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: ABSTRACT

‘ Cl

;{ Duality between points and lines is examined, and the

R error distributions corresponding to various forms of duality
O are simulated. Several different least squares procedures for
B fitting of a line to several points are dualized to the fitting
O

; of a point to several lines and then dualized again to give the
ti coordinate of a point of intersection of several lines.

)

. 1. INTRODUCTION

2 , . o . .

>, Duality appears in the statistical literature in several
o,

: different forms, but none of these forms appear to be the same
ﬁ‘ as here. For example, the term duality is used for the

interchange of the role of X and Y in multiple correlation

: problems by Khatri (1964), who notes that Bartlett (1939) had
Tq first used this terminology. Duality is used extensively in

A linear programming. This type of duality has been exploited by
R Narula and Wellington (1977a and b) to obtain the minimum sum
;: of weighted absolute errors in regression. 1t was also

‘

" exploited by Pinski and Sposito (1976) and by Adriano (1977) to
E: prove that normal equations are consistent. It is used by Book
: (1982) for least absolute deviations position finding.
‘: Armstrong, Elam and Hultz (1977) use duality when dealing with
.

~ a two-way classification mecdel. Mardia (1972) has a book on
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the statistics of directional data which deals with some of the
topics considered in this paper, but in a different manner.
The von Mises distribution, which is used for errors around a
circle, is tabulated by Gumbel, Greenwood and Durand (1953).
Still another form of duality exists in statistical designs and
has an extensive literature. See, for example, Sinha and Dey
(1983). Another form of duality exists in sample survey work.
See Sirken and Casady (1982), or Lepkowski and Groves (1984),
or Srivenkataramana (1980). Noorbaloochi ard Meeden (1983)
dualize unbiasedness and Bayes.

Duality of points and lines will be treated in this paper
as probiems in which lines are represented by coordinates
and points are represented by equations. We will focus on
problems of position finding, starting with those considered by
Daniels (1951), Beale (1961), Rosenblatt (1978), and Hsu
(1979). A recent paper by Souvaine and Steele (1987) exploits
duality between points and lines and refers to some earlier

work on the subject which was not known to the authors of this

paper when this was written.

2. DUALITY BETWEEN LINES AND POINTS

Consider the equation of a straight line in the form

y = mx + b, in the (X,Y) plane. We could just as well

represent this line in a (U,V) plane by the coordinates (-m, b).

Similarly, we could think of the point (xy, y)) in the (X,Y)
plane and write an equation for it of the form v = -xju + y| in
the (U,V) plane. Hence, there is a one-to-one correspondence
between points and lines in the (X,Y) plane and lines and
points in the dual (U,V) plane. Note that the common point of
intersection of several lines y = myx + b; in the (X,Y) plane
corresponds to the common line connecting the points (-mj,b;)
in the (U,V) plane.

Now consider the usual model in regression where y = mx +
b + € and € is normally distributed with mean zero and variance
62. We have a sample (x1,y]), (X3,y2), -y (Xp,¥n) and b and

m are estimated by
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b=y - mx

The estimator of the regression of Y on X is y = fix + b.
Suppose now that we are interested in obtaining an estimator of
the common point of intersection of several lines y = mjx + bj,
i=l, ..., n. The equations of the lines are transformed into
coordinates as outlined above, so that our data consist of
(uy,vy), (ug,vy), ..., (uy, v,) where u; = -m; and v; = bjy.

We invoke the usual procedures to compute the regression
in the (U,V) plane and obtain v = fiu + b, where M and b
are "the same as" m and b above except that U's and V's are
substituted for the X's and Y's. Then transforming this line
back to the (X,Y) plane we have the coordinates of the
estimated common point of intersection to be (-m, g). (Note
the change in sign on the m.) '

The question arises about the error structure of this
procedure. In the (X,Y) plane we assume the form yi{ = mx; + b
+ gy for i =1, 2, ... n where the £€;5 are independent. Hence,
if we use the same formulas in the (U,V) plane we assume that
vi =muy +b + gy for i =1, 2, ..., n where again the €;'s are
independent realizations of € which are normally distributed

with mean 0 variance 02. An estimator of 62 is

A
02 = (Vi l?lu]' - f))z.

it &M 3

A
n-2 i=|

A
We know that (m,b) are jointly bivariate normal with

means (m,b) and variance-covariance matrix
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Hence, we can construct confidence intervals for m and b

(the coordinates of the point of intersection of n lines) as

m it s/
™= b2 8
Ay
b - tu/2 s/aOO
where
s = 3 = - mu, - b)2
i
Lu
a = —21 and
00 ? ’
nI(u )
a = !
11 _ 9
Z(u,~ u)
i

and where tg, 7 is the (1-a/2) quantile of the Student

t-distribution with n-2 degrees of freedom.

These could then be used to give us a confidence region
in the (X,Y) plane for the point of intersection we seek. This

confidence region would be

{
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- 2,n-2 00

Hence, with probability 1 - a we can be sure that m and b lie
in this region, where F2,n—2(l"a) is the (l-a)th quantile of
the F-distribution based on 2 degrees of freedom for the
numerator and n-2 degrees of freedom for the denominator.

In the (U,V) plane we are, however, minimizing the sum of
squares L(vj - ﬁui - 3)2 with respect to m and b, i.e., we are
assuming the uj's are obtained without error while the v;'s
contain all of the error. In the (X,Y) plane this means that
the slope of each line is without error while the intercept, b,
is associated with all of the error. That is, we are
minimizing the sum of the squares of deviations measured
parallel to the y-axis of each line from the point with

coordinates (m,b). Hence, the process we are using

2 .
minimizes L (b- mu, - vi) with respect to b and m and gives
i=1

the solution (m, b). In the (X,Y) plane this corresponds to
taking the vertical distance from the point to be found to each
line and minimizing that sum of vertical distances squared.

For example, if we have six lines

Equation of line Coordinates of line
y = 50.5 (0 , 50.5)
y = 46.8 (0 , 46.8)
v = l.5x + 62.3 (-1.5, 62.3)
y = 1.5x + 67.7 (-1.5, 67.7)
y = 3x + 80.] (-3 , 80.1)
v = 3x + 79.2 (-3, 79.2)
5
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Note that for this example the sample lines are parallel in
pairs. Nevertheless, we want to estimate a common point of )
intersection.

Transforming to the (U,V) plane we get fi = 93/9 =
10.3333 and b = 48.9333, or in the (X,Y) plane the point of
intersection is (-10.3333, 48.9333).

In the solution above, for a common intersection of n
lines we are assuming that m is obtained without error for each
of the lines, but that b (the intercept) is subject to error.

Therefore, in the (X,Y) plane we can be 95% sure that the

point of intersection is inside the ellipse given by:

2 2 \
x+10.33\" _ f1.5/6 | x+10.33 y-48.93\  /y-48.93
1 22.5 1 f22.5 /22.5
! 35 136

§ 2(6.9443)(5.6983)(0.4)

or

(x+10.33)% = 0.8(x+10.33)(y-48.93) + = (y-48.93)2 5 3.5174 :
15 '

or alternatively, we can have confidence intervals on m and b

as follows. We can be 95% confident that m lies between

- 10.333 1 2 776 (2.387) = or from -12.542]1 to ~-8.1245

Vo)

For b, we can be 95% confident that it lies between

—_—
,
[R%2)

48.933 T 2.776 (2.387) -- 722, or from 44.656 to 53.210. \
VOV .

3. SIMULATION RESULTS

To demonstrate the efficacy of the procedure in Section 2,

we simulated the coverage of the above confidence intervals in 3

two cases where the number of lines is (a) 30 and (b) 4. The
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known point of intersection is (10,10) and ¢ = 1. We computed
90% confidence intervals or regions. The tables give the
percentage of actual coverage.

(a) Number of lines is 30:

# of Trials d Seed Slope(m) Intercept(b) Joint(m,b)
100 7373 93 95 88
100 35757 88 93 87
200 76373 93.5 88 89
200 87197 91.5 88.5 89.5

(b) Number of lines is 4:

# of Trials d Seed Slope(m) Intercept(b) Joint(m,b)
100 3517 87 89 88
100 3579 90 88 88
200 55373 93 88.5 91.5
20C 5579 90.5 89.5 88.5

These results agree with the 90% confidence target value.
The d seed is the seed used in the IMSL routine GGNML which was
used in this simulation to generate normally distributed errors
{Ei}-

Figures | through 8 show a plot of the estimated points

of intersection for the above data.

4. SECOND SOLUTION BASED ON DISTANCE
FROM A POINT TO SEVERAL LINES

4
!
&

-

In Lindley (1947) the least squares fit for the equation

s

y = mx + b based on the minimum sum of squares of distances

BN 2
.

from each point to the line is given by
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where k = (SSyy - SSXX)/ZSSXy and the sign of SSxy is chosen
for the * sign. This has been extended to the multivariate

case by Fuller and Amemiya (1984). Here

2
(Zyi)
ss_=Iy] - ——
yv o
2
(in)
SS = X, - —
XX i
n
Ix, Ly,
sS = x.y, - —2
Xy i’i
n

A A
Then b is found from b = § - fX.
In the problem of Section 2
SSyy = 983.79333

SSyu = 9
SSuv = -93
Hence,
k = -5.2408
or
mo= 10.5762
then
g=\7—ﬁu’i
= 64.4333 - 10.5762(1.5)
= 48.5690.

The coordinates of the point of intersection, assuming that sum
of squares of distances from a point to the lines is minimized,
become

(-10.5762, 48.5690)
in the (X,Y) plane, which should be compared with (-10.3333,
48.9333) which was obtained by ordinary least squares (OLS).
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5. THIRD SOLUTION BASED ON PLUCKER LINE COORDINATES

Let us also consider the lines written in the form

mx y b

_— - + =

m2 + 1 m2 + 1 m2 + 1

Tt is in this form that the distance from a point to a line is
calculated. Therefore, if the sum of squares of distances from
a point to various lines is to be minimized we will assume the

equation of a line is written in the form

ux + vy + 1 =0

which is the form for the Plucker coordinates of projective
geometry.
Then the Plucker coordinates for the lines in the example

of Section 2 become

(0, -0.019802»

(0, -0.0213675)

(0.024077, - 0.0160154)

(0.0221566, - 0.014771)

(0.0374532, - 0.0124844)

(0.0378788, - 0.0126263)

The least squares line here is

v = 0.2129882u - 0.020499]
or

- 10.390124u + 48.78262v + 1 = 0
Hence the intersection point is

(-10.3901, 48.7826).

e e

Y

6. INTERCHANGING ROLES OF X AND Y

For both the ordinary least squares solution and the

Plucker line coordinate solution above, we can interchange the

17
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role of X and Y and obtain two additional solutions. Note
that, the second solution above is symetric in X and Y so the
solution is the same.

In the case of Section 2, this amounts to the error being
on the slope while the intercept is measured exactly. Since X
and Y are merely interchanged, the roles of U a.d V are
interchanged. More explicitly, the observed data consist of
(uy,vy), (ug,v3), ..., (u,, v,) where u; is the observed slope
which is subject to error and vjy is the observed intercept
which is now exact. Consider the model

U

= cyvi *+ cg *+ Ej i=1,2, ..., n

where the £;'s are independently and normally distributed with
mean zero and variance ¢2. By interchanging the roles of X and
Y, we simply mean that we regress {u;} on {v;} by the above
model and obtain the regression line

u = c|v+cg

where ¢| and C(j are OLS estimators of c| and cq,
respectively. And then we can transform this regression line
in the (U,V) plane back to the point in the (X,Y) plane, and

obtain the point of intersection from

The points of intersection for the example of Section 2 are

given in the following table for all the error structures.
Regression of Y on X Regression of X on Y
]
gs OLS: (-10.3333, 48.9333) (-10.5784, 48.5657)
¥ Fuller:  (-10.5762, 48.5690) (=10.5762, 48.5690)
~ Plucker:  (-10.3901, 48.7826) (-10.7325, 48.3540)
~
R
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The error structure for the Plucker coordinates is

’- Il

o)

difficult to characterize, but it is interesting to see the

results in this example.

7. RELATIONSHIP TO OTHER APPROACHES

The problem considered here is directly related to work i
by Daniels (195]) and others and summerized in Mardia (1972).
In this other approach position finding is characterized by
several angular readings whicn follow a circular normal
distribution. 1In Section 2 above, the error was on the
intercept and in Section 6 (where X and Y were interchanged)
the error was on the slope. We can think of the slope as tan 6
where 8 is the angle a line makes with the horizontal axis. We
might then ask what the distribution of 6 looks like if tan 6
is normally distributed with mean zero and deviation one. This

is a simple problem to solve but surprisingly we find that the

i)
Lk

1
N
»
.
-
.

distribution of 8 for - m/2 = 8 : m:2 has two modes at % m.4.

.
s
P

In fact, the density looks almost uniform over the
interval -1.25 s 8 ¢ 1.25. Data from this distribution would

be hard to distinguish from data from a uniform distribution.

8. CONCLUSION

The ideas in this paper are easily extended to three and

more dimensions. In fact, they may be even more practically

useful in these higher dimensions where the alternative

approach as given by Mardia (1972) and others has not been

;c l.;l 4

extended. 1If we think in terms of trving to locate objects in
g; space or beneath the surface of the earth, (sav, the focus of
- an earthquake), it is clear that the duality should be between
:Q planes intersecting the earth and points in space. This
55 extension to higher dimensions will be considered in another
:; paper.
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