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Part I

An Experimental Approach to

Algorithm Analysis

The experiment serves two purposes, often independent
one from the other: it allows observation of new facts
hitherto either unsuspected, or not yet well defined;
and it determines whether a working hypothesis fits the
world of observable facts.

- Rene J. Dubois

This section introduces an experimental approach to algorithm analysis and discusses the

context for this research. Examples from the current algorithms literature illustrate issues and

problems that can arise. The specific goals of this thesis and the research strategy are

described.

@1i
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Chapter 1
Introduction

This thesis investigates the application of experimental methods to problems in algorithm

analysis: specifically, techniques of simulation and data analysis are used to gain new

understanding of combinatorial algorithms. A number of terms other than "experimental

analysis" have been used to describe the same general idea. The term simulation is certainly

appropriate, since the object is to represent and measure the behavior of one system (an

algorithm) by use of another system (a computer). Monte Carlo study also applies since

inputs are sampled from specified probability distributions. For this thesis, statistical analysis

was rejected because techniques other than the purely statistical are considered. Empirical is

defined by Webster as "relying on experience or observation alone often without due regard

for system and theory". Both system and theory are highly regarded here.

The following section introduces this research in the context of algorithm analysis and

experimental statistics. Section 1.2 surveys experimental studies from the algorithms

literature and illustrates problems that can arise. Section 1.3 presents the specific goals and

scope of the thesis. The primary vehicle for this research is the case study: simulation results

in four algorithm domains are described in Part II. Principles and techniques for powerful,

correct, and efficient experimental studies are developed in Part Ill, which also presents

conclusions and open problems.
a

1.1. A Context for Experiments

Much of the current research in the area of overlap between computer science and

04 statistics involves the development of better tools for statisticians. Conferences such as

Statistics and Computer Science: The Interface, COMPSTAT, and Frontiers in Computational

Statistics provide forums for research on design of statistical packages, fast and stable

algorithms for computing statistical formulas, and database tools for managing and analyzing

data sets. Equally important is the use of statistical methods to develop more powerful tools

6r
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for computer scientists; a variety of applications are possible. Weide (50], for example, used

concepts from probability theory to develop techniques for probabilistically analyzing

I algorithms. Kadane and Wasilkowski (30] demonstrated the equivalence between Bayesian

experimental design and certain complexity problems Bentley, Haken. and Hon [31 presented

a statistical characterization of VLSI designs. Experimental statistical methods have been

applied in many areas of computer science: for examples, see Borenstein's investigation of

user help systems [11], Brent's evaluation of techniques for dynamic storage allocation [12],

or Stritter's study of file migration strategies [48].

Continuing this trend, this thesis examines experimental and statistical techniques in the

context of algorithm analysis. As Exhibit 1-1 suggests, there are many ways to analyze an

algorithm, and many forms that a "result" may take. The analysis problems considered here

are quite traditional: the usual goal is to characterize an algorithm's performance, on an

abstract model of computation, as a function of its input. In particular, the expected

performance, which is determined by a specified probability distribution on input instances, is

the quantity to be characterized. "Performance" generally refers to some measure such as

the number of comparisons required, the number of iterations performed, or the quality of a

heuristic solution.

Note that algorithms, not programs, are studied here; the principle of abstraction is

maintained throughout. Abstraction is fundamental to traditional algorithm analysis for a

number of good reasons. By maintaining abstraction in the cost function (number of

comparisons, say, rather than running time), one obtains results that are implementation.

independent and therefore useful in a variety of situations. Abstraction can produce deeper

understanding of underlying mechanisms and discovery of algorithmic paradigms.

Mathematical models of algorithms and input allow consistent and well.defined manipulation

of parameters, provide a standard vocabulary for communicating results, and promote

generalization of algorithms and analysis techniques.

Although the algorithmic problems studied are traditional, this research represents

something of a departure from familiar uses of simulation in computer science. Because the

experimental results are expected to correspond to abstract models and theoretical

statements, the procedural issues tackled here are different from those that arise, say, in a

benchmark study to compare various compilers. The following tasks usually associated with

simulation research are not considered here: identifying appropriate benchmarts, monitoring
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*Type of Measure.

*Time:. number of significant operations, or running time of a programn.
*oSpace.
* Time-space tradeoffs.

Heuristic solution quality.
~ : Communication cost.

o Numerical stability.

o Domain of Analysis
o Worst-case input.
o Best-case input.
o Pathological input.
o Expected-case: probability distribution on input, or randomized algorithm.
o Input from real applications.
o Models of typical input.

r o Classic problem instances.

.~ ~.* Model of Computation.

o Random Access Machines: word or bit operations, straight-line or
branching programs.

o Specific machine models: e.g. MIX implementation.
* * o Parallel and distributed models.

o Real programs and real machines.

* Precision of Analysis.

* - -" Tractability: establishing polynomial halting time.
" Order of Magnitude bound: usually asymptotic analysis (as problem size

" Exact formulas: usually concrete analysis (for all problem sizes).
o Probabilistic analysis.

Exhibit 1.1: Analyzing Algorithms

and modeling typical input, developing and justifying simulation models (that is, arguing that

they are realistic), and developing statistical models for analysis.

Instead, experiments are to be used to study what are essentially mathematical objects:
combinatoriall algorithms operating on well-defined input distributions. The motivaltion for

applying experimental research in this context is clear: completely analyzing an algorithm is

- difficult, and purely mathematical approaches don't always give desired results. This is

especially true in studies of expected-case performance, where the analytical results that

have been obtained are often limited to very simple distributions on input instances. Ideally,
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experimental studies could be used to suggest theorems, to support or to refute conjectures,

and to characterize performance in terms of input parameters. Success wiith such an

approach depends on understanding of experimental techniques, familiarity with practical

issues of algorithm simulation, and knowledge of appropriate analytical tools Clearer

understanding of these topics in the context of algorithm analysis is a primary goal of this

research.

The following terminology is used throughout the thesis. Suppose the expected-case

* performance of algorithm .4 is of interest: this is the simulation model. A distribution on input

instances is established that can be described by a small number of parameters. A sample

point is determined by a fixed setting of the parameters. A trial corresponds to a single input

instance randomly generated' at a fixed sample point. For example, taking 50 trials at the

sample point (n = 1000, p = 1/2) might correspond to generating 50 binary strings of length

1000 according to a binomial probability distribution with parameter p = 1/2. In performing

an experiment, a simulation program that mimics the performance of algorithm A is

implemented and applied to the input instances. For each trial, values for one or more

measures - such as number of comparisons, number of nodes examined, or solution quality

- are recorded. The goal of the experimental analysis is usually to characterize the

measurements (the values taken for the measures) in terms of the input parameters.

Throughout the thesis, the notation H refers to the nz~ harmonic number, defined by
n

= I/i. The base-2 logarithm of n is denoted by Ig n. The natural logarithm is denoted

by In n. The notation "log" is used when the base is irrelevant, as in order-of -magnitude

formulas.

1 .2. Previous Work: Examples

Given an algorithm whose theoretical analysis is elusive, it is conceptually easy to

implement the algorithm, generate appropriate inputs, and gather measurements. In practice,

however, difficulties can arise in matching the simulation program to the model, in ensuring

correctness of simulation results, and (especially) in using the measurements to gain real

insight into the algorithm's structure. To illustrate problems that can arise, this section

surveys a number of experimental studies from the algorithms literature. It is clear that none

of the studies surveyed here were intended to illustrate sophisticated analysis techniques or

1The term "randomly generated" is used as shorthand for "pseudo-randomly geratld".

icy ikoilVi ili I' "I-
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innovations in experimental method: except for a few dissertations entirely devoted to

*simulation research, the experimental results are usually presented in the final section (or

appendix) of a paper largely devoted to theoretical analysis. Although this is not an

exhaustive survey, these studies are representative of the current level and scope of

experimental research in algorithm analysis.

Simulation Models and Simulation Programs

Usually the goal of an experimental study is to shed light on open problems suggested by

partial theoretical characterization of an algorithm. One impediment to achieving this goal is

found when simulation results do not correspond to the analytical description of the problem.

This is certainly the case when asymptotic performance is studied: how can measurements

at finite input sizes be extended to inferences about asymptotic behavior? Experimental

results can be greatly dependent on input size; consider the problem of determining the

expected internal path length In of a binary tree under a random series of insert/delete

operations (see Knuth [34], Section 6.2.2 for a detailed discussion of the problem).

Experiments performed by Knott [33] in 1975 suggested that (for certain deletion algorithms)

1. tends to decrease as a random sequence of insertions and deletions is applied. Knott's

studies took sequences of up to 24 insertion/deletion operations and trees with fewer than

100 nodes. Eppinger's [21] 1981 study with n as high as 2048 and insert/delete sequences as

large as 9,000,000 indicate that I decreases at first and then increases as the sequence

length grows.

Another common difficulty with obtaininG measurements that accurately reflect the

simulation model arises in the study of hounstics for NP-hard problems. Bounds on heuristic

solution quality are often expressed in terms of the optimal solution, which cannot be

determined experimentally. The onO-dimensiona bin packing problem, for example, is to

pack a list of n items with weights from a subrange of (0,1] into unit-sized bins so as to

minimize the number of bins used (the bin count). Since this problem is NP-hard, heuristic

rules for bin packing are of interest; a common unalytica mesure is the bin ratio, the ratio of

the heuristic bin count to the optimal bin count

In general, the true bin ratio cannot be measured experimentally because the optimal bin

count is not known (if it were known, there would be no need for a heuristic). A common

solution is to find an easily-measured lower bound on the optimal bin count and to estimate

till

m~~l
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the bin ratio using this lower bound, which gives an upper bound on the true bin ratio For

example, since there must be enough bins to contain all of the items, the sum of tthe we'ighfts is

a lower bound on the optimal bin count. Also, the optimal bin count is bounded below by the

number of items with weight greater than 1/2, since no two of these items can fit in the same

bin Johnson's [29] 1973 simulation study of various packing rules used the measure

ma x (,weight-sumL1 number of items)> 1 /2) as a lower-bound approximation tc the optimal bin

count. Ong. Magazine and Wee [38] used [ weight sum I as !he lower-bound estimate in their

1984 study: noticing that the heuristic -BFD" nearly always achieved the lower bound, they

also presented bin ratios using the BFD bin count to estimate the optimal bin count.

Using the solution ratio to characterize the quality of a heuristic is a common analytical

technique. One drawback to using a lower-bound estimate of the optimal solution in

simulation studies is that the estimate may be a poor approximation to the optimal solution
-. and therefore give little information about the true solution ratio. While this is not a problem in

bin packing (Karmarkar [31 ] showed in 1982 that under the standard expected-case model
the weight sum is very near the optimal bin count), finding useful lower bounds is a nontriviall
task in many domains. An alternative approach is to generate input instances with known

-I optimal solutions. Helfrich [27], for example, generates random integer lattices with known
shortest vectors and uses them to study heuristics for finding the smallest vector in a lattice.

* Pilcher [39] describes techniques for generating graphs for which optimum traveling
salesman tours are known. Although this approach is promising, it can be difficult to develop
generation schemes that preserve interesting properties of the input.

* ,, Other examples of disparity between simulation model and simulation program have
appeared; some could have been avoided. For example, a self-organizing sequential search
rule maintains a list of items under a sequence of requests, keeping frequently requested
items near the front of the list so that the average cost of searching for requested items is low.

Since the rules do not know the true request frequencies, they are allowed to reorder the
search list according to the requests seen so far.

The usual expected-case model is that the N items in the search list are requested
according to a specified probability distribution. The standard analytical model assumes that

all initial orderings of the search list are equally likely. In real applications, however, it is more
likely that lists are initially empty and that new items are added to the back of the list if not

found. Tenenbaum's [45] simulations of search rules used a combination of these two

-4..C-
L -l
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assumptions: the lists are initially empty, but accumulation of search costs does not begin

until the lists are of size N. Since the search lists are in not in random order when the cost

accounting begins, the observed convergence properties for the rules do not correspond to

the analytical model. (In fact, Rivest [41] showed that one of the rules (MF) has achieved its

asymptotic performance by the time the list is of size N). Tenenbaum's discussion of

convergence properties for the analytical model (based on his experimental results) is

nappropriate.

Franklin [23] presents an algorithm for performing hidden-line elimination. The algorithm is

conjectured to run in time linear in N. the number of overlapping circles randomly generated

within the unit square. Franklin presents timing statistics to support this conjecture, and

notes that the timings are linear except for a slight increase at larger N; he remarks that the

observed super-linearity is probably due to increased paging activity. Ohuyad, lam and

NMurasoto [37], similarly, use timing statistics to support the conjectured linear running time of

their cell-based algorithm for computing Voronoi diagrams and to find optimal program

parameters under various input models.

S-': The above authors have a legitimate interest in the running times of their algorithms, which

have great practical value. Their discussions of algorithmic bounds and optimal parameter

settings would be stronger, however, if they were based on abstract operations: this could be

easily accomplished by simple bookkeeping mechanisms embedded into the implementation.

Although runtime statistics can give a rough idea of algorithmic time complexity, a number of

factors interfere with accurate measurement. Van Wyk, Bentley, and Weinberger [46] and

Wendorf [48] observe that timings of a single program can vary by as much as 20% under

Unix timing protocols, even when it is the only user process running on the system. On any

%. large operating system, variation due to paging, multiple users, and cacheing can add

significant "noise" to the timings. Implementation details and variation in optimization levels

can mask the behavior of the underlying algorithm.

Obtaining Correct Results

Even when the implementation accurately reflects the simulation model, it can be difficult to

ensure that experimental results are correct. For example, theoretical models are likely to

assume properties of real numbers, but experiments are performed on finite.precision

machines. Eddy [20] presents a fast convex hull algorithm for planar point sets and measures

2 Unix is a trademark of AT&T Bel Laboratories.

,p

Y".
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its performance for five distributions on point sets. He notes that when the convex hull has a

large number of vertices, adjacent sides are nearly parallel and roundoff errors significantly

-~ affect the measurements.

The general problem of verifying that a program performs as specified is well known. Direct

:.a!idation of simulation programs is rareiy possible: if the measurements canl be accurately

predicted, there is little need for a simulation study. Exceptions do occur: Bloch, Daniels, and

Spector [10] use Mlarkov analysis to characterize their algorithm for maintaining directory

information in a distributed system. Because the size of the state space makes direct

~' computation tedious. they use simulation as an efficient way to describe performance over a

wide range of sample points. The authors are able to validate their simulation results by

spot-checking against the correct formula.

Since most researchers are not as fortunate, an important assurance of experimental

* integrity is replication. Eppinger [21 ], for example, replicates his experiments for insertion

and deletion in binary trees on a secondary system. The two simulation environments differ in

machine architecture (a Vax 11/750 vs. a Perq personal workstation), random number

generator, implementation strategy, and programming language. The consistency of results

between these two environments gives strong assurance that the results are not artifacts of

the implementation.

Otherwise, replication by the author appears to be nonexistent, or at least unreported.

Usually, however, authors provide enough details so that the reader can duplicate the

experiments. Kernighan and Lin [32], and Coffman, Kadota and Shepp [16] present listings of
the simulation programs as well as fairly detailed descriptions of the random number

generators. Cameron arnd Thomas [1 5] discuss significant implementation details, give the

code for the random number generator used, and offer to send a list of random number seeds
to interested readers. Many authors report the sample points and the number of trials per

sample point and only mention implementation details that differ significantly from the model.

Analyzing the Data
The most difficult task of the simulation study is to draw conclusions about the algorithm

-F, based on the experimental results. In most of the studies surveyed here, the "analysis"

* consists of tables (or graphs) displaying average measurements for each sample point,

accompanied by an informal discussion of the results. This is the format used, for example, in

studies of sequential search rules by Bellow [1 ], Bitner [8, 91, Rivest [411, and Tenenbaum
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[45]. Other examples of this presentation format are found in Bui [14], Kernighan and Lin

[32], Crowder and Padberg [18], Culberson [19], and Friedman. Bentley and Finkel [24].

A few instances of more formal data analyses have appeared. Golden and Stewart

[25] apply Wilcoxon signed rank tests. Friedman tests, and other statistical tests to compare

TSP heuristics. Eddy [20] estimates standard deviation in his study of a convex hull algorithm.

Weide [47] presents confidence intervals in his studies of search structures. Hart

[26] establishes confidence intervals for his results on insertion in binary search trees and

applies hypothesis testing.

In general, extensive statistical analyses appear relatively infrequently in the algorithms

literature. This may be because the answers produced by standard analysis techniques

appear to be at odds with many questions posed in algorithm analysis. For example, the

standard procedure in regression analysis is to assume an underlying functional form
describing the relationship between experimental values and to determine the function

parameters that best fit the observed relationship. In the study of algorithms, on the other

hand, determining or bounding the true functional relationship is often the primary goal of the

analysis; in order-of-magnitude analyses the actual parameter values are not a part of the

model.

A partial solution is found when strong arguments for a particular function form are

available, although difficulties can still arise. Hart [26] uses regression in his study of

insertion in binary trees: after n insertions, the average height H(n) of a tree is known to satisfy

H(n)=Clnn+o(Inn), and may be of the form H(n)=C lnn+C 2lnlnn+o(Inlnn). It is known

that C is in the range [3.634, 4.311], and specific values of 4 and 4.311 have been

conjectured. As part of a thorough statistical analysis, Hart performs a least-squares

regression using the model H(n)=CIlnn+ClnInn, which gives C1 =4.4037 and

C2 = -4.1001. Although C is nearer to 4.311 than to 4, it is also larger than its known upper

bound. This fact as well as standard analysis suggests that the model is not appropriate for

this range of input sizes.

Culberson [19] studies internal tree height after a series of insert/delete operations and fits
regression curves using the model Elf,) = a(n1/ 2) + b, where I denotes the internal height of a

tree with n nodes. The correlation coefficients (for unweighted and weighted regressions) are

0.99894 and 0.9956, and the R2 errors are 0.997 and 0.99124, suggesting that the model gives

a very good fit to the data. In accompanying graphs, however, the data points clearly curve

I
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upward relative to the fit. Culberson remarks: "any such [regression] results must be treated

with skepticism, unless some theoretical reason can be found to support them. "

Ong, Magazine and Wee [381 use regression when studying heuristics for bin packing.

Estimating H(0). the bin count for rule H. they show that if certain feasonable assumptions

hold. then E[/h :) is of the form bm + 4,(r:), for constant b and -,'0 - Axn). Therefore E[/!(,)]

is a nearly linear function of ; for large t. The authors apply le-ist-squares regression using

the model E{H(n)] = a + bn. They note that the correlation coefficient for all experiments is

equal to 1, and that the percentage of variation explained by the model is 99.99: by these

measures the model provides a very good fit to the data. Although the regression model is

well justified and fits the data very well, some of the results are (unavoidably) misleading,

primarily because the model is for asymptotic n and the measurements are taken at n between

2 40 and 1000. For example, they estimate the bin ratio for the "FFD " rule as 1.018, although

Leuker [35] had proved that the true bin ratio is asymptotically 1. It was later shown in [5] and

*l [43] that the bin ratio for two other rules is asymptotically 1 although their estimates suggest

otherwise.

Authors have used techniques other than statistical summarization and analysis to convey

the results of their simulations. Coffman, Kadota and Shepp [161, for example, study a

strategy for dynamic storage allocation. They present "snapshots" of memory over time to

illustrate their observations. Culberson [19] presentssnapshots of binary search trees as

insertions/deletions are performed. Brown and Sedgewick [13], and Bentley and Kernighan

[6] have developed systems for "animating" algorithms; perhaps in the future these methods

will play a larger role in the analysis and presentation of simulation results.

In addition to these examples of experimental study in algorithm analysis, some previous

work has appeared about using experiments in this context. Purdom and Brown [401 devote a

chapter of their text, The Analysis of Algorithms, to a discussion of probabilistic tools for

analysis and a review of Eppinger's work. Golden and Stewart [25] present data analysis tools

for benchmark studies of heuristics for the Traveling Salesman Problem. Crowder, Dembo,

and Mulvey[17] discuss issues in the presentation of computational experiments in

mathematics; they give a critical survey of previous experimental studies and propose a

checklist of criteria for reporting computational results. Hoaglin and Andrews [281 also

propose guidelines for presentation of computer-based experimental results.
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1.3. Research Goals

While there is strong motivation for using experimental techniques in algorithm analysis. it

appears that not much progress has been made. Experimental results have been published
that contradict known theoretical bounds, lead to erroneous conclusions about algorithmic

performance, and do not correspond to the underlying analytical model. Perhaps because

formal statistical analyses have not been generally successful in lending new insight,

researchers tend to limit their exposition to methods more suitable to benchmark studies: the

most common format for presentation of experimental results is a table giving average

measurements at various sample points, accompanied by informal discussion of the table

',I entries. Very little discussion of experimental methods and techniques for research in this

domain has appeared.

" . Nevertheless, the thesis motivating this research is that simulation and data analysis can

provide a powerful tool for obtaining new insight about combinatorial algorithms. This

hypothesis was prompted by experience with a simulation study begun as joint work with

J. L. Bentley, 0. S. Johnson, and F. T. Leighton (reported in [4]). The object of the study was

to measure the expected performance of two heuristics for bin packing. Under the expected-

case model, n items with weights drawn from the uniform distribution on (O.u], 0 < u <_ 1, are to

be packed into a minimum number of unit-sized bins. The amount of empty space in a

packing - the number of bins used minus the sum of the weights - was the measure of

r-' packing quality recorded in our simulations of the packing rules First Fit (FF) and First Fit

Decreasing (FFD) (see Chapter 2 for a detailed discussion of the problem). Prior to the study,

very little was known about the expected-case behavior of the rules, our goal was to

characterize mean empty space as a function of n and u. The following observations were

S..A' among those reported in [4].

e When u = 1, mean empty space in FFD packings is P0.3n'12. Prior to this

• observation (first noted by Bentley and Faust [2] in 1980) it was widely
conjectured that empty space is 9 (n). Prompted by experimental results, Leuker
[35] subsequently proved the e (n"/) bound.

.. When u .0.5, mean empty space in FFD packings is 0(1). This remarkable
observation - that empty space does not grow in n when u is small - was
subsequently proved in [5]. The proof gives an upper bound of roughly 1010 bins;
Floyd and Karp [221 have recently reduced this to 10 bins under a slightly different
average-case model. Simulation results suggest that the true expectation is
nearer to 0.7.

0.Q'

.w I.-
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* When u 0 0.5, empty space is less than I (and therefore the packing is optimal) in
over 75°o of FFD packings.

* When 0.5 < u < 1. mean empty space is 0 (nl/"). This bound was subsequently
proved (see [5]).

Thare appears to be a critical point u, such that when 14 is less than u , empty
space in FFD packings is very si.,iail: above the critical point, empty space is quite
larga and outliers (corresponding to very bad packings) are observed. The
crit:cal point appears to increase slowly as it grows.

- Mean empty space appears to grow linearly in u when u is below the critical point
and to increase rapidly in u above the critical point. When u :_ 0.5, empty space
appears to be constant in u as well as it. (This early observation is modified
somewhat in Chapter 2). Theoretically characterizing empty space as a function
of u remains an open problem.

e When u = 1, mean empty space in FF packings appears to grow approximately as
0.221t This observation contradicts previous widely-held intuition, which
predicted that empty space would grow at least linearly in n. A bound of
O(n -/log n) was subsequently proven (see [5]); this was tightened toO(,13log -'it) and 2(n2/3) by Shor (42].

* When u < 1, empty space in FF paclings is nonmonotonic in u; for example,
packings of weights drawn from (0, .91 give less empty space than packings of
weights from (0, .84] or from (0, 1]. This nonmonotonic behavior becomes more
pronounced as n grows.

"-"- The nonmonotonicity suggests that empty space grows more rapidly in n when
u = .84 than when u = 1. Experimental results give the tentative conjecture that
empty space is linear in n at some values of u.

This experimental study significantly influenced theoretical analysis of the two bin-packing

algorithms. First, the simulation results in some cases contradicted previously held

% Wconjectures, prompting a redirection of theorem-proving effort. Not only did the experimental

[ •results suggest the theorems to be proved, but detailed and varying views of the data as well

.-..-. as animations of the algorithms as they packed were essential to the development of the proof

techniques appearing in [5]. The study went beyond simple measurements: new insight into

packing structure, new conjectures about the performance of the heuristics, and more

efficient heuristics were a direct result of the simulations. The simulation results have

"opened up" what had previously been a fairly closed area for expected-case results.

Limited simulation studies by Johnson [29], Maruyama, Chang, and Tang [36], and Ong,

Magazine and Wee [38] had appeared previously. Why was this study much richer in

404
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V conjectures. insights, Lind theorems? The follow.ing factors probably contributed to the

'p' Success of our study.

" Larger problem size. We simulated packings with lists of up to 128,000 items,
while previous studies used lists of up to 200 and 1000 items. Some of the
observations, particularly the nonmonotonicity in FF packings, vere not visible at
lower n1.

" Change of measure. We measured empty space rather than the bin ratio (the
ratio of the number of bins used by the heuristic to the number used in an optimal
packing) as had been done previously. T1his measure allowed a much clearer
picture of packing quality; because the ratios are very near 1 and tend to
converge slowly in n. the small changes in growth are overwhelmed by the
variance in the data. Empty space has much smaller variance relative to its
growth in n.

* Departure from benchmark-style reporting of results. Rather than presenting

tables of measurements for the packing rules at various sample points, we tried to
S. characterize empty space as a function of n and u. We examined the raw data

over all trials, rather than just average measurements, to gain insight into
distributional properties. We made extensive use of graphical analysis tools.

* Many of the experiments were replicated on a personal computer, which varied
NP. the implementation of the packing heuristics, the type of random number

generator, and the machine word size. The consistency of the results between
the two environments, combined with program validation and hand-checking of
results at small n, gave us confidence in the (often nonintuitive) results.

* Finally, and perhaps most importantly, the study was not finished after a single
round of experiments; we iterated theoretical and experimental analyses of the
heuristics. The two approaches interacted in many ways. Certainly theoretical
work was guided by experiments; just as importantly, experimental work was
directed by theoretical insight. In some cases new insights suggested shortcuts
in the data-gathering process, or eliminated the need to gather new data.
Growing insight suggested more precise measures of packing quality. In turn,
later experimental results gave more insight arid produced more detailed
understanding of the algorithms.

The simulation study of bin packing had a significant impact on theoretical analysis by

contributing new theorems, new insights, new conjectures, and precise, accurate

measurements. In addition, a number of procedural questions were prompted by the success

of the study. Can the above principles be generalized to other algorithmic domains? Could we

have learned more from the data? Are more powerful data analysis tools available? Could the

same information have been gained with less programming and analysis effort? In general,

what types of results can be gained from experimental studies of algorithms? What are the

limitations of this approach?
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An obvious first step in answering such questions is to see what has been accomplished by

K- others. As Section 1.2 Suggests, experimental research in this area his not been extensively
applied or addressed. Compare this to experimental research in, say, the physical sciences:

entire papers are devoted to experimental results, and topics such as the justification of

* . experimental mocdels, experimental design, applications of analysis tools, and issues of

graph~cai presentation are regularly and rigorously discussed.

A vast lite-rature of general simulation and statistical analysis techniques exists. Texts such

as The Art of Scientific Investigation [7] contain a great deal of collected "lore' of good

experimental technique and discussion of the scientific process (which iterates theoretical

and experimental analyses). The application of these techniques and tools in the context of

algorithm analysis is the topic addressed in the following chapters.

The following research goals are set:

1. To demonstrate that simulation can provide a useful, general tool for developing
new understanding of algorithms.

2. To identify common problems and assess the applicability of this approach.

3. To develop principles for successful experimental research in the domain of
algorithm analysis.

4. To promote more general use of this approach by giving a "handbook" of useful
* tools and techniques.

Part 11, comprising Chapters 2 through 5, presents four "case studies" of experimental

analyses of algorithms. The case study approach is adopted here for a number of reasons.

First, the studies allow an accurate assessment of the usefulness of this approach. The
problem domains are well known to computer scientists: partial theoretical characterization

* already exists, and the open problems have been the subject of extensive previous theoretical

and experimental research. If the experiments give new insight in these problem domains,

then Goal 1 will be established. Second, the problem domains provide realistic testbeds for
simulation and analysis techniques. Third, studying a variety of problems allows identification

of common problems and useful general techniques. Fourth, the case studies serve as

examples of the experimental process, which may be of use to future researchers. Finally, the
experimental results themselves contribute to open problems the algorithm domains.

Part Ill contains a discussion of the case studies. Chapter 6 discusses applications,

1.
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principles, and goals of experimental research in the domain of algorithm analysis. Chapter 7

presents techniques and tools that proved useful in the case studies. Chapter 8 assesses the

contributions of the thesis and discusses future work.

o.•
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Part 11

* Case Studies

Just the facts, m'am.
-Sgt. Joe Friday

This section presents four studies in experimental analysis of algorithms. Chapter 2 examines
-~ four heuristics for the one-dimensional bin packing problem. The solution quality and time

complexity of a greedy algorithm for matching are studied in Chapter 3. Chapter 4 compares

strategies for selecting partition elements in Ouicksort. Finally, Chapter 5 studies a family of
self-organizing sequential search rules under various distributions on request probabilities.
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Chapter 2
One-Dimensional Bin Packing

The une-dimensional bin packing problem is well known: given a set of items with weights

from the interval (0. 1]. pack the items into a minimum number of unit-capacity bins. Since the

problem is NP-complete. a variety of approximation algorithms have been proposed. The

following have received considerable attention.

.First Fit (FF): Inspect the bins sequentially and place each item into the first bin
that can contain it. Items are packed in the order in which they are presented as
input.

- First Fit Decreasing (FFD): Sort the items in decreasing order by weight, then
apply First Fit to the sorted list.

* Best Fit (BF): Place each item in the fullest bin that can contain it, that is, the bin
into which it fits most tightly. As with First Fit, the ordering of the input list is
preserved.

* Best Fit Decreasing (BFD): Sort the items in decreasing order by weight, then

- apply Best Fit to the sorted list of weights.

All of these algorithms can be implemented to run in O(n log n) time, where n is the number

of items to be packed. Note that FF and BF are on-line algorithms, whereas FFD and BFD

require that the entire list be available before packing begins.

S For a given list Ln of n weights, the bin count A(L.) - the number of bins used by algorithm

A to pack list L'- is the usual analytical measure of packing quality. The packing rule that

minimizes the bin count for any list has the name OPT. The sum of weights in L., denoted by

%X(Ln), is a lower bound on OPT(L.). Another common measure is the bin ratio, the ratio of the
Ism number of bins used by the algorithm to the number used by OPT when packing L .Since bin

packing is NP-hard, OPT(Ln) cannot be easily determined experimentally. The measure

empty space, which is the sum of the gaps remaining in partially packed bins, is therefore

adopted here. Empty space for algorithm A when packing list L. is denoted by &A(L).



26

Note that empty space Is equal to tle difference between the bin count and the weight sum.

that is, AA(L n ) = A(L) - (L Since (L) is a lower bound on OPT(L,). an upper bound

on empty space can be used to derive an upper bound on the bin ratro by the ':oo.'wng

argument Suppose it is established that .%A(Ln) = AlL.)- lLn) Ji_ 4 l. for some ncton

l14 ,, Then
(AlL )- '(L ))/OPT(L ) : ;'(un)/OPT(Ln).

and therefore

A(L) /OPT < jium)/OPT(L7) --r (Ln)'OPT(Ln),

where the last term is at most 1.

The expected performance of the bin-packing algorithms is studied in this chapter. Under

the standard model, weights are drawn independently at random from the uniform distribution

on the interval [0, ul, for 0 < u s 1. The list Lu.n is therefore a random variable generated

according to parameters n and u, as are the measures bin count A(Lu n)' and empty space

* AA(Lu.n). Note that E[-(Lu n)j = un/2.

2.1. Previous Work
-,

Approximation algorithms for bin packing have received considerable attention; for an

extensive review of work in this area, see Coffman, Garey and Johnson [5]. Some results

related to this work are surveyed below.

Johnson [9] established the following worst-case bounds on the bin ratio. These bounds

are tight in the sense that no better ratio can be found.

FFD(Ln) < 11/9 OPT(L,) + 4

BFD(Ln) S 11/9 OPT(Ln) + 4

FF(Ln) :s 17/10. OPT(Ln) + 1

BF(L ) < 17/10. OPT(L,) + 1

O Brown [4] showed that no on-line algorithm can achieve an asymptotic bin ratio better than

1.536. On the other hand, Fernandez do la Vega and Leuker [6] and Karmarkar and Karp

111 have presented off-line algorithms for which the worst-case bin ratio approaches the

optimal value of 1.

U
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Karmarkar [101 showed that in the expected case model any L allows a perfect pactrAg that

is. the ratio of E[OPT(L :)] to E[E(L,.,)] approaches 1 as ,: - c. How do the heuristics

compare to the optimal packing? Expected-case results for the rules studied here have

appeared only for the case u = 1. Frederickson [81 and Leuker [131 have studied FF0 and

BFD Their analyses show that the expected bin ratio for thest? algorithms converges to I and

that eepected empty ipce is Otn :/ :

More recently. Shor [16] showed that any on-line algorithm that does not know n in advance

nclud ing BF and FF) w il leave Q( in(log n)/: empty space in the expected case. He also

showed that E[A8F(Ln)I is O(r7/:Iogn) and Q(n':(logn)'14 ), and that E[AFF(LA)I is

Oo: ' log' ,)' ) and (n' /  ).

Previous simulation studies of bin packing heuristics have estimated the bin ratio for varying

n and u Johnson [9] simulated a number of heuristics for u = 0.25, 0.5, 1 and n up to 200. He

computed max([weight-sum 1, number of weights > 1/2) (a lower bound on OPT) for each list,

and reported the bin ratio using this approximation. His measurements therefore give an

upper bound on bin ratios for n < 200. Ong, Magazine and Wee [15] applied regression

analysis with the model E[A(LnA = bn + a. The regression fits give estimates for the

asymptotic bin ratio, using I(Lu n) and BFD(Lu,,) to estimate OPT(Lure). Their simulations

took u = .25..5,.75,1 and n up to 1000. Maruyama, Chang, and Tang [14] considered a

spectrum of packing rules and input parameters to determine which rules dominate under a

variety of circumstances.

2.2. The Simulation Study

The following sections present new results for the expected-case behavior of the heuristics.

Parts have been published as joint work with J. Bentley, D. Johnson, T. Leighton, and

* L. McGeoch, in [2] and [3]. Earlier work is extended here in a number of ways, primarily by a

closer examination of performance when u is less than 1, identification of new measures that

give more precise characterization of the packings, and new arguments to explain observed

behavior.

The initial goal of the simulation study was to measure packing quality for the four rules as a

function of list size and the upper bound on the item weights. Each trial therefore

corresponds to a :ist of n weights generated independently from the uniform distribution on

(O,u]. For efficiency, integer computation was used in the simulation: bin capacity was 2"- 1,

and weights were generated from appropriate integer ranges.
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The primary experiments were performed on a VAX 11 /750, (some on a VAX 11 /780), using

32 bit integers and 64.bit (55-bit mantissa) double-precision reals. The random number

generator was the c',clic feedbacK method described by Knuth [121 (Algorithm A, Section

3 2 2 2nd Edition) To check the primary results, a number of experiments were replicated on

a TRS 30 Model III computer (using the system's linear congruential random number

generator), .,ith 32 bit real arithmetic

In most of the graphs presented in this chapter, the abscissa corresponds to either n or u

and the oidinate corresponds to a measure of packing quality such as empty space (in units

of bins) Sample points were taken at n doubling from 125: that is, at 125, 250, .. -. 128000.

The parameter u takes values in the range (0, 1]. Unless otherwise specified, the number of

trials at each sample point is 25.

2.3. First Fit

A long-standing open problem has been to determine the asymptotic bin ratio for First Fit

under the expected-case model when u is fixed at 1. Since First Fit is an on-line algorithm and

does not reorder its input list, it has been widely conjectured (see [9, 3]) that the heuristic is

not asymptotically optimal, implying that the asymptotic bin ratic is some constant strictly

greater than 1. Johnson's [9] worst case bound implies that the expected bin ratio cannot be

more than 1.7; from simulations he conjectured that the expected bin ratio is near 1.07.

Experimental results of Ong, Magazine and Wee [15] (with higher n) suggest that the ratio is

between 1.038 and 1.056.

Exhibit 2-1 -a shows empty space for 25 trials each at the sample points u = 1 and n doubling

from 125 to 128000 The near linear growth on a log/log scale suggests a power law: linear

least-squares regression on this scale yields an estimated slope of 0.7012, indicating that

mean empty space grows approximately as n0 7 . The residuals to this fit (Graph 2.1 -b) suggest

that the variance increases in n; no significant curvature in the residuals is apparent.

It appears, therefore, that empty space grows sublinearly in n. This leads to the surprising

conjecture that the expected bin ratio of First Fit is asymptotically optimal, by the following

4 argument. the expected sum of the weights (equal to n12) grows linearly in n and therefore

OPT(L 1,) is (n). Since, AFF(L 1,,) , n0"7 = o(OPT(L f,)), the asymptotic expected bin ratio is

11.
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Exhibit 2-1: FirstFit,u=1

This new conjecture is proved in [3]; specifically, it is shown that E[AFF(Ln) = O(n°").

The bound is actually derived for a simplified version of FF, called 2FF, which performs

exactly as FF except that a maximum of two items may be placed in any bin. (It is easy to show

that FF never uses more bins than 2FF.) An obvious question is whether the gap between

observed growth in empty space, no,7, and the theoretical bound, 0(n°3 ), is due to

differences between the packing efficiency of 2FF and FF. Graph 2-2 suggests that there is

no such gap between the two algorithms: on identical lists, the average ratio of empty space

in a 2FF packing to that in the FF packing appears to approach a constant near 1.2 rather

than increasing in n.

Prompted by these observations, Shor [16] obtained bounds of 12(n2I3) and O(n 1 'log 2 n)

for expected empty space in FF packings. His technique was to establish an analogy between

bin packing and certain planar matching problems and to show that bounds in one domain

imply bounds in the other. Note that although our regression fit (AFF(L ,dow no-") is greater

!
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than Shor's upper bound, the fit was adequate to justify the conjecture of asymptotic

optimality.

2.3.1. Nonmonotonicity in u

Analytical characterizations of First Fit for values of u < 1 remain elusive. Graph 2-3-a

presents empty space for 25 trials at each sample point, for 0.2 :5 u :s 1.0 and ni = 128000.
Graph 2-3-b gives a "closeup" of the measure for 0.7 o u 1. Graph 2-3-c presents mean

empty space in this range for four values of n. The graphs reveal a surprising phenomenon:

at large n, empty space is not monotonic in u. Packings of items with weights from (0,0.8J, for

example, give more empty space than packings of items with weights from (0, 0.9].
4

Experiments taking 50 trials each for u in the neighborhood of the local minima (in

increments of 0.005) suggest that they occur near u- = 0.9, 0.925, and 0.94 respectively, for n

= 32000, 64000, and 128000. Doubling n produces a declining increment in u-, suggesting

that the local minimum u- increases slowly in n. It would be interesting to determine if u- has

0l an asymptotic upper bound that is strictly less than 1.

Similar estimation of u +, the u value giving the local maximum, is more difficult because of

the shallow curve and relatively large variance of data points in this range. With u taken in

increments of 0.01, the largest means are found at u + = 0.82. 0.82, and 0.8 for n a 32000,

-V
--V
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Unfortunately, while the graphical observation that the three curves are moving up at

u = 0.-9 O.SO and down at u = 0.83. 0.84 is confirmed, the test detects no significant difference

between adjacent point sets in this range. The conjecture remains, therefore, that

O.S s u < 0.82, and that u + moves very slowly, if at all. in .

400" 800

%*20000

" "% 200

V t.75 .80 .85 90 .95 1.0O .70 '5 .80 .S5 .90 .95 1.0
.a b U

'-'-"Exhibit 2-4: Distribution by Item Class

~A more detailed look at the packings gives a better understanding of the nonmonotic

behavior. Define a gap to be the amount of empty space in a single bin, and define a k-item

bin to be a bin with k items in it after the packing is finished. Graph 2-4-a shows the

distribution of k-itemn bins, averaged over five trials each at n = 128000 and 0.75 < u <5 1. The

, four curves represent the average number of 1-item, 2-item, 3-item, and 4-or-more-item

I-,. . (denoted by 4 + item) bins in the packings. Over most of this range the number of 1-item bins

i .is small, except for a rapid increase as u nears 1. The 2-itemn bins are by far the most

common: the number of 2.itemn bins increases quickly in the range 0.8s u <0.9 and then

:.., .levels off as u nears 1. The number of 3-item and 4 +item bins generally decrease as u

,., increases. On a logarithmic y-scale the number of 1 -item bins is nearly linear in u, suggesting

• . , ,approximately exponential growth. Graph 2-4-b depicts the amount of empty space in each

".'.Ebin class. Most of the empty space lies in 2-item bins for u in this range. As u nears 1, empty

- . .space in 2-itemn bins decreases and empty space in 1 -item bins increases; compare.

~Now, divide the interval (0, 0.251 into 25 gap ranges, each of the form ((i- 1)/100, il00]l, for

i s25, and label each bin according toteindex iof its ga ag.(Bins withgagrte

46

tote gprng. aprete
'd'.'_



. V V . .

33

.05 .1, .15, .2 .25,> A0 . .15, .5,

10 4  o

10

I 0*

1 0

•., 04

:_' i103

, --1 0 2 
U l

,I. Ceea a e o Q, 0 a = Q

I I

109Pwa u .85
10 1

* . 2 0 *

101 •
101 u S. .8
10 o *

I ."
.05 .1 .15 .2 .25 > .05 .1 .15 .05, .05_

Gap Size Gap Size Gap Size G S
1-item Bins 2-item Bins 3-item 44 item

Bins Bins

Exhibit 2-5: Distributions of Gaps

-4than 0.25 are counted in a single category.) Exhibit 2-5 pr esents the distribution of bins by

k-item category as well as by gap range, with n = 128000 and five values of u, for a single trial

at each sample point. In this multigraph, a row of panels corresponds to a u value, and a

column of panels corresponds to k-item bins, for k= 1, 2, 3, and 4-or-more. Each panel

10- ) ~ -
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displays the distribution of bins with respect to gap ranges. In the upper left panel, for

example, a point with coordinates (0.05, 400) would indicate that in the packing at

S, =I'JSOO. u =, there were 400 1 -item bins having gaps in the range (.04, .05].

Because the counts range over four orders of magnitude, a logarithmic y-scale is used in

the panels. In each panel. the horizontal bars mark the right and left edges of the gap ranges

having non-zero counts. In the 1-item column (leftmost panels), bins with gaps larger than

0.25 are counted as a single category at the right side of each panel.

Exhibit 2-5 allows a number of observations. For example, 1-item bins cannot have gaps

smaller than I - u. Only 1-item bins ever have gaps larger than 0.25. Gaps in 1-item bins are

fairly uniformly distributed, whereas the distribution of gaps in 2-item (and in 3-item bins)
'p

declines quickly as gap size increases.

* The largest gap observed in 2-item bins is 0.18 (at u = .85), and 3-item bins have gaps

smaller than 0.09. For some reason, gaps in 3-item bins are generally larger at u = 0.85 than at

u = 0.9 or at u = 0.8. The largest gap observed for 4 + item bins is 0.02. In general, at fixed u,

k-item bins have smaller gaps than j-item bins, for k < j.

Finally, note that as u increases to 1 the number of 1-item bins increases (observed from

Graph 2-4-a), but the average gap in those bins decreases (since the distribution shifts left at

higher panels of 2-5). Similarly, the number of 2-item bins also increases in u, leveling off near

u = 0.9, and the average gap in 2-item bins decreases as u nears 1. Recall that empty space in

2-item bins is nonmonotonic over this range, and that these bins dominate the packing: the

2-item bins account for the "hump" observed earlier for total empty space. As u nears 1,

empty space in 1-item bins increases rapidly, which accounts for the rise in total empty space

* when u is greater than u-. The number of 3 and 4+ item bins generally decreases as u

increases, but they are few and their gaps are small. Although they do not greatly affect total
empty space in this range, it is likely, that they would dominate the packings at smaller u.

We conjectured in [2] that there exist values of u for which expected empty space grows

X? linearly in n. Exhibits 2-4 and 2-5 suggests an argument for this conjecture when, say, u = 0.8.

Suppose there is a positive constant fthat gives a lower bound on the expected fraction of

1-item and 2-item bins in an FF packing. Now, the gap in 1-item bins is at least 1-u; suppose

also that the average gap in 2-item bins is at least some fixed constant e, where 0 < e < 1-u.

Total empty space is therefore bounded below by ef.FF(L,,). Since the number of bins is at
C...
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least linear (bounded below by the sum of the weights) this gives a linear lower bound for

empty space.

It is easy to formalize the following argument for the desired lower bound on t, the fraction of

1-item and 2-item bins in the packing. The argument works by giving an upper bound on the

number of bins that can contain at least 3 items. This number is maximized when as many

bins as possible have exactly three items.

Recall that E(Lu n) is a lower bound on the number of bins used; when u = 0.8 we have

E[Z(L n)I = 2n/5. Suppose a packing leaves 2n/5 bins. Not all of these bins can contain 3 or

more items, since this would give only n/3 bins, which is smaller than 2n/5. The way to leave

2n/5 bins and also maximize the number of 3-item bins is to pack as many as possible 3-item

bins and then to fill out the packing with 1-item bins. If a is the number of items packed

3-to-a-bin, we want to maximize a subject to a/3 + (n-a) = 2n/5. This equality holds when

a = 9n/1O; therefore at most 9n/10 of the items can be packed 3-to-a-bin if there are to be

2n/5 total bins in the packing. The expected number of items packed 1- or 2-to-a-bin is

therefore at least n/10.

Deriving a lower bound on e appears to be difficult. An easy lower bound on gap sizes

exists for 1-item bins: since u bounds the weight size, there can be no 1-item bin with gap

smaller than I-u. If the 2-item bins were formed by random pairings of uniform variates with

upper bound 0.8, then one could easily show that the gaps are (with high probability) greater

than a small constant e <_ 0.2. Unfortunately, the pairings produced by First Fit are likely to

give gaps consistently smaller than those produced by andom pairings.

Graph 2-6-a gives observed average values for f for three trials each at n = 128000 and

0.2 < u < 1. The curves corresponds to k-item bins, for k between 1 and 7: each curve is

labeled near the point where it reaches its highest value. For example, at u = 0.65 the 3-item

bins comprise about 61% of the bins in the packings, and this is the highest fraction ever

obtained by 3-item bins. The highest fraction achieved for 2-item bins is approximately 81%,

seen when u = .95. The highest fraction for 1-item bins is about 1%, when u = 1.

Graph 2-6-b gives the distribution of empty space in 2-item bins for n = 128000, u = .8. The

x-coordinate of each point corresponds to a gap range in increments of .001. The y-

coordinate gives the fraction of 2-item bins with gaps in this range. This graph can be used to

suggest appropriate values for e. the leftmost points show that about 3/100 of the 2-item bins

I4'": " ' " - ' ' '
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Exhibit 2-6: Measuring f and e

have gaps in the range [0, .001]. Therefore 97/100 of the 2-item bins have gaps at least .001.

About half of the bins have gaps greater than .025 (not shown on this graph). Similar graphs

measuring gap distribution at smaller !-are almost identical in appearance to Graph 2-6-b,

although variance tends to decrease in n.

The graphs of Exhibit 2-6 show a great deal of structure; it would be interesting to

characterize this behavior analytically by bounding the number of k-item bins and the gaps in

those bins for any value of u. These could be combined to obtain bounds on empty space as

well as the bin ratio in First Fit packings.

4-~'-2.3.2. Measurements at fixed u

4-4 The previous subsection measures growth in u for fixed values of n; this subsection

examines growth in n for certain fixed values of u. An interesting open question is whether
empty space is linear in n for any value of u. Early simulation results (reported in [2]) suggest

that this is the case when u =0.8, and the previous subsection gives an argument for this

conjecture.

Graph 2-7-a depicts mean empty space as a function of n for 25 trials each at four values of

u; Graph 2-7-b presents results of 25 trials at u =.2. .8. Both graphs are on log-log scales. At

U = .8, a linear least-squares fit to the data in 2-7-b corresponding to the five highest values of

r.
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Exhibit 2-7: Growth inn

n (that is, for sample points with 8000 <5n < 128000) has slope near 0.938. Similar fits to the

four, three, and two highest values give slopes of 0.943, 0.954, and 0.966, respectively.

Although the increasing slopes and upward curvature in the residuals (not shown) provide

some evidence for asymptotic linearity, the results are not conclusive: the steady change in

slopes suggests that n is too small for an accurate assessment of asymptotic behavior. Of

course, it is likely that a function form other than a power law, perhaps n/lgn, is more

appropriate. A regression fit using this model at u = 0.8 (and 8000 5 n _< 128000) also leaves an

upward curve in the residuals, although the curve is more shallow. At u = 0.2, a least-squares

fit at the five highest n values gives a slope of approximately 0.75, and a fit at the two highest

values gives 0.78. The lower slope suggests that either empty space actually grows

sublinearly at this u value (as was the case with u = 1), or that the curve is very slow in

approaching its asymptotic form.
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2.4. Best Fit

The Best Fit a3gcrithm is similar in many .',s to First Fit Both are on ne agorithms and

botn can be rlemented to run in O( ,o time First Fit needs onl, 3 imole heap data

structure to find ine irst bin that can contain a given tem hc.wever. wrile Best Fit requires

'some sort of bean .. m n jnisin to find he bin into .hich tho tern fits nust tightly

'FrtI,, because :f the implemnntation requirements. the simulation program for Best Ft uses

iinear search to find the best.fitting bin and therefore requires U)( ') time to pack.

Sr-ulaticns of Best Fit packings were only taen for n up to 16011) rather than to 1_,St)O.

Although the program efficiency was not great, the efficiency of the experimentation - in

terms of human and computer time spent in the search for useful measurements - was

enhanced by the fact that the First Fit study had been done first. The understanding of

packing structures gained from that study allowed similar analysis of Best Fit with much less

exploration time. Similarly. since the results are analogous to those for First Fit, the pace of

this section is faster.

Graph 2-8-a depicts empty space in Best Fit packings as a function of n with u = 1, and

Graph 2-8-b shows the residuals from this fit. A linear least-squares fit on this log/log scale

has slope 0.619, which is better than the corresponding value of 0.701 observed for First Fit.

The regression results suggests that empty space is sublinear in n; as before, this leads to the

conjecture that Best Fit is asymptotically optimal for this input model. Prompted by these

observations, Shor [16] proved bounds of O(n /21og n) and Q (nl/ (log n )3 /) for empty space

in Best Fit packings when u = 1.

Because Shor's results imply that empty space grows more slowly for Best Fit than for First

Fit, Best Fit must produce better packings asymptotically when u = 1. It is clear from Exhibit

2-9 that Best Fit produces better packings at smaller n and u as well. Graph 2-9-a shows the

ratio of empty space in First Fit packings to that for Best Fit packings of identical weight lists,

for 10 trials each at u = 1 and 125 :5 n <8000. In all cases the ratio is greater than 1, indicating

S'"- that BF gives better performance. Graph 2.9-b compares empty space for the two algorithms

on identical weight lists at n = 16000 and 0.2 < u s 1. Best Fit generally gives better packings

throughout, although the differences are negligible at small u. Although Best Fit and First Fit

are both online algorithms, there is no a priori reason to suspect that similar nonmonotonic

behavior will be exhibited. Graphs similar to 2-9-b indicate, however, that the

nonmonotonicity is even more pronounced with Best Fit, since it becomes apparent at smaller

n and is more sharply defined as n grows.

0 '
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Exhibit 2-8: Best Fit, urn 1

The obvious question is whether the bins are distributed by item classes and by gap ranges

as they are for First Fit. Preliminary experiments measuring f, the fraction of k-item bins in a

pacP ng, suggest behavior almost identical to that displayed for First Fit (in Graph 2-6). The

only significant difference discovered so far is that when u is above 0.9, Best Fit tends to give a

slightly higher fraction of 1 -item bins and slightly lower fractions of 2-item and 3-item bins

than First Fit

The arguments for nonmonotonic behavior in First Fit can be adapted to Best Fit. Showing

that e (a lower bound on the gap in 2- item bins) is bounded away from zero seems even more

difficult in this case, however, since Best Fit finds pairings that minimize this gap. Complete

analytical characterization of online packings remains a formidable open problem.
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2.5. First Fit Decreasing

The First Fit Decreasing algorithm sorts the items by decreasing weight before applying First

Fit to the list. Prompted by early simulation results of Bentley and Faust [1], Leuker

(141 showed that AFFD(L,~n) = E)(n"') when u = 1.

Exhibit 2- 10 depicts empty space as a function of n for five values of u. Each panel of Graph

2-10-a presents empty space for 25 trials at each sample point; for comparison of scales, a
horizontal line in each panel is drawn at one bin. In Graph 2-10-b, each curve presents mean

values for the corresponding panel of Graph 2-10-a. Note that the n values double as they

increase and that the abscissa is on a logarithmic scale.

The most striking observation, from the bottom two panels of 2-10-a, is that empty space

does not appear grow in n when u is small. The conjecture that empty space is constant in n

when u :s 0.5 was first made in (21 and subsequently proved in [3). Subsection 2.5.1 presents

a closer look at the packings when u is less than 0.5.

,-S

4' The presence of outliers - which indicate very bad packings - when u is large (at 0.7 and

.4 0.8) and n is small (less than 1000) is also of interest. Exhibit 2-11 gives another view of the
outliers. Graph 2-11 -a presents empty space as a function of u for three fixed values of n (as

before, note the differences in scale among the panels). The bottom two graphs present mean

empty space for the corresponding panels above.

inrae0dta h bcsai nalgrtmcsae

Thwotsrkn bevtofo h oto w aeso -0a sta mt pc

doesP noVpergo innwe ssal h ojcue htepysaei osati



41

s-s-

jIl I

- - -

.*'j il ,::::.:Z

= * - -" - - "0

" ; i : ; : a

0- -- . . . . U~

, ,i . _

Exhibit 2-10: First Fit Decreasing

When u nears 1 (the panels on the right), a number of outliers appear arnd empty space

suddenly displays a large variance as well as a rapid increase in the mean. As n increases,

this critical region (where the bad packings occur) appears to shift to the right. This behavior
is also observed in Graph 2-10-a: the top panel suggests that u =0.8 is no longer in the critical

The left panels of Exhibit 2-11 suggest that behavior at u S 0.5 is quite different from that at

u > 0.5. In fact, the bottom left graph suggests that empty space grows linearly in u when u is
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Exhibit 2-11: First Fit Decreasing

O

- -between 0.5 and the critical region. Subsection 2.5.2 examines the critical region and gives a

partial characterization of the causes of bad packings; behavior when u is below the critical

region but above 0.5 is also explored.
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2.5.1. u Below 0.5

The proof (in (3]) that empty space is constant in n when u _ 0.5 gives an upper bound of at

A least 10" bins; Floyd and Karp [7] recently improved this bound to 10 bins, using a slightly

different model of input probabilities. The bottom panel of Graph 2.10-a suggests that the

mean is in fact nearer to 0.7. Moreover, empty space is less than 1 over 75% of the time, in

which case the packing must be optimal (because the optimal packing cannot use fewer bins

and still contain the entire weight list). This section examines behavior at u !5 0.5 more closely.

Since the minimum number of bins used is r (L, ,.n) there must be at least

[.(LU.n) - { empty space in even an optimal packing: the last bin in the packing

*. represents a sort of "spillover" bin, whose gap is more an artifact of the weight sum than of

the packing quality. Let the partial empty space of a packing refer to the empty space in all

but the last bin.

t1.0

.f *

Empty Spaco in Other insh

"." Exhibit 2-1 2: Last Bin vs Partial Empty Space

;... -Exhibit 2-12 plots empty space in the last bin against empty space in all the other bins

;' " (partial empty space), for 25 trials at the sample point n = 128000. u = 0.5. Empty space in all

! the other bins (ap~proximately 32000 of them at this sample point) remains between 0.17 and

" 0. 18, while empty space in the last bin ranges between 0 and 1. Total empty space (the sum

)':"- ' of these two quantities at each trial) is therefore almost completely dominated by variation in

- " the last bin.
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Graph 2-13-a compares total empty space (left panels) to partial empty space (right panels)

for sample points at n = 12800, 0.1 < u <.5. Note the dramatic increase in precision: empty

space has an observed range of approximately 1 bin, while partial empty space is usually less

than t0.001 bin from its mean The growth of partial empty space in u was completely

obscured by the last bin.

Graph 2.13-b shows partial empty space for n = 12 000 and u in increments of .01. Graph

2 13-c shows the same information on a log/log scale, with a linear regression line

superimposed. Partial empty space is nearly linear on this scale, except for an increase at the

high end. The fit has slope of 2.11, indicating that partial empty space grows approximately as

u: *'. (Fits at smaller n are consistent with this). The residuals from this fit provide an

interesting pattern: in Graph 2-13-d, peaks appear at u = 1/2, 1/3, .1.4 ... , suggesting that a

cyclic component exists. Graph 2-13-e shows residuals from a fit to a degree-3 polynomial.

Similar peaks appear with this model and in fits with as high as degree-5 polynomials.

An obvious question is whether this cyclic behavior is somehow an artifact of the simulation.

When n is very large and u very small, the average difference between successive weights is

small, as are the gaps in the bins: perhaps errors due to machine precision are propagated in

some fashion to cause this pattern. Evidence exists to suggests that the cyclicity is not an

artifact of machine precision or implementation. First, the smallest item weight ever

generated has expected size about one millionth of a bin (this occurs when n = 128000 and

u = 0.1), and partial empty space is near 0.005, giving an average gap of one millionth of a bin.

The weights are represented by 30-bit integers, which can represent one billionth of a bin, so

machine precision is not overwhelmed. Second, the cyclic behavior is observed at smaller n,

, which would presumably not be the case if machine precision were the problem. Third, the

results were replicated on a secondary simulation environment, with differences in random

number generator (linear congruential vs. cyclic feedback), machine precision (30-bit

integers to represent the weights vs 16-bit reals), implementation, programmer, and

programming language. The only differences in partial empty space between the two are

predicted by analysis of the differences in precision between the two systems.

It is possible that the cyclicity in the residuals can be explained by an argument similar to

that for the nonmonotonic behavior of First Fit: that is, the observed behavior is a result of the

interaction between the fraction of k-item bins and the gaps in k-item bins. Analysis of FFD

packings suggests that k-item bins have a great deal of structure.

4,
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Figure a: Items with weight between 1,'2 and 1/3 have been

packed The items are stacked two-to-a-bin.

",'', Figure b: Items with wetght between 113 and 114 have been

. added to the Dacking. Most of these items are stacked three-

" -- to-a-bin in region ft. Some iterns backfill onto region a. The

vertcal lines mark the edges of regions a and .N.

Figure c: Items with weight betwen 1/4 and 1/5 have been

N..-

A'V" added. Most of these items are stacked four-to-a-bin, but

some backfill io regSons b i ando
-,°

Figure d: All the items have been packed.

a . o e e Exhibit 2-14: FFo Packings
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Exhibit 2-14 presents "snapshots" of an FFD packing of weights drawn from [0. 0.5]. Each

item is represented by a very narrow white vertical bar with its top marked in black. There are

so many items that the black tops appear to form a continuous line. The first (largest) item

goes into the first bin, and so must the second, since the weights are near 0-5, The third and

fourth items must go into the sacond bin. This packing of items 2-to-a-bin continuas until all

items with weight greater than 1/3 have been packed (Figure a). C1l1 the bIns packed up to

this point 2-bins (not 2-item bins, since they will eventually contain more items). Once the

items are of size less than 1/3, they may be packed 3-to-a-bin (call these the 3 bins). Some of

these items. however, are small enough to "backfill" the 2-bins. This process of backfilling

ac -. packing 3-to-a-bin continues until items with weight greater than 1/4 have been packed

(Figure b). Continuing, items either backfill in the 2-bins or the 3-bins, or are packed 4-to-a-

-. bin in new bins. This pattern continues until all items are packed. Observation of this

structure in FFD packings was central to our proof of constant empty space in [3]. More

- importantly, "movies" of the packings, obtained from simple algorithm animation techniques,

* were directly responsible for suggesting the proof technique.

2.5.2. u above 0.5

This subsection examines FFD packings for u > 0.5. Empty space is measured here rather

than partial empty space, since the last bin does not dominate the measurements. We first

study the critical region, where outliers in empty space appear and mean empty space

increases rapidly as u nears 1.

Recall from Exhibit 2-10 that the left side of the critical region appears to shift to the right at

-. a rate at most logarithmic in n. It is not clear how to characterize the region by experimental

methods; is likely, for example, that quantities such as the "edge of the region" and the

"fraction of outliers" would be artifacts more of sample size and data analysis tools than of

0 underlying phenomena. Instead of measuring properties of the critical region, this section

examines properties of the weight list that are correlated with bad packings.

Exhibit 2.15 presents, for n = 2000 and .84 < u < 1, the distribution of empty space for 25

. trials at each sample point. A panel corresponds to at single sample point; in each, the

measurements of empty space for the 25 trials are plotted against their ranks. In the top left

and center panels, corresponding to u = 0.84 and 0.86 (outside the critical region), empty

space is fairly uniformly distributed between [0.8,2] and [1.21, respectively. At u = 0.88 the

distribution smooth except for the last 3 points, which are sharply higher. At u = .90 a break is

0
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Exhibit 2-15: Distribution of Empty Space

seen at the 16th-largest point. At higher values of u an abrupt break is no longer seen.

Theoretical characterization of the distribution of empty space for fixed n and u is an open
problem. Although the sample size is small, it appears that the distribution changes

significantly over the critical region.

A new measure gives more insight into behavior in the critical region. Call items with weight
greater than 0.5 the big items in an input list. The expected number of big items is n(u - 0.5)/u;
at n = 2000, u = 0.8, for example, 2000(0.3/0.8) 750 of the items in the weight list are

* expected to be big items.

Graph 2-16-a presents the results of 1000 trials at n 2000, with u generated uniformly at
random froi the interval [0.82. 0.881. The y-coordinate of each point corresponds to empty

space for that trial; the x-coordinate gives the difference 8 between the iumber of big items in

7)

%
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Exhibit 2-16: Bad Packings and S

the list and its expected value for the corresponding u. For example, a point with x-coordinate

20 might corresponds to a trial with 2000 items generated uniformly from the range (0, .S25].

The expected number of big items at this sample point is 2000(.825-.5)/.825m::0 788, but the list

actually generated at that trial had 808 big items, so we have 6 = 808-788 = 20. In Graph

2-16-b, 8 is plotted against u for each of the 1000 trials. The relatively bad packings - the 40

trials having empty space between 3 and 50 - are highlighted in the graph. (All other

packings had fewer than 3 bins of empty space.)

Lists with positive 8 (the topheavy weight lists) tend to give bad packings. From Graph

2-16-a it appears that very topheavy lists tend to give very bad packings. On the other hand,

not all topheavy lists give bad packings; from Graph 2-16-b it appears that FFD is more

sensitive to topheavy lists at high u, since bad packings are generally concentrated in the

upper right corner of the graph.
S

Exhibit 2-17 supports this last observation. Graph 2.17-a plots empty space against theEl number of big items for 25 trials at the sample point n = 2000, u = 1. The expected number of

big items at this sample point is 1000. Empty space increases with the number of big items in

the weight list; that is, topheavy lists tend to give bad packings. In contrast, Graph 2.17-b

depicts empty space versus the number of big items at n = 2000, u = 0.3, which is well below

the critical region. Outside the critical region, empty space does not appear to grow with the

number of big items.

0%
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These and similar graphs suggest that as u nears I FFD becomes increasingly sensitive to

the number of big items in the list. If the conjecture were true, it would explain why the critical

region appears to shift to the right at high n. Let 1A represent the expected number cf big

items in a list. By the central limit theorem, as n grows the probability of generating a list with

more than d/i big items decreases exponentially as n grows. On the other hand, at fixed n the

probability of generating a topheavy list increases linearly in u, since the range of weights

increases. At high n and small u, therefore, the probability of getting a bad list is too low for

outliers to be seen in 25 trials. Since the probability increases in u the boundary of the critical

region would appear to shift to the right. While this observation gives a first cut at

characterizing packings in the critical region, it is clearly not complete. Why, for example, do

some topheavy lists cause bad packings and others do not? Further simulation might reveal

more.

Finally, consider the packings in the well.behaved area with u below the critical region but

above 0.5. The analytical bound of O(n1/2) for empty space when u = 1 can be extended to

any u (see [14]). In addition, it can be shown (see (3]) that E[AFFD(L .. ) = Q(n'/3) for

0.5 < u < 1. Finding the functions of u implicit in these order-of -magnitude bounds is an open

problem.I,
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Recall Exhibit 2.11, which depicts growth in u for three values of n; it appears from the

V bottom left graph that mean empty space grows linearly with u in this range. Linear

regression fits to the simulation measurements in this region indicate that empty space is

approximately described by the function E[AFFD(L = 4.9n : ' :(  -0.5). As with regression

fits when is below 0.5, a cyclic component is once again seen in the residuals.

2.6. Best Fit Decreasing

The Best Fit Decreasing algorithm, like FFD and unlike BF and FF. sorts the item list before

packing. BFD and FFD are compared in this section. Although the expected performance of

FFD has been characterized to some extent for all values of u, theoretical analysis of BFD is

much less complete.

Simulations comparing BFD and FFD on identical weight lists at various sample points

suggest that the two algorithms give almost identical performance for this input model. For

example, in 25 trials each at the sample points given by u = 1, n = 125,250, ...8000, comprising

.-.. 175 measurements, empty space in corresponding packings differed in only one trial (at

n = 8000), when FFD used 2 more bins than BFD. Note that bin counts differ if and only if

.'- empty space differs, since the weight lists are identical at each trial. This close

correspondence holds for other values of u as well: experiments at u = 0.8 (and the same n

values) produced one trial where bin counts differed by 1, and trials at u = 0.5 produced no

differences. Similar experiments with n fixed at 8000 and u = 0.2, 0.4. 0.6, 0.8 produced no

differences in bin count.

It is not necessarily the case that BFD and FFD give identical packings. Whether the

packings are identical can be resolved to some extent by measuring partial empty space,

which corresponds to empty space in all but the last bin. If the packings are identical, then

• partial empty space will be equal for the two. The converse is not necessarily true: it is

possible that the packings be different but partial empty space is the same. Preliminary

experiments at u=1 and varying n suggest that, on average, partial empty space differs

between the two rules less than 1/3 of the time. Limited experiments at n = 800 give

differences 84% of the time at u = 0.8 and 65% of the time at u = 0.4.

Consider the structure of BFD packings as compared to the pictures of FFD packings in

Exhibit 2-14. On a perfect list (with items evenly distributed between 0 and u), BFD and FFD

must produce identical packings because the first bin into which an item fits is also the best.

Op
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Suppose a random list with u 0.5 is to be packed. Certainly the items with weight in thle

range (1 /3, 1/2] would be packed identically by BFD and FFD. In the next packing stage it is

possible that an item with weight from (1 /4, 1 /3] has its ''best" fit in a 3-bin, but its 'first'' fit in

a 2 bin, but this would only result in two items being swapped in the two bins, which would not

affect partial empty space since the weight sum and the bin count are identical. By this

argument it is surprising that partial empty space is observed to differ so often for u less than

1. Further experiments with more detailed measures could give more information about

packing properties of the two rules.

2.7. Future Work

The results in this chapter have extended current understanding of the expected-case

behavior of the four bin packing heuristics. Not only do the measurements allow a precise

description of mean empty space as a function of n and u, but examination of properties of

the packings gives deeper insight and new arguments to explain observed behavior.

An obvious next step is to develop theoretical characterizations of the heuristics, perhaps

by formalizing some of the arguments contained here. It is unlikely that theoretical

characterization as precise as these measurements will be obtained by current techniques.

The experimental work could be extended in a number of ways. First, it would be interesting

to measure packings for nonuniform distributions on weights. Also, many other heuristics are

worthy of consideration: Coffman, Garey, and Johnson [51, for example, survey results for

over 20 packing rules. Little is known about the expected performance of most of these rules.
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Chapter 3
Greedy Matching In One Dimension

* 3.1. Introduction

This chapter studies a restriclion of the following problem: Given N points within the d-

dimensional unit hypercube, what is the pairwise matching of the points that minimizes the

sum of the Euclidean distances between matched pairs? The planar version of this problem

arises, for example, in scheduling mechanical plotters: the input is a connected graph in the

* plane and the plotter must draw lines at all edges, minimizing the amount of time that is

wasted while the plotter moves with pen up. Wasted pen movement can be eliminated if ant

- ' Eulerian cycle exists in the graph. There is no Eulerian cycle if and only if the graph has an

even number N > 2 of vertices of odd degree;, in that case the minimum matching of those

vertices can be added to the edge set to obtain the tour with minimum wasted movement.

The matching problem for points uniform on the unit square has been studied extensively.

Edmonds [31 showed that a minimal matching in a general graph of N vertices can be found in

0(M) time, but this can be too expensive for plotting applications because N is often very

large, say, in the thousands. Fast approximation algorithms are therefore of interest; Avis

J. [1 ] reviews work in this area.

Arn obvious approximation algorithm for minimum matching is the "Greedy" one: keep

removing the pair of vertices with minimum edge cost until the matching is complete. The

straightforward implementation takes 0(M) time; Manacher anid Zobrist [5] describe a

version that from experimental results appears to run in 0(N) expected time when the points

are distributed uniformly in the unit square.

Let EN (N) denote the edge cost of the matching produced by heuristic H; this is the sum of

the weights of edges in the matching. (The subscript is dropped in the following when

reference, to the Greedy Heuristic is clear from the context.)

- - - . . . . . . - .
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Reingold and Tarjan [6] showed that for any graph that obeys the triangle inequality, the

worst-case ratio E reedy(N)/EoptIma (N) is bounded above by 14/3).\ no I or about (4/3),\ .

Avis. Davis and Steele [2] showed that when the points are uniformly distributed within the

unit d-cube (for d > 1), the cost of the Greedy matching asymptotically approaches Cd ,4 d 1)/d

which is within a constant factor of the optimal matching.

We examine here the expected performance of the Greedy heuristic in one dimension: that

is, the points are drawn independently from the uniform distribution on [0,1]. Certainly

Greedy is a poor choice for this problem, since the optimal matching can be found quickly by

pairing the leftmost point with the second leftmost, the third with the fourth, and so on, giving

an expected matching cost of approximately 1/2. Although Greedy should not be

implemented expressly for one-dimensional matching, its expected-case behavior is of

interest. First, points in higher-dimensional problems might happen to lie on a straight line. It

is useful to know how Greedy performs in this potentially frequent case. The second reason is

purely theoretical: although Avis, Davis and Steele have characterized the expected edge cost

. in d-space for d > 1, the case d = 1 remains open. Finally, the expected running time of the

,- - Greedy algorithm described below, a modification of the Manacher and Zobrist algorithm for

planar points, is an open problem: the one-dimensional case can give insight into behavior at

higher dimensions.

3.2. The Study

Exhibit 3-1 presents a description of the Greedy algorithm used as the simulation model.

The algorithm uses an array A containing the N points from the interval [0, 1]; the points are

assumed to be presorted in increasing order. Greedy makes repeated passes through the

point set, at each pass locating the smallest gap between adjacent points, accumulating edge

* cost, and removing the pair from the point set. This algorithm runs in time quadratic in N.

The simulation program is more efficient than the straightforward implementation. The

program description is given in Exhibit 3.2; this is a modification of an implementation

*Q proposed by Manacher and Zobrist [51 for the two-dimensional matching problem. The

simulation program also makes repeated passes through the point set, but each pass removes

many points from the set rather than a single pair. Two points comprise a nearest neighbor

pair if each is the nearest neighbor of the other; the distance between them is therefore a

local minimum, and would eventually be removed by Greedy. Rather than removing the pair

4
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Greedy(N)
Input: Array X of points, X[1] <z X[2] X[N]
Output: edgecost

while N > 0 do
ning3p MaxRe3l

- for 1 2 t, N do Ftrld snal,-st gap.
gap xfl] - X[1-1]
if (gap < mi ngap) then

.4mingap = gap
index = i

edgecost z edgecost -mingap Accamulate costs.

for 1 index-l to N do Remove matched points.
X[i-2] = X[i]

N N -2

Exhibit 3- 1: Greedy Algorithm: Quadratic Implementation

with minimum gap at each pass, the program removes all pairs of points with locally minimum

distances. Since removing points cannot produce smaller gaps, Program 3-2 correctly

implements the Greedy heuristic.

Two measures of the Greedy algorithm are of interest. The edge cost corresponds to the

sum of the lengths of the edges formed in the Greedy matching. Let Rv) denote the

expected edge cost for N points drawn uniformly and independently from the interval (0, 1].
The time required to compute the matching at each iteration of the while loop is proportional

to the number of points encountered (assuming a preprocessing step to sort the points). The

computation cost is therefore proportional to the sum, over all iterations of the while loop, of

the number of points remaining at each iteration; let C(N) denote expected computation cost.

* The following section presents simulation results for the Greedy algorithm. The primary

simulations were performed on a VAX-11/7501 using 32 bit integers and 64 bit (55 bit
5-'.1

mantissa) double precision reals. For program efficiency, integer computation was used

5-- throughout; that is, points were drawn from the integer range (0, 2"30 ] and results were scaled

to the real range [0,1] for output only.

The only parameter to the simulation is N, the number of input points. Sample points for the

,Vi
1VAX is aI trademark of Digital Equipmenmt Corporation.

1
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i * r eeJy i N )

Input: Arry X cf pr tn s, X[ 11 <= X[2] .X[N]
Output: I[ecJs t

while N > 0 do
mn MaxPeal I,', aze

,- - X[2] - X ]
N,-J l I MaAReal1 St-t g er.,nel.

for 1 2 to N do
1 = n
m1 z r

r = X[i+l] - X[i] F'nd,'ocalrmnima.

if (1 > m) and (r >= m) then
X[i-1] = X[i] NIL
edgecost = edgecost+m Accumulate

edge costs.

j z I Remove matched pairs.
for i :I 1 to N do

if X[i] is not NIL then

X[j] = X[i]; j j + I
N = j

end

Exhibit 3-2: The Simulation Program

study were taken at powers of two from 16 = 24 to 262144 = 2"8. In general, 25 trials were

performed at each sample point. Given N, the simulation program generated N points by the

cyclic feedback method described by Knuth [4] (Algorithm A, Section 3.2.2). The numbers

were then quicksorted and presented to the matching routine. Some experiments were

replicated (for V s 4000) in Basic on a TRS-80 Model III computer, using the system random

number generator and 32-bit reals.

3.3. Experimental Results

Some upper bounds are known for the edge cost E(N) of a Greedy Matching. Reingold and

Tarjan's [61 worst-case bound holds in the one-dimensional case, giving

EGewy(N)/EI (N) < 4/3NOm (recall that EOpama(N) is approximately 1/2 for linear

matching). Moreover, it is easy to show that EGre*(N)= O(Iog N) when the points are placed

on a line (see (2]): when there are N points in the unit interval, the two nearest points must be

at most 1/(N- 1) apart. Removing these two gives k = N- 2 points and the smallest edge

distance is at most 1/(k- 1). Therefore

',

!



59

F1 (V)~~F = (log N).,__ (\-1;- :,)

It s not Kown whether this upper bound is tight. By analogy with the results of Avis, Davis

3nd Steele £21 for higher dimensions. t is natural to conjecture that the ratio of edge cost for

Greect is :-thin a constant factor of Optimal. This problem was described by Mike Steele,

vwho had been tryng to prove the constant bound. The initial goal of the simulation study was

- to find an empirical bound on the Constant and so to direct the theorem-proving efforts.
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Graph 3-3 a shows why the bound was so difficult to prove: V(.V) increases with V rather

than remaining constant. The graph depicts the results of 25 trials each for V set at powers of
2 from 2' to 2 ". Since the x-scale is logarithmic and edge cost appears to grow linearly.

l. logarithmic growth in \ is indicated. A linear least-square fit on this scale gives

El ' O.t )log ,. ± 0.28.

This implies that unlike higher-dimensional cases, the ratio of the Greedy matching to the

optimal matching is not bounded by a constant. Note that the coefficient is very small and

that L(.V) therefore grows very s!owly in V, Experiments over a smaller range of Nvalues may

not have permitted this observation.

The computation cost of the efficient implementation is also of interest. Computation cost is

proportional to the total number of points examined in all passes through the pcint set. This

number, divided by V, is displayed as a function of N in Graph 3-3-b; the results suggest that

asymptotically E(N)-1.52N.

Levcl
Ongtinal . 0
".Points

Remove * . . .

Find
Remove

%Find 4
d, Remove

* Exhibit 3-4: The Matching Algorithm

More detailed measurement of the matchings give more insight. Exhibit 3-4 shows the

behavior of the shortcut algorithm on a small point set. Let a level correspond to one pass

through the point sets, equivalent to one iteration of the outer loop in Program 3-2. At level 0,

all the points are present. At each subsequent level, nearest neighbor pairs are removed and

the /eve/ edge cost - the sum of the distances between paired points - is accumulated. This

continues until some level where no points remain. Of course, different trials at the same

sample point may not produce the same number of levels.

Pip ro

0L



61

14 1 2 14
13 2 7 10 13
12 2 4 9 13 12
11 1 2 11 17 9 11
10 1 12 17 10 1 10
9 1 1 19 11 5 2 9
8 1 3 10 9 1 1 8
7 1 13 18 14 2 7
6 2 8 15 10 3 6
5 1 4 12 9 1 5
4 3 13 17 5 4
3 17 10 2 3
2, 2 5 1 2S ! I I I I I I I I I I I

16 64 256 1024 4096 16384 65536 262144

Exhibit 3-5: Number of Levels

Exhibit 3-5 shows the number of levels encountered as in 25 trials at each ,'. Each table

entry gives the number of trials for which the corresponding N value (columns) reached the

corresponding number of levels (rows). Zero entries are left blank. At .V = 16, for example, '5

trials reached 2 levels, 17 trials reached 3 levels, and 3 trials reached 4 levels. Since N

doubles each time (essentially producing a logarithmic scale on the N values) and the counts

'--. appear to increase linearly, this table suggests that the mean number of levels grows

logarithmically in N.

""0 .8 0

- - -,0.80 10.-
0

"'0"0 0  0.2
0 2 4 a a 10 o

~0.00 0.0l 0 2 4 0. 8 0 12 1

LLevel

Level 02 6810121
N:8192 Exhibit 3-6: Fraction Remaining Na 262144

0,4
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This conjecture of logarithmic *yo..th Ir the number of levels is supported by Exhibit 3-6,

which presents the frac.t "  2 "s ',O 3. r'' at each level for two values of A". The fraction

remaining at level is equal to the r' ;e cr of points at level i divided by the number of points

at level 1-1. For example if there are 1200 points at level 0 and 900 are removed (leaving 300

points at level 1), then 300/1200 = r.25 s the fraction remaning at !evel 1. Since

approximately a corsta, . frac. r, -f soints are removed at each level. oiA, a logarithmic

number of levels is typica y reached.

Very nearly 1/3 of the orignal point st remains at Level 1. After Level 1. the mean fraction

remaining is slightly higher (near 2.2). and is nearly constant throughout higher levels

(although the variance increases). No:e that at the last levels the fraction remaining must

correspond to some "small rational" such as 2/4or 4/6, since there arc very few points left.

The mean fraction remaining at a given level does not appear to vary with A7. This observation

suggests an argument for linear computation cost: at most of the levels a constant fraction f

(observed to be near 0.36) of the points from the previous level remain to be processed. Since

the cost of the algorithm at each level is linear in the number of points at the level, the

recurrence for computation cost has the form

c(,) = C(f ,V) + O(V)

which has solution O(N). Formalizing this argument would require finding an upper bound on

f for most levels and either bounding the variance at the last levels or showing that they do

not dominate the total computation cost.

ChO.50 -

10.45-
S

0.40

0.35I ! !, ,• ••
0.30
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Exhibit 3-7: Fraction Remaining at Level 1
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The fraction remaining at Level 1 is an interesting special case. giver, a set of points

uniformly distributed cn the unit interval, how n'any form nearest neighbor pairs) Edhibit 3-7

suggests that asymptotcally tvo-thirds of the points form nearest n,_ ,gilncor p :i.rs t Level 1

since the fraction remaining converges to 1/3. Steele [7] proves tils obser.atcn intuiti,.ely,

twopoints are nearest nei]hbors if the gap Let'.een them s a local minimum For an, triple of

COns-CutVe gaps. ri, probabii~ty that the mddie one is tne sma:lest ii. 1 '3 T.,.o points are

removed every time this happens. so we expect to remove 2/3 of the points.

The points are no longer uniformly distributed after Level 1. so the above argument does not

hold at later levels (Exhibit 3-6 indicates that the fraction remaining is near 0.36 at higher

levels rather than 1/3). Theoretical characterization of the properties that determine nearest

neighbor pairs at higher levels is an open problem. Note that a gap at Level 1 is either its

original size or has been formed by the removal of nearest neighbor pairs, in which case it

equals the sum of an odd number of original gaps. Since gaps between uniformly distributed

points have a distribution similar to exponential, gaps at later levels are distributed as sums of

(random numbers of) exponential variates.

- .Examination of the levels also gives an argument for logarithmic growth of edge cost (recall

that total edge cost is the sum over all levels of the edge cost at each level). Exhibit 3-8

presents the edge cost per level for two values of N. At Level 1, edge cost is near 0.11;

afterwards, mean edge cost remains near the constant 0.14 in the middle levels and increases

at the last few levels. The mean edge cost per level does not appear to vary with N, although

variance clearly depends on the number of points at a given level.

These observations suggest an argument for logarithmic growth of total edge cost. Suppose

that level edge cost is near some constant e at all but the last few levels. Total edge cost must

therefore be e times the number of levels. By the earlier argument relating fraction remaining

*O to the number of levels, there are about log 1,1 N levels, so EN must grow as elog 1,N.

From the simulation results it appears that em 0.14 and f'w 0.36 (because 1/f%=t 2.7), giving a

" " conjecture that ENh0.14log.. 7N. A least-squares regression fit using the model

0O, EN = C1log9. 7N+ for total edge cost produces c=0.1427 (which is very near the

conjectured value) and c = 0.28.

The simulation results presented here give new measurements, conjectures, and arguments

for the performance of Greedy matching in one dimension. Formalization of the arguments

1~L
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Exhibit 3.8: Edge Cost by Level

contained here requires deeper understanding of the distributional properties of point sets

under nearest-neighbor removal.
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Chapter 4
Comparisons in Quicksort

:-" 4.1. Introduction

Quicksort is among the most efficient of comparison-based sorting methods. Proposed by

Hoare [2, 3] in 1960, the algorithm was thoroughly analyzed by Sedgewick [8, 6], who gave

precise performance bounds for a number of implementation strategies. Knuth [5] also

provides a detailed discussion.

To sort an array .Y of N elements, Quicksort partitions X around a partition element, s, So

that elements with value less than s are to its left in the array and larger elements are to its

right: after partitioning, s is in its correct position. The algorithm then recurs on the two

subarrays on either side of s. Performance depends to a great extent upon the choice of

partition element at each stage of the recursion. If, for example, the least element is selected

each time, then Quicksort can require Q(,V2) total comparisons during partitioning. Best

performance is achieved if the list is divided in half at each stage. A number of efficient

strategies for selecting a partition element with rank near the median have been examined.

A strategy that works well is to choose s at random at each stage. A generalization

(suggested by Hoare) takes a sample of size T from the sublist and uses the median of the

sample as an estimate of the true median (random selection corresponds to T = 1). Singleton

[9] and Sedgewick [8] recommended median-of-3 Quicksort (that is, T= 3) over a large class

of selection strategies. Sedgewick showed that the percentage improvement in sorting cost is

small for larger T and argued that the cost of finding the median of larger samples would

quickly overtake any improvement in sorting cost. His argument was not made precise

because the comparisons used in median selection were not an explicit part of his analytical

model; instead, this cost was included as part of the overhead for each recursive call.

This chapter extends Sedgewick's analysis by explicitly including the cost of median

e0 "/A
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selection and by considering the trade-offs between partitioning and median-selection costs

Intuitt,,ely. larger sample sizes require more median-selection comparisons but produce better

partitions, giving fewer partition comparisons Section 4 3 presents ,irnulation results that

compare fixed Istrateges, although comparison cost is of pr(mar'j interest others measures

are also ?onsidereJ Section 4 4 examines strategies that llow T to ,ary as a functon of

ubbhst size at eac , recursL'e stage S.:cton 4 5 corrects a small error in Sou~c....s analysis

of median of 3 Cuicksort.

4.2. Simulation Issues

It is not necessary to generate and sort random lists of numbers to obtain the desired
measurements. A simple 'shortcut" simulation program mimics the performance of

Quicksort on random lists with much less computation time Subsection 4.2 1 describes the

model of Quicksort to be simulated, and Subsection 4 2.2 discusses implementation details of

the simulation program.

4.2.1. The Model

Exhibit 4-1 gives the general structure of the simulation model. It is actually a combination of

two sorting algorithms: "basic" Quicksort can be improved by not recurring on sublists

smaller than some cutoff At. To sort the elements in the small sublists, a single final pass of

Insertion Sort, which has low overhead, is used.

Assume that the V elements to be sorted consist of the integers I through N, initially

arranged in some random permutation; this simplifies the discussion as well as the simulation

since the rank of an element is identical to its value. Note that this implies that equal-valued

elements do not occur in the input list; otherwise, this assumption does not affect the analysis

of Ouicksort because performance depends only on the ranks and not on the values of the

elements. (See Sedgewick [7] for a discussion of Quicksort with equal elements.)

Quicksort is one of the few algorithms for which various implementation strategies have

been analyzed exactly rather than in asymptotic order-of-magnitude terms. To do this, a set

of measures are identified that correspond to the number of times various pieces of code are

executed. The analysis remains independent of specific implementation because the

measures correspond to the number of times various steps are performed rather than to their

running times. The standard model incorporates the measures listed below; values at each

'.1
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Procedure Quicksort To sort arrayX, l , t'/ lc"of .'j
Qsort(1, N)
InsertionSort(1. N)

Procedure Osort(Io, hi)
If (hi-lo > M)

' Sample T elements frofn X[lo,hi]
Select the sample rliedian. call it s
Partition the array around s, and set

to the index of S in X
Recur on the left and right subarrays:

Osort(j + 1, hi)
Qsort(Io, j-l)

Procedure InsertionSort(lo, hi)
Set i = Io + 1

I,..'. Loop until i = hi:
If Xfi] is smaller than X[i-1] then

- Sift down X[i-1] to X[1], shifting elements
and placing a in its correct sorted
posit ion.

* Increment i
Endloop

Exhibit 4-1: Quicksortr;'"

recursive stage correspond to Sedgewick's very efficient implementation of Quicksort [8, 6].

For a detailed discussion of the simulation model, the measures, and their analysis, see [8],

[6], or [5] (Section 5.2. 1)

- 1: the expected number of times subroutine Osort is called. At each recursive
stage .4 is incremented by 1.

" B: the expected total number of exchanges performed during partitioning. At
each recursive stage, this corresponds to the number of elements that must be

- - moved in order to partition the subarray around the partition element s. If the
array is of size n = hi - lo + 1 and T is the sample size, then at each stage B the
expected number of exchanges is given by

V.-(n- lXn-y(n).

* C: the expected total number of comparisons of array elements to s during
partitioning (but not during median-selection). In Sedgewick's efficient
implementation C is incremented by n- 1 at each recursive stage. This
implementation requires a high-valued sentinel at the high end of array X. During
the recursion previously-selected partition elements serve as sentinels for the

.*, subarray

" D: the number of insertions performed during Insertion Sort. In Program 4.2.1 this

IV &11 C
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corresponds to the number of times the conditionl is true in the Insertion Sort
procedure. 1) represents the sum, over the subarra',s of size less than If, of the

number of insertions in each. For uach small subarray of size a < 1/the number

of insertions has expected value i; - if

* . I expected the number of rc-,,s x.'Q-c" (equivalently the toa ditance
ite'.is Ir- shifted) performed by insertion Sort For each sM 'Ill sUbarray of size

i / . this has eptected value t,-1),4 Lie 1). 1 represents the -_un of this
quantity over ail smll subarrays.

Sedge,.%ick found closed forms (within an Ol V) term) for B and ( for general fixed- F

strategies -when .1= 1 (that is. no Insertion Sort is performed). He also derived exact

formulas for .1 through T' (within an 0i(i - ") term) for T= 3 and arbitrary .t1. This study

extends the standard model by explicitly counting the cost of median selection. In

SedgewicK s model the sample size is fixed, so median se .;ction is counted as part of the

overhead of a recursive call, found by multiplying measure .4 by an appropriate constant, His

analysis also assumes that if > 2 T which is not necessarily the case here.

Section 4 3 examines fixed- T strategies with varying Jl; Section 4.4 considers strategies

vhere f is allowed to vary with the sublist size. Since the sample size is allowed to vary as a

- function of the subarray size at each stage, a general median-selection algorithm that takes

the sample size as input is required. Let t(n) be a function that returns an odd-valued integer

in the range [I i] then T = i(n) is the size of the sample taken from the n elements at a given

recursive stage.

In Sedgewick's very fast implementation the sample elements are evenly-spaced over the

subarray. General median-selection algorithms assume a contiguous set o. elements, rather

than an evenly-spaced sample of a larger set: how shall median-selection be embedded into

Quicksort?

One strategy is to copy the sample elements to another array for median selection. Another

is to perform median-selection in place, either by forming the sample from T contiguous

elements in the middle of the subarray or by implementing a median-selection routine that

accommodates noncontiguous elements (perhaps by using indirection in array addresses).

* - This strategy avoids the overhead of copying elements between arrays. Another potential

- . benefit of the in-place strategy is that the sample is correctly partitioned during median

selection; a clever implementation of the (Quicksort) partitioning step might exploit this fact by

not re-examining the sample.

%04W
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Detailed --_luation of :niplementation possibilities vciuld depend upon mrani fictors

Specific to the environment, this (interesting) problem is more approp riate to a stwd, that

would meaisure program ,,rformance on a specific machine The pchcy act±'(,r tliis

simulation st(d., 'Vas to mpit Simple. to maKe as few aSsurnptiCns as pcusiujle ioout

rimp-ren-l* on etalls and to :1llo% for the possibility of ini place mneian -'y-Ipct on

Eo.h:bit .4 2 pre~sents Se lect a inear expected time al~ornthim for soI-cting the ;-,-,ian ot

ar'a , eiemrents X[Io. hi] v.here F - hi-Ia + 1 ,The general alcorthm for seiect-ng tK

iar~est of 't-ms w-as fir-t described by Hoare [2] (wvho called it Find) and .as anal,,-ed b'y

Knutn see 35 Protlem 523)At termination of Select the median C-lement :ies n X~m

Select is similar in structure to Quicksort except that only one side of the partition is

considered in each iteration. In keeping with the theme of simplicity, a Median-of - I (random

sampling) strategy is adopted in the Sampling step. The model adopted for the partitioning

step requires n - 1 comparisons for each iteration on a subarray of size ni, rather than the ,I-i

adopted for measure ( (see [5] for a discussion of this partitioning model). This version

requires no sentinel, however, which would complicate the model under the assumption of

in-place median selection.

Procedure Select(Io, hi) T = hi - /o +
m 10 h)/ Im the index of the median

loop
1 lo; , hi + I
Sample a random element s from X[lo, hi]
Partition the array around s. and set

to the index of s in X.
Test: if (j < m) then lo j + I

else if (j > m) then hi j
else break;

endloop

Exhibit 4-2: Median Selection

Let ~Tkrepresent the number of selection comparisons required to find the ktA largest of T

elements, and let gT~ represent the number of selection exchanges. Then the following

recursions, with base casesf41 k =0 and kk 0, describe the computation time of Select (see

- - (5JN
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i;DJears that a closed form for ,, khas not been published. Let F represent the total number

of comparisons performed during median selection.

When T is fixed and If < T, it is possible that a subarray is too small: how does one sample 5

elements from 3" Sedgewick s implementation samples with replacement in such a case, so

* that scme of the elements are duplicated. Because this assumption is not compatible with

that of sampling and selecting from contiguous elements the subarray, the elements are

sampled ,without replacement. When T is greater than the subarray size n, T is set to n or

whichever is odd This implies that the true median is always found when n is odd and

smallet than I which may not be the case under Sedgewick's model. It T is less than the

cutoff If then this model is identical to Sedgewick's.

4 2.2. The Simulation Program

An obvious simulation strategy is to generate random lists of numbers and to sort them while

recording the measures of interest. This would require 0 (N) steps to generate each list plus

" ,NlogN) steps to sort. A simple observation allows more efficient simulation; the

* "shortcut" implementation describe here is similar to a shortcut Bentley describes for a

median-selection algorithm in [1).

Recall the assumption that art input list of size N consist of a random permutation of the

integers I through N. When Osort(lo, hi) is called, the subarray X[Io, hi] must therefore

contain a random permutation of the integers Io through hi. Whatever the median-selection

strategy, the partition element chosen must be from [o, hi]. If the partition element is in X(k]

after partitioning, then Quicksort recurs on the subarrays X(Io, k-1] and X[k + 1, hi].

Rather than selecting the partition element from the subarray at each recursive stage, the

WV VU
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..ortcut Smulition program '2ererdtes a partition element from a hypothetical subarray

-C":orci'nc to an appropriate probability distribution. At each stage, the size of the subarray

"qua1 to hi - 10 + 1) and the value of the partition element (randomly generated by a

-rocecjure to be described shortly) are the only two quantities needed to accumulate the

"-. .sureS ,:ecrbed earlier. For example. A, the number of stages reached, is simply

c--e erted at i.ch stage of the simulation program. If the partition element has rank s in a

-ubarra-, of size '. then R, the imber of exchanges, is incremented by

iA. . . <+ - I,( , - I

n-ie number of partition comparisons at this stage is n- I. and the number of selection

comparisons was given earlier as formula (1) (with k = (T+ 1)/2, the median of T). Finally, the

cost of Insertion Sort determined by the small subarrays. For a subarray of size n < fl,

measures D and L are incremented by nz- H and n(n- 1)/4, respectively.

Note that the expected values of B D E. and Fare accumulated at each level, rather than

values of corresponding random variables. As a result, the variance for these four quantities

is much smaller than would be displayed by Quicksort. Since only means are examined here,

this 'bug" becomes a feature: the small variance in experimental results means that few trials

* are needed This is an application of a variance reduction technique discussed more fully in

Section 7 3.

To obtain estimates for the expected values of A4 through F, then, it is sufficient to generate

a partition element at each stage according to a probability distribution that is determined by

the size of the subarray n and the sample size T= 1(n). The generation of such a partition

element is easily accomplished in (Ai(n)) time at each stage: simply generate a random

sample of size Tfrom [. n] and return the sample median. Two methods are employed in the

simulation program, the choice depending on whether T is near n. When T-c n, the simulation

program simply generates integers uniformly Tdistinct ones appear; a hash table of size 2Tis

used to check for duplicates. The table uses an open addressing collision scheme, with the

-..- invariant that table entries are always in sorted order. Once generated, the T integers are

,.- shifted to the low end of the table and the median element, which occupies table position

0 = (T+ 1)/2, is retumed.

When T is near n this method is inef'icient because of the large number of duplicates

generated before Tdistinct elements are found. Knuth [4] (Section 3.4.2) gives an algorithm

for generating a sample of T integers from 1..n in ascending order by considering each integer

% %
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in turn and accepting' it with appropriate probability This algorithm is modfied in the

simulation to stop when the K' integer is accepted.

This process requires about 2 rindom number calls, as implemented !t is mcre efficent

than the first method when T L -1).', : Note that because the elements are ma'ntalned in

erted order frnair- :t easier to find the meJian). both of these meth,,o(.s -o.reduce partition

elements mcre tflcintly than f edidan selection had actually been performed on a random

sample from the sublist The second method is even more efficient because it only considers

approximately /-2 elements.

Procedure Shortcut(n)
if (n < M) then

D += n - Hn  Accumulate Insertion Sort measures.
E n(n - 1)/4

else
T = t( n) Determine sample size.
m (T+1)/2
s Generate-Partition-Element(n, T)

A I Accumulate measurements.
B * (n-s)(s-1) / Choose(n, T)
C += n - I
F 2((n + t)Hn  (m+1)H m - (T-in+2)H T-m.1 +T+5/3

Shortcut(s-i)
Shortcut(n-s-1)

Procedure Driver
Input N. M
Set A through F to zero
Shortcut(N)
Report A through F

Exhibit 4-3: The Simulation Algorithm

The simulation program is sketched in Exhibit 4-3; the formulas for accumulating A through

F reflect the model described in the previous subsection. Its average running time is given by

the following recursion, where p, represents the probability that s becomes the partition

element when (n) elements are sampled. TimeN = 0(1) when N:5 M.

=r
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F ndng a ciscd form for this recurrence for arbitrary A, As difficult. Vhen i ) is a constant

function, the -ro,;ram runs in time linear in N.

The experiments described in the foliowing sections were performed on a VAX 11/780

running under Unix' The random number generator was the cyclic feedback method

described by Knuth [4] (Algorithm A. Section 3.22, 2nd Edition). In most of the following, N is

set at powers of two from 28 to 2. 1f is set at 0. 10, and 20, and T(in Section 4.3) is set at 1, 3,

and 5.

* To check some experimental results, the exact values of measures A through E were

computed according to Sedgewick's formulas [8, 6] for Median-of-3 Quicksort. When a small

error was found in one of the formulas (see Section 4.5), a dynamic program was

implemented to check the formulas as well as the simulation program. For example, to

compute C exactly by dynamic programming, array elements Qin] are set to 0 for n < 3l, since

" - no Quicksort comparisons are performed at n below the cutoff. The following sum is then

computed for n .

(n -sxs- 1)

In each term of the summation the quotient represents the probability that s is chosen as the

median of three elements selected randomly from [1. n]. The terms in parentheses represent
Y the cost associated with chosing s, which is given by the cost at this level (n-1) plus the

expected cost of partitioning around s. To further check the random number generator in the

simulation program, this dynamic programming approach was extended to T= 1, 3, 5. and 7

for quantity A. In all tests of the simulation program, observed means for the measures were

WI within 1.5% of the true means produced by the dynamic program.

Instead of performing simulations, why not just use the dynamic programs to produce exact

VAX is a trademnark of Digital Electric Corporatbon. Unix is a tradenmark of AT&T Bell Laboratoriie.
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values for the measures? The main drawback of the dynamic program is inefficiency since
the probability of s being chosen must be recomputed for each s _< n, the running time of the
program is linear in each a and therefore quadratic in the highest ii computed. Because [he
running time of the simulation program is linear in \' for (fixed T) and the variance in

simulation results was small (requiring few trials per sample point) experiments provided a
much more efficient way to gat'ier results for large problem sizes and many saimple points.

4.3. Fixed-T Strategies

This section presents simulation results for median-of. TQuicksort for Tfixed at 1,3 and .
A sample point is determined by f, t, and T. Most of the simulations were performed at
sample points corresponding to N = 28, 210 .0.. 2: ,  -V = 1. 10. 20, and T= 1. 3. 5: measures .A
through Fare considered. An obvious problem in describing simulation results arises: how to
represent a function of three variables using two-dimensional graphs? A number of
approaches to this problem are considered in Chapter 7: for this study, the following
conventions are adopted. Measurements for the three t settings appear in separate panels.
In each panel the x-coordinate of a point is determined by log ,.V + T/10, and the y-coordinate

of each point corresponds to the specified measure (giving the mean over 20 trials at this
sample point). For example, in the left panel of Graph 4-4-a sample point ,f = 1, N = 28 .- 256,
T= 1 is represented by the leftmost cross in the panel. The second-leftmost point
corresponds to the sample point M = 1, N = 28, T = 3, and is plotted with x-coordinate 8.3.
This method of "coding" the x-coordinate of each point allows easy comparison of the

measures at in terms of the simulation parameters.

Let C' represent the average total number of comparisons required in fixed- T Quicksort;
that is, C' = C + F. Intuitively, C should decrease with T, because larger samples give better

i •partitions, reducing the number of partition comparisons. On the other hand, F should
increase with T since larger samples require more median-selection comparisons. The best
choice of T - that is, the choice that minimizes total - is one that finds the right balance

between these two measures.

Graph 4-4-a depicts C'IN for the sample points given above. Not surprisingly, large ,! (right
panel) gives fewer comparisons at every sample point since the cost of Insertion Sort is
ignored. The reduction in Quicksort comparisons at high M must of course be balanced
against the increase in Insertion Sort ti-ne. This would be an important task in determining the

best choice of Af for a specific implementation.

J-.I-.•
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Exhibit 4-4: Total Comparisons

The left panel in Graph 4-4-a corresponds to .1 = 1; that is, to Quicksorting the entire array

and not performing Insertion Sort at all. In this panel, the leftmost in each triple of crosses has

least value when N s 214, and the middle cross has least value when N > 2". This indicates

* that the Median-of- I strategy gives fewest total comparisons when N is small, but Median-of-3

is best when N is large (within the range of the experiments). If a cutoff of size it/ = 10 is used

(middle panel), then Median-of-3 gives fewest total comparisons for N smaller than 216, and

Median-of-5 gives fewest total comparisons at higher N. If M = 20 (right panel), then

•1 0Median-of-5 is best for all but the lowest value of N sampled. Note that the separation in cost

between Median-of-I and the other two strategies becomes more pronounced at large M.

Graph 4-4-b presents the results of further simulations to determine the best choice of T for

various combinations of rN, and Ml. Each region of the graph corresponds to the Tsetting that

61
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gives the smallest mean value of C' for AV at even powers of 2 and .,l below 16, 20 trials each,

For example, when either V, or V is low (bottom left region), Median of-I Quicksort gives

fewest total comparisons, Note that the x scale corresponds to quadrupling .% each time

whereas the ordinate corresponds to unit increases in A.

Consider the distribution of subarray sizes that appear during the recursion: a s!ngle array

-, of size n=N appears, then two arrays of size approximately n= V/2, then four arrays of size

approximately n=\/4, and so on. As . grows, larger subarrays appear in the distribution but

small subarrays become more numerous. Suppose that the choice of T to min;mize total

-comparisons at a given recursive stage is an increasing unbounded function of the subarray

size Intuitively, with large subarrays at the beginning of the recursion a large sample size is

the best choice, and smaller samples are more appropriate for small subarrays at lower

..' recursive levels.

* If the best choice of Tgrows fast enough in it, then as V (the problem size) increases, the

large subarrays would eventually overcome the small subarrays in "voting" for the best

choice of T When If is greater than I the small subarrays are ignored, so the influence of the

%.. large subarrays is seen earlier in V. An implication of this argument is that the choice of Tto

minimize total comparisons (over the set of fixed Tstrategies) does not have a constant upper

bound, but rather increases with N (and the rate of increase is determined by M). This

contradicts Sedgewick's argument that Median-of-3 is probably the best choice among

fixed, Tstrategies when t = 1. On the other hand, Graph 4-4-b suggests that Median-of-3 (or

Median-of-1) is indeed the best choice over a large range of practical input sizes. Another

implication is that a strategy which varies the sample size at each level according to the

subarray size would give fewer total comparisons than any fixed- T strategy. Evidence that

this is the case is presented in Section 4.4.

Consider how C' is divided between C and F. Sedgewick showed that for any fixed T, the

number of comparisons during partitioning is given by

1• -" C= (N-I1)HN+ O(N) =O(Mog N)
H._ HT~- H (T+ )/2

. when Al = 1. Graph 4-5-a presents C/(Nlog N). Not surprisingly, C decreases as Al grows

(since the cost of Insertion Sorting small subarrays is ignored). Although the logarithmic

x-scale in each panel makes the curves appear to grow more steep!y than they actually do,

-.. the asymptotic constant is not easily seen at these values of N. As predicted, the triples of

crosses show that C decreases in T larger sample sizes tend to give better partitions,

decreasing the total number of partition comparisons.

,-

'p•
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Exhibit 4-5: MeasuresC, F, and A

Graph 4-5-a shows that for any combination of value of At and N, the T= 1 strategy (the

leftmost symbol in each triple) gives a significantly higher value of C than T= 3 or T= S.
Although Median-of-5 gives the lowest value for C everywhere, the improvement over

Median.of.3 is never very great. This agrees with Sedgewick's observation that while
Median-of-3 gives a substantial improvement over Median.of-.. for this measure, the

percentage improvement at higher values of T is small.

041
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.For fixed T the total number of median-selection comparisons, V must be proportional to

.he number of tmes the median selection routine is performed. Therefore, I' must be

proportional to I the nUmber of recursive stages seen during Quicksort. Specifically, for

, r ])/' 1 --- , tT) v.here lis given by formula (1) on page 72 Since the

number of recursive stages reache is linear in \, /is also linear in \ Graph 4 5-b presents

/ \ When 7 . no median seiection is performed, so the !eftmost cross in each triple is

always equal to i. As predicted, / tends to increase in T. In both 4-5-a and 4-5-b the

difference between F= 1 and T= 3 is more pronounced than the difference between T= 3 and

T= . although one measure increases in Tand the other decreases in T.

Graph 4 5-c depicts 1/V. The graph indicates that when If = 1, .-1 is not monotonic in T.

That is, median-of-3 Quicksort gives fewer stages, on average, than median-of-5 Quicksort.

The explanation for this behavior is to some extent an artifact of the simulation model.

Consider the case n =5. Median-of-5 selection would find the exact median of the elements

and recur on two subfiles, each of size 2. Remaining recursive calls would be on subarrays of

size 1 and 0, which are below the cutoff if and do not contribute to A, so A = 3. In contrast,

for T = 3 the sample might not produce the true median: with probability 6/10, either 2 or 4 is

chosen. In such a case, Quicksort would recur on a subarray of length 1 and a subarray of

length 3, and afterwards on two subarrays of size 1 (which contribute zero cost), for a total

cost of 2. Under this strategy/A = (6/10).2 + (4/10).3 = 2.4.

For arrays of length 5, then, Median-of-3 produces fewer stages than Median-of-5. This

inequality propagates in the computations of A at higher N to give the nonmonotonic behavior

observed in Graph 4-5-c. This relationship between Median-of-3 and Median-of-5 would

disappear if M= 2, but an analogous relationship would then hold for T=7 and T= 9. This

observation can be generalized to find a similar pair of Tvalues for any M.

By this cost metric it is not always a good idea to find the exact median of the sublist: if the

cost of recurring on a sublist of size k is equivalent to that for a sublist of size k+ 1, then it is

better to break a list of size 2k+ 1 into a k+ 1-sized piece and a k- 1-sized piece rather than

,-0. into two pieces of size k.

VV
',4
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4.4. Choosing T to Minimize Comparisons

In this section Tis allowed to vary as a function of ' the sublist size at each leel, the goat is

to determine the optimum sample size for each :. 'Optimum means the sample sze that

minimizes the total expected number of comparisons." Recall that a-I comparisons are

needed to partition a subarray of size ,7. Also, the number of comparisons required to find the

median of T= .1) elements, for Tan odd integer and mi=(T+ 1)/2, is

. = 2[(TI)H- (m+1)H + (T-m+2)H T-.- + T - 5/3].

Let C represent the minimum expected total number of comparisons; that is, C is the number

of comparisons required (during partitioning and median selection) when the optimum sample

size is chosen at each recursive stage. Letting h = [T/2J for notational convenience, we have
N-h

C(A) =N-I + min(fT +2 _ P .Cs) N> M,
L'- s=h-#

* where N-s)(s- )/(N

The N-i term represents the cost of partitioning at each level. The summation index s

ranges over all possible values for the partition element (as the median of T elements, s

cannot be less than h or greater than N - h). Ps represents the probability that s was chosen

as the median of Telements from N. C(N) = 0(1) when N <M.

-.. Let t(n) represent the sample-size function that realizes the minimum total cost. A simple

dynamic program can be used to determine t(n) as well as C for small n. When M = 1, the

boundary conditions are C(1) = 0 and t(1) = 0; for increasing n, the program searches for t(n)

to minimize the above function. Since t(n) is nondecreasing and at most linear in n, it only

necessary to check t(n- 1) against t(n- 1)+ 2 for each n.

Table 4-6-a gives the lower boundary value of n corresponding to each t(n), for n S 3500.

The second and third rows indicate, for example, that 3 is the optimum choice of T for

subarrays of size between 35 and 92. Graph 4-8-b presents the table entries in graphical

form; the dotted line corresponds to the function N/ 2/2.1. The residuals, representing the

difference between the optimal values and this function, are presented in Graph 4-6-c. Similar

computations for M = 10 differ from Table 4-6-a in that t(3) has lower bound 30 rather than 35;

otherwise the table entries are identical.
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Least
VI t()
1 1 .30,

35 3 .0
93 5 0 0.4

197 7 6 +

337 9 20 0 0.2- ++
515 11 +
730 13 +.
984 15 -0.0 +

1274 17 10 o Optimum +

1603 19 0 sqrt(N)/2.17Uo -0.2
1968 21 - +
2372 23 ? _ . .. . . .+
2813 25 0 2000 0 2000
3291 27 Cutoff (N) Cutoff (N)

a b o

Exhibit 4-6: Cutoffsfort(n)

Exhibit 4-7-a compares C to C' (corresponding to the fixed. Tstrategies), for the four sample

points N = 256. 1024 and Mt = 1. 10. In each triple, the circles gives the ratio CI/C for

T= 1, 3. 5, respectively. As predicted in the previous section, a strategy that modifies the

sample size according to subarray size gives fewer total comparisons than any of the fixed-T

strategies at these four sample points.

While these results are encouraging, it is difficult to determine t(n) for higher n. When

N = 2500, for example, the dynamic program must compute the combination "2500 choose

" 24": although careful programming could push the computation higher, machine precision

becomes a significant factor. Solving the problem analytically also seems to be difficult.

requiring a solution to the recursion for C with arbitrary function t(n) to find the (n) that

minimizes C.

On the other hand, the results for small n can guide the search for good functions 1(n).

Graph 4-6-c depicts the difference between t, and the fit Y= V /2.1; the small magnitude of

error suggests that square-root form for t(n) might do a good job, although the steady

*decrease in differences indicate that a more slowly-growing function might be needed at

higher N. Preliminary simulations using the "odd floor" of a N'/2 +/I (that is, the largest odd

I%
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Exhibit 4-7: Optimum and Fixed-T Strategies

integer less than or equal to the function value) indicate that C and Fare fairly insensitive to

small differences in the cutoffs. For N at 2'2 and 2"6, mean comparisons are minimized for

square-root forms when a = 0.5 and ,8 = 0.

4.5. Insertion Sort

Sedgewick's [8] achievement was not only to present a very efficient implementation of

Quicksort, but to demonstrate that it was more efficient than many alternatives by deriving

exact formulas for quantities A through E. His final version employs such techniques as

removal of tail-recursion, loop unrolling, careful ordering of conditionals, and fine-tuning of

parameters. It uses a Median.of.3 selection strategy with a cutoff for Insertion Sort at 1t = 9.

-', One of my first tasks in building the simulation program was to check the experimental
results against Sedgewick's formulas. This led to the discovery of an error in Sedgewick's

A analysis of quantity D, the number of insertions performed during the Insertion Sort phase.

* For median-of-3 Quicksort, D has the recursive form

N

LN = 2. pfs~ N> f,

0 _(W- s~s- t)
where P1 (/- __ _ - '1

DN= N-HN, Ns M

Sedgewick, in his thesis, gave the solution to this recurrence as
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; \ -]f
.I ' - -l __'!t__. - I).

11,s scluticn .s .ncorrect the -,st t-rm i ihouid be . Although ths is clearly a

r'pr'or al,iebra.c errur tine r t xiq coMpL.tation of I) is off by a factor of \ and gives an

- n- cus cI!Cu!ition of the optinumn value of tf A rater paper by Segijv.vick [6J gies the

* e.0 ;t so tolof b.ut fiils to corry the correckon through to the calculation of 1. For the

record the correct der:vation is given here.

SedgewcK showed that recurrences of the form

can be broken into three simpler recurrences. For D we have = 0, and it is (only)

necessary to solve

(V+ 1)U N = N. U N,

(N+ )Tv.' (,V+2)TIv+ U,. and

(N+ I)D,. = (N-5)Dv + TN.

These have as base cases,

T f+ = (,1+ 2)D M+2 - (4I-4)DM+ 1,

T7=+2 =(Vf+3)D+ 3 - (A- 3)DM+ 2, and

= (,V+ 2)TM 2 - (M+ 3)Tf+ i .

Tedious but straightforward calculations produce the following solutions for DM+1 , DM+ 2

and DM+3 .

DM+= M + 13 - 2 HM+l

3A1'+ 14M+ 10
DM+ 2  3(M+ 2) M+1

3m+26M 2+61M+60 2M + IOM + 24

DM+= 3(M+2XM+3) (M+3XM+2) M+I

Therefore,

%'
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=~ 0

t 0

N(A + 12)

= ~ ~ ~ J +A5)~ (. 2)

Solving D. from this point is relatively straightforward. Multiplying by the 'summing factor"

P..(VII 1) ..(NX-4)/6! and rewriting for the base term D~~ gives

V+ (N~++ 1)D M 1 D, +TiM+ 10- l2HW (k+ 1)6 6) + (Af +2) k=-i

or finally,

DV IV+1 4(N + 1)Q +1)
7(AIf+2) 1 l

Sedgewick's efficient MIX implementation of Quicksort has average running time
(53/2)A + 11B +4C + 3D +8E +9S +7N.

Solving with the correct formula for D and regrouping terms gives

47 372N+IH 1

r29 + 18 3 72 36 48 27(5M +3)

L4 M+2 35 M~711+ 2) 35 7(2M + 3)2M +1)j

which differs from Sedgewick's formula in the first and fourth terms (which he has as - 111/2

and - 450(N + 1)1(7(M+ 2)), respectively). Exhibit 4-8 shows F(M), the function defined by

the terms inside the large brackets, as M varies. This graph shows that the average running

time of Sedgewick's MIX implementation is minimized when M =7, not 9 as reported.
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S-F(M)

1 -1 332653
2 3 25 7 1 0-

3 6 719134 .

S S 3 73633
'- 8 32653.3

S - 6.50244 -4

3 8 504810 
-

1 8 227213

13 7343478 -6
I1 -7 372606 +
12 -6 828899 +
13 -6 223390 -8 + +

14 -5 564770 + +

15 -4 860008
16 -4 114780
17 -3.333769 0 4 8 12 16 20

18 -2 520887 M

19 -1 679433
20 -0 812216

Exhibit 4-8: Minimizing F(M)

4.6. Conclusions

This chapter presents a version of Quicksort that allows sample size for median selection to

vary with sublist size, with evidence that it outperforms fixed.T schemes. The tradeoffs

between partition comparisons and median-selection comparisons are also examined for

fixed.T strategies. A number of open problems remain. It appears to be difficult to find a

closed form for C, and even harder to derive the t(n) that minimizes the number of

comparisons. Although comparison cost was the primary measure in the simulations, the

behavior of other measures is also of interest. The number of exchanges performed during

partitioning and median-selection is a measure of interest. The number of exchanges

performed by the median-selection algorithm appears to be an open problem, ripe for

experimental study.

An obvious next step is to study the actual running time of a "square root" strategy

Quicksort. It is likely that the taking of square roots would dominate the computation time, in

which case either a table-lookup scheme or a fast integer approximation of the square root

function could be used.
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Chapter 5
Self-Organizing Search

,1

,4 s I[ oria n g n ,:,q uentr.~r ';eJrU rule mainta.r,s a o:- ot \ tems cOc it Kr:uc,'t!

accessed tems are near 'he front Since access frequencies are assumed not to Le -no.,n in

advance 'he rule s al:owed to modify the ordering of the search list according to the 'eesr

se.;' .e-ce of previous accesses. The class of Moie Aheau # rules is studied here: ,,hen an

item is requested, it is moved for.vard . positions in the search list (or to the first position if

already less than , from the front), for 1 _s k s . - 1. The rules Move-Ahead 1 and

Move-Ahead (\ 1) are better Known as Transpose and Move-to •Front, respectively.

For convenience, let the items be named 1 through \. A common theoretical model

assumes a sequence of Treqjests for items in the search list: the request sequence is formed

0 drawing item names randomly and independently according to the probability distribution

P% .p .}. That is, the probability that "3 is the next item requested is given by p.

Assume without loss of generality that p, _ pi+,

The request cost is equivalent to the distance of a requested item from the front of the

search list: the first item has request cost 1, and so on. The simulations described here

measure expected request cost for various rules assuming a fixed probability distribution on

% the request sequence. The cost of reordering the list after each request, which is bounded

above by the request cost, is not measured here. Sequential search rules have been studied

- , for almost two decades; previous work is briefly surveyed in the following section. Section 5.2

discusses simulation details, Section 5.3 presents experimental results for expected search

cost, and Section 5.4 considers properties of the search list permutations for various rules.

°-V

R-.,U
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5.1. Previous Work

'.tc.; jre.ou a In,, s'ea n:ve cons dered sequcnti al search as a Mlarov r-:

arci', ,: rnut,i On corresponds to a state and the state transitin prc a .

er l-! 'rorn requ,-st ,robabilities For a given rule and probabihty distributicr, en,

cost ;s the sum over all search-ist ocrin ,,' . "

Ipro-duct of e.pected search cost of a permutation and its steady-state prci iL;u ,

eyoected search cost of a permutatton is the sum, over all items, of the product 3f

probatiity for each itern and its position in the permutation.

For a given distribution P on request probabilities let IJ(k.. T) denote the expecte,

- cost of the Move-Ahead-k rule for a search list of size ,\after Trequests have been ma re

I( k \3 denote the expected cost as T --

Exhibit 5-1 presents previous results for the expected costs of Transpose 1= -

Move-to-Front (k = N - 1). The rules are compared to the Optimal Static (CS , ,

maintains the items in the search list by decreasing request probability This e .-- ,.. -

request probabilities in advance and never reorders the search list All resus " ,

hold for arbitrary probability distribution P = {p, p .... pN } and all assome tv -

is initially in random order. The first, for the Optimal Static rule, is eisil . , .

appears in [41, [6], [9], [10], [11], and [12]. Formula (3) is due to Btr,-r

is from Chung, Hajela, and Seymour [7], and formulas (5) and (6) are'"

Exhibit 5-1 can be summarized as follows. The asympotic e

to-Front is never more than 17/2 times that of Optimal Static r. ,

cost for Transpose is n aver more than that for Move o .

the expected asymptotic cost for Transpose requires k,"

the search list (6). The rate of convergence to as.' '

Front by the summation term of formula 3) ,t,.

has better asymptotic cost than Move to -,-* "

The rules have also beer-r ,:d ' -

especially Zipf's Ostr'but ': , -

where

I' - - : ~~~~~~~~~~~~I l uI/n i, unma m ,, . .. .. l
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0M(X) = p (
V

.(1, = .A- LA 1/ + + L ) (3)

i= J
N P Pj

A).-1. = /r( +,f=E Hpp, . J whre(6)

(P- p).AAA'- L, .1) (N .N + j) .(1- p, -p/.. (3)
1<st<j<N "(Pi + Pj)

II(N- 3,5 <v/2-.OS(N). (4)

Jf(1, ) <5 M(N- 1, NV), (5)

N N
f(I, N) =Pr(INV)-IZ  H~ J:"() pjr(j), where (6)

I i=1 j=1

= an ordering of the search list,
w(i) = the position of i in ir,
Pr(IN) = probability of the optimal ordering occurring initially

Exhibit 5-1: Previous Results

N
HN= 11j.

HN is known as the Nth harmonic number and grows approximately as the logarithm of N. A
family of distributions related to Zipf's will also be studied; define the distribution Z}' by

1Pi = CiA
w c.i H'

N*1 ~where c4=- iij'.
j=1

Setting X = 1 gives Zipf's Distribution, and X = 0 gives the uniform distribution. When the
request probabilities correspond to Zipf's, the asymptotic average search cost for the Optimal

Static rule is NIHN, and the average cost for Move-to-Front is about 1.386 times this (see
[10]). Gonnet, Munro and Suwanda [8] give closed forms for M(N- I,N) when X :5 2.

Some worst-case bounds also exist. Since the worst-case cost per request is trivially N, the

amortized cost (the average cost over a worst-case sequence of requests) is used. Bentley

S4

4l

;I
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and McGeoch [2] showed that for any request sequence the amortized cost of Move-to-Front

is at most twice that for Optimal Static. In contrast, the ratio of search cost for Tranpose to

that for Optimal Static can be arbitrarily high. Sleator and Tarian [13] showed that under a

slightly different cost model, Move-to-Front has amortized cost a most twice that for any rule,

static or dynamic.

No expected-case bounds are known for general Move-ahead-k rules. Bitner [4], Gonnet,

Munro and Suwanda [8], and Rivest [12] have conjectured that for any two rules in this class,

the one with lower index will approach its asymptote more quickly and the other will have

lower asymptotic cost. (Bitner demonstrated this for the special cases of Transpose and

Move-to-Front.)

Move-Ahead-k rules have been studied experimentally with Zipf's Distribution describing the
request sequence. Rivest[12] presented simulation results at the sample points

N= 7, T= 5000, k = 1 ... , 7 to support the above conjecture. Tenenbaum [141 measured

average search cost for k ranging from 1 to 7, N from 3 to 230, and T at 12,000. Although he

uses a slightly different model in accumulating costs, his tables of average search costs

suggest the best choice of k for each N within this range.

5.2. Measures of Search Rules

A practical experimental approach is to generate a sequence of requests and to record the
request cost of searching for requested items. This is the measure used in previous

simulation studies of sequential search rules (see [5] [1], [121, and (14]). An alternative

measure is described in this section.

For a fixed permutation, the cost of searching for the next request is a random variable

depending upon the current search list permutation and the request probabilities. The

expectation of this random variable is equivalent to the expected search cost of the

permutation: call this expectation the permutation cost of permutation w. Permutation cost

as well as request cost is an unbiased estimator of expected search cost at time T. In

addition, permutation cost is guaranteed to have smaller variance than request cost; see

Section 7.3 for further discussion of this idea. Many simulation studies may be improved by
replacing random variables (e.g. the request cost for permutation w) by their expectations (the

permutation cost).
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For the simulations described in this chapter, permutation cost at time T is measured rather

than request cost. Otherwise the simulation programs are straightforward implementations of

the search rules: at every request, the routine for each rule records the permutation cost and

then reorders its search list according to the requested item. The search lists are all initialized

to the same (randomly chosen) permutation.

The request cost at time T can be computed in time proportional to the position of the

requested item. As noted in Section 5.1, this cost has asymptotic expectation 1.3S6N/HV for

Move-to-Front when requests are generated by Zipf's Distribution.

The permutation cost at time T can also be computed in time proportional to the position of

the requested item by keeping a list of summary information with the search list. The second

list records cumulative permutation costs counting from the rear of the search list. That is, if

s(i) denotes the name of the 1h item in the search list and p,(, its probability of being

requested, then the jh entry in the summary list contains the sum
~N

When a requested item is found at position i in the search list and the appropriate search list

permutation is performed, only the information in the first i positions of the summary list need

be changed, requiring time proportional to the cost of searching the list. The permutation

cost for the entire search list is found in the first position of the summary list.

This use of a secondary array was not discovered in time for the simulation study; in the

simulation programs, the cost of each permutation was computed by summing over the

search list (requiring linear time). The running time of the simulation routine for each rule was

therefore increased (for Zipf's Distribution) by a factor of between H,/1.386 (for Move-to-

Front) and HN (for Optimal Static, a lower bound on costs for Move-ahead-k rules). For this

*._ approach to be practical, the variance In permutation cost must be at least this much less

4 than the variance in request cost. Experimental evidence suggests that this is bound was

easily met in the simulation.

Permutation cost must be summarized in some way: when T= 1,000, say, it is difficuft to

manipulate or display the 50,000 numbers that would be generated over 50 trials Exhibit 5-2

depicts two possible summarization schemes. For a hypothetical search rule at fixed N, the

plusses in each graph represent the search cost at time T, for T ranging from 1 to 25.

Previous simulation studies have taken running averages of search costs, represented by the
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Exhibit 5-2: Two Summarization Methods

4' circles in Graph 5-2-a, where a new running average is reported every fifth request. This

approach is not entirely satisfactory in capturing true search costs: since the search rules are

characterized by high initial cost, the running averages consistently overestimate average

.. search cost at time T.

Graph 5-2-b displays grouped averages (also called batched means). In this graph, each

circle represents the mean of the previous 5 requests only, rather than all previous requests.

These means give a more accurate measure of average search cost over time because they

are less influenced by initial costs. In the following section batched means are used rather

than running averages to summarize search costs. The parameter G denotes the group size

for a particular experiment (in Graph 5.2-b for example, G = 5). Means are taken over all trials

for each group. At the sample point N = 10, T 5 100, G = 5, for example, there are 20 groups

per trial, each containing 5 measurements; if 25 trials are taken, then each group average

represents the mean of 125 measurements.

The experiments are paired in the sense that in each trial the same request sequence is

submitted to all rules. For each trial, the search lists are initialized to a random order,

identical for each rule. Random request sequences are generated by the method of aliasing

(see Section 7.7). The simulation program requires O(N) setup time (to initialize the search

lists and the random variate genorator), constant time to generate a request, O(N) time per
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search rule to compute permutation cost per request, and O(k) time per search rule to

* reorder the search list.

A sample point is determined by k, N, T, X and G. Because of high variance in the data

(even though variance was reduced by the new measure), 50 to 100 trials were taken at

various sample points. For efficiency and manageability of the results. & was only set to odd

values 1, 3.... N-1. In most of the following experiments N was set at 6, 8. 10 and the

parameter X (determining request probabilities) at 0. 0.5, 1, 1.5, 2. The largest T value used

was 2000 and the largest group size was 200.

The following section presents experimental results for the mean permutation costs for

Move-ahead-k rules under request sequences generated by Z 'X. Section 5.4 considers other

properties such as variance and distribution of permutation costs.

5.3. Experimental Results

This section presents experimental results for the mean permutation cost of Move-ahead-k

rules. As the previous section notes, permutation cost at time T is an estimator of the

expected search cost at time T. The following subsection presents results for request

probabilities generated according to Zipf's Distribution. Subsection 5.3.2 considers search

costs for varying A. For notational convenience, the Move-ahead-k rule is denoted by Mk. At

times the Move-to-Front rule is denoted by MF (rather than M(N-1)).

5.3.1. Zipf's Distribution
a.

Exhibit 5-3 displays the mean permutation cost for 100 trials each at N = 6, 8,10, T < 20, and

G= 1. The curves correspond to the Move-ahead-k rules with odd index; for example

* k = 1, 3, 5, 7 for N = 8. In each panel the extreme rules M1 and MF are denoted by solid lines

and intermediate rules are marked by dotted or broken lines. The curves are labeled

according to their final ordering at the right side of each panel.

Recall the conjecture that for any two of these rules, the one with higher index will converge

more quickly and the other will have lower asymptotic cost. Exhibit 5-3 supports this

conjecture for Zipf's Distribution. At N = 6 (top panel), for example, the M1 has lowest cost

after the 11 th request, but has highest cost at earlier T. The M3 rule has least cost when

5 :5 T < 11 and is second-lowest at higher T. Finally, the Move-to-Front rule (MS) has least

04
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cost when T < 5, but eventually has highest cost of the three. Similar behavior is displayed for

N = 8: each rule in turn has least cost as Tgrows, with cutoff points at T= 3, 6.19 (marked by

arrows). Eventually the rules arrange themselves into their conjectured asymptotic ordering.

In general, rules with highest index dominate at the first few requests, then rules with lower

index dominate in sequdence until M1 dominates continuously at high T.

At N= 10, the asymptotic ordering of the search rules has evidently not been reached by the
20'h request: the M1 rule, although declining steadily, does not yet have lowest cost. The

other rules have reached in their conjectured asymptotic order. It appears, then, that the

number of requests required before M1 dominates increases as ,V grows.

Bitner [5] has shown that for Zipf's Law, M1 will dominate MF after Q. (N2 ) requests: how

many requests are required before M1 dominates any rule? Assuming that the conjecture

about relative convergence rates is true, this is equivalent to asking how many requests are

required before M1 dominates M2. Although M2 was not measured in these experiments,

Exhibit 5-3 gives a partial answer. For N = 6, 8. 10, M1 has cost lower than M3 for the first time

at T= 11, 19. (-45), respectively. This observation and measurements at other N values

suggest that the cutoff point grows approximately as the cube of N. The cutoff point for M2

and Ml must grow at least this quickly in N (again, assuming that the conjecture holds).

Z ................... Z...... ........ .SN.........................

101

.50
.50 M? .45 ke
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Exhibit 5-4: "Asymptotic" Behavior
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Exhibit 5-4 presents "asymptotic" average search costs when requests are described by

Zipf's Law. The data points in these graphs represent mean permutation cost for 100 trials

each at the sample points A = 6. S. 10. T < 2000, and G = 100: the rightmost data point in each

curve, for example, corresponds to mean permutation cost for requests 1901 through 2000

(and 100 trials).

The conjectured asymptotic ranking of search rules is supported in these graphs, since

rules with high index have higher cost than rules with low index when Tis this large. Only the
-, M1 and the MF rules are therefore marked; the intermediate rules appear in proper sequence

between these two. In each graph the cost of the Optimal Static Ordering (a lower bound on

Move-Ahead-k rules) is presented as a line at the bottom. The cost of the random

permutation rule, which randomly reorders the search rule at each request and has cost

(.N+ 1)/2, appears as a line at the top.

The graphs are scaled for comparison by giving Cost / N, which corresponds to the fraction

of the list searched at each request rather than the absolute number of comparisons. On this

scale, the random permutation rule has expected cost (N+ l)/2N and the Optimal Static rule

has cost 1/HN

Not surprisingly, Move-Ahead-k rules have worst cost than Optimal Static but better cost

than random orderings. As N grows, the range between the two bounds increases as

(V+ 1)/2N- 1/HN.1Since asymptotic expected search cost for Move-to.Front is bounded by

approximately 1.386 times the cost of the Optimal Static Ordering (see Section 5.1), the gap

between the Move-Ahead-k rules and the random ordering must increase while the gap

between the rules and the Optimal Static Ordering remains bounded by a constant.

Exhibit 5-5 gives an idea of the relative asymptotic performance for the rules. In addition to

experimental results, each table gives asymptotic bounds for the Optimal Static and the Move-

to-Front rule, which can be computed from the formulas in Section 5.1. The column labels

(Optimal) and (MF) correspond to these computed values. Table 5.5-a presents mean

permutation cost for the last 100 of 200 requests (corresponding to the rightmost data point for

6 each curve in Exhibit 5-4). Table 5-5-b gives these values divided by N (corresponding to

fraction of list searched) so that comparisons across N may be made. Table 5.5-c presents

ratios of permutation cost to Optimal Static at each sample point.

UIN grows n ,N+y+ i/QN)-/(VVN2)+i/(LuNd)+t. where o<e<i/(,szN) and y is Euw's constant
-0.S7ruwo.

1%
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N (0 timal Mi M3 M5 M7 M9 (MF)
6 2.449 2.62 2.77 2.88 2.966
8 2.943 3.21 3.40 3.55 3.62 3.646

10 3.414 3.67 4.08 4.23 4.32 4.33 4.295

a. Expected Search Cost

N (Otimal) Mi M3 M5 M7 M9 (MF)
6 0.41 0.44 0.46 0.48 0.49
8 0.37 0.40 0.43 0.44 0.45 0.46

10 0.34 0.37 0.41 0.42 0.43 0.43 0.43

b. Expected Search Cost / N

N (0otimal) MI M3 M5 M7 M9 (MF)
6 1.00 1.07 1.13 1.18 1.21
8 8 1.00 1.09 1.16 1.21 1.23 1.24

10 1.00 1.07 1.20 1.24 1.27 1.27 1.26

c. Expected Search Cost / Optimal

S Exhibit 5-5: Asymptotic Search Costs

In Table 5-5-a, the column labeled (MF) gives the asymptotic expected cost for Move-to.

Front, for which observed values are given by the rightmost Mk rule in each row. The

differences between asymptotic expected cost for Move-to-Front and mean permutation cost

for the corresponding Move-ahead-k rule are .063, .026, -. 045 for N = 6, 8, 10, respectively.

These differences are suggestive of the magnitude of error involved in trying to use

measurements at finite Tto assess asymptotic behavior (as T--+ oo).

At fixed N, it appears that the expected permutation cost increases sublinearly in k, the

difference between costs for M9 and M7, for example, is much smaller than the difference

"-' between M3 and Mi. It is possible that the differences between rules evens out as T grows;

on the other hand, measurements at smaller T do not suggest significantly greater disparity.

This conjecture of decreasing increments in search cost as k increases is supported by

consideration of the behavior of the search rules. Suppose a search list of 10 items is

initialized in random order. The Move-Ahead-9 rule is equivalent to Move-to-Front. In

general, the Move-Ahead-7 rule performs a Move-to-Front operation unless the requested

item is in the ninth or tenth position in the list; as T grows these exceptions become rare, so



100

the search costs for the rules are similar. In contrast, the Move-Ahead-1 and Move-Ahead-2

rules give different behavior unless the requested item is in the first or second position.

5.3.2. Varying Lambda

- This subsection considers permutations costs for Move-Ahead-k rules as X varies. Recall

that X = 0 corresponds to generating requests from the uniform distribution on the integers

[1..\]. Zipf's Distribution is generated when X = 1. A higher value of X corresponds to a

steeper density function for request probabilities. Limited preliminary experiments indicate

that all the rules tend to converge quickly at higher X.

Exhibit 5-6 presents the mean fraction of the list searched for the sample points N = 6,8,10,

* T < 2000, and G = 100, with request probabilities corresponding to X = 0.5 and 1.5; compare

these graphs to corresponding results for X = 1 in Exhibit 5-4. Higher X tends to gives lower

average search cost for all the rules, in absolute terms (indicated by the change in scale) as

well as in relation to the random permutation rule. In addition, the spread among Move-

Ahead-k rules tends to decrease as X increases.

Exhibit 5-7 compares "asymptotic" search costs among the rules; each point represents the

mean of the last 100 of 2000 requests for 100 trials at each sample point. Graph 5-7-a

presents permutation costs for X set at 0, 0.5, 1, 1.5. Within each group, costs for each N are

ordered by increasing k. When X =0 the requests are uniformly distributed, so permutation

costs are identical for the rules, equivalent to (N+ 1)/2. Graph 5-7-b compares the Transpose

(Ml) rule and the Move-to-Front rule (M5, M7, M9, respectively) for the three N settings; within

each group the points are plotted as a function of increasing A.

5.4. Properties of Search List Permutations

The theoretical measure "expected search cost" is defined in terms of a probability

distribution on the search list permutations; the probability of a given permutation of the

search list appearing at time T (or as T goes to infinity) is combined with the cost of that

permutation to determine the expected search cost. To give a more detailed view of the

Move-Ahead-k rules, this section examines properties of permutation costs and permutation

frequencies. Intuitively, a good rule ensures that permutations with low cost appear with high

frequency.
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An appropriate experimental approach might be to sample search list permutations and

estimate their distribution as a function of N and 7. Unfortunately, the space of search list

permutations is of size 10, which presents a number of obvious difficulties. For one thing, the

0 '
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simulation program would require an exponential amount of space to store the frequency

-... counts for each permutation. Also, many trials must be run to obtain a useful sample when

the parent population is so large. The permutation cost was therefore adopted for the

simulation.

On the other hand, the permutation cost serves as a "signature" for the permutation at time
% T, it should be possible transform frequency distributions on permutation costs into frequency

distributions for permutations. How are permutation costs distributed among the

permutations of search lists?

Clearly permutation costs are symmetric: the permutation with least cost is in reverse order

of the permutation with highest cost, the permutation with second-lowest cost is in reverse-

order from that with second-highest cost, and so forth. It might be the case, however, that

-. most permutations have moderate cost and a few have extremely high. and low costs. For a

particular permutation ,r, where r(t) represents the position of item i in the permutation and P,

its probability of being requested, permutation cost is given by
N

C(ir) = i(.P
I~I

0 Table 5-8-a presents permutation costs assuming N = 4 and Zipf's Distribution for the request

probabilities. The first column gives the index of the permutation in a lexicographical
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Lex Perm. Cost

0 1234 1.92 ,4.5
1 1243 1.96 0
2 1324 2.00
4 1423 2.08 04.0 A2

3 1342 2. 12 r
6 2134 2.16
7 2143 2.20 3.5
12 3124 2.32 V.

13 3142 2.44
18 4123 2.44 3.0 ,
8 2314 2.48
19 4132 2.52
10 2413 2.56 2.5
14 3214 2.56
20 4213 2.68
16 3412 2.80 2.0
22 4312 2.84
9 2341 2.84
11 2431 2.88 1.5
15 3241 2.92 0 40 80 120
21 4231 3.00 Rank
17 3421 3.04
23 4321 3.08

a b

Exhibit 5-8: Permutation Costs

ordering: 1234, 1243, 1324 .... 4312, 4321. The second column gives the permutation and

the third column the permutation cost.

Graph 5-8-b presents permutation costs for the case N = 5 and for the distributions

corresponding to X = 1 (Zipf's Law) and X = 2 (Lotka's Law) with a linear regression line

superimposed on the latter. The permutation costs are plotted against their rank.

Permutation cost for Zipf's Law has range [2.19, 3.18) and permutation cost for Lotka's Law

has range [1.56. 4.44). The probability distribution giving the most extreme range in

permutation cost has p, = 1. pl>. =0: permutation cost in this case is equivalent to the

position of item 1 and ranges from I to N.

Similar graphs indicate that ranked permutation costs for the family of ZX distributions are

evenly distributed over their range and are well represented by straight lines. For the case

X = 0 (corresponding to a uniform distribution on requests), permutation costs would give a

horizontal line at 11N. I N i =(N+ 1)/2; for N=5 this value is 3. The slopes of linearhin ln atr

LI
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regression fits to the ranked costs for X = 0. 1, and 2 are 0, 0.013, and 0.0252 respectively:

these and similar results suggest that ranked permutation costs have slopes that increase

proportionally to X.
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Exhibit 5-9: Permutation Distributions

Since ranked permutation costs form an almost straight line, permutation cost is linearly

related to permutation index (when the permutations are ranked by increasing cost). A graph

presenting the observed distribution of permutation costs would therefore have shape nearly

identical to that of graph representing the distribution of permutations by rank.

Exhibit 5-9 presents the distribution of permutation costs for the Transpose rule for 100
trials at the sample point N=6, T<520, G=1, X=1. The smooth bottom line in the points

* suggest that the optimal ordering, with cost 6/H 6 ot2.449, is regularly achieved. On the other

hand, the pessimal ordering, with cost 4.55, never appears. In general, permutations

appearing most often are concentrated at the low-cost end of their range, and the

concentration gets tighter as Tgrows.

Although this graph gives a good idea of the location of permutation costs, the distribution

of costs are not clearly seen. Exhibit 5-10 presents stem-and-leaf charts showing the

* distribution of permutation costs for 100 trials at the request for N= 6 and k = 1, 3, 5, A = 1. The

top three charts give permutation costs at the fifth request, and the bottom three give

permutation costs at the twentieth request. The two leftmost charts, for the M1 rule, present
'

-I
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44 4 44 8
43 6 43 43 66

4%42 42 44 42
41 55 41 41
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39 112 39 1 39
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26 23556777778 26 11112777889 26 01133777789
25 0334668 25 034466677 25 23346677999
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36 2 36 5 36 57
35 35 59 35
34 34 01466 34 0166
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31 038 31 11 31 116
30 1114 30 111344 30 1114444446
29 033377789 29 000005 29 0377
28 00033347 28 00011344466778889 28 0000111344467788899
27 0000555566677888899 27 002555799 27 015579
26 0122367779 26 03333356799 26 00011233588
25 669999999 25 002246666666679999 25 006799999

24 68 24 6788
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N w 8, T a 20

Exhiblt 5-10: Distribution of Permutation Costs
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exactly those data points appearing in Graph 5-9-a at T= 5 and T= 20. The other two charts

give corresponding measurements for the M3 and M5 rules.

In each chart the stem corresponds to the first two digits of permutation cost, and the

entries in the leaves to the last digit. For example, the bottom line of the bottom right chart

corresponds to permutat:ons with costs 2.46, 2.47, 2.43. 2.48. In the top rowj of charts the

* optimal permutation. corresponding to the data point 2.45, appears once in 100 trials under

the M5 rule, twice under the Iv 3 rule, and zero times under the M1 rule. (See Section 7.3 for a

discussion of how to read stem-and-leaf charts.)

The lengths of the rows suggest the relative frequency of permutation costs appearing over

100 trials. In the top charts, the search rules have only processed five requests and therefore

have little information about request frequencies. This observation is reflected in the large

-~ spread of points in the top charts. M1 has a somewhat smoother distribution of costs than the

other two rules. both tend to M3 and M5 have stragglers and gaps at their high ends.

The bottom charts depict permutation costs after the 25th request. The Ml rule has greatly

reduced its range of permutation costs, concentrating them towards the low end. It is

interesting to note that although Transpose gives generally lower permutation costs, the

optimal permutation and other low-cost permutations (with costs 2.46, 2.47, 2.47) are never
seen in 100 trials. The M5 and M3 rules, although they have reduced the range of

permutations from those seen at the fifth request, still tend to straggle towards the high end,

giving higher mean cost overall.

The graphs and tables in this section give preliminary insight into the relationship between
permutation costs and permutation frequencies. Theoretical characterization of permutation

* distributions for general Move-Ahead-k rules remains an open problem.

:4
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Part III

Experiments and Algorithm Analysis

A quite ordinary fact, principle or technique from
iN'. one branch of science may be novel and fruitful when

app/led in the other branch.
- W. 1. B. Beveridge
The Art of Scientific Investigation

S Principles and techniques for a well-developed simulation study are addressed in this

* section. The contributions of the thesis are surveyed and suggestions for future work are

presented.

Afksrh
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-Chapter 6
Experiments and Algorithms

, This chapter discusses the applicability of experimental research to algorithm analysis and

presents principles for performing experimental studies.

6.1. Why Do Experiments?

"* One of the goals of this research is to demonstrate that experimental analysis can make

significant contributions to the understanding of combinatorial algorithms. The previous four

chapters describe experimental studies of a variety of algorithm problems. Do the studies

contribute new understanding in the algorithm domains? Were they necessary to obtaining

the understanding? I claim the answer is yes. The case studies deal with well-known

domains. Quicksort is one of the most extensively analyzed algorithms of all time. Heuristics

for bin packing have generated considerable previous research, both experimental and

0" analytical. Sequential search rules been studied for over twenty years. Matching is a well-

known problem on graphs. Despite the extensive previous attention these problems have

received, new facts were discovered. To my knowledge, the following observations from the

case studies represent new results in the problem domains; all were direct products of

experimental research.
9.

,Bin Packing

0o The observation that empty space in First Fit and Best Fit is asymptotically
optimal when u = 1. The derivation of subsequent theorems.

o The observation of nonmonotonicity in FF and BF, and the conjecture that
empty space is linear in n for some values of u.

o Measurement of the location of minima and maxima in the nonmonotonic
*O curves. Observation that the local minimum shifts In a.

o Measurements of k.ltem bins and gaps and detailed arguments for linear
growth of empty space at some values of u.

o Proof that the expected number of 1-item and 2-item bins must be at least
., linear in n when u is greater than 2/3 and less than 1, for any packing rule.

o Observation that Beat Fit gives better packings than First Fit at all sample
points.

."

.'

... lli ll
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o Discovery that empty space in First Fit Decreasing packings is 0(1 ) when
i :50.5. A subsequent proof of this fact and better understanding of the
structure of FFD packings.

*" " Observation that partial empty space grows nearly as the cube of u when
u _0.5. Discovery of a cyclic component in partial empty space.

o The discovery of a "critical region" in First Fit Decreasing where very bad
packings appear, and a partial characterization of lists that cause bad
packings.

" Characterization of near-linear growth in u for empty space FFD packings
when u is between 0.5 and the critical region. Observation of cyclic
behavior of empty spac" ;n this region.

" Comparisons of empty space and partial empty space in BFD and FFD
packings of uniform weight lists. Observation that the rules give identical
empty space very often.

a Greedy Matching

o Observation of logarithmic edge cost of Greedy matchings in one
dimension.

o Observation of linear computation cost of the shortcut algorithm for Greedy
matching.

o Observation that the number of levels reached by the shortcut algorithm
grows logarithmically in N.

o Observation that 1/3 of the points are removed at the first level, prompting
the subsequent (trivial) proof of this fact.

o Observation that slightly fewer than 1/3 of the remaining points are
removed at higher levels, and that the fraction removed is constant in N
although variance increases with the level number.

o Observation that the mean edge cost per level is constant in N.
o An argument for logarithmic growth in expected edge cost.
o An argument to support the logarithmic number of levels reached by the

shortcut algorithm.
o An argument for linear computation cost of the shortcut algorithm.

* Quicksort

o Measurements of fixed.T strategies for an extension of the previous
analytical model that explicitly counts the cost of median selection.

o Discussion of tradeoffs between partition comparisons and selection
comparisons.

o Presentation of the M and N ranges where each fixed.T rule dominates (in

terms of total comparisons).
o Observation that in some metrics it is not necessarily a good idea to obtain

0the exact median, and an argument to generalize this observation.
o Measurements of a version of Ouicksort that allows the sample size to vary

as a function of sublist size.
o Derivation of optimal choices of T that minimize the total number of

• " comparisons. Observation that optimal T grows approximately as the
square root of n, the sublist size.

o Approximation of the optimal strategy by a square-root strategy, and
discussion of the "best" square-root rule in the range of experiments.

I I
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o Discovery of an error in earlier analysis and the derivation of the correct
formula. A new computation of the optimum cutoff value in Sedgewick's
MIX implementation of Median-of -3 Quicksort.

Sequential Seprch

o Discussion of a new measure to estimate average search cost for
sequential search rules.

a Measurements of search costs for a spectrum of Move-aheCad-k rules whien
request sequences are distributed according to Zipf's Law.

o Characterization of the area of domninance for each rule as the length of the
request sequence increases.

o Approximate measurements of asymptotic performance for each rule.
c A comparison of asymptotic costs as the "sharpness" of the request

distribution varies.
o Characterization of ranked permutation costs for the A' family of request

distributions.
o Comparison of permutation frequencies and permutation costs for a set of

rules.

Clearly, experimental results need not be limited to benchmark-style comparisons or tables

of measurements at a few sample points. Experimental analysis can lead to new

-, observations, new conjectures, arguments to explain observed behavior, new theorems, and

new insights into underlying mechanisms.

6.2. Applications and Limitations of Experimental Analysis

This section considers the type of algorithmic problems that might be appropriate to the

application of experimental techniques.

*'1 The algorithmic problems considered in the case studies all involve expected-case analysis.

Experimental work is naturally applicable here because it is generally a straightforward task to

generate input instances according to a well-defined probability distribution. Although this

research was restricted to consideration of expected-case behavior, application to other

analysis domains are possible. For example, experimental results are useful when the input is

gathered from an existing system. It can be very difficult to obtain an adequate mathematical

description of realistic input to the system or to develop an efficient generation scheme;

gathering examples of "typical" input may be the only. approach available. A related

approach is to compare a promising algorithm against existing algorithms by testing on a

standard set of input instances. New heuristics for the Traveling Salesman Problem, for

exam pie, are often evaluated on a set of problem instances which includes U. S. state capitals



114

"- and major German cities (see [4] for more standard problems). Even when a model of input is

available and algorithmic behavior can be analyzed, experiments can give precise

measurements of resources used.

These Lises of experimental research have many properties of standard benchmark.style

"3muiation. which differs somewhat from the approach taken here. Within the context of

expected case analysis of algorithms, the uses of simulation are many:

Eyperiments can be used to compare a!gorithms. Simulation results can identify the "best"

algorithm within a class for the given sample points. This information can be used to

characterize dominance among the algorithms, or to identify input properties that determine

best performance. Many examples of this use of simulation can be found in previous work as

well as in the case studies.

Experimental results can direct theorem-proving efforts. Experiments can be used to

support or refute conjectures developed by partial theoretical characterization. Experiments

are especially valuable when they contradict prior intuition. In the Bin Packing study it was

widely conjectured (see [3] or [6], for example) that since online algorithms for bin packing

(including First Fit and Best Fit) have no opportunity to rearrange their input, they cannot be

asymptotically optimal; even in an expected-case model they would have an asymptotic bin

ratio strictly greater than 1. Simulation results suggested that this intuition was wrong since

empty space was observed to be sublinear in n, implying that the bin ratio must approach 1.

Also surprising was the observation of nonmonotonicity in empty space as u varies; this

phenomenon has not yet been characterized theoretically.

The Greedy Matching study gives another example: in all higher dimensions, the Greedy

* heuristic produces matchings that are within a constant factor of optimal. It is natural to

conjecture that this will be the case in one dimension, and Steele had tried to prove the

constant-factor bound. Experiments demonstrated, however, that the bound does not hold,

since the cost of the Greedy matching grows logarithmically in N and the Optimal matching is

*,1 known to have constant cost.

Early in the Quicksort study, simulation results were compared to Sedgewick's formulas for

Median-of-3 Quicksort. Observation that the measurements matched every formula but one

led to the discovery of an error in the theoretical formula and to a recomputation of the

optimum value for M in Sedgewick's fast implementation of Ouicksort.

%4
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4* Experiments allow greater precision of analysis. Experimental results are generally

expressed with more precision than current theoretical approaches can attain - for example.
"4,

an experimental result is more naturally given as 3.45. rather than O(.). Experimental results

can therefore suggest directions for tightening current theoretical bounds. Simulations of

First Fit Decreasing led to the conjecture that empty space is constant in V. The theoretical

- bound in [1] gives a constant of at least 10'  and the proof only holds for very large lists.

Floyd and Karp [21 have recently reduced the asymptotic bound to 10 under a slightly different

averag-case model. Experiments results suggest, however, that empty space is rarely outside

the range 0.7±0.5. The measure partial empty space reveals even more precision; this

measure converges in n and is never observed to vary by more than ±0.005 at high n. Partial

empty space is more precise than empty space by a factor of 100; it is more precise by than

. the current theoretical bound by a factor of 10000.

Simulation can give results more efficiently than analysis. Experiments can be of use even

when theoretical analysis already exists, especially if simulation is more computationally

efficient than theoretical analysis. For example, in the Search study a formula exists for the

- asymptotic search cost of the Transpose rule. Computing this formula requires N! time,

however, and has only been done for small N and requests described by Zipf's Law. Chapter

5 gives simulation measurements for this rule (and others) for a range of distributions that

includes Zipi's Law.

Experiments can generate new insight, new arguments, and even new theorems.

Experimental results need not be limited to "mere measurement." In the case studies

functional relationships were characterized and detailed arguments were developed to

explain observations. In the Bin Packing and Matching studies some arguments were

formalized to become theorems. Detailed views of algorithmic behavior and precise

measurements can give deep insight into underlying structures. The potential for producing

new insight gives strong motivation for using experimental tools in this domain.
V'.

As a simulation problem, the study of algorithms presents special difficulties as well as

opportunities. Textbook examples of simulation problems generally come from studies of

, domains such as economic systems or performance of computer operating systems.

Problems in algorithm analysis differ in a number of ways from more familiar domains:

" Algorithms are simpler to simulate. Unlike economic systems, they have simple,
% rigorous, mathematical descriptions. In expected-case studies, the input usually

has a simple mathematical description as well..4
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Some issues of traditional simulation research, such as developing and validating
d. realistic models, become less important. In current practice algorithms are

analyzed in terms of simple abstract machines and well-defined probability
distributions. While an eventual goal of algorithm analysis is presumably to
obtain theoretical results that accurately reflect computation on real machines,
this goal is approached incrementally in order to establish a firm mathemnatical
base.

* Algorithms have relatively few parameters. Except for the Search study, which
involved parameters .N, 7-, k, CG, and X. the case studies and previous work were

-' generally restricted to consideration of one or two parameters. As a result the
complexity of displaying and analyzing interactions between parameters is
generally less than for classic simulation problems.

- .*Experiments are often less expensive. Algorithms are interesting because they
are efficient. In the case studies simulation time per trial was generally reckoned
in seconds, while simulations of complex systems can require hours, even days of
computation time. There are of course exceptions to the above generalities.
Simulations by Johnson and McGeoch [5] of a simulated annealing algorithm for
the Traveling Salesman Problem took up to six hours per trial.

It might seem that the study of algorithms presents a much simpler simulation problem than

standard domains. On the other hand, simulation results must be compared to theoretical

characterizations of algorithms. Theorems have been preferred over experimental results

because they represent certainty about bounds on algorithmic behavior and can sometimes

- be generalized to broad classes of algorithms and input distributions. Theorems also express

understanding of the mechanisms underlying the algorithm. In contrast, experimental results

consist of measurements at specific sample points with specific implementations. As with any
experimental domain, generalization of experimental results without real understanding of the

underlying process must contain some degree of uncertainty.

Two fundamental problems in applying simulation to algorithms are how to reduce
a, uncertainty in simulation results and how to use the results to gain new insight into underlying

mechanisms. While these problems cannot be entirely eliminated, much can be done to

%, lessen their severity. The following section discusses principles for experimental research in
this domain. Chapter 7 presents a number of tools that can be applied in order to realize

these principles.
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6.3. Principles

Four general principles for experimental research in the domain of algorithm analysis are

presented in this section. The principles were developed from experience with the four case

studies, three small experimental studies not presented in this thesis, and the survey of

previous work presented in Section 1.2.

e Match the simulation results to a well-defined analytical model. Simulation
research in algorithrni analysis is usually prompted by unanswered questions from
theoretical approaches. Experimental approaches should be viewed as a
companion to theoretical approaches when studying a particular algorithm. It is
therefore important to reduce as much as possible the distinction between
simulation model and simulation program, and to obtain simulation results that
can be expressed in analytical terms. Sections 7.1, 7.2, and 7.5 discuss
techniques for establishing the accuracy of simulation results.

* Search for a good "view" of the data. A good view of experimental results is
obtained when the variation at fixed sample points is small relative to growth as
parameter settings vary. When a good view is obtained it is generally easier to
obtain accurate measurements, to assess functional relationships, and to
discover underlying structures. The view of the data can be improved by the use
of appropriate data-analysis tools. In addition, a number of techniques may be

a., applied to improve the results of the simulation before data analysis occurs.
a-. Sections 7.1, 7.3, and 7.4 discuss techniques for improving simulation results.

Section 7.8 discusses analysis techniques that proved useful in the case studies.

e Analyze the data, don't just measure it. Analysis of experimental results should
not stop at a tabular presentation of means for each sample point. Measurements

a-. can be transformed and combined and functions can be fitted. The object of data
analysis in this context is to manipulate measurements to gain new insight into
relationships between parameters and measures. Section 7.8 presents a number

ha of data analysis tools.

e Iterate theoretical and experimental approaches. A fundamental concept in
traditional experimental domains is that theory and experiment must be iterated.
An important component of the case studies was the rich interaction between

0 experimental and analytical approaches to analysis. I tried to preserve this
evolutionary development in the presentation of the case studies. Not only did
experimental results direct theorem-proving efforts, but theoretical insight often
suggested more useful measures, better choices of sample points, and more
efficient experimentation. Sections 7.1, 7.4, 7.5, 7.6, and 7.7 explore
opportunities for improving the simulation study and for developing simulation
programs that support an interactive, iterative approach to analysis.

These four principles can be approached at many levels. Techniques of algorithm analysis,

for example, can suggest better measures, faster simulation programs, and ways to check the

-UA
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accuacyof imuation results. Statistical methods for sampling and experimental design can

be applied to gain more efficiency of experimentation and to eliminate redundant

experiments. Program development tools are needed in building efficient simulation

programs and supportive environments, Many practical hints from the domain of simulation

can be applied. A variety of data analysis tools are useful.

The following chapter presents practical hints, statistical techniques, and data analysis tools

for achieving the four goals listed above. The discussion of Chapter 7 results from experience

with the cases studies: I believe they can be of use in many simulation studies of algorithms.

01
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Chapter 7
Tools and Techniques

This chapter presents tools and techniques for enhancing experimental studies of

algorithms. Algorithmic insight and program development techniques are applied to improve

efficiency and accuracy of simulation programs. Statistical techniques such as sampling

plans are considered. A number of guidelines and techniques from the field of simulation are

presented. Finally, useful data analytic tools are surveyed.

*1 Many of the topics addressed here are found in advanced texts on simulation, experimental

statistics, or data analysis. The contribution of this chapter is to gather knowledge from

diverse fields, to describe those techniques and guidelines that were particularly useful in the

case studies, and to discuss their application in the domain of algorithm analysis.

Familiarity with elementary statistical analysis is assumed. For a survey of statistical

concepts, see DeGroot [12] or Mosteller, Fienberg and Rourke [21]. Feller's [14] two-volume

work is a standard source in probability theory. Box, Hunter, and Hunter [5], and Miller and

Freund [20] discuss statistical issues that particularly apply in experimental research. For

texts on simulation, see Adam and Dogramaci [1], Brately, Fox, and Schrage [9], Fishman

[15], or Hammersley and Handscomb [17]. Many of the data analytic tools presented here are

described in Tukey [24], Chambers et al [10], Cleveland [11], and Mosteller, Fienberg, and

Rourke [21].

The principles described in the previous chapter can be approached at many stages during

the simulation study. For example, the correspondence between measurements and models

can be influenced by choice of measure, correctness of the implementation, choice of

random number generator, and the placement of sample points. The following sections are

organized by procedural issues that arise in the course of a simulation study.
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7. 1. Choice of Measure

Usually the measure adopted for the simulation is suggested by previous theoretical

* anaiysis Simulation r-SurtS should match theoretical measures as much as possible Timing

* statistics of a program are therefore rarely useful vwhen investigating the time complexity of an

Sugorithm noise due to implementation factors, machine loads, or compiler optimization can

sertously degrade this measure. Accurate results can be obtained by embedding simple

bcok.eeping mechanisms into the simulation program to count the number of key operations.

Measures should be suggested by theoretical results, but not necessarily constrained by

them. It may be the case that the analytical measure of interest is difficult to measure

experimentally. This occurs, for example, when the algorithm is a heuristic for an NP-hard

problem and performance is expressed relative to the optimal solution (which cannot

generally be found).

If the measure suggested by the simulation model is not amenable to experimentation, it

might be possible to identify an alternative measure that is theoretically interesting as well as

experimentally practical. The Bin Packing study used the well-defined and easily- computed

measure empty space, for example, rather than the bin ratio. In Search, the analytical model

* involved the steady state probabilities on the N! search list permutations. Since this measure

is impractical for simulation because of the size of the sample space, the alternative measure

permutation cost was used in the case study.

Choice of measure is also constrained by available analysis tools. A too-detailed measure
can produce huge amounts of data, possibly overwhelming statistical analysis tools, graphical

.? %:display packages, or even machine storage capability. At one point in the Bin packing

* experiments I tried generalizing the measure number of big items (which counted the number

of weight list items with size greater than 0.5) to the number of items with weights in each of

the subranges (0, 0.11. (0.1, 0.2],.(0.9, 11. This measure was discarded due to the ten-fold
increase in data and the difficulty of characterizing empty space in terms of ten variables.

Early experiments in the Search study reported permutation cost at every T for T as large as
5000. It quickly became clear that a summarization scheme was needed, so grouped averages

were adopted.

Whatever the initial measure, be prepared to change it. At the beginning of a simulation

study, consideration of theoretical results can suggest good measurements. An important

41
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component of the iterative approach to experimental analysis. however, is to modify the

measure as new insight is gained. In the case studies the measure generally became more

detailed as experiments evolved. In Bin Packing the measure progressed from 'ys'ace to

more detailed measurements such as partai erroty space, co,.ts tern tns, and japs fl

t ;' In Matching the measures changed from total costs to consideration of costs at

each level. Even if there is no hope of theoretically characterizing the detailed

measurements, they are valuable for giving insight into underlying structures. increase in

detail was often accompan-ed by a reduction in the number of trials and sample points, due to

limitations of technology and patience.

7.2. Ensuring Correct Results

Experimental results are only as strong as the fidelity of the simulation program to the

simulation model. The relationship between measurements and the algorithmic model must

be close and well-understood. A number of techniques for checking the accuracy of

experimental results are available.

It is often possible to compare measurements against known theoretical results. This

situation arises when the simulation involves an extension of a standard model, as was the

case in the Ouicksort study. In this study, checking simulation results against formulas led to

the discovery of an error in previous theoretical work.

Comparison against known theoretical results can also be useful for clarifying details of the

simulation model. For example, the simulation program for Quicksort requires a routine to

generate the median of T integers selected randomly from [1, N]. For the analogous problem

on the real interval (0, 1], the median of T randomly.selected reals has a Beta distribution with

parameters (T+ 1)/2 and T. Beta variates can be generated in constant time per variate, so I

implemented a generator that produces Beta variates and scales them to the integers [1, N].

The simulation model is not exactly met by this implementation because Beta generation

corresponds to sampling without replacement and the model to sampling with replacement. I

reasoned that this difference would not significantly perturb the results since T is generally

much smaller than N. I was incorrect: measurements under the Beta scheme differed

significantly from the model, so this method was discarded.

Once a clear specification of the model is obtained, the next task is to make sure that the

simulation program performs as specified. Standard program verification and validation

* .i. - - - - - -
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techniques are appropriate here and should be applied. Limitations of machine precision can

be an important factor since theoretical models generally assume properties of reals.

In simulation problems the choice of pseudo-random number generator can be critical

There is a vast literature describing empirical and statistical tests of generators as well as

evaluatons of well.,no%.n generators Random number generators used in the case studies

are described in Section 7.7 No matter how many statistical tests a particular generator

passes it may have subtle non-random properties exposed by the simulation problem. Early

' n the Search StLy. for example, the cost per request exhibited unusual periodicity in the

number of requests. This periodicity was not dependent upon th2 random number generator

in any obvious way because the cost function depended upon the search list ordering as well

as on the requested item, that is, cyclic patterns in the requests should not necessarily give

cyclic patterns in search costs for all search rules since each rule reorders its list differently.

In any case, the cyclic behavior clearly indicated a violation of the assumption of

independence in requests: replacing the linear-congruential generator by an alternative

generator caused the periodic behavior to disappear.

The most import assurance of experimental integrity is replication, a standard component of

research in the experimental sciences. At the very least, critical experiments should be

replicated using an alternative random number generator. An even better practice is to

develop a secondary simulation environment, varying such factors as implementation

strategy, random number generator, and machine word size. If results are consistent across

the two environments, then there is strong assurance that the results are independent of

environmental factors. Section 7.8 presents tools for comparing results from separate

implementations.

7.3. Variance Reduction Techniques

One of the principles for simulation research is to obtain a good view of the data - that is, to

reduce variation in measurements at specific sample points with respect to growth as

-4 parameters vary. One way to obtain a better view is to reduce variance in the measurements

at each sample point.

An obvious way to reduce variance is to take more trials per sample point; Section 7.6

discusses methods for improving the efficiency of simulation programs. In addition, many

variance reduction techniques can be incorporated into the simulation programs. Variance

4I N ff I
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reduction techniques that were useful in the case studies are described in this section For

further discussion and descriptions of other techniques, see texts on simulation such as [9].

[151. or [171.

In the foltoving. assume that algorithms A and B are being studied at a fixed sainp,e. point

-,, meas.,res are denoted oy A } and / Since input instances are randomly generated. the

measurements at a given sample point are random variables from some (unknown)

distribution. Let .1 denote the value taken for measure \ at the ,!' trial.

Conditional Monte Carlo

In studying algorithm A, it may be the case that measure .X is a function of other random

variables in the simulation program. Variance in X can be reduced if the intermediate randQm

variables are replace by their expectations. Suppose, for example, that there exists a

measure Y for which Z = E[XI Y] can be either analytically calculated or efficiently estimated.

Instead of estimating EtAl by averaging the X' values, a better method is to take the means of

the Z values. The second measure is an unbiased estimator of E[Xj and is guaranteed to

have smaller variance than the first (see [9] Section 2.6, or [17] - the actual values for

variance depend upon the specific problem). This technique is called Conditional Monte

Carlo.
Si.

In the Quicksort study, the random variates associated with the number of exchanges and
S.

the number of selection comparisons performed at each recursive level were replaced by

their expectations. As a result, the random variates representing the total number of

exchanges B and selection comparisons F (which are summed over all recursive levels) had

smaller variance than would occur in a straightforward implementation of Quicksort.

i',. Similarly, in the computation of Insertion Sort costs, the random variables associated with the

• number of insertions and insertion moves for sublists of size less than M were replaced by

.- their expectations. Corresponding measurements D and E (representing sums over all

sublists) had smaller variance than would be produced by an implementation of Insertion Sort.

0.O In previous simulation studies of Sequential Search rules, the request cost (the cost of

searching for requested items) was used as the simulation measure. Request cost is a
random variable with value depending upon the item requested and upon the current

permutLtion of the search list. For a fixed permutation, request cost is a random variable that

has as its expectation the permutation cost - the average cost of searching for items in the

',p
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,,'%.," ,tVir. • ' 9. ,.



I126

permutation. Replacing the measure equest cost by permutation cost is another application

of Conditional Monte Carlo.

in this case the decrease in variance was accompanied by an increase in the running time of

the simulatcr program. since request cost could be computed in the time it takes to find an

,tem .. ner.?,:ermutation cost took time proportional to V, the size of the search list. For one

model of request probabilities (Zipf's Law), a lower bound on expected search cost per

request is .\/H.\. Computing permutation cost tnerefore increases running time by a factor of

/H, per request, for this variance reduction technique to be successful, variance should be

reduced by at least this much. Although improvements in variance cannot be derived

because the probability distribution on permutations is not known, experimental evidence

suggests that the technique is cost-effective. ' Examples of successful tradeoffs between

variance reduction and simulation time in many simulation domains are given by Hammersley

and Handscomb [17]. In one remarkable example ([17] page 88), computation time was

increased by a factor of 4 and variance decreased by a factor of ]10'.

Control Variates

Suppose that measure E[X] is to be estimated for algorithm A. Suppose also that there is

another measure Y that is positively correlated with X, and that E[ i is known; without loss of

generality, let E[ Y] = 0. Y is called a control variate for X. Y may be another measure of A (an

internal control variate), it may correspond to some property of the input, or it may be a

corresponding measure of algorithm B that is similar to but simpler than A. For every positive

constant k,

E[A] = E[X- k Y1,
VarjX- k 11 = Var[X] + keVad 11 - 2kCov[X, Y.

If the sum of the last two terms can be made negative, then Var[X- k 1 < Var[X], and a better

estimator of E[XI is gained. Brately, Fox and Schrage [9] (Chapter 2.3) discuss difficulties of

establishing that the variance behaves as desired and of determining the correct value for k in

a given problem instance.

The intuition behind the use of control variates is that X can be "seen" more clearly if a

positively-correlated source of variation can be subtracted. Control variates were used in this

1Thai point became moot when an algorithm for computing permutation cost in the time proportional to that of
computing request cost was discovered too late to be incorporated into the simulation study - see Section 5.2.

IW
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informal sense throughout the case studies. In the Bin Packing study, the bin count was the

measure suggested by previous theoretical analysis. The control varate sum of the weights

was identified, and the measure empty space (which represents the difference between the

bin count and the sum of the weights) was adopted for the simulatons. In the study of First Fit

Decreasing. e"'pty space in the ;ast bin became a control variate fcr empty space and the

- difference. pa,-ai empty spac e. was measured.

Paired Experiments

When the control variate comes from another algorithm, the use of control variates is called

paired experiments. For example, suppose that algorithms A and B are to be compared in

terms of measure '; in particular, the object is to estimate the expected difference

D = XA. - YVy The variance of D is given by

Vad[D] = VarX. - li,

*=Var[. A I + Var[X B ,- Cov(XA., XB I].

Variance in Di can be reduced if the covariance of XA. and AB can be increased. If

simulation experiments for A and B are run on independently generated sets of input, then

Cov[X, YI = 0. In many situations, however, inputs that give high measurements for A tend

-to give high measurements for B. In paired experiments, different algorithms are given

identical sets of inputs so that differences for corresponding trials may be computed rather

than average differences for independently generated trials.

In the Search study, requests for items with low probability tends to produce high request
%: Pcosts for any reasonable rule. If algorithms A and B are given identical inputs at each trial it is

likely that the covariance of search costs would be positive. Paired experiments were used in

Search and in some of the Bin Packing experiments. In both cases, experimental evidence as

well as intuitive arguments for positive correlation of measurements were available.

7.4. Placement of Sample Points

Placement of sample points can also improve the view of experimental results. Some rules

of thumb are presented in this section.

Measure the largest problem size possible. A better view of the data is usually provided if

-'p.
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extremal parameter values are taken. An important special case is to study the largest

practical problem size. Experience with the case studies demonstrated many times that

measurements at larger problem sizes are generally worth the extra investment in time.

Previous experimental studies of Bin Packing rules, for example, measured lists as large as

_'0 and 1000, simulations described in Chapter 2 studied lists of size 12S,000. Many

ubservations. such the nonmotiotonic behavior in First Fit and Best Fit, could not have been

seen at smaller input sizes.

Measuring large probiems is also important when the theoretical model involves asymptotic

analysis Although measuremenis at finite input sizes can generally give only approximations

to asymptotic behavior, larger input improves the accuracy of the approximation. The

similarity between theoretical model and simulation results is therefore increased. In the Bin

Packing, Matching, and Quicksort studies, the problem size doubled at each sample point

rather than increasing by a fixed amount. This seems to be a powerful method for obtaining

measurements at large NV with less investment in computing time.

Sample many points within the range of parameter settings. The usual goal of algorithm

analysis is to characterize some measure of algorithm performance as a function of input

parameters. So that simulation results may be expressed in theoretical terms,

characterization of function forms should also be the goal of simulation research. If a

parameter is set only at its extremal values, assessment of the functional relationship between

the parameter and measure is rarely possible. The number of intermediate sample points is of

course limited by simulation cost and by the available data analysis tools. Some case study

results suggest, however, that it can be worthwhile to take as many sample points as the

environment will allow: the cyclicity of partial empty space in FFD packings with u: 5_.5 would

not have been discovered if, say, five values of u had been sampled in this range.
6

Apply stratified sampling. A recurring issue arising in the case studies was whether it is

better to take discrete sample points or to take random sample points over the range of the

parameter settings. In practical terms, which type of graph in Exhibit 7-1 gives more

4i information: the left, with discrete sample points, or the right, with randomly-placed sample

points?

Hammersley and Handscomb (17] (p. 554) remark that it is generally a good idea to

eliminate sources of randomness in the simulation wherever possible. They and other

authors of texts on simulation recommend stratified sampling: a better view of functionality

7.. ,-,.1; ., - ". . .., . ,
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Exhibit 7.1: Placement of Sample Points

and a reduction in variance may be gained if input instances are generated so that certain

input properties (specified by the parameters) occur with probability 1.

*Stratification is not precisely the same as taking discrete sample points. In the Bin Packing

study parameters u and u7 were set at discrete values. The parameter n was stratified, because

every input at the sample point (no, u,) was exactly of length n0. The parameter u was not

stratified, however, since the largest weight in each input instance was a random variable

determined by i; and u. Nevertheless, the arguments for stratification tend to support the

taking of discrete sample points. As a simulation study progresses it may be useful to stratify

inputs even further than described by the initial parameters: it might have been helpful in the

study of FFD packings in the critical region, for example, to stratify the parameter b = number

of big items and to generate weight lists with exactly b big items, rather than generating

random lists according to n and u simply reporting the value of b each time. The relationship

between topheavy lists (with large b) and bad packings might then be more clearly seen.

Design the experiments. The goal of experiment design is to determine the placement of
.e sample points so that the most information may be gained with the least cost. Not

surprisingly, the best time to design an experiment is after the study, when the problem is

better understood. For this reason, an iterative approach to placement of sample points is

important

Of course the experimeniter has to start somewhere. A complete factorial design is a useful

starting point. This design is quite straightforward: for each input parameter, choose a few

settings that span its range and establish sampie points from the cross product of the

settings. In tha Quicksort study of fixed. T strategies the parameters are N, M, and T. Setting

0 %
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A = 10 100. 1000, .1/= 1. 5, and T= 1. 3, 5, 7 gives a 3 x 2 x 4 factorial design with 24 sample

points.

An alternative to the complete factorial design is the "one-factor-at-a-time * approach: fix N

*. and tl and vary F. then fix A and Tand vary U, and so forth. This approach is natural in the

Context of algorithm analysis - in the Bin Packing study, was fixed to study growth in ni and

then n was fixed to study growth in u. Even so, the method is not generally accepted by

statisticians today (see [5] or [81). primarily because observations may be extended

erroneously. Initial experiments in the Quicksort study were of the "one-at-a-time" variety:

the parameter If was fixed at 1 and ANand Twere varied. Many of the early observations were

later found not to hold in general.

7.5. Pilot Studies

*It is useful to implement a pilot study before beginning extensive simulation. A pilot study is

simply a small-scale preliminary version of the simulation program, where the simulation

model is implemented in a straightforward manner with little attention to program efficiency.

Inputs are generated with minimal programming effort, using the system random number

generator and other system routines when possible. The object is to use the information

gained from the pilot study to improve the power and quality of more extensive simulations.

The information can be used in a number of ways.

First, the pilot implementation allows clarification of the simulation model and a method for

checking the specification before much coding effort is invested. This is especially useful

when partial analytical results already exist. As a preliminary step in the Quicksort study

measurements from a pilot implementation were checked against known formulas for

* Median-of-3 Quicksort. The implementation failed: observed means for the five measures of

interest were consistently higher than their predicted values. Closer examination revealed a

number of subtle differences between the model and the implementation. For example, when

. sublists are smaller than the sample size, the analytical model assumes that the sample is

drawn with replacement while the pilot program drew a smaller sample without replacement.

Similar minor differences (which significantly affected the results) were discovered in the pilot

study. Once the details of the model were clarified, the simulation measurements produced

(to within 1.5%) the mean values predicted by theory.

Second, monitoring the pilot program can direct efforts for improving the running time of

.. %
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later simulatiolf) programs. This simple idea was used, for example, in the implementation of

the First Fit Decreasing rule. Some of the speedups were algorithmic: instead of generating a

random lists of weights and sorting them by an Q(.% log % ) sorting algorithm. a variation on

Binsort was used, exploiting the fact that the weights are unifor-mly distributed. Instead of

finding the "First Fit" bin by linear scan through the bins, a hecip w.as imposed over the bin set

to find the correct bin in O(Niog.\) time. In addition to algorithmic m nprove ments. a number

of standard techniques for improving program efficiency (such as those described by Bentley

[61) were applied. Monitoring, for example, revealed that most of the computation time was

spent in searching for the correct bin to contain each item. Careful recoding using standard

techniques such as loop unrolling, code motion, and placing loop variables in registers.

decreased the running time of the program considerably: the final implementation could

generate and pack a list of 128000 items in just over 1 minute of machine time, a factor of four

improvement over the initial implementation.

Third, the pilot studies are useful in planning of future experiments: preliminary results

suggest, for example, how many trials will be necessary, how many sample points should be

taken and where to space them, and what sort of distribution arises at each sample point.

Such information saves a lot of trial and error in later simulations. The factorial design
approach described in Section 7.4 was of considerable use in obtaining this information

quickly.

Fourth, and perhaps most importantly, the pilot implementation can be saved so that final

simulation programs, with different random number generators, finely tuned code, and

shortcut implementations, may be compared to a straightforward version of the algorithmic
model. The pilot study can therefore provide a secondary system for replication of

experiments. This backup system was critical in establishing the accuracy of results in all four

case studies.

A final reason for building a pilot program is that it may be sufficient for the algorithmic

problem at hand: there may be no need to develop a highly-tuned implementation. Even if it
turns out that the pilot implementation is sufficient, it is still a good idea to build a "backup"

system to validate the simulation results. At the very least an alternative number generator

F should be used.
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-~ 7.6. Simulation Shortcuts

In one sense there is little need for an efficient simulation program:. the experimental results

wvill be the same no mnatter how long the experiments take. There are many reasons, however,

for spending some effort in developing a fast simulation program. Most importantly, extensive

use of an iterative approach depends upon the speed wvith which results are obtained. a

researcher is iess likely to pursue a conjecture if results require a few days rather than a few

mninutes. Faster simulation programs allow more trials per sample point in the same amount of

time. Algorithmic improvements can allow larger problems sizes, giving a better view of the

data and more insight into asymptotic performance.

Integer computation was used throughout the case studies. In the Bin Packing and

Matching studies the algorithms were performed on integers ranging from (0, 2 0- 11 rather

than on reals from the range (0, 1]. In general, integer arithmetic is faster and gives more

* accurate results than computation on reals. Also, since most generators of uniform random

variates (including those used in the studies) produce integers, the cost of converting to reals

was saved in the simulations.

In addition to program speedups, a powerful technique in simulation is to look for simulation

shortcuts. The motivating principle is that a simulation of an algorithm is required, not

necessarily an implementation. As a trivial example, suppose the average cost of searching

for items in a random list of size N is of interest, where each item is equally likely to be

requested. The naive simulation program repeatedly generates random lists and random

sequences of requests and accumulates the costs of searching for requested items. The

"shortcut" program generates search costs from a uniform distribution on the integer range

[1,N]: although no random lists are built and no searches are performed, the results are the

same. (The "super shortcut" program prints "(N + 1)/2" and stops.)

Often, partial understanding of the algorithm can be exploited to obtain shortcuts in the

simulation. In the Ouicksort study, the straightforward approach to simulating Quicksort
would be to generate ranidomly- ordered lists of numbers and to Quicksort them, recording the

measures of interest. In this case no random lists generated and no lists were sorted, yet the

desired measurements were obtained. The shortcut was possible because the expected
values of the various measures at each level of recursion could be described analytically. The

% shortcut program exploited this partial understanding by calculating appropriate values at

each recursive level rather than by simulating them. Since this simulation shortcut also
happened to be a variance reduction technique, simulation efficiency was doubly improved.

'S.o1
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The median-generation routines in the Quicksort study al so incorporated shortcuts: for

T,<.\, maintaining an ordered hash table to detect duplicates exploited the fact that the

sample was drawn uniformly from the integer range and that only the median needed to be

found quickly. For T near A\ the generation routine only considered about T12 numbers

before producing a median.

Early in the study of Search rules a simulation shortcut was developed for thle Transpose

rule by the addition of an auxiliary data structure. The straightforward implementation of

Transpose maintains a ist of N items; when a request is made, the item is found in the list by

sequential search, the number of comparisons required to find the item is recorded, and the

item is transposed with the one preceding it. The shortcut implementation maintains a

second data structure (indexed by item names) that records the position of each item in the

* , search list. When an item is requested, its position in the search list (and therefore the

* ,J~.number of comparisons needed to find it) is found by lookup in the secondlary structure rather

than by sequential search. Locating the requested item and updating the two lists requires

constant time per request rather than the time to search for the item. (When the measure in

the simulation study was changed from request cost to permutation cost, this shortcut was no

longer used.) Some information must usually be sacrificed in order to use a shortcut: in the

* Quicksort study, for example, no sorted list was produced as output. This was not a liability in

the simulation study because it did not affect the measures of interest.

Hammersley and Handscomb [17] give many examples of simulation shortcuts in their

discussion of Monte Carlo Techniques. Bentley [31 describes a simulation shortcut in his

study of an algorithm for median selection. Beardwood, Halton, and Hammersley [2] make

good use of a shortcut in their study of heuristics for TSP. Given a set of points generated
uniformly within the unit square, the Strip heuristic divides the square into vertical strips of
fixed width, connects the points within each strip, and then connects the strips. The expected

* tour length for the Strip heuristic is essentially the expected length within each strip multiplied
by the number of strips. The shortest tour within a strip is found by connecting the points in
order from top to bottom. Rather than developing a straightforward simulation of the Strip
heuristic, they exploited understanding of average distances between points in a strip to
calculate tour lengths without producing tours
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7.7. The Simulation Environment

A simulation study requires more than just a simulation program. Routines for random

numoer generation are needed, data files must be managed, and programs or packages) for

data analysis must be available Flexible and efficient simulation environments are needed to

support iterative analysis. This section discusses issues of program and environment

development.

. One important rule in developing simulation programs is to avoid premature summarization

of data. Very often in the case studies, examination of the distribution of data points at each

sample point led to new insight. Simulation programs should produce measurements taken at

each trial rather than average measurements for each sample point, so that the experimenter

can see the raw data.

Another rule that proved useful in the case studies is to produce results that are readable by

other programs. This principal is one component of the "Unix" style of program

development; see Kernighan and Pike [18] for more discussion of this approach (Unix is a

trademark of Bell Laboratories). The output of a simulation program, if it is to be easily

analyzed and manipulated, should not be cluttered with column headings and annotations;

this is especially true if the results are to be submitted to a data analysis package.

Statistical Analysis Packages

The available statistical analysis package influences the arrangement of experimental
results in data files. Tools used in the case studies included the statistical analysis packages

S (developed at Bell Laboratories) and Minitab (developed at Penn State University) as well as

the graph-drawing packages Plot (developed by Ivor Durham for use in the Computer Science

Department at CMU), and Grap (a preprocessor for the Troff typesetting system).

All of these packages are column-oriented: that is, commands are typically expressed in the

following format.

o Plot the data in column 1 against corresponding values in column 2.

* Compute a multiple least-squares regression using the values in column 2 and 3
to predict values in column 5.

* Assign to column 6 the logarithms of values in column 3.

."
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If a statistical package is available then it is useful to develop simulation prograrns that give

results in a format compatible with the package. In the case studies results were generated

so that each row of data corresponded to a single trial. The leftmost fields in each row gave

sample point settings and the rightmost fields gave values for the measures of interest. For

exampie. the folloviing data are from an experiment in the Bin Packing study. The columns.

from left to right, cot respond to the name of the packing rule. ,:, ,,ber of bins packed,

rr:ty soace, e"oty space in the 'ast bin, and nu nber of big ters. Each line gives results for

one trial: two sample points are recorded.

FF0 125 1.000000 72 5.358297 0.468258 69
FFD 125 1 000000 63 2.500774 0.336832 58
FFD 125 1.000000 68 4.348960 0.502865 68
FF0 125 1.000000 65 2.633522 0.488351 63
FFD 125 1.000000 61 1.705485 0.805012 57
FFD 250 1.000000 137 6.808572 0.999558 137
FF0 250 1.000000 129 2.943276 0.315850 121
FFD 250 1.000000 130 4.867452 0.997307 129
FFD 250 1.000000 131 4.696441 0.459429 129
FFD 250 1.000000 145 9.049346 0.488392 142

Statistical packages can be of great use in analysis of experimental results and can be

critical to the development of an interactive style of analysis. On the other hand, much can be

accomplished with less sophisticated tools. Portions of the analysis described in the case

studies were performed on the Plot graphical-display package. Plot is not a statistical

package: its primary capability is to read a 2-column file of data and to plot values in the first

column against those in the second column. Plot commands deal with modifications of the

graphical display. Although the functionality of Plot is limited in comparison to a statistical

analysis package, much of the difference was made up by the awk filter, a standard Unix

facility. In the awk language, each command comprises a pattern and an action: if the

current input line matches the pattern, then the action is taken. The pattern-matching

language allows comparison and algebraic manipulation of field entries. The action part is as

powerful as most programming languages and supports associative arrays. Awk was

regularly used for many of the functions available in statistical packages, and the output of the

awk filter was passed to Plot for graphical display of the results. At times, the filter alone was

sufficient for quick analysis of small data sets: awk performed tedious manipulation and

summarization of the data and produced results that could be quickly recorded on graph

paper.

Generating Random Inputs

p •
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* A good source of uniform random variates is needed in all simulation problems A huge

literature exists describing and evaluating algorithms for generating random variates. See for

example Knuth (19], Brately, Fox and Schrage [9], Fishman [15], or most texts on simulation.

The primary generation algorithm for uniform variates used in the case studies is from Knuth

[19] (3.3.2. Algorithm A. Second Edition). Exhibit 7-2 gives the algorithm implemented as a C

macro. The 55.e!ement array Rand was initialized by 55 calls to the BSD Unix 4 1 system

random number generator, a linear congruential generator producing integers in the range

(0 2':- 1].

#define Maxrand (1 << 30)
int Rand[55];
int KJ;

#define RAND(X) X Rand[K] + Rand[j];
if (X >= Maxrand) X -= Maxrand;
Rand[K] = X;
if (K 0) K = 54; else K--;
if (J =0 0) J = 54; else J--;

Exhibit 7-2: Uniform Number Generator

The secondary generation method, used in the pilot studies and in backup implementations,

was some form of linear congruential generator. The secondary studies varied among the

problem domains: some were performed on a Radio Shack TRS-80 personal computer, which
has a system linear congruential generator that generates reals from the unit interval. Other

backups systems used the system generator for BSD Unix 4.1.

The Bin Packing and Matching studies required the generation of order statistics of uniform

variates: that is, sorted lists of numbers drawn independently and uniformly from a specified

range. A number of approaches might be used: for example, the variates could be generated

and then sorted by Quicksort. Since the numbers are known to be uniformly distributed,

Bucketsort might be more appropriate. Nijenhuis and Wilf [22] also give a clever algorithm for

generating N integers in linear time and linear space. Bentley and Saxe [7] present two

linear-time algorithms for generating the order statistics of uniform reals. Although efficient,

the latter two were not considered for the case studies because they produce real numbers

rather than integers (integer computations were used throughout). A small study of the

running times for the generation routines revealed that a variation on Bucketsort was most

efficient.

5%
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Many techniques exist for generating random variates from specific non-uniform

distributions, as well as general techniques for arbitrary distributions: see [9], [15], or [19] for

a good discussion. A well-known general method is inversion: if F is an invertible distribution

r function, then setting X' = F-:(U) (for U a uniform variate) produces variates with distribution

F. If the inverse of F is not easily computed. then F-:(L) may be approximated by a tabular
inversion method, where the ;,: entry in the table contains the pair [F(X), x]. A simple

rejection approach generates points uniformly in the unit square and rejects any point that

lies above the specified density curve; if the point is below the curve x-coordinate of the

generated point is reported. In general, rejection methods, generate points in a region close

to the probability curve so that the number of rejections is small. A third method, the method

of aliasing, was adopted for generating of Z"' variates in the Search study. Although the

method requires a table of size 2N and setup time O(N), (for N the range of possible values),

it uses constant time per variate generated.

7.8. Analyzing Simulation Results

This section presents tools and guidelines for analyzing experimental results. Just as the

study of algorithms presents special problems in development of simulations studies, this

domain present special types of data-analysis problems. Some of the properties listed below

are typical of simulation studies in general; some are features of algorithmic domains.

o Sample points are usually chosen to correspond to discrete, evenly-placed spots
in the space of parameter settings.

o Since parameters are often stratified, plotting a measure against a given
parameter results in slices of data points. At each slice the measurements
correspond to a random sample from some (usually unknown) distribution.

o The relative efficiency of simulation in this domain (compared to traditional
simulation problems) allows huge amounts of data to be generated.

o Measurements of algorithms usually (but not always) move smoothly with respect
to parameter settings.

o A common goal is to characterize functional relationships between measures and
parameters. Comparison of algorithms at fixed sample point is also of interest.

o Usually, little is known about the functional relationship. Even if theoretical
%bounds exist, they often describe asymptotic behavior and may not be
"' appropriate for the domain of the experiments.

ih
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Many analytical tools were applied during the case studies that were not mentioned in Part

11. The remainder of this section describes a number of tools that were particularly useful.

First, general techniques for studying any data set are discussed. Sections 7.9.1 through

7.9,3 describe tools for specific analysis problems.

Readers familiar .%ith traditional techniques of experimental statistics will realize that very

few were mentioned in the case studies: there were no formal experimental designs, no

analysis of variance tables. few instances of hypothesis testing, and limited applications of

regression analysis. Instead, tools of descriptive statistics were used extensively.
Statisticians specializing in Exploratory Data Analysis (EDA) distinguish between confirmatory

methods - where statisticians apply powerful analytical tools that rely upon a mathematical

model that closely describes the data in order to make inferences and to assess experimental

- errors - and descriptive methods, which are used to obtain a good view of the data and to
.r produce summaries that are easily grasped. In the past, descriptive statistical methods have

0
been limited to elementary tools such as histograms and box plots. EDA provides a more

sophisticated set of tools for describing sets of numbers.

a,' There are a number of reasons for the emphasis on descriptive statistics here. Tulkey's

seminal text, Exploratory Data Analysis, was published in 1977: the approach is relatively new

and, it appears, not very well known to computer scientists. The techniques deserve better

exposure to this audience. Also, at least for the case studies, the questions of interest were

* . answered more naturally by EDA approaches than by inferential methods.

Experience with the case studies suggests that much insight can be gained by examining

the data produced at each trial rather than averages for each sample point. Data sets at

varying sample points reveal convergence rates and changes in variance as welt as
* distributional properties. Graphical techniques for data analysis become very important in

this data-rich domain, since graphs are invaluable for clearly and concisely presenting huge

amounts of information. Consider, for example, the size and unreadabillity of the tables that
would be required to represent the information about First Fit Decreasing packings contained

* ' in Exchibit 2-11. Graphs also allow functional relationships and distribution properties to be

more easily seen.

Summarizing and Transforming Data

Although the raw data should be examined, it may be helpful to calculate summary statistics

04



139

to represent the data at each sample point. The sample mean IS usually a good choice for

representing the location of a data set, especially in studies of expected-case behavior.

Statistics for describing dispersion, such as the standard deviation or tile variance, are well

known.

if !-, distributicn at a sample point is skewed (trailing off at either high or low values), or if a

bimodal distribution appears, then alternative summary Statistics may more appropriate. One

approach used often in the case studies was to record certain order statistics such as the

median and extremes of the data values. The quartiles are also useful: the high quartile of a

data set is the data value that is smaller than 250,6 of the set, and the lower quartile is greater

than 250 of the data. Half of the data values therefore fall between the quartiles.

A transformation of a set of numbers is achieved by applying some function to each value in

the set; common transformations include the logarithm and the square root. Transformations
may be applied for a number of reasons. If the values represent units of time, for example,

taking reciprocals of the measurements converts "infinite time" to "zero speed," which can

be easier to deal with.

Tukey [24] identifies a number of "types" of data, including counts and amounts, times,

fractions, proportions of a whole, balances, and grades. Different types require different

.1* analytical tools. Simulation results for algorithmic problems generally take the form of counts
- .,.*and amounts: measurements arising in the case studies, such as amount of empty space,

number of k-bins, number of comparisons, number of pairs matched, and number of recursive

stages reached, are all examples of this data type.

Counts and amounts have positive values with arbitrarily high upper bounds. If the ratio of

the highest value to the smallest is large, then the high values will dominate the view of the

* data. Transforming to logarithms will "spread out" the low values so that they may be more

* easily seen. Tukey (241 (p. 57) remarks that counts and amounts generally profit from

-' logarithmic transformation (he calls it reexpression) unless the ratio of the largest to the

smallest value is near 1.

Another type of data arises in the study of residuals to regression fits: balances have

positive and negative values and are generally grouped around zero. Balances usually

require no transformation.
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The following subsections survey specific data analysis tools that proved useful in the case

studies. with emphasis on graphical and EDA tools. As before, familiarity with elementary

A statistical analysis is assumed. Many of the techniques described here may be found in Tukey

[241 and Chambers et al fI10. Cleveland (IlIl gives an excellent discussion of issues of

graphical style.

V 7,8.1. Looking at Distributions

At a fixed sample point the measurements represent a random sample drawn from some

probability distribution. In algorithmic problems the form of this distribution is usually

unknown. There are many reasons for looking at the distribution of measurements: How large

is the range of the data? Are the points arranged symmetrically about their mean, or are they

skewed? How are the measurements distributed at this sample point? Summary statistics can

suggest the location, shape, and spread of the data set. In addition, a number of graphical

tools are available.

* The most familiar way to display a distribution is by a histogram. Recently, statisticians have

argued against the use of histograms in data analysis - the essential drawback is that the

visual message depends greatly upon the choice of graphical parameters such as the width

and cutoff points for the bars, rather than on the data itself. Chambers et a] (10] and

Cleveland [11 ] discuss histograms and their weaknesses.

Exhibit 7-3 presents a number of alternatives to the histogram using data from the Search

study. The graphs depict permutation costs for the Move-to-Front rule in 100 trials at the

sample point NV=6, X =1, and T= 5. A partial list of the results, showing the 5 highest and 11

- - lowest values observed in 100 trials, are presented at the left of the exhibit.

A compact and informative representation is given by a one-dimensional scatter plot. Graph

- . 7-3-a reveals that observations range between approximately 2.5 and 4.5, and that about 90%

of the data is below 3.5. Also, the distribution is densely concentrated towards the bottom of

its range and sparse at the top. This type of graph was used extensively in the case studies

for comparisons of distributions among sample points. Two potential disadvantage with one-

dimensional scatter plots is that the density of the points may overwhelm the graph-drawing

technology, producing a blob of ink rather than distinct marks, and that duplicate values are

overwritten. Methods for avoiding such problems by techniques such as ljittering" (giving

.~.- *1 each point a random horizontal position within a small range) are described in [101 an-d [11).

.k]-K
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Exhibit 7-3: Displaying Distributions

The stem and leaf chart (Graph 7-3-b) is a combination graph and table. The high-order

digits of the data values are written in the stem (the horizontal column), and low-order digits

are recorded in the leaves (the row entries). This chart displays the trailing off at high values

more clearly and gives a better view of the shape of the distribution. From this chart we see

that most of the values are concentrated between 2.45 and 3.41, with ten stray values above.

The median value is at 2.80, the extremes are 4.48 and 2.45, and the quartiles are 3.16 and

2.68. This data is clearly skewed towards the bottom. The distribution also appears to display

some bimodality, with peaks around 3.1 and 2.8. The most common values occur between

2.80 and 2.89.

Stem-and-leaf charts provide an excellent way to record a data set and to display

distrbutional properties. Also, the data is not obscured by limitations of graphical

technology. The view obtained from these charts can often be improved by transformation of

the data: transformations can be used to induce symmetry in the distribution and to scale

results for better comparison among data sets. In addition, order statistics can be easily

found, since the data points are presented in sorted order. One disadvantage of stem-and-

leaf charts is that they can take up a great deal of space.
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The c'ox plot is probably as vwell ,novwn as the histogram. Unlike the first two graphs of

Exhibit 7-3, box plots are graphicaL summaries of the data set and do not display all the

measurements. In Graph 7-3-c, the ends of the box correspond to the quartiles of the data set

and tne horizontal bar to the median. A common problem arises in deciding which points to

include in the vertical bars and wluch to mark as outliers. A standard rulie of thumb (see

[24] or [10]) is to compte the .... .-:'e range 11 - the difference betveen the quartiles -

and to plot values more than 1.51/ away from the quartiles as outliers. In Exhibit 7-3, the

interquartile range is H=S3.1(- 2. _. so points greater than 3.16 -- 0.4S(1.5) = 3.88 are

plotted as outliers. There are no low out!liets. Note that duplicate values in the outliers are

''stacked - placed side by side - so that they may be seen.
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Exhibit 7-4: ECDF Plots

* Another graphical technique for examining the distribution of a data set is to plot the values

against their ranks, producing an empirical cumulative distribution plot (ECDF, also known as

a quantile plot or a cumulative frequency diagram). Guidelines for interpreting ECDF plots are

given by Chambers et al [10], and by Mosteller, Fienberg, and Rourke [21]. If the curve in an

ECDF plot is generally straight, then the data are nearly uniformly distributed in their range:

Graph 7-4-a presents an ECDF plot for empty space in the last bin in 25 FFD packings at the

* sample point n= 128000, u=0.5.

Graph 7-4-b presents an ECDF plot for the data from Exhibit 7-3. The concentration of

.
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values at the bottom of the distribution is indicated by slow growth in the left side of the graph;

quick growth on the right side marks the outliers at the high end. In ECDF plots the slope of

the curve corresponds to the density of the data points. Although it is more difficult to see

peaks in the dersity function ECDF plots give a good view of the symmetry and spread of a

set of data. Also. statistics S3(ch as the means and quartiles are easily found from ECDF

graphs.

7.8.2. Comparing Sets of Data

Comparison of cata sets 3, ;!,:ed sample points is a common task in simulation studies of

algorithms. Measurements for :wo algorithms at the same sample point can be compared to

determine if one consistently outperforms the other. Data from adjacent sample points can be

compared to determine if the measure changes as parameter settings vary. Data from

extremal parameter settings can be compared to measurements at middle settings to

determine if a horizontal straight line is produced. Also, measurements from secondary

implementations can be compared to corresponding values from the primary simulation

program to determine if the results are statistically equivalent.
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* Exhibit 7-5: Comparing Data Sets

A simple graphical technique for comparing data sets is by juxtaposition of one-dimensional
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scatter plots. For example, this method was used to study the critical region for the First Fit

dcreasing rule (Exhibit 2-11). Graph 7-5-a presents a comparison of the sequential search

rules I M3. and M5, for 100 trials at the sample point \=6, f= 25 ,, 1, if = I The graph

sugjgests that M1 has much smaller variance than the other two rules as well as smaller mean.

All tree rules have similar loW bounds. but upper bounds vary arnong the rules The

distrib)uton for M3 ap;aar5 to be s'.ewed towards the bottom to a greatur extent for M5.

,Juxpos;tion of strn-and-leaf charts, similar to that in Exhibit 5.10. was also a frequent!y-

used analysis tool.

*, Another technique for comparing data sets is to plot corresponding values against each

other; this approach is especially useful for comparing results of paired experiments, In Graph

75b the x-coordinate of each point corresponds to permutation cost for the MI rule and the

y-coordinate to permutation cost for the M5 rule for 100 paired trials at the sample point given

above. The dotted line gives the identity function y = x. Most of the points are above the line,

* indicating that M5 generally has higher cost than M1 at this sample point. There appears to

be a small but not overwhelming positive correlation between cosct- for the two rules.

Pairs of numbers can be also compared by reporting either their difference or their ratio in

terms of some input parameter. Often in the case studies the clarity of the view was

influenced by the choice of comparison method. Usually, differences gave a much better view

than ratios, even when ratios (for example solution ratio in the Bin Packing study) were

suggested by theoretical analysis.

Gnanadesikan and Gustafson [16] note that significantly different sizes in numerator and

denominator can give a bimodal distribution in ratios (which usually causes difficulties in

-> summarization and analysis). In visual displays the human eye is better at judging distances

(corresponding to differences) than proportions (corresponding to ratios). Tukey

[24] suggests that if ratios are necessary to the analysis, then it is probably better to take

logarithms of the data and to study differences in the new metric (which correspond to ratios

in the original scale), and then to translate conclusions back to the original scale.

N. In the Bin Packing study, empty space (which bounds the difference between heuristic bin

count and optimal bin count) lead to much stronger results than previous studies which

measured the bin ratio. The bin ratio, as it approaches some asymptotic constant, tends to

change very slowly in n. This obscures the view of the data, which is best when growth over

sample points is large compared to variation within sample points. In contrast, empty space

, .,A
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(for u = ) grows as ti , so change in terms of iis easily seen B.ntley and Faust [4] were the

first to measure empty space instead of bin ratio for the Bin PacKing problem.

7.8.3. Assessing Functional Relationships

The most common goal of a simulation stud, in the -cn~a n Of af:ert:r2 dI'isS Is to

characterize the functional relationship between a measure -ird tae ,aramet(ors. This section

presents techniques for studying functional forms.

Using Regression Analysis

Although standard techniques of regression analysis are well known, examples of previous

work (from Section 1.2) demonstrate that this powerful analysis tool should be interpreted

with care. There are at least two reasons that a regression model might be interpreted

erroneously in algorithmic problems. First, the precise functional relationship between

measures and parameters is not usually known beforehand. An approximate model that

appears to describe the data must therefore be used. Second, even if the model is known, it

may not be appropriate: theoretical results are usually expressed in terms of asymptotic

order-of-magnitude bounds, whereas experimental measurements at finite problems sizes

correspond to a curve approaching its asymptote.

In any reporting of regression results, it is not sufficient to simply state the model used and

the coefficients obtained. Regression results should always be accompanied by a precise

description of the variation between the data and the regression fit. Standard tools for

checking model accuracy and for describing model deficiencies are found in texts on

experimental statistics such as [5], [12], and [21]. Proper interpretation of regression results

cannot be made without correct application and reporting of these results as well.

A useful tool for studying deficiencies of a regression fit is a graphical display of the

residuals. Since residuals represent the difference between the data and the fit, properties of

such a graph can indicate deficiencies in the model. Observing generally straight horizontal

*g residuals does not necessarily mean that the correct model has been found, however. The
-- 7study of First Fit gives an example: although the residuals from the fit y = ji + b display no

marked curvature (Exhibit 2-1), Shor [23] later proved asymptotic bounds of O(n(log n)')

d ~~arid ln 1 )
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Although regression provides a useful descriptive tool, care must be taken in extending the

fit to b)ehavior outside the range of the experiments. At times in the case studies, a poor fit

gave more information than a good fit: if the residuals curve upward for example, then the

data is growing more slowly than the fit, suggesting that the fit might gives an uppe3r bound on

the data. (Of course there is always the possibility that the data increases at a much faster

rate for problem sizes large r than those mneasured: see Eppinger [13].)

The regression models discussed in Part 11 are all linear rmodels (sometimes on logarithmic

scales). At times during the analysis, attempts were made to apply more sophisticated

models. In most cases it was very difficult to determine if one model was any better than

another. I therefore used simple linear models in discussion of the case studies, which are

more obviously seen as descriptive tools than as factual descriptions of functional

relationships.

0 EDA Techniques

Examining residuals from a regression fit is analogous to the general approach for studying

functions by EDA methods. First, look at the smooth: transform the data, fit models, or use

other techniques to get an idea of the general relationship between the measure and

parameters. Then look at the rough, the variation between individual data points and the

general trend.

Texts on exploratory and graphical methods present many techniques for smoothing the

-~ data points. Smoothing gives a better view of the general relationship between two data sets.

Exhibit 7-6 gives an example of smoothing for a made-up set of data. In this example, the

y-coordinates are smoothed by taking means of every three values. Graph 7-6-b presents the

original and the smoothed data.

Smoothing did not appear to be generally helpful in the case studies. First, measurements

of algorithmic behavior tended to be fairly smooth anyway, so there were few opportunities to

apply this technique. Second, the data usually appeared in slices: smoothing was either

trivial (taking means at each sample point) or unnatural (taking means across sample points

or within sample points). Third, although smoothing gives a good picture of the relationship

between variables, the smoothed curve has no concise mathematical description. In the case

studies even an inaccurate regression fit was preferred because the fit as well as deficiencies

J, could be characterized in functional terms. At times I used smoothed lines for quick

0N
'p-e
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_ Smooth 8 0
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Exhibit 7-6: Smoothing

assessment of regression models: rather than inspecting residuals, a smoothed fit was

compared to a regression fit and relative curvature was then interpreted in a manner similar to

that for residuals.

Graphical Techniques

An important use of graphs in studying functional relationships is in analysis of residuals

(described earlier). Another common graphical technique for studying functional

relationships is by the scatterplot, where pairs of values are plotted for a view of the

relationship between the two.
I

A standard technique of EDA is to transform the data until a straight line is produced on the

graph. The nature of the required transformations can then suggest functional relationships

between the two data sets. For example, if a straight line is produced by squaring the y-

values, then y grows as the square-root of x. A number of useful transformation rules are

presented by Tukey [24] (Chapter 3). Fishman [15] (p. 337) gives a large table of rules of the

"-" form: if the true functional relationship is y=f(x), then transforming y by g(y) or x by h(x) will

produce a straight line.

i
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Changing the scale of one or both of the axes is also a kind of transformation. Many of the

graphs in the case studies have logarithmic scales, Logarithmic scales were used to "even

out" the data, especially when input sizes doubled at each sample point. Logarithmic y.

scale. %- re often used when the ratio of the largest to the smallest value was high.

The rules for interpreting graphs with logarithmic scales are identical to those for

transformed data. If the y-scale is logarithmic and a straight line is produced, for example,

then y.values are growing exponentially as a function of x. If a straight line is produced on

with a logarithmic-x scale, then y-values are growing as the logarithm of x. If both scales are

logarithmic and a straight line is produced, then a power law is suggested:

loge(y) = aloge()+ b implies y= x2- e

Very often in algorithmic problems more than one input parameter is identified: how can

functions of more than one variable be displayed in two-dimensional graphs? A number of

options are available. Graph 2-10-b, for example, is a cuded scat terplot from the FFD study.

In this graph data points are coded by symbol to correspond to their u values, and are plotted

against N. This graph allows easy comparison among the u values because the curves are

superimposed. Usually such graphs require some summarization of data (by taking means in

this example) so that the different curves may be easily seen.

Graph 2-10-a is a multiple scatterplot, an alternative to the coded scatterplot for displaying

measurements in terms of two variables. Multiple scatterplots allow comparison of all the data

rather than just summaries: a separate panel is produced for one parameter, and the data

points are plotted against the other parameter. For easier comparison between panels, the

scale should be identical in each. If this is not practical (because variance or mean differs

widely among panels), then the scale should be clearly marked. Graph 2-10-a shows a

* multiple plot where differences in scale are indicated by horizontal lines within the panels.

Multiple scatterplots were used extensively in the case studies, especially in the studies of

Quicksort and Sequential Search. A generalization is the scatterplot matrix of n rows and

-*l, columns, where each t~h row/column corresponds to a variate (corresponding to either a

- parameter or a measure). The panel with index (i, j) displays variate i plotted against variatej.

% .4,-

%oV
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7.9. Summary

Chapter 6 'dentifies four general principics for simulation anal',sis of algorithms: match

experimental results to algorithmic models, find a good view of the data. analyze rather than

measure the data: and iterate theoretical and exparimental ipprcacles This clIapter

discusses issues and procedural steps that arise and prescnts techniques aiid ;ujdeliiies for

approaching these four principles. To summarize this chapter, the follov,ing list pros2nts

some guidelines for simulation research in the domain of algorithm analysis.

e Choose a measure that is both well defined and practical for experimentation.
Alter the theoretical model if necessary.

* Change the measure to obtain more detailed views as the study progresses.

* Ensure correctness of the simulation program by comparison to known formulas.
by applying standard program verification and validation techniques, and by
consideration of limitations imposed by machine precision.

* Replicate the experiments. At the very least, change the random number

generator. Even better, alter the implementation, machine, and programming
language.

. Apply variance reduction techniques such as Conditional Monte Carlo, control
variates, or paired experiments. Make sure that the variance reduction is cost-

effective.

* Measure the largest problem sizes possible. Doubling the input size at each

sample point seems to be an efficient way to proceed.

* Sample many points within the range of the parameter values.

9 Stratify the parameters to reduce randomness in the simulation. At later stages in
the study it may be useful to stratify input instances beyond those properties
described by parameters.

e Start with a complete factorial design with a few of settings per parameter, and
progress to denser samples. Be careful with "one-at-a-time" approaches to

experimental design.

* Implement a pilot study before beginning extensive simulation. Use the pilot
implementation to check details of the model, to suggest coding improvements,

to direct choices of sample points and trials, and to serve as a secondary system
for replication of experiments.

e Efficient simulation programs are worth the effort- new ideas are likely to be
pursued when results are obtained quickly.

IV
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* Exploit simulation shortcuts. The object is not to implement an algorithm, but to
simulate its behavior.

* The simulation program should produce unsummarized data as much as the

available technology will allow. Summarization and manipulation of resuits
should not be performed before the researcher sees the raw data.

4 For compatibility with many data anllysis packages, produce oata fies with
results of one trial per row. Input parameters should be listed on every row.

" Tools of Exploratory Data Analysis appear to be particularly useful in this domain.
Read Tukey [241.

*Simulations of algorithms allow generation of large amounts of data: make
extensive use of graphical tools.

*Summarization and transformation of results can give more manageable
information. Measurements of algorithmic performance tend to be expressed as

counts and amounts, suggesting logarithmic transformations.

* Tools such as the one-dimensional scatter plot, the stem-and-leaf chart, the box
plot, and the empirical cumulative distribution chart are useful for studying
distributions. Histograms are not recommended by modern statisticians.
Techniques such as jittering may be applied to improve graphical clarity.

" Sets of data may be compared by juxtaposition of one-dimensional scatter plots,
by plotting paired data values as points, or by examining the ratios or difference

S.- between paired data. Differences tend to give a better view of the data than do
ratios.

" Be careful when interpreting regression analysis. Always examine the residuals.

" The EDA approach to studying functional forms is to look at the smooth and then
look at the rough. Nonparametric smoothing techniques, however, were rarely of
use in the case studies.

" Apply transformations to induce symmetry in the data set, to even out counted
data, or to obtain a straight line in plots of functional relationships.

* Multiple scatterplots and coded scatterplots may be used to examine
measurements in as functions of more than one parameter.

,.-

'S

04?

O CS-,5



.o

~151

References

[1] N. R. Adam and A. Dogramaci, Eds.
Current Issues in Computer Simulation.
Academic Press, 1979.

[2] J. Beardwood, J. H. Halton, and J. M. Hammersley.
The shortest path through many points.
Proceedings of the Cambridge Philosophical Society 55:299-327, 1959.

[3] J. L. Bentley.
Progamming Pearls: Selection.
Communications of the ACM 28(11), November, 1985.

[4] J. Bentley, J. Faust.
Unpublished notes on simulations of FFD.
1980.

[5] J. L. Bentley, D. Haken, R. W. Hon.
Statistics on VLSI Designs.
Technical Report CMU-CS-80-1 11, Department of Computer Science, Carnegie-

Mellon University, Pittsburgh, PA 15213, April, 1980.

[6] J. L. Bentley.
Writing Efficient Programs.
Prentice-Hall, 1982.

[7] J. L. Bentley and J. B. Saxe.
Generating sorted lists of random numbers.
ACM Transactions on Mathematical Software 6(3):359-364, September, 1980.

[81 W. I. B. Beveridge.
The Art of Scientific Investigation.

.- Vintage Books, New York, 1957.

[91 P. Brately, B. L. Fox, and L E. Schrage.
A Guide to Simulation.
Springer-Verlag, New York, 1983.

[10] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey.
The Wadsworth Statistics/Probability Series: Graphical Methods for Data Analysis.
Duxbury Press, Boston, 1983.
Hardback version published by Wadsworth International Group, Belmont, California.

7,V

p. .. . . ',I . .



,

152

[11] Cleveland, W. S.
The Eernents of Graphing Data.
Wadsworth Publishing Company, 1985.

[12] M. H. DeGroot.
Probadilty and Statistics.
Addison-Wesley Publishing Company, Reading, MA, 1975.

[13] J. Eppinger.
An empirical study of insertion and deletion in binary trees.
Ccmmunications of the ACM 26(9), September, 1983.

[14] W. Feller.
rAn Introduction to Probability Theory and its Applications.

Wiley and Sons, New York, 1971.

[15] G. S. Fishman.
Concepts and Methods in Discrete Event Digital Simulation.
John Wiley & Sons, New York, 1972.

"' [16] M. Gnanadesikan and H. W. Gustafson.
* Properties of Performance Measures.

1985.
Summary of poster presentation. Gnanadesikan is at Farleigh Dickinson University,

,d Gustafson at AT&T Corporate Headquarters.

[17] J. M. Hammersley and D. C. Handscomb.
Monte Carlo Methods.
Wiley & Sons, New York, 1964.

[18] B. W. Kernighan and R. Pike.
The Unix Programming Environment.
Prentice-Hall, 1984.

[19] D.E. Knuth.
The Art of Computer Programming: Volume 2, Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.

[20] I. Miller and J. E. Freund.
Probability and Statistics for Engineers.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[21] F. Mosteller, S. E. Fienberg, R. E. K. Rourke.
Beginning Statistics with Data Analysis.
Addison-Wesley, Reading, MA, 1983.

0.. [22] A. Nijenhuis and H. S. Wilt.

UAcademic Press, New York, 1978.

[23] P. W. Shor.
The average-case analysis of some on-line algorithms for bin packing.
In Proceedings, 25th Symposium on Foundations of Computer Science, pages

193-200. IEEE, October, 1984.

ou il



153

[24] J W. Tukey.
Addison .,esfe,, Sr es n Btehavoral Science: Quantitative Methods: Exploratory

Data Analysis.
Addison-Wesley Publishing Company, Reading, MA. 1977.

I

I



5,

5,*

C 154

'5

4'

5-

St.

4,.

5'.

5-

.5-

5>

-N

N

A
5%

5,

J
4.

.5-

-h

0
.1~~

"C-
5,.-

25

'C-.

S.
J3J~
5,.~

*5

5,"~

'5

-4

-4

I

0.



155

Chapter 8
Conclusions

This thesis presents four case studies in experimental analysis of algorithms. along wi'Vth a

discussion of principles and techniques for experimental research. These are all studies of

algorithms, not of programs. Perhaps because algorithm analysis is primarily a mathematical

discipline, there has been no tradition of experimental research in this domain. In sciencqs

with strong experimental traditions, fundamental principles such as rigorous analysis of

results, and replication of experiments are well-recognized and regularly applied. Much of

-"p this tradition can be applied successfully to algorithmic problems.

On the other hand, although simulation has been applied in diverse areas such as economic

forecasting, analysis of weather patterns, arnd benchmark testing of computer operating

systems, the goals and procedural issues presented by algorithmic problems are in many

ways atypical. For example, the underlying system is relatively simple: even a complex

heuristic algorithm is likely to have a cleaner mathematical description than, say, an economic

model. Algorithms also tend to have inexpensive implementations and relatively few

parameters, so much more data can be gained per unit of computing effort. It is not obvious,

however, that the questions posed in algorithmic studies are naturally answered by traditional

experimental methods: standard tools of statistical analysis (such as analysis of variance)

A begin by assuming the functional relationship between input properties and performance

0 measures, while the usual goal of algorithm analysis is to discover that functional relationship.

% Nevertheless, the case studies demonstrate that simulation can provide a powerful tool for
gaining insight into difficult analysis problems. Although the problems in the case studies

have received a great deal of previous attention, many new results were gained by

experimental methods. The simulation results led to new theorems, new arguments, and new

-, insight, as well as to precise measurements and characterizations of algorithmic

performance.
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The limitations of experimental research in this domain are real: measurements at a finite

~In~ set of sample points do not necessarily lead to theorems. While the difficulties can not be
eliminated, much can be achieved by exploitation of simulation techniques, creative

application of analy'sis tools, and an approach that iterates experimental and theoretical

analyses.

8.1. Contributions of the Thesis

The main contributions of the thesis tdke two forms: new results in the case study domains,

and a discussion of issues and techniques for improving simulation studies of algorithms.

The following list restates the research goals from Section 1 .3 and gives references to

sections of the thesis that address each goal.

1. To demonstrate that simulation can provide a useful, general tool for developing
new understanding of algorithms. Chapters 2, 3, 4, and 5 present results for the
case studies. A list of specific contributions in these areas appears in Section
6.1.

2. To identity common problems and assess the applicability of this approach.
Section 1.2 gives a critical survey of previous work and discusses problems and
issues that arise. Section 6.2 discusses limitations and applicatiis of
experimental research in the context of algorithm analysis.

3. To develop principles for successful experimental research in the domain of
algorithm analysis. Section 6.3 presents four general principles for successful
experimental studies.

4. To promote more general use of this approach by. giving a "handbook" of useful
tools and techniques. The handbook appears in Chapter 7. Topics include
accuracy and reliability of simulation results, variance reduction techniques,
choice of sample points, and analytical tools appropriate for this domain. Section
7.9 summarizes the handbook by giving a list of rules-of-thumb for simulating
algorithms. Also, the case studies provide a portfolio of examples: results were
purposely presented in an evolutionary style so that the investigative nature of the
research could be seen.

8.2. Future Work

More questions and open problems have been raised by this research than have been

answered. Many conjectures and observations from the case studies await further analyis

and experimentation. Also many issues of experimental procedure deserve further study.

This section presents some of the more prominent open problems from the case studies and

suggests future directions for the study of experimental techniques in this domain.
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Bin Packing

There is at present no theoretical characterization of First Fit ;),c!,ngs for it < i. In

particular, characterization of the nonmcnotonicity in "i remains an Intriguing open problem.

Do thE local minimum and maximum move with ? What is the value of , that gives maximum

emOty space as',mptotically?

A first step would be to formalize the argument for linear empty space vhen u = 0.S (given in

Section 2.3.1 ) by proving that expected empty space in 2-item bins is bounded below by

some small constant. The next step wou!d be to extend the argument (in terms of k-item bins

and empty space in k-item bins) to all values of u. The proportion of k-item bins for any u is

suggested by Graph 2-6-a: further experiments would reveal appropriate values for the small

constants. Limited experimental results give the weak conjecture that empty space does not

grow linearly at small values of u; is there an abrupt change the asymptotic function at u = 0.5,

," as is the case with First Fit Decreasing?

Although the First Fit Decreasing algorithm has been theoretically characterized as a

function of n for fixed values of u, a function in terms of n and u are not known. For example,

when u < 0.5, empty space has been proven to be constant with respect to n. Experiments

suggest that (for partial empty space) the constant depends upon u and grows approximately

as u'13 . A similar open problem exists for u between 0.5 and the critical region: here, empty

space appears to grow linearly in u. The cyclic component observed as a function of u also

remains unexplained.

Experimental results suggest that the Best Fit and Best Fit Decreasing algorithms produce

packings with structure very similar to those for First Fit and First Fit Decreasing, respectively.

Theoretical characterization of the former two algorithms seems to be a very difficult task.

The only expected case result to date is Shor's [10] analysis of Best Fit packings when u = 1.

In addition to expected behavior in terms of n and u, variation from the mean is also of

interest. The causes of very bad packings in the critical region are only partially understood.

A promising experimental approach might be to stratify a variety of input properties to obtain

a better view of the relationship between input properties and bad packings.

For all four packing algorithms, the next set of experiments should examine packing

structure more closely. The most obvious characteristic to study is the interaction between

number of k-item bins and empty space in k-item bins. A better view of this behavior could

I
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lead to charactet,zation of First Fit at all values of u, and, for First Fit Oecreasing. to

understanding of the cyclic component and of packings in the critical region.

An obvious direction for further experimental study is to examine a variety of input

distributions and packing algorithms. Coffman, Garey, and Johnson [5] give a thorough

survey of bin pacKing and retated uroblems.

Greedy Matching

:.i. The primary open problem from tne Greedy Matching study is to characterize the

distribution of points after " levels of nearest-neighbor removal. Limited experimental study of

the distribution of inter-point distances suggests that the shape is generally invariant over k,

although the spread increases as points are eliminated.

An easier task might be to obtain a lower bound on the expected number of nearest-

! neighbor pairs removed at each level and an upper bound on the expected cost of edges

removed. Bounds on these two quantities, combined with the arguments of Section 3.5,

would lead to proofs of the conjectured logarithmic edge cost for Greedy Matching and linear

expected running time ot Lhe matching algorithm.

Median-Selection in Quicksort

Doug Tygar and I recently proved the conjecture of Section 4.4 that a square-root selection

strategy minimizes the total number of comparisons. We also showed that the square-root

" "" strategy has subquadratic worst-case performance. The following problems remain open:

-determining the improvement obtained by the square-root strategy over any fixed-T strategy,

finding a closed form for total comparisons, and, for fixed- T strategies, determining the best

choice of Tas a function of N and M.

0 Another direction for extending this work is to give a complete analysis of square-root
Ouicksort: that is, to analyze measures A through F as determined by a specific

implementation. The biggest difficulty may be the analysis of the median-selection algorithm.

Hoare's algorithm was used in the experimental study because it has an exact analysis for
Wnumber of comparisons. A similar result for the number of exchanges appears not to have

been published. A selection algorithm by Floyd and Rivest [6, 7] gives fewer comparisons

asymptotically but has not been analyzed exactly.

A number of implementation issues remain open for variable-sample Quicksort algorithms.
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One interesting problem is how best to imbed a general median-selection algorithm into

Quicksort: since median-selection algorithms partition their input, it might be profitable to

avoid re-considering the sample during the partition stage. Also. an advantage of fixed.T

strategies is that the median-selection code may be finely tuned, giving fewer comparisons for

a specific sample size than a general algorithm would. Since Quicksort seems to be fairly

robust ,vith respect to small changes in sample size, perhaps some hybrid scheme, which

contains a small set of finely-tuned selection subroutines and makes an intelligent choice of

which to use, would be more efficient in practice than a straightforward square-root strategy'.

An obvious open problem, ripe for experimental study, is to determine if an implementation

of square-root Quicksort exists that is more efficient than standard implementations under

realistic conditions.

Sequential Search

The conjecture that for any two Move-Ahead-k rules with different index, one will converge

more quickly and the other will have better asymptotic cost, remains open. Experimental

results support this conjecture for the family of distributions related to Zipf's law.

Standard theoretical analysis of the search rules has been based upon the asymptotic

probability for each permutation of the search list. One reason for the difficulty of studying

these probabilities by experimental methods is that the space of permutations is large. Future

experiments may be designed to reduce this problem by grouping the permutations in related

classes and by examining the distributions of the groups. For example, permutations might

be grouped according to ranked costs, such as is displayed in Exhibit 5-8, or perhaps by

location of the most commonly-requested item. An appropriate grouping might suggest an

analytical shortcut for characterizing the Move-Ahead-k rules.

To simulate the asymptotic performance of the Move-to-Front rule, it is only necessary to

generate requests until each has appeared at least once; Bitner [8] showed that the

probabilities for search list permutations at this point are equivalent to their asymptotic

probabilities. Although this very fast shortcut algorithm was not used in the case study

(because of the paired experiments), it could be useful in future studies. Perhaps a shortcut

to asymptotic behavior can be found for general Move-Ahead-k rules. For example, starting

with the optimum search list order instead of random order may permit faster convergence to

I Mank Mike Langston for suggesting this hybrid scheme.
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steady-state behavior. (Bitner [31 proved that the steady-state probabilities for Transpose are

independent of initial list order, and this fact is obvious for Move-to-Front: a similar proof for

the other rules would be required to justify the use of this shortcut.) Of course. it would be

erroneous to draw conclusions about convergence properties for the standard analytical

* -', model from these simulations.

Simulation and Analysis of Algorithms

A common problem in experimental analysis of algorithms arises in the study of heuristics

for NP-hard problems. Analytical results are often expressed as bounds on the ratio of

heuristic performance to the optimal solution. Unfortunately, it is rarely possible to determine

the optimal solution experimentally. In the Bin Packing study, a tight lower bound on the

optimal solution was available; for what other NP-hard problems do such tight approximations

-: exist? A promising alternative approach (discussed in Section 1.2) is to generate inputs with

known optimal solutions: for what problems is this approach possible? Do the generation

*schemes preserve interesting input properties?

The idea that an algorithm is to be simulated, rather than implemented, can be exploited to

produce very efficient simulation environments. Variance reduction techniques and shortcut

algorithms, discussed in Sections 7.3 and 7.6, deserve more extensive application and study.

.' Perhaps the idea of finding a shortcut to asymptotic behavior, discussed above in the context

of Search rules, can also be applied to problems in other algorithmic domains.

Creative techniques for obtaining good views of algorithmic behavior also deserve further

attention. In particular, tools of algorithm animation - producing movies of algorithms in

action - can be quite powerful for giving insight into underlying processes. Animations of

First Fit Decreasing packings were directly responsible for the proof of constant empty space

for u s 0.5 (appearing in [1]). Animations and "snapshots" of an algorithm can also provide

an excellent medium for conveying experimental results. Systems for algorithm animation
have been developed by Brown and Sedgewick [4] and Bentley and Kemighan [2].

SO While a start was made at identifying properties of algorithm analysis that influence the

- choice of analysis tools, many questions remain open. This thesis only considered statistical

and analytical tools found in advanced textbook": perhaps newer techniques may be applied
with success. In particular, the special tools for analysis of time-series data would probably be

useful in the Sequential Search and the Greedy Matching studies, as well as in other

analytical domains. What analysis tools give rigorous upper or lower bounds on function

Iwo growth rather than approximate fits?
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An interesting problem that was only slightly addressed in this research is the design of an

environment to support simulation studies of algorithms. Although numerous simulation

languages, random number generators, and statistical p.ckages are avai;able. the emphasis

in such systems appears to be somewhat at odds with that of al;orithm anaiysis. What

features should be built into a statistical package to support exprrni.1ntal research in this

domain? Experience with the case studies suggests that emphasis on graphical tools and

exploratory data analysis is desirable, but many more than four czv>e studies are required

before a final determination may be made.

Much more experience is required if a rigorous experimental method for algorithmic

problems, comparable to that for traditional experimental domains, is to be established. I

hope that computer scientists will apply the tools of Chapter 7 (as well as others not discussed

there) to their analysis problems and report upon their success. Statisticians can be of great

help in identifying statistical and analytical tools that are particularly useful in this domain.

4. -
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