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PREFACE

Connectionist approaches to cognitive performance are generally based on traditional
network or associative frameworks in which learning plays a pivotal role. Studies of learning
within these frameworks have long been a staple of those areas of experimental psychology
concerned with cognitive performance and its ontology. Kamin's rediscovery of blocking
of classical (Pavlovian) conditioning in rats twenty years ago triggered a movement within
animal learning psychology that stresses the informational and cognitive aspects of tasks
such as conditioning, discrimination learning, and stimulus generalization. Theoretical
models that have grown up around these newer approaches have been extended to a variety
of problems of computation and process control. Some of these extensions arid applications
have been described in recently published proceedings of the Cognitive Science Society and
in papers generated by Professor A. G. Barto's Adaptive Network Group.

Many network learning algorithms conforrm to the delta rule. One important member
of this class of algorithms is the Widrow-Hoff rule which Barto and his associates have
shown to be closely related to an influential theory in psychology, the Rescorla-Wagner
(RW) model. The RW model was devised as a mechanistic account of blocking and other
multiple-cue protocols in the experimental literature on classical conditioning. The IW
model and two theories described in this report can also be applied to a problems of
interest to adaptive network researchers. One such problem area is that, of credit assign-
ment. Multiple-cue training protocols in classical conditioning have been cast in these
terms, as Barto and Richard Sutton have illustrated in a series of reports. It has lately
become commonplace to assess network learning algorithms by their ability to emulate the
phenomenology of classical conditioning.

Useful as the RW model has proven to be, some of its competitors in the animal learning
literature seem equally capable, if not more so. This report describes simulation studies of
two of these alternatives to the RW model within the framework of classical conditioning.
The results of these simulation studies suggest alternative computational forms of both
models. These revised models have been successfully applied to neural network theories of
hippocarnpal function and the formation of spatio-temporal cognitive maps.

John W Moore

Professor of Psychology
Associated Professor of Computer and Information Scicit'e
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Two Attentional Models of Classical Conditioning:
Variations in CS Effectiveness Revisited

Nestor A. Schmajuk and John W. Moore
Department of Psychology

University of Massachusetts at Amherst

Abstract

Attentional models offer alternative, to the highly successful theory of Rescorla
and Wagner (1972 for describing blocking, overshadowing, and many other features
of classical conditioning. Two such models)are the Moore and Stickney (1980) ver-
sion of Mackintosh'6 (T75Y-tt t- on- ry and the Pearce and Hall (1980) model.
These model-mphasize variations in the associability of CSs instead of variation
in the effectiveness of the reinforcing event, the US. Early published variants of the
Moore-Stickney and Pearce-Hall modelbodo not always accurately portray the effects of
nonreinforced CS presentations as represented in simulation experiments. In the case
of the Moore-Stickney modeH-"evels of conditioned responding under partial reinforce-
ment are too low to reasonably approximate expectations based on the experimental
literature, and extinction is too deep to produce the rapid reacquisition that typically
follows extinction. These problems are corrected by changing the expressions in the
model for decreasing associative strength. The revised model retains the positive fea-
tures of the original, e.g., the ability to simulate in real-time latent inhibition and
compound CS effects such as blocking and conditioned inhibition. The P-Hrmodel is
path dependent and highly nonlinear under partial reinforcement. The problem can be
corrected either by modifying and restricting the rules for computing the associability
of the CS, or by modifying the rules for computing associative strength. The revised
model retains the original's ability to simulate latent inhibition, compound CS effects,
and the transfer (positive or negative) from training with a weak US to training with
stronger US. . -/ -

Introduction

This article reviews two mathematical models of classical conditioning that stress atten-
tional processes, the Moore-Stickney (M-S) model (Moore & Stickney, 1980, 1982, 1985)
and the Pearce-Hall (P-H) model (Pearce & Hall, 1980). These models feature mechanisms
for altering the contribution cf the CS to the rate of change of the associative relation-
ship between a conditioned stimulus (CS) and the unconditioned stimulus (US), and they
have been dubbed "attentional" models by their originators. Thus, instead of citing varia-
tions in the effectiveness of the US to account for the phenomena of conditioning as does,
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e.g., the Rescorla-Wagner (R-W) model, these models emphasize processes that cause
the associability of the CS to vary. In assessing the M-S and P- H models in simulation
experineivis, we discovered some serious shortcomings in published versions (if each. In
this article we review the mathematical statement of both models in detail, shortcomings
are indicated, and suggested modifications noted. These modifications are designed to
enhance further development of each model into domains where computational versions of

rtentional theories of learning might find application, including neuroscience and artificial
intelligence.

Following Rescorla and Wagner (1972), the symbol V (for associative value) is used
throughout to denote the primary theoretical dependent variable representing the strength
and sign of the associative relationship between a CS and the US. Linear difference equa-
tions express how V changes from one trial to the next. Although the resulting associative
structures at the representation level are not isomorphic with performance measures such
as the probability of a conditioned response (CR), the mapping from V to behavioral
indices of learning are at least monotonic in most applications (see Frey & Sears, 1978,
for an extended treatment of this issue in relation to classical conditioning of the rabbit
eyeblink).

Assumptions and formal structure of mathematical models of classical conditioning
in the contemporary theoretical literature basically revolve around two questions. One
question is whether the strength of associative links to the US among various components
of a compound CS must be partitioned or shared (the "zero-sum" rule), as in the case of
the R-W model, or whether a given component CS can in principle develop a complete
associative link to the US despite the presence of competitors. Mackintosh (1975) has
provided a lucid discussion of this point, and the distinction finds a parallel in the field of
artificial or machine learning where the "zero-sum rule" is a feature of ADALINES and
noncompeting associations is a feature of perceptrons (see Duda & Hart, 1973; Sutton k
Barto, 1981).

The second question concerns the relationship between the rate of learning or, equiv-
alently, the magnitude of the change in associative value on a given trial by a given CS,
and the previous history of reinforcement of the CS. This question reduces to one of de-
ciding whether the parameter of a given model that determines changes in V of the CS
remains invariant over training trials, as in the R-W model, or whether CS associability is
permitted to change from one trial to the next. Some models, such as Mackintosh's (1975)
attention theory and the M--S model, which do not feature a zero-sum rule, and Frey and
Sear's (1978) "catastrophe" model, which does, assume that reinforcement momentarily
increases the salience or associability of the CS and thereby its contribution to the rate of
learning. Other models assume that the salience or associability of a CS decreases because
of "reduced processing", as in Wagner's (1976) habituation theory and the P-H model.

Our interest in the M S and P H models arose from efforts to nurture a link between
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learning theory and the literature from neurobiology on the role of the hippocampus in
learning and memory, particularly classical conditioning. The rationale for chosing at-
tentional models for developing this linkage has been enunciated by the authors in other
articles (Moore, 1979; Schmajuk, 1984; Schmajuk & Moore, 1985). We do not claim that
other models cannot also provide the basis of a rigorous theoretical approach to the neuro-
biology of learning in its various forms. We simply do not feel qualified to proffer comment
on all extant learning models. Any benefits in enhanced understanding of the hippocampus
or the nature of classical conditioning accruing from these efforts must ultimately rest on
how well our models perform in describing even the most mundane features of this type of
learning.

Overview

Using Mackintosh's (1975) attention theory as a scaffold, the M-S model uses a simple
linear difference equation to express associative increments from one trial to the next
during a simple acquisition protocol: When a trial is defined as the paired occurrence of
the CS and US,

AV =aO (I -V) (1)

a is the rate parameter contributed by the CS, 0 is the rate parameter contributed by
the US, and a and 0 are between 0 and 1. It has become customary to refer to a as
the associability of the CS. The asymptotic level of learning equals I rather than the
US-intensity dependent parameter A in Mackintosh's original paper.

Our reason for restricting the asymptotic level of associative strength to I is that we
interpret V to represent the strength of the organism's "belief" that the US follows the
CS. Anthropomorphically, an organism can be no more than 100 per cent certain that a
CS will be followed by a given US. The degree of this conviction, which might be likened
to wagering, is independent of the intensity of either event. In short, we interpret V to
be an index of belief, prediction, or inferred causality, and that, as such, it represents
the reliability of an internodal link within an associative network. Moore and Stickney
(1985, p. 228) discuss some of the consequences and limitations of this conceptualization
regarding the asymptote of learning. The issue is largely irrelevant for present purposes
except insofar as it bears on the number of degrees of freedom available for describing
phenomena.

Whereas 0 is treated as a constant within a given application of Equation 1, a can
vary from trial to trial. This variation in a accounts for most, if not all, of the phenomena
that prompted development of the R-W model, e.g., blocking and overshadowing. The
parameter a also appears in the R-W model, but it is typically treated as a constant
because the mechanism that predicts these phenomena resides in the zero-sum rule (except
see Wagner, 1978).

3
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The P-H model exprpsses the increments in associative value accompanying acquisition
by the expression

AV = Sa (2)

As in the M-S model, a varies according to rules that are sufficient in themselves to predict
blocking and overshadowing, as well as simple acquisition and other phenomena.

Although both models share the R-W model's ability to predict many of the better
established and more highly visible phenomena of classical conditioning, the rules for
computing a in the two models differ profoundly. Mackintosh (1975) and M-S assume that
a for a CS increases from one reinforced trial to the next, provided it is the best predictor
of the US (largest V) among all stimuli, including CSs and the context, occurring at the
same time. On these occasions, as for stimuli with smaller Vs decrease, and therefore their
capacities to further strengthen associative links to the US are diminished. Thus, changes
in as for a set of CSs depend on their relative Vs with respect to the US. By contrast, the
P- H model assumes that a for a CS that is consistently paired with a US decreases over
trials. Despite this difference in assumptions regarding variations in a, the two models
give qualitatively similar predictions in many protocols.

The two models are similar in another respect: Both the M-S and P-H models assume
inhibitory learning in parallel with acquisition of V. It is therefore possible for a given CS
to possess both excitatory and inhibitory associations concurrently, the two associations
summating algebraically to determine CR strength. By contrast, the R-W model assumes
that a CS can possess either an excitatory or an inhibitory association with the US, but
not both simultaneously. Moore and Stickney (1982, 1985) refer to "negative" learning
as the acquisition of an antiassociation; Pearce and Hall (1980) use the term inhibitory
conditioning. We use the symbol N to denote the inhibitory variable in the two models.

Shortcomings in Brief

Although the M-S model successfully describes many facets of conditioned and latent
inhibition, it fails to predict realistic scenarios under partial reinforcement, extinction, and
related protocols involving nonreinforced trials. Our proposed solution involves changing
the expressions for computing decreases of V and increases of N that are applied on
nonreinforced trials. The P-H model has problems describing partial reinforcement, and
these have been discussed by its originators (Pearce, Kaye & Hall, 1982). The model
predicts nonmonotonic relationships between the percentage of trials that are reinforced
and the level of conditioning achieved. Another shortcoming of the P-H model is that
terminal values of associative strength are highly dependent on the length of sequences of
reinforced and nonreinforced trials. One proposed solution involves alternative rules for
computing a. Another solution involves changes in rules for computing V and N.

4

- .



Moore and Stickney Model

Moore and Stickney (1980) developed their model originally in order to place Mackin-
tosh's (1975) theory on a firm computational footing. Summarizing the model as described
in a recent chapter (Moore & Stickney, 1985): (a) Associative value, V, represents the pre-
diction of the US by a CS. (b) Antiassociative value, N, represents the prediction of
nonreinforcement by a CS. (c) The strength of a CR to a given CS depends on its net
associative value, V', given by V - N. (d) V for a given CS increases when it accurately
predicts the US and decreases otherwise. (e) By contrast, N increases when the sum of
Vs for all CSs present is above some threshold, and the US does not occur. N decreases
whenever the US does occur. (f) Changes of V and N depend on the associability, a, of
the CS. (g) a increases to the extent that the CS is the best predictor of the US than other
stimuli (including itself) in the situation. Otherwise, it decreases. (h) This dependence of
a on the predictive associative relationships among all stimuli in the situation implies the
existence of a network of Vs and Ns. (i) The model applies to real time, implying that
computations occur continuously, both within and between trials.

In the following formal statement of the M-S model, subscripts are used to specify
stimuli in the role of predictor. Superscripts denote the target of the prediction. Thus, if
A and B are two stimuli such as a CS and US, then VA designates the associative value of
A predicts B. NA designates the antiassociation A predicts not B, and (VA - NA) = VB
is the net value of the relationship. It is important to note that V2 does not equal VA .

Generalizing the notation, when the ith CS is accompanied or followed by a kth event,
the associative value between CS, and event k, VA, is increased by

Ak= a, 0 1_Vk) (3)

When event k does not occur, the associative value between CS, and the event k, V*",
is decreased by A, = a,0' T (0- V,' )  (4)

The parameter a, is the associability of the ith CS; it ranges between 0 and 1. The
parameter 0 (0 < 0 < 1) is the rate of change in the association when the reinforcer is
presented, and 0' (0 < 0' < 0 ) is the rate of change of the association when the reinforcer
is not presented.

The parameter r is a function of time such that

7- = (q-' t (5)

where q is a constant equal to the optimal interval for a.ssociatiofn, At > () Is tliC intrv;tl
between the ith CS and the kth event in q steps, and k is a constant (0 < k < i). In our

.%



I - -- . -..- r- ! ,-V-,,v --w.

simulations, r with At < q was set equal to .067. (Refer to Schmajuk M Moore, 1985 for a
fuller explanation of implementation).

The rule for increasing the antiassociation Nih between CS. and event k is as follows:
whenever CS, is neither accompanied nor followed by the event k and the sum of the
associative values of all CSs present, E llI exceeds an arbitrary and constant thresho!d
L, antiassociative value, Nk, is increased by

= ai'r (I - Nik) (6)

whenever V# > L. The rule for decreasing Nk is as follows: whenever the kth event
i

follows the CS, the antiassociative value decreases by:

= aOr(O - Nk) (7)

The net associative value of CS, with respect to event k is Ik = Vh l - Nil .

In the M-S model, associability of a CS depends on associative processes. The asso-
ciability of CSj, aj, may increase, decrease, or remain unchanged according to a weighted
combination of event-specific components, A a . These event-specific components are com-
puted based on the relationship between the associative value of CS, and the event k and
the associative value of another CS, CS,, with the same event k. Whenever CSj and CS,
are present together with the kth event and provided Vik > V-,

A#= C(1 _ 0 )(Vk _ V ) (8)

Vk always corresponds to the second highest associative value with respect to event k of
all stimuli present with CSj, including the context and/or the US.

If V"Uk < Vk,
A #= C - a V*- v*) (9)

where 1"j, is the highest associative value with respect to k of all stimuli present with CS,.
The parameter c in Equations 8 and 9 is set 0 < c < I. Once the event-specific components
of a, have been computed, they are combined in the expression

A j Oi A (j k(0

The weight assigned to each A ai is indicated by the constant Oj. The sum over the index
t in the numerator of Equation 10 involves all the events present on that trial or time step.

I. The sum over the index k in the denominator is over all the events or stimuli the subject
has encountered in the context, even though some of these may not be present at the time
that Aai is computed. Thus, the numerator of Equation 10 involves associations among

6



stimuli that are present at the moment of computation, whereas the denominator involves

the weights of these stimuli plus those encountered previously. The US is presumed to be

represented in memory more strongly than are CSs, which are in turn typically weighted

more heavily than the context.

Partial Reinforcement and Extinction

Shortcomings of the M-S model came to light in simulations of certain protocols involv-

ing nonreinforcement: partial reinforcement, extinction, and simple differential condition-
ing. Although it is unreasonable to require that any model be universally applicable to all

tasks and circumstances, the current versions of both models are so widely at variance with
the experimental literature that corrective measures seemed called for. This is particularly
the case regarding partial reinforcement during acquisition. The experimental literature
suggests that partial reinforcement in classical conditioning results either in a lower level
of CR strength (e.g., CR frequency) than that obtained under 100% reinforcement or else
a level that is just as high as in the 100% case. Once acquired, a CR can be maintained at
close to full strength with schedules of reinforcement as lean as 5% (Gormezano, Kehoe,

k Marshall, 1983). Gormezano and Moore (1969) tabulated 7 of 15 studies across a range
of species and preparations in which 50% partial reinforcement resulted in levels of CR

strength following acquisition that were significantly below those observed under 100%
reinforcement. No difference was noted in the remaining 8 studies. This much seems clear:
Levels of conditioned responding under partial reinforcement ought neither to exceed those

under 100% reinforcement, appetitive instrumental conditioning tasks being a well known
exception (Kimble, 1961), nor be so low as to portend imminent extinction.

Simulations with the M-S Mode!

The following simulation experiments all assumed the V and N for both the CS and
the context have initial values of 0 prior to any training. The initial value of a for the CS
was .5; that of the context was .A. The parameter c in Fquations 9 and 10 was .3, and 0
and 8' in Equations 3 and 4 were .1 and .01, respe( ively Following Moore and Sticknev
(1980), the weights 0i and Ok in Equation 10 were 1.0 for the IS, .16 for C(Ss, and .0I for
the context. Figure I illustrates the M S applied to 50% partial reinforcement. It shows
that acquisition of f as a function of trials with a 50% reinforcement protoc, initially
increases and then decreases to a stable level well below that predicted with the same
parameter set for 100% reinforcement. A portrayal more in keeping 'rith the literature
would show V under 50% reinforcment increasing uniformly and leveling oJ to, a p,nt 

just below that obtained with 100 0 reinforcement. As Fig I makes clear, h, pr, ill,'rii
arises from unrestrained development of N once the thresh(,ld for triggering Equation 6

7IV.'...
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N S , tdtl to nit re accurately describfe partial reinforcement (Fig. 2). extinction (Fig.
3) and reacquisition (Fig. 4). In the case of partial reinforcement, Fig. 2 shows that the

rt id nitdel allws normal appearing monotonic acquisition of V to a level below that
obtained tinder continous reinforcement.

Fiure 3 shows that V in extinction can go below zero, but not so dramatically as

before. The change also implies that reacquisition would normally be more rapid than

original acquiisition (see Fig. 4), in agreement with some of the literature (Scavio, Ross,

, McLeod. 1983) In the case (if the rabbit nictitating membrane (NM) response, rapid
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reacquisition may not be specific to the target CS because of a general transfer process in
which initial acquisition to one CS promotes rapid acquisition to another, quite distinct
CS (Kehoe, Morrow, & Holt, 1984).

It should be noted that neither the older or here-modified version of the M-S model
generates spontaneous recovery. This criticism applies to all contemporary models, in-
cluding P-H and R-W. Exploring the full implications of this modification of the M-S
model lies beyond the scope of this article. However, simulation experiments indicate that
the descriptive power of the model remains largely intact wben Equations II and 12 are
employed instead of Equations 4 and 6 in protocols involving nonreinforced trials, most
notably conditioned and latent inhibition.

Pearce and Hall Model

Pearce and Hall (1980) proposed their model as an alternative to Mackintosh-type
attention theories because of their discovery that a series of acquisition trials with a weak
shock US in a conditioned suppression task can retard subsequent acquisition using a
stronger shock US (Hall A Pearce, 1979), a phenomenon they liken to latent inhibition
(LI). Negative transfer (NT) due to initial training with a weak US falls naturally out
of the P-H model by virtue of the assumption that a CS's associability decreases with
repeated pairings with a US. Although NT from a weak to a strong US in conditioned
suppression has been replicated by others, it is not always obtained in such studies; nor is
there evidence for the effect in the rabbit NM response preparation where positive transfer
seems the rule (Ayres, Moore, i Vigorito, 1984). Such positive transfer does not disprove
the model because it is predicted whenever the initial value of a is relatively small and the
US in the first phase of training produces a relatively high level of V. Negative transfer is
the surprising result; it is predicted whenever the first-phase US yields only a low level of
V and the initial value of a is large (see Ayres et al, 1984, for elaboration of this point).
Initial values of a presumably depend on generalization from other similar stimuli outside
the training context (Pearce & Hall, 1980, page 538).

In addition to predicting NT, the P-H model provides a mechanism for conditioned
inhibition, thereby filling a void in previous attention theories. It was only after their model
first appeared that Moore and Stickney (1982; 1985) incorporated conditioned inhibition
into their Mackintosh-type model.

We now summarize the P-H model as we understand it: (a) The excitatory component
of the associative relationship between a CS and US, V, ijcreases whenever the CS's
associability, a, is greater than zero and the intensity of the US on a given trial, A, is
larger than that predicted by all the CSs present on that trial; V never decreases. (b) The
inhibitory associative component, N, increases whenever a is greater than zero and the
intensity of the US on a given trial is less than or equal to that predicted by all the CSs
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present on that trial. Like V, N for a given CS can never decrease. (c) Net associative

strength equals the sum of the differences between the I's and Ns of all the ('Ss present o

the trial, (V - N). We denote this net associative value as V, in keeping with the notation

used in the M-S model; it is the net prediction of a ITS equal to A by all stimuli present
on a given trial. (d) a for computations of V and N for all CSs present on a given trial
equals the absolute value of the difference between A of the preceding trial and E Vi of
the current trial. (e) Letting a equal the geometric mean of the as for previous trials is a

permissible option under the model (see, e.g., Kaye & Pearce, 1984).

Stated formally, whenever the intensity of the ITS presented on a given trial is larger
than the sum of the Vs of all CSs present on that trial, V increases according to

A V1= S, a , A (13)

Si is the salience of the CSj, a, is its associability, and A is the intensity of the US (Si, aj,
and A > 0). Whenever the intensity of the US presented on a given trial is less than the
sum of I's of all CSs present on that trial, N increases according to

AN= S a (14)

A= Vj - A where E I is the sum of net associative values of all CSs, including CSj
acting on Trial n - 1. Equations 13 and 14 imply that when the intensity of the reinforcer
is less than V-, , does not decrease, but rather N, increases until it reaches the same value
as ti. When the sum of I's of all CSs equals A, Equation 14 rather than Equation 13
should be applied in order that Vi remains unchanged.

The value of a, on Trial n for all CSs acting on Trial n - 1, is given by

a? :l ,V'-' - I '-' l (15)

The expression 1 t,'V. represents the prediction of the US by all CSs, including CSj
present on Trial n - 1. When the reinforcer is accurately predicted by all the CSs present
on Trial n - 1, a, becomes zero on Trial n. Equation 15 cannot be used to determine ai
on the first trial in which CS, is presented, and some initial value must be assigned. When
CS, is presented on a second occasion, however, a, is determined by Equation 15.

Simulations with the P-H Model: Partial Reinforcement

Pearceet al (1982) point out that the original model has difficulty describing acquisition
under partial reinforcement. For example, no conditioning is predicted when reinforced
and nonreinforced trials are alternated if the sequence begins with a nonreinforced trial.
In this case, on Trial I both A and I, equal zero, and therefore a, on Trial 2 is zero. On

I[I

"l



Trial 2, when the US is presented, A = 1, but since ai = 0, no increase in V can occur.
In order to solve this problem, Pearce et al (1982) suggested using the geometric mean of
values of ai computed on previous trials:

1? = 6IA'-~~1 I+1-'y ? (16)

The parameter -y is between 0 and 1. Equation 16 yields Equation 15 when -7 = 1.

Problems for the model under partial reinforcement are not entirely corrected by Equa-
tion 16, as illustrated in Fig. 5. Figure 5 shows simulated net associative values (') for a
single CS as a function 50% and 80% randomly reinforced trials. Notice that the asymp-
totic value of V" with 50% is higher than that predicted with 80% reinforcement, and that
the asymptotic value of V with 80% reinforcement is higher than that obtained with 100%
reinforcement. (Starting values of V and Ni were 0; ai= I initially, -y = .5 or 1, A = 1,
and the initial value of Si = 1.) In attempting to rearrange these asymptotic levels so that
higher levels of conditioning correspond to higher percentages of reinforcement, Pearce et al
(1982) introduced additional rate parameters into Equations 13 and 14. These parameters
are denoted 6,r and /6 for changes in excitatory and inhibitory association, respectively,
and they are bounded between 0 and 1. Equation 13 becomes

A = Si a1EA (17)

and Equation 14 becomes
AN, = Saf3 , (18)

Using computer simulations, Pearce et al. (1982) showed that when PE </3, the growth
of V with 50% reinforcement reaches an asymptote lower than that attained with 100%
reinforcement. Equations 17 and 18 yield a lower asymptote for Vl" because on reinforced
trials V increases less than N does on nonreinforced trials. Our simulations confirm this
point. However, Fig. 5 suggests that when growth of Vl" with 80% reinforcement is adjusted
to levels close to those predicted for 100% reinforcement, by adjusting Ai and P3I, the
asymptotic value of V attained with 50% reinforcement is too low. This is so because
with 80% reinforcement /A needs to be much smaller than 11, and this combination of fis
does not allow V to grow enough with 50% reinforcement. Therefore, the introduction of
additional rate parameters, as proposed by Pearce et al. (1982) does not yield appropriate
asymptotes for V with different percentages of reinforcement.

Alternative Forms of the Pearce and Hall Model

In order to improve the P-H model's rendering of partial reinforcement, we considered
two alternative forms of the model. The first computes a on the basis of the outcome of



Trial n instead of the outcome of Trial n - 1 as in Equation 15. That is, A"-1 in Equation
15 is replaced by An:

c;=A"-V (19)

Equations 13 and 14 remain unchanged. Stated somewhat anthropomorphically, Equation
19 implies that the subject waits for the outcome of a trial before deciding by what amount
to increment V by Equation 13 or N by Equation 14. The general form of a, in the revised
model is given by the expression

I +(1 - (20)

Unrestricted use of Equation 20 does not correct the prediction of higher asymptotic
levels of responding under partial reinforcement than under 100% reinforcement. The
desired result necessitates that a be computed with either Equation 20 (-1 < 1) or Equation
19 (-y = 1), whichever yields the smaller value of a . Without this restriction the model
predicts higher V with 80% reinforcement than with 100%, as did the original P-H model.
Figure 6 shows the simulated V for a single CS as a function of 50% and 80% reinforced
trials, using Equation 20 with -7 = I and .5. In the latter case (y = .5) the above mentioned
restriction was applied. With either -, this restricted-a-version of the P-H model yields
asymptotic levels of responding for 50% and 80% reinforcement that are (a) lower than
that predicted for 100% reinforcement, (b) sufficiently high, and (c) in the appropriate
order.

In the second alternative form of the model, Equations 13 and 14 are replaced by a
single equation expressing the changes in 1 instead of separate changes of V and N.

Equation 21 implies that fV converges to A, increasing when A increases, and decreasing
when A decreases. Equation 21 may be regarded as the R-W model with the addition
of a modifiable associability term. It is similar to the expression proposed by Wagner
(1978) to encompass CS preexposure effects within the framework of the R-W model. The
expressions for changes in o are the same as in the original model, i.e., Equations 15 or 16
apply.

Figure 7 shows the simulated V of a single CS as a function of 50% and 80% reinforced
trials using Equation 21 and with both rules for computing a. As in the case of the
first alternative version of the model, Equation 21 predicts asymptotic levels for 50% and
80% reinforcement that are (a) lower than that predicted for 100% reinforcement, (b)
sufficiently high, and (c) in the appropriate order. However, Equation 16 yields a higher
level of responding than Equation 20 with 80% reinforcement.

Figure 8 summarizes the predictions made by the original and two alternative versions
of the model for a wide range of percentages of reinforcement. Rates of reinforcement in
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the 10% to 50% range were obtained by introducing the required number nonreinforced
trials between two reinforced trials. Rates of reinforcement in the 66% to 90% range were
obtained by introducing the required number of reinforced trials between two nonreinforced
trials. When the original P-H model (Equation 16) is applied with /AE = /6, = .1, any
rate of reinforcement from 50% and over exceeds the asymptotic level obtained with 100%
reinforcement. When )3E = .015 and 31= .10, only rates of reinforcement of 90% or more
achieve sufficiently high asymptotes; asymptotes with lower reinforcement probability are
too low to agree with empirical expectations. The two alternative versions of the model
yield asymptotic levels of net associative strength that are more realistic. In these cases
the relationship between asymptotic associative strength and reinforcement probability is
in closer agreement with empirical expectations, tending to lie on a line with slope equal
to 1.

Experiments in pigeon autoshaping have shown that partial reinforcement can produce
higher levels of responding than continuous reinforcement (Gibbon, Farrell, Locurto, Dun-
can, & Terrace, 1980). Gibbon et al.'s results show that response rate monotonically de-
creases with increasing probabilities of reinforcement. Neither the original nor the revised
versions of the P-H model can account for this phenomenon. Simulations with the original
P-H model with 3E = /31 = .1 show that V' first increases and then remains constant with
increasing rates of reinforcement (Fig. 8). Simulations with the revised models show that
V increases with increasing rates of reinforcement (Fig. 8). According to Gibbon et al.
(1980) the effect of partial reinforcement on response rate parallels the well-established
effect of partial reinforcement on instrumental learning, and might be explained in terms
of the frustration generated by nonreinforced trials (Amsel, 1962).

In addition to the problem of inappropriate asymptotic levels of net associative strength
under partial reinforcement, the original P-H model is severely path dependent. That is,
terminal levels of V depend on the sequential pattern of reinforced and nonreinforced trials.
Path dependency is a concern only in tasks in which the asymptotic level of conditioned
responding is known to be sensitive to the percentage of trials that are reinforced but
relatively insensitive to the sequential structure that underlies that percentage. In the

case of classical aversive conditioning, such as the eye blink in humans and rabbits, for
example, asymptotic performance levels are not particularly sensitive to the sequential
properties of trials (except see, Hoehler & Leonard, 1973).

Path dependency of the original and alternative versions of the P-H model is contrasted

in Table 1. The entries are the average V on the last 10 trials following 300 trials of
patterned 50% reinforcement in which runs of reinforced trials were alternated with equally
long runs of nonreinforced trials. Initial parameterization was the same as in Fig. 8.
Equation 16 of the original model yields the greater path dependence, as indexed by the
range of entries under the first column (.11). The revised forms of the model (Equations
13 and 14, with a computed with Equation 20, and Equation 21, with a computed with
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either Equation 16 or Equation 20) reduce this range to .03 and .02, respectively. Thus,
path dependence under partial reinforcement is substantially reduced by using either of
the alternative forms of the model instead of the original.

Implications for Latent Inhibition and Negative Transfer

As indicated above, the original P-H model (Equation 16) predicts both LI and NT.
With -y = 1 in Equation 16, LI occurs with a single CS preexposure. Retarded acquisition
is predicted because CS presentation in the absence of the US produce zero associability,
thereby preventing any increase in V on the first reinforced trial. By contrast, NT requires
that a sufficient number of CS-US pairings have occurred to decrease a to zero. Conditions
leading to NT are (a) low A in the first phase of training, (b) high initial a, and (c) a low
value of -. Positive transfer is likely if any one of these conditions is not satisfied. When
-1 = .5 in Equation 16, both LI and NT require more than a single CS presentation prior
to acquisition with a strong US to reflectthe effect of Stage I trials. In both instances
retarded acquisition with a strong US in the second phase of training comes about be-
cause CS presentations in the first phase cause a to decrease to zero, thereby producing a
comparatively small average a during early reinforced trials.

Table 2 shows V on the first trial following Stage-I latent inhibition (LI) and negative
transfer (NT) paradigms as predicted by the original and alternative forms of the model.
The original version of the model (P-H (n - 1)), with & defined according to Equation
16, yields LI and NT with -y = .5 or 1. Table 2 shows that the first alternative version
of the model (P-H (n)), with a defined according to Equation 20, yields LI and NT only
when -y = .5. As in the original model, retarded acquisition in the second phase of LI and
NT results from reduced a on early reinforced trials. Both LI and NT reflect the number
of CS presentations on the first stage of training. The behavior of the second alternative
form of the model (P-Hn-w(n - 1))XS, with V computed by Equation 21, depends on
whether a is computed with Equation 16 or Equation 20. With Equation 16, LI and NT
are predicted with 'y = .5 or 1. With Equation 20, LI and NT are predicted only when "7
-. 5.

One-Trial Blocking

Unlike the R-W model, the models considered here do not allow for blocking on the
first compound-CS trial following Stage-I training to a single CS. The question of whether
blocking occurs on the first Stage-2 trial has been the focal point of experimental efforts
determine which type of theory is to be preferred. Until recently, most available evidence
suggested that blocking requires at least two Stage-2 trials to occur (e.g., Mackintosh,
Dickinson, k Cotton, 1980). More recent evidence on the question suggests that one-trial
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blocking, as anticipated by the R-W model, can occur under some circumstances (Balaz,
Kasprow, & Miller, 1982; Dickinson, Nicholas, & Mackintosh, 1983).

The original P-H model does not permit one-trial blocking, and in this respect it
resembles the M-S model. Using Equation 16 to compute a, one-trial blocking is not
possible because at least one compound-CS trial is necessary in order to reduce the added
CS's initial value of a to the near-zero value implied by the presence of the previously
conditioned CS. However, if a is computed by Equation 20, one-trial blocking is possible
because the one-trial delay does not arise. Equation 21 allows for one-trial blocking,
independent of the expression used to compute a, for the same reason that the the R-W
model predicts one-trial blocking, i.e., because the expression (A - E V j) can be near 0 on
the first compound trial provided E Vj of the Stage-I CS is near A.

General Discussion

The M-S and P-H models fail to provide acceptable renderings of acquisition under
partial reinforcement and certain other phenomena. Modifications of these models allevi-
ate these shortcomings while retaining their basic assumptions and predictive power (see
Schmajuk & Moore, 1985). The revised version of the M-S model presented here gives
improved predictions for extinction, reacquisition, partial reinforcement, and simple two-
CS differential conditioning. Regarding the P-H model, the two approaches to improved
performance were considered. Both provide reasonably good renderings of acquisition un-
der partial reinforcement, with appropriate asymptotic levels of net associative value and
suppression of path dependency. In addition, both alternative forms of the P-H model are
able to predict one-trial blocking. Because it involves only a minor change in the com-
putation of a CS's associability, the first alternative form of the P-H model more closely
resembles the original than does the second alternative. The second version changes the
computation of excitatory associative value so as to place the P-H model into the same
family as the R-W model and the Sutton-Barto model (Sutton & Barto, 1981). The second
version is iateresting because the discrepancy between the actual outcome of a trial and the
anticipated outcome, obtained by summing the predictions of all CSs present on that trial,
determines both a and asymptotic values of net associative strength. This tactic is similar
to one proposed by Frey and Sears (1978) in which the attentional variable represents the
information value of a CS in terms of its recent associative value, and it allows the model
to predict latent inhibition. In order to predict latent inhibition without recourse to an
attentional variable, Wagner (1978) proposed that changes in the CS effectiveness might
be represented in the R-W model by the inclusion of a variable reflecting how well the CS
is predicted by stimuli that precede it.

Our suggested revisions of the two models might be challenged as being entirely ar-
bitrary. This is not the case, as they were arrived at largely through a process of trial
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and error in which various remedial approaches were implemented into a wide range of
simulation protocols that included simple acquisition, blocking, conditioned inhibition,
differential conditioning, extinction, latent inhibition, and overshadowing. This process of
trial and error emphasized a point about mathematical models that is often overlooked by
their detractors: Mathematical structure, not simply number of parameters or degrees of
freedom, dictate the descriptive power of a model.

We do not deny the possibility that other modifications will be discovered that prove
preferable; we have simply not discovered any that retain the basic mathematical character
of the originals without introducing new constructs. Revisions more drastic than those
considered here might take the form of attentional or hybrid models that possess the best
features of the M-S, P-H, and R-W models. One clue that this might be possible is
suggested in the revised M-S model, in which the threshold for triggering antiassociations
is replaced by a mechanism very similar to that used by the P-H model to generate
conditioned inhibition. Another clue is suggested in the second revised version of the
P-H model, (Equation 21) which is essentially a R-W model but with a mechanism for
controlling CS associability. In this respect it can be classed with the Frey and Sears
(1978) model.

Simulation experiments with alternative versions of the M-S and P-H models should
ultimately point the way to further refinements and better specification of the appropriate
domains for each. We are a long way from declaring a clear preference for either model, and
the experimental literature suggests that each may have its place. As a class, P H models
may be most appropriate for characterizing events in the domain of conditioned suppression
and perhaps, more generally, in systems involving autonomic-like processes of arousal and
orienting (Kaye & Pearce, 1984). The revised M-S model may be more appropriate in the
domain of discrete skeletal responses such as the rabbit NM response (Ayres et al, 1984).
Wherever further explorations of these models may lead, we believe our approach illustrates
some of the benefits to theory construction and assessment to be derived through simulation
experiments over a broad range of training scenarios. Comparisons among competing
theories can be sharpened without recourse to experimentation. Although real experiments
always have a place in choosing among competing theories, simulation experiments can
guide decisions regarding protocols that are most likely to resolve such choices.
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TABLE 1. Pearce-Hall Rules for Computing Associability: Average Net
Associative Value on the last 10 Trials following 300 Trials Consisting of
Alternating Runs of Reinforced and Nonreinforced Trials

Sequences Algorithm

P-H (n - 1) P-H(n) P-HR.w(n - 1) P-HR-w(n)
10 .08 .66 .50 .50

1100 .10 .65 .49 .49

111000 .12 .65 .51 .51
1 110000 .17 .65 .51 .51

1 o11100000 .19 .63 .50 .50

Range .11 .03 .02 .02

Note. The basic sequence, repeated over the 300 trials, is indicated as series of 1 (reinforced) and
0 (nonreinforced) trials. P- H (n - 1) refers to the original rule for computing a with equation 16.
P-H (n) refers to the alternative rule for computing a with Equation 20, with -Y = 1 when
a' > a!. P-HR-*,(n - 1) refers to the alternative rule for computing V with Equation 21 and
a with Equation 16. P IIR-w(n) refers to the alternative rule for computing V with Equation 21
and a with Equation 20.
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TABLE 2. Pearce-Hall Rules for Computing Associability: Net Associative
Value After One Reinforced Trial Following 5 or 10 Trials of Either CS-alone
or CS paired with a weak US in Stage 1.

Algorithm

P 11 (n - 1) P-H(n) P-HR..w(n - 1) P-IR-w(n)

Gamma 1 .5 i .5 1 .5 1 .5
Control .50 .50 50 50 .50 .50 .50 .50
I (5) .00 .02 .50 .26 .00 .03 .50 .26
l, (10) .00 .02 .50 .251 .00 .00 50 .25

NT(5) .11 .12 .51 .29 .09 .10 .50 .30
NT (10) 1.10] .10 1.52 1.30 L.S8 .09 1.501 .29

Note. The number of trials on the first phase of LI or NT is indicated in parenthesis. Control
groups received neither CS preexposure nor CS paired with a weak US. In NT, A = .1 during the

first phase of training. P 11 (n - I) refers to the original rule for computing a with Equation 16.

P-H (a) refers to the alternative rule for computing a with Equation 20, with -y = I when

aJ-> . P-HR-W (n - 1) refers to the alternative rule for computing I with Equation 21 and

a with Equation 16. P -tR-, (n) refers to the alternative rule for computing V with Equation 21

and a with Equation 20.
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Figure Captions

Figure 1. Partial reinforcement with the Moore-Stickney model: V, N, and Net
associative value V' , as a function of trials for 100% and 50% random reinforcement. V
and N with 50% reinforcement are plotted separately.

Figure 2. Partial reinforcement with the modified Moore-Stickney model: V, N, and
Net associative value Vr , as a function of trials for 100% and 50% random reinforcement.
V and N with 50% reinforcement are plotted separately.

Figure S. Extinction with the original and revised Moore-Stickney model: Net
associative value V? as a function of trials.

Figure 4. Reacquisition with the original and revised Moore-Stickney model. Initial
acquisition (100% reinforcement) with the original Moore- Stickney model is shown in
Figs. 1-2.

Figure 5. Partial reinforcement with the original Pearce-Hall model. Net associative
value as a function of trials under 50% (alternated reinforced and nonreinforced trials)
and 80% (four reinforced followed by one nonreinforced trial) reinforcement. (1):
#E= /I = .5; (2) /E <13 1./6E = .1, 0, = .5. Dashed line indicates asymptote reached with
a continuous reinforced schedule.

Figure 6. Partial reinforcement with the alternative Pearce-Hall model using Equation

20. Net associative value V as a function of trials under 50% and 80% reinforcement. (1):
= 1; (2)- = .5.

Figure 7. Partial reinforcement with the alternative Pearce-Hall model using Equations
21 and 22. Net associative value V as a function of trials under 50% and 80%

reinforcement. (1): Equation 21 ; (2): Equation 22.

Figure 8. Partial reinforcement with the original and alternative Pearce-Hall models.
Net associative value as a function of percentage of reinforcement: P-H, n - 1, flE < fl,
refers to original rule for computing a using Equation 16 with -Y= .5; P-H, n - 1,
#_r = =#, refers to the original rule for computing a using Equation 16 with -y= .5; P-1l,
n, 13E = /1, refers to the alternative rule for computing a using Equation 20 with -Y = 5;
P-HR-w n - 1, 3E = fl,, refers to the alternative rule for computing V using Equation 21
and with a computed using Equation 20.
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