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PREFACE Efla
(18
DA
The investigation described in this report was authorized as a part of 4
the Civil Works Research and Development Program by the Office, Chief of Engi- EEE;
neers (OCE), US Army Corps of Engineers. The work was performed under the £§\t
Coastal Sediment Transport Processes Work Unit 324-1, Shore Protection and N J
X
Restoration Program, at the Coastal Engineering Research Center (CERC) of the -
US Army Engineer Waterways Experiment Station (WES). Messrs. John H, Lock- i:;q
hart, Jr., and John G. Housley were the OCE Technical Monitors. &;ﬁf
The study was conducted from 1 July 1986 through 31 December 1986 by txi;
Dr. Nicholas C. Kraus, Research Physical Scientist and Principal Investigator, ;"
Coastal Sediment Transport Processes Work Unit, Research Division (CR), CERC, :N'Q
in conjunction with related engineering studies by Messrs. Magnus Larson and ftff
Hans Hanson of the University of Lund, Sweden. This report presents the over- ;i:f
all results of these efforts. The CERC portion of the study was conducted ;;:'
under general supervision of Dr. James R. Houston, Chief, CERC; Mr. Charles C. ;&;
Calhoun, Jr., Assistant Chief, CERC; and Dr. Charles L. Vincent, Program igﬁ?
Manager, Shore Protection and Restoration Program, CERC; and under direct Eﬁif
supervision of Mr. H, Lee Butler, Chief, CR, CERC. Work at the University of
Lund was performed under general supervision of Dr. Gunnar Lindh, Head, :::T
Department of Water Resources Engineering, Institute of Science and Technol- E;ZE
ogy. Mr. Bruce A. Ebersole provided technical review. This report was edited }f?
by Ms. Shirley A. J. Hanshaw, Information Technology Laboratory, Information h"L
Products Division, WES. fijf
COL Dwayne G. Lee, CE, was Commander and Director of WES during publica- :‘Eﬁ
tion of this report. Dr. Robert W. Whalin was Technical Director. i:f
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ANALYTICAL SOLUTIONS OF THE ONE-LINE MODEL ;d

OF SHORELINE CHANGE 3

.

|43

PART I: INTRODUCTION ) if?

oA

Background 'k

1. Mathematical modeling of shoreline change has proven to be a useful {Ni
engineering technique for understanding and predicting the evolution of the f,
plan shape of sandy beaches. 1In particular, mathematical models provide a ::
concise, quantitative means of describing systematic trends in shoreline evo- ﬁg'
lution commonly observed at groins, jetties, and detached breakwaters and s
produced by coastal engineering activities such as beach nourishment and sand rﬂg
mining. .
2, Qualitative and quantitative understanding of idealized shoreline iE.
response to the governing processes is necessary in investigations of beach i:
behavior. By developing analytical or closed-form solutions originating from E;‘

mathematical models which describe the basic physics involved to a satisfac-

5,

tory level of accuracy, essential features of beach response may be derived, ;&:
isolated, and more readily comprehended than in complex approaches such as ﬁxi
-

numerical and physical modeling. Also, with an analytical solution as a

starting point, it is possible to estimate, rapidly and economically, charac-

teristic quantities associated with the phenomenon, such as the time elapsed E;:
before bypassing of a groin occurs, percentage of volume lost from a beach Ei%
fi11, and growth of a salient (emerging tombolo) behind a detached breakwater. &X‘
Another useful property is the capability to obtain equilibrium conditions @
from asymptotic solutions. Closed-form solutions for shoreline change can E:;:
also be used as a teaching aid. However, the complexity of beach change tz:
implies that results obtained from a model should be interpreted with care and if‘
with awareness of the underlying assumptions. Closed-form mathematical models - 4
cannot be expected to provide quantitatively accurate solutions to problems ;:E
involving complex boundary conditions and wave inputs. In engineering design, ﬁS:
a numerical model of shoreline evolution would be more appropriate. ;S:_
3. The equations describing shoreline evolution fast become excessively
complicated to permit analytical treatment if too many phenomena are described :?;:
N
; ¥
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in one formulation. Therefore, to obtain a closed-form solution to shoreline
change, a simple mathematical formulation has to be used, but one which still
preserves the important mechanisms involved. The one-line (denoting the
shoreline) theory was introduced by Pelnard-Considere (1956), and it has been
demonstrated to be adequate in this respect. Considerable numerical modeling
of long-term shoreline evolution (time-scale on the order of years) has been
done on the basis of this work. However, not many analytical approaches have
been published, probably because of their limited applicability for describing
the finer details of shoreline change. Contributors in this field include
Bakker and Edelman (1965), Bakker (1969), Bakker, Klein-Breteler, and Roos
(1971), Bakker (1970), Grijm (1961, 1965), Le Méhauté and Brebner (1961),

Le Méhauté and Soldate (1977, 1978, 1979), and Walton and Chiu (1979).

One-Line Theory

4, The aim of the one-line theory is to describe long-term variations
in shoreline position. Short-term variations (e.g., changes caused by storms
or by rip currents) are regarded as negligible perturbations superimposed on
the main trend of shoreline evolution. In the one-line theory, the beach pro-
file is assumed to maintain an equilibrium shape, implying that all bottom
contours are parallel. Consequently, under this assumption it is sufficient
to consider the movement of one line in studying the shoreline change, and
that line is conveniently taken to be the shoreline, which is easily observed
(Figure 1).

5. In the model, longshore sand transport is assumed to occur uniformly
over the whole beach profile down to a certain critical depth D called the
depth of closure. No sand is presumed to move alongshore in the region sea-
ward of this depth. 1If the beach profile moves only parallel to itself
(maintaining its shape), a change in shoreline position Ay at a certain
point is related to the change in cross-sectional area AA at the same

point according to Equation 1:

AA = AyD (n
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where

change in cross-sectional beach area (m2)

AA =
Ay = change in shoreline position (m)
D = maximum depth for sand motion (depth cf closure) (m)

6. The principle of mass conservation must apply to the system at all
times. By considering a control volume of sand and formulating a mass balance
during an infinitesimal interval of time, the following differential equation

is obtained (see Figure 1):

a_Q+§é=0 (2)

where

".

Q = longshore sand transport rate (m3/sec)

b t‘,-A(

A = cross-sectional area of the beach (mz)

>
[ &
a3

X = space coordinate along the axis parallel to the trend of the
shoreline (m)

A8

‘&‘.

t = time (sec)

~
7

h g g A%, PR
Y

W
)
~
™

y .. .. . Shoreline

o ///)" I Ay I
Figure 1. Schematic illustration of a hypothetical equilibrium
beach profile

7. Equation 2 states that the longshore variation in the sand transport
rate is balanced by changes in the shoreline position. If, in addition to
longshore transport, a line source or sink of sand at the shoreline is con-

sidered, Equation 2 takes the following form:




where q denotes the source or sink of sand per unit length of beach
(m3/m/sec). The minus sign denotes a sink (loss of sand), and the plus sign
denotes a source.

8. 1In order to solve Equation 2, it is necessary to specify an expres-
sion for the longshore sand transport rate. Longshore sand transport on an
open coast 1s believed to bear a close relation to the longshore current which
is generated by waves obliquely incident to the shoreline. A general expres-

sion for the longshore transport rate is
Q= Q0 sin Zub 4)

where

amplitude of longshore sand transport rate (m3/sec)

o
*b
In the generally accepted formula for longshore current, the speed of the cur-

angle between breaking wave crests and shoreline

Sl ! 3
S A 5 e e

rent is proportional to sin Zab (Longuet-Higgins 1970a,b).

Y.
Y

T

9. The angle between the breaking wave crests and the shoreline

) ]
(Figure 2) may be expressed as 3:$
Lty
i
3 2
= o - 3y 2
ay g arc tan (ax) (5)

in which
e, = angle of breaking wave crests relative to an axis set parallel
to the trend of the shoreline
dy/3x = local shoreline orientation

10. A wide range of expressions exists for the amplitude of the long-
shore sand transport rate, mainly based on empirical results, For example,

the Shore Protection Manual (SPM) (1984) gives the following equation:

2 K

= P8 r
Q, = 76 Hsp C8y G - o) (6)




v
e sy

p = density of water (kg/m3)
g = acceleration of gravity (m/secz)
H = gignificant breaking wave height (m)
Cgb = wave group velocity at breaking point (m/sec)
K = nondimensional empirical constant
p_ = density of sand (kg/m3)
A = porosity of sand

- X

Figure 2. Definition sketch for geometric properties at a
specific location as related to shoreline change
11, 1If Equation 5 is substituted into Equation 4, the sand transport

rate can be written:
Q QO sin 2[:(10 arc tan (3% (7)

12. For beaches with mild slopes, it can safely be assumed that the
breaking wave angle relative to the shoreline and the shoreline orientation
are small., The consequences and validity of this assumption, which linearizes
Equation 7, are discussed further in this report. Under the assumption of

small angles, to first order in a Taylor series,
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Q= Qo(éao 2 ax (8)

13. If the amplitude of the longshore sand transport rate and the inci-
dent breaking wave angle are constant (independent of x and t) the follow-

ing equation may be derived from Equations 1, 2, and 8:

3%y 3
iy ®
t
X
where
2Q
e = —59 (10)

14. Equation 9 is formally identical to the one-dimensional equation
describing conduction of heat in solids or the diffusion equation. Thus, many
analytical solutions can be found by applying the proper analogies between
initial and boundary conditions for shoreline evolution and the processes of
heat conduction and diffusion. The coefficient ¢ , having the dimensions of
length squared over time, is interpreted as a diffusion coefficient expressing
the time scale of shoreline change following a disturbance (wave action). A
high amplitude of the longshore sand transport rate produces a rapid shoreline
response to achieve a new state of equilibrium with the incident waves. Fur-
thermore, a larger depth of closure indicates that a larger part of the beach
profile participates in the sand movement, leading to a slower shoreline
response.

I5. If the amplitude of the longshore sand transport rate is a function
of x , the governing differential equation for the shoreline position will

take a different form:

2
3y ,de 3y | de . 3y
€ ax + dx 3x % dx + at (I

where it is assumed that the depth of closure 1s constant. Equation 11 makes
it possible, in a simplified way, to account for diffraction behind a groin,

where the wave height varies with distance alongshore. However, the
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expression describing the variation in Qo in a diffraction zone must be ::0
simple enough to allow an analytical solution., Otherwise, a numerical ?
solution technique must be employed (Kraus and Harikai 1983, Kraus 1983, and
Hanson and Kraus 1986). If the incident breaking wave angle o, is also a g%i
function of the distance x , another term, gdao/dx , must be added to the ::‘
right side of Equation 11. ;
16, In summary, the assumptions which comprise the one-line model, 1in ) '
which breaking waves are the dominant sand-moving process, are as follows: :j-
a. The beach profile moves parallel to itself (assumption of :ﬁ;
~  equilibrium of the beach profile). :fl
b. Longshore sand transport takes place uriformly over the beach ?'
profile down to a depth D (depth of closure). iu
c. Details of the nearshore circulation are neglected. 2&.
d. The longshore sand transport rate is proportional to the angle E:S
of incidence of breaking wave crests to the shoreline, i~
17. In addition, the following assumptions will be used to derive :f
analytical (closed-form) solutions of the one-line model (Equation 9): ﬁé
a. The angle between the breaking wave crests and the shorelire is j;{
small (small-angle approximation). :51
b. The angle of the shoreline with respect to the x-axis is small. .
18. 1In arriving at all solutions, it is tacitly assumed that sand is :*t
always available for transport unless explicitly restricted by boundary and/or 32{
initial conditions. 3~
o
Overview of Previous Analytical Work tr:
N
19. Pelnard-Considere (1956) was the first to employ mathematical :i
modeling as a method of describing shoreline evolution. He introduced the N
one-line theory and verified its applicability with laboratorv experiments. Eﬁj
Figure 3 shows a comparison between experimental results and the aralytical :{ﬂ
solution for the case of an updrift groin, as obtained by Pelnard-Considere. ;?:
Pelnard-Considére derived analytical solutions of Equation 9, the linearized r\
shoreline change equation, for three different boundarvy conditions: shoreline :35‘
evolution updrift of a groin (with and without bypassing) and release of an E:i<
instantaneous plane source of sand on the beach. E%S.
20. Grijm (1961) studied delta formation from rivers discharging sand. [,
In the transport equation discussed in his article, the sand transport rate E:;
; B
BN
..... e . WOy O
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Figure 3. Comparison between experimental and theoretical shoreline
evolution (after Pelnard-Considére 1956)

is set to be proportional to twice the incident breaking wave angle to the
shoreline. Only solutions which were similar in shape during the course of
time are discussed. Two different analytical solutions are presented: one
for which the incident breaking wave angle and the shoreline orientation angle
are small and one for which the wave angle is small in comparison with the
shoreline orientation., The governing equations (sand transport and mass con-
servation) are expressed in polar coordinates and solved numerically. Grijm
(1965) further develops this technique and presents a wide range of delta for-
mations. Komar (1973) also presents numerically obtained solutions of delta
growth under highly simplified conditions.

21. Le Méhauté and Brebner (1961) discuss solutions for shoreline
change at groins, with and without bypassing of sand, and the effect of sudden
dumping of material at a given point. Most of the solutions were previously
derived by Pelnard-Considére (1956), but they are more thoroughly presented in
Le Méhauté and Brebner's work, especially regarding geometric aspects of the
shoreline change. The decay of an undulating shoreline and the equilibrium
shape of the shoreline between two headlands are treated.

22. Bakker and Edelman (1965) modify the longshore sand transport rate
equation to allow for an analytical treatment without linearization. The sand

transport rate is divided into two different cases:
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- < 1.
Q = QK, tan a 0 < tan a_ < 1.23 (12)

Q=C Gna 1.23 < tan o (13)

where Kl and K2 are constants. From these equations as a starting point,
the growth of river deltas was studied.

23. Bakker (1969) extends the one-line theory to include two lines to
describe beach planform change. The beach profile is divided into twe parts,
one relating to shoreline movement and one to movement of an offshore contour

(see Figure 4). The two-line theory provides a better description of sand

Figure 4. Definition sketch for the two-
line theory (after Bakker 1968)

movement downdrift of a long groin since it describes representative changes
in the contours seaward of the groin head. Near structures such as groins,
offshore contours may have a different shape from the shoreline. The two
lines in the model are represented by a system of two differential equations
which are coupled through a term describing cross-shore transport. According
to Bakker (1969), the cross-shore transport rate depends on the steepness of
the beach profile; a steep profile implies offshore sand transport; and gently
sloping profile implies onshore sand transport. Analytical solutions of the
two-line theory are not included in the present report. However, an example
of a two-line theory solution for a groin system is shown in Figure 5. The
solution describes the stationary form of the shoreline for various groin
spacings given in multiples of a nondimensional groin length Lo

24, The two-line theory is further developed in Bakker, Klein-Breteler,
and Roos (1971) in which diffraction behind a groin is treated. In this case,
it became necessary to numerically solve the governing equations. Expressions

for the coastal constant (diffusion crnefficient ¢) for the one- and two-line
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theories are also presented. Bakker (1970) developed a phenomenological dif- "3
4

fraction routine for one-line theory but numerically solved the problem. o
L

25. Le Méhauté and Soldate (1977) present a brief literature survey on _\-'

the subject of mathematical modeling of shoreline evolution. Analytical solu- ."
tions of the linearized shoreline change equation are discussed together with
o

the spread of a rectangular beach fill. In Le Méhauté and Soldate (1978, ;:a
1979) a numerical model is derived which includes variation in sea level, wave ":‘
refraction and diffraction, rip currents, and the effects of coastal struc- "
tures in connection with long-term shoreline evolution. r_
-~

26. Until recently, the most complete summary of analytical solutions s'_x:,

to the sand transport equation has been made by Walton and Chiu (1979). Two ;z,
f g

derivations of the linearized shoreline change equation are presented together W
with another approach resulting in a nonlinear model. The difference between ;‘
(LS

the two approaches, which both arrive at the diffusion equation, is that one :_f:
uses the Coastal Engineering Research Center (CERC) formula (SPM 1984, Chap- .\_:::
(4N

ter 4) for describing the longshore sand transport rate by wave action and the N
If
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other a formula derived by Dean (1973) based on the assumption that the major
sand transport occurs as suspended load. Most analytical solutions then
appearing in the literature were presented by Walton and Chiu (1979). Addi-
tional solutions mainly concern beach nourishment in connection with various
shoreline shapes. The new solutions derived by Walton and Chiu (1979) treat
beach fill in a triangular shape, a rectangular gap in a beach, and a semi-
infinite rectangular fill. Some data on the coastal constant are also pre-
sented in the paper.

27. Analytical solutions can be used conveniently to describe the be-

havior of beach fill, as mentioned above. Dean (1984) gives a brief survev of

some solutions applicable to beach nourishment calculations, especially in the

form of characteristic quantities describing loss percentages. One solution
describes the shoreline change between two groins initially filled with sand.

The resultant shoreline evolution with time is shown in Figure 6.

TSNS SSS SN
N N . N N N A A D AN

l«e—— Groin Groin —>

Figure 6. Shoreline evolution between two groins initially filled
with sand (after Dean 1984)

General Approach in the Present Work

28. The simplified or linearized shoreline change equation (Equation 9)

is a linear partial differential equation which is identical to the equation
describing one-dimensional conduction of heat in a solid or to the diffusion
equation. By specifying boundary and initial conditions in these areas which
represent conditions prevailing in a specific shoreline evolution situation,

the corresponding analytical solutions are directlv applicable. Carslaw and
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Jaeger provide many solutions of the heat conduction equation, and Crank
(1975) gives solutions to the diffusion equation.

29. The following paragraphs present a review of previously obtained
solutions together with new solutions. The new solutions have been derived
either from analogies with heat conduction or through the Laplace transform
technique, a short outline for which is given in Appendix A. Carslaw and
Jaeger (1959) provide a more comprehensive treatment. In order to present the
solutions in an efficient and general format dimensionless variables have been
used to a large extent although physical understanding may be obscured by the
absence of dimensional quantities. Also, in many cases for which the solution
is symmetric with respect to a coordinate axis, the solution for only one side
of the symmetry line is displayed. The solutions have been divided into two
groups based on the physical properties of the initial and boundary condi-
tions, not on their mathematical properties, because the object of the report
is to present solutions and not to describe details of their derivation. The
first group of solutions describes shoreline change situations without coastal
structures. Solutions describing shoreline evolution in these cases are
applicable both to natural and artificial beach forms (nourished beaches) if
similar types of wave conditions prevail. Also, several solutions describing
river delta growth are presented covering the cases of a river discharging
sand as a point source and a river mouth of finite length.

30. The other group of solutions comprises configurations involving
various types of coastal structures such as groins, jetties, detached break-
waters, and seawalls. Since the equations quickly become complicated, the
influence of coastal structures on shoreline evolution has to be idealized to
a considerable extent. However, the essential features of the situation may
still be preserved if this 1dealization is carried out in a physically reason-
able manner. Some simple models to account for diffraction downdrift of a
groin are shown also.

31. Most of the analytical solutions are presented in the main text
without derivation. Reference is made to the appropriate literature in case
the reader is interested in deriving the solutions. Also, in Appendixes B-G,

derivations are given for selected new solutions.
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PART II: SOLUTIONS FOR SHORELINE EVOLUTION WITHOUT
COASTAL STRUCTURES

General Formal Solution

32. The basic differential equation to solve is Equation 9, together
with the associated initial and boundary conditions. An infinitely long beach
is assumed to be exposed to waves of constant height and period with wave
crests parallel to the x-axis (parallel to the trend of the shoreline). The
shoreline will adjust to reach an equilibrium state in which the longshore
sand transport rate is equal at every point along the shoreline. Since the
wave crests are parallel to the x-axis, the equilibrium sand transport rate is
zero, An initially straight beach is thus the stable shoreline form in this
case. If the shoreline shape at time t = 0 1is described by a function
f(x) , the solution of Equation 9 is given by the following integral (Carslaw
and Jaeger 1959, p. 53):

-]

2
/f(s) o~ (=B /het 4y (14)

-0

—

y(x,t) =

N
=3
m
t

for t >0 and - < X < « ,

The shoreline position is denoted by y and is a function of x and t

The quantity ¢ 1is a dummy integration variable. Consequently, the change in
both natural and manipulated beach forms can be determined if Equation 14 is
evaluated. Equation 14 may be interpreted as a superposition of an infinite
number of plane sources instantaneously released at t = 0 . The source
located at point ¢ contributes an amount f(£)df to the system. Infinitelv
far away from such a single source no effect on the shoreline position is
assumed (houndary condition). Fquation 14 is used to derive most of the solu-

tions dealing with various shoreline configurations in the following text.
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(see Figure 7):

The solution is

iy AFa Bba'Bd o aid "atgcalh b LY U ., D » * “ ‘1, D

Finite Rectangular Beach Fill

The solution to this problem in connection with shoreline change is
first mentioned by Le Méhauté and Soldate (1977). At time t = 0 , the shore-
line has a rectangular shape of finite length 2a described by Equation 15

‘o
y(x,0) = f(x) = (15)
0 ‘x| > a
1 a-x a+x
y(x,t) = 5y [erf ) + erf ) (16)
z2 7o (zfge (z/&

SHORELINE POSITION (y/y,)

\ T —

0.5 1 1.5 2
ALONGSHORE DISTANCE (x/a)

Shoreline evolution of an initfally rectangular beach
fi1l exposed to waves arriving normal to shore
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The symbol erf denotes the error function which is defined as

= 2
erf z = -—Z/e'E de (17)
/;0

The error function is tabulated in standard mathematical reference books
(e.g., Abramowitz and Stegun 1965). It is convenient to introduce the fol-

lowing dimensionless quantities:

v X 18

y y. (18)
v X

x' = P (19)

t-=§_; (20)
a

The quantity used to normalize the time variable expresses half the time
elapsed before a square beach fill of length a would completely erode at the
constant transport rate Q0 . If the solution is expressed in dimensionless
quantities, the resultant shoreline evolution can be displayed in compact
form. Figure 7 illustrates how a rectangular fill spreads or diminishes with
time according to Equation 16. Tt should be noted that the vertical scale of
this and the following figures has been distorted for the sake of claritv.

34, Dean (1984) discusses how the sand from two different beach nour-
ishment projects spreads with time. The time t for a certain percentage

P2
P to be lost from the original rectangular beach fill is compared with the

corresponding time tp1 for different conditions:
2
()=
to, =t - — (21)
P2 Pl a €,

35. This formula is obtained by noting that the same percentage of

beach volume 1is lost during the same dimensionless time. Consequently, a
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rectangular beach fill which is twice as long maintains its volume four times
as long if exposed to the same wave conditions. It is possible to calculate
the time it will take for a certain percentage P to be lost from the initial
rectangular fill., The following expression is obtained by integrating Equa-
tion 16 and comparing the resulting volume at a specific time to the original
fill volume:

P =/t" <—l ~ ierfe —l—> (22)
Ve /e

where 1erfc denotes the integral of the complementary error function erfc :

oo

ierfc z =/erfc £ dg (23)

z

erfc z =1 ~ erf z (24)

Figure 8 shows the percentage of sand volume lost as a function of time.

36, It is possible to determine the rate of sand to be supplied to the
fill in order to maintain the original shape. The boundary condition for this
case is that the end of the rectangular fill is kept at the initial position:

y(0,t) = Yo (25)

Note in this case that the x-axis originates from the corner of the fill
instead of from the middle of the fill as in Equation 16. The solution de-

scribing the resultant shoreline evolution is (Carslaw and Jaeger 1959,
p. 60):

y(x,t) =y erfc < X ) (26)
© 2/et

for t >0 and x 20 .
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Figure 8. Percentage of sand volume lost from a rectangular
fill as a function of dimensionless time
Sand has to be added to the corner of the fill at the following rate:
2y
Q=—=0q, (27)
Vet

The spread of the moving shoreline front (Equation 26) is illustrated in
Figure 9.

37. It is advisable to use the analytical expressions describing shore-
line evolution for a rectangular fill with great care, even for rough estima-
tions, because the linearization procedure (Equation 8) is based on small
shoreline orientation angles, a condition which is violated on the sides of
the rectangle. In fact, the linearized transport equation implies an infi-
nitely large initial sand transport rate at the edges of the fill. However,
the original transport equation (Equation 7) gives a zero transport rate at
the corners; thus, a rectangular beach form is stable to parallel incident

waves. In reality, sand transport occurs at the corners because of
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to maintain a specific beach width Y, T
Oy
diffraction and refraction, but this realistic situation is not described by ﬁ:\
.
the linearized equation. Consequently, the linearization procedure artifi- ;{
cially increases the erosion of the fill, implying that the analytical solu- ;?\
tion overestimates the speed of erosion. The error is, therefore, on the con~- ;_‘
"N
servative side. This problem is only an apparent one since it is a practical t'\
AN
impossibility to create a perfectly rectangular fill in the field. }}:
2

Semi-Infinite Rectangular Beach Fill

38. The initial conditions for a semi-infinite rectangular beach fill

are

y(x,0) = (28)

Walton and Chiu (1979) give the following solution:

23




y(X,t) = E 7o

—
<
1}
~
h
(@]

N

X (29) o
2/et e,

for t >0 and - < x < o , NN

The solution is antisymmetric about the y-axis, taking the constant value

: 4
R

5
Ny

yo/2 at x =0 . If the shape of the shoreline for x 2 0 1is approximated

Yy wow

by a triangle having height yo/2 so as to conserve mass, the speed of prop-

'-‘.‘I;;A
»
Iy

| P4
.

agation of the triangle's front is inversely proportional to the square root

"

1y
s

of elapsed time. This relationship is also valid for Equation 26. Figure 10

AL
Ay1

illustrates the solution of Equation 29. The right side of Equation 29 for

s
Sy
P A

x > 0 equals half the solution of Equation 26,
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39, The initial conditions for rectangular cut in a beach are formu-

lated as
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y(x,0) = (30)

These conditions may represent an excavation or a natural embayment of rec-

tangular shape. Walton and Chiu (1979) present the following solution:

Yo erfc (2 :_#) + erfe <a t_?) 31)
2/t 2/ct

for £t >0 and -» < X < « .

N —

}'(x)t) =

This solution may be obtained by superimposing Equation 16 with a negative
sign on a beach of width Yo In general, with due regard to the boundary
and initial conditions, it is possible to derive new solutions simply by
superimposing existing solutions since the governing differential equation
(Equation 9) is linear. Equation 31 is symmetric with respect to the y-axis,

and only half of the solution region is illustrated in Figure 1l.
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o
~
)
-
"
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0.5 1 1S
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N

Figure 11. Shoreline evolution of a rectangular cut in an
infinite beach of width Yo
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40, Since the present situation is the inverse problem of the rectangu-

lar beach fill, Figure 8 can be used to evaluate the rate of infilling of a

certain volumetric percentage of sand.

Triangular-Shaped Beach

41, The triangular-shaped solution is also mentioned by Walton and Chiu
(1979). The original beach has the shape of a triangle according to the
initial conditions as follows:

a-x
v, ( P ) 0<xx<a
a+ x
y(x,0) = Yo (——;——) -a<x<0 (32)
0 le > a
In this case the solution takes the following form:
yo a-x + X
y{x,t) =5 (a - x) erf< — + {(a + x) erf<a_x - 2x erf —
2/et 2/et 2/et
2 2 2
+ 2 et e-(x+a) lbet + e~(x—a) lbet _ Ze-x Jhet (33)
ki

for t 50 and -o ¢ X ¢ o .

A nondimensional illustration of the shoreline evolution from an initially
triangular beach is shown in Figure 12.

42. Depending upon the height-to-width ratio of the triangle, lineari-
zation of the transport equation mav reduce accuracv of the analvtical solu-
tion. However, even though the assumptions forming the hasis for the lineari-
zation procedure appear to bhe extremely limiting (particularly in requiring
small wave angles), in practice the analytical solution is found to be appli-
cable for angles as large as about 45 deg between the shoreline and the break-

ing waves. In order to estimate the effect of the linearization, a comparison
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was made between the analytical solution and a numerical solution with the
original sand transport equation (Equation 7). Figure 13 shows the result as
a function of the height-to-width ratio and elapsed time.

43, It is quite clear that the analytical solution produces a higher
rate of shoreline change by overestimating the longshore sand transport rate
(since a > sin o). Thus, if the analytical solution is used to estimate the
time scale involved in beach nourishment problems, a higher rate of attenua- e

tion of the f{i11 will always be obtained than is expected to actually occur.

Trapezoidal-Shaped Beach

rr

e

"'.
)

44, A trapezoidal beach form is described by the following initial

v
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x2 - x1 x2 - x1 1

y(x,0) = ﬁ (34)
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Here Yy and Yo denote shoreline positions corresponding to the longshore

locations x and x The solution is

1 2

2 - X X, - X

Y, =Y Y.X, - X.¥ X, - X\ X, + X
y(x,t) = i x2 L x + 12 1 2) erf _Z____) - erf —L————)
2 1 2 1

Yo =¥, et e-(xl-x)i/ket- e—(xz-x)a/éet

(35)

for t >0 and =-» < x < o ,

A

-
;\;,';\‘:.“ ;‘:

®,

M

?"

Analytical Soln:

Numerical So0ln! —mcecceccmwmaa=a

n

0.6 yo/a

&

o Bt
...... 1.0 te

L LL

‘1 4y 5,

p--
~-

DALY
]

.
.
cvlpp

’

.......

0.4 f—====zo

ey
AR

o % _a_»

Pl

SHORELINE POSITION (y/y,)
AR

’ '/.'/‘/ Paid
RAEAS!

~ee
~-
~—
———
Pty

L
T

~ e
X

~ -

0 Or.S 1 1.5
ALONGSHORE DISTANCE (x/a)

Figure 13. Comparison between analytical solution with the

linearized transport equation and numerical solution with

the original transport equation for a triangular beach fill
(for height-to-width ratios 1.0 and 0.5)

The solution for the triangular beach form (Equation 33) can be obtained by :a‘
o

superimposing two trapezoidal beach shapes which reduce to triangles. In the VA
\Q

same way, in principle, the analytical solution for any arbitrarv shoreline 3

[

shape may be obtained by approximating the shoreline with a series of straight

lines. Fven though the sand transport at each boundarv of the trapezoids in

-

o
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o
Fag
such a case is overestimated (because of the large incident wave angle) super- ANy
imposition of the solutions eliminates these effects. In Figure 14 the solu- ::
Pt
tion for a single trapezoidal beach form is shown. A representative length L b
has been chosen to normalize the shoreline position and the alongshore .
distance. ::- '
!
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Figure 14. Shoreline evolution of an initially trapezoidal A
beach form -
N
45, 1If an arbitrary-shaped shoreline is studied, it 1s most convenient ::,.:-
s
to approximate it with a series of straight lines and then to superimpose the :.-‘
respective solutions. Consider a shoreline (see Figure 15) divided into N s
reaches, with each length described by a straight line connecting two \s}
neighboring points denoted by (x, , y,) and (x y Y ) for a certain "'.:
th i i i+1 i+1 o
reach (the 1~ reach). j:'_-"‘
' -b-
N
~
e
et
N,
[ ]
o
byohiy
.*\’

v 2 e e e

D A A e o
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Xi xi+1

Figure 15. Shoreline of arbitrary shape approximated by N
straight lines

46, The shoreline pesition can be written, accordingly:
N y -y v.X - Xy X - X
V.X, Yy
y(x,t) =% Z < i+l - xi « + )1(+1 - )1( i 1> erf< 1>
o [V T i+1 ~ %4 2/et

2
X - X y -y, -{x-x )//ZEt
- erf ( i+l> +_< i+l 1) ? et | . ( i

2/et 41 T Xy

(36)

for t >0 and - < x < ©

Semicircular-Shaped Beach

47. 1In order to find an analytical solution for a beach formed in a
half circle between -a < x < a , the circle is approximated bv a polygon with
a finite number of corners (Figure 16).

48. The solution can be obtained uwsing Equation 36 with proper expres-

sfons for the line segments. The following quantities are defined:

x? = a cos [L%—E—%lll a7

in
N -1

xi = a cos ( (38)

30




L _ in )
1
k, = - (40)
i 4 1
tan T2
a N - 1

The integer N 1is the number of corners in the polygon approximating the
semicircle. For example, if N = 3 then a triangular beach form is obtained.

The solution can be written with the previously defined quantities:

N-1 R Lo

y{(x,t) =~% :E (kix? + yi - kix) erf R S erf 4
) 2/et 2/et

2 2

(41)

for t >0 -o < X < o ,

-a a

Figure 16. Semicircular-shaped beach approximated by a palvgon
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In the limit N » = the polygon coincides with a semicircle. The solutinon
(N = 101) is illustrated in Figure 17 which shows the shereline evolution as a

function of time for an initially semicircular-shaped beach.

t'=0
1
0.05
0.10
t'.:-c—t—
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0.8+
_ 0.20
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N 0.30
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ol
E 0.4 \ N
- |
(78]
[+
(=]
p o
[72]
0.24
0 T T T )
0 0.5 1.5 2

1
ALONGSHORE DISTANCE (x/a)

Figure 17. Shoreline evolution of an initially semicircular
beach
49, 1If the beach 1s formed as a circular segment, the solution may be

derived by superimposing Equation 41 with the appropriate summation limits and
Equation 16 with reversed sign. In Figure 18 a definition sketch is shown.

If the pitch height is denoted by p , then the width of the circle segment
becomes Z/ETEE_:_ET . Furthermore, the height of the rectangular fil1l is
a-p, and the angle a (see Figure 18) is arc sin (1 - p/a) . Conse-
quently, the summation of the solutions for the polygon stretches should start

at angle a 1in the semicircle and end at angle n - a . The solution is

R I A S N R U I S
"b', ~$ i“-l'\: \{‘\"’ "I' ..i','-/' L .'-" .'f \l\»ﬁ\(‘

i
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N-m-1 R L
X, - X X, - X
vix,t) = 5 :E vyt ki(x - ) erf = - erf —
(=gt ] 2Vet 2vet

R 2/ L /
e —( i-x) bet -(;1-x) 4et
n

- p) | erf (J" (2a - p) - ") + erf (‘P(za —p) * ") (42)
2/et 2/et

for t >0 and =-» < x < ® ,

T

p(2a — p)

v

a
= a

Figure 18. Definition sketch for a circular segment-shaped beach

The quantity N 1is, as before, the number of corners in the polygon, and m
represents the number of corners minus one contained in the angle o . Fig-
ure 19 1llustrates the transformation of an initiallv circular segment-shaped
shoreline.

50. Since the tangent of the shoreline orientation (see Fquation 5) is

infinite at the corners of the semicircle (x = *a), the condition of small
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Figure 19. Shoreline evolution of an initially circular
segment-shaped beach (a = 45 deg)

~ -

angles is violated. This condition implies, as previously discussed, that the
sand transport is overestimated, leading to a faster dispersion process of the
shoreline toward the stable condition (a beach parallel to the wave crests).
An analytical solution for a circular segment-shaped beach, however, will show
better agreement with the numerical solution of the original sand transport
formula if the angle of shoreline orientation is small at the edges. A com-
parison between an analytical and a numerical solution for a circular segment
beach is illustrated in Figure 20. In this case the linearization approxi-

mates the transport equation well; thus, the solution is accurate.

Semicircular Cut in a Beach

51. The situation of a semicircular cut in a beach is the antisymmetric
analog of the case described in the previous section. A solution is obtained
by superimposing Equation 41 with opposite sign for a beach of width a . The

solution is displayed in Figure 21.
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Figure 20. Comparison between analytical and numerical solu-
tions for the case of a circular segment-shaped beach
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Shoreline evolution of an initially semicircular cut
in a beach
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52. 1In the same way, shoreline evolution of a bav formed in a circular

segment may be calculated. Equation 42 is superimposed with opposite sign on

a beach of width p (pitch height). Figure 22 shows the solution.

0.3 4 t'=0
B 1.0
~N
2 o0.24 0.6
5 0.4
=
0
e 0.2
A
Z
|
@ g.14 0.1
& v £
5 a?

0]
o'o U T Ll 1
0 0.5 1 1.5 2
ALONGSHORE DISTANCE {(x/a)
Figure 22. Shoreline evolution of an initially circular

segment cut in a beach (a = 45 deg)

Rhythmic Beach

53. A beach with a rhythmic shoreline in the form of a cosine wave at-
tenuates with time but maintains its rhythmic character. The initial condi-

tion is

y(%x,0) = A cos ox (43)

where A represents the amplitude of the rhythmic form such as cusps along
the beach, and o denotes the wave number of the shoreline oscillation or
cusp. The quantity o can be expressed also as 2n/L , where L 1is the

beach cusp wave length. The solution to this case is found to be
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2
y(x,t) = A cos ox e ° F (44)

for ¢t >0 and -» < x < = ,

Le Mehaute and Brebner (1961) and Bakker (1969) give this solution. A non-
dimensional diagram of the shoreline evolution of an initially cosine-shaped

beach is shown in Figure 23.
tl
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~n-d

Figure 23. Shoreline evolution of an initially cosine-shaped
beach (a distance of one beach cusp height added to the
shoreline position)

Sand Discharge from a River Acting as a Point Source

54. 1If a river mouth is small in comparison to the area into which it
is discharging sand, the discharge may be approximated by a point source. The
sand discharge from the river or the strength of the point source is denoted
are m3/sec.) A solu-

as and is a function of time. (The units of

q q
R R
tion may be obtained by considering the continuous sand discharge from the

river to be the sum of discretely released quantities of sand at consecutive
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times. If a certain volume of sand V 1is instantaneously released at a point

xS at time ts , the solution can be written

2
—-{x-x 4e(t-t )
y(x,t) = v e ( S)/ s (45)
2DvVwe (t - ts)

for t > ts and - < x < ® ,

Equation 45 has been discussed by Le Méhauté and Brebner (1961) and by

Le Méhauté and Soldate (1977). Accordingly, a superposition of an infinite
number of such released quantities can be used to represent the sand discharge

from a river. According to Carslaw and Jaeger (1959, p. 262), the solution

for a point source with a continuous time variable sand discharge qg may be
expressed as
1 y —(x-xs)3/4e(t—5) de
y(x,t) = ap(5) e —— (46)
ZDHE'O 't - £
for t >0 and =-» < x < » ,
If g is constant and equal to q, » the solution is
2
q, \[E_ -(xs—x) bet 9, [x = xg X =X
y(x,t) = D—' TT_E e - -D—- 7e erfc (47)

2/t

for t >0 and -« < x < = ,

Equation 47 is identical to the solution describing a constant flux q0/2 on
the boundary (x = 0) for a beach of semi-infinite extent. Figure 24 illu-
strates the solution where L 1s used as a normalizing length, and the point
source is located at x, = L . The nondimensional quantity containing the

shoreline position is formed as tlie ratio between the amplitude of the sand

transport rate and the sand discharge from the river.
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Figure 24, Shoreline evolution in the vicinity of a river dis-
charging sand and acting as a point source
55. 1If the sand discharge has a periodic behavior, the function ap
could take the following form:

qR(t) =q + g sin (wt + ¢) (48)

where
q, = steady sand discharge from river
9, = amplitude of periodic sand discharge
w = angular frequency = 27/T
T

= period of oscillation of sand discharge from river

¢ phase angle of periodic variation
The solution consists of two parts, namely Equation 47 describing the shore-
line evolution from a steady point source and the following solution which

accounts for the periodic component:
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y(x,t) =

/t
2 —xz/écﬁz
j/~sin [m(t - £7) + ¢] e d£ (49)

(o]

DVen

The shoreline behavior is composed of one contribution that evolves roughly
proportional to the square root of elapsed time and another contribution which
is a periodic oscillation that damps out along the x-axis with a decay factor
/6752 (both in the negative and positive directions). Consequently, beyond a
certain distance from the discharge the periodic effect of Equation 49 can be
neglected, implying that the solution may be approximated by Equation 47 onlv.
Because of the periodic variation in the discharge, sand waves are generated
from the river mouth. These sand waves propagate with a speed V2ew along
the x-axis, and the time lag between the oscillation in sand discharge at the
river mouth and a specific location is 7/4 + x/w/2¢ . 1In Figure 25 the
shoreline evolution at specific locations in the vicinity of a point source of

sand discharge with a periodic variation in strength is shown as a function of

0.5
0.4
3
N
2
§ 0.3 LOCATION (x/L)
[ 0.0
=
[72]
[w]
o 1.0
Wl
Z 0.2
)
zl 2.0
Q
e o
n
0.1
0.0 T T T T T 1
0 1 2 4 5 6

3
TIME (et/L?)

Figure 25, Shoreline evolution in the vicinity of a river discharging
sand with a periodic variation in strength as a function of time
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Mt
5
time., The quantities in the figure are dimensionless, with the sand discharge '
o’
from the river normalized by the amplitude of the sand transport rate Qo and {;ﬁ:
the angular frequency of the oscillation normalized by e/L2 . Figure 25 “?f
clearly shows how the superimposed sinusoidal-shaped variation damps out with 'ﬁxs
distance from the source along the x-axis. Hﬁ\J
: POy
oA
Sand Discharge from a River Mouth of Finite Length "
VNN
e
56. 1If the river mouth has a finite width in comparison to the area :f}}
AWK
into which it is discharging sand, an approximation by a point source is ro -jn;
longer accurate. Instead of supplying sand to the system via the boundary or YA
initial conditions, the mass conservation equation in the full form of Equa- e
tion 3 is applied. The sand discharge from the river g is considered a ::i:
continuous function of x , varying along the river mouth. The river mouth is :Sif'
assigned a length 2a , and the sand discharge 1s measured per unit width. &?}3
Mathematically, the situation is expressed as K
o
A
et
I
[
R s 2
— = — < < Cals!
€ 7 + 5 e 0 <x <a (50)
Ix
'.-.D\.!
A
2 N
a y2 = .ay—z X > (51) :::::.
€ ) ot a DAY
NN
AT IS
’:I‘:-'
y1(x,0) = y,(x,0) = 0 (52) .‘;‘,:::'.
SN
3 3 A
2 ‘= a .
ax 3x :-f-:.:
2)yl :':\":':
Frali 0 x =20 (53) e
N
DO,
¥y, = Y, x = a TN
RN
\i
y, =0 x> (54) ﬁ“.
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57. The problem consists of two coupled partial differential equations
with appropriate boundary and initial conditions. Since the configuration is

symmetric with respect to the center of the river mouth (if is constant),

q
only half of the problem domain has to be treated. The boundasy conditions
are no sand transport through the center of the river (symmetrv), and mass
conservation should apply between the two solution areas. Also, the beach
must be continuous at all times over this boundary. Furthermore, the shore-
line is unaffected by the river sand discharge as x approaches infinity.

According to Carslaw and Jaeger (1959, p. 80) the solution is

q,t _
y (x,t) = —g— 1 - 212 erfe (2 x) - 212 erfc(u) (55)
2/et 2/et
for t >0 and 0 < x < a
2q t
y,(x,t) = -—%— 12 erfe (x — a) - 1% erfe 22 a) (56)
- 2Vet 2V/et

for t >0 and x > a
58. The function ierfc is defined in Equation 23 and the superscript

2 denotes a double integration. An exponent n represents n integrations

of the complementary error function. The following recurrence relation holds

for n > 1
n n-2 .n-1
2n i erfc x = 1 erfe x - 2x i erfc x (57)

In Figure 26 the solution to Equations 55 and 56 is illustrated.
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Figure 26. Shoreline evolution in the vicinity of a sand-
discharging river mouth of finite width

59. A nondimensional quantity describing shoreline change is defined

according to

The quantity used to normalize Equation 58 can be written by using Equation 10

to arrive at

2aqR

a

Q

(o]

This quantity can be interpreted as a ratio between sand discharge from the
river and the amplitude of the sand transport rate produced by the waves. The
solutions given by Equations 47, 49, 55, and 56 are also valid for the place-
ment of sand (beach nourishment), provided the placement is made under the

same conditions. Solutions with an opposite sign consequently represent
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mining of sand. Equations 55 and 56 describe only the general features of
delta growth since the river flow conditions within the delta formation are
neglected in the present treatment. The time required for the delta to reach
a certain distance Yo from the original shoreline position is calculated

from the following relationship

q.t
y (t) = % AT erfc< a > (60)
2/t

for t >0 and x =0 .

Equation 60 is illustrated in the nondimensional diagram of Figure 27. For a

specific wave climate, the above relation implies that an increase in the sand
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Figure 27. Maximum delta growth from a sand-discharging river
mouth of finite length

discharge from the river has a proportional effect on the growth of the delta

according to the following relation:
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(61)

9

Y1

1

)

Here the indices ]! and 2 refer to two different sand discharge conditions

experiencing the same wave climate.
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PART III: SOLUTIONS FOR SHORELINE EVOLUTION
INVOLVING COASTAL STRUCTURES

60. In the previous chapter, the incident wave crests were restricted
to be parallel to the x-axis. 1In such a case, an initially straight beach
will always remain straight, unless material is supplied in an irregular way.
If the waves arrive at the same angle to the shoreline everywhere, the beach
will also be stable if it is initially straight. However, if an obstacle on
the beach disturbs the equilibrium transport conditions, a change in shoreline
position occurs in order to achieve a new steadv-state configuration. Fxam-
ples of such obstacles are groins, jietties, detached breakwaters, and sea-
walls. In order to treat such complex cases analvtically, the situation has
to be idealized to a large degree. Properties which generallv varv continu-
ously along the shoreline (breaking wave angle, amplitude of the sand trans-
port rate, etc.) usually must be approximated by means of a series of coupled
solutions of simpler problems. Within each solution area the properties are

held constant but are allowed to vary from one area to another.

Shoreline Change at Groins and Jetties

61. The analytical solution for beach change at a groin or any thin
shore-normal structure which blocks alongshore sand transport was first ob-
tained by Pelnard-Considere (1956). Initially, the beach is in equilibrium
(parallel to the x-axis) with the same breaking wave angle existing every-
where, thus leading to a uniform sand transport rate along the beach. At time
t = 0 a thin groin is instantaneously placed at x = 0 , blocking all trans-

port. Mathematically, this boundary condition can be formulated as (see
Equation 7)

éz: =
P tan @ X 0 (62)

This equation states that the shoreline at the groin is at everv instant
parallel to the wave crests. The wave crests make an angle a with the
x-axis according to Figure 28, giving rise to longshore sand transport in the

negative x-direction.
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62. A groin interrupts the transport of sand alongshore, causing an

Y
RN
« 'we

accumulation at the updrift side and erosion at the downdrift side. The solu-

tion describing the accumulation part is

F _L_»
N ﬂ‘
'
" "

£

.
AR

y(x,t) = 2 tan a, /et ierfe ( x__> (63)
2/gt

;ﬁfﬁ
e T

FA T 37

4

for t >0 and x > 0 .
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The solution can also be written as follows:

/ t —2/4t
y(x,t) = 2 tan a %— e ™ R erfe < X > (64)
2/ct

This expression is obtained bv integrating the function idierfc bv parts., A

Cxg
o

i
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nondimensional plot of the shoreline evolution updrift of a groin {is shown in ]
Figure 29. .tf-:
63, The shoreline position has bheen normalized with a characteristic

length (the groin length) and the tangent of the incident breaking wave angle.
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Figure 29. Shoreline evolution updrift of a groin which is
totally blocking the transport of sand alongshore
For a specified amplitude of the sand transport rate and the depth of closure,
the ratio of shoreline positions at a given point for two different incident
breaking wave angles is proportional to the following ratio of respective

tangents of the angles:

ﬁ _ tan uol (65
Y, tana,,

64. Equation 64 1s valid only until the shoreline has reached the tip
of the groin, after which time bypassing of sand is assumed to take place.
This bypassing happens when y = L (length of the groin) at x = 0 , which

occurs at time tC :

2
Ui L
¢ =3 L (66)
G € 2
4 tan q
[o]
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The above relationship for a fixed wave climate reveals that if the groin
length is doubled, the time required for the shoreline to reach the end of the
groin will increase fourfold.
65. 1f bypassing of a groin occurs, the boundary condition at x =0
changes into v =L . A correct solution to this situation should fulfill
| this boundary condition and use as an initial condition the shoreline shape
just before bypassing occurred, according to Equation 64. An approximate
solution was presented by Pelnard-Considere (1956) who used the solution for a
shoreline with fixed position Y, at x = 0 (see Equation 26) and matched it
against Equation 64 by equating sand volumes. With this criterion, the

following relationship between the time elapsed before bypassing occurs t

G
(in Equation 64) and the actual time in the matching solution tV , which
makes the sand volumes equal, is obtained:
t 2
\Y w
_— = = (67)
tG 16

66. Thus, in the case of bypassing, it is possible to use Equation 26,

)
if the time t 1is replaced by t, = t - (1 - ﬂ“/lé)tc for t > tC . The

rate of sand bvpassing the groin for t > tG is calculated according to

Equation 8 to produce the following relationship:

Q=2Qa (1l - —— (68)

for t >t
G

Here ZQOH) is the sand transport rate at equilibrium (straight beach) under
8

imposed incident breaking wave angle 2 and t, is the moedified time in
the matching solution using Equation 26,
67. Formally, the solution downdrift of a groin is the same as that in

Equation 64 but with epposite sign. However, if the groin or jettv extends
far outside the wive breaker line, diffraction will occur behind the proin

altering the breaking wave height and angle; thus the transport capacity
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(Equation 9) does not provide a complete description of the shoreline evolu-

tion if diffraction is significant.

68. Bypassing may occur immediately after construction of a groin and
not start just at the time when the groin is completely filled. If the by-
passing sand transport rate grows exponentially to a limiting value QB the

boundary condition at the groin will be

L

Wy -

17B(, _ —vt) -
oy o 2Q0(1 e X 0 (69)

69. In Appendix B a derivation is given. The quantity vy 1is a rate
coefficient describing the speed at which the bypassing sand discharge grows

toward the limiting value Q The solution downdrift of a groin may be

B °
written (for an initially straight beach) as

QB>[- et —x2/4€t X <x
fc

1
y(x,t)=-2(x - = — — e - = er >
° 2 Qo [ " 2 2vVet

vVt
0 2 2, .2
- JE ot / YE A g (0
[¢]

for t >0 and x 2 0

Employing the two dimensionless parameters, QB/Qo and YL2/€ » the solution
is illustrated in Figure 30.

70, The parameter YL2/€ describes the rate at which the sand bypassing
increases in comparison to the size of the coastal constant (e). In Equa-
tion 70 the second term is a transient which decavs with elapsed time. Ac-
cordingly, after sufficient elapsed time, Fquation 70 will be identical to the
solution given bv Equation 64 with a modified incident breaking wave angle
at x =0 (tan ﬂo = 00). Equation 70 may be used also to describe shoreline
change updrift of a groin (with reversed sign) if bvpassing occurs immediately

after conctruction of the groin. 1If, in Equation 70, QB/Q\ = 2w0 , the
[
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Figure 30, Shoreline evolution downdrift of a groin with
bypassing described by QB(I - e_Yt) (QB/Qo = 0.7 ,
a = 0.4 rad , yLz/e = 2)

bypassing sand discharge will equal the transport rate alongshore behind the
groin at equilibrium conditions. Consequently, the initially eroded area
downdrift of the groin will fi11 when the bypassing sand rate reaches its
maximum, and the beach will become straight again.

71. In order to investigate the effects of the linearization of the
governing equation (Equation 9) on the solution for a groin, numerical simula-
tions were carried out with the original sand transport equation (Equation 7).
Selected results are displayed in Figures 31 and 32. From the two figures it
is seen that the linearization procedure degrades the solution if the incident
breaking wave angle is about 30 deg. However, the analytical solution has

surprising accuracy, considering the approximations made.
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Initially Filled Groin System

72. Dean (1984) presents an analytical solution for shoreline evolution
between two identical groins which define a compartment initially filled with
sand. The distance between the groins is denoted by W , and the groin length
is L . At time t = 0 , the shoreline is exposed to the action of waves

breaking with angle ag - The solution is

=%

y(x,t) = L - W(i -

2 tan o o 2
) tan ag * Z [(Zn ¥ 1)1!]

(71)

—e(2n+1)2n2t/4W2 [(Zn + I)nx]
e cos | =y

for t >0 and 0 < x < W .

The boundary conditions for this configuration are no sand transport at x = 0
(3v/3x = tan ao) and a constant shoreline position of y =L at x =W .
Consequently, bypassing occurs at the boundary x = W , whereas no sand enters
the system at x = 0 . This occurrence means that the solution is unsuitable
for application to a groin system of more than one compartment. Otherwise,
bypassing must be accounted for in the boundary conditions at the updrift
groin (left) in each compartment leading to a coupled problem. The last term
in Equation 71 approaches zero as t + «» and causes a shoreline parallel to
the wave crests to be created between the groins. TIn Figure 33 the analvtical
solution is presented in dimensionless form. All distances have been nor-

malized with the compartment width W

73. The final percentage loss of sand from the groin compartment is
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From Equation 71, the sand bypassed (discharge rate) at x = W can be
obtained. The sand transport rate as a function of time can be written (if it b

is assumed that tan @ z;ao) S

= 22 2 .. K
D 2 -€(2n+1)“n t/4W AR
Q594 :E (-1) (Zn + D7 € (73) L

n=0 .":.:'

Q(t)

for t >0 and x

"
=
'.:'
4.9

In Equation 73, the quantity ZQOa0 is the sand transport rate along a

AR
s Ve

straight beach exposed to the incident breaking wave angle a - (This is the

A

transport initially existing when the groin compartment is completely filled.)

PR

If Q in Equation 73 is normalized with this quantity, the bypassing sand
discharge at the downdrift end groin is conveniently displayed in dimension-

less form. Figure 34 shows such a curve.
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Figure 34. Bypassing sand transport rate at the dewndrift end
of a groin x = W as a function of time

Shoreline Change at a Detached Breakwater

74. A detached breakwater reduces the wave height behind it and pro-
duces a circular wave pattern at each tip, thus decreasing the longshore sand
transport rate. The actual effects are quite complex to describe and involve
diffraction and the current field resulting from spatial changes in wave
height and direction. However, it is possible to find an analytical solution
if the situation is idealized.

75. Tt is assumed that the incident breaking wave crests are parallel
to the x-axis and to the detached breakwater. When the waves reach the break-
water, they are assumed to be diffracted at a constant angle behind the break-
water (shadowed region) and remain parallel to the x-axis ocutside of the
breakwater (the illuminated region). The diffraction behind the breakwater is
symmetric about the center of the breakwater and, accordingly, only half of
the problem domain needs to be considered. TIn Figure 35, a definition sketch

is shown.
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Figure 35. Definition sketch for the problem of shoreline change in
the vicinity of a detached breakwater
76. Since the incident breaking wave angles and the amplitudes of the
sand transport rates Qol and Q02 , respectively, are different in the
shadowed and illuminated regions, a coupled problem arises. The boundary
conditions for this case are as follows:

a. No sand should be transported across the line of symmetry
behind the breakwater.

b. The sand transport rate out of the area on the right side of
the breakwater should be equal to that into the area behind the
breakwater.

c. The shoreline is continuous over the boundary between the two
areas.

Furthermore, the shoreline should be undisturbed (y = 0) far from the struc-
ture. With Y, denoting the shoreline position in solution area number 1
(shadow region) and Y, denoting the shoreline position in solution area num-
ber 2 (the illuminated region), the mathematical formulation of the situation
is
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Bzyl Byl
€ T -L <x <0 (74)
IxX
32y2 Y,
€, T x >0 (75)
X
¥ (%,0) = y,(x,0) =0 (76)
By1
Pyl tan a X = -L (n
3y 3y, Q
1 2 %02
ax x Q + 0Lol X 0 (78)
ol
Yy =Y, x =0
y2 = () X > © (79)

77. The derivation of this solution 1s presented in Appendix C. The
quantities Q01 and Q02 are the amplitudes of the longshore sand transport
rate in the respective areas, and @ 4 is the diffracted breaking wave angle
behind the breakwater. The angle @ ) is zero since the wave crests in this

area are parallel to the x-axis throughout time. The solution is, with

€ Q
S = _1 = ._o.l (80)
€2 Q02
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for t >0 and -L < x <0 .
Sa
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78. The distance L 1is half the length of the detached breakwater. 1If
Equations 81 and 82 are plotted, the following behavior will be noticed. When
the breakwater is placed in front of the initially straight shoreline at time
t = 0, erosion of the shoreline starts at points in line with the corners of
the breakwater. Simultaneously, the shoreline grows to form a salient about
the line of symmetry behind the breakwater. Because of the gradient of the
shoreline outside the shadow of the breakwater, material is transported
toward the breakwater in order to achieve a state of equilibrium with the
waves, The shoreline behind the breakwater also approaches an equilibrium
configuration which is parallel to the wave crests diffracted at the angle
@y The final shoreline will be inclined at an angle a) behind the
breakwater and he straight outside the breakwater. However, the straight
portion of the shoreline will at all times be displaced landward a small
distance, controlled by the volume of sand that has accumulated behind the
breakwater. Figure 36 illustrates the solution in dimensionless form for

0.20

0.154

0.10 4

0.05

SHORELINE POSITION (y/L)

0.00

-0.05 T T —T 1] T
-1 -0.5 0 0.5 1 1.5

ALONGSHORE DISTANCE (x/L)

Figure 36. Tnitial shoreline evolution in the vicinity of a
shore-parallel detached breakwater (§ = 0.5 , e = 0.4 rad ,
o = ()
0?2

short elapsed times, and Figure 37 shows the features of the solution after a

~ -

long elapsed time. The length of the salient behind the breakwater increases

in time toward a maximum value of
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L tan a (83)
(o]

1
The elapsed time is normalized by the quantity L2/e1 . Although mass is
conserved across the boundary between the two solution areas, the gradient of

the shoreline is not continuous at this point.
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Figure 37. Final shoreline position in the vicinity of a shore-
parallel detached breakwater (§ = 0.5, « = 0.4 rad ,

ol
aoZ 0

Shoreline Change at a Seawall

79. The function of a seawall is to prevent the shoreline from retreat-
ing along a specific coastal reach. If the shoreline remains well seaward of
the seawall, there will be no influence of the seawall on the shoreline evolu-
tion, TIf the shoreline retreats to the seawall, the location of the seawall
determines the minimum allowable shoreline position. If erosion takes place
beside a seawall (flanking), various changes in the shoreline position might

occur depending on the characteristics of the seawall and the incident waves.

1f flanking of the seawall {is not possible (see Figure 38), the solution for
the plan shape of an eroded shoreline will be the same as for erosion
downdrift of a groin (Equation 64, with opposite sign). In this case, the

seawall {s functioning as a semi-infinite structure,.
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80, Figure 39 illustrates the case of erosion at the side and behind a
seawall, i.e., flanking of the seawall. This must bhe solved as a coupled oA
problem. The incident breaking wave angle is @, outside the seawall and ;_
ay behind it. Wave energy 1s transported behind the seawall by the process ?33
of diffraction.

SEAWALL

Figure 39, Definition sketch for a semi-infinite seawall e
for which erosion occurs behind the seawall
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81. The ratio between the amplitudes of the longshore sand transport
8l

rate in the two solution areas will be deroted as ¢ (= Qol/Qo°)° Mathemati-

& %
EX g
LAuyyy

cally, the situation is formulated as
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2 72
*a—t— x > 0 (85)

yl(x,O) = yz(x,O) = 0 (86)

o8]
<
—
[S¥)

y
I T e x =0 (87)
ol 62 02 62 X

@
<

x =0 (88) S

(%)

v, =0 X+ (89)

It 1is assumed that the border between the two solution areas at x = 0 {is
stationary in time, although it moves somewhat in the x-direction as time

evolves. The solution is (for details, see Appendix D)

ol 7 %52 Elt -XZ/ZEIL -x
yl(X.t) = 2 - e + x erfc (90)
—

for t >0 and x £ 0 .
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ol 2 a02 Elt -sz%/ZSIt x
yz(x,t) = 2\ e - 8x erfe 91)
1 2Ve t

for £t >0 and x >0

+ |o
O] —

The quantity @y Tepresents a mean diffracted wave angle behind the seawall.
The solution in nondimensional form is presented in Figure 40 (expressed in

terms of the coasval constant el).
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Figure 40. Shoreline evolution in the vicinity of a seawall

where erosion and flanking may occur behind it (a = 0.2 rad ,
ol
a =0.,4rad , & =0.6)
02

82. A characteristic length L 1is chosen to normalize the shoreline
position. In Figure 40 the time has been normalized by use of the quantity

2
L/e1

Shoreline Change at a Jetty, Including Diffraction

83. In the shadow zone of a long groin or jetty, it may bhe an
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oversimplification to neglect the process of wave diffraction. Corcequently,
although FEquation 64 (with reversed sign) may pive a satisfactoryv description
of shoreline evolution at scme distance downdrift of a jettv, in the vicinity
of the jetty this solution does not represent what is commonly observed. Fro-
sion just behind the jettv will be overestimated if diffraction is neglected
since the wave height is assumed to be constant alongshore. Accordinglyv, bv
allowing a variation in wave height (and thus in the amplitude of the sand
transport rate) in the shadow zone, a more realistic description of shoreline
change will be obtained.

84. There are a number of ways to account for a varving amplitude in
the longshore sand transport rate (resulting from varving wave height). One
way is to assume that, outside the shadow zone, the incidert breaking wave
angle and the amplitude of the sand transport rate are not influenced bv the
jetty. In the vicinity of the jetty, Equation 11 may be used to account for a
variation in the amplitude of the sand transport rate. An alternative way is
to divide the shadow region into distinct solution areas, each having a con-
stant amplitude of the sand transport rate. The incident breaking wave angle
may alsc be varied from one solution area to another. With this procedure, a
coupled system of equations is obtained which involves intensive calculations
for even a small number of solution areas. If the simple case of two solution
areas (one inside the shadow zone and one outside) is considered, the mathe-
matical formulation is the same as for a detached breakwater. However, the
incident breaking wave angle outside the shadow region is not zero (in which
case no sand transport would occur) but has a finite value. Therefore, the
boundary condition on continuity in sand transport across the border between

the two solution areas takes the following form:

dy
Lo s+t (92)

ax ol 5 02 s

where 62 is the ratio between the amplitudes of the sand transport rate in-
side and outside the shadow region. The analytical solution to this problem
is formally identical to Equations 81 and 82, except that certain constants
are different., The following substitutions should be made in order to apply

Equation 81 and Equation 82 to the diffracting jetty case:
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2
Sa -§ a, + a

ol 1 02
T +1T T sG6+ D (93)
2
_ § %51 R =6 %51 + a02 (94)
5 + 1)° 6+ 1?2

85. If a_, 1s zero, the expressions on the right side reduce to those oy

A

on the left side. As can be seen from Equations 81 and 82, even though the ::
ot

description involves only two solution areas, the governing equation is :‘¢

already quite complex. Generalization to an arbitrary number of solution bl

areas is straightforward, in which case the situation is mathematically ex- ia
pressed for the ith area as follows (see Figure 41): gi“
2
2 gEe
3 vy ayi
€y 3x2 = Y Xy < x < X (95)
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L tan a,

%;
Figure 41. Definition sketch for shoreline evolution
downdrift of a jetty for which a finite number of
solution areas is used to model diffraction
For the first and last solution areas, other conditions prevail on the outer
boundaries, such as no sand transport at the jetty, and y = 0 as x =+ += ,

86. Extremely complex algebraic manipulations are associated with the
analytical solution of coupled systems with several solution areas. In Fig-
ure 42 the solution is presented for two areas, with @ = -0.1 rad ,

@y = -0.4 rad , and § = 0.5

87. The solution for an arbitrary number of distinct areas is outlined
in Appendix E. 1In Figure 42 are plotted shoreline positions normalized with
the length of the shadow region. The length of the geometric shadow region is
B =1L tan (ao) , where L 1is the jetty length and ol is the incident
breaking wave angle in the illuminated region.

88. If the amplitude of the longshore sand transport rate is considered
to be a continuous function of x 1in the shadow zone, Equation !l is appli-
cable. However, this equation is quite complex, and it is difficult to find
analytical solutions even if very simple functions are emploved. The related

case, in which the incident breaking wave angle is a continuous function of
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SHORELINE POSITION (y/B)

-1 T T Y T T 1
-1 -0.5 0 0.5 1 1.5 2

ALONGSHORE DISTANCE (x/B)

Figure 42, Shoreline evolution in the vicinity of a groin
for variable sand transport rate conditions (two solution
areas; & =0.5, a = -0.1 rad , o = -0.4 rad)
ol 02
X , is easier to treat analytically and provides interesting solutions. Under

these circumstances, Equation 11 will take the following form:

32x = L3y, _dao (100)
ax2 T € Bt dx

in which ao is a function of x only. This is formally the same equation
as that describing heat conduction in a solid containing a finite source.
Consequently, 1if GO grows linearly with x (Ol0 = xﬁm/B) the situation will
be identical to the one describing a river mouth of finite length which dis-
charges sand at a constant rate. Fquations 55 and 56 are the solutions to
this case, with reversed sign and dr replaced by am/B . The solution is
presented in Figure 26 in dimensionless form.

89. If @, is different from zero at the jetty, but still grows lin-
early along the x-axis in the shadow zone, the varlation in breaking wave

angle will be

X
a = av + (GH - av) 3 (10)
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in which av is the incident breaking wave angle at the jetty, and ay is
the angle in the illuminated region. The mathematical description for this
case is almost the same as for a river mouth of finite length which discharges
sand but with a modified source term. This is a coupled problem containing

two solution areas but with a boundary condition at the jetty given by

Fralie tan Otv (102)

The anmalytical solution to this problem is (see Appendix F)

(o, - av)et

yl(x,t) = —EB— 212 erfc(l3 ~ x> + 2 12 erfc <u> -1
2/et 2/et
214
—tan a |2 JEE e7X lhet x erfc < X ) (103)
v n
2Vet
for t >0 and 0 £ x £B .,
(a, - a et
yz(x.t) = -—li—ifli——- 212 erfc <x + B) -2 12 erfc <x ~ B>
2/et 2/ct
et —x2/4€t X
- tan a 2 — e - x erfe < > (104)
v T
2Vet

for t >0 and x > B

The quantity B 1is the geometric length of the shadow zone as before. In
Figure 43, the dimensionless shoreline evolution is presented for the specific
case of av = -0.1 rad and a, = 0.4 rad . Shoreline position has been
normalized by the length of the shadow region,

90. Another case that allows a fairly easy analytical solution is ob-

tained by assuming that the incident breaking wave angle varies exponentially

with distance from the jetty according to
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Here, the quantity Y 1s a coefficient describing the rate at which the

breaking wave angle approaches the undisturbed value Gm along the x-axis.
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Figure 43. Shoreline evolution behind a jetty with linear
variation in breaking wave angle in the shadow zone

(av = -0,1 rad , GH = 0.4 rad)
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The derivation of the analytical solution is presented in Appendix G. The
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; If a dimensionless quantity yL 1is introduced, the solution may be displayed :::
T
! efficiently in dimensionless form (Figure 44). For large values of vy , Equa- e
[ tion 106 approaches Equation 64, which is valid for a jetty and constant .-
)
oblique breaking wave angle, r:a
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Figure 44, Shoreline evolution behind a jettv with ::;:
exponential variation in breaking wave angle AR
(0. = 0.4 rad, yL =1) 0N
m fg}
91. The solution obtained for a variable breaking wave angle over- N
estimates the rate of erosion behind the jetty since it is assumed that the :tf
amplitude of the longshore sand transport rate is everywhere the same (and ;Qj'
thus that the wave height, in principle, is conrstant). In reality, diffrac- ;}:
o
tion reduces the wave height in the shadow region and, accordingly, the ampli- >
tude of the longshore sand transport rate there. Despite this reduction, -
Equations 103 and 104 provide a better description of the actual situation }vj
than the commonly used solution (Equation 64) for which maximum erosion will ﬁ;*
o)
always appear immediately adjacent to the jetty or long groin. :f
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APPENDIX A: A SHORT INTRODUCTION TO THE LAPLACE B;n
LN
TRANSFORM TECHNIQUE PO
hd
1. The Laplace transform is a powerful technique for solving linear :?i
partial differential equations. This technique allows the target partial dif- :?}
..:‘-
ferential equation to be converted to an ordinary linear differential equation POk
in the transformed plane for solving one-dimensional problems in space. The o
Laplace transform of a function y 1is denoted as IL{y} and is defined by the
operation:
| o™ R
L{y} = ; =/y(x,t) e—st dt (A1) ;_f
oo
\ o D,
; Jf:
Qe
| ::f
The over bar denotes the transformed function. The transform of a derivative
of a function with respect to time is ”nf)
L{%% = sy - y(x,0) (A2)
R A
l‘,‘..r.
This relationship may be derived by performing a partial integration of Equa- 5;;
tion Al. The term y(x,0) represents the initial conditions for the system. :tf
PRV

Accordingly, the transform of the diffusion equation may be written (if, with

the convention vy(x,0) = 0 , that is, a shoreline which is initially parallel

to the x-axis):

%y
dx2

y =0 (A3)

[l ;]

The general solution of this homogeneous linear differential equation is

y = A 4 pe” WX (A4)

where

Al

s m ot mt - et R TRV S SR

‘-4‘..*\._;‘..._.'__.\.-\.- S SN ‘\'.
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2. The coefficients A and B are determined by the transformed
boundary conditions and are, in general, functions of the parameter s . To
obtain a solution in the time domain, Equation A4 has to be inverse trans-
formed. This can be accomplished using tables of known transforms (see, for
example, Erdelyi et al. (1954) and Abramowitz and Stegun (1965))* or the

Fourier inversion theorem which states

[+ie

y = 1, J/R eSt v(s) ds (A5)
2ni

g-iw

The integration is performed as a line integral in the complex plane, for
which r 1is taken sufficiently large to have all singularities of the func-
tion ;(s) lying to the left. FEquation A5 is normally evaluated bv means of
the residue calculus. If several solution areas are used, the solution within
each area is of the form of Equation A4. The solutions are dependent upon
each other through their common boundaries (as an example see Appendix E) by
the prevailing boundary conditions.

3. Table Al presents a short summary of selected applicable transforms

useful for solving the diffusion equation.

* References cited in the Appendix can be found in the References at the end
of the main text.
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Table Al

Short Table of Laplace Transforms of Functions Often

AT AT
e

Encountered in Solving the Diffusion Equation

.
)

y(t)

(

NS

T

RS

-,
w_s

[ N N N

13

erfc < X >
2/t

1/2 2
2 (%5) e-x [4et - x erfc ( X )
2/et

(ht)l/zn i" erfe ( X >
2/t

1/2

£
(%)

2 (_5_5)1/2 xlact <1 + hx> erfc< x )
as {a+ h) hAT h? 2/e%

—x2/4€t hx+ech2 X
e - hee erfe
2vV¢t

> + h/et

h is an unrestricted constant

N
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APPENDIX B: SHORELINE EVOLUTION DOWNDRIFT OF A GROIN WITH
BYPASSING REPRESENTFD BY AN EXPONENTIAL FUNCTION

1. Sand 1s transported past the groin according to the following

relationship:
Q= gl - e (B1)

Here QB denotes the maximum bypassing sand transport rate which occurs at
the groin, and y 1is a rate coefficient describing the rate at which the
limiting value QB is appreached in time, Using Equation 8, the houndarv

condition at the groin is written:

<

3y . _ 1B
ax

a, %5; (1 -e7H x = 0 (B2)

Consequently, the mathematical statement of this case is, together with the

above boundary condition:

2
. 3_§ - %% (B3)

ax
y(x,t) =0 X + o (B4)
y(x,0) =0 (B5)

2. By using the Laplace transform technique, an ordinary linear differ-

ential equation is obtained:

ay
dx2

y=0 (B6)

)

where ; denotes the transformed function of v . The transformed boundarv

condition is
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Solving Equation B6 together with Equations B4 and B7 yields

v==la - 1 SE E:ii L gg __E:ii__ (R8)
o 2 QO qs 2 QO q(s + v)

2 S
where q = P

3. The inverse Laplace transform of the first term in Equation B8 is

found to be (Appendix A)

1 1 QB et -xz/det X
vy =-la - =% — 2 — e - x erfec (B9)
0 2Q m —
2vet

The second term is evaluated by applving Duhamel's theorem (Carslaw and Jaeger

1959, p. 301) which reads

t
L ./f f](r)fz(t - drpy = L{fl(t)} Lffz(t)} (R10)

(¢]

in which L{} represents the Laplace transform operation. The second term of

Equation B8 yields, after some rearranging,

v/t
Q 2 2, 2
vl = o B e vt / QYR X AcET (B11)
Q, ¥
[e)

Accordingly, the complete solution {s
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4, The last term on the right side of Equation Bl2 describes a tran-

sient which disappears with time. After the effect of the transient term has

.
o
Hh S

IR

vanished, the soluticn for shoreline change downdrift of a groin will be the

Fs .-

same as the solution obtained without bypassing but with a modified breaking

i 4

wave angle. If QB < ZQOuO erosion will take place; whereas if QB > ZQOQO

there will be accretion.
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APPENDIX C: SHORELINE EVOLUTION BEHIND A DETACHED BREAKWATER

1. In Figure 35 (in the main text) a dafinition sketch is shown for the
case of a detached breakwater and normal incident waves. The shoreline
evolution is symmetric about the centerline of the detached breakwater; thus,
only half of the problem domain needs to be considered. Since the amplitude

‘ of the sand transport rate Qo and the incident breaking wave angle a  are
i different behind the breakwater and outside the breakwater, two solution areas

are required. Mathematically, the shoreline evolution is described by Equa-

tions 74-79. After the Laplace transform technique is applied, the following
system of ordinary linear differential equations is obtained:
d2§l s -
- Y, = 0 -L<x<0 (cn
dx €1
dZ;Z s -
5 T Yy < 0 x >0 (€C2)
dx "2
d; tan o
1 ol _
F = —S— x = ~-L (C3)
;2 =0 X > o™ (Clb)
;1 =y, x =0 (cS)
%2 2 % (C6)
dx Qol dx s
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in which ;1 and ;2 denote the transformed shoreline position corresponding
to the regions behind and outside the breakwater, respectively, and L is
half the length of the breakwater. Solving the system of equations subject to

the boundary conditions yields

q,X
— Gaol e L
Y, = - T aps + [é cosh (q1x> - sinh <q1x>]
<tan *ol e_q1%>
0 . — ——
ol § +1
q,s(§ sinh q,L + cosh q,L) Lsx<0 (€7 -
1 1 1 -
oY
N
_ Sa -q,L}  -~qx "
Sa qp% (tan o . - _ol_ e o ) Se 2 Tnl
- _ _ "ol e + ol § + 1 X s 0 (C8) .
Y2 § + 1 q;s qls(é sinh qlL + cosh qlL)
where
Q
2 2
52 - Qol qi - z_ a; = 5 (c9)
| 02 1 €2

2. The inverse transform of Equations C7 and C8 may be obtained by use
of the Fourier inversion theorem (Appendix A) or by expanding the denominator
in a Taylor series and finding the inverse transform of each term in the
series. The latter method will be used here. The denominator may be

rewritten as

qlL -2q1L

qs e (6+1)1—(2—{>e (C10)

N —

qls(a sinh q,L + cosh qlL) =

1

The last term in Equation Cl0O is expanded in a Taylor series according to

n -ZqInL
) e (C1D)

1 o«
-2
1_(5-1) 29,k _Z<<s-1
s+1/°€ - s+ 1
n=0

-
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3. Only the inverse transform of Equation C8 will be obtained here to

vy ¥
Pl

illustrate the procedure. The inverse transform of the first term in

.

X7

Equation C8 is (noting that q, = dql)

r
h 3 )
P4

X,
4

1 da 8x
Yoy = 2ve ierfc < )

s 2n 2o 2n S |
>
P

5T

¢2£1t

£
BN

r >

L)
J
/
D
LI g8

(I
3

in which the function dierfc 1is defined according to Equation 23. The second

.
7
’

part of Equation C8 is rewritten by using Equation Cll:

R
8 4
» f
)

.L,?

e

>

I.'lls{ﬁ

Sa -q.,L q1(6x+L) > -2q,nL
72 = 2 $ tan - ol e 1 z ( e 1
Y2 § + 1 %1 T T F 1

n=0

S e w,
e oV

o

A A ol
,L~__‘.55‘ ;

. r

Rearranging Equation C13 by moving terms inside the summation gives

0

P TeTe T, “ .

.

AR S
«

-ql[L(2n+1)+6x]

§ tan ¢ 1 jz ( )n e
s + 1

—ql[ZL(n+1)+6x]

This expression is inverse transformed term by term (Appendix A). The solu-

tion is

X 1
1;14

r,

)
i

R

n .
) Z/EIE ierfe §x + L(2n + 1)
2¢elt

A3

n
1) Z/EIE ferfe §x + 2L(n + 1)
2V51t
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The complete solution to Equation C8 is written as

6& 8x
Yy = - 2Ve ierfc

5+ 1 + 1 2 EI?

§ tan a ® n
+ 9 ol z (5—1) 2/e—l—tierfc Sx + L(2n + 1)

| § + 1 § + 1 2ve .t
l n=0 1
'{
| 62a ® n
_ —012 z (2 - }) 2/t derfe ox + 2L(n + 1) (C16)
(8§ + 1) -0 2Velt

In the same way, Equation C7 may be inverse transformed, resulting in

Equation 81 (main text).
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APPENDIX D: SHORELINE EVOLUTION IN THE VICINITY OF A SEAWALL
WHERE FLANKING OCCURS

1. Two solution areas are employed to describe flanking of a semi-
infinite seawall, one area behind the seawall and the other away from the sea-
wall. The amplitudes of the sand transport rate are denoted as Q01 and Q02
in the respective solution areas, and the corresponding incident breaking wave

angles are denoted as ¢« and «a The incident breaking wave angle

a0y behind the seawall ?lolution Ziea 1) should be interpreted as a repre-—
sentative mean value related to the sand transport rate. Equations 84-89
(main text) constitute the mathematical formulation of shoreline evolution in
the vicinity of a seawall subject to flanking. The Laplace transformed system

of equations and the boundary conditions are

d2§1 _
5 -5 yl =0 x <0 (D1)
dx £
d2;2 s -
s - =y, = 0 x >0 (D2)
dx E2
;1 =0 X > - (D3)
-};2 =0 X +» o (D4)
Y=Y, x =0 (DS)
dy dy
1 1 2 1 1 _
& T2 + (“01 "2 °‘oz> s x =0 (D6)
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2. Solving the system of ordinary linear differential equations subject

he J ‘;l‘;- »

Ls
\f-'l

to the boundary conditions yields

"h

-.'q'

»

ol ~ 2

LA

Q
N
(1]
Nal
—
o

x <0 (D7)

O] +—
L0
-
n
» B SR BN J
P A 4
AL SN R A

ol

x >0 (D8)

3. The inverse transforms of Equations D7 and D8 are (Appendix A):

2 2
$ @y~ a02 elt -X /4elt —x
e RV 2 ,, — e + x erfc< ) (D9)
2velt

.
]
XA

826 . - a et —62x2/4€ ¢ N
_ ol 02 2 1 1 5 £ 8x (D10) .
y2 = 6(6 ¥ 1) N ,”_ e X erfe | — KN
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APPENDIX E: SHORELINE EVOLUTION DOWNDRIFT OF A JETTY IF AN ARBITRARY
NUMBER OF SOLUTION AREAS IS USED TO MODEL DIFFRACTION

1. The area downdrift of a jetty is divided into N distinct solution
areas of assumed different sand transport properties. In an arbitrary solu-

tion area j , the amplitude of sand transport rate is denoted as on and
the incident breaking wave angle as aoj . The shoreline evoluticn is denoted

as vj in the solution area bounded bv the shoreline coordinates Xj and

Py

xj+1 Equations 95 to 99 (main text) mathematically describe the shoreline

evolution in one solution area. Using the Laplace transform technique, the

governing equations take the following form:

d2§], s -
-V, = 0 (ED)
dx j -
Y5 = Y541 X = Xin (E2)
§j = ;J_l X = Xy (E3)
dy. dy
i 62 “j-1 _ &2 1
ax j-1 ax T (aoj 8 1%;j-1) s (E4)
X = X,
J
dy dy ‘
A .t SR S S | + {a _ 624 ‘ 1 (ES)
dx 3} dx 0j+l j oi/) s
X = xj+1
El
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The solution to the ordinary linear differential Equation El is

p— 1 j . .
. = Ae + B.e (E7) .
yJ 3 ] {}
where Y
-
¢t =< (ES) ';'f
i e, ol
J 7
.".

<
a

in which Aj and Bj are constants to be determined through the boundary
4 conditions, Since the shoreline evolution in each solution area is connected
via the boundary conditions with the neighboring areas, an equation system

with 2N unknowns (two constants for every solution area) 1is obtained. The o

boundary conditions E2 and E3 give the following relationships: .

A et
1 ,_-('
q.x -q.X, q X, -q., ,X, “
\ 173 373 _ j-173 =173 S
Aje + Bje Aj—le + Bj—le (E9) :.
i
T
q,x -q.x, Q... X, -q, X,
p jiTi+l + Ji+l _ J+1T5+1 J+HITi+1 .o
i Aje Dje Aj+le + Bj+1e (E10) N
]
b
J
2. Furthermore, Equations E4 and E5 give
]
]
q.Xx -q,X q X -q X 8
h I 33 i-17 j-173 j-1 .
A,e - B,e = § A -4 B + Ell,
' 3 3 5184218 i-185-1° e (
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Q. X -q,,,X q.x -q.X, B
A e ML g LD ) I g TIYL L T (g
i+l i+l i3 ij q,,,S
j+1
where
B G?a (E13)

i %341 T °5%j

3. Equations similar to E9 to EI3 may be written from solution area 2

to solution area N-1 , 1In the first and last solution areas, two other con-

ditions prevail at the outer boundaries, namely, no sand transport in the

first solution area (area 1) and no shoreline change as x->» {in the last

solution area (area N). The Laplace transforms of these boundary conditions

are

dyl
—=— = tan q

ax ol (El4)

=0 X + ® (E!.S)

N

4, Equation El5 implies that the constant A is zero. The resulting

N
system of equations to be solved in order to determine the value of the con-

stants is conveniently written in matrix form. A general system of N solu-
tion areas gives rise to 2N - 1 equations as follows:
1 -1 0 0 0 n 0 A Y|
q!s
qx “q,x q,x -q,x
212 elz —ezz -922 0 0 ] Bl h
qx -q,x q,% -G, X
172 £
‘le &I! 172 ')2 -e 272 0 0 0 A, o
‘ qYS
Q% ~q,x q.X. -q.x
" o L2 . 2" hh RN N 5, o
x .
0 0 A ‘2":2_
N-1 U8
LI -y X ECR
0 o NN . N-1'n . NN ., p
0 -4 |”QN_IXN 2 My e N "o
N- N-1 N ae
— ] N | (E16)
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It is seen that the solution corresponding to even a small number of solution

areas involves intensive algebraic calculations. Furthermore, the inverse

transformation is difficult to perform, necessitating use of the Fourier

inversion theorem.
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APPENDIX F: SHORELINE EVOLUTION BEHIND A JETTY FOR
LINEARLY VARYING BREAKING WAVE ANGLE

1. In the case of shoreline evolution behind a jetty for lineraly
varying breaking wave angle, the amplitude of the sand transport rate is
regarded as constant downdrift of the jetty, and the incident breaking wave
angle varies linearly from the jetty (with value av) to the value ay in the
region undisturbed by the jetty. Two solution areas are needed for describing
shoreline change, one in the shadow region and the other outside the shadow
region (illuminated area). Equation 101 (main text) describes the variation
in breaking wave angle in the shadow region which is of length B . The

Laplace transformed equations and boundary conditions are

d’y a, —
1 s-= _ "H v 1 i
Z—Eyl————B p 0 <x <B (F1)
dx
d2;2 s —
R 0 X > B (F2)
dx

dy1 tan a,

& T s x=0 (F3)
Y1 =Y, x =B (F&4)
dy, dy

1 2
Fraiaira x =B (F)

2. The solution to this system of ordinarv linear differential

equations is

2
7 S (P (F6)

a, - o -q(B-x -q(B+x tan a e
H v [ a( ) e q ) v
3
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oy = o, e—q(x+B) e-q(x—B) -qx

2 2 v gs (F7)

where

q° = § (F8)

3. Equations F6 and F7 are easily transformed term by term (see

Appendix A) to yield Equations 103 and 104 (main text).
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APPENDIX G: SHORELINE EVOLUTION L.HIND A JETTY FOR EXPONENTIALLY

VARYING BREAKI1NG WAVE ANGLE

I. The breaking wave angle varies exponentially with the distance be-
hind “he jetty from zero at the jetty to the undisturbed value a
the jetty. The mathematical formulation of the boundary condition at the
jetty is expressed by Equation 105 (main text). A varying breaking wave angle
along the x-axis is described in terms of the diffusion equation by a distrib-

uted sink with a decaying strength with distance. The transformed equation

and boundary conditions are

2— oY )
Q_% - ? y = —E— e yx x 20
dx
gﬁ =0 x =0
; =0 X *
The solution to Equation Gl is
a Y2e--qx -YXx

a ye
m

- +
as(v? - a®)  s(+* - o)

y =

Equation G4 may be written as partial fractions:

qx ~YX

§=“mYe (1 ) 1)_0‘me 11
2qs q-y q+y Y s
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2. The first part of the first term is inverse transformed according to

Appendix A and gives

la %nY 2 ﬁ?? -x2/4£t 1 - yx x
y = = |~ INT e “\T =2 erfc
Y 2Vet

2
+ lf T YREEY ppe [ 22— - Y/E?> (G7)
Y 2/et

In the same way, the inverse transform of the second part of the first term in

Equation G5 gives

-
o
8
<
N

<

et -x2/4€t 1 + yx X
y = 2 - ;— e - —2 erfc )
Y 2/t

2
+ 13 eYX+EtY erfc < X

+ y&) (G8)
Y 2/t

3. The complete solution consists of Equations G6, G7, and G8 as given

by Equation 106 (main text).
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APPENDIX H: NOTATION

Length (m)

Amplitude of periodic beach cusps (m)
Cross~sectional periodic beach area (m2)
Constants in general functions of the Laplace transform variable
Length of shadow region downdrift of a groin (m)
Wave group velocity to breaking point (m/sec)
Depth of closure (m)

Error function

Arbitrary initial shoreline shape (m)
Acceleration of gravity (m2/sec)

Constant

Significant breaking wave height (m)

Integer number

Integral of the error function

Slope of a line segment

Nondimensional constant

Geometric length (m)

Laplace transform of a function vy
Nondimensional groin length

Integer number

Integer number

Number of solution areas or reaches

Pitch height of a circle segment (m)

Loss percentage from a beach 7ill

Sand transport rate per unit length of beach from . «
(m3/m/sec)

Constant sand discharge from a river actiny
(m3/sec)

Time variable sand discharge from .

(m3/sec); constant sand di<ebar,.

(m3/m/sec)

Amplitude of sand dicehary,

(mg/sec)

s/F
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0
Q Longshore sand transport rate (m3/sec) ‘
QB Maximum value of bypassing sand transport rate (m3/sec) !.J’
Qo Amplitude of longshore sand transport rate (m3/sec) ;
8 Laplace transform variable
t Time (sec) 4
t! Dimensionless time t’:
te Time when bypassing of a groin starts (sec) '_:
tp Time (sec) I;E
tg Time (s) ?-‘:.
t, Time in the matching solution when groin bypassing starts (sec) ot
t, Modified time in matching solution (sec) Y
T Time period of an oscillation (sec) ;:.,},."«
v Volume of sand released from an instantaneous source (m3) i'_'{
W Distance between two groins (compartment length) (m) X "
X Space coordinate along axis parallel to trend of shoreline (m) ;:
x' Dimensionless alongshore distance ::.-_‘
X Distance alongshore (m) :-
y Laplace transform of a function vy ;-'_"
y Shoreline position (m) ‘\‘
y' Dimensionless shoreline position ::
Yo Geometric length \‘:
z Integration variable :“f
a Angle -:;
ay Angle between breaking wave crests and shoreline :::::
a, Angle between breaking wave crests and coordinate axis )::;
B Constant {:
Y Rate coefficient (s-'1 or m-l) f‘;
8 Ratio between the amplitudes of longshore sand transport rate in ;::,.
two neighboring solution areas f\
A Change in quantity &::-
€ Coastal constant (diffusion coefficient) (m2/sec) .-,
4 Integration limit in the complex plane having all singularities of '.::
the integrated function to the left ,':,
A Porosity of sand :"-,'_.
£ Integration variable :‘,
P Density of water (kg/m3) ":
g
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Py Density of sand (kg/m3)
g Wave number of periodic beach cusps (rad/m)
T Integration variable
o Phase angle
W Angular frequency (rad/sec)
Subscripts: Denoting various specific values of a variable or various
solution areas
1, 2, 3...
i, j, m
H, v

Superscripts: Denoting various specific values of a variable or various
solution areas

1, 2, 3...
a, b, m, v

R, L

Mathematical symbols
d Differentiation
3 Partial differentiation

[ Absolute value
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