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Abstract

This paper presents two new formal tframeworks for learning. The first framework reguirés the
learner to appreximate an unknewn function, given examples for the funtion as well as secme tackgreund
information on it. 1t is shown that this framework is no more powerful than a framework that allcws the
learner to see examples but not background information. The second framewcrk explores learning in the
sense of improving compgutational etficiency as opposed to acquiring an unknown concept or function.
Specttically , the framework concerns the acquisition of heuristics from examples over problem domains
of special structure. A thecorem is proved identifying scme conditions sufficient to allcw the efficient
acguisiticn of heuristics over the aforementioned class of domains.
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1. Introduction
This paper concerns learning algorithms - algorithms that consiruct good agproxmatens 10
unknown functions from examples for those functions. The racent interest in formal matheds in macnire

then. the framework has been extended and analyzed by numercus autners [Slumer et al. 13E5,
Natarajan 1987a, Kearns et al. 1987]. Untortunately, the framework appears rather limitad in sccpe and
does not seem to capture the essence of many of the learning paradigms and architectures in use by the
experimentalists. Since one of the important goals of theoretical research in machine learning is 1o
develop a general framework for the problem, it is necessary to formulate and analyze alternative
frameworks that capture the behaviour of learning models popular among wcerkers in Artiticial Intelligence.
With the above in mind, this paper presents two new frameworks for i2arning (a) a learning framewcrx
that captures the essential ingredients of what is called a "learning architecture” in the Al literature, /o) a
learning framework for the acquisition of heuristic rules as a mears of improving computational efficiency.
The former is a framework that provides the learning algorithm with randomly chosen examples of the
function to be learned and some background information or “theory" about the function to be learned. Itis
a widely held intuition among workers in Anificial !ntelligence that such a framework is strictly more
powerful than the one of [Valiant 1984]. The latter is a framework specifically aimed at algerithms that
construct heuristics in problem-solving domains such as symbolic integration. In analysing these two
frameworks, we prove two theorems, one on each framework.

We begin by extending the results cf [Blumer et al. 1586, Natarajan 1887] on the learnability of
boclean-valued functions to the learnabality of general functions. To do so. we give a new and simple
Jetinition of the dimension of a family of functions and use it to prove a theorem identifying the most
general class of function families that are learnable from polynomially many examples. Qur results hold
only for discrete domains. For continuous domains, we show how the results cf [Blumer et al 1888] for
boolean-valued functions may be modified to include general-valued functions. We also establish that our
notion of dimension is equivalent to the more complicated Vagnik-Chervonenkis dimension of [Blumer et
al.1886. Jaonik and Chervonenkis 1971). The theorem of this section will be heavily used in the {cllowing
sections and is the first of our results.

We then propose a new framework for learning, one that atlempts to capture the essential
ingredients of the "general learning architectures” of the experimentalists [Laird et al 1886, Mitchell et al
1686]. This is @ major contribution of the paper. Specitically, the framework requires the learning
algorithm to learn a function from examples for the function. The examples are picked at randem by the
teacher. In addition, the teacher provides the learner with some "theory” relevant to the concept to be
learned. with the understanding that the concept to be learned is consistent with the "theory” presented
For instance. when teaching a concept in geometry, the teacher may present the learner with some basic
theorems in geometry in addition to examples for the concept to be learned. in the hepe that this would
accelerate the learning process. Our main result here is a theorem stating that the class of function
tamilies learnable in this framework {i.e. from few examples and short theories; is exactly the class of

tamilies learnable in the framework of [Valiant 84] (i.e. from tew examples and no theories;. As i




happens. the proot of this theorem 1s remarkakly simgle, owing to the intuitive strength cf the new ncticn
e Y 9

) of dimension introduced in this papar Yat the thecrem has seme unintuitive censequences. Firstly. o

cirectly implies that learning from background information and examples 1s no mcre powertul than

} learning from examples alcne. This contradicts the Celiefs prevalent in the Artificial Inteligence

: community. Secondly. and more subtly, the theorem leads to the realization that aithough backgreurd

information cannot reduce the information comglexity of learning, it could reduce the computational

'l complexity of processing the information obtained from examples. This opens up a rich new area of
theoretically interesting problems, one of which is stated in this paper but left open.

Finally, we develop a learning framework that explores learning as a means of imgroving

¥ ¢ 2 K.

computational efficiency rather than learning new corcepts. Consider the proklem cf learning symbolic
integration. Theoretically speaking, given a table of integrals the student should tecome an expen
instantly. However, the student appears to need some sample problems and solutions tefcre he
develops any facility with integrals. Cur framework attempts to capture the flavour of the above. Define a
3 problem domain D on an alphabet I to be the pair (G.0) where G is the geal functicn (boclean valued
= function on %), and O is the set of operaters (length preserving functions on ). These notions will te
made precise later. An algorithm for D would take an input string x and transferm it using the operaters in
O so that the transformed string satisfies G, if such is possible. A meta-domain M is simply a set of
domains, and a meta-algorithm for M is an algorithm that takes as input the specification of a demain D =
> M, calls for a small number of randomly selected examples for D, and produces as output an efficient

algorithm for the demain D. To illustrate the power of the framework, we exhibit a set of domains each of

which possesses a simple polynomial time algorithm. We show that although the task of computing an
! efficient algorithm for a demain from its specification is NP-complete for this set of domains, the task is
quite tractable within our framework. We then prove a theorem identifying some conditions sufficiert to
allow the existence of a meta-algorithm within the proposed framework. To our knowledge, this is the first
| formalization where examples provide no new information to the learner, and serve only to improve the
' computational complexity of processing the information already possessed by the learner.

2. Preliminaries

We now describe our version of the learning framework proposed by [Valiant 1€84]. We will call this
Framework 1, to distinguish it from those that follow. Without loss of generality, let T be the binary
alphabet and £* the set of all binary strings. We consider functions from I* to . An example of a

function £ is a pair (x, f(x)). A learning algerithm is an aigerithm that attempts to infer a function from
examples for it. The learning algorithm has at its disposal a routine EXAMPLE, that at each call produces
an example for the function to be learned. The probakbility that a particular example tx.v will be produced
by a call of EXAMPLE is Prx), as given by the probatility distribution . Also. the probability that the
learned function will be queried on a particular stnng x is Pux). The distribution P can be arbitrary and
unknown.

We deline a farmily of functions F to te any set of length preserving functions frcm £* to L. The
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n*-subfamily £ of a family £, is the family of functions induced by £ on 7. Specifically. if 7 = /. f+../ ...
then F =z, 35....3,.... where g is defined as follows.
g0 =fu0 it li=n

undefined otherwise

A basisfor F is a subset B, of F such that for each g € F,, there is exactly one functicnf = 5, sucn
that fand g agree on £".

Following [Valiant 1884], we say that a family of functions is learnable if there exists a uniformly
convergent learning algorithm for it.  Specifically, a family of functions £ is learnable if there exists a
learning algorithm that
(a)takes as input integers 2 and 4.

{bymakes polynomially many calls of EXAMPLE, both in the adjustatle error parametar i and in the
problem size n. EXAMPLE produces examples of scme function in 77 .

{ciFor all functions f in F_ and all probability distributions P on X" with prcbabilty 1-1 /1 the
algorithm outputs a function z in £ such that

> P < Uk
xe §
where

S=lxlld=nand fx) = 2(x)}

We assume that the learning algorithm’'s output is the index of the learned function in some
acceptable indexing of the functions in family F. Furthermcre, if the learning algcrithm runs in time
polynomial in n and 4, we say that the family is pclynemial-time learnable.

The cimensicn of a sub-family F,, dencted by dim{F ). is given by
dim(F ) = log(iF N/(2n).
A tamily £ is of dimension D(n) if for all n, dim(F ) < Din). If Din)is polynomial in n, we say that 7 is of
polynomial dimension.

For any set of examples S, define the set [1,i$) as the set of all subsets of S cttained Ly intersecting
S with the functions in 7. i.e
[MS)=(RIR < S,and == F such that
fagreeswithSonR®
and disagrees with S on S-R}.
It TT(S) = 25, we say that I shatters S.

Lemma 1: If F s of dimension d, then there exists a set of £ examples that is shattered by F .
Proof: Omitled tor brevity. Please see [Natarajan 1287t].
Theorem 1: A family of functions is learnabie it and only if it is of polynomial dimension.

Proof: Omitted forbravity. Uses Lemma 1 Please se2 [Matarajan 1887b]. e
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As cur results above are tased cninfermation thecretic methods. it is difficult 1o extend tham ciractly
to continuous spaces where each example can be of infinite length. Cn the cther hand, the r2cliis n
[Blumer et al 158g] for learning boolean-valued functions are cbtained using scme c'assical resuils in
crebability theory and are vahd over centinucus domains. In the fellowing, we show hew 10 exizrd thar

results to general functions.

As in [Blumer et al. 1888], we define the Vapnik-Chervcnenkis dimensicn Jd [y of a tamily F as
follows. d4 f)is the smallest integer 4 such that no set of cardinality J+1 is shattered by .

Since we no longer need the notion of a sub-family, we medify our detinition cof learnatilly

accordingly. In particular, a family of functicns £ is learnable if there exists an algerithm that
(a,takes as input an integer i,

(o'makeas pelyncmially many calls of EXAMPLE, pelynemial in the acjustable error parameter 7.

{cias in the earlier definition of learnability.
With these definitions in hand, we can state the following theorem.

Theorem 2: For any finite alphabet T, a family of functions from I to I* is learnable if and cnly if it s
finite Vapnik-Chervonenkis dimension.

Procf: The proof of this theorem is similar to the proof of the corresponding thecrem for boclean
valued functions [Blumer et al. 1388). o

To establish the relationship between the two measures of dimension, we have the foliowing.

Theorem 3: For any family F

dima ) < d 0 F ) < CradimiF)).
Proof: Omitted for brevity. Please see [Natarajan 1S87Db]. »

Lastly. we give a result that attempts to introduce computational complexity into Thecrem 1. Define
an crcering of a family of functions to be an algorithm that
tajtakes as input an integer n and a set § = ¢, ¢s..0,.] Of examples such that each ¢ is a pair ¢t
strings of length n.

(biproduces as cutput a function / € F that is consistent with S, if such exists. i.e. (x.v) € §implies
V=/x).

Furthermore, it the ordering runs in time polynomial in the length of its input, we say it is a
polynomial-time orcering and £ is pciyncmial-time orcerable.

Theorem 4: A family of functions is golynomial-time learnable if it is of polynomial dimensicn and
polynomial-time orderable.

(n

Proof: Follows from that of Theorem 1 o
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3. Learning Architectures

Workers in Artificial Intelligence have leng scught to builc general-purpose learning programs mat

may be used over many domains. Specifically, such grograms cor "architectures” tak2 as irput 2
description of the family of functicns to te learned and after scme preccmputation. tehave ke i2armirg

algorithms for that family. \We will refer to such algorithms as "learning archtectures”

Consicer a learning architecture M that works over a set of families G,, G....G ... i.e, M takss as
input the description of some G, and then tehaves as a learning algorithm for G, Now. if G = G. o G
«..G,... is itself a family of low dimension. then. it follows from Theorem 1 that we can tuild a learnin
algorithm for G and not bother with the comglications of M. The interesting queston is whethar it
possible for G to be of intractatly-high cimension ard yet be decomposatle into .....G ... such that each
G, 1s of low dimension and each G, has a short description that can te fed into thv Zearning arcriztiurs

In order to answer this question, we ccnsider the framework ¢f the fzilcwing sec

3.1 Learning from Examples and Background Information
We now present a learning framewcrk that aliows the learning algenthm to ses ex

"C)
(')
w
-
O
B
5
b

am
function to be learned as well as some background information. We will call this Framework 2
Let 7~ be a family of functions. A thecry for £ is simply any tctal function from 7 to ©*.

A learning algerithm for £ is an algorithm that attempts to infer functions in £ from examples and
background information. The learning algerithm has at its disposal a rcutine TEACHER, that is bast
descriced as the pair <EXAMPLE. 7>, where EXAMPLE is the source of random examples described in
Framewcrk 1 and I'is a theory for £ \When attemgting to teach the learning algorithm any function f, €
F.o Cnithe firstcall of TEACHER. TEACHER returns ¢ e 777 where fis any function in £ that agrees with
f,on I Cn subsequent caiis, TEACHER returns a randemly chosen example for f, by invoking
EXAMPLE recursively.

\We say that a tamily cf functicns 7 is fearnable in Framework 2 if there exists a learning algerithm A
and a thecry 7 fcr £ such that
fa)i takes as input integers a. s

‘h; A makss pclynomially many ca"s S
.

ACHER = <EXAMPLE.I> pclyncmial in n and i
TEACHER shculd return a theory cf ie cm

¢ =
gth polyncmial in

{c;For all functicns s in /. and all prebat.lly cistntutiens P over the examgles for /. the algorithm
deduces with ﬂrobabmty =140 a function 2 n F such that

2 Pix) < 1/

wha re

S=ldxi=nand/ix) = g0

Furthermere f the learming a'geritm runs 0 tme peyrcmal 0w ard o we gay that /7o

pclyncmal-bme learnatie.

Abusirg rotaton we extend tte thecry funcion [ o cutoats ot Fasfnisas
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For2 = F.TiBY = T )= B
Also. we define the inverse cf athecry /o kathetoncicn 17 from L7 e 2

Forte ST =17 F.I =0
We are now ready to siate cur main resu't.

Theorem 5: A family of functions F is learnatie Framewcrk 2 if and coniy
{a)F is of polynomial dimension.

(b}F is learnable in Framework 1.

Proof: (Part{a)) (if) By Thecram 1. if Fis of gclynomial cimensicn. then Fis learnatie N Framswers

1. Hence itis learnable in Framewerk 2 as Framewerk 1is tut a special case of Framencm 2

{only if) Let A be a learning algernthm for £ in Framework 2 using @ TEACHER =<EXAMFPLE Ts 'or
some theory I for F. Forany », |

[49]

t I', be the set of theories ctiered oy TEACHER over aithe funtiire N
F, Surely T =T{B, for scme basis 3, for /. Whatever the intergretaticn of the thecries Lsed 2y *. irs

set of functions A consicers consistent with a theory ¢ 7, containsthe set Imv: 1 ~ B
A reguires polynciially many examples after seeing ¢, then by Theorem 1. v ~ B must ze ¢f
dimension bounded by a polynomial in n. Also, the length of tha theories must te teungzd
polynomial in n as A is a learning algorithm for F in Framework 2. From these two beunds arg the

following claim. we conclude that F is of polynomial dimensicn.

Claim 1: Let £ be the n-th subfamily of a family 7, B, a basis for /. and I any theery for 7 L&t
te a learning algerithm for £ with TEACHER = <EXAMPLE, T>. Then. there exists a thecry : = 7' 3
such that

2ndimi Tt B )+lengthit) 2 ndim(F ).

Proof:
LetT =7(B,).
Since 7 fe F.fe T7iliH, we have
B,=\,, T"'I“(:).

Now F|=1B}=tuy T,

.T’2
Lati=max {lengthue)te e T}
and d = max [dimtIT7 e e, 2 T
Hence.

F < 227 and hence

::/u;m‘/-"l < M~ Zm.‘.

il

VWhich in turn implies that

z: = T suchthat

lengthu v+ Zndime ™0 2 ZndinuF 02
= ndim(F )

which 1s as required.




(Part (b)) Follows from {part (a}) and Theorem 1. This completes the proof. e.

This answers our question at the beginning of this section: If G is a family of high dimension. then ¢
is not decomposable into component families of low dimension with short descriptions. [t is the
understanding of this author that it is widely believed in the Artificial Intelligence community that learning
architectures can be efficiently applied to domains of intractably-high dimension [Mitchell 187]. As we
see from the above, this is not true. Does this mean that learning architactures are not very useful? No,
for three reasons. The first reason is primarily of theoretical interest. Specifically, it N\P = RP. there are
families of functions that are polynomial time learnable in Framework 2, but not polynomial time learnable
in Framework 1.

Theorem 6: If a family F is polynomial dimension, then 7 is polynomial-time learnable in Framewerx

Proof: Foreachf, in FF,, simply choose ¢, to be the index of f,. Since dim(F ) is pclynomial in a. thera
exists a basis B, for F, such that the indices of B, are of length polynomial in n. e

If VP # RP, then we know that there exist function families that are of polynomial dimensicn but are
not polynomial-time learnable [Kearns et al. 1887]. Hence we have the following:

Corollary: If NP = RP, then
[F! Fis p-time learnable in Framework 1) £ {FI Fis p-time learnable in Framework 2}.

The second reason is of practical interest. Let A, and A, be two polynomial time learning algorithms
for a family F in Frameworks 1 and 2 respectively. Now, .4, could run in time as little as nh-dim(F ) cn
inputs (n.h) [Natarajan 1€87b, Theorem 1]. A, could run in time n.dim(F,) on the same input, simgly By
choosing the theories to be the indices of the functions as in the proof of Theorem 6. Thus, .1, cculd be
faster than A, by a factor of 2, something that could be of signiticant practical importance.

Thirdly, in situations where the cost of obtaining an example is. bit for bit, significantly more than the
cost of a comparable amount of background infermaticn, it is advantageous to use all the "thecry”
available. Again, thisis cf practical significance.

3.2 An Open Problem

First some notation: we use > ,, =,, <, to denote asymptotically greater than. equal to ard iess than

respectively, as relations on functions.

The last corollary prompts that we ask the following question. Is there a learning hierarchy over the
complexity measure of theory length? Specifically, does there exist an infinite collection of functicns
{3,(n). 25in)...g (n)...) where g > g _, . such that for each 3, there exists a family of functions that is

p-time learnable with 2, long theories but not with ¢ _, long theories? In an attempt to answer this
question, we consider the following mode! of computation. Let ££* — I* be a function. An algorithm s
said to compute [ with g(n) long theory if
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(@) receives x as input and produces six) as output.

(D)4 also receives ey{x), where »: X — I' is a function such that sl < 20wy We call ¢, the
theory or advice furction and eyix)) the advice. We also say that A receves advice of iength

The intent here is to provide the algorithm .4 with some short advice cn the cutput sinng 5, shent
compared to the length ¢of v. (While this model may appear similar to the mocel ¢f [Karp and Liptan
1G80C]. it 1s quite different altogether.) We now ask whether there exists a hierarchy of furctions ¢, < 2-

< ... such that for each g, there exists some function f that is p-time computable with ; acvice, tut nct
with g _, advice.

Define FSAT to be the following problem.
input: A boclean formula & of n variables.
Cutput: Any satisfying assignment for &
Clearly FSAT 1s NP-complete. Using FSAT. we can exhibit a weak hierarchy as follcws.

Claim 2: If NP z ', >.DII\[E(‘\”” hfor some gin) > logn, then forany riny such that logn < rini <
ziny, there exists a function that is computable in polynomxal time with y7rin) advice, but not wnn roes
advice. ltis assumed that ¢ is a one-one function and ¢~ is the inverse of 2

Proof:isketch) By assumption, FSAT &« DTIMEZ2%'™: and hence is not cemputable with sony advice.
But suraly, FSAT 1s computable with n advice. This proves the clam for rin) = o). By a simple paccing
argument. this can e generalized to any riny, logn < rony £ 2iny, completing the proct. e

We can also exhibit an equally weak learning hierarchy as follows.

Claim 3: It NP2 U, IRTI.HE(:s’m"')) for some gony > logn, then tor any riny such that icgn < rons
<, gvm). there exists a family of functions that is pelynomial time learnable with z7riny theory, tut not with
rinr theory. {Here. RTIME stands for rancom-time, and again ¢ is assumed one-one )

Proof:{sketch) Similar to the proot of the previous claim. Hinges on the result ¢f [Kearns et al. 1837)
showing the preblem of crdering toolean threshold functions to be NP-complete.e

Uﬁfomnatel/ he atcve hierarchies ara2 rather weak, and are tased on strong assumctions  While
we Co not have strenger rasylts, we feel compelled to point cut that this problem mught be ¢f interest frem
the cn/ptcgraphy viewpcint as well.  Specifically, suppose that £ were a cryplegraphicaily secure
encryption function with an m-bit key. Given poiynomiaily many examples cf the ferm v [ixi, and
m-0im) bits as advice on the key. is it possible to efficiently compute the key cf an encrygtion funct:on
that agrees with the examples?

We close this section with a conjecture.

Conjecture: !If P =NP. FSAT is not polynomial ime computable with g = n-Oon acvice.
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K 4. Learning as Improvement in Computational Efficiency
-‘ In this section, we develcp a framework to explore learning in the sense of improving computaticnal
L . . . . .
W\ efficiency. This is of considerable practical importance [Mitchell 1983].
a Define a prcblem demain D 1o be the pair (G, O), where
:: {a)The goal function G:T* — (0,1) is a total function from Z* to (0,1) computable in polynomial time.
~_ (D)0 is a finite set of operators {o,, 0,....] where each o;Z* X is a length preserving function
K computable in polynomial time. The operators need not be total functions.
\
1 For the problem of symbolic integration discussed in the introduction, G would simply te the rule that
o
; the expression was free of integral signs and the operator set O would be a table cf stancard integrals.
[
L The specificaticn of a domain D = (G,0) is a set of programs for G and O that run in polynomial time.
+ Notation: for any string x, we denote the length of x by xl. We say xe I'is scivable if there exists a
) sequence o of operators in O (written oe O*) of length Ixi or less such that G(a(x;j) = 1. ctx} is a sclution of
\ xand o is a solutiocn sequence of x. An algorithm for D is a deterministic program that takes as input xe
. I* and computes a solution sequence for x, if such exists.
4
¢ A meta-ccmain M is any set of domains such that every domain in M is defined on the same
; alphabet. A meta-algorithm for M is an algorithm that takes as input the specification of any domain D «
X M and computes as output an algerithm for D.
. Example: Let £ =.0,1,S). For any boclean function & ot » variables, let I'(<d) denote the following
& function from =* t0 (0.1).
b =G if x=1S, v € (0+1)"
K- =0 otherwise.
Leto,. o, be functions from I* to (0+1) given by
D a0 = x0Sv  x of the ferm xSayv, xy e (0+1)°,
] ae (0+1).
=x ctherwise
& n.x) = x1Sv, xef the form xSuy, xye (0+1)°,
4 as 0+,
: =x otherwise
S Let VM be the collections of all domains of the form (G.0) where G = T'(d) for some boolean function & and
5 7113 the two operators defined above.
-4 It is easy lo see, that constructing an algorithm for an arbitrary domain D e is equivalent to
.- deciding the satisfiability of boolean tormulae. Hence, if P« NP, M does not have a polynomial-time
- meta-algonthm. We break here for a definition. e
3 An example for a domain D is a pair ixo ),xe £°.6 € O%k < ldsuchthat Gio (x)) = 1.
: Example:ccntinued) Returning to our example, we see that if the meta-algorithm were allowed to
“
)
q
‘l
)
k)
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k:: see a single example for its input domain, i‘s task is trivial,
X! The point behind the example is as follows. Given a domain D, it might be computationally

] intractable to compute an efficient algorithm for D, even if we knew that such existed. Yet, seeing solved

_{~. examples for the input domain allows an efficient aigorithm to be constructed quickly. The examples
W -:‘}: serve to improve the computational efficiency of the meta-algorithm, and hence we view this as learning
o ‘ . . - .
QY in the sense of improving efficiency as opposed to concept learning.
By
_ To furnish the meta-algorithm with examples, we place at its disposal a routine EXAMPLE, similar to
b,
i \.::- the one of Framework 1. At each call, EXAMPLE returns a randomly chosen example for the ingut
P domain.
; a0
)!O.I ) Lo . i ,

We say a meta-domain M allows heuristics if there exists a meta-algorithm A for 3f such that

0 (a).1 takes as input integers n, h and the specification of a domain D € M. Let: be the least upper
‘ *-f. bound of the running time on inputs of length n of the programs in the specification of D.
j:;‘.:';: (b)A computes for time polynomial in », 4, the length of its input, and . A may call EXAMPLE, which
.~ returns examples for D, chosen according to some unknown distribution P over the solvable

Bl subset of 7.

{ciFor all De M and all distributions P over Z*, with probability (1-1/k) A outputs a program //_ that
approximates an algorithm for D in the sense that

> P() < 1k
T xe §

T where
- S = {1 ixl=n, /_is incorrect on x}.

e

s (d)For any two inputs (/,h;,D) and (m,h,.D), {2 m, let A output H;and /1, respectively. Then
(-~ t;s run time on !
.- : < (Umy*

- i 's untime on &

'r) where £ is a constant that

:‘:3 depends only on D.

U]

~ Conditions (a) through (c) in the definition above are as in Framework 1, and have the same
:. purpose. Condition (d) is a uniformity condition requiring that the run time of the algorithm output by A
F_j;- grows polynomially with the length of the strings it is useful on.

N

SO0 Let D=(G,0) be adomain. For each operator oe O,and integeri = 1, consider the set

!
»i_:. U (o) = {xl o(x) has a solution sequence
t’*."f of length Lxd—i or less).
L, We call the U (o) the preimages ot o in D, and we call the collection of preimages for all the operators in D

o the preimages ot D.

AT

:"‘u\.' Claim 4: For any domain D, given efficient programs to test membership in the preimages of D. we
ol e !

can construct an efficient algorithm for D.
0.' \ »
ey . ‘ ,

o, Proof: Consider the following algorithm
.g:
)
t
o

04

[} ‘
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input x, kl=n
begin
o « null-sequence ;
fori=1tondo
pick oe O suchthatxe U (o),
if no such exists, fail;
x « 0(%),;
S « 00

L4 o e o o

od
output o, a sclution sequence for x.
end

Clearly this is an algorithm for D. e

We need one more definition before we can state the second of our main resuits. Let £ be a family
of functions from £ to {0,1} for some alphabet . With any fe F we associate the set Sj-= {xI flxy =1},
Any string xe I° is a positive example for fe Fifx e Sp We say that F is well-ordered if for any set S of
strings in £* such that § ¢ Sffor some f € F,there exists a leastg e Fsuchthat$S ¢ Sg‘ i.e, forall g’ =
F.S5c S, implies that Sy S Sp AN ordering for a well-ordered family is similar to an ordering for general
families as defined in section 1, except that it takes as input a set of positive examples and outputs the
least function consistent with these examples as defined above. For more details on well-ordered
families, see [Natarajan 1987a].

Theorem 7: Let M be a meta-domain on an alphabet £. If there exists a family of functions F from
' — (0,1) such that
a)F contains the preimages of every domain in M,

—~ -~

b)There exists a polynomial p(n) such that every function in F is computed by some program that
runs in time p(n) on inputs of length »,

{c)F is of polynomial-dimension, well-ordered and polynomial time orderable by an algorithm .4 that
outputs the p(n)-time bounded programs of (b),

then, M allows heuristics.

Proof: (sketch) Let F be a family as above and let A be ordering for it as in (¢) above. W2 use 1A 10
construct a meta-algorithm A’ for M as shown below. Essentially, the algorithm uses A to construct geed
approximations for the preimages of D and then uses these preimages to build an algorithm for D as in
Claim 4.

Meta-Algorithm A’
input n,h, D=(G,0)

begin
fori=1tondo
foreachoe O do
¢ Let F, be of dimension d.
m « n(nhlOl)d
S 7,
forj=1tomdo
Call EXAMPLE to cbtain (x, 5, );
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for each decomposition of o,
into 6,005, I6,! < Ix-i do
S« Su{o )
od

od
U(0) « AS);
od
od

output the following as the algorithm for D;
input x, kl=n

begin
o « null-sequence;
fori=1tondo
pick o such that xe U (o)
if no such exists, fail;

X « o(x);
G ¢« C0;
od
output g, a solution sequence for x.
end
end

In the interest of brevity, we skip a formal proof that A" is @ meta-algorithm tor M e

Essentially, Theorem 7 reduces the task of learning in this framework to cne of iearming teclean
valued functions in Framework 1, and then invokes the dimensicnality thecrem for Framewcrk 1 Tne
reader should not jump to the conclusion that the role of the examgies here I1s therefore the same as hat
in Framework 1. Even in the absence of examples, the specidicaiion of the domain gives the learner
sufficient information to construct an algorithm for the doman. The examples serve only to speed up this
computation and add no new informaticn. Hence it i1s not possible here to make a distincticn analageus
to the distinction between polynomial-time learnability and learnability of Framework 1. a cist'ncticn trat
separated the information complexity of concept learning from the computational comglexity 't follcws
that tightening Theorem 7 to an “only-if* will have to wait until the "only-if" counterpart to Theacram < 18
proved. which in turn waits for a better understanding of the relaticnsh.p between MNP ard P

5. Conclusion
This paper introduced two new frameworks for learning.

The tirst framework concerned learning functions or concepts. allowing the learner to se2 ooth
examples for the function to be learned as well some backgfround information or "thecry” cn .t W2
showed that the class of function families learnable in this framework (i e, from few examples and €nan
theories) is exactly the class learnable in the more established framework of [Vahant 1684] « 12 from 2
examples and no theories). We believe that this result will better mctivate thcese in the Anhcudl

Intelligence community concerned with building “learning architectures”  The proct of the afzremart oned
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result directly relates the length of a piece of information with how useful it is to the learner  Althcugh the

relationship is remarkably simple, it required the formalization of a learning tramewcrs o germt '3
interpretation in the context of learning from background information and examples

The second framework concerned learning in the sence of improving computaticnal 2t'.ci2rcy Tn2
framework has sufficient structure to allow a crisp analysis. yet is rich encugh to capture the flaucur of
many practical problems. We proved a theorem identifying some conciticns sufficient 1o ailcw a 2arn.rg
algorithm within the framework. We believe that this framework and the asscc:atad thecram are <f
significant practical import.
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