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Abstract

This paper presents two new formal frameworks for learning. The first framework requires the

learner to approximate an unknown function. given examples for the funtion as well as some backgrourd

information on it. It is shown that this framework is no more powerful than a framework that allcws the

learner to see examples but not background information. The second framework explores learning in the

sense of improving computational efficiency as opposed to acquiring an unknown concept or function.

Specifically ' the framework concerns the acquisition of heuristics from examples over problem domain.s

of special structure. A theorem is proved identifying some conditions sufficient to allow the efficient

acquisition of heuristics over the aforementioned class of domains.
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1. Introduction
This paper concerns learning algorithms - algorithms that construct gocd arprsx:ma:cns to

unknown functions from examples for those functions. The recent interest in formal methods in macn,,re

learning started with the introduction of a formal framework for concept learning in V ant 19841]. S.r.ce

then. the framework has been extended and analyzed by numerous authcrs [Elumer et al !986.

Natarajan 1987a, Kearns et al. 1987]. Unfortunately, the framework appears rather limited in scope and

does not seem to capture the essence of many of the learning paradigms and architectures in use by the

experimentalists. Since one of the important goals of theoretical research in machine learning is to
develop a general framework for the problem, it is necessary to formulate and analyze alternative
frameworks that capture the behaviour of learning models popular among workers in Artificial Intellhgence.

With the above in mind, this paper presents two new frameworks for !earning (a) a learning frnmew,.,crk

that captures the essential ingredients of what is called a "learning architecture" in the Al :iterature. 'bl a

learning framework for the acquisition of heuristic rules as a means of improving computational efficiency

The former is a framework that provides the learning algorithm with randomly chosen examples of the

function to be learned and some background information or "theory" about the function to be learned. It is

a widely held intuition among workers in Artificial Intelligence that such a framework is strictly more

%powerful than the one of [Valiant 1984]. The latter is a framework specifically aimed at algorithms that

construct heuristics in problem-solving domains such as symbolic integration. In analysing these two

* .. frameworks, we prove two theorems, one on each framework.

We begin by extending the results of [Blumer et al. 1986, Natarajan 1937] on the learnability of

boolean-valued functions to the learnabality of general functions. To do so. we give a new and simple

Jefinition of the dimension of a family of functions and use it to prove a theorem identifying the most

general class of function families that are learnable from polynomially many examples. Our results hold

only for discrete domains. For continuous domains, we show how the results of [Blumer et al 1986] for

boolean-valued functions may be modified to include general-valued functions. We also establish that our

notion of dimension is equivalent to the more complicated Vapnik-Chervonenkis dimension of [Eumer et

al.1986, 'nik and Chervonenkis 1971]. The theorem of this section will be heavily used in the following

sections and is the first of our results.

We then propose a new framework for learning, one that attempts to capture the essential

ingredients of the "general learning architectures" of the experimentalists [Laird et al 1986. Mitchell et al

1986] This is a major contribution of the paper. Specifically, the framework requires the learning

a!gorithm to learn a function from examples for the function. The examples are picked at random by the

teacher. In addition, the teacher provides the learner with some "theory" relevant to the concept to be

learned, with the understanding that the concept to be learned is consistent with the "theory" presented

For instance, when teaching a concept in geometry, the teacher may present the learner wth some basic

IN1 .theorems in geometry in addition to examples for the concept to be learned, in the hope that this would

accelerate the learning process. Our main result here is a theorem stating that the class of function

families learnable in this framework (i.e. from few examples and short theories) is exactly the class of

families learnable in the framework of [Valiant 84] (i.e from few examples and no theories) As .t

Mir M
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happens. the proof of this theorem is remarkably s;mple, owing to the intutive strength of the nev nc:n

of dimension introduced in this paper Yet. ,he theorem has some unintuitive consequences. Firs!!y, .

directly implies that learning from background information and examples is no more powerful than

learning from examples alone. This contradicts the beliefs prevalent in the Artificial Intelligene'"

community. Secondly, and more subtly, the theorem leads to the realization that although backgrourd

information cannot reduce the information complexity of learning, it could reduce the computational

complexity of processing the information obtained from examples. This opens up a rich new area of

theoretically interesting problems, one of which is stated in this paper but left open.

Finally, we develop a learning framework that explores learning as a means of improving

computational efficiency rather than learning new concepts. Consider the problem of learning symbo!;c

integration. Theoretically speaking, given a table of integrals the student should become an expert

instantly. However, the student appears to need some sample problems and solutions before he

develops any facility with integrals. Cur framework attempts to capture the flavour of the above. Define a

problem domain D on an alphabet Z to be the pair (GO) where G is the goal function (boolean valued

function on Z*), and 0 is the set of operators (length preserving functions on Z*). These notions will be

made precise later. An algorithm for D would take an input string x and transform it using the operators in

0 so that the transformed string satisfies G, if such is possible. A meta-doman Al is simply a set of

domains, and a meta-algorithm for A! is an algorithm that takes as input the specification of a domain D e

M,, calls for a small number of randomly selected examples for D, and produces as output an efficient

algorithm for the domain D. To illustrate the power of the frame'Nork, we exhibit a set of domains each of

which possesses a simple polynomial time algorithm. We show that although the task of computing an

efficient algorithm for a domain from its specification is NP-complete for this set of domans, the task is

quite tractable within our framework. We then prove a theorem identifying some conditions sufficient to

allow the existence of a meta-algorithm within the proposed framework. To our knowledge, this is the first

formalization where examples provide no new information to the learner, and serve only to improve the

computational complexity of processing the information already possessed by the learner.

2. Preliminaries
We now describe our version of the learning framework proposed by [Valiant 1984]. We will call this

Framework 1, to distinguish it from those that follow. Without loss of generality, let Z be the binary

alphabet and -* the set of all binary strings. We consider functions from Z* to V. An example of a

function / is a pair (x, f(x)). A learning algcrithm is an algorithm that attempts to infer a function from

examples for it. The learning algorithm has at its disposal a routine EXAMPLE, that at each call produces

an example for the function to be learned. The probability that a particular example jx.-, will be produced

by a call of EXAMPLE is P/x), as given by the probability distribution P. Also, the probability that the

learned function will be queried on a particular string x is P(x. The distribution P can be arbitrary and

unknown.

We define a family of functions F to be any set of length preserving functions from V" to :*. The
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,. -subfamily F, of a family F, is the family of functions induced by F on :'I. Specifically, if F --. ,, ..
t F . ..... .... where is defined as tollows..- ,,then F ,'l I.""' .... s,

9 g, x) =I>.x) if Ix W
undefined otherwise

A basis for F, is a subset B, of F such that for each - E F,, there is exactly one functionf e B, such

thatf and g agree on !I'.

Following [Valiant 1984], we say that a family of functions is learnable if there exists a uniformly

convergent learning algorithm for it. Specifically, a family of functions F is learnable if there exists a
learning algorithm that

(a)takes as input integers n and h.

,blmakes polynomially many calls of EXAMPLE, both in the adjustable error parameter and In the
problem size n. EXAMPLE produces examples of some function in F,.

(c)For all functions f in F,: and all probability distributions P on Z", with probability I-I ;: ',e
algorithm outputs a function . in F such that

X P(x) 11h~XES

0where

S = xj Ixl = n and f(x) t g(x)}

We assume that the learning algorithm's output is the index of the learned function in some
acceptable indexing of the functions in family F. Furthermore, if the learning alcCrithm runs in time

* polynomial in n and h, we say that the family is pclyncm'al-time learnable.

The dimension of a sub-family F,, denoted by di :.FQ is given by

( dim(Fn) = 1og('F,!l/(2n).
A family F is of dimension D(n) if for all n, ditniF) <_ Din). If Dn) is polynomial in ?, v.'e say that F is of

polynomial dimension.

For any set of examples S, define the set FIF(S) as the set of all subsets of S obtained by intersecting

S with the functions in F. i.e

I-,45) = [RI R c S, and Ef i F such that

f agrees with S on R

and disagrees with S on S-R}.

If n,,.5) = 2-, we say that F shatters S.
4',

Lemma 1: If F, is of dimension d, then there exists a set of "I examples that is shattered by F,.

Proof: Omitted for brevity. Please see [Natarajan 1287t].

Theorem 1: A family of functions is learnable if and only if t is of polynomial dimension.

Proof: Omitted for brevity Uses Lemma I Please see [ .atrjan 1987b].

O
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As our results above are based on information theoretic methods. it is difficu't to extend :hem ,,.c .

to continuous spaces where each example can be of infinite length. Cn the other hard, the -esit-I

[Blumer et al 19861 for learning boolean-valued functions are obtained using some c!asscal resuLts .n

probabtiliy theory and are valid over continuous domains. In the fcllowing, we show hcw to ,...d -.:,

results to general functions.

As in [Blurner et al. 1986], we define the Vapnik-Chervcnenkis dimension .J,,,F) of a family F as
follows. d cF) is the smallest integer d such that no set of cardinality d+1 is shattered by F

Since we no longer need the notion of a sub-family, we modify our definition of earnab "

accordingly In panicular, a family of functions F is learnable if there exists an algorithm that
(a;takes as input an integer :,

(bmakes polynomially many calls of EXAMPLE, polynomial in the adjustable error parameter ;.

:,-.)as in the earlier definition of learnability.

, With these definitions in hand, we can state the following theorem.

Theorem 2: For any finite alphabet Z, a family of functions from Z" to * is learnable if and only if it .s

finite Vapnik-Chervonenkis dimension.

Proof: The proof of this theorem is similar to the proof of the corresponding theorem for boc!ean

valued functions [Blumer et al. 1986]..

To establish the relationship between the two measures of dimension, we have the following.

Theorem 3: For any family F

Proof: Omitted for brevity. Please see [Natarajan 1987b]. o

Lastly, we give a result that attempts to introduce computational complexity into Theorem 1. Define

an ordering of a family of functions to be an algorithm that
,a)takes as input an integer n and a set S = K, , e....e,..} of examples such that each c, is a pair of

strings of length

(biproduces as output a functionf e F that is consistent with S. if such exists. i.e, ix.,) c S implies

Furthermore, if the ordering runs in time polynomial in the length of its input, we say it is a

polynomial-time ordering and F is pc/yncmial-time orderable.

Theorem 4: A family of functions is polynomial-time learnable if it is of polynomial dimens;,n a'd s

polynomial-time orderable.

Proof: Follows from that of Theorem 1 *

A A
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3. Learning Architectures

Workers in Artificial Intelligence have !crg sought to builo general-purpose learnrg pro tatsi I:

may be used over many domains. Specifically, such programs or 'r,.,,...res t7ke as r'p,. a

description of the family of functions to be learned and after some precomputo11:cn behave I-e earr,

algorithms for that family. We will refer to such algorithms as "learning arch.:tectures"

Consider a learning architecture .M that works over a set of families G, G-...G.... i.e, V takes as
input the description of some G, and then behaves as a learning algorithm for G. Now, if G = G, G

,, .... G,... is itself a family of low dimension, then, it follows from Theorem 1 that we can build a lar ,,

algorithm for G and not bother with the complications of .f. The interesting queston is whether .t .s

possible for G to be of intractably-high dimension and yet be decomposable into G: ... G... such that each
(7 is of low dimension and each G. has a short description that can be fed into the earnig r r cr-... . ..
In order to answer this question, we consider the framework of the fc':ng secton.

3.1 Learning from Examples and Background Information
We now present a learning framework that allows the learning algornthm to see examples for

, function to be learned as well as some background information. We will call this Framework 2.

Let F be a family of functions. A theory for F is simply any total function from F to

A learning algorithm for F is an algorithm that attempts to infer functions in F from examples and

* background information. The learning algcr;thm has at ;ts disposal a routine TEACHER. that is best
described as the pair <EXAMPLE, I>. vhere EXAMPLE is the source of random examples described in
Framework 1 and I is a theory for F When attempting to teach the learning algorithm any functionf, e

• -" F Cn the first call of TEACHER, TEACHER returns: e T,') wheref is any function in F that agrees with
on _'" Cn subsequent calls, TEACHER returns a randomly chosen example for f, by invoking

EXAM PLE recursively.

We say that a family of functions F is !eara .'e in Framework 2 if there exists a learning algorithm .
,. and a theory F for F such that

,a). takes as input integers n.

, b;, makes pclynomia!ly many ca";s of TEACHER = <EXAIPLE.s>. pc!,ncmial in n and h.
TEACHER should return a theory of iength pol ,ncmial in n

rFor all functions in F,, and all probab.t' cistr<ut~cns P over the examples for §. the algorithm
deduces with probability I-I ;z) a function in F such that

PiXi 111h

w here
= xlxi =nandj

Furthermore if the learning ',r m runs 'n time --I na a a : -.%-3 say ! t .pclrr,,m c.mS/na/-frne .' ;exnaoi,:.e'e2a€ 3 s :

.. . ..

% A"usr- cn.ta n n we extet' +'r the> on.. to ,orets -n I

04
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For B F, T(B)=tT,, "." ,.

Also. we define the inverse of a theory i ', te !h, ' c: :C ,.' " n. . . . : s .:

For t E i>. 7- :)= '.e F. T,"=:

We are now ready to state our main result.

Theorem 5: A family of functions F is learnable Framewcrk 2 ;f and cnly if

,(a)F is of polynomial dimension.

(b)F is learnable in Framework 1

* .'. - - Proof: (Part(a)) (if) By Theorem 1, if F is of polynomial clmens;cn. then F is neo-ne . .n .

,.3 1. Hence it is learnable in FramewcCk 2 as Framework I is butaspecose oa 2 ...

;only it) Let i be a learning a!gonthm for F in Framework 2 us;rig a TEACHER =<E/... ZE r

o ,me theory 7 for F. For any z, let T be the set of theories ofered -by TEACHER over a'; he ... :.s -

,, F,. Surely T, = T(B,,i for some basis B for F,. Whatever the interpretat:cn of the tNecr:es . . ,

set of functions .- considers consistent with a theory ,,e T,, contains the set 7-,: ) - B, Hence :t fr a. ,

.A requires polynomially many examples after seeing t, then by Theorem 1. T-t . B, must be cf

dimension bounded by a polynomial in n. Also, the length of the theores must be bcu7oec

°t- polynomial in n as . is a learning algorithm for F in Framework 2. From these two boun:os a,- :"e

-.- following claim, we conclude that F is of polynomial dimension.

Claim 1: Let F, be the n-th subfamily of a family F, B, a basis for F,, and T any thecr ,:r F

be a learning algorithm for F with TEACHER = <EXAMPLE, T>. Then, there exists a thecry 7 3

such that
,% 2ndim, 7 Th: B -4-tdntht >_ n'dmitiF ;.

Proof:

Let T, =I( B,).

Since -/fn F.f e 'Ih"c.- we have

Now F I B 1 7Th)

Let: = ,nax )Ien;'U(')i 1 = T,

' " " and d = max fdi~(T- t a T

Hence.

iF,: < 2 2  and hence
k < 2

Which in turn implies that

1', such that

,. I t i - n ri : 7t -: > _ 2n dm': F: '.2'X''1

. ,.- ridtr(F~ I

which s as required.

' %- - - ---•04
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(Part (b)) Follows from (part (a)) and Theorem 1. This completes the proof. .

This answers our question at the beginning of this section: If G is a family of high dimension. then ;
is not decomposable into component families of low dimension with short descriptions. It is the

understanding of this author that it is widely believed in the Artificial Intelligence community that learning

architectures can be efficiently applied to domains of intractably-high dimension [Mitchell 1987]. As we

see from the above, this is not true. Does this mean that learning architectures are not very useful? No,
for three reasons. The first reason is primarily of theoretical interest. Specifically, if VP * RP, there are

families of functions that are polynomial time learnable in Framework 2, but not polynomial time learnable
in Framework 1.

Theorem 6: If a family F is polynomial dimension, then F is polynomial-time learnable in Framew.crk

2.

Proof: For eachf, in F,, simply choose t, to be the index off. Since dinz(F,) is polynomial in ?!. there

exists a basis B, for F, such that the indices of B,, are of length polynomial in n. •

If NP ;t RP, then we know that there exist function families that are of polynomial dimension but are
not polynomial-time learnable [Kearns et al. 1987]. Hence we have the following:

Corollary: If .vP RP, then

IF" F is p-time learnable in Framework 1) (Fl F is p-time learnable in Framework 2).

The second reason is of practical interest. Let .-i and .I, be two polynomial time learning algorithms

for a family F in Frameworks 1 and 2 respectively. Now, .-1 could run in time as little as nh-dim F,, on

inputs fnlu) [Natarajan 1987b, Theorem 1]. A, could run in time n.dim(F,,) on the same input, simply by

choosing the theories to be the indices of the functions as in the proof of Theorem 6. Thus, ., could be
faster than . by a factor of r, something that could be of significant practical importance.

Thirdly. in situations where the cost of obtaining an example is. bit for bit, significantly more than t:he

cost of a comparable amount of background information, it is advantageous to use all the "thecry"

a,,,a:!able. Again, this is of practical significance.

3.2 An Open Problem
First some notation: we use ><, = , < to denote asymptotically greater than, equal to and less than

respectively, as relations on functions.

The last corollary prompts that we ask the following question. Is there a learning hierarchy over the

complexity measure of theory length? Specifically, does there exist an infinite collection of functions
(n, , ). , n)...g ,(n)...) where q, >a ,- such that for each ,, there exists a family of functions that is

p-time learnable with g, long theories but not with q,_, long theories? In an attempt to answer this

question, we consider the following model of computation. Letf:-4r be a function. An agorithm . is

said to compute f with ,(n) long theory if

rA.'A .- f
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(a).-1 receives x as input and produces ;i as output.

(b)A also receives ei,,'x)). where ,:" --* * is a function such that o_.. 1 -' . . We cal e, the
theory or advice fuct'io;.n and ci]i'.x the advice We also say that .1 receives advice of 'ength ,

The intent here is to provide the algorithm .1 with some short advice on the cutput sir;n7g -,. shcrt

compared to the length of v. (While this model may appear similar to the model of [Karp and Lipton

1980], it is quite different altogether.) We now ask whether there exists a hierarchy of functions ,, <', ":

< ... such that for each ,', there exists some function f that is p-time computable with 4, advice, but nct

with g,_- advice.

Define FSAT to be the following problem.

Input: A boolean formula (1 of n variables.

Cutput Any satisfying assignment for (l

Cearly FSAT is NP-complete. Using FSAT. we can exhibit a weak hierarchy as oo ws.

Claim 2: If NP :; (>.DJ !E(4' '<i for some ;-n) >L 1o n, then for any r, n) such that . < , r r

; there exists a function that is computable in polynomial time with 4rn, advice, but not witn rir :

advice. It is assumed that , is a one-one function and 4- is the inverse of ,

Proof:sketch By assumption. FSAT -z DTIME2' 't and hence is not computable with 4, n) advice.

But surely. FSAT is computable with n advice. This proves the cla;m for r i n) By a simple pacding

argument. this can be generalized to any rn, n <- r < ,, completing the procf.

We can also exhibit an equally weak learning hierarchy as follows.

Claim 3: If NP _ _, > RT,1.%1E,2?')) for some n , >,, ,4n, then for any ri n such that , , < r, ,:
< ,ni. there exists a family of functions that is polynomial time learnable with 4-ri ) theory, but not with

r(,) theory (Here. RTIME stands for random-time, and again 4 is assumed one-one )

Proof:lsketch) Similar to the proof of the prevous claim. Hinges on the result of [Kearns et al. 1987]

showing the problem of ordering boolean threshold functions to be NP-complete..

Unfortunately. the atcve hierarchies are rather weak. and are based on strong assun'pt~cns Whi!e

.-.e do not have stronger results, we feel compelled to point cut that this problem might be of interest from

the cryptography viewpoint as well. Specifically, suppose that E were a cryptcgraphical!y secure

encryption function with an ,z-bit key. Given polynomially many examples cf the form i,-.Lt-. and

rn-O'z) bits as advice on the key. is it possible to efficiently compute the key of an encryption functon

that agrees with the examples?

We close this section with a conjecture.

Conjecture: If P NP. FSAT is not polynomial time computable with ,, = n-!', adv:ce.

0



10

4. Learning as Improvement in Computational Efficiency
In this section, we develcp a framework to explore learning in the sense of improvir computational

-efficiency. This is of considerable practical importance [Mitchell 19831.

Define a problem domain D to be the pair (G, 0), where
(a)The goal function G:E* --) (0,1) is a total function from Z* to (0,I) computable in polynomial time.

(b)O is a finite set of operators (os, 02..) where each o,.-•* * is a length preserving function
computable in polynomial time. The operators need not be total functions.

For the problem of symbolic integration discussed in the introduction, G would simply be the rule that

the expression was free of integral signs and the operator set 0 would be a table of standard integjrals.

The specificaticn of a domain D = kG,O) is a set of programs for G and 0 that run in polynomal time.

Notation: for any string x, we denote the length of x by Lrl. We say xe Z* is solvable if there exists a

sequence a of operators in 0 (written ce 0*) of length ixi or less such that G(()X = 1. c(x) is a solution of

x and Y is a solution sequence of x. An algorithm for D is a deterministic program that takes as input xe

Z* and computes a solution sequence for x, if such exists.

A meta-dcmain .t is any set of domains such that every domain in ! is defined on the same
alphabet. A meta-algorithm for A., is an algorithm that takes as input the specification of any domain D E

M4 and computes as output an algorithm for D.

Example: Let E = 0.tS. For any boolean function of n variables, let FW(1) denote the following

function from Z* to (0,11.
,. F(1)= (Nifx=S.v E (0+1)"

=0 otherwise.

- Let o. o, be functions from Z" to ((,)+I) given by

o I() =. t)S , x of the form xSv, e (0+1)*,
ac- (0+1).

=x otherwise
,(x)= xlS,. , ct the form x$a,., x-.E 0+l)*,

4 a- 10+1).

=x otfher.,ise

Let t! be the collections of all domains of the form 0.0) where G = F((t) for some boolean function (1) and

" is the two operators defined above.

,- It is easy to see, that constructing an algorithm for an arbitrary domain D E M! is equivalent to

deciding the satisfiability of boolean formulae. Hence, if P; VP, V, does not have a polynomial-time

meta-algorithm. We break here for a definition..

An examp,'e for a domain D is a pair t.a7, xe Z. u, e O', k !< Ld such that Gix T)) = 1.

Example::ccnt inued, Returning to our example, we see that if the meta-algorithm were allowed to



see a single example for its input domain, i's task is trivial.

4The point behind the example is as follows. Given a domain D, it might be computationally

intractable to compute an efficient algorithm for D, even if we knew that such existed. Yet, seeing solved

% examples for the input domain allows an efficient algorithm to be constructed quickly. The examples

serve to improve the computational efficiency of the meta-algorithm, and hence we view this as learning

in the sense of improving efficiency as opposed to concept learning.

To furnish the meta-algorithm with examples, we place at its disposal a routine EXAMPLE, similar to

the one of Framework 1. At each call, EXAMPLE returns a randomly chosen example for the input

domain.

We say a meta-domain V allows heuristics if there exists a meta-algorithm .4 for .t such that
(a).-i takes as input integers n, h and the specification of a domain D e M. Let t be the least upper

bound of the running time on inputs of length n of the programs in the specification of D.

h.2r." (b)A computes for time polynomial in n, h, the length of its input, and t. A may call EXAMPLE, which
returns examples for D, chosen according to some unknown distribution P over the solvable
subset of Z"

(c)For all D E N and all distributions P over E", with probability (1-1/h) A outputs a program II that
*' approximates an algorithm for D in the sense that

:.:.?: P~ <_1/h

where
S = ('x lx!=n, I1, is incorrect on x}.

(d)For any two inputs (1,hjD) and (m,h 2,D), 1> m, let A output li, and 11 respectively. Then

Hi's run time on Z'.-. ,-., (1/m)

1, ts run time on Z"
where k is a constant that

depends only on D.

Conditions (a) through (c) in the definition above are as in Framework 1, and have the same
purpose. Condition (d) is a uniformity condition requiring that the run time of the algorithm output by ..
grows polynomia!ly with the length of the strings it is useful on.

Let D=(G,O) be a domain. For each operator o O,and integer i 1 1, consider the set

U(o) = (xl o(x) has a solution sequence

of length Lxl-i or less).

We call the U,(o) the preimages of o in D, and we call the collection of preimages for all the operators in D
the preimages of D.

.:I .,,

Claim 4: For any domain D, given efficient programs to test membership in the preimages of D, we

can construct an efficient algorithm for D.

Proof: Consider the following algorithm

.4,

'A - -
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input x, Lrl = n
begin

c" -- null-sequence
for i = 1 to n do

pick oE 0 such that xe Up);
if no such exists, fail;
x <-- oW;
a <- a.o;

od
output a, a so!ution sequence for x.

end

Clearly this is an algorithm for D.

We need one more definition before we can state the second of our main results. Let F be a family

of functions from Z* to (0,1} for some alphabet Z. With anyfe F we associate the set Sf= (xl}F(x) = I).
Any string xe Z* is a positive example forfe F if x e S. We say that F is well-ordered if for any set S of

strings in Z* such that S c Sffor somef E F, there exists a leastg E F such that S _ S.. i.e, for all '

F, S g S., implies that Sg c S... An ordering for a well-ordered family is similar to an ordering for general

families as defined in section 1, except that it takes as input a set of positive examples and outputs the

least function consistent with these examples as defined above. For more details on well-ordered

families, see [Natarajan 1987a].

Theorem 7: Let At be a meta-domain on an alphabet Z. If there exists a family of functions F from

V* (0,1) such that
(a)F contains the preimages of every domain in M,

(b)There exists a polynomial p(n) such that every function in F is computed by some program that
runs in time p(n) on inputs of length n,

(c)F is of polynomial-dimension, well-ordered and polynomial time orderable by an algorithm .A that
outputs the p(n)-time bounded programs of (b),

then, V allows heuristics.

Proof: (sketch) Let F be a family as above and let A be ordering for it as in (c) above. We use .1 to

construct a meta-algorithm A' for Md as shown below. Essentially, the algorithm uses .A to construct gccd

approximations for the preimages of D and then uses these preimages to build an algorithm for D as in

Claim 4.

Meta-Algorithm A'

input n,h, D=(G,O)

begin
for i = 1 to n do

for each 0• O do
Let F, be of dimension d.
m <-- n(nhlOI)d

for j = 1 to m do
Call EXAMPLE to obtain (x, a);
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for each decomposition of a,
into aloa, IaI _ lxl-i do

S *-- S u {a1 (x)}'
od

od
U,(o) <- A(S);

od
od

output the following as the algorithm for D;

input x, LxI = n

begin
a <- null-sequence;
for i = 1 to n do

pick o such that xE U,(0)

if no such exists, fail;
-,,-, x *-- o(x);
"', < -- 0 .X;

a <_ *-0c

od
* output a, a solution sequence for x.

end
end

In the interest of brevity, we skip a formal proof that .' is a meta-algorithm for .A .

Essentially, Theorem 7 reduces the task of learning in this framework to one of learnrg tcclean

valued functions in Framework 1, and then invokes the dimensicnality theorem for Framewcrk 1 -'e

reader should not jump to the conclusion that the role of the exampies here is therefore the same as 1t t

!n Framework 1. Even in the absence of examples, the specifica:ion of the domain g',es the earner

* sufficient information to construct an algorithm for the doma,n Thp examples serve only to speed u) 'i's

computation and add no new information. Hence it is not possible here to make a distinctionara3,.Us

to the distinction between polynomial-time learnability and learnabldty of Framework 1. a d.s.cl,,n

separated the information complexity of concept learning from the computational compiexlty it fC1!o.c.,s

S !'. that tightening Theorem 7 to an "only-if" will have to wait until the "only-if" counterpart to "h, ,r. . -

proved, which in turn waits for a better understanding of the relationshp bet.veen NP and RP

4i.

* "5. Conclusion
This paper introduced two new frameworks for learning.

The first framework concerned learning functions or concepts allowing the learner to see hct!"

examples for the function to be learned as well some backgfround information or t,,ery cn .t

showed that the class of function families learnable in this framework (i e. from few examples I-. "c'"

theories) is exactly the class learnable in the more established framework of [Valiant 19S4] , i e 'r=m '',,

examples and no theories). We believe that this result will better mctivate those in the A" 'ic:.,,

Intelligence community concerned with building "learning architectures" The proof of the "re ' . .. ,

I.
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result directly relates the length of a piece of information with how useful it is to the e-arnerA)hLh K
relationship is remarkably simple, it required the formalization of a learning framewoVrk o *-r:s
nterpretation in the context of learning from background information and examples

The second framework concerned learning in the sense of improving ccmputat~oraief cr

*framework has sufficient s'rcture to allow a crisp analysis. yet is rich enough to coaptu'e 0'a'

many practical problems. We proved a theorem identifying some conditions sulfocent 1o allowv a 'car 2'

algorithm within the framework. We believe that this framework and the asscc:2ted :,hecriem are o-f
significant practical import.
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