the e-set experiments, the vowel phones, E and TrE, and the noise phone

were shared across all the word models, each word model, with the exception of the model

for d, contained at least one phone which appeared in no other model. The pronunciation4
of such a phone was determined solely by instances of the single word in which it occurred.

Overall, then, the problem of tying distributions accurately was far less severe for the word

models used in the e-set experiments than for the word models used in the 2000 word

experiment. This may explain why when MMIE was used to estimate the discrete output

distributions for the e-set in Experiment 2, the performance actually deteriorated slightly.

Having completed these two discrete-parameter experiments, the labeling section of

• , , -1111 1 1 111111N 1
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the signal-processing algorithm was dispensed with, and a series of continuous-parameter

experiments was conducted. The performance using the original 20 parameters, after having

been projected onto principal components, with diagonal Gaussian output distributions

was 65.1 percent, and with full-covariance Gaussians was 76.9 percent. It appears, then,

that even after having projected the parameter vectors onto principal components, the off-

diagonal terms are important, which can only be the case if the different output distributions

have significantly different covariance matrices. This is further corroborated by the fact that

the log likelihood of the test data was greater in the full-covariance case than in the diagonal

case. If the full-covariance Gaussian had not been a significantly better model for this data,

then one would have expected the diagonal model, which has substantially fewer parameters,

to more accurately predict test data.

In both these experiments, the system performed worse than in the benchmark discrete

experiment, which is consistent with the results of all previous attempts to use continuous

parameters in the IBM system. In Chapter 5, we argued that this must be due to the

Gaussian model being inaccurate, and it was suggested that MMIE might alleviate this

problem. The results of Experiments 5 and 6 demonstrate that this is indeed the case.

Although the diagonal Gaussian performance of 74.7 percent is still not up to the discrete

performance, the full-covariance Gaussian performance of 83.4 is an improvement over the

discrete result.

Having obtained this improvement, the possibility of incorporating time-derivative in-

formation by adjoining adjacent parameter vectors, as prescribed in Chapter 7, was in-

vestigated in Experiments 7, 8, 9, and 10. In these experiments, parameter vectors from

two adjacent frames were combined into one vector of 40 parameters. Notice that for both

diagonal Gaussian and full-covariance Gaussian output distributions, the performance with

the 40-parameter vectors was worse that the corresponding performance with the original
single-frame parameters. However when MMIE was used the situation was reversed, and the

adjoined parameters outperformed the single-frame parameters. Here, we see that MMIE

was able to make use of additional information that MLE was not able to make use of,

presumably because of inaccuracies in the Gaussian or diagonal Gaussian assumptions.

Notice that in both of these experiments the test-data estimate of the average mutual

information between word and acoustic signal was extremely low, when compared with the

estimates of this quantity made in the other experiments. In both cases, this was caused

by a few utterances which had an extremely small probability of being generated by the

correct word models. In each of these utterances a couple of frames were outliers with
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respect to the appropriate output distributions. It therefore seemed reasonable to replace

the Gaussian output distributions with the mixtures of Gaussians that have been proposed

by Alan Richter. In Experiment 11, output distributions were used which were mixtures

of four Gaussians with variances which were 1, 2, 4, and 8 times variance of the tightest

Gaussian in the mixture. I shall refer to such mixtures as an R1248 distributions. The

accuracy improved from the ordinary Gaussian result of 64.4 percent to 82.5 percent, which

very strongly indicates that there was in fact a problem with outliers.

There is another important observation to be made in the 40-parameter results of exper-

iments 9 and 10. Notice that although the ful-covariance Gaussian result with the single-

frame MMIE experiment is substantially better than the corresponding diagonal Gaussian

result, with the adjoined data the MMIE results for the two distributions are not signifi-

cantly different. This suggests that there may be too many parameters in the 40-parameter

fuU-covariance distributions. It may be that the data is still more accurately modeled with

full-covariance Gaussians, but there may not be enough training data to take advantage of

the increased potential accuracy provided by the additional parameters.

In Chapter 6, we described two slightly different antidotes to this problem: projection

onto principal components, and projection onto linear discriminants. In experiments 12

through 25, principal components were used to reduce from 40 to 30, and then from 30 to

4 in steps of 2. In Experiments 26 through 39 the same reductions were made but using

linear discriminants. In both series of experiments, MLE was used with R1248 output

distributions. R1248 distributions were used on the theory that if we are trying to find the

best number of parameters for our particular situation, we ought to use models which are

likely to be as accurate as possible. The results of these experiments appear in Figures 11.3

and 11.4.

Notice that with fewer than 24 parameters, linear discriminants always perform better

than principal components. With more than 24 parameters, they have roughly the same

performance. In Figure 11.4, we can see that the test-data estimate of the average mutual

information between a word and the corresponding acoustic signal is always greater when

linear discriminants are used. In a few experiments, this estimate was negative because it

was computed on test data in which there were a few words which were models much better

by incorrect models than by correct models. The minimum number of errors as well as the

maximum information estimate for principal components occurs with 26 parameters, and

with 22 parameters for linear discriminants. This data is, therefore, strong evidence that

more information is preserved in the top n linear discriminants than in the top n principal



11. E-Set Experiments 95

92- I0

IS I

CW

71 I- PrniaCmoet

9s0a

'°a'

71. i, IO --Lnearliscr iminants

I 5 to 15 11 15 30 35 41
Number of Parameters

Figure 11.31 Number of Parameters vs. Performance on Test Data

components.

For both principal components and linear discriminants, the performance initially im-

proved as the dimension of the acoustic observation vectors was decreased. Since we cannot

have increased the amount of information in these vectors, this improvement must have

been due to a reduction in the number of parameters in the output distributions for these

dimension-reduced vectors. As the dimension of these observation vectors was further re-

duced, and more and more information was discarded, the performance began to deteriorate.

So we see that there is an important trade-off between using high-dimensional parameter

vectors to provide important acoustic information, and using low-dimensional parameter

vectors for which probability densities can be accurately estimated.

Since the number of parameters in an output distribution is dependent on the type of

distribution, a series of dimension-reduction experiments should have been run for each type

of output distribution that we are considering. Due to limited computational resources, this

was not done. Rather, a series of experiments was performed with different types of output

distributions using the 22-dimensional linear-discriminant vectors that performed optimally

when using MLE-estimated R1248 output distributions. The results of these experiments,
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Model Type MLE Performance MMIE Performance

Diagonal Gaussian 71.2% 83.1%

Fuil- Covariance Gaussian 89.1% 91.0%
R12484 90.3% 92.0%

Conditional Gaussian 73.1% 81.8%

Table 11.5: 22-Parameter Results

4

numbers 40 through 46, are summnarised in Table 11).5.

For both MLE and MMIE, the Richter models outperformed the fuil-covariance Gaus-

sians, which outperformed the diagonal Gaussians. MMIE estimates always outperformed

MLE estimates. Furthermore, am one should expect, MMIE resulted in larger improvements

for the poorer models. The MMIE R1248 result of 92.0 percent is the best result obtained

on this data. It represents a 62 percent decrease in the original discrete error rate.

The last row in Table 11I.5 contains result. for a conditional hidden Markov model with

Gaussian output distribution, as specified in equation (8.2) and in Appendix 13.5. These

€ results, which are substantially worse than those obtained with the unconditional Gaussian

,I. .- l n n i lmI
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distributions are very disappointing. One possible reason for this poor performance might

be that densities are being badly estimated in the conditional model because it has twice

as many free parameters as does the normal Gaussian. To test this hypothesis a set of four

experiments, numbers 47 through 50, were run with observation vectors which had been
projected onto 12 linear discriminants. 12 parameters were chosen since the 12-parameter

R1248 MLE result is nearly as good as the 22 parameter result, and since the 12-parameter

*! conditional Gaussian distribution has less parameters than a 22-parameter ordinary Gaus-

sian distribution. The results of these experiments are summarized in Table 11.6. Although

the 12-parameter conditional results were significantly better than the 22-parameter results,

they were still much worse the unconditional results.

Model Type MLE Performance MMIE Performance

Full-Covariance Gaussian 88.7% 90.7%

Conditional Gaussian 84.1% 87.1%

Table 11.6: 12-Parameter Results

Another possible explanation for the poor conditional results is that the unconditional

models might have already accounted adequately for the frame-to-frame correlation of the

observation vectors. But this cannot have been the case, since, as we can see in Table 11.7,

I. the probability of generating the test data with a conditional model was very much greater

than the probability of generating it with an unconditional model. Clearly, there was a

severe correlation problem.

In Chapter 8, we argued that it is particularly in steady-state regions of speech that

the output-independence assumption is invalid. In the words b, d, e, g, p and f, the only

* steady-state regions are in the vowels and noise. Because the vowels are the same across all

words in the e-set, it will not make any difference to the performance on this task if vowels

are modeled more accurately. Furthermore if we use a model which does not contribute to

the power of the recognizer to discriminate between words, but which has twice as many

free parameters as a competing model, we would expect the performance of the recognizer

to deteriorate, which it does. It may be, therefore, that the e-set is simply not a good task

on which to evaluate these type of conditional models.

It may also be that there are other problems with these conditional models in addition to

having a lot of free parameters. The assumption in equation (8.2) on which the conditional

models used here were based is an approximation of equation (8.1); perhaps it is simply a bad



98 11. E-Set Experiments

one. It may be that it is important to know not only what the previous observation vector

is, but also the identity of the distribution from which it was generated. It may simply be a

bad approximation to model a mixture of distributions which are indexed by the identities

of previous distributions, as a single Gaussian. A better approximation may be to assume

that such a mixture is a Richter mixture of Gaussians. This would have the advantage of

being significantly more robust to outliers that are caused by the single Gaussian being a

' bad approximation. Since, as we noted above, we clearly have a correlation problem, and

since the simple type of conditional models used here do not solve this problem, it will

be important in future work to experiment with other types of conditional models, and it

seems reasonable to begin with a Richter-model version of equation (8.2).

There was one final experiment conducted on this e-set data, a recognition experiment

w by human listeners. Four hundred words were selected at random from the test data, and

listened to by four members of the IBM research staff. On average, they recognized 97.2

percent of the words correctly. When recognition decisions were made by a vote from

the four listeners, and each tie was counted as half an error, the performance became

98.0 percent. The conclusion to be drawn from this experiment is that although we have

improved the machine performance on this e-set task from 79 to 92 percent, there is a long

way to go.

Symbol Interpretation

DIS Discrete Output Distributions

DG Diagonal Gaussian Output Distributions

G Full-Covariance Gaussian Output Distributions

R R1248 Richter-Type Gaussian Distributions

* CG Conditional Gaussian Output Distributions

PC# # Principal Components

LD# # Linear Discriminants

S Observation Vectors from Single Frames

* A Observation Vectors from Pairs of Adjoined Frames

ML Maximum Likelihood Estimation

MMI Maximum Mutual Information Estimation

Table 11.71 Abbreviations used in Table 11.7
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Results on Tfraining Data Results on Test Data

log2 Pr (ulIw) I (wu; ) Percent log2 Pr (plw) I (wv;y) Percent
#Type Per Frame Per Word Correct Per Frame Per Word Correct

I DIS-ML -4.08E+O 2.3513+O 90.0 -4.16E4- 8.5313-1 79.0
2 DIS.MMI -4.13E+O 2.96E+0 96.1 -4.23E+0 1.0613+0 77.9
3 DG-S-PC2O.ML -1.99E+1 -6.52E+0 69.6 -2.OOE+1 -9.80E+0 65.1
4 G-S-PC2O-ML -1.85E+41 8.67E-1 90.4 -1.8813+1 -2.25E+0 76.9
5 DG.S-PC2O.MMI -2.06E+1 1.0913+0 79.8 -2.0713+1 -9.01E-1 74.7
6 G.S-PC2O-MMI -1.88E+1 3.13E+0 99.2 -1.91E+1 6.09E-3 83.4

F.7 DG-A-PC40-ML -4.38E+1 -2.1013+1 65.5 -4.39E+1 -2.5213+1 59.8
8 G-A.PC4O-ML -4.15E+1 -6.73E+0 82.2 -4.21E+1 -2.IOE+1 64.4
9 DG.A-PC40.MMI -4.40E+1 2.OIE+o 92.1 -4.41E+1 4.43E-1 86.6

10 G.A.PC4O-MMI -4.18E+1 3.1713+0 99.9 -4.2313+1 3.26E-1 86.0
11 R-A-PC40-ML -4.03E+1 2.32E+0 96.7 -4.09E+i -1.53E+0 82.5
12 R-A.PC3O-ML -2.82E+1 2.16E+O 96.1 -2.86E±1 -1.74E-1 86.0
13 R-A-PC28-ML -2.56E+1 1.6113+0 95.7 -2.60E+1 .- 8.52E-1 86.3
14 R.A.PC26-ML -2.30E+1 1.8513+0 96.7 -2.34E+1 3.67E-1 88.6
15 R-A.PC24.ML -2-0313+1 1.68E+0 95.5 -2.60E+1 2.87E-1 88.4
16 R-A-PC22.ML -1-7813+1 .1.73E+0 95.2 -1.82B+1 -7.33E-2 88.3
17 R-A-PC2O-ML -1.50E+41 1.6913+0 94.9 -1.54E+i -5.90E-1l 88.3
18 R-A-PC18.ML -1.2713+1 1.50E+0 93.4 -1.30E+l -7.17E-1 86.9
19 R-A-!DC16-ML -1.0713+1 1.44E+0 93.3 -1.10E+l -7.79E-1 87.8

*20 R-A-FC14-Ml, -8.52E+0 1.1113+0 91.4 -8.78E+0 -1.31E+0 86.5
21 R-A-PC12.ML -7.O1E+0 1.23E4- 90.5 -7.23E+0 -1.33E+0 85.3

*22 R-A-PC1O-ML -5.42E+0 1.13E+O 88.8 -5.63E+0 -1.14E+0 82.7
23 R-A-PC8-ML -3.54E+0 1.28E+0 86.5 -3.72E+0 -1.24E+0 81.3
24 R-A-PC6-ML -2.1613+0 1.01E+0 84.2 -2.31E+0 -1.05E+0 79.9
25 R-A-PC4-ML -1.02E+0 1.5813-1 80.7 -1.IOE+0 -1.26E+0 76.5
26 R-A-LD30-ML -2.64E+1 2.20E+O 96.4 -2.68E+l 1.36E-1 86.1
27 R-A-LD28-ML -2.38E+1 2.1113+0 94.6 -2.42E+1 3.71E-1 87.5
28 R-A.LD26-ML -2.13E+1 2.0813+0 95.7 -2.17E+1 5.27E-1 87.8
29 R.A.LD24-ML -1.90E+1 1.99E+0 95.0 -1.94E+1 7.2613-1 88.7
30 R-A-LD22-ML -1.7513+1 2.32E+0 95.6 -1.78E+1 1.09E+0 90.3
31 R-A.LD2O-ML -1.57E+1 2.I1E+0 94.6 -1.60E+1 9.4013-1 90.1
32 R-A-LD18-ML -1.37E+1 1.78E+O 94.1 -1.39E+1 5.76E-1 89.4
33 R.A-LD16-ML -1.19E+1 1.64E+0' 93.4 -1.21E+1 2.4013-1 88.9
34 R-A-LD14-ML -9.96E+1 1.34E40 92.6 -1.02E+X 4.36E-2 88.7
35 R-A-LD12-ML -7.87E+1 1.50E+0 92.1 -8.06E+1 4.66E-1 90.0
36 R-A..LD10.ML -6.05E+o 1.49E+0 91.1 -6.21E+1 4.74E-1 89.1
37 R-A LDS-ML -4.59E+0 -1.09E+0 86.9 -4.59E+0 1.8913-1 87.2
38 R-A-LD6.ML -2.74E+0 1.2413+O 88.8 -2.84E+0 5.15E-1 86.2

*39 R-A.LD4-ML -1.35E+0 7.72E-1 83.9 -1.44E+0 -1.40E-1 81.6
40 DG-A-LD22-ML -2-03E+1 -3.74E+0 77.4 -2.0513+1 -5.45E±0 71.2
41 DG-A-LD22.MMI -2.I1E1+1 1.68E+0 87.7 -2-1313+1 6.24E3-2 83.1
42 G-A-LD22.ML -1.8013+1 3.06E-2 95.1 -1.84E+1 7.38E-1 89.1
43 G-A.LD22-MMI -1.8313+1 3.17E+0 99.9 - 1.86E+ 1 1.2713+O 91.0
44 R-A-LD22.MMI -1.76E+1 3.17E+0 99.9 -1.79E+1 1.7613+0 92.0
45 CG-A-LD22-ML -3.54E+0 2.3513+0 96.0 -4.OOE+0 -3.66E+0 73.1

446 CG-A-LD22-MMI -3.66E+0 3.1713+0 99.9 -4.11E+0 -6.58E-1 81.8
47 G-A-LD12-ML -8.22E+0 9.15E-1 92.2 -8.45E+0 2.85E-1 88.7
48 G.A-LDI2-MMI -8.63E+0 2.83E+0 97.6 -8.80E+0 7.32E-1 90.7
49 CG-A-LDI2-ML .- 1.2713+0 2.IIE+0 93.5 -1.4813+0 7.01E-1 84.1
50 CG.A-LD12-MMI -1.37E+0 3.16E+0 99.9 - 1.57E+0 1.4113+0 87.1

Table 11.5: E-Set Results (See previous page for symbol definitions.)
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This thesis has been concerned with the problem of designing a speech-recognition

system in such a way that it can extract as much information as possible from a speech

waveform about the corresponding word sequence. This extraction process has been broken

down into two steps: a signal-processing step which converts a speech waveform into a

sequence of information-bearing feature vectors, and a step which models such a sequence.

On the one hand, we have seen that we would like to avoid discarding important acoustic

information by using a signal-processing step which does as little data reduction as possible.

On the other hand, we have seen that we would like the sequence of feature vectors produced

by the signal-processing step to be as simple as possible so that it can be accurately modeled

by the modeling step. This trade-off has been pivotal to our understanding of the acoustic-

modeling problem. It is not enough to simply make sure that a lot of information is

contained in the acoustic-feature sequence produced by the signal processor; one must also

make sure that this output sequence can be modeled accurately.

We have seen two different ways that acoustic models can be inaccurate: 1) they may be

based on invalid assumptions, and 2) they may have so many free parameters that estimation

errors will result in errors in the calculation of probabilities or probability densities. In

Chapter 2, we argued that our knowledge about speech is at such a primitive stage that if

we are not to be completely devastated by the problem of having too many free parameters,

then any model of an informative acoustic observation sequence will have to be based on

some invalid assumptions. This led us to an investigation of an alternative to MLE, MMIE,

which does not derive its raijon d'itre from an implicit assumption of model correctness.

In later chapters, we found that this method of parameter estimation is particularly

useful when modeling acoustic feature vectors which lie in a continuous space, such as RN.

We began our exploration of continuous parameters in Chapter 5, in which it was suggested

that there may be important information lost in the common practice of converting from

continuous to discrete parameters. We argued that the potential exists to extract more

information from the acoustic signal by directly modeling the raw continuous feature vec-

tors. Three different classes of continuous-parameter output distributions were discussed,

diagonal Gaussians, full-covariance Gaussians, and Richter-type mixtures of Gaussians. In

our e-set experiments we found that models based on diagonal Gaussians performed signifi-

cantly worse those based on full-covariance Gaussians. For the particular data used in these

experiments, then, it was worthwhile to suffer the inaccuracies resulting from estimates of
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e- the additional parameters in full-covariance Gaussians in order to more accurately model

the covariance matrices of the acoustic observation vectors. We also found that Richter-type

mixtures of Gaussians outperformed single full-covariance Gaussians. This was not surpris-

ing since the two types of distributions have roughly the same number of parameters, yet

the Richter-models are much more robust to outliers. Our MMIE results indicate, however,

that there are still problems remaining with all of these classes of output distributions.

In every comparison between MLE and MMIE in a continuous-parameter experiment, the

system performed significantly better with MMIE estimates than with MLE estimates.

One problem with modeling continuous feature vectors, is that the number of param-

eters in the models normally grows with the dimension of the feature vectors. In order to

pack as much information as possible into the acoustic feature sequence we would like to use

high dimensional feature vectors, which may include a wide variety of sources of acoustic

information. But as we increase the dimension of our vectors, we become more vulnerable to

estimation errors. In Chapter 6, we described two methods of projecting observation vectors

onto lower dimensional planes so as to extract a smaller number of salient features. Our

hope was to preserve most of the information in an observation vector while at the same

time reducing its dimension. We argued that one should expect the linear-discriminant

method to do a better job of preserving acoustic information than the traditional method
of principal components. In particular, we noted that linear discriminants make use of the

classes that are to be discriminated from one another, whereas principal components do

not. In the set of experiments performed on the e-set, we found that, in fact, as long as we

reduced to a small enough dimension to make a difference, better performance was obtained

by projecting onto linear discriminants, than by projecting onto principal components.

With this parameter-reduction technique at our disposal, we were equipped to cope with

higher dimensional feature vectors. In Chapter 7, we discussed the possibility of including

in our feature vectors information on how the speech spectrum changes with time. We saw

5- that this could be done simply by combining adjacent vectors into one vector of twice the

dimension. In the e-set experiments, we found that including such information substantially

* improved system performance. Our best results were obtained by first projecting the 40-

* dimensional vector onto a plane spanned by a smaller number of linear discriminants.
'The success obtained from the continuous-parameter experiments, and in particular

5,.,

from those continuous-parameter experiments involving adjoined frames, is attributable to

having packed more information into the feature vectors produced by the signal processor.

- Clearly, there are all kinds of features that can be added to these vectors. One promising

I6..... M M h 1 1 . 1111 1",1 f



102 12. Summary and Conclusion

° approach to future research would be to develop a wide variety of feature detectors and

combine their outputs into high-dimensional feature vectors. Sequences of these vectors

could then be modeled in the same way that the adjoined spectral frames were modeled

.". in the e-set experiments: the dimension of these vectors could be decreased by projecting

them onto linear discriminants, and output distributions could be trained with MMIE in an

effort to cope with the problem of not knowing the distribution of vectors of combinations

of diverse features.

In Chapter 8, we turned our attention away from the problem of how to create more

informative acoustic observation sequences, to one of the fundamental assumptions that

is made about these sequences in the hidden-Markov approach, the output independence

assumption. We found that in most situations this assumption is likely to be wildly inac-

curate. Minor improvements in system performance were obtained in the discrete case by

attempting to model the frame-to-frame correlation that is not already accounted for by

hidden Markov models which are based on the output-independence assumption. In the

continuous-parameter case, however, system performance deteriorated when we attempted

to model this correlation. But because the likelihood of generating the test data was sig-

nificantly greater when correlation models were used, we must assume that there is still a

serious modeling problem. Rather than being discouraged by the poor performance we ob-

-U"
I ~tained in the continuous-parameter case, we should be enticed by the room for improvement

that is likely to be associated with such a serious problem.

In Chapter 9, we again focused our attention on the prospect of increasing the amount

*. of information in the observation sequences output by the signal processor. In this chapter

Y we reasoned that if we do no signal processing at all (save A/D conversion) we can be sure

that the signal processor will not be discarding any information. In particular, since hu-

man performance on the D/A converted digital signal is far superior than current machine

performance, we can be sure that the information necessary to obtain a substantial perfor-

mance improvement is contained in the digital waveform. While this is very attractive, the

trouble with this approach is that now we have to model the speech signal directly, and that

is a tough problem. In Chapter 9, we described one such modeling attempt based on linear

prediction. The result was very disappointing. Not only did it require tremendous compu-

tational resources to use the linear-predictive waveform models discussed in this chapter,

but in an experiment on a very small task, these models performed terribly. In spite of

this disappointing result, we cannot turn our backs on the fact that if we throw away in-

formation about the correct word sequence, system performance will suffer. Although the
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waveform-model experiment was a failure, there is no doubt that future improvements in

speech recognition will result from modeling acoustic feature sequences that contain more

information about the corresponding word sequences.

Our attempt to directly model the waveform involved abandoning the many man years

of work that went into the development of the signal-processing algorithm in the IBM sys-

tem. Perhaps a better approach would be to view the current system as inducing an implicit

model on the waveform. We could then view the parameters inside the signal processor as

parameters of a waveform model. By estimating first some and then more of these param-

eters with MMIE, we could hope to gradually extract more and more information from

speech waveforms. In this way, we might be able to make use of the extensive research

that has gone into the development of feature extraction algorithms, and at the same time

benefit from the power of the statistical techniques described in this thesis. t

This thesis has been an investigation into the many facets of the acoustic-modeling

problem from a common information-theoretic perspective. What is important at this

point in the infancy of automatic speech recognition is not the techniques that have been

presented here, but rather an understanding of the problem, from which we can hope that

other more sophisticated techniques will evolve.

t This approach is, in fact, currently being explored by David Nahamoo and Arthur Nadas, who

are attempting to use the programs developed for this thesis to estimate the filter coefficients used

by the IBM signal processor.



13. Appendices

13.1 Differentiation Rules

This section contains a list of simple rules that will be useful in differentiating the probability

densities in the sections which follow.

Let W be a symmetric matrix, W1 = W.

Let Wij be the element in the i-th row and j-th column of W.

Let IIVI be the determinant of a IV.

Let A be a matrix.

Let u and v be vectors.

Let 6ii be 1 if i = j, and 0 otherwise.

Let u 9 r be the outer product of two vectors u and v.

1. f(W) WI. What is
IWI = -,i cofijWi, where cofij is the cofactor of Wij in W.

(w-l). =

w-')ij = since W is symmetric.

ofOf = cofii

W-1
= w w ).

T. = IWlIw -

2. f(W) = log IWl. What is .

Of 8W

Ow IWI
W-1
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3. Let g(z) be a vector valued function of the real variable z. Let f(z) g )I~~)

What is;L

A~z) ig(,ViiZ

Of (8 i(Z) .gi (Z) + gi Z)W 1,8i 3z)

=2Z F, i(z-)I w.gj(z)
Ox

4. f (e) = 'Wt,. What is V?

2 E Z6,k Wi V
ii

Of 2Ww

5. f(v) = (Av + u)'W(A + u). Whatt is

Of= 2 O(Av+ )W (A + j

=2 F AtWij (A + u)

tj

B; ~~= 2A' A 4 i

, Rq(A b

1%q

04 A' Av+u

led
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6. f(A) (Av +u) W (A + u). What is Of

Of = E (Av+ u)'Wi(r+U
~ 4,.' Am ''

= 2 E VkWii (Av +~ "j 6 ,mbkn
I- ijk

= 2 E ViiWmj (Av + j

= 2 (W (Aw + u))m vn

f = 2W (Av +u) v

7. f (W) = u'Wv. What is

=Uo

V '
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12.2 Diagonal Gaussian Formulas

Let f(z IA, w) be the density of an n-dimensional diagonal Gaussian distribution with

mean vector, pu, and inverse variance vector, w.

Density:

i=1

Derivatives for MMIEs

- = f=(z)wi (zi - i)

Of- = f() Q- (z,-u #i) 2

8ui 2 W

-.

Reestimates for MLE:

Let -y (t) be the probability that the distribution parameterized by p and w was used

to generate yj at time t given that sample iT was observed.

- "- t=rl

"t1 M(t)
.'

:: = ",( (i, - ,)

t=4 ' ' + .
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13.3 Full-Covariance Gaussian Formulas

Let f(z : it, W) be the density of an n-dimensional Gaussian distribution with mean

vector #A and inverse covariance matrix W.

Density:

f(Z ,w) = 2w n/2 -I'(a w((2Tr)n/2e

Derivatives for MMIEs

Of = f(Z)W(a - )

f l2 W W e - (,) -u)f()(Z A)(Z-)

I
= _fzW Mr (

2 2
I f(Z)! W - (Z - #A) 

)-))

2. /('w -l  /(), 0®=

d2

"A.

Reestimates for MLEt

Let -y (t) be the probability that the distribution parameterized by / and W was used

to generate yj at time 9 given that sample SpT was observed.

I1i '= , ( t) y

=[ ET (,,(V, -Ad 4 (,- i,] -A
4T M
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15.4 Richter Type Gaussian Formulas

Let f(i : p,Wm,c,A) be the density of an n-dimensional mixture of m Gaussian

distributions with common mean IA, common inverse covariance matrix IV, vector of variance

multiplication factors c, and vector mixing factors A [Richter 86].

Density:

fi(M #AW, cj) I / - -( - a) °W(zgi)(2,)n /2 cn I  •

in

f (Z $A,W,M, C, A) Ai ZAf,(Z JAi,W, C,)
i=1

Derivatives Tor MMIE

Of
- = fi(")

O = -A fi(c)W (zlL- )

-s (j,-.Aft(-)(z--,A)® (--Z--' - i 1 2 - $A) E 1 - AiA() - ii"

"= ii=o f aW -fjr - I jf)(a 0) ( A
O 2 2 i=

0M

J'. Of _ -UX, WI I/ 2  - (a-0) W(a- 0) A f(9)(2 - M)'W( -pA)
e +

G -, 2 (2vr)n/2 c("+2)/2 2c?

2ci \e,
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Reestimates for MLE:

Let -fi (t) be the probability that the sub-distribution i of the mixture parameterised by

$, W, m, c, and A was used to generate yj at time t given that the sample yT was observed.

If V is the set of all transition with output distributions that are tied to the distribution

we are concerned with, then

Yi(t) = a r(t)ajkAifk(yt)#3 k(t).

By solving simultaneous equations (one for each parameter 0) of the form

T m.F, F, -ri M i log fi (YO o,.- - (13.1)
"-"-" 0 t=1 i=1

while maintaining the constraint
m

(i--1

we obtain the following reestimation formulas.

i ), (M )• ,, "£=1 E'= -, (f)
-~.Yj (f) (Y - &A)' W (V -S

In practice, to avoid the absurd solution in which some ci -0 0, we do not reestimate the
.c i 's.

'U = I:FT I r~T " ,k M
•~~~~~~~ _= CE: ::,"'"- , t= 1 r, :'=

Ii

k=L he1  -= Ch~?"~E~!1

E4 .,= Y



13. Appendices _ 11

12.5 Conditional Gaussian Formulas

Suppose that the sample vector r is composed of two n-dimensional vectors

2

Suppose futher that z is a sample from a multivariate Gaussian, with mean

IS ($A 1 ,#A2)

covariance matrix (El E1 12)

and ines oainematrix L 2 r2

V 1  V12k V' V22
12

In this section we will consider the conditional density 1(22 120

Density:

Let z = z - p, zI = 21 - p, and z2 = 9 2 - A2. The assumption that f(e) is a

Gaussian density is that

1(.1, ) = (21)n/2 e- 1,v,

where

Z'Vz = zIVIII + 2z'V 1 2 X2 + z2V2 2 z 2 .

ABy the definition of conditional probability,

6 f(*i, 2)
a 1(1, 21)

e-(z'Vz

1. 2' V22s2+2z'V1222)

By completing the square we find that

z; 2 2. - + z V12 2  = (22 + V 2 IV2 ,)' V22 (Z2 + V 2 ' VzI) -

I0I4iI 1i =I I I '



-,. , i . . . , . - i'* - - --- - - a, a,_-p...r- • , - : - ,- - -r' . , : r v v r l ,vvw

1 12 13. Appendices

and

Sstn I -(V 22z 2+2zV,2z 2 ) = (2;nv 1 2v2 'VV 21 z 1

Substituting this in the formula for 1(z2 I cl) above, we find

1(22 ~I - 2211/2 e'(ZV222-J+2zVx2z2+zr'VV23'V2II

'2 r)n/2

, _IV 2211 /2 e-(+V2'V21z1)'V2(z2+v'V23z)

,.C. 2- e- 7(i +C(a -pz)))'W( 2 -(p 2 +C(a,-pz))),

(2)n12-

where the inverse covariance matrix W = V22 , and the conditioning matrix C = -V 221 V2 1.

From ( I V12 (E ll 12

V21  V22)1 E21 22/
..,,'" we find that W-=V 2 l = £22 - £2uEIE12, and that C = JV22 V2 1 = £2ll. We

can conclude therefore that z2 has a Gaussian density with mean 12 + £21 Ell (ZI - I),
J'p

and covariance E22 - £21EI11! 12.

Derivatives for MMIEs

a I - 1(z2 I ')C'W (22 - (O2 + C(w 1 -1 )))

I,,.

Of I 1 )W (22 - (2 + C ( 1 - P1)))

Of I ) -(W (22 -(2 +C (z 1 - A)))®((2 -(O2 + C (zC - AD))))
OW 22

-= f (21 t )W( 2 - (042 + C(z 1 - PI))) ® (r I -JAI)
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.' Reestimates for MLE:

Let "(t) be the probability that the distribution parameterized by P1,IA2, C, and W

was used to generate z 2 = it with z I = it-I at time i given that sample y T was observed.

ET= y(t)

,,/,) . tl t=l

EI= ly, M

T FT

Y MT_,(,) (i - 2 + (it -I - A- (2 + ( - AI)

@-

-,.'
'

-p.

Il.:

NE'
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13.6 LPC Formulas

Let f (Yt j - : a, wo) be the density of an nth-order LPC model, with prediction

coefficients al,.., an and inverse error variance wo. In the case of a vanilla LPC model,

zt i = y-i for 1 < i < n. Suppose we have an LPC model enhanced by a pitch tracker

in which yj is predicted from ytk..,tj and from y~-,n.. YtP+) where

nt = k +4 2m + 1, and where pt is the pitch tracker's estimate of the pitch period at time t.

In this case, zt-i = y1-i, for 1 < i < k, and z(t~k_7m~1+j) =_ li(t-pt+t), for -M < i < M.

Density:

ft= lit - az-

f (Yt I Z ) = -

Derivatives for MMIEs

O fa f ( Y ,I t t 1 jt e t O f foY I Z t ) ( 2 )

Reestimates for MLEs

Let -y (t) be the probability that the distribution parameterized by a and wo was used to

generate yt at time t, given that the sample yiT was observed. To reestimate the prediction

coefficients, solve the following system of nt linear equations:

T T T
-f (t) ytiij -y (t) zi. 2azj for i =I to n

t= t=1 =

wo can then be reestirnated as

FT _ (Vtl -E! im)
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