AD-A188 528 EXPERIMENTAL ANALYVSIS OF ALGORITHNS(U) CARMEGIE-NMELLON
UNIV PITTSBURGH PR DEPT OF COMPUTER SCIENCE
C MCGEOCH DEC 87 CNU-CS-87-124 AFUAL-TR-87-1168
UNCLASSIFIED F33615 84-K-1320 F/76 1274

LgyHD 1S NOMLP 10538 A N

= =5 T
: Sl =\
]

. Tl m 2
g -
wma Ol

,l t Ay

-

+ \ N
v ,v.t f i XN ‘,‘.Q.‘.t"

oy e MitE BtEe M@ AL L3 8 < DO %, b 288 g “aVa-altl-alh-aSh Al R el ofat AT N MU TR LD < E _BAY Sa® Sody hote Bav fod dioh Bt Reb A.% Sob Sod Kol
.

PHOTOGRAPH THIS SHEET

/

LEVEL INVENTORY

AFORL-TR-97-//60

DOCUMENT IDENTIFICATION

Dee 19¢7

DTIC ACCESSION NUMBER

AD-A188 528

P e -

DISTRIBUTION STATEMENT

ACCESSION FOR

[N
A NTIS GRA&I
- DIIC TAB .

UNANNOUNCED

]

e ' .

P

g

JUSTIFICATION R =
t

N D R
b —— —) L H b \.)v'\j -

M

PLOLPLIINT -

BY o
® =
DISTRIBUTION - Fonil

AVAILABILITY CODES .
DIST AVAIL AND/OR SPECIAL

TR
P At

-

DATE ACCESSIONED

)

<,

Quary
NSpg CTEYD

2

i

»
‘.

XKL

LA,

A-l

DiSTRIBUTION STAMP

»

e DATE RETURNED

i c8 2 05 109

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

p DTIC £oRM 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY BE USED UNTI

) ' y VYY) x X B Oy 45 0) TR O T AT 2
Tt D S S B T P A Sl T E N R o R

I E TV uw Lo adia Yy i od i g ki Bt has Sab diat des Sav Sal S8 J
e
nh
, v d
W
AFWAL-TR-87-1160
)
oY
b3
.i::'l
.:'I':‘ EXPERIMENTAL ANALYSIS OF ALGORITHMS
" 00
Q' N
m Catherine Cole McGeoch
L)
e 00
) 00 Carnegie-Mellon University
B |l Computer Science Department
Pittsburgh, PA 15213-3890
A
>3, <
\'!:. '
a8
L Qo
< December 1987
13
LY
[}
I
LW)
o
Interim
o
—-".r
5CH
I
L
2L
o,
Y
2
o
o Approved for Public Release; Distribution is Unlimited
0
‘W
@
:?'
5
)
L
&
v
K,
4 AVIONICS LABORATORY
v AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
- AIR FORCE SYSTEMS COMMAND
o, WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543
1,
I
Ny
oy.8
@
I

: ; LN ~ DOLILY
. ! " , L ISR
l'ugl’:g T s S e A G

% L S ma S0 o Ban aoa dla boa Mo - L 2nad Racala e o v.vw-\—-.-'v'\wvvww""r—r—r—rwKWWW‘WI‘T
B {
sl
ey
e ‘ ¢
N
N NOTICE
N -
Y When Government drawings, specifications, or other data are used for any
¥ purpose other than in connection with a definitely Government-related
o procurement, the United States Government incurs no responsibility or any
~7 obligation whatsoever. The fact that the Government may have formulated or in
.:i any way supplied the said drawings, specifications, or other data, is not to
e be regarded by implication, or otherwise in any manner construed, as licensing
. the holder, or any other person or corporation; or as conveying any rights or
\ permission to manufacture, use, or sell any patented invention that may in any
TS way be related thereto. !
Lo
b 1
o This report has been reviewed by the Office of Public Affairs (ASD/PA)
" and is relezsable to the National Technical Information Service (NTIS). At
b NTIS, it will be available to the general public, including foreign nations.
3N; This technical report has been reviewed and is approved for publication.
A CHAHIRA M, HOPPER 4 RICHARD C. JONES . 4)
B Project Engineer Ch, Advanced Systems Research Gp
- Information Processing Technology Br
: FOR THE COMMANDER
o
b Fhet L B
~7£ EDWARD L. GLIATTI
‘N Ch, Infcrmation Processing Technology Br
% Svstems Avionics Div
!
]
<
?u;
1S
:‘.h
"
s
[\
@ 3
1’ |
'if If your address has changed, if you wish to be removed from our mailing
)*\ Tist, or if the addressee is no longer emploved by your organization please
N notify AFWAL/AAAT , Wright-Patterson AFB, OH 45433-¢543 to help us maintain 3

éﬁ: a current mailing list,

@ Copies of this report should not be returned unless return is required by
)q security corsiderations, contractual obligations, or notice on a specific ‘
! document. !

IS R

- TN oo NS OB O ot g8}
AT AT O S S P RROGI DU g

‘4, t%

Unclassified

' SECHIATY CLASSIFICATION OF This PACE

e g 0 - - Form Approved
REPORT DOCUMENTATICR PAGE O!4B No. 0704-0188
TTa REPORT SCCURITY CLASSIFICATION T b, RESTRICTIVE MARKINGS
Unclassified
Za SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

-4 Approved for public release; distribution
is unlimited.

20, DECLASSFIC/ATION | DOWNGHALING SCHEDULE

B Ak A v " A AT 7 ML s - WA - s r——

4 FERFGRIAING ORGANIZATION REPORT WL .ABER(S) 5 MONITORING ORGANIZATION REPORT NUMEE R(S)

AFWAL-TR-87-1160

| CMU-CS-87-124

{60 NANE OF PeRFORIANG ORGANIZATIOH Job GFFCE SYREOL | 7a. NAME OF MORTORING ORGANIEATION
g . i . if applicable) 1 oratories
i Carncgie-Mellon University (f aps Air Force Wright Aeronautical Lab
b AFWAL/AAAT-3
- - e © o ve e e ta v W - i 3w W
£ 6o, ADDRL S \(.u‘y Scaie, and 2P LG de) 7b. ADDRESS (Cily, State, and ZIF Codc)
i Cooputer Science Dept Wright-Patterson AFB OH 45433-6543
i Pittsburgh PA 15213-3890
B, AT OF FUNDING 7SPONSOR NG 65 OSIiCE SYRbOL |9 PROCURLATENT INSTRUMENT IDENTIFICATION NUMBER
] QRGANIZATION (tf applicable)
é F33615-84~K-1520
i"é?'ﬂ)éinsﬁcn,, State, and ZIP Codc) 10. SOURCE OF FUNDING NUMBERS
: PROGRAM PROJECT TASK WORK UNIT
b ELEMENT NO. | NO. NO ACCESSION NO.
: 61101E 4976 00 01
ET"T“H (lu lude Securicy Classification) \
S Experimental Analysis of Algorithms
Y17 PERSONAL AUTHOR(S)
} Catherine Cole McGeoch
13z TYPE OF RePORT 736, TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Interim FROM TO 1987 December 169
16, SUPFLENI NTARY NOTATION
L T Y SINT I 18, SUBJECT TERMS (Ceniinue on reverse if necessary and identify by block number)

I Hiito | GROUP | S18-GROUP

1]

19 RBSTRACT (Continue on reverse if e cessary and identify by block number)

This th2sic rramines the application of experimental, statistical, and data analysis tools to problems
in aigorithm analysiz. Mot that aigerithms, not programs, are studied: “results' in algorithm analysis

gonerally refar to abotract cost funcions, are independent of particular machines or implementation

stratzqins, and express functional relationships between input parameters and measures of

i algorithinic performance. The study of algorithms presents special problems and opportunities for
i exparimental research.
i
| The following research goals are set:
i 1. To demonstrate that simulation can provide a useful, general tool for developing new
: understanding of algorithms.
i
1720 DISTRIUTION { AVARABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
} Ko STFIEDAINLIMITED {1 saME AS RPT. [J DTIC USERS Unclassified
273 WAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHQNE (Include Area Code) [22¢. OFFICE SYMBO
Chahirae M. Hoppoer (513) E5—78g§ 1\1’?1(;AAX‘F 5
o 2 LT TR MR A AL CHNE AER SR IR B Y WS
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

i Unclassified

"c,.‘ POV WU L e \wmmmvw““w“"mmm
D))

UNCLASSIFTED

Block 19 (Continued) ¢

2. To identify common problems and to assess the applicability of this approach.
2. To develop principles for successiul expatimental research in this domain.

. To promote more general vse of this approach by giving a “handbeok™ of useful toole
and techniques.

9
E2S

Part | of the thesis introduces an expedmental approach to algorithm analysis and discusses the
context for this research. Examples fron: the current algorithms literature serve to illustrale issucs

and problems that can wise.
Part Il prosents experimoniet resulis for cace studies in four algorithm domains (one-dimensional bin
packing, greedy matching, median-sclection strategies for Quicksort, ond self-organizing sequential

starch).
T e v e gmer ot T, cvidalings for succsss vl sunnlation rescarch, and tselul tooks and
fechi oo for sanuthading sigoriiiee,

A O IESSCOCS R

RAMM 4

goR=tXiin A

»
-

f,
(R
2

i

*.

A
A Acknowliedgements

i

This is the place where | get to say all those things that I've always meant to say.

-.fﬁ_: To Jon Bentiey: as my advisor you have provided encouragement. constructive criticism, and laughs
‘-f.;' far beyond the call of duty. This thesis is to a great extent a reflection of your abilities as a teacher.
Thanks.
X :‘, To the other members of my committee, Bill Ecdddy, Jay Kadane, and Ravi Kannan: your patience with
f my naive questions and your encouragement throughout this research is much appreciated. Thanks.

oY

L
-‘:: To the many people that I've learned from in technical discussions, including Al Aho, Andrew Appel,
S Bill Cleveland, Rex Dwyer, Guy Jacobson, David Johnson, Brian Kernighan, Mike Langston, Tom
.r" Leighton, Glen Manacher, Jim Saxe, Danny Sleator, Peter Shor, Mike Steele, Daryl Tennenbaum, Jim
-:'.‘ Wendorf, Roli Wendorf, Bob Wiiber, and many others: thank you for your time and your interest in this
N research.

.:,3

it is impossible to complete a graduate degree without the support and encouragement of friends. To
all my friends, whether currently, formerly or never members of the CMU CSD community: thanks for

Y77

N the memories.
v
g The support and love of my family has been invaluable to me. To my parents, my grandparents. my
E-) inlaws, and my siblings: | couldn’t have gotten where | am today without you. Thank you.
O | can't say enough about a husband who sympathized with my frustrations, proofread drafts,
'5{: discussed technical issues, and cleaned the apartment, all while working on his own thesis. You
0 know who you are: thanks, pal.
-L
T
ey
h
?.l’
o:
.~,,_
9"‘,
e
lw\
R
1N iii

B o]

L
R

5o Biiac’ b o S ln U a4 * S80S Ua "R ke ' Aia= ASa ARar Sie" Alln Al Ae-Aha S aha~atnaiii’ e Ahe “aln il Ak il caloeah ~akb s Al taio iakonal tnt tak Vol tod sad Sal ol Sal oyl vm‘nmm"rT
)
\

Table of Contents

PART It
An Experimental Approach to Algorithm Analysis

1. Introduction
1.1. A Context for Experiments
1.2. Previous Work: Examples
1.3. Research Goals
References

PART Il:
Case Studies

2. One-Dimensional Bin Packing
2.1. Previous Work
2.2. The Simulation Study
2.3. First Fit
2.3.1. Nonmonotonicity in u
2.3.2. Measurements at fixed u
2.4. Best Fit
2.5. First Fit Decreasing
2.5.1. uBelow 0.5
2.5.2. u above 0.5
2.6. Best Fit Decreasing
2.7. Future Work
References
3. Greedy Matching In One Dimension

3.1. Introduction
3.2. The Study
3.3. Experimental Results
References
4. Comparisons in Quicksort
4.1. Introduction
4.2, Simulation issues
4.2.1. The Model
4.2.2. The Simulation Program
4.3. Fixed-T Strategies
4.4, Choosing T to Minimize Comparisons
4.5. Insertion Sort

b

®Woew oL

-

N
W

GBRIRBERILBNY O

283IK28H

823

.
\ L]
0
,i
" 4.6. Conclusions 86
‘,: References 87
' 5. Self-Organizing Search 89
t 5.1. Previous Work 90
5.2. Measures of Search Rules 92
5.3. Expenimental Results 95
R 5.3.1. Zipf's Distribution 95 |
B 5.3.2. Varying Lambda 100
‘ 5.4. Properties of Search List Permutations 100)
! References 107
k, PART Il:
. Experiments and Algorithm Analysis 109
n 6. Experiments and Algorithms 111
p 6.1. Why Do Experiments? 111
6.2. Applications and Limitations of Experimental Analysis 113
» 6.3. Principles 17
‘ References 119
7. Tools and Techniques 121
] 7.1. Choice of Measure 122
i 7.2. Ensuring Correct Resulits 123
7.3. Variance Reduction Techniques 124
K 7.4. Placement of Sampie Points 127
7.5. Pilot Studies 130
7.6. Simulation Shortcuts 132
7.7. The Simulation Environment 134
7.8. Analyzing Simulation Results 137
7.8.1. Looking at Distributions 140
7.8.2. Comparing Sets of Data 143
h 7.8.3. Assessing Functional Relationships 145
: 7.9. Summary ' 149
' References 151
: 8. Conclusions 158
: 8.1. Contributions of the Thesis 156
! 8.2. Future Work 156
¥ References 162
\
)
¥
)
4
)
¥
. vi
1
:'.':':f'.fl‘;;; A n'!‘n’: é"..'.a‘..fi"‘t‘:?l':'b‘",":.* 4,"‘A~.lf~tl'0?"4"":‘3","".‘:":‘f;t‘v-"vu‘.r':f?ﬁ '.'u‘." : A

T O o iodat Sk Sad Lak e Aol Sos Aeh Sel gok doa Aol o U’W‘l‘."wr'v‘r‘r‘v'\r-tv\lv\:y--'-"'l'-V.T

Part |

An Experimental Approach to
o Algorithm Analysis

: The experiment serves two purposes, often independent
A one from the other: it allows observation of new facts
NF hitherto either unsuspected, or not yet well defined;

; and it determines whether a working hypothesis fits the
MY world of observable facts.
J -~ Rene J. Dubois

5 0%

This section introduces an experimental approach to algorithm analysis and discusses the

T

context for this research. Examples from the current algorithms literature illustrate issues and

s
"8 &

-
-

problems that can arise. The specific goals of this thesis and the research strategy are
s described.

-~ -
R MO

a0 e W 4 U Lo e 0 Y e

it ie",.)4.‘ . ’l‘-'i"gtl' R L AR A

&

LAWY T T ERTTRTURET TR W T W R ST YR RO AT OO TR RO BT TR YRS TR TR TE LRI TR T RO O RN ST T TR TR TR T AT R T W W Wy

»

[ARSI ONDAKGADAN DAl Ta ATy S e (0 0t ¥, 0
e e T e M A e a a e AN NIRRT “'-‘"’*’"-’«‘:‘*‘t‘\'né

sy

ry
P4 a4 s 2 4 B

gy

WA M

XX

ey

S aiN

%

Chapter 1
Introduction

This thesis investigates the application of experimental methods to problems in algorithm
analysis: specifically, techniques of simulation and data analysis are used to gain new
understanding of combinatorial algorithms. A number of terms other than “‘experimental
analysis'' have been used to describe the same general idea. The term simulation is certainly
appropriate, since the object is to represent and measure the behavior of one system (an
algorithm) by use of another system (a computer). Monte Carlo study also applies since
inputs are sampled from specified probability distributions. For this thesis, statistical analysis
was rejected because techniques other than the purely statistical are considered. Empirical is
defined by Webster as “relying on experience or observation alone often without due regard
for system and theory””. Both system and theory are highly regarded here.

The following section introduces this research in the context of algorithm analysis and
experimental statistics. Section 1.2 surveys experimental studies from the algorithms
literature and iflustrates problems that can arise. Section 1.3 presents the specific goals and
scope of the thesis. The primary vehicle for this research is the case study: simulation results
in four algorithm domains are described in Part Il. Principles and techniques for powerful,
correct, and efficient experimental studies are developed in Part lil, which also presents

conclusions and open problems.

1.1. A Context for Experiments

Much of the current research in the area of overlap between computer science and
statistics involves the development of better tools for statisticians. Conferences such as
Statistics and Computer Science: The Interface, COMPSTAT, and Frontiers in Computational
Statistics provide forums for research on design of statistical packages, fast and stable
algorithms for computing statistical formulas, and database tools for managing and analyzing

data sets. Equally important is the use of statistical methods to develop more powerful tools

i e e e A EA R R R R AR SRR o AL A L S Sl Al Solh Sal Mo Salh Snlb Sl ik Al Soll dull Sl Sufh Sal Sn B ol Sal 6ol C b dad tal sofl ek ual il oaf - |

4

for computer scientists; a variety of applications are possible. Weide [50], for example, used
concepts from probability theory to develop techniques for probabilistically analyzing
algorithms. Kadane and Wasilkowski [30] demonstrated the equivalence between Bayesian
experimental design and certain complexity problems. Bentley, Haken. and Hon [3] presented
a statistical characterization of VLS| designs. Experimental statistical methods have been
applied in many areas of computer science: for examples, see Borenstein's investigation of
user help systems [11], Brent's evaluation of techniques for dynamic storage allocation [12],

or Stritter's study of tile migration strategies [48].

Continuing this trend, this thesis examines experimental and statistical techniques in the
context of algorithm analysis. As Exhibit 1-1 suggests, there are many ways to analyze an
algorithm, and many forms that a ‘‘result’’ may take. The analysis problems considered here
are quite traditional: the usual goal is to characterize an algarithm's performance, on an
abstract model of computation, as a function of its input. In particular, the expected
performance, which is determined by a specified probability distribution on input instances, is
the quantity to be characterized. ‘‘Performance’" generally refers to some measure such as
the number of comparisons required, the number of iterations performed, or the quality of a

heuristic solution.

Note that algorithms, not prbgrams. are studied here; the principle of abstraction is
maintained throughout. Abstraction is fundamental to traditional algorithm analysis for a
number of good reasons. By maintaining abstraction in the cost function (number of
comparisons, say, rather than running time), one obtains resuits that are implementation-
independent and therefore useful in a variety of situations. Abstraction can produce deeper
understanding of underlying mechanisms and discovery of algorithmic paradigms.
Mathematical models of algorithms and input allow consistent and well-defined manipulation
of parameters, provide a standard vocabulary for communicating results, and promote
generalization of algorithms and analysis techniques.

Although the algorithmic problems studied are traditional, this research represents

something of a departure from familiar uses of simulation in computer science. Because the
> experimental results are expected to correspond to abstract models and theoretical
;;. statements, the procedural issues tackied heré are different from those that arise, say, in a
benchmark study to compare various compilers. The following tasks usually associated with

simulation research are not considered here: identifying appropriate benchmarks, monitoring

QOO COCKYIO0 RSO AGAUNUN LA OUENI RN O p - e o
UOOGORIRY ! J A O PO L] (LU AL URPOLOW OO N DLNOAN 3 OAOBRCESEGOGINRDNONIANRIINT ;
08 N A ' i.“*‘ Tl e A 'N?"N".‘I.’l 'fi"‘;l"‘#.‘?ﬁa:t;‘l..t".-"‘.a * e, -“:'|'!'t':",¢".t"“? "‘t."h"‘llt“".""?'w" ""'."'ea,'n?"f:" L

‘HHQ
) 0,0.0

l (0
L "”i.!

'1

AL
“Q Ve

e Type of Measure.

o Time: number of significant operations, or running time of a program.
o Space.

o Time-space tradeoffs.

> Heuristic solution quality.

> Communication cost.

o> Numerical stability.

e Domain of Analysis

o Worst-case input.

o Best-case input.

o Pathological input.

o Expected-case: probability distribution on input, or randomized algorithm.
o Input from real applications.

o Models of typical input.

o Classic probiem instances.

¢ Model of Computation.

o Random Access Machines: word or bit operations, straight-line or
branching programs.

o Specific machine models: e.g. MIX implementation.

o Parallel and distributed models.

o Real programs and real machines.

e Precision of Analysis.

o Tractability: establishing polynomial halting time.

o Order of Magnitude bound: usually asymptotic analysis (as problem size
— o),

o Exact formulas: usually concrete analysus (for all problem sizes).

o Probabilistic analysis.

Exhibit 1-1: Analyzing Algorithms

and modeling typical input, developing and justifying simulation models (that is, arguing that
they are realistic), and developing statistical models for analysis.

Instead, experiments are to be used to study what are essentially mathematical objects:
combinatorial algorithms operating on well-defined input distributions. The motivation for
applying experimental research in this context is clear: completely analyzing an algorithm is
difficult, and purely mathematical approaches don't always give desired results. This is
especially true in studies of expected-case performance, where the analytical results that
have been obtained are often limited to very simple distributions on input instances. l|deaily,

. oA r ’ ' s f (.
. ‘. l ’ .‘9 'ﬁ"‘ ..“‘ .‘ ‘. A‘Q “9 ',\%» . "{3 ‘.‘Q* M,ﬁ,ﬁ "‘C Y PA koo "e{',};{k‘ K

J'\
B 1.\
_ ::.' experimental studies could be used to suggest theorems, to support or to refute conjectures,
'.’ and to characterize performance in terms of input parameters. Success with such an
e approach depends on understanding of experimental techmques. famiiarity with practical
-‘. issues of algornthm simulation, and knowledge of appropriate analytical tools Clearer
': understanding of these topics in the context of algonthm analysis 1s a primary goal of this
‘
research.
i
\ The following terminclogy is used throughout the thesis. Suppose the expected-case
-'._:: performance of algorithm 4 is of interest: this is the simufation model/. A distribution on input
W instances is established that can be described by a small number of parameters. A sample
“ point is determined by a fixed setting of the parameters. A trial corresponds to a single input
‘,,; instance randomly generated1 at a fixed sample point. For example, taking 50 trials at the
LW Y
;:: sample point (n =1000, p = 1/2) might correspond to generating 50 binary strings of length
K 1000 according to a binomial probability distribution with parameter p = 1/2. In performing
. an experiment, a simulation program that mimics the performance of algorithm A is
:-\." implemented and applied to the input instances. For each trial, values for one or more
LS
] :'_. measures - such as number of comparisons, number of nodes examined, or solution quality
‘- > - are recorded. The goal of the experimental analysis is usually to characterize the
P measurements (the values taken for the measures) in terms of the input parameters.
4 \"'_
[~
‘:-:: Throughout the thesis, the notation H refers to the n™ harmonic number, defined by
-,
o H = 2:; 17i. The base-2 logarithm of n is denoted by Ig n. The natural logarithm is denoted
J . by Inn. The notation “log” is used when the base is irrelevant, as in order-of-magnitude
b formulas. '
“»
o
o
| .r_;.
P 1.2. Previous Work: Examples
]
‘
f»j- Given an algorithm whose theoretical analysis is elusive, it is conceptually easy to
4 ""\ . 0 3 . .
. implement the algorithm, generate appropriate inputs, and gather measurements. In practice,
o however, difficulties can arise in matching the simulation program to the model, in ensuring
P@a correctness of simulation results, and (especially) in using the measurements to gain real

X

insight into the algorithm’s structure. To illustrate problems that can arise, this section
surveys a number of experimental studies from the algorithms literature. It is clear that none

»

Al e

of the studies surveyed here were intended to illustrate sophisticated analysis techniques or

1The term “randomly generated" is used as shorthand for “pseuda-randomly generated™.

l_‘l _l' -

14

E}J{II{f
A hh Yy

- WA g Ao ™ AT
"""'x’ <ir % .,0.0,'.0,‘9, e ‘hv'c M'! 4 ‘!'z O XM

TN Ty T L T & and o P
oy LAl a4 v T x WY lakAnastin as £io e doatin d g Al Ad ooy o g 0 ge Lo e a o
& A a0 Akl st oo Balh aoh Aoyl

innovations in experimental method: except for a few dissertations entirely devoted to
simulation research, the experimental results are usually presented in the final section (or
appendix) of a paper largely devoted to theoretical analysis. Although this is not an
2xhaustive survey, these studies are representative of the current level and scope of

experimental research in algorithm analysis.

Simulation Models and Simulation Programs
Usually the goal of an experimental study is to shed light on open problems suggested by
partial theoretical characterization of an algorithm. One impediment to achieving this goal is

found when simulation results do not correspond to the analytical description of the problem.

This is certainly the case when asymptotic performance is studied: how can measurements
at finite input sizes be extended to inferences about asymptotic behavior? Experimental
results can be greatly dependent on input size; consider the problem of determining the
expected internal path length /n of a binary tree under a random series of insert/deiete
operations (see Knuth [34], Section 6.2.2 for a detailed discussion of the problem).
Experiments performed by Knott [33] in 1975 suggested that (for certain deletion algorithms)
In tends to decrease as a random sequence of insertions and deletions is applied. Knott's
studies took sequences of up to 24 insertion/deletion operations and trees with fewer than
100 nodes. Eppinger’'s [21] 1981 study with n as high as 2048 and insert/delete sequences as
large as 9,000,000 indicate that I" decreases at first and then increases as the sequence
length grows.

Another common difficuity with obtaining measurements that accurately reflect the
simulation model arises in the study of heunstics tor NP-hard problems. Bounds on heuristic
solution quality are often expressed in terms of the optimal solution, which cannot be
determined experimentally. The one-dimensional bin packing problem, for example, is to
pack a list of n items with weights from a subrange of (0.1] into unit-sized bins so as to
minimize the number of bins used (the bin count). Since this problem is NP-hard, heuristic
rules for bin packing are of interest; a common analytical measure is the bin ratio, the ratio of
the heuristic bin count to the optimal bin count.

In general, the true bin ratio cannot be measured experimentally because the optimal bin
count is not known (if it were known, there would be no need for a heuristic). A common
solution is to find an easily-measured lower bound on the optimal bin count and to estimate

it el o '7‘3”

I)
I‘..I.'
. ¢ 2 M
'\-‘. ‘. -‘

>

LA

4 4y
;]

the bin ratio using this lower bound. which gives an upper bound on the true bin ratio. For

KAARAS
el

ﬁ‘l~
a_v 1

example. since there must be enough bins to contain all of the items, the sum of the waights is
a lower bound on the optimal bin count. Also, the optimal bin count is bounded below by the
number of items with weight greater than 1/2. since no two of these items can fit in the same
bin. Johnson's [29] 1873 simulaticn study of various packing rules used the measure
max(;weight-sum |, number of items > 1,/2) as a lower-bound approximation tc the optimal bin
count. Ong. Magazine and Wee [38] used [weight sum] as the lower-bound estimate in their
1984 study: noticing that the heuristic “*BFD’' nearly always achieved the lower bound, they

also presented bin ratios using the BFD bin count to estimate the optimal bin count.

Using the solution ratio to characterize the quality of a heuristic is a common analytical
technique. One drawback to using a lower-bound estimate of the optimal solution in
simulation studies is that the estimate may be a poor approximation to the optimal solution
and therefore give little information about the true solution ratio. While this is not a problem in
bin packing (Karmarkar [31] showed in 1982 that under the standard expected-case model
the weight sum is very near the optimal bin count), finding useful lower bounds is a nontrivial
task in many domains. An alternative approach is to generate input instances with known
optimal solutions. Helfrich [27], for example, generates random integer lattices with known
shortest vectors and uses them to study heuristics for finding the smallest vector in a lattice.
Pilcher [39] describes techniques for generating graphs for which optimum traveling
salesman tours are known. Although this approach is promising, it can be difficuit to develop

generation schemes that preserve interesting properties of the input.

Other examples of disparity between simulation model and simulation program have
appeared; some could have been avoided. For example, a self-organizing sequential search
rule maintains a list of items under a sequence of requests, keeping frequently requested
items near the front of the list so that the average cost of searching for requested items is low.
Since the rules do not know the true request frequencies, they are allowed to reorder the
search list according to the requests seen so far

The usual expected-case model is that the N items in the search list are requested
according to a specified probability distribution. The standard analytical model assumes that
all initial orderings of the search list are equally likely. In real applications, however, it is more
likely that lists are initially empty and that new items are added to the back of the list if not
found. Tenenbaum's [45] simulations of search rules used a combination of these two

>
AR

i 30
SN

[

assumptions: the lists are initially empty, but accumulation of search costs does not begin

until the lists are of size V. Since the search lists are in not in random order when the cost
accounting begins, the observed convergence properties for the rules do not correspond to
the analytical model. (In fact, Rivest [41] showed that one of the rules (MF) has achieved its
asymptotic performance by the time the list is of size N). Tenenbaum's discussion of
convergence properties for the analytical model (based on his experimental results) is

‘nappropriate.

Franklin [23] presents an algorithm for performing hidden-line elimination. The algorithm is
conjectured to run in time linear in .V, the number of overlapping circles randomiy generated
within the unit square. Franklin presents timing statistics to support tkis conjecture, and
notes that the timings are linear except for a slight increase at larger .V; he remarks that the
observed super-linearity is probably due to increased paging activity. Ohuyad, lam and
Murasoto [37], similarly, use timing statistics to support the conjectured linear running time of
their cell-based algorithm for computing Voronoi diagrams and to find optimal program

parameters under various input models.

The above authors have a legitimate interest in the running times of their algorithms, which
have great practicai value. Their discussions of algorithmic bounds and optimal parameter
settings would be stronger, however, if they were based on abstract operations: this could be
easily accomplished by simple bookkeeping mechanisms embedded into the implementation.
Although runtime statistics can give a rough idea of algorithmic time complexity, a number of
factors interfere with accurate measurement. Van Wyk, Bentley, and Weinberger [46] and
Wendorf [48] observe that timings of a single brogram can vary by as much as 20% under
Unix? timing protocols, even when it is the only user process running on the system. On any
large operating system, variation due to paging, multiple users, and cacheing can add
significant “‘noise” to the timings. Implementation details and variation in optimization levels

can mask the behavior of the underlying algorithm.

Obtaining Correct Resuits

Even when the implementation accurately reflects the simulation model, it can be difficult to
ensure that experimental results are correct. For example, theoretical models are likely to
assume properties of real numbers, but experiments are performed on finite-precision
machines. Eddy [20] presents a fast convex hull algorithm for planar point sets and measures

2\nix is & trademark of ATAT Bell Laboratories.

o

OO A0
3 AT I
Syt

A

P A
Lol ad REAR Y
s 82 4

- -
L4

-
-

Pl g

.l' Al"

S

? .;.

o 48

"j",..' Iy
£ a & &

s

s,
2

™ .L

MM
"

11#_7‘,‘;"‘*' RN
s TR AP

sy A s

,,,,,

L}
1002 et e et
.,qf._a", Vi) KOONUANO0

10

its performance for five distributions on point sets. He notes that when the convex hull has a
large number cof vertices, adjacent sides are nearly parallel and roundoff errors significantly

affect the measurements.

The general problem of verifying that a program performs as specified is well kaown. Direct
validaticn of simulation programs is rareiy possible: it the measurements can be accurately
predictad, there is little nead for a simulation study. Exceptions do occur: Bloch, Daniels, and
Spector [10] use Markov analysis to characterize their algorithm for maintaining directory
information in a distributed system. Because the size of the state space makes direct
computation tedious, they use simulation as an efficient way to describe performance over a
wide range of sample points. The authors are able to validate their simulation results by

spot-checking against the correct formuia.

Since most researchers are not as fortunate, an important assurance of experimental
integrity is replication. Eppinger [21], for example, replicates his experiments for insertion
and deletion in binary trees on a secondary system. The two simulation environments differ in
machine architecture (a Vax 11/750 vs. a Perq personal workstation), random number
generator, implementation strategy, and programming language. The consistency of resuits
between these two environments gives strong assurance that the results are not artifacts of

the implementation.

Otherwise, replication by the author appears to be nonexistent, or at least unreported.
Usually, however, authors provide enough details so that the reader can duplicate the
experiments. Kernighan and Lin [32], and Coffman, Kadota and Shepp [16] present listings of
the simulation programs as well as fairly detailed descriptions of the random number
generators. Cameron and Thomas [15] discuss significant implementation details, give the
code for the random number generator used, and offer to send a list of random number seeds
to interested readers. Many authors report the sample points and the number of trials per
sample point and only mention implementation details that differ significantly from the model.

Analyzing the Data

The most difficult task of the simulation study is to draw conclusions about the algorithm
based on the experimental results. In most of the studies surveyed here, the “analysis”
consists of tables (or graphs) displaying average measurements for each sample point,
accompanied by an informal discussion of the results. This is the format used, for example, in
studies of sequential search rules by Bellow [1], Bitner [8, 9], Rivest [41], and Tenenbaum

1J
g

£ X : Y, NI S LTS O A
\‘.'l 3'&‘!”‘!’ ML -14 -(‘n.i‘n.i tql‘l‘;_l‘ * ‘-' Rf""”&-"t & !'4’” v 4 '

P

"

1

[45). Other examples of this presentation format are found in Bui[14], Kernighan and Lin
[32]. Crowder and Padberg [18], Culberson [19], and Friedman. Bentley and Finkel [24].

K, 5 2, A Ay S

4

A few instances of more formal data analyses have appeared. Golden and Stewart

[25] apply Wilcoxon signed rank tests. Friedman tests, and other statistical tests to compare

- e
ol el iV o By |

TSP heurnistics. Eddy [20] estimates standard deviation in hus study of a convex hull algorithm.

-

) Weide [47] presents confidence intervals in his studies of search structures. Hart
I [26] establishes confidence intervals for his results on insertion in binary search trees and

applies hypothesis testing.

In general, extensive statistical analyses appear relatively infrequently in the algorithms
literature. This may be because the answers produced by standard analysis techniques
g appear to be at odds with many questions posed in algorithm analysis. For example, the
? standard procedure in regression analysis is to assume an underlying functional form
: describing the relationship between experimental values and to determine the function
parameters that best fit the observed relationship. In the study of algorithms, on the other
hand, determining or bounding the true functional relationship is often the primary goal of the
analysis; in order-of-magnitude analyses the actual parameter values are not a part of the
model.

A partial solution is found when strong arguments for a particular function form are
available, although difficulties can still arise. Hart [26] uses regression in his study of

L e o

»elea s 8 1

insertion in binary trees: after n insertions, the average height H(n) of a tree is known to satisfy
H(n)=Clnn+ o(In n), and may be of the form H(n):Clln n+ Czln inn+o(ininn). It is known
that C is in the range [3.634, 4.311], and specific values of 4 and 4.311 have been
conjectured. As part of a thorough statistical analysis, Hart performs a least-squares

e s s 2 xS

regression using the model H(n)= Clln n+ Czln Inn, which gives C = 44037 and
‘ C2 = =4.1001. Although Cl is nearer to 4.311 than to 4, it is also larger than its known upper
bound. This fact as well as standard analysis suggests that the model is not appropriate for
this range of input sizes.

q Culberson [19] studies internal tree height after a series of insert/delete operations and fits
L regression curves using the model E[/] = an'’?) + b, where I denotes the internal height of a
tree with n nodes. The correlation coefficients (for unweighted and weighted regressions) are
. 0.99894 and 0.9956, and the R? errors are 0.997 and 0.99124, suggesting that the model gives

a very good fit to the data. In accompanying graphs, however, the data points clearty curve

A

Dh =~ 0~ -

N - - g s VoW Jpt W.¥ AN
AN ‘.‘g',i‘?,l";.’,'r."l'_i!‘;"‘;'."1‘,"'ig"}"ﬁ‘ RO \"L\,Ji*i?‘(Rvglfl.i:u". UL AN

PR N0 W OGO SOOI N N b OO AR O, WroN
U AR AN A n-.’a'.'e'«'-"'.'n'.\ﬁ_'.?"m' » A¢l'-h"-‘.‘.‘1'&'.‘a§-'A’s'i': A XM K

MacShatd an Aot A Bl A A d S~ ek Malt ain® o)

upward relative to the fit. Culberson remarks: “any such [regression] results must be treated

with skepticism, unless some theoretical reason can be found to support them. "

Ong. Magazine and Wee [38] use regression when studying heuristics for bin packing.
Estimating H(n). the bin count for rule H. they show that if certain reasonable assumptions
hold. then E[Hum)] s of the form i + (), for constant band (1) = L n). Therafore E{H(n)]
is a nearly linear function of i1 for large n. The authors apply leist-squares regression using
the model E{H(n)] = u + bn. They note that the correlation coeflicient for all experiments is
equal to 1, and that the percentage of variation explained by the model is 99.99: by these
measures the model provides a very good fit to the data. Although the regression model is
well justified and fits the data very well, some of the results are (unavoidably) misleading,
primarily because the mode! is for asymptotic n and the measurements are taken at n between
40 and 1000. For example, they estimate the bin ratio for the “FFD " rule as 1.018, although
Leuker [35] had proved that the true bin ratio is asymptotically 1. it was later shown in [5] and
[43] that the bin ratio for two other rutes is asymptotically 1 although their estimates suggest

otherwise.

Authors have used techniques other than statistical summarization and analysis to convey
the results of their simulations. Coffman, Kadota and Shepp [16], for example, study a
strategy for dynamic storage allocation. They present “snapshots’ of memory over time to
illustrate their observations. Culberson [19] presents snapshots of binary search trees as
insertions/deletions are performed. Brown and Sedgewick [13], and Bentley and Kernighan
[6] have developed systems for “animating’’ algorithms; perhaps in the future these methods

will play a larger role in the analysis and presentation of simulation results.

In addition to these examples of experimental study in algorithm analysis, some previous
work has appeared about using experiments in this context. Purdom and Brown [40] devote a
chapter of their text, The Analysis of Algorithms, to a discussion of probabilistic tools for
analysis and a review of Eppinger's work. Golden and Stewart [25] present data analysis tools
for benchmark studies of heuristics for the Traveling Salesman Problem. Crowder, Dembo,
and Mulvey [17] discuss issues in the presentation of computational experiments in
mathematics; they give a critical survey of previous experimental studies and propose a
checklist of criteria for reparting computational results. Hoaglin and Andrews (28] also

propose guidelines for presentation of computer-based experimental results.

X
'.\n 13
L
.‘. ‘V
o 1.3. Research Goals
:::
e:: While there is strong mativation for using experimental techniques in algorithin analysis. it
'_ appears that not much progress has been made. Experimental results have been published
., that contradict known theoretical bounds, lead to erroneous conclusions about algornthmic
.:f: performance. and do not correspond to the underlying analytical model. Perhaps because
DS
; formal statistical analyses have not been generally successful in fending new insight,
¢ -) researchers tend to limit their exposition to methods more suitabie to benchmark studies: the
N - ‘ . .
f', most common format for presentation of experimental results is a table giving average
‘ﬂ-j measurements at various sample points, accompanied by informal discussion of the table
Ay
Rt entries. Very little discussion of experimental methods and techniques for research in this
domain has appeared.
b M
r
:::-: Nevertheless, the thesis motivating this research is that simulation and data analysis can
»! w"_
:) provide a powerful tool for obtaining new insight about combinatoriat aigorithms. This
b hypothesis was prompted by experience with a simulation study begun as joint work with
w J. L. Bentley, D. S. Johnson, and F. T. Leighton (reported in [4]). The object of the study was
to measure the expected performance of two heuristics for bin packing. Under the expected-
v case model, n items with weights drawn from the uniform distribution on (0.4}, 0 < ¥ < 1, are to
\ be packed into a minimum number of unit-sized bins. The amount of empty space in a
;‘ '_': packing - the number of bins used minus the sum of the weights - was the measure of
W
,‘: packing quality recorded in our simulations of the packing rules First Fit (FF) and First Fit
o
::«.: Decreasing (FFD) (see Chapter 2 for a detailed discussion of the problem). Prior to the study,
D) very little was known about the expected-case behavior of the rules; our goal was to
/ : characterize mean empty space as a function of 7 and u. The following observations were
>
.:j among those reported in [4].
Hl
t., eWhen u =1, mean empty space in FFD packings is ~s0.37"2. Prior to this
observation (first noted by Bentley and Faust[2] in 1980) it was widely
;' N conjectured that empty space is 2(n). Prompted by experimental resuits, Leuker
- [35] subsequently proved the © (n'*) bound.
1N
C
.‘p_: e When u 0.5, mean empty space in FFD packings i3 O(1). This remarkable
L observation - that empty space does not grow in n when u is small - was
." subsequently proved in [5]. The proof gives an uppet bound of roughly 10' bins;
_:;.j Floyd and Karp [22] have recently reduced this to 10 bins under a slightly different
k . average-case model. Simulation results suggest that the true expectation is
- o nearer to 0.7.
o
"
ko
&
oo
l"c
‘
‘¥
&

g «a

O ' 0 a0 N A .
Rt oy u,:',l:.‘ 8 AN ..!0.'}:.’:'.' Nt A0 e e n Fa bl ot w!’h’-‘\,.'..w"

14

e When u < 0.3 empty space is less than 1 (and therefore the packing is optimal) in
over 753% of FFD packings.

e When 0.5 < u <1, mean empty space is O (n'''). This bound was subsequently
proved (see [5)).

e Thare appears to be a critical point u, such that when w« is less than u,, empty
space in FFD packings Is very sinall: above the critical point, empty space is quite
targa and outliers (corresponding to very bad packings) are cbserved. The
crit:cal point appears to increase slowly as n grows.

e Mean empty space appears to grow linearly in u when u is below the criticai point
and to increase rapidly in u above the critical point. When « <0.5, empty space
appears to be constant in « as well as n. (This early observation is modified
somewhat in Chapter 2). Theoretically characterizing empty space as a function
of u remains an open problem.

e When u = 1, mean empty space in FF packings appears to grow approximately as
0.22:"" This observation contradicts previous widely-held intuition, which
predicted that empty space would grow at least linearly in n. A bound of
O(n*logn) was subsequently proven (see[5)); this was tightened to
O(r*log**n) and (") by Shor [42].

e When u < 1, empty space in FF packings is nonmonotonic in u; for example,
packings of weights drawn from (0, .9] give /ess empty space than packings of
weights from (0, .84] or from (0. 1}. This nonmonotonic behavior becomes more
pronounced as n grows.

e The nonmonotonicity suggests that empty space grows more rapidly in n when
u = .84 than when u = 1. Experimental results give the tentative conjecture that
empty space is linear in n at some values of u.

This experimental study significantly influenced theoretical analysis of the two bin-packing
algorithms. First, the simulation results in some cases contradicted previously held
conjectures, prompting a redirection of theorem-proving effort. Not only did the experimental
results suggest the theorems to be proved, but detailed and varying views of the data as well
as animations of the algorithms as they packed were essential to the development of the proof
techniques appearing in [S]. The study went beyond simple measurements: new insight into
packing structure, new conjectures about the performance of the heuristics, and more
efficient heuristics were a direct result of the simulations. The simulation results have
“opened up’’ what had previously been a fairly closed area for expected-case results.

Limited simulation studies by Johnson [29], Maruyama, Chang, and Tang [36], and Ong,
Magazine and Wee [38] had appeared previously. Why was this study much richer in

s e,

-
PN
PRt

»

: 15
s
e
‘)_\r'. conjectures. insights, and thecrems? The following factors probably contributed to the
e
b :-: success of our study.
R
A 2 e Larger problem size. We simulated packings with lists of up to 128,000 items,
. while previous studies used lists of up to 200 and 1C00 items. Some of the
‘e cbservations, particularly the nonmonotonicity in FF packings, were not visible at
' ::: lower n.
e
t:.) e Change of measure. We measured empty space rather than the bin ratio (the
“‘) ratio of the number of bins used by the heuristic to the number used in an optimal
“; packing) as had been done previously. This measure allowed a much clearer
"l picture of packing quality; because the ratios are very near 1 and tend to
:0‘ converge slowly in n. the small changes in growth are overwhelmed by the
::. variance in the data. Empty space has much smaller variance relative to its
s growth in n.
,xj e Departure from benchmark-style reporting of results. Rather than presenting
tables of measurements for the packing ruies at various sample points, we tried to
::: characterize empty space as a function of n and u. We examined the raw data
ot over all trials, rather than just average measurements, to gain insight into
D distributional properties. We made extensive use of graphical analysis tools.
4 {: e Many of the experiments were replicated on a personal computer, which varied
Oy the implementation of the packing heuristics, the type of random number
.-__{ generator, and the machine word size. The consistency of the results between
.r;' the two environments, combined with program validation and hand-checking of
. results at small n, gave us confidence in the (often nonintuitive) results.
L) -
'.'-:A e Finally, and perhaps most importantly, the study was not finished after a single

- round of experiments; we jterated theoretical and experimental analyses of the
- heuristics. The two approaches interacted in many ways. Certainly theoretical
s work was guided by experiments; just as importantly, experimental work was

J directed by theoretical insight. In some cases new insights suggested shortcuts

in the data-gathering process, or eliminated the need to gather new data.

L,
.;_-"_‘_a Growing insight suggested more precise measures of packing quality. In turn,
;,.:(: later experimental resuits gave more insight and produced more detailed
>l understanding of the algorithms.
h.\'.
Yo The simulation study of bin packing had a significant impact on theoretical analysis by
:::': contributing new theorems, new insights, new conjectures, and precise, accurate
& ‘.’.‘l-
‘Co measurements. In addition, a number of procedural questions were prompted by the success
{: of the study. Can the above principles be generalized to other algorithmic domains? Could we
R have learned more from the data? Are more powerful data analysis tools available? Could the
.
o same information have been gained with less programming and analysis effort? In general,
"i: what types of resuits can be gained from experimental studies of algorithms? What are the
>
B limitations of this approach?
7
'J;."
oy
o
I*'
v "
)
[)
S A,
s

f SN e 0 1Y P y " B " ") (W) 1,7, s () (] ¥ DUV 4 \
) A » s (8 A SO MNOAOM BOOUY OOGUOADOUOOUOUA RFNA LA RS RS
'0.“: LAY) !-“e AL . ""ﬁ“‘,h BRI l..' @) 4G Ny .?v..?~‘.’:‘?'l‘?’o..‘.'f’c‘f‘1'.‘t'.'l'. nl.a'*'.n..fo't’,v ,°"e".'"’v"..t"tt"‘w",‘!‘-!.'.P".-*" 2t RO

e
5
‘-

..1
by 4"

-".

LA

.

X5, 0 4 50, 8
-'."l

-~

16

An obvigus first step in answering such questions is to see what has been accomplished by
others. As Section 1.2 suggests, experimental research in this area has not been extensively
appled or addressed. Compare this to experimental research in, say, the physical sciences:
entire papers are devoted to experimental results, and topics such as the justification of
expenimental mcdels, experimental design. applications of analysis tools, and issues of

graphical prasentation are regularly and rigorously discussed.

A vast literature of general simulation and statistical analysis techniques exists. Texts such
as The Art of Scientific Investigation [7] contain a great deal of collected “lore” of good
experimental technique and discussion of the scientific process (which iterates theoretical
and experimental analyses). The application of these techniques and tools in the context of

algorithm analysis is the topic addressed in the following chapters.

The following research goals are set:

1. To demonstrate that simulation can provide a useful, general toot for developing
new understanding of algorithms.

2. To identify common problems and assess the applicability of this approach.

3. To develop principles for successful experimental research in the domain of
algorithm analysis.

4. To promote more general use of this approach by giving a “handbook’’ of useful
tools and techniques.

Part ll, comprising Chapters 2 through 5, presents four ‘‘case studies" of experimental
analyses of algorithms. The case study approach is adopted here for a number of reasons.
First, the studies allow an accurate assessment of the usefulness of this approach. The
problem domains are well known to computer scientists: partial theoretical characterization
already exists, and the open problems have been the subject of extensive previous theoretical
and experimental research. If the experiments give new insight in these problem domains,
then Goal 1 will be established. Second, the problem domains provide realistic testbeds for
simulation and analysis techniques. Third, studying a variety of problems allows identification
of common problems and useful general techniques. Fourth, the case studies serve as
examples of the experimental process, which may be of use to future researchers. Finally, the
experimental resuits themselves contribute to open problems the algorithm domains.

Part lIl contains a discussion of the case studies. Chapter 6 discusses applications,

17

- principles, and goals of experimental research in the domain of algornithm analysis. Chapter 7
) presents techniques and tools that proved useful in the case studies. Chapter 8 assesses the

0, contributions of the thesis and discusses future work.

.
-’

<<E
‘."

A AR
RV

<
oA

-
»

S]

l‘. -"'/‘ . " .

an
-

.'-:'I- <‘

¥

fl

g
1).

DSOROAOASANROGIAOAIADSIAIN WA A\
LRI I DR L) LY UL N) DR
K abint 'r‘,’wi»‘k‘ '!‘f“. o ‘t-‘l{?“‘h'".' ‘f

; 7 18

N References

A (1] M. E. Bellow.
: Performance of Self-Organizing Sequential Search Heuristics under Stochastic
) Reference Models.
‘, 5 PhD thesis, Department of Statistics, Carnegie-Mellon University, Pittsburgh, PA,
' November, 1983.

[2] J Bentley, J. Faust.
Y Unpublished notes on simulations of FFD.
A 1980.
-
b [3] J.L. Bentley, D. Haken, R. W. Hon.
: Statistics on VLSI Designs.
‘ f: Technical Report CMU-CS-80-111, Department of Computer Science, Carnegie-
‘:-': Mellon University, Pittsburgh, PA 15213, April, 1980.
"‘;}j [4] J.L.Bentley, D. S. Johnson, F. T. Leighton, and C. C. McGeoch.
Le An experimental study of bin packing.
: In Proceedings, 21st Afferton Conference on Communication, Control, and
vt Computing. University of llinois, Urbana II, 1983.
.
_:'{: [5] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch.
s Some unexpected expected-behavior results for bin packing.
o In Proceedings, 16th Symposium on Theory of Computation. ACM, April, 1984,

3

[6] J. L. Bentley and B. W. Kernighan.

,,«‘_;,, A system for algorithm animation (draft manuscnpt)
Wy December , 1986.

f
' o [7] W. |. B. Beveridge.

The Art of Scientific Investigation.
v xo Vintage Books, New York, 1957.

A [8] J.R.Bitner.
',g;-; Heuristics that Dynamically Aiter Data Structures to Reduce Their Access Time.
2 PhD thesis, University of lllinois, July, 1976.

a [8] J.R.Bitner.
Heuristics that dynamically organize data structures.
SIAM Journal of Computing 8(1):82-110, February, 1979.

P .
e a et
LA .

TR E
“

-4
«

. ey
. VAT

Y
PR N b ey e T

4

%)
N
<

%
v o o
ﬂ
L}
L

- » ',\ ‘..

SBNERLT q
‘)
K i‘, 0'¢ b.s.l. v"“p.*'«‘*‘.j".a"‘\'

WCRNARE Lt ”éa‘l'* by l““ ne ."l" """«

-
-
-

L
o
&N
o 19
.g~"' I ‘
;:T [10] J.J. Bloch, D. S. Daniels. and A. Z. Spector.
\ " Weighted Voting for Directories: A Comprehensive Study.
o Technical Report CMU-CS-84-114, Department of Computer Science, Carnegie-
X Meilon University. Pittsburgh. PA, April , 1984.
-
5 [11] N. S.Borenstein.
‘Q; The Dasign and Evaluation of On-iine Help Systems.
y b PhD thesis. Department of Computer Science, Carnegie-Mellon University, April. 1985.
&
i [12] R.P.Brent.
. ' Dynamic Storage Allocation on a Computer w'th Virtual Memory.
S Technical Report CMA-R37-84, Centre for Mathematical Analysis, Australian National
"u. University, Canberra ACT 2601, Australia, February, 1984,
:'_: (131 M. H. Brown and R. Sedgewick.
- Techniques for algorithm animation.
= IEEE Software 2(1):28-39, January, 1985.
- (14] T.N.Bui.
iy On Bisecting Random Graphs.
o Master's thesis, MIT, January, 1983.
A [15] J. Cameron and G. Thomas.
-l An heuristic graph partitioning and coloring algorithm.
- 1984.
-, Draft manuscript.
- [16] E.G.Coffman, Jr., T. T. Kadota, and L. A. Shepp.
A stochastic model of fragmentation in dynamic storage allocation.
i Manuscript, Bell Laboratories, Murray Hill, NJ 07974, 1983.
) .'(
s [17] H.P.Crower, R. S. Dembo, and J. M. Mulvey.
f:-: Reporting computational experiments in mathematical programming.
\ Mathematical Programming 15:316-329, 1978.
= [18] H.Crowder and M. W. Padberg.
P Solving large-scale symmetric traveling salesman problems to optimality.
"W Management Science 26(5):495-509, May, 1980.
‘oia8
br [18] J.C.Culberson.
“.E‘; Updating Binary Trees.
.’ Master's thesis, Department of Computer Science, University of Waterioo, Waterloo,
8 Ontario, Canada, March, 1984.
- [20] W.F. Eddy.
o A new convex hull algorithm for planar sets.
E ACM Transactions on Mathematical Software 3(4):398-403, December, 1977.
.‘ [21] J. Eppinger.
- An empirical study of insertion and deletion in binary trees.
5 Communications of the ACM 26(9), September, 1983,
j
o
4
)
*:
)
®
S e
- A n o L
" Ty 1 ,l'..t‘ﬂﬁ'*f" ol n‘l'ﬁf':, t :..'.l!l.n. ‘..l'o. r !.‘.:’."h .o.“,b-i't. 'if":!"". fc. :‘?t.-"l'f‘!t‘“':."ve‘!’"'?":"S"*\fée'}‘;f A?;qu.::{

-

L 4

A "."-l', vJ.'
3

h* S S
x

¢ 3

k]
1

[N RN

[

i
>

o

e A

N 4y 9
R

I
[
.

« 6 a o u

“ s
Foesas

¥ £y
«@
b

-~ "
NS

-y .‘".."\'..'

(22]

(23]

(24]

[25]

[26])

(27]

(28]

[29]

(30]

(31]

[32]

(33]

20

S. Floyd and R. Karp.

FFD bin-packing for distributions on {Q. 1/2].

In Proceedings. 27th Symposium on Foundations of Computer Science. |EEE,
October, 1986.

W. R. Franklin.
An exact hidden sphere algorithm that operates in linear time.
Compurer Graphics and linage Processing 15:364-379, February, 1981.

J. H. Friedman, J. L. Bentley. R. A. Finkel.
An algorithm for finding best matches in logarithmic expected time.
ACM Transactions on Mathematical Software 3(3):209-226, September, 1977.

B L. Golden and W. R. Steward.
Chapter 7: Empirical Analysis of Heuristics.
The Travelling Salesman Problem.

1985, Chapter 7.

R. R. Hart.
The Average Height of Binary Search Trees.
Master’s thesis, University of California at Irvine, 1983.

B. Helfrich.
Reduktionsalgorithmer fuer Gitterbasen.
Diplomarbeit, Frankfurt, Germany, 1984.

D. C. Hoaglin and D. F. Andrews.
The reporting of computation-based results in statistics.
The American Statistician 29(3):122-126, August, 1975.

D. S. Johnson.

Near-Optimal Bin Packing Algorithms,

PhD thesis, Department of Mathematics, Massachussetts Institute of Technology,
Cambridge MA, June, 1973.

J. B. Kadane and G. W. Wasilkowski. :
Average case epsilon-complexity in computer science: a Bayesian view.
In Second Valencia International Meeting on Bayesian Statistics. September, 1983.

N. Karmarkar.

Probabilistic analysis of some bin-packing algorithms.

In Proceedings, 23rd Symposium on Foundations of Computer Science, pages
107-111. IEEE Computer Society, 1982.

B. W. Kernighan and S. Lin.
An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal 49(2):291-307, February, 1970.

G. D. Knott.
Deletion in Binary Storage Trees.
PhD thesis, Stanford University, May, 1975.

OO IO AL O OO OO OGO AR OARAOH N
Wt o"‘.:"."".i"t:‘"."to"‘l”tt'*.o'l‘.."‘..".9“?5‘ﬁf;"‘.‘3'.'l..'t'."{."._."‘ 2

A
.I ‘l‘l

21

= % 2

S

‘TN [34] D.E.Knuth.
:_: The Art of Computer Programming. Volume 3, Sorting and Searching.
A Addison-Wesley Publishing Company, Reading, MA, 1973.

[35] G.S Leuker.
Bin packing with items uniformly distributed over intervals [a.b].

b
v -
N In Proceedings. 24th Symposium on Founaations of Computer Science, pages
" 289-297. IEEE Computer Society, 1983.
Y
™ [36] K. Maruyama.S. K. Chang. and D. T. Tang.
| A general packing aigorithm for muitidimensional resource requirements.
'; international Jourral ot Campguter and nformation Sciences 6(2):131-149, 1977.
. [37] T.Ohya M In. and K. Murota.
it]
:;3, Improvements of the incremental method for the Voronoi diagram with computational
ey comparison of various algorithms.
) Journal of the Operations Research Society of Japan 27(4):304-336, December, 1984.
::4_ (38] H.L. Ong.M. J Magazine, T.S Wee.
o Probabilistic analysis of bin packing heuristics.
- Operations Research 32(5).983-998, September-October, 1984.
+&5
~ [39] M.G. Pilcher.
5 Development and vahdation of Random Cut Discrete Optimization Test Problem
o Generators.
N PhD thesis. Purdue University, 1985.
tl [40] C. W.Purdhom and C. Brown.
N The Analys:s of Algorithms.
N Holt, Reinhart & Winston, 1985.
4
&
< [41] R.Rivest.
[On self-organizing sequential search heuristics.
A :.: Communications of the ACM 19(2):63-67, February, 1976.
) [42] P.W. Shor.
.\ The average-case analysis of some on-line algorithms for bin packing.
o In Proceedings, 25th Symposium on Foundations of Computer Science, pages

193-200. IEEE , October, 1984.

[43] P.W. Shor.
Average-case Analysis of Some Online Heuristics for Bin Packing.
PhD thesis, Massachussetts Institute of Technology, May, 1985.

[44] E.P. Stritter.
File Migration.
{Ph.D. Thesis) SLAC-200, UC-32, STAN-CS-77-594, Stanford Linear Accelerator

2,4, A @SS

=

o Center, Stanford University, Stanford California, January, 1977.

Vo Available from National Technical Informations Service, U S Department of
y Commerce, 5285 Port Royal Road, Springfield, VA 22161.

&
w

‘g

Y

Ay

OO O MU AN M NPT AL
MU SRS AU AR RN

o
LA

1 RERA

ol 22
h."-
Y
o (45] A Tenenbaum.
".'-:':- Simulations of dynamic sequential search algorithms.
AW CACM 21{9).790-791, September. 1978.
- - (46] C J Van Wyk, J. L. Bentley, and P J. Weinberger.
t-' Efciwency Cons-gerations ter C Programs ona VAX 11/780.
_ \-‘_’. Techmcal Report CMU-CS-82-134 Department of Computer Science, Carnegie-
:_ Mallon University. Pittsburgh. PA, August, 1982.
. [47] B W.\/ede.
’n{ Sratstical Metrods «n A gorithm Desigr ana Analysis.
o PhD thests, Carnegie-Mellon University, August, 1978.
o [48] J. Wendort.
D Unpublished notes.
October, 1988S.
§ 4‘_'.
.’_..
-
o
'.',)
3
g
N
BT
N
o
{
AR
ey
P ‘n_:_»
:.:-;
L "
P W4y

i

XN
Ay
LI

Al

R o
R

Y Y YY)
AL
;'\‘\—‘v A

Py . 0 . .

,,
@
3

. {‘
a1 Y0
)

-l-~ ','-‘".‘
. s

S.

..:..::.{.;:',;-‘()._'..".‘_

LAak Al dlaa Buh s

Mamded daaee o g o i o s T

YLl

23

'-.—;

SR

oty -

P e Ary?

O

Wi

Part i

Case Studies

Just the facts, m'am
- Sgt. Joe Friday

P
. L 2)
S

Ih BN

a, a
r N "
.

-
J
-)
,,';- This section presents four studies in experimental analysis of algorithms. Chapter 2 examines
o
-x' four heuristics for the one-dimensional bin packing problem. The solution quality and time
\ complexity of a greedy aigorithm for matching are studied in Chapter 3. Chapter 4 compares
A strategies for selecting partition elements in Quicksort. Finally, Chapter S studies a family of
:::: self-organizing sequential search rules under various distributions on request probabilities.
.-l
el
.l
R ‘.;
o
B ‘\.’
"
i)
R

e N e T P -

‘ » » o -
[y L& B ’ '
« f: -.t.A*‘:'l"-‘l.T‘z‘,‘A‘!" 3" AR, l‘x'!‘,‘! 1 ;‘i,j* l“"f' ‘?'i‘.‘:;‘."“..v -‘f(‘.; ‘,‘“ ‘f": ‘fh‘l

LOUEN

% R W)
ArATR Y

BN S .0 Si Sbe A dia a0 a ad A |

s

.

s e’

<

‘< 24

i

hilinitieininktindatnitintiahbeatinaiiebdnshinabbubiitidniitedbektde o dodeiab Aok Ak inddu dee i 2k i D ekl dndecai Ao Ak she Abe-ide a0 -ahecabe b ute |

I’A .‘l
o
- “- fo

2

.l.

25

W

Sy Al
P

.

e W,

FEA
‘.’l‘l‘l"

o Chapter 2
One-Dimensional Bin Packing

)
L The une-dimensicnal bin packing problem is well known: given a set of items with weights
>
N from the interval (0. 1], pack the items into a minimum number of unit-capacity bins. Since the
LR ad
problem is NP-complete, a variety of approximation algorithms have been proposed. The |
_-;:j- following have received considerable attention. |
:f-::: e First Fit (FF): Inspect the bins sequentially and place each item into the first bin ;
Y "'--: that can contain it. items are packed in the order in which they are presented as |
ke input. 1
’ J\ o First Fit Decreasing (FFD): Sort the items in decreasing order by weight, then |
e apply First Fit to the sorted list. 1
-]
" e ¢ Best Fit (BF): Place each item in the fullest bin that can contain it; that is, the bin ;
_. into which it fits most tightly. As with First Fit, the ordering of the input list is 7
s preserved.
) e Best Fit Decreasing (BFD): Sort the items in decreasing order by weight, then
8 apply Best Fit to the sorted list of weights.
J\ All of these algorithms can be implemented to run in O(nlog n) time, where n is the number
‘N of items to be packed. Note that FF and BF are on-line algorithms, whereas FFD and BFD
; {: require that the entire list be available before packing begins.
AR
t ..'\
, < For a given list L, of n weights, the bin count A(L n) - the number of bins used by algorithm
AS
:-‘;f: A to pack list L » — i8 the usual analytical measure of packing quality. The packing rule that
-’\, minimizes the bin count for any list has the name OPT. The sum of weights in L , denoted by
o Z(L,), is a lower bound on OPT(L). Another common measure is the bin ratio, the ratio of the
’73 number of bins used by the algorithm to the number used by OPT when packing L. Since bin
o packing i8 NP-hard, OPT(L,) cannot be easily determined experimentally. The measure
- empty space, which is the sum of the gaps remaining in partially packed bing, is therefore
) .‘; adopted here. Empty space for algorithm A when packing list L | is denoted by AA(L o
Y A
7
o
s
>
2
04
s
Lo =

. ey P W OGOU ?~ﬂ; ¢

- n A)))
6) i g5y UG, () Y ’ VLM AN IO ORDOOUL ¢
el 40 5" ,l",l"‘ D3 7% ICIJOA AN ~Tﬁa‘\ . ;‘!h“,’.‘,";" ?“ Bl P b "-‘"‘L‘!‘é’a\‘!h"&.; A N A K LR RPN P S

-
P L i ad ode _an g ad- ads has ek Sas Ak v s ohd ada e ame 4 Land Aok Aok o

-

L A

"ot

CYAIEY

Y

.:! . .
i 2 |
g

3N Note that empty space 1s equal to the difference between the bin count and the weight sum:

i

N : that s, _\A(Ln) = A(Ln) - Z(Ln)‘ Since Z{L) is 3 lower bound on OPTI(L). an upper bound
H
’ on empty space can be used to derive an upper bound on the bin ratio by the ‘c.loving
: argument Suppose it 1s estabhished that AA(L) = AlL) - San) < luny. for some nchon
NS M) Then

-\ o

~ (AL)= S(L_N/OPT(L,) € Aun/OPT(L,).

‘_) and theretore

N A(L,)/ OPT £ Aun)/OPT(L) + XL)/OPT(L).

::l : where the last term 1s at most 1.
b |
i The expected performance of the bin-packing algorithms is studied in this chapter. Under
\.:: the standard model, weights are drawn independently at random from the uniform distribution
,-\::: on the interval {0, u], for 0<u <1. The list L, is therefore a random variable generated
Y .

5, according to parameters n and u, as are the measures bin count A(LU o and empty space
® AA(L,). Note that E[Z(Lu'n)] =un/2.

gy

3

W, .

2.1. Previous Work

,e

:‘_
WS Approximation algorithms for bin packing have received considerable attention; for an
; < extensive review of work in this area, see Coffman, Garey and Johnson [5]. Some results
- related to this work are surveyed below.

Yo

50y

b, . Johnson [9] established the following worst-case bounds on the bin ratio. These bounds
are tight in the sense that no better ratio can be found.
§, S

“_j.'_\ FFD(L,) s 11/9-OPT(L) + 4

n_':\'

s BFD(L,) < 11/9-OPT(L,) + 4
T FF(L,) s 17/10- oPT(L,) +1

\"'

4

.:-;. BF(L,) s 17/10-OPT(Ln) +1
@0 Brown [4] showed that no on-/ine algorithm can achieve an asymptotic bin ratio better than

ff 1.538. On the other hand, Fernandez de la Vega and Leuker [6] and Karmarkar and Karp
':j,": [11] have presented off-line algorithms for which the worst-case bin ratio approaches the
i "’!.

NI optimal value of 7,

R
¥

LOL0W) N "" 7 M o T Tt] Vi gy L DDA O I F_ "5;‘.!"”'; by LN n
A A A A GO IR RO AOBOCUDUOU OO OUII AN o i N A

U YW "W T W TR T TTE T e T &4 T W TR TERE T R TR W s T

v""""""‘"""'Av"-""‘—'"-"-"‘

TSV @
<

1O ." [A
A A O

27

Karmarkar [10] showed that in the expected -case model any u allows a perfect packing: that
is. the ratio of E[OPT(L_)] to E[Z(L,)] approaches 1 as » — x. How do the heuristics
compare to the optimal packing? Expected-case results for the rules studied here have
appeared only for the case v = |. Frederickson (8] and Leuker [13] have studied £FD and
BFD Their analyses show that the expected bin ratio for thes:: algonthms converges to 1 and

that 2¢pacted empty space s O (n'"*).

More recently. Shor [16] showed that any on-line algorithm that does not know n in advance
(ncluding BF and FF) wil leave (2" ""logn)”) empty space in the expected case. He also
showed that E[ABF(L,)l is Otn"“logn) and Qn""(logm™*), and that E[AFF(L,)] is
Otn ‘tlogn) 'yand Q(n*).

Previous simulation studies of bin packing heuristics have estimated the bin ratio for varying
nand u Johnson [9] simulated a number of heuristics for v = 0.25, 0.5, 1 and n up to 200. He
computed max([weight-sum |. number of weights > 1/2) (a lower bound on OPT) for each list,
and reported the bin ratio using this approximation. His measurements therefore give an
upper bound on bin ratios for n < 200. Ong, Magazine and Wee [15] applied regression
analysis with the model E[A(Lu'n)lz bn + a. The regression fits give estimates for the
asymptotic bin ratio, using Z(Lu_n) and BFD(LM) to estimate OPT(LW,). Their simulations
took v =.25..5,.75.1 and n up to 1000. Maruyama, Chang, and Tang[14] considered a
spectrum of packing rules and input parameters to determine which rules dominate under a

variety of circumstances.

2.2. The Simulation Study

The following sections present new resuits for the expected-case behavior of the heuristics.
Parts have been published as joint work with J. Bentley, D. Johnson, T. Leighton, and
L. McGeoch, in [2] and [3]. Earlier work is extended here in a number of ways, primarily by a
closer examination of performance when u is less than 1, identification of new measures that
give more precise characterization of the packings, and new arguments to explain observed
behavior.

The initial goal of the simulation study was to measure packing quality for the four rules as a
function of list size and the upper bound on the item weights. Each trial therefore
corresponds to a ist of n weights generated independently from the uniform distribution on
(O.u]. For efficiency, integer computation was used in the simulation: bin capacity was 2°~1,

and weights were generated from appropriate integer ranges.

Rl

5 28
z" The primary experiments were performed on a VAX 11/750, (some on a VAX 11/780), using
32 bit integers and €4-bit (55-bit mantissa) double-prectsion reals. The random number
S generator was the cyclic feedback method described by Knuth [12] (Algonthm A, Section
‘f - 322 2nd Ecition). To check the primary results, a number of expariments were replicated on
? a TRS 30 Model Il computer (using the system's linear congruential random number
-":q» generater), with 32 bit real anithmetic
v
¥ In most of the graphs presented n this chapter, the abscissa corresponds to either n or u
::;'.: ang the oirdinate corresponds to a measure of packing quahty such as empty space (in units
\ of bins). Sample goints were taken at n ¢oubling from 125: that 1s, at 125, 250, . . . 128000.
¥ The parameter u takes values in the range (0, 1]. Unless otherwise specified, the number of
trials at each sampie point is 25.
o 2.3. First Fit
- A long-standing open problem has been to determine the asymptotic bin ratio for First Fit
E:: under the expected-case model when u is fixed at 1. Since First Fit is an on-line algorithm and
:’ does not reorder its input list, it has been widely conjectured (see [9, 3]) that the heuristic is
--" not asymptotically optimal, implying that the asymptotic bin ratic is some constant strictly
~. greater than 1. Johnson's [9] worst case bound implies that the expected bin ratio cannot be
more than 1.7; from simulations he conjectured that the expected bin ratio is near 1.07.
Experimental results of Ong, Magazine and Wee [15] (with higher n) suggest that the ratio is
= between 1.038 and 1.056.
)
N
' Exhibit 2-1-a shows empty space for 25 trials each at the sample points u = 1 and n doubling
' ::E: from 125 to 128000 The near linear growth on a log/log scale suggests a power law: linear
.": least-squares regression on this scale yields an estimated slope of 0.7012, indicating that
. mean empty space grows approximately as n’’. The residuals to this fit (Graph 2- 1-b) suggest
;.‘.: that the variance increases in n; no significant curvature in the residuals is apparent.
2 |
W \ it appears, therefore, that empty space grows sublinearly in n. This leads to the surprising
.," conjecture that the expected bin ratio of First Fit is asymptotically optimal, by the following
X ': argument: the expected sum of the weights (equal to n/2) grows linearly in n and therefore
e OPT(L,) is R(n). Since, AFF(L,)~sn®’ = o(OPT(L, ,)), the asymptotic expected bin ratio is
e L
)
.
2
J':-
£
[}
“

> SR (G A
AUOM SR NIENRITRN

RTINS TN T T
?“'-"v‘.'; *) e .'a"h NP RN AN WD,

rwvmmmmmwmﬂw‘w pOTOTTRAT AT AT AT TR T TN T WY
Y
o
pLa 29
[a
o
{ '.:c
\I o 1000
W . Q
LNyl g |
- m -
™
'- % 100}
. Q
‘ -}_: S
-\. e
Y
' o 10}
i L " N . - "
' 100 1000 10000 100060
IS
"t N
~.I‘
Ty a
S 150
L& [-
: s
. | 100} -
; : » .
¢ 50} : :
::\' - = : : 4
> obe T g..--- | | B §--- IR i - H
2 SRR S
- -50¢t . H
A . . .
- 100 1000 10000 100000
4 :.-:. N
-~ b
t Exhibit 2-1: FirstFit,u=1
b This new conjecture is proved in [3]; specifically, it is shown that E[AFF(L,)] = O(™).
' The bound is actually derived for a simplified version of FF, called 2FF, which performs
" exactly as FF except that a maximum of two items may be placed in any bin. (It is easy to show
that FF never uses more bing than 2FF.) An obvious question is whether the gap between
N observed growth in empty space, =~¥n®’, and the theoretical bound, O(n®?), is due to
i, differences between the packing efficiency of 2FF and FF. Graph 2-2 suggests that there is
0 no such gap between the two algorithms: on identical lists, the average ratio of empty space
! :q in a 2FF packing to that in the FF packing appears to approach a constant near 1.2 rather
" than increasing in n.
‘
- Prompted by these observations, Shor [16] obtained bounds of € (n**) and O(n”*log¥’n)
fj for expected empty space in FF packings. His technique was to establish an analogy between
B 7.
: bin packing and certain pianar matching problems and to show that bounds in one domain
-
g imply bounds in the other. Note that although our regression fit (AFF(L n)~n°") is greater
;
2
L]
\ o
[)
-
',
k) "I
<, Y A Ry o "I " .
! A S Al h":. *71\."'!;:,0

7y

.
é:
A 30
i
b < &
L] E 2.6}
~N
- [
. Y
e H
\': ‘2 2.2 .
.*:1 : |,
5 w
i S .
[y 2 1.8} ¢
' s .
- &
3 oo .
7 - -
' 5 repe 2 b ; :
v .« 7 3 b
. Lo . % f ! i g i
B A R T N
4 o o - R N .
- 19053 1000 10000 100000
o’ N
'_’.: Exhibit 2-2: Ratio of 2FF to FF
'~I
o than Shor's upper bound, the fit was adequate to justify the conjecture of asymptotic
- optimality.
L 2.3.1. Nonmonotonicity in u
\
;-: Analytical characterizations of First Fit for values of u < 1 remain elusive. Graph 2-3-a
-‘J i .
;.; presents empty space for 25 trials at each sample point, for 0.2 <u < 1.0 and n = 128000.
::' Graph 2-3-b gives a "closeup’ of the measure for 0.7 < v £1. Graph 2-3-c presents mean
3 empty space in this range for four values of n. The graphs reveal a surprising phenomenon:
: N at large n, empty space is not monotonic in u. Packings of items with weights from (0,0.8], for
v example, give more empty space than packings of items with weights from (0, 0.9].
e
‘ Experiments taking 50 trials each for v in the neighborhood of the local minima (in
':'_f increments of 0.005) suggest that they occur near u~ = 0.9, 0.925, and 0.94 respectively, for n
5': = 32000, 64000, and 128000. Doubling n produces a declining increment in u~, suggesting
“ that the local minimum v~ increases slowly in n. It would be interesting to determine if ™ has
? an asymptotic upper bound that is strictly less than 1.
:v:',
::f Similar estimation of u*, the u value giving the local maximum, is more difficult because of
o
‘; the shallow curve and relatively large variance of data points in this range. With v taken in
.'._ increments of 0.01, the largest means are found at u* = 0.82, 0.82, and 0.8 for n = 32000,

v e Tl : el A it W~ LML CROM 91 14
W J".O'\.."‘.O" “.0 e R N K A S o e S B A S R T R AAE MRS

— 1000

%
2
g
LT
[
[
.

‘x
r
]
]]

o SNE
W
o 8
|
]
]
-
[}
-
-
I
]
[|
nmi
1 1/
L FRU [N1])
st n
neusne 141t
e n
1 _

;-;m
l’;:.;:,
-

[«)

[

L. -
oo

L -

[y

»
. s

£X3
!
o
o

BN

> ."l "‘.':.-". ,"-l': . .
|
o
[]
[

*
[]
[] L]

Gy B
8
|

ale s
L

1- i)
[
L
[]
[]
[]
[]

55
.
.
.

0~ 1o

e
2

g

I
-'l"...
0

Exhibit 2-3: Empty Space for Varying u

>

64000, and 128000. These estimates do not inspire confidence because the means do not

e

X
)

LN W]

move smoothly in u at fixed n.

‘e
oy

An alternative to comparing means at each sample point is to use a statistical test on each
n '2,‘ set of measurements. Student's t test, for example, evaluates the hypothesis that two point
D0 sets from a normal distribution have the same mean: the measurements at the sampie point
‘.»',:. n=128000. v =08, for example, can be compared to those from n = 128000, v = 0.81.
(Informal graphical analysis indicates that the assumption of normality is not unreasonable.)

N OO AR IOIOINIO0I OIS A ” " "L T AN R A
O) AU) \
”-"‘N““J"J ‘."‘2"‘?0":"‘:\"?‘.‘.b“‘.i"t"".l."w“.'...“‘f-“"u".qs"‘z "“4"’;““.0.l‘a.‘iv".:.’."".:.";".\ ‘l'..ti.lf“‘&“_!.":‘!:".l'l‘““—.ﬂ O) ,’l -

& 13

" W

bl oh !l‘

GACOLAGLAKY
\ "“'.“‘A"J".}

P T T T T e 'm, -
-

oy
N
"'f-" .
b 32
lr
§
i | . |
W, Unfortunately, while the graphical observation that the three curves are moving up at
W\t . - .
-r.t: u =0.79 0.80 and down at v = 0.83. 0.34 is confirmed. the test detects no significant difference
$
- between adjacent point sets in this range. The conjecture remains. therefore, that
. 0.8 < v ™ £ 082 and thatu* moves very slowly, if at all. in n.
‘:\‘
e . §0000 . -
S 3 ﬁ ‘
1 3 o 4 goo.
v 3 g
" E | g |
B2
» ‘\':" = ! ‘
I 40000} 600 s liem
~ " . s Znem
A . ——e 1 hOm o~ —o Jigm
.,._"'- . - ow 2item - - 4o Aem
o — —o Jwm
%l —— 4o ROW
400l
1 ‘
NN 20000 -
LN ~-. PR I
AN [Tt Sel
.. 200
k="~ N
. ’ﬂ‘.::\ ..
- ' T = = e = e m e o L [o]
. < 75 80 .88 .70 .78
g, a
;;-L«: Exhibit 2-4: Distribution by item Class
\-l
"!

A more detailed look at the packings gives a better understanding of the nonmonotic
behavior. Define a gap to be the amount of empty space in a single bin, and define a k-item
- bin to be a bin with k items in it after the packing is finished. Graph 2-4-a shows the
-2 distribution of k-item bins, averaged over five trials each at n = 128000 and 0.75 < v <1. The
' four curves represent the average number of 1-item, 2-item, 3-item, and 4-or-more-item
(denoted by 4 + item) bins in the packings. Over most of this range the number of 1-item bins
is small, except for a rapid increase as u nears 1. The 2-item bins are by far the most
common: the number of 2-item bins increases quickly in the range 0.8 < u <0.9 and then

"‘.{. levels off as u nears 1. The number of 3-item and 4 +item bins generally decrease as u
hf. increases. On alogarithmic y-scale the number of 1-item bins is nearly linear in u, suggesting
! : approximately exponential growth. Graph 2-4-b depicts the amount of empty space in each
g -; bin class. Most of the empty space lies in 2-item bins for u in this range. As u nears 1, empty
. \, space in 2-item bins decreases and empty space in 1-item bins increases; compare.
.
' 'fil Now, divide the interval (0, 0.25] into 25 gap ranges, each of the form ((i—1)/100, i/100], for
___- i £25, and label each bin according to the index i of its gap range. (Bins with gap greater
AN
o
4

v W T T T W Wy TR A e RO YR IR TN . L) N - \1
e 33
Lot
e
.
0% 05, .1, .15, .2, .25,>| .05, .1, .15, 05 05
- 1» o 1’ qb
L J
1044 4+ o + ¢+ 1 ‘
RS 1031. . J.. . t + + |
S 2 Ceaq, 0 ! 1 ¢ . { 1] w]
:. :g]".."...I 1 ® j: [us= !
.
‘:_'-‘ 1 <+ ! 3 I | b 4
o ! | |
E 1L | L s s “
s 1044 <-.o + *L 1
.o 1034 O 4 | }
o 1024 *4 d s ‘LT $ v=.95
KA 1.,.0.-0........... I . = .
- 10 + I |+ 0 s Lf 4
=N 1 $ 4 ow s r 9 4
i | [
'.-_.. . b -F.. 2 4 +
L 104% 4 e, I ¥ - 1
}_":{ 1034 } '.. Hl 5 4
:.,.:;:.]02 b . - . 4 . . 3 + u=.9
rt'.- 10 ¢+ e 0,0 LA °e, T - T T 1T
1 JP I T Jr .T + I d <+
Jr -+ 4 L 4
10‘0 + .. . 1 <+
1031’] coo-. ., } jr
10 4 4 0 <+ .. <+ 4 u- 85
10 * . eos 4' ° . 0' L2 J» J
bl 4+ I.. ° T I-» Y ... T + J I &+ T <+
2a
$ <+ + 4 4
1044 s ; 4 4
1031L >..... ..‘. 4 1 4
102] -+ hd N & 4 4 us.8
10 TP - ’ . - - L 3
b + T ..TT-L * ..I { -LI
T T T T —1 9 T—
.08 .1 .15 .2 .25 >»] .05 .1 .15 .05 .05
Gap Size Gap Size Gap Size G S
1-item Bins 2-item Bins 3-item 4+¢item
Bins Bins

Exhibit 2-5: Distributions of Gaps

than 0.25 are counted in a single category.) Exhibit 2-5 pfesents the distribution of bins by
k-item category as well as by gap range, with n = 128000 and five values of u, for a single trial
at each sample point. In this multigraph, a row of paneis corresponds to a v value, and a
column of panels corresponds to k-item bins, for k=1, 2, 3, and 4-or-more. Each panel

LGRS ST RN, e
T T S e e)

il el (el sal tak sal Sal Sk ok Ak ol il Ann o0 o

displays the distribution of bins with respect to gap ranges. In the upper left panel, for
example, a point with coordinates (0.05, 400) would indicate that in the packing at

~=128000. v = I, there were 400 1.item bins having gaps in the range (.04, .05).

Because the counts range over four orders of magnitude, a logarithmic y-scale 1s used in
the panels. In each parel. the horizontal bars mark the rigint and left edges of the gap ranges
having non-zero ccunts. In the 1-item column (leftmost panels), bins with gaps larger than

0.25 are counted as a single category at the right side of each panel.

Exhibit 2.5 allows a number of observations. For example, 1-item bins cannot have gaps
smaller than 1 —~ u. Only 1-item bins ever have gaps larger than 0.25. Gaps in 1-item bins are
fairly uniformly distributed, whereas the distribution of gaps in 2-item (and in 3-item bins)

declines quickly as gap size increases.

The largest gap observed in 2-item bins is 0.18 (at v = .85), and 3-item bins have gaps
smaller than 0.09. For some reason, gaps in 3-item bins are generally larger at v = 0.85 than at
u=09oratu =08 The largest gap observed for 4 + item bins is 0.02. In general, at fixed u,

k-item bins have smaller gaps than j-item bins, for k < j.

Finally, note that as u increases to 1 the number of 1-item bins increases (observed from
Graph 2-4-a), but the average gap in those bins decreases (since the distribution shifts left at
higher panels of 2-5). Similarly, the number of 2-item bins also increases in u, leveling off near
u = 0.9, and the average gap in 2-item bins decreases as v nears 1. Recall that empty space in
2-item bins is nonmonotonic over this range, and that these bins dominate the packing: the
2-item bins account for the “hump’ observed earlier for total empty space. As v nears 1,
empty space in 1-item bins increases rapidly, which accounts for the rise in total empty space
when u is greater than v~. The number of 3 and 4 +item bins generally decreases as v
increases, but they are few and their gaps are small. Although they do not greatly affect total
empty space in this range, it is likely, that they would dominate the packings at smaller u.

We conjectured in [2] that there exist values of u for which expected empty space grows
linearly in n. Exhibits 2-4 and 2-5 suggests an argument for this conjecture when, say, u = 0.8.
Suppose there is a positive constant fthat gives a lower bound on the expected fraction of
1-item and 2-item bins in an FF packing. Now, the gap in 1-item bins is at least 1 —u; suppose
also that the average gap in 2-item bins is at least some fixed constant ¢, where 0 < e S1-u.
Total empty space is therefore bounded beiow by ¢f FF(LU_ n) Since the number of bins is at

W w T % L %"
6 ;gjs&i‘&' 1*"':?.:

e

A A \y
ACC O A AL

T S T T R N R R T R rT T Ty Ty s e e = 2 T RN

< 35
C
:'. least linear (bounded below by the sum of the weights) this gives a linear lower bound for
L empty space.

b
° It is easy to formalize the following argument for the desired lower bound on £ the fraction of
}_ 1-item and 2-item bins in the packing. The argument works by giving an upper bound on the
\ number of bins that can cortain at least 3 items. This number is maximized when as many
: bins as possible have exactly three items.

\

:'_ Recall that Z(L) is a lower bound on the number of bins used; when u = 0.8 we have

:‘. E{E(LM)] = 2n/5. Suppose a packing leaves 2n/5 bins. Not all of these bins can contain 3 or
: more items, since this would give only n/3 bins, which is smaller than 2n/5. The way to leave

2n/5 bins and also maximize the number of 3-item bins is to pack as many as possible 3-item

; bins and then to fill out the packing with 1-item bins. If a is the number of items packed

: 3-to-a-bin, we want to maximize a subject to a/3 + (n—a) = 2n/5. This equality holds when
: a = 9n/10; therefore at most 9n/10 of the items can be packed 3-to-a-bin if there are to be
' 2n/5 total bins in the packing. The expected number of items packed 1- or 2-to-a-bin is
therefore at least n/10.

:: Deriving a lower bound on e appears to be difficult. An easy lower bound on gap sizes
--' exists for 1-item bins: since v bounds the weight size, there can be no 1-item bin with gap
B smaller than 1—u. If the 2-item bins were formed by random pairings of uniform variates with
.: upper bound 0.8, then one could easily show that the gaps are (with high probability) greater
a than a small constant e < 0.2. Unfortunately, the pairings produced by First Fit are likely to
give gaps consistently smailer than those produced bygandom pairings.

:f Graph 2-6.a gives observed average values for f for three trials each at n = 128000 and
, : 0.2 <u < 1. The curves corresponds to k-item bins, for k between 1 and 7: each curve is
‘ 1 labeled near the point where it reaches its highest value. For example, at u = 0.65 the 3-item

5 bins comprise about 61% of the bins in the packings, and this is the highest fraction ever

.; obtained by 3-item bins. The highest fraction achieved for 2-item bins is approximately 81%,

seen when u = .95. The highest fraction for 1-item bins is about 1%, whenu = 1.

\ ; Graph 2-6-b gives the distribution of empty space in 2-item bins for n = 128000, u = .8. The
E:‘ x-coordinate of each point corresponds to a gap range in increments of .001. The y-
coordinate gives the fraction of 2.item bins with gaps in this range. This graph can be used to
: suggest appropriate values for ¢ the leftmost points show that about 3/100 of the 2-item bins
C

Exhibit 2-6: Measuring fand e

36
g . . cé) .035 (
@ 0.8¢ b Q
S . g .030f +,,
-2 1@ ‘\T‘ ;*‘;
3 06 ¢ o - +%s
(] 4 o o fo) * "§
< . . e 025} £ 1,
[o 4
0.4} 5'. . N h .. = ’,:*‘
8g i 1 8 T
7 . :_.' ‘ . . * |] * L: .020¢} °::§£:
PR N + TTh
0.2} ‘, n_”‘ Q_. . o :;i_;i
R) e l'. ‘a : .015¢ +>*3
oof & ! 3. . e8ee-lsete
0.2 0.4 0.6 0.8 1.0 (o] .01 02 .03
a u b Gap

2.3.2. Measurements at fixed u

conjecture.

although variance tends to decrease in n.

well as the bin ratio in First Fit packings.

have gaps in the range [0, .001]. Therefore 97/100 of the 2-item bins have gaps at least .001.
About half of the bins have gaps greater than .025 (not shown on this graph). Similar graphs

measuring gap distribution at smaller » are almost identical in appearance to Graph 2-6-b,

The graphs of Exhibit 2-6 show a great deal of structure; it would be interesting to
characterize this behavior analytically by bounding the number of k-item bins and the gaps in
those bins for any value of u. These could be combined to obtain bounds on empty space as

The previous subsection measures growth in u for fixed values of n; this subsection
examines growth in n for certain fixed values of u. An interesting open question is whether
empty space is linear in n for any value of u. Early simulation results (reported in [2]) suggest
that this is the case when v = 0.8, and the previous subsection gives an argument for this

Graph 2-7-a depicts mean empty space as a function of n for 25 trials each at four values of
u; Graph 2-7-b presents results of 25 trials at u = .2, .8. Both graphs are on log-log scales. At
u = 8, a linear least-squares fit to the data in 2-7-b corresponding to the five highest values of

37
u 1000 .8 g 100007
: : 5
. s %) .
L: fo) ® ™ -
-~ - - o u= 8
2 100} o Y- 4 g .
E -+ e Ity 100+ .
W . °© - I
° 1k .
o . -) o - s E ! . l .] L
i - d o - <
o L]
78 + °) + 5 1.§ 1 : a : l
e« % g 2 -
o~ ° .
+ C ; -
+ o] -
1; - a2
.01 .
100 10C00 1000000 100 10000 1ocj>voooo
N
a b

Exhibit 2-7: Growthinn

n (that is, for sample points with 8000 <n < 128000) has slope near 0.938. Similar fits to the
four, three, and two highest values give slopes of 0.943, 0.954, and 0.966, respectively.

Although the increasing slopes and upward curvature in the residuals (not shown) provide
some evidence for asymptotic linearity, the results are not conclusive: the steady change in
slopes suggests that n is too small for an accurate assessment of asymptotic behavior. Of
course, it is likely that a function form other than a power law, perhaps n/Ign, is more
appropriate. A regression fit using this model at u = 0.8 (and 8000 < n < 128000) also leaves an
upward curve in the residuals, although the curve is more shallow. At u = (.2, a least-squares
fit at the five highest n values gives a slope of approximately 0.75, and a fit at the two highest
values gives 0.78. The lower siope suggests that either empty space actually grows
sublinearly at this u value (as was the case with u = 1), or that the curve is very slow in

approaching its asymptotic form.

2.4. Best Fit

The Best Fit algernithm s similar in many &a,s to First Fit Both are on hine algornthms. and
botn can be implementad to run in O(:iog) tme Frirst Fit needs only a simple heap data
structure ta hing we hirst bin that can contain a given item, hewever, white Best Fit raquires

seme sort of batanced tree mechamisin to hnd the bin into which the item hts most tightly

Partly, because of the implementation requirements. the simulation program for Best Fit uses
nnear search to find the best-hitting bin and therefore requrres 6)(77) tune to pack.
Simulaticns of Best Fit packings were conly taken for n up to i6u) rather than to 128000.
Although the program etficiency was not great, the ethciency of the experimentation - in
terms of human and computer time spent in the search for useful measurements - was
enhanced by the fact that the First Fit study had been done first. The understanding of
packing structures gained from that study allowed similar analysis of Best Fit with much less
exploration time. Similarly, since the results are analogous to those for First Fit, the pace of

this section is faster.

Graph 2-8-a depicts empty space in Best Fit packings as a function of n with v =1, and
Graph 2-8-b shows the residuals from this fit. A linear least-squares fit on this log/log scale
has slope 0.619, which is better than the corresponding value of 0.701 observed for First Fit.
The regression results suggests that empty space is sublinear in n; as before, this leads to the
conjecture that Best Fit is asymptotically optimal for this input model. Prompted by these
m(log n)3/4

observations, Shor [16] proved bounds of O(n*Ylogn) and Q(n) for empty space

in Best Fit packings whenu = 1.

Because Shor's results imply that empty space grows more slowly for Best Fit than tor First
Fit, Best Fit must produce better packings asymptotically when v = 1. It is clear from Exhibit
2-9 that Best Fit produces better packings at smaller n and v as well. Graph 2-9-a shows the
ratio of empty space in First Fit packings to that for Best Fit packings of identical weight lists,
for 10 trials each at u = 1 and 125 < n <8000. In all cases the ratio is greater than 1, indicating
that BF gives better performance. Graph 2-9-b compares empty space for the two algorithms
on identical weight lists at n=16000 and 0.2 <u <1. Best Fit generally gives better packings
throughout, although the differences are negligible at small u. Although Best Fit and First Fit

-
.
.

o a @F

' L"I.'A.'\‘l. a

are both online algorithms, there is no a priori reason to suspect that similar nonmonotonic
behavior will be exhibited. Graphs similar to 2-9-b indicate, however, that the
nanmonotonicity is even more pronounced with Best Fit, since it becomes apparent at smaller
n and is more sharply defined as n grows.

o Y e I}

~ Y > - SO,
P A 4 il o A A A X R n‘l‘n."::lft,t,

D B Tl R Sl
- e i i ab oy "‘;;'V'—v\ s Ate di

''''''' s A8 a dun e o 0o a0 o0]
39
0 256
Q
a b
17) S
364
:l r
& 18}
-+
4} *
100 1000 10000 N
a
2‘0[+
; .
E?OP : . $
« r : 3
of hoo b % 2 i
g +
.:z() > ‘*
i A . 4
100 1000 10000
N
b

Exhibit 2-8: BestFit, u = 1

The obvious question is whether the bins are distributed by item classes and by gap ranges
as they are for First Fit. Preliminary experiments measuring f, the fraction of k-item bing in a
pactng, suggest behavior aimost identical to that displayed for First Fit (in Graph 2-6). The

only significant difference discovered so tar is that when u is above 0.9, Best Fit tends to give a

slightly higher fraction of 1-item bins and slightly fower fractions of 2.item and 3-item bins
than First Fit.

1:-
w._.
-.:\
RS
3¢

4

b3

o 2 T YN YW
f L
. ‘M‘-‘.‘.'.‘.‘.p‘l_‘:

The arguments for nonmonotonic behavior in First Fit can be adapted to Best Fit. Showing
that e (a lower bound on the gap in 2.item bins) is bounded away from zero seems even more
diflicult in this case, however, since Best Fit finds pairings that minimize this gap. Complete
analytical characterization of online packings remains a formidable open probiem.

AT

4

v Mﬂb&mwmmmmi

o

LY
et 4

\. M aht adih-alih ohe o dut ot o ad s Anh oAlait Bul g et alic it ahd AAA Sad S A St ind Sl Aot okl Ml odh Sad saf nalae aderade e B Sis Sun Sed Sub el An A A o -;-v,'-rt
N
D
(@
>
N 40
*.‘:
wy . 2.0, . zso(
s L § N = 16000 .
= 2 FF - = .
- Bl = - § 200 ;!
"-‘ : : “ : 3
:' ; H . M
N g . : 150 .t
H - P § l i
! - T P
, ' J,L - : ! : ;
-~ b . H s : . 100 + FF ! ! \
o |t o - BF '
- N) .
-, '2l . . : 50 ! .
f, i . . . L]
a ; . N f ? 1
> * * ’
'~ " 956 1600 76000 o—% . s s 15
! r: a b
N Exhibit 2-9: Comparing Best Fit to First Fit
s
bt
- 2.5. First Fit Decreasing
, The First Fit Decreasing algorithm sorts the items by decreasing weight before applying First
{ Fit to the list. Prompted by early simulation results of Bentley and Faust[1], Leuker
< (14] showed that AFFD(L,) = © (n**) when u = .
T
_::f Exhibit 2-10 depicts empty space as a function of n for five values of u. Each panel of Graph
=3 2-10-a presents empty space for 25 trials at each sample point; for comparison of scales, a
> horizontal line in each panel is drawn at one bin. In Graph 2.10-b, each curve presents mean
W
: values for the corresponding panel of Graph 2-10-a. Note that the n values double as they
R -
increase and that the abscissa is on a logarithmic scale.
P
- The most striking observation, from the bottom two panels of 2-10-a, is that empty space
.{ does not appear grow in n when v is small. The conjecture that empty space is constant in n
X 2’. when u < 0.5 was first made in [2] and subsequently proved in [3]. Subsection 2.5.1 presents
o a closer look at the packings when v is less than 0.5.
. @
‘ .
"t'. The presence of outliers - which indicate very bad packings - when u is large (at 0.7 and
o 0.8) and n is small (less than 1000) is also of interest. Exhibit 2-11 gives another view of the
N
o outtiers. Graph 2-11-a presents empty space as a function of u for three fixed values of n (as

before, note the differences in scale among the panels). The bottom two graphs present mean

empty space for the corresponding panels above.

" - o -
T AL A . - 3 L.‘Ll‘.L’L

T8 P N P A M M Wy B P A Y R, g g .
o f o o L4 " e 4 % | . R, (LA il [] L) ’ [Pot
. W !, 520, kN 35 i ' LN AN) eyt ‘5.‘(":’»"" Y 0!,1,‘”4"‘;' . DN S) "‘,“"'.!’:‘ i.",

P RCRS D B S I

e wgwRTTawywy

ISR At B S At s o A Ak b A R0 Al et alatuliadade o nar diasden aoo dag o0 Loy o0 A Snn Bk oo g Wp—v""‘.""‘“'-“"""“w“v‘“f“

u} T |
| LN) =_ -i'
. g s 181
Jpgpg gt il |
0 |
i— |
’-7 -i
|) I
u-’l =;-.!!!
xl—j——‘——'—-i—i—l———
1'!. =
0f «d .
i _! -l'
<’ s:-sg.g!gs 34 ':,
u..l.—‘—;:—.——-ﬁ—g—!-—;.—‘—'
:!El-' e 8 D
J3§§;=§'= 2+ crar |
0 . . e -. a6
E|§':E:.::; 1 ..::.:'..:
’{?' TIi D forIiz| |tteritiiioa
= L i§ticizigil, 5
R EE 2 000 1600 128000
o
1w % & & - 3 2 = - o s
IHEEEE R R b
--:..:;:5:,
I I
IR R
0
2% 2 16000 1800

Exhibit 2-10: First Fit Decreasing

When u nears 1 (the panels on the right), a number of outliers appear and empty space
suddenly displays a large variance as well as a rapid increase in the mean. As n increases,
this critical region {where the bad packings occur) appears to shift to the right. This behavior
is also observed in Graph 2-10-a: the top panel suggests that u = 0.8 is no longer in the critical
region when n = 2000, since outliers are no longer seen.

The left panels of Exhibit 2-11 suggest that behavior at u < 0.5 is quite different from that at
u > 0.5. In fact, the bottom left graph suggests that empty space grows linearly in v when u is

AoAnh Sl Bad Biad Siad Aud Sad Bot Lol Sab £.U g0d Aod 80t St e 4 Aad 4os Aok 4 Lot Jia® Jintt Aat Ank i ot b fat Sas b Aok et Sab eb Saa 40t Aed Ses Suh Sos £y Aa Bie Ak Ak Bud oy 4 N B8 sk g

»

::‘ 42

<

. & — - - — 300
X a3 -
. :-. Ne -:_m
oA : | sz
- . | . 128000 I

"-‘ ..'- ! , ;E!hlw
.. - . - pu

T ER

[LRI
S
}

. _ x -
- izt i -1 %.w
e l—-g = HE HIE B ! -a-%s
glagse” _zztid
-« 0- - 8 & - - w® ® - o ®© o ° ® _o
- 'z -_
- =833 ! 2T
- 8 = Ne t
2 - e e 5 - . - = a2z -2
3 repzjiaaziicom . iIiig
:_ ;;::!.:5- { ;» --.'.. ;
.‘_‘ 0—4.!=... ! 1.---;2:-"-‘_0
:;: 3 s [} [9 1
a
=7
N
- .
::'. 3 .'-1m
‘..I .
') 3~ .
; Nw
o9 ‘ © 128000 |
o 7~ . a | C16000 | I -%
. s © 2000 e o

rJ
MAaR
[V
t 1
‘.n\\
va
® u
L]
[
L |
[}
‘.
- .
o

A 3 s s ' ’ 1
-3

2 b

- Exhibit 2-11: First Fit Decreasing

7

L

between (.5 and the critical region. Subsection 2.5.2 examines the critical region and gives a

LY

partial characterization of the causes of bad packings; behavior when u is below the critical

aon o«

A IR)

region but above 0.5 is also explored.

.

»

"..A .(l

'iﬁxpﬁﬁ

Y Y5

‘. L
-
o

i'-'d'v').

'}‘I;%:,.-. [.{;" 'P.*".‘ ar'. -.:#-_' -"‘\' .-' -.' q.‘ ~' X ¢ xﬂ oY .. ") A W h B " y - ¢ e s O -
hd d " » $NN, 2 i LHES ‘..l‘"l.? o0.% I.“.".v' l‘,.!".n"‘ ‘l"‘n‘,'ql".“‘l‘ni’!vﬁi.."l?i.’,p%‘.tml“_n':i "tr‘l""ﬁ,"

's Y, §Y, AL

L TET e T TE TR e T W W N N A N O N N W WU N Y Y T Y T Y Y Y T T TV rprrrorer ey v
-)

s
N

Can -
LA

-
- 43
.-"::.
RN
S 2.5.1. uBelow 0.5
L
N The proot {in {3]) that empty space is constant in n when u < 0.5 gives an upper bound of at
i least 10° bins; Floyd and Karp {7] recently improved this bound to 10 bins. using a slightly
2
:::-: different mode! of input probabilites. The bottom panel of Graph 2-10-a suggests that the
- mean 1s in fact nearer to 0.7. Moreaver, empty space s less than 1 over 75% of the time, in
V) which case the packing must be optimal (because the optimal packing cannot use fewer bins
RIS , .
Ot ard still contain the entire weight hist). This section examines behavior at u 0.5 more closely.
o
"*:: Since the mimimum number of bins used is fZ(Lu,n)]. there must be at least
- fZ(Lu n)} - Z(L_,) empty space in even an optimal packing: the last bin in the packing
Z--. v represents a sort of "spillover” bin, whose gap is more an artifact of the weight sum than of
. o the packing quality. Let the partial empty space of a packing refer to the empty space in all
- but the last bin.
bt
o 1.0
£
) H :
" T 8 .
.- s ’
; 3
(» CL
[/)_ E .
S g .
W 4
g .
-',,.J .
o i
e '- 2%
:
S 0 2z r]]] 1.0
e Empty Space in Other Bins
LN
-.‘,'\4
_,«. Exhibit 2-12: Last Bin vs Partial Empty Space
®
-‘,:_:j' Exhibit 2-12 plots empty space in the last bin against empty space in all the other bins
~T (partial empty space), for 25 trials at the sample point n = 128000, v = 0.5. Empty space in all
SRS
._' the other bins (approximately 32000 of them at this sample point) remains between 0.17 and
«."::: 0.18, while empty space in the last bin ranges between 0 and 1. Total empty space (the sum
>)
k of these two quantities at each trial) is therefare almost completely dominated by variation in
-:;-:: the last bin.
. V.
N
3 o
A ".
. :...
-\{'
04
N :.:
.
B A AT AT T AT T AT 6T AT S AT A oy Y T r T N - n
iy LV A A", YN }\!‘(\1 'y X g % v ; AT A et At a A~
s W o.l'.,-\ﬁ AL A‘:; W “l'.,‘a'.da"‘g'i‘ PO Jo Xl Mg M X = L X M i 0"2“',’".2"‘ '.J.‘::"'-:"d.’.t ‘ti".i .:" v:.":.'f' Y N A At &m’

l.l »

¥ e
-

e r

L

[R i s R A R

-

s Y 3B

P
-

L Sl Bl B Mk dad lint Bad b Sad i St A A0 S drta e 48 A ot o' & At Ale abd alldCalbh ol it aldC of WWWWTWWW“

44

Graph 2-13-a compares total 2mpty space (left panels) to partial empty space (right panels)
for sample points at n = 128000, 0.1 < u <.5. Note the dramatic increase in precision: empty
space has an observed range of approximately 1 bin, while partial empty space is usually less
than =0.001 bin from its mean The growth of partial empty space in u was completely

obscured by the last bin.

Graph 2-13-b shows partial empty space for n = 128000 and v in increments of .01. Graph
2-13-¢c shows the same information on a log/log scale, with a linear regression line
superimposed. Partial empty space is nearly linear on this scale, except for an increase at the
high end. The fit has slope of 2.11, indicating that partial empty space grows approximately as
u . (Fits at smaller n are consistent with this). The residuals from this fit provide an
interesting pattern: in Graph 2-13-d, peaks appear at v = 1/2, 1/3, .14, ..., suggesting that a
cyclic component exists. Graph 2-13-e shows residuals from a fit to a degree-3 polynomial.

Similar peaks appear with this model and in fits with as high as degree-5 polynomials.

An obvious guestion is whether this cyclic behavior is somehow an artifact of the simulation.
When n is very large and u very small, the average difference between successive weights is
small, as are the gaps in the bins: perhaps errors due to machine precision are propagated in
some fashion to cause this pattern. Evidence exists t0 suggests that the cyclicity is not an
artifact of machine precision or implementation. First, the smallest item weight ever
generated has expected size about one millionth of a bin (this occurs when n = 128000 and
v =0.1), and partial empty space is near 0.005, giving an average gap of one millionth of a bin.
The weights are represented by 30-bit integers, which can represent one billionth of a bin, so
machine precision is not overwhelmed. Second, the cyclic behavior is observed at smaller n,
which would presumably not be the case if machine precision were the problem. Third, the
results were replicated on a secondary simulation environment, with differences in random
number generator (linear congruential vs. cyclic feedback), machine precision (30-bit
integers to represent the weights vs 16-bit reals), implementation, programmer, and
programming language. The only differences in partial empty space between the two are
predicted by analysis of the differences in precision between the two systems.

It is possible that the cyclicity in the residuals can be explained by an argument similar to
that for the nonmonotonic behavior of First Fit: that is, the observed behavior is a result of the
interaction between the fraction of k-item bins and the gaps in k-item bins. Analysis of FFD
packings suggests that k-item bins have a great deal of structure.

PR - .," ‘T ." $>' T ity % N NI e N e En s * - b
oy 2okl I) Do, ’ t.ﬁio e O -’!’.’5‘. nl. \l X .l‘n, ARttt t..‘ ‘..0,‘:., l."l'l '. o .“' o

d

Exhibit 2-13: Partial Empty Space

(A)
.r‘.\l';:l'

¢

A
R

Eka

il AT AT A A AL RO A Al Sl abgs oA arg alih aibd-and 2AAaaS SASaiaesolite cuas e sy aan a0, o T v it At B S Aol Sah mn ol o Aok 4y S) o a4 |
45
H - 1)
l-‘l_ - - - - : - :\ i -rol
i -2z & - | - !
S S it - '
|; -7 3= -~ - - umoi - |
= : o - 2 - - -
-~ Z - S =z - -
NEES . Lo
. - [~ =02
1= - - z - = &
-sIz ol ol
PRI Y -
- - - - - i -
I|- - o - = - =‘lm - I
= - = = - = -
|12 = _ - = F = « - =
JEzTiEes-T L
t=- - .z _ - -} = Fo2
) - : - - - - s
- :(N- 87
- : E - : : - - i{m . - -
,: T - - E f - - - = .
0~ - " - N - 0
Y T T T T —T
By 3 K a 1 3 K]
2
tf g
a2 -' 1
‘ J
l. |
° . 7’»
=t o
"
* T
‘. -o"...
o®
a®
] --.-"'..
1 2 3 .4 .S -2.s -2.0 -1.§ -1.0 .S
b c
e
) l
| o] i
o b
L} p
3 : .

WUy VI wWo WU W T YW w
Oy b d e i ""‘i"""ﬁ"'l"v"‘"‘"l’“'H'i"r"‘""“'“"-K'N‘Y“."\"‘-"Y'V"i"“\‘Y‘I'Y'I'YVTWH'T'Y'V*"Y‘W

PP

d AXNS

7

e
et

LA
&

7
-
4

'.

-3

)
4 "1

v o
)

i

;’.”_{.f‘

«,
FlPd

-

Figure a: Items with weight between 1.2 and 1/2 have been

.

. packed. The iterns are stacked two-to-a-bin.

K LN
)
5‘1:.
'
Figure b: items with weight between 1/3 and 1/4 have been
\‘\ aaded to the packing. Most of these items are stacked three-
a l A

X, to-a-bin in region B. Some items backlill onto region a. The
vertical lines mark the edges of regions a and 8.

some backfill onto regions a and B.

(o Figure c: /tems with weight betwen 1/4 and 1/5 have been
: - added. Most of these items are stacked four-to-a-bin, but
a

ROx

¥

4 . L“ \.“\{x

=

]
0
“

R
LR N

e

’
',
v

Figure d: A/l the items have been packed.

R - =
s s
’- .-.'l:"-".f‘ .

A

Exhibit 2-14: FFD Packings

S T AT A A " LAl AX A AN AT A T v X ") -) e o :
DO el .I A (] t P\) 2.0 W {\ G L) 6) \ AD - - . .
N A A R R e R e e o A I O S O OO A AN DR

j~ 47

%
o Exhibit 2-14 presents “snapshots’™ of an FFD packing of weights drawn from [0. 0.5]. Each
item is represented by a very narrow white vertical bar with its top marked in black. There are
" so many ttems that the black tops appear to form a continuous line. The first (largest) item
.-._ goes into the first bin, and so must the second. since the weights are near 0.5, The third and
’\ fourth items must go into the sacond bin. This packing of items 2-to-a-bin continuas until all
_ items with weight greater than 1/3 have been packed (Figure a). Cull the bins packed up to
' this point Z-bins (not 2-item bins. since they will eventually contain more items). Once the
: ::» items are of size less than 1/3, they may be packed 3-to-a-bin (call these the 3-bins). Some of
-::E these items. howevear. are small enough to “‘backfill"” the 2.bins. This process of backfilling
; a~d packing 3-to-a-bin continues until items with weight greater than 1/4 have been packed
™ (Figure b). Continuing. items either backfill in the 2-bins or the 3-bins, or are packed 4-to-a-
. bin in new bins. This pattern continues until all items are packed. Observation of this
» structure in FFD packings was central to our proof of constant empty space in [3]. More
‘lj‘:L'- importantly, “movies’ of the packings, obtained from simple algorithm animation technigues,
: “ were directly responsible for suggesting the proof technique.

2.5.2. uabove 0.5
:: This subsection examines FFD packings for u >0.5. Empty space is measured here rather
,_ than partial empty space, since the last bin does not dominate the measurements. We first
'_P study the critical region, where outliers in empty space appear and mean empty space
4‘ increases rapidly as v nears 1.

,~'-‘
-_’ Recall from Exhibit 2- 10 that the left side of the critical region appears to shift to the right at
".::ﬁ a rate at most logarithmic in n. 1t is not clear how to characterize the region by experimental
! methods; is likely, for example, that quantities such as the “edge of the region” and the
_ “fraction of outliers” would be artifacts more of sample size and data analysis tools than of
\ e underlying phenomena. instead of measuring properties of the critical region, this section
,f examines properties of the weight list that are correlated with bad packings.

;_‘ Exhibit 2-15 presents, for n = 2000 and .84 Su <1, the distribution of empty space for 25
. trials at each sample point. A panel corresponds to at single sample point; in each, the
'j:' measurements of empty space for the 25 trials are piotted against their ranks. In the top left
. ;: and center panels, corresponding to v =0.84 and 0.86 (outside the critical region), empty
*.'I' space is fairly uniformly distributed between [0.8,2] and [1.2], respectively. At u =0.88 the
- distribution smooth except for the last 3 points, which are sharply higher. Atu = .90 a break is
{ ‘:'

"
\E
(%)

&
..

- T T T iRy 1 'p"\-" e A A AN A o i A R L T Y AR CRCIA P CRRuN oy
i. l.l D‘ﬁ " l‘! ulnl.olo o" I. ||a" l. .)‘» X " o LIS (i.. “.,. .!‘I l.-'.‘\'-.l‘- 5 t‘.'l’..h'a.-'t"-.i’ h. SO S S L N LS Al (L) *

.
a0
TR
.
e % 0 Y

.
2

R 4

e

«“x

1
L]

L

4 5
WS

- &
.

AR

]
LI N
e
.

\h-
PRl
B
Lok
-‘-‘I.l‘l

P
[]

T

. ’,. .(,.':‘ Y

s
'
SO
v
S

e
“

RS
I
AR

Lo I°S

“oN
W Lo » «

.

s

N®
v

-
a

&N

»

Y

LY G
4 (d

48
2 4 2 - w"‘ 16
84 o .86 - 88
-t o
- ,0” 10
o o
yp* -t
1 ™ o””
+ Oy aaansasasthsiil
1 0
0 10 20 0 10 20 0 10 20
12
10} .30 20092 T 20l 24
5 * v’ *
. -
o 10 o 10 '
’00 Y ’*
“w -
W &
0 Q,..«-H“"""*+ L aansas
0 10 20 10 20 0 10 20
.96 |
30 +| 4o} 98 T a0 t.0
. *
20 o “ *
10 WRatnd 20 Rat 20 wo’
* + -
ll¢m W# M
0 A’“ 0 ¢HM 0 *
0 10 20 0 10 2y 0 10 20

Exhibit 2-15: Distribution of Empty Space

seen at the l6th-largest point. At higher values of v an abrupt break is no longer seen.
Theoretical characterization of the distribution of empty space for fixed n and v is an open
problem. Although the sample size is small, it appears that the distribution changes

significantly over the critical region.

A new measure gives more insight into behavior in the critical region. Call items with weight
greater than 0.5 the big items in an input list. The expected number of big items is n(u~0.5)/u;
at n =2000, v =08, for example, 2000(0.3/0.8) =750 of the items in the weight list are
expected to be big items.

Graph 2-16-a presents the results of 1000 trials at n = 2000, with u generated uniformly at
random from the intervai [0.82, 0.88]. The y-coordinate of each point corresponds to empty

space for that tral; the x-coordinate gives the difference § between the number of big items in

......

eV N A AT NS

KT S SEN N 7
O I P, y
W AY. A W 4V, u‘.-a‘;!»‘,i- '

.&%.'.'-'!l;

A AT el el A ek At Bad B i Sl il S dr i AR A A e g0 st gt pAd ale aih AEA olh- alAiatd- Sad naiobn s by ey e g rvvrﬂm'm""“w
.
‘|

AR

I3

Y 3 B
AN '.'_'a'}-

XY I

2
Gt

LARTCARS

e

RN
S
MW

- ..;r".“" [oy
.t

. Lt

y—v—— Nt Sae —dad
b aP g SOR DA s LSt St aha adh el Al ahd- ke adlaciafl- iRl i auin Sar ety dine dase Rt e’ ittt et e it e et S dagtl Aot San gt e et dah St g Aail b et ek Ml Adh el Aotk

49

0 LT NG LTI 2

Exhibit 2-16: Bad Packings and 8

T e e e e e e
oD e e S e

the list and its expected value for the corresponding u. For example, a point with x-caordinate
20 might corresponds to a trial with 2000 items generated uniformly from the range (0, .825).
The expected number of big items at this sample point is 2000(.825—.5)/.825 ~ 788, but the list
actually generated at that trial had 808 big items, so we have § = 808-788 = 20. In Graph
2.16-b, § is plotted against u for each of the 1000 trials. The relatively bad packings - the 40
trials having empty space between 3 and 50 - are highlighted in the graph. (All other
packings had fewer than 3 bins of empty space.)

Lists with positive § (the topheavy weight lists) tend to give bad packings. From Graph
2.16-a it appears that very topheavy lists tend to give very bad packings. On the other hand,
not all topheavy lists give bad packings; from Graph 2-16-b it appears that FFD is more
sensitive to topheavy lists at high u, since bad packings are generally concentrated in the

upper right corner of the graph.

Exhibit 2-17 supports this last observation. Graph 2-17-a plots empty space against the
number of big items for 25 trials at the sample point n = 2000, v = 1. The expected number of
big items at this sample point is 1000. Empty space increases with the number of big items in
the weight list; that is, topheavy lists tend to give bad packings. In contrast, Graph 2-17-b
depicts empty space versus the number of big items at n = 2000, v = 0.8, which is well below
the critical region. Qutside the critical region, empty space does not appear to grow with the

number of big items.

~ o o~ . . e
AN A el \ n
Al g a x T

" _.-‘-f‘ R R R
NGRS A L w0 e SO ER RN, e R S S W

il _Bialk Sl % "W"m“m"“"'m'“wmmmm

50
[] 25 " + 4 8 2.0 d
8 8 .
Q * m
: * > + * *
2‘20 [. * 31 6 + . - + o+
g + S + +
+
m 15 d + + + +
+ +
R 1.2 . . .
10’. +¢' + *{- «
. +
.t 0.8} .
5t - .
N . . N s 0.4 d -
960 1000 1040 700 750 . 800
Number of Big Items Number of Big Items
aus=1 b:v =038

Exhibit 2-17: Empty Space vs. Big items

These and similar graphs suggest that as v nears 1| FFD becomes increasingly sensitive to
the number of big items in the list. If the conjecture were true, it would explain why the critical
region appears to shift to the right at high n. Let u represent the expected number of big
items in a list. By the central limit theorem, as n grows the probability of generating a list with
more than du big items decreases exponentially as n grows. On the other hand, at fixed n the
probability of generating a topheavy list increases linearly in u, since the range of weights
increases. At high n and small u, therefore, the probability of getting a bad list is too fow for
outliers to be seen in 25 trials. Since the probability in-creases in u the boundary of the critical
region would appear to shift to the right. While this observation gives a first cut at
characterizing packings in the critical region, it is clearly not compiete. Why, tor exampie, do
some topheavy lists cause bad packings and others do not? Further simulation might reveal

more.

Finally, consider the packings in the weil-behaved area with u below the critical region but
above 0.5. The analytical bound of O(n'"
any u (see[14]). In addition, it can be shown (see(3]) that E[AFFD(L,) = Q') tor
0.5 < u < 1. Finding the functions of v implicit in these order-of-magnitude bounds is an open

) for empty space when u =1 can be extended to

problem,

%

!

o : 51

L

'-j:: Recall Exhubit 2-11, which depicts growth in u for three values of n: it appears from the
E:‘ bottom left graph that mean empty space grows linearly with u in this range. Linear
I‘" regression fits to the simulation measurements n this region indicate that empty space 1s
" approximately described by the function E[AFFD(LM)] =491 =0.5). As with regression

fits when _ 1s below 0.5. a cyclic component is once again seen in the residuals.

;i —~

. A S
k}' , e
.8 A, Yy Yy e N Ty

2.6. Best Fit Decreasing
:f : The Best Fit Decreasing aigorithm, like FFO and unlike BF and FF. sorts the item list before 1:
.}'-. packing. B8FD and FFD are compared in this section. Although the expected performance of |
,,. FFD has been characterized to some extent for all values of u. theoretical analysis of BFD is
- much less complete.
~
- Simulations comparing BFD and FFD on identical weight lists at various sample points
: :":.'.:j suggest that the two algorithms give almost identical performance for this input model. For
,-. example, in 25 trials each at the sample points given by u = 1, n = 125,250, ...8000, comprising
175 measurements, empty space in corresponding packings differed in only one trial (at
n = 8000), when FFD used 2 more bins than BFD. Note that bin counts differ if and only if
,-‘;;‘- empty space differs, since the weight lists are identical at each trial. This close
(- correspondence holds for other values of v as well: experiments at v = 0.8 (and the same n
values) produced one trial where bin counts differed by 1, and trials at u = 0.5 produced no
‘::jt differences. Similar experiments with n fixed at 8000 and v = 0.2, 0.4, 0.6, 0.8 produced no
1\ differences in bin count.
B
.-;;'.' It is not necessarily the case that BFD and FFD give identical packings. Whether the
~_~ packings are identical can be resolved to some extent by measuring partial empty space,
:j:: which corresponds to empty space in all but the last bin. if the packings are identical, then
5. partial empty space will be equal for the two. The converse is not necessarily true: it is
:::f: possible that the packings be different but partial empty space is the same. Preliminary
~'_':.::1 experiments at u=1 and varying n suggest that, on average, partial empty space differs
o between the two rules less than 1/3 of the time. Limited experiments at n =800 give
j differences 84% of the time at u =0.8 and 65% of the time at u =0.4.
b
".: Consider the structure of BFD packings as compared to the pictures of FFD packings in
e Exhibit 2-14. On a perfect list (with items evenly distributed between 0 and v), BFD and FFD
- must produce identical packings because the first bin into which an item fits is also the best.
S5
L
o
_Qd
5
B A T K B N SN AR

52

Suppose a random list with v = 0.5 is to be packed. Certainly the items with weight in the

A)

range {173, 1/2] would be packed identicalty by BFD and FFD. In the next packing stage it is

reyy

% possible that an item with weight from (174, 1/3] has its "best” fitin a 3-Lin, but its “first” fitin
‘ a 2-bin, but this would only result in two items being swapped in the two bins, which would not
: affect partial empty space since the weight sum and the bin count are identical. By this
' argument it is surprising that partial empty space is observed to ditter so often for u less than

1. Further experiments with more detailed measures could give more information about

s s 1, X

packing properties of the two rules.

~

2.7. Future Work

The results in this chapter have extended current understanding of the expected-case
behavior of the four bin packing heuristics. Not only do the measurements allow a precise
description of mean empty space as a function of n and u, but examination of properties of

‘ the packings gives deeper insight and new arguments to explain observed behavior.

An obvious next step is to develop theoretical characterizations of the heuristics, perhaps
by formalizing some of the arguments contained here. It is unlikely that theoretical

characterization as precise as these measurements will be obtained by current technigues.

P

The experimental work could be extended in a number of ways. First, it would be interesting

to measure packings for nonuniform distributions on weights. Also, many other heuristics are

-l St s Tl o g N

worthy of consideration: Coffman, Garey, and Johnson [5], for example, survey resuits for
{ over 20 packing rules. Little is known about the expected performance of most of these rules.

- e e F e e s e

R, YOy > > Oy

B 3 T o m ORI R o o ey . 0N) UARRLE
" - . n.l‘n.n.l’:"tﬂ"'o (l'.‘n (L L, ':‘,O.o!i‘-. 4 'l.» » Wy " “ol,l’!- l""l"m":f‘.e“" "‘»‘!h"‘»"'xiqf‘ﬂ..ﬂh -""""“:““"‘-" ‘f'h" ‘s‘.‘" |

% | | 55

Chapter 3

Greedy Matching In One Dimension
: 3.1. Introduction

This chapter studies a restricticn of the following problem: Given .V points within the d-

NS dimensional unit hypercube, what is the pairwise matching of the points that minimizes the
:':‘_1: sum of the Euclidean distances between matched pairs? The planar version of this problem
:::3: arises, for example, in scheduling mechanical plotters: the input is a connected graph in the
® plane and the plotter must draw lines at all edges, minimizing the amount of time that is

wasted while the plotter moves with pen up. Wasted pen movement can be eliminated if an

Eulerian cycle exists in the graph. There is no Eulerian cycle if and only if the graph has an

A b
PRI
b e

[

i even number N > 2 of vertices of odd degree; in that case the minimum matching of those
{ vertices can be added to the edge set to obtain the tour with minimum wasted movement.
o=
:,,: The matching problem for points uniform on the unit square has been studied extensively.
:-}3 Edmonds [3] showed that a minimal matching in a general graph of N vertices can be found in
:) O(N’) time, but this can be too expensive for plotting applications because N is often very
: large, say, in the thousands. Fast approximation algorithms are therefore of interest; Avis
K :\ [1] reviews work in this area.
M
‘ * An obvious approximation algorithm for minimum matching is the “Greedy' one: keep
::f-'j removing the pair of vertices with minimum edge cost until the matching is complete. The
. straightforward implementation takes O(M’) time; Manacher and Zobrist [5] describe a
S version that from experimental results appears to run in O(N) expected time when the points
.; are distributed uniformly in the unit square.
i
Let EH(N) denote the edge cost of the matching produced by heuristic H; this is the sum of
I:jfl the weights of edges in the matching. (The subscript is dropped in the following when
;: reference to the Greedy Heuristic is clear from the context.)
\j:
‘:;
|
) (]
D e

0 00 VN0 Wy Tie he COA LY Ty ("
.? W ,‘.Q“(Q.‘ h'e‘l'*u"".:'. l‘..’:..'t"»“v '7:;a"-,.~"l:”'.' !‘.'h""”ﬂ‘.'gh\i!'nt‘n‘qv_‘hll ""'-!"."3%"&’ I Wil

T _ " add * ol B & L, " . S RLEETNTT R TV T L e T e T T MU AL TR R T T T W

VA

3

< - 56

N

.,: Reingold and Tarjan [6] showed that for any graph that obeys the triangle inequality. the
:;Zx worst-case ratio £ . (N)/Eq - (N) is bounded above by (4/3)\'9 ¥, or about (471N ¥,
k Avis. Davis and Steele [2] showed that when the points are umifarmly distributed within the
::;'.f unit d-cube (for d > 1), the cost of the Greedy matching asymptotically approaches ch(d ta

::'.? which s within a constant factor of the optimai matching.

.-

‘D We examine here the expected performance of the Greedy heuristic in one dimension: that
;f":.: is, the points are drawn independently from the uniform distribution on [0.1). Certainly
*:3 Greedy is a poor choice for this problem, since the optimal matching can be found quickly by
Y :::f; pairing the leftmost point with the second leftmost, the third with the fourth, and so on, giving
N an expected matching cost of approximately 1/2. Although Greedy should not be
e implemented expressly for one-dimensional matching, its expected-case behavior is of
k interest. First, points in higher-dimensional problems might happen to lie on a straight line. It
r: is useful to know how Greedy performs in this potentially frequent case. The second reason is

o purely theoretical: although Avis, Davis and Steele have characterized the expected edge cost
.» in d-space for d > 1, the case d = 1 remains open. Finally, the expected running time of the
~ Greedy algorithm described below, a modification of the Manacher and Zobrist algorithm for
::.' planar points, is an open problem: the one-dimensional case can give insight into behavior at
(‘ i higher dimensions.

Y". X,
‘ viwlel
LR A LS
+ TR T R]
» vy e

3.2. The Study

y

Exhibit 3-1 presents a description of the Greedy algorithm used as the simulation model.

; 'f The algorithm uses an array A containing the N points from the interval [0, 1]; the points are
o . .
S assumed to be presorted in increasing order. Greedy makes repeated passes through the
Pl
SN point set, at each pass locating the smallest gap between adjacent points, accumulating edge
' 5 cost, and removing the pair from the point set. This algorithm runs in time quadratic in N.
f\-_‘: The simulation program is more efficient than the straightforward implementation. The
-
.~ program description is given in Exhibit 3-2; this is a modification of an implementation
- "'. proposed by Manacher and Zobrist [5] for the two-dimensional matching problem. The
: :"_{ simulation program also makes repeated passes through the point set, but each pass removes
\ B
‘ :-2'}' many points from the set rather than a single pair. Two points comprise a nearest neighbor
:;j' pair if each is the nearest neighbor of the other; the distance between them is therefore a
o . .
ok local minimum, and would eventually be removed by Greedy. Rather than removing the pair
l.‘.-‘
“~
! -,‘_-
‘P
E..r.
b
04
C]

L) . M TSR T m R A Bt m wo e m v e, e, w. e e o - - - - -] P . . .
L TN R N g T S Y R I I L e e’ OO Wl B O DO IS TN T
! i 200 X '\""{ !'a‘ 'A'?".‘" o Y% .39.. " h ML ’ -!#\ "v'!“,’n‘.‘i !'n‘. ¥ .‘n':h‘a.‘f ';‘3% t'a‘!h.:‘h‘.o"‘n‘?«'i“’f“?h‘:""""‘".‘j' ".rx‘?t.‘f-s'?n‘m'?h".'.:6'fn'

I

Pgiﬁ;bﬁplfo.'&

LSRR
AT RPN

2

Greedy (N}
Input: Array X of points, X[1] <= X[2] . . . X[N]
Output: edgecost

while N > 0 do
mingap = MaxReal;
for v = 2 ta N do Find smaliest gap
gap = X[{1] - X[1-1]
if (gap < mingap) then
mingap = gap

index =1

edgecost = edgecost + mingap Accumulate costs.

for 1 := 1ndex~1 to N do Remove matched points.
X(i-2] = X[1i]

N=N-2

Exhibit 3-1: Greedy Aigorithm: Quadratic Impiementation

with minimum gap at each pass, the program removes a// pairs of points with locally minimum
distances. Since removing points cannot produce smaller gaps, Program 3-2 correctly

implements the Greedy heuristic.

Two measures of the Greedy algorithm are of interest. The edge cost corresponds to the
sum of the lengths of the edges formed in the Greedy matching. Let £(V) denote the
expected edge cost for V points drawn uniformly and independently from the interval (0, 1).
The time required to compute the matching at each iteration of the while loop is proportional
to the number of points encountered (assuming a preprocessing step to sort the points). The
computation cost is therefore proportional to the sum, over all iterations of the while loop, of
the number of points remaining at each iteration; iet C(N) denote expected computation cost.

The following section presents simulation results for the Greedy algorithm. The primary
simulations were performed on a VAX-11/750' using 32 bit integers and 64 bit (55 bit
mantissa) double precision reals. For program efficiency, integer computation was used
throughout; that is, points were drawn from the integer range {0, 2%] and resuits were scaled

to the real range [0,1] for output only.

The only parameter to the simulation is N, the number of input points. Sample points for the

'VAX is a trademark of Digital Equipment Corporation.

A% 58
[l
N
N Areedy (N)
v Input: Array Y aof peaints, X[1] <= x[2) . . .X[N)
G Output: =1gecust
.
- while N > 0 do
) m = MaxReal Int alize 4
. ros X221 - xX[1]
. X[N+1] = Ma«Real Set ur sentinel.
‘N for 1 = 2 to N do
N 1T = m
K-, m=r
v ro= X[i+1] - X[1i] Find iocal minima.
. if (1 > m) and (r >= m) then
- X{i-1] = x[i] = NIL
. edgecost = edgecost+m Accumulate
7 edge costs.
v j =1 Remove matched pairs.
¢ for i := 1 to N do
- it X[i] is not NIL then
- X(31 = x(i): j =3+ 1
N=3-1
end
{ Exhibit 3-2: The Simulation Program
:j: study were taken at powers of two from 16 = 2* to 262144 = 2. In general, 25 trials were
o performed at each sample point. Given N, the simulation program generated N points by the
‘ cyclic feedback method described by Knuth [4] (Algorithm A, Section 3.2.2). The numbers

: were then quicksorted and presented to the matching routine. Some experiments were
' replicated (for .V < 4000) in Basic on a TRS-80 Model 11l computer, using the system random
nuLmber generator and 32-bit reals.

- 3.3. Experimental Results
':: Some upper bounds are known for the edge cost E(N) of a Greedy Matching. Reingold and
. Tarjan's[6] worst-case bound holds in the one-dimensional case, giving
- 0.588 ; ;
- EGr my(N)/Eopﬁ M(N) < 4/3N (recall that EOpﬁmll(N) is approximately 1/2 for linear
N matching). Moreover, it is easy to show that £, m(N): O(log N) when the points are placed
N Ny on a line (see [2]): when there are N points in the unit interval, the two nearest points must be
. at most 1/(N-1) apart. Removing these two gives k = N-2 points and the smallest edge
L7 distance is at most 1/(k—1). Therefore
.
Cd
L~
e
"‘
.

Y DI PRI . " ¥, . - P - -
s Y ’ s, be OO0 0 OGOO() ; *
R e AN A S A I CATR I S LS N DA DI TR N XA T BRSO SRS RN !l,',ia‘,P,'.l,‘:!,'r‘,*!}'..! GG

el hlind il el i il Sah Sl Aol dod ol Sl oA dan don Ad A d ok dos Aoy 4

59
;‘.\‘/:‘
F, (V< S — 1 — = O(log V).
e ::l\—l—-q

It 1s not xrown whether this upper bound is tight. By analogy with the results of Avis, Davis
and Steele (2] for higher dimenstons. it is natural to conjecture that the ratio of edge cost for
Greecy 15 wthin 2 constant factor of Optimal. This probtem was described by Mike Steele,
who had been trying to prove the constant bound. The initial goal of the simulation study was

to fing an empirical bound con the constant and sc to direct the thecrem-proving efforts.

Wy rrwewrwrerery

-Z-SP - -
" Ld -
A~ - = - 2
o - - Z : 2
L) - - h - - .
82.0f R
W . - z - : - z
- b - - . H [}
S R T -
8"5' . - - a 5 : ; s : f -
T S S
s - - - - o .
ol ¢t R B
SR S S SR
- [] 3 - -
| H H
ost : - °* -
0.0 e " . N .
8 64 512 4096 32768 262144
Py N
Z:LQOr .
2
8 1.80} -
3 .
e
S1.70} - -
8 -
3 1.60} R T .
E - =z : . .
- - ! -
Sisol - - T it b rdoe .
. . = v - =
1.40F _ . - b
1.30¢ -
1.20 . - . - —
8 64 512 40968 32768 265144
b

Exhibit 3-3: Performance of Greedy

3 AN
ERd
LR

x ®
@ 8]

. LI
A

>
AR
N -

T T O N T T T T 0

. 60
il:?: Graph 3-3 a shows why the bound was so difficult to prove: [{.V) increases with .\ rather
: than remaining constant, The graph depicts the results of 25 trials each for .\ set at powers of
:.j: 2 from 2' to 2% Since the x-scale is loganthmic and edge cost appears to grow linearly.
‘,:::, logarithmic growth in M is indicated. A linear least-square lit on this scale gives
- FIV) ~0.099l0g .\ + 0.8,

This implies that unlike higher-dimensional cases, the ratio of the Greedy matching to the

-C:f_ optimal matching is not bounded by a constant. Note that the coefficient is very small and
_"::j that £(.\) therefore grows very slowly in .V, Experiments over a smaller range of .V values may
not have permitted this observation.
. The computation cost of the efficient implementation is also of interest. Computation cost is
proportional to the total number of points examined in all passes through the pcint set. This
,._, number, divided by v, is displayed as a function of .V in Graph 3-3-b; the results suggest that
g asymptotically L{(V)~s1.52N.
‘.'::. Level
.‘.'. OH‘ingl e 280 08 o o o o © sc o ¢ e o o o o & o0 . 0
- Poins
(Find ¢ S0 e 6 6 o= o s - 8 ¢ oms ¢ omme o Sw s o 1
:: Remove . ¢« e o
‘23
1
'-\ Fiad . - e . . ° . . oamam— 2
[} ;:‘ Remove
L A, h
Find . C—— . rtt— b}
»:-" Remove o ..
" Find 4
":: Remove
'
® Exhibit 3-4: The Matching Algorithm
-~
:{t More detailed measurement of the matchings give more insight. Exhibit 2-4 shows the
Py
;. behavior of the shortcut algorithm on a small point set. Let a /evel correspond to one pass
7 .f_' through the point sets, equivaient to one iteration of the outer loop in Program 3-2. At level 0,
‘-.
j all the points are present. At each subsequent level, nearest neighbor pairs are removed and
' ",:" the level edge cost - the sum of the distances between paired points - is accumulated. This
-"-
N continues until some level where no points remain. Of course, different trials at the same
¢ sample point may not produce the same number of levels.
":_.
. \,','
“l
.
o
™

N D A AL I A X o P i T e M o W o o 2 o2 WP o B P e W (L L O TR O Tt AT NG
A Y A AN MDA AR N S WA AR S S SRS E In e MCr MM X ’3.1\ ."x..'c‘?h‘ ‘!*o‘..n?'a 939 Js.":ufa“!) .-“m",’.'

IR et e A it e aliradd afi 268 ot e gt a S L S E

T N T T T T e YR T Y T S T ey
61

14 1 2 14
13 2 7 10 13
12 2 4 3 13 12
11 1 2 11 17 9 11
10 1 12 17 10 1 10
9 1 119 11 5 2 9
8 1 J 10 9 1 1 8
7 1 13 18 14 2 7
6 2 8§ 15 10 3 6
5 1 4 12 9 1 5
4 3 13 17 5 4
3 17 10 2 3
2 5 1 2
I { i | | l |] 1] l | | 11

16 64 256 1024 4096 16384 65536 262144

Exhibit 3-5: Number of Levels

Exhibit 3-5 shows the number of levels encountered as in 25 trials at each V. Each table
entry gives the number of trials for which the corresponding .V value (columns) reached the
corresponding number of levels (rows). Zero entries are left blank. At .V = 16, for example, 5
trials reached 2 levels, 17 trials reached 3 levels, and 3 trials reached 4 levels. Since N
doubles each time (essentially producing a logarithmic scale on the V values) and the counts
appear to increase linearly, this table suggests that the mean number of levels grows
logarithmically in N,

o

©

O
o
®

o
o
Q

'

3
(AEATA

4

D
Y b 8,

Fraction Remalning
”
Fraction Remaining
(=]
o

o

&

O
wm

s

o
L3
1]

+ sEmS i

4 s moo ¢
(TN RIN NN
Wets ¢t & 4B

0.201

o
N

.
Lo
R

b

0.00

'.’ll

o.o a 2 2 g 2 . 2
o 2 4 6 3“"'," 0O 2 4 6 8 10 12 14

N=8192 Eexhibit 3-6: Fraction Remaining N =z 262144

XL 2
o
E L
1
1

s

Levei

e
p L

DO/ SN

This conjecture of logarithmic growth in the number of levels is supported by Exhibit 3-6, |

romaning at each level for two values of V. The fraction

%)

which presents the fract'cr 0f 2o

£
()

M remaining at level i is equal to the nuimter of paints at level ; divided by the number of points
i~ at level /-1. For example. if thers are 1200 points at level O and €00 are removed {leaving 3C0
:: points at level 1), then 30071200 = 02.28 :s the fraction remaiming a2t 'evel 1. Since
:; approximately a constan: frachan of coints are removed at each tevel oni, a loganthmic)
M
\ number of levels is typicaily reached.
Very nearly 1/3 of the original point ¢2t remains at Level 1. After Level 1. the mean fraction
. remaining is slightly higher (near 0.38). and is nearly constant throughout higher ievels
- (although the vanance increases). Mote that at the last levels the fraction remaining must
~_ correspond to some “small rational” such as 2/4or 4/6, since there arc very few points left.
:: The mean fraction remaining at a given level does not anpear to vary with V. This observation
. suggests an argument for linear computation cost: at most of the levels a constant fraction f
ta} (observed to be near 0.36) of the points from the previous level remain to be processed. Since
the cost of the algorithm at each level is linear in the number of points at the level, the
M
- recurrence for computation cost has the form
: C(V)=C(fN)+ OWN)
e which has solution O(V). Formalizing this argument would require finding an upper bound on
s f for most levels and either bounding the variance at the last levels or showing that they do
‘\: not dominate the total computation cost.
N
) 00.50r - -
s
N c
A 50451 ..
. § -
(. c 0.40} -
:. g - - - < .
3 =0.35} - - =z f
¢ g - b : I 5 . ! 1 [} [. @
. - -« - T § % -
& ¢ 0.30!} IR
B4 -
Y - -
L 0.25¢ - - -
0.20} .
.", O.'s " " M s A & n -t p
- 4 16 64 256 1024 4096 16384 65536 262144
. N
" Exhibit 3-7: Fraction Remaining at Level 1
v
¢

T T Lot e e St T e D e TN R, e XN N d KO o)

rrr
L]

The fraction remaiming at Level 1 .1s an int2resting special case: given a set of points
unitormby distributed cn the unit int2rval. how niany form neara2<t neighbor pairs? Exhubit 3.7
suggests that asymptotically tvg-thirds of the points form nearest neightbor pairs at Lavel 1.
since the fraction remaining converges to 1/3. Steele [7] proves tius observaten Intuitively,
hwo points are nearest neighbors if the gap tetween thamis a lccal minumum Faor any triple of
cons=cutive gaps. e probabiity that the middie one s the smallest 15 1.3, Two poirts are

remcved every time this happens. so we expect to remove 2/3 of the pomnts.

The points are no longer uniformly distributed after Level 1. 50 the above argument does not
hold at later levels (Exhibit 3-6 indicates that the fraction remaining 1s near 0.26 at higher
levels rather than 1/3). Theoretical characterization of the properties that determine nearast
neighbor pairs at higher levels is an open problem. Note that a gap at Level 1 is either its
original size or has been formed by the removal of nearest neighbor pairs, in which case it
equals the sum of an odd number of originai gaps. Since gaps between uniformly distributed
points have a distribution similar to exponential, gaps at later levels are distributed as sums of

{random numbers of) exponential variates.

Examination of the levels also gives an argument for logarithmic growth of edge cost (recall
that totai edge cost is the sum over all levels of the edge cost at each level). Exhibit 3-8
presents the edge cost per level for two values of N. At Level 1, edge cost is near 0.11;
afterwards, mean edge cost remains near the constant 0.14 in the middle levels and increases
at the last few levels. The mean edge cost per level does not appear to vary with N, although

variance clearly depends on the number of points at a given level.

These observations suggest an argument for logarithmic growth of total edge cost. Suppose
that level edge cost is near some constant e at all but the last few levels. Total edge cost must
therefore be e times the number of levels. By the earlier argument relating fraction remaining
to the number of levels, there are about log Y fN levels, so £ yMust grow as elog , jN

From the simulation resuits it appears that e ~0.14 and f~0.36 (because 1/f=2.7), giving a
conjecture that F N 0.141o0g uN. A least-squares regression fit using the model
Ey=clog .Y T ¢, for total edge cost produces ¢, =0.1427 (which is very near the
conjectured value) and ¢, = 0.28.

The simulation results presented here give new measurements, conjectures, and arguments

for the performance of Greedy matching in one dimension. Formalization of the arguments

64
§1.o{ i -8.1.0-

Q Q .

§,o.a- - g,oa i
W <. W e

o.s} . 0.6} i
0.4} : 0.4} : 7 -
. D

0.2; : 303 % ° 0.2} it e

e s cev vl gy

D%z -

0.0ttt 0.0 et
0O 2 4 6 8 10 12 O 2 4 6 8 10 12 14
Level Level

N=8192 N=262144

Exhibit 3-8: Edge Cost by Level

contained here requires deeper understanding of the distributional properties of point sets

under nearest-neighbor removal.

- 65
o
L\
?
‘:j
L References
-.':'
!
o [1] D. Avis.
o A survey of heuristics for the weighted matching problem.
N Networks 13(3):475-493, September, 1983.
[2] D.Avis. B. Davis, and J. M. Steele.
. Probabilistic analysis of a greedy heuristic for Euclidean matching.
T 1088.

{To appear in Journal of Applied Probability).

"ol (3] J.Edmonds.
Paths, trees, and flowers.
., Canadian Journal of Mathematics 17:449-467, 1965.

‘ [4] D.E.Knuth.
- The Art of Computer Programming: Volume 2, Seminumerical Algorithms.
) Addison-Wesley Publishing Company, Reading, MA, 1973.

(5] G. K. Manacher and A. L. Zobrist.
Probabilistic methods with heaps for fast-average-case greedy algorithms.

P

.:}_:‘ Advances in Computing Research: Computational Geometry.

M F. P. Preparata, Ed., JAl Press, Greenwich CT, 1983, pages 261-278.
%

- [6] E.M.Reingold and R. E. Tarjan.

On a greedy heuristic for complete matching.
SIAM Journal of Computing 10:676-681, 1981,

7] M. J. Steele.
Personal communication.
19885.

x|

A
atyy

e .:{'5-'

«
Lo &

a“

_..
XA ’q

iy
.

)"
'l

F& b Y ':":"-{

@

ﬁlll.--

3

PR 4y

L A e s P — . \
AR LM LR ICAIN a ! S \!‘ OANAGA N aﬁ'p’d» y _\,C ,l'.g‘,‘!t.

‘aie i Ades T Wie S, Sees Shes bt e A aa fite Sss S Yl S Sl el Al Al Sk A Al e A N Rl ' Rl A Sl el fad Ml _Sad Safi el die O Sab Aot et Aol Sl el iAo Saf Rl Ral ek diSl

L)
il
3

.
QL

a
.

"™
P

™

(o)

€6

LAy

»
/
l."'. A.’R ?

,,,
"y

MOENE (oS NERPUEN
RO N

) WL VgV 130, 4%
QLT L M RGN L OO WK

‘.
RN

~

4
Lh NS

>
'\.'

e

g .

- RN

PPN A A

v .
vod" .
LU SN

L It T R
v 2
L

1
L8

SMIRNNEY 3

o TRT Tl SR

67

Chapter 4
Comparisons in Quicksort

4.1. Introduction

Quicksort is among the most efficient of comparison-based sorting methods. Proposed by
Hoare [2, 3] in 1960, the algorithm was thoroughly analyzed by Sedgewick [8, 6], who gave
precise performance bounds for a number of implementation strategies. Knuth [5] also

provides a detailed discussion.

To sort an array Y of .V elements, Quicksort partitions .Y around a partition elfement, s, $0
that elements with value less than s are to its left in the array and larger elements are to its
right; after partitioning, s is in its correct position. The algorithm then recurs on the two
subarrays on either side of s. Performance depends to a great extent upon the choice of
partition element at each stage of the recursion. If, for example, the least element is selected
each time, then Quicksort can require (V') total comparisons during partitioning. Best
performance is achieved if the list is divided in half at each stage. A number of efficient

strategies for selecting a partition element with rank near the median have been examined.

A strategy that works well is to choose s at random at each stage. A generalization
{suggested by Hoare) takes a sample of size T from the sublist and uses the median of the
sample as an estimate of the true median (random selection corresponds to T = 1). Singleton
[9] and Sedgewick [8] recommended median-of-3 Quicksort (that is, 7 = 3) over a large class
of selection strategies. Sedgewick showed that the percentage improvement in sorting cost is
small for larger T and argued that the cost of finding the median of larger samples would
quickly overtake any improvement in sorting cost. His argument was not made precise
because the comparisons used in median selection were not an explicit part of his analytical
model; instead, this cost was included as part of the overhead for each recursive call.

This chapter extends Sedgewick's analysis by explicitly including the cost of median

T R TS T I W Ton. Sy Vo T
9, - , » ,'... a2 ':Il";': -Sl y

el

- 68
selection and by consilerning the trade-offs between partiioning and median-selection costs
' \ Intuitively. larger sampie sizes require more median-selectan comparisons but producea better
" partitons. giving fewer partiion campansons. Section 4 3 presents cimulation r2sults that

-f:'_ compare hixed [strateqgies: although campansen cost s of primary intarest. others maasures
ar2 also considerad Section 4.4 examinas strategies that allow [to wary as a function of
: subhst siz2 at each racurstve stage Saction 4 5 corrects asmall errerin Sadge sicx's analysis
7
N of medhan-of 3 Cuicksort.

- 4.2. Simulation issues
3 it 1s not necessary to generate and sort random lists of numbers to obtain the desired
¢ . -

) measurements. A simple “shortcut” simulation program mimics the performance of
e

R - Quicksort on random lists with much less computation time Subsection 4.2.1 describes the

g model of Quicksort to be simutated. and Subsection 4 2.2 discusses impiementation details of
: the simulation program.

W
- 4.2.1. The Model

{ Exhibit 4-1 gives the general structure of the simulation model. It i1s actually a combination of
L/

-_;. two sorting algorithms: “basic’” Quicksort can be improved by not recurring on sublists
- smaller than some cutoff M. To sort the elements in the small sublists, a single final pass of
. :

- Insertion Sort, which has low overhead, is used.

‘R Assume that the V elements to be sorted consist of the integers | through N, initially
-
~ arranged in some random permutation; this simplifies the discussion as well as the simulation
':-' since the rank of an element is identical to its vaiue. Note that this implies that equal-valued
; elements do not occur in the input list; otherwise, this assumption does not affect the analysis

; f' of Quicksort because performance depends only on the ranks and not on the values of the
- elements. (See Sedgewick [7] for a discussion of Quicksort with equal elements.)

-" Quicksort is one of the few aigorithms for which various implementation strategies have
o been analyzed exactly rather than in asymptotic order-of-magnitude terms. To do this, a set
j:.'- of measures are identified that correspond to the number of times various pieces of code are
'.:-j executed. The analysis remains independent of specific implementation because the

- measures correspond to the number of times various steps are performed rather than to their

| ; running times. The standard model incorporates the measures listed below; vaiues at each

‘J

o

Y

o

~J
e
L

.
" i

LR A R R A R T N -q. L A A R A WS R LSy RACALRLY y
e T b e e i e T e e e pTR e S S N

!-\I.
i
{ 69
-I;::f
::::::- Procedure Quicksort Tosortarray X[1, Njwin cutoff 1M
- Qsort(1, N)
v InsertionSort(1, N)
-s -
'.~“;:- Procedure Qsort{io, hi)
o If (hi-lo = M)
e Sample T elements from X[lo,hi]
"~._'; Select the sample median, call 1t s
") Partition the array around s, and set j
Il to the 1adex of s 1n X
o Recur on the left and right subarrays:
e Qsort(j + 1, hi)
) Qsort(lo, j-1)
W
[\ L
W Procedure InsertionSort(lo, hi)
. Setizlo+1
Loop until i = hi:
T it X{i] is smaller than X[i-1] then
G Sift down X[i-1] to X[1]. shifting elements
:.{'..- and placing a in its correct sorted
L4 position.
, increment i
- Endloop
-
- Exhibit 4-1: Quicksort
o
{ ! recursive stage correspond to Sedgewick's very efficient implementation of Quicksort [8, 6].
-:jI:' For a detailed discussion of the simulation model, the measures, and their analysis, see [8],
:::': (6], or [5] (Section 5.2.1).
e {: the expected number of times subroutine Qsort is called. At each recursive
stage A is incremented by 1.
I‘\'-"
- e B: the expected total number of exchanges performed during partitioning. At
: each recursive stage, this corresponds to the number of elements that must be
-.::~. moved in order to partition the subarray around the partition element s. if the
"; array is of size n = hi - lo + 1 and T is the sample size, then at each stage B the
v expected number of exchanges is given by
.--'..
7! (n—l)(n-s}/(;.).
-::Zi: o C: the expected total number of comparisons of array elements to s during
™ partitioning (but not during median-selection). In Sedgewick’s efficient
<, implementation C is incremented by n—1 at each recursive stage. This
::“: impiementation requires a high-valued sentinel at the high end of array X. During
v the recursion previously-selected partition elements serve as sentinels for the
™~ subarrays.
'AY
' o D: the number of insertions performed during Insertion Sort. In Program 4.2.1 this
; *\'
) -"
NN
NN
N Pn
04
8 Yy
L Y

LS P A",] AW A Y L% PN g N R Wy W o
W >
:!J. ‘|t| 'l'.'ylwfl‘.fi‘._‘ W Ky ,{ﬁ..i.“'g‘”l(‘,lo BN WX

: T o MO At N A A I)
O 00 MO WS ‘,0“‘0“‘\0"7"‘#".""""-"‘.:"'.v".o“ -“’.o".u"‘..",c “:".u.‘..l .o.¢ =0 .-J 0.:6 o

corresponds to the number of times the conditional 1s true in the Insertion Sort
procadure. /) represents the sum. over the subarrays of size less than V/, of the

0% number of insertions n each. For each small subarray of size n < \/ the number
T of insertions has expected value 1 - Hﬂ

'::. . e /" expectad the number of moves cur ng ser o0 (equivalently the total distance
:';_- it2ms are shifted) performed by Insertion Sort For 2ach small subarray of size
WA 1w M this has expected value (.~ 14 Like /). [represents the sum of this
' quantity over all small subarrays.

Sedgewick found closed forms (within an O(V) term) for B and ¢ for general fixed- I
strategies when VM =1 (that «s, no Insertton Sort is performed). He also derived exact
. formulas for .1 through £ (within an Oun ") term) for 7 =3 and arbitrary V. This study

axtends the standard model by explicttly counting the cost of median selection. in

Sedgewick's model the sample size i1s fixed, so median se .ction is counted as part of the
overhead of a recursive call, found by multiplying measure 4 by an appropnate constant. His
. analysis also assumes that 1/ > 2T wnich 1s not necessarily the case here.
Section 4 3 examines fixed- 7 strategies with varying f; Section 4.4 considers strategies
‘\'QZZ where Tis allowed to vary with the sublist size. Since the sample size is allowed to vary as a
j'.:':‘ function of the subarray size at each stage. a general median-selection aigorithm that takes
_ the sample size as input 1s required. Let ((n) be a tunction that returns an odd-valued integer
. inthe range [1 n} then T = ((n) is the size of the sample taken from the n elements at a given
: recursive stage.
o
g In Sedgewick's very fast implementation the sampie elements are evenly-spaced over the
.'_'_zf subarray. General median-selection algorithms assume a contiguous set 0. elements, rather
; '.‘_'«E than an evenly-spaced sample of a larger set: how shall median-selection be embedded into
; \, Quicksort?
L
One strategy is 1o copy the sample elements to another array for median selection. Another
15 to perform median-selection /n place, either by forming the sample from T contiguous
X elements in the middie of the subarray or by implementing a median-selection routine that
P @ accommodates noncontiguous elements (perhaps by using indirection in array addresses).
'. This strategy avoids the overhead of copying elements between arrays. Another potential
". . benefit of the in-place strategy is that the sample is correctly partitioned during median
o selection; a clever impiementation of the (Quicksort) partitioning step might exploit this fact by
‘f not re-examining the sample.
e
=z
kX!
04

. . . . - . - - - - . - - P e ™ d
S e I N e TR) "”}.-.r.-.'fa.fl'..‘J-ff'f 00y Y
‘o Cu """." "'. Lo ' Ny " . .9, [P " " . " ‘ a " el -‘i -‘0 KO .‘l‘o’l’c"r"-o.l .o“.o}'.u

iPa "y

.:-.-'Y“'IVva-*avv'vv'.'*Jv.-.rv-,-—'.vvv-_r'v'_v“"*v"- r"m. ' i ".' A Sl b it A e PO T T TV "’
P
o
._.(71
?{3 Oetaiied =valuation of :miplementation possibilities would depend upon many factors
.t
NN specific 1o the environment: this (interesting) problem s more appropniate to 2 stud, that
\‘. ’
v would measara program gerformance on a spectfic machine The policy adoptsd ‘or this
‘C:ﬂ simulaton study was to <esp it simple. to maske as few assumpticns as possible about
‘y"l
P impizmanttt on detads. and to allow for the possibility of 1 plac:s meddian solection
~_::
-~ ~
\ = E<h:bit 42 presents Select a hinear expected time algorithm for selacting the madian of
S5 array elements X{lo. hi] where [= hi-lo+ 1. The general algorithm for selectng the 1
ot farjest of [oitems was hret described by Hoare [2] (who called st Find) and was analyr2d by
o Knuth ise2 (3] Proplem 3 2 2.32) Attermination of Select the median slement nes in X[m]
b
Select 1s simular 1In structure to Quicksort except that only one side of the partition s
:-f considered in each iteration. In keeping with the theme of simplicity, a Median-of-1 (random
o sampling) strategy 1s adopted in the Sampling step. The model adopted for the partitioning
step requires n +~ | comparisons for each iteration on a subarray of size n, rather than the n—1
adopted for measure ((see[5] for a discussion of this partitioning model). This version
. requires no sentinel, however, which would complicate the model under the assumption of
. in-place median selection.
D Procedure Selectllo, hi) T =hi-lo+ 1
o~ m = (lo+hi)/2]| m = the index of the median
o loop

i=10; jJ =hi+ 1
Sample a random element s from X[1o, hi]
Partition the array around s, and set j

to the index of s in X.
Test: if (j < m) then lo = j + 1

."- else if (j > m) then hi = j - 1

N else break;

%

- endloop

ol Exhibit 4-2: Median Selection

<

-

;'.::: Let /., represent the number of selection comparisons required to find the k™ \argest of T
5 elements, and let g, represent the number of selection exchanges. Then the following
@ . ')) .

_..." recursions, with base C&SOS]; o= 0 and ng = 0, describe the computation time of Select (see
o G
o

::'.:I_‘

S

s

o

o4

AT AN > e
(N, L ~" ' 6T ,c! 2 '0.‘1“4,‘?5 R

"o Y [n ¥ M WS e T e e o Jte Lt 0 Y LY
il i e AT e p Y
a4 RS T O R M W

- i

P s
R
RN .

¥

.

1"ty
. 1]
L

55450

a, 8 8 2
A A 4

P [

PR R
TP L
.

72
) = 1 }r
fo=rer e 2N S
I [e i AT T e Tam k
{ { .
o 0 A R
L e My — \ =y =1
J '-—v\ ‘1‘__'__‘__[' - - v‘ e
= =0 TToNT r o= (I'=h -
wnuth [2]Prebiem 222 32) solved 1, snowing that
o e D == D =T+ A+ T+5/3] (1

tapcears that a closed form for o, . has not been published. Let F represent the total number
i

of comparisons pertormed during median selection.

when T is fixed and M < T, it1s possibie that a subarray is too small: how does one sample 5
=lements trom 37 Sedgewick s implementation samples with replacement in such a case, so
that scme of the elements are duplicated. Because this assumption is not compatible with
that of sampiing and selecting from contiguous elements the subarray, the elements are
sampled «ithout replacement. When T is greater than the subarray size n, T is set to n or
~— 1 whichever ;s odd This implies that the true median is a/ways found when n is odd and
smaller than / which may not be the case under Sedgewick's model. 1t 7 is less than the

cutoft \f then this model 1s 1dentical to Sedgewick'’s.

4 2.2 The Simulation Program

An obvious simulation strategy is to generate random lists of numbers and to sort them while
recording the measures of interest. This would require §3(.V) steps to generate each list pius
Q(Nlog.V) steps to sort. A simpie observation allows more efficient simulation; the
“shortcut” implementation describe here is similar to a shortcut Bentley describes for a
median-selection algorithm in [1].

Recall the assumption that an input list of size N consist of a random permutation of the
integers 1 through ¥. When Qsort(lo, hi) is called, the subarray X[lo, hi] must therefore
contain a random permutation of the integers lo through hi. Whatever the median-selection
strategy. the partition element chosen must be from {lo, hi]. if the partition element is in X[k]
after partitioning, then Quicksort recurs on the subarrays X[lo, k-1] and X[k + 1, hi}.

Rather than selecting the partition element from the subarray at each recursive stage, the

73

- shartcut simuldation program gererdtes a partition element from a hypothetical subarray
. according to an appropriate probabdity distribution. At each stage, the size of the subarray
Mok 2Gual to hi - lo + 1) and the value of the partition element (randomly generated by a

crocedur2 to be described shortly) are the only two quantities needed to accumulate the
' ~=azures described earlier. For example. A, the number of stages reached, 15 simply
- neremenrted at 2ach stage of the simulation program. If the partition element has rank 5 in a

subarray of size o then B, the 1mber of exchanges, is incremented by

wils
) vy, n
. (s=— 3n \)/(T)

“he numbper of partition comparisons at this stage is n—1. and the number of selection
- comparisons was given earlier as formula (1) {with £ = (T +1)/2. the median of 7). Finally, the
cost of Insertion Sort determined by the small subarrays. For a subarray of size n < M,

measures D and £ are incremented by n— Hn and n{n-1)/4, respectively.

Note that the expected values of B D. E. and F are accumulated at each level, rather than

values of corresponding random variables. As a result, the variance for these four quantities

s much smaller than would be displayed by Quicksort. Since only means are examined here,

this "bug’’ becomes a feature: the smali variance in experimental resuits means that few trials

are needed This s an application of a variance reduction technique discussed more fully in
{ Section 7 3. |

--‘?: To obtain estimates for the expected values of 4 through F, then, it is sufficient to generaie

':,'- a partition element at each stage according to a probabulity distribution that is determined by
-

D) the size of the subarray » and the sample size 7 = ((n). The generation of such a partition

element 1S easily accomplished in (X{(n)) time at each stage: simply generate a random
.- sampie of size T from [1. n] and return the sample median. Two methods are employed in the
simulation program, the choice depending on whether T is near n. When T « n, the simulation

program simply generates integers uniformly T distinct ones appear; a hash table of size 27T is

.
LI}

used to check for duplicates. The tabie uses an open addressing collision scheme, with the

:::j- invariant that table entries are always in sorted order. Once generated, the T integers are
j-':j shifted to the low end of the table and the median element, which occupies table position
O m = (T+1)/2, s returned.
g+
ey When 7 138 near n this method is ineficient because of the large number of duplicates
e
," N generated before 7T distinct elements are found. Knuth [4] (Section 3.4.2) gives an algorithm
,
s for generating a sampie of 7 integers from 1..n in ascending order by considering each integer
o
0.

\

e ° -y - B » ~
.-.'.-.-J-.r.rf..-...r.-_f...-'-- e e 0 “ ¢ (s uuhhu!
WAty AT AR SE X WL, W I WY a’tl-'l- u'l"‘ A n.‘a‘ 1'&"""‘ OSORGACANNONNL

\-
\

74

in turn and accepting’’ it with appropnate probability This algonthm s modified in the

simulation to stop when the »'" integer is accepted.

This process requires about 72 random number calls; as implemented s moer2 sthcient
than the first method when T < ~0.3r Note that because the zlements are maintained n
corted ordar tmaxtng ot 2asier to find the median). both of these methods ~roduce parution
elements mere =fliciently than f median s2lection had actually been pzriormed on a randem
sample from the sublist. The second method 1s even more efficient because 1t only considers

approximately /2 elements.

Procedure Shortcut(n)
1f (n < M) then
D += n - Hn Accumulate Insertion Sort measures.
E += n(n - 1)/4
else

t(n) Determine sample size.
(T+1)/2
Generate-Partition-Element(n, T)

3 —
"t

[
1

Accumulate measurements.
n-s)(s-1) 7/ Choose(n, T)

MO
+
W

"
N
—_

>

+
—
-
x

- (me1)H - (T-me2)H, +T+5/3
Shortcut(s-1)
Shortcut(n-s-1)

Procedure Driver
Input N, M
Set A through f to zero
Shortcut(N)
Report A through F

Exhibit 4-3: The Simulation Algorithm

The simulation program is sketched in Exhibit 4-3; the formulas for accumulating A through
F refiect the model described in the previous subsection. its average running time is given by
the following recursion, where p, represents the probability that s becomes the partition

element when A n) elements are sampled. TimeN = O(l)when N< M.

75
A
Fomey = OUONN =S p Tone N> A
N—s) s—1) (\)
T (m V=0 2= sy)
Finding a closed form for this recurrence for arbitrary (0000 is difficult. When anis a constant

function. the program runs in tume inear in .V,

The exparnmeznts described in the feliowing sections were performed on a VAX 11/780
runmng under Unix' The random number generator was the cyclic feedback method
described by Knuth [4] {Algorithm A, Section 3.2.2, 2nd Edition). In most of the following, .V is
set at powers of two from 2*to 2 Vfis set at 0. 10. and 20, and 7 (in Section 4.3) issetat 1, 3,
and S.

To check some experimental results, the exact values of measures 4 through £ were
computed according to Sedgewick's formulas [8, 6] for Median-of-3 Quicksort. When a small
error was found in one of the formulas (see Section 4.5), a dynamic program was
implemented to check the formulas as welil as the simulation program. For example, to
compute C exactly by dynamic programming, array elements ((n) are set to 0 for n < M, since
no Quicksort comparisons are performed at n below the cutoff. The following sum is then

computed for n > M.

n
an= 382D+ -1+ Cln-sD
s=1 :’;
in each term of the summation the quotient represents the probability that s is chosen as the
median of three elements selected randomiy from [1. n]. The terms in parentheses represent
the cost associated with chosing s, which is given by the cost at this level (n=1) plus the
expected cost of partitioning around s. To further check the random number generator in the
simulation program, this dynamic programming approach was extended to T'=1, 3,5, and 7
for quantity A. In all tests of the simulation program, observed means for the measures were

within 1.5% of the true means produced by the dynamic program.

Instead of performing simulations, why not just use the dynamic programs to produce exact

1VA)(is a trademark of Digital Electric Corporation. Unix is a trademark of ATAT Bell Laboratories.

T N T T T T e R e T T T W T N T Y Y AT W T YN YT T IEAACA S At k' ut* e attdiae St Sal 0eh Aef St Sed Sat B4 & d ma o 4 an t

- * "
&,

76

Ry
b

]
PRI I

values for the measures? The main drawback of the dynamic program is inefficiency: since
.- the probability of s being chosen must be recomputed for each s < n. the running time of the

program is linear in each » and theretfore quadratic in the highest n computed. Becauss ihe

om
.

running time of the simulation program is linear in \ for (fixed 7) and the variance in
simulation results was small (requiring few trials per sample pont), expenments provided a

L much more efficient way to gather results for large preblem sizes and many sainple ponts.

4.3. Fixed-T Strategies

> This section presents stmulation results for median-of- T Quicksort for T fixed at 1.3 and .
» A sample point is determined by V, \/, and T. Most of the simulations were performed at
- sample points corresponding to V=22 ...2% /=110 20, and T=1.3.5: measures A
- through Fare considered. An obvious problem in describing simulation results arises: how to
o represent a function of three variables using two-dimensional graphs? A number of
approaches to this problem are considered in Chapter 7; for this study, the following
conventions are adopted. Measurements for the three \f settings appear in separate panels.
In each panel the x-coordinate of a point is determined by log 2.’\«" + 7710, and the y-coordinate
of each point corresponds to the specified measure (giving the mean over 20 trials at this

sample point). For example, in the left panel of Graph 4-4-a sample point M = 1, N = 2* = 256,

e
e

I'=1 is represented by the leftmost cross in the panel. The second-leftmost point

e e

corresponds to the sample point M =1, N=2) T=3, and is plotted with x-coordinate 8.3.

This method of “coding” the x-coordinate of each point allows easy comparison of the

> NI Rl I]
»
[

-

measures at in terms of the simulation parameters.

.:‘ U

-
»
t
L]
N

S Let C’ represent the average total number of comparisons required in fixed-7 Quicksort;
'f .\,: thatis, C’ = C + F. Intuitively, C should decrease with 7, because larger samples give better
;' partitions, reducing the number of partition comparisons. On the other hand, F should
':_: increase with T since larger samples require more median-selection comparisons. The best
< choice of T - that is, the choice that minimizes total - is one that finds the right balance
‘ :’ between these two measures.

o Graph 4-4-a depicts C'/ N for the sample points given above. Not surprisingly, large M (right
.-_j: panel) gives fewer comparisons at every sampie point since the cost of Insertion Sort is
- ignored. The reduction in Quicksort comparisons at high M must of course be balanced
'-; X against the increase in Insertion Sort time. This would be an important task in determining the
I _f best choice of M for a specitic implementation.

2

e

N

®

2

.J-.

Pl

A

=
4

‘—-.- '\- n LR B S « Tw “ L. - MW » - a
o W W, ARy za-.r.r.r;;) a-.)-.-" . - - . i) T
oty 0|. -r '\. 's -.'» -\ = ~. oy \..- [N -, -. -,, (e ..‘..“ -.. - \-«.._ (. - ‘4'“' ..:...!.l_ 5, ¢ !.(“‘... ;-J.t‘,

.{'

Tot. Compares / N

+ Mz 20 + M2 -

N
N
)
N
+
<
"
o

- N
® N
L 3

-
@
@
+
+ +

-
LN

-~
&
+
14
N
.*0'

v
O‘f

o
+

3

Tot. Compares / N
+
Tot. Compares / N
o
+ **

[¢
)

)
oy
[+

12 16 20 8 12 16 2C 8 12 16 20
igN IgN IgN

14} T=35
is best

10¢ T = 3is best

6t T = 1is best. '__L__L_é

2 4 -] b 8 10 12 14
IgN
Exhibit 4-4;: Total Comparisons

900

Pr O

N

The left panel in Graph 4-4-a corresponds to M = 1, that is, to Quicksorting the entire array
and not performing Insertion Sort at all. In this panel, the leftmast in each triple of crosses has
least value when N <2, and the middle cross has least value when N > 2", This indicates
that the Median-o!-1 strategy gives fewest total comparisons when V is small, but Median-of-3
is best when N is large (within the range of the experiments). If a cutoff of size M = 10 is used
(middle panel), then Median-of-3 gives fewest total comparisons for N smaller than 2', and
Median-of-5 gives fewest total comparisons at higher N. If M =20 (right panel), then
Median-of-5 is best for all but the lowest value of N sampled. Note that the separation in cost

between Median-of-1 and the other two strategies becomes more pronounced at large M.

Graph 4-4.b presents the results of further simulations to determine the best choice of T for

various combinations of N and \/. Each region of the graph corresponds to the T setting that

-

)
]

»

- R N | Log I N . l

x

FP“ "‘y l,f.,ﬂ{‘._(

£

.
T e
s a g
PR
R

78

gives the smallest mean value of (7 for .V at even powers of 2 and }/ below 16, 20 trials each.,
For example. when either M or Vs low (bottom left region). Median-of-1 Quicksort gives
fewest total comparisons. Note that the x scale corresponds to quadrupling N each time

whereas the ordinate corresponds to unit increases in M.

Consider the cistnbution of subarray sizes that appear during the recursion: a single array
of size n=\ appears, then two arrays of size approximately n=.V/2, then four arrays of size
approximately n=\/4, and so on. As N grows, larger subarrays appear in the distribution tut
small subarrays become more numerous. Suppose that the choice of 7 to minimize total
comparisons at a given recursive stage is an increasing unbounded function of the subarray
size Intuitively, with large subarrays at the beginning of the recursion a large sample size is
the best choice. and smaller samples are more appropriate for small subarrays at lower

recursive levels.

if the best choice of 7 grows fast enough in n, then as V (the problem size) increases, the
large subarrays would eventually overcome the small subarrays in “voting'’ for the best
choice of 7. When I/ is greater than 1 the small subarrays are ignored, so the influence of the
large subarrays is seen earlier in V. An implication of this argument is that the choice ot T to
minimize total comparisons (over the set of fixed T strategies) does not have a constant upper
bound, but rather increases with NV (and the rate of increase is determined by M). This
contradicts Sedgewick's argument that Median-of-3 is probably the best choice among
fixed- T strategies when M = 1. On the other hand, Graph 4-4-b suggests that Median-of-3 (or
Median.of-1) is indeed the best choice over a large range of practical input sizes. Another
implication is that a strategy which varies the sample size at each level according to the
subarray size would give fewer total comparisons than any fixed- T strategy. Evidence that

this is the case is presented in Section 4.4,

Consider how C’ is divided between C and [. Sedgewick showed that for any fixed 7, the

number of comparisons during partitioning is given by

1

— —-— =

C-————(T N 1)HN+O(N) O(MogN)
Hr, ”(TH)/:

when M = 1. Graph 4-5.a presents C/(Mog N). Not surprisingly, C decreases as M grows
(since the cost of Insertion Sorting small subarrays is ignored). Although the logarithmic
x-scale in each panel makes the curves appear to grow more steeply than they actually do,
the asymptotic constant is not easily seen at these values of V. As predicted, the triples of

crosses show that C decreases in T' larger sample sizes tend to give better partitions,

decreasing the total number of partition comparisons.

h Y e S

A LS

A A 2 e

R ARl A S A L S Al Ste Bis*ai Gl Al Aok del bal cad v laNal ol Sl S8 uo B4

Lok S o h” R AN A A Dol RS 0 h 240 sei ohe oy L ata i ik ass ana |

79
E M=1 2 M= 10 > M=20
91.2[Lt * 5,1.2[. §,1.2[
\z- 3 + z 9 + z +
Nt1.0F T .+ ‘\'1. + * N .
Sror 4t S1or . Lt R . .
R [+ + + * i + + 3 of
os8sr * 0.8} + 0.8t + o+
+ +
o .+ L+ o+
+ +
0.6} 0.6} 0.6} +
6 10 14 18 6 10 14 18 6 10 14 18
IgN a IgN IgN
29 o+ 4+ v o+ s = 4r 2 4r
t M =1 u\. M=10 l}. M = 20
3 ki3 3F
ot o+ o+ e
2F 2} 2}
+ + + +
1+ 1 v+ v o+ o+ LI S
 F o+ e+
OF + + + + + + oF + + + + o+ OF + + + + + +
8 12 16 20 8 12 16 20 8 12 16 20
IgN b IgN igN
50'7[T R 50-7 50'7'
< P S S A 2 1 < < [
0.5t 0.5 0.5
M2 M= 10 Ms=20
0.3} 0.3 0.3}
F + &+ £ o o+ i
o.1} oqp * ¥R O.1F & % 4
8 12 16 20 8 12 16 20 8 12 16 20
igN ¢ fgN IgN

Exhibit 4-5: MeasuresC, F, and A

Graph 4-5.a shows that for any combination of value of A and N, the T =1 strategy (the
leftmost symbol in each triple) gives a signiticantly higher value of C than T=<3 or T=35.
Although Median-of-5 gives the lowest value for C everywhere, the improvement over
Median-of-3 is never very great. This agrees with Sedgewick's observation that while
Median-of-3 gives a substantial improvement over Median-of-1 for this measure, the

percentage improvement at higher values of T'is small.

AT 80

N

e For hxeda [the total number of median-selection comparisons, /. must be proportional to
"-,':j tha number of times the med:an selectton rcutine s performed. Therefore, [7 must be
D

9

$ { proporticnal to 1 the number of racursive stages seen during Quicksort. Specifically, for
vz (-2 = r‘{, LDt where Iy D s given by formula (1) on page 72 Since the

number ot recursive stages reached is hn2arin V, /s also linear in A Graph 4 5-b presents
f.N When 7 = no median seiection is performed. so the !eftmost cross in each triple is
always =2gual to). As predicted. / tends to increase in 7. In both 4-5-3 and 4-5-b the

b

difference between ['=1 and 7 =3 is more pronounced than the difference between 7=3 and

::S T =3 although one measure increases in 7 and the other decreases in T.

».'__:('-_

N Graph 4 5-c depicts A/ N. The graph indicates that when \f =1, 1 is not monotonic in T.
:"-':,7 That is, median-ot-3 Quicksort gives fewer stages, on average, than median-of-5 Quicksort.
The explanation for this behavior is to some extent an artifact of the simulation model.
-;- Consider the case n =5. Median-of-5 selection would find the exact median of the elements

and recur on two subfiles, each of size 2. Remaining recursive calls would be on subarrays of

‘_':-}_7 size 1 and 0, which are below the cutoff 3/ and do not contribute to 4, so 4 = 3. In contrast,
:Zf_:'.; for T = 3 the sample might not produce the true median: with probability 6/10, either 2 or 4 is
" chosen. In such a case, Quicksort would recur on a subarray of length 1 and a subarray of
£ length 3, and afterwards on two subarrays of size 1 (which contribute zero cost), tor a total
o cost of 2. Under this strategy 4 = (6/10)-2+ (4/10)-3 = 2.4.

:':j:’;' For arrays of length 5, then, Median-of-3 produces fewer stages than Median-of-5. This
:) inequality propagates in the computations of A at higher N to give the nonmonotonic behavior
‘ -“’ observed in Graph 4-5-c. This relationship between Median-of-3 and Median-of-5 would
:: disappear if M = 2, but an analogous relationship would then hold for T=7 and T=9. This

:;i:: observation can be generalized to find a similar pair of T values for any M.

Lo R

. —

“_’f--ji: By this cost metric it is not always a good idea to find the exact median of the sublist: if the

::::..--f cost of recurring on a sublist of size k is equivalent to that for a sublist of size k+ 1, then it is

::V:.'.-‘: better to break a list of size 2k+ 1 into a k+ 1-sized piece and a k—1-sized piece rather than
o into two pieces of size k.
ey
e
‘N

’ -

Jodd
o

i

s

ﬂ"-

®
LA
.,|

Tt T e altieg et

S AT AN AR L S

S a -y T *-._<\" LI SRR ‘“-“‘h-"‘
NS SO e e]

h
R 8%

e e R e e e 3 N et e e N e e e
h h "
- 1. W .| Ly v. "’ Ul L o.n oH.-. ¥

" LN

Nl
B, ‘i"'a

81

4.4. Choosing T to Minimize Comparisons

In this section 7 is allowed to vary as a function of . the sublist size at each level. the goat is
to determine the optimum sample size for each ». "Optimum’ means “"the zample size that
minimizes the total expected number of compansons.” Recall that n—1 compansons are
needad to partition a subarray of size n. Also. the number of comparnisons required to find the

median of T = An)elements, for T an odd integer and :n=(I'+1)/2,is

Fpm = MT+DH, = m+DH_+ (T=m+DH + T+ 5/3].

T-m+)

Let C represent the minimum expected total number of comparisons; that is, C is the number
of comparisons required (during partitioning and median selection) when the optimum sample

size is chosen at each recursive stage. Letting 2 = [7/2 | for notational convenience, we have
N=h
C(V) = N=1+ min (me +2) ps.cm). N> M,
T .

s=h+1

wee o= (AR

The N-—1 term represents the cost of partitioning at each level. The summation index s
ranges over all possible values for the partition element (as the median of 7 elements, s
cannot be less than & or greater than N — h). p,represents the probability that s was chosen
as the median of T elements from N. C(N) = O(1) when N s M.

Let t(n) represent the sample-size function that realizes the minimum total cost. A simple

dynamic program can be used to determine t(n) as well as C for small n. When M =1, the
boundary conditions are C(1) = 0 and t(1) = 0; {or increasing n, the program searches for t(n)
to minimize the above function. Since t(n) is nondecreasing and at most linear in n, it only
necessary to check t(n—1) against t(n— 1)+ 2 for each n.

A

'v"fc

«

o Table 4-6-a gives the lower boundary value of n corresponding to each t(n), for n < 3500.
The second and third rows indicate, for example, that 3 is the optimum choice of T for
subarrays of size between 35 and 92. Graph 4-6-b presents the table entries in graphical
-y form; the dotted line corresponds to the function NY2721. The residuals, representing the
difference between the optimal values and this function, are presented in Graph 4-6-c. Similar

]2 computations for M = 10 differ from Table 4-6-a in that t(3) has lower bound 30 rather than 35;
N otherwise the table entries are identical.

Pl o P al o A L ACA VI A X, AR ANE DTN, OVWOOOOOOOEUALAOOSE GO
WAl W 5."-'.0...‘oq“.f;/v..":,ﬁn‘;fh..fa,.f,..hulg. R KRR B i L R e R B S A)

S T T TR R R T RETRTTET R TR TR e v e ey TgwTL Yy TV 'ww“""vvvv g of W v ‘_"ww"“ 2-aal
- - A pa D
- - - A

82
Least
35 3 { ° ¢
53 ? i o 3 0.4p +
197 7 © 3 .
337 9 20} o e .
[+ [v !
515 11 » o.2r . *.
730 13 - -1 .
984 15 oo -0.0} +
1274 17 10+) o Optimum .
1603 19 9 sqrt{N)/2.1 -
3 +
1968 21 S -0.2 .
2372 23 9 X ‘) .) .
2813 25 o 2000 o 2000
3291 27 Cutoff (N) Cutoff (N)
a b c

Exhibit 4-6: Cutoffs for t(n)

Exhibit 4-7-a compares C to C’ (corresponding to the fixed- T strategies), for the four sample
points NV =256,1024 and M =110. In each triple, the circles gives the ratio C'/C for
T=1 135, respectively. As predicted in the previous section, a strategy that modifies the
sample size according to subarray size gives fewer total comparisons than any of the fixed-7

strategies at these four sample points.

While these results are encouraging, it is difficult .to determine t(x) for higher n. When
N = 2500, for example, the dynamic program must compute the combination 2500 choose
24'": although careful programming could push the computation higher, machine precision
becomes a significant factor. _Solving the problem analytically also seems to be difficult.
requiring a solution to the recursion for C with arbitrary function «n) to find the «n) that

minimizes C.

On the other hand, the results for small n can guide the search for good functions (n).
Graph 4-6-c depicts the difference between 1 _and the fit Y=V /2.1, the small magnitude of
error suggests that square-root form for fn) might do a good job, although the steady

decrease in differences indicate that a more siowly-growing function might be needed at
higher N. Preliminary simulations using the *“‘odd floor" of aN’+ 3 (that is, the largest odd

LR Sadh ik Shad
S et e T R

TV Ry TwW S W Paudte A0a She 00 Bae 2te ihe s) res

SR T R T LTI YT YWY LG Sl S et et N asd 2t o |

83
31.4-
o}

3, o
Q
%1.27' ° o
= o
Q1.1} ° o ° o
; 9 o o]
xrol.... .. S @ e @ e R

N =256 N =256 N = 1024 N= 1024

M=1 M= 10 M= M=10

Exhibit 4-7: Optimum and Fixed-T Strategies

integer less than or equal to the function value) indicate that C and [are fairly insensitive to
small differences in the cutoffs. For ¥ at 2 and 2!, mean comparisons are minimized for
square-raotforms when a= 0.5and 8 = 0.

4.5. Insertion Sort

Sedgewick's [8] achievement was not only to present a very efficient implementation of
Quicksort, but to demonstrate that it was more efficient than many alternatives by deriving
exact formulas for quantities A4 through E. His final version employs such techniques as
removal of tail-recursion, loop unrolling, careful ordering of conditionals, and fine-tuning of
parameters. It uses a Median-of-3 selection strategy with a cutoff for Insertion Sortat \/ =9,

One of my first tasks in building the simulation program was to check the experimental
results against Sedgewick's formulas. This led to the discovery of an error in Sedgewick's
analysis of quantity D, the number of insertions performed during the Insertion Sort phase.
For median-of-3 Quicksort, D has the recursive form

N
Dy=23_pD,, N>M,

=]
where p‘=w'
(N
3
DN=N—HN. NsM

Sedgewick, in his thesis, gave the solution to this recurrence as

»

<%
AL

2.

P

Gl ey

L s
’

hH AN
Mat .

R ~ £MNEAK
S s s
-t

LA

P
:

»
’

R

.

-
[N A

PR W

>

»
v

atP e’ Ny

a

LA _a X,

- e -

d T ¥
AN LN ’._1°-J‘E'!‘.

s seluticn 5 ooncarrzct the lust term chould be o <//", =1y Although this s clearly a
miror algebraic arror the resuiting computation of /) s oft by a factor of \V and gives an
wrraneces calculaton of the optimum value of Y/ A later papar by Sadg=wick [E] gives the
carraCt soation ot fads to carry the correction through to the caicutation of V. For the

racord. the correct dertvation s Given here,

Sedgewick showed that recurrences of the form

N
) Wt o
‘-r-_Z(.\—s)(s—l)(}) Yo

s="
can be broken into three simpler recurrences. For Dv we have)'\.:0. and it is (only)

Y, =1

\ N

necessary to solve

(V+ DU

N+l

NU N

(N+ DTy, =(V+)T, + U, and

(N+ I)DA\,H = (N-—S)D_V + TN.
These have as base cases,

TMH = (“I+2)DM+2 - (‘/‘[—4)D:V+1'

TM+2 =M+ 3)DM+3 —(M=-3)D and

M+

Uppoy =M+ DTy, =M+ DTy,

Tedious but straightforward calculations produce the following solutions for DM D

+1' “M+2
and DM+:‘
Dy, =M+53~2H,
IM +14M+ 10
DM+2= AM+2) - 2”M+1
D = Im’ +26M’ +61M+60 2M’+10M+24H ,
M+y™ YM+2(M+3) (M+3)M+2) M+
Therefore,

Y U N W RN L™ % T e N T A R YR N 000 RN
lu... n.'n ‘. f-’_ - ot A0 - ‘, e oA M) l.:‘!i;‘i'— (L L R L

p,
9- 85
o8
o Ty, = "M=w=121,
k- (e 3V = 0= 120,)
b _'." l. - i~
f \ -2 (\/ + :)
| - : —
h:"_‘h t \[’,—O
" '-:' and the three recurrences havea the following solutions:
:;_:. A ("\. =0
») (VDO 10124)
A ‘:-‘ r\ = - -
: (M+2)
w::_
(N+DOM+10-12H,,)
. i\ . . M+
e N+DD,. =(N=-5D,+
> (N+ () N (A”+2)
) h Solving D.\" from this point is relatively straightforward. Multiplying by the *'summing factor"
s \?‘ MN=1)..(¥=4)/6! and rewriting for the base term Du+1 gives
17N ’
- N
2 (,v+1)D _(M+1)D LA 0-nA, T (k+1)
N+i T M '
6 + 6 +1 M+ G\ 6
h '_:'a or finally,
o AN+
{] DAV_(‘V+1)—7——(UH_2)3HMH+1).
-_ i Sedgewick’s efficient MIX implementation of Quicksort has average running time
S (53/2)A+ 11B+ 4C+ 3D+ 8E + 9S + N.
Solving with the correct formula for D and regrouping terms gives
L 47 312
) :‘- —7+¥(N+ I)HNH
o
Ly 529 18 n 36 48 21(5M +3)
+N+)xX)}—+ ———-—H -——H + =M+ .
:-j () [49 M+2 35 M+ JM+2) M+ 35 7(2M+3)(2M+1)]
®
2 which differs from Sedgewick's formula in the first and fourth terms (which he has as ~111/2
- and —450(N + 1)/(A(M+2)), respectively). Exhibit 4-8 shows AM), the function defined by
:::': the terms inside the large brackets, as M varies. This graph shows that the average running
: time of Sedgewick's MIX implementation is minimized when M = 7, not 9 as reported.
v
o
o
A
-0
A
.
()
4
"
4
O'.)
04
o
.'.‘Q

‘ - o ,. . : 0 AN
bOOOGAGOHOO0! G000 j OOOBROACONLEGACHGIRG O [N 0L OO OO ORI OO I OO K0 UMD
L -‘-'-‘,h“'-‘A'\‘.’r’.'u".'»‘.'n'.u-"s't's‘f'!'?‘.\"aﬁ'.’."".0 '.‘!'Jt RPN DA A L Il ":9":0'l‘..".,,'ltg":,«"'::" UM RN S T 'l'.’v'.'-'\."‘!‘t','o‘ *

Wi

F s

YD
g s

, ot T e
2k ML R I

r

".'-.i.nn .

J. .. "- .-

| P
-

P
MM MM

M

A

3

.7

.7,

N

~

Ay

SN eCU S @

By

86

M

[PURNIN

il B~ (T Y la

—
—

—

™

P st et b s st s s
[a~RETo RN <IN NS S N OV)

. !
~a T U

w

R f .
I o~ o~ L oo (o

F(M)

2 I

s O

N G

3
1

[S L0]
~ C

b4
223
733184
313496
173633

1828538

£50244
5043810
227213

0343478

372606
328899
223340

.564770

860008
114780

.333769

520887
679433
812216

F(m)

-8t

Exhibit 4-8: Minimizing F(M)

4.6. Conclusions

This chapter presents a version of Quicksort that allows sample size for median selection to
vary with sublist size, with evidence that it outperforms fixed-T schemes. The tradeoffs
between partition comparisons and median-selection comparisons are also examined for
fixed-T strategies. A number of open problems remain. It appears to be difficult to find a
ciosed form for C, and even harder to derive the ((n) that minimizes the number of
comparisons. Although comparison cost was the primary measure in the simulations, the
behavior of other measures is also of interest. The number of exchanges performed during
partitioning and median-selection is a measure of interest. The number of exchanges
performed by the median-selection algorithm appears to be an open problem, ripe for
experimental study.

An obvious next step is to study the actual running time of a ‘‘square root" strategy
Quicksort. It is likely that the taking of square roots would dominate the computation time, in
which case either a table-lookup scheme or a fast integer approximation of the square root
function could be used.

am - - A e A S -
\ 0 ey O Do ¥,
SRV A "R T R VY,

*
LA

f‘ v Vot L

E ‘&’l:'l,f‘ .}“-‘"x -".('

AT
u."I"']

L
[}

AR AL
..-n.l , 2-}-} P

“3%:"a e
\

Ll B Siadh Sl B At ks S dl S A dindk Sk Shad S Bl e A b At A A it A B A T R avl b ahl Rt i bl bk Sl abh -t s Al Salb mad ol SR afl Sl el Saie® Ao i Pl

References
[1] J L Bentley
Progamining Pear's Selection.
commL o zanons chrre ACK 28(11), November. 1G8S.
[2] C A R Hoare.
Partition (Algorithm 63). Quicksort (Algernithm 64}, and Find (Algorithm 65).
Communications of the ACM 4(7):321-322, July, 1961.
(3] C. A. R. Hoare.
Quicksort.
Computer Journal 5(4):10-15, April, 1962.
[4] D. E. Knuth.
The Art of Computer Programming: Volume 2, Seminumerical Algarithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.
(5] D. E. Knuth.
The Art of Computer Programming: Volume 3, Sorting and Searching.
Addison-Wesley Publishing Company, Reading, MA, 1973.
(6] R. Sedgewick.
Analysis of Quicksort programs.
Acta Informatica 7(4):327-355, 1977.
(7] R. Sedgewick.
Analysis of Quicksort with equal keys.
SIAM Journal of Computing 6(2):240-267, June, 77.
[8] R. Sedgewick.
Quicksort.
PhD thesis, Stanford, 1975.
[9] R. C. Singleton.

An efficient algorithm for sorting with minimal storage (Algorithm 347).
Communications of the ACM 12(3):185-186, March, 1969.

T

(Mt}

N AN " Y MK R A XA A - ~ o, o
¥, .'ﬁ"“*'-'f"-":'_"0."“'!‘«“.‘*'0. '?l‘l?“l."%"n ‘.'r.i't.‘q,_l‘(,l I t:"-"l'.' '.!o',‘nﬁ W lf',t',‘_lc,*é' LU N

i

)

T

E Y

2.4

' 1) v"."_

L)

v

LN

»

Lo

"
v
¢

0 (n)

Pt

: A
Wl N R T e
".t."l"dl‘.l".o" Gt e

' Lo e AN QOGN % pot
“.l*l ': SO 0';‘m‘-’t'.‘u....c'.‘;.,‘.’".‘f'ﬂ:'."'.ﬁ .',Ot“i:‘,l.‘_t'!

,
P} "_' 'r

¢ 89
R
:
\.
R Chapter 5
Self-Organizing Search
_jg
_I
-
__:-:, A seif orgamizing coquental searcn rule maintains A sedoo o 0ot VM atems 5o that frogueetly
:\'J" access2d tems are n2ar the front Since access frequencies are assumed Not 1o B2 xnown N
. advance the rule s allowed to modify the ordenng of the search list according g the reg.est
.:f.{ seyuence of previous accesses. The class of Move Aheaa « rules 1s studied here: when an
N item s requested, it 1s moved forward 4 positions in the search st {or to the first position if
:}:'-_ already less than A from the front), for 1 < k <N=1 The rules Move-Ahead-1 and
b Move-Ahead-(\ 1) are better xnown as Transpose and Move-to-Front, respectively.
'_._:-j For convenience. let the items be named | through V. A common theoretical model
: : assumes a sequence of T reguests for items in the search list: the request sequence is formed
i) by drawing tem names randomly and independently according to the probability distribution
::::. P\ = {p‘ PPy }. That s, the probability that 3" is the next item requested is given by P,
k Assume without loss of generality that p2p., .
u‘\-
' The request cost 1s equivalent to the distance of a requested item from the front of the
- search hst: the first tem has request cost 1, and so on. The simulations described here
:'.:: measure expected request cost for various rules assuming a fixed probability distribution on
,,':',' the request sequence. The cost of reordering the list after each request, which is bounded
i"" above by the request cost, is not measured here. Sequential search rules have been studied
'_:', for almost two decades; previous work is briefly surveyed in the following section. Section 5.2
I:'_g discusses simulation details, Section 5.3 presents experimental results for expected search
:':.:: cost, and Section 5.4 considers properties of the search list permutations for various rules.
i
=~
"~
4
3

o)

.‘ AR LI)-'1“’-»--\"--#- N , '. ‘“
A Ln Fon

e ™ 5 - A 3
NS OO O MO POt
".,l" Ui S l" 1‘0 [l’n" WY MR N K n‘-‘t"‘ "r" Vitate TR .l et P

N S Yt s,
RARA_FARRCACRTRAAC

. s
L 3 I
o an

Ve

5.1. Previous Work

Moot previous analys=2s have considered sequential search as a Mdarkov process -1 -
sarCh st permutytion corresponds to a state and the state transiticn proebabe o o
terr ot from request grobabibties For a given rule and probability distribution ¢n rago- s
the a0 D el sogron cost s the sum over all search-hist permirabcrs of e
product of expected search cest of a permutation and its steady-state pregatat, 7
evpected search cost of a permutation 1s the sum, over all items. of the product of -7 *

orobabthty for 2ach item and its position in the permutation.

For a given distribution £ on request probabilities let V/(k.N.T) denote the expectad czir-n
cost of the Move-Ahead-k rule for a search list of size .V after 7 requests have been ma e .«

V(& V) denote the expected costas T — 0.

Exhibit 5-1 presents previous resuits for the expected costs of Transpose 1« =
Move-to-Front (k = .V - 1). The rules are compared to the Optimal Static (CS' r.i2 -
maintains the items in the search list by decreasing request probability. This ru -~ s
request probabilities in advance and never reorders the search hst. All resuits 5 s -
hold for arbitrary probability distribution P = {_plk p},...ptv} and all assume iyt
is initially in random order. The first, for the Optimal Static rule. is euasily 2ar .o
appears in [4], [6], [9], [10], [11]), and [12]. Formula (3) is due to Bitrer

is from Chung, Hajela, and Seymour (7], and formulas (5) and (6) are ‘.~

Exhibit 5-1 can be summarized as follows. The asymptctic wrpe ‘o
to-Front is never more than »/2 times that of Optimal Static .
cost for Transpose is n:ver more than that for Move ¢ ¥+ -
the expected asymptotic cost for Transpose requires - -
the search list (6). The rate of convergence 10 as,mpt.* -
Front by the summation term of formula 3 Ritrer 4

has better asymptotic cost than Mgve 1o Frore " i

The rules have also beer ara ;o ¢ e
especially Zipf's Distrbutics a - a
where

AD-A188 528 EXPERIMENTAL ANRLYSIS OF ALGORITHMS(U) CARNEGIE-MELLON 2/2
UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE
C_C MCGEOCH DEC 87 CMU-CS-87-124 AFMAL-TR-87-1160
UNCLASSIFIED F33615-84-K-1528 F/G 12/4

s ava Ben RS
L 1 T Y e 4

R T

:t-*’ A \
R pne

AL

hutehes
SN
“4
e,
e o
!
N
@ -Or

N "'\l o e N
4 K % \ $ \5:5 ‘f‘h 'h.‘\ S
:h » .'Lﬂ }&;J\ RSN \h.\-‘*.ﬁ"" RGN Ry o5

LUYHD 1$3L NOVT 0SSN [TenI

=i

=
5
™

3 3‘5‘3;]':!-.!.\1.1

“EEEN

A

G4
T

=i

Ol

-

N T e o, g;.l:

= BN o P

e - u
’” ‘o ,"n " 'l ol 0 h‘.

91

OS(N) = Z ip,. (H
MIN=1WN =172+ i 2
(V=1 =172 Zp+ (2)

=1
MN=LN) = MNV=1M + Y oy (1 A ¢)
MNV=1. V)= MW(v=1 — —PP-
1<i<jsN 2p +)

M(N=1.V) < #/2-05(N).)

ML N) < M(N=1.N), . (5)

MLN) = Pr(l,)” Z]"[- ”"’Z pym(). where ©)

Jj=1

= an ordering of the search list,

#(i) = the position of i in #,

Pr(1,) = probability of the optimal ordering occurring initially

Exhibit 5-1: Previous Results

N
Hy=Y Vij
J=1

H N is known as the N harmonic number and grows approximately as the logarithm of N. A
family of distributions related to Zipf's will also be studied; define the distribution zA by

=L
p‘— A

where ¢= H;\v = ﬁ llj".
j=1
Setting A =1 gives Zipf's Distribution, and A =0 gives the uniform distribution. When the
request probabilities correspond to Zi;if's. the asymptotic average search cost for the Optimal
Static rule is N/HN, and the average cost for Move-to-Front is about 1.386 times this (see
[10]). Gonnet, Munro and Suwanda [8] give closed forms for M(N—1.N) when A < 2.

Some worst-case bounds also exist. Since the worst-case cost per request is trivially N, the
amortized cost (the average cost over a worst-case sequence of requests) is used. Bentley

o l,gi‘t‘» o0 m"_cvl P) 1 b“’:ﬂ» ' iy 2

92

and McGeoch [2] showed that for any request sequence the amortized cost of Move-to-Front
is at most twice that for Optimal Static. in contrast, the ratio of search cost for Tranpose to
that for Optimal Static can be arbitrarily high. Sleator and Tarjan [13] showed that under a
slightly ditferent cost model, Move-to-Front has amortized cost a most twice that for any rule,

static or dynamic.

No expected-case bounds are known for general Move-ahead-k rules. Bitner [4], Gonnet,
Munro and Suwanda [8], and Rivest [12] have conjectured that for any two rules in this class,
the one with lower index will approach its asymptote more quickly and the other will have
lower asymptotic cost. (Bitner demonstrated this for the special cases of Transpose and

Move-to-Front.)

Move-Ahead-k rules have been studied experimentally with Zipf's Distribution describing the
request sequence. Rivest[12] presented simulation results at the sample points
N=7,T=5000 k=1, ..7 to support the above conjecture. Tenenbaum [14] measured
average search cost for & ranging from 1 to 7, N from 3 to 230, and T at 12,000. Although he
uses a slightly different model in accumulating costs, his tables of average search costs
suggest the best choice of k for each N within this range.

5.2. Measures of Search Rules

A practical experimental approach is to generate a sequence of requests and to record the
request cost of searching for requested items. This is the measure used in previous
simulation studies of sequential search rules (see (5}, [1],[12], and [14]). An alternative
measure is described in this section.

For a fixed permutation, the cost of searching for the next request is a random variable
depending upon the current search list permutation and the request probabilities. The
expectation of this random variable is equivalent to the expected search cost of the
permutation: call this expectation the permutation cost of permutation ». Permutation cost
as well as request cost is an unbiased estimator of expected search cost at time 7. In
addition, permutation cost is guaranteed to have smaller variance than request cost; see
Section 7.3 for further discussion of this idea. Many simulation studies may be improved by
replacing random variables (e.g. the request cost for permutation =) by their expectations (the
permutation cost).

Pt A
o

< S
: L YARAANRAN

W

A

-e-'.L‘.

"IT'I:"?'

=

93

For the simulations described in this chapter, permutation cost at time 7 is measured rather
than request cost. Otherwise the simulation programs are straightforward implementations of
the search rules: at every request, the routine for each ruie records the permutation cost and
then reorders its search list according to the requested item. The search lists are ail initialized

to the same (randomly chosen) permutation.

The request cost at time 7 can be computed in time proportional to the position of the
requested item. As noted in Section 5.1, this cost has asymptotic expectation 1'386"'//”,\/ for

Move-to-Front when requests are generated by Zipf's Distribution.

The permutation cost at time T can also be computed in time proportional to the position of
the requested item by keeping a list of summary information with the search list. The second
list records cumulative permutation costs counting from the rear of the search list. That is, if
s(i) denotes the name of the item in the search list and Py its probability of being

requested, then the f" entry in the summary list contains the sum
N

Z s()py
When :requested item is found at position i in the search list and the appropriate search list
permutation is performed, only the information in the first i positions of the summary list need
be changed, requiring time proportional to the cost of searching the list. The permutation

cost for the entire search list is found in the first position of the summary list.

This use of a secondary array was not discovered in time for the simulation study; in the
simulation programs, the cost of each permutation was computed by summing over the
search list (requiring linear time). The running time of the simulation routine for each rule was
therefore increased (for Zipf's Distribution) by a factor of between H~/1.386 (for Move-to-
Front) and H N (for Optimal Static, a lower bound on costs for Move-ahead-k rules). For this
approach to be practical, the variance in permutation cost must be at least this much less
than the variance in request cost. Experimental evidence suggests that this is bound was
easily met in the simulation.

Permutation cost must be summarized in some way: when 7 = 1,000, say, it is difficult to
manipulate or display the 50,000 numbers that would be deneratod over 50 trials Exhibit 5-2
depicts two possible summarization schemes. For a hypothetical search rule at fixed N, the
plusses in each graph represent the search cost at time T, for T ranging from 1 to 25.
Previous simulation studies have taken running averages of search costs, represented by the

e Ve D . ¢ R e 33 i LA A T
A N A DR O A GO

i

N L

94
5.0+ ?’-' 5.0¢+
o

+ © 4.5 *
4.5} |

— 4.0}
4.0} +

+ 3.5 r .
35— o .
3.0t .
ma od ——e
3.0t N . 25l o
T -o —e
2.5} *. 2.0} e e
+
2 o A ++++++++ﬁtﬂk-&-& I 1 5 A o 4
) 10 20 30 ~o 10 20 .;3_0
T .
a l b

Exhibit 5-2: Two Summarization Methods

circles in Graph 5-2-a, where a new running average is reported every fifth request. This
approach is not entirely satistactory in capturing true search costs: since the search rules are
characterized by high initial cost, the running averages consistently overestimate average
search cost attime T.

Graph 5-2-b displays grouped averages (also called batched means). In this graph, each
circle represents the mean of the previous 5 requests only, rather than all previous requests.
These means give a more accurate measure of average search cost over time because they
are less influenced by initial costs. In the following section batched means are used rather
than running averages to summarize search costs. The parameter G denotes the group size
for a particular experiment (in Graph 5-2-b for exampie, G = 5). Means are taken over all trials
for each group. At the sample point N =10, T < 100, G = 5, for example, there are 20 groups
per trial, each containing S measurements; if 25 trials are taken, then each group average
represents the mean of 125 measurements.

The experiments are paired in the sense that in each trial the same request sequence is
submitted to all rules. For each trial, the search lists are initialized to a random order,
identical for each rule. Random request sequences are generated by the method of aliasing
(see Section 7.7). The simulation program requires O(N) setup time (to initialize the search
lists and the random variate gencrator), constant time to generate a request, O(V) time per

AL AL A acd ath sl st atd it alli alin And et Sk Aok Add Aus Sal A8 S R AA S Al Aia 4o Sun e 230 g abe Aneancad -l)
3 T " T '

-
- -

[X XX
-

e

i ‘o2 a
O

p g

e
.3

o
b3

o

<

4

U T MO Y X Vi X NG 0 O OO O ORI IO OO
:'.”‘.!i (S i A ,':f.h',,' oy gt adp ottt Aot g e A

Y TR T W R Y v TR 1P W W W TAR YW TV ITETT W YW I U WTETE T F UTr T WU SR ENF NS EEREEREERT R RERERAe RV TSRS e TR A TR T W TR A TR T R TR A T

95

search rule to compute permutation cost per request, and O(k) time per search rule to

reorder the search list.

A sample point is determined by &, N, T, A and G. Because of high variance in the data
(even though variance was reduced by the new measure), 50 to 100 trials were taken at
various sample points. For efficiency and manageability of the resuits. & was only set to odd
values 1, 3... ¥=1. In most of the following experiments N was set at 6. 8. 10 and the
parameter A (determining request probabilities) at 0, 0.5, 1, 1.5, 2. The largest T value used

was 2000 and the largest group size was 200.

The following section presents experimental results for the mean permutation costs for
Move-ahead-k rules under request sequences generated by Z*. Section 5.4 considers other
properties such as variance and distribution of permutation costs.

5.3. Experimental Results

This section presents experimental results for the mean permutation cost of Move-ahead-k
rules. As the previous section notes, permutation cost at time T is an estimator of the
expected search cost at time 7. The following subsection presents results for request
probabilities generated according to Zipt's Distribution. Subsection 5.3.2 considers search
costs for varying A. For notational convenience, the Move-ahead-k rule is denoted by Mk. At
times the Move-to-Front rule is denoted by MF (rather than M(N-1)).

5.3.1. Zipf’'s Distribution

Exhibit 5-3 displays the mean permutation cost for 100 trials each at N = 6,8,10, T < 20, and
G=1. The curves correspond to the Move-ahead-k rules with odd index; for example
k=135 7for N=8. In each panel the extreme rules M1 and MF are denoted by solid lines
and intermediate rules are marked by dotted or broken lines. The curves are labeled
according to their final ordering at the right side of each panel.

Recall the conjecture that for any two of these rules, the one with higher index will converge
more quickly and the other will have lower asymptotic cost. Exhibit 5-3 supports this
conjecture for Zipfs Distribution. At N =6 (top panel), for example, the M1 has lowest cost
after the 11 request, but has highest cost at earlier 7. The M3 rule has least cost when
5 £ T <11 and is second-lowest at higher 7. Finally, the Move-to-Front rule (M5) has least

OIS

L NLONY

.-v-
<

Laer bk~ i

A 1'.‘-'

Rk E

LA

o

— 3.4 4
%]
Q
Q
g£3.2}
~
[
Q M5 = MF
§3.o g M3
b
2.8} M1
2.6 A A . —
o 8 12 16 f_O

e
a

Mean Perm. Cost
'S
(o]

o
A

Mean Perm. Cost
o
o

.‘
N

M9 = MF

ot
®

Exhibit 5-3: Mean Permutation Cost

97

cost when T <35, but eventually has highest cost of the three. Similar behavior is displayed for
N = 8: each rule in turn has least cost as T grows, with cutoff points at 7 = 3, 6.19 (marked by
arrows). Eventually the rules arrange themselves into their conjectured asymptotic ordering.
in general, rules with highest index dominate at the first few requests, then rules with lower

index dominate in sequence until M1 dominates cortinuously at high T.

At N =10, the asymptotic ordering of the search rules has evidently not been reached by the
20* request: the M1 rule, aithough declining steadily, does not yet have lowest cost. The
other ruies have reached in their conjectured asymptotic order. It appears, then, that the
number of requests required belore M1 dominates increases as NV grows.

_ Bitner (5] has shown that for Zipf's Law, M1 will dominate MF after ©(N?) requests: how
many requests are required before M1 dominates any rule? Assuming that the conjecture
about relative convergence rates is true, this is equivalent to asking how many requests are
required before M1 dominates M2. Although M2 was not measured in these experiments,
Exhibit 5-3 gives a partial answer. Far N = 6, 8, 10, M1 has cost lower than M3 for the first time
at T =11, 19. (=45), respectively. This observation and measurements at other .V values
suggest that the cutoft point grows approximately as the cube of N. The cutoft point tor k12
and M1 must grow at least this quickly in .V (again, assuming that the conjecture holds).

§ -------------------- § 55 + E .55 r -------------------
™ 9 - I :
]
.55 2
Q [! O sof
50r :
MS
1] S M7 45} Mo
T s P71 Srtaietupietafiiainiu i
A8} -eoomameceanes
.‘o d Bt -+t L TTL NP Ty L e
M1 M1
.................... 3sF
P 35 o '
0 2C:OO o 2000 (o] 2000
t
N=28 N=8 N=10

Exhibit 5-4: ''Asymptotic’’ Behavior

D
)

s
-
-
b3
»
[y

o8

Exhibit 5-4 presents “asymptotic’ average search costs when requests are described by
Zipf's Law. The data points in these graphs represent mean permutation cost for 100 trials
each at the sample points .V = 6.8.10. 7" < 2000, and G = 100: the rightmost data pcint in each
curve, for example, corresponds to mean permutation cost for requests 1901 through 2000

{and 100 trials).

The conjectured asymptotic ranking of search rules is supparted in these graphs, since
rules with high index have higher cost than rules with low index when 7 is this large. Only the
M1 and the MF rules are therefore marked; the intermediate rules appear in proper sequence
between these two. In each graph the cost of the Optimal Static Ordering (a lower bound on
Move-Ahead-k rules) is presented as a line at the bottom. The cost of the random
permutation rule, which randomly reorders the search rule at each request and has cost

(N+1)/2, appears as a line at the top.

The graphs are scaled for comparison by giving Cost / N, which corresponds to the fraction
of the list searched at each request rather than the absolute number of comparisons. On this
scale, the random permutation rule has expected cost (N+ 1)/2N and the Optimal Static rule
hascost 1/H v

Not surprisingly, Move-Ahead-k rules have worst cost than Optimal Static but better cost
than random orderings. As N grows, the range between the two bounds increases as
(N+1)/2N-1/H N.'Since asymptotic expected search cost for Move-to-Front is bounded by
approximately 1.386 times the cost of the Optimal Static Ordering (see Section 5.1), the gap
between the Move-Ahead-k rules and the random ordering must increase while the gap
between the rules and the Optimal Static Ordering remains bounded by a constant.

Exhibit 5-5 gives an idea of the relative asymptotic performance for the rules. In addition to
experimental resuits, each table gives asymptotic bounds for the Optimal Static and the Move-
to-Front rule, which can be computed from the formulas in Section 5.1. The column labels
(Optimal) and (MF) correspond to these computed values. Table 5-5-a presents mean
permutation cost for the last 100 of 200 requests (corresponding to the rightmost data point for
each curve in Exhibit 5-4). Table 5-5-b gives these vaiues divided by N (corresponding to
fraction of list searched) so that comparisons across N may be made. Table 5-5-c presents
ratios of permutation cost to Optimal Static at each sample point.

'HN grows as InN+y+ /(2N =1/(2N) + /(10N + ¢, where 0<e<1/(zs2M°) and v is Euler's constant
=0.577215660.

.g - i o -a a i ot & 4 & o o . A’k A d B A B A A A B A A & Bl B
A
O
e
! 99
‘1‘.
'.;,
s‘nj,.
’ N (Optimal) M1 M3 M5 M7 M9 (MF)
::L'. 6 2.449 2.62 2.77 2.88 2.966
’ 8 2.943 3.21 3.40 3.55 3.62 3.646
o 10 3.414 3.67 4.08 4.23 4.32 4.33 4.295
o
-: a. Expected Search Cost
¥
Ll
. N (Optimal) M1 M3 M5 M7 M9 {MF)
% 6 0.41 0.44 0.46 0.48 0.49
5 8 0.37 0.40 0.43 0.44 0.45 0.46
. 10 0.34 0.37 0.41 0.42 0.43 0.43 0.43
A
:: b. Expected Search Cost / N
- N (Optimal) ML M3 M5 MI Mg (MF)
) 6 1.00 1.07 1.13 1.18 1.21
;-.j_ 8 1.00 1.09 1.16 1.21 1.23 1.24
% 10 1.00 1.07 1.20 1.24 1.27 1.27 1.26
c. Expected Search Cost / Optimal
2
j: Exhibit 5-5: Asymptotic Search Costs
b
, In Table 5-5-a, the column labeled (MF) gives the asymptotic expected cost for Move-to-
~::: Front, for which observed values are given by the rightmost Mk rule in each row. The
"=
‘3- differences between asymptotic expected cost for Move-to-Front and mean permutation cost
Ca
‘-) for the corresponding Mave-ahead-k rule are '.063. 026, —.045 for N =6, 8, 10, respectively.
:) These differences are suggestive of the magnitude of error involved in trying to use
ut\'
/ : measurements at finite T to assess agsymptotic behavior (as 7— co).
-ri
'.?.v'.'. At fixed N, it appears that the expected permutation cost increases sublinearly in k; the
,‘ difference between costs for M9 and M7, for example, is much smaller than the difference
A<
» :-j between M3 and M1. It is possible that the differences between rules evens out as T grows; 1
) .'*: on the other hand, measurements at smaller T do not suggest significantly greater disparity.
e
.-' This conjecture of decreasing increments in search cost as k increases is supported by
o~ consideration of the behavior of the search rules. Suppose a search list of 10 items is
X ’
;{,’, initialized in random order. The Move-Ahead-9 rule is equivalent to Move-to-Front. In
+, J
'.",-f_ general, the Move-Ahead-7 rule performs a Move-to-Front operation uniess the requested
W
" item is in the ninth or tenth position in the list; as 7 grows these exceptions become rare, so

SCACNGH

$0 gt ety O JOW FOM PO YOS LN MDA 0) AUOCSOHRONH OISOSAOAD] [P YA e Ay S W S T T gt ey Yy BT
L e D T e B L e D G e e

BoCan e nd mai Nal San Slax ek Aoie Sak ol Lok £ g -—--w-“v-v-u‘r,mmm

100

the search costs for the rules are similar. In contrast, the Move-Ahead-1 and Move-Ahead-2

rules give different behavior unless the requested item is in the first or second position.

5.3.2. Varying Lambda

This subsaction considers permutations costs for Move-Ahead-k rules as A varies. Recall
that A = 0 corresponds to generating requests frcm the uniform distribution on the integers
(1.N]. Zipf's Distribution is generated when A =1. A higher value of A corresponds to a
steeper density function for request probabilities. Limited preliminary experiments indicate

that all the rules tend to converge quickly at higher A.

Exhibit 5-6 presents the mean fraction of the list searched for the sample points N = 6,8,10,
T <2000, and G = 100, with request probabilities corresponding to A = 0.5 and 1.5; compare
these graphs to corresponding results for A = 1 in Exhibit 5-4. Higher A tends to gives lower
average search cost for all the rules, in absolute terms (indicated by the change in scale) as
well as in relation to the random permutation rule. In addition, the spread among Move-

Ahead-k rules tends to decrease as A increases.

Exhibit 5-7 compares ‘“‘asymptotic’ search costs among the rules; each point represents the
mean of the last 100 of 2000 requests for 100 trials at each sample point. Graph 5-7-a
presents permutation costs for A set at 0, 0.5, 1, 1.5. Within each group, costs for each N are
ordered by increasing k. When A =0 the requests are uniformly distributed, so permutation
costs are identical for the rules, equivalent to (NV+ 1)/2. Graph 5-7-b compares the Transpose
{M1) ruie and the Move-to-Front rule (M5, M7, M9, respectively) for the three N settings; within
each group the points are plotted as a function of increasing A.

5.4. Properties of Search List Permutations

The theoretical measure “expected search cost” is defined in terms of a probability
- distribution on the search list permutations; the probability of a given permutation of the
4 search list appearing at time T (or as T goes to infinity) is combined with the cost of that
permutation to determine the expected search cost. To give a more detailed view of the

Move-Ahead-k rules, this section examines properties of permutation costs and permutation
frequencies. Intuitively, a good rule ensures that permutations with low cost appear with high

frequency.

- TR ™) ‘ LA (A LAK]
O) " . N COROEIAN DO NOOUUL)
sty l'v"'o?‘ OO 1 A*,"?‘. BOMY N ‘-."!.'?‘«' LA A Hadrdh

S TT Ty memoEe T T T ERITIERCTY WYY RTEYY Y WTY WY TCTY

EARRMAR 2ad rak ¢4
hacaldal Bak Maf ool o8 % o 8 Mok 2.8 o N RN T T NP P W IT T R W I N T e wIwy

101
Z z ,575 . = '550 e s e e e aeasetreeeaa
N s S | N
3 .575 3 3
3 - s Q .550} . C .s25r M
550} T -1 S —eee .500}:. ...
L M1 500}~ - 475} TR T
.525
475} A450F. ...
'500 e
- .450 4 42 .
(o] 2000 0 2000 4 50 2000
t t t
N=6 N=8 N=10
a: Lambda = 0.5
60 - .55
§ 2 sl Z [
S [Y .55} S
3 » .50¢
Q [S &
.50¢ 45
.50})
{ 45 .40}
" MS -40 g
e e e . M7
.40p------ ammmamtemeane Szstgazaz: SozozzIz
- .35 e e
R (I -
T .30} Mi
.30 A — - .20
0 2(300 '250 2000 (o] 2(:00
t
N =68 Na 8 N-= 10

b: Lambda = 1.5
Exhibit 5-6: Mean Permutation Cost

An appropriate experimental approach might be to sample search list permutations and

estimate their distribution as a function of N and 7. Unfortunately, the space of search list
permutations is of size M, which presents a number of obvious difficulties. For one thing, the

LE e

IF
£

}

L 35S

1

L
e

.
13

)

S

L MOOCAON)
) LA ()
R .‘.-.'.r‘i‘.!t':ii‘igﬂ:“

A e o

102
e 6.0 = 8.0¢
S ivee 3
3 * N=10 e + Transpose A0
2 . ON=8 kS © Move-to-Frant “0 55
- L L + N=8 h=d o
8 5 o .0 2 5 0 :P
S 3 "
§ § "-. .'_ 'y
g" L o Q." 8 92 .:G{ 1.0
4.0 ° 4.0F) .
. o
-+ (o3 ® o) -
FPY °o ‘q X A
- s
3.0t * o 3.0 *.
++ ~‘0_
+* "ooo 4,‘.. %
Ot N0 +
¥
2.0+—— —— i AN 2.0} ——i — — - “
AsO As.S Axt PR X-] N=6 N=8 N=10
a

Exhibit 5-7: Varying Lambda and N

simulation program wouid require an exponential amount of space to store the frequency
counts for each permutation. Also, many trials must be run to obtain a usefui sample when
the parent population is so large. The permutation cost was therefore adopted for the

simulation.

On the other hand, the permutation cost serves as a '‘signature’ for the permutation at time
7; it should be possible transtorm frequency distributions on permutation costs into frequency
distributions for permutations. How are permutation costs distributed among the
permutations of search lists?

Clearly permutation costs are symmetric: the permutation with ieast cost is in reverse order
of the permutation with highest cost, the permutation with second-lowest cost is in reverse-
order from that with second-highest cost, and so forth. It might be the case, however, that
most permutations have moderate cost and a few have extremely high- and low costs. For a
particular permutation «, where n(i) represents the position of item i in the permutation and p,
its probability of being requested, permutation cost is given by

N
Clm) = Z w(i)-p;
=1
Table 5-8-a presents permutation costs assuming N = 4 and Zipf's Distribution for the request
probabilities. The first column gives the index of the permutation in a lexicographical

4

A
RO

,!\.i“.lli.”‘.“' PO IO

RS A a4 a-d o o o NN

I e e e R el b R A el ok dhal Jhak el et ok’ Bl otk @ Sk Bk 4

N N O N W W W T W T W o W TV T TP Tor Wy Wiy

103

Lex Perm. Cost

0 1234 1.92 ;4.5
1 1243 1.96 Q
2 1324 2.00 Q
4 1423 2.08 24.0}
3 1342 2.12 s
6 2134 2.186 3
7 2143 2.20 §3.5
12 3124 2.32 &
13 3142 2.44
18 4123 2.44 3.0
8 2314 2.48
19 4132 2.52
10 2413 2.56 2.5¢
14 3214 2.56
20 4213 2.68
16 3412 2.80 2.0
22 4312 2.84
9 2341 2.84
11 2431 2.88 1.5
15 3241 2.92 (o)
21 4231 3.00 Rank
17 3421 2.04
23 4321 3.08
a b
Exhibit 5-8: Permutation Costs
ordering: 1234, 1243, 1324, . . . 4312, 4321. The second column gives the permutation and

the third column the permutation cost.

Graph 5-8-b presents permutation costs for the case N=5 and for the distributions
corresponding to A =1 (Zipf's Law) and A =2 (Lotka’'s Law) with a linear regression line
superimposed on the latter., The permutation costs are plotted against their rank.
Permutation cost for Zipf's Law has range [2.19. 3.18] and permutation cost for Lotka's Law
has range [1.56,4.44]. The probability distribution giving the most extreme range in
permutation cost has p= 1, pm:o: permutation cost in this case is equivalent to the
position of item 1 and ranges from 1to V.

Similar graphs indicate that ranked permutation costs for the family of ZM distributions are
evenly distributed over their range and are well represented by straight lines. For the case
A =0 (corresponding to a uniform distribution on requests), permutation costs would give a
horizontal line at 1/N-ZY. i=(N+1)/2 for N=$ this value is 3. The slopes of linear

0, 0

10000 e 00p 070 000,070 Vg 80 ATy W% W% (%0 T 17 Won A%y, 1% 4% Vg g 1 X " 2
AR '-"‘fl,‘?*.‘.'o:‘,'o!‘f',"ae‘,‘c."fo:‘,'&‘.’ﬁ?‘f’r’!‘,‘!«"fﬁf‘f’f‘ c-“_.n.‘!rf"@!‘fﬂ?’ 4‘.‘

"’;“-’- ’.“\ n,

o 4"

ey

P

-
)

NN

Y

A A A

- s

NN ANINY

.

vy

S

"-"k‘,L.. x,

«
L

104

regression fits to the ranked costs for A =0.1, and 2 are 0, 0.013, and 0.0252 respectively:
these and similar results suggest that ranked permutation costs have slopes that increase

proportionally to A.

5 4.5¢ N
° = -
Q STi e z-
g tz - =
Q40p=2 2"2e3_ - - -
Ry L] s 8§~ - -:--‘
‘(g z =3 - 2 s . - a_s
g 28l Tz -t
§3-5' :E: - :53_-:--
3 e IIlItive.aa
. sEifszzicgo--if
5:35=:;:f:!§!5=
HHHEHHIT
Pi§iigiazdfad;
2.5 SRR EREERIREE
N:6.Gs1A=1
2.0 - . . .
0 5 10 15 20
T

Exhibit 5-9: Permutation Distributions

Since ranked permutation costs form an almost straight line, permutation cost is linearly
related to permutation index (when the permutations are ranked by increasing cost). A graph
presenting the observed distribution of permutation costs would therefore have shape nearly
identical to that of graph representing the distribution of permutations by rank.

Exhibit 5-9 presents the distribution of permutation costs for the Transpose rule for 100
trials at the sample point N=6, T <20, G=1, A=1. The smooth bottom line in the points
suggest that the optimal ordering, with cost 6/H ‘~2.449, is regularly achieved. On the other
hand, the pessimal ordering, with cost 4.55, never appears. In general, permutations
appearing most often are concentrated at the low-cost end of their range, and the
concentration gets tighter as 7 grows.

Although this graph gives a good idea of the location of permutation costs, the distribution
of costs are not clearly seen. Exhibit 5-10 presents stem-and-leaf charts showing the
distribution of permutation costs for 100 trials at the request for N=6 and k=1, 3, 5, A=1. The
top three charts give permutation costs at the fifth request, and the bottom three give
permutation costs at the twentieth request. The two leftmost charts, for the M1 rule, present

ST TRTmE AR FETONET VRNV Y ITTAATNITE TR TTY T TR VO W e AT Ll B o) v - - bl ih b Aa~ S~ Aat ast ok R e aad An]

105

44 4 44 8
43 6 43 43 66
42 42 44 42
41 55 41 41
40 3 40 40 5
39 112 39 1 39
38 5578 38 59 38
37 3689 37 38 37 3
36 225799 36 36 02359
35 3 35 0 35
34 0167 34 68 34 1
33 11239 33 69 33 089
32 02223346 32 334 32 112334778
31 001116 31 11112334668 31 01111124667
30 2334779 30 1333556789 30 3335599
29 55689999 29 00337999999 29 39999
28 034446 28 01344 28 000002344456669
27 000011112256789 27 001112222667777788899 27 0011112227778
26 23556777778 26 11112777889 26 01133777789
25 0334668 25 034466677 25 23346677999
24 7 24 556678 24 5778
M1 M3 M5
N=6T-=5
42 8
41 1 41
40 3 40 15
39 6 39 9
38 55 38 44999
37 012 37 14 37 11349
36 2 36 5 36 57
35 35 59 ' 35
34 34 01466 34 0166
33 112 33 11556888 33 14455568
32 11244457 32 00457 32 144558
31 038 31 11 31 116
30 1114 30 111344 30 1114444446
29 033377789 29 000005 29 0377
28 00033347 28 00011344466778889 28 0000111344467788899
27 0000555566677888899 27 002555799 27 015579
26 0122367779 26 03333356799 26 00011233588
25 669999999 25 002246666666679999 25 006799999
24 68 24 6788
M1 M3 M5
N=6Ta220

Exhibit 5-10: Distribution of Permutation Costs

e
R
o 106
s
"Z:}: exactly those data points appearing in Graph 5-9-a at 7=5 and 7=20. The other two charts
0 .l\“
T give corresponding measurements for the M3 and M5 rules.
SN
o In each chart the stem corresponds to the first two digits of permutation cost, and the
:-\'f: entries in the leaves to the last digit. For example, the bottom line of the bottom right chart
AN
corresponds to permutations with costs 2.46, 2.47. 2.48, 2.48. In the top rcw of charts the
, _, optimal permutation. corresponding to the data point 2.45, appears once in 100 tnals under
&,
:'.-\ the M5 rule, twice under the M3 rule, ang zero times under the M1 ruie. (See Secticn 7.3 for a
:-E:_' discussion of how to read stem-and-leaf charts.)
AL
a The lengths of the rows suggest the relative frequency of permutation costs appearing over
‘.i_\ 100 trials. In the top charts, the search rules have only processed five requests and therefore
:-::: have little information about request frequencies. This observation is reflected in the farge
"~": spread of points in the top charts. M1 has a somewhat smoother distribution of costs than the
_ other two rules. both tend to M3 and M5 have stragglers and gaps at their high ends.
R ‘5
\j;: The bottom charts depict permutation costs after the 25th request. The M1 rule has greatly
gy . , . .
\..~‘ reduced its range of permutation costs, concentrating them towards the low end. It is
L interesting to note that although Transpose gives generally lower permutation costs, the
\f.' optimal permutation and other low-cast permutations (with costs 2.46, 2.47, 2.47) are never
\ »
.:';; seen in 100 trials. The M5 and M3 rules, although they have reduced the range of
T. "3-: permutations from those seen at the fifth request, still tend to straggle towards the high end,
:) giving higher mean cost overall.
"
'.J »
X o The graphs and tables in this section give preliminary insight into the relationship between
:'_::: , permutation costs and permutation frequencies. Theoretical characterization of permutation
El . .
® distributions for general Move-Ahead-k rules remains an open problem.
]
a8
-
A ‘u-“_
‘m,:.
=@
-7
:’
o,
-y
¥
o
.::',
%
04
Y,

: VN S A Y 0 SOBOIIN0) V.0 ;
N !,'.l:% N, ..""' ,.IIQ,G "l.l‘l .l'.'ﬂ"l“ i\qt .0 0!. .l Q’!."1'3 :" &‘1‘ '| 3.|".. A

T T R T R R T N N W W WU Wy VU WU ¥ Wy Wy »y ™ W W W= Yarerere
W N T O O TON Y O T N T

107

References

{1 M. E. Bellow.
Performance of Seif-Organizing Sequential Search Heuristics under Stochastic
Reference Models.
PhD thesis, Department of Statistics. Carnegie-Mellon University, Pittsburgh, PA,
November, 1983.

[2] J. L. Bentley and C. C. McGeoch.
Amortized analysis of seif-organizing sequential search heuristics.
Communications of theACM 28(4):404-411, April, 1985.

(3] J. R. Bitner.
Heuristics that Dynamically Alter Data Structures to Reduce Their Access Time.
PhD thesis, University of lllinois, July, 1976.

[4] J. R. Bitner.
Heuristics that dynamically organize data structures.
SIAM Journal of Computing 8(1):82-110, February, 1979.

(5] J. R. Bitner.
Heuristics that dynamically organize data structures.
SIAM Journal of Computing 8(1):82-110, February, 1979.

(6] P. J. Burville and J. F. C. Kingman.
On a model for storage and search.
Journal of Applied Probability 10:697-701, 1973.

(7] F. R. K. Chung, D. J. Hajela, and P. D. Seymour.
Self-organizing sequential search and Hilbert's inequalities.
In Proceedings 17th STOC, pages 217-223. ACM, May, 1985,

[8] G.H.Gonnet, J.!. Munro, and H. Suwanda.
Exegesis of self-organizing linear search.
SIAM Journal of Computing 10:613-637, 1982.

(9] W. J. Hendricks.
The stationary distribution of an interesting Markov Chain.
Journal of Applied Probability 9:231-233, 1972.

{10] D.E.Knuth.
The Art of Computer Programming: Volume 2, Seminumerical Algorithms.
Addison-Wesley Publishing Company, Reading, MA, 1973.

(11]

2]

(13]

(14]

J. McCabe.
On serial files with relocatable records.
Operations Research 12:609-618, 1965.

R. Rivest.
On self-organizing sequential search heuristics.
Communications of the ACL 19(2).63-67. February, 1976.

D. D Steatorand R. E. Tarjan.
Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), February, 198S.

A. Tenenbaum.
Simulations of dynamic sequential search algorithms.
CACM 21(9):790-791, September, 1978.

109

oo Part Il
Experiments and Algorithm Analysis

‘-‘.3 A quite ordinary fact, principle or technique from

g one branch of science may be novel and fruitful when

applied in the other branch.

. - W. . B. Beveridge

i_".‘ The Art of Scientific Investigation

;’J <+

‘.
>

Principles and techniques for a well-developed simulation study are addressed in this

e P
-

section. The contributions of the thesis are surveyed and suggestions for future work are

presented.

't,' AL WPLA N

OGO UG A IGO0 Do dlon P30 e
'l‘."ﬁ. SANE A T R ',"-',“a.’ DONGEEN L (A ‘igr_’ W

. A

[}

10

r

aealibi dnk Baf Mg aal tal Badh Sl asit Sar el J L vas sofh dat 2oh aak ok wal ool gl Lot salk Rak Sul dnlh Mk Sed Rol bl Aok Sabh bol Rof R Sak Aol Lol hel Dl fedte Sl e e
L)

ot
-

111

Ay & G A4 05 et S,

o Chapter 6
. Experiments and Algorithms

5 This chaptar discusses the applicability of experimental research to algorithm analysis and
) presents principles for performing experimental studies.

> 6.1. Why Do Experiments?
{8
:ﬁ One of the goals of this research is to demonstrate that experimental analysis can make
g significant contributions to the understanding of combinatorial algorithms. The previous four
i- chapters describe experimental studies of a variety of algorithm problems. Do the studies
f}_ contribute new understanding in the algorithm domains? Were they necessary to obtaining
3'-; the understanding? | claim the answer is yes. The case studies deal with well-known
' domains. Quicksort is one of the most extensively analyzed algorithms of all time. Heuristics
:j for bin packing have generated considerable previous research, both experimental and
"'- analytical. Sequential search rules been studied for over twenty years. Matching is a well-
y ; known problem on graphs. Despite the extensive previous attention these problems have
[]
) received, new facts were discovered. To my knowledge, the following observations from the
‘ 'j case studies represent new results in the problem domains; all were direct products of
N
::: experimental research.
& * Bin Packing
o o The observation that empty space in First Fit and Best Fit is asymptotically
- optimal when u = 1. The derivation of subsequent theorems.
[~ o The observation of nonmonotonicity in FF and BF, and the conjecture that
5: empty space is linear in n for some values of u.
Y o Measurement of the location of minima and maxima in the nonmonotonic
° curves. Observation that the local minimum shifts in n.
i o Measurements of k-item bins and gaps and detailed arguments for linear
b growth of empty space at some values of u.
~ o Proof that the expected number of 1-item and 2.item bins must be at least
" linear in n when u is greater than 2/3 and less than 1, for any packing rule.
. o Observation that Best Fit gives better packings than First Fit at all sample
points.
[\‘
L
» \:
\t
L
B -.:
5,
[
S

w - e
A A ,‘l 'i',n" KOS '.'1'

T A N T T T Y v 8 TV
NSO "’o" A r"‘o' i e'“-‘ S

o o
\%
::"E. 112
ol
',%, o Discovery that empty space in First Fit Decreasing packings is Q(1) when
LA u <£0.5. A subsequent proof of this fact and better understanding of the
’ structure of FFD packings.
“j»: o Observation that partial empty space grows nearly as the cube of u when
\ ~;3,'_ u <0.5. Discovery of a cyclic component in partial empty space.
X "I: o The discovery of a “critical region” in First Fit Decreasing where very bad
Ty packings appear, and a partial characterization of lists that cause bad
“)' packings.
o o Characterization of near-linear growth in u for empty space FFD packings
g when u« is between (.5 and the critical region. Observation of cyclic
: 7; behavior of empty spac- ‘n this region.
: i; o Comparisons of empty space and partial empty space in BFD and FFD
) packings of unitorm weight lists. Observation that the rules give identical
empty space very often.
-ﬂ.j. ¢ Greedy Matching
o
o o Observation of logarithmic edge cost of Greedy matchings in one
gy dimension.
.- o Observation of linear computation cost of the shortcut algorithm for Greedy
sy matching.
?_:j o Observation that the number of levels reached by the shortcut algorithm
e grows logarithmically in V.
y .»_-'; o Observation that 1/3 of the points are removed at the first level, prompting
T the subsequent (trivial) proof of this fact.
‘ o Observation that slightly fewer than 1/3 of the remaining points are
. removed at higher levels, and that the fraction removed is constant in ¥
‘'.'-:j although variance increases with the level number.
',:: o Observation that the mean edge cost per level is constant in N.
;. o An argument for logarithmic growth in expected edge cost.
'y o An argument to support the logarithmic number of levels reached by the
J shortcut algorithm.
V] :: o An argument for linear computation cost of the shortcut algorithm.
5'_: e Quicksort
?“: o Measurements of fixed-T strategies for an extension of the previous
® analytical model that explicitly counts the cost of median selection.
s o Discussion of tradeoffs between partition comparisons and selection
- comparisons.
‘o o Presentation of the M and N ranges where each fixed- T rule dominates (in
AN terms of total comparisons).
v, o Observation that in some metrics it is not necessarily a good idea to obtain
o the exact median, and an argument to generalize this observation.
o Measurements of a version of Quicksort that allows the sample size to vary
as a function of sublist size.
o Derivation of optimal choices of 7 that minimize the total number of
comparisons. Observation that optimal T grows approximately as the
square root of n, the sublist size. .
o Approximation of the optimal strategy by a square-root strategy, and
discussion of the 'best'’ square-root rule in the range of experiments.

=)

KRR o

=

BRAI I A

» &

iy e ant

- -

" -

-
.
-

OO)
I e e e

L
»

113

o Discovery of an error in earlier analysis and the derivation of the correct
formula. A new computation of the optimum cutoff value in Sedgewick's
MIX implementation of Median-of-3 Quicksort.

e Sequentiai Search

o Discussion of a new measure to estimate average search cost for
sequential search rules.

2 Measurements of search costs for a spectrum of Move-ahead-k rules when
request sequences are distributed according to Zipf's Law.

o Characterization of the area of dominance for each rule as the length of the
request sequence increases.

o Approximate measurements of asymptotic performance for each rule.

o A comparison of asymptotic costs as the “sharpness’” of the request
distribution varies.

o Characterization of ranked permutation costs for the z family of request
distributions.

o Comparison of permutation frequencies and permutation costs for a set of
rules.

Clearly, experimental results need not be limited to benchmark-style comparisons or tables
of measurements at a few sample points. Experimental analysis can lead to new
observations, new conjectures, arguments to explain observed behavior, new theorems, and

new insights into underlying mechanisms.

6.2. Applications and Limitations of Experimental Analysis

This section considers the type of algorithmic problems that might be appropriate to the

application of experimental techniques.

The algorithmic problems considered in the case studies all involve expected-case analysis.
Experimental work is naturally applicable here because it is generally a straightforward task to
generate input instances according to a well-defined probability distribution. Although this
research was restricted to consideration of expected-case behavior, application to other
analysis domains are possible. For exampile, experimental results are useful when the input is
gathered from an existing system. [t can be very difficult to obtain an adequate mathematical
description of realistic input to the system or to develop an efficient generation scheme;
gathering examples of “typical” input may be the only. approach available. A related
approach is to compare a promising algorithm against existing algorithms by testing on a
standard set of input instances. New heuristics for the Traveling Salesman Problem, for
example, are often evaluated on a set of problem instances which includes U. S. state capitals

A L ' o
A8 ’ s OO
A KRR RO

PPl indl, PRSI RSN

bkt el Sateai el caln aalatnib oot sal Ak aalh buf Sad mad Aol 4od ok ook Mok A A A a R aa A h o g 2 a rTwryTrTrTYTYws!

114

and major German cities (see [4] for more standard problems). Even when a model of input is
availlable and algorithmic behavior can be analyzed. experiments can give precise

measurements ot resources used.

These uses of experimental research have many properties of standard benchmark.style
simuiatton. which differs somewhat from the approach taken here. Within the context of

expected case analysis of algorithms, the uses of simulation are many:

Experiments can be used to compare al'gorithms. Simulation results can identify the “best”
algorithm within a class for the given sample points. This information can be used to
characterize dominance among the algorithms, or to identify input properties that determine
best performance. Many examples of this use of simulation can be found in previous wark as

well as in the case studies.

Experimental results can direct theorem-proving efforts. Experiments can be used to
support or refute conjectures developed by partial theoretical characterization. Experiments
are especially valuable when they contradict prior intuition. In the Bin Packing study it was
widely conjectured (see [3] or [6], for example) that since online algorithms for bin packing
(including First Fit and Best Fit) have no opportunity to rearrange their input, they cannot be
asymptotically optimal; even in an expected-case model they would have an asymptotic bin
ratio strictly greater than 1. Simulation results suggested that this intuition was wrong since
empty space was observed to be sublinear in n, implying that the bin ratio must approach 1.
Also surprising was the observation of nonmonotonicity in empty space as u varies; this

phenomenon has not yet been characterized theoretically.

The Greedy Matching study gives another example: in all higher dimensions, the Greedy
heuristic produces matchings that are within a constant factor of optimal. It is natural to
conjecture that this will be the case in one dimension, and Steele had tried to prove the
constant-factor bound. Experiments demonstrated, however, that the bound does not hold,
since the cost of the Greedy matching grows logarithmically in N and the Optimal matching is
known to have constant cost.

Early in the Quicksort study, simulation results were compared to Sedgewick's formulas for
Median-of-3 Quicksort. Observation that the measurements matched every formula but one
led to the discovery of an error in the theoretical formula and to a recomputation of the
optimum value for M in Sedgewick's fast implementation of Quicksort.

B)
LU O I X WM

v
115 !

"f: Experiments allow greater precision of analysis. Experimental results are generally

:: expressed with more precision than current theoretical approaches can attain - for example,
. 4 an experimental result is more naturally given as 3.45.V rather than O(V'). Experimental results
- can therefore suggest directions for tightening current theoretical bounds. Simulations of
jf:j First Fit Decreasing led to the conjecture that empty space is constant in \. The theoretical
* bound in [1] gives a constant of at least 70'C and the proof only holds for very large lists.
.’ Floyd and Karp [2] have recently reduced the asymptotic bound to 10 under a slightly different
.,:‘: averag-case model. Experiments results suggest, however, that empty space is rarely outside
f the range 0.7x0.5. The measure partial empty space reveals even more precision; this
:,]\. measure converges in n and is never observed to vary by more than =0.005 at high ». Partial
) empty space is more precise than empty space by a factor of 100; it is more precise by than
N the current theoretical bound by a factor of 10000.
&
,} Simulation can give results more efficiently than analysis. Experiments can be of use even
‘ when theoretical analysis already exists, especially if simulation is more computationally
- efficient than theoretical analysis. For example, in the Search study a formula exists for the
:'.j asymptotic search cost of the Transpose rule. Computing this formula requires N! time,
however, and has only been done for small N and requests described by Zipf's Law. Chapter
. = 5 gives simulation measurements for this rule (and others) for a range of distributions that
x inciudes Zipf's Law.

:i:' Experiments can generate new insight, new arguments, and even new theorems.
Experimental results need not be limited to ‘“‘mere measurement.” In the case studies
X functional relationships were characterized ahd detailed arguments were developed to
::; explain observations. In the Bin Packing and Matching studies some arguments were
\ formalized to become theorems. Detailed views of algorithmic behavior and precise
o measurements can give deep insight into underlying structures. The potential for producing
new ingight gives strong motivation for using experimental tools in this domain.

o

o As a simulation problem, the study of algorithms presents special difficulties as well as
"y opportunities. Textbook examples of simulation problems generally come from studies of
’:. domains such as economic systems or performance of computer operating systems.

Problems in algorithm analysis differ in a number of ways from more familiar domains:

' ‘;_ o Algorithms are simpler to simulate. Unlike economic systems, they have simple,

e rigorous, mathematical descriptions. In expected-case studies, the input usually

has a simple mathematical description as well.

b

-

b

iy

s !

-
b

TN 0% 3 2 Mk XY T ; v W A A A P R - an
S) 0 N0 ORIOROCK O eTE VR gTF 0070 (Vb U (VR R Vel Wiy " O N OO OO
RECAAAA '!‘A"’A'-?“v“'f"‘- oﬁ‘.:'B.'!d' oo ‘\9”‘.”"‘.?’ -‘"9’-!' "‘,"‘F,l"‘,!'l’-p-“.ﬁ ‘li.'.'ze"-“‘.‘vdnf»?-‘ 5‘;3“‘,"'5.'3?L0h3'.‘0-'—" 5’!".‘,’." Y ”,"3.9","1'3 P SO AT

P

T N A N N AR TR TN T T R Y N T O T T W T W T W T W W T R T R HT TR TEEETRTE TR TN TET WNL R T AR LS WY g W LW LT W WL ‘:“‘.‘W‘,"T‘,"\"_v:\"\.'\-“,“'.w

.‘:_- |
s |
r |
NS
2z, 116
N
o
:_.: o Some issues of traditional simulation research, such as developing and validating
h - realistic madels, become less important. In current practice algorithms are
analyzed in terms of simple abstract machines and weli-defined probability .
LA . . .
/ N distributions. While an eventual goal of algorithm analysis is presumably to
o obtain theoretical results that accurately reflect computation on real machines,
: this goal is approached incrementally in order to establish a firm matheratical
base.
.Y
{ .
: e Algorithms have relatively few parameters. Except for the Search study, which
:'.'- involved parameters .\, T, k, (5, and A. the case studies and previous work were
N , .
- generally restricted to consideration of one or two parameters. As a result the
i complexity of displaying and analyzing interactions between parameters is
7 generally less than for classic simulation problems.
s‘ y e Experiments are often less expensive. Algorithms are interesting because they
\ g are efficient. In the case studies simulation time per trial was generally reckoned
2 in seconds, while simulations of complex systems can require hours, even days of
‘_:: computation time. There are of course exceptions to the above generalities.
N Simulations by Johnson and McGeoch [5] of a simulated annealing algorithm for
the Traveling Salesman Problem took up to six hours per trial.
':f-j It might seem that the study of algorithms presents a much simpler simulation problem than
o standard domains. On the other hand, simulation results must be compared to theoretical
4 characterizations of algorithms. Theorems have been preferred over experimental results
:,. because they represent certainty about bounds on algorithmic behavior and can sometimes
v
“ be generalized to broad classes of algorithms and input distributions. Theorems also express
1S
! x understanding of the mechanisms underlying the algorithm. In contrast, experimental results
B consist of measurements at specific sample points with specific implementations. As with any
.. experimental domain, generalization of experimental results without real understanding of the
e
:i underlying process must contain some degree of uncertainty.]
™
.0
) Two fundamental problems in applying simulation to algorithms are how to reduce
f- uncertainty in simulation results and how to use the results to gain new insight into underlying
o
: mechanisms. While these problems cannot be entirely eliminated, much can be done to
by lessen their severity. The following section discusses principles for experimental research in

this domain. Chapter 7 presents a number of tools that can be applied in order to realize
283 these principles.

-

B
o

NEY

O JTI0Y

-
27X

L]
)
(]

-

. -

7,

- & o &

-

o lr“:’r"‘_,-.",;a_r",.,

' z ; P L% . TR '1) P T . P A I ar AJE Tic N Thdt
F X ! -y A AMNRY LACTC R PO O IR
D T s o Y N R e o o A O I AR S K

117

6.3. Principles

Four general principles for experimental research in the domain of algorithm analysis are
presented in this section. The principles were developed from experience with the four case
studies, three small experimental studies not presented in this thesis, and the survey of

previous work presented in Section 1.2.

e Match the simuiation resuits to a weli-defined analytical model. Simulation
research in algorithrn analysis is usually prompted by unanswered questions from
theoretical approaches. Expernmental approaches should be viewed as a
companion to theoratical appreaches when studying a particular algorithm. it is
therefore important to reduce as much as possible the distinction between
simulation model and simulation program, and to obtain simulation results that
can be expressed in analytical terms. Sections 7.1, 7.2, and 7.5 discuss
techniques for establishing the accuracy of simulation results.

e Search for a good “view” of the data. A good view of experimental results is
obtained when the variation at fixed sample points is smail relative to growth as
parameter settings vary. When a good view is obtained it is generally easier to
obtain accurate measurements, to assess functional relationships, and to
discover underlying structures. The view of the data can be improved by the use
of appropriate data-analysis tools. In addition, a number of techniques may be
applied to improve the results of the simulation before data analysis occurs.
Sections 7.1, 7.3, and 7.4 discuss techniques for improving simulation resuits.
Section 7.8 discusses analysis techniques that proved useful in the case studies.

e Analyze the data, don't just measure it. Analysis of experimental resuits should
not stop at a tabular presentation of means for each sample point. Measurements
can be transformed and combined and functions can be fitted. The object of data
analysis in this context is to manipulate measurements to gain new insight into
relationships between parameters and measures. Section 7.8 presents a number
of data analysis tools.

e [terate theoretical and experimental approaches. A fundamental concept in
traditional experimental domains is that theory and experiment must be iterated.
An important component of the case studies was the rich interaction between
experimental and analytical approaches to analysis. | tried to preserve this
evolutionary development in the presentation of the case studies. Not only did
experimental results direct theorem-proving efforts, but theoretical insight often
suggested more useful measures, better choices of sample points, and more
efficient experimentation. Sections 7.1, 74, 75, 7.6, and 7.7 explore
opportunities for improving the simulation study and for developing simulation
programs that support an interactive, iterative approach to analysis.

These four principles can be approached at many levels. Techniques of algorithm analysis,
for example, can suggest better measures, faster simufation programs, and ways to check the

118

accuracy of simulation results. Statistical methods for sampling and experimental design can
be applied to gain more efficiency of experimentation and to eliminate redundant
experiments. Program development tools are needed in building efficient simulation
programs and supportive environments. Many practical hints fram the domain of simulation

can be applied. A variety of data analysis tools are useful.

The following chapter presents practical hints, statistical techniques, and data analysis tools
for achieving the four goals listed above. The discussion of Chapter 7 results from experience

with the cases studies:. | believe they can be of use in many simulation studies of algorithms.

['d ..»’vf‘,»lfffvr ."-.'A_'“.r 0 4 T RN ¢ 10) ..“..'.' AGACRAGAN
WA P PR .‘!" A e MO PRI .-“‘-0&!?!'&,% RS N A XML KX RO

O NUOBG L i
K] \lt’;.l“‘q"'.~‘la'.'xlh.‘ ‘."“1" o

fa il ave ol sl ot oS nid ol aind alS alleC ekl add g it adhit il sl Dulle alhi "ol allh* adie * ol oAt Bat shar pat cnh Aeb ae Sas S Al Ak Sk Aud Sad kSl Suh ek S Sad ok dhed Sk Yol Y YRdh 'Sk |

119

References

1] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch.
Some unexpected expected-behavior results for bin packing.
In Proceedings, 16th Symposium on Theory of Computation. ACM, April, 1984.

(2] S. Floyd and R. Karp.
FFD bin-packing for distributions on [0, 1/2].
In Proceedings, 27th Symposium on Foundations of Computer Science. |EEE,
October, 1986.

(3] D. S. Johnson.
Near-Optimal Bin Packing Algorithms.
PhD thesis, Department of Mathematics, Massachussetts Institute of Technology,
Cambridge MA, June, 1973.

(4] S. Lin.
Computer solutions of the traveling salesman problem.
The Beli System Technical Journal 2245-2269, December, 1965.

[5] L. A. McGeoch.
Personal communication.
1986.

(6] H. L. Ong, M. J. Magazine, T. S. Wee.
Probabilistic analysis of bin packing heuristics.
Operations Research 32(5):983-998, September-October, 1984.

]

I KNS

.

L
e
3
h
[

p o™

120

“_...._
Yo =YY

LR

PolatN

.

LR A

-t
PP

Bl vty

L4
LS SR N .

w

5

TSR ‘Flﬁ’ o

Cd . e- - - -
LSRNy . - nn . . . , A ’
W ’ f‘..’,._"_ ¢ S AN L U DL o NSO

40,
PRV

H . 121

;

3':

2

.

-

o Chapter 7
Tools and Techniques

‘

This chapter presents tools and technigues for enhancing experimental studies of

‘ algorithms. Algorithmic insight and program development techniques are applied to improve
‘ efficiency and accuracy of simulation programs. Statistical techniques such as sampling

: plans are considered. A number of guidelines and techniques from the field of simulation are

\ presented. Finally, usefui data analytic tools are surveyed.

.;:

Many of the topics addressed here are found in advanced texts on simulation, experimental

;‘, statistics, or data analysis. The contribution of this chapter is to gather knowledge from
- diverse fields, to describe those techniques and guidelines that were particularty useful in the

case studies, and to discuss their application in the domain of algorithm analysis.

j Familiarity with elementary statistical analysis is assumed. For a survey of statistical
¢ concepts, see DeGroot [12] or Mosteller, Fienberg and Rourke [21]. Feller's [14] two-volume
. work is a standard source in probability theory. Box, Hunter, and Hunter [S}, and Miller and
. Freund [20] discuss statistical issues that particularly apply in experimental research. For

v texts on simulation, see Adam and Dogramaci [1], Brately, Fox, and Schrage [9], Fishman

; \ [15], or Hammersley and Handscomb {17]. Many of the data analytic tools presented here are

! ; described in Tukey [24], Chambers et al [10}, Cleveland [11], and Mosteller, Fienberg, and

P Rourke [21].

)

E E The principles described in the previous chapter can be approached at many stages during

y 2 the simulation study. For example, the correspondence between measurements and modeis

‘st can be influenced by choice of measure, correctness of the implementation, choice of

. random number generator, and the placement of sample points. The following sections are
*: organized by procedural issues that arise in the course of a simulation study.

:

o

~‘

&

S e e 35 % % %]

AT 2™,
0
Lt

F) DAL o OB o 0 2 MOU TGN AR S A
A e A e o P O R s

e
o~
-"ﬁ~
:_:-\._ 122
-
L 7.1. Choice of Measure
. Usuaily the measur2 adopted for the simulation s suggested by previous theoretical
analysis Simulation results should match theoretical measures as much as possible Timing
’ statistics of a program are therefore rarely useful when investigating the time complexity of an
":"-5: Agorthm. noise due to 'mplementation factors, machine loads. or compiler optimization can
._ seriously degrade this measure. Accurate results can be cbtained by embedding simple
\ boorkeeping mechanisms into the simulation program to count the number of key operations.
Measures should be suggested by theoretical results. but not necessarily censtrained by
them. It may be the case that the analytical measure of interest is difficuit to measure
-:::-:'.: experimentally. This occurs, for example, when the algorithm is a heuristic for an NP-hard
:::Ej_ problem and performance is expressed relative to the optimal solution (which cannot
::::L generaliy be found).
"‘ If the measure suggested by the simulation model is not amenable to experimentation, it
N :::'..j might be possible to identify an alternative measure that is theoretically interesting as well as
£ experimentally practical. The Bin Packing study used the well-defined and easily-computed
'\ measure empty space. for example, rather than the bin ratio. In Search, the analytical model
y involved the steady state probabilities on the N! search list permutations. Since this measure
is impractical for simulation because of the size of the sample space, the alternative measure
permutation cost was used in the case study.
f:-_’_f Choice of measure is also constrained by available analysis tools. A too-detailed measure
'f': can produce huge amounts of data, possibly overwhelming statistical analysis tools, graphical
-":.: display packages, or even machine storage capability. At one point in the Bin packing
".:' experiments | tried generalizing the measure number of big items (which counted the number
r of weight list items with size greater than 0.5) to the number of items with weights in each of
~’ the subranges (0. 0.1}, (0.1, 0.2}, ... (0.9, 1}. This measure was discarded due to the ten-foid
A

increase in data and the difficulty of characterizing empty space in terms of ten variables.

Early experiments in the Search study reported permutation cost at every T for T as large as

'h‘;.. . . .
L 5000. It quickly became clear that a summarization scheme was needed, so grouped averages
-\ -
.: were adopted.
ot
N Whatever the initial measure, be prepared to change it. At the beginning of a simulation
:;‘.I.-; study, consideration of theoretical results can suggest good measurements. An important
.-
,
o

gNCa

S _, e I N T S A

P ORION ‘ MO (O ehE
Al Mt g ,».i‘-’"q!";u!l!nk'p't‘:’.s?;‘«'f- fre W e el e ettt i foTaets

W W N o o e T ™ W Y W WV W P Y T T Ty Y T AR LS AAS LA LA A |

123

component of the terative approach to experimental analysis, however, is to modify the
measure as new insight is gamed. In the case studies the measure g=nerally became more
detailed as expenments evolvad. In Bin Packing the measure progressed from ermpty space to
more detatlled measurements such as part:al empty space, counts of x tem bins, and aps in
#-t2m b.rs In Matching the measures changed from total costs to consideration of costs at
gach ievel. Even if there s no hope of theoretically characterizing the detailed
measurements, they are valuable for giving insight into underlying structures. increase in
detail was often accompaned by a reduction in the number of trials and sample points. due to

hmitations of technology and patience.

7.2.Ensuring Correct Results

Experimental results are only as strong as the fidelity of the simulation program to the
simulation model. The relationship between measurements and the algorithmic model must
be close and well-understood. A number of techniques for checking the accuracy of

experimental results are available.

It is often possible to compare measurements against known theoretical results. This
situation arises when the simulation involves an extension of a standard model, as was the
case in the Quicksort study. In this study, checking simulation results against formulas led to
the discovery of an error in previous theoretical work.

Comparison against known theoretical results can also be useful for clarifying details of the
simulation model. For example, the simulation program for Quicksort requires a routine to
generate the median of T integers selected randomly from [1, N]. For the analogous problem
on the real interval (0, 1], the median of T randomiy-selected reals has a Beta distribution with
parameters (T+1)/2 and T. Beta variates can be generated in constant time per variate, so |
implemented a generator that produces Beta variates and scales them to the integers [1, N].
The simulation model is not exactly met by this impiementation because Beta generation
corresponds to sampling without replacement and the model to sampling with replacement. |
reasoned that this difference would not significantly perturb the resuits since T is generally
much smaller than N. | was incorrect: measurements under the Beta scheme differed
significantly from the model, so this method was discarded.

Once a clear specification of the model is obtained, the next task is to make sure that the
simulation program performs as specified. Standard program verification and validation

Aol Dl Sl Endh Bad Bad e St S i A i Al Al St ol IRl i A i el e A A A A e A S i A A R T e Sl T S Al A Aad A |

- -
AT s

. =

124

techniques are appropriate her2 and shculd be applied. Limitations of machine precision can

= N

be an important factor since theoretical models generally assume properties of reals.

In simulation prcbiems the choice of pseudo-random number generator can be critical

There 1s a vast hterature describing empincal and statstical tests of generators as well as

NN

evaluations of well.known generators. Random number generators us=d in the case studies

are descrbed in Section 7.7 No matter how many statistical tests a particular generator

passes it may have subtle non-random properties exposed by the simulation problem. Early

in the Search stuy. for example, the cost per request exhibited unusual periodicity in the

DR RarY

. number of requests. This periodicity was not dependent upon th2 random number generator i
in any obvious way because the cost function depended upon th=2 search list ordering as well |
as on the requested item, that is, cyclic patterns in the requests should not necessarily give
- cyclic patterns in search costs for a/l search rules since each rule reorders its list differently.
Y In any case, the cyclic behavior clearly indicated a violation of the assumption of
‘ independence in requests: replacing the linear-congruential generator by an alternative

N generator caused the periodic behavicr to disappear.

" The most import assurance of experimental integrity is replication, a standard component of

t research in the experimental sciences. At the very least, critical experiments should be

X replicated using an alternative random number generator. An even better practice is to

develop a secondary simulation environment, varying such factors as implementation

strategy, random number generator, and machine word size. If resuits are consistent across

the two environments, then there is strong assurance that the results are independent of

. environmental factors. Section 7.8 presents tools for comparing results from separate
implementations.

7.3. Variance Reduction Techniques

One of the principles for simulation research is to obtain a good view of the data - thatis, to
reduce variation in measurements at specific sample points with respect to growth as
A parameters vary. One way to obtain a better view is to reduce variance in the measurements
> at each sample point.

An obvious way to reduce variance is to take more trials per sample point; Section 7.8
p! discusses methods for improving the efficiency of simulation programs. in addition, many
! variance reduction techniques can be incorporated into the simulation programs. Variance

R, "VI

Y St P N A P TR TA N A P P RLNe 3 A WPy .)) D JOU
v B P Pa VY v ; < CRN) MR G AN MM SO LN
e <Tghthah, .'.": !:. ol 0 ,'a !’5.-! i ; c‘f‘-‘s"h- Dt ht""".*a’ R R Rt

s
'..bl
i 125
:-: reduction techniques that were useful in the case studies are described in this section For
-.\
turther discussion and descnptions of other techniques. see texts on stmutation such as [9].
. [15]. or [17].
:'} in the tolfowing. assume that algonthms A and B are being stucied at a hixed sampi2 point:
: measuras are denoted by V' Y and /. Since input instances are rardomly generatad, the
T measurements at a given sample powint are random variables from some (unknown)
-‘. distribution. Lat X denote the vaiue taken for measure \ at the tnal.
N .
. Conditionai Monte Carlo
. In studying algorithm A, it may be the case that measure X is a function of other random
-::j'- variables in the simulation program. Variance in .X can be reduced if the intermediate random
:‘,Cj variables are replace by their expectations. Suppose, for example, that there exists a
-~
N measure Y for which Z = E[X| Y] can be either analytically calculated or efficiently estimated.
?_ Instead of estimating E[X] by averaging the X values, a better method is to take the means of

-

‘W'IIV'
LANMALNNN

the Z values. The second measure is an unbiased estimator of E[X] and is guaranteed to
have smaller variance than the first (see [9] Section 2.6, or [17] - the actual values for
variance depend upon the specific problem). This technique is called Conditional Monte

-

" Carlo.

T
| : In the Quicksort study, the random variates associated with the number of exchanges and
" :', the number of selection comparisons performed at each recursive level were replaced by
:) their expectations. As a result, the random variates representing the total number of
:5; exchanges B and selection comparisons F (which are summed over all recursive levels) had
_.S: smaller variance than would occur in a straightforward implementation of Quicksort.
'_.:: Similarly, in the computation of Insertion Sort costs, the random variables associated with the
" number of insertions and insertion moves for sublists of size less than M were replaced by
';:: their expectations. Corresponding measurements D and E (representing sums over all
b :a. sublists) had smaller variance than would be produced by an implementation of Insertion Sort.
o

[X In previous simulation studies of Sequential Search rules, the request cost (the cost ot
\' searching for requested items) was used as the simulation measure. Request cost is a
'-" random variable with value depending upon the item requested and upon the current
E permutction of the search list. For a fixed permutation, request cost is a random variable that
L-,) has as its expectation the permutation cost - the average cost of searching for items in the
4
. C
o

|.)

o R OR LR an bt e \ o
(". DN .a, 'y .-"." ATt Gttt et Sttt St

s YT W . W'TWWWWWWWWFWW'?VT

126

permutation. Replacing the measure 'equest cost by permutation cost is another application

of Conditional Monte Carlo.

In this case the decrease in varnance was accompanied by an increase in the running time of
the stmulatien program. since request cost could be computed in the time it takes to find an
item s heraas carmutation cost took tme proportional to V. the size of the search list. For one
model of request probabilities (Zipf's Law), a lower bound on expected search cost per
request s .\/H.\. Computing permutation cost tnerefore increases running time by a factor of
/{\ per request. for this vanance reduction technique to be successful, variance shouid be
raduced by at least tis much. Although improvements in vanance cannot be derived
because the probability distribution on permutations is not known, experimental evidence
suggests that the technique is cost-effective.’ Examples of successful tradeoffs between
vanance reduction and simulation time in many simulation domains are given by Hammersley
and Handscomb [17]. In one remarkable example ([17] page 88), computation time was

increased by a factor of 4 and variance decreased by a factor of 10*.
Control Variates

Suppose that measure E[Y] is to be estimated for algorithm A. Suppose aiso that there is
another measure Y that is positively correlated with X, and that E| Y] is known; without loss of
generality, let E[Y] = 0. Yis called a control variate for X. Y may be another measure of A (an
internal control variate), it may correspond to some property of the input, or it may be a
corresponding measure of algorithm B that is similar to but simpler than A. For every positive

constant k,

E[X] = ELX — kY],
VarlX - kY] = Var{X] + KVar{}] - 2kCov{X.Y].

If the sum of the last two terms can be made negative, then Var{X— kY] < Var{X], and a better
estimator of E[X] is gained. Brately, Fox and Schrage [8] (Chapter 2.3) disci:ss difficulties of
establishing that the variance behaves as desired and of determining the correct value for k in

a given problem instance.

The intuition behind the use of control variates is that X can be “seen" more clearly if a
positively-correlated source of variation can be subtracted. Control variates were used in this

1‘rhis point became moot when an algorithm for computing permutation cost in the time proportional to that of
computing request cost was discovered too late to be incorporated into the simulation study - see Section 5.2.

I N A DN R P UYL B RS Tyt BT N7 AT N I W) N Rty RGO W T
; . .- S, W, Y, .' 5) A AL 22l _. ® l“.h"’ﬂ!’.f RN _\. I A‘},, ,p‘l % ’5.&':5’.!.‘7.‘.“0%"(\‘- O.v"l’-‘l‘til‘-,lg.”:w 3t ."Qﬁ.iaﬂ’:’.‘:’

N

.

T

" - .

U 127

oy

‘_-:-j informal sense throughout the case studies. In the Bin Packing study, the bin count was the
'\'~'_l measure suggested by previous theoretical analysis. The control variate sum of the werghts
"o
. was identified. and the measure empty space (which represents the difference between the
.j{. bin count and the sum of the weights) was adopted for the simulat.ons. In the study of First Fit
::::' Decreasing. empry space n the iast bin became a control variate fcr empty space and the
SN

=y difference. zarrai empty space, was measured.

S

Paired Experiments

N

A

B s .

) -::'. When the control variate comes from another algorithm, the use of control variates is called
+ R

J paired experiments. For example, suppose that algorithms A and B are to be compared in
N terms of measure X; in particular, the object is to estimate the expected difference
{:: : D‘= XA., - XB,:‘ The variance of D’ is given by

A

:-'3;: varD | = Var[XM - XB.:J

'__.r_‘ = Var[Y,]+ VarlX,]-Cov[X, , X,]

) 'J‘:

'.:;: Variance in D, can be reduced if the covariance of X 4; and X, can be increased. If
L9 : !

N simulation experiments for A and B are run on independently generated sets of input, then
SHEY
{ Cov{X i Y.1=0. In many situations, however, inputs that give high measurements for A tend

j::-j to give high measurements for B. In paired experiments, different algorithms are given
_:{jf identical sets of inputs so that differences for corresponding trials may be computed rather
.:::l-_ than average differences for independently generated trials.

) .

~ In the Search study, requests for items with low probability tends to produce high request

.
‘ :.'-S: costs for any reasonable rule. If algorithms A and B are given identical inputs at each trial it is
. ; likely that the covariance of search costs would be positive. Paired experiments were used in

o

: Search and in some of the Bin Packing experiments. In both cases, experimental evidence as
. well as intuitive arguments for positive correlation of measurements were available.

2

Y 7.4. Placement of Sample Points

p]

4 Placement of sample points can also improve the view of experimental results. Some rules
'::ﬁ;: of thumb are presented in this section.

250

W Measure the largest problem size possible. A better view of the data is usually provided if
3¢

-I‘._-

i

o

(L

f"-

o,

04

vy
-~

-(.r..w\' A e ,,A. .-.- Y N Ty ‘. W “'.. i) o “"Q.
Ia. ey A A AN, 'c'!'p.l 'A% 8% 1 ,. {) l,‘._.‘ }A. b ¥ ..‘D“.l.' I” 1..&,0 by O

A A

AR —

Ve alis 5 Y s

LRGN S

A P

Eaed

by e axsas
L)

128

extremal parameter values are taken. An important special case is 1o study the largest
practical problem size. Experience with the case studies demonstrated many times that
measurements at larger problem sizes are generally worth the extra investment in time.
Previous experimantal studies of Bin Packing rules, for example, measured lists as large as
200 and 1000, simulations described in Chapter 2 studied lists of size 128.000. Many
ubservations. such the nonmonotonic behavior in First Fit and Best Fit, could not have been

seen at smaller input sizes.

Measuring large probiems is also important when the theoretical model involves asymptotic
analysis Although measuremenis at finite input sizes can generally give only approximations
to asymptotic behavior, larger input improves the accuracy of the approximation. The
similarity between theoretical model and simulation results is therefore increased. in the Bin
Packing, Matching, and Quicksort studies, the problem size doubled at each sample point
rather than increasing by a fixed amount. This seems to be a powerful method for obtaining

measurements at large .V with less investment in computing time.

Sample many points within the range of parameter settings. The usual goal of algorithm
analysis is to characterize some measure of algorithm performance as a function of input
parameters. So that simulation results may be expressed in theoretical terms,
characterization of function forms should also be the goal of simulation research. If a
parameter is set only at its extremal values, assessment of the functional relationship between
the parameter and measure is rarely possible. The number of intermediate sample points is of
course limited by simuiation cost and by the available data analysis tools. Some case study
results suggest, however, that it can be worthwhile to take as many sample points as the
environment will allow: the cyclicity of partial empty space in FFD packings with « <.5 would
not have been discovered if, say, five values of u had been sampled in this range.

Apply stratitied sampling. A recurring issue arising in the case studies was whether it is
better to take discrete sample points or to take random sample points over the range of the
parameter settings. In practical terms, which type of graph in Exhibit 7-1 gives more
information: the left, with discrete sample points, or the right, with randomly-placed sample

points?

Hammersley and Handscomb [17] (p. 554) remark that it is generally a good idea to
eliminate sources of randomness in the simulation wherever possible. They and other
authors of texts on simulation recommend stratified sampling: a better view of functionality

ORCR . 1 IR COTC TV T w"\r.«;v v

] 7
() WA MO M W) c‘.] |.‘| " n. *-‘. a" 0"" O ol W -l%;l W g PO LR] W M

00

W .Ql.r?i‘

-

s

"b\‘

N
(4

LA

@
. g ’. . L]

129

| S, .
® 2.2} . . - : §52.2 * .
% L N b I - % L - PO 2
+ 3 ¥ - T ‘¢"t.:f~
srel 33 oDor i el meiThew
g 3 - 3 ; > : F g L + :-.:_ _0,4-"__4_‘:4"
- - - 1
Wy st ; 3 E < . . “ogogt "‘.‘T‘\"u} .y
} * + - bt + I - - .
+ z - £ + . -+ -
1.0- i - + - 1.0_ o
e ———_———— L‘ - +¢ T N .
70 74 78 70 74 +g

u

Exhibit 7-1: Placement of Sample Points

and a reduction in variance may be gained if input instances are generated so that certain

input properties (specified by the parameters) occur with probability 1.

Stratification is not precisely the same as taking discrete sample points. In the Bin Packing
study parameters « and n were set at discrete values. The parameter n was stratified, because
every input at the sample point (no, “o) was exactly of length n,. The parameter u was not
stratified, however, since the largest weight in each input instance was a random variable
determined by » and u. Nevertheless, the arguments for stratification tend to support the
taking of discrete sampie points. As a simulation study progresses it may be useful to stratify
inputs even further than described by the initial parameters: it might have been helpful in the
study of FFD packings in the critical region, for example, to stratify the parameter b = number
of big items and to generate weight lists with exactly 5 big items, rather than generating
random lists according to n and u simply reporting the value of b each time. The relationship
between topheavy lists (with large b) and bad packings might then be more clearly seen.

Design the experiments. The goal of experiment design is to determine the placement of
sample points so that the most information may be gained with the least cost. Not
surprisingly, the best time to design an experiment is after the study, when the probiem is
better understood. For this reason, an iterative approach to placement of sample points is
important.

Of course the experimenter has to start somewhere. A complete factorial design is a useful
starting point. This design is quite straightforward: for each input parameter, choose a few
settings that span its range and establish sampie points from the cross product of the
settings. In tha Quicksort study of fixed. T strategies the parameters are N, M, and 7. Setting

»
o]

,f ".

Ea)
x

"_"‘- A .,

‘" " ‘l ’l x'
l' .’ I,

,._km%_h
-5

L
[}

s 4 8 a4, 0 &

v’ 4 Bl e

LA
s

-

Y u';'ie*!.}"

'y

“l‘_,'
2 2 Y

v
s
v

P "
. I
. -
- «
aih S

AL

fkfl."k-{k

. ”

,.
.

¥ l‘ :' . |. s
b S

ey

e

)

WYY
® 1AL

[]
t

*
.

Xyt G

DA%

"‘ b
AROK

A0

Y,
v
AR AANA.

N0

f-

130

N =10 100, 1oy, M =1.5,and T =13 5 7 gives a 3 x 2 x 4 factorial design with 24 sample

points.

An alternative to the complete factoriai design is the “one-factor-at-a-time™ approach: fix .V
and V/ and vary [then fix N and T and vary V/, and so forth. This approach is natural in the
context of algorithm analysis - in the Bin Packing study, « was fixed to study growth in n and
then n was fixed to study growth in u. Even so, the method is not generally accepted by
statisticians today (see (5] or[8]). primarily because observations may be extended
erroneously. Initial experiments in the Quicksort study were of the “‘one-at-a-time” variety:
the parameter \/ was fixed at | and .V and T were varied. Many of the early observations were

later found not to hold in general.

7.5. Pilot Studies

it is useful to implement a pilot study before beginning extensive simulation. A pilot study is
simply a small-scale preliminary version of the simulation program, where the simuiation
mode! is implemented in a straightforward manner with little attention to program efficiency.
Inputs are generated with minimal programming effort, using the system random number
generator and other system routines when possible. The object is to use the information
gained from the pilot study to improve the power and quality of more extensive simulations.

The information can be used in a number of ways.

First, the pilot implementation allows clarification of the simulation model and a method for
checking the specification before much coding effort is invested. This is especially useful
when partial analytical results already exist. As a preliminary step in the Quicksort study
measurements from a pilot implementation were checked against known formulas for
Median-of-3 Quicksort. The implementation failed: observed means for the five measures of
interest were consistently higher than their predicted values. Closer examination revealed a
number of subtle differences between the model and the implementation. For example, when
sublists are smaller than the sample size, the analytical model assumes that the sample is
drawn with replacement while the pilot program drew a smalier sample without replacement.
Similar minor differences (which significantly affected the results) were discovered in the pilot
study. Once the details of the model were clarifiéd, the simulation measurements produced
(to within 1.5%) the mean values predicted by theory.

Second, monitoring the pilot program can direct efforts for improving the running time of

TG TIRTT T T e TR LS AL RL TR TR T e R AD T

..,.4
. .'
‘g
b
7

[
A »

131

3

MARCOOH

later simulatioh programs. This simple idea was used, for example, in the implementation of

the First Fit Decreasing rule. Some of the speedups were algornthmic: instead of generating a
random lists of weights and sorting them by an £2(\Vlog V) sorting algorithm. a variation on
Binsort was used, exploiting the fact that the weights are uniformly distributed. Instead of
finding the "“First Fit"” bin by linear scan through the bins, a heap was imposed over the bin set
to find the correct bin in O(Nigg V') time. [n addition to algornthmic :mprovemsnts. a number
of standard techniques for improving program efficiency (such as those described by Bentley
(6]) were applied. Monitoring, for example, revealed that most of the computation time was
spent in searching for the correct bin to contain each item. Careful recoding using standard
techniques such as loop unrolling, code motion, and placing loop variables in registers,
decreased the running time of the program considerably: the final implementation could
generate and pack a list of 128000 items in just over 1 minute of machine time, a factor of four

improvement over the initial implementation.

Third, the pilot studies are useful in planning of future experiments: preliminary resuits
suggest, for example, how many trials will be necessary, how many sample points should be
taken and where to space them, and what sort of distribution arises at each sample point.
Such information saves a lot of trial and error in later simulations. The factorial design
approach described in Section 7.4 was of considerable use in obtaining this information

quickly.

Fourth, and perhaps most importantly, the pilot implementation can be saved so that final
simulation programs, with different random number generators, finely tuned code, and
sho.r?cut implementations, may be compared to a straightforward version of the algorithmic
model. The pilot study can therefore provide a secondary system for replication of
experiments. This backup system was critical in establishing the accuracy of results in all four

case studies.

A final reason for building a pilot program is that it may be sufficient for the algorithmic
problem at hand: there may be no need to develop a highly-tuned implementation. Even if it
turns out that the pilot implementation is sufficient, it is still a good idea to build a *backup”
system to validate the simulation results. At the very least, an alternative number generator
should be used.

AT L Wy

"y“. .,‘.". 3 !)"‘
B i S e SR S

_‘.""“L‘"T'\"."."’."_v‘.v'_r,v-_-r Lol Aaalianiiais S Sad Sul el hab Mafl e il Shadh dde YA i A 4 SaL il A cn du o by g o n ol Su B sl ged o
A AfiaPdlar Rk et b MRt S et . e TR .‘_'!'v".‘.'.""!"“

-t W,
|

€3
U 132
T
f\ 7.6. Simulation Shortcuts
A A
:. In one sense there i1s httle need for an efficient simulation program: the expenmental results
1 will be the same no matter how long the experiments take. There are many reasons, however, ;
: A for spending some effort in developing a tast simulation program. Most impoertantly, extensive
“:::' use of an iterative approach depends upon the speed with which results are obtained: a
O researciner is 12ss likely to pursue a conjecture If results require a few days rather than a few
h minutes. Faster simulation programs allow more trials per sample point in the same amount of
time. Algonthmic improvements can allow larger problems sizes. giving a better view of the
data and more insight into asymptotic performance.
“ Integer computation was used throughout the case studies. In the Bin Packing and
:jf; Matching studies the algorithms were performed on integers ranging from (0, 2°- 1] rather
4 than on reals from the range (0. 1]. {n general, integer arithmetic is faster and gives more
__ accurate results than computation on reals. Also, since most generators of uniform random
variates (including those used in the studies) produce integers, the cost of converting to reals
" was saved in the simulations.
%
~ . In addition to program speedups, a powerful technique in simulation is to look for simulation
1\"’_‘: shortcuts. The motivating principle is that a simulation of an algorithm is required, not
7::.: necessarily an implementation. As a trivial example, suppose the average cost of searching
‘"N for items in a random list of size N is of interest, where each item is equally likely to be
requested. The naive simulation program repeatedly generates random lists and random
‘5::_“ sequences of requests and accumulates the costs of searching for requested items. The
__2 "shortcut” program generates search costs from a uniform distribution on the integer range
'jx [1.N]: although no random lists are built and no searches are performed, the results are the
gt same. (The “super shortcut’ program prints ‘(N + 1)/2" and stops.)
you!
:J‘:,_J Often, partial understanding of the algorithm can be exploited to obtain shortcuts in the
'\{ simulation. In the Quicksort study, the straightforward approach to simulating Quicksort
.*:‘ would be to generate randomly-ordered lists of numbers and to Quicksort them, recording the
-F" measures of interest. In this case no random lists generated and no lists were sorted, yet the
‘i,":.' desired measurements were obtained. The shortcut was possible because the expected
d 4-,‘3 values of the various measures at each level of recursion could be described analytically. The
': > shortcut program exploited this partial understanding by calculating appropriate values at
Y Y each recursive level rather than by simulating them. Since this simulation shortcut also
:’ happened to be a variance reduction technique, simulation efficiency was doubly improved.
e
"4
.‘
i

&
- ‘.({IL

A I M N N N P I AT O R I N PO Lo
e N A e G O T

2 133

T,

N The median-generation routings in the Quicksort study also incorporated shortcuts: for
.E:-: T« N, maintaining an ordered hash table to detect duplicates exploited the fact that the
‘: : sample was drawn uniformly from the integer range and that only the median needed to be
" . found quickly. For 7 near .V the generation routine only considered about /72 numbers
before producing a median.
.
_ Early in the study of Search rules a simulation shortcut was developed for the Transpose
4..‘ ruie by the additicn of ain auxiliary data structure. The straightforward implementation of
j{. Transpose maintains a iist of N items; when a request is made. the item is found in the list by
' sequential search, the number of comparisons required to find the item is recorded, and the

- item is transposed with the one preceding it. The shortcut implementation maintains a

§ second data structure (indexed by item names) that records the position of each item in the

‘EZ: search list. When an item is requested, its position in the search list (and therefore the
’ number of comparisons needed to find it) is found by iookup in the secondary structure rather
:il than by sequential search. Locating the requested item and updating the two lists requires
., constant time per request rather than the time to search for the item. (When the measure in
_:-_QE the simulation study was changed from request cost to permutation cost, this shortcut was no
'.'rj: longer used.) Some information must usually be sacrificed in order to use a shortcut: in the
::', Quicksort study, for example, no sorted list was produced as output. This was not a liability in
A . the simulation study because it did not atfect the measures of interest.

:j. Hammersley and Handscomb [17] give many examples of simulation shortcuts in their
fu discussion of Monte Carlo Techniques. Bentley [3] describes a simulation shortcut in his
,)A study of an algorithm for median selection. Beardwood, Halton, and Hammersiey [2] make
;.' good use of a shortcut in their study of heuristics for TSP. Given a set of points generated
: uniformly within the unit square, the Strip heuristic divides the square into vertical strips of
:.t fixed width, connects the points within each strip, and then connects the strips. The expected
.,__ tour length for the Strip heuristic is essentially the expected length within each strip muitiplied
::fzj by the number of strips. The shortest tour within a strip is found by connecting the points in
" order from tap to bottom. Rather than developing a straightforward simulation of the Strip
:’.:1 heuristic, they exploited understanding of average distances between points in a strip to
g calculate tour lengths without producing tours.

i

..'

:_

o

N

B A G AL e i sV ety

134

.

W
)
.‘n
~
>

-
o

7.7. The Simulation Environment 1

A simulation study requires more than just a simulation program. Routines for random
numper generation are needed, data files must be managed. and programs (or packages) tor
data analysis must be available Flexible and efficient simulation environmants are needed to
support iterative analysis. This section discusses issues of program and environment

development.

One important rule in developing simulation programs is to avoid premature summarization
of data. Very often in the case studies. examination of the distribution of data points at each
sample point led to new insight. Simulation programs should produce measurements taken at
each trial rather than average measurements for each sample point, so that the experimenter

can see the raw data.

Another rule that proved useful in the case studies is to produce results that are readable by
other programs. This principal is one companent of the "Unix" style of program
development; see Kernighan and Pike [18] for more discussion of this approach (Unix is a
trademark of Bell Laboratories). The output of a simulation program, if it is to be easily
analyzed and manipulated, should not be cluttered with column headings and annotations;

this is especially true if the results are to be submitted to a data analysis package.
Statistical Analysis Packages

The available statistical analysis package influences the arrangement of experimental
results in data files. Tools used in the case studies included the statistical analysis packages
S (developed at Bell Laboratories) and Minitab (developed at Penn State University) as well as
the graph-drawing packages Plot (dev_eloped by Ivor Durham for use in the Computer Science
Department at CMU), and Grap (a preprocessor for the Troff typesetting system).

e 4. }

All of these packages are column-oriented: that is, commands are typically expressed in the

N Ay

following format.

o Plot the data in column 1 against corresponding values in column 2. |

e Compute a multiple least-squares regression using the values in column 2 and 3
to predict values in column 5.

e Assign to column 6 the logarithms of values in column 3. |

A1
l'l"

Nty
EACA

Selatedi e dos st 18t eaa

" "I "l ’.‘

135

14 1, Kand

If a statistical package 1s avaiable then it 1s useful to develop simulation programs that give

LAk

results in a format compatible with the package. n the case studies results were generated

so that each row of data corresponded to a single tnal. The leftmost fields in each row gave

-

R

sample point settings and the rightmost fields gave values for the measures of interest. For

'R R
i

P
12

examgie. the following data are from an experiment in the Bin Packing study. The cclumns,

[y
LR g

from left to night, cotrespond to tha name of the packing rule. n. w, number of birs packeaq,

\ emzoty space, emoty space in the ‘ast bin, and number of big itemms. Each line gives results for

"ty

one trial: two sample points are recorded.

T
o S0
» R

FFD 125
. FFD 125
FFD 125

. FFD 125
2. FFD 125
> FFD 250
o FFD 250
FFD 250
FFD 250
FFD 250

.000000 72
000000 &3
.000000 58
.000000 65
.000000 61
.000000 137
.000000 129
.000000 130
.000000 131
.000000 145

.358297
.500774
. 348960

.468258 69
.336832 58
.502865 68
.633522 0.488351 63
.705485 0.805012 57
.808572 0.999558 137
.943276 0.315850 121
.867452 0.997307 129
.696441 0.459429 129
.049346 0.488392 142

— ok A e b ek b et
- N s NOD;
OO0 OO

O &b ;d

Statistical packages can be of great use in analysis of experimental results and can be

critical to the development of an interactive style of analysis. On the other hand, much can be

EA S R YA T

(accomplished with less sophisticated tools. Portions of the analysis described in the case
studies were performed on the Plot graphical-display package. Plot is not a statistical

) package: its primary capability is to read a 2-column file of data and to plot values in the first
- column against those in the second column. Plot commands deal with modifications of the
graphical dispiay. Ailthough the functionality of Plot is limited in comparison to a statistical
analysis package, much of the difference was made up by the awk filter, a standard Unix
facility. In the awk language, each command comprises a pattern and an action: if the
current input line matches the pattern, then the action is taken. The pattern-matching

e -

language allows comparison and algebraic manipulation of field entries. The action part is as
powerful as most programming languages and supports associative arrays. Awk was

regularly used for many of the functiong available in statistical packages, and the output of the
awk filter was passed to Plot for graphical display of the results. At times, the filter alone was

-

WO AT TWAFIWANE WA

sufficient for quick analysis of small data sets: awk performed tedious manipulation and
summarization of the data and produced results that could be quickly recorded on graph

paper.

PN LNy

-\

Generating Random Inputs

-~

%}"" .f "i’-". ﬁ{ ’ f

*
L S .‘:‘Jc’.'c .0 .‘l...l.c ‘l...l ' 'I_. .. ‘

U Oy
ot .o"..'m l.o".o M, ",0" ity “;t G, "" "‘n‘ ‘A' QUK ‘. ,".

136

A good source of uniform random variates is needed in all simulation protlems. A huge
literature exists describing and evaluating algorithms tor generating random variates. See for
example Knuth [19]. Brately, Fox and Schrage [9], Fishman [15], or most texts on simulation.
The primary generation algorithm for umiform vanates used in the case studies is from Knuth
[19](3.3.2. Algorithm A. Second Ecition). Exhibit 7-2 gives the algorithm implemented as a C
macro. The 55.element array Rand was inihahzed by 55 cails to the BSD Unix 4 1 system
random number generater, a linear congruential generator preducing integers in the range
(027 -1].

#define Maxrand (1 << 30)
int Rand[557;

int K,J;

#define RAND(X) X = Rand{K] + Ranrd[J]: \
if (X >= Maxrand) X -= Maxrand; \
Rand{K] = X; \
if (K == 0) K = 54; else K--; \
if (J == 0) J = 54; else J--; \

Exhibit 7-2: Uniform Number Generator

The secondary generation method, used in the pilot studies and in backup implementations,
was some form of linear congruential generator. The secondary studies varied among the
problem domains: some were performed on a Radio Shack TRS-80 personal computer, which
has a system linear congruential generator that generates reals from the unit interval. Other

backups systems used the system generator for BSD Unix 4.1.

The Bin Packing and Matching studies required the generation of order statistics of uniform
variates: that is, sorted lists of numbers drawn independently and uniformly from a specified
range. A number of approaches might be used: for example, the variates could be generated
and then sorted by Quicksort. Since the numbers are known to be uniformly distributed,
Bucketsort might be more appropriate. Nijenhuis and Wilf [22] also give a clever algorithm for
generating N integers in linear time and linear space. Bentley and Saxe [7] present two
linear-time algorithms for generating the order statistics of uniform reals. Aithough efficient,
the latter two were not considered for the case studies because they produce real numbers
rather than integers (integer computations were used throughout). A small study of the
running times for the generation routines revealed that a variation on Bucketsort was most
efficient.

I NI tialighat

137

Many techniques exist for generating random variates from specific non-uniform
distributions, as well as general techniques for arbitrary distributions: see [9], [15]. or [19] for
a good discussion. A well-known general method is inversion: if F is an invertible distribution
function, then setting X = F~*(L") (for U’ a uniform variate) produces variates with distribution
F. If the inverse of F is not easily computed, then F~*({") may be approximated by a rabular
inversicn method, where the i entry in the table contains the pair [Fu"), .x'l]. A simple
rejection approach generates points uniformly in the unit square and rzjects any point that
lies above the specified density curve; if the point is below the curve x-coordinate of the
generated point is reported. In general, rejection methods, generate points in a region close
to the probability curve so that the number of rejections is small. A third method, the method
of aliasing, was adopted for generating of Z> variates in the Search study. Although the
method requires a table of size 2NV and setup time O(N), (for V the range of possible values),

it uses constant time per variate generated.

7.8. Analyzing Simulation Results

This section presents tools and guidelines for analyzing experimental results. Just as the
study of algorithms presents special problems in development of simulations studies, this
domain present special types of data-analysis problems. Some of the properties listed below

are typical of simulation studies in general; some are features of algorithmic domains.

¢ Sample points are usually chosen to correspond to discrete, evenly-placed spots
in the space of parameter settings.

e Since parameters are often stratified, plotting a measure against a given
parameter results in slices of data points. At each slice the measurements
correspond to a random sample from some (usualily unknown) distribution.

e The relative efficiency of simulation in this domain (compared to traditional
simulation problems) allows huge amounts of data to be generated.

o Measurements of algorithms usually (but not always) move smoothly with respect
to parameter settings.

e A common goal is to characterize functional relationships between measures and
parameters. Comparison of aigorithms at fixed sample point is also of interest.

e Usually, little is known about the functional relatiimship. Even if theoretical
bounds exist, they often describe asymptotic behavior and may not be
appropriate for the domain of the experiments.

s %
.

v
’
2
o x

“~
-~
o

o

-

o 138
X } Many analytical tools were applied during the case studies that were not mentioned in Part
; ‘(‘ Il. The remainder of this section describes a number of tools that were particularly useful.

First, general techniques for studying any data set are discussed. Sections 7.9.1 through

\ 7.9.3 describe tools for specific analysis problems.

h Readers familiar with traditional techniques of experimental statistics will realize that very
.‘ few were mentioned in the case studies: there were no formal experimental designs, no
E, analysis of variance tables, few instances of hypothesis testing, and limited applications of
j'.: regression analysis. Instead, tools of descriptive statistics were used extensively.
‘20 Statisticians specializing in Expioratory Data Analysis (EDA) distinguish between confirmatory
‘_..‘_ methods - where statisticians apply powerful analytical tools that rely upon a mathematical
model that closely describes the data in order to make inferences and to assess experimental
.‘_:’:ij errors - and descriptive methods, which are used to obtain a good view of the data and to

:’T'.' produce summaries that are easily grasped. In the past, descriptive statistical methods have
\:‘,’: been limited to elementary tools such as histograms and box plots. EDA provides a more
e sophisticated set of toals for describing sets of numbers.

W, There are a number of reasons for the emphasis on descriptive statistics here. Tukey's
‘ . seminal text, Exploratory Data Analysis, was published in 1977: the approach is relatively new
L and, it appears, not very well known to computer scientists. The techniques deserve better

exposure to this audience. Also, at least for the case studies, the questions of interest were

':' answered more naturally by EDA approaches than by inferential methods.
| ::j Experience with the case studies suggests that much insight can be gained by examining
: the data produced at each trial rather than averages for each sample point. Data sets at
::EZ varying sample points reveal convergence rates and changes in variance as well as
‘ ..._ﬁ distributional properties. Graphical techniques for data analysis become very important in
* this data-rich domain, since graphs are invaluable for clearly and concisely presenting huge
\’ amounts of information. Consider, for examqle, the size and unreadability of the tables that

'-ﬁ_‘: would be required to represent the information about First Fit Decreasing packings contained

 J

in Exhibit 2-11. Graphs also allow functional relationships and distribution properties to be
more easily seen.

Summarizing and Transforming Data

Y

Although the raw data should be examined, it may be helpful to calculate summary statistics

Ry
~ %

SN

i
&

.‘\,

L .;'&'
K3

R
L oW TENR L L

TeYT €T e

! 139
™
E?j to represent the data at each sample point. The sample mean s usually a good choice for
}_ representing the location of a data set, especiaily in studies of expected-case behavior.
. . Statistics for describing dispersion, such as the standard deviation or the variance., are well
_- known.
g
"_5: it 1~ distributicn at a sample point is skewed (traibhng off at either high or low values). or if a
bimodal distribution appears, then alternative summary statistics may more appropriate. One
- approach used often in the case studies was to record certain order statistics such as the
-::'. median and extremes of the data values. The quartiles are also useful: the high quartile of a
data set is the data value that is smaller than 25% of the set. and the lower quartile is greater
- than 25% of the data. Half of the data values therefore fall between the quartiles.
&
'.::E A transformation of a set of numbers is achieved by applying some function to each value in
-.J the set; common transformations include the logarithm and the square root. Transformations
::" may be applied for a number of reasons. If the values represent units of time, for example,
£ taking reciprocals of the measurements converts “infinite time" to “zero speed,” which can
be easier to deal with.
- Tukey [24] identifies a number of “‘types’ of data, including counts and amounts, times,
’ fractions, proportions of a whole, balances, and grades. Different types require different
:'. analytical tools. Simulation results for algorithmic problems generally take the form of counts
h '.:: and amounts: measurements arising in the case studies, such as amount of empty space,
d ' number of k-bins, number of comparisons, number of pairs matched, and number of recursive
oo stages reached, are all examples of this data type.
)
“_, Counts and amounts have positive values with arbitrarily high upper bounds. If the ratio of
?-3 the highest value to the smallest is large, then the high values will dominate the view of the
._ data. Transforming to logarithms will “spread out” the low values so that they may be more
:f:: easily seen. Tukey[24] (p. 57) remarks that counts and amounts generally profit from
" logarithmic transformation (he calls it reexpression) unless the ratio of the largest to the
’:_Q smallest value is near 1.
@
? Another type of data arises in the study of residuals to regression fits: ba/ances have
':: positive and negative values and are generally grouped around zero. Balances usually
:: require no transformation.
;
o
0
a5
.

Sy -

T A St e R I P ‘ e ‘) ‘ KTIRUE
ST &, W e it ‘ ~ UGS
ot N e e e R SR

.s'"

140

o
:\ The following subsections survey specific data analysis tools that proved useful in the case
v o studies, with 2mphasis on graphical and EDA tools. As before, famiharity with elementary
R > statistical analysis is assumed. Many of the techniques described here may be found in Tukey
CE: [23] and Chambers et al [10]. Cleveland {11} gives an excellent discussion of issues of
;: graphical style.
W)
At 7.8.1. Looking at Distributions
::;:E At a fixed sample point the measurements represent a random sample drawn from some
‘.'. A, probability distribution. In algorithmic problems the form of this distribution is usually
. unknown. There are many reasons for looking at the distribution of measurements: How large
:r‘_ 1s the range of the data? Are the points arranged symmetrically about their mean, or are they
K E skewed? How are the measurements distributed at this sample point? Summary statistics can
o suggest the location, shape, and spread of the data set. [n addition, a number of graphical
- tools are available.
:.i:.i The most familiar way to display a distribution is by a histogram. Recently, statisticians have
- argued against the use of histograms in data analysis - the essential drawback is that the
. . visual message depends greatly upon the choice of graphical parameters such as the width
;::_7 and cutoff points for the bars, rather than on the data itself. Chambers et al [10] and
Cleveland [11] discuss histograms and their weaknesses.
~
D Exhibit 7-3 presents a number of alternatives to the histogram using data from the Search
__ study. The graphs depict permutation costs for the Move-to-Front ruie in 100 trials at the
:::Z.: sample point N=6, A=1, and T=35. A partial list of the resuits, showing the 5 highest and 11
\ .‘-’ lowest values observed in 100 trials, are presented at the left of the exhibit.
‘.
< A compact and informative representation is given by a one-dimensional scatter plot. Graph

7-3-a reveals that observations range between approximately 2.5 and 4.5, and that about 90%
of the data is below 3.5. Also, the distribution is densely concentrated towards the bottom of

its range and sparse at the top. This type of graph was used extensively in the case studies
for comparisons of distributions among sample points. Two potential disadvantage with one-
dimensional scatter piots is that the density of the points may overwhelm the graph-drawing
technology, producing a blob of ink rather than distinct marks, and that duplicate vaiues are
overwritten. Methods for avoiding such problems by techniques such as “jittering" (giving
each point a random horizontal position within a small range) are described in [10] and [1 1].

»

P T S T N
AWy AL CSCOACERCACR Py e AT T T T T T e

I DY e)

l!.k',‘l.‘\\- i

-

v«

- 28

Lo

)
-":c.lfn.

141

4.48 4.4 8
4.36 4.3 66
4,38 4.5¢ - 4.2 4.5, fe)
4.05 N 4.1 @
3.73 _ 4.0 5

4.0t 3.9 40t °

i 3.8
i 3.7 3 .
_ 3.5 3.6 02359 3.5}¢ ‘
2.57 : 3.5
2.56 : 3.4 1 -
2.54 i 3.2 112334778 _
2.53 ' 3.1 01111124667
2.53 250 3 3.0 3335599 2.5l T
2.52 2.9 39999 ’ ‘
2.48 2.8 000002344456669
2.47 2.7 0011112227778
2.47 20— 2.6 01133777789 2.0
2.45 2.5 23346677999
2.4 5778

Data a b c

Exhibit 7-3: Displaying Distributions

The stem and leaf chart (Graph 7-3-b) is a combination graph and tabie. The high-order
digits of the data values are written in the stem (the horizontal column), and low-order digits
are recorded in the /eaves (the row entries). This chart displays the trailing off at high values
more clearly and gives a better view of the shape of the distribution. From this chart we sce
that most of the values are concentrated between 2.45 and 3.41, with ten stray values above.
The median value is at 2.80, the extremes are 4.48 and 2.45, and the quartiles are 3.16 and
2.68. This data is clearly skewed towards the bottom. The distribution also appears to display
some bimodality, with peaks around 3.1 and 2.8. The most common values occur between
2.80 and 2.89.

Stem-and-leaf charts provide an éxcellent way to record a data set and to display
distributional properties. Also, the data is not obscured by limitations of graphical
technology. The view abtained from these charts can often be improved by transtormation ot
the data: transformations can be used to induce symmetry in the distribution and to scale
results for better comparison among data sets. In addition, order statistics can be easily
found, since the data points are presented in sorted order. One disadvantage of stem-and-
leaf charts is that they can take up a great deal of space.

. .
8 (e A AN
"" '.“h"h‘ ~‘ ..'v"""‘ll ‘ " 01‘.h‘.h‘.‘n'-‘tl!'m"h At 'n"' Wedhn ittt ‘c'.'a h, ’s‘.’l‘ s .“\"’l") r!:" t' (R 'I X AR KA A

.
LEre

S g0y

e 2 3 4
A.l A

3

3
D]

»J.';.kk L

AUy

142

The pox plot is probably as well xnown as the histogram. Uniike the first two graphs of
Exhibit 7-3, box plots are graphical summaries of the data set and do not display all the
measurements. in Graph 7-3-c. the 2nds of the box correspond to the quartiles of the data set
and the horizontal bar to the median. A common problem arises in deciding which paoints to
include in the vertical bars and which to mark as outliers. A standarcd ruie of thumb (see
[24) or [10]) is to computa the ~rerz.cqvie range H - the difference betwesan the quartiles -
and to plot values more than 1.3H away from the quartiles as outliers. In Exhibit 7-3, the
interquartile range is /=3.16-=26%="1.% so points greater than 3.16 —0.48{1.3) = 3.88 are
plotted as outliers. There are no low outliers. Note that duplicate values in the outliers are

“stacked' - placed side by sicde - so that they may be seen.

c 1.0¢ ;40-
g a
@ S
3 §
+++ K]
~0.8¢ 3 3.6} +
+F s
.7 g
o + + ey
0.6 K &, #’;
++ 3.2¢ +
&
o +
0.4 +++ + %#",
* F
+ 2.8} ot
0.2 o ++ w
' P
+
++ #M“‘“’
0.0 = . A~ T A 4 2.4 > A i i J
0 5 10 15 20 25 (0] 20 40 60 80 100
a b

Exhibit 7-4: ECDF Plots

Another graphical technique for examining the distribution of a data set is to plot the values
against their ranks, producing an empirical cumulative distribution plot (ECDF, also known as
a quantile ptot or a cumulative frequency diagram). Guidelines for interpreting ECDF plots are
given by Chambers et al [10], and by Mosteller, Fienberg, and Rourke [21]. If the curve in an
ECDF plot is generally straight, then the data are nearly uniformly distributed in their range:
Graph 7-4-a presents an ECDF plot for empty space in the last bin in 25 FFD packings at the
sampie point n=128000, u=0.5.

Graph 7-4-b presents an ECDF plot for the data from Exhibit 7-3. The concentration of

v

“
RS

RN
anA

PN
AR

Lo oad b et fas, aat Sat ban had Aok Sob Bk Stuh Sad dieheds Lt Sak Sigis Sam dlas iac oo ol AhS and Ait e o s Mo dedh anfi-dnd des he ol suman Sl salovs S e Alaii Sl A LA A Sok -""7"'—1

143

values at the bottom of the distribution is indicated by slow growth in the left side of the graph;
quick growth on the right side marks the outliers at the high end. In ECDF plots the slope of
the curve corresponds to tha Jensity of the data points. Although it is more difficult to see
peaks in the denrsity function. ECDF plots give a good view of the symmetry and spread of a
set of data. Also. statistics such as the means and gquartiies are easily found from ECDF

graphs.

7.8.2. Comparing Sets of Data

Comparison of data ssts at 'xed sample points is a common task in simulation studies of
algorithms. Measurements for ‘wo algorithms at the same sample point can be compared to
determine if one consistently outperforms the other. Data from adjacent sample points can be
compared to determine if the measure changes as parameter settings vary. Data from
extremal parameter settings can be compared to measurements at middle settings to
determine if a horizonta! straight line is produced. Also, measurements from secondary
implementations can be compared to corresponding values from the primary simulation

program to determine if the results are statistically equivalent.

nd.4;
;4.4() z +
3
g - - 4.0t + + *
.34.0- - 2 ot .
2 - E + + "'+ * .
2 . : : 36l °* + ’
§3.6‘ - put) + +
< : é ++ +I ‘:* +1»+_.
: : : g2+ *
3.2} - - : : a + Tor
: : TRegr T .
z - : 4-:{ .E #+ & .
2.8t i : : 2.8r T oW *
i g ; +M 4+
2 H ; 2.4 R * A - .
2.4 . : . ‘2.4 2.8 3.2 3.6 4.0
1 3 5 M1
a b

Exhibit 7-5: Comparing Data Sets

A simple graphical technigue for comparing data sets is by juxtapaosition of one-dimensional

R
A’!’t""h':'n o

9 0 Bl Sl Sl Sl A S A A DA A e U Aea hoa A i Bt g

. e 144
o
:f-:: scatter piots. For example, this method was used to study the cnitical region for the First Fit
_-' decr2asing rule (Exhibit 2-11). Graph 7-5-a presents a ccmparison of the sequential search
: rutes M1 M3, and M5, for 100 trials at the sample point V=6, =23 A=1 =] The graph
~ suggests that M1 has much smaller vanance than the other two rules as well as smaller mean.
-;-\ All three rules have simiar fow bounds. but upper bounds vary amcng the rules The
‘::‘.'. distribution for M3 appaars to be skewed towards the bottom to 1 greater extent for M5,
‘ Juxtapos:shon of stom-and-leaf charts, similar to that in Exhubit 5-10. was afso a trequently-
used analysis tool.
::::::
Another technique for comparing data sets is to plot corresponding values against each
i » other; this approach is especially usefui for comparing results of paired experiments. In Graph
::_':',: 7-5-b the x-coordinate of each point corresponds to permutation cost for the M1 rule and the
y-coordinate to permutation cost for the M5 rule for 100 paired trials at the sample point given
y E::::_ above. The dotted line gives the identity function y = x. Most of the points are above the line,
?_: indicating that M5 generally has higher cost than M1 at this sample point. There appears to
o be a small but not overwhelming positive correlation between costs for the two rules.
Pairs of numbers can be also compared by reporting either their difference or their ratio in
(terms of some input parameter. Often in the case studies the clarity of the view was
j:-j 3} influenced by the choice of comparison method. Usually, differences gave a much better view

than ratios, even when ratios (for example solution ratio in the Bin Packing study) were
suggested by theoretical analysis.

Gnanadesikan and Gustafson [16] note that significantly different sizes in numerator and
denominator can give a bimodal distribution in ratios (which usually causes difficulties in
. *:Z summarization and analysis). In visual displays the human eye is better at judging distances

Y
L4

{corresponding to differences) than proportions (corresponding to ratios). Tukey

)

[24] suggests that if ratios are necessary to the analysis, then it is probably better to take
logarithms of the data and to study differences in the new metric (which correspond to ratios
in the original scale), and then to translate conclusions back to the original scale.

' ;«‘:_j In the Bin Packing study, empty space (which bounds the difference between heuristic bin

o count and optimal bin count) lead to much stronger results than previous studies which

" measured the bin ratio. The bin ratio, as it approaches some asymptotic constant, tends to

' change very slowly in n. This obscures the view of the data, which is best when growth over
: sample points is large compared to variation within sample points. In contrast, empty space
Wy,

.

N TR " % -‘v

ok '7-"- \- ‘1‘7\7* -,-’\‘--"\
’ﬁ"r‘a ,O,n. L. ’ .‘n .'ﬂ."b‘ "‘Q“l W n. L 'l o‘.‘-‘n " ..“c" l'lo |.l .0. . ‘l !'6 a'ivlrlt‘ﬂ

b
2
- 145
s
T (for u = 1) grows as #'/*, so change in terms of /1 1s easily seen Bentley and Faust [4] were the
first to measure empty space instead of bin ratio for the Bin Pacxing problem.
.
::ﬁ 7.8.3. Assessing Functional Relationships
-::" The most common geal of a simulation study in the Zcnmam of dgertua analysis is to
characterize the functional relationship between a measur2 and e parameters. This section
- presents tachniques for studying functional forms.
: Using Regression Analysis
‘ Although standard techniques of regression analysis are well known, examples of previous
work (from Section 1.2) demonstrate that this powerful analysis tool should be interpreted
with care. There are at least two reasons that a regression model might be interpreted
".E erroneously in algorithmic problems. First, the precise functional relationship between
9. measures and parameters is not usuaily known beforehand. An approximate model that
.\ appears to describe the data must therefore be used. Second, even if the model is known, it
".'.T' may not be appropriate: theoretical results are usually expressed in terms of asymptotic
order-of-magnitude bounds, whereas experimental measurements at finite problems sizes
- ’ correspond to a curve approaching its asymptote.
’_::'_ In any reporting of regression results, it is not sufficient to simply state the model used and
th, ¢ the coefficients obtained. Regression results should always be accompanied by a precise
> description of the variation between the data ‘and the regression fit. Standard tools for
‘ checking model accuracy and for describing model deficiencies are found in texts on
j experimental statistics such as [5], [12], and [21]. Proper interpretation of regression results
:.: cannot be made without correct application and reporting of these results as well.
L
A useful tool for studying deficiencies of a regression fit is a graphical display of the
residuals. Since residuals represent the difference between the data and the fit, properties of
) ::i such a graph can indicate deficiencies in the model. Observing generally straight horizontal
g residuals does not necessarily mean that the correct model has been found, however. The
::jf study of First Fit gives an example: although the residuals from the fit y = x*’ + b display no
:-:: marked curvature (Exhibit 2-1), Shor [23] later proved asymptotic bounds of O(n*’*(log n)**)
..: and Q (1).
.-j
o~
"
[

s
Vs

o
2

@ -

146

L)

DA
e B e

-
PR P
el At g

Although regression provides a useful descriptive tool, care must be taken in extending the

fit to behavior outside the range cf the expenments. At times in the case studies, a poor fit

~a

gave more information than a good fit: if the residuals curve upward. for example. then the
R/ ¢‘-_‘

data i3 growing more slowly than the fit, suggesting that the fit might gives an upper bound on
the data. (Of course there is always the possibility that the data increases at @ much faster

- rate for problem sizes larger than those ineasured: see Eppinger [13].)

The regression models discussed in Part il are all linear models (sometimes on logarithmic
scales). At times during the analysis, attempts were made to apply more sophisticated
:'-* modeals. In most cases it was very difficult to determine if one model was any better than
another. 1 therefore used simple linear models in discussion of the case studies, which are
more obviously seen as descriptive tools than as factual descriptions of functional

relationships.

EDA Techniques

Examining residuals from a regression fit is analogous to the general approach for studying
functions by EDA methods. First, lock at the smooth: transform the data, fit models, or use
fk'- other technigues to get an idea of the general relationship between the measure and
"‘-i:" parameters. Then look at the rough, the variation between individual data points and the
00 general trend.
o

Texts on exploratory and graphical methods present many techniques for smoothing the

BC

data points. Smoothing gives a better view of the general relationship between two data sets.

o
x Exhibit 7-6 gives an example of smoothing for a made-up set of data. In this example, the
P:::jii y-coordinates are smoothed by taking means of every three values. Graph 7-6-b presents the
". original and the smoothed data.
g
:'::E: Smoothing did not appear to be generally helpful in the case studies. First, measurements
't of algorithmic behavior tended to be fairly smooth anyway, so there were few opportunities to
' :: apply this technique. Second, the data usually appeared in slices: smoothing was either
e trivial (taking means at each sample point) or unnatural (taking means across sample points
_r: or within sample points). Third, aithough smoothing gives a good bicture of the relationship
o~ between variables, the smoothed curve has no concise mathematical description. In the case
hiy studies even an inaccurate regression fit was preferred because the fit as well as deficiencies

could be characterized in functional terms. At times | used smoothed lines for quick

L

- 147

N x y Smooth 8¢ o
N 11

- 2 2 2.33 o o

. 3 4 2.67 o

X 4 2 2.87 6} o e o

A 5 2 2.67 e o5 °

K- 6 4 4.33)

, 77 4.87 «*
. 8 3 5.33 4r o o [e] 'y
& 9 6 4 R

" 10 3 5.33 o o

- 11 7 5.33 et

12 6 6 2 o)

13 5 5.66
x 14 6 6.33 o
N 15 8
(¢] 4 8 12 16
- a
’n b
Exhibit 7-6: Smoothing

:' assessment of regression models: rather than inspecting residuals, a smoothed fit was
(. compared to a regression fit and relative curvature was then interpreted in a manner similar to
g that for residuals.

I: Graphical Techniques

An important use of graphs in studying functional relationships is in analysis of residuals

- (described earlier). Another common graphical technique for studying functional
i,. relationships is by the scatterplot, where pairs of values are plotted for a view of the
’ . relationship between the two.

[
A standard technique of EDA is to transform the data until a straight line is produced on the
: graph. The nature of the required transformations can then suggest functional refationships
“ between the two data sets. For example, if a straight line is produced by squaring the y-
-4 values, then y grows as the square-root of x. A number of useful transformation rules are
rs

- presented by Tukey [24] (Chapter 3). Fishman [15] (p. 337) gives a large table of rules of the
o

7 form: if the true functional relationship is y=f(x), then transforming y by g(y) or x by A(x) will
- produce a straight line.
-

¢
3

\ :v

NI T

- PRI . Oy ST ¥, L5
T S AT . , N o »
B, Lo e L IR T A . A DL T A s S.l.l.":’ﬂln N .m h‘ !. '." '. ".‘a':'f.‘ "-‘.':'f'u".'t' D ".' '.'

'

¢
LA

Wy

e
P s
l.l'll
s

S
.'
.

¥y

i
ol

2t
N

“u
=

)
=

14 xr
Gt l"l“ o
l.n'lll J

a2
i

P - e
e Xy
.

[
3 a

\eh I
Senay

PN |" -“ Ry
® o
RISRNRS

@
;

[]
v e Ty
.

.‘.

SRR R C L R R AR R A AR CRC LR O TN SRR LT RN Y
e e e e e e PR e Y O e

148

Changing the scale of one or both of the axes is also a kind of transformation. Many of the
graphs in the case studies have logarthmic scales. Logarithmic scales were used to “even
out” the data, especially when input sizes doubled at each sample point. Logarithmic y-

scales ~ore often used when the ratio of the largest to the smallest value was high.

The rules for interpreting graphs with loganthmic scales are identical to those for
transformed data. If the y-scale is logarithmic and a straight line is produced, for example,
then y-values are growing exponentially as a function of x. If a straight line is produced on
with a loganthmic-x scale, then y-values are growing as the logarithm of x. If both scales are
logarithmic and a straight line is produced, then a power law is suggested:
log (») = alog (x) + bimplies y = x%- el

Very often in algorithmic problems more than one input parameter is identified: how can
functions of more than one variable be displayed in two-dimensional graphs? A number of
options are available. Graph 2-10-b, for example, is a cuded scatterplot from the FFD study.
In this graph data points are coded by symbol to correspond to their u values, and are plotted
against N. This graph allows easy comparison among the u values because the curves are
superimposed. Usually such graphs require some summarization of data (by taking means in

this example) so that the different curves may be easily seen.

Graph 2-10-a is a multiple scatterplot, an alternative to the coded scatterplot for displaying
measurements in terms of two variables. Multiple scatterplots allow comparison of all the data
rather than just summaries: a separate panel is produced for one parameter, and the data
points are plotted against the other parameter. For easier comparison between panels, the
scale should be identical in each. If this is not practical {(because variance or mean differs
widely among panels), then the scale should be clearly marked. Graph 2-10-a shows a

multiple plot where differences in scale are indicated by horizontal lines within the panels.

Multiple scatterplots were used extensively in the case studies, especially in the studies of
Quicksort and Sequential Search. A generalization is the scatterplot matrix of n rows and
columns, where each ™ row/column corresponds to a variate (corresponding to either a

parameter or a measure). The panel with index (i, j) displays variate i plotted against variate j.

[

by
B
~
N
g 149
A
~
N 7.9. Summary
N
- Chapter 6 identifies four general principles for simulation analysis of algerithms: match
;: expenmental results to algorithmic models; fiind a good view of the data; analyze rather than
i .: measure the data; and iterate theoretical and expenimentai cpprcaches. This <hwapter
:‘3 discusses issues and procecural steps that arise and presents techrmiques and guidalines for
" approaching these four principles. To summarnze this chaptar, the foliowing hist presoents
5 some guidelines for simulation research in the domain of algorithm analysis.
e
:: e Choose a measure that is both well - defined and practical for experimantation.
¥ W Alter the theoretical model if necessary.
N
e Change the measure to obtain more detailed views as the study progresses.
.';' e Ensure correctness of the simulation program by comparison to known formulas.
K :.'. by applying standard program verification and validation techniques, and by
' consideration of limitations imposed by machine precision.
‘ e Replicate the experiments. At the very least, change the random number
- generator. Even better, alter the implementation, machine, and programming
r. language.
3 '\:
K< o Apply variance reduction techniques such as Conditional Monte Carlo, control
{ ' variates, or paired experiments. Make sure that the variance reduction is cost-
5 effective.
':: o Measure the largest problem sizes possible. Doubling the input size at each
L - sample point seems to be an efficient way to proceed.
B, <
Ly
o Sample many points within the range of the parameter values.
5%
':' o Stratify the parameters to reduce randomness in the simulation. At later stages in
- the study it may be useful to stratify input instances beyond those properties
.- described by parameters.
e o Start with a complete factorial design with a few of settings per parameter, and
- progress to denser samples. Be careful with ‘‘one-at-a-time’ approaches to
. experimental design.
| L
B~
L o Implement a pilot study before beginning extensive simulation. Use the pilot
implementation to check details of the model, to suggest coding improvements,
to direct choices of sample points and trials, and to serve as a secondary system
for replication of experiments.

o Efficient simulation programs are worth the effort: new ideas are likely to be
pursued when results are obtained quickly.

R ial el Sial Aol et ok Mobt Shad Bk BaS Mok ek Sadt d i -Sdtadh Sl A i Al Vi e g e A Ae lhRe Sae b W"““mwvaWﬂ

RN
SGY
N
. _‘L: 150
:Z-:: e Exploit simulation shortcuts. The object is not to implement an algorithm, but to
b simulate its behavior.
e
e The simulation program should produce unsummarized data as much as the
\ avallable technology will altow. Summarization and manipuiation of resuits
o should not be performed before the researcher sees the raw data.
*" » For compatibility with many data analysis packages. produce data files with
! results of one trial per row. Input paramaters should be listed on every row.
-:;: e Tools of Exploratory Data Analysis appear to be particularly useful in this domain.
o
¥.." Read Tukey [24].
"0.,
gl
- ¢ Simulations of algorithms ailow generation of large amounts of data: make
o extensive use of graphical tools.
o
] ::-'_' e Summarization and transformation of results can give more manageable
\::: information. Measurements of algorithmic performance tend to be expressed as
N counts and amounts, suggesting logarithmic transformations.
N e Tools such as the one-dimensional scatter plot, the stem-and-leaf chart, the box
plot, and the empirical cumulative distribution chart are useful for studying
- distributions. Histograms are not recommended by modern statisticians.
-;.’-: Techniques such as jittering may be applied to improve graphical clarity.
x
_‘ » Sets of data may be compared by juxtaposition of one-dimensional scatter plots,
o by plotting paired data values as points, or by examining the ratios or difference
. between paired data. Differences tend to give a better view of the data than do
YRS .
LS ratios.
RN
e Be careful when interpreting regression analysis. Always examine the residuals.
b e . . .
| :,. e The EDA approach to studying functional forms is to look at the smooth and then
] - look at the rough. Nonparametric smoothing techniques, however, were rarely of
N use in the case studies.
L
L
® e Apply transformations to induce symmetry in the data set, to even out counted
data, or to obtain a straight line in plots of functional relationships.

A e Multiple scatterplots and coded scatterplots may be used to examine
" measurements in as functions of more than one parameter.

LIE Y
‘l

A B
LU N LS MY

--_...-_._
.
PN

[N

P

‘Iv‘."“.

“‘,,s.\\\

Le" S ¢ 4 PN & ~m A e)

r Y. e B Ay A L) N0 S e el DI
s S 2) N N AR (MR OB OO OONOOUIOUOMOL
0N n' AL "“‘v..““"e."' * it """""'Q“’q’l hll'q“'t?l ot ?i.c' i) !_"P“‘O.“!."‘f‘h".‘-""«'.n', ";‘.','.'l."l.“‘-‘ (R _."'g‘_.‘o‘,‘a

‘J::’.\ hlind bl Al el Aot hade Ani Aall nt el Ladl bal hadh 0ok Saih ik 4 AR L ad Aol Mol Sol Sk and) r—-—vrw‘w'*"*‘l"u-v'-u-uw‘lwvrlir-r-v-vw-*wv-'w‘n"zwv-w'u'v‘ﬂ
in’ 51
! ..\: 15
b
o
o
S
References
{
_ 1] N. R. Adam and A. Dogramaci, Eds.
- Current Issues in Compuier Simulation.
';.: Academic Press, 1979.
[2] J. Beardwood. J. H. Halton, and J. M. Hammersley.
. The shortest path through many points.
.:::- Proceedings of the Cambridge Philosophical Society 5§5:299-327, 1959.
e
’,',.:-_: [3] J. L. Bentley.
- Progamming Pearls: Selection.
Communications of the ACM 28(11), November, 1985.
< [4] J.Bentley, J. Faust.
N Unpublished notes on simulations of FFD.
.';_. 1980.
' P [S] J.L.Bentley, D. Haken, R. W. Hon.
A - Statistics on VLSI Designs.
’ N Technical Report CMU-CS-80-111, Department of Computer Science, Carnegie-
,:j-. Mellon University, Pittsburgh, PA 15213, April, 1980.
2 [6] J.L. Bentley.
. Writing Efficient Programs.
;) Prentice-Hall, 1982.
o
'“'.-; [7] J.L.Bentleyand J. B. Saxe.
o Generating sorted lists of random numbers.
-j ACM Transactions on Mathematical Software 6(3):359-364, September, 1980.
® [8] W.I. B. Beveridge.
X The Art of Scientific Investigation.
-~ Vintage Books, New York, 1957.
-
» [8] P.Brately, B. L. Fox, and L. E. Schrage.
-; A Guide to Simuiation.
o; Springer-Verlag, New York, 1983.
o0 [10] J. M.Chambers, W. S. Cleveland, B. Kieiner, and P. A. Tukey.
::.; The Wadsworth Statistics/Probability Series: Graphical Methods for Data Analysis.
- Duxbury Press, Boston, 1983,
"y Hardback version published by Wadsworth International Group, Belmont, California.
¢ I;
7
i
@
s
Al

A
)

]

e o e - .
#t 100, . DOOLEUTUN AR AN AT LN SR A A AN

r'\‘ﬂ_‘l“ l',.a‘ : St T RIS IR W ok, 4!

I .

i

DOAOAGOCONIOOOREAR A0
N »',‘a', A

.“\.h
-
QN 152
3 - [11] Cleveland, W.S.
3 * The Eiements of Graphing Data.
S Wadsworth Fublishing Company, 1985.
J-'}f [12] M. H. DeGroot.
St Probability and Statistics.
-1;: Addison-Wesley Publishing Company, Reading, MA, 1975.
' \‘
f " [13] J. Eppinger.
- An empirical study of insertion and deletion in binary trees.
AR Cemmunications of the ACM 26(9), September, 1983.
AN
o [14] W.Feller.
‘ “"le-' An Introduction to Probability Theory and its Applications.
¥ Wiley and Sons, New York, 1971,
e [18] G.S.Fishman.
‘::-} Concepts and Methods in Discrete Event Digital Simulation.
.'}: John Wiley & Sons, New York, 1972,
. [16] M. Gnanadesikan and H. W. Gustafson.
® Properties of Performance Measures.
N 1985.
’\;: Summary of poster presentation. Gnanadesikan is at Farleigh Dickinson University,
o, Gustafson at AT&T Corporate Headquarters.
A
~ (17] J. M. Hammersley and D. C. Handscomb.
. Mante Carlo Methods.
K- Wiley & Sons, New York, 1964,
. - '.1
NN [18] B.W.Kernighan and R. Pike.
j_ The Unix Programming Environment.
Ml Prentice-Hall, 1984.
2 [19] D.E. Knuth. |
| :-:: The Art of Computer Programming: Volume 2, Seminumerical Algorithms.
e Addison-Wesley Publishing Company, Reading, MA, 1973.
b *' .
-
Ao [20] I Miller and J. E. Freund.
PO Probability and Statistics for Engineers.
?‘,._ Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.
.:\-"
s [21] F. Mosteller, S. E. Fienberg, R. E. K. Rourke.
:_ : Beginning Statistics with Data Analysis.
o Addison-Wesley, Reading, MA, 1983.
L L) [22] A. Nijenhuis and H. S. Wilf.
A0 Combinatorial Algorithms for Compilers and Calculators.
2t Academic Press, New York, 1978,
o
oA [23] P.W.Shor.
o The average-case analysis of some on-line algorithms for bin packing.

. In Proceedings, 25th Symposium on Foundations of Computer Science, pages
e 193-200. |EEE , October, 1984.

[24] J W.Tukey.
Addison-Wesley Series in Behavioral Science: Quantitative Methods: Exploratory
Data Analysis.

Addison-Wesley Publishing Company, Reading, MA, 1977,

T T ww T, . y » -

3 154

-
-
-,
X
.
-

r
.
v

T a
1,4
s 7

S
PRI

N

‘l ll .'
['4

-
4«
]

|
A Vel ey

v N

S

7 "- "- "' "l "l.

'.".'

o
S

SR A

.
.

T

~'.'.'.". r"d..'-

»

o 51 D G N
{. {n.' ':’n_’.

="
s

155

Chapter 8
Conclusions

This thesis presents four case studies in experimental analysis of algorithms, alocng with a
discussion of principles and techniques for experimental research. These are all studies of
algorithms, not of programs. Perhaps because algorithm analysis is primarily a mathematical
discipline, there has been no tradition of experimental research in this domain. In sciences
with strong experimental traditions, fundamental principles such as rigorous analysis of
results, and replication of experiments are well-recognized and regularly applied. Much of

this tradition can be applied successfully to algorithmic problems.

On the other hand, although simulation has been applied in diverse areas such as economic
forecasting, analysis of weather patterns, and benchmark testing of computer operating
systems, the goals and procedural issues presented by algorithmic problems are in many
ways atypical. For example, the underlying system is relatively simple: even a complex
heuristic algorithm is likely to have a cleaner mathematical description than, say, an economic
model. Algorithms also tend to have inexpensive implementations and relatively few
parameters, so much more data can be gained per unit of computing effort. It is not obvious,
however, that the questions posed in algorithmic studies are naturally answered by traditional
experimental methods: standard tools of statistical analysis (such as analysis of variance)
begin by assuming the functional relationship between input properties and performance
measures, while the usual goal of algorithm analiysis is to discover that functional relationship.

Nevertheless, the case studies demonstrate that simulation can provide a powerful tool for
gaining insight into difficult analysis problems. Although the problems in the case studies
have received a great deal of previous attention, many new results were gained by
experimental methods. The simulation resuits led to new theorems, new arguments, and new
insight, as well as to precise measurements and characterizations of algorithmic
performance.

W O RO OO0 U A OO DO
N ‘ .-"‘f“. y "“.'v._-'l.,.'!‘,..“ 'o‘_c”a..‘l‘."'f\"..h"....'*,-,’u" W

Tne limitations of experimental research in this domain are real: measurements at a finite
set of sample points do not necessanly lead to theorems. While the difficuities can not be
eiminated, much can be Jachieved by exploitation of simulation techniques. creative
application of analysis tools. and an approach that iterates experimental and theoretical

analyses.

8.1. Contributions of the Thesis

The main contributions of the thesis take two forms: new resulits in the case study domains,
and a discussion of issues and techniques for improving simulation studies of algorithms.
The following list restates the research goals from Section 1.3 and gives references to

sections of the thesis that address each goal.

1. To demonstrate that simulation can provide a useful, general tool for developing
new understanding of algorithms. Chapters 2, 3, 4, and 5 present resuits for the
case studies. A list of specific contributions in these areas appears in Section
6.1.

2. To identify common problems and assess the applicability of this approach.
Section 1.2 gives a critical survey of previous work and discusses problems and
issues that arise. Section 6.2 discusses limitations and applications of
experimental research in the context of algorithm analysis.

3. To develop principles for successful experimental research in the domain of
algorithm analysis. Section 6.3 presents four general principles for successful
experimental studies.

4. To promote more general use of this approach by giving a “*handbook” of useful
tools and techniques. The handbook appears in Chapter 7. Topics include
accuracy and reliability of simulation results, variance reduction technigues,
choice of sample points, and analytical tools appropriate far this domain. Section
7.9 summarizes the handbook by giving a list of rules-of-thumb for simulating
algorithms. Also, the case studies provide a portfolio of examples: results were
purposely presented in an evolutionary style so that the investigative nature of the
research could be seen.

8.2. Future Work

More questions and open probiems have been raised by this research than have been
answered. Many conjectures and observations from the case studies await further analysis
and experimentation. Also many issues of experimental procedure deserve further study.
This section presents some of the more prominent open problems from the case studies and

suggesté future directions for the study of experimental techniques in this domain.

o

UL W .'.’

A g A'n A'e R Bva A a A Aia Avg Atn B Ay ola btiaratuabdiil Al Ak Sul il Sati hav St Be® i JRe oS ol Palit” o el oflh alia ot ‘atd ol ahd abd atvh ofih ot Al R AL AL S A ST S Rt R AL R R A A it 71

\‘

\'

K

_‘ Bin Packing

‘_ There 1s at present no theoretical charactenization of First Fit packings for v < 1. In
7» particular. characterization of the nonmanotonicity in « remains an intriguing open problem.

f:. Do the focal minimum and maximum move with »?7 What is the value of « that gives maximum
. empty space asymptotically?

‘ A first step would be to formalize the argument for linear empty space when « = 0.8 {given in

:: Section 2.3.1)) by proving that expected empty space in 2-item bins 1s bounded below by
S some small constant. The next step would be to extend the argument (in terms of k-item bins
'* and empty space in k-item bins) to all values of . The proportion of k-item bins for any u is
N suggested by Graph 2-6-a; further experiments would reveal appropriate values for the small
constants. Limited experimental results give the weak conjecture that empty space does not
:i grow linearly at small values of u; is there an abrupt change the asymptotic function at u = 0.5,
" as is the case with First Fit Decreasing?

4

Although the First Fit Decreasing algorithm has been theoretically characterized as a
:: function of n for fixed values of u, a function in terms of n and u are not known. For example,

\ when u < 0.5, empty space has been proven to be constant with respect to n. Experiments
(suggest that (for partial empty space) the constant depends upon u and grows approximately
' as u'>. A similar open problem exists for u between 0.5 and the critical region: here, empty
jf space appears to grow linearly in u. The cyclic component observed as a function of u also
" remains unexplained.

' Experimental results suggest that the Best Fit and Best Fit Decreasing algorithms produce
.j packings with structure very simitar to those for First Fit and First Fit Decreasing, respectively.
:j Theoretical characterization of the former two algorithms seems to be a very difficult task.

.' The only expected case result to date is Shor's [10] analysis of Best Fit packings when u = 1.

.Z In addition to expected behavior in terms of n and u, variation from the mean is also of

i interest. The causes of very bad packings in the critical region are only partially understood.
. A promising experimental approach might be to stratify a variety of input properties to obtain

. a better view of the relationship between input properties and bad packings.

e _ . .

o For all four packing algorithms, the next set of experiments should examine packing
structure more closely. The most obvious characteristic to study is the interaction between

X number of k-item bins and empty space in k-item bing. A better view of this behavior could

;’l

N

|

AR Wt e Ve Te Sy ‘ A R M L M U e s L O I O L T e Y
A TSI Tt T 00 ot 5 W R R S N R R NI MR R M RS DY Mg A O

&‘0 !

e d S & sl el e i 8 000 it il Al o ol et olh oall Sal ol dd ol S8 o A Auid 00d 4ia aed aeh Aen gtk ueh aei sae ach o4 o]

158

lead to character.zation of First Fit at all values of w«, and, for First Fit Necreasing. to

understanding of the cyclic component and of packings in the critical region.

An obvious direction for further experimental study is to examine a variety of input
distributions and packing algorithms. Coffman, Garey, and Johnson [S] give a thorough

survey cof bin pacxing and refated problems.

Greedy Matching

The primary open preblem from the Greedy Matching study is to characterize the
distnbution of points after & levels of nearest-neighbor removal. Limited experimental study of
the distribution of inter-point distances suggests that the shape is generally invariant over &,

although the spread increases as points are eliminated.

An easier task might be to obtain a lower bound on the expected number of nearest-
neighbor pairs removed at each level and an upper bound on the expected cost of edges
removed. Bounds on these two quantities, combined with the arguments of Section 3.5,
would lead to proofs of the conjectured logarithmic edge cost for Greedy Matching and linear

expected running time ot the matching algorithm.

Median-Selection in Quicksort

Doug Tygar and | recently proved the conjecture of Section 4.4 that a square-root selection
strategy minimizes the total number of comparisons. We also showed that the square-root
strategy has subquadratic worst-case performance. The following problems remain open:
determining the improvement obtained by the square-roat strategy over any fixed- T strategy,
finding a closed form for total comparisons, and, for fixed- " strategies, determining the best
choice of T as a function of N and M.

Another direction for extending this work is to give a complete analysis of square-root
Quicksort: that is, to analyze measures A through F as determined by a specific
implementation. The biggest difficulty may be the analysis of the median-selection algorithm.,
Hoare's algorithm was used in the experimental study because it has an exact analysis for

number of comparisons. A similar result for the number of exchanges appears not to have
been published. A selection algorithm by Floyd and Rivest [6, 7] gives fewer comparisons

LYY

. asymptotically but has not been analyzed exactly.

s

A number of implementation issues remain open for variable-sample Quicksort algorithms.

s
AN

Y

A9

f'",l"

Ao

Tk S R Tak A |

MO -

159

One interesting problem is how best to imbed a general median-selection algorithm into
Quicksort: since median-selection algorithms partition their input, it might be profitable to
avod re-considering the sample during the partition stage. Also, an advantage of fixed.-T
strategies s that the median-selection code may be finely tuned, giving fewer comparisons for
a specitic sample size than a general algorithm would. Since Quicksort seems to be fairly
robust mth respect to small changes in sample size, perhaps some hybrid scheme, which
contains a small set of finely-tuned selection subroutines and makes an intelligent choice of

which to use, would be more efficient in practice than a straightforward square-root strategy'.

An obvious cpen problem, ripe for experimental study, is to determine if an implementation
of square-root Quicksort exists that is more efficient than standard implementations under

realistic conditions.

Sequential Search

The conjecture that for any two Move-Ahead-4 rules with different index, one will converge
more quickly and the other will have better asymptotic cost, remains open. Experimental
results support this conjecture for the family of distributions related to Zipf's law.

Standard theoretical analysis of the search rules has been based upon the asymptotic
probability for each permutation of the search list. One reason for the difficuilty of studying
these probabilities by experimental methods is that the space of permutations is large. Future
experiments may be designed to reduce this problem by grouping the permutations in related
classes and by examining the distributions of the groups. For example, permutations might
be grouped according to ranked costs, such as is displayed in Exhibit 5-8, or perhaps by
location of the most commonly-requested item. An appropriate grouping might suggest an
analytical shortcut for characterizing the Move-Ahead-k rules.

To simulate the asymptotic performance of the Move-to-Front rule, it is only necessary to
generate requests until each has appeared at least once; Bitner [8] showed that the
probabilities for search list permutations at this point are equivalent to their asymptotic
probabilities. Although this very fast shortcut algorithm was not used in the case study
{because of the paired experiments), it could be useful in future studies. Perhaps a shortcut
to asymptotic behavior can be found for general Move-Ahead-k rules. For example, starting
with the optimum search list order instead of random order may permit faster convergence to

1! thank Mike Langston for suggesting this hybrid scheme.

roer [nt St Aud Sl Aad Sa3 mad Aad b &8 Sk Sk SaA Al A A A Sl L e A Y A A0 A leubit abieda AL\ daifintull v obain W inuid- oid A’ ok " ol il o aidh ol aS oxA a7R Rl gad a'd a'h oil oW ar e dVR B) '1(,'1
%y R

160

steady-state behavior. (Bitner [3] proved that the steady-state probabilities for Transpose are
independent of initial list order, and this fact is obvious for Move-to-Front: a similar proof for
the other rules would be required to justify the use of this shortcut.) Of course. it would be
erroneous to draw conclusions about convergence properties for the standard analytical

model from these simulations.

Simulation and Analysis of Algorithms

A common problem in experimental analysis of algorithms arises in the study of heuristics
for NP-hard problems. Analytical results are often expressed as bounds on the ratio of
heuristic performance to the optimal solution. Unfortunately, it is rarely possible to determine

the optimal solution experimentaily. In the Bin Packing study, a tight lower bound on the

’.r optimal solution was available; for what other NP-hard problems do such tight approximations
;-_:-:Z:j exist? A promising alternative approach (discussed in Section 1.2) is to generate inputs with
L:’ known optimal solutions: for what problems is this approach possible? Do the generation
:_%-. schemes preserve interesting input properties?

S

ot The idea that an algorithm is to be simulated, rather than implemented, can be exploited to

AaaTy

¥

produce very efficient simulation environments. Variance reduction techniques and shortcut

algorithms, discussed in Sections 7.3 and 7.6, deserve more extensive application and study.
Perhaps the idea of finding a shortcut to asymptotic behavior, discussed above in the context
of Search rules, can also be applied to problems in other algorithmic domains.

Creative techniques for obtainimj good views of algorithmic behavior also deserve further
attention. In particular, tools of a/gorithm animation - producing movies of algorithms in
action - can be quite powerful for giving insight into underlying processes. Animations of
First Fit Decreasing packings were directly responsible for the proof of constant empty space
for u < 0.5 (appearing in [1]). Animations and “snapshots” of an algorithm can aiso provide
an excellent medium for conveying experimental resuits. Systems for algorithm animation
have been developed by Brown and Sedgewick [4] and Bentley and Kernighan {2}

While a start was made at identifying properties of algorithm analysis that influence the
choice of analysis tools, many questions remain open. This thesis only considered statistical

l‘
LUENE A

and analytical tools found in advanced textbooks: perhaps newer techniques may be applied

L
Yy

with success. in particular, the special tools for analysis of time-series data would probably be

v
L")

useful in the Sequential Search and the Greedy Matching studies, as well as in other
analytical domains. What analysis tools give rigorous upper or lower bounds on function
growth rather than approximate fits?

N
g 'I‘uﬁ',v.

A O Dyl SRR T 0 g o8 0 TR T FOSGOOO0
T N R i T e ittt teaty, ettt

PN P S
R s

'y ‘s ‘s
& e

« 20
o

41
i

LA

Vs L
[LPLIN

AQY

v
L

L et
N Wl

B
’

A}

WNXXLE S5
Pl hl Tk Tl i Ny

.
)
2

-
55

. J
sl

- g v
PR AL MM
AR SIS TOL Iy

TRers

« a'w
s e
PR

Dk

0y .‘l

r % -, g,
’!’I‘;’lp ")

161

An interesting problem that was only shightly addressed in this research is the design of an
environment to support simulation studies of algonthms. Although numerous simulation
languages, random number generators, and statistical packages are avaidable. the emphasis
in such systems appears to be somewhat at odds with that of aljorthm anaiysis. What
features should be built into a statistical package to support exg=nm=ntal research in this
domain? Expenence with the case studies suggests that emphasis cn graphical tools and
exploratory data analysis is desirable, but many more than four caze studies are required

before a final determination may be made.

Much more experience is required if a rigorous experimental method for algorithmic
problems, comparable to that for traditional experimental domains, is to be established. |
hope that computer scientists will apply the taols of Chapter 7 (as well as others not discussed
there) to their analysis problems and report upon their success. Statisticians can be of great

help in identifying statistical and analytical tools that are particularly useful in this domain.

EOOUOOGOOOOU IO ACANQOACR MGG AL
R AU DML O OO KRR

- .

Y

]
o

-
-

ARHAYY-

162

4
P

References

[1] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, L. A. McGeoch.
Some unexpected expected-behavior results for bin packing.
In Procceedings, 16ih Symposium on Theory of Computation. ACM, April, 1984,

[2] J L. Bentley and B. W. Kernighan.

-: GRAP: a language for typesetting graphs.

o Communications of the ACM 29(8):782-792, August, 1986.
N [3] J.R. Bitner.

. Heuristics that dynamically organize data structures.

SIAM Journai of Computing 8(1):82-110, February, 1979.

(4] M. H. Brown and R. Sedgewick.
Techniques for algorithm animation.
IEEE Software 2(1):28-39, January, 1985.

v 0
a2 a s)t

y [5) E. G. Coffman, Jr, M. R. Garey, D. S. Johnson.
Approximation Algorithms for Bin-Packing - An Updated Survey.

N

', Available from the authors at Bell Laboratories, Murray Hill, NJ 07974.

. [6] R.W.Floyd and R. L. Rivest.

v The algorithm SELECT - for finding the ith smallest of n elements (Algorithm 489).
s Communications of the ACM 18(3):173, March, 1975.

N [7] R. W. Floyd and R. L. Rivest.

?.j Expected time bounds for selection.

~ Communications of the ACM 18(3):165-172, March, 1975.

[8] D.E.Knuth.

< The Art of Computer Pragramming: Volume 2, Seminumerical Algorithms.
:.:‘ Addison-Wesley Publishing Company, Reading, MA, 1973.

:".3 [9) R.Rivest

. On self-organizing sequential search heuristics.

™ Communications of the ACM 19(2):63-67, February, 1976.

- @

3 [10] P.W. Shor.
" The average-case analysis of some on-line algorithms for bin packing.

L. In Praceedings, 25th Symposium on Foundations of Computer Science, pages
N 193-200. IEEE, October, 1984.

.

e

by]

)

DAY TS Tr e a TPy
A2 NSO S Dt

a K “I)

; 0 OG0T
),‘ “r :l'a‘&‘a?’.";?f-.rn""a i'-'i‘t,’lh&‘.r ‘h"v”‘i

o'y

A

A ‘}-‘ -' l'l "l‘ .'.

.
‘I

- o
> 5 ®

- v x

st aa g

@
N
/\

\
)

&; - ® o 8 o & 0 o o 0 e e w. w e

o, -‘, o 4 n'. ROM ’a“’-'.a’; 0‘. s A‘. Ayt ateds ."’m ACSCIRCAORCAAA g it et BANIOHCAOAOEN ~“; ST
'::l‘.!l!:: ,;1' l "y t m KXy 0, g‘ ,o'tﬂi I.: i, ‘b(iﬁ.% ”:.t <, \-.9",.0, .I. ‘0.. .‘Q £ b8) Lt 't 1 ..\ A ", i . .i : N -‘.) ‘it e

5l 0“ l,s

't Pt ‘ f, S
! 5 4
0 i‘o' 4. 0,,1 \J q"c Q‘O

v" ' 4'. ‘g ‘ g" (3 ﬁ,.‘t .‘z A

.. I N -‘*“H::’.“.:'é‘

W
.".""l ’("“l 'y 'q 'l' l‘¢ ,', Q
v

- .

