
-AISA 151 SEMANTICS OF EQL(U) WORTH CSROLINA UNIV AT CHAPEL HILL t/1
DEPT OF COMPUTER SCIENCE B JAVARAMAN 1987

UNCASSIFIED N9848--60F/G 12/5 U

EEEEEEEEmmosiE



j- 
_ Io

11125 1 4

MICROCOPY RESOLUTION 'TEST "CHART -

w w w



Semantics of EqLt

1. Bharat Jayaraman

Department of Computer Science

-0 University of North Carolina at Chapel Hill
0

* I- Chapel Hill, NC 27514

Abstract-We present ,the formal semantics of a novel language, called EqL, for

first-order functional and Horn logic programming. An EqL program is a set of condi-

tional pattern-directed rules, where the conditions are expressed as a conjunction of equa-

tions. The programming paradigm provided by this language may be called equational

programming. The declarative semantics of equations is given in terms of their complete

set of solutions, and the operational semantics for solving equations is an extension of

reduction, called object refinement. The correctness of the operational semantics is estab-

lished through soundness and completeness theorems. Examples are given to illustrate the
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1. INTRODUCTION

The integration of functional and logic languages has received considerable interest recently,

and a number of different approaches have been proposed since Robinson's LOGLIS? in the

late seventies 1181. We propose a new approach, offering a simple and uniform framework

for first-order functional and Horn logic programming. Our approach is in contrast to some

recent approaches [7, 5, 14] which permit both functions and predicate clauses, thereby

resulting in two different programming styles within one language. The major advantage

of having a uniform framework is the simplicity in the semantics of the resulting language.

This framework is an extension of functional languages in two respects:

1. The pattern-directed rule is augmented with a set of equations, for specifying con-

straints on variables.

2. The reduction model of execution is augmented with a technique called object refine-

4 ment, for solving equations.

We choose pattern-directed rules, because they form the basis of many modern func-

tional languages [8, 12, 15, 221. By extending these rules with conditions expressed as a

conjunction of equations, we have shown that the capability of Horn-logic can be achieved

[9, 10]. In the language EqL (for Equational Language) described in this paper, a program
consists of a set of conditional pattern-directed rules, followed by a top-level goal which is a

set of equations to be solved. EqL supports functional programming because a functional

expression e to be evaluated is treated as an equation v = e, where v is some distinct

variable. EqL also supports logic programming because a goal g to be solved can also be

viewed as an equation, namely, g = true. Because solutions are not necessarily unique,

the declarative semantics of a set of equations is expressed in terms of its complete set of

solutions relative to a given program. In our semantics, constructors and function symbols

are sharply distinguished, and the denotation of a ground expression is a set of terms over

the constructors-a set is needed because of the possibility of nondeterminism.

It was our objective to define the operational semantics of the language in terms of

reduction, because of its suitability for parallel execution. However, solving for variables in

equations requires an extension of reduction, which we call object refinement. An equation

is thus solved by progressively reducing its two expressions and "refining" the data objects

bound to the variables. This process may be seen as a restriction of narrowing [6, 5, 3,

20, 241 that provides an efficient search for solutions. It also gives many opportunities for
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parallel execution, including and-parallelism and or-parallelism [1].

The correctness of the operational semantics is established through soundness and

completeness theorems. Essentially, the soundness theorem says that any solution com-

puted according to the operational semantics is as general as a solution defined by the

declarative semantics, whereas the completeness theorem says that any solution defined

by the declarative semantics has a solution computed by the operational semantics that is

as general.

The rest of this paper divides into the following sections: section II introduces the
language EqL, and presents examples of programs for functional and Horn-logic program-

ming; sections HI and IV define respectively the declarative and operational semantics of

EqL programs; correctness issues are addressed in section V; finally, section VI presents

conclusions and further comparisons with related work.

II. EqL: AN EQUATIONAL LANGUAGE

.4. Language Features

In t 1 syntactic definition below, the symbols opname, atom, and variable stand for user-

we defined '-xical units.

program --+ rules goal

rules -+ E I rule rules

rule -. opname ( terms) => body opname => > body

goal -- equations

terms -- term term. terms

term - atom variable Icons(term. term)

body -* expression I expression where equations

expression - atom I variable I cons(expression, expression) -

I opname(actuals) Iopname()

actuals - expression expression. actuals

equations - equationI equation .equations

equation - expression = expression

We use the word term and pattern synonymously. A term tefers to a data object built up

from the constructor cons, atoms, and variables. A ground -rm is a term without any
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variables. Our convention is that all atoms are quoted, excepting numerals. As in LISP,

cons builds a binary tree. Lists are a special case of trees, but we write them in EqL

using the I.. . notation, similar to Prolog. Although we use a single constructor, cons,

our approach is applicable to other constructors as well. The element J is considered an

atom, and stands for the empty tree and also the empty list.

Unlike ordinary functional languages, the rules in EqL need not be deterministic.

Another difference is that the right-hand side of an EqL rule may contain variables not

present on its left-hand side. All variables in a rule are logical variables, similar to Prolog,

in the sense that their bindings must satisfy certain constraints. (Note that there are no

global variables in this language.) A set of equations forms a conjunctive set, i.e., they

must be simultaneously satisfiable. We define satisfiability formally in the next section;

informally, an equation el = e2 is considered satisfiable if there is a substitution, -Y, of

ground terms for the variables in el and e2 , such that the sets of ground terms denoted by

(e1 -y) and (e2 -y) have a common term. Finally, it should be noted that all operations, as

well as the constructor cons, are strict, i.e., their result is undefined, or I, if any of their

arguments is undefined.

B. Examples

We now present a few simple examples to show the capabilities of these constructs for

functional and logic programming.

Example 1: Append

Below is the EqL definition for the familiar LISP function append.

append(( ]. y) => y

append([h I t]. y) => [h I append(t. y)]

? answer = append([1.2]. [3,4])

The top-level goal is an equation for evaluating the expression append([ 1.2). (3.4)).

The output is the value of the variable answer, namely, (1.2.3.4].

Example 2: Pure Prolog in EqL

A sinple example is given to illustrate the mechanical conversion of any pure Prolog, or

Horn logic, program to an EqL program. The following program is written using DEC-10

Prolog syntax (21:

rev([ ]. ( J).

4
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rev([HIT]. Y) rov(T. Z). app(Z. (H]. Y).

? rev(X. [1.2.3.4]).

The mechanically derived EqL program would be:

rev([ ]. [ J) -> true

rev([H I T]. Y) -> true where rev(T. Z) = true

app(Z. [HI. Y) - true

? rev(X. (1.2.3.4]) - true

The basic idea is to treat each Prolog predicate as a true-valued EqL operation. In general,

a predicate p defined by k clauses would be translated into k rules. The set of equations

in each rule serves to solve the goals in the clause body. Note that the variable Z on the

right-side of the second rule for rev does not appear on the corresponding left-side. This

feature of EqL in fact is crucial for attaining the expressiveness of Horn logic.

It should be noted that the above program is not the best way to define the 'reverse'

operation in EqL. For example, the program below is a clearer definition of 'reverse':

reverse([ ]) -> [ I

reverse([h I t]) -> append(reverse(t). [h])

? reverse(x) = [1.2.3.4]

The operation append is as defined in Example 1.

Example 3: Permutations

To conclude this section, we present a nondeterministic program for producing the permu-

tations of a list:

perm([ ) => [ I

perm(x) => [e I pera(delete(e. x))]

delete(h. [h I t]) => t

delete(hl. [h2 I t]) => [h2 I delete(hl. t)]

? answer = perm([l.2.3.4])

Note, again, that the variable e on the right-side of the second rule for perm does not appear

on the left-side of the rule. The variable answer has 24 possible bindings, corresponding

to the 24 permutations of the list [1.2.3.4].

Il. DECLARATIVE SEMANTICS

~5
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In this section, we describe a denotational semantics 1211 for EqL programs. The syntactic

domains are abbreviated as follows: A for Atom, Var for Variable, Exp for Expression,

and Eqn for Equation. The semantic domains are: G for Ground Term, Env for Environ-

ment, and T for the domain with a single value, true. Each syntactic ground term has

a corresponding element in G. We use italics to distinguish the semantic element from

the syntactic element, e.g., cons is the semantic equivalent of cons. An environment is a

mapping of variables to ground terms, Env = [Var --+ G]. In addition, we introduce the

domain T.L = (1, true), with I C true.

The semantics of expressions and equations are expressed by the following two seman-

tic functions:

jup: Exp -Env- G -- T.

mp: Eqn -- Env -. T

Our approach is to define ;p in such a way that jsp ejag yields true if ground term g

is a possible value for expression e in environment a (relative to an EqL program P).

Similarly, the semantic function vp is defined so that vpISo yields true if the set of

equations S = Id, = ,...,d, = e,] is satisfiable in environment o (relative to an EqL

program P). In the next two subsections, we define the semantic functions lip and vp

respectively.

1. Ezpressions

The semantic function up is defined for each of the four kinds of expressions: atoms,

variables, cons-expressions, and operation applications. In the definition below, we assume

a semantic function K which maps a hyntactic atom a to its semantic counterpart.

ihiaj'g = {true if K(a) =;

I± otherwise.

MpiOg = { true if ax = g;
I otherwise.

1AP cons(e I C2)09 jpIgej0og A 1APIe2go92 if g -= cons (g1,g92);
IJ otherwise.

Ap~f(e,..,en)jug9Ui Uyeftv (oa'y A ,splezpil-yg A L.p[Sl- A vji)

where

(ti,. .. ,t,) -> expZ where Si is the i-th rule for f,and

Ti is the set of equations Iti1 = el,... ,t = n

6

- . .... • A --



In the last case above, we say that g is a possible ground value for expression f(e ,... ,)

in environment a if there is some rule for f, say

f(tj,...,ti.) => expi where Si,

)such that g is a possible value for Iezpid in a more defined environment -y, provided that

the set of equations [$i] and 57] are satisfiable in environment - (defined in the next

subsection). The environment -y is an extension of a in that it additionally binds all

variables introduced by the i-th rule for f to ground terms. We assume that all variables in

the i-th rule for f are renamed to avoid naming conflicts. We define a _C -Y = (Vz)az _: -yz.

(Note that -y may be expressed as a U q', where ,q binds only the variables in f.) We define

the connective A as follows: true A true = true, and z A 1 = ._ A z - 1.

2. Equations

The semantic function vp defined below expresses what it means for a set of equations,

S = Id, = e1,... ,d. = e, 1, to be satisfiable in an environment a.

,p[Sia = (Vi) UgEG (ppidjagi A Aple, lg,).

Basically, an equation d, = ei is satisfiable in environment a if there a common ground

term, gi, that is a possible value for both d, and ei. A set of equations is considered

satisfiable if each equation in the set is satisfiable; otherwise the set of equations is said to

be unsatisfiable.

Because the top-level goal equations may contain variables, we define the solution to

a set equations as a substitution of ground terms for the variables of the equations that

makes the equations satisfiable. For a set of equations S involving only terms, there is

a unique most general solution (involving non-ground terms possibly), which is the most

general unifier of S. For a set of equations S that also involves operation applications,

e.g., append(x, y) - [1,2.3,4), there need not be any unique most general solution.

We therefore introduce the notion of the complete set of solutions of a set of equations.

Definition 1: The complete set of solutions of a set of equations S with respect to a program

P is Ep = {a I vpISa}, where ty binds all variables in S to ground terms.

3. Operation Symbols

We can now define the meaning of an operation symbol f by means of the semantic function

.gp, as follows:

7
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(9pIfl)(GI,. .. ,G,) = Ugia . . (1APg I (gi,...,ga)I-L~nvg}

where each Gi C G and Ci # 0, the empty set. We use JE, to denote the undefined

environment, i.e., one which does not specify bindings for any variables. If some Ci =

0, then we define (9pjf)(G,..., OC) = q$, which specifies that all operations are strict.

The ordering for the domain of each operation is 4 C g, for each g C G.

Suppose we define the meaning of a ground expression e with the semantic function .9p as

follows:

.9pIe] = {g I pIel-LE.40}.

We then have the following substitution theorem:

Theorem 1:

9P~f(eien)j = (9pUfi)C 11 ..... gP ICJ),

where each ei is a ground expression.

4. Discussion

In the interest of brevity, we omit a detailed proof of theorem 1. It follows from simplifying

the two sides of the equality, and observing that the meaning of ground expression ei in

the undefined environment, -LE,,,, is the same as in any other environment -y. Although

the definitions of Ap and vp are recursive, because they are expressed as a composition of

continuous functions, we can take their meaning to be the least fixed point of the recursive

transformation. Because the definition of 9p is not recursive, it is possible to use sets and

unions without requiring a complex power-domain construction 1171.

An important point about our semantics is that the meaning of an equation el = e2 is

based on the denoted values of the two expressions el and e2. To illustrate its implication,

consider the two operations defined below:

f(x) -> cons(x.10)

loop(x) -> loop(x)

Given these rules, Lhe goal equation

? f(s) - f(z)

does have a solution, namely, z -- S. However, the equation

? loop(10) - loop(y)

8



does not have any solution according to our semantics, because the expression loop(i)

does not denote any value. If, as in equational logic 1241, the semantics of expressions is

not based on the denoted values, bhe above equation does have a solution, namely, y *-- 10,

which is obtained by syntactically unifying the two expressions. This example reveals one of

the key differences between our domain-theoretic semantics and equational logic semantics.

Finally, we should point out that the semantics defined by ,,p does not distinguish

between an operation such as f, defined above, which always terminates, and an operation

such as g, defined below, which fails to terminate:

g(x) -> cons(x, 10)

g(x) => loop(x)

Distinguishing between f and g semantically would require extending the input and output

sets of each operation with I, which would stand for nontermination. An output set

(cons(1, 1O)} would then be different from the set (1,cons(1, i0)}.

IV. OPERATIONAL SEMANTICS

In this section, we first develop a reduction semantics, which we show to be equivalent to

the declarative semantics of the previous section. We then develop a refinement semantics

which can serve as an effective operational strategy for an interpreter. This refinement

semantics also forms the operational semantics of EqL.

A. Reduction

1. Notation and Terminology

In order to express the solution of equations using reduction rules, we represent an equation

d, = el as a single expression C(d 1 ,ej), where 6 is a unique constructor. In general, a

set of equations Id, = el,... ,d, = ej, is represented by a binary tree of nested and's as

follows:
<. ~~~~~~~and(& (d1 , e1 ),. ..ad( d_,e- ) (de)).

In order to refer to parts of an equation, we define, similar to Hullot [61, an occurrence

as a string consisting of a l's and r's (for left and right subtree respectively), which uniquely

identifies a subterm of the "equation tree." For example, the third equation, 6 (d3 , e3), in

the above set of equations is at occurrence rrl. Similarly, the expression E3 is at occurrence

rrlr. Since we are not interested in occurrences within an expression, it suffices for us to

use I and r rather than natural numbers.

9



Given a set of equations S, the notation Sloj refers to an equation eqn, at occurrence

o. The notation Sio *-- eqn2 l refers to the set of equations S with eqn, at occurrence o

replaced by eqn2.

2. The --+ relation

We express the reduction semantics of an EqL program in terms of the reduction relation

--+. This is a one-to-many relation over equations. We use the value true from domain T

to denote the satisfaction of an equation.

i. Unit Identity:

6 (a, a) --* true IF atom(a)

ii. And Elimination:

and (true ,true) --+ truc

iii. Decomposition:

C (cons(ei, C2 ), cons(e3, C4)) --+ and(C (el, e3), C(C2 ,C4 ))

iv. Operation Application With Variable Binding:

,1(f (el,..., e,), e) -and(C (exp q, e), and(S q, Tr))

C (, (e1,. . e)) and(C (ezp q, e), and(S rl,T q))

if there is a rule f t,..t) -> ezp where S, and

T is the set of equations, t 1 --- eI... .,t = e,1, and

Y7 binds all variables in the rule for f to ground terms.

A rule of the form f 01,... , t) => exp is just syntactic sugar for f t1,..,tn) >ezp where

true.

Note that rule i does not reduce two identical expressions to true, except in the case

of identical atoms. Two identical ground terms can be detected to be identical using rules

i, ii, and iii. We do not provide a primitive identity check on two arbitrary but identical

operation applications, e.g. loop(1O) - loop(IO), because the applications might not

denote any value.

Given a set of equations S, if an equation eqn, at occurence o rewrites to eqrt2 , i.e.,

eqn, -~ eqn2, we write

S -~ Sbo +- eqn 2j.

10
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The reader may note that we have used the same notation - to denote two relations:

one between two equations, and the other between two sets of equations. However, from

context it will be easy to distinguish which of the two relations is intended.

A derivation starting from S and using rules i-iv is called a --+-derivation, and is

denoted by --+*.

Theorem 2: The complete set of solutions of a set of equations S with respect to a program

P, Ep = {a I Sa -- "* true), where a binds all variables in S to ground terms.

I" Proof Sketch: To prove the equality of the two sets, we need to show that each set is

included in the other. The proofs for the two cases are similar, hence we illustrate only

one of them. For this proof, we assume, without loss of generality, that all equations are

V 4expressed in the form v = ezp, where v is a variable. Note that an equation ezp1 = ezp 2

can always be rewritten using the two equations: v = ezpI, V = ezp2 , where v is a distinct

variable. The main case of interest is an equation involving an operation application, which

we can assume, without loss of generality, to be of the form v = f(el,..., ee).

Suppose that Sa -* true. We wish to show plSfa. Consider an equation v =

f(el, . . , en) in S, and let the first reduction step involve the k-th rule for f and some

substitution rt for the variables in f. In the declarative semantics, we may choose ov for

the value of gi in the application of vp, and we may choose the same k-th rule for f and

-t = a U r7 in the application of p. Now, the resulting expressions in the --*-reduction

and in the declarative semantics are equivalent. In this manner we can create equivalent

expressions at any reduction step by an application of rule iv. Because Sa eventually

-+-reduces to true, it follows that vp I[SIor can also be simplified to true.

B. Refinement

Rules i-iii can be used directly in an interpreter, but rule iv cannot, because suitable
values for j7 cannot be determined during operation application. Therefore, in defining the

operational semantics, we use rule iv with q = 46, the empty substitution, and we introduce

a set of rules for computing bindings for variables. We shall refer to rule iv used in this

4way as rule v, Operation Application Without Variable Binding.

1. The - Relation

The computation of bindings for variables is defined by a new relation, denoted -, . Rule

vi below defines the -v relation.

@-4



vi. Variable Binding:

There are basically two sets of cases: (a) the binding of a variable or an atom to a variable

and (b) the binding of a cons-term to a variable. The rules for case (a) are:

&(v,a) true where a = {v -- a}

C'(a,v) - true where o = {v - a}

S(VI, V2) -- , true where o = {vI + Z, V2 *-- Z}

C (v, v) -,-,o true where 0. is the empty substitution

where v, v, and v2 are variables (vl and v2 are distinct), a is an atom, and z is some

distinct new variable. The rules for case (b) are:

C(v,cons(el,e2)) -~and(&(z1,c1),C(Z 2 ,e 2 ))

C(cons(e,e 2 ),v) and(t(z1,ei),&(Z 2,C2))

where v is a variable, a = {v 4- cons(z 1 , z2)}, and z1 and Z2 are two distinct variables.

Note that we do not permit the binding of an arbitrary expression to a variable for

the same reason we do not permit an identity check on two arbitrary expressions. Given

rules i-iii, v and vi, we are ready to define the reduction rules for a set of equations S.

We associate solution bindings a with a set of equations S, and denote this pair by (S

with a). These bindings associate a term with each variable in the equations. Initially

these bindings are empty, thus initially we have (S with 0.). As the set of equations get

reduced, the associated solution bindings get "refined." The following two rules express

this refinement:

1. (S with Pi) "" (So +- eqn] with P1) IF S[o] - eqn

2. (S with P1) "- ((S[o - eqn])p 2 with Pi U P2) IF S[o] ^,,,eqn

Note that p, and P2 are disjoint. A derivation starting from (S with .) and using rules

i-iii, v, and rule vi is called a -,--derivation, and is denoted by --.

Definition 2. a I V(S) is a computed solution of a set of equations S if there is a

OVA derivation of (true with a) starting from (S with 4), i.e.,

% (S with 4) -,-* (true with a),

where a I V(S) refers to the subsitution a restricted to the variables in S.

Note that we have altogether introduced four relations: the relation -4 between two

equations, the relation - between two sets of equations, the relation . , between two

A12



equations, and the the relation ". between two sets of equations. The relation -- between

two equations and the relation - are mutually exclusive.

2. Example

We illustrate the operational semantics by a simple example. Consider the following pro-

gram:

null([ ]) => true

null(cons(x1. x2)) => false

and a top-level equation

? null(y) = true

The top-level equation is expressed using the constructor e as &(null(y), true). A
derivation of true for this equation is shown below:

* (null(y), true) with 0

and(&(y, ( ]), 6(true, true)) with (by rule v)

and(&(y. [ ]), true) with 46 (by rule i)

- and(true, true) with {y +- [ ]} (by rule vi)

". true with {y -- f } (by rule ii)

The above example uses the first definition of null in the application of rule v. An-

other -.- derivation is possible using the second rule for null, but this derivation will not

terminate with true. Note that true and false are syntactic elements, whereas true E T

is a semantic element. Also, [ is the semantic equivalent of [ J.

3. Discussion

The solution of a set of equations is thus a process of gradually "refining" the values of its

variables until true is derived. This process is therefore referred to as object refinement. It

is a generalization of the reduction rule in functional languages because refinement includes

reduction. The - relation can serve as the basis for a breadth-first procedure for finding

the complete set of solutions. At each step of the rewriting process, any equation may

selected for rewriting. If an operation application appears at the outermost level in one of

its constituent expressions it would be rewritten to all of its different possible right-hand

sides, thereby resulting in multiple sets of equations to be solved for multiple solutions.

This gives rise to or-parallelism, in the terminology logic programming languages 11]. Note

13



that multiple solutions can arise only because of the presence of multiple definitions for

some operation.

In order to prune unproductive computational paths, it is necessary to recognize the

following forms of equations in an equation set, where the e's are arbitrary expressions.

C(ai,a 2) IF atom(al) A atom(a 2 )

6(acons(eie 2 )) IF atom(a)

6(cons(ele2),a) IF atom(a)

C (e,f(el,....e.)) IF f has no definition

C(f(e,.. .e,),e) IF f has no definition

An equation-set containing any of the above forms of equations can never reduce to

true, and therefore may be abandoned. Indeed, an interpreter should be on the look out

for these cases and cause early pruning of such branches. Deferring operation application

until no other kinds of rules apply can also avoid much over-computation.

V. CORRECTNESS

We now address the correctness of the operational semantics defined in the previous

section via soundness and completeness theorems. The soundness theorem basically states

that every computed solution is as general as some member of the complete set of solutions,

whereas the completeness theorem states that every solution belonging to the complete set

of solutions has a computed solution that is as general. We discuss the implication of these

results at end of this section.

A. Soundness

Theorem 8 (Soundness): Given a set of equations S and a program P, if there is a

derivation

S with 4, * true with p

then there exists a a E Ep, where p C_ a.

Proof Sketch: Because of the equivalence between Ep and (a I S - true}, it suffices to

show that there exists a --+-derivation So -+* true. We prove this theorem by construction;

that is, we derive a --+-derivation from the given -.-- derivation. The basic approach is as

follows: We seek to replace all -. steps in the --- derivation by -. steps. That is, we

seek to replace all type vi steps (Variable binding) by type i (Unit identity) and type

iii (Decomposition) steps while maintaining a correct derivation. In the process, some

14
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type v steps (Operation application without variable binding) may become type iv steps

(Operation application with variable binding), although the bindings may not be fully

ground yet. The only form of type vi step that cannot be replaced is a step 6(v,v) ,

true. Thus, when all other type vi steps have been replaced, a derivation Sp -* T will

result, where T consists only of equations of the form 6 (v, v), where v is a variable either

"N in the goal S or introduced by some rule. By replacing each variable v with an arbitrary

atom, we obtain a derivation So - true, where p C a. Further details of the replacements

are given in [91.

B. Completeness

Before presenting the completeness theorem, we introduce two definitions: For two expres-

sions el and e2, we define el C e2 if there is a substitution p binding variables to terms

such that eIp = e2. In a similar manner, for two sets of equations S and T, S C T if there

is a p such that Sp = T.

Theorem 4 (Completeness): Given a set of equations S and a program P, and a solution

a E Ep, or equivalently, Sa ---* true, there exists p such that

* S with 46 -** true with p

where p I, V(S) g a.

Proof Sketch: From the given -- derivation, we construct a -- derivation in which each

equation-set is at least as general as the corresponding equation-set in the -+-derivation;

and in so doing we will build up the solution bindings p E a. The crux of the proof involves

showing that the -*-derivation can find solutions without rule iv, Operation application

with variable binding. We show this by induction on the number of steps in the -+-

derivation.

We first abbreviate Sa by T. Let T be the i-th equation-set in the given --+-derivation

and Si be i-th equation-set in - -- derivation to be constructed. For the base case i=1,

Si _ T (because S C Sa), and the solution bindings j C a. For the induction hypothesis,

we assume that for all k < i, SA: C T and the partial solution pk g; a. We now extend

the partial --,-derivation one step and show that we can rewrite Si to Sj+j such that

5j+ I C_ T1+i and pi+I C_ a. Showing this entails a case analysis of the four rules (i-iv) used

to derive T7+ from 7. The details are provided in [91; the main points are: (i) if rule

iv is used in the --+-derivation, the corresponding step in the -- derivation will use rule

v; (ii) if rules i (Unit identity) or iii (Decomposition) are used in the -- derivation, the
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corresponding step in the --.- derivation could require rule vi (Variable binding). In each

case, we show that Si+ I 7g+1 and pi+I C_ a, using the induction hypothesis. Because the

-+-derivation ends in true, so also must the constructed -- derivation. And because the

bindings produced by the application of rule vi may involve nonground terms, the solution

p computed in the -- derivation may be more general than a.

C. Discussion

From the standpoint of an interpreter of EqL, the soundness theorem guarantees that

no incorrect solutions will be produced if the interpreter followed the rules defined in

the operational semantics. Completeness guarantees that all solutions can be found, but it

does not guarantee that one can construct a solution procedure that will always terminate,

reporting that all solutions have been found. Because of the possibility of nonterminating

S- definitions, in general the solution of arbitrary equations will not necessarily terminate.

We can be sure that the interpreter has produced all solutions only if it terminates. Our

0 completeness result thus corresponds to recursively enumerable completeness [5) . It is

-! possible to devise sufficient conditions for proving termination, in the manner of Hullot,

Plaisted and others [6, 3], but we have not yet investigated this issue. Finally, it should

be understood that the computed solutions are most general in the sense that any other

solution can be expressed as an instance of one of the computed solutions.

- VI. CONCLUSIONS AND RELATED WORK

Although EqL supports functional programming more directly than logic program-

ming because of its functional syntax, we hope it is clear that logic programming paradigms

are also readily stated in the language. In fact, any Horn-logic program can be directly con-

verted into an EqL program. Because equation solution lies at the heart of the language,

the programming paradigm provided by the EqL may be called equational programming.

Hoffman and O'Donnell first introduced the term equational programming 18, 161 to

refer to a style of programming with equations whose semantics are based on the logical

consequences of equality. The extension of O'Donnell's language for logic programming

oa by You and Subrahmanyam (241 permits a set of equations to be solved only at the top-

level. The rules in EqL are more general in that they permit a set of equations to appear

on the right-hand side of a rule as well. Dershowitz and Plaisted have recently used the

term equational programming to refer to a style of programming with conditional rewrite

rules 131 that provides the capability of first-order functional and Horn-logic programming
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in a uniform and elegant way. The language of oriented equational clauses proposed by
Fribourg [41 is also related. An important difference in our approach from other equational

languages is that the formal semantics of our language is domain-theoretic, rather than

based on equational logic 14, 16, 24).

A number of different approaches have been proposed for the operational semantics of

a language combining functional and logic capabilities 13, 4, 5, 13, 201. Of these, the closest

related approach is narrowing in term-rewriting systems 13, 5, 6, 20, 241. Two variations

of narrowing have recently been proposed: conditional narrowing 13J and lazy narrowing

[201. Object refinement combines the generality of conditional narrowing (in that it is

applicable to conditional rules) with the efficiency of lazy narrowing (in that reductions

occur at the outermost level of an expression). Because of EqL's strict semantics, the data

objects computed by object refinement are always finite; the "laziness" in object refinement

is with respect to failure. Object refinement also bears a close resemblance to the equation

solution procedure in SUPER 1191: its 'decomposition' and 'instantiation' rules are very

similar to our decomposition and variable binding rules. The main difference is that

SUPER is based on lambda calculus whereas our approach is based equation rewriting.

In order that we may concentrate on semantics, we have restricted the language we

have presented to its essential constructs: terms over the single constructor cons, expres-

sions, equations, and operation definitions. In practice, it is necessary to enhance the

language by permitting user-definable constructors, primitives for arithmetic, and domain

testing predicates such as LISP's atom, numberp, etc. These extra primitives, however,
would be used only for ordinary reduction, but not for object refinement. Examples of

programs using these extensions were given in [111. We have implemented this extended

language in order to demonstrate the feasibility of these ideas.
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