
AD-RIOS 150 SHAED MORKSPRCES FOR REAL-TINE COLLABORATION IN1/
DISTRIBUTfED NETWORKS: Co..(U) NORTH CAROLINA UNIY AT

-CAPEL. HILL DEPT OF COMPUTER SCIENCE
UNLSSIF FD, H M ROEL-URAI4 ET AL. 199? F/O 25/5 NL

Eh~f ENhLhEEEImmo

1110 1 2.
L3_

L2.r0

11111 25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

'I- L
*mu%

MI.,& W
V,

OlFILE CORY
Contract N00014-86-K-0680

In

Shared Workspaces for Real-time Collaboration

in Distributed Networks:
Concepts, Techniques, Problems

Huaa.ein M. Abdel- Wahab

Department of Computer Science

North Carolina State University

Raleigh, NC 27695

Sheng- Uei Guan and J. Nievergelt

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

IttNOV 2 31987

-mcnt l,.as been Qipproved

1"Inwi d o Cii Pf its

67 11 10 075

Abstract

Until recently, computer-based collaboration between geographically'di'-

persed users has been limited primarily to electronic mail and file transfer.

There is an increasing interest in computer support for real-time interac-

tion between such users. The main goal of-our research is to enable users

to remotely share and operate simultaneously on 'objects contained in a

9- workspacel. Examples of objects are textfiles, graphs, or images. All par-

ticipants have identical views of the objects. Users manipulate and operate

on the objects using appropriate'tool' For example, an appropriate tool

for operating on a textfile is a text editor. The basic entities of our model:

users, objects and tools, may reside at arbitrary sites of a computer network.

Users who wish to collaborate and share a workspace will form a session*.

For each session, a process called the9'session serveregulates access to

workspace objects efficiently and fairly. All session servers of a given ma-

chine are interfaced to a proces caged the "communications server" The

communications server is responsible for connecting users and moving ob-

jects between different machines. Wtlhave implemented a prototype system

of remote shared workspaces where objects ae restricted to be textflleS, and

tools can only accept input from keyboards. Our approach differs from other

collaborative tools in that we offer a general purpose utility that converts any

single-user tool into one that can be used for real-time collaboration among

several remote. users.

KEY WORDS: Distributed systems, Real-time collaboration, UNIX,

Interprocess communications

2

-PIN~*~ gv c,-.' ~ %'~'~ ~

I Introduction

Today, computer-based collaboration between geographically dispersed users is

still limited primarily to electronic mail and file transfer, but several research

groups [1, 2, 31 experiment with more powerful computer support for team work.

Let us summarize the features of some of the prototypes described in the literature.

At the MIT Laboratory of Computer Science, users share information from

their personal calendars to schedule meetings using a real-time conferencing sys-

tem, RTCAL[4]. Participants speak to each other over the phone and use their

workstation display as a blackboard. Another system, CES, is a collaborative edit-

ing system for co-authors working asynchronously on a shared structured docu-

ment, where users can work independently on separate sections of the document[5].

At the Xerox PARC Intelligent Systems Laboratory, an experimental meet-

ing room, Colab, provides computational support for collaboration in face-to-faci

meetings. Several prototype collaboration systems have been built using Colab,

such as WYSIWIS (What you see is what I see) which is a multiuser interface that

expresses many of the characteristics of a chalkboard in face to face meetings[6,71.

At IBM, an asynchronous conference system has been implemented for Bitnet

and Vnet[8J. It is not based on real-time interaction, users send and receive

information at their own convenience. At Stanford, an experimental multimedia

conferencing facility has been implemented using the V-system, a message-based

distributed operating system(9].-- -

In summary, research on computer support for people working together simul-

3

taneously, where real-time interaction is essential, is still in its beginnings. Most

work is based on experimental systems that exist only in one laboratory. In con-

trast to the prevailing trend, our objective is to build usable, low-cost remotely

shared workspaces based on widely available systems and single-user applications

programs, in order to allow a large user community to experiment with this new

technology of real-time collaboration. With the proliferation of high bandwidth

computer networks, and the increasing popularity and affordability of powerful

workstations, it is feasible to provide the users with the environment to achieve

this goal.

In Section 2, we present the major components of our system and the overall

system architecture. A simple prototype that we have implemented in C under

4.3BSD UNIX is dis-ussed in Section 3. We conclude by outlining our future

research goals and directions.

.. IvF%.
.C n

Die t
--

-SP-4

4

2 System Overview and Architecture

The system to be described is intended to link institutions, such as universities or

industrial research organizations, that have most of their computers connected to

local area networks (LANs). The LANs of nearby institutions are usually inter-

connected by high bandwidth links using, for example, microwave transmission,

such as the MCNC communications network in North Carolina's Research Triangle

(Fig. 1). LAN's of distant institutions are typically interconnected via moderate

bandwidth long haul networks such as ARPANET or BITNET. The main objective

of our research is to bring users of those remote systems together to collaborate

in reviewing and editing documents containing text, graph and image objects. In

this paper we use the term "Workspace" to denote a collection of such objects

belonging to some application, and the software needed to access these objects.

For example, researchers writing a joint paper will create objects such as sectiond,

figures and tables in their workspace; whereas a group of physicians reviewing a

patient case might work on lab results, charts and X-ray images. For each type

of object there is a set of appropriate "tools" that can be used to manipulate

and operate on the objects, e.g., for textual objects, the set of tools includes text

editors, formatters and spelling checkers.

Users collaborating in a shared workspace are said to form a "session", and one

user is identified as the- "session chairman". The chairman manages the session,

for example, by invoking an appropriate tool and admitting a new participantto

the session._For each session, a process called the "session server" (abbreviated-as

5

SS) acts as the interface between users and the tool. Each host in the network has

a single process called the "communications server" (abbreviated as CS) which is

responsible for all inte communications, it is a demon process created at

boot time. Figure 2 depicts the general system architecture and the relationship

between the different components of the model.

2.1 Creating New Sessions

To create a session, a user (who subsequently becomes the session chairman) asks

the communications server CS on his machine to create a new SS process. Once

process SS is created, it asks the user to provide values for the following session

"parameters":

1. Initial list of participants: Give a Jist of all users who may join the session.

Each user on the list is specified as:

user-idOmachine-id

In UNIX, a user-id is his login name, and the machine-id is the DARPA

Internet machine name or address. For example,

wahabedopey.ca.unc.edu or wahab0128. 109. 136.82

If the machine-id is not specified, the local host is assumed.

2. Initial list of workspace objects: Give the list of objects to be included initially

in the workspace. An object is identified by:

object-idOmachine-t -

For example, under UNIX an object-id is a path name such as:

6

/unc/usr/wahab/papor/sc I

Also, if the machine-id is not specified, the local host is assumed.

3. Session mode: There are three basic modes: open, closed and secret.

" open: In this mode, it is possible for a user who is not on the initial

list to join an ongoing session provided he obtains the approval of the

session chairman.

" closed.- The session is restricted only to participants on the initial list

and no one can join the session once it has started. This may be useful

in situation when participants wish to work without disturbance.

" secret: In addition to the restrictions of the closed mode, the system

does not reveal any information about the existence of the session, as

if it never existed. This may'be useful in situations where sensitive ob-

jects are manipulated such as in preparing examinations and evaluation

reports.

We allow an observer option for open and closed mode, but not for secret mode.

Subject to the approval of the session chairman, an observer may join a session in

"read-only mode".

2.2 Joining a Session

-Yollowing the specification of the session parameters, the process SS sends a mes-

-sage to all users in the p-ticipants list inviting them to join the session. The

7

mearge contains a session identification of the form:

e8 ion-idOmachine-id

where the session-id is an integer that uniquely identifies the session on the ma-

chine. For example:

5344dopey. cs.unc. du

To join the session, a participant asks the communication server CS on his machine

to connect him to the specified session. Process CS creates a 'user agent" process

and two 'windows', as shown in Figure. 3. Window Wg is used for tool input and

output, window W, for session control and for conversation between participants.

2.3 Starting a Session

After all expected users have joined the session, or the chairman has decided that

a sufficient number of participants havg'joined the session and it is time to start,

he issues a "start session" command. The session server SS sends a message to

every participant signaling the start of the session. Late users can join the session

at any time, at the discretion of the chairman.

2.4 Invoking Tools During Session

When the session starts, the chairman invokes any appropriate tool. The tool is

specified as:

tool-idOmachine-id

For example in UNIX, a tool-id is the path name of the program e.g., /bin/vi If

8

the machine-id is not specified, the tool is assumed to be available in the local

machine. If the tool is local, then the session server SS is directly connected

to the tool process. If the tool is available on a remote machine, the session

server SS asks the communications server CS of the remote machine to facilitate

the execution of the tool, as follows: First, the needed objects are copied to the

remote site, since most tools only operate on local objects; to copy the required

objects, both the session server and the remote communication server execute an

"object replication process (see Figure 4). Second, the tool process starts and its

input/output is connected to the session server through the "tool agent " process

as shown in Figure. 3. Whenever a user exits from his tool, the modified and

the newly created objects are moved back into the workspace at the session server

site. Note that any participant, not necessarily the chairman, can end the use of

the tool, since the session server does not interpret tool commands and hence has

no control over who may terminate the tool.

2.5 Tool Control and Use

If more than one user simultaneously issues tool commands, this may lead to

serious problems and cause undesirable results. For example, if two users attempt

to delete the same line of a text file, two lines instead of one may be deleted,

since the editor accepts both commands. We solved this problem by introducing

a "token": only the user holding the token (the "active user") is able to provide

input to the tool. The user requests the token by entering a "get token' command

9

in window W,, and may release it with a "release token" command. The.session

server circulates the token among users fairly and efficiently. For effective work,

the active user must be guaranteed an uninterrupted quantum of time, q, once he

gets the token. For fairness, other participants must be able to request the token

and obtain it within a certain known waiting time. When the active user has to

release the token, he is given a brief grace period, g, to complete his current task.

Values for q and g can be set when a tool is started, depending on the tool and

the number of users. Tool commands are entered in the tool window Wt as usual,

exactly as described in the tool manual.

2.6 Conversation During a Session

Users can talk to each other using a telephone conference call, or they can use

the control window W, as a "chalkboard" for posting messages. Any line typed in

window W, which does not correspond to a session control command, is broadcast

to all users preceded by the name of the writer. Observers are also allowed to send

such messages, and thus can interject question and comments. Observers cannot,

however, get the token and provide input to the tool; thus they cannot modify the

objects.

2.7 Leaving and Ending a Session

A user may leave the session at any time by typing a "leave session" command in

window W. His user agent process is terminated and a message is_ broadcast to

10

all users announcing his departure. The session chairman is not allowed to leave

the session before designating another user to be the new chairman. He can do

so by typing a "new chairman! command in window W. The chairman has the

power to dismiss a user from a session (for example, if the user ignores rules or

otherwise disrupts the session) by typing a "dismiss user" command. The session

can be ended only by the chairman when he types the "end session" command in

window W,. At the end of a session the workspace objects will be copied back to

their original places, and the new objects created during the session will be saved

under the names provided by the session chairman.

2.8 Session Status and Information

Any user can find out about the current sessions on any given machine by issuing a

"list session" command to the communications server CS of his local machine. C$

will ask the communications server of the remote machine to provide all informa-

tion about the ongoing non-secret sessions. This information includes: session-id,

participants, chairman, observers, workspace objects, current tool, how long the

session has started.

11

* -~ *.,~-'-~* ~ w *~.*

3 Prototype Implementation

We have implemented a prototype of the Remote Shared Workspace model de-

scribed in Section 2. The programs are written in the C language under Berkeley

UNIX version 4.3. The communication between all processes in the same machine

or in different machines is based on Berkeley Interprocess Communications facil-

ities. For a complete description of these facilities see [11] and for a tutorial see

[12]. We have used the stream sockets in the inet domain to establish a reliable,

bidirectional virtual circuit between each pair of communicating processes, for

example between a session server and a user agent.

At this time, we have implemented the static type of session, where the number

of participants is predetermined, and therefore the session chairman functions are

now limited to starting the session, ending the session and invoking a tool. Each

participant creates his windows Wt and W, using any available window manage-

ment system (such as the SUN windows, X-windows, or the 4.3 window program

that can be used to create windows on any ASCII terminal). After creating the

two windows, the user "manually" connects the two windows to the user agent

process. Soon we will let the program perform these tasks "automaticaly".

Since a virtual circuit between the session server process and the user agent

process carries messages of different sources and meanings, messages are packaged

in frames. Each frame has three fields: Type, Length and Data. We have the

following four types of frames:

token: for token control, e.g., "get token".

12

.. * *~S* ~ ~ .. ~...- *.f*

action: for session control,e.g.,"start session".

chat: for conversation messages.

tool: for input to and output from the tool process.

The Length field has the number of bytes contained in the Data field of the frame.

Processes use the SELECT system call of Berkeley 4.3BSD to multiplex input

from several sources. For example, in Figure 3, process SS receives the input from

all user agent processes as well as the tool agent process. For more details about

the prototype implementation see [10].

13

. p S S P - p 5 p1

4 Conclusions and Future Goals

We have described a system that enables users on different machines of a computer

network to collaborate in real-time using familiar single-user tools. Our system

can be viewed as a layer of software to convert single user applications into tools

for use by a team of remote users. No modification or restriction to the use of

these tools are imposed, the exact commands of the tools as described in their

respective manuals can be used during a collaborative session. The following is a

list of the major research issues currently under investigation:

1. Additional types of objects and input devices: The current imple-

mentation deals only with textual objects, and tools are required to accept

input from a keyboard. Our next goal is to deal with other types of objects,

such as graphics, and other input devices, such as mice.

2. Object locking: If an object is used in one session, it may be made avail-

able to other sessions in "read only" mode, but not in "read-write" mode.

Therefore a "locking" mechanism is needed. If the operating system does not

provide it, then locking may be implemented as part of the communications

server, or as a separate component of the system.

3. Object and tool access permissions: How can users access objects and

execute tools on machines for which they have no accounts? As described

earlier, remote objects and tools are normally accessed through the remote __

communications- server; therefore it is natural to implement an access and

14

protection scheme as part of the communications servers.

4. Performance analysis and evaluation: The prototype has mainly been

used between machines on the same regional network (the MCNC network,

connecting the Microelectronics Center of North Carolina to universities

such as UNC, NCSU and Duke). Using our system with text editors such

as v, response over the network is almost as fast as it is in single-user

mode. However, users connected to the session server using slower links

than normal (e.g., the ARPANET at daytime) may not be able to keep up

and interact with others in a timely fashion. A possible solution to this

problem is to require that users connected via slow links have a local copy

of the objects and the tool process. In such case only the keystrokes need to

travel through the network, and the voluminous output from the tool will

be displayed locally. The key to the success of this scheme is to ensure that

copies are mutually consistent across the network.

5. Reliability and Recovery: Reliability and recovery from errors are very

important issues in a distributed environment. For example, what happens

if a participant, or the session chairman, is disconnected due to a site or

communications failure? Can the system recover if any critical process such

as the session server, or the communications server, fails or is not reach-

able? We are investigating various aspects of the system fault tolerance and

recovery.

15

Acknowledgements

We are grateful to Peter Calingaert, John Menges, John Smith.and Michael Stummir

for helpful comments. This work was partly supported by ONR under contract

N00014-W6K-0680.

16

REFERENCES

1. I. Greif, 'Computer Support for Cooperative Office Activities', Proceedings

of the 1982 Office Automation Conference, San Francisco (April 1982).

2. S.K. Sarin, 'Interactive On-Line Conference', Ph.D. Thesis, MIT, Also avail-

able as Laboratory for Computer Science Technical Report MIT/LCS/TR-

330 (1984).

3. G. Foster, 'Collaborative Systems and Multi-user interfaces', Ph.D. disser-

tation, Division -of Computer Science, University of California, Berkeley

(1986).

4. S. Sarin, and I. Greif, 'Computer-Based Real-Time Conferences', IEEE Com-

puter 18,10 Special issue on Computer-Based Multimedia Communications,

33-45 (October 1985).

S. R. Seliger, 'The Design and Implementation of a Distributed Program for

Collaborative Editing', Master Thesis, MIT, Also available as laboratory

for Computer Science Technical Report MIT/LCS/TR-350 (1985).

6. M. Stefik, D. G. Borbrow, S. Lanning, D. Tatar, and G. Foster, 'WYSIWIS

revised: Early Experience with Multi-user interfaces', Proceedings of the

conference on Computer-Supported Cooperative Work, Austin Texas 276-

290 (December 1986). -_

17

7. M. Stefik, G. Foster, D. G. Borbrow, K. Kahn, S. Lanning, and L. Suchman,

'Beyond the Chalkboard: Computer Support for Collaboration and Problem

Solving in Meetings', Communications of the ACM 30,1 32-47 (January

1987).

8. N. Jarrell, and W. Barrett, 'Network-based Systems for Asynchronous Group

Communication', Proceeding. of the conference on Computer-Supported Co-

operative Work, Austin Texas, 184-191 (December 1986).

9. K. A. Lantz, 'An Experiment in Integrated Multimedia Conferencing', Pro-

ceeding of the conference on Computer-Supported Cooperative Work, Austin

Texas, 267-275 (December 1986).

10. H. Abdel-Wahab, Sheng-Uei Guan, and J. Nievergelt, 'A Prototype for Re-

motely Shared Textual Workspaces', Department of Computer Science, Uni-

versity of North Carolina, Chapel-Hill (1987).

11. S.J. Leffler, R.S. Fabry, W.N. Joy, P. Lapsley, S. Miller, and C. Torek, 'An

Advanced 4.3BSD Interprocess Communication Tutorial', Computer System

Research Group, Department of Electrical Engineering and Computer Sci-

ence, University of California, Berkeley (1986).

12. S. Sechrest, 'An Introductory 4.3BSD Interprocess Communication Tuto-

rial', Computer System Research Group, Department of Electrical Engi-

neering-and Computer Science,_University of California, Berkeley-(1986).

18

56 kbps

Figure 1: General overview

L ift AR11% t

f.MNCA7N SRE

SESSM1 SESON.

fiur 2:* sytmcmoet

I20

* * * ~~~ SESSION SERVR iiA .

* - --Figure 3: USER and TOOL Agents

21

Session server

Object Oec~et%
ROPIleatle RObjct

Figure 4: Copying Objects between hosts

22

F7.1

IT7F1O-_

