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ABSTRACT 

H This volume provides a complete description of the structure 
and the operation of the specific controller software develop- 
ed for ASU's digital Czochralski Growth Control System (CGCS) 
for compound semiconductors. The manual is primarily intended 
for use by advanced programmers and crystal growth special- 
ists. In four main chapters, the Controller Software Refer- 
ence Manual discusses the design considerations applied to 
digital LEG crystal growth control, gives a short overview 
over the growth controller computer hardware and operating 
system environment, describes the functions of the CGCS from 
an operator's point of view, and delineates the internal 
operations of the controller software by discussing the con- 
troller software and algorithms. Various appendices provide 
tables of controller software tasks, routines, and variables, 
file format information, and lists of system messages and 
error codes, ^U.UVM >\^>, Q1 ^ >> >v o v ~ iß 
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EXECUTIVE SUMMARY 

A digital controller system for the Czochralski growth of gal- 
lium arsenide single crystals is presented. Digital growth 
control was chosen because of its essential advantages over 
the standard analog approach: 

* Better reproducibility of process parameters and control 
actions. 

* A higher degree of flexibility with regard to operation 
procedures and process parameters. 

* Powerful process automation. 

* Expanded process data logging facilities. 

The digital Czochralski Growth Control System (CGCS) is based 
on a microcomputer built around an Intel 8085 microprocessor. 
The system hardware consists of commercial OEM components; the 
microcomputer features 16 KBytes of Read Only Memory (ROM) and 
56 KBytes of Random Access Memory (RAM), an Intel 8231 Numeric 
Processor, two industrial standard 8" single sided, single 
density flexible disk drives, and the Analog/Digital and Digi- 
tal/Analog Converters and Input/Output (I/O) hardware which it 
requires to interface to the Czochralski puller. In addition 
to a console CRT terminal, a line printer is provided. The 
controller computer was designed as a multi-purpose unit which 
permits, in addition to the actual process control, to execute 
auxiliary programs for the maintenance of disks and disk 
files, and for the preparation and evaluation of growth runs. 
The operating system used is Intel's Real-Time Multitasking 
Executive iRMX-80; a special system environment, RXISIS-II, 
was developed for the execution of utility and support pro- 
grams . 

The CGCS is wired to monitor process data in parallel to the 
standard analog growth controller; its output can alternative- 
ly replace the analog controller's output. For reasons of 
simplicity, it uses part of the analog system's signal condi- 
tioning and output circuitry. In particular, it provides the 
analog motor speed and the heater power controllers with speed 
and power setpoints. The digital system can be operated in 
the following modes each of which is a superset of the preced- 
ing one: 

(1) Monitoring: The CGCS collects data from the puller which 
can be displayed and recorded, but it does not control the 
puller. 

(2) Manual: The CGCS controls the growth process but allows 
only to enter setpoints for the primary process parameters 

- v - 
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(temperatures, motor speeds).  No closed-loop diameter 
control is possible._ 

(3) Diameter: This mode includes closed-loop diameter con- 
trol, based on the standard weighing method. Special al- 
gorithms compensate for the buoyancy effects caused by the 
encapsulation melt. 

(4) Diameter/ASC: In addition to the above features, an anom- 
aly compensation technique is used, which makes the diame- 
ter calculated by the CGCS more reliable. 

(5) Automatic: A special algorithm permits to maintain the 
crystal-melt interface at a constant location within the 
heater, regardless of the amount of melt depleted due to 
crystal growth. 

The CGCS software allows to modify any parameter, including 
the parameters of controller loops, by direct operator com- 

j mands. Parameters may be "ramped" within an arbitrary time 
from their current to their intended final values. Commands 
may be recorded on special disk files which may be edited and 
replayed as Macro commands during a later run; the sequence 
and timing of the recorded commands is exactly reproduced. 
These recorded commands can, still, be arbitrarily inter- 
spersed with new commands entered on the console; the result- 
ing command sequence may be recorded again, which gives the 
system a learning ability. Macro command files may comprise 
any number of commands and can easily be invoked by name. A 
special feature permits to execute Macro commands conditional- 
ly, i.e., if and when a specified relation between an arbitra- 
ry system parameter and a constant value is reached. These 
features allow to execute certain stages of the crystal growth 
process automatically, without the necessity of operator in- 
teractions. Although it is not yet possible to automate the 
entire growth process because the process data available to 
the CGCS is not sufficient, we have obtained a considerable 
improvement over the level of automation of the standard ana- 
log controller. 

Great emphasis was put on the design of the operator-machine 
interface: A specially formatted CRT console screen provides 

! information about all data measured by the CGCS. Command 
entry is interactive, with as much flexibility as possible 
with regard to the format of the commands. Several help menus 
and extensive command prompts guide the operator. The dialog 
between the operator and the CGCS can be recorded either on 
disk, or on a line printer; each item is tagged with the time 
when it was issued. This permits, in conjunction with the 
data recording facilities of the CGCS, to trace the effects of 
a particular operation; the data taken during a run can be 
used for various process analysis and modelling approaches. 

- vi - 
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- ............     HOW TO USE THIS DOCUMENTATION 

This documentation details the internal operation of the CGCS 
software. It refers to hardware functions where necessary but 
should not be considered a hardware manual. Although it does 
not primarily give operating instructions, it may contribute 
to the user's understanding of the system's operations, and it 
may therefore clarify some points in question. Readers profi- 
cient in Fortran may find it advantageous to have the program 
listings at hand (which are very extensively commented, too); 
frequently, references are made within this manual to ehe 
names of program variables or routines. It is, however, not 
necessary to study the source programs to understand this 
documentation. A number of additional documentations are 
listed in Appendix A which provide more detailed information 
about items which could only be mentioned here. 
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CGCS PROGRAM VERSIONS 

This issue of the Software Reference Manual is based upon 
version 2.3 of the Czochralski Growth Control System. This 
section describes the "evolution" of the program by listing 
the features newly introduced with each release. 

Version 1.3:  (October 19, 1985) 

(Version 1.3 was the first program release actually used for 
growing gallium arsenide crystals.) 

Version 1.4:  (December 5, 1985) 

(1) INITIALIZE sets the diameter setpoint to the seed diame- 
ter.  (This feature was discontinued from Version 2.1 on.) 

(2) The Diameter evaluation routines check for zero seed lift 
speed and disable diameter calculation in this case. 

(3) An automatic RESET is executed when required. 

(4) The calculated Diameter is recorded in the Data file. 

Version 1.5:  (February 1986) 

(1) RESET permits the entry of a reset value for the Crystal 
Weight and/or the Length Grown. (The effect of RESET on 
the Crystal Weight is a new feature of this release.) 

(2) The length of the crystal stored by the buoyancy compensa- 
tion part of the diameter calculation routine was in- 
creased from 37.5 millimeters to 75 millimeters. The 
thickness of one "slice" is approximately 0.5 mm; the 
maximum permitted seed travel speed exceeds than 200 mm/h. 

(3) The actual Diameter value is automatically copied to the 
Diameter setpoints when any Diameter controlled mode is 
entered. 

Version 1.6:  (February 18, 1986) 

(1) The Data Dump facility was newly introduced. Extra rec- 
ords are written to the Data file in case of an error 
detected by the Diameter Evaluation routines. 

The crystal diameter is evaluated with 
rate rather than with the (actual) seed 

the actual 
lift soeed. 

growth 
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(3) The Diameter Evaluation routines are able to recover from 
Speed Overflow errors automatically. (In previous ver- 
sions, such errors disabled the diameter evaluation perma- 
nently; a RESET command was required to recover from this 
condition.) 

Version 2.0:  (April 11, 1986) 

(1) The number of ramping channels was increased from 8 to 20. 

(2) The maximum number of Conditional commands is 8 rather 
than 2. Conditional commands entered while already 8 
commands are pending are ignored. (In earlier versions, a 
Conditional Macro command issued while already two Condi- 
tional commands were pending replaced the older one) . 

(3) A Selective CLEAR command was introduced which permits to 
remove only those Conditional Macro commands from the 
Conditional Command queue which pertain to a specified 
Variable. 

(4) The PLOT feature was implemented, providing 8 analog chan- 
nels for the output of arbitrary INTEGER*2 parameters, 
plus a set of pre-processed system parameters (Tempera- 
tures, Diameter error, Growth Rate, and Crucible Position 
error). 

(5) 8 INTEGER*2 DUMMY locations were provided as a Macro com- 
mand scratchpad. 

(6) The CGCS can be put into a TEST mode. (Program patches 
(in ANACNT) were required in previous versions to execute 
run simulations.) 

Version 2.1:  (October 13, 1986) 

(1) An algorithmic error in the Diameter Evaluation routine 
was corrected which resulted in a relative error of the 
calculated Growth Rate in the order of 10 percent. 

(2) The buoyancy compensation routines were re-designed. In 
particular, a new interpolation algorithm is used for the 
determination of the crystal diameter at the top surface 
of the boric oxide encapsulant. A partial compensation of 
the effects caused by melt recession at the end of the 
growth process was provided. 

(3) Two new operation modes of the PID controller routine are 
available with release 2.1. They provide different ap- 
proaches for a safe "anti-windup" function which improves 

■ft 
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the dynamic behavior of the controller in its output lim- 
ited regime. 

(4) The scaling of the Heater and Base Temperature output to 
the chart recorder was improved. A Variable-defined out- 
put range permits a flexible adaptation of the chart re- 
corder output to various operating conditions. 

(5) A timeout for the printer interface was activated. This 
feature prevents a defective or unselected printer from 
suspending the operation of the system. 

Version 2.2:  (October 24, 1986) 

(1) A new, more stable diameter interpolation algorithm re- 
places part of the procedures introduced with Version 2.1. 

(2) The melt recession compensation algorithms were improved. 
A numeric parameter permits to adapt the Diameter Evalua- 
tion routines to arbitrary degrees of melt recession. 

(3) The (square of the) crystal diameter stored in a table 
internal to the Diameter Evaluation routine is checked for 
excessive deviations with respect to its previous value, 
and adjusted accordingly. 

(4) A check for a possible boric oxide encapsulant height 
overflow permits to run the CGCS safely with increased 
boric oxide charges. 

(5) Conditional command checking is disabled for several sec- 
onds after a new (Conditional or unconditional) Macro 
command was started, in order to make sure that at least 
the first command of a Macro file can be executed in any 
case. 

(6) An improved Macro command execution guarantees the proper 
execution of Macro commands even in the case of transient 
disk errors. 

(7) The generation of the Data disk file which was performed 
by two tasks in previous versions (one, collecting data, 
and one, writing it to disk) was concentrated in one 
single task. This measure provides the memory space re- 
quired for the installation of the other software enhance- 
ments and reduces the probability of a temporary system 
deadlock due to a lack of pool memory, with the penalty of 
a possible minor record timing inaccuracy in the case of 
very short intervals between Data file records. 
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1 
Version 2.3:  (December 5, 1986) 

(1) A periodic memory check was provided in this release, com- 
prising the RAM resident main program code. 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

-  1.  DIGITAL CONTROL OF CZOCHRALSKI GaAs CRYSTAL GROWTH 

1.1  INTRODUCTION 

The Czochralski process is gaining increased importance not 
only for the growth of high purity silicon crystals but also 
for the large scale production of compound semiconductors like 
gallium arsenide. Although Czochralski grown GaAs crystals do 
not yet reach low dislocation densities comparable to those 
obtainable with the major competitor process, the Bridgeman 
technique, the Czochralski process offers, nevertheless, sig- 
nificant advantages over boat growth processes: 

* The stoichiometry and the purity of Czochralski-grown 
crystals is superior to the properties of boat-grown 
ones. Semi-insulating substrates can be obtained with 
less or even without chromium doping. 

* The Czochralski process is better suited for a large scale 
production, and it is therefore cheaper. 

A Czochralski puller (Fig. 1) consists essentially of a heated 
crucible made of quartz or boron nitride which contains the 
semiconductor melt. A small single crystal rod, the seed, is 
immersed into the melt and slowly lifted. The melt whose tem- 
perature is kept slightly above the semiconductor's melting 
point solidifies at the interface to the seed; with the proper 
temperature distribution and seed lift speed, a cylindrical 
single crystal can be grown whose crystallographic orientation 
is determined by the orientation of the seed. The crucible 
and the seed are rotated in opposite directions in order to 
minimize the influence of potential inhomogeneities of the 
temperature distribution inside the furnace. An inert atmo- 
sphere, usually argon, prevents the oxidation of the melt and 
of the crystal. 

f. 
-•, An additional problem is caused by the fact that compound 

semiconductors like GaAs tend to dissociate at higher tempera- 
tures.  The two components are bound together only loosely, 

*} and the one with the higher gas pressure (in our case, arsen- 
yj ic) is evaporated to a greater degree than the other (galli- 

um) , which results in intolerable deviations from stoichiome- 
-, try and, in consequence, in bad electrical characteristics. 
>2 While the miscellaneous variations of the Bridgeman process 

employ hermetically sealed ampoules made of quartz to prevent 
the loss of the volatile component, two approaches are used 

£> with the Czochralski process, either individually or combined: 
"v First, the pressure of the inert atmosphere inside the puller 

is increased to several hundred psis in order to counterbal- 
-K ance the arsenic vapor pressure, and, second, the semiconduc- 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

tor melt and the part of the crystal next to it are encaps- 
ulated in a vitreous melt of boric oxide. 

Technical applications of semiconductor single crystals re- 
quire a defined, and preferably cylindrical, shape of the 
crystal ingots which have to be sliced into wafers with given 
dimensions. Semiconductor crystal growth implies, therefore, 
an efficient control of the diameter of the crystals grown. 
Neither must the diameter drop below a minimum value (which 
would prohibit cutting a wafer with the specified diameter), 
nor should the diameter exceed its nominal value too much 
since the excess material is wasted as it must be ground away 
before the ingot is sliced into wafers. Conventional Czoch- 
ralski pullers for compound semiconductors determine the diam- 
eter of the growing crystal from the increase of its weight 
per unit time which is obviously proportional to the crystal 
volume solidified per time. Taking a constant pull rate, 
i.e., a constant height of the incremental solid cylinder, for 
granted, this volume is proportional to the square of the 
crystal diameter. Diameter control can be effected by chang- 
ing the temperature of the melt and/or the pull rate appropri- 
ate! v: The solidification of the molten semiconductor materi- 
al generates heat which must be removed from the interface 
between the crystal and the melt in order to permit a continu- 
ous growth. The amount of heat which can be removed from the 
interface is, however, determined by the geometry of the fur- 
nace and of the crystal, and it is more or less constant. 
Increasing the temperature of the melt permits therefore less 
material to solidify, which results in a reduction of the 
crystal diameter if the pull rate is kept constant. On the 
other hand, an increase of the pull rate while the melt tempe- 
rature is maintained has the consequence that the roughly 
constant volume of semiconductor material which can be solidi- 
fied per unit time has to be stretched out to a longer and 
narrower cylinder, thus reducing the crystal diameter, and 
vice versa. (Compound semiconductors are, however, generally 
grown with temperature based diameter control since changes of 
the pull rate tend to deteriorate the material quality.) 

A basic compound semiconductor puller features, therefore, the 
following elements (compare Fig. 1): 

(1) A temperature controlled heater. 

(2) Four speed controlled motors which are in charge of 

(a) the rotation of the crucible; 

(b) the rotation of the crystal; 
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85 1.  Digital Control of Czochralski GaAs Crystal Growth 

_ (c) the seed lifting motion; and 

** (d) the lifting of the crucible which keeps the interface 
between the melt and the solid crystal at the same 

•$' location within the heater in order to guarantee a 
X» constant temperature profile at the critical interface 

region. 
B .... 5f (3) An electronic balance which permits to determine the crys- 

tal's weight and the weight increment; the latter signal 
can be used to control the heater temperature in order to 
maintain a defined crystal diameter. 

Conventional compound semiconductor Czochralski pullers use 
analog electronic circuits to control the heater temperature 
and the motor speeds. Although this is an obvious approach 
(since all input and output parameters are inherently analog 
signals), there are several severe drawbacks associated -with 

> analog control circuitry: r 

> 

(1) Analog controllers usually obtain their control parameters 
(e.g., the gain of a controller amplifier) from the set- 
ting of a potentiometer. It is not only difficult (and, 
frequently, impossible) to modify such parameters dynami- 
cally during a growth run although this might be desir- 
able, it is also problematic to return to exactly the same 
settings which were used during earlier experiments once a 
parameter was changed. 

(2) Despite of the fact that there are analog controllers on 
the market which feature a high degree of automation, the 
actual growth process is basically determined by the human 
operator. The high degree of human interaction, combined 
with the questionable repeatability of an analog system, 
makes it difficult to provide exactly reproducible growth 
conditions for different growth runs. 

(3) Crystal growth is, in fact, a very complex and not yet 
-r sufficiently understood process.  A better understanding 
•>' of the process which is the prerequisite for any process 

improvement can, however, be only based upon the thorough 
analysis of actual growth data.  The logging of process 

v data, particularly, of a greater number of data channels, 
$ is a very awkward procedure in an analog system; usually, 

crystal growers have to be content with three or so data 
y channels logged on an analog chart recorder. 

All these considerations favor the introduction of digital 
computer control for Czochralski crystal growth.  A numerical- 

ly ly based control permits not only absolute reproducibility of 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

process parameters; it can much more readily be interfaced 
with automation approaches, and it permits, last but not 
least, the recording of growth data in a form suitable for 
later computer analysis. 

1.2  BASIC CONCEPT OF A DIGITAL CONTROLLER FOR GaAs CZOCHRAL- 
SKI GROWTH 

The basic target of the current project towards digital con- 
trol of the Czochralski process for GaAs crystal growth was to 
replace the standard analog controller supplied by Cambridge 
Instruments, the company that built and delivered the puller 
proper, by a suitable computer-based controller. Since the 
complete setup is basically an experimental one, great empha- 
sis had to be put on versatility and flexibility. Therefore, 
the approach shown in Fig. 2 was chosen: 

The digital controller is connected in parallel to the stan- 
dard analog one. Both systems monitor in parallel the output 
signals provided by the puller's sensors. Switches (actually, 
relays driven by the digital controller) permit to apply con- 
trol signals to the puller either from the analog or from the 
digital controller. This allows, in conjunction with the 
proper software support, to switch control between both sys- 
tems even during a growth run, which is particularly important 
during the setup and tuning of the digital controller. For 
reasons of simplicity, the digital system uses part of the 
signal conditioning circuitry and the motor controller and 
heater SCR circuits of the standard analog console. The digi- 
tal system supplies, therefore, only motor speed and heater 
power setpoints; the standard analog controller's circuitry 
provides closed-loop motor speed and heater power control. 
Furthermore, only those functions of the puller which directly 
affect the growth conditions are digitally controlled. Al- 
though the digital system is therefore not capable of running 
the puller without the standard analog circuitry, this re- 
striction to the most important operations permits to concen- 
trate on features which are essential for the crystal growth, 
and facilitates the hardware and software implementation of 
the digital controller. 

The following analog signal sources were chosen to be moni- 
tored by the digital controller, in parallel to the analog 
Cambridge console: 

(1) Three thermocouples, measuring up to three heater zone 
temperatures. (Currently, only a single-zone heater is in 
use.) 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

(2) Four tachometers which are connected to the four motors 
for seed and cruciole lift and rotation. (In contrast to 
the Cambridge Instruments terminology of "crystal" lift 
and rotation, we are using "seed" lift and rotation within 
this documentation and within the software, in order to 
avoid confusions of "crystal" and "crucible", particularly 
in abbreviations.) 

(3) Up to three wattmeters which are connected to the puller's 
heater(s) . 

(4) The weight gauge monitoring the crystal weight. 

(5) An analog differentiator circuit which generates a signal 
proportional to the first derivative of the crystal weight 

> with regard to time.  Determining the differential weight 
with an analog circuit rather than calculating it numeric- 
ally from the plain weight was found advantageous because 

y the crystal weight changes very slowly due to the slow 
r" growth of compound semiconductors.  In order to allow to 

calculate the differential weight from the plain weight in 
«v practical time intervals with a reasonable resolution, the 
5 weight signal would have, therefore, required an extremely 

high analog-to-digital resolution, in excess of 20 bits. 
Suitable hardware is hardly commercially available, at 

H least, for a reasonable price.  In contrast, a 14 bit re- 
solution is sufficient for all signals, including the 
plain weight, if analog weight differentiation is used. 

V 
iV (6) Two potentiometers which return voltages proportional to 

the current positions of the seed and the crucible, re- 
spectively. 

(7) A thermocouple measuring the temperature at the bottom of 
the crucible ("base temperature"). 

(8) A pressure gauge sensing the pressure inside the puller's 
vessel. 

(9) The "contact device" which is basically an ohmmeter cir- 
cuit which monitors the resistance between the seed and 
the melt. This resistance drops from infinity to a cer- 
tain value when the seed touches the (semiconducting) 
boric oxide encapsulation melt, and it drops further when 
contact between the seed and the actual semiconductor melt 
is established. 

(10) Eight spare channels which can be used to record additio- 
nal information (for example, the outputs of auxiliary 
thermocouples) together with growth data. 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

The signals which are supplied by the digital controller as 
replacements for the analog system's outputs are: 

(1) Three heater SCR control voltages, anticipating a three- 
zone heater. (Currently, only one control voltage is 
used.) 

(2) Four speed control voltages for the seed and crucible lift 
and rotation motors. 

Up to eight internal parameters can be submitted to a 
digital/analog conversion; the resulting eight analog 
signals can be recorded on a suitable multi-channel chart 
recorder. 

In addition, digital signals are monitored by the digital 
controller and provided for the puller: 

(1) Four motor direction signals: They are required, in addi- 
tion to the (unipolar) speed control voltages, in order to 
determine the direction of motor motion (up or down, or 
clockwise or counterclockwise) . The same control signals 
are also used within the standard analog controller; these 
signals generated by the analog circuitry are monitored by 
the digital system to provide complete status information. 

(2) One master control signal: All control signal changeover 
relays are energized to select the digital system as a 
control signal source if this signal is present. Other- 
wise, the analog controller is in full charge of the 
puller. This is obviously an output-only signal of the 
computer system. 

The quasi-parallel operation of the analog and the digital 
controllers suggests a multi-step approach for the implementa- 
tion of the computer-based system which is, indeed, supported 
by the digital controller software. Each of the following 
operation modes is upwards compatible to the previous ones, 
providing all their functions plus some additional ones: 

(1) Monitoring: The puller is still controlled by the analog 
system; the computer can be used to collect, display, and 
record measured data. This operation mode is evidently 
essential for establishing the proper operation of the 
data acquisition hard- and software, and it can be used to 
compare the actions of both controllers. 

(2) Manual Growth:  The control signals for the heater(s) and 
the four motors are generated by the digital system. 
Still, they result directly from temperature and speed 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

setpoints, and no closed-loop diameter control is per- 
formed. The power applied to the heater(s) can be con- 
trolled in two ways: The system permits to provide three 
temperature setpoints, and one power limit value. The 
heater power output is determined by a temperature control 
loop while it is less than or equal to the limit value; it 
is set to the limit value if the temperature controller 
would request a greater heater power. The transition be- 
tween both sub-modes is smooth and transparent to the 
user. 

(3) Diameter Control: In this mode, the heater temperature is 
not only determined by its (manually entered) setpoint but 
also by a control loop which tries to keep the measured 
crystal diameter close to its corresponding setpoint. 
(For practical reasons, the "manual" temperature setpoint 
is only slightly corrected according to the diameter de- 
viations, which results in a safer operation and gives im- 
proved control over the growth parameters.) 

(4) Crucible Lift Control: The semiconductor melt in the cru- 
cible is gradually depleted while the crystal is grown. 
In order to maintain the solid-liquid interface at the 
same location within the heater, which is essential for 
reproducible crystal growth, the crucible has to be raised 
slowly during the growth run. This is done automatically 
in this operation mode, using a specially developed algo- 
rithm. 

1.3  CRYSTAL GROWTH AUTOMATION 

A significant improvement of the current performance of the 
crystal growth process, in particular, of its yield, can only 
be expected if it is possible to grow crystals reproducibly, 
with repeatable properties. This implies, however, a higher 
degree of process automation in order to reduce the influence 
of the irregularities inevitably induced by human control 
actions. Evidently, a digital controller is much more suit- 
able for automating a process than the conventional analog 
systems. (Although the Cambridge Instruments analog control- 
ler permits to control the crystal diameter automatically over 
large parts of the growth process, its total operation is far 
from automatic, and some very crucial operator actions are 
still required within the "automatic" growth phase.) 

The digital Czochralski Growth Control System (CGCS) was. in 
general, designed to duplicate the existing analog controller. 
This is not true, however, for the approach chosen towards 
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1.  Digital Control of Czochralski GaAs Crystal Growth 

process automation. Our approach is not based upon a simple 
control of essentially one system parameter (namely, of the 
crystal diameter setpoint) but on the reproduction of all 
actions pertaining to the process. However, crystal growth is 
a highly complex operation which is strongly influenced by 
unforeseeable effects like random changes in the melt flow 
pattern in the crucible. It was, therefore, regarded an un- 
realizable task to automate an entire growth run by blindly 
repeating a fixed pattern of actions; we felt automation could 
only be achieved reasonably by splitting the process into 
small steps which are more promising targets for automatic 
control. The system was, furthermore, designed to permit 
gradual improvements of such process steps, in order to opti- 
mize them more or less independently. The optimized steps can 
be joined together in a suitable way, being executed condi- 
tionally if required, to finally control an entire growth run. 

The following features were therefore provided in the digital 
Czochralski Growth Control System in order to allow the opti- 
mization of the growth process: 

(1) The system permits to modify interactively not only the 
actual growth data setpoints (for example, the diameter or 
the motor speed setpoints) but also any arbitrary internal 
system parameter ("Variable") which has an impact on the 
process. This applies specifically to the control loop 
parameters (e.g., to the gain of a control loop). 

(2) The above changes can be made not only instantaneously but 
also slowly, by "ramping" a parameter linearly from its 
current to its desired final value within an arbitrary 
time. This approach prevents not only abrupt changes 
which are likely to upset a delicate process, it offers 
also a simple but efficient tool to automate process se- 
quences. (For example, the cone between the seed and the 
crystal body can be grown by ramping the crystal diameter 
setpoint from the seed diameter to the intended crystal 
diameter within a time determined by the pull rate and the 
planned cone length.) 

(3) Operator commands which affect the actual growth process 
can be optionally recorded on a disk file; the time at 
which a command was issued (relative to the start of com- 
mand recording) is added as a tag to each command record. 
These "Macro" command files can be edited off-line, and 
invoked during a later growth run where they repeat exact- 
ly the recorded sequence of operator actions. Since pre- 
recorded commands may be arbitrarily interspersed with 
commands entered by the operator during the run, and since 
the combined sequence of commands may be recorded again on 
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a new disk file, the system achieves a "learning" ability. 
This command recording makes sense for self-contained 
process steps only (for example, for heating up the fur- 
nace, or for starting the growth proper), but it saves the 
operator a number of actions which frequently have to be 
done within a very limited time, and it prevents the inad- 
vertent omission of important process steps. 

(4) Further process automation can be achieved by the conditi- 
onal execution of such Macro command files. A pre-record- 
ed set of commands is started only if and when a system 
parameter which can be arbitrarily defined with the perti- 
nent command obtains a certain numeric relation (e.g., 
greater than or equal) to a given constant. Such Condi- 
tional commands may also be issued from a Macro file; it 
is, therefore, possible to concatenate Macro files depend- 
ing on the current status of the system. Even relatively 
complex process steps like seeding can thus be automated. 

Although the current design of the Czochralski Growth Control 
System does effectively permit a fully automated growth (with 
only one operator interaction in addition to the starting of 
the growth procedure) , the expertise of a human operator is 
still required. The task of the operator is, however, reduced 
to supervising the process and interacting in the case of a 
malfunction (e.g., if the crystal "twins"). The current CGCS 
can not react to some events simply because it can not "see" 
them. Any attempt to further improve crystal growth automa- 
tion must therefore be based on the introduction of additional 
information, especially, of data supplied by suitable optical 
sensors. 
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2.  The Computer Environment of the CGCS 

2_. THE COMPUTER ENVIRONMENT OF THE CZOCHRALSKI GROWTH CONTROL 
SYSTEM 

2.1  BASIC CONSIDERATIONS 

The digital Czochralski Growth Control system consists essen- 
tially of two parts which are linked together relatively 
loosely: One part, the "brains" of the system, is a suitable 
microcomputer, the other part is constituted by the hardware 
which interfaces the digital control computer to the essenti- 
ally analog outside world. We will deal with both parts sep- 
arately. 

Microcomputer systems for industrial applications are usually 
designed exactly for the control task which they have to per- 
form, i.e., with built-in software and a dedicated interface 
to the operator and to the process they have to control. Fre- 
quently, they feature only a very restricted set of function 
keys for operator input, and limited display facilities for 
the output of system status and data. We felt that such a 
system concept would hardly meet the requirements of an exper- 
imental system which was supposed to offer the following char- 
acteristics: 

* Flexibility: The system software must be easy to modify, 
in order to adapt the system to varying demands, to intro- 
duce new features, and, last but not least, to correct 
programming errors. 

* Versatility: The control computer should not only be able 
to control growth runs but also assist in the evaluation 
of measured data taken during crystal growth, and permit 
the preparation of experiments. 

* Stand-alone operation: The growth controller computer 
should be used as a stand-alone unit, without requiring a 
host system for data transfer, evaluation, and mainte- 
nance. 

* Interactive operation: The system should be run in an 
interactive mode, permitting a dialog between the operator 
and the controller computer. This was regarded particu- 
larly important since the main target of the project was 
to learn about the dynamics of the crystal growth process, 
rather than producing crystals on a large scale according 
to pre-determined rules. 

* Data display and lo< ling facilities: As a consequence of 
the above considerat ons, it was regarded essential that 

- 10 - 



" 2.  The Computer Environment of the CGCS 

■ the system should be able to display, evaluate, and record 
5 as many growth related parameters as possible. 

™ All these demands cannot be fulfilled by a dedicated computer 
$ system with completely built-in software resident in ROM (Read 
*        Only Memory) .  It is not only an awkward procedure to modify 

ROM resident programs, particularly if frequent changes are 
J5 required, it is even close to impossible to accommodate 
6 lengthy and frequently conflicting routines within the limited 

memory space available.  Since it was necessary anyhow to pro- 
n vide mass storage devices for growth run data logging, we 
ffli planned a generic disk-based microcomputer system which per- 
™ mits to load arbitrary programs from flexible disks.  Command 

input to and data output from the control computer is handled 
$ by a standard CRT terminal which permits interactive operation 

and data display. 

,v 

y 

2.2  COMPUTER HARDWARE 

* The hardware of the controller computer is based upon an Intel 
$ 8085 eight-bit microprocessor.  This particular processor was 

chosen because of the vast experience we already had with it 
and because of the support software which was already avail- 
able for it, which permitted to expect a fast system develop- 
ment. The experiences made with comparable applications 
showed that the processor's performance is sufficient if a 

v system is well designed.  The 8085 is able to address a 64 
V KByte memory space (plus 255 Input/Output (I/O) ports); with 

regard to the desired flexibility and versatility, as much of 
■j this memory space as possible was to consist of read-write 

memory (RAM - Random Access Memory).  Only the absolute mini- 
mum of ROM whr.ch is indispensable for the operation of a com- 
puter was pro/ided; the ROM resident code has, essentially, to 

!y control the loading of the actual application software from 
*'" disk.  The memory components available suggested, in addition, 

a memory bank switching approach which further reduces the 
■7, amount of memory space consumed by ROM:  The total ROM area of 
■"' 16 KBytes is subdivided into two banks of equal size which can 

be activated alternately and which require, therefore, only 8 
KBytes of address space. One bank holds confidence test rou- 
tines and a Monitor which are only needed for starting and/or 
debugging the system; the other bank is reserved for perma- 
nently required operating system routines. Therefore, 56 
KBytes are available for RAM within the 64 KBytes address 
space; Fig. 3 shows a memory map of the controller's computer. 

The controller computer is built of commercial OEM (Original 
Equipment Manufacturer) components most of which are supplied 
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by Intel Corporation; these boards are interconnected via 
Intel's Multibus. The system configuration is shown in Fig. 
4: An Intel iSBC 8 0-24 Single Board Computer board holds the 
8085 CPU, the 2x8 KBytes of ROM, 8 KBytes of high-speed RAM, 
and an Intel 8231 Numeric Processor on an iSBX 331 expansion 
board which permits to increase the throughput, particularly 
of data output to the system console. Two expansion boards, 
an iSBC 517 I/O, and an iSBC 028 Memory Expansion Board, pro- 
vide additional I/O lines and the remaining 48 KBytes of RAM, 
respectively. An iSBC 204 Floppy Disk Controller board con- 
stitutes the interface to the mass storage which consists cf 
two (industrial standard) 8" single side, single density flex- 
ible disk drives with a storage capacity of 250 KBytes each. 

A standard "dumb" CRT terminal serving as an operator console 
is connected to the iSBC 80-24 Single Board Computer via an 
RS-232 serial interface. A similar serial interface on the 
iSBC 517 I/O Expansion Board connects to a printer whose main 
task is providing a hard copy of the dialog between the opera- 
tor and the Czochralski Growth Control System. 

2.3  COMPUTER-PULLER HARDWARE INTERFACE 

The controller computer has to monitor and generate a number 
of analog and digital signals which were listed in chapter 1.2 
of this documentation. The interface to the analog signals 
consists of one Analog-to-Digital (A/D) and one Digital-to- 
Analog (D/A) Converter board. Both boards are interconnected 
to the microcomputer proper via the Multibus system bus; data 
is read from and written to them via I/O port accesses. 

The A/D Converter is a Data Translation DT772/5716-32DI-B-PGH 
board which reatures 32 differential input channels with a 
sensitivity of ±10 V (which may be increased by a factor of up 
to 8 under software control). The voltage of the (software 
selectable) input channel is converted into a 16 bit integer 
value by the board, corresponding to a resolution of 1/65,536; 
this data is read and eventually processed by the computer. A 
bank of isolation amplifiers between the signal sources and 
the A/D converter prevents ground loops which might induce 
noise and provides the necessary pre-amplification of low- 
level signals like the outputs of thermocouples. 

The analog control voltages for the puller are output by a 
Burr-Brown MP8316-V D/A Converter board. This board provides 
16 channels with an output voltage swing of ±10 V; its resolu- 
tion is 12 bit (1/4,096).  Eight of the 16 output channels are 
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reserved for the interconnection to an analog chart recorder 
for online data output. 

m Digital I/O of the motor direction information and of the con- 
ra troller selection is performed via a series of digital I/O 
""* ports on the iSBC 517 I/O Expansion Board.  These signals are 

buffered and pre-processed by a simple external digital cir- 
R cuit.  Relays constitute the actual input and output interface 
H» to the puller, permitting absolute isolation between the pul- 

ler's circuitry and the computer. 

a 
2.4  THE OPERATING SYSTEM OF THE CONTROLLER COMPUTER 

A complex process like crystal growth requires basically real- 
time control, i.e., control operations whose chronological 
order is neither pre-determined nor predictable.  Although 

W there are several ways of programming such systems, an advant- 
ageous approach which, in addition, offloads the programmer 
from providing many standard routines is using a special real- 

fr time operating system.  Such operating systems schedule the 
u" execution of parts of program code ("tasks") which are dedi- 

cated to certain actions of the controller; they also provide, 
u in general, support of external devices like a console termi- 
P nal or disk drives. 

.. One such real-time operating system is Intel's Real Time Exec- 
jH utive for 8080/808L Microprocessors, iRMX-80.  Although the 

original version of this operating system is obsolete and was 
withdrawn by Intel without a replacement several years ago, it 

■ was considered to offer still satisfactory performance, par- 
^ ticularly because several of its routines have been replaced 

by the author with improved and more efficient ones. 

AT 
v Still, iRMX-80 is basically intended to support dedicated 
™ process controllers, primarily with ROM-based software, al- 

though it provides disk support and the possibility to boot- 
^ load complete real-time application systems from disk.  In 
«v contrast to newer real-time operating systems, iRMX-80 does 

not offer utility programs for the maintenance of disks and 
^ disk files (for example, for disk formatting, file copying, 
^ file display, or file listing) which would have had to be 
* written specially for our application.  Fortunately, the pro- 

gramming interface of iRMX-80 (i.e., the parameter passing 
conventions for system function calls) is very similar to the 
one used by Intel's System Implementation Supervisor operating 
system ISIS-II under which Intel's 8-bit microprocessor devel- 

Y«; opment systems run and for which a wealth of system utilities 
is available. 
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In order to permit the execution of such utilities on the 
Czochralski Growth Controller computer, a special iRMX-80 
based system was written which emulates the functions of ISIS- 
II and which was accordingly called RXISIS-II. This operating 
system emulator is loaded from disk when the computer is 
switched on, and it is the "hub" of all system operations. 

RXISIS-II permits to run various utility programs, including a 
BASIC interpreter and a screen editor; some programs support- 
ing the Czochralski Growth Control System (CGCS) (e.g., the 
Macro Command Editor and the Data File Display program) use 
its services, too. Application programs are loaded into a re- 
served memory area; they use the system support (for example, 
for disk I/O) provided by RXISIS-II which remains resident 
within the system, and they return control eventually to 
RXISIS-II (Fig. 5). 

This approach is fine for running relatively simple support 
software which does not even need real-time performance; it 
cannot be used, though, to execute a complex program like the 
CGCS. Still, the CGCS is designed to be started under RXISIS- 
II like any utility program, but it constitutes, in fact, a 
totally independent real-time application which replaces 
RXISIS-II totally (Fig. 6). It does not require the ISIS-II 
emulation since its routines interface directly to iRMX-80. 
Upon exit from the CGCS, RXISIS-II is re-booted and available 
again for the execution of support software. 

iRMX-8 0 is a modular operating system, which permits to in- 
clude only those functions into an application system which 
are actually required. This approach allows to keep only a 
"common denominator" of all perceivable application systems in 
ROM, meeting the requirement of a minimum size ROM resident 
code stated above. The ROM bank which is active during the 
regular operation of the system holds, therefore, the iRMX-80 
"Nucleus" which is a set. of housekeeping routines which are 
needed for any real-time system. Obviously, a Boot Loader 
must be included into the system ROM which permits to load 
either RXISIS-II or the CGCS (or any other iRMX-80 based real- 
time application system) from disk into RAM. Since there was 
still space available in the system ROM, a Terminal Handler 
was also stored there which controls the input and output of 
data from and to the console terminal. Both routines had to 
be written specially, replacing standard iRMX-80 software. 
The Boot Loader is more versatile than the standard iRMX-80 
one since it can also be used to load arbitrary program code 
rather than complete real-time systems only, and it is by 
orders of magnitude faster. The Terminal Handler supports 
output of data to a CRT screen with a fixed format, while its 
standard iRMX-80 counterpart only permits continuously scroll- 
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2.  The Computer Environment of the CGCS 

ed "Teletype" output, and it provides many more features, 
including printer output via a second RS-232 interface. 

The second ROM bank is active only immediately after power-on, 
and during program debugging operations. It contains a Confi- 
dence Test and a Monitor program. Both operate totally out- 
side the iRMX-80 environment; the real-time system is "asleep" 
while the Monitor is active. The Monitor permits to inspect 
and change the contents of memory locations and processor 
registers, to read from and write to I/O ports, and to execute 
program code up to given breakpoints. It can be entered very 
easily from RXISIS-II, e.g., by pressing the "Break" key cf 
the console terminal. Since it is obviously not desirable tc 
have the CGCS "asleep" if anybody hit the "Break" key inadver- 
tently, this feature is locked out by the Czochralski system. 
(Similarly, control is vectored to the Monitor under RXISIS-II 
but not within the Czochralski system if a fatal disk error 
condition is detected.) 

The Confidence Test can be accessed from the Monitor; it per- 
mits to check the integrity of the system hardware, including 
the console terminal, the printer, and the two disk drives. 
Its memory test portion is, in addition, executed after each 
power-up. 

■v" 

For further information about iRMX-80, the Alternative Loader 
Task, the Alternative Terminal Handler, and RXISIS-II with its 
Monitor and Confidence Test routines, please refer to the per- 
tinent documentations listed in Appendix A. 

y 
v 

S 

15 - 

" • ' » « « • . ■ J><*. 
^; 



3.  The Czochralski Growth Control System 

3.  THE CZOCHRALSKI GROWTH CONTROL SYSTEM 

The Czochralski Growth Control System (CGCS) is invoked from 
RXISIS-II, and it is in some respects an extension of the 
RXISIS-II functions. Some special measures have been taken, 
though, to guarantee a proper operation even in the case of 
failures. While, for example, a disk error constitutes a fataj. 
situation under RXISIS-II, it is only reported in the CGCS but 
does not affect its overall operation. 

3.1  STARTING THE CZOCHRALSKI GROWTH CONTROL SYSTEM 

NOTE: The system needs the CGCS system disk permanently in 
drive 0. The operator must by no means exchange this 
disk unless prompted to do so (see the EXCHANGE com- 
mand) . To be save in the (improbable) case of a disk 
error on the system disk, a second system disk should be 
kept at hand which must, however, be of the same system 
version. The system will crash inevitably at the attempt 
to install a disk in drive 0 which holds a different 
CGCS version! 

The CGCS is invoked from RXISIS-II like any other RXISIS-II 
function, namely, via a call by its name, CZOCHR. Provided 
the disk in drive 0 holds a valid copy of the CGCS, it will be 
loaded, and a sign-on message is displayed. During this ini- 
tialization, the system checks whether the A/D Converter hard- 
ware is installed and operational, and it enters into a Test 
mode if this is not the case. An information message "Test 
Run" is displayed in this case, and input from the A/D conver- 
ter and output to the D/A board are suppressed. This feature 
permits testing of the CGCS software in an environment which 
does not provide the hardware interface to the puller; running 
the CGCS with disabled inputs allows, in addition, to simulate 
input parameters for testing purposes. (Analog I/O can also 
be suppressed under software control in a fully equipped hard- 
ware environment; compare chapters 3.6 and 4.4.3.) 

Among may other initialization chores, the CGCS disables the 
BREAK key on the console terminal, and enforces a duplication 
of Monitor output on the printer. All inadvertent entries 
into the Monitor program will therefore show up in a Documen- 
tation printout. 

During the entire growth run, the CGCS checks the integrity of 
its program code periodically. RXISIS-II should be re-booted, 
and the CGCS re-started as soon as possible if a memory error 
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3.  The Czochralski Growth Control System 

is reported in order to avoid unforeseeable reactions of the 
system. 

Subsequently, the CGCS prompts for the current date (which is 
not updated even if a run extends beyond midnight) and time, 
and for an arbitrary run identification code. Date and time 
must be entered in the format displayed by the CGCS; the sec- 
onds can, however, be omitted (they will be assumed to be zero 
in this case). The operator can accept or reject these en- 
tries. A plain "Return" in response to the confirmation prompt 
will accept the data displayed in the top line of the screen. 

The permanent display screen which comes up after the above 
procedure holds the following items: 

(1) Date, time, and run identification in the top line. Two 
times are displayed, namely, the actual time (in 24 hours 
format), and an internal system time which starts at zero 
when the system is initialized, and can count up to 95 
hours, 59 minutes, and 59 seconds. (It wraps around to 
zero after 96 hours, and starts counting up again.) The 
top line holds, in addition, a space between the run iden- 
tification and the system t .me where the name of a Macro 
Command will be displayed while it is executed. 

(2) A regularly updated display of measured system parameters 
and of setpoints. Two columns are provided for the dis- 
play of the setpoints: The left column holds the current- 
ly valid setpoint, whereas the right column displays the 
final setpoint which differs from the current setpoint if 
a parameter is being ramped. In the case of a controlled 
parameter, the right column shows a setpoint input to the 
controller. Parameters which can be entered as setpoints 
are, in addition to their full names, identified by the 
two character abbreviation which is required by the SET or 
CHANGE commands. The system was designed to accommodate a 
tnree-zone heater. Therefore, three heater temperatures 
and three pairs of power values are displayed. (Current- 
ly, only the first set of data is meaningful; the measured 
data for the second and the third channel have been tied 
to those of the first channel.) There are two output 
power values for each channel, referred to as "In" and 
"Out"; the "In" values specify the percentage of maximum 
power which is input to the power controller, while "Out" 
gives the actual output power; both are scaled to lie 
oetween 0 and 100. (The "In" values were, in fact, cal- 
culated and output by the CGCS, whereas the "Out" data are 
measured data input by the CGCS. "In" and "Out" refer to 
the power controller, not to the CGCS.) 
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3.  The Czochralski Growth Control System 

(3) Internal system status information: This information com- 
prises the number of parameters being ramped, and the 
number of Conditional Macro commands pending, against 
their respective maximum values (20 and 8, respectively). 
Furthermore, the operation mode (see MODE command) is 
displayed close to these two values in the top right cor- 
ner of the screen. 

(4) Command echoes and system messages: While the remainder 
of the CGCS output screen is in a fixed format and updated 
in a random access mode, the echo and message area (five 
lines in the bottom third of the display) is scrolled up 
as information is added in the bottom line. The echoes of 
operator entries are displayed there, and messages issued 
by the system are directed there, too. In addition, the 
same area is used by some commands for the display of 
menus or auxiliary information. The scrolled portion 
shrinks to four lines if auxiliary data display is re- 
quested with the DEBUG Continuously command. In this 
case, the top line of the scrolled portion is used for the 
DEBUG output. 

(5) Command prompt line: All operator actions are requested 
in the last line but one on the screen. 

(6) Input area: The bottom line is reserved for building a 
command line. The same rules apply to the entry and to 
the editing of commands which were specified for RXISIS- 
II. 

During the initialization of the system, some commands are 
automatically performed by the CGCS, thus saving the operator 
typing and making sure that all required information is enter- 
ed. The system permits to open a Documentation output file 
(otherwise done with the DOCUMENTATION command), and requests 
a set of constants (see the INITIALIZATION command). Finally, 
the Command Interpreter's prompt "Please command:" is dis- 
played, and the CGCS enters its regular operation mode. 

3.2  RUNNING THE CZOCHRALSKI GROWTH CONTROL SYSTEM - COMMANDS 

3.2,1  GENERAL REMARKS 

The operation of the CGCS is determined by independent com- 
mands which are interpreted by the Command Interpreter (one of 
the CGCS's system tasks). There are two types of commands, 
namely, the Internal, and the Macro commands. Internal com- 
mands are built right into the program; they provide the basic 
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3.  The Czochralski Growth Control System 

control functions. Macro commands, in contrast, are in fact 
disk files which are read when their name was detected as a 
Macro command. These disk files hold, in turn, one or more 
Internal commands, with a time information attached. These 
Internal commands are therefore not only executed in the order 
in which they were recorded on the file but also with the same 
timing. Macro command files can be generated either by di- 
rectly recording the commands entered on the console during a 
growth run, or with the Macro Command Editor COMMED. 

+, 
'.-. 

& 

I 
J 

Internal commands are generally executed in an interactive 
way, i.e., the operator is prompted for further information if 
necessary. Some of the commands permit the entry of all in- 
formation required in one single command line, which shortens 
the dialog between the system and the operator significantly. 
All items which may be entered together with the command key- 
word are specified in the summary of Internal commands in 
chapter 3.2.2. Commands which are likely to affect the opera- 
tion of the system significantly require, in general, a recon- 
firmation of the data entered by the operator. In most cases, 
the operator can accept the data shown to him by entering 
"Y(es)"; any other entry, including an empty line ("Return" 
only), cancels the command. 

All valid Internal commands and the descriptions of their 
purposes are listed below in alphabetical order, first in a 
short, and then, in a comprehensive list. It is not possible, 
however, to give a similar list of Macro commands since they 
may be freely defined at any time. It is therefore up to the 
operator to keep a record of his Macro commands and of their 
functions.  The following syntax is used: 

CAPITALS constitute the part(s) of the command which must be 
entered exactly as specified. 

lowercase parts of the command keyword are optional. They are, 
specified here for clarity and may also be typed in but 
are ignored by the Command Interpreter. 

Items in angular brackets < > have to be replaced by the ap- 
propriate contents, e.g., a parameter value or a Macro 
command name. 

Items in square brackets [ ] are optional and may be omitted. 

Items included in braces ( } and separated by a vertical bar ! 
are optional but one item of the list must be specified. 

Items must be separated by at least one space (except within 
file names). 
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3.  The Czochralski Growth Control System 

Note: Commands may be issued in arbitrary order. A command 
is, however, only recognized when the prompt "Please command:" 
is displayed! 

3.2.2  SUMMARY OF INTERNAL COMMANDS 

CALCulate [{R 
CHANge [{DITn 

11 H} ] 
SLiCLi SRICR!PL I<varname>}f <value> [<time>111 

DEBug 
DEBug 
DEBug 
DEBug 
DEBug 
DEBug 
DEBug 
DEBug 

[C 
[C 
[D 
[M 
[M 
[0 
[R 
[s 

(i 
{A 

2|3|4}]]] 
III12|R|HI 

<hexaddr>}]] 

{A|I1|I2|R|H1|H2|H4}]]] 

<hexaddr>}]] 
<hexaddr>}]] 

H2|H4} [{1|2|3|4}]]]] 

CLEAr [<varname>] 
COMMENT [<arbitrary text>] 
DATA 

[<varname> 
[<hexaddr> 
[ {<varname> 
[<varname>] 
[<hexaddr> 
[{1|2|3|4}] 
[{<varname> 
[{<varname> 

DIRectory [{0|1} ] 
DISPlay [<varname>] 
Documentation 
DUMP 
END 
EXCHange [ (011}] 
EXIT 
FILEs 
HELP or ? 
IF [<varname> [{<|=|>}[{<|=|>}] 
INITialize 
MODE 
PLOT [{<varname>|<hexaddr>} [{l|2|3|4J5|6|7|8}]] 
QUIT 
RESEt [<initial weight> <initial 
RESTore 
SET [{D|Tn|SL|CL|SR|CR|PL|<varname> 
STARt 

[<value> [<macro>]]]] 

length>] 

[<value> [<time>]]] 

3.2.3 COMPREHENSIVE DESCRIPTION OF THE INTERNAL COMMANDS 

CALCULATE: This command permits to calculate the sum, the 
difference, the product, and the quotient of two numbers. 
The input format and the treatment of the numbers depends 
on a switch entered with the command: The switch is "R" 
for floating-point ("REAL") numbers, "I" for integers 
(which must lie between -32768 and 32767) , and "H" for 
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3.  The Czochralski Grswth Control System 

hexadecimal values (e.g., memory addresses) which have the 
same numeric range as integers. Input values are expli- 
citly requested in any case. The result is displayed in 
decimal and hexadecimal form, with the internally used 
hexadecimal format for floating-point numbers if applica- 
ble. 

« 

i 

CHANGE: This command permits to modify the value of one of 
the nine primary system setpoints (crystal diameter, three 
heater temperatures, seed and crucible lift and rotation 
speeds, and power limit), or of an arbitrary system Vari- 
able (see chapter 3.6 and Appendix F). CHANGE determines 
the current value of the specified parameter and adds the 
input value to it, thus permitting relative changes. 
Since the actual execution of the command is kept separate 
from the operator interface, the actual value of the tar- 
get parameter may differ from the one displayed during the 
processing of the command if the target parameter is being 
ramped when the command is issued. Setpoints which are 
used as an input to a controller (e.g., the Temperature 
setpoints in Diameter controlled modes) , are displayed 
with the values output by the controller. CHANGE permits 
a smooth transition of the parameter between its current 
and its final values by allowing a transition time during 
which the parameter is ramped (see remarks about parameter 
ramping in chapter 3.3). The transition time may range 
from zero to 9999 minutes (in fact, longer transition 
times are possible but cannot be displayed any more). The 
shortest non-zero transition time is one second; this 
value is used for all non-zero transition time values less 
than one second (0.017 minutes). The CHANGE command may 
be completely entered in one line, or in any combination 
of items. It may be recorded to and executed from a Macro 
command file. 

,* 

CLEAR: The command CLEAR removes pending Conditional Macro 
commands from the Conditional Command queue. It may be 
used to branch between Macro commands if a condition spec- 
ified with an IF command is not met within a given time. 
There are two types of CLEAR commands: An unconditional 
CLEAR which removes all pending Conditional Macro com- 
mands, and a Selective CLEAR which cancels only those 
Conditional commands which refer to the Variable specified 
with the CLEAR command. CLEAR can be recorded to and 
executed from Macro command files. 

v« 
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3.  The Czochralski Growth Control System 

COMMENT: This command inserts one line of comment into the 
Data output file. The comment line is tagged with the 
operation mode, time, and length grown information and 
embedded between the (binary) records in the Data file, 
thus permitting the correlation between arbitrary events 
and the data recorded. Even if no Data file is in use, 
the comment line is recorded in the Documentation output. 
(In fact, the COMMENT command is the only one to provide 
arbitrary text in the Documentation output.) 

DATA: The DATA command permits to open or close the Data out- 
put file. It offers the operator to open a Data file if 
there is no open such file, and it permits to close the 
Data file if it is invoked while a Data file is open. 
After a disk error, the file which was involved in the 
error is flagged as "inactive". Not reactivating an inac- 
tive file is equivalent to closing it. The functions of 
DATA may be also accessed through the FILES command. 

DEBUG Continuously: One member of the DEBUG command group, 
the DEBUG Continuously command permits the continuous 
display of the values of up to four system Variables. The 
data output provided is updated at the same rate is the 
fixed screen output (once every five to six seconds). (In 
fact, the memory locations specified with DEBUG Continu- 
ously are sampled once every second; their values are also 
recorded in the Data file.) Data can be selected for 
display either by specifying a Variable name, or by sub- 
mitting the hexadecimal address of the memory location(s) 
whose contents a~e to be displayed. In the latter case, an 
additional format information is required since DEBUG does 
not know what kind of data resides at an arbitrary storage 
location in memory. The display formats available are 
ASCII (A), interpreting one byte at the specified address 
as a (printable) character, one and two byte decimal inte- 
gers (II and 12, respectively), decimal floating-point 
(REAL - R), and one, two, and four byte hexadecimal repre- 
sentation (HI, H2, H4). Finally, one of the four DEBUG 
output channels (numbered 1 to 41 must be specified to 
which the output is to be directed. (Channels 1 to 4 are 
displayed in the DEBUG output line on the console from 
left to right.) The DEBUG Continuously command may be 
completely entered in one line, or in any combination of 
items. It may be recorded to and executed from a Macro 
command file. 
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3.  The Czochralski Growth Control System 

DEBUG Display: The DEBUG Display command displays the con- 
tents of one or several adjacent memory locations which 
have been specified either by a Variable name, or by a 
hexadecimal address. (For displaying the contents of a 

| Variable in its standard representation, the DISPLAY com- 
mand is probably more convenient.) The four bytes start- 
ing at the given address (or part of them) are displayed 
as ASCII characters, in hexadecimal notation, as one and 
two byte decimal integers, and as (four byte) floating- 
point numbers. The command may be completely entered in 
one line, or in any combination of items. 

DEBUG Modify: This command permits to modify one to four 
bytes in memory whose starting address must be specified 
either with a Variable name, or as a hexadecimal number. 
The program knows how many bytes have to be modified to 
change the value of a Variable specified by name, but the 
data format has to be submitted separately if a hexadeci- 
mal address is used. The formats available are ASCII (A) , 
interpreting one byte at the specified address as a 
(printable) character, one and two byte decimal integers 
(II and 12, respectively), decimal floating-point (REAL - 
R), and one, two, and four byte hexadecimal representation 
(HI, H2, and H4) . The program displays the current con- 
tents of the specified location(s), and prompts explicitly 
for a new input value. With the exception of the new 
value, the entire command or parts of it can be entered in 
one command line. (For changing Variables specified by 
name, the SET and CHANGE commands are probably more conve- 
nient; in addition, they offer the ramping feature which 
is not supported by DEBUG.) The DEBUG Modify command can 
be recorded to and executed from a Macro command file. 

DEBUG Off: While DEBUG Continuously turns on the output of 
Debug data, DEBUG Off turns it off again. The location (1 
to 4) which is to be turned off must be specified. The 
command may be entered in one or in two lines. It may be 
recorded to and executed from a Macro command file. 

DEBUG Resume: This command affects the internal operation of 
the system. It should only be used for debugging pur- 
poses.  Therefore, no further information is given here. 

DEBUG Suspend: This command affects the internal operation of 
the system. It should only be used for debugging pur- 
poses.  Inconsiderate use of this command may disable the 
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3.  The Czochralski Growth Control System 

CGCS entirely.  Therefore, no further information is given 
here. 

DIRECTORY: The DIRECTORY command displays the contents of the 
directory of the specified disk. In addition to the file 
names, the disk label and the numbers of sectors in use 
and free on the disk are displayed. Note: The actual 
number of sectors in use may be much greater if a file is 
open for output on the specified disk. The actual number 
of used sectors cannot be determined, though, since it is 
an internal parameter of the operating system. The num- 
bers displayed for the used and free sectors are, however, 
preceded by a ">" and a "<" sign, respectively, in this 
case.  The command may be entered in one line. 

DISPLAY: This function displays the value of a Variable sub- 
mitted as a parameter with the call. The command may be 
entered in one line. 

DOCUMENTATION: A call to DOCUMENTATION permits to switch on 
or off the Documentation output on the printer or on a 
disk file. DOCUMENTATION offers to open a Print file if 
no such file is open, and to close it if it is open. 
During the file opening procedure, DOCUMENTATION permits 
to set the interval between Data Dumps to the Documenta- 
tion output (compare command DUMP). Any arbitrary inter- 
val between 1 and 255 minutes may be specified; periodic 
Data Dumps may be disabled altogether. After a disk er- 
ror, the file which was involved in the error is flagged 
as "inactive". Not reactivating an inactive file is equi- 
valent to closing it. The DOCUMENTATION routine is auto- 
matically invoked when the system is started; it may also 
be accessed from the FILES command. 

DUMP: This command initiates a dump of 21 system parameters 
(essentially, of the measured data) to the Documentation 
output. In addition, it triggers one record written to 
the Data file. 

END: The END command is the official way to terminate a com- 
mand record in the Control Output file (which eventually 
may be used as a Macro command file) . Although no more 
entries are added to the Control Output file after an END 
command, the file remains open, and the next record may be 
started at any time with a START command.  (This permits 
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3.  The Czochralski Growth Control System 

to use one Control Output file throughout a growth run to 
which certain command sequences are recorded; the records 
in it can be separated into several Macro command files 
using the Macro Command Editor. Note, however, that an 
END command preempts a Macro command file used for input 
regardless of whether there are more commands after the 
END command or not.) 

EXCHANGE: This command permits to exchange a defective or 
full disk safely. It closes the files on the specified 
disk which are still open, prompts the operator to substi- 
tute a new disk, and re-opens all files on the new disk 
which were open on the old disk when the operator indi- 

| cated to the system that the new disk was installed. 
Since the output files are opened with the same names on 
the new disk, any file with an identical name on the new 
disk is overwritten. In addition, the output files need 
some editing because control structures used on the Data 
and Control Output files are not provided by EXCHANGE. 
(It is sufficient to concatenate the two output files with 
the ISIS-II/RXISIS-II COPY command, or to concatenate the 
second part of a Data or Macro command file with a separ- 
ately generated file Leader.) Note that a Macro command 
will be preempted which is being read from a disk which is 
to be EXCHANGEd. 

V, 

EXIT: The only regular way to leave the CGCS is the EXIT com- 
mand. Depending on the current operation mode, the EXIT 
command "cleans up" the controller. It stops the lift 
motors if the puller is under the control of the CGCS, 
reduces the heater power to zero within six hours (unless 
the power is already zero), stops the rotations, and re- 
linquishes, finally, control to the analog controller. 
Several safety procedures prevent the accidental execution 
of this function. 

FILES: This command displays the current status of the Print, 
Data, and Control Output files and their names if the 
files are open. Subsequently, it permits to open or close 
one of the three files, entering the respective DOCUMENTA- 
TION, DATA, and Control Output file handling routines. 
After a disk error, the file which was involved in the 
error is flagged as "inactive". Not reactivating an inac- 
tive file is equivalent to closing it. 
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3.  The Czochralski Growth Control System 

HELP: The HELP command (or, alternatively, a simple question 
mark ("?")) provides a set of command menus on the screen. 

| The menus displayed comprise a summary of the Internal 
commands, the currently available Macro commands, and an 
extensive explanation of each command. The Macro command 
list and/or the extensive help display may be skipped if 
not needed. 

IF This command permits the conditional execution of a Macro 
command (it does not work with Internal commands). The 
Macro command specified with the IF call is executed if 
and when a condition is met which is based on the numeric 
relation between a Variable and a constant which are sub- 
mitted as parameters of the IF call. The numeric rela- 
tions may be "greater than" (">"), "equal to" ("="), "less 
than" ("<"), or any combination of two of these three 
("<>" stands for "not equal"). The order of the relation 
characters does not matter; "=>" is identical to ">=" and 
means "greater than or equal to". Eight (8) Conditional 
Macro commands may be pending at a time; any Conditional 
command issued while the maximum number of commands are 
pending is ignored, and a pertinent error message is dis- 
played. The command may be completely entered in one 
line, or in any combination of items. It may be recorded 
to and executed from a Macro command file. 

INITIALIZE: This command permits to assign values to certain 
system parameters which cannot be (easily) changed other- 
wise since they are kept in memory in a pre-processed form 
to facilitate control operations. The values set with 
INITIALIZE are the diameters of the crucible and the seed, 
the amount of boric oxide used, and the densities of the 
solid crystal, the crystal melt, and the boric oxide melt. 
Since these values are, in most cases, hardware dependent 
constants anyhow, INITIALIZE offers default values which 
can be accepted with a plain "Return", or overwritten by 
new data. INITIALIZE is automatically executed when the 
system is started; it must be called during a growth run 

and crrowth is r* r\f e +■ a T tolt-eH     harV    nart 1 u ""' ~  ~ '"     c •—   — 
resumed with a full-diameter crystal within the boric 
oxide melt. In this case, the diameter of the crystal 
must be specified as a seed diameter, in order to provide 
a correct diameter evaluation after a subsequent RESET 
call. 

MODE:  The MODE command permits to select one of five opera- 
tion modes which are numbered 0 through 4.  Each mode is a 
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£ superset of the functions of the preceding one.  Mode 0 
I provides monitoring without control, Mode 1, a basic (ma- 
™ nual) control but no diameter control.  The latter is 

possible with Mode 2 which, however, does not include an 
fSj anomaly compensation.  Mode 3 provides anomaly compensa- 
f§ tion, and Mode 4, in addition, a Crucible Lift control 

which is based on the exact amount of melt withdrawn from 
_ the crucible during the crystal growth.  Each mode change 
w is reported by the system, and an automatic Data Dump is 
*" triggered.  The MODE command may be recorded to and exe- 

cuted from a Macro command file. 

& 
PLOT:  The PLOT command permits to output continuously (simi- 

y\ lar to the DEBUG Continuously command) the values of p to 
M eight locations in memory which can be specified by Vari- 

able names or by absolute hexadecimal addresses.  While 
DEBUG Continuously routes its output to the operator con- 

Sj sole and the Data file, the PLOT output is directed to 
0 | eight spare channels of the D/A converter which are con- 

nected to a suitable chart recorder.  PLOT can only handle 
gr Variables which are in INTEGER*2 notation, which applies 
% to all measured parameters and control output signals, and 

to a number of internal system parameters (compare chapter 
3.5 and Appendix F).  A number of auxiliary locations were 

K provided which hold "expanded" values of parameters of 
which only a narrow numeric range is of interest.  For 
further information on the PLOT command, refer to chapter 

►> 3.5.  The PLOT command may be recorded to and executed 
N from a Macro command file. 

™ QUIT:  The QUIT command permits to preempt a currently active 
"^ Macro command. 

>! RESET:  The proper operation of the diameter evaluation rou- 
tines requires a RESET command at the beginning of the 

., actual growth.  The RESET command resets the length grown 
y* counter and the weight output to zero or to values speci- 
& fied with the call, and initializes the internal data 

structures of the diameter routines.  It is indispensable 
,< to issue such a command after each INITIALIZE command 
£• (including the one automatically performed at the begin- 

ning of the CGCS operations), and after each irrecoverable 
"Speed overflow" error, when the puller is again in a 

y well-controlled condition and growth can resume.  (Other- 
K* wise, no new diameter output is generated, and diameter 

control is not possible.)  A RESET command which sets the 
■>; crystal length and weight to zero is automatically gener- 

» 
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ated if necessary when the operation mode is changed to 
one of the diameter controlled ones (Mode 2 through 4). 
It is possible to maintain the current length and weight 
values with a RESET command either by answering the perti- 
nent questions accordingly if in the interactive mode, or 
by specifying a value for the parameter to be maintained 
which is less than twice its most negative value (i.e., 
less than -16000 for the crystal weight, and less than 
-1200 for the crystal length) . The RESET command may be 
recorded to and executed from a Macro command file. 

RESTORE: The RESTORE command restores the console output if 
it was corrugated, which can happen very easily if one of 
the function keys on the console terminal is pressed inad- 
vertently, or if the "Return" key is pressed while the 
cursor is in the bottom line of the screen, e.g., after 
the entry of a full input line of 80 characters. It does 
not affect the actual control operations of the CGCS. 

SET: This command permits to modify the value of one of the 
nine primary system setpoints (crystal diameter, three 
heater temperatures, seed and crucible lift and rotation 
speeds, and power limit), or of an arbitrary system Vari- 
able (see chapter 3.6 and Appendix F). It sets the speci- 
fied parameter to the input value, thus permitting abso- 
lute changes. SET permits a smooth transition of the 
parameter between its current and final values by allowing 
a transition time during which the parameter is ramped 
(see remarks about parameter ramping in chapter 3.3). The 
transition time may range from zero to 9999 minutes (in 
fact, longer transition times are possible but cannot be 
displayed any more) . The shortest non-zero transition 
time is one second; this value is used for all non-zero 
transition time values less than one second (0.017 minu- 
tes) . The command may be completely entered in one line, 
or in any combination of items. It may be recorded to and 
executed from a Macro command file. 

START: This commands starts the recording of commands in the 
Control Output f* If no such file is open, START per- 
mits to specif -pen a Control Output file. Command 
times recorded i. .,e <. utput file are relative to the time 
of the START comiu<_..2. (For example, a SET command issued 
3 5 seconds after the START command will be executed 35 
seconds after the Control Output file was invoked as a 
Macro command during a later run.) 
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3.3  PARAMETER RAMPING I Parameters entered with the SET and CHANGE commands may be 
ramped linearly between their current values and the final 
values specified with SET or CHANGE. Arbitrary ramping times 
between 1 second and 9999 minutes may be used. Up to 20 pa- 
rameters (primary system setpoints or arbitrary Variables) may 
be ramped at a time, no matter whether the pertinent commands 
were entered from the console, or from a Macro command file. 
The number of parameters which are currently ramped is dis- 
played on the console screen. Note: A SET or CHANGE command 
requesting parameter ramping which is issued when already 2 0 
parameters ere being ramped will be executed instantaneously, 
without ramp.-ng. Watch therefore the number of ramped parame- 
ters carefully when you use extended ramping and/or Macro 
commands. A SET or CHANGE command referring to a parameter 
which is already being ramped does not increase the number of 
ramped commands. Parameter ramping can be halted by command- 
ing CHANGE <parameter> 0 0 (change the parameter by 0 within 0 
minutes). 

3.4  MACRO COMMANDS 

All operator entries input when the "Please command:" prompt 
is displayed are first compared to the list of the above In- 
ternal commands.  If no match is found between the first four 

f^ characters of the operator input and any one of the Internal 
command names, the CGC3 assumes that a Macro command was re- 
quested, and searches the system disk in drive 0 for a file 
with an extension ".CMD" whose name matches the operator en- 
try. Therefore, the following rules apply to Macro command 
names: 

(1) Macro command names may consist of one to six alphanumeric 
characters; the first character must be alphabetic. 

(2) The first four characters of the Macro command (three 
characters if the command begins with "DEB") must not 
match any internal command name. (Note, though, that com- 
mands whose keywords are shorter than four characters have 
their names padded to the right with spaces. The name 
"SETPNT" is therefore a perfectly legal Macro name.) 
Macro names which are part of a Conditional command are 
excepted from these restrictions. 

(3) A file with the name <macro>.CMD must exist on the disk in 
drive 0, and it must be in the special Macro command for- 

«X mat. 
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3.  The Czochralski Growth Control System 

(4) Macro commands generally do not take any parameters. 

If any one of the above conditions is not met, an "Illegal 
command" message is issued by the Command Interpreter, and the 
command is ignored. 

Macro command files comprise a set of recordable internal 
commands which are stored in a binary encoded format in order 
to save disk space and processing time. Since references to 
Variables are stored as the absolute binary addresses of these 
Variables and since Variable locations may change when soft- 
ware modifications are made, it is essential that Macro com- 
mands referring to absolute memory locations are only executed 
under the program version for which they were generated. A 
warning is issued if the user attempts to execute a Macro 
command which was designed for or generated by a CGCS version 
different from the one in use, and all Internal commands with- 
in the Macro command file which refer to absolute memory loca- 
tions are dropped. (They are indicated to the operator, 
though, with an appropriate error message.) Macro command 
files generated under a previous system version have to be 
converted with the Macro Command Editor COMMED into a valid 
Macro command for the current system version. 

Macro command files can be created in either of two ways: 

(a) By recording actual commands during a growth run, using a 
Control Output file and the START and END commands, or 

(b) With the Macro Command Editor COMMED which can also be 
used to modify command files recorded during a growth run. 

The following Internal commands can be recorded on and later 
executed from a Macro command file: 

CHANGE 
CLEAR 
DEBUG CONTINUOUSLY 
DEBUG MODIFY 
DEBUG OFF 
DEBUG RESUME 
DEBUG SUSPEND 
END 
IF 
MODE 
PLOT 
RESET 
SET 
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.v 

Macro commands can be invoked from a Macro command file, but 
they are not recorded in a Control Output file. This was done 
on purpose since a Macro command invoked from another Macro 
command preempts the command file from which it was invoked. 
(There can be only one Macro command file in use at a given 
time.) A Control Output file generated during a growth run 
receives commands issued by the operator as well as commands 
stemming from a Macro, and it is not possible to distinguish 
between both. The operator generated commands interspersed 
with the commands originating from the Macro would, however, 
be effectively lost if the Macro call were also recorded in 
the Control Output file. Replaying this Control Output file 
as a Macro file at a later stage would simply result in the 
Macro being preempted by the one which was invoked during the 
recorded run, and only the commands on the new Macro would be 
executed automatically. This would deteriorate the self- 
learning ability of the CGCS considerably. 

Note:  Commands issued by a Macro command file remain active 
even after the Macro was terminated or preempted! 

I 
3.5  DISK FILES 

Besides the Macro command (input) files, there are three files 
available for output from the CGCS under the operator's dis- 
cretion. 

•f. 

PRINT FILE: The Print file receives the complete dialog be- 
tween the operator and the system. Each line of output is 
tagged with the absolute and the system times; the date on 
which the run was started and the run identification are 
contained in page header lines. The Print file can be 
opened (activated) or closed (deactivated) with the DOCU- 
MENTATION command or via FILES. Print file output can 
alternatively be sent to the line printer (which is indi- 
cated by ":LP:" in the FILES display), or to a disk file. 
Arbitrary (valid) file names and extensions may be chosen, 
and the file can be opened on either disk drive. (It is 

| recommended, though, that drive 1 is used for the Print 
file output because the Print file tends to become very 
bulky, and there is not too much room left on the system 
disk.) In addition to the operator dialog, Data Dumps are 
recorded in the Print file which contain the following 
items: 

•V 

* Measured values of the three heater temperatures. 
* Heater power input and output values. 
* Measured motor speeds. 

- 31 



3.  The Czochralski Growth Control System 

Seed and crucible positions. 
Crystal length and diameter. 
Weight and differential weight. 
Base temperature. 
Gas pressure. 

In order to conserve space, the output items are identi- 
fied only with two-character mnemonics: 

Tl 
T2 
T3 
SL 
CL 
L 
D 

Pli 
P2i 
P3i 
SR , 
CR . 
W  . 
DW . 

PlO 
P2o 
P3o 
SP . 
CP . 
BT . 
GP . 

Heater #1 Temperature (in millivolts) 
Heater =2 Temperature (in millivolts) 
Heater #3 Temperature (in millivolts) 
Seed Lift Speed (in millimeters/hour) 
Crucible Lift Speed (in millimeters/hour) 
Length Grown (in millimeters) 
(Calculated) Diameter (in millimeters) 

Demanded Power (Input) for Heater #1 (percent) 
Demanded Power (Input) for Heater #2 (percent) 
Demanded Power (Input) for Heater #3 (percent) 
Seed Rotation Speed (in RPM) 
Crucible Rotation Speed (in RPM) 
Crystal Weight (in grams) 
Differential Weight (in grams/minute) 

Actual Power (Output) of Heater #1 
Actual Power (Output) of Heater #2 
Actual Power (Output) of Heater #3 
Seed Position (in millimeters) 
Crucible Position (in millimeters) 
Base Temperature (in millivolts) 
Gas Pressure (in PSI) 

(in percent) 

(in percent) 

Data Dumps are initiated in the following cases: 

* Upon a DUMP command. 
* At a change of the system's operation mode. 
* Periodically with a specifiable interval. 

In the first two cases, a Data record is also written to 
the Data file. 

DATA FILE: All important system parameters can be recorded on 
the Data disk file. A set of data is compiled in regular 
intervals and written to disk. With regard to execution 
time and disk space requirements, these records are writ- 
ten in a not directly legible binary format; special sup- 
port software which can decode Data files and output se- 
lected channels, for instance, to a chart recorder, is 
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required.  The following items are contained in each data 
record: 

ft Operation Mode 
System Time 
Length Grown 
Measured Data (17 channels - all data displayed perma- 

nently) 
Auxiliary Analog Data (8 channels) 
Power Output (3 channels) 
Current Setpoints (9 channels - all data displayed 

permanently) 
Auxiliary Setpoints (9 channels, as above) 
Debug Continuously Addresses and Data (4*3 channels) 
Diameter 
Debug Continuously Variable types (1 channel) 

Each channel holds two bytes of data; one record of 64 
channels (63 active, 1 spare) fills exactly one sector on 
the output disk. 

The Data file can be opened (activated) or closed (deacti- 
vated) with the DATA command, or via FILES. Arbitrary 
(valid) file names and extensions may be chosen, and the 
file can be opened on either disk drive. (It is recom- 
mended, though, that drive 1 is used for the Data file 
output because the Data file tends to become very bulky, 
and there is not too much room left on the system disk.) 
The operator has to specify an interval for the data ac- 
quisition when you open a Data file; there are about 1800 
sectors available on an empty disk, and each record con- 
sumes one sector. (The remainder of the sectors on the 
disk is required for housekeeping.) Since it should make 
sense not only to record data but also to process it later 
on, it is probably a good idea to restrict data recording 
to processes which are actually of interest, and to choose 
the recording interval according to the dynamic behavior 
of the processes involved.  (Once a Data file has been 

iew nnpnpd the interval can 
Data file has to be opened if a different recording inter- 
val is needed.) 

CONTROL OUTPUT FILE: All recordable commands (compare chapter 
3.4) are recorded in a Control Output file if such a file 
is open, and if the START command has been issued. A Con- 
trol Output file can be opened with the START command, and 
it can be opened and closed with FILES. The file may be 
opened on either disk drive, but it must be opened on 
drive 0 if it should serve as a Macro command file within 
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the same run. No file name extension is required with the 
Control Output file name; -ehe CGCS appends automatically 
".CMD". Command recording can be deactivated with an END 
command at any time after a START command; the Control 
Output file remains open, though, until it is either 
closed with FILES, or until the CGCS is EXITed. One Con- 
trol Output file can hold multiple Macro command records 
on the Control Output file which are started and termin- 
ated with the START and END commands, but the file re- 
quires editing in this case (with COMMED) before all these 
Macro command records can be used. (Otherwise, the first 
END recorded would preempt the Macro command, and all 
following commands would be ignored.) 

No-fre: During a growth run, a Macro command file can be created 
for "instant use" in the following way: 

(1) Open a Control Output file on drive 0 (important!) 
with an arbitrary name, preferably using the START 
command. 

(2) Enter the command(s) you want to have in the file but 
be careful that you do not interfere with a growth run 
in progress. 

(3) Close the Control Output file (with FILES), and 

(4) Use it as a Macro command when required. 

| A Control Output file must be closed before it can be 
invoked it as a Macro file. 

PLOT OUTPUT: In contrast to the above three output files, Plot 
Output is directed to an analog rather than a digital 
device, namely, to a multi-channel chart recorder. In 
general, any Variable whose type is INTEGER*2 can thus be 
submitted to the chart recorder output, and so can any 
arbitrary two-byte memory location which is referred to by 
its address. This includes all measured input data (which 
are in INTEGER*2 format anyhow), plus a number of internal 
system parameters. (Refer to the list of Variables in 
Appendix F to find the Variables which might be of inter- 
est.) In general, the absolute values of the Variables 
specified are output on the eight spare analog output 
channels, scaled from 0 to 10 V for the full range of 0 

| through 32767 covered by positive INTEGER*2 numbers. A 
message is output on the console and recorded in the Docu- 
mentation output whenever a Variable changes its sign. 
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(Initially, all outputs are supposed to refer to positive 
values.) 

In addition to the standard INTEGER*2 Variables, the fol- 
lowing Variables obtained from a special treatment of 
internal data were provided for chart recorder output: 

(1) Heater and Base Temperatures: Four Variables, EXTMP1, 
EXTMP2, EXTMP3, and EXTMPB, hold an expanded Heater or 
Base Temperature value. The full range (0 to 10 V) of 
the output obtained from these Variables is determined 
by the Variables RANGT1, RANGT2, RANGT3, and RANGTB, 
respectively, starting from an offset value which is 
set by the Variables 0FFST1, OFFST2, OFFST3, and 
OFFSTB. Like all other Variables, these parameters 
can be modified with the standard SET, CHANGE, or 
DEBUG Modify commands; their values must be specified 
in millivolts. In order to PLOT on the Chart Recorder 
Channel 3 the temperature of the Heater 1 which is 
supposed to lie, say, between 22.5 and 24.5 mV, the 
following commands may be used: 

SET OFFST1 22.5 0 
SET RANGT1 2 0 
PLOT EXTMP1 3 

Temperature values below the specified offset will 
result in a zero output, and values greater than the 
offset plus range values, in an output voltage of 
10 V. Note that the offset may be ramped, too; this 
permits to record a deviation from a given setpoint. 

(2) Growth Rate: An expanded Growth Rate value is kept in 
GRRATE. A zero output corresponds to a growth rate of 
zero (as calculated by the Diameter Evaluation routine 
SHAPE) ; the maximum output is reached for a growth 
rate of 20 mm/hr. GRRATE can assume positive and 
negative values (the latter during meltback). 

(3) Diameter Error: The Variable DIAERR holds the differ- 
ence between the Diameter setpoint and the actual 
diameter. A zero difference is output as mid-scale 
(5 V); zero and maximum output correspond to an actual 
diameter 10 mm smaller and greater than the setpoint, 
respectively. Greater deviations than 10 mm result in 
the proper minimum or maximum output signals. 

(4) Crucible Position Error: Similarly, the Variable 
CRPERR is set to a value corresponding to the devia- 
tion of the actual crucible position from the calcul- 
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ated value. A zero error is again represented as 
mid-scale; the maximum deviation which can be resolved 
is ± 10 mm. (The crucible is too low if the output is 
less than mid-scale.) 

Any PLOT channel can be activated by the command 

PLOT <varname> <channel #> or 
PLOT <hexaddr> <channel #> 

The command may be entered in one line, or one item at a 
time as requested by the CGCS. The system checks whether 
the type of the Variable specified is indeed INTEGER*2 (it 
assumes INTEGER*2 locations if a hexadecimal address was 
entered), and attaches the value of the specified location 
to the proper output channel. Channel numbers 1 through 8 
are permitted. An output channel remains active and con- 
nected to a Variable until it is re-assigned; output may 
be de-activated with the 

PLOT ZERO <channel #> 

command. The analog output is updated periodically once 
every second. 

3.6  VARIABLES 

3.6.1  GENERAL REMARKS 

The concept of the CGCS permits an easy way to modify any 
arbitrary parameter used by the system, a way which is cer- 
tainly more convenient and safer than using the parameter's 
absolute address in memory: A virtually unlimited number of 
parameters can be accessed by a name unique to each parameter. 
The CGCS looks up the actual address and the type of a speci- 
fied Variable in a directory file; the number of parameters 
accessible in this way is only limited by the reasonably ob- 
tainable size of this file. The directory file has the name 
CZONAM.Vmn, with m and n, the major and minor version code 
numbers. It contains Variable names, addresses, and types in 
a binary encoded form, and is generated from a source file 
VARADD.SRC by means of a dedicated program CONVAD. The direc- 
tory file must be updated for each new system version since 
the Variables listed in it may have changed their addresses 
due to program modifications. 

Variable names must consist of one to six alphanumeric charac- 
ters; the first character must be alphabetic.  Variables can 
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either be simple storage locations, or arrays. Elements of 
arrays must be specified by the number of the element (begin- 
ning with 1) , in parentheses immediately following the array 
name. (There must not be a space between the name and the 
opening parenthesis.) An omitted array element number de- 
faults to 1. Valid Variable names are, for example, "TIME" or 
"ANAPAR(6)". The name may be entered in upper- or lowercase 
characters. 

Chapter 3.6.2 provides a list of special Variables which are 
r.ore than a simple parameter since their values directly de- 
termine the operation of tne CGCS. A table of the most impor- 
tant Variable names, sorted according to their meanings, and a 
complete list of all Variables used by the CGCS are provided 
in Appendix F. 

3.6.2  SPECIAL VARIABLES 

System Control; 

TEST This Variable puts the CGCS into a Test mode if it is 
set to -1; all other values maintain the regular oper- 
ation of the system. In Test mode, input from the A/D 
converter and output to the D/A converter and the 
relays board are inhibited. This permits to safely 
assign values to an array of Variables which are 
otherwise set by the A/D converter's output, and to 
run the system with these faked "measured data" for 
testing purposes. (The names of the input array Vari- 
ables are made up from the letter "M" plus a five 
character mnemonic; compare Appendix F.) Note: TEST 
must not be set to -1 while the CGCS is actually con- 
trolling the puller! 

DIASTA This is an internal status parameter of the Diameter 
Evaluation routines» It may be set to -2 at the end 
of a growth run in order to disable the diameter eval- 
uation and, in particular, the generation of error 
messages which may be triggered by some of the actions 
usually involved in the close-down procedure of the 
puller. Diameter evaluation may be enabled again with 
a RESET command. 

tf ALPHA The parameter ALPHA determines the diameter evaluation 
algorithms within two extreme approaches. ALPHA 
should be a floating-point number between 0 and 1. 
For further information, see chapters 3.7 and 4.5.2.3. 
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XTLSHP This parameter holds (in floating-point format) the 
maximum permitted difference between the squares of 
the diameter of the crystal (in millimeters) in two 
adjacent sections of the crystal, approximately 1.2 
millimeters apart from one another. The square of the 
diameter stored for buoyancy compensation purposes is 
adjusted, if necessary, to differ by not more than the 
value of XTLSHP from the preceding value. 

Display Control: 

INTRVL This Variable determines the duration of the intervals 
between subsequent output operations to the console. 
One unit corresponds to an interval of 50 millisec- 
onds. The default value of 10 corresponds to a com- 
plete screen update every four to six seconds, depend- 
ing on the other activities within the CGCS. More 
frequent updates may be required during testing and 
alignment; they can be achieved with smaller INTRVL 
values. The fastest screen update is done with INTRVL 
set to 1; a zero INTRVL value disables the screen out- 
put entirely. Note; The screen display will 
"freeze" irreversibly if INTRVL is set to zero; regu- 
lar operation will not be resumed even if INTRVL is 
set back to a nonzero value. The system has to be 
restarted in order to re-activate data output on the 
screen. (The CGCS remains operable, though, with the 
screen output disabled.) INTRVL does not affect the 
output of the time, of operator commands, and of sys- 
tem messages. 

Data Dump Control: 

DUMPIN The Variable DUMPIN holds the interval between period- 
ical Data Dumps to the Print file; the time units are 
minutes. DUMPIN may be set to any convenient value at 
any time; a DUMPIN value of zero disables the period- 
ical Data Dumps. 

DUMPFL This Variable triggers an additional Data Dump (and an 
additional record written to the Data file) if it is 
set to -1. Note that a SET DUMPFL -1 0 command is the 
only save way to trigger additional Data Dumps from a 
Macro Command file. (DUMPFL is reset by the Data Dump 
routine; it must therefore be set to -1 repeatedly if 
more than one Data Dumps are required.) 
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Scratchpad Variables: 

DUMMY In order to facilitate advanced Macro programming, 
eight dummy INTEGER*2 locations were provided. These 
locations are not accessed by the CGCS code proper, 
but they may be arbitrarily ramped or used as flags 
(set to specific values) and employed in Conditional 
Macro commands. The dummy locations are referred to 
as DUMMY(1) through DUMMY(8). 

Miscellaneous - Read-Only Variables: 

TIME The Variable TIME holds the current system time (in 
seconds) in an unsigned two-byte INTEGER location. 
This counter wraps around to zero after 65,536 sec- 
onds. Note that the contents of TIME are interpreted 
as a signed INTEGER*2 number by the display and also 
by the Conditional Macro Command execution routines; 
time counts greater than 32,767 seconds are thus in- 
terpreted as negative numbers. 

RAMPNG This Variable holds the number of parameters which are 
currently being ramped. You may look at it (and have 
your Macro commands look at it) , but messing around 
with RAMPNG will inevitably confuse the CGCS. The 
results may be spectacular but probably not desirable. 

CNDCNT The same considerations as to RAMPNG apply to the 
count of pending Conditional Macro commands kept in 
this Variable. 

ZERO This location holds, simply enough, a zero INTEGER*2 
value. You may try to modify it but you won't be very 
successful since this location is in ROM and thus 
inaccessible to any writing attempt. 

3.7  THE DIAMETER EVALUATION ROUTINE 

The control operations of the CGCS center around the control 
of the shape of the crystal grown, i.e., the control of its 
diameter. Unlike the approach used in the conventional analog 
controllers for compound crystal growth, it is the diameter 
rather than the first derivative of the crystal weight which 
is compared to a pertinent setpoint and whose deviation from 
the setpoint is used as an error signal for a PID based con- 
troller algorithm (compare chapter 4.5.1.)  The accuracy and 
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3.  The Czochralski Growth Control System 

usefulness of the diameter control approach depends therefore 
crucially on the accuracy of the calculated crystal diameter. 

The diameter evaluation 
upon the differential 
differentiator circuit. 
is submitted to digital low-pass filtering; an anomaly compen- 
sation analogous to the approach used in the Cambridge Instru- 
ments Anomaly Shape Control board may be applied to it. The 
current diameter of the crystal is calculated from this dif- 
ferential weight using the actual growth rate (i.e., the dif- 
ference between the seed and crucible lift speeds plus the 
speed with which the semiconductor melt drops when it is con- 
sumed by the crystallization process). A full compensation 
for the buoyancy in the boric oxide encapsulant is provided; 
the diameter evaluation routine keeps track of the shape of 
the part of the crystal next to the solidification interface 
(to be accurate, of the last 75 millimeters of the crystal) , 
and calculates the volume immersed in the encapsulant and the 
height of the boric oxide layer from this information. This 
approach permits the use of actual physical parameters of the 
system (like densities, dimensions, and speeds) rather than 
the modified parameters required in conventional analog 
growth. 

As a by-product of diameter evaluation, 
provide a setpoint for the position of the 
used in Automatic mode (Mode 4) to control 
speed via a PID loop.  This control loop 
surface of the semiconductor melt (and thus 
interface) at the same location within the 
despite of the dropping of the melt when molten material is 
consumed by the growing crystal. 

the same routines 
crucib'! a which is 
the crucible lift 
tries to keep the 

heater's hot zone 

The diameter and crucible position evaluation algorithms which 
are used throughout the major part of a crystal growth run are 
based on the followina assumptions: 

(1) The crucible is a straight right cylinder. 

(2) The amount of boric oxide encapsulant remains constant. 

(3) The semiconductor melt fills the entire diameter of the 
crucible, and material added to the crystal reduces the 
height of the semiconductor melt in accordance with the 
ron<4Pn'?.tion of the total mass (melt plu^ crystal). 

While assumption (2) is reasonably justified in the case of 
gallium arsenide throughout the entire growth process because 
the boric oxide encapsulant does not wet the crystal, this 
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3.  The Czochralski Growth Control System 

does not apply to the other two assumptions towards the end of 
a growth cycle: The transition between the crucible wall and 
bottom is always a bevel with a finite radius; and the semi- 
conductor melt tends to contract itself due to surface tension 
and recedes towards the center of the crucible if its amount 
drops below a certain limit. In an extreme case, the above 
assumptions have to be amended as follows: 

(1) The semiconductor melt forms a cylindrical disk with con- 
stant thickness whose diameter (rather than thickness; 
decreases in order to supply the material being solidified 
in the crystal. 

v. 

». 

(2) The gap which opens up therefore between the semiconductor 
melt and the crucible wall is filled with boric oxide 
encapsulant, which reduces the effective boric oxide 
height as the crystal grows. 

The diameter evaluation algorithms used in the CGCS are cap- 
able of handling both extreme cases, and any arbitrary inter- 
mediate stage, according to the value of the Variable ALPHA. 
An ALPHA value of 1 corresponds to the first set of conditions 
(when the semiconductor melt fills the entire crucible diame- 
ter) , whereas a value of 0 conforms with the second set (i.e., 
extreme melt recession). Values for ALPHA between 0 and 1 
permit to model an intermediate stage between the two extremes 
in a heuristic mode: Most likely, the disk formed by the 
receding melt does reduce its thickness when the melt is used 
up by the growing crystal; the speed with which it does so 
may, however, be considerably less than during the regular 
growth. An ALPHA value less than 1 but still greater than 
zero will therefore be appropriate during the final growth 
stages. Since crystal growth will always start under condi- 
tions corresponding to the first set of assumptions, ALPHA is 
initialized with 1, and remains at this value unless it is 
explicitly SET or CHANGEd to a different value. 

ine KESET" command is closely linked to (and required by) the 
diameter evaluation routines. It initializes the shape infor- 
mation required for the buoyancy compensation under the as- 
sumption of a cylindrical seed with the diameter specified 
with the INITIALIZATION command (or sequence) which passes 
through the entire boric oxide encapsulant layer, and it pro- 
vides initialization values for the crystal length and weight 
calculation. Furthermore, a RESET command resets ALPHA to 1 
and cancels all effects of a possibly different previous ALPHA 
VÄ 111» 
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4,  The Czochralski Growth Control System Software 

4.  THE CZOCHRALSKI GROWTH CONTROL SYSTEM SOFTWARE 

4.1  PROSRAM STRUCTURE 

From the programmer's point of view, the Czochralski Growth 
Control System (CGCS) is an iRMX-80 based real-time applica- 
tion system consisting of a number of RMX "tasks". A task is 
a section of program code, usually dedicated to one control 
commission or part of it. It is more or less independent from 
other tasks and is executed whenever its specific action is 
required and system resources are available, according to the 
priority level which has been assigned to it. The execution 
of a task is scheduled by the operating system's "Nucleus", 
either in response to extraneous events (interrupts), or when 
a task receives data in the form of a "message" from a fellow 
task which it was waiting for. 

From the user's point of view, however, the CGCS consists es- 
sentially of three functional groups (Fig. 7) each of which, 
in turn, is constituted of several tasks: 

(1) The System Interface: This part of the software is trans- 
parent to the user (and therefore not shown in Fig. 7) . 
It provides, nevertheless, essential functions like data 
formatting or timekeeping. 

(2) The Operator Interface: These tasks form.the link between 
the operator and the controller routines proper. Holding 
the system's "intelligence", they constitute the by far 
largest part of the CGCS code. The Operator Interface is 
responsible for the following actions: 

(a) Prompting for and interpretation of operator commands 
which control the functions of the CGCS. 

(b) Execution of operator and Macro command file sourced 
commands. This function was kept strictly separate 
from the operator command interpretation in order to 
facilitate the handling of Macro commands. 

(c) Recording of all commands pertaining to the actual 
crystal growth process. 

(d) Periodic output of measured data on the console CRT 
terminal, and to a disk file, and preparation of data 
to be output on an analog chart recorder. 

(3) The Process Controller proper: These routines are actual- 
ly involved in controlling the heater power(s) and motor 
speeds according to the pertinent setpoints provided by 
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4.  The Czochralski Growth Control System Software 

the Operator Interface.  They also constitute the inter- 
face to the analog and digital I/O hardware. 

We will follow the above scheme for the subsequent discussion 
,** of the CGCS software. 

4.2  GENERAL PROGRAM INFORMATION 

The CGCS consists of routines part of whicr. were written in 
|y Fortran, part in assembly language.  In general, the Operator 
"/, Interface and part of the actual Controller routines are For- 

tran based, whereas the System Interface modules (and all 
r system routines which were not supplied by Intel) consist of 

assembly language code.  Assembly language was chosen when one 
or more of the following requirements had to be met: 

A! * Interface to iRMX-80 system routines which cannot be 
ft called directly from Fortran due to different parameter 

passing conventions. 
V .... jC * High operation speed, which is particularly important if a 

routine is invoked very frequently. 

* Numeric operations which can be coded mere efficiently in 
assembly language than in Fortran (e.g., the low-pass 
filtering algorithm). 

* 

■r 

■»£ Fortran, on the other hand, was chosen where the use of a 
high-level language was considered advantageous with regard to 
program clarity and programming efficiency.  It was the ob- 

P        vious choice for routines which involve floating-point arith- 
■•** metics (because Fortran is the only compiler-based language 

supplied by Intel for 8080/85 processors which supports float- 
ing-point operations) . In order to improve the execution 
speed and code efficiency of Fortran, a set of library rou- 
tines was specially prepared which replace the standard 
(lengthy and slow) Fortran floating-point algorithms by rou- 

[V tines which make use of the 8231 Numeric Processor.  These 
*' routines are not only several kilobytes smaller than the stan- 

dard ones, they also boost the execution speed by about one 
£. order of magnitude. 

A special approach was necessary to fit the CGCS into the 
available memory of less than 54 KBytes. (Mere than 10 of the 
total 64 KBytes are required for the ROM resident system and 
its data areas in RAM.) The entire code of the Czochralski 
system would have exceeded this limit by far. We had, there- 

Jfv fore, to choose an overlay approach (Fig. 8):  Program code 
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4.  The Czochralski Growth Control System Software 

which is not required permanently within the system is loaded 
ir.to a reserved memory area only when needed, overwriting an 
other currently dispensable overlay. The only system function 
where this is possible without unduly impeding the system 
operation is the Command Interpreter which controls the dialog 
between the operator and the system, Since the operator can 
only enter one command at a time, and since human command 
entry is a very slow procedure, compared to the standards of a 
microcomputer, it was possible to split the Command Interpre- 
ter's functions into a total of 22 different overlays each of 
which is in charge of one particular command or a group of re- 
lated commands. According to the size of the greatest over- 
lay, a memory area of 2 KBytes was reserved for Command Inter- 
preter overlays; the total size of all overlays together is 
approximately 3 0 KBytes. 

The layout of the Czochralski Growth Control System memory map 
(Fig. 6) was chosen to permit an easy software updating. Mod- 
ifying internal system parameters easily (compare chapters 1.3 
and 3.6) requires a translation table which correlates the 
symbolic name of a system "Variable" to its physical storage 
location in memory. Since this translation table has to be 
generated manually, it is obviously not desirable if it has to 
be rewritten after each minor modification of the controller 
software. The system grows or shrinks at its high-address 
end; in order to prevent them from being affected by system 
size changes, all important system Variables were located at 
the lowest addresses available, immediately above the code and 
data areas of the ROM resident system. Most of this data must 
be available to several system tasks; extensive use was there- 
fore made of named Fortran "COMMON" blocks which are arranged 
(in alphabetical order) at the lowest addresses and consume 
approximately 1,280 bytes. They are immediately followed by 
the general system data area. The lowest addresses within 
this area are used by the data locations of assembly language 
modules some of which have to be "tied" to "COMMON" blocks; 
these locations are still not very likely to be affected by 
program modifications. They are followed by the data areas of 
the permanently resident Fortran based software which are 
essentially scratchpad locations for the internal use of these 
routines. The remainder of the data area whose total size is 
approximately 9,900 bytes holds system data which hardly need 
be explicitly accessed and whose actual absolute addresses do, 
therefore, not matter. 

A 2 KByte range immediately above the data area is reserved 
for the Command Interpreter overlays' code and local data. It 
is succeeded by the bulk of the system code. This code area 
has currently a size of about 39.4 KBytes; the memory area be- 
tween its top and some disk buffers and system variables which 

- 44 - 

^•-^'•-"-'^ 



■£ 4.  The Czochralski Growth Control System Software 

M reside close to the absolute top of memory is used as a memory 
I pool from which memory can be dynamically assigned to system 
^ tasks when required.  The size of this memory pool does not 

matter unless it becomes too small; the program code may 
'j> therefore grow due to software improvements without penalty. 
«^        | (The memory reserves are currently in the order of 1.5 KBytes, 

which does permit program improvements but certainly not the 
_ introduction of major new features.) 

\*< 

iV 

> 

t ^ 

4.3  THE SYSTEM INTERFACE 

The System Interface consists of a number of subroutines 
if. (which can be called by any task) and of five primary and 
V several secondary tasks which are dynamically generated by the 
** primary tasks.  Interface routines which belong to a special 

set of interface libraries can be recognized by their names 
& which begin either with "FR..." or with "FX...".  A complete 
C documentation of this software is contained in the Fortran- 

RMX-8 0 Interface Manual (see Appendix A) .  We will restrict 
rwj ourselves to the discussion of two features of the System 

Interface which are not completely covered by the above docu- 
mentation, and which are actually noticeable to the user, 
namely, Console and Printer I/O, and Timing. 

4.3.1  CONSOLE AND PRINTER I/O 

The user-friendliness of a system depends to a large degree on 
the design of the command input and data output routines. 

P Input on the system console should be possible in a straight- 
forward way, without requiring the operator to care for inter- 
nal peculiarities of the system.  Usually, input actions are 

y,        explicitly requested from the operator, and operator input is 
*< accepted after it was requested by the system. In real-time 

systems, however, it may happen that thp operator-system dia 
^ log is delayed due to an extraneous event which requires imme- 

diate response, and the operator may be ready to enter console 
input before the system is waiting for it. In order to pre- 
vent operator entries from being lest or truncated, the system 
should have a "type-ahead" feature which collects in a special 

j> buffer operator entries which were not yet requested for. The 
specially written Terminal Handler used by RXISIS-II and the 
CGCS offers, in fact, very comfortable type-ahead; up to 80 
characters of operator input which may be contained in a maxi- 
mum of 4 0 input lines may be collected in the type-ahead buf- 
fer. 
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4.  The Czochralski Growth Control System Software 

The design of the output to the operator's console is not 
straightforward either: The standard approach is chronologic- 
ally arranged output where new items are added in the bottom 
output line, and older output lines scroll up and, on a CRT 
terminal, eventually off the screen. Although such a scrolled 
output is perfectly fine if it need only contain the dialog 
between the operator and the system, it is much less suitable 
if a large amount of data is to be displayed, particularly if 
output data is generated asynchronously by various processes. 
In this case, a CRT screen with a fixed format offers clearly 
advantages: each item can be found at the same place of the 
screen all the time, and there is always a complete set cf 
valid output data displayed. Each item need only be written 
to the console when it was changed, which evidently saves a 
lot of output overhead. 

However, the standard Fortran output routines (and also the 
standard iRMX-80 Terminal Handler) support only simple 
scrolled "Teletype" output. A special set of I/O routines and 
tasks was therefore prepared which provide, *'n conjunction 
with the improved Terminal Handler, the following features: 

* Support of a "fixed" output screen, i.e., the possibility 
to write in a random mode to any location on the screen of 
a console CRT terminal. 

* A "split" output screen which provides, in addition to 
fixed format output, a conventionally scrolled area to 
which data can be written whose chronological order does 
matter. This scrolled portion of the screen can advanta- 
geously hold echoes of the operator's input, and system 
messages. 

* Various output data formatting functions which are not 
provided by standard Fortran, e.g., a self-adjusting 
floating-point number output format. 

~ Suppuii- <J£ uoiaiaärid Tine parsing techniques. An input line 
may be processed repeatedly and scanned for various items. 

* User-friendly unformatted input of numeric values. In 
contrast to standard Fortran, hardly any syntax rules need 
be regarded. 

In fact, all standard Fortran I/O routines, including disk 
I/O, were replaced by specially written alternative code. 
Although the programming interface of the alternative routines 
is a little awkward compared to the standard Fortran ones, the 
specially written modules comprise not only considerably less 
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program code, they are also much faster than their Fortran 
counterparts. 

Some output items, in particular, the entire dialog between 
the operator and the system, should also be recorded for docu- 
mentation purposes either on the printer, or on a disk file. 
A special set of interface routines was therefore prepared 
which can be called by any task which requires input or gener- 
ates output, namely, STRIN and DATIN for the input of data to 
variables of type CHARACTER and of any other type, respective- 
ly, and STROÜT and DATOUT for the corresponding output opera- 
tions. (Fortran passes variables of CHARACTER type to sub- 
routines and functions in a way different from any other vari- 
able type, which necessitates a separate treatment.) The 
input routines echo the entire input line to the documentation 
output, while the output routines write simultaneously to the 
screen and to the documentation output. In either case, each 
documentation output line is preceded by the actual and the 
internal system time of its generation. The documentation 
routines format their output into pages of 56 lines each; each 
page is headed by a line which holds the run's date, a run 
identification, and a page number. 

The peculiarities of a real-time process control system re- 
quire an extremely high degree of fault tolerance, particu- 
larly for the I/O routines. The failure of a peripheral (and, 
possibly, only auxiliary) device like a printer must by no 
means permanently detain the operation of the remainder of the 
system. Therefore, a printer timeout feature was provided 
which discards printer output if the printer did not respond 
within a given period (currently, 10 seconds); after three 
unsuccessful attempts to write to the printer, printer output 
is disabled altogether. (A corresponding error message is 
displayed on the CRT console.) 

v. 

ö iSTriM   TIMING 

O 

Time is not only a crucial factor in process control, a timing 
facility of sufficient accuracy is also very desirable for any 
data logging or operation recording. Unfortunately, there is 
no reasonable clock hardware available within the family of 
OEM boards chosen; timing has, therefore, to rely on software 
routines. 

«-. 

The heart of the timing of the CGCS is a dedicated timer task 
(FXTIME) which is triggered by the internal timing of the 
iRMX-80 operating system. iRMX-80 permits to introduce delays 
in the execution of a task which are multiples of 50 ms, its 

- 47 - 

^^>^^^<^^^--"WSi<^^--^"; S^v\ ■..V.V.v;. , A.O .-- 



4.  The Czochralski Growth Control System Software 

internal time unit, which is derived from the on-board quartz 
clock. FXTIME runs once every second, i.e., every 20 iRMX 
time units. It provides time information (in the format 
hh:mm:ss) of the actual time in 24 hours notation, and of an 
internal system time which starts when the CGCS is loaded, and 
which is counted up to 95 hours, 59 minutes, and 59 seconds, 
wrapping around to zero after 96 hours. Furthermore, FXTIME 
features two counters which are incremented every second and 
which wrap around to zero after 65536 seconds (approximately 
IS hours and 12 minutes) . One of the counters runs from the 
system starr, the other can be reset arbitrarily, and used to 
trigger an "alarm clock" when its count exceeds a specified 
value. FXTIME also sets flag bytes once every second, every 
ten seconds, every minute, and at programmable intervals; 
these flag bytes and the "alarm clock" function are used to 
trigger the execution of controller tasks. In fact, all cri- 
tical timing is derived from FXTIME, which guarantees an accu- 
rate long-term synchronization of tasks. Ths internal timing 
of the CGCS can easily be checked by comparing the displayed 
time to an accurate clock. (The timekeeping of the CGCS is 
not extremely accurate, though, compared to the standards of 
common quartz clocks.  This is true because it is based on the 

be sufficient for providing a microprocessor clock signal; it 
does certainly not meet the requirements of high-accuracy 
timing.) 

4.4  THE OPERATOR INTERFACE 

4.4.1  THE CONSOLE CRT SCREEN 

The output on the CRT console terminal is the major visible 
part of the CGCS's Operator Interface. Several tasks some of 
which are not even part of the Operator Interface proper con- 
tribute to the console output (compare Fig. 9): 

(1) Fixed Part (Lines 1 through 16 or 17): 

Timer Task (FXTIME): 
Actual and system time. 

Command Interpreter Task (RXIROM): 
Table frames, text output, date, and run identifica- 
tion. 

Command Executor Task (CMMDEX): 
Macro command name; operation mode. 
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Measured Data Output Task (MEASDO): 
All numeric values; Debug output in line 17 if acti- 
vated. 

".• 

v 

i 

Command File Input Task (CMFINP): 
Macro command name (cleared). 

(2) Scrolled Part (Lines 17 or 18 through 21): 

Command Interpreter Task (RXIROM): 
Operator entry echoes, various messages. 

Command Executor Task (CMMDEX): 
Various messages. 

Command File Input Task (CMFINP): 
Various messages. 

Diameter Controller Task (DIACNT): 
Various messages. 

All other tasks: 
Disk, I/O, or system error messages. 

(3) Prompt Line (Line 22): 

Command Interpreter Task (RXIROM) 

(4) Input Area (Lines 23 and 24): 

Directly written to by the Terminal Handler. 

The numeric values written to the console are, in general, 
given as physically relevant magnitudes, i.e., as properly 
scaled floating-point numbers. The following dimensions apply 
to the various items: 

* Diameter, Lengths, Positions:  Millimeters. 

* Temperatures:  Millivolts (thermocouple voltages). 

* Lift Speeds:  Millimeters per hour. 

* Rotation Speeds:  Revolutions per minute. 

* Weights:  Grams. 

* differential Weight:  Grams per minute. 

* Powers, Contact Device:  Arbitrary units (0 ... 100). 
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* Gas Pressure:  Pounds per square inch. 

* Densities:  Grams per cubic centimeter. 

4.4.2  AUXILIARY I/O ROUTINES 

The tasks which request console input or generate console 
output (compare chapter 4.4.1) use, in general, the Fcrtran- 
RMX-80 Interface I/O routines whose names start with "FR..." 
to write to the screen, or the routines discussed in chapter 
4.3.1 if thsy also write to the documentation file. All these 
output routines require a screen position information which is 
passed in the first parameter of the subroutine call. Some 
locations on the screen are, however, very frequently written 
to, and it was advantageous to provide special routines for 
these output actions which have the screen position informa- 
tion implicitly built in. Calling any of the^e "shorthand" 
routines spares the programmer entering one parameter, and it 
abbreviates the actual program code. Similarly, some input 
actions like the checking for the input string "Y(es)" can 
expediently be handled by dedicated routines. 

The following routines (and several others) are kept in the 
assembly language module AUXASM. With the exception of 
PRETTA, they may be called by any task performing output. 

PROMPT: This routine writes the string which was passed to it 
as a parameter left-adjusted into the input prompt line 
(line 22) . 

MESSGE: The string passed as a parameter to MESSGE is written 
into the scrolled screen area. 

ERRMSG: Similar to MESSGE, the ERRMSG routine writes to the 
scrolled screen area, appending a "beep" in order to at- 
tract the operator's attention. 

PRETTA: This routine writes "- press "RETURN" key to conti- 
nue" to a specifiable screen location (usually in the 
prompt line), and waits for any input on the console. 

Three additional I/O routines are kept in the Fortran module 
AUXCOM: 

BEEP: This routine simply issues a "beep" on the system con- 
sole.  It takes no parameters. 
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CLIPRL: The subroutine CLIPRL overwrites the input prompt 
line with spaces. It does not take any parameters. 

CHKANS : This routine is a LOGICAL Function. It returns 
".TRUE." if a valid input line beginning with an upper- or 
lowercase "Y" was entered on the console, and otherwise 
".FALSE.". CHKANS needs a LOGICAL argument which is re- 
turned ".TRUE." if an empty line ("Return" only) was en- 
tered, and otherwise ".FALSE.". 

A 

4.4.3  THE COMMAND INTERPRETER - TASK RXIROM 

The Command Interpreter task has a special position among the 
CGCS tasks in several regards: 

* It is, in fact, the continuation of the ROM resident part 
of RXISIS-II, RXIROM, and the first task to come "alive" 
in the CGCS. Although it is "unofficially" referred to as 
"COMINT" within the program source modules, we will use 
here its "official" name RXIROM (which is also reported, 
e.g., by disk error messages). 

* It performs the system initialization and activates all 
other CGCS tasks. 

* It is the only task which requests and processes operator 
input (but not the only task to generate output). 

The Czochralski Growth Control System is invoked under RXISIS- 
II by the command "CZOCHR". RXISIS-II searches for and loads 
a program module "CZOCHR.RXI" whose only purpose is to vector 
control to a special code sequence in the RXISIS-II Command 
Line Interpreter which replaces the file name extension ".RXI" 
by ".BIN", provides the resulting module name "CZOCHR.BIN" for 
the ROM resident bootstrap routine, and restarts the system. 
The bootstrap routine is part of the task RXIROM; normally, it 
loads into RAM and starts RXISIS-II. Being entered in the de- 
scribed way, however, it loads the module "CZOCHR.BIN" rather 
than "RXISIS.BIN" from disk drive 0; "CZOCHR.BIN" holds the 
entire resident code of the CGCS plus preliminary initializa- 
tion values for some data locations, and a special start mod- 
ule which is loaded into the memory area which will later be 
used by the Command Interpreter overlays. Control is passed 
to this initialization code when the program file was success- 
fully loaded. 

The start module is entered via the assembly language routine 
CZINIT which first sets an internal flag of the Monitor which 
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enforces a duplication of the Monitor's CRT output to the 
printer. (This measure provides a permanent record on the 
printout of an inadvertent entry into the Monitor program 
which might happen due to software or hardware failures.) 
CZINIT also resets a flag which controls the activation of the 
Monitor from the console keyboard. (This is why the Monitor 
can be entered under RXISIS-II but not from the CGCS by press- 
ing the "Break" key of the console terminal.) Subsequently, 
CZINIT builds a new task stack close to the top of memory 
since the stack of RXIROM is too small. (Each iRMX-30 task 
requires a stack of its own.) It stores a program version 
code in a reserved memory location; later, a version code 
which is loaded with each overlay will be compared to this 
data in order to ascertain that only matching program modules 
are loaded. After some initialization calls to Fortran and 
Fortran-iRMX Interface routines, CZINIT passes control to the 
Fortran subroutine FXUSIN. 

FXUSIN initializes the digital I/O interface and several con- 
trol structures which can bs accessed more conveniently via 
Fortran than via assembly language. It calls the (assembly 
language) subroutine TESTHD which checks whether an A/D con- 
verter board is installed in the system by initiating a con- 
version and checking the status byte returned by the A/D con- 
verter for a "Conversion Ready" bit. The Variable TEST is set 
to -1 if no A/D converter response was detected within a de- 
fined timeout period; otherwise, TEST is returned with the 
value 0. (This check is important if the CGi Z software is 
intended to be run on hardware which does not feature the A/D 
and D/A interfaces. In this case, practically all system 
resources would be spent by the task ANACNT for waiting for 
the A/D converter to finish a conversion, which obviously 
never happens if there is no A/D converter within the system. 
The CGCS would, therefore, be practically locked in such a 
test environment. Th3 value of TEST is later used for bypass- 
ing the analog input and output routines within the task 
ANACNT. Note that the TESTHD call is done before ANACNT is 
created.) Subsequently, FXUSIN calls the assembly language 
subroutine CREATE which is, similar to TESTHD, part of the 
module CZINIT. CREATE activates all tasks of the CGCS, which 
can only be done safely after the above ii. ■* tializations, and 
makes unused memory (including the old RXIROM stack) available 
to the memory pool of the iRMX-8 0 Free Space Manager. After 
the return from CREATE, FXUSIN provides a sign-on message 
(plus a message referring to a "Test Mode" if TEST has been 
set to -1), and loads the data overlay 'CZOOVD" from drive 0. 

Similar to "CZOCHR.BIN", "CZOOVD" is loaded only once during 
every growth run. "CZOOVD" which holds the (initialization) 
values of practically all system parameters is kept separate 
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from the main code module on purpose. The preparation of the 
CGCS program modules is a lengthy and complicated procedure 
which would have been indispensable after each modification of 
a system parameter initialization value if this data had been 
kept within "CZOCHR.BIN". Since it is very likely that numer- 
ic parameters require changes more frequently than the program 
code, it was preferable to load them from a special data over- 
lay which can be modified and configured very easily. 

The auxiliary routine LOVLAY which is exclusively used by 
RXIROM loads overlay modules into RAM. (The information where 
data is to be loaded is part of the overlay program file. It 
is, therefore, sufficient to specify the name of the file to 
be loaded.) Several safeguards are provided which permit to 
trap the potentially disastrous loading of improper files: 

* The data on each disk file and, in addition, the program 
code itself, contains checksums which are validated by the 
Loader task. Any damage to a program file is therefore 
very likely to be detected and reported by the Loader. 
LOVLAY returns a message "Defective program disk" in this 
case. 

* Each overlay contains memory locations which hold its name 
and the program version code. LOVLAY reports "Software 
damage likely - reset the system" if either the overlay 
name or the program version loaded with the overlay do not 
match the expected data. (It is important not to mix 
modules belonging to different CGCS versions because all 
overlays access code or data within the resident part of 
the CGCS. Since the absolute address of a routine or a 
data location may change due to system modifications, an 
overlay routine may call improper code or access wrong 
data if its version does not correspond to the version of 
the resident code.) 

Note: Do not disregard error messages returned during overlay 
loading. A potentially disastrous effect of a defective over- 
lay may show up only after a considerable time. It is always 
dangerous to copy single overlay files to a work disk, or to 
exchange work disks inconsiderately. There is, however, no 
danger if a Disk Error 24 is reported during overlay loading, 
and if the defective disk is replaced by one which holds the 
same program version. 

(In very rare cases, a Disk Error 120 - Unable to open File - 
may be displayed when the system attempts to load CZOOVD. 
This may happen i r the operating system is overburdened during 
the start phase, for example, if a key is continuously pressed 
on the console terminal.  In this case, the memory pool has 
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not yet been initialized when memory is requested from it by 
the Loader software, and the above error condition ensues. 
The "Defectiv ; program disk" message may be ignored in this 
case, and lo. ■.. .ng may be retried by pressing "Return".) 

The start routine FXUSIN displays the creation date of the 
data overlay CZOOVD (which is also an indication that this 
module was loaded properly), and requests the current date. 
The date should be entered in the format shown in the prompt, 
but any string of 8 characters which starts with a digit is 
accepted. The date information is stored for reference pur- 
poses only; it will be used on the console screen, in the 
documentation output page headers, and in the header records 
of the Data files. After the date, the current time is re- 
quested from the operator; the system expects two or three 
positive integer values as an input, separated by colons 
(":"), spaces, or any other non-numeric characters. The time 
should be entered in 24 hours format; zero is assumed as a 
seconds value if only hours and minutes were specified. The 
internal system time starts running - yet invisibly - when the 
subroutine FRSETT is called after the "Return" key was pressed 
to enter the time information, and the absolute time is set to 
the value entered. Finally, FXUSIN requests a "Run Identifi- 
cation" which can be any arbitrary string up to 2 0 characters 
long. A blank run ID can be entered by simply pre-sing "Re- 
turn". 

FXUSIN calls now the subroutine TIMLIN which is part of the 
start code in the future overlay area. TIMLIN generates the 
date, absolute time, run ID, and system time display in the 
top screen line which will be shown throughout the entire 
growth run. The operator can accept or reject the data dis- 
played; this is, by the way, the only occasion within the 
entire CGCS where a plain "Return" is interpreted as "Yes" 
(otherwise, it is treated like "No"). Depending on the out- 
come of this query, FXUSIN either loops again through the 
date, time, and run ID input section, or it returns to CZINIT 
which passes control to the resident portion of the Command 
Interpreter, i.e., to the routine COMINT. 

COMINT starts its operation by writing the output "frame" to 
the console terminal which is eventually filled in with the 
output of measured data. This is done by the subroutine FRAME 
which resides in the overlay CZOV08. This overlay has to be 
loaded by COMINT; it overwrites the code of CZINIT and FXUSIN. 
(This and the following initializations can, therefore, not be 
done from FXUSIN which would otherwise be the logical place to 
do them; there is no way for a routine in an overlay to call 
directly another overlay resident routine which uses the same 
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physical memory locations.) We will discuss the subroutine 
FRAME later which is also called upon a RESTORE command. 

The next two routines invoked during the initialization of 
COMINT reside in overlays CZ0V16 and CZ0V19, respectively. 
DOCUMT permits to activate a Documentation output, either on 
the printer or on a disk file, and it allows to specify an 
interval for dumps of measured data to the Documentation out- 
put. INIDAT permits the initialization of some process para- 
meters.  Both routines will be dealt with later. 

COMINT enters now its infinite loop which starts with the 
output of the prompt "Please command:" and the request of 
operator input. The input routines transfer an input line of 
up to 80 characters into an internal buffer when the operator 
terminates his entry with "Return"; no data is available to 
the CGCS before "Return" is pressed. First, COMINT attempts 
to transfer the first six characters in this input buffer to 
the CHARACTER variable COMMD. The LOGICAL variable STAT is 
returned ".TRUE." by the STRIN call if and only if an empty 
line was entered ("Return" only). COMINT repeats its input 
prompt in this case, and waits for the next entry. Otherwise, 
the first character of the input line is checked and the input 
rejected if it is a space (the command keywords must be left 
adjusted within the input line to be processed properly). 

The presumable command keyword in COMMD is now compared to 
(currently) 25 keyword strings, corresponding to the 24 Inter- 
nal commands (the HELP command has the alternate keyword "?"). 
Control is vectored to the appropriate sequence within COMINT 
if a matching string is found. (The string comparison routine 
FRCMPS uses the character "|" as a wild card symbol which can 
be matched to any character; only four characters are compared 
since the keyword strings consist of four or less characters 
only.) The command entry is interpreted as the name of a 
Macro command if no matching Internal command was detected. A 
valid Macro file name string is created by the assembly lan- 
guage routine MAKEFN which appends the file name extension 

■y ".CMD" at the logical end of the presumptive Macro command 
y        name (which is either after the sixth character of COMMD, or 

at the first space in COMMD, whatever happens first).  COMINT 
tries to open the Macro file for reading, and closes it imme- 

Sj        diately, in order to test whether a file with the specified 
•S name and the extension ".CMD" does exist.  This is the case if 

no error status is returned by the FROPEN call; FROPEN will 
•\        return an error value of 13 ("No such file") if no Macro file 
"1;        was found with the specified name, most likely due to a mis- 

typed command.  An error value of 4 ("Illegal file name") may 
be returned if the command input contains non-alphanumeric 

j characters, which may also happen due to typing errors. 

.V 

.V 
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COMINT returns to the beginning of its command loop with an 
appropriate message in these cases; the standard disk error 
message is output if any other disk error was detected. If a 
file with the proper name was found, COMINT assumes that it is 
a valid Macro file (this fact will be checked later); it re- 
quests an operator acknowledgement ("Execute Macro command 
...?"), and sends a command message to the Command Executor 
which eventually will start the execution of the Macro com- 
mand. 

In general, all commands which may be recorded on and issued 
from a Macro command file are executed by the Command Execu- 
tor. These commands are "sent" to the Command Executor by 
means of messages, buffer areas in RAM which are made avail- 
able to the receiving task by the iRMX-80 operating system. 
Command messages have a "type" value of 161 (the message 
"type" is simply a safety feature which guarantees that cor- 
rect data is received). The first byte of the command message 
proper determines the command type (in our case, 3OH stands 
for "Macro Command") , and the remainder of the message holds 
parameters of the specific command, up to a length of 13 
bytes. The same format, with two additional leader bytes 
holding the command time, is used to store commands within a 
Macro file; compare Appendix H. Using special message trans- 
mission routines of the Fortran-RMX-8 0 Interface Program Pack- 
age permits to easily merge command messages from different 
sources (namely, from the Command Interpreter and the Command 
File Input tasks) and to queue them at the Command Executor's 
input for processing. 

Most of the Internal commands are processed in overlay resi- 
dent routines which we will discuss later, rather than within 
the main Command Interpreter routine COMINT. This approach 
helped to keep the resident COMINT code concise. Only the 
following commands do not require overlays to be loaded: 

EXCHANGE: This is considered an emergency routine which must 
be called if a disk has to be changed due to any kind of 
defect. It would not make sense to load an overlay from a 
possibly defective disk. In order to process the EXCHANGE 
command, COMTNT calls the Fortran subroutine XCHDSK which 
closes all files on the specified disk, waits for an ope- 
rator entry which indicates that the disk has been ex- 
changed, and re-opens all output files on the new disk. 

END: An End of Command Record code (7FH) is sent to the Com- 
mand Executor if this command was issued. 

QUIT: The Fortran subroutine QUITCH which is invoked by 
COMINT disables the Macro command file input (by resetting 
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the proper I/O flag) and the Timer #2 which controls the 
execution of Macro commands. It fakes a timer alarm by 
setting the flag TIMINT, and waits for two iRMX-80 time 
units (100 ms) to permit the Command File Input task 
CMFINP tc ran in response to the faked alarm. CMFINP 
closes the Macro command file, clears the Macro name on 
the top line of the console screen, and issues a corre- 
sponding message if it finds the I/O flag reset. 

DUMP: The subroutine DUMP which is called immediately upon a 
DUMP command sets a flag (DUMPFL) to .TRUE, whose status 
is periodically checked by the Command Executor (compare 
chapter 4.4.4.6). The Command Executor, in turn, initiates 
a Data Dump to the Documentation output when it finds this 
flag set. 

All other commands are handled by the overlay resident rou- 
tines. In order to avoid loading an overlay which has already 
been loaded by a preceding command, COMINT checks the value of 
the variable OVRLAY which is set by each overlay to its re- 
spective overlay number. (This is not explicitly done by 
program code but by assigning a value to OVRLAY with a BLOCK- 
DATA program; this value is stored in OVRLAY when the overlay 
is loaded.) The COMINT overlays are discussed in the follow- 
ing chapters in their numerical order which has been deter- 
mined essentially by historical reasons. 

4.4.3.1  OVERLAY CZOV01 - MODULE SETPAR - COMMANDS SET AND 
CHANGE 

'•v- 

The subroutine SETPAR receives the MODE switch as a parameter 
which distinguishes between the SET and CHANGE commands, and 
it returns the LOGICAL variable LOAD. LOAD is returned 
".FALSE." if SETPAR can complete the processing of the com- 
mand, i.e., if the command applies to one of the nine Internal 
parameters (diameter, three temperatures, four motor speeds, 
and power limit). Otherwise, LOAD is ".TRUE.", and COMINT has 
to load the overlay CZOV02 in order to complete command pro- 
cessinq. 

v 
SETPAR re-scans the command line originally issued to COMINT, 
searches in it for the first space, and then for the first 
three alphabetic characters after the space, in order to de- 
termine the parameter which is to be SET or CKANGEd. An ex- 
plicit request for a parameter is issued if no data is found 
in the input line, and a new input line is read and parsed for 
its first three characters. The command is cancelled if this 
second attempt is also unsuccessful.  In either case, the 
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input line pointer is moved back to the beginning of the pa- 
rameter string, i.e., the next input command will read the 
parameter string again unless a search option is used with the 
input routine call. The three input characters are now com- 
pared to the nine mnemonics which stand for the primary param- 
eters (three characters are reguired because the third of them 
must be a space in order to match a valid mnemonic). SETPAR 
is left immediately, with LOAD set ".TRUE.", if no matching 
mnemonic is found. 

The routine scans now to the first space after the parameter 
string and tries to read a valid floating-point number from 
the input buffer. This number will represent the target value 
of a SET command or the increment of a CHANGE command. A 
proper value is reguested if no numeric value is found after 
the parameter string, and a new input line is read in this 
case. Either input line is scanned for the next (floating- 
point) number, and a transition time entry is prompted for if 
no such number or a negative value is found. The command is 
regarded cancelled if no valid input is entered after it was 
explicitly reguested. A similar approach is used within all 
Command Interpreter routines which process commands which 
permit the entry of command parameters in the input line. 

In order to generate an operator confirmation prompt, SETPAR 
determines now the final value of the modified parameter. 
This value is egual to the input value for a SET command but 
must be calculated as the sum of the current parameter value 
and the specified increment in the case of a CHANGE command. 
Internally, the setpoint and actual values of the primary 
parameters are stored as scaled two-byte integer (INTEGER*2) 
values. This was done because analog data is input and output 
as integer values; the controller routines operate on integers 
because integer algorithms are faster and reguire less code, 
and data recorded in the Data file is also in integer format, 
which reduces the Data file size by a factor of two, compared 
to floating-point numbers. The physically relevant (floating- 
point) data which is displayed and entered on the console is 
obtained from the internal integer values by multiplying them 
with appropriate scaling factors. 

one peculiar property of real-time systems must be considered 
at this point: Unlike conventional computer programs, rou- 
tines which are part of a real-time system may not freely read 
and write data. This is true because multi-byte values are 
usually stored and retrieved in seguences of several machine- 
code instructions. The scheduling of system tasks is, how- 
ever, hardly predictable in a real-time environment, and a 
task might be interrupted, e.g., during a multi-byte read, by 
another task which might write to the same memory locations. 
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Although the actual value stored in these memory locations 
might change only slightly, a totally unusable value might be 
retrieved by the interrupted task. Such an event may be rela- 
tively unlikely but nevertheless disastrous; the following 
safety measures are taken within the CGCS to present it: 

(1) Some data areas are protected by access control routines 
(FRACCS and FRRELS) which permit only one task at a time 
to read them or write to them. 

(2) The system Variables are implicitly protected by the prop- 
er choice of the priorities of tasks which access them. 
They are only written to by the Command Executor which has 
a very low priority and can therefore never interrupt the 
execution of a higher-priority task which might use a 
Variable. The storage of the Variables is protected by 
using a special routine (STODAT) which temporarily dis- 
ables the system interrupts. 

(3) Values which have to be read only can be retrieved reliab- 
ly by reading them twice. This process can be repeated 
until both reads result in the same value. 

i 
The latter approach is the one chosen in 3ETPAR; a counter 
prevents the system from being blocked in the unlikely case 
that a matching value pair is never found. 

SETPAR checks the final setpoint for negative temperature or 
power limit values, and requests an operator acknowledgement. 
The output line has, unfortunately, to be built relatively 
awkwardly in a buffer (LINBUF) : The output routines which 
write also to the Documentation file can only accept a com- 
plete line of output. 

£ 

Upon a pos 
command me 
command mo 
input value 
a potential 
specified 
time in se 
Command Ex 
code. 

itive answer of the operator, SETPAR builds the 
ssage. The command type byte holds the encoded 
de (SET or CHANGE) and the target parameter; the 
is converted to an INTEGER*2 (which is checked for 
overflow), and the transition time value which was 
in minutes is multiplied by 60 to hold a ramping 
conds. The command message is dispatched to the 
ecutor, and SETPAR returns to the resident COMINT 
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4.4.3.2  OVERLAY CZOV02 - MODULE SETVAR - COMMANDS SET AND 
CHANGE 

SETVAP. is invoked after a SET or CHANGE command for which none 
of the Internal parameters was specified. The CGCS assumes in 
this case that the commrnd applies to a system Variable, i.e., 
to an item in a list of named memory locations. SETVAR re- 
ceives the input buffer from. SETPAR with the pointer at the 
first character of the presumptive Variable name; it reads a 
string of up to 10 characters into an internal buffer, termi- 
nating the input action when a space (i.e., the end of the 
Variable name) is encountered. The name string is converted 
to uppercase, and passed to the assembly language routine 
FINDAD. 

FINDAD compares the presumptive Variable name in VARNAM to a 
list of names kept in the specially formatted file CZONAM.Vmr, 
where m and n are the major and minor program version numbers, 
respectively. Each entry in this file holds a Variable name 
(1 to 6 alphanumeric characters long, but the first character 
must be alphabetic) , the Variable type (one- and two-byte 
integers or four-byte floating-point numbers), encoded with 
the number of elements if the Variable name refers to an ar- 
ray, and the Variable address or the start address of an array 
(compare Appendix H) . FINDAD checks the index of an array 
element which may optionally be passed in parentheses immedi- 
ately after the Variable name, and returns the actual address 
of the Variable or array element, and a type code which is 
positive if a valid entry was found in the CZONAM file, and 
negative in case of any error. 

SETVAR checks the type code returned and issues an error mes- 
sage if necessary; otherwise, it retrieves the current value 
of the Variable. This is done with a call to the assembly 
language subroutine PEEKDW which reads the four bytes at the 
address passed as a parameter repeatedly until a stable result 
is obtained (compare chapter 4.4.3.1). The four bytes read 
may have to be converted to a floating-point number according 
to the type of the Variable; the result of this operation is 
later used to display the current and the final values of the 
Variable. Subsequently, the routine tries to obtain a SET or 
CHANGE final value and a transition time from the input buf- 
fer, and it issues corresponding prompts if no data is found. 

Similar to SETPAR, SETVAR checks integer values for a valid 
range, builds a command message if the operator acknowledge- 
ment was positive, dispatches the message, and returns to 
COMINT. 
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4.4.3.3  OVERLAY CZOV03 - MODULE COMMEN - COMMAND COMMENT 

The routine COMMEN inserts a comment line into the Data file 
if such a file is active. 

COMMEN scans to the first space in the original command input 
line, and tries to read valid input from the remainder of the 
command line (to receive any comment which was entered to- 
gether with the COMMENT command). A corresponding prompt is 
issued if the command line did not contain any data except the 
keyword. COMMEN returns immediately to COMINT if no Data file 
is active (i.e., I0FLAG(2) is reset); otherwise, it provides 
operation mode, time, and length grown information in its 
output buffer, sets the first byte of this 128 byte buffer to 
-1 to indicate a comment line, and writes the buffer to the 
Data file. It is essential that a full record (128 bytes) is 
appended to the Data file to maintain the file's special for- 
mat (compare Appendix H). 

V 

i 
ft 
8 

3 

r. 
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4.4.3.4  OVERLAY CZOV0 4 - MODULES MENOUT AND CLRSCR - COMMAND 
HELP 

This overlay provides the Kelp menus of the CGCS in response 
to the commands HELP and "?". It writes in random access mode 
into lines 17 through 21 which are otherwise reserved for 
scrolled and Debug output. The latter is immediately disabled 
by resetting the flag ENDBGO when MENOUT is entered. Although 
the output routines do permit to write over the scrolled area 
in random access mode, this output remains on the screen only 
until data is output in scrolled mode. Any system message 
which is issued while the HELP command is executed will there- 
fore preempt the display of the current Help menu. 

MENOUT first clears the five lines of the scrolled area by 
overwriting them with spaces (in the subroutine CLRSCR), and 
outputs a quick menu of Internal commands which is built right 
into the program. The next help screen optionally displayed 
by MENOUT contains a list of Macro command names which are 
derived from the disk directory of the disk in drive 0 (file 
ISIS.DIR). The directory is scanned for all valid files with 
an extension ".CMD". Up to 40 Macro files can be listed on 
one screen; if there are more Macro files on the system disk, 
MENOUT pauses and continues its output when the operator 
pressed the Return key. 

After displaying the Macro commands, MENOUT permits to request 
more information about the Internal commands. If the operator 
accepts this offer, MENOUT displays again the short menu. 
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(The initial menu display sequence is also used for this pur- 
pose; a LOGICAL variable controls the continuation of the 
execution of MENOUT after the menu was output. This approach 
was chosen rather than a subroutine call because it is more 
program code efficient, and because it does not require awk- 
ward measures like COMMON blocks or lengthy subroutine param- 
eter lists to make variables available to all routines in- 
volved.) Simultaneously, MENOUT opens the help file CZOMEN 
for reading which holds five lines of text for each command. 
There are two modes in which the contents of CZOMEN can be 
displayed: One mode steps through the file, displaying record 
by record, while the other one scans the file until a keyword 
entered by the operator is found in the first line of an en- 
try; only this entry is displayed. Both modes can be combined 
since an empty input line ("Return" only) always results in 
the next record being displayed, whereas the first four char- 
acters of a non-empty input line are used to search through 
the file CZOMEN. Multiple entries can therefore be searched 
for in one pass, provided they are in ascending alphabetical 
order. A single-character entry (nominally, "Q", but any 
other character has the same effect) terminates the search, 
and MENOUT is exited after closing the menu file and re-en- 
abling a possible Debug output by setting the flag ENDBGO. 

4.4.3.5  OVERLAY CZOV0 5 - MODULES OPMODE AND CLRSCR - COMMAND 
MODE 

The operation mode setting routine OPMODE displays a mode menu 
similarly to MENOUT, and permits the entry of a mode number. 
The number entered is compared to the current mode and checked 
for its validity; corresponding messages are output if either 
the current mode was chosen, or if an illegal mode number was 
entered. OPMODE permits to re-select the current mode; al- 
though this has no effect whatsoever on the current growth 
run, the command is recorded in the Command Output file and 
may be effective during a later execution of this file as a 
Macro command. (It may also be used to trigger a data dump on 
the printer and in the Data file; there are more straightfor- 
ward methods to achieve this; though.) 

The operator is prompted for an acknowledgement of his mode 
entry in any case. OPMODE requests an extra acknowledgement 
(with "OK" rather than "Y(es)") if the mode is changed from 
Monitoring (mode 0) to any controlled mode, or vice versa, in 
order to prevent the probably disastrous effects which an 
inadvertent change might have. The newly entered mode is 
encoded in a command number, and the command message is sent 
to the Command Executor. 
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4.4.3.6  OVERLAY CZOV06 - MODULE DEBÜG0 - DEBUG COMMANDS 

The six DEBUG sub-commands - Continuously, Display, Modify, 
Off, Resume, and Suspend - are handled by the two overlays 
CZOV06 and CZOV07 (modules DEBUGO and DEBUG1, respectively) 
which are concatenated similar to the two overlays for the SET 
and CHANGE commands. The command execution is commenced in 
the module DEBUGO where the command input line is first scan- 
ned for the DEBUG mode switch, which is any one of the letters 
C, D, M, 0, R, and S. As usual, a mode switch is requested if 
none or only an illegal one was found. 

The processing of the DEBUG commands requires various inter- 
pretations of the input line, depending on which sub-command 
was issued. In order to facilitate this processing, the en- 
tire contents of the input buffer are read into an internal 
buffer (LINBUF) from which input items are retrieved. The 
contents of this buffer are shifted to the left by one item 
after each successful input operation, which permits to read 
the next item always from the beginning of the buffer. (Items 
must be separated by spaces; the buffer shifting subroutine 
SHIFTB simply advances to the first non-blank character after 
the first space and copies the buffer onto itself from this 
location on.) 

For all sub-commands except Off, either the name of a Variable 
or an address is required as the first parameter. An input 
item starting with a number is considered a (hexadecimal) 
address, otherwise, the parameter is submitted to the routine 
FINDAD which was already discussed in chapter 4.4.3.2. The 
DEBUG routines distinguish between address and Variable input 
by setting the Variable type location VARTYP to -1 in the case 
of address specification, whereas values from 0 to 3 are re- 
turned by FINDAD for Variables. 

Indeed, the information otherwise provided by FINDAD in the 
Variable type location must be obtained from the operator if 
address input was chosen since DEBUG would not know how to 
interpret the data at the specified address. (This informa- 
tion is not needed for the Display sub-command which outputs 
data anyhow in all perceivable notations.) A data format is, 
therefore, retrieved from the input buffer or requested from 
the operator if an address value was specified with a Continu- 
ously or Modify sub-command. (The formats used for numeric 
Variables are internally set to "II", "12", and "R", depending 
on VARTYP.) 

The Continuously and Off sub-commands require the Debug Chan- 
nel number, i.e., the number of the output location in the 
Debug line (1 to 4) which the command refers to.  For both 
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sub-commands, all necessary information is now available, and 
the proper command messages can be sent to the Command Execu- 
tor. 

The Display and Modify sub-commands display the current con- 
tents of the specified memory locations; in order to obtain 
this data, four bytes beginning with the given address are 
copied into local memory in an approach similar to the one 
used in SETVAR (compare chapter 4.4.3.2). This data is imme- 
diately displayed in several modes if the Display sub-command 
was issued: The four bytes or part of them are interpreted as 
ASCII string data, as an INTEGER*! and INTEGER*2 variable, as 
floating-point data (type REAL), and as hexadecimal numbers. 
(A special treatment is necessary for the ASCII interpretation 
in order to avoid problems with data bytes which might corre- 
spond to control codes. Such bytes are replaced by periods 
("•").) 

While the Continuously, Display, and Off sub-commands already 
have been completely processed when the end of the module 
DEBUGO is reached, this is not true for the Modify, Resume, 
and Suspend commands. They have to be passed on to the second 
part of the DEBUG routine, DEBUG1 in CZOV07. 

4.4.3.7  OVERLAY CZOV07 - MODULE DEBUG1 - DEBUG COMMANDS 

Similar to SETVAR, DEBUG1 is only loaded if DEBUGO returns 
with a status flag set to ".TRUE.". Data is passed between 
both routines by means of a special named COMMON block 
(DBGCOM) which is located at the top of the overlay area where 
it is preserved when DEBUG,1 is loaded. 

In order to conclude the processing of the Modify sub-command, 
DEBUG1 displays the current contents of the specified memory 
locations, and requests explicitly new data. Both values are 
displayed again for operator confirmation, and built into the 
command message if the confirmation was given. 

The sub-commands Resume and Suspend which permit to resume and 
suspend the execution of an arbitrary task are treated essen- 
tially in common: Both require the address or the name of an 
iRMX-80 Task Descriptor as a parameter. Task descriptors 
which are referred to as Variables have the Variable type 
value of zero returned by FINDAD. Since specifying an address 
with a Resume or Suspend system call which is not the address 
of an iRMX-80 Task Descriptor would have a disastrous effect 
on the total system, multiple safeguards are used besides 
checking the VARTYP value:  The name of the task, six alpha- 
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numeric characters, is stored in memory locations whose start 
address can be derived from the presumptive Task Descriptor. 
The command is cancelled if either non-alphanumeric characters 
are detected in the name area, or if the first character is 
not alphabetic. After an operator acknowledgement, a proper 
command message is again dispatched to the Command Executor 
which will, in turn, resume or suspend the specified task. 

4.4.3.8  OVERLAY C2OV08 - MODULES FRAME AND TIMLIN - COMMAND 
RESTORE 

K 

11 

s 

& 

This overlay provides the mask for the "fixed" output on the 
console CRT screen. It is executed upon a RESTORE command, 
and during the system initialization. 

FRAME which is in charge of the main output mask first dis- 
ables the output of measured data by resetting the flag 
RESTD0(3). This is important to avoid interferences between 
the two groups of output operations. Furthermore, Debug out- 
put in line 17 is suspended by resetting the flag ENDBGO. 
FRAME clears the CRT screen, and calls TIMLIN which restores 
the top (time) line. Subsequently, all fixed output items are 
written one by one, followed by a five line parameter dimen- 
sion information written over the scrolled screen area. 
Having provided this menu, FRAME enables the output of mea- 
sured data by setting RESTDO(3), and actually enforces data 
output by setting the remaining two flags of the array 
RESTDO. FRAME pauses then until the operator presses the 
"Return" key to permit him to read the display in the scrolled 
area. Writing a blank line into the actual scrolled output 
restores the previous contents of the scrolled area after a 
RESTORE command. 

4.4.3.9  OVERLAY CZOV09 - MODULE FILES - COMMAND FILES 

The subroutine FILES permits to display the current status of 
the three output disk files (the Documentation, Data, and 
Command file), and to change the status of a selected file. 

First, FILES displays the name and the status of each file. 
The file names are kept in the CHARACTER array FILNAM; the 
file status is determined by the values of IOFLAG and FILLOC. 
The proper element of the array IOFLAG is set to ".TRUE." 
whenever a file is actually active, i.e., data can be written 
to it. FILLOC, in contrast, represents the physical location 
of a file; 0 and 1 stand for drive 0 and 1, respectively, and 

v. 
v. 
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2, for output to the printer. FILLOC is set to 3 if no file 
is open at all. In the case of the Control Output file, the 
setting of the flag RECORD has also to be taken into account 
which is ".TRUE." while commands are actually recorded (i.e., 
after a START command), and "-FALSE." otherwise. 

The operator may now specify one of the three output files 
which he wants to be opened and closed, or return immediately 
to COMINT. The actual file treatment is performed by one of 
three separate overlays; the proper overlay number is deter- 
mined by FILES and passed to COMINT in C'.'RLAY; COMINT concate- 
nates the proper routine. 

4.4.3.10  OVERLAY CZOV10 - MODULE REQCMF - COMMANDS START AND 
FILES 

The subroutine REQCMF can only be called via the START and 
FILES commands; it opens, initializes, and closes Control (or 
"Command") Output files. 

The response of REQCMF depends on the status of the file; it 
distinguishes between three cases: 

(1) No Command Output file is open (I0FLAG(3) is ".FALSE.", 
and FILLOC(3) is 3) . 

(2) The file has been opened, but it cannot be written to due 
to a preceding disk error (IOFLAG(3) 
FILLOC(3) is not equal to 3). 

is ".FALSE. but 

(3) The file is open and active (I0FLAG(3) is ".TRUE."). 

In the first case, REQCMF offers the operator to open a Con- 
trol Output file, and requests a file name if he agrees. A 
complete Macro file name is built from the operator's entry by 
appending ".CMD" (with the subroutine MAKEFN), and the result- 
ing file name is checked for validity and for the drive where 
the file will be located (with CHKFNM). In order to prevent 
the accidental overwriting of ar existing file (if the opera- 
tor entered the name of a file which already exists on the 
same disk) , REQCMF tries to open the file with the specified 
name for reading first, and issues a warning if this procedure 
was successful, i.e., if a matching file was found. Other- 
wise, the Command Output file is opened for writing, and a 
header record is written to it. The header record holds zeros 
in its first two bytes (which otherwise contain the execution 
time of a command) , and the system version code in the third 
and fourth byte.  The remaining 12 of the 16 bytes of the 
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header record are currently undefined. REQCMF finally sets 
IOFLAG and returns to COMINT. 

In the second case, REQCMF permits either to re-activate the 
file (possibly, the error condition has already been corrected 
which set it inactive) , or to close it. An open and active 
file may be closed only; if the operator agrees to close the 
file, ICFLAC and RECORD are reset, FILLOn i <= <=et to 3. and the 
file name string is deleted. 

4.4.3.11  OVERLAY CZ0V11 - MODULE CALCUL - COMMAND CALCULATE 

The CALCULATE command constitutes a helpful utility which is, 
in fact, not connected to the crystal growth process at all. 
CALCUL permits to evaluate the sum, the difference, the prod- 
uct, and the quotient of two numbers. With regard to the 
requirements of the DEBUG commands, three formats are select- 
able for input and output data, namely, (two byte) Integer, 
Hexadecimal, and Real (floating-point). One set of instruc- 
tions applies to the processing of floating-point input 
values, and an other, to integer and hexadecimal data. The 
results are displayed in decimal and hexadecimal notation in 
either case; the CALCULATE command may therefore be used to 
determine the internal (hexadecimal) representation of an 
arbitrary integer or floating-point value. 

4.4.3.12 
DATA 

OVERLAY CZ0V12 - MODULE DATAFI - COMMANDS FILES AND 

With the exception of the header record generation, the rou- 
tine DATAFI which is responsible for the initialization and 
maintenance of the Data file is analogously identical to 
REQCMF (compare chapter 4.4.3.10). 

A data sampling interval (in seconds) is requested from the 
operator when a Data file is evened; any value between 1 and 
255 is accepted. The header record is built after the opera- 
tor acknowledged the interval value. It contains the date, 
the run ID, the data records interval., and the system version. 
This header which is 32 bytes long is written to the newly 
opened Data file four times, to permit the first Data record 
to start at a disk sector boundary. (This is important be- 
cause disk operations are much faster if an entire disk sector 
can be written or read.) 
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4.4.3.13  OVERLAY CZ0V13 - MODULE EXICZO - COMMAND EXIT 

This module has the chore of "closing down" the CGCS and the 
puller. It requires a double acknowledgement by the operator 
to be actually executed, in order to prevent accidental exit- 
ing from the CGCS.  It performs the following operations: 

(1) EXICZO disables periodic data dumps to the Documentation 
output. 

(2) It sends an END command to the Command Output file if such 
a file is still open. 

(3) It clears potentially pending Conditional Commands by 
transmitting a CLEAR command code to the Command Executor. 

(4) It performs a QUIT command (calling QUITCM) to preempt a 
currently active Macro. 

(5) It switches off Data recording by de-activating a Data 
file (setting I0FLAG(2) to ",FALSE."). 

(6) It shuts the system down with the following actions if the 
digital system is actually controlling the puller: 

(a) It terminates automatic growth, changing the operation 
mode to "Manual" by sending an appropriate command 
message. 

(b) It terminates any parameter ramping possibly still in 
progress by resetting the Ramping flags RMPFLG (com- 
pare chapter 4.4.4). 

(c) It checks the current values of the motor speed and 
power limit setpoints, and enters into the following 
actions if any one of them is not equal to zero: 

(1) It permits the operator to skip from EXICZO and to 
shut the system down on his own account. 

(2) It ramps the power limit setpoint to zero within 
approximately 6 hours unless it is already zero, 
generating an appropriate command message. 

(3) It ramps the seed and crucible lift speeds to ?.ero 
within one minute. 

(4) It provides a time countdown in the input prompt 
line which starts at 360 minutes if the power 
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limit need be ramped down, and otherwise at one 
minute. 

*- (5) It ramps the seed and crucible rotation speeds to 
$ zero within one minute when the countdown display 
Ä shows one minute. 

H (d) It prompts the operator to switch off the puller's 
5? power supply, and submits control to the analog con- 

troller when the operator indicates that this is pos- 
£jr sible by commanding "EXIT" again.  The operation mode 
vj is set re Monitoring with a suitable command message. 

(7) EXICZO disables the output of measured data, and stops the 
$ Measured Data Output Task MEASDO (compare chapter 4.4.5). 
JK Simultaneously, it resets the Timer Output Enable flags 

ENTIMO to prevent the display of new time strings. 

tf, (8) It closes all possibly still open output files, 

(9) Clears the console screen and writes a sign-off message, 

-."" (10) Switches all output relays off, and 

Jy (11) Calls the routine FREXIT which will re-boot RXISIS-II. 

4.4.3.14  OVERLAY CZOV14 - MODULE CONDIT - COMMAND IF 

CONDIT receives the command input line buffer from COMINT; it 
m tries to retrieve a Variable name frcm it by scanning to the 
>• first non-blank character after the first space.  A Variable 

name is requested if none was found.  This name is converted 
to uppercase (FRCVUC) and processed by FINDAD which returns 

£\ the address and the type of the Variable specified.  Next, one 
*•■' or two relational characters ("<", "=", or ">") are either 

read from the input buffer, or explicitly requested.  A numer- 
.V ic value of 1 to 3 is assigned to each valid relational char- 
'?'. acter; the two relational characters and the Variable type are 

packed into one byte of the command message in order t« con- 
v serve space.  After a comparison value which is simply stored 
£S in the command message, the name of the Macro command which is 

to be executed conditionally is retrieved in the standard way. 
A Macro file name is built from the command name (with 
MAKEFN), and CONDIT tests the requested Macro file in the same 
way which COMINT uses for the same purpose.  The Macro name is 
stored in the command message which is dispatched if the file 
exists and the operator acknowledgement was obtained. 

i 
& 
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4.4.3.15  OVERLAY C2QV15 - MODULE DISPLY - COMMAND DISPLAY 

DISPLY requires the name of the Variable whose value is to be 
displayed as its only input. The name is either read from the 
input line buffer, or explicitly requested. After a conver- 
sion to uppercase, it is submitted to FINDAD which returns the 
address and the type of the Variable. The Variable is read 
subsequently with the algorithms already discussed above (com- 
pare chapter 4.4.3.2), and displayed according to its type. 

4.4.3.16  OVERLAY CZOV1S - MODULE DOCUMT - COMMANDS FILES AND 
DOCUMENTATION 

The module DOCUMT is accessed during the initialization se- 
quence, from FILES, and at a DOCUMENTATION command call. 
DOCUMT is very similar to REQCMF (compare chapter 4.4.3.10) 
and to DATAFI (compare chapter 4.4.3.12). The major differen- 
ces between these routines are (aside from the different 
IOFLAG and FILLOC array elements which they use): 

(1) DOCUMT explicitly permits to use the printer as an output 
device (which would not make sense with the other two 
files). 

(2) It permits to specify an interval for the periodic output 
of measured data to the Documentation file, and 

(3) It opens the Documentation file, enables printer output 
(in case it was disabled due to a printer timeout), and 
initializes the output routines with a call to the routine 
STARTP which is part of the DATOUT module (compare chapter 
4.3.1). STARTP presets the line counter and generates a 
page header line in the Documentation file. 

4.4.3.17  OVERLAY CZOV17 - MODULE DIRECT - COMMAND DIR 

DIRECT displays the directory of the disk in the drive speci- 
fied, together with some information about the disk itself. 
Having obtained a valid drive number (0 or 1) , DIRECT first 
reads the disk label, i.e., the name of the disk, which is 
kept in the file ISIS.LAB. Next, the routine determines by 
checking the file location array FILLOC whether files are open 
for output on the specified di^ In this case, the informa- 
tion about the free and used disk space cannot be reliably 
obtained, and the corresponding values are preceded by "less 
than" and "greater than" signs, respectively.  The number of 
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occupied sectors on the disk is retrieved from the disk map 
file ISIS.MAP; each bit set in ISIS.MAP corresponds to a used 
sector. These bits are counted by the (assembly language) 
Function BITCNT, and written to the directory header line. 

>"?, Since each single-density, single-sided 8" disk holds 2002 
'»' sectors of 128 bytes each, the number of free sectors can be 

easily calculated.  Finally, DIRECT reads the disk directory 
P file ISIS.DIR, and displays all file names in a way similar to 
/£ the one chosen for the Help menu output (compare chapter 

4.4.3.4).  DIRECT can only output 6 entries per screen line 
since full file names, including extensions, have to be dis- 

<\ played.  The routine pauses after having written the header 
* line and four lines of directory contends, and continues over- 

writing the directory display with new aata after the operator 
pressed the "Enter" key. DIRECT returns to COMINT when the 
"Enter" key was pressed after the last valid directory entry 
was displayed. 

4.4.3.13  OVERLAY CZOV18 - MODULE RESOVL - COMMAND RESET 

The RESET command is indispensable for the initialization of 
the diameter evaluation routines. It prepares not only the 
buoyancy compensation routines in the module SHAPE (compare 
chapter 4.5.2) but initializes also the weight and length 
values displayed. RESOVL offers the standard option of reset- 
ting length and weight to zero; it permits to maintain the 
current value for each of these parameters or to enter new 
values if the zeroing option was rejected. The values input 
by the operator are scaled to obtain integer data in the for- 
mats used internally for weight and length representation; a 
value of -32768 (the most negative integer value) indicates 
that the corresponding parameter value should be preserved. 
RESOVL sends these values to the Command Executor which calls 
the actual reset routine. 

4.4.3.19  OVERLAY CSOV19 - MODULE INIDAT - COMMAND INITIALIZE 

INIDAT is called upon an INITIALIZE command and, in addition, 
during the system preparation sequence. It displays the cur- 
rent values of six system parameters (seed and crucible dia- 
meter, boric oxide weight, and the densities of the solid 
crystal, the semiconductor melt, and the boric oxide melt), 
and permits the operator to either accept them by pressing 
"Return" only, or to enter new data. Negative values, which 
are invalid in any case, are trapped, and the parameters are 
converted back to their internal storage format.  In order to 
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facilitate diameter evaluation, the system holds the squares 
of the diameter values, and densities in grams per cubic 
millimeter. Finally, INIDTA checks the minimum height of the 
boric oxide encapsulant melt (i.e., the height of a cylinder 
of molten boric oxide with the specified mass covering the 
entire cross section of the crucible) , and sets the boric 
oxide weight to zero if it is too small to be handled properly 
by the Diameter Evaluation routine SHAPE (compare chapter 
4.5.2.3) . 

4.4.3.2 0  OVERLAY CZOV2 0 - MODULE PLOTOV - COMMAND PLOT 

The module PLOTOV permits to link Variables or memory loca- 
tions specified by absolute addresses to one of the eight Plot 
Channels. An approach similar to the one used in DEBUGO is 
applied to separate Variable and address inputs; Variables 
must be in INTEGER*2 format in order to be displayed, whereas 
this format is intrinsically assumed for memory locations 
specified by their absolute addresses. PLOTOV scans the input 
string for name/address and channel information, and requests 
data if applicable. Further processing of the PLOT command is 
done by the Command Executor to which a pertinent message is 
dispatched. 

4.4.3.21  OVERLAY C2QV21 - MODULE CLEARO - COMMAND CLEAR 

Two versions of the CLEAR command are supported by CLEARO, 
namely, the Unconditional and the Selective Clear. CLEARO 
scans the input line for the name of a Variable, and assumes 
that an Unconditional Clear is issued if no valid data is 
found. An operator reconfirmation is requested, and a prompt 
for a Variable name is issued if the operator indicates he did 
not want an Unconditional Clear. The Variable name is pro- 
cessed as usual (with FINDAD), and a command message is sent 
to the Command Executor when the operator acknowledges his 
entries. 

4.4.4  THE COMMAND EXECUTOR - TASK CMMDEX 

The Command Executor receives command messages from two 
sources, namely, from the Command Interpreter, and from the 
Command File Input Task. The special Fortran-RMX-8 0 Interface 
Routines used (compare Appendix A) automatically advance these 
messages to the Command File Output Task which eventually 
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records them in the Command Output file. The Command Execu- 
tor's commission is to process each command message, and to 
perform several other procedures which have do be done in 
regular intervals. 

CMMDEX runs once every second; its timing is indirectly de- 
rived from the Timer Task FXTIME.  The first action of CMMDEX 

;s> after it performed a few initialization subroutine calls (but 
not the first action after it starts running every second) is 
to receive a command message if there is one. In most cases, 
there will be none; the approach of using command messages 

£. has, however, the advantage that these messages will be gueued 
*"" by the operating system in the order in which they were issued 

if more of them are generated than can be processed.  There- 
£j fore, it is possible to have CMMDEX process only one command 

message every second without losing commands; in the worst 
case, the command execution may be delayed by a few seconds. 

4.4.4.1  COMMAND MESSAGE PROCESSING 

CMMDEX first decodes a command message if one was received. 
The first byte of each command message holds a command code 
which consists of a major Mode (corresponding to "SET" or 
"DEBUG") in the high four bits of the byte, and a Switch 
(e.g., for "SL" or "Continuously") in the low four bits. 
These values are separated, and control is vectored to the 
proper processing sequences. 

Mode = 1 and 2 - SET and CHANGE Internal parameter 

Mode values of 1 and 2 correspond to SET and CHANGE commands, 
respectively, which apply to Internal parameters. CMMDEX 
first determines the address where the specified setpoint is 
to be stored: There are two arrays for the setpoints of the 
Internal parameters, STPNTO and STPNT1, which correspond to 
the left and right setpoint columns displayed on the console 
screen. STPNTO always holds the setpoint values which are 
actually used by the various controller routines, and which 
are the ones which are normally ramped by CMMDEX. There is, 
still, an important exception to this rule if an Internal 
parameter is controlled, e.g., the heater temperatures in 
diameter controlled operation modes. In this case, CMMDEX 
stores the output of its ramping generator in STPNT1 rather 
then in STPNTO; the LOGICAL Function CNTRL (which is actually 
an assembly language subroutine) returns ".TRUE." in this 
case. CMMDEX sets a memory location according to the (set- 
point) variable type (all Internal parameters are two-byte 
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integers) and enters a sequence of code which is also used for 
SET and CHANGE commands applying to Variables, and by the 
Conditional Command Executor algorithms. A flag (L) is used 
to branch to the Conditional Command Executor code after the 
common sequence; although this approach is certainly not con- 
sistent with structural programming techniques, it is the most 
efficient way with regard to the large number of local memory 
locations whose contents are used inside and outside the com- 
mon code. 

Having issued a warning if a SET or CHANGE command was entere:: 
while the CGCS is in monitoring mode, i.e., nor controlling 
the puller, CMMDEX determines the current contents of the 
target locations, and converts them to floating-point format 
if necessary. For CHANGE commands (Modes 2 or 10), a new 
final value is calculated by adding the message input value to 
the current target location contents; for SET commands, it is 
directly derived from the value passed with the command mes- 
sage. The magnitude of the resulting value is checked if it 
has to be stored to integer locations which have a limited 
numeric range; the result is set to the permitted maximum with 
the correct sign, and an error message is issued, if an over- 
flow is detected. Similarly, diameter, temperature, and power 
limit setpoints are checked for negative values; the above 
result is set to zero and an error message ensues if any of 
these setpoint values is found to be negative. 

The processing of all SET and CHANGE commands continues in a 
Command Executor code sequence called Ramping Preparation: 
The CGCS is able to ramp up to twenty independent parameters; 
all ramping control structures are therefore arrays with twen- 
ty elements each. Each channel holds an address, a variable 
type, and starting, final, increment, and breakpoint values; 
the latter four in floating-point notation to guarantee the 
necessary resolution and dynamic range. CMMDEX assigns a 
ramping channel according to availability to a parameter or 
Variable which is to be ramped; only the Variable address 
indicates which data is handled in which channel. In order to 
prevent confusions if a SET or CHANGE command was iasued for 
data which is already being ramped, CMMDEX checks lirst wheth- 
er t ,e address passed is already used by one of the ramping 
channels, in which case this particular channel is updated. 
Otherwise, CMMDEX searches for an unused ramping channel (un- 
less all channels are used or a transition time of zero war 
entered, in which cases ramping is bypassed, and the final 
value is immediately stored at the target address). The sta- 
tus of a ramping channel is determined by RMPFLG which is zero 
if a channel is not used. It is set to the number of an In- 
ternal parameter (1 to 9), or to -1 if a Variable is rainped. 
The Ramping Preparation code stores the current and final 
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values of the data to be ramped; an increment value is calcul- 
ated by dividing the difference between the initial and the 
final values by the ramping time in seconds, and a breakpoint, 
by multiplying the absolute value of the increment by 1.1 and 
adding a small number. Finally, CMMDEX stores the final 
values of Internal parameter setpoints in the corresponding 
array (unless the parameter is being controlled) , and con- 
tinues witn the Ramping Executor sequence. 

v 
"ode = 3 - Macro command, Unconditional CLEAR 

A Mode value of 3 indicates either a Macro command (Switch = 
0), or an unconditional CLEAR command (Switch = 1) . 

'f 

F N 

The Macro name passed with a Macro command message is expanded 
into a full Macro file name (i.e., ".CMC" is appended). A 
possibly active Macro command is preempted (with a QUITCM 
call), and a pertinent message is issued. CMMDEX tries to 
open the Macro file; the QUITCM call is repeated if the old 
Macro file was not yet closed by the Command File Input Task 
or if the file could not be opened due to a temporary shortage 
of pool memory (which may happen under adverse conditions), an 
explicit error message ("Macro ... doesn't exist") is gener- 
ated if the new file was not found, and the internal disk 
error message is output in case of any other error. CMMDEX 
reads the first 16 bytes of the new Macro command file and 
checks whether the first two bytes hold zeros, and the next 
two, the version code of the currently used system. The Macro 
command is cancelled if the first condition is not met, and a 
message referring to a "restricted command set" is issued if 
the system versions do not match. The flag DEBUGE is set in 
this case; it indicates to the Command File Input Task that 
all commands which refer to absolute memory locations, i.e., 
all commands with a command Mode value greater than 7, must be 
discarded (compare chapter 4.4.6). In any case, IOFLAG(4) is 
set to indicate to the Command File Input task that there is 
an active Macro file, and the f^ag RUNTIM activates the alarm 
clock timer. An internal counter. MACPRO, is set to a start- 
ing value of 4. This value will be decremented by 1 during 
each of the subsequent passes of CMMDEX, once every second, 
until it finally reaches zero; the checking of Conditional 
commands is inhibited while MACPRO is not zero (compare chap- 
ter 4.4.4.5). Finally, CMMDEX writes the name of the Macro 
command into the top line of the output screen, and generates 
a message which indicates that the execution of this Macro was 
started. 

The Unconditional CLEAR command is processed very simply:  The 

„V 
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eight Conditional Command flags and the Conditional Command 
counter are reset, and a pertinent message is issued. 

Mode = 4 - MODE 

CMMDEX outputs a "New mode:" message upon receipt of a MODE 
command, and triggers a Data Dump in the Documentation Output. 
Subsequently, it checks for the following mode changes which 
require special initializations: 

(1) Change from "Monitoring" to any controlled mode: In order 
to avoid transients when the CGCS takes over from the 
analog system, all measured values of the Internal parame- 
ters have to be duplicated to the corresponding setpoint 
locations in STPNTO. Simultaneously, all ramping flags 
and the ramping counter are reset. It is therefore not 
possible to transfer a constant or ramped Internal parame- 
ter setpoint from uncontrolled to controlled mode. 

(2) Change from not diameter controlled modes ("Monitoring", 
"Manual") to any diameter controlled mode: CMMDEX checks 
in this case whether the Diameter setpoint is currently 
being ramped, stops its ramping if it is, and copies the 
current actual Diameter value to both Diameter setpoint 
locations. 

(3) Changes between modes in which certain Internal parameters 
are controlled: All twenty ramping channels are scanned 
to find a ramped Internal parameter which was not control- 
led in the previous mode but is controlled in the new 
mode, or vice versa. In the first case, the output of the 
Ramping Generator is directed to the second setpoint array 
STPNT1 rather than to the first one, STPNTO, and the cur- 
rent value of the affected element in STPNTO is copied to 
STPNT1 in order to avoid transients; in the second case, 
the ramping is stopped. 

CMMDEX finally sets the Mode flag proper and jumps to a se- 
quence in the Ramping Executor which outputs the Mode informa- 
tion in the "fixed" part of the console screen. 

Mode = 7 - RESET 

A RESET command is processed by a simple call to the subrou- 
tine RESET which is part of the assembly language module SHAPE 
(compare chapter 4.5.2). 
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Mode = 9 and 10 - SET and CHANGE Variable 

Essentially, the algorithms described for Mode = 1 and 2 are 
used in treating Variables. 

Mode = 11 - IF and Selective CLEAR 

I 

A SWITCH value of 0 represents a Conditional (IF) command, a 
value of 1, a Selective CLEAR. 

CMMDEX can handle up to eight Conditional Macro ccmmands; 
Conditional commands which are issued while already eight 
commands are pending are ignored, and a pertinent error mes- 
sage is issued. After a free storage location was found for 
the new command, the two relation code values and the Variable 
type information are extracted from the command message byte 
in which they were stored, and the comparison value, the Vari- 
able address, and the name of the Macro command which is to be 
executed conditionally are written to the proper locations for 
use by the Conditional Command Executor. 

In case of a Selective CLEAR command, CMMDEX compares the 
Variable addresses stored for all currently active Conditional 
Command Channels to the Variable address passed with the com- 
mand message. A channel is deactivated (by resetting its 
status flag) , and a "Conditional Macro cleared" message is 
issued if matching values are detected. (This may happen more 
than once if several Conditional commands referred to the same 
Variable.) 

Mode = 14 - PLOT 

CMMDEX stores the address passed with the command message in 
the element of an address array which is determined by the 
Plot Channel number specified with the command. 

Mode = 15 - DEBUG 

The DEBUG command uses a Switch value which can have the val- 
ues 2 through 5. Upon a DEBUG Continuously command (Switch = 
2), the variable address and type are stored in locations of 
the pertinent Debug arrays whose index is determined by the 
Debug Channel number (1 to 4). The DEBUG Modify command 
(Switch =3) is processed by storing the correct number of 
bytes at the specified address. The DEBUG Resume and Suspend 
commands, finally, are executed by calls to the proper Inter- 
face routines. 
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4.4.4.2  THE RAMPING EXECUTOR 

This part of the Command Executor is accessed after the treat- 
ment of any command, and if no command was received at all. 
The first commission of the Ramping Executor has nothing to do 
with ramping yet: CMMDEX tests the flag RESTD0(2), and writes 
the operation mode to the "fixed" part of the console screen 
whenever RESTD0(2) is found set, resetting the flag simultane- 
ously. (This flag is set within the routine FRAME to enforce 
data output to the console screen after it was cleared; com- 
pare chapter 4.4.3.8.) 

CMMDEX waits now for a so-called "Flag Interrupt" which is 
triggered once every second when a flag is set by the Analog 
Controller Task ANACNT which, in turn, is triggered directly 
by the Timer Task FXTIME. (The structure of the Interface 
software prohibits that several tasks be triggered in parallel 
by the Timer output.) The subsequent parameter ramping is 
therefore done in relatively regular intervals of one second, 
no matter how long the processing of input data took. 

For each active ramping channel (ramping flag not equal to 
zero), CMMDEX tests whether the absolute value of the differ- 
ence between the current setpoint and the final value is al- 
ready less than the breakpoint value which was determined 
during the ramping preparation. The current setpoint is set 
to the final value in this case, and ramping of this channel 
is disabled. Otherwise, the increment is added to the current 
setpoint, and the current setpoint is stored in memory in the 
proper format in either case. 

4.4.4.3  FLOATING-POINT CONVERSION OF MEASURED DATA 

All measured analog data is primarily stored and processed as 
two-byte integers. Unfortunately, these values are hardly 
suitable for use in Conditional Macro commands because they 
have to be scaled to be meaningful. This is done by the Com- 
mand Executor during each pass. 

4.4.4.4  DEBUG DATA RETRIEVAL 

During each pass, CMMDEX reads four bytes at the addresses 
specified with each active DEBUG Continuously command, and 
stores them in an array from which they will eventually be 
output by the Measured Data Output Task. 
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4.4.4.5  CONDITIONAL COMMAND EXECUTOR 

The Conditional Command Executor part of CMMDEX is only exe- 
cuted if the internal counter MACPRO holds zero. MACPRO is 
set whenever a new (Conditional or unconditional) Macro com- 
mand has been started (compare chapter 4.4.4.1), and is reset 
to zero within several seconds. (The timing of CMMDEX is 
slightly corrupted when a Macro command is being activated, 

$ due to the relatively time-consuming disk accesses involved in 
this process. It is therefore not possible to specify the 
exact duration of the delay enforced with MACPRO.) Disabling 
Conditional command checking temporarily while a new Macro is 

"""" being started guarantees that at least the first command of 
the new Macro can be executed (provided its relative time is 

*>; zero or 1 seconds) without being preempted by a possibly con- 
currently activated Conditional command. (The first command 
in each file which must not be prematurely preempted should 
therefore be a CLEAR command at a relative time of 0 or 1.) 

<« For each of the eight potentially pending Conditional Macro 
commands, the value held at the specified Variable address is 

;-. read (using the algorithm of the SET/CHANGE commands, compare 
;•"■ chapter 4.4.4.1) and compared to the constant passed with the 

command. The result of the comparison is compared to the 
,. specifiea relation(s), and the Macro command is invoked using 
M the code sequence of the Macro command processing described in 
™ chapter 4.4.4.1.  The message "Conditional Macro started" is 

output before control is transferred to the standard Macro 
£\ command processing.  This results in a possibly confusing 
.%; sequence of commands if the Conditional Macro preempts an 

active Macro command: 

™ "Conditional Macro started" - output by the Conditional Com- 
mand Executor. 

•^ "Command Macro preempted" - refers to the old Macro. 
*  * 

"Executing Macro ... " - gives the name of the new Conditional 
v Macro started. 
,v 
,v 

■£• 4.4.4.6  DATA DUMP TO THE DOCUMENTATION FILE 
W» 

Data dumps are generated by the subroutine DUMPDT which is 
invoked by the Command Executor's main routine CMMDEX.  DUMPDT 

'y enters its main body if either the Dump Flag DUMPFL is set, 
indicating a Data Dump request, or if the number of one-minute 
Flag Interrupts has been encountered which was specified as a 

'- Dump interval when the Documentation file was opened.  DUMPDT 
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generates three output lines which contain 21, essentially 
measured, data identified by two-character mnemonics (compare 
chapter 3.5). A pointer array is used to assign data from the 
(floating-point) array REALDT to the proper output locations, 
and output is written to a buffer which is pre-loaded with the 
identification text frame when the CGCS is loaded into memo- 
ry. The three buffers each of which contains seven data 
values are written in turn to line 24 of the console screen 
(which is, in fact, not usable for permanent display since it 
is cleared during each console input request), using the stan- 
dard Console/Documentation file output routines STROUT (com- 
pare chapter 4.3.1). In this case, it is not the output on 
the CRT screen we are interested in, but its duplicate, tagged 
with the time information, in the Documentation output. (Line 
24 of the CRT screen is cleared anyhow by a concluding line of 
spaces to keep the console screen tidy.) Finally, DUMPFL is 
reset in any case in order to be ready to accept a new Dump 
request. 

The Fortran module which holds DUMPDT contains, in addition, a 
small routine DUMP which can be called by any task which wants 
to trigger a Data Dump. In addition to setting DUMPFL to 
".TRUE.", this routine sets the flag byte TIMINT which is 
normally set by the Timer Task FXTIME after the interval spec- 
ified when the Data file was opened, triggering the output of 
a data record to the Data file. Therefore, an additional 
record is entered into the Data file when DUMP is called. 
(The status of TIMINT does not matter if no Data file is open 
and active.) 

4.4.4.7  ANALOG OUTPUT TO A CHART RECORDER 

The subroutine PLOTPR which is called as the next action of 
the Command Executor Task CMMDEX prepares data for analog 
output. PLOTPR does not output this data, though; the latter 
task is performed by the Analog Data Controller ANACNT. 

First, PLOTPR calculates the "expanded" temperature, growth 
rate, and diameter and crucible position errors which were 
specially provided for chart recorder output. This procedure 
involves, in general, proper scaling, limiting to maximum and 
minimum values, and adding of an offset if required. Next, 
PLOTPR retrieves the contents of the eight locations pointed 
to by the Plot Channel address array elements. It calculates 
the absolute values of this data, and provides a message on 
the console (and in the Documentation output) if a Plot Chan- 
nel changed its sign since the last pass of PLOTPR. The re- 
sulting eight INTEGER*2 values are stored with interrupts 
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disabled in order to prevent problems caused by the real-time 
environment; the (assembly language) subroutines DISINT and 
ENINT disable and enable interrupts, respectively. 

JQ 

K.i 
v. 

V 

4.4.4.8  PROGRAM CODE INTEGRITY CHECK 

In order ro improve the chances to detect inadvertent modifi- 
cations cf the CGCS program code - due to hardware failures or 
to software problems -, the routine MEMCHK is called at the 
end of the CMMDEX code, before the task resumes its infinite 
loop. KZMCHK calculates a signature byte for each 256 byte 
page within the main CGCS program code, and compares it to the 
signature obtained during the previous pass. An error message 
is issued if the two signatures are found to be different, 
i.e., if one of the 256 bytes checked changed its contents, 
and the signature byte kept in memory is set to the new value. 
The output of error messages is suppressed during the first 
pass of MEMCHK, immediately after the CGCS was loaded, to 
permit the array of signature bytes to be initialized proper- 
ly. With each call of MEMCHK, five (5) 256-byte pages are 
processed; MEMCHK loops to the beginning of its surveillance 
area after it arrived at its end. The about 150 memory pages 
which are monitored by MEMCHK are therefore tested once every 
3 0 seconds. The memory check comprises the entire CGCS resi- 
dent code area; for obvious reasons, it could neither include 
the data locations nor the overlay area. Still, the memory 
check encompasses about 7 0 percent of the entire memory area, 
and it is easily possible that MEMCHK might detect a damaged 
program code byte before it has been executed (with conceiv- 
ably disastrous results). 

4.4.S  THE MEASURED DATA OUTPUT TASK - TASK MEASDO 

The task MEASDO provides all periodically updated output to 
the console. It is not synchronized to any other system task 
but loops continuously through its code. In order to prevent 
MEASDO from monopolizing the system (which would have the 
effect that tasks with a lower priority could never be exe- 
cuted) , there are deliberate waits built into the task: At 
eight roughly equidistant locations within MEASDO, the task 
calls the subroutine WTOUTP which, in turn, executes a wait 
operation for a specifiable number of iRMX-80 time units. (One 
iRMX-8 0 time unit is 50 as.) The number of time units for 
which WTOUTP waits is kept in the system Variable INTRVL which 
can be nodified with SET, CHANGE, or DEBUG Modify commands. 
The smaller this number is, the faster runs MEASDO obviously; 

- 81 - 

1 ■.' ^r_^jtf i" MK' <V.*Km 
^-■„■'^■J^I^I "IUM. "t '«.■■■«! -rr h  'i I'I I'I ft>'t*C.«i~tj*i+i *rm *. "■»*''».>.>■, f.'<*i'■■>>.'■'." n *. *J* 



4.  The Czochralski Growth Control System Software 

the minimum value of INTRVL is 1. (An INTRVL value of 0 halts 
MEASDO indefinitely and irreversibly.) The current default 
INTRVL value is 10; this value gives satisfactory response 
during normal system operations. It is, however, recommend- 
able to reduce the INTRVL value during adjustments of the 
analog data acquisition hardware. The INTRVL value should be 
restored to its standard value when full growth control is 
required, in order to protect the system from being over- 
loaded. 

The infinite task loop of MEASDO is entered after two initial- 
ization calls to Interface routines; it Starrs with a check of 
the flag RESTDO(3) which "short-circuits" the task if it is 
set, thus inhibiting data output. Next, MEASDO copies all 
data which is to be output into internal memory locations. 
This is necessary because most of the data locations are pro- 
tected by software interlocks to prevent them from simultane- 
ous accesses by several tasks. MEASDO would unduly block the 
data locations and, in consequence, all tasks which also at- 
tempt to access them if it monopolized them during the lengthy 
output operations; on the other hand, repeated access and 
release operations would impose an unacceptable overhead. The 
approach chosen for copying the data locations one by one, 
rather than using a program loop, may bewilder experienced 
Fortran programmers. For the given number of items, however, 
the technique chosen is faster and more code efficient than a 
loop. 

The actual output operations follow one standard approach: 
The current (integer) data value to be output is compared to 
the value of the same item during the previous pass of MEASDO. 
The integer value is multiplied by its scaling factor and 
written to the console only if the two values are different, 
thus preventing the repeated output of constant data. In 
order to enforce the data output regardless of whether an item 
was updated or not, a loop is provided which sets all items of 
the "old" array to the contents of the corresponding items in 
the "current" array, plus 1, if the flag RESTDO(l) is set. 
Evidently, the two arrays will hold different values for each 
output item after this procedure. 

After having output all items, MEASDO sets the "old" output 
data array to the contents of the "current" data, and tests 
whether output is required for DEBUG Continuously commands. 
The scrolled output area is limited to four lines (18 through 
21), and line 17 is cleared if Debug output was activated 
since the last pass; the scrolled area is set to five lines 
(17 through 21) if Debug output was deactivated. MEASDO 
writes the address and the memory contents for each active 
Debug channel into line 17; prior to the actual data output, 
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the screen area corresponding to the respective channel is 
cleared (overwritten with spaces) if the Debug output mode was 
changed. This procedure clears channels which are deactivat- 
ed, and it removes the previous output completely if the in- 
terpretation of Debug data and therefore the number of dis- 
played digits was changed. 

■■; v 

4.4.6  THE COMMAND FILE INPUT TASK - TASK CMFINP 

i$ The Command File Input Task CMFINP reads commands from a Macro 
*-*        file and sends them with the proper timing to the Command 

Executor. 

ÖC        Each command in a Macro file is tagged with the time relative 
to the call of the Macro command at which the particular com- 

\A        mand is to be executed.  This is accomplished by a combined 
>S        action of the Command File Input and the Timer Tasks: 

:? 
The Command Executor sets the flag RUNTIM after each call to a 
valid Macro command file, which indicates to the Timer Task 
that a second seconds counter is to be started. The contents 
of this counter are compared by the Timer Task once every 
second to an "alarm clock" value, and a flag is set if the 
counter value is equal to or greater than the "alarm clock" 
setpoint. The "alarm clock" value is set by the Command File 
Input task according to the relative time of the next command 
which is to be processed; CMFINP is, in turn, triggered by the 
"alarm clock" flag. 

The task loop of CMFINP starts with a wait for an "alarm 
clock" flag interrupt. Since CMFINP set the "alarm" value to 
zero, such an interrupt will immediately happen when the timer 
is enabled by CMMDEX upon a Macro command. CMFINP reads one 
record from the Macro command file. The task branches if a 
disk error occurred, if the end of the file was encountered, 
or if a command which refers to absolute memory locations was 
read from a Macro file generated under a different system 
version. In the first two cases, an "End of Macro command 
file" message is output, the input from the file is disabled 
(IOFLAG(4) is reset), the Macro file is closed, the Macro name 
in the first line of the console screen deleted, and the sec- 
ond timer disabled by resetting RUNTIM (which is called INPACT 
in CMFINP). CMFINP reports "Macro command not executable" and 
reads the next command if the third exception condition was 
detected. For all valid commands, CMFINP sets the "alarm 
clock" to the execution time of the next command, and loops 
back to the initial wait.  The command message is dispatched 
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to the Command Executor immediately after the "alarm clock" 
interrupt. 

This handling of Macro command files accounts for possibly 
confusing sequences of system messages: CMFINP reads the next 
command immediately after having sent the preceding one to the 
Command Executor. CMFINP messages may therefore appear on the 
screen even before the last command was processed by the Com- 
mand Executor. 

4.4.7  THE COMMAND FILE OUTPUT TASK - TASK CMFOUT 

The Command File Output Task CMFOUT receives command messages 
from the Command Executor. It appends the relative time of 
the command, i.e., the difference between the current value of 
the seconds counter in the Timer Task and the value which this 
counter had when the START command was issued. This time 
information is stored in the first two bytes of a 16 bytes 
record, followed by the command message proper. CMFOUT traps 
Macro commands which are not recorded on purpose (compare 
chapter 4.4.3), writes the record to the Command Output file, 
and disables itself if the command was an END command. 

4.4.8  THE DISK OUTPUT TASK - TASK DSKOUT 

The task DSKOUT which resides in the Fortran module DSKDAT is 
in charge of output to the Data file. DSKOUT collects all 
data which is to be recorded in a buffer which corresponds 
already to the future contents of the disk data record, and 
writes this buffer to the disk. 

4.5  THE PROCESS CONTROLLER 

4.5.1  THE PIP CONTROLLER ROUTINE FRPIDC 

The actual process control approach used in the digital CGCS 
is, to a large degree, based on conventional analog techni- 
ques. In particular, the system uses PID (Proportional-Inte- 
gral-Derivative) controllers for the closed-loop control of 
various parameters. In contrast to an analog system, however, 
where separate controller hardware is raquired for every con- 
trol loop, the CGCS contains only one generic PID controller 
routine which performs (with different parameters) the follow- 
ing functions: 
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(1) Motor Speed Control:  The outputs which determine the 
speeds of the four puller motors (seed and crucible lift 

JJ» and rotation) are controlled according to the differences 
m between the corresponding setpoints and the actual speed 

values.  This approach permits to compensate for motor 
f controller imperfections such as nonlinearities or off- 

sets. 

(2) Temperature Control:  The power output by the heater(s) is 
jö controlled to maintain the heater temperature setpoint(s). 

(3) Diameter Control:  The heater temperature setpoints are 
i» adjusted to provide a minimum diameter error. 

v> (4) Crucible Position Control:  The lift speed of the crucible 
is controlled to reduce to zero the difference between a 

Sj calculated crucible position setpoint and the pertinent 
D actual value. 

y. The PID Controller routine is based upon high-speed integer 
3s algorithms.  Its output is calculated in several steps:  With- 

in the first step, the error E is derived from the setpoint S 
and the actual value A by: 

i 
T.H 

E - S - A (1) 

ju Subsequently, an intermediate result X is calculated according 
<K to the following algorithm: 

| X = E*P/256 + (IE*I)/IS + DE*D/256 (2), 

with P, I, and D, the proportional, integral, and derivative 
multipliers, respectively.  IE represents the error integral, 
i.e., the sum of all error values encountered since the PID 

% controller went into operation; IS is a scaling factor which 
can be either equal to 256 or to 65536 (28 and 216. respec- 

] tively), depending on the value of a control flag.  DE, fin- 
s' ally, is the difference to the preceding error: 

| IE*I = E(0)*I + E(1)*I + ... + E(n)*I (3) 

J> DE = E(n) - E(n-l) (4) 

The three terms in (2) are scaled by 256 (or by 65536) in 
\ order to permit effective proportional, integral, and deriva- 
•*v tive multipliers with an absolute magnitude of less than one. 

(The above values of the scaling factors were chosen because a 
l  y multiplication or division by a power of two imposes the least 

time and code overhead.) 
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The integral component is calculated by accumulating the sum 
of the error values, each multiplied by the integral multi- 
plier, in a four byte (32 bit) memory location. (This ap- 
proach is less sensitive to abrupt changes of the integral 
multiplier I which may happen during the tuning of the system, 
compared to accumulating the error sum and multiplying it by 
the integral multiplier.) Depending on the magnitude of the 
integral scaling divisor IS, either the least significant 
byte, byte 0 (for IS = 256), or the two least significant 
bytes, bytes 0 and 1 (for IS = 65536), of this internal sum 
are discarded when the integral component of X is determined. 

I The integral component of X is the value of the next two 
bytes, 2 and 1, and 3 and 2, respectively, which is rounded 
according to the most significant bit of the discarded 
byte(s), and set to the maximum positive or negative value if 
IS - 256 was chosen and the accumulation of the integral ex- 
tended into the fourth byte (byte 3). Optionally, the result- 
ing two byte integral component may be compared to a limit 
vaiua; the entire four byte integral is modified to return an 
integral component which is exactly equal to the limit value 
(with the sign of the four byte error integral) if the inte- 
gral component would otherwise exceed the limit. 

The intermediate result X is calculated by first adding the 
proportional and the derivative components, and finally, the 
integral component. X may be limited to any arbitrary range 
if the user chooses so; for a given limit L, X results in 

X = - (L + 1)   if X < - (L + 
X = L if X > L 
X = X otherwise 

1) 
(5) 

This limiting operation can be selected independent from the 
limiting of the integral component although the same limit 
parameter is used. A default value for L is assumed in either 
case (with L = 32767) if either no limit was specified, or if 
a negative limit value was given. 

In order to improve the dynamic response of the PID routine, a 
"wind-up protection" feature was included. This feature pre- 
vents the error integral IE from overflowing when a limit con- 
dition is incurred. Without "wind-up protection", the error 
integral would continue accumulating in this case, which might 
become particularly disturbing if a scaling factor IS of 256 
is used and the integral extends into the highest byte. The 
error integral would subsequently require a very long time to 
recover from the previous condition even if the error already 
changed its sign, which might obviously lead to control insta- 
bilities. The "wind-up protection" can be explicitly activ- 
ated by the user; it becomes only effective when a limit con- 
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u dition is incurred.  In this case, the internally stored four 
■ byte error integral can be adjusted in either one of two ways: 
V! it can either be set to a value resulting in a (two byte) 

integral component equal to the difference between the limit 
*j. value and the sum of the proportional and the derivative com- 
$ ponents (Mode A) , or it may be adjusted to return an integral 

component equal to the positive or negative limit value, as 
demanded by the error integral's sign (Mode B).  Thus, the PID 

.V controller is forced to remain in its active operation area; 
the intermediate result X reacts immediately or almost immedi- 
ately to a decrease of the error rather than after the delay 
otherwise inherent with the reduction of the error integral. 
Activating the "wind-up protection" overrides the integral 
component limiting function. 

£% Finally, the intermediate result is submitted to two additio- 
nal adjustments: First, it is multiplied by a factor which is 
a (positive or negative) power of two, and second, a bias 
value B is added: 

M = B + 2**G * X (6) 

The result, M, is output at last. The scaling factor 2**G was 
provided to permit an adjustment of the controller's output to 
miscellaneous devices. Some devices require, e.g., less than 
16 bit signed data, in which cac°. a negative G value can be 
used to dispose of the least significant G bits. It could 
also be used for restricting the output signal to a certain 
range. A positive G could increase the overall gain of the 
controller; with regard to accuracy, this is, however.- not 
recommended. The bias value B, finally, centers the output of 
the PID controller around the bias value. 

This handling of the bias value permits to introduce a non- 
linear PID controller response by means of two stacked PID 
controllers. The setpoint and actual data inputs of both 
controllers are to be connected in parallel; the output of the 
first is used as a bias input for the second. Single con- 
troller operation can be achieved by setting all multipliers 
of one of the two stacked controllers to zero. (Which one 
does not matter since they are exchangeable.) Nonlinear con- 
trol is possible if different parameters are attributed to 

A both controllers and the output limit L is set to a value 
£> considerably less than 32767 for one of them.  For an error 

resulting in an intermediate signal X of the output limited 
controller less than ±L, the output of the two controllers is 

;v the sum of the outputs of either controller, and the resulting 
P, I, and D values are the arithmetic sums of the correspond- 
ing parameters of both controllers. In the output limited 
mode, the limited controller contributes only its limit value 
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whereas the other controller continues operating in its linear 
range; the P, I, and D parameters of the two-controller system 
are thus equal to the parameters of the controller remaining 
active. It seems, however, advisable to introduce some kind 
of wind-up protection at least for the output-limited con- 
troller in order to permit a fast response of the system to 
sudden error changes. The advantages and disadvantages of the 
approaches feasible with FRPIDC are discussed in Appendix J. 

Essentially, the operation of the digital PID controller rou- 
tine is akin to any analer PID controller. The time constants 
in the integral and derivative parts of the controller func- 
tion are determined by the frequency 1/T with which the con- 
troller runs. In the linear region of the controller (no 
limit incurred), eqs. (2) through (6) may be re-written as: 

M = B + 2**G * P'[E + I'/(P'*T) Edt + (D'*T)/P'*dE/dt ] (7) 

with P1 , I1, and D', the proportional, integral, and deriva- 
tive multipliers of eq. (2) times their appropriate scaling 
factors. 

The parameters for the PID controller are kept in a 12 byte 
array. The first two bytes of this array must be accessed 
from Fortran as INTEGER*1 locations (one byte integers), the 
remainder, as INTEGER*2. The following data is kept in this 
array: 

Byte 0: Gain Multiplier Exponent G 

—' Byte 1: Control Byte, containing switches 
j for: 

Integral Component Scaling: 0 ... IS -  256 
1 ... IS ■ 65536 

Output Limit: 0 ... No Explicit Output Limit 
1 ... Output Limit -  +/- L 

Wind-Up Protection: 0 ... Off 
1 ... On 

Wind-Up Protection Mode: 0 ... Integral set to L-(P+D) 
1 ... Integral set to ±L 

Integral Component Limiting: 0 ... Off 
1 ... On 

_L J Byte 2+3: Bias Value B 

J Byte 4+5: Proportional Multiplier P 
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I Byte 6+7: Integral Multiplier I 

Byte 8+9: Derivative Multiplier D 

Byte 10+11: Limit Value L 

ffl 

$ b 

The control byte permits to set the operation mode of the PID 
routine, namely, the scaling of the integral component, the 
output limiting operations, and the wind-up protection. The 
decimal values of the control byte listed below correspond 
therefore to the following operations: 

CNTL 

0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 
lb 

16 
17 
18 
19 

20 
21 
22 
23 

24 
25 
26 
27 

IS Limit Wind- -Up Prot. Integr.Lim 

256 ±32767 OFF ±32767 
65536 ±32767 OFF ±32767 

256 ±L OFF ±32767 
65536 ±L OFF ±32767 

256 ±32767 ON Mode A ±32767 
65536 ±32767 ON Mode A ±32767 

256 ±L ON Mode A ±32767 
65536 ±L ON Mode A ±32767 

256 ±32767 OFF ±32767 
65536 ±32767 OFF ±32767 

256 ±L OFF ±32767 
65536 ±L OFF ±32767 

256 ±32767 ON Mode B ±32767 
65536 ±32767 ON Mode B ±32767 

256 ±L ON Mode B ±32767 
65536 ±L ON Mode B ±32767 

256 ±32767 OFF 4L 
65536 ±32767 OFF ±L 

256 ±L OFF ±L 
65536 ±L OFF ±L 

256 ±32767 ON Mode A * 

65536 ±32767 ON Modo A * 

256 ±L ON Mode A * 

65536 ±L ON Mode A • 

256 ±32767 OFF ±L 
65536 ±32767 OFF ±L 

256 ±L OFF ±L 
65536 ±L OFF ±L 
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IS     Limit    Wind-Up Prot.  Integr.Lim. 

256 ±32767 ON Mode B * 

65536 ±32767 ON Mode B * 

256 ±L ON Mode B * 

65536 ±L ON Mode B * 

CNTL 

28 
29 
30 
31 

Wind-up Protection Mode A entails that the integral component 
is set to the limit value minus the sum of the proportional 
and the derivative components if the output exceeds the limit; 
in l'.zze B, the integral component is set to the positive or 
negative limit value, as appropriate. 

* Wind-up protection overrides integral limiting. 

An analysis of the various limiting and anti-windup approaches 
available with FRPIDC is given in Appendix J. 

v 
ft 
ft 

4.5.2  THE DIAMETER CONTROLLER - TASK DIACNT 

4.5.2.1  THE DIAMETER CONTROLLER ROUTINE PROPER - MODULE 
DIACNT 

The Fortran module DIACNT constitutes the main routine of the 
Diameter Controller Task. This task is triggered every ten 
seconds by a "flag interrupt" generated by the Timer Task. 

DIACNT uses a command message of its own in order to perform 
automatic RESET and MODE commands. The commands issued by 
DIACNT are not recorded in the Control Output file, and the 
command message issued by DIACNT is returned to this task 
after having been processed by the Command Executor. This 
implies that DIACNT has to retrieve this message from its 
response exchange before it can be permitted to use it again. 
The FXACPT call at the beginning of the infinite loop in 
DIACNT performs exactly this task. 

A sequence immediately following this subroutine call checks 
for mode changes into Diameter Controlled while the Diameter 
Evaluation routines have not been reset yet. The following 
steps ensue if such a condition is detected: 

(1) DIACNT issues a RESET command which sets the weight and 
crystal length grown locations to zero, and generates a 
pertinent message. 

(2) It stores the current MODE value (which can be 2, 3, or 4) 
in an auxiliary location INTMOD, sets the operation mode 
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to Manual, and marks this condition with a SHSTOL value of 
-3. The remainder of the task loop is skipped. 

This procedure triggers a Reset operation when the Command 
Executor runs the next time? the actual diameter value is 
still meaningless because the Diameter Evaluation routine 
runs only after a Reset, but it will be ignored because 
the operation mode is still set to Manual. 

(3) During its next pass, ten seconds later, DIACNT will set 
the MODE value back to the value saved in INTMOD? ix will 
duly execute the Diameter Evaluation routines which will 
return a meaningful diameter value now, but it will skip 
the Diameter Control sequence. 

The Command Executor runs only after DIACNT has finished 
(because its priority is much lower) , and it will find a 
meaningful Actual Diameter value which it can copy to the 
Diameter Setpoint locations (because of the mode change to 
Diameter Controlled). 

(4) Only at the third pass, twenty seconds after a mode change 
to Diameter Controlled without preceding Reset was detect- 
ed, DIACNT will resume its standard operation. 

Under regular operating conditions, DIACNT copies the opera- 
tion mode value into a local location in order to avoid con- 
fusions if the mode is changed while this task is running. 

DIACNT retrieves now from the array of analog input data the 
Crucible Position and the Differential Weight values, and 
converts the latter into floating-point notation, scaling it 
with the proper scaling factor. This data is first submitted 
to the subroutine ANOMAL (compare chapter 4.5.2.2) which per- 
forms an anomaly compensation if required, and subsequently, 
to the function SHAPE (compare chapter 4.5.2.3). SHAPE cal- 
culates a Diameter value (returned in DIAMET), and, in addi- 
tion, the Length grown (scaled with the same factor as the 
Seed Position input data), and a Crucible Position setpoint 
(in SCRUCP) which is in the same format as the Crucible Posi- 
tion input data. (Several other auxiliary values are returned 
by SHAPE which are primarily intended for testing and debug- 
ging purposes.) SHAPE provides a status value in SHSTAT which 
is evaluated subsequently; corresponding (error) messages are 
issued the first time a certain SHSTAT value is returned, and 
the operation mode is set to Manual if either a Zero Seed Lift 
Speed or a Speed Overflow error was detected. With the excep- 
tion of changes to or from a Zero Seed Lift Speed condition 
and of an Oxide Height Overflow, a Data Dump to the Documenta- 
tion output and an additional record in the Data file are 
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triggered. DIACNT tries to re-activate SHAPE after a Speed 
Overflow error with a call to the subroutine REACTV which is 
part of the assembly language module holding SHAPE; after six 
succeeding unsuccessful attempts, DIACNT decides that the 
problem is too serious to deal with it on its own, and dis- 
ables SHAPE permanently (until a RESET command is issued 
again). 

Subsequently, DIACNT enters the actual diameter controller 
sequence: While in Monitoring or in Manual mode, DIACNT has 
nothing to control. The routine resets, however, the Error 
Integral locations of the PID Data arrays and the Previous 
Error values (compare chapter 4.5.1) to zero. This is done to 
provide a defined environment when diameter control is acti- 
vated. 

In any one of the Diameter Controlled modes (Diameter, Diame- 
ter/ ASC, and Automatic), DIACNT has to generate three Heater 
Temperature setpoints. Each of these setpoints is obtained 
from two stacked PID controllers which permit to obtain a non- 
linear control response (compare chapter 4.5.1). The first 
PID controller receives the proper current Heater Temperature 
setpoint (i.e., the value obtained from operator or Macro 
commands) from the STPNT1 array as a Bias value; its output is 
used as a Bias for the second PID controller. All six Diame- 
ter controllers use the actual Diameter and the Diameter set- 
point as inputs. The output of the second PID controller of 
each Heater channel is stored in the setpoint array STPNTO. 

An additional control loop is executed in Automatic mode: The 
crucible lift speed is controlled according to the difference 
between the actual Crucible Position and the pertinent set- 
point calculated by SHAPE. Two stacked controllers are used 
for this commission, too; similar to the Diameter controllers, 
the Crucible Lift Speed setpoint input by the operator (or 

'/. from a Macro file) is used as a Bias value for the first con- 
troller, whose output is fed to the Bias input of the second 
controller. The second controller's output is stored as an 
actual Crucible Lift setpoint. 

The approach chosen for the PID controllers in DIACNT, namely, 
passing the "manual" setpoint through the controller routines 

X via the Bias inputs, has various advantages:  Since the "manu- 
al" setpoint can be chosen to lie close to the actually re- 
quired controller output, the PID controllers need only make 
small modifications to the "manual" setpoint, which improves 
the accuracy and the dynamic response of these routines. 
Furthermore, it is possible to limit the output of the con- 
trollers to lie within a relatively small range around the 

I Bias value.  This prevents, for example, the Diameter control- 
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ler from totally turning off the heater if the actual crystal 
diameter seems to be much smaller than the pertinent setpoint, 
which may easily happen particularly during cone growth. In 
fact, a smooth transition from manual to diameter controlled 
growth may be obtained if the controllers' PID parameters are 
ramped from zero to their final values, or if the Limit values 
are initially set to zero and slowly ramped to their intended 
final values. There is, indeed, hardly any limit set to the 
control schemes which may be obtained from dynamically modify- 
ing the parameters of the controllers provided. 

4.5.2.2  ANOMALY COMPENSATION - ROUTINE ANOMLY 

Prior to the evaluation of the diameter, the Differential 
Weight value derived from the A/D converter can be submitted 
to a compensation for anomaly effects. According to the con- 
ventional anomaly compensation approach, a corrected Differen- 
tial Weight X can be calculated from the "raw" weight Y by 
solving the differential equation 

X = (Y - b-X') ' (1) 

where X' is the first derivative of X with regard to time. 
Equation (1) can be re-written as 

b-X" + X - Y' (2). 

In the CGCS, we expanded the above approach to: 

b-X" + a-X' + X = Y' (3) 

Numerically, the above differentiations have to be replaced by 
differences. With X0, the current Differential Weight, X1; the 
previous value, and X2, the previous but one, we can write: 

xo' = x0 ~ xl 

xl* = Xl * x2 <4) 

X0" = X0' - Xx' = X0 - 2-Xi + X2 

Substituting eqs. (4) into eq. (J) results in a linear equa- 
tion for XQ which can be solved as: 

Y' + (a + 2«b)»Xi  - b«X2 

1 + a + b 
X0 -   (5) 
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™        The "raw" Differential Weight Y1 is input directly from the 
analog differentiator circuitry.  A corrected Differential 

JK        Weight X0 can be calculated from the "raw" value Y and the 
v        previous results X]_ and X2 according to (5) .  The Fortran 

subroutine ANOMAL evaluates X0 from eq. (5) if the Mode value 
is greater than 2 (i.e., in Diameter/ASC and Automatic modes); 

W otherwise, it sets XQ equal to V.  In addition, ANOMAL stores 
V»        its X]_ value in X2, and the X0 value thus determined, in X^_, 

in order to have proper previous results for the next pass. 

ft 

i 

,V 

4.5.2.3  DIAMETER EVALUATION ALGORITHMS - ROUTINE SHAPE 

™        The assembly language routine SHAPE constitutes the heart of 
the diameter evaluation algorithms. SHAPE calculates the fol- 

5?        lowing data: 

(1) A crystal Diameter value which is derived from the Differ- 
, ential Weight which previously may have been submitted to 

*< anomaly compensation.  SHAPE takes into account the buoy- 
-% ancy in the boric oxide melt. 

(2) The current height of the boric oxide melt in the cruci- 
ble. 

(3) The Crystal Length grown. 

(4) A Crucible Position setpoint which is used for determining 
the crucible lift speed in Automatic mode. 

>!        When the length of a crystal grown increases by Sx, a portion 
of the crystal whose length is Sy emerges from the boric oxide 

<, melt.  The two differential lengths are not necessarily equal 
y        since the height h of the boric oxide melt may have been 

changed by 5h due to a change of the crystal volume immersed 
(compare Fig. 10).  We can write: 

Sy « Sx - 5h (6) 

YJ The height, h of the oxide melt can be determined from the 
Sj oxide melt volume Vm and the volume Vj_ of the immersed part of 

the crystal, with R, the radius of the crucible: 

}[ vm + vi = R2'*-h (?) 

During the major part of a crystal growth run, Vm is constant. 
Towards the end of the run, however, the semiconductor melt 
starts retracting from the crucible wall, resulting in a disk 
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of molten gallium arsenide in the center of the crucible whose 
height remains roughly constant but whose diameter decreases. 
The gap between this disk and the crucible is filled by boric 
oxide, causing the effective oxide volume (i.e., the volume 
measured from the extension of the top surface of the semicon- 
ductor melt disk upwards) to decrease. Differentiation of 
eq. (7) results in: 

5 V. m SVi =  R^-Tr-Sh (3) , 

SVm = - e-SV2-(dx/dxm) 

and 

6Vj_ = SV2 - 5V] 

where 

and 

SV2 = r2
2*iT'6x 

svl = ri2'ir«5y 

(9) 

(10), 

(ID 

(12). 

The parameter e in eq. (9) is equal to zero during regular 
growth, and equal to 1 when the melt contraction has started. 
The effective boric oxide volume is reduced in this case by 
the volume of semiconductor melt required to grow the differ- 
ential cylinder 6V?; d^ and dx stand for the densities of 
molten and solid semiconductor material, and r^ and r2 are the 
radii of the crystal at the oxide surface and the melt-crystal 
interface, respectively. With d0, the density of the boric 
oxide melt, the change of the crystal's weight 5W can be writ- 
ten as: 

5W - SV2«(dx - d0) - 6V]/(dx - d0) + 5Vx*dx = 

= 6V2.(dx - d0) + SVrd0 (13), 

The differential cylinder close to the semiconductor melt 
contributes to the weight only with the difference of the 
crystal and oxide densities, due to buoyancy; the differential 
cylinder which emerged from the oxide melt had previously a 
weight proportional to (dx - dQ) which is now proportional to 
dx only. 

With eqs, 
of 6x: 

(6) and (8) to (12), we can express Sy as a function 
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Sy = 
ß-r2< 

R2 - rx
2 

6x 

with 

ß = 1 - e-(dx/dxm) 

(14), 

(15) 

Note that ß is equal to 1 during regular growth, and it ap- 
proaches 0 when the melt recession starts (because the ratic 
of densities is close to 1). With eq. (14), we can re-write 
eq. (13): 

SW 
jffj = r22.(dx - dQ - ß-da) + R2.d£ 

with an "adjusted oxide density" da 

r,a 1 

(16), 

da = do' = d, 
R2 - rx

2    "  (R2/r!2) - 1 

Eq. (16) permits to calculate the square of r2: 

- R2-da 

(17). 

r2
2 = 

SW 
TT'SX (18) 

dx ~ do ~ ß*da 

With the Differential Weight (SW/St) *nd the Growth Rate 

v = Sx/St (19), 

we finally can write for eq. (18): 

(SW/St>  - R2.d. 
r22 = 

ir«v *a 
dx " do " ß*d 

(20) 
a 

The Growth Rate v is determined by the combined effects of the 
Seed Lift Speed vs and the speed v<j with which the gallium 
arsenide melt drops: 

v = vs + vd (21). 

For a length Sx of crystal grown, the semiconductor melt in 
the crucible will drop by Sz in order to provide the crystal 
mass solidified while the crystal is within the regular growth 
regime. The melt level will hardly drop any more when the 
melt contraction towards the end of the growth run started. 
Since the total mass must be constant, we can write: 
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R2 "ir-d xm Sz = r- 'TT'dv* (Sx + 5z - vc«St) (22) , 

with djjjj, and dx, the densities of the semiconductor melt and 
the solid crystal, respectively, and vc, the actual Crucible 
Lift Speed.  We can solve eq. (22) for 5z and can, finally, 
obtain: 

vs " vc 
v = 

>2-d, 
(23) 

1 - a' 
R^ «d xm 

The constant a is equal to 1 if (23) is obtained as an exact 
solution of eq. (22). In a heuristic way, however, assigning 
values different from 1 to a can help to compensate for non- 
ideal effects caused by the crucible shape and/or surface 
tension. Assigning values greater than 1 to a could compen- 
sate for a decrease of the crucible diameter close to its 
bottom; in contrast, a could be set to values less than 1 to 
take into account the receding of the gallium arsenide melt 
during the final stages of the growth process, an effect which 
obviously more than compensates for the beveling of the cruc- 
ible. The surface of the melt does, in effect, not drop any 
more when the semiconductor melt starts receding from the 
crucible walls because the material used up by the growing 
crystal is supplied by reducing the melt's diameter rather 
than height. This corresponds to a crucible with infinite 
diameter, or to an a value of 0. At the end of the body 
growth, a may simply be ramped down to 0, starting at the 
point when melt recession usually begins. (A Variable named 
ALPHA is provided for this purpose. It is initialized with 
the value 1 but may be modified with the standard SET or 
CHANGE commands.) 

The constant e defined in eq. (9) follows exactly the opposite 
behavior, compared to a: it is equal to zero during the regu- 
lar growth, and assumes a value of 1 at the end of the pro- 
cess. It appeared therefore to be a reasonable approach to 
set 

e = 1 - a (24) 

within the SHAPE software. 

Obviously, the currently grown crystal diameter can be deter- 
mined as twice the square root of the left side of eq. (20) . 
SHAPE returns an INTEGER*2 value in the Variable IDIAMT; this 
value is converted to floating-point notation, scaled proper- 
ly, and stored in the Variable DIAMET by the Command Executor. 
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The evaluation of eq. (20) implies a division by the Growth 
Rate v. Obviously, this value must not be equal to zero to 
permit the calculation of the diameter. SHAPE checks there- 
fore the difference of the seed and the crucible lift speeds, 
vs and vc, respectively, right at the beginning of its opera- 
tions; SHAPE skips the remainder of its code and provides an 
error flag if it detects a zero value. The error flag is 
monitored by DIACNT; suitable actions are taken (compare chap- 
ter 4.5.2.1), and an appropriate message is output in the case 
of an error. 

In order to solve eq. (20) , the square of the radius of the 
crystal at the surface of the oxide melt, r^2, has to be 
known. This entails that the actual height of the boric oxide 
melt, h, and the total volume of the crystal immersed in the 
boric oxide, Vj_, are also known; the latter parameters are 
required for calculating the optimum crucible position. SHAPE 
determines this data by keeping a table of crystal diameter 
squares in an array DIATAB. (In fact, SHAPE operates with 
diameter rather than radius squares; with the exception of a 
factor of 4 in the denominator of the first term in the numer- 
ator of t j. (20), the algorithms within SHAPE are identical to 
those above. We used radii rather than diameters in the above 
derivation in order to avoid naming confusions with the densi- 
ties. ) 

Since SHAPE can only store the shape (i.e., the diameter) of 
the crystal at discrete length positions, an interpolation 
approach had to be developed which permits an approximate 
evaluation of the crystal's diameter at any arbitrary posi- 
tion. An obvious method would have been a linear interpola- 
tion between the stored diameter values. For the application 
in mind (where the squares of diameter values are more often 
required than the plain diameters) , a linear interpolation of 
the squares of the diameter data proved to be considerably 
more efficient. Assuming that the square of the diameter or 
the radius is a linear function of the position x within the 
crystal, we can write 

r2 = k* (x + x0) (25] 

with k and x0, constants determined by the crystal's shape. 
(We return again to radii rather than diameters in order to 
match the above nomenclature.) 

Equation (25) entails that a section of the crystal is approx- 
imated by a section of a paraboloid. Figure 11 depicts the 
radius r' of a section with the height hs; the radius at the 
bottom of the section is rfo,   and on top of the section, r[. 

.V 
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Applying eq. (25) to x = 0 and x = hs, respectively, permits 
to replace the constants k and x0 with rfo,   rj_, and hs: 

k = 
n 2  - r.2 

(26) 

*c = hs' 
*b< 

n 2   _ *6' 
(27; 

The volume V of the parabolc^l section obtained from rotation 
of the shaded area in Fig. 11 around the x axis can be calcu- 
lated as: 

V = ir • f r^ • dx (23) 

With   (25)   through   (28) ,  we obtain finally: 

TT'he 
V = (r^ + r^) (29) 

During regular crystal growth, SHAPE accumulates the volume 
within one "slice" of the crystal by adding the volumes of 
"differential" cylinders with the diameter of the crystal 
calculated in the previous pass and with a height determined 
by the difference of the crystal length values for the current 
and the previous pass. This volume increment may be negative 
during meltback conditions, or if the new length value was 
less than the previous one due to noise superimposed on the 
seed and crucible position signals. A "slice" boundary is 
detected when the two byte integer representation of uhe crys- 
tal length exceeds a multiple of 64, which corresponds to a 
length difference of approximately 1.17 mm. A new "slice" is 
added to SHAPE'S image of the crystal in memory which is kept 
in DIATAB, a 64 element floating-point array of squares of 
diameters, calculating the square of the diameter of a cylin- 
der with a height equal tc the distance from the previous 
slice boundary, and a volume equal to the sum of "differen- 
tial" volumes accumulated since then. (Due to noise and the 
limited resolution of the crystal length, the height of this 
cylinder may be slightly greater than 64 length counts.) (A 
previous approach to approximate the crystal by slices of 
paraboloids proved to be unstable because errors of the previ- 
ously calculated diameter squares propagated into the newly 
calculated data when eq. (29) was solved.)  All entries in 
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DIATAB are shifted up one step, and the new diameter square is 
stored as the crystal's bottom diameter. The top entry is 
lost. 

In order to prevent erratic diameter square average values 
from being entered in the table and from eventually corrupting 
the diameter calculation when the slice in question arrives at 
the encapsulant surface, the Fortran subroutine CHKDTB was 
provided which is part of the module DIACNT but called from 
SHAPE. CHKDTB compares the absolute value of the difference 
between the preceding and the current squares, and adjusts the 
new value to differ by not more than the specified limit 
(which is kept in the Variable XTLSHP) from its predecessor. 
This approach allows for greater absolute and relative diame- 
ter fluctuations in stages where the crystal diameter is small 
(e.g., in the early cone sections) and where such fluctuations 
are quite normal; it is more restrictive within.the full-dia- 
meter crystal body. (The data stored in DIATAB is in square 
millimeters; XTLSHP must therefore be set to the maximum per- 
mitted difference between the squares of the diameters (in 
millimeters) of two adjoining crystal sections.) 

During meltback conditions, i.e., when the crystal length 
decreases rather than increases with time, the entries in the 
array of diameter squares are shifted down one step when a 
slice boundary is reached; the top entry is reduplicated. 

A subroutine of SHAPE, CALCSD, uses the entries in DIATAB to 
calculate the square of the diameter of the crystal at the 
surface of the boric oxide melt (corresponding to r^2 in our 
calculations). Since the position of the oxide melt surface 
relative to the crystal depends on the total height of the 
oxide melt, which is, in turn, a function of the total crystal 
volume immersed in the boric oxide, the melt height and the 
immersed volume must be re-calculated in each pass of CALCSD. 
The following procedure is used in CALCSD (compare Fig. 12): 

The portion of the crystal immersed in the boric oxide melt is 
divided into slices of uniform height hs whose radii (or 
rather, diameter squares) are stored in DIATAB. The top and 
bottom slices are obviously exceptions to this rule. The 
bottom slice is the portion of the crystal grown since the 
last slice boundary was encountered; the height of the top 
slice is determined by the position of the oxide surface. 

In order to determine r^2, CALCSD assumes that the encapsulant 
melt height did not change since the last pass. CALCSD first 
checks whether the boric oxide height is less than 75 milli- 
meters, i.e., less than the length of the portion of the crys- 
tal whose diameter squares are stored in DIATAB.  The oxide 
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height is limited to the maximum permitted value, and an error 
output is triggered if this is not the case. In order to 
prevent the "Oxide Height Overflow" error from either being 
reported every ten seconds, or from eventually hiding any 
other error condition which is flagged by the same parameter 
of SHAPE, SHSTAT, a counter byte is incremented for every 
occurrence of this error; SHSTAT, in contrast, is set to indi- 
cate the problem only when the counter wraps around to zero 
after 256 increments. Depending on the number of iterations 
required in CALCSD, this may happen every 5 to 20 minutes if 
the condition persists continuously. 

Having checked the oxide height, CALCSD subtracts the height 
of the bottom slice, h0, from the previous melt height h and 
determines by a simple modulo operation the distance x the 
melt surface lies above the center of the last slice which is 
immersed to more than 50 percent of its height. The square of 
r^ is obtained from a linear interpolation of the two adjacent 
entries in the table (in Fig. 12, from the squares of r^ and 
r£), i.e., by an interpolation which assumes a paraboloid 
shape of the current section. Using the centers of the slices 
rather than the slice boundaries as top and bottom surfaces of 
a paraboloid section guarantees a better accuracy. 

The melt height h, however, may have changed since the previ- 
ous pass if the volume added at the growth zone was not equal 
to the volume withdrawn from the boric oxide. In order to 
determine the current value of h according to eq. (7) , the 
immersed crystal volume Vj_ must be known. For a crystal with 
n slices covered by the oxide melt to at least 50 percent of 
their height, we can calculate V^ according to: 

Vj_ « v« + ir«hs-[r5
2 + r[2  + ... 

+ r^!2 + r£2/2] + ir-x^r^2 + r1
2)/2 (30) 

(V* is the volume of the currently grown section of the crys- 
tal with the height h0.) 

Equation (7) permits now to calculate a new melt height value 
(assuming the oxide volume Vm and the crucible radius R are 
known) which is compared to the previous height. CALCSD re- 
turns if both values differed for less than one height unit 
(approximately 0.02 mm); otherwise, the procedure is repeated 
from the calculation of r^ on. CALCSD is left, though, if a 
certain number of iterations (currently, 5) was not suffici- 
ent, which constitutes a protection against "hanging up" in 
the case of bad convergence. 

- 101 - 

t>^:^^>^^^ 



The Czochralski Growth Control System Software 

ft 

During the major part of the growth run, the oxide volume Vm 
in eq. (7) is, indeed, known and constant. Towards the end of 
the run, however, the active boric oxide volume starts de- 
creasing as the semiconductor melt recedes from the crucible 
wall, and the resulting gap is filled with boric oxide. 
Therefore, Vm has to be corrected after each pass in this 
regime for the apparent oxide volume loss 6Vm according to eq. 
(9): 

vm ~ vmo ' *- ° vm ~ vmo z (e-sv2.dx/dxra) 

where Vmo is the initial boric oxide melt volume, 

31" 

-v 

K 

One more task of SHAPE is the evaluation of a Crucible Posi- 
tion setpoint which also enters into the calculation of the 
Length Grown. The apparent weight of the growing crystal, w, 
can be written as 

W = w, o + Wx . (Vi - vio).dc (32), 

a 

where W0 is the measured initial weight at the beginning of 
the growth run, and Wx, the actual weight of the crystal 
grown. The last term in eq. (32) takes into account the buoy- 
ancy in the boric oxide melt. The mass Wx has been withdrawn 
from the contents of the crucible, essentially by lowering the 
surface of the semiconductor melt. Towards the end of the 
growth run, however, the semiconductor melt volume required to 
grow the crystal is supplied by shrinking the diameter rather 
than the height of the semiconductor melt. The volume thus 
obtained is identical to the boric oxide volume lost according 
to eqs. (9) and (31) . The crucible must be raised by a dis- 
tance z in order to keep the semiconductor melt surface at the 
same location within the puller: 

•.- 

s 

Wx = R^.E-d^ - E SVjn-d^ (33) 

(Keep in mind that 6Vm is negative; the contribution of the 
right term in eq. (33) is therefore either zero - during the 
regular growth - or positive.) 

The density of the melt, dxm, is different from the density of 
the crystal, dx. The crucible position setpoint, zs, can be 
calculated from eqs. (32) and (33) with the initial crucible 
position z0: 

ft 

zs = zo + z = 

w + vrd0 - (Wc V lo 'do) + 2 SVm-d m ^xm 
= z0 + 

■ IT • d xm 

(34) 

I 
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We ii^y substitute with eqs. (7) and (31) for the immersed 
volumec V^ and V^Q, and we obtain with the melt height h0 at 
the beginning of the growth run: 

W 
- + h- 

do 
+ 

w 

S   5Vm 

-(I  - 
do 

zs - 

(z0  " ho" 

dxm R2«7T 

0 

dxm 

+ 
dxm •TT ' 

) 
dxm 

(35) 

The term in the second line of eq. (35) is an initialization 
constant. The calculated Crucible Position setpoint is re- 
turned by SHAPE in the INTEGER*2 Variable SCRUCP. 

The actual position za of the crucible as obtained from the 
Crucible Position potentiometer may be different from zs; with 
the initial and actual seed position values x0 and xa, respec- 
tively, the length 1 of the crystal can be calculated as: 

1 = (xa - x0) + (zs - za) (36). 

An accordingly determined Crystal Length value is returned by 
SHAPE in the Variable ILENGT (in INTEGER*2 notation); it is 
eventually converted to floating-point format and scaled by 
the Command Executor and stored as LENGTH. 

Note that different approaches are used for the calculation of 
the actual Growth Rate and of the Crucible Position setpoint 
and Length Grown values. In the first case, the Growth rate 
is derived from (measured) speed values, while the Crucible 
Position setpoint calculation is based on the weight of the 
crystal. Although this approach may appear redundant, it was 
indispensable in order to obtain an acceptable accuracy of the 
results. (In general, it is preferable to use an input value 
which constitutes already an integral magnitude (such as the 
crystal weight), rather than calculating the integral; similar 
considerations apply to derivative data such as speeds.) 

A Meltback condition is indicated by SHAPE and subsequently 
reported by DIACNT if the Crystal Length value calculated was 
decreased by more than one "slice", i.e., by more than 1 mm. 
This may be due to any effect which reduces the distance be- 
tween the seed and the semiconductor melt surface, whether it 
was caused by a movement of the seed, or of the crucible. A 
"Regular growth resumed" message is similarly issued after a 
RESET command, upon the detection of a non-zero Seed Lift 
speed after a "Zero seed lift speed" error, or if the Crystal 
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Length was increased again by more than one "slice" after a 
Meltback condition. 

SHAPE is called as an INTEGER*1 Function from Fortran; the 
Differential Weight is passed to it as a parameter. It re- 
turns an integer flag which indicates the status of its opera- 
tion.  The following values are currently defined: 

3 
2 
1 
0 
-1 
-2 

Oxide Height overflow. 
Seed Lift speed is zero - no diameter calculated. 
Meltback. 
Regular growth. 
Speed overflow - RESET or REACTV call required. 
SHAPE is not yet initialized - RESET required. 

All other parameters are passed to and from SHAPE via memory 
locations in COMMON blocks most of which can be accessed as 
Variables. 

4.5.2.4  THE INITIALIZATION OF THE ROUTINE SHAPE - ROUTINE 
RESET 

Although the subroutine RESET is logically part of the Command 
Executor Task CMMDEX, it is kept in one assembly language 
module together with SHAPE, and it is discussed here. The 
essential commission of RESET is to prepare SHAPE for its 
operations. RESET has to be called before usable Diameter, 
Length grown, and Crucible Position setpoint values can be 
obtained from SHAPE if the status value returned by SHAPE is 
negative (compare chapter 4.5.2.3).  This value is negative 

(a) After the start of the system, before RESET was called the 
first time, and 

*G (b) After a "Speed overflow" error which happens if SHAPE is 
no more able to update its stack of crystal "slices". This 

■^ is the case if less than one diameter value per "slice" is 
»•j available, corresponding to speeds in excess of 4 00 mm/h. 

(In the latter case, a call to the subroutine REACTV may be 
§ sufficient to re-establish proper operation of SHAPE; compare 

chapter 4.5.2.5.) 

The following items are initialized by RESET: 

(1) The initial values of the crystal Weight, the Seed, and 
the Crucible Positions. 
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(2) The Diameter Square Table DIATAB is filled assuming a 
cylindrical crystal with a diameter equal to the Seed 
Diameter which was specified with the INITIALIZE func- 
tion. The initial immersed crystal volume is calculated 
accordingly. 

(3) The initial melt height is derived from the Melt Weight 
and Density values obtained from INITIALIZE, and from the 
above initial immersed volume. 

(4) The parameter ALPHA (compare chapter 4.5.2.3) is set to 1, 
and the encapsulant volume "lost" by melt recession (com- 
pare eq. (9)) is reset to zero. 

4.5.2.5  THE RE-ACTIVATION OF SHAPE - ROUTINE REACTV 

The subroutine REACTV is kept in one module together with 
SHAPE. It permits to safely resume the operation of SHAPE 
after a Speed Overflow error which was not likely to have 
caused significant changes to the volume of the crystal im- 
mersed in the boric oxide melt. REACTV simply resets the 
internal location which is used to accumulate the volume of 
the crystal "slice" grown since the last pass of SHAPE, and it 
activates SHAPE again by resetting its status byte. 

4.5.3  THE ANALOG DATA CONTROLLER - TASK ANACNT 

4.5.3.1  THE ANALOG CONTROLLER ROUTINE PROPER - MODULE ANACNT 

The main part of the Analog Data Controller Task is kept in 
the Fortran module ANACNT. The following operations are done 
by the Analog Data Controller Task: 

(1) ANACNT requests from the A/D Converter board the A/D con- 
verted values for 25 analog input channels, and it prepro- 
cesses the Weight value by subtracting the offset weight- 
determined by RESET. 

(2) It controls the power output for three heaters, running 
PID controller routines with the Heater Temperature set- 
points and actual values as inputs. 

(3) It generates similarly the control output to the four mo- 
tors. 
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8(4) It provides input from and output to the Motor Direction 
relay circuitry, and it takes care of the Controller Se- 
lection output. 

Jft        (5) It writes the control data determined above and the Plot 
data collected by the Command Executor (compare chapter 

j    4.4.4.7) to the D/A Converter hardware. 

<v        ANACNT runs once every second, being triggered directly by the 
Timer Task.  Immediately after having been started, it sets an 

(üj        auxiliary seconds flag, SECFLG, which, in turn, sets to work 
|£        the Command Executor. 

The first major operation of ANACNT is obtaining input data 
> from the A/D Converter board. This is done within the assem- 
'**        bly language subroutine ANAINP (compare chapter 4.5.3.2). The 

ANAINP call is skipped if the flag TEST is set to -1. ANAINP 
<tl returns the input from the Converter hardware in the 25 ele- 
g        ment array ANALOG, as two-byte integer data.  (The contents of 

this array may be patched with arbitrary simulation data which 
(, can even be ramped if required if ANAINP was disabled with 
j8j TEST.) 

Having read the input data, ANACNT prepares the data and par- 
& ameter locations for the seven PID controllers which are run 
pj        by this task.  The three Temperature controllers (one for each 

zone of a three-zone heater) use the pertinent Heater Tempera- 
,» ture setpoints and actual values as input data; the Power 
j& Limit setpoint serves as a common Limit value for all three 
®        controllers.  The controllers' Bias values are kept at zero. 

Q A totally different approach is used for the Motor Speed con- 
£v trollers: On principle, the motor controller hardware could 

be driven directly by the D/A converted speed setpoints. Due 
.»• to nonlinearities and offset errors within the motor control- 
J5 ler hardware, this approach would result in unsightly differ- 
** ences between the speed setpoints and the actual speeds. In 

order to alleviate this problem, one PID controller was pro- 
*¥, vided for each of the four motor channels which receives the 
&        pertinent setpoint as an input and as a Bias value and which 

generates output data which is eventually fed to the motor 
«jj        controller hardware, using the actual motor speed as its sec- 
»        ond input.  In contrast to the Temperature controllers which 

employ genuine PID operation, the Motor controllers are cur- 
rently programmed to operate as integral controllers only; 

V        their only task is to correct the original setpoint values 
>!        slightly in order to force the difference between a Motor 

Speed setpoint and the pertine it actual value to zero. 

- 106 - 

&&vv^^ 



4.  The Czochralski Growth Control System Software 

ANACNT prepares the inputs to the PID routines in any case; it 
runs the PID controllers only if the CGCS is in charge of the 
puller. In contrast, it resets the Previous Error and Error 
Integral locations of all controllers while the system is in 
Monitoring mode, and it provides the Motor Speed setpoints for 
output by the D/A Converter board. (This provision was made 
in order to permit an easier test of the output hardware. The 
Motor Speed control signals are thus available at the outputs 
of the Digital Controller in any case.) 

A special treatment is required for the Motor Speeds: Due tc 
the offset usually introduced by the PID controllers, a non- 
zero output signal results even if the corresponding setpoint 
was actually set to zero. Although this non-zero output sig- 
nal might only compensate for an opposite offset of the hard- 
ware, it would prevent the Motor Direction Relay controller 
routine MOTDIR (compare chapter 4.5.3.3) from switching the 
motors actually off. ANACNT branches therefore according to 
the Motor Speed setpoint values, and provides a zero output 
explicitly when required. 

Having trapped possibly negative Temperature Controller output 
values (there is no negative heater power), ANACNT copies the 
internal array of analog input data, ANALOG, to the array 
ANADAT, shifting the contents of the ANALOG array by one ele- 
ment. This was done to guarantee that the important input 
data (i.e., the first 17 elements of ANADAT) is actually 
sampled at the same time. The first element in ANALOG was 
measured at the end of the previous call to the Analog Data 
Input routine ANAINP (compare chapter 4.5.3.2), and it is 
therefore approximately one second older. 

Finally, ANACNT calls the Motor Direction Relay controller 
routine MOTDIR (compare chapter 4.5.3.3), and writes the fif- 
teen Analog Output values in the array ANAOUT (three tempera- 
tures, four motors, and eight chart recorder output channels) 
to the D/A Converter board, calling the Analog Data Output 
routine ANAOPT (compare chapter 4.5.3.4). Both operations are 
skipped if TEST is set to -1. 

4.5.3.2  THE ANALOG DATA INPUT ROUTINE ANAINP 

ANAINP is an assembly language routine which reads data from 
the A/D Converter board in a random access mode, and submits 
the values obtained to digital low-pass filtering. 

In order to permit random input of data from the hardware, 
ANAINP uses a special parameter array ANIPAR which consists of 
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i V 

two bytes for each channel. It is, therefore, very easy to 
connect a logical data channel within the CGCS to an arbitrary 
hardware channel and to modify the gain and filtering parame- 
ters of any channel by changing the contents of ANIPAR. In 
addition, the number of input channels actually read is not 
built into ANAINP but derived from the parameter array ANIPAR: 
The operation of ANAINP is terminated, and the routine returns 
to the calling task, when the most significant bit of an odd 
element of ANIPAR is set, corresponding to any negative value. 
(The remainder of the parameter byte does not matter.) It is 
therefore essential that at least one negative value is pro- 
vided in ANIPAR lest ANAINP might indefinitely continue read- 
ing data; since the output is stored in an array which is 
specified as the second parameter of ANAINP, this data input 
would exceed the boundaries of the array and eventually over- 
write important data. The two parameter bytes per channel in 
ANIPAR hold the following information: 

V* 
r ANIPAR (2n ±   1):      (n = 0, 1, 2, 3 ...) 

■ 
3 

Bit 5 
_1 

Gain: 
0   0 
0 1 
1 0 
1   1 

= 1 
= 2 
= 4 
= 8 

0 
_j 

A/D Converter Channel (0 31) 

0 ... Active input channel 
1 ... Last entry in ANIPAR; bits 0 to 6 don't matter 

k 

ANIPAR J2n  +   2):  (n = 0, 1, 2, 3 ...) 

Low-pass filter flag, determines the cut-off frequency of the 
digital low-pass filter routine: 

>, 
v. 

Value 
0 
1 
2 
3 
4 

Cut-Off Frequency (Hz) 
infinite 
0.1150 
0.0461 
0.0213 
0.0103 

«■ 

ANAINP supposes that a valid result is held by the A/D Conver- 
ter hardware for the first input channel. Correspondingly, 
the last action of ANAINP prior to its return, and one of the 
actions of the initialization routine for ANAINP, ANAINI, is 
to prepare and trigger the conversion of the first input chan- 
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nel. Since approximately one second passes between the return 
from ANAINP and the next call to this routine, this data is 
already slightly outdated when it is retrieved at the begin- 
ning of the next pass of ANAINP, which may or may not matter. 
Each input value is immediately submitted to the digital low- 
pass filter routine in LOWPAS which corresponds to a first 
order analog low-pass (compare chapter 4.5.3.5). LOWPAS needs 
the previous data value of each analog channel which it de- 
posited in the output array ANALOG; the contents of this array 
nay, therefore, only be read but not modified. (This is not 
true if ANAi:"? which calls LOWPAS is disabled altogether with 
the TEST flag.; Prior to calling LOWPAS, ANAINP prepares the 
A/D Converter board for the input of the next channel, pro- 
gramming the input multiplexer accordingly. The set-up time 
required by the multiplexer, i.e., the time which must pass 
before valid data can be submitted to the A/D Converter pro- 
per, is approximately equal to the execution time of LOWPAS. 
The A/D Converter hardware will therefore be ready for the 
next step when LOWPAS has finished its job. ANAINP triggers 
the conversion proper when the A/D Converter board's hardware 
indicates that the board is ready; the routine waits in a loop 
until converted data is available. (The synchronization with 
the hardware is done with waiting loops rather than using 
interrupts. This approach was preferable because each inter- 
rupt processed involves a considerable system overhead which 
cakes several hundred microseconds. The A/D conversion is 
even faster than the processing of an interrupt, and the time 
required by the hardware for channel switching is used within 
ANAINP for the low-pass routine call.) Emergency timeouts 
were provided for either loop in order to avoid a total block- 
age of the system if the A/D Converter does not respond pro- 
perly. (It turned out that the system is blocKod, though, if 
no A/D Converter board is installed, and ANAINP is not dis- 
abled with TEST.) 

4.5.3.3  THE RELAY CONTROLLER ROUTINE MOTDIR 

This assembly language routine provides the input from and the 
output to the digital (relay) interface. It has the following 
tasks: 

(1) Provide output to the Controller Selection relay which 
must not be energized in Monitoring mode 0, and energized 
if the C3CS is in charge of the puller (i.e., in operation 
modes 1 through 4). 

(2) Read the current status of the Motor Direction relays, and 
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set the Motor Speed input values to zero if the correspon- 
ding motor is switched off. 

(3) Check the sign of the Motor Speed output values, and pro- 
vide the proper Motor Direction relay output. 

(4) Determine the absolute value of the Motor Speed output for 
the D/A Converter. 

A special approach had to be chosen for the relay output: 
using just one output bit for turning on and off one relay 
would have been impeded by the fact that the status of the 
output ports may be undefined when the CGCS is not in charge 
of the controller computer. Furthermore, the PPI (Peripheral 
Parallel Interface) used comes up with all I/O lines in high 
impedance after a system reset, which would result in all 
relays either turned on or off. Therefore, three bits, namely 
bits 0 through 2 of one output byte, have to be set to defined 
values in order to actually permit control of the relays: Bit 
0 represents the Controller Selection output; it has to be 
high to switch control to the CGCS and to activate the Motor 
Direction relays. In addition, bit 1 must be low, and bit 2, 
high, to enable the relays. 

The Cambridge Motor Controller uses three relays for Motor Up/ 
Clockwise, Motor Stop, and Motor Down/Counterclockwise, re- 
spectively. The CGCS is therefore connected.to the puller by 
three relay control lines for each motor; these lines are 
energized by the Cambridge console if the analog circuitry is 
controlling the puller, and by the CGCS, if the CGCS is in 
charge. The status of the relay control lines is monitored by 
MOTDIR, and MOTDIR provides output to them when required. 
Since exactly one of the Motor Control relays must be ener- 
gized for each channel, the status of the three lines may be 
represented by two bits: 

Output: Motor Status: Speed Value: 

0 0 Stop 0 
1 0 Up/Clockwise + 
0 1 Down/Counterclockwise - 
1 1 Stop 0 

Input: 

0 0 
1 0 
0 1 
0 0 

MOTDIR uses two relays for the Motor Direction output whose 
contacts are wired to result in the above signals, i.e., the 
Stop line is energized if either no relay or both of them are 
on. 

First, MOTDIR reads the current Motor Direction status, and 
resets the Motor Speed input value to zero if the Stop relay 
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is on. This step prevents noise and offset errors within the 
analog circuitry from disturbing -he Motor Speed output on the 
CGCS■s console. The four times two Direction input bits are 
read and internally stored as one byte. Next, MOTDIR checks 
the Motor Speed setpoint values, and determines a relay set- 
ting according to the magnitude and sign of each setpoint. 
These four times two bits are also assembled in one byte. The 
input and output bytes are now "cr"-ed, which sets all bits in 
the output byte which are set ir. one of the two input bytes, 
or in both. The two bits corresponding to one particular 
motor are reset to zero if a zerc Speed value was submitted as 
a setpoint. This resulting byte is output to the Motor Direc- 
tion relays in any case. Actual output to the control lines 
is, however, only generated if the CGCS is in charge of the 
puller. 

The chosen approach may appear unnecessarily complicated but 
it is, in fact, indispensable to guarantee valid Motor Direc- 
tion signals. The combination of the output data with the 
previous input data has no effect if the direction of the 
setpoint speed is the same as the actual speed; the current 
motor direction will be maintained. The puller requires, 
however, a few fractions of a second in "Motor Stop" position 
if the rotation direction of a motor is to be reversed. This 
is automatically accomplished by the chosen approach: Both 
bits corresponding to one motor are set if the actual Motor 
Speed and the pertinent setpoint have different signs, which 
energizes the "Stop" control line. At the next pass of 
MOTDIR, one second later, two zero bits are input accordingly, 
and the Motor Direction output will be determined by the sign 
of the setpoint. A one second "Motor Stop" is therefore guar- 
anteed in any case. 

4.5.3.4  THE ANALOG DATA OUTPUT ROUTINE ANAOPT 

The Analog Data Output routine uses a similar approach as 
ANAINP for providing easily programmable output to random 
hardware channels, of the D/A Converter board: The channel 
numbers are kept in an array whose size is not limited by 
ANAOPT. Output values are read from an array in the order in 
which they are stored; there is no limit to this array either. 
ANAOPT returns to the calling routine when a negative channel 
number is detected in the parameter array (which is referred 
to as the Variable ANOPAR). 

ANAOPT has to scale the data submitted to it by a factor of 8 
since the D/A Converter board supports only a 12 bit unipolar 
data range.  Round-off is provided according to the magnitude 
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4.  The Czochralski Growth Control System Software 

of the highest-order bit which has to be discarded.  Negative 
output values are trapped and replaced by zero. 

Incidentally, the (assembly language) routine ANAOPT is kept 
in the Data rather than in the Code area of the CGCS. This 
was necessary because ANAOPT "patches" its own program code 
according to the analog channel which is currently in use. 
This approach is, however, incompatible with the memory check- 
ing done by the Command Executor (compare chapter 4.4.4.8). 
(Although patching program code is legitimately considered a 
bad programming technique it was indispensable in this case 
because the 8085 processor used does not allow otherwise to 
access I/O port addresses which have been calculated before.) 

e 
4.5.3.5  THE LOW-PASS FILTER ROUTINE LOWPAS 

The algorithm used by LOWPAS is very simple and efficient: 
With xk, the current input value, and yk and yk-i, the current 
and the previous output values, respectively, LOWPAS calcu- 
lates: 

yk = a-xk + b.yk_! (1), 

with 

= ->-n 

and 

(2), 

5 
*. 

fc 

b=l-a=l- 2"n (3), 

where k and n are positive integers (0, 1, 2, ...). The re- 
striction of eq. (2) permits a very fast evaluation of eq. 
(1). Eq. (3) guarantees an overall gain of 1 for constant 
(DC) signals.  We can re-write eq. (1) to: 

V 

.-> 

b'(Vk " yjc-l) + (1 - b)'Yk " a#xk (4) 

Eq. (3) can be divided by T, the time interval between two 
runs of LOWPAS: 

Yk " Yk-1    1  ~  b 
  +   

b-T 
'Yk 

b-T 
xk (5) 

The difference in the left term in eq. (5) can be approximated 
by a differential, transforming eq. (5) to the differential 
equation: 
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Sv 
fit 

+ 1 - b 
b-T -y = b-T (6) 

This is evidently the response of a simple first-order (R-C) 
low-pass filter. Eq. (5) is an approximation, though, which 
is only valid for very slowly changing input values x^. A 
more accurate analysis of the filter's frequency response must 
be based on the theory of digital filters: The complex fre- 
quency response H(ft»T), with 

2 *TT • f (7) , 

where f is the input signal frequency and T the time interval 
between two sampling points, can be obtained by a z-transfor- 
mation of the filter's response to a single pulse with the 
amplitude 1. It can easily be seen from eq. (1) that, for an 
input signal 

,1 for k = 0 
k  {   0  for k > 0 

the output signal h^ will be: 

k    = 
*k = 

0 12 3 
a       a«b      a*b2     a«b3 

m 
a«bm 

(8), 

(9) 

With the definition of H(n»T) 

00 

H(n-T)   = Z  hk-[exp   (j-n«T)]"k 

k=0 
(10), 

and the summation formula for an infinite geometric series 

1 
1 + x + x2 + x3 + ... = 

we can obtain the complex frequency response 

a 
H(n-T) = 

1 - b-exp (-j-n-T) 

(ID, 

(12) 

Since we are not interested in the phase but only in the am- 
plitude response, we derive the absolute value |H(n«T)| from 
eq. (12): 

|H(fl.T)| = 
(1 + b2 - 2«b-cos (fl'T))*/2 

(13) 
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The cut-off frequency 

n0 = 2--rr-f0 (14) 

of a low-pass filter is defined as the point where the ampli- 
tude response drops to 1/72 of its DC value: 

lH(nn-T)l = i 
H(0)|     IT {lb} 

With eqs. (13) and (15) , we can write: 

cos (n0-T) = 1 -  (1
27b

b)  (16) 

The cut-off frequency values listed in chapter 4.5.3.2 were 
obtained from eq. (16), with a sampling point interval T = 
1 second. 

4.6  PROGRAM CONFIGURATION 

The CGCS consists of a number of Fortran and assembly language 
program source modules each of which holds one or several 
routines. These modules must first be converted into object 
machine code, which is done by a Compiler and Assembler pro- 
gram, respectively. The resulting object program files must 
be linked together by a special Linker utility which also 
resolves mutual references; the output of the Linker which 
still does not refer to absolute memory locations must be 
modified to do so by a Locater. A special Configuration Mod- 
ule must be provided for the iRMX-80 operating system; this 
module may either be written in assembly language, or it can 
be created much more comfortably with a special Interactive 
Configuration Utility for iRMX-80, ICU-80. (All the mentioned 
development software is supplied by Intel.) 

The actual configuration process is, however, much more com- 
plicated, due to the overlay structure chosen, and due to the 
fact that certain memory locations have to be "tied" together. 
In general, the configuration procedure follows the approach 
described in the Fortran-RMX-80 Interface documentation (com- 
pare Appendix A) , particularly with the treatment of COMMON 
blocks which we will not discuss here due to its complexity. 

The configuration procedure starts with linking all assembly 
language and Fortran modules together which constitute the 
main body of the CGCS (i.e., the permanently resident code). 
These routines refer extensively to Interface, Fortran, and 
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iRMX-80 routines which are linked with the combined assembly 
language and Fortran modules in the next step. A Dummy mo- 
dule, TRVMOD, provides references which would be made by over- 
lay routines otherwise; this permits to keep all support rou- 
tines within the resident code. After this procedure, all 
references to external routines should be satisfied, with the 
exception of the routines which constitute Command Interpreter 
overlays. Despite of these missing external references, the 
resident code is located to absolute memory addresses. 

Next, the overlay routines (which may be one or more program 
modules per overlay) are linked separately, satisfying their 
external references to routines which are already contained in 
the resident part of the CGCS. (The addresses of these rou- 
tines only are linked in this case, rather than the complete 
program code.) Since no overlay may directly refer to a dif- 
ferent overlay, all references contained in the overlay must 
be satisfied now, and the overlay code can be located to re- 
side in the reserved overlay area. 

The last step, finally, entails linking the resident CGCS code 
to the start addresses of all Command Interpreter overlays, 
which satisfies the last yet open external references. In 
addition, the Initialization code of the Command Interpreter 
which was prepared separately like an overlay is linked to the 
resident CGCS code in its entirety. The resulting modules 
still contain a vast overhead of various references which were 
required for linking and which are used by various debugging 
approaches. These references are not required for program 
execution and would only unduly consume disk space and loading 
time; they are, therefore, stripped in the last step of soft- 
ware preparation. 

In addition to the main resident CGCS module CZOCHR.BIN and 
the 21 Command Interpreter overlay modules CZOV01 through 
CZ0V21, plus the Data module CZOOVD, two more files are re- 
quired on a CGCS system disk: The file CZOMEN holds a spe- 
cially formatted Help menu which is displayed upon a HELP 
command (compare chapter 4.4.3.4); this file needs no special 
attention if a new system version is being generated, unless 
significant modifications of the command structure were made. 
A special treatment is, in contrast, required for the CZONAM 
file which holds the list of Variable addresses (compare chap- 
ters 3.6 and 4.4.3.2). This file must hold the current ver- 
sion code in its file name extension (CZONAM.V23 refers, for 
example, to version 2.3 of the CGCS), and it must be generated 
from a source file which may have required updating due to a 
possible shift of the addresses of some Variables because of 
software modifications. This source file is converted into 
the special CZONAM format (compare Appendix H) by means of the 
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4.  The Czochralski Growth Control System Software 

auxiliary program CONVAD. CONVAD is designed to run under 
ISIS-II; it could also be executed under RXISIS-II but that 
will hardly be necessary. 

The last step in preparing a work disk for a new CGCS version 
is, finally, up to the operator:  All Macro command files 
which were used under a previous version and which are still 

S        required must be converted to the new system version using the 
N        Macro Command Editor facilities (compare Appendix A). 
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Appendix A:  Additional Documentation 

APPENDIX Ar  ADDITIONAL DOCUMENTATION 

iRMX-80™- User's Guide; Intel Corporation 1979, 1980; Manual 
Order No 9800522-05: 
General information about iRMX-80. 

The Alternative Loader Task - Library ROLOAD.LIB; Karl 
Riedling, September 1984: 
Information within this documentation complements and 
replaces information in the iRMX-80™ User's Guide. 

The Alternative Terminal Handler - Library ATHxxx.LIB; Karl 
Riedling, February 1985: 
Information within this documentation complements and 
replaces information in the iRMX-80™ User's Guide. 

RXISIS-II User's Guide; Karl Riedling, February 1985: 
General information about RXISIS-II and its supporting 
routines, the RXISIS-II Monitor, and the RXISIS-II Confi- 
dence Test.  Short overview over utility software avail- 
able under RXISIS-II. 

ISIS-II User's Guide; Intel Corporation, various issues and 
order numbers: 
Documentation of Intel supplied utility software which is 
also available under RXISIS-II. 

Additional System Programs for Intel Development Systems; Karl 
Riedling, March 1981: 
Documentation of additional utility routines; all programs 
listed are compatible with RXISIS-II. 

Fortran - RMX-80 Interface Program Package; Karl Riedling, 
February 1985 (Issue 3): 
Extensive documentation of all Interface routines used in 
the CGCS, containing also discussions of various program- 
ming approaches and of the system configuration. 

Additional Fortran Numeric Routines; Karl Riedling, 1985: 
Documentation of alternative Fortran floating-point system 
routines which use the 8231 Numeric Processor. 

Czochralski GaAs Crystal Growth Controller - Short Reference; 
Karl Riedling, December 1986 (Issue 4): 
User's reference manual for the CGCS. 

Czochralski GaAs Crystal Growth Controller - Operator's Manu- 
al; Karl Riedling, December 1986: 
Operation guide for RXISIS-II and the CGCS.  (Subset of 
the Short Reference Manual.) 
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Czochralski Growth Control System - Digital Controller Emer- 
gency Procedures; Karl Riedling, December 1986: 
Procedures for emergencies caused by the CGCS hardware or 
software.  (Subset of the Operator's Manual.) 

Czochralski Growth Control System Macro Command Editor COMMED; 
Karl Riedling, April 1986: 
User's reference manual for the Macro Command Editor pro- 
grams COMMED and READCM. 

Program SHODAT - Short Reference: Karl Riedling, May 1986 
(Issue 2): 
User's reference manual for the Data file display utility 
SHODAT. 
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APPENDIX B:  CGCS MEMORY AND I/O MAPS 

B 1;  MEMORY MAP 

FFFFH 

FEBOH 

FEACH 

FE34H 

FD3 0H 

»F5F0H * 

5C00H 

5400H 

2D00H 

2800H 

2000H 

0000H 

Loader Buffer, Disk I/O Stack 

System Version Code (2x) 

RXIROM (COMINT) Stack 

Disk Buffer Area 

Memory Pool Area 

Resident CGCS Program Code 

COMINT Overlay Program Code + Data 

Resident CGCS Data 

COMMON Blocks 

Data of ROM Resident System 

ROM Resident Program Code 

* This boundary is most subject to changes due to 
program modifications.  The value given applies to 
Version 2.3. 

B 2;  I/O MAP 

2 OH 
21H 
24H 
26H 
27H 

4 OH 
41H 
42H 
43H 

5EH 
5FH 

A/D Converter Control/Status Register, low byte 
A/D Converter Control/Status Register, high byte 
A/D Converter Multiplexer Address Register 
A/D Converter Output Data Register, low byte 
A/D Converter Output Data Register, high byte 

D/A Converter Channel 0, low byte 
D/A Converter Channel 0, high byte 
D/A Converter Channel 1, low byte 
D/A Converter Channel 1, high byte 

D/A Converter Channel 15, low byte 
D/A Converter Channel 15, high byte 

- 119 - 

m JAJ^JAI •*\J.>J •J.V.V y^v^^ V, 



Appendix B:  Memory and I/O Maps 

BOH ... I/O Expansion Board Base Address 

B4H ... Motor Direction Relay Input 
B5H ... Motor Direction Relay Output 
B6H ... Controller Selection Relay Output 

COH - FFH ... CPU Board I/O Addresses 

Various I/O ports on the iSBC 80-24 CPU and iSBC 517 I/O Ex- 
pansion boards are used by system routines, e.g., by the Ter- 
minal Handler and the alternative Fortran floating-point rou- 
tines. 
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APPENDIX C:  SYSTEM TASKS 

Appendix C lists all primary tasks within the sysrem; it does 
not include tasks which are dynamically created at runtime by 
any primary task. SUSPEND information is given for the genu- 
ine CGCS tasks; it indicates whether a task may be suspended 
with the DEBUG Suspend command. It is generally prohibited to 
suspend any iRMX-80 System or Interface task! 

C l:  ROM RESIDENT SYSTEM TASKS 

Task RXIROM: ROM resident root of RXISIS-II and the CGCS 
Command Interpreter. 

Entry Point: 
Stack Length: 

Priority: 
Task Descriptor: 
Extra: 

RXIROM 
50, extended to 120 by the 
CGCS 
250 
RXIRTD 
20 

Task RQTHDI:   Alternative Input Terminal Handler. 

Entry Point: RQTHDI 
Stack Length: 40 
Priority: 97 
Task Descriptor: THDITD 
Extra: 0 

Task RQTHDO:   Alternative Output Terminal Handler 

Entry Point: RQTHDO 
Stack Length: 4 0 
Priority: 113 
Task Descriptor: THDOTD 
Extra* 0 

Task RQLOAD:   Alternative Loader Task. 

Entry Point: RQLOAD 
Stack Length: 60 
Priority: 140 
Task Descriptor: LOADTD 
Extra: 0 
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1 

S 

Task DISKIO: 

Task : 

iRMX-80 Disk I/O Task. 

Entry Point: RQPDSK 
Stack Length: 48 
Priority: 129 
Task Descriptor: RQDIOD 
Extra: 0 

Unnamed Disk Controller Task. 

£ 
Entry Point: RQHD4 
Stack Length: 80 
Priority: 33 
Task Descriptor: CNTLTD 
Extra: 0 

C 2:  iRMX-80 SYSTEM TASKS IN THE CGCS 

I 

Task RQFMGR: Free Space Manager. 

Entry Point: RQFMGR 
Stack Length: 40 
Priority: 50 
Task Descriptor: RQFSMD 
Extra: 0 

v 

Task DIRSVC:   Disk Directory Services. 

Entry Point: RQPDIR 
Stack Length: 48 
Priority: 200 
Task Descriptor: RQDRSD 
Extra: 0 

\ 

C 3:  FORTRAN - iRMX-80 INTERFACE TASKS 

Task FXCFLG:   Flag Interrupt Generation Task. 

Entry Point: FXCFLG 
Stack Length: 36 
Priority: 149 
Task Descriptor: FXCFTD 
Extra: 0 
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Task INDATX: Input Interface Task. 

Entry Point: FXINTI 
Stack Length: 184 
Priority: 134 
Task Descriptor: INDTTD 
Extra: IS 

Task OUTDTX: Output Interface Ta sk. 

Entry Point: FXINTO 
Stack Length: 200 
Priority: 135 
Task Descriptor: OUTDTD 
Extra: 18 

Task FXDISK: Disk I/O Interface Task. 

Entry Point: FXDISK 
Stack Length: 38 
Priority: 133 
Task Descriptor: DISKTD 
Extra: 0 

Task FXTIME: System Timer Task. 

Entry Point: FXTIME 
Stack Length: 34 
Priority: 34 
Task Descriptor: TIMETD 
Extra: 0 

System Tasks 

C 4;  CONTROLLER TASKS 

Task CMMDEX:   Command Executor Task. 

Entry Point: CMMDEX 
Stack Length: 120 
Priority: 240 
Task Descriptor: CMEXTD 
Extra: 20 

Suspend: no 
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1 Task MEASDO: 

Appendix C: 

Measured Data Output Task. 

Entry Point: MEASDO 
Stack Length: 120 
Priority: 220 
Task Descriptor: MEASTD 
Extra: 20 

Suspend: yes 

System Tasks 

Task CMFINP:   Command File Input Task. 

v. 
v. 

Entry Point: CMFINP 
Stack Length: 50 
Priority: 230 
Task Descriptor: CMFITD 
Extra: 20 

Suspend: yes 

Task CMFOUT:   Command File Output Task. 

i 

.V 

Entry Point: 
Stack Length: 
Priority: 
Task Descriptor: 
Extra: 

CMFOUT 
50 
251 
CMFOTD 
20 

Suspend: yes; f 

Task DSKOUT:   Data Disk File Output Task. 

Entry Point: 
Stack Length: 
Priority: 
Task Descriptor: 
Extra: 

DSKOUT 
50 
180 
DSKOTD 
20 

Suspend: yes 

Task DIACNT:   Diameter Controller Task. 

Entry Poir^ 
Stack Len . .' 
Priority: 
Task Descriptor: 
Extra: 

DIACNT 
120 
160 
DIACTD 
20 

Suspend: yes 

for short time only 
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Task ANACNT:   Analog Data Controller Task. 

Entry Point: ANACNT 
Stack Length: 60 
Priority: 150 
Task Descriptor: ANACTD 
r.xtra: 0 

Suspend: no 
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APPENDIX D:  ROUTINE NAMES 

The following table lists the names of all routines which do 
not belong to iRMX-80 or Interface libraries. The name of the 
source file which holds the routine is either equal to the 
routine's name, plus the extension ".SRC", or it is equally 
derived from the name given in parentheses. The main chapter 
in this documentation where references to a particular routine 
occur is specified, too. The following abbreviations were 
used: 

A 
B 
D 
F 
R 
T 

Assembly language module. 
(Fortran) BLOCKDATA program. 
Data module. 
Fortran module. 
Subroutine or Fortran FUNCTION. 
Task or main routine of a task. 

ff 

i 
s 

'S 
V 

3 

ANACNT 
ANAINI 

ANAINP 
ANAOPT 
ANOMAL 
BEEP 
BITCNT 
BLKDTA 

CALCUL 
CHKAN1 

CHKANS 
CHKDTB 
CHKFNM 
CLEARO 

CLIPRL 
CLRBUF 
CLRSCR 
CLSFIL 
CMFINP 
CMFOUT 
CMMDEX 
CNTRL 
COMINT 
COWMEN 
CONDIT 
CREATE 
CZINIT 
CZOV01 

T-F 
R-A 

R-A 
R-A 
R-F 
R-F 
R-A 
B-F 

R-F 
R-F 

R-F 
R-F 
R-A 
R-F 

R-F 
R-F 
R-F 
R-F 
T-F 
T-F 
T-F 
R-A 
T-F 
R-F 
R-F 
R-A 
R-A 
B-F 

Analog Data 
Analog Data 
(4.5.2) 
Analog Data 
Analog Data 

Controller Task (4.5.3.1) 
Input Initialization routine (ANAINP) 

Input routine (4.5.2.2) 
Output routine (4.5.2.4) 

Anomaly Compensation routine (4.5.2.2) 
Beeping Routine (AUXCOM) (4.4.2) 
Bit Counting routine (4.4.3.17) 
CZOOVD Data Initialization BLOCKDATA program 
(4.4.3) 
Calculator Utility routine (4.4.3.11) 
Operator Answer Checking routine (MENOUT) 
(4.4.3.4) 
Operator Answer Checking routine (AUXCOM) 
Check Diameter Table routine (DIACNT) (4 
File Name Checking routine (4.4.3, 4.4.4 
Conditional 
(4.4.3.21) 
Input Line Clearing Routine 
Buffer Clearing routine 
Scrolled Screen Area Clearing routine (4.4.3.4) 
File Closing Routine (AUXCOM) (4.4.3) 
Command File Input Task (4.4.6) 

File Output Task (4.4.7) 
Executor Task (4 
Mode Determining 
Interpreter (4.4 
Entry routine (4 

(4. 
5.2. 
1) 

Command Clearing overlay routine 

(AUXCOM) (4.4.2) 

Command 
Command 
Control 
Command 
Comment 
Conditional 
CGCS System 

(4.4.4) 
4.4) 
routine 
3) 
4.3.3) 

Command Entry routine (4.4.3 
Creation routine (CZINIT) (4 

4.2) 

14) 
4.3) 

CGCS Initialization Routine (4.4.3) 
Overlay Identification BLOCKDATA module (SETPAR) 

v 

V 
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CZOV02 
CZOV03 
CZOV04 
CZOV05 
CZOV06 
CZOV07 
CZOV08 
CZOV09 
CZOV10 
CZOV11 
CZOV12 
CZOV13 
CZ0V14 
CZOV15 
CZOV16 
CZOV17 
CZOV18 
CZOV19 
CZOV20 
CZOV21 
CZOVER 
DASHES 

DATAFI 
DATIN 
DATOUT 
DEBUG0 
DEBUG1 
DIACNT 
DIRECT 
DISINT 
DISPLY 
DOCUMT 
DSKOUT 
DUMP 
DUMPDT 
ENINT 
ERRMSG 
EXICZO 
FILES 
FINDAD 
FIRSTM 

FRAME 
FRPIDC 
FRSETT 
FXTIME 
FXUSIN 

B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
B-F 
D-A 
R-F 

DASHLN  R-F 

R-F 
R-A 
R-A 
R-F 
R-F 
T-F 
R-F 
R-A 
R-F 
R-F 
T-F 
R-F 
R-F 
R-A 
R-A 
R-F 
R-F 
R-A 
R-A 

R-F 
R-A 
R-A 
T-A 
P-F 

Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
Overlay Identification BLOCKDATA module 
System Version code 
Half Line Of Dashes Generating routine 

,3.8) 
Line Of Dashes Generating routine 
,3.8) 
File Maintenance routine (4.4.3.12) 

Input Interface routine (DATOUT) 

SETVAR) 
COMMEN) 
MENOUT) 
OPMODE) 
DEBUG0) 
DEBUG1) 
FRAME) 
FILES) 
REQCMF) 
CALCUL) 
DATAFI) 
EXICZO) 
CONDIT) 
DISPLY) 
DOCUMT) 
DIRECT) 
RESOVL) 
INIDAT) 
PLOTOV) 
CLEARO) 

(FRAME) 

(FRAME) 
(4.4 
Full 
(4.4 
Data 
Special Input Interface routine (DATOUT) (4.3.1) 
Special Output Interface routine (4.3.1) 
DEBUG routines, part 1 (4.4.3.6) 
DEBUG routines, part 2 (4.4.3.7) 
Diameter Controller Task (4.5.2.1) 
Disk Directory Display routine (4.4.3.17) 
Interrupt Disabling Routine (AUXASM) (4.4.4.7) 
Variable Display routine (4.4.3.15) 
Documentation File Maintenance routine 
Data File Output Task (DSKDAT) (4.4.8) 
Data Dump Triggering routine (DUMPDT) 
Data Dump Generation routine (4.4.4.6) 
Interrupt Enabling Routine (AUXASM) (4.4.4 
Error Message Output routine (AUXASM) (4.4 
CGCS Exit routine (4.4.3.13) 
Output File Status Display routine (4.4.3.9) 
Variable Address Finding routine (4.4.3.2) 
First module in Code area - used by MEMCHK 
(4.4.4.8) 
Console Output Mask Generation routine (4.4. 
Generic PID Controller routine (4.5.1) 
Reset Timer routine (FXTIME) (4.3.2, 4.4.3) 
Timer Task (4.3.2, 4.4.3) 
Initialization routine (INIT) (4.4.3) 

(4.4.3.16) 

(4.4.4.6) 

7) 
2) 
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Appendix D:  Routine Names 

w INIDAT R-F 
) .-/. INIDTA B-F 

! 9 ■ INIPRT R-A 
LOVLAY R-F 

1 LOWPAS R-A 

i K 
LSTRAM D-A 
MAKEFN R-A 

1 A> MEASDO T-F 
1 MEMCHK R-A 

£ MENOUT R-F s MESSGE R-A 
MOTDIR R-A 

* * OPMODE R-F 
5 OPNFIL R-F 
• w* 

PEEKDW R-A 
PLOTOV R-F 

2 
1:  i 

PLOTPR R-F 
PRETTA R-A 

c> PROMPT R-A 

.-• 
QUITCM R-F 

1 REACTV R-A 

RSQCMF R-F 
(4.4.3. 10) 
RESET R-A 

RESOVL R-F 

s SETPAR R-F 
SETVAR R-F 

:•. SHAPE R-A 
SHIFTB R-F 
SHIFTB R-F 

>::, SPLITM R-A 
STARTP R-A 

r» STODAT R-A s STRIN R-A te^ STRIPN R-F 
STROUT R-A 

ft 
TESTHD R-A 
TIMLIN R-F 

V TRVMOD D-A 
* I TTJ.DXTM1 B-F S' y muuiA 
V 

WTOUTP R-F 
:*• XCHDSK R-F 

Initial Data Input routine (4.4.3.16) 
Built-in Data Initialization BLOCKDATA program 
(4.4.3) 
Special Output Interface routine (DATOUT) (4.3.1) 
Overlay Loading routine (AUXCOM) (4.4.3) 
Low-Pass Filtering routine (4.5.2.5) 
Dummy routine:  Last program code module 
File Name Building routine (AUXASM) (4.4.3) 
Measured Data Output Task (4.4.5) 
Code Memory Checking routine (LSTRAM) (4.4.4.8) 
Help Menu Output routine (4.4.3.4) 
Message Output routine (AUXASM) (4.4.2) 
Motor Direction Output routine (4.5.2.3) 
Operation Mode Entry routine (4.4.3.5) 
File Opening Routine (AUXCOM) (4.4.3) 
Data Retrieval routine (AUXASM) (4.4.3.1) 
Data Plotting Setup Overlay (4.4.3.20) 
Plot Data Collecting Routine (4.4.4.7) 
Auxiliary Command Interpreter routine (AUXASM) 
(4.4.2) 
Command Prompt Generation routine (AUXASM) 
(4.4.2) 
Macro Command Quitting routine (4.4.3) 
Diameter Evaluation Reactivating routine (SHAPE) 
(4.5.2.5) 
Command Output File Maintenance routine 

Diameter Controller Resetting routine (SHAPE) 
(4.5.2.4) 
RESET Command Processing routine (4.4.3.18) 
Parameter Setpoint Entry routine (4.4.3.1) 
Variable Setpoint Entry routine (4.4.3.2) 
Diameter Controller routine (4.5.2.3) 
Buffer Left Shifting routine (DEBUGO) (4.4.3.6) 
Buffer Left Shifting routine (PLOTOV) (4.4.3.20) 
Mode Code Splitting routine (AUXASM) (4.4.4.1) 
Special Output Interface routine (DATOUT) (4.3.1) 
Data Storage routine (AUXASM) (4.4.4.1) 
Special Input Interface routine (DATOUT) (4.3.1) 
Strip Binary Zeros routine (DIRECT) (4.4.3.17) 
Special Output Interface routine (DATOUT) (4.3.1) 
Hardware Testing routine (CZINIT) (4.4.3) 
Top Of Screen Line Output routine (4.4.3, 
4.4.3.8) 
Trivial Module; needed for system configuration 
Auxiliary DEBUG COMMON Block Initialization 
(DEBUGO) (4.4.3,6) 
MEASDO Delaying routine (MEASDO) (4.4.5) 
Disk Exchange routine (AUXCOM) (4.4.3) 
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Appendix E:  Common Blocks 

APPENDIX E;  COMMON BLOCKS 

The following table shows the Fortran COMMON blocks used in 
the CGCS, arranged in increasing address order. For each 
block, its size and the names of the routines referencing it 
are specified. 

LOCATED IN THE MAIN COMMON AREA: 

PLOTPR, MEASDO, DSKOUT, ANACNT, 

INIDTA, BLKDTA 

BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

MEASDO, INIDTA 

COMINT, SETPAR, SETVAR, OPMODE, 
DEBUG1, EXICZO, CONDIT, RESOVL, 
CLEARO, CMMDEX, CMFINP, DIACNT 

COMINT, SETPAR, SETVAR, OPMODE, 
DEBUG1, EXICZO, CONDIT, RESOVL, 
CLEARO, CMFINP, CMFOUT 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

CMMDEX, MEASDO, DSKOUT, INIDTA 

CMMDEX, CMFINP, INIDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

/ANAOUT/ (32) CMMDEX, 
INIDTA 

/ANIPAR/ (52) ANACNT, 

/ANOMLY/ (8) ANOMAL, 

/ANOPAR/ (17) ANACNT, 

/AUXILD/ (62) PLOTPR, 

/CNDCNT/ (1) CMMDEX, 

/COMMEX/ (10) FXUSIN, 
DEBUGO, 
PLOTOV, 

/COMMFL/ (10) FXUSIN, 
DEBUGO, 
PLOTOV, 

/CONLIM/ (2) MEASDO, 

/CRUCOP/ (12) DIACNT, 

/CRUC1P/ (12) DIACNT, 

/DEBUG/ (43) FXUSIN, 

/DEBUGE/ (1) COMINT, 

/DIA10P/ (12) DIACNT, 

/DIA11P/ (12) DIACNT, 

/DIA20P/ (12) DIACNT, 

/DIA21P/ (12) DIACNT, 

/DIA30P/ (12) DIACNT, 
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/DIA31P/ (12) DIACNT, 

/DISKFN/ (56) OPNFIL, 
DOCUMT, 

/DOUTEX/ (10) FXUSIN, 

/ENDBGO/ (1) MENOUT, 

/INTRVL/ (2) EXICZO, 

/MODE/ (1) COMMEN, 
MEASDO, 

/OVLNM1/ (6) LOVLAY, 

/OVRLAY/ (1) COMINT, 

/PLOTAD/ (16) CMMDEX, 

/REALDT/ (88) CMMDEX, 

/RECORD/ (3) COMINT, 

/RESTDO/ (3) FXUSIN, 

/RMPPAR/ (401) EXICZO, 

/SECFLG/ (1) CMMDEX, 

/SETPTO/ (33) FXUSIN, 
PLOTPR, 
INIDTA 

/SETPT1/ (33) FXUSIN, 
DIACNT, 

/TEMP1P/ (12) ANACNT, 

/TEMP2P/ (12) ANACNT, 

/TEMP3P/ (12) ANACNT, 

/TEST/ (1) FXUSIN, 

/WAITEX/ (10) FXUSIN, 

/XTDCNT/ (48) ANACNT, 

/XTDDAT/ (2) EXICZO, 

Appendix E:  Common Blocks 

INIDTA, BLKDTA 

TIMLIN, FILES, REQCMF, DATAFI, 
CMMDEX, INIDTA 

DSKOUT 

OPMODE, FRAME, DIRECT, MEASDO, INIDTA 

WTOUTP, INIDTA, BLKDTA 

OPMODE, EXICZO, RESOVL, CMMDEX, 
DSKOUT, DIACNT, ANACNT, INIDTA 

CZOVxx, INIDTA, BLKDTA 

CZOVxx, FILES, INIDTA 

PLOTPR 

DUMPDT, PLOTPR, DIACNT, INIDTA 

FILES, REQCMF, CMFOUT, INIDTA 

FRAME, EXICZO, CMMDEX, MEASDO, INIDTA 

CMMDEX, MEASDO, INIDTA 

ANACNT 

SETPAR, EXICZO, INIDAT, CMMDEX, 
MEASDO, DSKOUT, DIACNT, ANACNT, 

INIDAT, CMMDEX, MEASDO, DSKOUT, 
INIDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

INIDTA, BLKDTA 

ANACNT 

QUITCM, EXICZO, INIDAT, WTOUTP 

BLKDTA 

DOCUMT, DUMPDT, DUMP, INIDTA 
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Appendix E:  Common Blocks 

/XTLSHP/   (4)   CHKDTB, BLKDTA 

TIED TO THE DATA AREA (USED BY ASSEMBLY LANGUAGE MODULES): 

MODULE FXTIME: 

/FOTIME/  (65)   FXUSIN, COMINT, QUITCM, COMMEN, DATAFI, 
EXICZO, CMMDEX, DUMPDT, DUMP, CMFINP, CMFOUT, 
DSKOUT, DIACNT, ANACNT 

MODULE DATOUT: 

/IOFLAG/   (4) 

/DISKLC/   (4) 

/DATE/     (8) 

/RUNID/   (20) 

FXUSIN, COMINT, CLSFIL, OPNFIL, QUITCM, 
COMMEN, TIMLIN, FILES, REQCMF, DATAFI, 
EXICZO, DOCUMT, CMMDEX, DUMPDT, CMFINP, 
CMFOUT, DSKOUT, INIDTA 

CLSFIL, OPNFIL, FILES, REQCMF, DATAFI, 
DOCUMT, DIRECT, INIDTA 

FXUSIN, CLIPRL, TIMLIN, DATAFI 

FXUSIN, TIMLIN, DATAFI 

MODULE SHAPE: 

/ANADAT/ (65) 

/DIAMET/ (2) 

/LENGTH/ (2) 

/SCALE/ (72) 

/AUXDIA/ (26) 

/ZEROWT/ (2) 

/GROWTH/ (4) 

/DIATAB/ (256) 

FXUSIN, RESOVL, CMMDEX, PLOTPR, MEASDO, 
DSKOUT, DIACNT, ANACNT, INIDTA 

CMMDEX, PLOTPR, MEASDO, DSKOUT, DIACNT, 
INIDTA 

COMMEN, RESOVL, CMMDEX, MEASDO, DSKOUT, 
INIDTA 

SETPAR, INIDAT, RESOVL, CMMDEX, PLOTPR, 
MEASDO, DIACNT, INIDTA, BLKDTA 

INIDAT, PLOTPR, DIACNT, BLKDTA 

ANACNT 

PLOTPR 

CHKDTB 
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Appendix E:     Common Blocks 

LOCATED ON  TOP  OF  THE  COMMAND  INTERPRETER OVERLAY  AREA: 

/DBGCOM/      (21)        DEBUGO,   VARNM1,   DEBUG1 

/SCONDT/        (8)        FXUSIN,   BLKDTA 

LOCATED   CLOSE   TO   THE   HIGH   ADDRESS   END   OF   THE   RAM   AF.EA    fIN 
CONTROLLER ADDRESSABLE  MEMORY) 

/DSKBUF/    (128; DSKOUT,   INIDTA 
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Appendix F:  Variable Names 

APPENDIX F:  VARIABLE NAMES 

F 1;  MOST IMPORTANT VARIABLES 

Name Type Size Meaning 

Raw Analog Input Data (2  Byte Int.) 

ITEMPI * 12 1 
ITEMP2 * 12 1 
ITEMP3 * 12 1 
ISEEDL * 12 1 
ICRUCL * 12 1 
ISEEDR * 12 1 
ICRUCR * 12 1 
IPOUT1 * 12 1 
IPOUT2 * 12 1 
IPOUT3 * 12 1 
IWEIGH * 12 1 
IDWGHT * 12 1 
ISEEDP * 12 1 
ICRUCP • 12 1 
IBASET * 12 1 
IGASPR * 12 1 
CONTAC * 12 1 
ANALOG * 12 8 

Heater #1 Temperature 
Heater #2 Temperature 
Heater #3 Temperature 
Seea Lift 
Crucible Lift 
Seed Rotation 
Crucible Rotation 
Power Output #1 
Power Output 
Power Output 
Weight 
Diff. Weight 
Seed Position 
Crucible Position 
Base Temperature 
Gas Pressure 
Contact Device 
Spare Analog Channels 

#3 

MTEMP1 
MTEMP2 
MTEMP3 
MSEEDL 
MCRUCL 
MSEEDR 
MCRUCR 
MPOUT1 
MPOUT2 
MPOUT3 
MWEIGH 
MDWGHT 
MSEEDP 
MCRUCP + 
MBASET + 
MGASPR + 
MCONTC + 
MANALG + 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 

Measured Analoc Data (2  Bvte Int.) 

1 Heater #1 Temperature 
1 Heater #2 Temperature 
1 Heater #3 Temperature 
1 Seed Lift 
1 Crucible Lift 
1 Seed Rotation 
1 Crucible Rotation 
1 Power Output #1 
1 Power Output #2 
1 Power Output #3 
1 Weight 
1 Diff. Weight 
1 Seed Position 
1 Crucible Position 
1 Base Temperature 
1 Gas Pressure 
1 Contact Device 
8 Spare Analog Channels 
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Raw Analog Output Data (2Byte Int.) 

PWR1IN * 12 1 Input Power (to SCR Controller) #1 
PWR2IN * 12 1 Input Power (to SCR Controller) #2 
PWR3IN * 12 1 Input Power (to SCR Controller) #3 
SEEDLO * 12 1 Seed Lift 
CRUCLO * 12 1 Crucible Lift 
SEEDRO * 12 1 Seed Rotation 
nSUCRO * 12 1 Crucible Rotation 

Processed Analoq Data (REAL) 

DIAMET * R 1 Crystal Diameter 
TEMPI * R i Heater #1 Temperature 
TEMP2 * R 1 Heater #2 Temperature 
TEMP3 * R 1 Heater #3 Temperature 
SEEDL * R 1 Seed Lift 
CRUCL * R 1 Crucible Lift 
SEEDR * R 1 Seed Rotation 
CRÜCR * R 1 Crucible Rotation 
POWER1 * R 1 Power Output #1 
POWER2 it R 1 Power Output #2 
POWER3 * R 1 Power Output #3 
WEIGHT * R 1 Weight 
DWGHT * R 1 Diff. Weight 
SEEDP * R 1 Seed Position 
CRUCP * R 1 Crucible Position 
BASTMP * R 1 Base Temperature 
GAS PR * R 1 Gas Pressure 
PWRIN1 * R 1 Power Input (to SCR Controller) #1 
PWRIN2 * R 1 Power Input (to SCR Controller) #2 
PWRIN3 * R 1 Power Input (to SCR Controller) #3 
LENGTH * R 1 Crystal Length Grown 
ADJDW * R 1 Anomaly Adjusted Diff. Weight 

Current Setpoints (2  Byte Int.) 

STDIAM * 12 
STTMP1 * 12 
STTMP2 * 12 
STTMP3 * 12 
SETSL * 12 
SETCL * 12 
SETSR * 12 
SETCR * 12 
STPWRL * 12 

1 Diameter 
1 Heater #1 Temperature 
1 Heater #2 Temperature 
1 Heater #3 Temperature 
1 Seed Lift 
1 Crucible Lift 
1 Seed Rotation 
1 Crucible Rotation 
1 Power Limit 

.V 
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Appendix F:  Variable Names 

PID Controller Parameters: 

Seed Lift Motor 

SLGAIN 11 
SLCNTL 11 
SLPROP 12 
SLINT 12 
SLDIFF 12 
SLLIM 12 

CLGAIN 11 
CLCNTL 11 
CLPROP 12 
CLINT 12 
CLDIFF 12 
CLLIM 12 

PRGAIN 11 
SRCNTL 11 
SRPROP 12 
SRINT 12 
SRDIFF 12 
SRLIM 12 

CRGAIN 11 
CRCNTL 11 
CRPROP 12 
CR1NT 12 
CRDIFF 12 
CRLIM 12 

T1GAIN 11 
T1CNTL 11 
T1PROP 12 
T1INT 12 
T1DIFF 12 
T1LIM 12 

1 Gain 
1 Control 
1 Proportional Multiplier 
1 Integral Multiplier 
1 Differential Multiplier 
1 Limit 

Crucible Lift Motor 

1 Gain 
1 Control 
1 Proportional Multiplier 
1 Integral Multiplier 
1 Differential Multiplier 
1 Limit 

Seed Rotation Motor 

1 Gain 
1     Control 
1     Proportional Multiplier 
1     Integral Multiplier 
1     Differential Multiplier 
1     Limit 

Crucible Rotation Mr tor 

1     Gain 
1     Control 
1     Proportional Multiplier 
1     Integral Multiplier 
1     Differential Multiplier 
1     Limit 

Temperature *1 
(#2 and #3 analogously) 

1     Gain 
1     Control 
1     Proportional Multiplier 
1     Integral Multiplier 
1     Differential Multiplier 
1     Limit Value 
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GAIN10 11 
CNTLIO 11 
PROPIO 12 
INTIO 12 
DIFFIO 12 
LIMIO 12 

GAIN11 11 
CNTL11 11 
PROP11 12 
INT11 12 
DIFF11 12 
LIM11 12 

GAIN20 11 
CNTL20 11 
PROP20 12 
INT 20 12 
DIFF20 12 
LIM20 12 

GAIN21 11 
CNTL21 11 
PROP21 12 
INT21 12 
DIFF21 12 
LIM21 12 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

Appendix F:  Variable Names 

Diameter #1 (controls Temp. #1) 
(#3 analogously) 

Main Controller 

Gain 
Control 
Proportional Multiplier 
Integral Multiplier 
Differential Multiplier 
Limit Value 

Auxiliary Controller 

Gain 
Control 
Proportional Multiplier 
Integral Multiplier 
Differential Multiplier 
Limit Value 

Diameter #2 (controls Temp. #2) 
(#3 analogously) 

Main Controller 

Gain 
Control 
Proportional Multiplier 
Integral Multiplier 
Differential Multiplier 
Limit Value 

Auxiliary Controller 

Gain 
Control 
Proportional Multiplier 
Integral Multiplier 
Differential Multiplier 
Limit Value 

Crucible Lift 

Main Controller 

COGAIN 
COCNTL 
COPROP 
COINT 

II 
11 

12 
12 

1 Gain 
1 Control 
1 Proportional Multiplier 
1 Integral Multiplier 
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CODIFF 
COLIM 

12 
12 

Appendix F:  Variable Names 

Differential Multiplier 
Limit Value 

Auxiliary Controller 

C1GAIN 11 1 Gain 
C1CNTL 11 1 Control 
C1PROP 12 1 Proportional Multiplier 
CUNT 12 1 Integral Multiplier 
C1DIFF 12 1 Differential Multiplier 
C1LIM 12 1 Limit Value 

11 

Low-Pass Filter Values fO . • 4) 

ANIPAR(4) Heater #1 Temperature 
ANIPAR(6) 11 Heater 42 Temperature 
ANIPAR(8) 11 Heater #3 Temperature 
ANIPAR(IO) 11 Seed Lift 
ANIPAR(12) 11 Crucible Lift 
ANIPAR(14) 11 Seed Rotation 
ANIPAR(16) 11 Crucible Rotation 
ANIPAR(18) 11 Power Output #1 
ANIPAR(20) TT_ Power Output #2 
ANIPAR(22) 11 Power Output #3 
ANIPAR(24) 11 Weight 
ANIPAR(26) 11 Diff. Weight 
ANIPAR(28) 11 Seed Position 
ANIPAR(30) 11 Crucible Position 
ANIPAR(32) 11 Base Temperature 
ANIPAR(34) 11 Gas Pressure 
ANIPAR(36) 11 Contact Device 
rut Ä. i rviv \ JO; T 1 gnaro fhannol  11 

ANIPAR(40) 11 Spare Channel #2 
ANIPAR(42) 11 Spare Channel #3 
ANIPAR(44) T\ Spare Channel #4 
ANIPAR(46) 11 Spare Channel #5 
t\it x r /vn. 

ANIPAR 
ANIPAR 

(50 
(2) 

ANOMLY 

ALPHA 
A 1 i JO n r 

CDIÄ3Q 
SDIASQ 

II 
II 

R 

K 
R 

Spars Channel #6 
Spare Channel #7 
Spare Channel #8 

Other System Control Parameters 

Anomaly Compensation Factors 

Shape Controller 

Diameter Evaluation Mode Parameter 
Crystal Shape Smoothing Parameter 
Square of Crucible Diameter 
Square of Seed Diameter 
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1 OXWGHT * R 1 
R RHOXTL * R 1 

RHOMLT * R 1 

*& RHOOXI * R 1 

* SCRUCP * 12 1 
lyi HEIGHT * p 1 

§ 
GROWTH * R 1 

EXTMP1 * 12 1 
'•-• EXTMP2 * 12 1 

EXTMP3 * 12 1 
La. EXTMPB * 12 1 

OFFST1 R 1 
OFFST2 R 1 
OFFST3 R 1 
OFFSTB R 1 

rvi RANGT1 R 1 
Ü RANGT2 R 1 

RANGT3 R 1 
RANGTB R 1 
GRRATE * 12 1 

>v DIAERR * 12 1 
CRPERR * 12 1 

i ZERO 12 1 

g TEST 11 1 
w INTRVL 11 1 

DUMPIN 11 1 

5 DUMPFL 11 1 
DIASTA 11 1 
CONLIM 11 1 

V*. TIME * 12 1 
fc RAMPNG * 11 1 
ih CNDCNT * 11 1 

DUMMY 12 8 

fi 
* 

§ 

Appendix F:  Variable Names 

Oxide Weight 
Crystal Spec. Weight (scaled) 
Melt Spec. Weight (scaled) 
Oxide Melt Spec. Weight (scaled) 
Setpoint for Crucible Position 
Boric Oxide Melt Height in Crucible 
Actual Growth Rate 
Chart Recorder Output 

Expanded Temperature 1 
Expanded Temperature 2 
Expanded Temperature 3 
Expanded Base Temperature 
Offset for Temperature 1 Expansion 
Offset for Temperature 2 Expansion 
Offset for Temperature 3 Expansion 
Offset for Base Temperature Exp. 
Range for Temperature. 1 Expansion 
Range for Temperature 2 Expansion 
Range for Temperature 3 Expansion 
Range for Base Temperature Exp. 
Expanded Growth Rate 
Expanded Diameter Error 
Expanded Crucible Position Error 
Location Holding Zero 

Miscellaneous System Parameters 

Test Mode Flag 
Wait Interval for Data Display (>0) 
Interval between Data Dumps 
Data Dump Request Flag 
Diameter Evaluation Routine Status 
Limit Value for Contact Device 
System Time (Seconds Counter) 
Number of Parameters Ramped 
Number of Conditional Commands 
Scratchpad Locations 

* Read-only parameter, do not change! 
+ Parameters can only be changed in Test mode. 
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Appendix F:  Variable Names 

F 2:  COMPLETE LIST OF VARIABLES, SORTED BY ADDRESS 

ZERO 
DISKIO 
RQTHDI 
RQTHDO 
RQLOAD 
COMINT 
RXIROM 
PWR1IN 
PWR2IN 
PWR3IN 
SEEDLO 
CRUCLO 
SEEDRO 
CRUCRO 
PLOTDT 
ANAOUT 
ANIPAR 
ANOMLY 
ANOPAR 
OFFST1 
OFFST2 
OFFST3 
OFFSTB 
RANGT1 
RANGT2 
RANGT3 
RANGTB 
EXTMP1 
EXTMP2 
EXTMP3 
EXTMPB 
DIAERR 
CRPERR 
GRRATE 
DUMMY 
CNDCNT 
CONLIM 
COGAIN 
COCNTL 
COPROP 
COINT 
CODIFF 
COLIM 
CRUCOP 
C1GAIN 
C1CNTL 
C1PROP 

12 
T 
T 
T 
T 
T 
T 
12 
12 
12 
12 
12 
12 
12 
12  8 
12 16 
II 52 
R   2 
11 17 
R 
R 
R 
R 
R 
R 
R 
R 
12 
12 
12 
12 
12 
12 
12 
12 8 
II 
12 
II 
II 
12 
12 
12 
12 
12  6 
II 
II 
12 

LOCATION HOLDING ZERO 
TD FOR TASK DISKIO 
TD FOR TASK RQTHDI 
TD FOR TASK RQTHDO 
TD FOR TASK RQLOAD 
TD FOR TASK COMINT = RXIROM 

INTEGER: POWER INPUT (TO SCR MODULE) 

INTEGER: SEED LIFT OUTPUT 
INTEGER: CRUCIBLE LIFT OUTPUT 
INTEGER: SEED ROTATION OUTPUT 
INTEGER: CRUCIBLE ROTATION OUTPUT 
INTEGER: CHART RECORDER OUTPUT DATA 
ARRAY OF INTEGER OUTPUT DATA 
PARAMETER ARRAY FOR ANALOG INPUT ROUTINE 
ANOMALY CORRECTION PARAMETERS (TWO REAL) 
PARAMETER ARRAY FOR ANALOG OUTPUT ROUTINE 
TEMPERATURE OFFSET - HEATER TEMPERATURE I 

HEATER TEMPERATURE II 
HEATER TEMPERATURE III 
BASE TEMPERATURE 

TEMPERATURE CHART RECORDER OUTPUT RANGE - T 
HEATER TEMPERATURE II 
HEATER TEMPERATURE III 
BASE TEMPERATURE 
EXPANDED HEATER TEMPERATURE I 
EXPANDED HEATER TEMPERATURE II 
EXPANDED HEATER TEMPERATURE III 
EXPANDED BASE TEMPERATURE 
EXPANDED DIAMETER ERROR 
EXPANDED CRUCIBLE POSITION ERROR 
EXPANDED GROWTH RATE 
EIGHT DUMMY LOCATIONS 
COUNTER FOR CONDITIONAL COMMANDS 
INTEGER: LIMIT VALUE FOR CONTACT DEVICE 
CRUCIBLE LIFT CONTROLLER ARRAY: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIP. 
DIFF. MULTIP. 
LIMIT 

CRUCIBLE LIFT CONTROLLER ARRAY 
AUXILIARY CRUC. LIFT CONTROLLER: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
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Appendix F:     Variable Names 

CUNT 12 
CIDIFF 12 
C1LIM 12 
CRUC1P 12 
GAIN10 11 
CNTLIO 11 
PROPIO 12 
INT 10 12 
DIFF10 12 
LIM10 12 
DIA10P 12 
GAIN11 11 
CNTLU 11 
PROP11 12 
INT 11 12 
DIFF11 12 
LIM11 12 
DIA11P 12 
GAIN2 0 T -I 

XX 

CNTL20 11 
PROP20 12 
INT20 12 
DIFF20 12 
LIM20 12 
DIA20P 12 
GAIN21 11 
CNTL21 IJ. 

PRO^i 12 
INT21 12 
DIFF21 12 
LIM21 12 
DIA21P 12 
GAIN30 11 
CNTL30 11 
PROP30 12 
INT30 12 
DIFF30 12 
LIM3 0 12 
DIA30P 12 
GAIN31 11 
CNTL31 11 
PROP31 12 
INT31 12 
DIFF31 12 
LIM31 12 
DIA31P 12 
INTRVL 12 
PLOTAD 12 
DIAMET R 
TEMPI R 

INT.   MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

AUXILIARY CRUCIBLE LIFT CONTROLLER 
MAIN DIAM. CNTL. I:   GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

MAIN DIAMETER CONTROLLER I 
AUX. DIAM. CNTL. I:   GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

AUXILIARY DIAMETER CONTROLLER I 
MAIN DIAM. CNTL. II:  GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

MAIN DIAMETER CONTROLLER II 
AUX. DIAM. CNTL. II:  GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

AUXILIARY DIAMETER CONTROLLER II 
MAIN DIAM. CNTL. Ill: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

MAIN DIAMETER CONTROLLER III 
AUX. DIAM. CNTL. Ill: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

AUXILIARY DIAMETER CONTROLLER III 
INTERVAL FOR MEASURED DATA OUTPUT 
ADDRESSES OF VARIABLES SUBMITTED TO PLOT OUTPUT 
MEASURED DATA (REAL):   DIAMETER 

TEMPERATURE 
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TEMP2 
TEMP3 

R 
R 

SEEDL R SEED LIFT 
CRUCL R CRUCIBLE LIFT 
SEEDR R SEED ROTATION 
CRUCR R CRUCIBLE ROTATION 
P0WER1 R OUTPUT POWER (FROM SCR) 
POWER2 R 
POWER3 R 
WEIGHT R WEIGHT 
DWGHT R DIFF. WEIGHT 
SEEDP R SEED POSITION 
CRUCP R CRUCIBLE POSITION 
BASTMP R BASE TEMPERATURE 
GAS PR R GAS PRESSURE 
PWRIN1 R POWER INPUT (TO SCR) 
PWRIN2 R 
PWRIN3 R 
LENGTH LENGTH GROWN 
ADJDW R ADJUSTED DIFF. WEIGHT 
REALDT R  22 MEASURED DATA ARRAY (REAL) 
RAMPNG 11 NUMBER OF VARIABLES RAMPING 
STDIAM 12 CURRENT SETPOINT: DIAMETER 
STTMP1 12 TEMPERATURE 
STTMP2 12 
STTMP3 12 
SETSL 12 SEED LIFT 
SETCL 12 CRUCIBLE LIFT 
SETSR 12 SEED ROTATION 
SETCR 12 CRUCIBLE ROTATION 
STPWRL 12 POWER LIMIT 
SETPTO 12  9 CURRENT SETPOINT ARRAY (INTEGER) 
T1GAIN 11 TEMP. CNTL. I:   GAIN 
T1CNTL 11 CONTROL BYTE 
T1PROP 12 PROP. MULTIPL. 
TlxNT 12 INT. MULTIPL. 
T1DIFF 12 DIFF. MULTIPL. 
T1LIM 12 LIMIT 
TEMP1P 12  6 TEMPERATURE CONTROLLER I 
T2GAIN 11 TEMP. CNTL. II:  GAIN 
T2CNTL 11 CONTROL BYTE 
T2PROP 12 PROP. MULTIPL. 
T2INT 12 INT. MULTIPL, 
T2DIFF 12 DIFF. MULTIPL. 
T2LIM 12 LIMIT 
TEMP2P 12  6 TEMPERATURE CONTROLLER II 
T3GAIN 11 TEMP. CNTL. Ill: GAIN 
T3CNTL 11 CONTROL BYTE 
T3PROP 12 PROP. MULTIPL. 
T3INT 12 INT. MULTIPL. 
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Appendix F:  Variable Names 

T3DIFF 12 
T2LIM 12 
TEMP3P 12 
TEST 11 
SLGAIN 11 
SLCNTL 11 
SLPROP 12 
SLINT 12 
SLDIFF 12 
SLLIM 12 
SEEDLP 12 
CLGAIN 11 
CLCNTL 11 
CLPROP 12 
CLINT 12 
CLDIFF 12 
CLLIM 12 
CRUCLP 12 
SRGAIN 11 
SRCNTL 11 
SRPROP 12 
SRINT 12 
SRDIFF 12 
SRLIM 
SEEDRP 12 
CRGAIN 11 
CRCNTL 11 
CRPROP 12 
CRINT 12 
CRDIFF 12 
CRLIM 12 
CRUCRP 12 
DUMPIN 11 
DUMPFL 11 
XTLSHP R 
CMMDEX T 
MEASDO T 
CMFINP T 
CMFOUT T 
DSKOUT T 
DIACNT T 
ANACNT T 
ALARMF 11 
TIME 12 
DIFFTM 12 
DTINTV 11 
m*r\tr*-TT>rry T *i 

IOFLAG 11 
ITEMP1 12 
ITEMP2 12 

DIFF. MULTIPL. 
LIMIT 

TEMPERATURE CONTROLLER III 
TEST MODE FLAG 
SEED LIFT CKTL.: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

SEED LIFT CONTROLLER 
CRUC. LIFT CNTL.: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

CRUC. LIFT CONTROLLER 
SEED ROT. CNTL.: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

SEED ROT CONTROLLER 
CRUC. ROT. CNTL.: GAIN 

CONTROL BYTE 
PROP. MULTIPL. 
INT. MULTIPL. 
DIFF. MULTIPL. 
LIMIT 

CRUC. ROT. CONTROLLER 
INTERVAL FOR DATA DUMPS 
DUMP FLAG 
CRYSTAL SHAPE PARAMETER 
TD FOR CMMDEX 
TD FOR MEASDO 
TD FOR CMFINP 
TD FOR CMFOUT 
TD FOR DISKOUT 
TD FOR DIACNT 
TD FOR ANACNT 
ALARM TIMER INTERRUPT FLAG 
SYSTEM TIME (INTEGER) 
DIFFERENTIAL TIME FOR MACRO EXECUTION 
DATA FILE UPDATING INTERVAL 
SETPOINT FOR ALARM TIMER (MACRO EXECUTION) 
I/O FLAG ARRAY 
MEASURED DATA (INTEGER): TEMPERATURE 
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ITEMP3 12 
ISEEDL 12 
ICRUCL 12 
ISEEDR 12 
ICRUCR 12 
TP0UT1 12 
IPOUT2 12 
IPOUT3 12 
IWEIGH 12 
IDWGHT 12 
ISEEDP 12 
ICRUCP 12 
IBASET 12 
IGASPR 12 
CONTAC 12 
ANALOG 12  8 
ANADAT 12 25 
IDIAMT 12 
ILENGT 12 
SCADIA R 
SCATMP R   3 
SCAMOT R   4 
SCAPWO R   3 
SCAWGT R 
SCADWT R 
SCAPOS R   2 
SCABST R 
SCAGAS R 
SCAPWR R 
SCALE R  18 
CDIASQ R 
SDIASQ R 
OXWGHT R 
RHOXTL R 
RHOMLT R 
RHOOXI R 

TO 

ZEROWT 12 
GROWTH R 
ALPHA R 
DIATAB R  64 
IHEIGH 12 
OLDLEN 12 
DIFFLG 12 
RDWGHT R 
RHOOXA R 

T-» 

DIA2SQ R 
HEIGHT R 
RCRSET R 

SEED LIFT SPEED 
CRUCIBLE LIFT SPEED 
SEED ROTATION 
CRUCIBLE ROTATION 
POWER OUTPUT (FROM SCR) 

WEIGHT 
DIFF. WEIGHT 
SEED POSITION 
CRUCIBLE POSITION 
BASE TEMPERATURE 
GAS PRESSURE 
CONTACT 

EIGHT SPARE ANALOG CHANNELS (INTEGER) 
COMPLETE ARRAY OF ANALOG DATA (INTEGER) 
CRYSTAL DIAMETER (INTEGER) 
LENGTH GROWN (INTEGER) 
SCALING FACTORS: DIAMETER 

TEMPERATURES 
MOTORS 
POWER OUTPUT 
WEIGHT 
DIFFERENTIAL WEIGHT 
POSITION 
BASE TEMPERATURE 
GAS PRESSURE 
POWER INPUT AND LIMIT 

ARRAY OF SCALING FACTORS 
SQUARE OF CRUCIBLE DIAMETER 
SQUARE OF SEED DIAMETER 
BORIC OXIDE WEIGHT 
DENSITY: CRYSTAL 

MELT 
OXIDE 

SETPOINT FOR CRUC. POSITION (INTEGER) 
WEIGHT ZEROING OFFSET 
ACTUAL GROWTH RATE 
CORRECTION FACTOR FOR GROWTH PATE 
DIAMETER SQUARES TABLE 
MELT HEIGHT (SCALED AS LENGTH) 
LENGTH AT LAST SLICE BOUNDARY 
HEIGHT OF CURRENT SLICE 
(ADJUSTED) DIFFERENTIAL WEIGHT (FLOATING-POINT) 
ADJUSTED OXIDE DENSITY 
SQUARE OF DIAMETER AT OXIDE SURFACE 
SQUARE OF DIAMETER AT MELT SURFACE 
BORIC OXIDE HEIGHT IN CRUCIBLE (REAL) 
CRUCIBLE POSITION SETPOINT (REAL) 
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8 

V 
VOLSUM R 
OXIVOL R 
CORRVL R 

«\ BETA R 
RDLIFT R 
RLNGTH R 
PRLNGT R 

R INICRP R 
ADJLEN R 
DIASTA 11 

5% LOOPCT 11 

Si OXOVFL 11 
53 MTEMP1 12 

MTEMP2 12 
MTEMP3 12 

' % MSEEDL 12 
MCRUCL 12 

JS MSEEDR 12 
MCRUCR 12 

1 i 
MPOUT1 12 
MPOUT2 12 

ft MPOUT3 12 
MWEIGH 12 
MDWGKT 12 

1 MSEEDP 12 
MCRUCP 12 
MBASET 12 
MGASPR 12 

1 MCONTC 12 
MANALG 12 

f ,v 

25 

Appendix F:  Variable Names 

SUM OF VOLUMES IN CURRENT SLICE (UNSCALED) 
VOLUME OF BORIC OXIDE MELT 
OXIDE VOLUME CORRECTION 
CORRECTION FACTOR 
SEED - CRUCIBLE LIFT SPEEDS 
UNSCALED LENGTH 
UNSCALED LENGTH DURING PREVIOUS PASS 
CRUCIBLE POSITION AT RESET 
LENGTH ADJUSTMENT PARAMETER 
DIAMETER CONTROLLER STATUS 
LOOP COUNTER LOCATION 
OXIDE HEIGHT OVERFLOW FLAG 
PRIMARY MEASURED DATA (INTEGER): TEMPERATURE 

SEED LIFT SPEED 
CRUCIBLE LIFT SPEED 
SEED ROTATION 
CRUCIBLE ROTATION 
POWER OUTPUT (FROM SCR) 

WEIGHT 
DIFF. WEIGHT 
SEED POSITION 
CRUCIBLE POSITION 
BASE TEMPERATURE 
GAS PRESSURE 
CONTACT 

ANALOG DATA INPUT ARRAY 

F 3;  VARIABLE ADDRESSES FOR CGCS VERSIONS 1.6 THROUGH 2.3 

V1.6 V2.0 V2.1 V2.2 V2.3 

1FF6 1FF6 1FF6 1FF6 ZERO 12 

2136 2136 2136 2136 2136 DISK 10 T 

2KA 2KA 2KA 2KA 214A RQTHD1 T 

215E 215E 215E 215E 215E RQTHDO T 

2172 2172 2172 2172 2172 RQLOAD T 

2186 2186 2186 2186 2186 COM1NT T 

2186 2186 2186 2186 2186 RXIROM T 

2800 2800 2800 2800 2800 PUR1IN 12 

28C2 2802 2802 2HQ? 2802 PUR21N 12 

2804 2804 2804 2Ö04 2804 PWR3IN 12 

LOCATION HOLDING ZERO 

TD FOR TASK DISKIO 

TD FOR TASK RQTHD1 

TD FOR TASK RQTHDO 

TD FOR TASK RQLOAD 

TD FOR TASK COMINT = RXiROM 

INTEGER: POWER INPUT (TO SCR MODULE) 

y 
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V1.6 V2.0 V2.1 V2.2 V2.3 

Appendix F:     Variable Names 

t 

2806 2806 2806 2806 2806 SEEDLO 12 
2808 2808 2808 2808 2808 CRUCLO 12 
280A 280A 280A 280A 280A SEEDRO 12 
280C 280C 280C 280C 280C CRUCRO 12 
  280E 280E 280E 280E PLOTDT 12 8 

2800 2800 2800 2800 2800 ANAOUT 12 16 

280E 2820 2820 2820 2820 ANIPAR 11 52 

2842 2854 2854 2854 2854 ANOHLY R  2 

284A 285C 285C 285C 285C ANOPAR 11  17 

286D 286D 286D 286D 0FFST1 R 
2871 2871 2871 2871 OFFST2 R 
2875 2875 2875 2875 OFFST3 R 
2879 2879 2879 2879 OFFSTB R 
  287D 287D 287D RANGT1 R 
  2881 2881 2881 RANGT2 R 
  2885 2885 2885 RANGT3 R 
  2889 2889 2889 RANGTB R 
287D 288D 288D 288D EXTMP1 12 
287F 288F 288F 288F EXTMP2 12 
2881 2891 2391 2891 EXTMP3 12 
2883 2893 2893 2893 EXTMPB 12 
2885 2895 2895 2895 D1AERR 12 
2887 2897 2897 2897 CRPERR 12 
2889 2899 2899 2899 GRRATE 12 
288B 289B 289B 289B DUMMY 12 8 

2852 289B 28AB 28AB 28AB CNDCNT 11 
2867 28B0 28C0 28C0 28C0 CONL1M 12 
2869 28B2 ZZiZ 28C2 28C2 C0GAIN 11 
286A 28B3 28C3 28C3 28C3 COCNTL 11 
286D 28B6 28C6 28C6 28C6 COPROP 12 
286F 28B8 28C8 28C8 28C8 COINT 12 
2871 28BA 28CA 28CA 28CA CODIFF 12 
2873 28BC 28CC 28CC 28CC COLIM 12 
2869 2882 28C2 28C2 28C2 CRUCOP 12 6 

2875 28BE ?8CE 2SCE 28CE C1UAIN 11 
2876 28BF 28CF 28CF 28CF C1CNTL 11 
2879 28C2 28D2 28D2 28D2 C1PROP 12 
287B 28C4 2SD4 28D4 2804 CUNT 12 
287D 28C6 28D6 28D6 28D6 C1PIFF 12 
287F 28C8 28D8 28D8 2808 C1LIM 12 
2875 28BE 28CE 28CE 28CE CRUC1P 12 6 

28AD 28F6 2906 2906 2906 GAIN10 11 
28AE 28F7 2907 2907 2907 CNTL10 11 
28B1 28FA 290A 290A 290A PROP10 12 
28B3 28FC 290C 290C 290C INT10 12 
2835 28FE 290E 290E 290E DIFF10 12 
28B7 2900 2910 2910 2910 LIM10 12 
28AD 28F6 2906 2906 2906 D1A10P 12 6 

2889 2902 2912 2912 2912 GAIN11 11 

INTEGER:   SEED   LIFT   OUTPUT 

INTEGER:   CRUCIBLE   LIFT  OUTPUT 

INTEGER:   SEED  ROTATION  OUTPUT 

INTEGER:   CRUCIBLE   ROTATION  OUTPUT 

INTEGER:   OUTPUT   TO   CHART   RECORDER 

ARRAY  OF   INTEGER   OUTPUT   DATA 

PARAMETER  ARRAY   FOR  ANALOG   INPUT 

ANOMALY   CORRECTION   PARAMETERS   (REAL) 

PARAMETER   ARRAY   FOR   ANALOG  OUTPUT 

TEMPERATURE   OFFSET   -   HEATER   TEMP   1 

HEATER  TEMPERATURE   II 

HEATF.R  TEMPERATURE   III 

BASE  TEMPERATURE 

TEMP.   CHART  RECORDER OUTPUT  RANGE   •   I 

HEATER  TEMPERATURE   II 

HEATER  TEMPERATURE   III 

BASE  TEMPERATURE 

EXPANDED  HEATER   1   TEMPERATURE 

HEATER   II 

HEATER   III 

BASE 

DIAMETER   ERROR   (FOR   PLOT) 

CRUCIBLE  POSITION  ERROR   (FOR  PLOT) 

GROWTH  RATE   (FOR  PLOT) 

EIGHT  DUMMY   LOCATIONS 

COUNTER   FOR   CONDITIONAL   COMMANDS 

INTEGER:   LIMIT  VALUE   FOR  CONTACT  DEV. 

CRUCIBLE   LIFT  CONTROLLER  ARRAY:   GAIN 

CONTROL   BYTE 

PROP.  MULTIPL. 

INT.   MULTIP. 

D1FF.   MULTIP. 

LIMIT 

CRUCIBLE   LIFT   CONTROLLER   ARRAY 

AUXILIARY   CRUC.   LIFT   CONTROLLER:   GAIN 

CONTROL   BYTE 

PROP.   MULTIPL. 

INT.   MULTIPL. 

D t = F.   MULTIPL. 

LIMIT 

AUXILIARY   CRUCIBLE   LIF'i   CONTROLLER 

MAIN DIAM.   CNTL.   1     GAIN 

CONTROL   BYTE 

PROP.   MULTIPL. 

INT.   MULTIPL. 

DIFF. MULTIPL. 

LIMIT 

MAIN DIAMETER CONTROLLER I 

AUX. DIAM. CNTL. I  GAIN 

- 145 - 

I 
'"«''•*",• 

"'■ "-■-'•■' ' -^&&^^ 



V1.6 V2.0 V2.1 V2.2 V2.3 

Appendix F:  Variable Names 

'v 

B 
iwj 

i 

P 
5 

a 

v, 

28BA 2903 2913 2913 2913 CNTL11 11 CONTROL BYTE 

28BD 2906 2916 2916 2916 PROP11 12 PROP. MULTIPL. 

28BF 2908 2918 2918 2918 INT11 12 INT. MULTIPL. 

28C1 290A 291A 29U 291A DIFF11 12 OIFF. MULTIPL. 

28C3 290C 291C 291C 291C LIM11 12 LIMIT 

28B9 2902 2912 2912 2912 DIA11P 12 6 AUXILIARY DIAMETER CONTROLLER I 

28C5 290E 291E 291E 291E GAIN20 11 MAIN D1AM. CNTL. II GAIN 

28C6 290F 291F 291F 291 F CNTL20 11 CONTROL BYTE 

28C9 2912 2922 2922 2922 PROP20 12 PROP. MULTIPL. 

28CB 2914 2924 2924 2924 INT20 12 INT. HULTIPL. 

28CD 2916 2926 2926 2926 DIFF20 12 D1FF. MULTIPL. 

28CF 2918 2928 29P3 2928 LIM20 12 LIMIT 

28C5 290E 291E 291E 291E DIA20P 12 6 MAIN DIAMETER CONTROLLER II 

28D1 291A 292A 292A 292A GAIN21 11 AUX. DIAM. CNTL. II GAIN 

28D2 291B 292B 292B 292B CNTL21 11 CONTROL BYTE 

28D5 291E 292E 292E 292E PROP21 12 PROP. MULTIPL. 

2807 2920 2930 2930 2930 1NT21 12 INT. MULTIPL. 

28D9 2922 2932 2932 2932 0IFF21 12 DIFF. MULTIPL. 

28DB 2924 2934 2934 2934 LIM21 12 LIMIT 

2801 29U 292A 292A 292A D1A21P 12 6 AUXILIARY DIAMETER CONTROLLER II 

28DD 2926 2936 2936 2936 GAIN30 11 MAIN DIAM. CNTL. Ill   GAIN 

28DE 2927 2937 2937 2937 CNTL30 11 CONTROL BYTE 

28E1 292A 293A 293A 293A PROP30 12 PROP. MULTIPL. 

28E3 292C 293C 293C 293C INT30 12 INT. MULTIPL. 

28E5 292E 293E 293E 293E DIFF30 12 DIFF. MULTIPL. 

28E7 2930 2940 2940 2940 LIM30 12 LIMIT 

2800 2926 2936 2936 2936 DIA30P 12 6 MAIN DIAMETER CONTROLLER III 

28F.9 2932 2942 2942 2942 GAIN31 11 AUX. DIAM. CNTL. Ill    GAIN 

28EA 2933 2943 2943 2943 CNTL31 11 CONTROL BYTE 

28ED 2936 2946 2946 2946 PROP31 12 PROP. MULTIPL. 

28EF 2938 2948 2948 2948 INT31 12 INT. MULTIPL. 

28F1 293A 294A 294A 294A D1FF31 12 DIFF. MULTIPL. 

28F3 293C 294C 294C 294C LIM31 12 LIMIT 

28E9 2932 2942 2942 2942 DIA31P 12 6 AUXILIARY DIAMETER CONTROLLER III 

293C 2985 2991 2991 2991 INTRVL 12 INTERVAL FOR MEASUREMENT DATA OUTPUT 
  298F 299B 299B 299B PLOTAD 12 8 ADDRESSES OF CHART RECORDER OUTPUT 

2946 299F 29AB ^9AB 29AB DIAMET R MEASURED DATA (REAL):   DIAMETER 

294A 29A3 29AF 29AF 29AF TEMPI R TEMPERATURE 

294E 29A7 29B3 29B3 29B3 TEMP2 R 
2952 29AB 29B7 29B7 29B7 TEHP3 R 
2956 29AF 29BB 29BB 29BB SEEOL R SEED LIFT 

295A 29B3 29BF 298 F 29BF CRUCl R CRUCIBLE LIFT 

295E 29B7 29C3 29C3 29C3 SEEDR R SEED ROTATION 

2962 29BB 29C7 29C7 29C7 CRUCR R CRUCIBLE ROTATION 

2966 29BF 29CB 29C8 29CB POWER 1 R OUTPUT POWER (FROM SCR) 

296A 29C3 29CF 29CF 29CF POWER2 R 

296E 29C7 29D3 2903 29D3 P0UER3 R 
2972 29CR 2907 2907 29D7 WEIGHT R WEIGHT 

2976 29CF 290 B 290 B 290B DWGHT R DIFFERENTIAL WEIGHT 
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Appendix F:  Variable Names 

297A 29D3 29DF 29DF 29DF SEEDP R SEED POSITION 

297E 29D7 29E3 29E3 29E3 CRUCP R CRUCIBLE POSITION 

2982 290 B 29E7 29E7 29E7 BASTMP R BASE TEMPERATURE 

2986 290 F 29EB 29EB 29EB GASPR R GAS PRESSURE 

298A 29E3 29EF 29EF 29EF PUR INI R POWER INPUT (TO SCR) 

298E 29E7 29F3 29F3 29F3 PWRIN2 R 

2992 29EB 29F7 29F7 29F7 PWRIN3 R 

2996 29EF 29FB 29 FB 29FB LENGTH R LENGTH GROWN 

299A 29F3 29FF 29FF 29FF ADJDU R ADJUSTED DIFF. WEIGHT 

2946 299F 29AB 29AB 29AB REALDT R  22 MEASURED DATA ARRAY (REAL) 

29A4 29FD 2A09 2A09 2A09 RAKPNG 11 NUMBER OF VARIABLES RAMPING 

2A55 2B9E 2BAA 2BAA 28AA STDIAM 12 CURRENT SETPOINT DIAMETER 

2A57 2BA0 2BAC 2BAC 2BAC STTHP1 12 TEMPERATURE 

2A59 2BA2 2BAE 2BAE 2BAE STTMP2 12 
2A5B 2BA4 2BB0 2BB0 2BB0 STTMP3 12 
2A5D 2BA6 2BB2 2BB2 2B82 SETSL 12 SEED LIFT 

2A5F 2BA8 2BB4 2BB4 2BB4 SETCL 12 CRUCIBLE LIfT 

2A61 2BAA 2BB6 2BB6 2BB6 SETSR 12 SEED ROTATION 

2A63 2BAC 2BB8 2BB8 2BB8 SETCR 12 CRUCIBLE ROTATION 

2A65 2BAE 2BBA 2BBA 2BBA STPWRL 12 POWER LIMIT 

2A55 2B9E 2BAA 2BAA 2BAA SETPTO 12 9 CURRENT SETPOINT ARRAY (INTEGER) 

2A88 2BD1 2BDD 2BDD 2BDD T1GAIN 11 TEMP. CNTL. I   GAIN 

2A89 2B02 2B0E 28DE 2BDE T1CNTL n CONTROL BYTE 

2A8C 2B05 2BE1 2BE1 2BE1 T1PR0P 12 PROP. MULT1PL. 

2A8E 2BD7 2BE3 2BE3 2BE3 T1INT 12 INT. MULTIPL. 

2A90 2BD9 2BE5 2BE5 2BE5 T1DIFF 12 DIFF. MULTIPL. 

2A92 2BDB 2BE7 2BE7 2BE7 TUIH 12 LIMIT 

2A88 2BD1 2BDD 2BDD 2BDD TEMP1P 12 6 TEMPERATURE CONTROLLER I 

2A94 2B0D 2BE9 2BE9 2BE9 T2GAIN 11 TEMP. CNTL. II  GAIN 

2A95 2BDE 2BEA 2BEA 2BEA T2CNTL 11 CONTROL BYTE 

2A98 2BE1 2BED 2BED 2BED T2PR0P 12 PROP. MULTIPL. 

2A9A 2BE3 2BEF 2BEF 2BEF T2INT 12 INT. MULTIPL. 

2A9C 2BE5 2BF1 2BF1 2BF1 T20IFF 12 DIFF. MULTIPL. 

2A9E 2BE7 2BF3 2BF3 2BF3 T2LIM 12 LIMIT 

2A94 2BDD 2BE9 2BE9 2BE9 TEHP2P 12 6 TEMPERATURE CONTROLLER 11 

2AA0 2BE9 2BF5 2BF5 2BF5 T3GA1N 11 TEMP. CNTL. Ill GAIN 

2AA1 2BEA 2BF6 2BF6 2BF6 T3CNTL 11 CONTROL BYTE 

2AA4 2BED 2BF9 2BF9 2BF9 T3PR0P 12 PROP. MULTIPL. 

2AA6 2BEF 2BFB 2BFB 2BFB T3INT 12 INT. MULTIPL. 

2AA8 2BF1 2BFD 2BFD 2BF0 T3DIFF 12 DIFF. MULTIPL. 

2AAA 2BF3 2BFF 2BFF 2BFF T2LIM 12 LIMIT 

2AA0 2BE9 2BF5 2BF5 2BF5 TEMP3P 12 6 TEMPERATURE CONTROLLER III 
  2BF5 2C01 2C01 2C01 TEST 11 TEST MODE FLAG 

2AB6 2CO0 2C0C 2C0C 2C0C SLGAIN 11 SEED LIFT CNTL.: GAIN 

2AB7 2C01 2C0D 2C00 2C00 SLCNTL 11 CNTL 

2ABA 2C04 2C10 2C10 2C10 SLPROP 12 PROP. MULTIPLIER 

2ABC 2C06 2C12 2C12 2C12 SLINT 12 INT. MULTIPL. 

2ABE 2C08 2C14 2CH 2C14 SLDIFF 12 DIFF. MULTIPL. 

2AC0 2C0A 2C16 2C16 2C16 SLLIM 12 LIMIT 
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2AB6 2C00 2C0C 2C0C 2C0C SEEDLP 12 6 SEED LIFT CONTROLLER 

2AC2 2C0C 2C18 2C18 2C18 CLGAIN 11 CRUC LIFT CNTL.: GAIN 

2AC3 2C0D 2C19 2C19 2C19 CLCNTL 11 CNTL 

2AC6 2C10 2C1C 2C1C 2C1C CLPROP 12 PROP. MULTIPLIER 

2ACB 2C12 2C1E 2C1E 2C1E CLINT 12 INT. MULTIPL. 

2ACA 2C14 2C20 2C20 2C20 CLDIFF 12 D1FF. MULTIPL. 

2ACC 2C16 2C22 2C22 2C22 CLLIM 12 LIMIT 

2AC2 2C0C 2C18 2C18 2C18 CRUCLP 12 6 CRUC LIFT CONTROLLER 

2ACE 2C18 2C24 2C24 2C24 SRGAIN 11 SEED ROT CNTL.: GAIN 

2ACF 2C19 2C25 2C25 2C25 SRCNTL 11 CNTL 

2AD2 2C1C 2C28 2C28 2C28 SRPROP 12 PROP. MULTIPLIER 

2AD4 2C1E 2C2A 2C2A 2C2A SR1NT 12 INT. MULTIPL. 

2 AD 6 2C20 2C2C 2C2C 2C2C SRDIFF 12 DIFF. MULTIPL. 

2AD8 2C22 2C2E 2C2E 2C2E SRLIM 12 LIMIT 

2ACE 2C18 2C24 2C24 2C24 SEEDRP 12 6 SEED ROT CONTROLLER 

2ADA 2C24 2C30 2C30 2C30 CRGAIN 11 CRUC ROT CNTL.: GAIN 

2ADB 2C25 2C31 2C31 2C31 CRCNTL 11 CNTL 

2A0E 2C28 2C34 2C34 2C34 CRPROP 12 PROP. MULTIPLIER 

2AE0 2C2A 2C36 2C36 2C36 CR1NT 12 INT. MULTIPL. 

2AE2 2C2C 2C38 2C38 2C38 CRDIFF 12 DIFF. MULTIPL. 

2AE4 2C2E 2C3A 2C3A 2C3A CRL1M 12 LIMIT 

2AB6 2C24 2C30 2C30 2C30 CRUCRP 12 6 CRUC ROT CONTROLLER 

2AE6 2C30 2C3C 2C3C 2C3C DUMPIN 11 INTERVAL FOR DATA DUMPS 

2AE7 2C31 2C30 2C3D 2C3D DUMPFL 11 DUMP FLAG 
      2C3E 2C3E XTLSHP R CRYSTAL SHAPE PARAMETER 

2F52 3152 3152 3120 3120 CHMDEX T TD FOR CMMDEX 

2F7A 317A 317A 3148 3148 HEASDO T TD FOR MEASDO 
2FA2 31A2 31A2 3170 3170 CHFINP T TD FOR CMF1NP 
2FCA 31CA 31CA 3198 3198 CMFOUT T TO FOR CMFOUT 

2FF2 31F2 31F2     DISKOO T TD FOR DISKOO 
3006 3206 3206     DISK01 T TD FOR DISK01 
      31C0 31C0 DSKOUT T TD FOR DSKOUT 

302E 322E 322E 31E8 31E8 DIACNT T TD FOR DIACNT 

3056 3256 3256 3210 3210 ANACNT T TD FOR ANACNT 

3187 3387 3387 3341 3341 ALARMF 11 ALARM TIMER INTERRUPT FLAG 

3188 3388 3388 3342 3342 TIME 12 SYSTEM TIME (INTEGER) 

318A 338A 338A 3344 3344 DIFFTM 12 DIFFERENTIAL TIME FOR MACRO EXECUTION 

31A4 33A4 33A4 335E 335E DTINTV 11 DATA FILE UPDATING INTERVAL 

31A6 33A6 33A6 3360 3360 TIMSET 12 SETP01NT FOR ALARM TIMER (MACRO EXE.) 

3243 3443 3443 33FD 33FD 10FLAG 11  4 I/O FLAG ARRAY 

32FD 34F0 3581 353B 3S3B ITEMP1 12 MEASURED DATA i. NTEGER): TEMPERATURE 

32FF 34FF 3583 353D 3530 ITEMP2 12 

3301 3501 3585 353F 353F ITEMP3 12 

3303 3503 3587 3541 3541 1SEEDL 12 SEED LIFT SPEED 

3305 3505 3589 3543 3543 ICRUCL 12 CRUCIBLE LIFT SPEED 

3307 3507 358B 3545 3545 ISEEDR 12 SEED ROTATION 

3309 3509 358D 3547 3547 ICRUCR 12 CRUCIBLE ROTATION 

330B 350B 358F 3549 3549 I POUT 1 12 POWER OUTPUT (FROM SCR) 

330D 350D 3591 354B 354B 1POUT2 12 
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330F 350F   3593 3540 354D IP0UT3 12 

3311 3511   3595 354F 354F I WEIGH 12 

3313 3513   3597 3551 3551 IDWGHT 12 

3315 3515   3599 3553 3553 ISEEDP 12 
3317 3517   359B 3555 3555 JCRUCP 12 

3319 3519   359D 3557 3557   IBASET 12 

331B 351B   359F 3559 355? IGASPR 12 

3310 351D   35A1 355B 355E CONTAC 12 

331F 351F   35A3 355D 355C ANALOG 12 8 

32F-D 34FD   3581 353B 353E ANADAT 12 25 

332F 352F   3 5B3 356D 356C ID I AMT 12 

3331 3531   35B5 356F 356F ILENGT 12 

3333 3533   35B7 3571 3571 SCADIA R 

3337 3537   35BB 3575 357! SCATHP R  3 

3343 3543   35C7 3581 358< SCAMOT R  4 

3353 3553   35D7 3591 3591 SCAPUO R  3 

335 F 355F   35E2 359C 359C SCAUGT R 
3363 3563   35E7   35A1 35A SCADUT R 
3367 3567   35EE 35A! 35A5 SCA70S R  2 

336F 356F   35F2 35AC 35AC SCABST R 
3373 3573   35F7   35B1 35B1 SCAGAS R 
3377 3577   35FE 35B5 35B! SCAPUR R 
3333 3533   35B? 3571 357 SCALE R  18 

337B 357B   35FF 35BS 3589   CDIASQ R 
337F 357F   3603 35BC 35BC SDIASQ R 
3383 3583   3607   35C1 35C1 OXUGHT R 
3387 3587   360E 35C« 35C! RHOXTL R 
338B 358B   360F 35CS 35C9   RHOMLT R 
338F 358F   36H 35CC 35CD   RHOOX! R 
3393 3593   3617   35D1 35D SCRUCP 12 
3395 3595   3619   35D2 35o: !    ZEROUT 12 
  3597   361B   35D! 350' >    GROWTH R 
3397 359B RHEIGH R 

339B 359F INICRP R 

339F 35A3 INIWGT R 

33A3 35A7 RCRSET R 

33A7 35AB ADJLEN R 

33AB 35AF DIATAB R   64 

34A0 36B1 D1ASTA 11 

34B2 36B6 HEIGHT 12 
3464 36B8 RHOOXA R 

34B8 36BC DIA1SO R 

34BC 36C0 DIA2SQ R 

34C2 36C6 POINTS 12 

34C4 36C8 DIA1SH R 

34C8 36CC DIA2SM R 

3400 36D4 STEP R 

34D4   GROWTH R 

34D8 36D8 RSEEDL R 

WEIGHT 

OIFF. WEIGHT 

SEED POSITION 

CRUCIBLE POSITION 

BASE TEMPERATURE 

GAS PRESSURE 

CONTACT 

EIGHT SPARE ANALOG CHANNELS (INTEGER) 

COMPLETE ARRAY OF ANALOG DATA (INT.) 

CRYSTAL DIAMETER (INTEGER) 

LENGTH GROWN (INTEGER) 

SCALING FACTORS: DIAMETER 

TEMPERATURES 

MOTORS 

POWER OUTPUT 

WEIGHT 

DIFFERENTIAL WEIGHT 

POSITION 

BASE TEMPERATURE 

GAS PRESSURE 

POWER INPUT AND LIMIT 

ARRAY OF SCALING FACTORS 

SQUARE OF CRUCIBLE DIAMETER 

SQUARE OF SEED DIAMETER 

BORIC OXIDE WEIGHT 

DENSITY:   CRYSTAL 

ME'.T 

OXIDE 

SETPOINT FOR CRUC. POSITION (INTEGER) 

WEIGHT ZEROING VALUE 

ACTUAL GROWTH RATE 

MELT HEIGHT IN CRUCIBLE (REAL) 

INITIAL CRUCIBLE POSITION (AT RESET) 

INITIAL CRYSTAL WEIGHT (AT RESET) 

SETPOINT FOR CRUC. POSITION (REAL) 

LENGTH ADJUSTMENT (REAL) 

TABLE OF CRYSTAL DIAMETERS 

DIAMETER CONTROLLER STATUS 

MELT HEIGHT (SCALED AS LENGTH) 

ADJUSTED OXIDE DENSITY 

SQUARE OF DIAMETER AT OXIDE SURFACE 

SQUARE OF DIAMETER AT MELT SURFACE 

NUMBER OF DATA POINTS IN SUMMATION 

SUM OF DIAMETER SQ. AT OXIDE SURFACE 

SUM OF DIAMETER SQ. AT MELT SURFACE 

STEP FOR MELT HEIGHT EVALUATION 

ACTUAl GROWTH RATE 

SEED LIFT SPEED (FLOATING-POINT) 
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34DC 360 C       RCRUCL R 
... •   361F 35D9 35D9 ALPHA R 
... -     35 5 3500 DIATAB R 
... •   3623 "J 3600 IHEIGH 12 
... •   3625 36DF 360 F OLDLEN 12 
... •   3627 36E1 36E1 DIFFLG 12 
... -       36E5 RDUGHT R 
... -   362F 36E9 36E9 RHOOXA R 
... -   3633 36EU 36ED DIA1SQ R 
-• -   3637 36F1 36F1 DIA2SC R 
-- -   363B 36F5 36F5 HEIGHT R 
•■ -     36F9 36F9 RCRSET R 
•• ■ 

  363F 36FD 36F0 VOLSUN R 
•- •   3643 3701 3701 OX I VOL R 
•- -     3705 3705 CORRVL R 
•- •     3709 3709 BETA R 
--   3647 3700 370D ROLIFT R 
•• •   364B 3711 3711 RLNGTH R 
-• •   364 F 3715 3715 PRLNGT R 
•• -   3657 371D 371D INICRP R 
-- ■- 

  3658     RCRSET R 
•• ••   365F 3721 3721 ADJLEN R 
•• •-   3663     DIATAB R 
•- -•   3765 3727 3727 DIASTA 11 
•• ••   3766 3728 3728 LOOPCT 11 
•- -■ 

    3729 3729 OXOVFL 11 
3EAB 4164 41EB 4133 4179 MTEMP1 12 
3EA0 4166 41ED 4135 417B MTEMP2 12 
3EAF 416S 41EF 4137 417D HTEMP3 12 
3EB1 416A >tP4 

■♦in «» U7 417F nSEEDL 12 
3EB3 416C 41F3 413B 4181 HCRUCL 12 

3EB5 416E 41F5 4130 4183 KSEESR 12 

3EB7 4170 41F7 413F 4185 HCRUCR !2 

3EB9 4172 41F9 4141 4187 MPOUT1 12 

3EBB 4174 41FB 4143 4189 MPOUT2 12 

3EBD 4176 41FD 4145 418B MPOUT3 12 

3EBF 4178 41FF 4147 4180 MUEIGH 12 
3EC1 417A 4201 4149 418F MDUGHT 12 

3EC3 417C 4203 414B 4191 MSEEDP 12 

3EC5 417E 4205 4140 4193 MCRUCP 12 
3EC7 4180 4207 4UF 4195 M8ASET I? 

3EC9 4182 4209 4151 4197 MGASPR 12 

3ECB 4184 420B 4153 4199 MCONTC 12 

3E A9 4162 41E9 4131 4177 MANALG 12 
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CRUCIBLE LIFT SPEED (FLOATING-POINT) 

CORRECTION FACTOR FOR GROWTH RATE 

64 DIAMETER SQUARES TABLE 

MELT HEIGHT (SCALED AS LENGTH) 

LENGTH AT LAST SLICE BOUNDARY 

HEIGHT OF CURRENT SLICE 

(ADJUSTED) DIFFERENTIAL WEIGHT 

ADJUSTED UXIDfc DENSITY 

SQUARE OF DIAMETER AT OXIDE SURFACE 

SQUARE OF DIAMETER AT MELT SURFACE 

BORIC OXIDE HEIGHT IN CRUCIBLE (REAL) 

CRUCIBLE POSITION SETPOINT (REAL) 

SUM OF VOLUMES IN CURRENT SLICE 

VOLUME OF BORIC OXIDE MELT 

OXIDE VOLUME CORRECTION 

CORRECTION FACTOR 

SEED - CRUCIBLE.LIFT SPEEDS 

UNSCALED LENGTH 

UNSCALED LENGTH DURING PREVIOUS PASS 

CRUCIBLE POSITION AT RESET 

CRUCIBLE POSITION SETPOINT (REAL) 

LENGTH ADJUSTMENT PARAMETER 

64 DIAMETER SQUARES TABLE 

DIAMETER CONTROLLER STATUS 

LOOP COUNTER LOCATION 

OXIDE HEIGHT OVERFLOW FLAG 

ANALOG MEASUREMENT DATA: TEMPERATURE I 

TEMPERATURE II 

TEMPERATURE III 

SEED LIFT 

CRUCIBLE LIFT 

SEED ROTATION 

CRUCIBLE ROTATION 

POWER OUTPUT (FROM SCR) 

WEIGHT 

DIFFERENTIAL WEIGHT 

SEED POSITION 

CRUCIBLE POSITION 

BASF TPMPf PATIJBF 

GAS PRESSURE 

CONTACT DEVICE 

25  ANALOG DATA INPUT ARRAY 
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AgFENDxjC ja»  JiuK £iRROR CODES 

RXISIS-II and the CGCS return a numeric error code in the case 
of a disk error. The error codes are the same in either en- 
vironment. Although some error messages are trapped by appli- 
cation programs (under RXISIS-II) or by the CGCS, and replaced 
by more detailed message text, many errors are displayed by 
the generic error message generation routines which provide 
tne error code only, without an explanation. The CGCS re- 
turns, in addition to the plain error code, a message 

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) ***** 

which is accompanied by a "beep". In the above message, "xxx" 
is replaced by the major, and "yy", by the minor error codes; 
"tsknam" stands for the name of the task which detected the 
error, and "hexl" represents the absolute program code address 
where the error was recognized. 

The task name displayed with the disk error message indicates 
which CGCS file was involved in the error: 

General System Operations: 
RXIROM - Overlay or auxiliary file handling. 

Macro Command File: 
RXIROM - (Conditional) Macro call from console. 
CMMDEX - (Conditional) Macro call from console or Macro 

file. 
CMFINP - Macro command execution. 

Print File: 
RXIROM - At all times. 
CMMDEX - (Error) message output. 
CMFINP - (Error) message output. 
DIACNT - (Error) message output. 

Data File: 
RXIROM - During opening and closing and upon a COMMENT 

command. 
DSKOUT - During regular operation. 

Control Output File: 
RXIROM - During opening and closing. 
CMFOUT - During regular operation. 
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The following error codes are returned by RXISIS-II and by the 
CGCS: 

2 Invalid file number 
3 Attempt to open more than 6 files simultaneously *) 
4 Illegal file name 
5 Illegal device name 
6 Attempt to write to a file open for input 
7 Disk is full 
8 Attempt to read from a file open for output 
9 Disk directory is full 

y$        10 Different disks in RENAME call 
11 File name is already in use 

jn,        12 File is already open 
H>        13 No such file 
*'        14 Attempt to write to a write protected file 

15 Attempt to load into protected memory area 
jjK        16 Incorrect object program format 
y        17 Attempt to access a non-disk file 

18 Unrecognized message type or system call 
h- 19 Attempt to seek on a non-disk file 
■\\ 20 Attempt to seek in front of beginning of a file 
■ 22 Illegal access parameter in OPEN call 

24 Disk I/O (hardware) error 
*m 26 Illegal attribute parameter in ATTRIB call 
™ 27 Illegal mode parameter in SEEK call 

28 Missing file name extension *) 
y 29 End of console file 
iV 30 Disk drive not ready 

31 Attempt to seek on a file open for output 
32 Attempt to delete an open file 

J^ 3 5 Attempt to seek past end of file open for input 
*\> 40 Request sent to wrong exchange 

41 Insufficient free memory to open file 
«).■ 42 Drive not in configuration table 
JJf 4 3 Drive timeout 

120 Insufficient memory to open new file #) 
121 Attempt to load a main program 

Rj        218 Unallocated disk file block prior to EOF 

*) RXISIS-II only 
vs #) CGCS only 

Minor error code information is only displayed in case of an 
error 24 (Disk I/O error): 

y 01 Deleted record 
02 Cyclic redundancy check error (data field) 

<f» 03 Invalid address mark 
04 Seek error 

V 
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08 Address error 
0A Cyclic redundancy check error (ID field) 
0E No address mark 
OF Incorrect data address mark 
10 Data overrun or underrun 
20 Disk is write protected 
40 Write error 
80 Not ready 

\l 
A 

'< 
•6 

K 

X 
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Appendix H:  CGCS File Formats 

APPENDIX H;  CGCS FILE FORMATS 

H 1:  VARIABLE NAME FILE CZONAM.Vmn 

The file name extension of the Variable Name file has to hold 
the major and minor version codes of the CGCS system release 
to which the file refers. (CZONAM.V23 is, for example, the 
Variable Name file for CGCS Version 2.3.) The file is built 
of records of 128 bytes, each of which holds 14 entries of 9 
bytes each; each record is terminated by a Carriage Return - 
Line Feed pair. 

Each entry contains: 

Bytes 1-6:   Variable name (1-6 uppercase characters, 
left justified, right filled with spaces. 

Byte 7:       Variable type and array size, encoded as 
(type number + (array size - 1) * 4), 
where "array size" is the number of array 
elements (1 to 64).  The following "type" 
values are defined: 

type = 0 ... iRMX-80 control structure 
type = 1 ... one-byte integer (INTEGER*1) 
type = 2 ... two-byte integer (INTEGER*2) 
type = 3 ... floating-point number (REAL) 

Bytes 8-9:   Start address of the specified variable. 

H 2:  VARIABLE NAME SOURCE FILE 

The source file which holds the variable names and which is 
eventually converted to a CZONAM file with the utility program 
CONVAD does not reguire very strict formatting but must follow 
the subsequent rules: 

(1) Each entry must be held in a separate line in the follow- 
ing order: 

(a) Address (in hexadecimal notation, with or without 
trailing "H") . 

(b) Variable name (in capitals), 1 to 6 characters. 

(c) Variable type number (0 through 3; see chapter H 1). 
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(d) Number of array elements (optionally); a missing num- 
ber is interpreted as "1". 

(e) Comment (optional); the comment field should not con- 
tain digits lest they could be interpreted as an array 
size. 

(2) Entries must be separated from one another by one or more 
blanks (spaces, TAB characters, etc.). 

H 3;  MACRO COMMAND FILES 

Macro files (and therefore also the Command Output files) are 
built of records of 16 bytes each. They consist of one header 
record and an arbitrary number (including zero) of data rec- 
ords . 

Header Record: 

Bytes 1-2: Zero. 
Byte 3: Minor CGCS Version code. 
Byte 4: Major CGCS Version code. 
Bytes 5-16: Don't care. 

Data Records: 

Bytes 1-2: 

Byte 3: 
Bytes 4-16: 

Command Codes: 

Relative time of command as unsigned two- 
byte integer (0 - 65535) . 
Command code byte. 
Depend on command code; see below. 

11H Set Diameter 
12H Set Heater Temperature #1 
13H Set Heater Temperature #2 
14H Set Heater Temperature #3 
15H Set Seed Lift speed 
16H Set Crucible Lift speed 
17H Set Seed Rotation speed 
18H Set Crucible Rotation speed 
19H Set Power Limit 

21H Modify Diameter 
22H Modify Heater Temperature #2 
23H Modify Heater Temperature #2 
24H Modify Heater Temperature #3 
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25H Modify Seed Lift speed 
26H Modify Crucible Lift speed 
27H Modify Seed Rotation speed 
28H Modify Crucible Rotation speed 
29H Modify Power Limit 

Bytes 4-5:  New setpoint or setpoint change 
(INTEGER*2). 

Bytes 6-9:  Transition time in seconds (REAL). 
Bytes 10 - 16: Don't care. 

3OH Macro Command 
Bytes 4-9:  Macro Command name (left justified, 

right filled with spaces). 
Bytes 10 - 16: Don't care. 

31H Clear Conditional Macros Unconditionally 
Bytes 4-16:  Don't care. 

4OH Mode = Monitoring 
41H Mode = Manual 
42H Mode * Diameter 
43H Mode = Diameter/ASC 
44H Mode = Automatic 

Bytes 4-16:  Don't care. 

7OH Reset 
Bytes 4-5: New weight (INTEGER*2). 
Bytes 6-7: New length (INTEGER*2). 
Bytes 8 - 16: Don't care. 

. 7FH End of Command Record 
Bytes 4-16:  Don't care. 

90H Set Variable 
AOH Change Variable 

Byte 4:       Variable type: 
2 ... INTEGER*! 
4 ... INTEGER*2 
6 ... REAL 

Bytes 5 - 6:  Variable address (INTEGER*2). 
Bytes 7-10:  New setpoint or change value (REAL). 
Bytes 11 - 14: Transition time in seconds (REAL). 
Bytes 15 - 16: Don't care. 

BOH Conditional Command 
Byte 4:       Variable type + 16 * Relation code #2 

S + 64 * Relation code #1, with: 
Variable type: 

2 ... INTEGER*! 
4 ... INTEGER*2 
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6 . . . REAL 
Relation code: 

1 ... "<" 
2 H = ll 

3 ... ">" 
Bytes 5-6:   Variable address (INTZGER*2). 
Bytes 7-10:  Comparison value (REAL). 
Bytes 11 - 16: Macro Command name. 

B1H Clear Conditional Commands Selectively 
Byte 4:      Don't care. 
Bytes 5-6:  Variable address (INTIGER*2). 
Bytes 7-16:  Don't care. 

EOH Assign Plot Channel 
Byte 4:       Plot channel number (1-8) 
Bytes 5-6:  Variable address (INTIGER*2). 
Bytes 7 - 16:  Don't care. 

F2H Debug Continuously 
F3H Debug Modify 
F4H Debug Resume 
F5H Debug Suspend 

Byte 4:       Variable type + 16 * Output location, 
with: 
Variable type: 

1 ... ASCII (1 character) 
2 ... INTEGER*1 
3 ... one-byte hexadecimal 
4 ... INTEGER*2 
5 ... two-byte hexadecimal 
6 ... REAL 
7 ... four-byte hexadecimal 

Output location: 1-4 
Variable address (INTEGEP*2). 
New value. 
Don't care. 

(Most Debug commands need only part of the informa- 
tion in bytes 4 - 10) 

Bytes 5-6: 
Bytes 7-10: 
Bytes 11 - 16: 

The contents of a command message are ..uentical to those of 
the corresponding command record bytes 3 through 16. 

H 4:  DATA FTLES 

A Data file is mads up of records of 128 bytes each. It con- 
sists of one Header record and an arbitrary number of Data and 
Comment records.  With the exception of the first two bytes, 
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Data records are built of two-byte words, i.e., 64 words per 
record. All data is in INTEGER*2 format unless noted other- 
wise. 

«j 
Header Record: 

1 

Bytes 1-8: 
Bytes 9-28: 
Bytes 29 - 30 
Byte 31: 
Byte 32: 
Bytes ; 33 - 12 

Data Record: 

Byte 1: 
Byte 2: 

Word 2: 
Word 3: 

Word 4: 
Word 5: 
Word 6: 

Word 7: 
Word 8": 
Word 9: 
Word 10: 

Word 11: 
Word 12: 
Word 13: 

Word 14: 
Word 15: 
Word 16: 
Word 17: 

Word 18: 
Word 19: 
Word 20: 

Word 21 - 28: 

Word 29: 
Word 30: 
Word 31: 

Date (8 ASCII characters). 
Run Identification (20 ASCII characters). 
Record interval (two hexadecimal digits). 
Major CGCS system version code. 
Minor CGCS system version code. 
Contents of bytes 1-32 repeated three 
times. 

Always 0. 
Operation Mode (INTEGER*1). 

System time. 
Length grown. 

Temperature #1 (Measured Data). 
Temperature #2. 
Temperature #3. 

Seed Lift. 
Crucible Lift. 
Seed Rotation. 
Crucible Rotation. 

Power Output #1. 
Power Output #2. 
Power Output #3. 

Weight. 
Differential Weight. 
Seed Position. 
Crucible Position. 

Base Temperature. 
Gas Pressure. 
Contact Device. 

Eight Spare Analog Input Channels, 

Power Input #1 (Control Output). 
Power Input #2. 
Power Input #3. 
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Word 32: 

Word 33: 
Word 34: 
Word 35: 

Word 36: 
Word 37: 
Word 38: 
Word 39: 

Word 40: 

Word 41: 

Word 42: 
Word 43: 
Word 44: 

Word 45: 
Word 46: 
Word 47: 
Word 48: 

Word 49: 

Word 50: 
Word 51 
Word 53: 
Word 54 
Word 56: 
Word 57 
Word 59: 
Word 60 

Word 62: 

Word 63: 

Word 64: 

52: 

55; 

58: 

61: 

Appendix H:  CGCS File Formats 

Diameter (Current Setpoints). 

Temperature #1. 
Temperature #2. 
Temperature #3. 

Seed Lift. 
Crucible Lift. 
Seed Rotation. 
Crucible Rotation. 

Power Limit. 

Diameter (Final Setpoints). 

Temperature #1. 
Temperature #2. 
Temperature #3. 

Seed Lift. 
Crucible Lift. 
Seed Rotation, 
Crucible Rotation. 

Power Limit. 

Debug Continuously Address #1. 
Debug Continuously Data #1 (4 bytes). 
Debug Continuously Address #2. 
Debug Continuously Data #2 (4 bytes). 
Debug Continuously Address #3. 
Debug Continuously Data #3 (4 bytes). 
Debug Continuously Address #4. 
Debug Continuously Data #4 (4 bytes). 

Diameter (Calculated Value). 

Spare. 

Debug Continuously Type Flags (compare 
chapter H 3, Debug Variable types-) 

TYPE(l) + 16*TYPE(2) + 256*TYPE(3) + 
4096*TYPE(4) 
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Appendix H:  CGCS File Formats 

Comment Records: 

Byte 1: 
Bytes 2-6: 
Bytes 7 - 128; 

Always -1. 
as in Data Records. 
Comment input (122 ASCII characters; only 
the first 79 are displayed by SHODAT). 
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Appendix I:  Czochralski Growth Control System Messages 

APPENDIX It  CZOCHRALSKI GROWTH CONTROL SYSTEM MESSAGES 

In addition to immediate responses to operator commands, the 
CGCS may issue messages to the console and to a Documentation 
output (if available) which need not obviously be triggered by 
operator entries. For reasons of brevity, only the messages 
which are not generated by the Command Interpreter are listed 
below in alphabetical order. (The Command Interpreter respon- 
ses are self-explanatory and always immediately related to an 
operator entry.) In general, messages starting with "*****" 
have informational character only, whereas "#####" may indi- 
cate a genuine error condition. The latter messages are, in 
general, accompanied by a "beep". (Exceptions to this rule 
are the Disk, Input, Output, Printer, and System error messa- 
ges which are tagged with asterisks. They are generated by 
the operating system and are displayed only on the console.) 

***** All Conditional Macros cleared ***** 

An Unconditional CLEAR command (i.e., a CLEAR command 
without any parameter) was entered from the console or 
from a Macro Command file. 

***** Automatic RESET executed - automatic Mode changes will 
follow ***** 

The operation mode was changed into a Diameter control- 
led mode while the Diameter Evaluation routines were not 
yet initialized with a RESET command. The system takes 
care of that on its own in a somewhat complicated proce- 
dure. 

##### Can't calculate diameter with zero seed lift speed 

The actual seed lift speed is still zero when RESET is 
commanded, or it is set to zero while the Diameter Eval- 
uation routines are active. 

##### Can't control system 

The operator or a Macro Command attempted to SET or 
CHANGE a parameter or Variable while in Monitoring 
mode. The command is executed, though, but it may be- 
come ineffective in the case of a change to any con- 
trolled mode. 
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Appendix I:  Czochralski Growth Control System Messages 

##### Can't ramp parameter 

The maximum number of parameters or Variables (20) were 
already being ramped when a SET or CHANGE command with 
non-zero transition time was issued. The change is 
effected immediately, without ramping. 

##### Command Macro call ignored 

A specified Macro was not found, or a disk error occur- 
red while the Macro file header was read. 

***** Command Macro preempted ***** 

A Macro Command was activated, either from a pending 
Conditional command, or through an unconditional Macro 
Command, while another Macro was active. 

***** Conditional Macro cleared ***** 

A Selective CLEAR command has removed one Conditional 
Macro from the Conditional Command queue. This message 
is repeated for each Conditional Command cancelled with 
a Selective CLEAR; it may therefore appear multiplely. 

##### Conditional Macro Command ignored 

A Conditional Macro Command was encountered while al- 
ready the maximum number of Macro Commands (8) were 
pending. 

***** conditional Macro started ***** 

A Conditional Macro Command has met its condition and is 
activated. 

##### Continued speed overflow - RESET required 

The system cannot automatically recover from a serious 
problem. 
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Appendix I:  Czochralski Growth Control System Messages 

##### Crystal shape adjusted 

The calculated diameter value changed faster than per- 
mitted. The diameter value stored in memory for the 
diameter and crucible position evaluation is corrected 
to differ from the value stored before exactly by the 
permitted maximum. Crystal shape adjustments may cause 
minor transients in the calculated diameter and/or cruc- 
ible position setpoint. 

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) ***** 

Disk error message provided by the operating system. 

***** End of Macro command file ***** 

The end of a Macro file was reached, or a disk error 
prohibited its further execution. 

***** Executing Macro MACNAM ***** 

The Command file with the name MACNAM was started either 
from an unconditional Macro Command, or from a Condi- 
tional Macro Command whose condition was met. 

Jl il ii Jl Jl  TT1-— -.1        —- — J  <i1.  •£____.!- 1t V it V 1t    llieLjäl    ^uiiuuaiiia    LXJLC    LUiiuat 

A Macro Command file has an improper format and cannot 
be processed. 

***** INPUT ERROR ***** 

Error message generated by the operating system, most 
likely due to illegal data entry on the console. This 
message should hardly appear, though. 

##### Macro command not executable 

A command referring to a Variable or absolute memory 
location was encountered in a Macro Command file gener- 
ated for a different CGCS version The command is ig- 
nored. 
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18 Appendix I:  Czochralski Growth Control System Messages 

■        ##### Macro MACNAM doesn't exist 

The Macro Command with the name MACNAM was supposed to 
gv be executed either from an unconditional or from a Con- 
■> ditional Macro Command but the file MACNAM.CMD was not 
"* found on drive 0.  The command is ignored. 

S        ##### Meltback detected 

,T> The crystal * s length was reduced by more than approxima- 
*$ j tely 1 mm since an earlier pass of the Diameter Evalua- 

tion routines. The Diameter Evaluation routiner, con- 
tinue to operate normally. 

£ 

I 
£ 

fo 

Ci 

*. 

##### Mode automatically set to Manual 

m A zero seed lift speed or a speed overflow error was 
detected by the Diameter Evaluation routines. 

19 $        ***** New Mode: MODE NAME   ***** 
The CGCS operation mode was set to the mode indicated, 
either from the operator console, from a Macro Command, 
or, automatically, in case of a diameter evaluation 
error. 

##### Non-matching Command Macro system version - restricted 
Q command set 

A Macro Command file generated under or for a different 
CGCS version was invoked. All commands referring to 
Variables or absolute hexadecimal addresses will be 
skipped. 

r, 
N ***** OUTPUT ERROR ***** 

Error message generated by the operating system.  This 
ft message should never be encountered! 

##### Overflow - result limited to permitted maximum 

As a result of a SET or CHANGE command, a parameter or 
Variable would have been set to a value exceeding the 
permitted range for the particular location. 
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Appendix I:  Czochralski Growth Control System Messages 

##### Oxide height overflow - Diameter may be incorrect 

The height of the boric oxide melt exceeded the permit- 
ted maximum of ca. 75 mm. The maximum melt height is 
used for diameter and crucible position setpoint evalua- 
tion.  This data may therefore be incorrect. 

##### Parameter can't be negative 

A SET or CHANGE command attempted to set a diameter, 
temperature, or power limit setpoint to a negative 
value.  The setpoint is set to zero instead. 

***** PRINTER NOT READY ***** 

Error message generated by the operating system. The 
printer was in off-line mode while the system attempted 
to transfer data to it. 

##### PROGRAM CODE DAMAGED AT XXXXH ##### 

At least one byte within the memory page (= 256 bytes) 
starting at the address specified in the message was 
changed since the last pass of the code checker routine, 
approximately 30 seconds ago. This message should never 
appear! Preserve all data of the run if it does happen, 
and report it immediately. 

£ 
***** Recorder channel N is negative ***** 
***** Recorder channel N is positive ***** 

The output to the chart recorder channel N (N is an 
integer between 1 and 8) changed its sign. Initially, 
the output data of all channels is supposed to be posi- 
tive. 

***** Regular growth resumed ***** 

A meltback, zero seed lift speed, or speed overflow 
condition has been terminated; the Diameter Evaluation 
routines can resume correct operation. 
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##### Speed overflow 

The calculated length of the crystal was increased or 
decreased by more than 2 mm during the last 10 seconds. 
This may be due to a very fast seed lift, or to an ab- 
rupt change of the crystal's weight. The system tries 
to recover automatically from such a condition. 

***** SYSTEM ERROR (TASK tsknam, LOC hexl) ***** 

This error message should never appear. Preserve all 
data of the run if it does happen, and report it immedi- 
ately. 
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APPENDIX J:  DYNAMIC BEHAVIOR OF THE PID CONTROLLER ROUTINE 

Simulations of the PID controller's response were performed 
for the most important operation modes in order to compare 
their dynamic response to various shapes of the error signal. 
For all simulations shown in the subsequent illustrations, the 
following parameters were used: 

Proportional Multiplier P = 256 
Integral Multiplier I = 64 
Derivative Multiplier D = 256 
Limit L =  25 
Integral Scaling Factor IS= 256 
Bias B =  0 

The setpoint S was kept at 0, and the Actual signal A was set 
to follow the function depicted in Fig. Al. The first part of 
this simulation, consisting of two series of 25 passes of 
FRPIDC with A equal to +10 and -10, respectively, was chosen 
to represent a small but persistent error for which the pro- 
portional (plus derivative) components of the output signal 
are well below a limit value (if one was chosen). During the 
next part of the simulation, A was increased to ±20 units for 
5 passes each; for the ensuing error, the limit is to be in- 
curred essentially due to the proportional and derivative 
components. The simulation is concluded with two single-pays 
pulses of A with a magnitude of ±50 units which were provided 
to represent the behavior of the controller for large trans- 
ients. 

In Fig. A2, the controller's response is shown for a CNTL 
value of 0, i.e., for no limiting and anti-windup operation. 
Note that, according to eq. (1), the sign of the controller's 
output is opposite to the sign of the input value A. (This 
approach results in positive controller parameters for most 
applications.) During the first part of the simulation, the 
response of the controller is essentially determined by the 
integral component; the integral and derivative components are 
only superimposed. Note that it takes a long time after the 
error reversed its sign until the controller's output signal 
(full line) changes its sign. The dynamic response is im- 
proved during part 2 of the simulation since the proportional 
and derivative components dominate there. The concluding 
single error pulses result in a strong output signal in the 
proper direction, followed by the opposite overshoot caused by 
the reaction of the derivative component to the trailing edge 
of the pulse. Since the controller is linear and the input 
signal symmetrical, the error integral returns to zero after 
each part of the test. 
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> 

i 

This is also true for the second set of control flags tested, 
namely, for CNTL equal to 2 (Fig. A3) . In this case, the 
controller's output is limited to ±25, but aside from this 
limiting, the controller is still linear. Tht major drawback 
of simple output limiting can be seen in the first part of the 
controller's response curve, where there is no indication in 
the output signal that the error went to zero, and eventually 
changed its sign. (Note that, due to internal programming 
reasons, the output signal is limited to -2 6 units rather than 
-25. This fact is very unlikely to matter in actual applica- 
tions, though, considering an output signal range of the con- 
troller of ±32767 units.) Similarly, the controller goes into 
saturation immediately at the beginning of the second part of 
the test, and remains there, although the error drops back to 
zero, aside from a short spike caused by the derivative compo- 
nent. It requires a considerable error with the opposite sign 
to obtain an output signal with the expected direction. Out- 
put limiting also strongly affects the response to large 
transients: The controller's output bounces back and forth 
between its negative and positive limits. Since transients of 
this kind are most likely artifacts which better should not be 
regarded by the controller at all, output signal limiting 
obviously contributes to a suppression of these short pulses; 
the positive and negative spikes will cancel their effects 
mutually in most applications. 

§ 

v, 

In order to improve the dynamic response, particularly, to 
long-term error conditions where the integral component pre- 
dominates, the anti-windup function Mode A was provided in 
FRPIDC. Fig. A4 shows the response of the controller with 
this feature activated in addition to output signal limiting 
(CNTL = 6) . Indeed, the transition of A from 10 to 0 units 
has a clear influence upon the output signal, and a response 
with the expected sign is almost immediately obtained when A 
changes from 0 to -10 units. There is also a reasonable re- 
sponse to the larger error pulses in the second part of the 
test; in fact, the response is very similar to the one ob- 
tained for no output limit, but, for anti-windup Mode A, the 
output signal is better centered around zero independent from 
the preceding history of the controller. However, Mode A 
fails to function totally for the large transients of the 
third part of the test. While there is only a small effect of 
a transient on the steady-state signal after the transient in 
the operation modes discussed above, Mode A sets the error 
integral to a large value whose sign depends on the relative 
magnitude of the proportional and the derivative multipliers 
and the previous "history" of the controller; in fact, any 
output value between the positive and the negative maximum may 
ensue after a larger transient. 
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In order to counteract this not very desirable behavior, anti- 
windup Mode B was developed where the error integral is not 
set to a value depending on the proportional and derivative 
components if the output exceeds the limit as it was in Mode 
A; in contrast, the error integral is clamped to the positive 
or negative limit value, depending on the sign of the total 
controller output. The response in Mode B (CNTL = 14) is 
shown in Fig. A5. There is no big difference between Modes A 
and B for small long-term errors, although Mode B reacts more 
slowly to changes of the controller's input than Mode A does. 
The end of the first part of the test sequence, and, even more 
pronounced, the end of the second part shows, however, the 
main drawback of this mode: The error integral tends to "get 
stuck" at either of the controller's limits, and positive 
action (i.e., an input signal which eventually will reverse 
the error integral's sign) is required to remove it from 
there. Furthermore, some anomalies may also happen in Mode B 
when large error transients are encountered. More or less the 
expected result is returned for the first spike: The output 
signal (and the error integral) bounces from the positive to 
the negative limit, and returns to the positive limit. The 
treatment of the second spike is less obvious. There is no 
visible response to the leading slope of the spike because the 
positive output which would have resulted from it is clipped 
off by the limiting operation. During the trailing slope, 
however, the derivative component determines the output sig- 
nal. Incidentally, an output signal resulted in our simul- 
ations which was next to the negative limit but, from the 
controller's point of view, not beyond the limit. The inte- 
gral component was therefore not modified but remained at its 
positive limit. (Had we used a pulse amplitude of 51 rather 
than 50 units, we would have obtained a reversal of the inte- 
gral component's sign.) 

The remaining two simulations (Figs. 6 and 7) were based upon 
a different approach: Rather than modifying the error inte- 
gral when the output signal exceeds a limit, the error inte- 
gral itself is kept within the bounds of a limit, no matter 
what the output signal looks like. This error integral limit- 
ing may be used with or without limiting of the final con- 
troller output. (The same limit value must be used, though, 
in both cases.) A simulation without output limiting (CNTL = 
16) is shown in Fig. A6, while Fig. A7 shows the effects of 
output limiting (CNTL = 18) . Again the behavior of the con- 
troller suffers from the nonlinear response of the error inte- 
gral which does not return to zero when an error condition 
occurred although the input signal is symmetric. (It is ques- 
tionable, however, how representative the test signals chosen 
here are with respect to actual operating conditions.) In- 
deed, the response shown in Fig. A7 for integral and output 
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limiting is very similar to the one obtained with anti-windup 
Mode B in Fig. A5. The only differences occur for the 
handling of the large transients in the third part of the 
test. In this case, integral limiting seems to render nore 
consistent and reasonable results, compared to the anti-windup 
schemes. 

Changing the integral scaling factor IS from 256 to 65536 has 
no effect on the behavior of the controller except that the 
integral reacts by a factor of 256 slower. Setting IS to 
6553 6 and I to 163 84 (64*256) resulted in exactly the same 
responses as discussed above. 

Note that the PID controller routine checks for an output 
signal overflow after it calculated (and possibly limited) the 
error integral. In general, there is no point to keep inte- 
gral limiting and any of the anti-windup schemes active at the 
same time because the anti-windup algorithms' will override 
(and overwrite) the results of the integral limiter, except 
for some extremely weird operating conditions where an error 
reduces its magnitude at a rate fast enough to have the pro- 
portional component of the controller output overcompensated 
by the derivative component, without the error changing its 
sign. In this case, limiting of the error integral might 
occur without the output signal exceeding the limit. For 
obvious reasons, this case was not investigated; for all prac- 
tical purposes, operation modes 20 through 23 and 28 through 
31 are identical to the corresponding modes 4 through 7 and 12 
through 15. 
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Appendix K:  Documentation Printing History 

APPENDIX K;  DOCUMENTATION PRINTING HISTORY 

Issue i:   January 1986  (vii + 133 pages) 

Valid for CGCS versions up to 1.5. 

Issue 2:   July 1986  (vii + 155 pages) 

Valid for CGCS versions up to 2.0. 

Issue 3i December 1986  (xi + 182 pages) 

Valid for CGCS versions up to 2.3. 
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Illustrations 
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Fig. 1:  A Czochralski Puller for Compound Semiconductor Crys- 
tal Growth. 
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Illustrations 

Fig. 2:  Implementation of the Digital Czochralski Growth Con- 
trol System. 
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Fig. 3:  Hardware Memory Map of the CGCS Computer. 
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Illustrations 

MOTOR CHART HEATER MOTOR ANALOG 
RELAYS RECORDER SCR DRIVERS SOURCES 
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CONS OLE DRI' )ERS DRIVES CONDI! 

1/ '0 MEMORY DISK D/A A/1 
wu EXP, EXP, |   CNTL. CONV, COM, 

INTEL MULTIBUS (R) 

Fig.   4:     Hardware Configuration of the CGCS Computer. 
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Memory Map of the Computer Under RXISIS-II. 
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OVERLAY AREA 

DATA AREA FOR CZOCHMSKI SVSTEH 
DATA AREA FOR ROM RESIDENT SYSTEM 

ROM: MONITOR 
CONFIDENCE TEST 

ROM RESIDENT SYSTEM: TERMINAL HANDLER, BÖOTLOADER 
Fig. 6:  Memory Map of the Computer Under the CGCS. 
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Fig. 7:  Function Blocks of the CGCS. 
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OMEELAV i i 

(FUNCTION II) 

OUERLAV 12 

(FUNCTION 12) 

OVERLAY S3 

(FUNCTION S3) 

OUEELAVS REPLACE ONE ANOTHER WHEN REQUIRED 

Fig. 8:  Program Overlays, 
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n: 

12-20-86  21:19 :54  Run ID: Demonstration Screen MACRO  System Time: 27 .16:22 

Actual: Setpoints:   | Mode: Automatic Length: 85.45 
Diameter (D); 83.73 82.00 82.00 | 

| Ramping:   2/20 Condit.: 1/8 
Temp. 1 (Tl) : 23.65 23.63 23.50 | 
Temp. 2 (T2) : 23.98 23.95 23.80 | Weight:    2348. Diff.Wt.: 1.476 
Temp. 3 CO) : 23.39 23.36 23.25 | Seed Pos.: 246.7 Cruc.Pos.: 23.89 

80.00 
| Base Temp: 20.19 Gas Press: '.97.6 

|               Actual:   Setpoi its: 
Seed Lift (SL) : 9.003 9.000 9.000 | Seed Rot. (SR): 4.997 5.000 5.000 
Cruc Lift (CL) : 1.487 1.492 1.500 | Cruc Rot. (CR): -30.0 -30.0 -30.0 

Power In/Out: 47.37/45 .29 49.12/48.28      45.40/42.12 Contact : *32* 

28B1H-    -28 28C9H- 31       2842H- 0.001250   36F9H- 23.67148 
set propio -20 300 
macro 
***** Executing Macro MACRO  ***** 
deb c rcrset 4 
Please Command: 
com This is a demonstration screen with arbitrarily invented data_ 

Fig. 9:  Console Screen of the CGCS, 

5 
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Illustrations 
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SEM1C0ND, 
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Fig. 10:  Growth of a Crystal Partially Immersed in an Oxide 
Melt. 

Fig.11:  Volume of a Paraboloid Section. 
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Fig. 12:  Interpolation Algorithm for the Evaluation of the 
Crystal Diameter at the Boric Oxide Encapsulant 
Surface and of the Volume Immersed. 
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"Actual" input signal used for the simulations. 

10  20  30  40  50  60  70  80  90 

Controller output signal (full line) and error inte- 
gral (broken line) for unlimited operation with no 
option active. 
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Fig» A3: 
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Controller output signal (full line) and error inte- 
gral (broken line) for output signal limiting with 
no anti-windup. 

Fia. A4 
0  10  20 30 40 50  60  70  80  90 

Controller output signal (full line) and error inte- 
gral (broken line) for output signal limiting with 
anti-windup Mode A. 
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Fia. A5: 

Fig. A6: 

Controller output signal (full line) and error inte- 
gral (broken line) for output signal limiting with 
ant-i-windur. Mode B. 
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Controller output signal (full line) and error inte- 
gral (broken line) for integral limiting but no 
output signal limiting. 
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Fig. A7:  Controller output signal (full line) and error inte- 
gral (broken line) for integral and output signal 
limiting. 
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