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ABSTRACT

Duality between points and lines is examined, and the

error distributions corresponding to various forms of duality

are simulated. Several different least squares procedures for

fitting of a line to several points are dualized to the fitting

of a point to several lines and then dualized again to give the

coordinate of a point of intersection of several lines.

1. INTRODUCTION

Duality appears in the statistical literature in several

different forms, but none of these forms appear to be the same

as here. For example, the term duality is used for the

interchange of the role of X and Y in multiple correlation

problems by Khatri (1964), who notes that Bartlett (1939) had

first used this terminology. Duality is used extensively in

linear programming. This type of duality has been exploited by

Narula and Wellington (1977a and b) to obtain the minimum sum

of weighted absolute errors in regression. It was also

exploited by Pinski and Sposito (1976) and by Adriano (1977) to

prove that normal equations are consistent. IL is used by Book

(1982) for least absolute deviations position finding.

Armstrong, Elam and Hultz (1977) use duality when dealing with

a two-way classification mcdel. Mardia (1972) has a book on
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the statistics of directional data which deals with some of the

topics considered in this paper, but in a different manner.

The von Mises distribution, which is used for errors around a

circle, is tabulated by Gumbel, Greenwood and Durand (1953).

Still another form of duality exists in statistical designs and

has an extensive literature. See, for example, Sinha and Dey

(1983). Another form of duality exists in sample survey work.

See Sirken and Casady (1982), or Lepkowski and Groves (1984),

or Srivenkataramana (1980). Noorbaloochi and Meeden (1983)

dualize unbiasedness and Bayes.

Duality of points and lines will be treated in this paper

as problems in which lines are represented by coordinates

and points are represented by equations. We will focus on

problems of position finding, starting with those considered by

Daniels (1951), Beale (1961), Rosenblatt (1978), and Hsu

(1979). A recent paper by Souvaine and Steele (1987) exploits

duality between points and lines and refers to some earlier

work on the subject which was not known to the authors of this

paper when this was written.

2. DUALITY BETWEEN LINES AND POINTS

Consider the equation of a straight line in the form

y = mx + b, in the (X,Y) plane. We could just as well

represent this line in a (U,V) plane by the coordinates (-m, b).

Similarly, we could think of the point (xl, yl) in the (X,Y)

plane and write an equation for it of the form v = -xlu + yl in

the (U,V) plane. Hence, there is a one-to-one correspondence

between points and lines in the (X,Y) plane and lines and

points in the dual (U,V) plane. Note that the common point of

intersection of several lines y = mix + bi in the (X,Y) plane
corresponds to the common line connecting the points (-mi,b i )

in the (U,V) plane.

Now consider the usual model in regression where y = mx +

b + E and c is normally distributed with mean zero and variance

02. We have a sample (xl,y]), (x 2 ,Y 2 ), ... , (xn,y n ) and b and

m are estimated by
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A (x. - x)(Yi - Y)
m

=

- 2
E(x. - X)

b = y -mx

The estimator of the regression of Y on X is y = fix + b.

Suppose now that we are interested in obtaining an estimator of

the common point of intersection of several lines y = mix + hi,

i=l, ..., n. The equations of the lines are transformed into

coordinates as outlined above, so that our data consist of

(ul,vl), (u2 ,v2 ), ... , (un, vn) where u i = -mi and vi = b i.

We invoke the usual procedures to compute the regression

in the (U,V) plane and obtain v = Cu + b, where fii and b

are "the same as" Cn and b above except that U's and V's are

substituted for the X's and Y's. Then transforming this line

back to the (X,Y) plane we have the coordinates of the
P A

estimated common point of intersection to be (-i , b). (Note

the change in sign on the A.)

The question arises about the error structure of this

procedure. In the (X,Y) plane we assume the form Yi = mxi + b

+ ci for i = 1, 2, ... n where the Eis are independent. Hence,

if we use the same formulas in the (U,V) plane we assume that

vi = mui + b + ci for i = 1, 2, ..., n where again the ci's are

independent realizations of c which are normally distributed

with mean 0 variance 02. An estimator of d2 is

% n

A2 I n_ )
0 E Z (v i - mAu - b)2.

n-2 i=l

A

We know that (ffi,b) are jointly bivariate normal with

means (m,b) and variance-covariance matrix
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E(u.- u) Vu. - )
1

-0u 0 Eu i

2 -)2
E(u - 2nu - 21 1

Hence, we can construct confidence intervals for m and b

(the coordinates of the point of intersection of n lines) as

A+
m t /2 s Ya 1

A + Sa 0
b - ta 2 s/a

where

S = (v. - mu. - b)

n-2 i=l

Eu 2
. u

a - , and
00-2

nE(u.- u)1

a =

2u- 2

and where to/ 2 is the (1-a/2) quantile of the Student

t-distribution with n-2 degrees of freedom.

These could then be used to give us a confidence region

in the (X,Y) plane for the point of intersection we seek. This

confidence region would be
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(+ )2 (>,/ ) (x+ ) (yifLb) y (Lbr 2

2F

2s F 2,n-2(1-m)via 0  0

Hence, with probability 1 - c we can be sure that m and b lie

in this region, where F2,n_2(l-a) is the (l-a)th quantile of

the F-distribution based on 2 degrees of freedom for the

numerator and n-2 degrees of freedom for the denominator.

In the (U,V) plane we are, however, minimizing the sum of

squares E(v i - mu - b)2 with respect to m and b, i.e., we are

assuming the ui's are obtained without error while the vi's

contain all of the error. In the (X,Y) plane this means that

the slope of each line is without error while the intercept, b,

is associated with all of the error. That is, we are

minimizing the sum of the squares of deviations measured

parallel to the y-axis of each line from the point with

coordinates (m,b). Hence, the process we are using

n 2

minimizes E (b- mu. - v.) with respect to b and m and gives
i11 1i=l

the solution (rh, b). In the (X,Y) plane this corresponds to

taking the vertical distance from the point to be found to each

line and minimizing that sum of vertical distances squared.

For example, if we have six lines

Equation of line Coordinates of line

y = 50.5 ( 0 50.5)

y = 46.8 ( 0 46.8)

v = 1.5x + 62.3 (-1.5, 62.3)

y = 1.5x + 67.7 (-1.5, 67.7)

y = 3x + 80.1 (-3 80.1)

v = Ix + 7Q.2 (-3 79.2)
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Note that for this example the sample lines are parallel in

pairs. Nevertheless, we want to estimate a common point of

intersection.

Transforming to the (U,V) plane we get ii = 93/9 =

10.3333 and b = 48.9333, or in the (X,Y) plane the point of

intersection is (-10.3333, 48.9333).

In the solution above, for a common intersection of n

lines we are assuming that m is obtained without error for each

of the lines, but that b (the intercept) is subject to error.

Therefore, in the (X,Y) plane we can be 95% sure that the

point of intersection is inside the ellipse given by:

______3 ) 2 
+y-48- 

y-48.93 2

S2(6. 9443)(5. 6983)(0.4

or

24 2
(x+I().33) 2 

-0.8(x+lO.33)(y-48.93) +- (y-48.93) -< 3.5174
15

or alternatively, we can have confidence intervals on m and b

as follows. We can be 95% confident that m lies between

1 + 2 1
-. 33 ..276.238)- or from -12.5421 to -8.1245

For b, we can be 95% confident that it lies between

(.or from 44.656 to 53.210.

3. S IMULATION RESUL TS

To demonstrate the efficacy of the procedure in Section 2,

we simulatied t he coverage of tnh ahbe con dence int erva s in

two cases where the number of 1nes is (a) and (h 4. Th

6.
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known point of intersection is (10,10) and a = I. We computed

90% confidence intervals or regions. The tables give the

percentage of actual coverage.

(a) Number of lines is 30:

# of Trials d Seed Slope(m) Intercept(b) Joint(mb)

100 7373 93 95 88

100 35757 88 93 87

200 76373 93.5 88 89

200 87197 91.5 88.5 89.5

(b) Number of lines is 4:

# of Trials d Seed Slope(m) Intercept(b) Joint(mh)

100 3517 87 89 88

100 3579 90 88 88

200 55373 93 88.5 QI.5

20C 5579 90.5 89.5 88.5

These results agree with the 90% confidence target value.

The d seed is the seed used in the IMSL routine GGNML which was

used in this simulation to generate normally distributed errors

Ii1.
Figures I through 8 show a plot of the estimated points

of intersection for the above data.

4. SECOND SOLUTION BASED ON DISTANCE

FROM A POINT TO SEVERAL LINES

In Lindley (1947) the least squares fit for the equation

y mx + h based on the minimum sum of squares of distances

from each point to the line is given by

t = k t 1k 2 + I

e 7
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where k = (SSyy - SSxx)/2SSxy and the sign of SSxy is chosen

for the + sign. This has been extended to the multivariate

case by Fuller and Amemiya (1984). Here

2 (EY i2

SS = E Zi

n

(Zx.)
2ySS = Ex. 1 1

XX 1

SS xy = EX iY i  Ex F

n

Then b is found from b = - mR.
In the problem of Section 2

SSvv = 983.79333

SSuu = 9

SSuv = -93

Hence,

k = -5.2408

or

= 10.5762

then
A
b = - fi .

= 64.4333 - 10.5762(1.5)

= 48.5690.

The coordinates of the point of intersection, assuming that sum

of squares of distances from a point to the lines is minimized,

become

(-10.5762, 48.5690)

in the (X,Y) plane, which should be compared with (-10.31,

48.9333) which was obtained by ordinary least squares (OLS).
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5. THIRD SOLUTION BASED ON PLUCKER LINE COORDINATES

Let us also consider the lines written in the form

mx Y + b 0

m +1 m +1I

it is in this form that the distance from a point to a line is

calculated. Therefore, if the sum of squares of distances from

a point to various lines is to be minimized we will assume the

equation of a line is written in the form

ux + vy + 1 = 0

which is the form for the Plucker coordinates of projective

geometry.

Then the Plucker coordinates for the lines in the example

of Section 2 become

(0, -0.019802)

(0, -0.0213675)

(0.O24077, - 0.0160154)

(0.0221566, - 0.014771)

(0.0374532, - 0.0124844)

(0.0378788, - 0.0126263)

The least squares line here is

v = 0.212 9882u - 0.0204991

or

- 10.390124u + 48.78262v + 1 = 0

Hence the intersection point is

(-I0.3qO1, 48.7826).

. INTERCHANGING ROLES OF X AND Y

For bt h the ordinary lea-t squares solut ion and the

Plucker I ine coordinate solut ion above, we can interchange the

1%
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role of X and Y and obtain two additional solutions. Note

that, the second solution above is symetric in X and Y so the

solution is the same.

In the case of Section 2, this amounts to the error being
on the slope while the intercept is measured exactly. Since X

and Y are merely interchanged, the roles of U a,.] V are

interchanged. More explicitly, the observed data consist of

(u],vl), (u 2 ,v2 ), .... , (Un, vn ) where ui is the observed slope

which is subject to error and v i is the observed intercept

which is now exact. Consider the model

u i  = clv i  + co  + E i  i = 1, 2, ... , n

where the Ei's are independently and normally distributed with

mean zero and variance o2 . By interchanging the roles of X and

Y, we simply mean that we regress {ui } on {vi} by the above

model and obtain the regression line

u = clv + c0

where e1 and E0 are OLS estimators of c1 and co,

respectively. And then we can transform this regression line

in the (U,V) plane back to the point in the (X,Y) plane, and

obtain the point of intersection from

IC,

c 1  c 1

The points of intersection for the example of Section 2 are

given in the following table for all the error structures.

Recession of Y on X Regression of X on Y

OLS: (-10.3333, 48.9333) (-10.5784, 48.5657)

Fuller: (-10.5762, 48.5600) (-10.5762, 48.56q0)

Plucker: (-10.3901, 48.7826) (-10.7325, 48.354))

?r

ell

z,~ 18
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The error structure for the Plucker coordinates is

difficult to characterize, but it is interesting to see the

results in this example.

7. RELATIONSHIP TO OTHER APPROACHES

The problem considered here is directly related to work

by Daniels (1951) and others and summerized in Mardia (1972).

In this other approach position finding is characterized by

several angular readings whicn follow a circular normal

distribution. In Section 2 above, the error was on the

intercept and in Section 6 (where X and Y were interchanged)

the error was on the slope. We can think of the slope as tan 6

where 0 is the angle a line makes with the horizontal axis. We

might then ask what the distribution of 8 looks like if tan E

is normally distributed with mean zero and deviation one. This

is a simple problem to solve but surprisingly we find that the

distribution of E for - 7'2 . 89 r,,2 has two modes at n n,4.

In fact, the density looks almost uniform over the

interval -1.25 ! 8 1.25. Data from this distribution would

be hard to distinguish from data from a uniform distribution.

8. CONCLUSION

The ideas in this paper are easily extended to three and

more dimensions. In fact, they may be even more practically

useful in these higher dimensions where the alternative

approach as given by Mardia (1972) and others has not been

extended. If we think in terms of trying to locate objects in

space or beneath the surface of the earth, (say, the focus of

an earthquake), it is clear that the duality should be between

planes intersecting the earth and points in spare. This

extension to higher dimensions will be considered in another

paper.
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