
{flft FILE CUÜ a.

s

fc

o
CM

<
i

D
<

DIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF GALLIUM
ARSENIDE - CONTROLLER SOFTWARE REFERENCE MANUAL

Arizona State University
Semiconductor Materials Research Laboratory
Tempe, AZ 85287

AFOSR-TR. 8 7- 1 54 2

July 15,1987

Scientific Report, October 1,1985 - March 31,1987

ARPA Order Nos.: 5187
Contract Nos.: F49620-85-C-0010
Contract Effective Dates: 10/1/84
Contract Expiration Dates: 3/31/86

Program Manager: G. H. Schwuttke
(602) 965-2672

Contract Monitor: Gary Witt, AFOSR
(202)767-4931

DT1C
ELECTE

NOV 0 9 1987

U

!

The views and conclusions contained in this document are those
of the authors and should not be interpieted as representing the

official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

R

I
ÜJ8

Prepared for
Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

Air Force Office of Scientific Research
AFOSR/NE
Boiling AFB, DC 20332

Appiov.d to« public loleoaai

-.-.-. s %%%■>«■.

b7 ^15 024

w^
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE AM 1873.10
REPORT DOCUMENTATION PAGE

1«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

lb. RESTRICTIVE MARKINGS

3«. SECURITY CLASSIFICATION AUTHORITY

3b. DECLASSIFICATION/DOMNGRAOING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

"* 'Tj Approved for public release,
I distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUM66RIS! 5. MCNITQRINGORGANIZATION REPORT NUMBER(S)

AFOSR.TR. 87-154 2

6«. NAME OF PERFORMING ORGANIZATION

Arizona State University
Semiconductor Materials Lab.

ib. OFFICE SYMBOL
111 eppliceblt i

SPA

7» NAME OF »MONITORING ORGANIZATION

Air Force Office of Scientific Research

6c. ADDRESS (Cily. Slmtt and ZIP Codei

Arizona State University
Tempe, AZ 85287

7b ADDRESS «City. Statt and ZIP Codti

AFOSR/NE
Boiling AFB, D.C. 20332

U. NAME OF FUNDING/SPONSORING
ORGANIZATION

DARPA

8b. OFFICE SYMBOL
lit applicabie)

mo fVlr

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F49620-85-C-0010

8c. ADDRESS <CHj. State and ZIP Code)

DARPA/DSO
1400 Wilson Blvd Arlington, VA 22209

10 SOURCE OF FUNDING NOS.

11, TITUE,.'*flflMd« Security Claeeifiealionl , , , . _ , , _ ,
Digital Control of the Czochralski Growth or Gal
Arsenide - Controller Software Reference Manual

PROGRAM
ELEMENT NO.

63320C

Hum

PROJECT
NO.

^m^\

TASK
NO

C'priC|

WORK Uf
NO.

13. PERSONAL AUTHORISI

Karl Riedlinq
13» TYPE OF REPORT

Scientific
13b. TIME COVERED

FROM 10/1/85 TO.3/31/87
14. DATE OF REPORT lYr. Mo.. Day)

87-7-15
15. PAGE COUNT

182
18. SUPPLEMENTARY NOTATION

17. COSATI CODES

HELD GROUP SUB GR

IB. SUBJECT TERMS /Continue en iwrv if ntctmmiy end identify ey block number,

Digital Control
GaAs
Reference Manual

It. ABSTRACT /Continue on itwrw if neteteary and identify by bloc* number/

This volume provides a complete description of the structure and the operation of the
specific controller software developed for ASU's digital Czochralski Growth Control
System (CGCS) for compound semiconductors. The manual is primarily intended for use
by advanced programmers and crystal growth specialists. In four main chapters, the
Controller Software Reference Manual discusses the design considerations applied to
digital LEC crystal growth control, gives a short overview over the growth controller
computer hardware and operating system environment, describes the functions of the CGCS
from an operator's point of view, and delineates the internal operations of the
controller software by discussing the controller software and algorithms. Various
appendices provide tables of controller software t.-"sks, routines, and variables, file
format information, and lists of system messages and error codes.

m
Umj

m, A».
30. OISTRIBUTION/AVAILABILIT V OF ABSTRACT

UNCLASSIFIED/UNLIMITED G SAME AS RPT Z OTiC USERS 0

21 ABS ^Ä^rfLir ION

23*. NAME OF RESPONSIBLE INDIVIDUAL

Li. i -A (y

2b T6L_E*«ONF MOMBE«

9>J 7Lr) UQJ3!

22c OFF ICE SYMOOL

1L
DD FORM 1473. 83 APR EOiTiON OF i JAN 73 lispesoLt'E

«■ fm RL *ci »mj frXk'V. 'V ■^■fr.v;»-;.! . .'.w. V.V. »',

I Scientific Report

DIGITAL CONTROL OF THE CZOCHRALSKI GROWTH OF GALLIUM
ARSENIDE - CONTROLLER SOFTWARE REFERENCE MANUAL

ft s
ft Sponsored by

Defense Advanced Research Projects Agency

v

s
1«.

ft

G. H. Schwuttke
Principal Investigator

(602) 965-2672 Accesicn For /

NTIS Cftt&l «
DTIC 'i AB n
U:,;:-vc.i-cc.1 ^
i.iiti'ir luo.i

■ ■-. —

n>
" ■""

'J^t :t),-f ;,>• /

;< ._•!! • :■' !■■ I

u
Arizona State University

Semiconductor Materials Laboratory
College of Engineering & Applied Sciences

Tempe, Arizona 85287

JL

W^£££,&£&&^

ABSTRACT

H This volume provides a complete description of the structure
and the operation of the specific controller software develop-
ed for ASU's digital Czochralski Growth Control System (CGCS)
for compound semiconductors. The manual is primarily intended
for use by advanced programmers and crystal growth special-
ists. In four main chapters, the Controller Software Refer-
ence Manual discusses the design considerations applied to
digital LEG crystal growth control, gives a short overview
over the growth controller computer hardware and operating
system environment, describes the functions of the CGCS from
an operator's point of view, and delineates the internal
operations of the controller software by discussing the con-
troller software and algorithms. Various appendices provide
tables of controller software tasks, routines, and variables,
file format information, and lists of system messages and
error codes, ^U.UVM >\^>, Q1 ^ >> >v o v ~ iß

—r-*■*r<*r—,r-»,—r-»"*»? ' .'"■."X1" ":"lV:'-'-::v^':"''f-'f'f-

TABLE OF CONTENTS

SUMMARY v

HOW TO USE THIS DOCUMENTATION vii

CGCS PROGRAM VERSIONS viii

1. DIGITAL CONTROL OF CZOCHRALSKI GaAs CRYSTAL GROWTH . . 1
1.1 INTRODUCTION 1
1.2 BASIC CONCEPT OF A DIGITAL CONTROLLER FOR GaAs
CZOCHRALSKI GROWTH 4

1.3 CRYSTAL GROWTH AUTOMATION 7

2. THE COMPUTER ENVIRONMENT OF THE CZOCHRALSKI GROWTH
CONTROL SYSTEM 10
2.1 BASIC CONSIDERATIONS 10
2.2 COMPUTER HARDWARE 11
2.3 COMPUTER-PULLER HARDWARE INTERFACE 12
2.4 THE OPERATING SYSTEM OF THE CONTROLLER COMPUTER . . 13

3. THE CZOCHRALSKI GROWTH CONTROL SYSTEM 16
3.1 STARTING THE CZOCHRALSKI GROWTH CONTROL SYSTEM . . 16
3.2 RUNNING THE CZOCHRALSKI GROWTH CONTROL SYSTEM -

COMMANDS 18
3.2.1 GENERAL REMARKS 18
3.2.2 SUMMARY OJr INTERNAL COMMANDS 20
3.2.3 COMPREHENSIVE DESCRIPTION OF THE INTERNAL

COMMANDS 2 0
3.3 PARAMETER RAMPING 29
3.4 MACRO COMMANDS 29
3.5 DISK FILES 31
3.6 VARIABLES 3 6

3.6.1 GENERAL REMARKS 3 6
3.6.2 SPECIAL VARIABLES 37

3.7 THE DIAMETER EVALUATION ROUTINE 39

4. THE CZOCHRALSKI GROWTH CONTROL SYSTEM SOFTWARE 42
4.1 PROGRAM STRUCTURE 4 2
4.2 GENERAL PROGRAM INFORMATION 4 3
4.3 THE SYSTEM INTERFACE 4 5

4.3.1 CONSOLE AND PRINTER I/O 4 5
4.3.2 SYSTEM TIMING 4 7

4.4 THE OPERATOR INTERFACE 48
4.4.1 THE CONSOLE CRT SCREEN 4 8
4.4.2 AUXILIARY I/O ROUTINES 50
4.4.3 THE COMMAND INTERPRETER - TASK RXIROM 51

4.4.3.1 OVERLAY CZOV01 - MODULE SETPAR - COMMANDS SET
AND CHANGE 57

- l -

;£&ää&a^^

4.3.2 OVERLAY CZOV02 - MODULE SETVAR - COMMANDS SET
AND CHANGE 60
4.3.3 OVERLAY CZOV03 - MODULE COMMEN - COMMAND
COMMENT 61
4.3.4 OVERLAY CZOV04 - MODULES MENOUT AND CLRSCR -
COMMAND HELP 61
4.3.5 OVERLAY CZOV05 - MODULES OPMODE AND CLRSCR -
COMMAND MODE 62
4.3.6 OVERLAY CZOV06 - MODULE DEBUGO - DEBUG
COMMANDS 63
.4.3.7 OVERLAY CZOV07 - MODULE DEBUG1 - DEBUG
COMMANDS 64
,4.3.8 OVERLAY CZOV08 - MODULES FRAME AND TIMLIN -
COMMAND RESTORE 65
,4.3.9 OVERLAY CZOV09 - MODULE FILES - COMMAND
FILES 65
,4.3.10 OVERLAY CZOV10 - MODULE REQCMF - COMMANDS
START AND FILES 66
,4.3.11 OVERLAY CZOV11 - MODULE CALCUL - COMMAND
CALCULATE 67
,4.3.12 OVERLAY CZOV12 - MODULE DATAFI - COMMANDS
FILES AND DATA 67
,4.3.13 OVERLAY CZOV13 - MODULE EXICZO - COMMAND
EXIT 68
,4.3.14 OVERLAY CZOV14 - MODULE CONDIT - COMMAND
IF 69
,4.3.15 OVERLAY CZOV15 - MODULE DISPLY - COMMAND
DISPLAY 7 0
.4.3.16 OVERLAY CZOV16 - MODULE DOCUMT - COMMANDS
FILES AND DOCUMENTATION 70
,4.3.17 OVERLAY CZOV17 - MODULE DIRECT - COMMAND
DIR 70
.4.3.18 OVERLAY CZOV18 - MODULE RESOVL - COMMAND
RESET 71
.4.3.19 OVERLAY CZOV19 - MODULE INIDAT - COMMAND
INITIALIZE 71
.4.3.20 OVERLAY CZOV20 - MODULE PLOTOV - COMMAND
PLOT 72
.4.3.21 OVERLAY CZOV21 - MODULE CLEARO - COMMAND
CLEAR 7 2

.4 THE COMMAND EXECUTOR - TASK CMMDEX 7 2

.4.4.1 COMMAND MESSAGE PROCESSING 7 3

.4.4.2 THE RAMPING EXECUTOR 7 8

.4.4.3 FLOATING-POINT CONVERSION OF MEASURED DATA 78

.4.4.4 DEBUG DATA RETRIEVAL 78

.4.4.5 CONDITIONAL COMMAND EXECUTOR 7 9

.4.4.6 DATA DUMP TO THE DOCUMENTATION FILE 79

.4.4.7 ANALOG OUTPUT TO A CHART RECORDER 8 0

.4.4.8 PROGRAM CODE INTEGRITY CHECK 81

.5 THE MEASURED DATA OUTPUT TASK - TASK MEASDO . . 81

.6 THE COMMAND FILE INPUT TASK - TASK CMFINP ... S3

.7 THE COMMAND FILE OUTPUT TASK - TASK CMFOUT . . 84

- 11 -

%-.y-0".-.\>o,-.-
-- ■- •. •■

-:-

K

ft

4.4.8 THE DISK OUTPUT TASK - TASK DSKOUT 84
4.5 THE PROCESS CONTROLLER 84

4.5.1 THE PID CONTROLLER ROUTINE FRPIDC 84
4.5.2 THE DIAMETER CONTROLLER - TASK DIACNT 9 0

4.5.2.1 THE DIAMETER CONTROLLER ROUTINE PROPER -
MODULE DIACNT 90

4.5.2.2 ANOMALY COMPENSATION - ROUTINE ANOMLY ... 93
4.5.2.3 DIAMETER EVALUATION ALGORITHMS - ROUTINE

SHAPE 94
4.5.2.4 THE INITIALIZATION OF THE ROUTINE SHAPE -

ROUTINE RESET 104
4.5.2.5 THE RE-ACTIVATION OF SHAPE - ROUTINE REACTV 105

4.5.3 THE ANALOG DATA CONTROLLER - TASK ANACNT . . . 105
4.5.3.1 THE ANALOG CONTROLLER ROUTINE PROPER - MODULE
ANACNT 105

4.5.3.2 THE ANALOG DATA INPUT ROUTINE ANAINP ... 107
4.5.3.3 THE RELAY CONTROLLER ROUTINE MOTDIR 109
4.5.3.4 THE ANALOG DATA OUTPUT ROUTINE ANAOPT . . . Ill
4.5.3.5 THE LOW-PASS FILTER ROUTINE LOWPAS 112

4.6 PROGRAM CONFIGURATION 114

APPENDIX A: ADDITIONAL DOCUMENTATION 117

APPENDIX B: CGCS MEMORY AND I/O MAPS 119
B 1: MEMORY MAP 119
B 2: I/O MAP 119

APPENDIX C: SYSTEM TASKS 121
C 1
C 2
C 3
C 4

ROM RESIDENT SYSTEM TASKS 121
iRMX-80 SYSTEM TASKS IN THE CGCS . 12 2
FORTRAN - iRMX-80 INTERFACE TASKS 122
CONTROLLER TASKS 12 3

APPENDIX D: ROUTINE NAMES 126

APPENDIX E: COMMON BLOCKS 129

APPENDIX F: VARIABLE NAMES 133
'K F 1: MOST IMPORTANT VARIABLES 133
U F 2: COMPLETE LIST OF VARIABLES, SORTED BY ADDRESS . .139

F 3: VARIABLE ADDRESSES FOR CGCS VERSIONS 1.6 THROUGH
S 2.3 144
/v

APPENDIX G: DISK ERROR CODES 151

APPENDIX H: CGCS FILE FORMATS 154
H 1: VARIABLE NAME FILE CZONAM.Vmn 154

-, H 2: VARIABLE NAME SOURCE FILE 154
J H 3: MACRO COMMAND FILES 155
rf H 4: DATA FILES 157

jft APPENDIX I: CZOCHRALSKI GROWTH CONTROL SYSTEM MESSAGES . 161

- iii -

toww^^wttäÄ^^

APPENDIX J: DYNAMIC BEHAVIOR OF THE PID CONTROLLER
ROUTINE 167

APPENDIX K: DOCUMENTATION PRINTING HISTORY 171

ILLUSTRATIONS 172

- IV -

* - I - i --—-.-• » - ■ ■ -

EXECUTIVE SUMMARY

A digital controller system for the Czochralski growth of gal-
lium arsenide single crystals is presented. Digital growth
control was chosen because of its essential advantages over
the standard analog approach:

* Better reproducibility of process parameters and control
actions.

* A higher degree of flexibility with regard to operation
procedures and process parameters.

* Powerful process automation.

* Expanded process data logging facilities.

The digital Czochralski Growth Control System (CGCS) is based
on a microcomputer built around an Intel 8085 microprocessor.
The system hardware consists of commercial OEM components; the
microcomputer features 16 KBytes of Read Only Memory (ROM) and
56 KBytes of Random Access Memory (RAM), an Intel 8231 Numeric
Processor, two industrial standard 8" single sided, single
density flexible disk drives, and the Analog/Digital and Digi-
tal/Analog Converters and Input/Output (I/O) hardware which it
requires to interface to the Czochralski puller. In addition
to a console CRT terminal, a line printer is provided. The
controller computer was designed as a multi-purpose unit which
permits, in addition to the actual process control, to execute
auxiliary programs for the maintenance of disks and disk
files, and for the preparation and evaluation of growth runs.
The operating system used is Intel's Real-Time Multitasking
Executive iRMX-80; a special system environment, RXISIS-II,
was developed for the execution of utility and support pro-
grams .

The CGCS is wired to monitor process data in parallel to the
standard analog growth controller; its output can alternative-
ly replace the analog controller's output. For reasons of
simplicity, it uses part of the analog system's signal condi-
tioning and output circuitry. In particular, it provides the
analog motor speed and the heater power controllers with speed
and power setpoints. The digital system can be operated in
the following modes each of which is a superset of the preced-
ing one:

(1) Monitoring: The CGCS collects data from the puller which
can be displayed and recorded, but it does not control the
puller.

(2) Manual: The CGCS controls the growth process but allows
only to enter setpoints for the primary process parameters

- v -

•^■'^■"^■'II.I' iiVVv'^/■-■"*.■'*■" nfa£ ■'.<■' i'.t'.t,»

(temperatures, motor speeds). No closed-loop diameter
control is possible._

(3) Diameter: This mode includes closed-loop diameter con-
trol, based on the standard weighing method. Special al-
gorithms compensate for the buoyancy effects caused by the
encapsulation melt.

(4) Diameter/ASC: In addition to the above features, an anom-
aly compensation technique is used, which makes the diame-
ter calculated by the CGCS more reliable.

(5) Automatic: A special algorithm permits to maintain the
crystal-melt interface at a constant location within the
heater, regardless of the amount of melt depleted due to
crystal growth.

The CGCS software allows to modify any parameter, including
the parameters of controller loops, by direct operator com-

j mands. Parameters may be "ramped" within an arbitrary time
from their current to their intended final values. Commands
may be recorded on special disk files which may be edited and
replayed as Macro commands during a later run; the sequence
and timing of the recorded commands is exactly reproduced.
These recorded commands can, still, be arbitrarily inter-
spersed with new commands entered on the console; the result-
ing command sequence may be recorded again, which gives the
system a learning ability. Macro command files may comprise
any number of commands and can easily be invoked by name. A
special feature permits to execute Macro commands conditional-
ly, i.e., if and when a specified relation between an arbitra-
ry system parameter and a constant value is reached. These
features allow to execute certain stages of the crystal growth
process automatically, without the necessity of operator in-
teractions. Although it is not yet possible to automate the
entire growth process because the process data available to
the CGCS is not sufficient, we have obtained a considerable
improvement over the level of automation of the standard ana-
log controller.

Great emphasis was put on the design of the operator-machine
interface: A specially formatted CRT console screen provides

! information about all data measured by the CGCS. Command
entry is interactive, with as much flexibility as possible
with regard to the format of the commands. Several help menus
and extensive command prompts guide the operator. The dialog
between the operator and the CGCS can be recorded either on
disk, or on a line printer; each item is tagged with the time
when it was issued. This permits, in conjunction with the
data recording facilities of the CGCS, to trace the effects of
a particular operation; the data taken during a run can be
used for various process analysis and modelling approaches.

- vi -

ififtwygi 3W U'I ih ?> ft L». -hm: i :*:»*>» A Ji w: ■:»■?* A C» * .VL»/■> ."■■■>.» i> .■ .*. ■/« **&*+&**** ■» ** * »L * * -i »n

- HOW TO USE THIS DOCUMENTATION

This documentation details the internal operation of the CGCS
software. It refers to hardware functions where necessary but
should not be considered a hardware manual. Although it does
not primarily give operating instructions, it may contribute
to the user's understanding of the system's operations, and it
may therefore clarify some points in question. Readers profi-
cient in Fortran may find it advantageous to have the program
listings at hand (which are very extensively commented, too);
frequently, references are made within this manual to ehe
names of program variables or routines. It is, however, not
necessary to study the source programs to understand this
documentation. A number of additional documentations are
listed in Appendix A which provide more detailed information
about items which could only be mentioned here.

- vii -

CGCS PROGRAM VERSIONS

This issue of the Software Reference Manual is based upon
version 2.3 of the Czochralski Growth Control System. This
section describes the "evolution" of the program by listing
the features newly introduced with each release.

Version 1.3: (October 19, 1985)

(Version 1.3 was the first program release actually used for
growing gallium arsenide crystals.)

Version 1.4: (December 5, 1985)

(1) INITIALIZE sets the diameter setpoint to the seed diame-
ter. (This feature was discontinued from Version 2.1 on.)

(2) The Diameter evaluation routines check for zero seed lift
speed and disable diameter calculation in this case.

(3) An automatic RESET is executed when required.

(4) The calculated Diameter is recorded in the Data file.

Version 1.5: (February 1986)

(1) RESET permits the entry of a reset value for the Crystal
Weight and/or the Length Grown. (The effect of RESET on
the Crystal Weight is a new feature of this release.)

(2) The length of the crystal stored by the buoyancy compensa-
tion part of the diameter calculation routine was in-
creased from 37.5 millimeters to 75 millimeters. The
thickness of one "slice" is approximately 0.5 mm; the
maximum permitted seed travel speed exceeds than 200 mm/h.

(3) The actual Diameter value is automatically copied to the
Diameter setpoints when any Diameter controlled mode is
entered.

Version 1.6: (February 18, 1986)

(1) The Data Dump facility was newly introduced. Extra rec-
ords are written to the Data file in case of an error
detected by the Diameter Evaluation routines.

The crystal diameter is evaluated with
rate rather than with the (actual) seed

the actual
lift soeed.

growth

- Vlll -

^V>VvS-S'%iV/Y".-V/Vj'V,,VvVVVV v y y *.- v v v\y- [•• " k> ■ ■ " ■

'. N ".
IÜAJ ^* . » "V *«.* V V ■ % "» *w % "• m >■>■' ****** *■**■ +*+m *WWP*H

(3) The Diameter Evaluation routines are able to recover from
Speed Overflow errors automatically. (In previous ver-
sions, such errors disabled the diameter evaluation perma-
nently; a RESET command was required to recover from this
condition.)

Version 2.0: (April 11, 1986)

(1) The number of ramping channels was increased from 8 to 20.

(2) The maximum number of Conditional commands is 8 rather
than 2. Conditional commands entered while already 8
commands are pending are ignored. (In earlier versions, a
Conditional Macro command issued while already two Condi-
tional commands were pending replaced the older one) .

(3) A Selective CLEAR command was introduced which permits to
remove only those Conditional Macro commands from the
Conditional Command queue which pertain to a specified
Variable.

(4) The PLOT feature was implemented, providing 8 analog chan-
nels for the output of arbitrary INTEGER*2 parameters,
plus a set of pre-processed system parameters (Tempera-
tures, Diameter error, Growth Rate, and Crucible Position
error).

(5) 8 INTEGER*2 DUMMY locations were provided as a Macro com-
mand scratchpad.

(6) The CGCS can be put into a TEST mode. (Program patches
(in ANACNT) were required in previous versions to execute
run simulations.)

Version 2.1: (October 13, 1986)

(1) An algorithmic error in the Diameter Evaluation routine
was corrected which resulted in a relative error of the
calculated Growth Rate in the order of 10 percent.

(2) The buoyancy compensation routines were re-designed. In
particular, a new interpolation algorithm is used for the
determination of the crystal diameter at the top surface
of the boric oxide encapsulant. A partial compensation of
the effects caused by melt recession at the end of the
growth process was provided.

(3) Two new operation modes of the PID controller routine are
available with release 2.1. They provide different ap-
proaches for a safe "anti-windup" function which improves

■ft

- ix -

^;v,sv/,ywJ.v;., ••..w.v---.y
^

the dynamic behavior of the controller in its output lim-
ited regime.

(4) The scaling of the Heater and Base Temperature output to
the chart recorder was improved. A Variable-defined out-
put range permits a flexible adaptation of the chart re-
corder output to various operating conditions.

(5) A timeout for the printer interface was activated. This
feature prevents a defective or unselected printer from
suspending the operation of the system.

Version 2.2: (October 24, 1986)

(1) A new, more stable diameter interpolation algorithm re-
places part of the procedures introduced with Version 2.1.

(2) The melt recession compensation algorithms were improved.
A numeric parameter permits to adapt the Diameter Evalua-
tion routines to arbitrary degrees of melt recession.

(3) The (square of the) crystal diameter stored in a table
internal to the Diameter Evaluation routine is checked for
excessive deviations with respect to its previous value,
and adjusted accordingly.

(4) A check for a possible boric oxide encapsulant height
overflow permits to run the CGCS safely with increased
boric oxide charges.

(5) Conditional command checking is disabled for several sec-
onds after a new (Conditional or unconditional) Macro
command was started, in order to make sure that at least
the first command of a Macro file can be executed in any
case.

(6) An improved Macro command execution guarantees the proper
execution of Macro commands even in the case of transient
disk errors.

(7) The generation of the Data disk file which was performed
by two tasks in previous versions (one, collecting data,
and one, writing it to disk) was concentrated in one
single task. This measure provides the memory space re-
quired for the installation of the other software enhance-
ments and reduces the probability of a temporary system
deadlock due to a lack of pool memory, with the penalty of
a possible minor record timing inaccuracy in the case of
very short intervals between Data file records.

- x -

> «>.»»-* <--X^C<^^vv:<-^;<'^vy^<j;<<v^:.v. • v v'." * x v '■* "J> r.' v *.» "J LJOLS >-. a,

1
Version 2.3: (December 5, 1986)

(1) A periodic memory check was provided in this release, com-
prising the RAM resident main program code.

8

K

■
•si

.v

- xi -

jfljjj^ft^&iiäiiSfi^

1. Digital Control of Czochralski GaAs Crystal Growth

- 1. DIGITAL CONTROL OF CZOCHRALSKI GaAs CRYSTAL GROWTH

1.1 INTRODUCTION

The Czochralski process is gaining increased importance not
only for the growth of high purity silicon crystals but also
for the large scale production of compound semiconductors like
gallium arsenide. Although Czochralski grown GaAs crystals do
not yet reach low dislocation densities comparable to those
obtainable with the major competitor process, the Bridgeman
technique, the Czochralski process offers, nevertheless, sig-
nificant advantages over boat growth processes:

* The stoichiometry and the purity of Czochralski-grown
crystals is superior to the properties of boat-grown
ones. Semi-insulating substrates can be obtained with
less or even without chromium doping.

* The Czochralski process is better suited for a large scale
production, and it is therefore cheaper.

A Czochralski puller (Fig. 1) consists essentially of a heated
crucible made of quartz or boron nitride which contains the
semiconductor melt. A small single crystal rod, the seed, is
immersed into the melt and slowly lifted. The melt whose tem-
perature is kept slightly above the semiconductor's melting
point solidifies at the interface to the seed; with the proper
temperature distribution and seed lift speed, a cylindrical
single crystal can be grown whose crystallographic orientation
is determined by the orientation of the seed. The crucible
and the seed are rotated in opposite directions in order to
minimize the influence of potential inhomogeneities of the
temperature distribution inside the furnace. An inert atmo-
sphere, usually argon, prevents the oxidation of the melt and
of the crystal.

f.
-•, An additional problem is caused by the fact that compound

semiconductors like GaAs tend to dissociate at higher tempera-
tures. The two components are bound together only loosely,

*} and the one with the higher gas pressure (in our case, arsen-
yj ic) is evaporated to a greater degree than the other (galli-

um) , which results in intolerable deviations from stoichiome-
-, try and, in consequence, in bad electrical characteristics.
>2 While the miscellaneous variations of the Bridgeman process

employ hermetically sealed ampoules made of quartz to prevent
the loss of the volatile component, two approaches are used

£> with the Czochralski process, either individually or combined:
"v First, the pressure of the inert atmosphere inside the puller

is increased to several hundred psis in order to counterbal-
-K ance the arsenic vapor pressure, and, second, the semiconduc-

- 1 -

■X->:VS-S-:V:^W?-:-XV>%>N*ä^

1. Digital Control of Czochralski GaAs Crystal Growth

tor melt and the part of the crystal next to it are encaps-
ulated in a vitreous melt of boric oxide.

Technical applications of semiconductor single crystals re-
quire a defined, and preferably cylindrical, shape of the
crystal ingots which have to be sliced into wafers with given
dimensions. Semiconductor crystal growth implies, therefore,
an efficient control of the diameter of the crystals grown.
Neither must the diameter drop below a minimum value (which
would prohibit cutting a wafer with the specified diameter),
nor should the diameter exceed its nominal value too much
since the excess material is wasted as it must be ground away
before the ingot is sliced into wafers. Conventional Czoch-
ralski pullers for compound semiconductors determine the diam-
eter of the growing crystal from the increase of its weight
per unit time which is obviously proportional to the crystal
volume solidified per time. Taking a constant pull rate,
i.e., a constant height of the incremental solid cylinder, for
granted, this volume is proportional to the square of the
crystal diameter. Diameter control can be effected by chang-
ing the temperature of the melt and/or the pull rate appropri-
ate! v: The solidification of the molten semiconductor materi-
al generates heat which must be removed from the interface
between the crystal and the melt in order to permit a continu-
ous growth. The amount of heat which can be removed from the
interface is, however, determined by the geometry of the fur-
nace and of the crystal, and it is more or less constant.
Increasing the temperature of the melt permits therefore less
material to solidify, which results in a reduction of the
crystal diameter if the pull rate is kept constant. On the
other hand, an increase of the pull rate while the melt tempe-
rature is maintained has the consequence that the roughly
constant volume of semiconductor material which can be solidi-
fied per unit time has to be stretched out to a longer and
narrower cylinder, thus reducing the crystal diameter, and
vice versa. (Compound semiconductors are, however, generally
grown with temperature based diameter control since changes of
the pull rate tend to deteriorate the material quality.)

A basic compound semiconductor puller features, therefore, the
following elements (compare Fig. 1):

(1) A temperature controlled heater.

(2) Four speed controlled motors which are in charge of

(a) the rotation of the crucible;

(b) the rotation of the crystal;

- 2 -

85 1. Digital Control of Czochralski GaAs Crystal Growth

_ (c) the seed lifting motion; and

** (d) the lifting of the crucible which keeps the interface
between the melt and the solid crystal at the same

•$' location within the heater in order to guarantee a
X» constant temperature profile at the critical interface

region.
B 5f (3) An electronic balance which permits to determine the crys-

tal's weight and the weight increment; the latter signal
can be used to control the heater temperature in order to
maintain a defined crystal diameter.

Conventional compound semiconductor Czochralski pullers use
analog electronic circuits to control the heater temperature
and the motor speeds. Although this is an obvious approach
(since all input and output parameters are inherently analog
signals), there are several severe drawbacks associated -with

> analog control circuitry: r

>

(1) Analog controllers usually obtain their control parameters
(e.g., the gain of a controller amplifier) from the set-
ting of a potentiometer. It is not only difficult (and,
frequently, impossible) to modify such parameters dynami-
cally during a growth run although this might be desir-
able, it is also problematic to return to exactly the same
settings which were used during earlier experiments once a
parameter was changed.

(2) Despite of the fact that there are analog controllers on
the market which feature a high degree of automation, the
actual growth process is basically determined by the human
operator. The high degree of human interaction, combined
with the questionable repeatability of an analog system,
makes it difficult to provide exactly reproducible growth
conditions for different growth runs.

(3) Crystal growth is, in fact, a very complex and not yet
-r sufficiently understood process. A better understanding
•>' of the process which is the prerequisite for any process

improvement can, however, be only based upon the thorough
analysis of actual growth data. The logging of process

v data, particularly, of a greater number of data channels,
$ is a very awkward procedure in an analog system; usually,

crystal growers have to be content with three or so data
y channels logged on an analog chart recorder.

All these considerations favor the introduction of digital
computer control for Czochralski crystal growth. A numerical-

ly ly based control permits not only absolute reproducibility of

- 3 -

<*&W>tts>*^^
—*

1. Digital Control of Czochralski GaAs Crystal Growth

process parameters; it can much more readily be interfaced
with automation approaches, and it permits, last but not
least, the recording of growth data in a form suitable for
later computer analysis.

1.2 BASIC CONCEPT OF A DIGITAL CONTROLLER FOR GaAs CZOCHRAL-
SKI GROWTH

The basic target of the current project towards digital con-
trol of the Czochralski process for GaAs crystal growth was to
replace the standard analog controller supplied by Cambridge
Instruments, the company that built and delivered the puller
proper, by a suitable computer-based controller. Since the
complete setup is basically an experimental one, great empha-
sis had to be put on versatility and flexibility. Therefore,
the approach shown in Fig. 2 was chosen:

The digital controller is connected in parallel to the stan-
dard analog one. Both systems monitor in parallel the output
signals provided by the puller's sensors. Switches (actually,
relays driven by the digital controller) permit to apply con-
trol signals to the puller either from the analog or from the
digital controller. This allows, in conjunction with the
proper software support, to switch control between both sys-
tems even during a growth run, which is particularly important
during the setup and tuning of the digital controller. For
reasons of simplicity, the digital system uses part of the
signal conditioning circuitry and the motor controller and
heater SCR circuits of the standard analog console. The digi-
tal system supplies, therefore, only motor speed and heater
power setpoints; the standard analog controller's circuitry
provides closed-loop motor speed and heater power control.
Furthermore, only those functions of the puller which directly
affect the growth conditions are digitally controlled. Al-
though the digital system is therefore not capable of running
the puller without the standard analog circuitry, this re-
striction to the most important operations permits to concen-
trate on features which are essential for the crystal growth,
and facilitates the hardware and software implementation of
the digital controller.

The following analog signal sources were chosen to be moni-
tored by the digital controller, in parallel to the analog
Cambridge console:

(1) Three thermocouples, measuring up to three heater zone
temperatures. (Currently, only a single-zone heater is in
use.)

- 4 -

Kfc^&S^^

p
IS'

K:

i

1. Digital Control of Czochralski GaAs Crystal Growth

(2) Four tachometers which are connected to the four motors
for seed and cruciole lift and rotation. (In contrast to
the Cambridge Instruments terminology of "crystal" lift
and rotation, we are using "seed" lift and rotation within
this documentation and within the software, in order to
avoid confusions of "crystal" and "crucible", particularly
in abbreviations.)

(3) Up to three wattmeters which are connected to the puller's
heater(s) .

(4) The weight gauge monitoring the crystal weight.

(5) An analog differentiator circuit which generates a signal
proportional to the first derivative of the crystal weight

> with regard to time. Determining the differential weight
with an analog circuit rather than calculating it numeric-
ally from the plain weight was found advantageous because

y the crystal weight changes very slowly due to the slow
r" growth of compound semiconductors. In order to allow to

calculate the differential weight from the plain weight in
«v practical time intervals with a reasonable resolution, the
5 weight signal would have, therefore, required an extremely

high analog-to-digital resolution, in excess of 20 bits.
Suitable hardware is hardly commercially available, at

H least, for a reasonable price. In contrast, a 14 bit re-
solution is sufficient for all signals, including the
plain weight, if analog weight differentiation is used.

V
iV (6) Two potentiometers which return voltages proportional to

the current positions of the seed and the crucible, re-
spectively.

(7) A thermocouple measuring the temperature at the bottom of
the crucible ("base temperature").

(8) A pressure gauge sensing the pressure inside the puller's
vessel.

(9) The "contact device" which is basically an ohmmeter cir-
cuit which monitors the resistance between the seed and
the melt. This resistance drops from infinity to a cer-
tain value when the seed touches the (semiconducting)
boric oxide encapsulation melt, and it drops further when
contact between the seed and the actual semiconductor melt
is established.

(10) Eight spare channels which can be used to record additio-
nal information (for example, the outputs of auxiliary
thermocouples) together with growth data.

- 5 -

1. Digital Control of Czochralski GaAs Crystal Growth

The signals which are supplied by the digital controller as
replacements for the analog system's outputs are:

(1) Three heater SCR control voltages, anticipating a three-
zone heater. (Currently, only one control voltage is
used.)

(2) Four speed control voltages for the seed and crucible lift
and rotation motors.

Up to eight internal parameters can be submitted to a
digital/analog conversion; the resulting eight analog
signals can be recorded on a suitable multi-channel chart
recorder.

In addition, digital signals are monitored by the digital
controller and provided for the puller:

(1) Four motor direction signals: They are required, in addi-
tion to the (unipolar) speed control voltages, in order to
determine the direction of motor motion (up or down, or
clockwise or counterclockwise) . The same control signals
are also used within the standard analog controller; these
signals generated by the analog circuitry are monitored by
the digital system to provide complete status information.

(2) One master control signal: All control signal changeover
relays are energized to select the digital system as a
control signal source if this signal is present. Other-
wise, the analog controller is in full charge of the
puller. This is obviously an output-only signal of the
computer system.

The quasi-parallel operation of the analog and the digital
controllers suggests a multi-step approach for the implementa-
tion of the computer-based system which is, indeed, supported
by the digital controller software. Each of the following
operation modes is upwards compatible to the previous ones,
providing all their functions plus some additional ones:

(1) Monitoring: The puller is still controlled by the analog
system; the computer can be used to collect, display, and
record measured data. This operation mode is evidently
essential for establishing the proper operation of the
data acquisition hard- and software, and it can be used to
compare the actions of both controllers.

(2) Manual Growth: The control signals for the heater(s) and
the four motors are generated by the digital system.
Still, they result directly from temperature and speed

- 6 -

&£&&^^ A&mxz. ss.*.*+:i< :■ ;< .< * ;■• * a i< i< a :■•

1. Digital Control of Czochralski GaAs Crystal Growth

setpoints, and no closed-loop diameter control is per-
formed. The power applied to the heater(s) can be con-
trolled in two ways: The system permits to provide three
temperature setpoints, and one power limit value. The
heater power output is determined by a temperature control
loop while it is less than or equal to the limit value; it
is set to the limit value if the temperature controller
would request a greater heater power. The transition be-
tween both sub-modes is smooth and transparent to the
user.

(3) Diameter Control: In this mode, the heater temperature is
not only determined by its (manually entered) setpoint but
also by a control loop which tries to keep the measured
crystal diameter close to its corresponding setpoint.
(For practical reasons, the "manual" temperature setpoint
is only slightly corrected according to the diameter de-
viations, which results in a safer operation and gives im-
proved control over the growth parameters.)

(4) Crucible Lift Control: The semiconductor melt in the cru-
cible is gradually depleted while the crystal is grown.
In order to maintain the solid-liquid interface at the
same location within the heater, which is essential for
reproducible crystal growth, the crucible has to be raised
slowly during the growth run. This is done automatically
in this operation mode, using a specially developed algo-
rithm.

1.3 CRYSTAL GROWTH AUTOMATION

A significant improvement of the current performance of the
crystal growth process, in particular, of its yield, can only
be expected if it is possible to grow crystals reproducibly,
with repeatable properties. This implies, however, a higher
degree of process automation in order to reduce the influence
of the irregularities inevitably induced by human control
actions. Evidently, a digital controller is much more suit-
able for automating a process than the conventional analog
systems. (Although the Cambridge Instruments analog control-
ler permits to control the crystal diameter automatically over
large parts of the growth process, its total operation is far
from automatic, and some very crucial operator actions are
still required within the "automatic" growth phase.)

The digital Czochralski Growth Control System (CGCS) was. in
general, designed to duplicate the existing analog controller.
This is not true, however, for the approach chosen towards

- 7 -

MtW^iti*:*c*:i':^

1. Digital Control of Czochralski GaAs Crystal Growth

process automation. Our approach is not based upon a simple
control of essentially one system parameter (namely, of the
crystal diameter setpoint) but on the reproduction of all
actions pertaining to the process. However, crystal growth is
a highly complex operation which is strongly influenced by
unforeseeable effects like random changes in the melt flow
pattern in the crucible. It was, therefore, regarded an un-
realizable task to automate an entire growth run by blindly
repeating a fixed pattern of actions; we felt automation could
only be achieved reasonably by splitting the process into
small steps which are more promising targets for automatic
control. The system was, furthermore, designed to permit
gradual improvements of such process steps, in order to opti-
mize them more or less independently. The optimized steps can
be joined together in a suitable way, being executed condi-
tionally if required, to finally control an entire growth run.

The following features were therefore provided in the digital
Czochralski Growth Control System in order to allow the opti-
mization of the growth process:

(1) The system permits to modify interactively not only the
actual growth data setpoints (for example, the diameter or
the motor speed setpoints) but also any arbitrary internal
system parameter ("Variable") which has an impact on the
process. This applies specifically to the control loop
parameters (e.g., to the gain of a control loop).

(2) The above changes can be made not only instantaneously but
also slowly, by "ramping" a parameter linearly from its
current to its desired final value within an arbitrary
time. This approach prevents not only abrupt changes
which are likely to upset a delicate process, it offers
also a simple but efficient tool to automate process se-
quences. (For example, the cone between the seed and the
crystal body can be grown by ramping the crystal diameter
setpoint from the seed diameter to the intended crystal
diameter within a time determined by the pull rate and the
planned cone length.)

(3) Operator commands which affect the actual growth process
can be optionally recorded on a disk file; the time at
which a command was issued (relative to the start of com-
mand recording) is added as a tag to each command record.
These "Macro" command files can be edited off-line, and
invoked during a later growth run where they repeat exact-
ly the recorded sequence of operator actions. Since pre-
recorded commands may be arbitrarily interspersed with
commands entered by the operator during the run, and since
the combined sequence of commands may be recorded again on

- 8 -

1. Digital Control of Czochralski GaAs Crystal Growth

a new disk file, the system achieves a "learning" ability.
This command recording makes sense for self-contained
process steps only (for example, for heating up the fur-
nace, or for starting the growth proper), but it saves the
operator a number of actions which frequently have to be
done within a very limited time, and it prevents the inad-
vertent omission of important process steps.

(4) Further process automation can be achieved by the conditi-
onal execution of such Macro command files. A pre-record-
ed set of commands is started only if and when a system
parameter which can be arbitrarily defined with the perti-
nent command obtains a certain numeric relation (e.g.,
greater than or equal) to a given constant. Such Condi-
tional commands may also be issued from a Macro file; it
is, therefore, possible to concatenate Macro files depend-
ing on the current status of the system. Even relatively
complex process steps like seeding can thus be automated.

Although the current design of the Czochralski Growth Control
System does effectively permit a fully automated growth (with
only one operator interaction in addition to the starting of
the growth procedure) , the expertise of a human operator is
still required. The task of the operator is, however, reduced
to supervising the process and interacting in the case of a
malfunction (e.g., if the crystal "twins"). The current CGCS
can not react to some events simply because it can not "see"
them. Any attempt to further improve crystal growth automa-
tion must therefore be based on the introduction of additional
information, especially, of data supplied by suitable optical
sensors.

- 9 -

Mia&aaffi *^^>^v>>^^ _* «_^l

2. The Computer Environment of the CGCS

2_. THE COMPUTER ENVIRONMENT OF THE CZOCHRALSKI GROWTH CONTROL
SYSTEM

2.1 BASIC CONSIDERATIONS

The digital Czochralski Growth Control system consists essen-
tially of two parts which are linked together relatively
loosely: One part, the "brains" of the system, is a suitable
microcomputer, the other part is constituted by the hardware
which interfaces the digital control computer to the essenti-
ally analog outside world. We will deal with both parts sep-
arately.

Microcomputer systems for industrial applications are usually
designed exactly for the control task which they have to per-
form, i.e., with built-in software and a dedicated interface
to the operator and to the process they have to control. Fre-
quently, they feature only a very restricted set of function
keys for operator input, and limited display facilities for
the output of system status and data. We felt that such a
system concept would hardly meet the requirements of an exper-
imental system which was supposed to offer the following char-
acteristics:

* Flexibility: The system software must be easy to modify,
in order to adapt the system to varying demands, to intro-
duce new features, and, last but not least, to correct
programming errors.

* Versatility: The control computer should not only be able
to control growth runs but also assist in the evaluation
of measured data taken during crystal growth, and permit
the preparation of experiments.

* Stand-alone operation: The growth controller computer
should be used as a stand-alone unit, without requiring a
host system for data transfer, evaluation, and mainte-
nance.

* Interactive operation: The system should be run in an
interactive mode, permitting a dialog between the operator
and the controller computer. This was regarded particu-
larly important since the main target of the project was
to learn about the dynamics of the crystal growth process,
rather than producing crystals on a large scale according
to pre-determined rules.

* Data display and lo< ling facilities: As a consequence of
the above considerat ons, it was regarded essential that

- 10 -

" 2. The Computer Environment of the CGCS

■ the system should be able to display, evaluate, and record
5 as many growth related parameters as possible.

™ All these demands cannot be fulfilled by a dedicated computer
$ system with completely built-in software resident in ROM (Read
* Only Memory) . It is not only an awkward procedure to modify

ROM resident programs, particularly if frequent changes are
J5 required, it is even close to impossible to accommodate
6 lengthy and frequently conflicting routines within the limited

memory space available. Since it was necessary anyhow to pro-
n vide mass storage devices for growth run data logging, we
ffli planned a generic disk-based microcomputer system which per-
™ mits to load arbitrary programs from flexible disks. Command

input to and data output from the control computer is handled
$ by a standard CRT terminal which permits interactive operation

and data display.

,v

y

2.2 COMPUTER HARDWARE

* The hardware of the controller computer is based upon an Intel
$ 8085 eight-bit microprocessor. This particular processor was

chosen because of the vast experience we already had with it
and because of the support software which was already avail-
able for it, which permitted to expect a fast system develop-
ment. The experiences made with comparable applications
showed that the processor's performance is sufficient if a

v system is well designed. The 8085 is able to address a 64
V KByte memory space (plus 255 Input/Output (I/O) ports); with

regard to the desired flexibility and versatility, as much of
■j this memory space as possible was to consist of read-write

memory (RAM - Random Access Memory). Only the absolute mini-
mum of ROM whr.ch is indispensable for the operation of a com-
puter was pro/ided; the ROM resident code has, essentially, to

!y control the loading of the actual application software from
*'" disk. The memory components available suggested, in addition,

a memory bank switching approach which further reduces the
■7, amount of memory space consumed by ROM: The total ROM area of
■"' 16 KBytes is subdivided into two banks of equal size which can

be activated alternately and which require, therefore, only 8
KBytes of address space. One bank holds confidence test rou-
tines and a Monitor which are only needed for starting and/or
debugging the system; the other bank is reserved for perma-
nently required operating system routines. Therefore, 56
KBytes are available for RAM within the 64 KBytes address
space; Fig. 3 shows a memory map of the controller's computer.

The controller computer is built of commercial OEM (Original
Equipment Manufacturer) components most of which are supplied

- 11 -

MtäüäüS^

2. The Computer Environment of the CGCS

by Intel Corporation; these boards are interconnected via
Intel's Multibus. The system configuration is shown in Fig.
4: An Intel iSBC 8 0-24 Single Board Computer board holds the
8085 CPU, the 2x8 KBytes of ROM, 8 KBytes of high-speed RAM,
and an Intel 8231 Numeric Processor on an iSBX 331 expansion
board which permits to increase the throughput, particularly
of data output to the system console. Two expansion boards,
an iSBC 517 I/O, and an iSBC 028 Memory Expansion Board, pro-
vide additional I/O lines and the remaining 48 KBytes of RAM,
respectively. An iSBC 204 Floppy Disk Controller board con-
stitutes the interface to the mass storage which consists cf
two (industrial standard) 8" single side, single density flex-
ible disk drives with a storage capacity of 250 KBytes each.

A standard "dumb" CRT terminal serving as an operator console
is connected to the iSBC 80-24 Single Board Computer via an
RS-232 serial interface. A similar serial interface on the
iSBC 517 I/O Expansion Board connects to a printer whose main
task is providing a hard copy of the dialog between the opera-
tor and the Czochralski Growth Control System.

2.3 COMPUTER-PULLER HARDWARE INTERFACE

The controller computer has to monitor and generate a number
of analog and digital signals which were listed in chapter 1.2
of this documentation. The interface to the analog signals
consists of one Analog-to-Digital (A/D) and one Digital-to-
Analog (D/A) Converter board. Both boards are interconnected
to the microcomputer proper via the Multibus system bus; data
is read from and written to them via I/O port accesses.

The A/D Converter is a Data Translation DT772/5716-32DI-B-PGH
board which reatures 32 differential input channels with a
sensitivity of ±10 V (which may be increased by a factor of up
to 8 under software control). The voltage of the (software
selectable) input channel is converted into a 16 bit integer
value by the board, corresponding to a resolution of 1/65,536;
this data is read and eventually processed by the computer. A
bank of isolation amplifiers between the signal sources and
the A/D converter prevents ground loops which might induce
noise and provides the necessary pre-amplification of low-
level signals like the outputs of thermocouples.

The analog control voltages for the puller are output by a
Burr-Brown MP8316-V D/A Converter board. This board provides
16 channels with an output voltage swing of ±10 V; its resolu-
tion is 12 bit (1/4,096). Eight of the 16 output channels are

- 12 -

$£&&^

R

B

V

P

2. The Computer Environment of the CGCS

reserved for the interconnection to an analog chart recorder
for online data output.

m Digital I/O of the motor direction information and of the con-
ra troller selection is performed via a series of digital I/O
""* ports on the iSBC 517 I/O Expansion Board. These signals are

buffered and pre-processed by a simple external digital cir-
R cuit. Relays constitute the actual input and output interface
H» to the puller, permitting absolute isolation between the pul-

ler's circuitry and the computer.

a
2.4 THE OPERATING SYSTEM OF THE CONTROLLER COMPUTER

A complex process like crystal growth requires basically real-
time control, i.e., control operations whose chronological
order is neither pre-determined nor predictable. Although

W there are several ways of programming such systems, an advant-
ageous approach which, in addition, offloads the programmer
from providing many standard routines is using a special real-

fr time operating system. Such operating systems schedule the
u" execution of parts of program code ("tasks") which are dedi-

cated to certain actions of the controller; they also provide,
u in general, support of external devices like a console termi-
P nal or disk drives.

.. One such real-time operating system is Intel's Real Time Exec-
jH utive for 8080/808L Microprocessors, iRMX-80. Although the

original version of this operating system is obsolete and was
withdrawn by Intel without a replacement several years ago, it

■ was considered to offer still satisfactory performance, par-
^ ticularly because several of its routines have been replaced

by the author with improved and more efficient ones.

AT
v Still, iRMX-80 is basically intended to support dedicated
™ process controllers, primarily with ROM-based software, al-

though it provides disk support and the possibility to boot-
^ load complete real-time application systems from disk. In
«v contrast to newer real-time operating systems, iRMX-80 does

not offer utility programs for the maintenance of disks and
^ disk files (for example, for disk formatting, file copying,
^ file display, or file listing) which would have had to be
* written specially for our application. Fortunately, the pro-

gramming interface of iRMX-80 (i.e., the parameter passing
conventions for system function calls) is very similar to the
one used by Intel's System Implementation Supervisor operating
system ISIS-II under which Intel's 8-bit microprocessor devel-

Y«; opment systems run and for which a wealth of system utilities
is available.

- 13 -

&££^^^&^^

2. The Computer Environment of the CGCS

In order to permit the execution of such utilities on the
Czochralski Growth Controller computer, a special iRMX-80
based system was written which emulates the functions of ISIS-
II and which was accordingly called RXISIS-II. This operating
system emulator is loaded from disk when the computer is
switched on, and it is the "hub" of all system operations.

RXISIS-II permits to run various utility programs, including a
BASIC interpreter and a screen editor; some programs support-
ing the Czochralski Growth Control System (CGCS) (e.g., the
Macro Command Editor and the Data File Display program) use
its services, too. Application programs are loaded into a re-
served memory area; they use the system support (for example,
for disk I/O) provided by RXISIS-II which remains resident
within the system, and they return control eventually to
RXISIS-II (Fig. 5).

This approach is fine for running relatively simple support
software which does not even need real-time performance; it
cannot be used, though, to execute a complex program like the
CGCS. Still, the CGCS is designed to be started under RXISIS-
II like any utility program, but it constitutes, in fact, a
totally independent real-time application which replaces
RXISIS-II totally (Fig. 6). It does not require the ISIS-II
emulation since its routines interface directly to iRMX-80.
Upon exit from the CGCS, RXISIS-II is re-booted and available
again for the execution of support software.

iRMX-8 0 is a modular operating system, which permits to in-
clude only those functions into an application system which
are actually required. This approach allows to keep only a
"common denominator" of all perceivable application systems in
ROM, meeting the requirement of a minimum size ROM resident
code stated above. The ROM bank which is active during the
regular operation of the system holds, therefore, the iRMX-80
"Nucleus" which is a set. of housekeeping routines which are
needed for any real-time system. Obviously, a Boot Loader
must be included into the system ROM which permits to load
either RXISIS-II or the CGCS (or any other iRMX-80 based real-
time application system) from disk into RAM. Since there was
still space available in the system ROM, a Terminal Handler
was also stored there which controls the input and output of
data from and to the console terminal. Both routines had to
be written specially, replacing standard iRMX-80 software.
The Boot Loader is more versatile than the standard iRMX-80
one since it can also be used to load arbitrary program code
rather than complete real-time systems only, and it is by
orders of magnitude faster. The Terminal Handler supports
output of data to a CRT screen with a fixed format, while its
standard iRMX-80 counterpart only permits continuously scroll-

- 14 -

'-* mj> *,/ *-* r J» *v *A.* s *■* •* V V V V ■ ■*.vv

>>

g

2. The Computer Environment of the CGCS

ed "Teletype" output, and it provides many more features,
including printer output via a second RS-232 interface.

The second ROM bank is active only immediately after power-on,
and during program debugging operations. It contains a Confi-
dence Test and a Monitor program. Both operate totally out-
side the iRMX-80 environment; the real-time system is "asleep"
while the Monitor is active. The Monitor permits to inspect
and change the contents of memory locations and processor
registers, to read from and write to I/O ports, and to execute
program code up to given breakpoints. It can be entered very
easily from RXISIS-II, e.g., by pressing the "Break" key cf
the console terminal. Since it is obviously not desirable tc
have the CGCS "asleep" if anybody hit the "Break" key inadver-
tently, this feature is locked out by the Czochralski system.
(Similarly, control is vectored to the Monitor under RXISIS-II
but not within the Czochralski system if a fatal disk error
condition is detected.)

The Confidence Test can be accessed from the Monitor; it per-
mits to check the integrity of the system hardware, including
the console terminal, the printer, and the two disk drives.
Its memory test portion is, in addition, executed after each
power-up.

■v"

For further information about iRMX-80, the Alternative Loader
Task, the Alternative Terminal Handler, and RXISIS-II with its
Monitor and Confidence Test routines, please refer to the per-
tinent documentations listed in Appendix A.

y
v

S

15 -

" • ' » « « • . ■ J><*.
^;

3. The Czochralski Growth Control System

3. THE CZOCHRALSKI GROWTH CONTROL SYSTEM

The Czochralski Growth Control System (CGCS) is invoked from
RXISIS-II, and it is in some respects an extension of the
RXISIS-II functions. Some special measures have been taken,
though, to guarantee a proper operation even in the case of
failures. While, for example, a disk error constitutes a fataj.
situation under RXISIS-II, it is only reported in the CGCS but
does not affect its overall operation.

3.1 STARTING THE CZOCHRALSKI GROWTH CONTROL SYSTEM

NOTE: The system needs the CGCS system disk permanently in
drive 0. The operator must by no means exchange this
disk unless prompted to do so (see the EXCHANGE com-
mand) . To be save in the (improbable) case of a disk
error on the system disk, a second system disk should be
kept at hand which must, however, be of the same system
version. The system will crash inevitably at the attempt
to install a disk in drive 0 which holds a different
CGCS version!

The CGCS is invoked from RXISIS-II like any other RXISIS-II
function, namely, via a call by its name, CZOCHR. Provided
the disk in drive 0 holds a valid copy of the CGCS, it will be
loaded, and a sign-on message is displayed. During this ini-
tialization, the system checks whether the A/D Converter hard-
ware is installed and operational, and it enters into a Test
mode if this is not the case. An information message "Test
Run" is displayed in this case, and input from the A/D conver-
ter and output to the D/A board are suppressed. This feature
permits testing of the CGCS software in an environment which
does not provide the hardware interface to the puller; running
the CGCS with disabled inputs allows, in addition, to simulate
input parameters for testing purposes. (Analog I/O can also
be suppressed under software control in a fully equipped hard-
ware environment; compare chapters 3.6 and 4.4.3.)

Among may other initialization chores, the CGCS disables the
BREAK key on the console terminal, and enforces a duplication
of Monitor output on the printer. All inadvertent entries
into the Monitor program will therefore show up in a Documen-
tation printout.

During the entire growth run, the CGCS checks the integrity of
its program code periodically. RXISIS-II should be re-booted,
and the CGCS re-started as soon as possible if a memory error

- 16 -

k^*\<<<s^S ±^£X±Ztt^^ -^•^>Iw>IB'v'->V^>L.^>^>>>L,>\<>

.'".

3. The Czochralski Growth Control System

is reported in order to avoid unforeseeable reactions of the
system.

Subsequently, the CGCS prompts for the current date (which is
not updated even if a run extends beyond midnight) and time,
and for an arbitrary run identification code. Date and time
must be entered in the format displayed by the CGCS; the sec-
onds can, however, be omitted (they will be assumed to be zero
in this case). The operator can accept or reject these en-
tries. A plain "Return" in response to the confirmation prompt
will accept the data displayed in the top line of the screen.

The permanent display screen which comes up after the above
procedure holds the following items:

(1) Date, time, and run identification in the top line. Two
times are displayed, namely, the actual time (in 24 hours
format), and an internal system time which starts at zero
when the system is initialized, and can count up to 95
hours, 59 minutes, and 59 seconds. (It wraps around to
zero after 96 hours, and starts counting up again.) The
top line holds, in addition, a space between the run iden-
tification and the system t .me where the name of a Macro
Command will be displayed while it is executed.

(2) A regularly updated display of measured system parameters
and of setpoints. Two columns are provided for the dis-
play of the setpoints: The left column holds the current-
ly valid setpoint, whereas the right column displays the
final setpoint which differs from the current setpoint if
a parameter is being ramped. In the case of a controlled
parameter, the right column shows a setpoint input to the
controller. Parameters which can be entered as setpoints
are, in addition to their full names, identified by the
two character abbreviation which is required by the SET or
CHANGE commands. The system was designed to accommodate a
tnree-zone heater. Therefore, three heater temperatures
and three pairs of power values are displayed. (Current-
ly, only the first set of data is meaningful; the measured
data for the second and the third channel have been tied
to those of the first channel.) There are two output
power values for each channel, referred to as "In" and
"Out"; the "In" values specify the percentage of maximum
power which is input to the power controller, while "Out"
gives the actual output power; both are scaled to lie
oetween 0 and 100. (The "In" values were, in fact, cal-
culated and output by the CGCS, whereas the "Out" data are
measured data input by the CGCS. "In" and "Out" refer to
the power controller, not to the CGCS.)

- 17 -

^^■^■>^^^;^;;.vv;vs^.;v:;, :tf &;, .;■;.:, t^a^a^ffi^aa

3. The Czochralski Growth Control System

(3) Internal system status information: This information com-
prises the number of parameters being ramped, and the
number of Conditional Macro commands pending, against
their respective maximum values (20 and 8, respectively).
Furthermore, the operation mode (see MODE command) is
displayed close to these two values in the top right cor-
ner of the screen.

(4) Command echoes and system messages: While the remainder
of the CGCS output screen is in a fixed format and updated
in a random access mode, the echo and message area (five
lines in the bottom third of the display) is scrolled up
as information is added in the bottom line. The echoes of
operator entries are displayed there, and messages issued
by the system are directed there, too. In addition, the
same area is used by some commands for the display of
menus or auxiliary information. The scrolled portion
shrinks to four lines if auxiliary data display is re-
quested with the DEBUG Continuously command. In this
case, the top line of the scrolled portion is used for the
DEBUG output.

(5) Command prompt line: All operator actions are requested
in the last line but one on the screen.

(6) Input area: The bottom line is reserved for building a
command line. The same rules apply to the entry and to
the editing of commands which were specified for RXISIS-
II.

During the initialization of the system, some commands are
automatically performed by the CGCS, thus saving the operator
typing and making sure that all required information is enter-
ed. The system permits to open a Documentation output file
(otherwise done with the DOCUMENTATION command), and requests
a set of constants (see the INITIALIZATION command). Finally,
the Command Interpreter's prompt "Please command:" is dis-
played, and the CGCS enters its regular operation mode.

3.2 RUNNING THE CZOCHRALSKI GROWTH CONTROL SYSTEM - COMMANDS

3.2,1 GENERAL REMARKS

The operation of the CGCS is determined by independent com-
mands which are interpreted by the Command Interpreter (one of
the CGCS's system tasks). There are two types of commands,
namely, the Internal, and the Macro commands. Internal com-
mands are built right into the program; they provide the basic

- 18 -

v&ä:V>A^^

j 4 \

w

3. The Czochralski Growth Control System

control functions. Macro commands, in contrast, are in fact
disk files which are read when their name was detected as a
Macro command. These disk files hold, in turn, one or more
Internal commands, with a time information attached. These
Internal commands are therefore not only executed in the order
in which they were recorded on the file but also with the same
timing. Macro command files can be generated either by di-
rectly recording the commands entered on the console during a
growth run, or with the Macro Command Editor COMMED.

+,
'.-.

&

I
J

Internal commands are generally executed in an interactive
way, i.e., the operator is prompted for further information if
necessary. Some of the commands permit the entry of all in-
formation required in one single command line, which shortens
the dialog between the system and the operator significantly.
All items which may be entered together with the command key-
word are specified in the summary of Internal commands in
chapter 3.2.2. Commands which are likely to affect the opera-
tion of the system significantly require, in general, a recon-
firmation of the data entered by the operator. In most cases,
the operator can accept the data shown to him by entering
"Y(es)"; any other entry, including an empty line ("Return"
only), cancels the command.

All valid Internal commands and the descriptions of their
purposes are listed below in alphabetical order, first in a
short, and then, in a comprehensive list. It is not possible,
however, to give a similar list of Macro commands since they
may be freely defined at any time. It is therefore up to the
operator to keep a record of his Macro commands and of their
functions. The following syntax is used:

CAPITALS constitute the part(s) of the command which must be
entered exactly as specified.

lowercase parts of the command keyword are optional. They are,
specified here for clarity and may also be typed in but
are ignored by the Command Interpreter.

Items in angular brackets < > have to be replaced by the ap-
propriate contents, e.g., a parameter value or a Macro
command name.

Items in square brackets [] are optional and may be omitted.

Items included in braces (} and separated by a vertical bar !
are optional but one item of the list must be specified.

Items must be separated by at least one space (except within
file names).

- 19 -

'■ .*- .** »"v

3. The Czochralski Growth Control System

Note: Commands may be issued in arbitrary order. A command
is, however, only recognized when the prompt "Please command:"
is displayed!

3.2.2 SUMMARY OF INTERNAL COMMANDS

CALCulate [{R
CHANge [{DITn

11 H}]
SLiCLi SRICR!PL I<varname>}f <value> [<time>111

DEBug
DEBug
DEBug
DEBug
DEBug
DEBug
DEBug
DEBug

[C
[C
[D
[M
[M
[0
[R
[s

(i
{A

2|3|4}]]]
III12|R|HI

<hexaddr>}]]

{A|I1|I2|R|H1|H2|H4}]]]

<hexaddr>}]]
<hexaddr>}]]

H2|H4} [{1|2|3|4}]]]]

CLEAr [<varname>]
COMMENT [<arbitrary text>]
DATA

[<varname>
[<hexaddr>
[{<varname>
[<varname>]
[<hexaddr>
[{1|2|3|4}]
[{<varname>
[{<varname>

DIRectory [{0|1}]
DISPlay [<varname>]
Documentation
DUMP
END
EXCHange [(011}]
EXIT
FILEs
HELP or ?
IF [<varname> [{<|=|>}[{<|=|>}]
INITialize
MODE
PLOT [{<varname>|<hexaddr>} [{l|2|3|4J5|6|7|8}]]
QUIT
RESEt [<initial weight> <initial
RESTore
SET [{D|Tn|SL|CL|SR|CR|PL|<varname>
STARt

[<value> [<macro>]]]]

length>]

[<value> [<time>]]]

3.2.3 COMPREHENSIVE DESCRIPTION OF THE INTERNAL COMMANDS

CALCULATE: This command permits to calculate the sum, the
difference, the product, and the quotient of two numbers.
The input format and the treatment of the numbers depends
on a switch entered with the command: The switch is "R"
for floating-point ("REAL") numbers, "I" for integers
(which must lie between -32768 and 32767) , and "H" for

- 20 -

■^^^ ''^^^^l^^^^^^^^^^^^

1
I

3. The Czochralski Grswth Control System

hexadecimal values (e.g., memory addresses) which have the
same numeric range as integers. Input values are expli-
citly requested in any case. The result is displayed in
decimal and hexadecimal form, with the internally used
hexadecimal format for floating-point numbers if applica-
ble.

«

i

CHANGE: This command permits to modify the value of one of
the nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible lift and rotation
speeds, and power limit), or of an arbitrary system Vari-
able (see chapter 3.6 and Appendix F). CHANGE determines
the current value of the specified parameter and adds the
input value to it, thus permitting relative changes.
Since the actual execution of the command is kept separate
from the operator interface, the actual value of the tar-
get parameter may differ from the one displayed during the
processing of the command if the target parameter is being
ramped when the command is issued. Setpoints which are
used as an input to a controller (e.g., the Temperature
setpoints in Diameter controlled modes) , are displayed
with the values output by the controller. CHANGE permits
a smooth transition of the parameter between its current
and its final values by allowing a transition time during
which the parameter is ramped (see remarks about parameter
ramping in chapter 3.3). The transition time may range
from zero to 9999 minutes (in fact, longer transition
times are possible but cannot be displayed any more). The
shortest non-zero transition time is one second; this
value is used for all non-zero transition time values less
than one second (0.017 minutes). The CHANGE command may
be completely entered in one line, or in any combination
of items. It may be recorded to and executed from a Macro
command file.

,*

CLEAR: The command CLEAR removes pending Conditional Macro
commands from the Conditional Command queue. It may be
used to branch between Macro commands if a condition spec-
ified with an IF command is not met within a given time.
There are two types of CLEAR commands: An unconditional
CLEAR which removes all pending Conditional Macro com-
mands, and a Selective CLEAR which cancels only those
Conditional commands which refer to the Variable specified
with the CLEAR command. CLEAR can be recorded to and
executed from Macro command files.

v«

- 21 -

Uf.jfW*. .•v.*".
ASSW •".A .V.V, **\.VJV

3. The Czochralski Growth Control System

COMMENT: This command inserts one line of comment into the
Data output file. The comment line is tagged with the
operation mode, time, and length grown information and
embedded between the (binary) records in the Data file,
thus permitting the correlation between arbitrary events
and the data recorded. Even if no Data file is in use,
the comment line is recorded in the Documentation output.
(In fact, the COMMENT command is the only one to provide
arbitrary text in the Documentation output.)

DATA: The DATA command permits to open or close the Data out-
put file. It offers the operator to open a Data file if
there is no open such file, and it permits to close the
Data file if it is invoked while a Data file is open.
After a disk error, the file which was involved in the
error is flagged as "inactive". Not reactivating an inac-
tive file is equivalent to closing it. The functions of
DATA may be also accessed through the FILES command.

DEBUG Continuously: One member of the DEBUG command group,
the DEBUG Continuously command permits the continuous
display of the values of up to four system Variables. The
data output provided is updated at the same rate is the
fixed screen output (once every five to six seconds). (In
fact, the memory locations specified with DEBUG Continu-
ously are sampled once every second; their values are also
recorded in the Data file.) Data can be selected for
display either by specifying a Variable name, or by sub-
mitting the hexadecimal address of the memory location(s)
whose contents a~e to be displayed. In the latter case, an
additional format information is required since DEBUG does
not know what kind of data resides at an arbitrary storage
location in memory. The display formats available are
ASCII (A), interpreting one byte at the specified address
as a (printable) character, one and two byte decimal inte-
gers (II and 12, respectively), decimal floating-point
(REAL - R), and one, two, and four byte hexadecimal repre-
sentation (HI, H2, H4). Finally, one of the four DEBUG
output channels (numbered 1 to 41 must be specified to
which the output is to be directed. (Channels 1 to 4 are
displayed in the DEBUG output line on the console from
left to right.) The DEBUG Continuously command may be
completely entered in one line, or in any combination of
items. It may be recorded to and executed from a Macro
command file.

- 22 -

ÖOtöÖäAüAQÄßflG, H^ra£>£*£fr^ .v.ViV.v.s.

3. The Czochralski Growth Control System

DEBUG Display: The DEBUG Display command displays the con-
tents of one or several adjacent memory locations which
have been specified either by a Variable name, or by a
hexadecimal address. (For displaying the contents of a

| Variable in its standard representation, the DISPLAY com-
mand is probably more convenient.) The four bytes start-
ing at the given address (or part of them) are displayed
as ASCII characters, in hexadecimal notation, as one and
two byte decimal integers, and as (four byte) floating-
point numbers. The command may be completely entered in
one line, or in any combination of items.

DEBUG Modify: This command permits to modify one to four
bytes in memory whose starting address must be specified
either with a Variable name, or as a hexadecimal number.
The program knows how many bytes have to be modified to
change the value of a Variable specified by name, but the
data format has to be submitted separately if a hexadeci-
mal address is used. The formats available are ASCII (A) ,
interpreting one byte at the specified address as a
(printable) character, one and two byte decimal integers
(II and 12, respectively), decimal floating-point (REAL -
R), and one, two, and four byte hexadecimal representation
(HI, H2, and H4) . The program displays the current con-
tents of the specified location(s), and prompts explicitly
for a new input value. With the exception of the new
value, the entire command or parts of it can be entered in
one command line. (For changing Variables specified by
name, the SET and CHANGE commands are probably more conve-
nient; in addition, they offer the ramping feature which
is not supported by DEBUG.) The DEBUG Modify command can
be recorded to and executed from a Macro command file.

DEBUG Off: While DEBUG Continuously turns on the output of
Debug data, DEBUG Off turns it off again. The location (1
to 4) which is to be turned off must be specified. The
command may be entered in one or in two lines. It may be
recorded to and executed from a Macro command file.

DEBUG Resume: This command affects the internal operation of
the system. It should only be used for debugging pur-
poses. Therefore, no further information is given here.

DEBUG Suspend: This command affects the internal operation of
the system. It should only be used for debugging pur-
poses. Inconsiderate use of this command may disable the

- 23 -

fttift^^-\^sta;^^ ...

3. The Czochralski Growth Control System

CGCS entirely. Therefore, no further information is given
here.

DIRECTORY: The DIRECTORY command displays the contents of the
directory of the specified disk. In addition to the file
names, the disk label and the numbers of sectors in use
and free on the disk are displayed. Note: The actual
number of sectors in use may be much greater if a file is
open for output on the specified disk. The actual number
of used sectors cannot be determined, though, since it is
an internal parameter of the operating system. The num-
bers displayed for the used and free sectors are, however,
preceded by a ">" and a "<" sign, respectively, in this
case. The command may be entered in one line.

DISPLAY: This function displays the value of a Variable sub-
mitted as a parameter with the call. The command may be
entered in one line.

DOCUMENTATION: A call to DOCUMENTATION permits to switch on
or off the Documentation output on the printer or on a
disk file. DOCUMENTATION offers to open a Print file if
no such file is open, and to close it if it is open.
During the file opening procedure, DOCUMENTATION permits
to set the interval between Data Dumps to the Documenta-
tion output (compare command DUMP). Any arbitrary inter-
val between 1 and 255 minutes may be specified; periodic
Data Dumps may be disabled altogether. After a disk er-
ror, the file which was involved in the error is flagged
as "inactive". Not reactivating an inactive file is equi-
valent to closing it. The DOCUMENTATION routine is auto-
matically invoked when the system is started; it may also
be accessed from the FILES command.

DUMP: This command initiates a dump of 21 system parameters
(essentially, of the measured data) to the Documentation
output. In addition, it triggers one record written to
the Data file.

END: The END command is the official way to terminate a com-
mand record in the Control Output file (which eventually
may be used as a Macro command file) . Although no more
entries are added to the Control Output file after an END
command, the file remains open, and the next record may be
started at any time with a START command. (This permits

- 24 -

^^>>^^^s>:v;^>^%x%^v:.v

3. The Czochralski Growth Control System

to use one Control Output file throughout a growth run to
which certain command sequences are recorded; the records
in it can be separated into several Macro command files
using the Macro Command Editor. Note, however, that an
END command preempts a Macro command file used for input
regardless of whether there are more commands after the
END command or not.)

EXCHANGE: This command permits to exchange a defective or
full disk safely. It closes the files on the specified
disk which are still open, prompts the operator to substi-
tute a new disk, and re-opens all files on the new disk
which were open on the old disk when the operator indi-

| cated to the system that the new disk was installed.
Since the output files are opened with the same names on
the new disk, any file with an identical name on the new
disk is overwritten. In addition, the output files need
some editing because control structures used on the Data
and Control Output files are not provided by EXCHANGE.
(It is sufficient to concatenate the two output files with
the ISIS-II/RXISIS-II COPY command, or to concatenate the
second part of a Data or Macro command file with a separ-
ately generated file Leader.) Note that a Macro command
will be preempted which is being read from a disk which is
to be EXCHANGEd.

V,

EXIT: The only regular way to leave the CGCS is the EXIT com-
mand. Depending on the current operation mode, the EXIT
command "cleans up" the controller. It stops the lift
motors if the puller is under the control of the CGCS,
reduces the heater power to zero within six hours (unless
the power is already zero), stops the rotations, and re-
linquishes, finally, control to the analog controller.
Several safety procedures prevent the accidental execution
of this function.

FILES: This command displays the current status of the Print,
Data, and Control Output files and their names if the
files are open. Subsequently, it permits to open or close
one of the three files, entering the respective DOCUMENTA-
TION, DATA, and Control Output file handling routines.
After a disk error, the file which was involved in the
error is flagged as "inactive". Not reactivating an inac-
tive file is equivalent to closing it.

- 25 -

^MfiiaaM »-..«.-.v. a
MitoifcM te* *b*M

3. The Czochralski Growth Control System

HELP: The HELP command (or, alternatively, a simple question
mark ("?")) provides a set of command menus on the screen.

| The menus displayed comprise a summary of the Internal
commands, the currently available Macro commands, and an
extensive explanation of each command. The Macro command
list and/or the extensive help display may be skipped if
not needed.

IF This command permits the conditional execution of a Macro
command (it does not work with Internal commands). The
Macro command specified with the IF call is executed if
and when a condition is met which is based on the numeric
relation between a Variable and a constant which are sub-
mitted as parameters of the IF call. The numeric rela-
tions may be "greater than" (">"), "equal to" ("="), "less
than" ("<"), or any combination of two of these three
("<>" stands for "not equal"). The order of the relation
characters does not matter; "=>" is identical to ">=" and
means "greater than or equal to". Eight (8) Conditional
Macro commands may be pending at a time; any Conditional
command issued while the maximum number of commands are
pending is ignored, and a pertinent error message is dis-
played. The command may be completely entered in one
line, or in any combination of items. It may be recorded
to and executed from a Macro command file.

INITIALIZE: This command permits to assign values to certain
system parameters which cannot be (easily) changed other-
wise since they are kept in memory in a pre-processed form
to facilitate control operations. The values set with
INITIALIZE are the diameters of the crucible and the seed,
the amount of boric oxide used, and the densities of the
solid crystal, the crystal melt, and the boric oxide melt.
Since these values are, in most cases, hardware dependent
constants anyhow, INITIALIZE offers default values which
can be accepted with a plain "Return", or overwritten by
new data. INITIALIZE is automatically executed when the
system is started; it must be called during a growth run

and crrowth is r* r\f e +■ a T tolt-eH harV nart 1 u ""' ~ ~ '" c •— —
resumed with a full-diameter crystal within the boric
oxide melt. In this case, the diameter of the crystal
must be specified as a seed diameter, in order to provide
a correct diameter evaluation after a subsequent RESET
call.

MODE: The MODE command permits to select one of five opera-
tion modes which are numbered 0 through 4. Each mode is a

- 26 -

\&&s£&£^ 'r • V V J

y 3. The Czochralski Growth Control System

£ superset of the functions of the preceding one. Mode 0
I provides monitoring without control, Mode 1, a basic (ma-
™ nual) control but no diameter control. The latter is

possible with Mode 2 which, however, does not include an
fSj anomaly compensation. Mode 3 provides anomaly compensa-
f§ tion, and Mode 4, in addition, a Crucible Lift control

which is based on the exact amount of melt withdrawn from
_ the crucible during the crystal growth. Each mode change
w is reported by the system, and an automatic Data Dump is
*" triggered. The MODE command may be recorded to and exe-

cuted from a Macro command file.

&
PLOT: The PLOT command permits to output continuously (simi-

y\ lar to the DEBUG Continuously command) the values of p to
M eight locations in memory which can be specified by Vari-

able names or by absolute hexadecimal addresses. While
DEBUG Continuously routes its output to the operator con-

Sj sole and the Data file, the PLOT output is directed to
0 | eight spare channels of the D/A converter which are con-

nected to a suitable chart recorder. PLOT can only handle
gr Variables which are in INTEGER*2 notation, which applies
% to all measured parameters and control output signals, and

to a number of internal system parameters (compare chapter
3.5 and Appendix F). A number of auxiliary locations were

K provided which hold "expanded" values of parameters of
which only a narrow numeric range is of interest. For
further information on the PLOT command, refer to chapter

►> 3.5. The PLOT command may be recorded to and executed
N from a Macro command file.

™ QUIT: The QUIT command permits to preempt a currently active
"^ Macro command.

>! RESET: The proper operation of the diameter evaluation rou-
tines requires a RESET command at the beginning of the

., actual growth. The RESET command resets the length grown
y* counter and the weight output to zero or to values speci-
& fied with the call, and initializes the internal data

structures of the diameter routines. It is indispensable
,< to issue such a command after each INITIALIZE command
£• (including the one automatically performed at the begin-

ning of the CGCS operations), and after each irrecoverable
"Speed overflow" error, when the puller is again in a

y well-controlled condition and growth can resume. (Other-
K* wise, no new diameter output is generated, and diameter

control is not possible.) A RESET command which sets the
■>; crystal length and weight to zero is automatically gener-

»

- 27 -

fofrfräk^sfrto^

3. The Czochralski Growth Control System

ated if necessary when the operation mode is changed to
one of the diameter controlled ones (Mode 2 through 4).
It is possible to maintain the current length and weight
values with a RESET command either by answering the perti-
nent questions accordingly if in the interactive mode, or
by specifying a value for the parameter to be maintained
which is less than twice its most negative value (i.e.,
less than -16000 for the crystal weight, and less than
-1200 for the crystal length) . The RESET command may be
recorded to and executed from a Macro command file.

RESTORE: The RESTORE command restores the console output if
it was corrugated, which can happen very easily if one of
the function keys on the console terminal is pressed inad-
vertently, or if the "Return" key is pressed while the
cursor is in the bottom line of the screen, e.g., after
the entry of a full input line of 80 characters. It does
not affect the actual control operations of the CGCS.

SET: This command permits to modify the value of one of the
nine primary system setpoints (crystal diameter, three
heater temperatures, seed and crucible lift and rotation
speeds, and power limit), or of an arbitrary system Vari-
able (see chapter 3.6 and Appendix F). It sets the speci-
fied parameter to the input value, thus permitting abso-
lute changes. SET permits a smooth transition of the
parameter between its current and final values by allowing
a transition time during which the parameter is ramped
(see remarks about parameter ramping in chapter 3.3). The
transition time may range from zero to 9999 minutes (in
fact, longer transition times are possible but cannot be
displayed any more) . The shortest non-zero transition
time is one second; this value is used for all non-zero
transition time values less than one second (0.017 minu-
tes) . The command may be completely entered in one line,
or in any combination of items. It may be recorded to and
executed from a Macro command file.

START: This commands starts the recording of commands in the
Control Output f* If no such file is open, START per-
mits to specif -pen a Control Output file. Command
times recorded i. .,e <. utput file are relative to the time
of the START comiu<_..2. (For example, a SET command issued
3 5 seconds after the START command will be executed 35
seconds after the Control Output file was invoked as a
Macro command during a later run.)

- 28 -

<*£!&. r-r.v.v.v. .v r^vAV. .v. •". -\v.

ifiS

JQ 3. The Czochralski Growth Control System

3.3 PARAMETER RAMPING I Parameters entered with the SET and CHANGE commands may be
ramped linearly between their current values and the final
values specified with SET or CHANGE. Arbitrary ramping times
between 1 second and 9999 minutes may be used. Up to 20 pa-
rameters (primary system setpoints or arbitrary Variables) may
be ramped at a time, no matter whether the pertinent commands
were entered from the console, or from a Macro command file.
The number of parameters which are currently ramped is dis-
played on the console screen. Note: A SET or CHANGE command
requesting parameter ramping which is issued when already 2 0
parameters ere being ramped will be executed instantaneously,
without ramp.-ng. Watch therefore the number of ramped parame-
ters carefully when you use extended ramping and/or Macro
commands. A SET or CHANGE command referring to a parameter
which is already being ramped does not increase the number of
ramped commands. Parameter ramping can be halted by command-
ing CHANGE <parameter> 0 0 (change the parameter by 0 within 0
minutes).

3.4 MACRO COMMANDS

All operator entries input when the "Please command:" prompt
is displayed are first compared to the list of the above In-
ternal commands. If no match is found between the first four

f^ characters of the operator input and any one of the Internal
command names, the CGC3 assumes that a Macro command was re-
quested, and searches the system disk in drive 0 for a file
with an extension ".CMD" whose name matches the operator en-
try. Therefore, the following rules apply to Macro command
names:

(1) Macro command names may consist of one to six alphanumeric
characters; the first character must be alphabetic.

(2) The first four characters of the Macro command (three
characters if the command begins with "DEB") must not
match any internal command name. (Note, though, that com-
mands whose keywords are shorter than four characters have
their names padded to the right with spaces. The name
"SETPNT" is therefore a perfectly legal Macro name.)
Macro names which are part of a Conditional command are
excepted from these restrictions.

(3) A file with the name <macro>.CMD must exist on the disk in
drive 0, and it must be in the special Macro command for-

«X mat.

- 29 -

>

.. -i-.-» -» ^ -n-. -j.--t.-j - i -s ... -V-1! -•» - ,. .V -V .AV* ."» ,'A -^ .% -• A J- .'» -VV.VS -i -*t » . .V .'. -V /A .'» . ^•.■■.•.■■.•-.„V.-. .';..

3. The Czochralski Growth Control System

(4) Macro commands generally do not take any parameters.

If any one of the above conditions is not met, an "Illegal
command" message is issued by the Command Interpreter, and the
command is ignored.

Macro command files comprise a set of recordable internal
commands which are stored in a binary encoded format in order
to save disk space and processing time. Since references to
Variables are stored as the absolute binary addresses of these
Variables and since Variable locations may change when soft-
ware modifications are made, it is essential that Macro com-
mands referring to absolute memory locations are only executed
under the program version for which they were generated. A
warning is issued if the user attempts to execute a Macro
command which was designed for or generated by a CGCS version
different from the one in use, and all Internal commands with-
in the Macro command file which refer to absolute memory loca-
tions are dropped. (They are indicated to the operator,
though, with an appropriate error message.) Macro command
files generated under a previous system version have to be
converted with the Macro Command Editor COMMED into a valid
Macro command for the current system version.

Macro command files can be created in either of two ways:

(a) By recording actual commands during a growth run, using a
Control Output file and the START and END commands, or

(b) With the Macro Command Editor COMMED which can also be
used to modify command files recorded during a growth run.

The following Internal commands can be recorded on and later
executed from a Macro command file:

CHANGE
CLEAR
DEBUG CONTINUOUSLY
DEBUG MODIFY
DEBUG OFF
DEBUG RESUME
DEBUG SUSPEND
END
IF
MODE
PLOT
RESET
SET

- 30 -

•>^^>>>V-WW^v>i^cKSiNl^NjS.5 f.J lx&^>^ A'.'A^

The Czochralski Growth Control System

.v

Macro commands can be invoked from a Macro command file, but
they are not recorded in a Control Output file. This was done
on purpose since a Macro command invoked from another Macro
command preempts the command file from which it was invoked.
(There can be only one Macro command file in use at a given
time.) A Control Output file generated during a growth run
receives commands issued by the operator as well as commands
stemming from a Macro, and it is not possible to distinguish
between both. The operator generated commands interspersed
with the commands originating from the Macro would, however,
be effectively lost if the Macro call were also recorded in
the Control Output file. Replaying this Control Output file
as a Macro file at a later stage would simply result in the
Macro being preempted by the one which was invoked during the
recorded run, and only the commands on the new Macro would be
executed automatically. This would deteriorate the self-
learning ability of the CGCS considerably.

Note: Commands issued by a Macro command file remain active
even after the Macro was terminated or preempted!

I
3.5 DISK FILES

Besides the Macro command (input) files, there are three files
available for output from the CGCS under the operator's dis-
cretion.

•f.

PRINT FILE: The Print file receives the complete dialog be-
tween the operator and the system. Each line of output is
tagged with the absolute and the system times; the date on
which the run was started and the run identification are
contained in page header lines. The Print file can be
opened (activated) or closed (deactivated) with the DOCU-
MENTATION command or via FILES. Print file output can
alternatively be sent to the line printer (which is indi-
cated by ":LP:" in the FILES display), or to a disk file.
Arbitrary (valid) file names and extensions may be chosen,
and the file can be opened on either disk drive. (It is

| recommended, though, that drive 1 is used for the Print
file output because the Print file tends to become very
bulky, and there is not too much room left on the system
disk.) In addition to the operator dialog, Data Dumps are
recorded in the Print file which contain the following
items:

•V

* Measured values of the three heater temperatures.
* Heater power input and output values.
* Measured motor speeds.

- 31

3. The Czochralski Growth Control System

Seed and crucible positions.
Crystal length and diameter.
Weight and differential weight.
Base temperature.
Gas pressure.

In order to conserve space, the output items are identi-
fied only with two-character mnemonics:

Tl
T2
T3
SL
CL
L
D

Pli
P2i
P3i
SR ,
CR .
W .
DW .

PlO
P2o
P3o
SP .
CP .
BT .
GP .

Heater #1 Temperature (in millivolts)
Heater =2 Temperature (in millivolts)
Heater #3 Temperature (in millivolts)
Seed Lift Speed (in millimeters/hour)
Crucible Lift Speed (in millimeters/hour)
Length Grown (in millimeters)
(Calculated) Diameter (in millimeters)

Demanded Power (Input) for Heater #1 (percent)
Demanded Power (Input) for Heater #2 (percent)
Demanded Power (Input) for Heater #3 (percent)
Seed Rotation Speed (in RPM)
Crucible Rotation Speed (in RPM)
Crystal Weight (in grams)
Differential Weight (in grams/minute)

Actual Power (Output) of Heater #1
Actual Power (Output) of Heater #2
Actual Power (Output) of Heater #3
Seed Position (in millimeters)
Crucible Position (in millimeters)
Base Temperature (in millivolts)
Gas Pressure (in PSI)

(in percent)

(in percent)

Data Dumps are initiated in the following cases:

* Upon a DUMP command.
* At a change of the system's operation mode.
* Periodically with a specifiable interval.

In the first two cases, a Data record is also written to
the Data file.

DATA FILE: All important system parameters can be recorded on
the Data disk file. A set of data is compiled in regular
intervals and written to disk. With regard to execution
time and disk space requirements, these records are writ-
ten in a not directly legible binary format; special sup-
port software which can decode Data files and output se-
lected channels, for instance, to a chart recorder, is

- 32 -

3. The Czochralski Growth Control System

required. The following items are contained in each data
record:

ft Operation Mode
System Time
Length Grown
Measured Data (17 channels - all data displayed perma-

nently)
Auxiliary Analog Data (8 channels)
Power Output (3 channels)
Current Setpoints (9 channels - all data displayed

permanently)
Auxiliary Setpoints (9 channels, as above)
Debug Continuously Addresses and Data (4*3 channels)
Diameter
Debug Continuously Variable types (1 channel)

Each channel holds two bytes of data; one record of 64
channels (63 active, 1 spare) fills exactly one sector on
the output disk.

The Data file can be opened (activated) or closed (deacti-
vated) with the DATA command, or via FILES. Arbitrary
(valid) file names and extensions may be chosen, and the
file can be opened on either disk drive. (It is recom-
mended, though, that drive 1 is used for the Data file
output because the Data file tends to become very bulky,
and there is not too much room left on the system disk.)
The operator has to specify an interval for the data ac-
quisition when you open a Data file; there are about 1800
sectors available on an empty disk, and each record con-
sumes one sector. (The remainder of the sectors on the
disk is required for housekeeping.) Since it should make
sense not only to record data but also to process it later
on, it is probably a good idea to restrict data recording
to processes which are actually of interest, and to choose
the recording interval according to the dynamic behavior
of the processes involved. (Once a Data file has been

iew nnpnpd the interval can
Data file has to be opened if a different recording inter-
val is needed.)

CONTROL OUTPUT FILE: All recordable commands (compare chapter
3.4) are recorded in a Control Output file if such a file
is open, and if the START command has been issued. A Con-
trol Output file can be opened with the START command, and
it can be opened and closed with FILES. The file may be
opened on either disk drive, but it must be opened on
drive 0 if it should serve as a Macro command file within

- 3i -

vv«y\. t, - y&+lififfiZ<*Z&^<+S****-.<r*

3. The Czochralski Growth Control System

the same run. No file name extension is required with the
Control Output file name; -ehe CGCS appends automatically
".CMD". Command recording can be deactivated with an END
command at any time after a START command; the Control
Output file remains open, though, until it is either
closed with FILES, or until the CGCS is EXITed. One Con-
trol Output file can hold multiple Macro command records
on the Control Output file which are started and termin-
ated with the START and END commands, but the file re-
quires editing in this case (with COMMED) before all these
Macro command records can be used. (Otherwise, the first
END recorded would preempt the Macro command, and all
following commands would be ignored.)

No-fre: During a growth run, a Macro command file can be created
for "instant use" in the following way:

(1) Open a Control Output file on drive 0 (important!)
with an arbitrary name, preferably using the START
command.

(2) Enter the command(s) you want to have in the file but
be careful that you do not interfere with a growth run
in progress.

(3) Close the Control Output file (with FILES), and

(4) Use it as a Macro command when required.

| A Control Output file must be closed before it can be
invoked it as a Macro file.

PLOT OUTPUT: In contrast to the above three output files, Plot
Output is directed to an analog rather than a digital
device, namely, to a multi-channel chart recorder. In
general, any Variable whose type is INTEGER*2 can thus be
submitted to the chart recorder output, and so can any
arbitrary two-byte memory location which is referred to by
its address. This includes all measured input data (which
are in INTEGER*2 format anyhow), plus a number of internal
system parameters. (Refer to the list of Variables in
Appendix F to find the Variables which might be of inter-
est.) In general, the absolute values of the Variables
specified are output on the eight spare analog output
channels, scaled from 0 to 10 V for the full range of 0

| through 32767 covered by positive INTEGER*2 numbers. A
message is output on the console and recorded in the Docu-
mentation output whenever a Variable changes its sign.

- 34 -

k^K«;^ * ys&c&5&&&^^

3. The Czochralski Growth Control System

(Initially, all outputs are supposed to refer to positive
values.)

In addition to the standard INTEGER*2 Variables, the fol-
lowing Variables obtained from a special treatment of
internal data were provided for chart recorder output:

(1) Heater and Base Temperatures: Four Variables, EXTMP1,
EXTMP2, EXTMP3, and EXTMPB, hold an expanded Heater or
Base Temperature value. The full range (0 to 10 V) of
the output obtained from these Variables is determined
by the Variables RANGT1, RANGT2, RANGT3, and RANGTB,
respectively, starting from an offset value which is
set by the Variables 0FFST1, OFFST2, OFFST3, and
OFFSTB. Like all other Variables, these parameters
can be modified with the standard SET, CHANGE, or
DEBUG Modify commands; their values must be specified
in millivolts. In order to PLOT on the Chart Recorder
Channel 3 the temperature of the Heater 1 which is
supposed to lie, say, between 22.5 and 24.5 mV, the
following commands may be used:

SET OFFST1 22.5 0
SET RANGT1 2 0
PLOT EXTMP1 3

Temperature values below the specified offset will
result in a zero output, and values greater than the
offset plus range values, in an output voltage of
10 V. Note that the offset may be ramped, too; this
permits to record a deviation from a given setpoint.

(2) Growth Rate: An expanded Growth Rate value is kept in
GRRATE. A zero output corresponds to a growth rate of
zero (as calculated by the Diameter Evaluation routine
SHAPE) ; the maximum output is reached for a growth
rate of 20 mm/hr. GRRATE can assume positive and
negative values (the latter during meltback).

(3) Diameter Error: The Variable DIAERR holds the differ-
ence between the Diameter setpoint and the actual
diameter. A zero difference is output as mid-scale
(5 V); zero and maximum output correspond to an actual
diameter 10 mm smaller and greater than the setpoint,
respectively. Greater deviations than 10 mm result in
the proper minimum or maximum output signals.

(4) Crucible Position Error: Similarly, the Variable
CRPERR is set to a value corresponding to the devia-
tion of the actual crucible position from the calcul-

- 35 -

Vtä's:^>*:-&^

3. The Czochralski Growth Control System

ated value. A zero error is again represented as
mid-scale; the maximum deviation which can be resolved
is ± 10 mm. (The crucible is too low if the output is
less than mid-scale.)

Any PLOT channel can be activated by the command

PLOT <varname> <channel #> or
PLOT <hexaddr> <channel #>

The command may be entered in one line, or one item at a
time as requested by the CGCS. The system checks whether
the type of the Variable specified is indeed INTEGER*2 (it
assumes INTEGER*2 locations if a hexadecimal address was
entered), and attaches the value of the specified location
to the proper output channel. Channel numbers 1 through 8
are permitted. An output channel remains active and con-
nected to a Variable until it is re-assigned; output may
be de-activated with the

PLOT ZERO <channel #>

command. The analog output is updated periodically once
every second.

3.6 VARIABLES

3.6.1 GENERAL REMARKS

The concept of the CGCS permits an easy way to modify any
arbitrary parameter used by the system, a way which is cer-
tainly more convenient and safer than using the parameter's
absolute address in memory: A virtually unlimited number of
parameters can be accessed by a name unique to each parameter.
The CGCS looks up the actual address and the type of a speci-
fied Variable in a directory file; the number of parameters
accessible in this way is only limited by the reasonably ob-
tainable size of this file. The directory file has the name
CZONAM.Vmn, with m and n, the major and minor version code
numbers. It contains Variable names, addresses, and types in
a binary encoded form, and is generated from a source file
VARADD.SRC by means of a dedicated program CONVAD. The direc-
tory file must be updated for each new system version since
the Variables listed in it may have changed their addresses
due to program modifications.

Variable names must consist of one to six alphanumeric charac-
ters; the first character must be alphabetic. Variables can

- 36 -

» .> M -J.» . -

^s^^^^^^^^^^^^^^^äääi^^^i^^ääiä^ü r:'/_C'-.<<^:<

«

3. The Czochralski Growth Control System

either be simple storage locations, or arrays. Elements of
arrays must be specified by the number of the element (begin-
ning with 1) , in parentheses immediately following the array
name. (There must not be a space between the name and the
opening parenthesis.) An omitted array element number de-
faults to 1. Valid Variable names are, for example, "TIME" or
"ANAPAR(6)". The name may be entered in upper- or lowercase
characters.

Chapter 3.6.2 provides a list of special Variables which are
r.ore than a simple parameter since their values directly de-
termine the operation of tne CGCS. A table of the most impor-
tant Variable names, sorted according to their meanings, and a
complete list of all Variables used by the CGCS are provided
in Appendix F.

3.6.2 SPECIAL VARIABLES

System Control;

TEST This Variable puts the CGCS into a Test mode if it is
set to -1; all other values maintain the regular oper-
ation of the system. In Test mode, input from the A/D
converter and output to the D/A converter and the
relays board are inhibited. This permits to safely
assign values to an array of Variables which are
otherwise set by the A/D converter's output, and to
run the system with these faked "measured data" for
testing purposes. (The names of the input array Vari-
ables are made up from the letter "M" plus a five
character mnemonic; compare Appendix F.) Note: TEST
must not be set to -1 while the CGCS is actually con-
trolling the puller!

DIASTA This is an internal status parameter of the Diameter
Evaluation routines» It may be set to -2 at the end
of a growth run in order to disable the diameter eval-
uation and, in particular, the generation of error
messages which may be triggered by some of the actions
usually involved in the close-down procedure of the
puller. Diameter evaluation may be enabled again with
a RESET command.

tf ALPHA The parameter ALPHA determines the diameter evaluation
algorithms within two extreme approaches. ALPHA
should be a floating-point number between 0 and 1.
For further information, see chapters 3.7 and 4.5.2.3.

- 37 -

3. The Czochralski Growth Control System

XTLSHP This parameter holds (in floating-point format) the
maximum permitted difference between the squares of
the diameter of the crystal (in millimeters) in two
adjacent sections of the crystal, approximately 1.2
millimeters apart from one another. The square of the
diameter stored for buoyancy compensation purposes is
adjusted, if necessary, to differ by not more than the
value of XTLSHP from the preceding value.

Display Control:

INTRVL This Variable determines the duration of the intervals
between subsequent output operations to the console.
One unit corresponds to an interval of 50 millisec-
onds. The default value of 10 corresponds to a com-
plete screen update every four to six seconds, depend-
ing on the other activities within the CGCS. More
frequent updates may be required during testing and
alignment; they can be achieved with smaller INTRVL
values. The fastest screen update is done with INTRVL
set to 1; a zero INTRVL value disables the screen out-
put entirely. Note; The screen display will
"freeze" irreversibly if INTRVL is set to zero; regu-
lar operation will not be resumed even if INTRVL is
set back to a nonzero value. The system has to be
restarted in order to re-activate data output on the
screen. (The CGCS remains operable, though, with the
screen output disabled.) INTRVL does not affect the
output of the time, of operator commands, and of sys-
tem messages.

Data Dump Control:

DUMPIN The Variable DUMPIN holds the interval between period-
ical Data Dumps to the Print file; the time units are
minutes. DUMPIN may be set to any convenient value at
any time; a DUMPIN value of zero disables the period-
ical Data Dumps.

DUMPFL This Variable triggers an additional Data Dump (and an
additional record written to the Data file) if it is
set to -1. Note that a SET DUMPFL -1 0 command is the
only save way to trigger additional Data Dumps from a
Macro Command file. (DUMPFL is reset by the Data Dump
routine; it must therefore be set to -1 repeatedly if
more than one Data Dumps are required.)

- 38 -

N j% >»".."*"v-L-\

The Czochralski Growth Control System

Scratchpad Variables:

DUMMY In order to facilitate advanced Macro programming,
eight dummy INTEGER*2 locations were provided. These
locations are not accessed by the CGCS code proper,
but they may be arbitrarily ramped or used as flags
(set to specific values) and employed in Conditional
Macro commands. The dummy locations are referred to
as DUMMY(1) through DUMMY(8).

Miscellaneous - Read-Only Variables:

TIME The Variable TIME holds the current system time (in
seconds) in an unsigned two-byte INTEGER location.
This counter wraps around to zero after 65,536 sec-
onds. Note that the contents of TIME are interpreted
as a signed INTEGER*2 number by the display and also
by the Conditional Macro Command execution routines;
time counts greater than 32,767 seconds are thus in-
terpreted as negative numbers.

RAMPNG This Variable holds the number of parameters which are
currently being ramped. You may look at it (and have
your Macro commands look at it) , but messing around
with RAMPNG will inevitably confuse the CGCS. The
results may be spectacular but probably not desirable.

CNDCNT The same considerations as to RAMPNG apply to the
count of pending Conditional Macro commands kept in
this Variable.

ZERO This location holds, simply enough, a zero INTEGER*2
value. You may try to modify it but you won't be very
successful since this location is in ROM and thus
inaccessible to any writing attempt.

3.7 THE DIAMETER EVALUATION ROUTINE

The control operations of the CGCS center around the control
of the shape of the crystal grown, i.e., the control of its
diameter. Unlike the approach used in the conventional analog
controllers for compound crystal growth, it is the diameter
rather than the first derivative of the crystal weight which
is compared to a pertinent setpoint and whose deviation from
the setpoint is used as an error signal for a PID based con-
troller algorithm (compare chapter 4.5.1.) The accuracy and

- 39 -

V- ».* ■C -." •.' «.' •." v" «»* «>■ V "." • * V V %" '

l approach used in the CGCS is based
TO i rf V> 4" signal supplied by an analog
After its A/D conversion, th is signal

3. The Czochralski Growth Control System

usefulness of the diameter control approach depends therefore
crucially on the accuracy of the calculated crystal diameter.

The diameter evaluation
upon the differential
differentiator circuit.
is submitted to digital low-pass filtering; an anomaly compen-
sation analogous to the approach used in the Cambridge Instru-
ments Anomaly Shape Control board may be applied to it. The
current diameter of the crystal is calculated from this dif-
ferential weight using the actual growth rate (i.e., the dif-
ference between the seed and crucible lift speeds plus the
speed with which the semiconductor melt drops when it is con-
sumed by the crystallization process). A full compensation
for the buoyancy in the boric oxide encapsulant is provided;
the diameter evaluation routine keeps track of the shape of
the part of the crystal next to the solidification interface
(to be accurate, of the last 75 millimeters of the crystal) ,
and calculates the volume immersed in the encapsulant and the
height of the boric oxide layer from this information. This
approach permits the use of actual physical parameters of the
system (like densities, dimensions, and speeds) rather than
the modified parameters required in conventional analog
growth.

As a by-product of diameter evaluation,
provide a setpoint for the position of the
used in Automatic mode (Mode 4) to control
speed via a PID loop. This control loop
surface of the semiconductor melt (and thus
interface) at the same location within the
despite of the dropping of the melt when molten material is
consumed by the growing crystal.

the same routines
crucib'! a which is
the crucible lift
tries to keep the

heater's hot zone

The diameter and crucible position evaluation algorithms which
are used throughout the major part of a crystal growth run are
based on the followina assumptions:

(1) The crucible is a straight right cylinder.

(2) The amount of boric oxide encapsulant remains constant.

(3) The semiconductor melt fills the entire diameter of the
crucible, and material added to the crystal reduces the
height of the semiconductor melt in accordance with the
ron<4Pn'?.tion of the total mass (melt plu^ crystal).

While assumption (2) is reasonably justified in the case of
gallium arsenide throughout the entire growth process because
the boric oxide encapsulant does not wet the crystal, this

- 40 -

V *. %' V "." "»■ •-'.*» »"■"."» .'• •'S ."•• .*> »'■ ,"" m~* ."* »"■•_).*• •** .VS""^^^^ .-. .-» .'l. .>.

3. The Czochralski Growth Control System

does not apply to the other two assumptions towards the end of
a growth cycle: The transition between the crucible wall and
bottom is always a bevel with a finite radius; and the semi-
conductor melt tends to contract itself due to surface tension
and recedes towards the center of the crucible if its amount
drops below a certain limit. In an extreme case, the above
assumptions have to be amended as follows:

(1) The semiconductor melt forms a cylindrical disk with con-
stant thickness whose diameter (rather than thickness;
decreases in order to supply the material being solidified
in the crystal.

v.

».

(2) The gap which opens up therefore between the semiconductor
melt and the crucible wall is filled with boric oxide
encapsulant, which reduces the effective boric oxide
height as the crystal grows.

The diameter evaluation algorithms used in the CGCS are cap-
able of handling both extreme cases, and any arbitrary inter-
mediate stage, according to the value of the Variable ALPHA.
An ALPHA value of 1 corresponds to the first set of conditions
(when the semiconductor melt fills the entire crucible diame-
ter) , whereas a value of 0 conforms with the second set (i.e.,
extreme melt recession). Values for ALPHA between 0 and 1
permit to model an intermediate stage between the two extremes
in a heuristic mode: Most likely, the disk formed by the
receding melt does reduce its thickness when the melt is used
up by the growing crystal; the speed with which it does so
may, however, be considerably less than during the regular
growth. An ALPHA value less than 1 but still greater than
zero will therefore be appropriate during the final growth
stages. Since crystal growth will always start under condi-
tions corresponding to the first set of assumptions, ALPHA is
initialized with 1, and remains at this value unless it is
explicitly SET or CHANGEd to a different value.

ine KESET" command is closely linked to (and required by) the
diameter evaluation routines. It initializes the shape infor-
mation required for the buoyancy compensation under the as-
sumption of a cylindrical seed with the diameter specified
with the INITIALIZATION command (or sequence) which passes
through the entire boric oxide encapsulant layer, and it pro-
vides initialization values for the crystal length and weight
calculation. Furthermore, a RESET command resets ALPHA to 1
and cancels all effects of a possibly different previous ALPHA
VÄ 111»

- 41 -

--.'. -\ *". •". . -* -*. /.-". y.o.v

4, The Czochralski Growth Control System Software

4. THE CZOCHRALSKI GROWTH CONTROL SYSTEM SOFTWARE

4.1 PROSRAM STRUCTURE

From the programmer's point of view, the Czochralski Growth
Control System (CGCS) is an iRMX-80 based real-time applica-
tion system consisting of a number of RMX "tasks". A task is
a section of program code, usually dedicated to one control
commission or part of it. It is more or less independent from
other tasks and is executed whenever its specific action is
required and system resources are available, according to the
priority level which has been assigned to it. The execution
of a task is scheduled by the operating system's "Nucleus",
either in response to extraneous events (interrupts), or when
a task receives data in the form of a "message" from a fellow
task which it was waiting for.

From the user's point of view, however, the CGCS consists es-
sentially of three functional groups (Fig. 7) each of which,
in turn, is constituted of several tasks:

(1) The System Interface: This part of the software is trans-
parent to the user (and therefore not shown in Fig. 7) .
It provides, nevertheless, essential functions like data
formatting or timekeeping.

(2) The Operator Interface: These tasks form.the link between
the operator and the controller routines proper. Holding
the system's "intelligence", they constitute the by far
largest part of the CGCS code. The Operator Interface is
responsible for the following actions:

(a) Prompting for and interpretation of operator commands
which control the functions of the CGCS.

(b) Execution of operator and Macro command file sourced
commands. This function was kept strictly separate
from the operator command interpretation in order to
facilitate the handling of Macro commands.

(c) Recording of all commands pertaining to the actual
crystal growth process.

(d) Periodic output of measured data on the console CRT
terminal, and to a disk file, and preparation of data
to be output on an analog chart recorder.

(3) The Process Controller proper: These routines are actual-
ly involved in controlling the heater power(s) and motor
speeds according to the pertinent setpoints provided by

- 42 -

>

9!

w»

fc

4. The Czochralski Growth Control System Software

the Operator Interface. They also constitute the inter-
face to the analog and digital I/O hardware.

We will follow the above scheme for the subsequent discussion
,** of the CGCS software.

4.2 GENERAL PROGRAM INFORMATION

The CGCS consists of routines part of whicr. were written in
|y Fortran, part in assembly language. In general, the Operator
"/, Interface and part of the actual Controller routines are For-

tran based, whereas the System Interface modules (and all
r system routines which were not supplied by Intel) consist of

assembly language code. Assembly language was chosen when one
or more of the following requirements had to be met:

A! * Interface to iRMX-80 system routines which cannot be
ft called directly from Fortran due to different parameter

passing conventions.
V jC * High operation speed, which is particularly important if a

routine is invoked very frequently.

* Numeric operations which can be coded mere efficiently in
assembly language than in Fortran (e.g., the low-pass
filtering algorithm).

*

■r

■»£ Fortran, on the other hand, was chosen where the use of a
high-level language was considered advantageous with regard to
program clarity and programming efficiency. It was the ob-

P vious choice for routines which involve floating-point arith-
■•** metics (because Fortran is the only compiler-based language

supplied by Intel for 8080/85 processors which supports float-
ing-point operations) . In order to improve the execution
speed and code efficiency of Fortran, a set of library rou-
tines was specially prepared which replace the standard
(lengthy and slow) Fortran floating-point algorithms by rou-

[V tines which make use of the 8231 Numeric Processor. These
*' routines are not only several kilobytes smaller than the stan-

dard ones, they also boost the execution speed by about one
£. order of magnitude.

A special approach was necessary to fit the CGCS into the
available memory of less than 54 KBytes. (Mere than 10 of the
total 64 KBytes are required for the ROM resident system and
its data areas in RAM.) The entire code of the Czochralski
system would have exceeded this limit by far. We had, there-

Jfv fore, to choose an overlay approach (Fig. 8): Program code

- 43 -

&-^.&;^£^^

4. The Czochralski Growth Control System Software

which is not required permanently within the system is loaded
ir.to a reserved memory area only when needed, overwriting an
other currently dispensable overlay. The only system function
where this is possible without unduly impeding the system
operation is the Command Interpreter which controls the dialog
between the operator and the system, Since the operator can
only enter one command at a time, and since human command
entry is a very slow procedure, compared to the standards of a
microcomputer, it was possible to split the Command Interpre-
ter's functions into a total of 22 different overlays each of
which is in charge of one particular command or a group of re-
lated commands. According to the size of the greatest over-
lay, a memory area of 2 KBytes was reserved for Command Inter-
preter overlays; the total size of all overlays together is
approximately 3 0 KBytes.

The layout of the Czochralski Growth Control System memory map
(Fig. 6) was chosen to permit an easy software updating. Mod-
ifying internal system parameters easily (compare chapters 1.3
and 3.6) requires a translation table which correlates the
symbolic name of a system "Variable" to its physical storage
location in memory. Since this translation table has to be
generated manually, it is obviously not desirable if it has to
be rewritten after each minor modification of the controller
software. The system grows or shrinks at its high-address
end; in order to prevent them from being affected by system
size changes, all important system Variables were located at
the lowest addresses available, immediately above the code and
data areas of the ROM resident system. Most of this data must
be available to several system tasks; extensive use was there-
fore made of named Fortran "COMMON" blocks which are arranged
(in alphabetical order) at the lowest addresses and consume
approximately 1,280 bytes. They are immediately followed by
the general system data area. The lowest addresses within
this area are used by the data locations of assembly language
modules some of which have to be "tied" to "COMMON" blocks;
these locations are still not very likely to be affected by
program modifications. They are followed by the data areas of
the permanently resident Fortran based software which are
essentially scratchpad locations for the internal use of these
routines. The remainder of the data area whose total size is
approximately 9,900 bytes holds system data which hardly need
be explicitly accessed and whose actual absolute addresses do,
therefore, not matter.

A 2 KByte range immediately above the data area is reserved
for the Command Interpreter overlays' code and local data. It
is succeeded by the bulk of the system code. This code area
has currently a size of about 39.4 KBytes; the memory area be-
tween its top and some disk buffers and system variables which

- 44 -

^•-^'•-"-'^

■£ 4. The Czochralski Growth Control System Software

M reside close to the absolute top of memory is used as a memory
I pool from which memory can be dynamically assigned to system
^ tasks when required. The size of this memory pool does not

matter unless it becomes too small; the program code may
'j> therefore grow due to software improvements without penalty.
«^ | (The memory reserves are currently in the order of 1.5 KBytes,

which does permit program improvements but certainly not the
_ introduction of major new features.)

*<

iV

>

t ^

4.3 THE SYSTEM INTERFACE

The System Interface consists of a number of subroutines
if. (which can be called by any task) and of five primary and
V several secondary tasks which are dynamically generated by the
** primary tasks. Interface routines which belong to a special

set of interface libraries can be recognized by their names
& which begin either with "FR..." or with "FX...". A complete
C documentation of this software is contained in the Fortran-

RMX-8 0 Interface Manual (see Appendix A) . We will restrict
rwj ourselves to the discussion of two features of the System

Interface which are not completely covered by the above docu-
mentation, and which are actually noticeable to the user,
namely, Console and Printer I/O, and Timing.

4.3.1 CONSOLE AND PRINTER I/O

The user-friendliness of a system depends to a large degree on
the design of the command input and data output routines.

P Input on the system console should be possible in a straight-
forward way, without requiring the operator to care for inter-
nal peculiarities of the system. Usually, input actions are

y, explicitly requested from the operator, and operator input is
*< accepted after it was requested by the system. In real-time

systems, however, it may happen that thp operator-system dia
^ log is delayed due to an extraneous event which requires imme-

diate response, and the operator may be ready to enter console
input before the system is waiting for it. In order to pre-
vent operator entries from being lest or truncated, the system
should have a "type-ahead" feature which collects in a special

j> buffer operator entries which were not yet requested for. The
specially written Terminal Handler used by RXISIS-II and the
CGCS offers, in fact, very comfortable type-ahead; up to 80
characters of operator input which may be contained in a maxi-
mum of 4 0 input lines may be collected in the type-ahead buf-
fer.

- 45 -

frffifrftsti^&^^^ :

4. The Czochralski Growth Control System Software

The design of the output to the operator's console is not
straightforward either: The standard approach is chronologic-
ally arranged output where new items are added in the bottom
output line, and older output lines scroll up and, on a CRT
terminal, eventually off the screen. Although such a scrolled
output is perfectly fine if it need only contain the dialog
between the operator and the system, it is much less suitable
if a large amount of data is to be displayed, particularly if
output data is generated asynchronously by various processes.
In this case, a CRT screen with a fixed format offers clearly
advantages: each item can be found at the same place of the
screen all the time, and there is always a complete set cf
valid output data displayed. Each item need only be written
to the console when it was changed, which evidently saves a
lot of output overhead.

However, the standard Fortran output routines (and also the
standard iRMX-80 Terminal Handler) support only simple
scrolled "Teletype" output. A special set of I/O routines and
tasks was therefore prepared which provide, *'n conjunction
with the improved Terminal Handler, the following features:

* Support of a "fixed" output screen, i.e., the possibility
to write in a random mode to any location on the screen of
a console CRT terminal.

* A "split" output screen which provides, in addition to
fixed format output, a conventionally scrolled area to
which data can be written whose chronological order does
matter. This scrolled portion of the screen can advanta-
geously hold echoes of the operator's input, and system
messages.

* Various output data formatting functions which are not
provided by standard Fortran, e.g., a self-adjusting
floating-point number output format.

~ Suppuii- <J£ uoiaiaärid Tine parsing techniques. An input line
may be processed repeatedly and scanned for various items.

* User-friendly unformatted input of numeric values. In
contrast to standard Fortran, hardly any syntax rules need
be regarded.

In fact, all standard Fortran I/O routines, including disk
I/O, were replaced by specially written alternative code.
Although the programming interface of the alternative routines
is a little awkward compared to the standard Fortran ones, the
specially written modules comprise not only considerably less

- 46 -

1.YWW. A>\v -v V- ">\

4. The Czuchralski Growth control System Software

program code, they are also much faster than their Fortran
counterparts.

Some output items, in particular, the entire dialog between
the operator and the system, should also be recorded for docu-
mentation purposes either on the printer, or on a disk file.
A special set of interface routines was therefore prepared
which can be called by any task which requires input or gener-
ates output, namely, STRIN and DATIN for the input of data to
variables of type CHARACTER and of any other type, respective-
ly, and STROÜT and DATOUT for the corresponding output opera-
tions. (Fortran passes variables of CHARACTER type to sub-
routines and functions in a way different from any other vari-
able type, which necessitates a separate treatment.) The
input routines echo the entire input line to the documentation
output, while the output routines write simultaneously to the
screen and to the documentation output. In either case, each
documentation output line is preceded by the actual and the
internal system time of its generation. The documentation
routines format their output into pages of 56 lines each; each
page is headed by a line which holds the run's date, a run
identification, and a page number.

The peculiarities of a real-time process control system re-
quire an extremely high degree of fault tolerance, particu-
larly for the I/O routines. The failure of a peripheral (and,
possibly, only auxiliary) device like a printer must by no
means permanently detain the operation of the remainder of the
system. Therefore, a printer timeout feature was provided
which discards printer output if the printer did not respond
within a given period (currently, 10 seconds); after three
unsuccessful attempts to write to the printer, printer output
is disabled altogether. (A corresponding error message is
displayed on the CRT console.)

v.

ö iSTriM TIMING

O

Time is not only a crucial factor in process control, a timing
facility of sufficient accuracy is also very desirable for any
data logging or operation recording. Unfortunately, there is
no reasonable clock hardware available within the family of
OEM boards chosen; timing has, therefore, to rely on software
routines.

«-.

The heart of the timing of the CGCS is a dedicated timer task
(FXTIME) which is triggered by the internal timing of the
iRMX-80 operating system. iRMX-80 permits to introduce delays
in the execution of a task which are multiples of 50 ms, its

- 47 -

^^>^^^<^^^--"WSi<^^--^"; S^v\ ■..V.V.v;. , A.O .--

4. The Czochralski Growth Control System Software

internal time unit, which is derived from the on-board quartz
clock. FXTIME runs once every second, i.e., every 20 iRMX
time units. It provides time information (in the format
hh:mm:ss) of the actual time in 24 hours notation, and of an
internal system time which starts when the CGCS is loaded, and
which is counted up to 95 hours, 59 minutes, and 59 seconds,
wrapping around to zero after 96 hours. Furthermore, FXTIME
features two counters which are incremented every second and
which wrap around to zero after 65536 seconds (approximately
IS hours and 12 minutes) . One of the counters runs from the
system starr, the other can be reset arbitrarily, and used to
trigger an "alarm clock" when its count exceeds a specified
value. FXTIME also sets flag bytes once every second, every
ten seconds, every minute, and at programmable intervals;
these flag bytes and the "alarm clock" function are used to
trigger the execution of controller tasks. In fact, all cri-
tical timing is derived from FXTIME, which guarantees an accu-
rate long-term synchronization of tasks. Ths internal timing
of the CGCS can easily be checked by comparing the displayed
time to an accurate clock. (The timekeeping of the CGCS is
not extremely accurate, though, compared to the standards of
common quartz clocks. This is true because it is based on the

be sufficient for providing a microprocessor clock signal; it
does certainly not meet the requirements of high-accuracy
timing.)

4.4 THE OPERATOR INTERFACE

4.4.1 THE CONSOLE CRT SCREEN

The output on the CRT console terminal is the major visible
part of the CGCS's Operator Interface. Several tasks some of
which are not even part of the Operator Interface proper con-
tribute to the console output (compare Fig. 9):

(1) Fixed Part (Lines 1 through 16 or 17):

Timer Task (FXTIME):
Actual and system time.

Command Interpreter Task (RXIROM):
Table frames, text output, date, and run identifica-
tion.

Command Executor Task (CMMDEX):
Macro command name; operation mode.

- 48 -

)• '• >' .*»-.■•> "J>N^V v *.* v v v v" <vv. •■« «"«^"»»v •"- *4JriL*'>ijr%yfn.rtL.<i «*» 'V-j<';4.*'*Jr» <VA.-\/f« **?+*'**"*.*• "V'«J{\ rfvyvy« +*_***

5
4. The C2ochralski Growth Control System Software

Measured Data Output Task (MEASDO):
All numeric values; Debug output in line 17 if acti-
vated.

".•

v

i

Command File Input Task (CMFINP):
Macro command name (cleared).

(2) Scrolled Part (Lines 17 or 18 through 21):

Command Interpreter Task (RXIROM):
Operator entry echoes, various messages.

Command Executor Task (CMMDEX):
Various messages.

Command File Input Task (CMFINP):
Various messages.

Diameter Controller Task (DIACNT):
Various messages.

All other tasks:
Disk, I/O, or system error messages.

(3) Prompt Line (Line 22):

Command Interpreter Task (RXIROM)

(4) Input Area (Lines 23 and 24):

Directly written to by the Terminal Handler.

The numeric values written to the console are, in general,
given as physically relevant magnitudes, i.e., as properly
scaled floating-point numbers. The following dimensions apply
to the various items:

* Diameter, Lengths, Positions: Millimeters.

* Temperatures: Millivolts (thermocouple voltages).

* Lift Speeds: Millimeters per hour.

* Rotation Speeds: Revolutions per minute.

* Weights: Grams.

* differential Weight: Grams per minute.

* Powers, Contact Device: Arbitrary units (0 ... 100).

- 49 -

:t

4. The Czochralski Growth Control System Software

* Gas Pressure: Pounds per square inch.

* Densities: Grams per cubic centimeter.

4.4.2 AUXILIARY I/O ROUTINES

The tasks which request console input or generate console
output (compare chapter 4.4.1) use, in general, the Fcrtran-
RMX-80 Interface I/O routines whose names start with "FR..."
to write to the screen, or the routines discussed in chapter
4.3.1 if thsy also write to the documentation file. All these
output routines require a screen position information which is
passed in the first parameter of the subroutine call. Some
locations on the screen are, however, very frequently written
to, and it was advantageous to provide special routines for
these output actions which have the screen position informa-
tion implicitly built in. Calling any of the^e "shorthand"
routines spares the programmer entering one parameter, and it
abbreviates the actual program code. Similarly, some input
actions like the checking for the input string "Y(es)" can
expediently be handled by dedicated routines.

The following routines (and several others) are kept in the
assembly language module AUXASM. With the exception of
PRETTA, they may be called by any task performing output.

PROMPT: This routine writes the string which was passed to it
as a parameter left-adjusted into the input prompt line
(line 22) .

MESSGE: The string passed as a parameter to MESSGE is written
into the scrolled screen area.

ERRMSG: Similar to MESSGE, the ERRMSG routine writes to the
scrolled screen area, appending a "beep" in order to at-
tract the operator's attention.

PRETTA: This routine writes "- press "RETURN" key to conti-
nue" to a specifiable screen location (usually in the
prompt line), and waits for any input on the console.

Three additional I/O routines are kept in the Fortran module
AUXCOM:

BEEP: This routine simply issues a "beep" on the system con-
sole. It takes no parameters.

- 50 -

'^Mt^^^^^^^iä!^^ki^^^^^^k .V. <f, ■*&M '+&&&'*-'*

4. The Czochralski Growth Control System Software

CLIPRL: The subroutine CLIPRL overwrites the input prompt
line with spaces. It does not take any parameters.

CHKANS : This routine is a LOGICAL Function. It returns
".TRUE." if a valid input line beginning with an upper- or
lowercase "Y" was entered on the console, and otherwise
".FALSE.". CHKANS needs a LOGICAL argument which is re-
turned ".TRUE." if an empty line ("Return" only) was en-
tered, and otherwise ".FALSE.".

A

4.4.3 THE COMMAND INTERPRETER - TASK RXIROM

The Command Interpreter task has a special position among the
CGCS tasks in several regards:

* It is, in fact, the continuation of the ROM resident part
of RXISIS-II, RXIROM, and the first task to come "alive"
in the CGCS. Although it is "unofficially" referred to as
"COMINT" within the program source modules, we will use
here its "official" name RXIROM (which is also reported,
e.g., by disk error messages).

* It performs the system initialization and activates all
other CGCS tasks.

* It is the only task which requests and processes operator
input (but not the only task to generate output).

The Czochralski Growth Control System is invoked under RXISIS-
II by the command "CZOCHR". RXISIS-II searches for and loads
a program module "CZOCHR.RXI" whose only purpose is to vector
control to a special code sequence in the RXISIS-II Command
Line Interpreter which replaces the file name extension ".RXI"
by ".BIN", provides the resulting module name "CZOCHR.BIN" for
the ROM resident bootstrap routine, and restarts the system.
The bootstrap routine is part of the task RXIROM; normally, it
loads into RAM and starts RXISIS-II. Being entered in the de-
scribed way, however, it loads the module "CZOCHR.BIN" rather
than "RXISIS.BIN" from disk drive 0; "CZOCHR.BIN" holds the
entire resident code of the CGCS plus preliminary initializa-
tion values for some data locations, and a special start mod-
ule which is loaded into the memory area which will later be
used by the Command Interpreter overlays. Control is passed
to this initialization code when the program file was success-
fully loaded.

The start module is entered via the assembly language routine
CZINIT which first sets an internal flag of the Monitor which

- 51 -

KKVVVAA '^^^^stä^täXtä^ •v\y. './..■•. <-, •'. r, - v ■ v» *J •'■<.'■' »•" ■.* •-* *." ■

4. The Czochralski Growth Control System Software

enforces a duplication of the Monitor's CRT output to the
printer. (This measure provides a permanent record on the
printout of an inadvertent entry into the Monitor program
which might happen due to software or hardware failures.)
CZINIT also resets a flag which controls the activation of the
Monitor from the console keyboard. (This is why the Monitor
can be entered under RXISIS-II but not from the CGCS by press-
ing the "Break" key of the console terminal.) Subsequently,
CZINIT builds a new task stack close to the top of memory
since the stack of RXIROM is too small. (Each iRMX-30 task
requires a stack of its own.) It stores a program version
code in a reserved memory location; later, a version code
which is loaded with each overlay will be compared to this
data in order to ascertain that only matching program modules
are loaded. After some initialization calls to Fortran and
Fortran-iRMX Interface routines, CZINIT passes control to the
Fortran subroutine FXUSIN.

FXUSIN initializes the digital I/O interface and several con-
trol structures which can bs accessed more conveniently via
Fortran than via assembly language. It calls the (assembly
language) subroutine TESTHD which checks whether an A/D con-
verter board is installed in the system by initiating a con-
version and checking the status byte returned by the A/D con-
verter for a "Conversion Ready" bit. The Variable TEST is set
to -1 if no A/D converter response was detected within a de-
fined timeout period; otherwise, TEST is returned with the
value 0. (This check is important if the CGi Z software is
intended to be run on hardware which does not feature the A/D
and D/A interfaces. In this case, practically all system
resources would be spent by the task ANACNT for waiting for
the A/D converter to finish a conversion, which obviously
never happens if there is no A/D converter within the system.
The CGCS would, therefore, be practically locked in such a
test environment. Th3 value of TEST is later used for bypass-
ing the analog input and output routines within the task
ANACNT. Note that the TESTHD call is done before ANACNT is
created.) Subsequently, FXUSIN calls the assembly language
subroutine CREATE which is, similar to TESTHD, part of the
module CZINIT. CREATE activates all tasks of the CGCS, which
can only be done safely after the above ii. ■* tializations, and
makes unused memory (including the old RXIROM stack) available
to the memory pool of the iRMX-8 0 Free Space Manager. After
the return from CREATE, FXUSIN provides a sign-on message
(plus a message referring to a "Test Mode" if TEST has been
set to -1), and loads the data overlay 'CZOOVD" from drive 0.

Similar to "CZOCHR.BIN", "CZOOVD" is loaded only once during
every growth run. "CZOOVD" which holds the (initialization)
values of practically all system parameters is kept separate

- 52 -

4. The Czochralski Growth Control System Software

from the main code module on purpose. The preparation of the
CGCS program modules is a lengthy and complicated procedure
which would have been indispensable after each modification of
a system parameter initialization value if this data had been
kept within "CZOCHR.BIN". Since it is very likely that numer-
ic parameters require changes more frequently than the program
code, it was preferable to load them from a special data over-
lay which can be modified and configured very easily.

The auxiliary routine LOVLAY which is exclusively used by
RXIROM loads overlay modules into RAM. (The information where
data is to be loaded is part of the overlay program file. It
is, therefore, sufficient to specify the name of the file to
be loaded.) Several safeguards are provided which permit to
trap the potentially disastrous loading of improper files:

* The data on each disk file and, in addition, the program
code itself, contains checksums which are validated by the
Loader task. Any damage to a program file is therefore
very likely to be detected and reported by the Loader.
LOVLAY returns a message "Defective program disk" in this
case.

* Each overlay contains memory locations which hold its name
and the program version code. LOVLAY reports "Software
damage likely - reset the system" if either the overlay
name or the program version loaded with the overlay do not
match the expected data. (It is important not to mix
modules belonging to different CGCS versions because all
overlays access code or data within the resident part of
the CGCS. Since the absolute address of a routine or a
data location may change due to system modifications, an
overlay routine may call improper code or access wrong
data if its version does not correspond to the version of
the resident code.)

Note: Do not disregard error messages returned during overlay
loading. A potentially disastrous effect of a defective over-
lay may show up only after a considerable time. It is always
dangerous to copy single overlay files to a work disk, or to
exchange work disks inconsiderately. There is, however, no
danger if a Disk Error 24 is reported during overlay loading,
and if the defective disk is replaced by one which holds the
same program version.

(In very rare cases, a Disk Error 120 - Unable to open File -
may be displayed when the system attempts to load CZOOVD.
This may happen i r the operating system is overburdened during
the start phase, for example, if a key is continuously pressed
on the console terminal. In this case, the memory pool has

- 53 -

4. The Czochralski Growth Control System Software

not yet been initialized when memory is requested from it by
the Loader software, and the above error condition ensues.
The "Defectiv ; program disk" message may be ignored in this
case, and lo. ■.. .ng may be retried by pressing "Return".)

The start routine FXUSIN displays the creation date of the
data overlay CZOOVD (which is also an indication that this
module was loaded properly), and requests the current date.
The date should be entered in the format shown in the prompt,
but any string of 8 characters which starts with a digit is
accepted. The date information is stored for reference pur-
poses only; it will be used on the console screen, in the
documentation output page headers, and in the header records
of the Data files. After the date, the current time is re-
quested from the operator; the system expects two or three
positive integer values as an input, separated by colons
(":"), spaces, or any other non-numeric characters. The time
should be entered in 24 hours format; zero is assumed as a
seconds value if only hours and minutes were specified. The
internal system time starts running - yet invisibly - when the
subroutine FRSETT is called after the "Return" key was pressed
to enter the time information, and the absolute time is set to
the value entered. Finally, FXUSIN requests a "Run Identifi-
cation" which can be any arbitrary string up to 2 0 characters
long. A blank run ID can be entered by simply pre-sing "Re-
turn".

FXUSIN calls now the subroutine TIMLIN which is part of the
start code in the future overlay area. TIMLIN generates the
date, absolute time, run ID, and system time display in the
top screen line which will be shown throughout the entire
growth run. The operator can accept or reject the data dis-
played; this is, by the way, the only occasion within the
entire CGCS where a plain "Return" is interpreted as "Yes"
(otherwise, it is treated like "No"). Depending on the out-
come of this query, FXUSIN either loops again through the
date, time, and run ID input section, or it returns to CZINIT
which passes control to the resident portion of the Command
Interpreter, i.e., to the routine COMINT.

COMINT starts its operation by writing the output "frame" to
the console terminal which is eventually filled in with the
output of measured data. This is done by the subroutine FRAME
which resides in the overlay CZOV08. This overlay has to be
loaded by COMINT; it overwrites the code of CZINIT and FXUSIN.
(This and the following initializations can, therefore, not be
done from FXUSIN which would otherwise be the logical place to
do them; there is no way for a routine in an overlay to call
directly another overlay resident routine which uses the same

- 54 -

/V\Vy>VV V?&&/^££&£&ä{£&fi

4. The Czochralski Growth Control System Software

physical memory locations.) We will discuss the subroutine
FRAME later which is also called upon a RESTORE command.

The next two routines invoked during the initialization of
COMINT reside in overlays CZ0V16 and CZ0V19, respectively.
DOCUMT permits to activate a Documentation output, either on
the printer or on a disk file, and it allows to specify an
interval for dumps of measured data to the Documentation out-
put. INIDAT permits the initialization of some process para-
meters. Both routines will be dealt with later.

COMINT enters now its infinite loop which starts with the
output of the prompt "Please command:" and the request of
operator input. The input routines transfer an input line of
up to 80 characters into an internal buffer when the operator
terminates his entry with "Return"; no data is available to
the CGCS before "Return" is pressed. First, COMINT attempts
to transfer the first six characters in this input buffer to
the CHARACTER variable COMMD. The LOGICAL variable STAT is
returned ".TRUE." by the STRIN call if and only if an empty
line was entered ("Return" only). COMINT repeats its input
prompt in this case, and waits for the next entry. Otherwise,
the first character of the input line is checked and the input
rejected if it is a space (the command keywords must be left
adjusted within the input line to be processed properly).

The presumable command keyword in COMMD is now compared to
(currently) 25 keyword strings, corresponding to the 24 Inter-
nal commands (the HELP command has the alternate keyword "?").
Control is vectored to the appropriate sequence within COMINT
if a matching string is found. (The string comparison routine
FRCMPS uses the character "|" as a wild card symbol which can
be matched to any character; only four characters are compared
since the keyword strings consist of four or less characters
only.) The command entry is interpreted as the name of a
Macro command if no matching Internal command was detected. A
valid Macro file name string is created by the assembly lan-
guage routine MAKEFN which appends the file name extension

■y ".CMD" at the logical end of the presumptive Macro command
y name (which is either after the sixth character of COMMD, or

at the first space in COMMD, whatever happens first). COMINT
tries to open the Macro file for reading, and closes it imme-

Sj diately, in order to test whether a file with the specified
•S name and the extension ".CMD" does exist. This is the case if

no error status is returned by the FROPEN call; FROPEN will
•\ return an error value of 13 ("No such file") if no Macro file
"1; was found with the specified name, most likely due to a mis-

typed command. An error value of 4 ("Illegal file name") may
be returned if the command input contains non-alphanumeric

j characters, which may also happen due to typing errors.

.V

.V

- 55 -

&:&£-;&^

4. The Czochralski Growth Control System Software

COMINT returns to the beginning of its command loop with an
appropriate message in these cases; the standard disk error
message is output if any other disk error was detected. If a
file with the proper name was found, COMINT assumes that it is
a valid Macro file (this fact will be checked later); it re-
quests an operator acknowledgement ("Execute Macro command
...?"), and sends a command message to the Command Executor
which eventually will start the execution of the Macro com-
mand.

In general, all commands which may be recorded on and issued
from a Macro command file are executed by the Command Execu-
tor. These commands are "sent" to the Command Executor by
means of messages, buffer areas in RAM which are made avail-
able to the receiving task by the iRMX-80 operating system.
Command messages have a "type" value of 161 (the message
"type" is simply a safety feature which guarantees that cor-
rect data is received). The first byte of the command message
proper determines the command type (in our case, 3OH stands
for "Macro Command") , and the remainder of the message holds
parameters of the specific command, up to a length of 13
bytes. The same format, with two additional leader bytes
holding the command time, is used to store commands within a
Macro file; compare Appendix H. Using special message trans-
mission routines of the Fortran-RMX-8 0 Interface Program Pack-
age permits to easily merge command messages from different
sources (namely, from the Command Interpreter and the Command
File Input tasks) and to queue them at the Command Executor's
input for processing.

Most of the Internal commands are processed in overlay resi-
dent routines which we will discuss later, rather than within
the main Command Interpreter routine COMINT. This approach
helped to keep the resident COMINT code concise. Only the
following commands do not require overlays to be loaded:

EXCHANGE: This is considered an emergency routine which must
be called if a disk has to be changed due to any kind of
defect. It would not make sense to load an overlay from a
possibly defective disk. In order to process the EXCHANGE
command, COMTNT calls the Fortran subroutine XCHDSK which
closes all files on the specified disk, waits for an ope-
rator entry which indicates that the disk has been ex-
changed, and re-opens all output files on the new disk.

END: An End of Command Record code (7FH) is sent to the Com-
mand Executor if this command was issued.

QUIT: The Fortran subroutine QUITCH which is invoked by
COMINT disables the Macro command file input (by resetting

- 56 -

■ -*-■-■ '-•--"-•■-'-.■, --.•-•,".*.•.'j-t-w^A.-,VIA^VLU^-LV-L-1-v^^^^^^ ^''•-" :'

4. The Czochraiski Growth Control System Software

1

5
Til

SO

the proper I/O flag) and the Timer #2 which controls the
execution of Macro commands. It fakes a timer alarm by
setting the flag TIMINT, and waits for two iRMX-80 time
units (100 ms) to permit the Command File Input task
CMFINP tc ran in response to the faked alarm. CMFINP
closes the Macro command file, clears the Macro name on
the top line of the console screen, and issues a corre-
sponding message if it finds the I/O flag reset.

DUMP: The subroutine DUMP which is called immediately upon a
DUMP command sets a flag (DUMPFL) to .TRUE, whose status
is periodically checked by the Command Executor (compare
chapter 4.4.4.6). The Command Executor, in turn, initiates
a Data Dump to the Documentation output when it finds this
flag set.

All other commands are handled by the overlay resident rou-
tines. In order to avoid loading an overlay which has already
been loaded by a preceding command, COMINT checks the value of
the variable OVRLAY which is set by each overlay to its re-
spective overlay number. (This is not explicitly done by
program code but by assigning a value to OVRLAY with a BLOCK-
DATA program; this value is stored in OVRLAY when the overlay
is loaded.) The COMINT overlays are discussed in the follow-
ing chapters in their numerical order which has been deter-
mined essentially by historical reasons.

4.4.3.1 OVERLAY CZOV01 - MODULE SETPAR - COMMANDS SET AND
CHANGE

'•v-

The subroutine SETPAR receives the MODE switch as a parameter
which distinguishes between the SET and CHANGE commands, and
it returns the LOGICAL variable LOAD. LOAD is returned
".FALSE." if SETPAR can complete the processing of the com-
mand, i.e., if the command applies to one of the nine Internal
parameters (diameter, three temperatures, four motor speeds,
and power limit). Otherwise, LOAD is ".TRUE.", and COMINT has
to load the overlay CZOV02 in order to complete command pro-
cessinq.

v
SETPAR re-scans the command line originally issued to COMINT,
searches in it for the first space, and then for the first
three alphabetic characters after the space, in order to de-
termine the parameter which is to be SET or CKANGEd. An ex-
plicit request for a parameter is issued if no data is found
in the input line, and a new input line is read and parsed for
its first three characters. The command is cancelled if this
second attempt is also unsuccessful. In either case, the

- 57 -

4. The Czochralski Growth Control System Software

input line pointer is moved back to the beginning of the pa-
rameter string, i.e., the next input command will read the
parameter string again unless a search option is used with the
input routine call. The three input characters are now com-
pared to the nine mnemonics which stand for the primary param-
eters (three characters are reguired because the third of them
must be a space in order to match a valid mnemonic). SETPAR
is left immediately, with LOAD set ".TRUE.", if no matching
mnemonic is found.

The routine scans now to the first space after the parameter
string and tries to read a valid floating-point number from
the input buffer. This number will represent the target value
of a SET command or the increment of a CHANGE command. A
proper value is reguested if no numeric value is found after
the parameter string, and a new input line is read in this
case. Either input line is scanned for the next (floating-
point) number, and a transition time entry is prompted for if
no such number or a negative value is found. The command is
regarded cancelled if no valid input is entered after it was
explicitly reguested. A similar approach is used within all
Command Interpreter routines which process commands which
permit the entry of command parameters in the input line.

In order to generate an operator confirmation prompt, SETPAR
determines now the final value of the modified parameter.
This value is egual to the input value for a SET command but
must be calculated as the sum of the current parameter value
and the specified increment in the case of a CHANGE command.
Internally, the setpoint and actual values of the primary
parameters are stored as scaled two-byte integer (INTEGER*2)
values. This was done because analog data is input and output
as integer values; the controller routines operate on integers
because integer algorithms are faster and reguire less code,
and data recorded in the Data file is also in integer format,
which reduces the Data file size by a factor of two, compared
to floating-point numbers. The physically relevant (floating-
point) data which is displayed and entered on the console is
obtained from the internal integer values by multiplying them
with appropriate scaling factors.

one peculiar property of real-time systems must be considered
at this point: Unlike conventional computer programs, rou-
tines which are part of a real-time system may not freely read
and write data. This is true because multi-byte values are
usually stored and retrieved in seguences of several machine-
code instructions. The scheduling of system tasks is, how-
ever, hardly predictable in a real-time environment, and a
task might be interrupted, e.g., during a multi-byte read, by
another task which might write to the same memory locations.

- 58 -

A A A '. A A A .VV-A .V-VlAV» »V, :A,A

The Czochralski Growth Control System Software

v>.

V.
V.

Although the actual value stored in these memory locations
might change only slightly, a totally unusable value might be
retrieved by the interrupted task. Such an event may be rela-
tively unlikely but nevertheless disastrous; the following
safety measures are taken within the CGCS to present it:

(1) Some data areas are protected by access control routines
(FRACCS and FRRELS) which permit only one task at a time
to read them or write to them.

(2) The system Variables are implicitly protected by the prop-
er choice of the priorities of tasks which access them.
They are only written to by the Command Executor which has
a very low priority and can therefore never interrupt the
execution of a higher-priority task which might use a
Variable. The storage of the Variables is protected by
using a special routine (STODAT) which temporarily dis-
ables the system interrupts.

(3) Values which have to be read only can be retrieved reliab-
ly by reading them twice. This process can be repeated
until both reads result in the same value.

i
The latter approach is the one chosen in 3ETPAR; a counter
prevents the system from being blocked in the unlikely case
that a matching value pair is never found.

SETPAR checks the final setpoint for negative temperature or
power limit values, and requests an operator acknowledgement.
The output line has, unfortunately, to be built relatively
awkwardly in a buffer (LINBUF) : The output routines which
write also to the Documentation file can only accept a com-
plete line of output.

£

Upon a pos
command me
command mo
input value
a potential
specified
time in se
Command Ex
code.

itive answer of the operator, SETPAR builds the
ssage. The command type byte holds the encoded
de (SET or CHANGE) and the target parameter; the
is converted to an INTEGER*2 (which is checked for
overflow), and the transition time value which was
in minutes is multiplied by 60 to hold a ramping
conds. The command message is dispatched to the
ecutor, and SETPAR returns to the resident COMINT

- 59 -

E.V "V "«* '■* "•* \" '^ *«* *«* *■■ "j* "J* "-* *J* "."'-*'*-"'"-*'* A.-\ o-*K«-r- ''*v/vfa&£tf

4, The Czochralski Growth Control System Software

4.4.3.2 OVERLAY CZOV02 - MODULE SETVAR - COMMANDS SET AND
CHANGE

SETVAP. is invoked after a SET or CHANGE command for which none
of the Internal parameters was specified. The CGCS assumes in
this case that the commrnd applies to a system Variable, i.e.,
to an item in a list of named memory locations. SETVAR re-
ceives the input buffer from. SETPAR with the pointer at the
first character of the presumptive Variable name; it reads a
string of up to 10 characters into an internal buffer, termi-
nating the input action when a space (i.e., the end of the
Variable name) is encountered. The name string is converted
to uppercase, and passed to the assembly language routine
FINDAD.

FINDAD compares the presumptive Variable name in VARNAM to a
list of names kept in the specially formatted file CZONAM.Vmr,
where m and n are the major and minor program version numbers,
respectively. Each entry in this file holds a Variable name
(1 to 6 alphanumeric characters long, but the first character
must be alphabetic) , the Variable type (one- and two-byte
integers or four-byte floating-point numbers), encoded with
the number of elements if the Variable name refers to an ar-
ray, and the Variable address or the start address of an array
(compare Appendix H) . FINDAD checks the index of an array
element which may optionally be passed in parentheses immedi-
ately after the Variable name, and returns the actual address
of the Variable or array element, and a type code which is
positive if a valid entry was found in the CZONAM file, and
negative in case of any error.

SETVAR checks the type code returned and issues an error mes-
sage if necessary; otherwise, it retrieves the current value
of the Variable. This is done with a call to the assembly
language subroutine PEEKDW which reads the four bytes at the
address passed as a parameter repeatedly until a stable result
is obtained (compare chapter 4.4.3.1). The four bytes read
may have to be converted to a floating-point number according
to the type of the Variable; the result of this operation is
later used to display the current and the final values of the
Variable. Subsequently, the routine tries to obtain a SET or
CHANGE final value and a transition time from the input buf-
fer, and it issues corresponding prompts if no data is found.

Similar to SETPAR, SETVAR checks integer values for a valid
range, builds a command message if the operator acknowledge-
ment was positive, dispatches the message, and returns to
COMINT.

- 60 -

."• .'•.v > V W V *.■ .-V t V „* V VVvvvvv * ,'V > > VVVVVvVVv W,V \\y v-V V V V Y •" '■"."■"■•'.'■" -^'■■•.'.••'■^.•■'^•.'■•»■^A^y'V-v'^'...v'...-.',■UJ.L'A'.LV . *h.i ..v-ii .v -A -*« -'».'m.'» A A -*> .•> -*« -*» -V ■.-« 'W'I _ ..'....'».

$

I
4. The Czochralski Growth Control System Software

4.4.3.3 OVERLAY CZOV03 - MODULE COMMEN - COMMAND COMMENT

The routine COMMEN inserts a comment line into the Data file
if such a file is active.

COMMEN scans to the first space in the original command input
line, and tries to read valid input from the remainder of the
command line (to receive any comment which was entered to-
gether with the COMMENT command). A corresponding prompt is
issued if the command line did not contain any data except the
keyword. COMMEN returns immediately to COMINT if no Data file
is active (i.e., I0FLAG(2) is reset); otherwise, it provides
operation mode, time, and length grown information in its
output buffer, sets the first byte of this 128 byte buffer to
-1 to indicate a comment line, and writes the buffer to the
Data file. It is essential that a full record (128 bytes) is
appended to the Data file to maintain the file's special for-
mat (compare Appendix H).

V

i
ft
8

3

r.
v.

4.4.3.4 OVERLAY CZOV0 4 - MODULES MENOUT AND CLRSCR - COMMAND
HELP

This overlay provides the Kelp menus of the CGCS in response
to the commands HELP and "?". It writes in random access mode
into lines 17 through 21 which are otherwise reserved for
scrolled and Debug output. The latter is immediately disabled
by resetting the flag ENDBGO when MENOUT is entered. Although
the output routines do permit to write over the scrolled area
in random access mode, this output remains on the screen only
until data is output in scrolled mode. Any system message
which is issued while the HELP command is executed will there-
fore preempt the display of the current Help menu.

MENOUT first clears the five lines of the scrolled area by
overwriting them with spaces (in the subroutine CLRSCR), and
outputs a quick menu of Internal commands which is built right
into the program. The next help screen optionally displayed
by MENOUT contains a list of Macro command names which are
derived from the disk directory of the disk in drive 0 (file
ISIS.DIR). The directory is scanned for all valid files with
an extension ".CMD". Up to 40 Macro files can be listed on
one screen; if there are more Macro files on the system disk,
MENOUT pauses and continues its output when the operator
pressed the Return key.

After displaying the Macro commands, MENOUT permits to request
more information about the Internal commands. If the operator
accepts this offer, MENOUT displays again the short menu.

- 61 -

- _*■ .V .A ."» ,^V* > A > --■
■ _ A m ' - - . >'- «-V-*«*-'..•."»'•-"»'-*.•- »T.V. ,-■". »\ s'.üaV-*., :'^*~*.''*.- .«."'«-■*«.'. ajtr.y<L.*. «--.V* «■*. P..n~f»S. a-', *■*.'*>■•, *-". n.', >w. -w', --* •- -_• 1 •- •- '~:1

4. The Czochralski Growth Control System Software

(The initial menu display sequence is also used for this pur-
pose; a LOGICAL variable controls the continuation of the
execution of MENOUT after the menu was output. This approach
was chosen rather than a subroutine call because it is more
program code efficient, and because it does not require awk-
ward measures like COMMON blocks or lengthy subroutine param-
eter lists to make variables available to all routines in-
volved.) Simultaneously, MENOUT opens the help file CZOMEN
for reading which holds five lines of text for each command.
There are two modes in which the contents of CZOMEN can be
displayed: One mode steps through the file, displaying record
by record, while the other one scans the file until a keyword
entered by the operator is found in the first line of an en-
try; only this entry is displayed. Both modes can be combined
since an empty input line ("Return" only) always results in
the next record being displayed, whereas the first four char-
acters of a non-empty input line are used to search through
the file CZOMEN. Multiple entries can therefore be searched
for in one pass, provided they are in ascending alphabetical
order. A single-character entry (nominally, "Q", but any
other character has the same effect) terminates the search,
and MENOUT is exited after closing the menu file and re-en-
abling a possible Debug output by setting the flag ENDBGO.

4.4.3.5 OVERLAY CZOV0 5 - MODULES OPMODE AND CLRSCR - COMMAND
MODE

The operation mode setting routine OPMODE displays a mode menu
similarly to MENOUT, and permits the entry of a mode number.
The number entered is compared to the current mode and checked
for its validity; corresponding messages are output if either
the current mode was chosen, or if an illegal mode number was
entered. OPMODE permits to re-select the current mode; al-
though this has no effect whatsoever on the current growth
run, the command is recorded in the Command Output file and
may be effective during a later execution of this file as a
Macro command. (It may also be used to trigger a data dump on
the printer and in the Data file; there are more straightfor-
ward methods to achieve this; though.)

The operator is prompted for an acknowledgement of his mode
entry in any case. OPMODE requests an extra acknowledgement
(with "OK" rather than "Y(es)") if the mode is changed from
Monitoring (mode 0) to any controlled mode, or vice versa, in
order to prevent the probably disastrous effects which an
inadvertent change might have. The newly entered mode is
encoded in a command number, and the command message is sent
to the Command Executor.

- 62 -

.V'•-. A .*, M^s'A^-/-^ &^Z&&&±^^

I

8

&

i

■V

g

4. The Czochralski Growth Control System Software

4.4.3.6 OVERLAY CZOV06 - MODULE DEBÜG0 - DEBUG COMMANDS

The six DEBUG sub-commands - Continuously, Display, Modify,
Off, Resume, and Suspend - are handled by the two overlays
CZOV06 and CZOV07 (modules DEBUGO and DEBUG1, respectively)
which are concatenated similar to the two overlays for the SET
and CHANGE commands. The command execution is commenced in
the module DEBUGO where the command input line is first scan-
ned for the DEBUG mode switch, which is any one of the letters
C, D, M, 0, R, and S. As usual, a mode switch is requested if
none or only an illegal one was found.

The processing of the DEBUG commands requires various inter-
pretations of the input line, depending on which sub-command
was issued. In order to facilitate this processing, the en-
tire contents of the input buffer are read into an internal
buffer (LINBUF) from which input items are retrieved. The
contents of this buffer are shifted to the left by one item
after each successful input operation, which permits to read
the next item always from the beginning of the buffer. (Items
must be separated by spaces; the buffer shifting subroutine
SHIFTB simply advances to the first non-blank character after
the first space and copies the buffer onto itself from this
location on.)

For all sub-commands except Off, either the name of a Variable
or an address is required as the first parameter. An input
item starting with a number is considered a (hexadecimal)
address, otherwise, the parameter is submitted to the routine
FINDAD which was already discussed in chapter 4.4.3.2. The
DEBUG routines distinguish between address and Variable input
by setting the Variable type location VARTYP to -1 in the case
of address specification, whereas values from 0 to 3 are re-
turned by FINDAD for Variables.

Indeed, the information otherwise provided by FINDAD in the
Variable type location must be obtained from the operator if
address input was chosen since DEBUG would not know how to
interpret the data at the specified address. (This informa-
tion is not needed for the Display sub-command which outputs
data anyhow in all perceivable notations.) A data format is,
therefore, retrieved from the input buffer or requested from
the operator if an address value was specified with a Continu-
ously or Modify sub-command. (The formats used for numeric
Variables are internally set to "II", "12", and "R", depending
on VARTYP.)

The Continuously and Off sub-commands require the Debug Chan-
nel number, i.e., the number of the output location in the
Debug line (1 to 4) which the command refers to. For both

- 63 -

£

.S.VAA, .•V A>*.\>: •>j>^ivj.V

4. The Czochralski Growth Control System Software

sub-commands, all necessary information is now available, and
the proper command messages can be sent to the Command Execu-
tor.

The Display and Modify sub-commands display the current con-
tents of the specified memory locations; in order to obtain
this data, four bytes beginning with the given address are
copied into local memory in an approach similar to the one
used in SETVAR (compare chapter 4.4.3.2). This data is imme-
diately displayed in several modes if the Display sub-command
was issued: The four bytes or part of them are interpreted as
ASCII string data, as an INTEGER*! and INTEGER*2 variable, as
floating-point data (type REAL), and as hexadecimal numbers.
(A special treatment is necessary for the ASCII interpretation
in order to avoid problems with data bytes which might corre-
spond to control codes. Such bytes are replaced by periods
("•").)

While the Continuously, Display, and Off sub-commands already
have been completely processed when the end of the module
DEBUGO is reached, this is not true for the Modify, Resume,
and Suspend commands. They have to be passed on to the second
part of the DEBUG routine, DEBUG1 in CZOV07.

4.4.3.7 OVERLAY CZOV07 - MODULE DEBUG1 - DEBUG COMMANDS

Similar to SETVAR, DEBUG1 is only loaded if DEBUGO returns
with a status flag set to ".TRUE.". Data is passed between
both routines by means of a special named COMMON block
(DBGCOM) which is located at the top of the overlay area where
it is preserved when DEBUG,1 is loaded.

In order to conclude the processing of the Modify sub-command,
DEBUG1 displays the current contents of the specified memory
locations, and requests explicitly new data. Both values are
displayed again for operator confirmation, and built into the
command message if the confirmation was given.

The sub-commands Resume and Suspend which permit to resume and
suspend the execution of an arbitrary task are treated essen-
tially in common: Both require the address or the name of an
iRMX-80 Task Descriptor as a parameter. Task descriptors
which are referred to as Variables have the Variable type
value of zero returned by FINDAD. Since specifying an address
with a Resume or Suspend system call which is not the address
of an iRMX-80 Task Descriptor would have a disastrous effect
on the total system, multiple safeguards are used besides
checking the VARTYP value: The name of the task, six alpha-

- 64 -

."» JVLVA^N J.V\ »\JI\JTU jft****"*j üK^^^^^^N^C^^^:^-;^X%^<%-: >•; >>>>>".>>:},-.*

4. The Czochralski Growth Control System Software

numeric characters, is stored in memory locations whose start
address can be derived from the presumptive Task Descriptor.
The command is cancelled if either non-alphanumeric characters
are detected in the name area, or if the first character is
not alphabetic. After an operator acknowledgement, a proper
command message is again dispatched to the Command Executor
which will, in turn, resume or suspend the specified task.

4.4.3.8 OVERLAY C2OV08 - MODULES FRAME AND TIMLIN - COMMAND
RESTORE

K

11

s

&

This overlay provides the mask for the "fixed" output on the
console CRT screen. It is executed upon a RESTORE command,
and during the system initialization.

FRAME which is in charge of the main output mask first dis-
ables the output of measured data by resetting the flag
RESTD0(3). This is important to avoid interferences between
the two groups of output operations. Furthermore, Debug out-
put in line 17 is suspended by resetting the flag ENDBGO.
FRAME clears the CRT screen, and calls TIMLIN which restores
the top (time) line. Subsequently, all fixed output items are
written one by one, followed by a five line parameter dimen-
sion information written over the scrolled screen area.
Having provided this menu, FRAME enables the output of mea-
sured data by setting RESTDO(3), and actually enforces data
output by setting the remaining two flags of the array
RESTDO. FRAME pauses then until the operator presses the
"Return" key to permit him to read the display in the scrolled
area. Writing a blank line into the actual scrolled output
restores the previous contents of the scrolled area after a
RESTORE command.

4.4.3.9 OVERLAY CZOV09 - MODULE FILES - COMMAND FILES

The subroutine FILES permits to display the current status of
the three output disk files (the Documentation, Data, and
Command file), and to change the status of a selected file.

First, FILES displays the name and the status of each file.
The file names are kept in the CHARACTER array FILNAM; the
file status is determined by the values of IOFLAG and FILLOC.
The proper element of the array IOFLAG is set to ".TRUE."
whenever a file is actually active, i.e., data can be written
to it. FILLOC, in contrast, represents the physical location
of a file; 0 and 1 stand for drive 0 and 1, respectively, and

v.
v.

- 65 -

4. The Czochralski Growth Control.System Software

2, for output to the printer. FILLOC is set to 3 if no file
is open at all. In the case of the Control Output file, the
setting of the flag RECORD has also to be taken into account
which is ".TRUE." while commands are actually recorded (i.e.,
after a START command), and "-FALSE." otherwise.

The operator may now specify one of the three output files
which he wants to be opened and closed, or return immediately
to COMINT. The actual file treatment is performed by one of
three separate overlays; the proper overlay number is deter-
mined by FILES and passed to COMINT in C'.'RLAY; COMINT concate-
nates the proper routine.

4.4.3.10 OVERLAY CZOV10 - MODULE REQCMF - COMMANDS START AND
FILES

The subroutine REQCMF can only be called via the START and
FILES commands; it opens, initializes, and closes Control (or
"Command") Output files.

The response of REQCMF depends on the status of the file; it
distinguishes between three cases:

(1) No Command Output file is open (I0FLAG(3) is ".FALSE.",
and FILLOC(3) is 3) .

(2) The file has been opened, but it cannot be written to due
to a preceding disk error (IOFLAG(3)
FILLOC(3) is not equal to 3).

is ".FALSE. but

(3) The file is open and active (I0FLAG(3) is ".TRUE.").

In the first case, REQCMF offers the operator to open a Con-
trol Output file, and requests a file name if he agrees. A
complete Macro file name is built from the operator's entry by
appending ".CMD" (with the subroutine MAKEFN), and the result-
ing file name is checked for validity and for the drive where
the file will be located (with CHKFNM). In order to prevent
the accidental overwriting of ar existing file (if the opera-
tor entered the name of a file which already exists on the
same disk) , REQCMF tries to open the file with the specified
name for reading first, and issues a warning if this procedure
was successful, i.e., if a matching file was found. Other-
wise, the Command Output file is opened for writing, and a
header record is written to it. The header record holds zeros
in its first two bytes (which otherwise contain the execution
time of a command) , and the system version code in the third
and fourth byte. The remaining 12 of the 16 bytes of the

- 66 -

Lvls'CvjvVv'i :v\-:<v^v^-\->,\v

4. The Czochralski Growth Control System Software

header record are currently undefined. REQCMF finally sets
IOFLAG and returns to COMINT.

In the second case, REQCMF permits either to re-activate the
file (possibly, the error condition has already been corrected
which set it inactive) , or to close it. An open and active
file may be closed only; if the operator agrees to close the
file, ICFLAC and RECORD are reset, FILLOn i <= <=et to 3. and the
file name string is deleted.

4.4.3.11 OVERLAY CZ0V11 - MODULE CALCUL - COMMAND CALCULATE

The CALCULATE command constitutes a helpful utility which is,
in fact, not connected to the crystal growth process at all.
CALCUL permits to evaluate the sum, the difference, the prod-
uct, and the quotient of two numbers. With regard to the
requirements of the DEBUG commands, three formats are select-
able for input and output data, namely, (two byte) Integer,
Hexadecimal, and Real (floating-point). One set of instruc-
tions applies to the processing of floating-point input
values, and an other, to integer and hexadecimal data. The
results are displayed in decimal and hexadecimal notation in
either case; the CALCULATE command may therefore be used to
determine the internal (hexadecimal) representation of an
arbitrary integer or floating-point value.

4.4.3.12
DATA

OVERLAY CZ0V12 - MODULE DATAFI - COMMANDS FILES AND

With the exception of the header record generation, the rou-
tine DATAFI which is responsible for the initialization and
maintenance of the Data file is analogously identical to
REQCMF (compare chapter 4.4.3.10).

A data sampling interval (in seconds) is requested from the
operator when a Data file is evened; any value between 1 and
255 is accepted. The header record is built after the opera-
tor acknowledged the interval value. It contains the date,
the run ID, the data records interval., and the system version.
This header which is 32 bytes long is written to the newly
opened Data file four times, to permit the first Data record
to start at a disk sector boundary. (This is important be-
cause disk operations are much faster if an entire disk sector
can be written or read.)

- 67 -

4. The Czochralski Growth Control System Software

4.4.3.13 OVERLAY CZ0V13 - MODULE EXICZO - COMMAND EXIT

This module has the chore of "closing down" the CGCS and the
puller. It requires a double acknowledgement by the operator
to be actually executed, in order to prevent accidental exit-
ing from the CGCS. It performs the following operations:

(1) EXICZO disables periodic data dumps to the Documentation
output.

(2) It sends an END command to the Command Output file if such
a file is still open.

(3) It clears potentially pending Conditional Commands by
transmitting a CLEAR command code to the Command Executor.

(4) It performs a QUIT command (calling QUITCM) to preempt a
currently active Macro.

(5) It switches off Data recording by de-activating a Data
file (setting I0FLAG(2) to ",FALSE.").

(6) It shuts the system down with the following actions if the
digital system is actually controlling the puller:

(a) It terminates automatic growth, changing the operation
mode to "Manual" by sending an appropriate command
message.

(b) It terminates any parameter ramping possibly still in
progress by resetting the Ramping flags RMPFLG (com-
pare chapter 4.4.4).

(c) It checks the current values of the motor speed and
power limit setpoints, and enters into the following
actions if any one of them is not equal to zero:

(1) It permits the operator to skip from EXICZO and to
shut the system down on his own account.

(2) It ramps the power limit setpoint to zero within
approximately 6 hours unless it is already zero,
generating an appropriate command message.

(3) It ramps the seed and crucible lift speeds to ?.ero
within one minute.

(4) It provides a time countdown in the input prompt
line which starts at 360 minutes if the power

- 68

■.-.*•■/■ •■■ -J- -..- ■ J s s .•«--.-■.-•-'■•■-.»»'>•'•■»■»■■ ^ i: -L •■ ^ ■■- - - - »

1
4. The Ceochralski Growth Control System Software

limit need be ramped down, and otherwise at one
minute.

*- (5) It ramps the seed and crucible rotation speeds to
$ zero within one minute when the countdown display
Ä shows one minute.

H (d) It prompts the operator to switch off the puller's
5? power supply, and submits control to the analog con-

troller when the operator indicates that this is pos-
£jr sible by commanding "EXIT" again. The operation mode
vj is set re Monitoring with a suitable command message.

(7) EXICZO disables the output of measured data, and stops the
$ Measured Data Output Task MEASDO (compare chapter 4.4.5).
JK Simultaneously, it resets the Timer Output Enable flags

ENTIMO to prevent the display of new time strings.

tf, (8) It closes all possibly still open output files,

(9) Clears the console screen and writes a sign-off message,

-."" (10) Switches all output relays off, and

Jy (11) Calls the routine FREXIT which will re-boot RXISIS-II.

4.4.3.14 OVERLAY CZOV14 - MODULE CONDIT - COMMAND IF

CONDIT receives the command input line buffer from COMINT; it
m tries to retrieve a Variable name frcm it by scanning to the
>• first non-blank character after the first space. A Variable

name is requested if none was found. This name is converted
to uppercase (FRCVUC) and processed by FINDAD which returns

£\ the address and the type of the Variable specified. Next, one
*•■' or two relational characters ("<", "=", or ">") are either

read from the input buffer, or explicitly requested. A numer-
.V ic value of 1 to 3 is assigned to each valid relational char-
'?'. acter; the two relational characters and the Variable type are

packed into one byte of the command message in order t« con-
v serve space. After a comparison value which is simply stored
£S in the command message, the name of the Macro command which is

to be executed conditionally is retrieved in the standard way.
A Macro file name is built from the command name (with
MAKEFN), and CONDIT tests the requested Macro file in the same
way which COMINT uses for the same purpose. The Macro name is
stored in the command message which is dispatched if the file
exists and the operator acknowledgement was obtained.

i
&

- 69 -

4. The Czochralski Growth Control System Software

4.4.3.15 OVERLAY C2QV15 - MODULE DISPLY - COMMAND DISPLAY

DISPLY requires the name of the Variable whose value is to be
displayed as its only input. The name is either read from the
input line buffer, or explicitly requested. After a conver-
sion to uppercase, it is submitted to FINDAD which returns the
address and the type of the Variable. The Variable is read
subsequently with the algorithms already discussed above (com-
pare chapter 4.4.3.2), and displayed according to its type.

4.4.3.16 OVERLAY CZOV1S - MODULE DOCUMT - COMMANDS FILES AND
DOCUMENTATION

The module DOCUMT is accessed during the initialization se-
quence, from FILES, and at a DOCUMENTATION command call.
DOCUMT is very similar to REQCMF (compare chapter 4.4.3.10)
and to DATAFI (compare chapter 4.4.3.12). The major differen-
ces between these routines are (aside from the different
IOFLAG and FILLOC array elements which they use):

(1) DOCUMT explicitly permits to use the printer as an output
device (which would not make sense with the other two
files).

(2) It permits to specify an interval for the periodic output
of measured data to the Documentation file, and

(3) It opens the Documentation file, enables printer output
(in case it was disabled due to a printer timeout), and
initializes the output routines with a call to the routine
STARTP which is part of the DATOUT module (compare chapter
4.3.1). STARTP presets the line counter and generates a
page header line in the Documentation file.

4.4.3.17 OVERLAY CZOV17 - MODULE DIRECT - COMMAND DIR

DIRECT displays the directory of the disk in the drive speci-
fied, together with some information about the disk itself.
Having obtained a valid drive number (0 or 1) , DIRECT first
reads the disk label, i.e., the name of the disk, which is
kept in the file ISIS.LAB. Next, the routine determines by
checking the file location array FILLOC whether files are open
for output on the specified di^ In this case, the informa-
tion about the free and used disk space cannot be reliably
obtained, and the corresponding values are preceded by "less
than" and "greater than" signs, respectively. The number of

- 70 -

£

I

,-s

4. The Czochralski Growth Control System Software

occupied sectors on the disk is retrieved from the disk map
file ISIS.MAP; each bit set in ISIS.MAP corresponds to a used
sector. These bits are counted by the (assembly language)
Function BITCNT, and written to the directory header line.

>"?, Since each single-density, single-sided 8" disk holds 2002
'»' sectors of 128 bytes each, the number of free sectors can be

easily calculated. Finally, DIRECT reads the disk directory
P file ISIS.DIR, and displays all file names in a way similar to
/£ the one chosen for the Help menu output (compare chapter

4.4.3.4). DIRECT can only output 6 entries per screen line
since full file names, including extensions, have to be dis-

<\ played. The routine pauses after having written the header
* line and four lines of directory contends, and continues over-

writing the directory display with new aata after the operator
pressed the "Enter" key. DIRECT returns to COMINT when the
"Enter" key was pressed after the last valid directory entry
was displayed.

4.4.3.13 OVERLAY CZOV18 - MODULE RESOVL - COMMAND RESET

The RESET command is indispensable for the initialization of
the diameter evaluation routines. It prepares not only the
buoyancy compensation routines in the module SHAPE (compare
chapter 4.5.2) but initializes also the weight and length
values displayed. RESOVL offers the standard option of reset-
ting length and weight to zero; it permits to maintain the
current value for each of these parameters or to enter new
values if the zeroing option was rejected. The values input
by the operator are scaled to obtain integer data in the for-
mats used internally for weight and length representation; a
value of -32768 (the most negative integer value) indicates
that the corresponding parameter value should be preserved.
RESOVL sends these values to the Command Executor which calls
the actual reset routine.

4.4.3.19 OVERLAY CSOV19 - MODULE INIDAT - COMMAND INITIALIZE

INIDAT is called upon an INITIALIZE command and, in addition,
during the system preparation sequence. It displays the cur-
rent values of six system parameters (seed and crucible dia-
meter, boric oxide weight, and the densities of the solid
crystal, the semiconductor melt, and the boric oxide melt),
and permits the operator to either accept them by pressing
"Return" only, or to enter new data. Negative values, which
are invalid in any case, are trapped, and the parameters are
converted back to their internal storage format. In order to

- 71 -

4. The Czochralski Growth Control System Software

facilitate diameter evaluation, the system holds the squares
of the diameter values, and densities in grams per cubic
millimeter. Finally, INIDTA checks the minimum height of the
boric oxide encapsulant melt (i.e., the height of a cylinder
of molten boric oxide with the specified mass covering the
entire cross section of the crucible) , and sets the boric
oxide weight to zero if it is too small to be handled properly
by the Diameter Evaluation routine SHAPE (compare chapter
4.5.2.3) .

4.4.3.2 0 OVERLAY CZOV2 0 - MODULE PLOTOV - COMMAND PLOT

The module PLOTOV permits to link Variables or memory loca-
tions specified by absolute addresses to one of the eight Plot
Channels. An approach similar to the one used in DEBUGO is
applied to separate Variable and address inputs; Variables
must be in INTEGER*2 format in order to be displayed, whereas
this format is intrinsically assumed for memory locations
specified by their absolute addresses. PLOTOV scans the input
string for name/address and channel information, and requests
data if applicable. Further processing of the PLOT command is
done by the Command Executor to which a pertinent message is
dispatched.

4.4.3.21 OVERLAY C2QV21 - MODULE CLEARO - COMMAND CLEAR

Two versions of the CLEAR command are supported by CLEARO,
namely, the Unconditional and the Selective Clear. CLEARO
scans the input line for the name of a Variable, and assumes
that an Unconditional Clear is issued if no valid data is
found. An operator reconfirmation is requested, and a prompt
for a Variable name is issued if the operator indicates he did
not want an Unconditional Clear. The Variable name is pro-
cessed as usual (with FINDAD), and a command message is sent
to the Command Executor when the operator acknowledges his
entries.

4.4.4 THE COMMAND EXECUTOR - TASK CMMDEX

The Command Executor receives command messages from two
sources, namely, from the Command Interpreter, and from the
Command File Input Task. The special Fortran-RMX-8 0 Interface
Routines used (compare Appendix A) automatically advance these
messages to the Command File Output Task which eventually

- 72 -

Ü

S-

V

4. The Czochralski Growth Control System Software

records them in the Command Output file. The Command Execu-
tor's commission is to process each command message, and to
perform several other procedures which have do be done in
regular intervals.

CMMDEX runs once every second; its timing is indirectly de-
rived from the Timer Task FXTIME. The first action of CMMDEX

;s> after it performed a few initialization subroutine calls (but
not the first action after it starts running every second) is
to receive a command message if there is one. In most cases,
there will be none; the approach of using command messages

£. has, however, the advantage that these messages will be gueued
*"" by the operating system in the order in which they were issued

if more of them are generated than can be processed. There-
£j fore, it is possible to have CMMDEX process only one command

message every second without losing commands; in the worst
case, the command execution may be delayed by a few seconds.

4.4.4.1 COMMAND MESSAGE PROCESSING

CMMDEX first decodes a command message if one was received.
The first byte of each command message holds a command code
which consists of a major Mode (corresponding to "SET" or
"DEBUG") in the high four bits of the byte, and a Switch
(e.g., for "SL" or "Continuously") in the low four bits.
These values are separated, and control is vectored to the
proper processing sequences.

Mode = 1 and 2 - SET and CHANGE Internal parameter

Mode values of 1 and 2 correspond to SET and CHANGE commands,
respectively, which apply to Internal parameters. CMMDEX
first determines the address where the specified setpoint is
to be stored: There are two arrays for the setpoints of the
Internal parameters, STPNTO and STPNT1, which correspond to
the left and right setpoint columns displayed on the console
screen. STPNTO always holds the setpoint values which are
actually used by the various controller routines, and which
are the ones which are normally ramped by CMMDEX. There is,
still, an important exception to this rule if an Internal
parameter is controlled, e.g., the heater temperatures in
diameter controlled operation modes. In this case, CMMDEX
stores the output of its ramping generator in STPNT1 rather
then in STPNTO; the LOGICAL Function CNTRL (which is actually
an assembly language subroutine) returns ".TRUE." in this
case. CMMDEX sets a memory location according to the (set-
point) variable type (all Internal parameters are two-byte

- 73 -

■V. as Y V V V V V;s V Y.Y Y, V > V. ^ v.v:y.-W..-W. v jfla;r^.v:.- v > s. v..-.,-_ ^ ^ .-., y

4. The Czochralski Growth Control System Software

integers) and enters a sequence of code which is also used for
SET and CHANGE commands applying to Variables, and by the
Conditional Command Executor algorithms. A flag (L) is used
to branch to the Conditional Command Executor code after the
common sequence; although this approach is certainly not con-
sistent with structural programming techniques, it is the most
efficient way with regard to the large number of local memory
locations whose contents are used inside and outside the com-
mon code.

Having issued a warning if a SET or CHANGE command was entere::
while the CGCS is in monitoring mode, i.e., nor controlling
the puller, CMMDEX determines the current contents of the
target locations, and converts them to floating-point format
if necessary. For CHANGE commands (Modes 2 or 10), a new
final value is calculated by adding the message input value to
the current target location contents; for SET commands, it is
directly derived from the value passed with the command mes-
sage. The magnitude of the resulting value is checked if it
has to be stored to integer locations which have a limited
numeric range; the result is set to the permitted maximum with
the correct sign, and an error message is issued, if an over-
flow is detected. Similarly, diameter, temperature, and power
limit setpoints are checked for negative values; the above
result is set to zero and an error message ensues if any of
these setpoint values is found to be negative.

The processing of all SET and CHANGE commands continues in a
Command Executor code sequence called Ramping Preparation:
The CGCS is able to ramp up to twenty independent parameters;
all ramping control structures are therefore arrays with twen-
ty elements each. Each channel holds an address, a variable
type, and starting, final, increment, and breakpoint values;
the latter four in floating-point notation to guarantee the
necessary resolution and dynamic range. CMMDEX assigns a
ramping channel according to availability to a parameter or
Variable which is to be ramped; only the Variable address
indicates which data is handled in which channel. In order to
prevent confusions if a SET or CHANGE command was iasued for
data which is already being ramped, CMMDEX checks lirst wheth-
er t ,e address passed is already used by one of the ramping
channels, in which case this particular channel is updated.
Otherwise, CMMDEX searches for an unused ramping channel (un-
less all channels are used or a transition time of zero war
entered, in which cases ramping is bypassed, and the final
value is immediately stored at the target address). The sta-
tus of a ramping channel is determined by RMPFLG which is zero
if a channel is not used. It is set to the number of an In-
ternal parameter (1 to 9), or to -1 if a Variable is rainped.
The Ramping Preparation code stores the current and final

- 74 -

vtv.vtstvjv.v. vj»vv .•--.-.,% ,-. .v,-».% .-..-..-. ■/..-..-- .-. -. ■. . . ■ , \, -... -j, w j.

4. The Czochralski Growth Control System Software

values of the data to be ramped; an increment value is calcul-
ated by dividing the difference between the initial and the
final values by the ramping time in seconds, and a breakpoint,
by multiplying the absolute value of the increment by 1.1 and
adding a small number. Finally, CMMDEX stores the final
values of Internal parameter setpoints in the corresponding
array (unless the parameter is being controlled) , and con-
tinues witn the Ramping Executor sequence.

v
"ode = 3 - Macro command, Unconditional CLEAR

A Mode value of 3 indicates either a Macro command (Switch =
0), or an unconditional CLEAR command (Switch = 1) .

'f

F N

The Macro name passed with a Macro command message is expanded
into a full Macro file name (i.e., ".CMC" is appended). A
possibly active Macro command is preempted (with a QUITCM
call), and a pertinent message is issued. CMMDEX tries to
open the Macro file; the QUITCM call is repeated if the old
Macro file was not yet closed by the Command File Input Task
or if the file could not be opened due to a temporary shortage
of pool memory (which may happen under adverse conditions), an
explicit error message ("Macro ... doesn't exist") is gener-
ated if the new file was not found, and the internal disk
error message is output in case of any other error. CMMDEX
reads the first 16 bytes of the new Macro command file and
checks whether the first two bytes hold zeros, and the next
two, the version code of the currently used system. The Macro
command is cancelled if the first condition is not met, and a
message referring to a "restricted command set" is issued if
the system versions do not match. The flag DEBUGE is set in
this case; it indicates to the Command File Input Task that
all commands which refer to absolute memory locations, i.e.,
all commands with a command Mode value greater than 7, must be
discarded (compare chapter 4.4.6). In any case, IOFLAG(4) is
set to indicate to the Command File Input task that there is
an active Macro file, and the f^ag RUNTIM activates the alarm
clock timer. An internal counter. MACPRO, is set to a start-
ing value of 4. This value will be decremented by 1 during
each of the subsequent passes of CMMDEX, once every second,
until it finally reaches zero; the checking of Conditional
commands is inhibited while MACPRO is not zero (compare chap-
ter 4.4.4.5). Finally, CMMDEX writes the name of the Macro
command into the top line of the output screen, and generates
a message which indicates that the execution of this Macro was
started.

The Unconditional CLEAR command is processed very simply: The

„V

- 75

4. The Czochralski Growth Control System Software

eight Conditional Command flags and the Conditional Command
counter are reset, and a pertinent message is issued.

Mode = 4 - MODE

CMMDEX outputs a "New mode:" message upon receipt of a MODE
command, and triggers a Data Dump in the Documentation Output.
Subsequently, it checks for the following mode changes which
require special initializations:

(1) Change from "Monitoring" to any controlled mode: In order
to avoid transients when the CGCS takes over from the
analog system, all measured values of the Internal parame-
ters have to be duplicated to the corresponding setpoint
locations in STPNTO. Simultaneously, all ramping flags
and the ramping counter are reset. It is therefore not
possible to transfer a constant or ramped Internal parame-
ter setpoint from uncontrolled to controlled mode.

(2) Change from not diameter controlled modes ("Monitoring",
"Manual") to any diameter controlled mode: CMMDEX checks
in this case whether the Diameter setpoint is currently
being ramped, stops its ramping if it is, and copies the
current actual Diameter value to both Diameter setpoint
locations.

(3) Changes between modes in which certain Internal parameters
are controlled: All twenty ramping channels are scanned
to find a ramped Internal parameter which was not control-
led in the previous mode but is controlled in the new
mode, or vice versa. In the first case, the output of the
Ramping Generator is directed to the second setpoint array
STPNT1 rather than to the first one, STPNTO, and the cur-
rent value of the affected element in STPNTO is copied to
STPNT1 in order to avoid transients; in the second case,
the ramping is stopped.

CMMDEX finally sets the Mode flag proper and jumps to a se-
quence in the Ramping Executor which outputs the Mode informa-
tion in the "fixed" part of the console screen.

Mode = 7 - RESET

A RESET command is processed by a simple call to the subrou-
tine RESET which is part of the assembly language module SHAPE
(compare chapter 4.5.2).

- 76 -

Kk\jt*'<ji"v»*Vfc** -*% -' ''!»*>*■
„•-.."•-. vvv,v.,v.: •>-r ■■- V -.- :-■ --' .- V.----V ■■ «r. --■»-- <'..

4. The Czochralski Growth Control System Software

Mode = 9 and 10 - SET and CHANGE Variable

Essentially, the algorithms described for Mode = 1 and 2 are
used in treating Variables.

Mode = 11 - IF and Selective CLEAR

I

A SWITCH value of 0 represents a Conditional (IF) command, a
value of 1, a Selective CLEAR.

CMMDEX can handle up to eight Conditional Macro ccmmands;
Conditional commands which are issued while already eight
commands are pending are ignored, and a pertinent error mes-
sage is issued. After a free storage location was found for
the new command, the two relation code values and the Variable
type information are extracted from the command message byte
in which they were stored, and the comparison value, the Vari-
able address, and the name of the Macro command which is to be
executed conditionally are written to the proper locations for
use by the Conditional Command Executor.

In case of a Selective CLEAR command, CMMDEX compares the
Variable addresses stored for all currently active Conditional
Command Channels to the Variable address passed with the com-
mand message. A channel is deactivated (by resetting its
status flag) , and a "Conditional Macro cleared" message is
issued if matching values are detected. (This may happen more
than once if several Conditional commands referred to the same
Variable.)

Mode = 14 - PLOT

CMMDEX stores the address passed with the command message in
the element of an address array which is determined by the
Plot Channel number specified with the command.

Mode = 15 - DEBUG

The DEBUG command uses a Switch value which can have the val-
ues 2 through 5. Upon a DEBUG Continuously command (Switch =
2), the variable address and type are stored in locations of
the pertinent Debug arrays whose index is determined by the
Debug Channel number (1 to 4). The DEBUG Modify command
(Switch =3) is processed by storing the correct number of
bytes at the specified address. The DEBUG Resume and Suspend
commands, finally, are executed by calls to the proper Inter-
face routines.

- 77 -

/■^'/^■/■■''.'I'L^yi '■ .'l.r' .'■ L1' ,

4. The Czochralski Growth Control System Software

4.4.4.2 THE RAMPING EXECUTOR

This part of the Command Executor is accessed after the treat-
ment of any command, and if no command was received at all.
The first commission of the Ramping Executor has nothing to do
with ramping yet: CMMDEX tests the flag RESTD0(2), and writes
the operation mode to the "fixed" part of the console screen
whenever RESTD0(2) is found set, resetting the flag simultane-
ously. (This flag is set within the routine FRAME to enforce
data output to the console screen after it was cleared; com-
pare chapter 4.4.3.8.)

CMMDEX waits now for a so-called "Flag Interrupt" which is
triggered once every second when a flag is set by the Analog
Controller Task ANACNT which, in turn, is triggered directly
by the Timer Task FXTIME. (The structure of the Interface
software prohibits that several tasks be triggered in parallel
by the Timer output.) The subsequent parameter ramping is
therefore done in relatively regular intervals of one second,
no matter how long the processing of input data took.

For each active ramping channel (ramping flag not equal to
zero), CMMDEX tests whether the absolute value of the differ-
ence between the current setpoint and the final value is al-
ready less than the breakpoint value which was determined
during the ramping preparation. The current setpoint is set
to the final value in this case, and ramping of this channel
is disabled. Otherwise, the increment is added to the current
setpoint, and the current setpoint is stored in memory in the
proper format in either case.

4.4.4.3 FLOATING-POINT CONVERSION OF MEASURED DATA

All measured analog data is primarily stored and processed as
two-byte integers. Unfortunately, these values are hardly
suitable for use in Conditional Macro commands because they
have to be scaled to be meaningful. This is done by the Com-
mand Executor during each pass.

4.4.4.4 DEBUG DATA RETRIEVAL

During each pass, CMMDEX reads four bytes at the addresses
specified with each active DEBUG Continuously command, and
stores them in an array from which they will eventually be
output by the Measured Data Output Task.

- 78 -

. -.«.» J.\» V ■_» a ~* '-' '> '■• 'J.'-" '* *~J£. •■ •• v '*-*■ --■■ f.»'- ;

HV

V

4. The Czochralski Growth Control System Software

4.4.4.5 CONDITIONAL COMMAND EXECUTOR

The Conditional Command Executor part of CMMDEX is only exe-
cuted if the internal counter MACPRO holds zero. MACPRO is
set whenever a new (Conditional or unconditional) Macro com-
mand has been started (compare chapter 4.4.4.1), and is reset
to zero within several seconds. (The timing of CMMDEX is
slightly corrupted when a Macro command is being activated,

$ due to the relatively time-consuming disk accesses involved in
this process. It is therefore not possible to specify the
exact duration of the delay enforced with MACPRO.) Disabling
Conditional command checking temporarily while a new Macro is

"""" being started guarantees that at least the first command of
the new Macro can be executed (provided its relative time is

*>; zero or 1 seconds) without being preempted by a possibly con-
currently activated Conditional command. (The first command
in each file which must not be prematurely preempted should
therefore be a CLEAR command at a relative time of 0 or 1.)

<« For each of the eight potentially pending Conditional Macro
commands, the value held at the specified Variable address is

;-. read (using the algorithm of the SET/CHANGE commands, compare
;•"■ chapter 4.4.4.1) and compared to the constant passed with the

command. The result of the comparison is compared to the
,. specifiea relation(s), and the Macro command is invoked using
M the code sequence of the Macro command processing described in
™ chapter 4.4.4.1. The message "Conditional Macro started" is

output before control is transferred to the standard Macro
£\ command processing. This results in a possibly confusing
.%; sequence of commands if the Conditional Macro preempts an

active Macro command:

™ "Conditional Macro started" - output by the Conditional Com-
mand Executor.

•^ "Command Macro preempted" - refers to the old Macro.
* *

"Executing Macro ... " - gives the name of the new Conditional
v Macro started.
,v
,v

■£• 4.4.4.6 DATA DUMP TO THE DOCUMENTATION FILE
W»

Data dumps are generated by the subroutine DUMPDT which is
invoked by the Command Executor's main routine CMMDEX. DUMPDT

'y enters its main body if either the Dump Flag DUMPFL is set,
indicating a Data Dump request, or if the number of one-minute
Flag Interrupts has been encountered which was specified as a

'- Dump interval when the Documentation file was opened. DUMPDT

- 79 -

rt iiV 1-,'iV

4. The Czochralski Growth Control System Software

generates three output lines which contain 21, essentially
measured, data identified by two-character mnemonics (compare
chapter 3.5). A pointer array is used to assign data from the
(floating-point) array REALDT to the proper output locations,
and output is written to a buffer which is pre-loaded with the
identification text frame when the CGCS is loaded into memo-
ry. The three buffers each of which contains seven data
values are written in turn to line 24 of the console screen
(which is, in fact, not usable for permanent display since it
is cleared during each console input request), using the stan-
dard Console/Documentation file output routines STROUT (com-
pare chapter 4.3.1). In this case, it is not the output on
the CRT screen we are interested in, but its duplicate, tagged
with the time information, in the Documentation output. (Line
24 of the CRT screen is cleared anyhow by a concluding line of
spaces to keep the console screen tidy.) Finally, DUMPFL is
reset in any case in order to be ready to accept a new Dump
request.

The Fortran module which holds DUMPDT contains, in addition, a
small routine DUMP which can be called by any task which wants
to trigger a Data Dump. In addition to setting DUMPFL to
".TRUE.", this routine sets the flag byte TIMINT which is
normally set by the Timer Task FXTIME after the interval spec-
ified when the Data file was opened, triggering the output of
a data record to the Data file. Therefore, an additional
record is entered into the Data file when DUMP is called.
(The status of TIMINT does not matter if no Data file is open
and active.)

4.4.4.7 ANALOG OUTPUT TO A CHART RECORDER

The subroutine PLOTPR which is called as the next action of
the Command Executor Task CMMDEX prepares data for analog
output. PLOTPR does not output this data, though; the latter
task is performed by the Analog Data Controller ANACNT.

First, PLOTPR calculates the "expanded" temperature, growth
rate, and diameter and crucible position errors which were
specially provided for chart recorder output. This procedure
involves, in general, proper scaling, limiting to maximum and
minimum values, and adding of an offset if required. Next,
PLOTPR retrieves the contents of the eight locations pointed
to by the Plot Channel address array elements. It calculates
the absolute values of this data, and provides a message on
the console (and in the Documentation output) if a Plot Chan-
nel changed its sign since the last pass of PLOTPR. The re-
sulting eight INTEGER*2 values are stored with interrupts

- 80 -

■;■ ££&&&ft£&*3£ ^w^ifta^-;^ c^ ^&£&&.rtf^rf^-■:>:•«>:•■ M-,S

SS

4. The Czochralski Growth Control System Software

disabled in order to prevent problems caused by the real-time
environment; the (assembly language) subroutines DISINT and
ENINT disable and enable interrupts, respectively.

JQ

K.i
v.

V

4.4.4.8 PROGRAM CODE INTEGRITY CHECK

In order ro improve the chances to detect inadvertent modifi-
cations cf the CGCS program code - due to hardware failures or
to software problems -, the routine MEMCHK is called at the
end of the CMMDEX code, before the task resumes its infinite
loop. KZMCHK calculates a signature byte for each 256 byte
page within the main CGCS program code, and compares it to the
signature obtained during the previous pass. An error message
is issued if the two signatures are found to be different,
i.e., if one of the 256 bytes checked changed its contents,
and the signature byte kept in memory is set to the new value.
The output of error messages is suppressed during the first
pass of MEMCHK, immediately after the CGCS was loaded, to
permit the array of signature bytes to be initialized proper-
ly. With each call of MEMCHK, five (5) 256-byte pages are
processed; MEMCHK loops to the beginning of its surveillance
area after it arrived at its end. The about 150 memory pages
which are monitored by MEMCHK are therefore tested once every
3 0 seconds. The memory check comprises the entire CGCS resi-
dent code area; for obvious reasons, it could neither include
the data locations nor the overlay area. Still, the memory
check encompasses about 7 0 percent of the entire memory area,
and it is easily possible that MEMCHK might detect a damaged
program code byte before it has been executed (with conceiv-
ably disastrous results).

4.4.S THE MEASURED DATA OUTPUT TASK - TASK MEASDO

The task MEASDO provides all periodically updated output to
the console. It is not synchronized to any other system task
but loops continuously through its code. In order to prevent
MEASDO from monopolizing the system (which would have the
effect that tasks with a lower priority could never be exe-
cuted) , there are deliberate waits built into the task: At
eight roughly equidistant locations within MEASDO, the task
calls the subroutine WTOUTP which, in turn, executes a wait
operation for a specifiable number of iRMX-80 time units. (One
iRMX-8 0 time unit is 50 as.) The number of time units for
which WTOUTP waits is kept in the system Variable INTRVL which
can be nodified with SET, CHANGE, or DEBUG Modify commands.
The smaller this number is, the faster runs MEASDO obviously;

- 81 -

1 ■.' ^r_^jtf i" MK' <V.*Km
^-■„■'^■J^I^I "IUM. "t '«.■■■«! -rr h 'i I'I I'I ft>'t*C.«i~tj*i+i *rm *. "■»*''».>.>■, f.'<*i'■■>>.'■'." n *. *J*

4. The Czochralski Growth Control System Software

the minimum value of INTRVL is 1. (An INTRVL value of 0 halts
MEASDO indefinitely and irreversibly.) The current default
INTRVL value is 10; this value gives satisfactory response
during normal system operations. It is, however, recommend-
able to reduce the INTRVL value during adjustments of the
analog data acquisition hardware. The INTRVL value should be
restored to its standard value when full growth control is
required, in order to protect the system from being over-
loaded.

The infinite task loop of MEASDO is entered after two initial-
ization calls to Interface routines; it Starrs with a check of
the flag RESTDO(3) which "short-circuits" the task if it is
set, thus inhibiting data output. Next, MEASDO copies all
data which is to be output into internal memory locations.
This is necessary because most of the data locations are pro-
tected by software interlocks to prevent them from simultane-
ous accesses by several tasks. MEASDO would unduly block the
data locations and, in consequence, all tasks which also at-
tempt to access them if it monopolized them during the lengthy
output operations; on the other hand, repeated access and
release operations would impose an unacceptable overhead. The
approach chosen for copying the data locations one by one,
rather than using a program loop, may bewilder experienced
Fortran programmers. For the given number of items, however,
the technique chosen is faster and more code efficient than a
loop.

The actual output operations follow one standard approach:
The current (integer) data value to be output is compared to
the value of the same item during the previous pass of MEASDO.
The integer value is multiplied by its scaling factor and
written to the console only if the two values are different,
thus preventing the repeated output of constant data. In
order to enforce the data output regardless of whether an item
was updated or not, a loop is provided which sets all items of
the "old" array to the contents of the corresponding items in
the "current" array, plus 1, if the flag RESTDO(l) is set.
Evidently, the two arrays will hold different values for each
output item after this procedure.

After having output all items, MEASDO sets the "old" output
data array to the contents of the "current" data, and tests
whether output is required for DEBUG Continuously commands.
The scrolled output area is limited to four lines (18 through
21), and line 17 is cleared if Debug output was activated
since the last pass; the scrolled area is set to five lines
(17 through 21) if Debug output was deactivated. MEASDO
writes the address and the memory contents for each active
Debug channel into line 17; prior to the actual data output,

- 82 -

Kl m
*• 4. The Czochralski Growth Control System £jftware

the screen area corresponding to the respective channel is
cleared (overwritten with spaces) if the Debug output mode was
changed. This procedure clears channels which are deactivat-
ed, and it removes the previous output completely if the in-
terpretation of Debug data and therefore the number of dis-
played digits was changed.

■■; v

4.4.6 THE COMMAND FILE INPUT TASK - TASK CMFINP

i$ The Command File Input Task CMFINP reads commands from a Macro
- file and sends them with the proper timing to the Command

Executor.

ÖC Each command in a Macro file is tagged with the time relative
to the call of the Macro command at which the particular com-

\A mand is to be executed. This is accomplished by a combined
>S action of the Command File Input and the Timer Tasks:

:?
The Command Executor sets the flag RUNTIM after each call to a
valid Macro command file, which indicates to the Timer Task
that a second seconds counter is to be started. The contents
of this counter are compared by the Timer Task once every
second to an "alarm clock" value, and a flag is set if the
counter value is equal to or greater than the "alarm clock"
setpoint. The "alarm clock" value is set by the Command File
Input task according to the relative time of the next command
which is to be processed; CMFINP is, in turn, triggered by the
"alarm clock" flag.

The task loop of CMFINP starts with a wait for an "alarm
clock" flag interrupt. Since CMFINP set the "alarm" value to
zero, such an interrupt will immediately happen when the timer
is enabled by CMMDEX upon a Macro command. CMFINP reads one
record from the Macro command file. The task branches if a
disk error occurred, if the end of the file was encountered,
or if a command which refers to absolute memory locations was
read from a Macro file generated under a different system
version. In the first two cases, an "End of Macro command
file" message is output, the input from the file is disabled
(IOFLAG(4) is reset), the Macro file is closed, the Macro name
in the first line of the console screen deleted, and the sec-
ond timer disabled by resetting RUNTIM (which is called INPACT
in CMFINP). CMFINP reports "Macro command not executable" and
reads the next command if the third exception condition was
detected. For all valid commands, CMFINP sets the "alarm
clock" to the execution time of the next command, and loops
back to the initial wait. The command message is dispatched

- 83 -

1.1.1.» » v -. ... ■ -. ■ ■. ■_ V ■_ -. ■. .. -. ». v v

4. The Czochralski Growth Control System Software

to the Command Executor immediately after the "alarm clock"
interrupt.

This handling of Macro command files accounts for possibly
confusing sequences of system messages: CMFINP reads the next
command immediately after having sent the preceding one to the
Command Executor. CMFINP messages may therefore appear on the
screen even before the last command was processed by the Com-
mand Executor.

4.4.7 THE COMMAND FILE OUTPUT TASK - TASK CMFOUT

The Command File Output Task CMFOUT receives command messages
from the Command Executor. It appends the relative time of
the command, i.e., the difference between the current value of
the seconds counter in the Timer Task and the value which this
counter had when the START command was issued. This time
information is stored in the first two bytes of a 16 bytes
record, followed by the command message proper. CMFOUT traps
Macro commands which are not recorded on purpose (compare
chapter 4.4.3), writes the record to the Command Output file,
and disables itself if the command was an END command.

4.4.8 THE DISK OUTPUT TASK - TASK DSKOUT

The task DSKOUT which resides in the Fortran module DSKDAT is
in charge of output to the Data file. DSKOUT collects all
data which is to be recorded in a buffer which corresponds
already to the future contents of the disk data record, and
writes this buffer to the disk.

4.5 THE PROCESS CONTROLLER

4.5.1 THE PIP CONTROLLER ROUTINE FRPIDC

The actual process control approach used in the digital CGCS
is, to a large degree, based on conventional analog techni-
ques. In particular, the system uses PID (Proportional-Inte-
gral-Derivative) controllers for the closed-loop control of
various parameters. In contrast to an analog system, however,
where separate controller hardware is raquired for every con-
trol loop, the CGCS contains only one generic PID controller
routine which performs (with different parameters) the follow-
ing functions:

- 84 -

i-1- -v-1- ^ -_■ ■_

I
4. The Czochralski Growth Control System Software

(1) Motor Speed Control: The outputs which determine the
speeds of the four puller motors (seed and crucible lift

JJ» and rotation) are controlled according to the differences
m between the corresponding setpoints and the actual speed

values. This approach permits to compensate for motor
f controller imperfections such as nonlinearities or off-

sets.

(2) Temperature Control: The power output by the heater(s) is
jö controlled to maintain the heater temperature setpoint(s).

(3) Diameter Control: The heater temperature setpoints are
i» adjusted to provide a minimum diameter error.

v> (4) Crucible Position Control: The lift speed of the crucible
is controlled to reduce to zero the difference between a

Sj calculated crucible position setpoint and the pertinent
D actual value.

y. The PID Controller routine is based upon high-speed integer
3s algorithms. Its output is calculated in several steps: With-

in the first step, the error E is derived from the setpoint S
and the actual value A by:

i
T.H

E - S - A (1)

ju Subsequently, an intermediate result X is calculated according
<K to the following algorithm:

| X = E*P/256 + (IE*I)/IS + DE*D/256 (2),

with P, I, and D, the proportional, integral, and derivative
multipliers, respectively. IE represents the error integral,
i.e., the sum of all error values encountered since the PID

% controller went into operation; IS is a scaling factor which
can be either equal to 256 or to 65536 (28 and 216. respec-

] tively), depending on the value of a control flag. DE, fin-
s' ally, is the difference to the preceding error:

| IE*I = E(0)*I + E(1)*I + ... + E(n)*I (3)

J> DE = E(n) - E(n-l) (4)

The three terms in (2) are scaled by 256 (or by 65536) in
\ order to permit effective proportional, integral, and deriva-
•*v tive multipliers with an absolute magnitude of less than one.

(The above values of the scaling factors were chosen because a
l y multiplication or division by a power of two imposes the least

time and code overhead.)

- 85 -

t ^% 'fc j| m v y.y v.v.v.v.v.v>v.v. -\ '.v.yv •-. ^■v^.v./^-v\^^/.v^;>y;<^»..:

The Czochralski Growth Control System Software

The integral component is calculated by accumulating the sum
of the error values, each multiplied by the integral multi-
plier, in a four byte (32 bit) memory location. (This ap-
proach is less sensitive to abrupt changes of the integral
multiplier I which may happen during the tuning of the system,
compared to accumulating the error sum and multiplying it by
the integral multiplier.) Depending on the magnitude of the
integral scaling divisor IS, either the least significant
byte, byte 0 (for IS = 256), or the two least significant
bytes, bytes 0 and 1 (for IS = 65536), of this internal sum
are discarded when the integral component of X is determined.

I The integral component of X is the value of the next two
bytes, 2 and 1, and 3 and 2, respectively, which is rounded
according to the most significant bit of the discarded
byte(s), and set to the maximum positive or negative value if
IS - 256 was chosen and the accumulation of the integral ex-
tended into the fourth byte (byte 3). Optionally, the result-
ing two byte integral component may be compared to a limit
vaiua; the entire four byte integral is modified to return an
integral component which is exactly equal to the limit value
(with the sign of the four byte error integral) if the inte-
gral component would otherwise exceed the limit.

The intermediate result X is calculated by first adding the
proportional and the derivative components, and finally, the
integral component. X may be limited to any arbitrary range
if the user chooses so; for a given limit L, X results in

X = - (L + 1) if X < - (L +
X = L if X > L
X = X otherwise

1)
(5)

This limiting operation can be selected independent from the
limiting of the integral component although the same limit
parameter is used. A default value for L is assumed in either
case (with L = 32767) if either no limit was specified, or if
a negative limit value was given.

In order to improve the dynamic response of the PID routine, a
"wind-up protection" feature was included. This feature pre-
vents the error integral IE from overflowing when a limit con-
dition is incurred. Without "wind-up protection", the error
integral would continue accumulating in this case, which might
become particularly disturbing if a scaling factor IS of 256
is used and the integral extends into the highest byte. The
error integral would subsequently require a very long time to
recover from the previous condition even if the error already
changed its sign, which might obviously lead to control insta-
bilities. The "wind-up protection" can be explicitly activ-
ated by the user; it becomes only effective when a limit con-

- 86 -

-1-'

■s

.

I

'.

1 V

The Czochralski Growth Control System Software

u dition is incurred. In this case, the internally stored four
■ byte error integral can be adjusted in either one of two ways:
V! it can either be set to a value resulting in a (two byte)

integral component equal to the difference between the limit
*j. value and the sum of the proportional and the derivative com-
$ ponents (Mode A) , or it may be adjusted to return an integral

component equal to the positive or negative limit value, as
demanded by the error integral's sign (Mode B). Thus, the PID

.V controller is forced to remain in its active operation area;
the intermediate result X reacts immediately or almost immedi-
ately to a decrease of the error rather than after the delay
otherwise inherent with the reduction of the error integral.
Activating the "wind-up protection" overrides the integral
component limiting function.

£% Finally, the intermediate result is submitted to two additio-
nal adjustments: First, it is multiplied by a factor which is
a (positive or negative) power of two, and second, a bias
value B is added:

M = B + 2**G * X (6)

The result, M, is output at last. The scaling factor 2**G was
provided to permit an adjustment of the controller's output to
miscellaneous devices. Some devices require, e.g., less than
16 bit signed data, in which cac°. a negative G value can be
used to dispose of the least significant G bits. It could
also be used for restricting the output signal to a certain
range. A positive G could increase the overall gain of the
controller; with regard to accuracy, this is, however.- not
recommended. The bias value B, finally, centers the output of
the PID controller around the bias value.

This handling of the bias value permits to introduce a non-
linear PID controller response by means of two stacked PID
controllers. The setpoint and actual data inputs of both
controllers are to be connected in parallel; the output of the
first is used as a bias input for the second. Single con-
troller operation can be achieved by setting all multipliers
of one of the two stacked controllers to zero. (Which one
does not matter since they are exchangeable.) Nonlinear con-
trol is possible if different parameters are attributed to

A both controllers and the output limit L is set to a value
£> considerably less than 32767 for one of them. For an error

resulting in an intermediate signal X of the output limited
controller less than ±L, the output of the two controllers is

;v the sum of the outputs of either controller, and the resulting
P, I, and D values are the arithmetic sums of the correspond-
ing parameters of both controllers. In the output limited
mode, the limited controller contributes only its limit value

- 87 -

4. The Czochralski Growth Control System Software

whereas the other controller continues operating in its linear
range; the P, I, and D parameters of the two-controller system
are thus equal to the parameters of the controller remaining
active. It seems, however, advisable to introduce some kind
of wind-up protection at least for the output-limited con-
troller in order to permit a fast response of the system to
sudden error changes. The advantages and disadvantages of the
approaches feasible with FRPIDC are discussed in Appendix J.

Essentially, the operation of the digital PID controller rou-
tine is akin to any analer PID controller. The time constants
in the integral and derivative parts of the controller func-
tion are determined by the frequency 1/T with which the con-
troller runs. In the linear region of the controller (no
limit incurred), eqs. (2) through (6) may be re-written as:

M = B + 2**G * P'[E + I'/(P'*T) Edt + (D'*T)/P'*dE/dt] (7)

with P1 , I1, and D', the proportional, integral, and deriva-
tive multipliers of eq. (2) times their appropriate scaling
factors.

The parameters for the PID controller are kept in a 12 byte
array. The first two bytes of this array must be accessed
from Fortran as INTEGER*1 locations (one byte integers), the
remainder, as INTEGER*2. The following data is kept in this
array:

Byte 0: Gain Multiplier Exponent G

—' Byte 1: Control Byte, containing switches
j for:

Integral Component Scaling: 0 ... IS - 256
1 ... IS ■ 65536

Output Limit: 0 ... No Explicit Output Limit
1 ... Output Limit - +/- L

Wind-Up Protection: 0 ... Off
1 ... On

Wind-Up Protection Mode: 0 ... Integral set to L-(P+D)
1 ... Integral set to ±L

Integral Component Limiting: 0 ... Off
1 ... On

_L J Byte 2+3: Bias Value B

J Byte 4+5: Proportional Multiplier P

- 88 -

VJ.L^IWAC..-:'Ä^./^^W^V.^\..\..-...J....^ *•/.• ftMJjBflB '<&*•

The Czochralski Growth Control System Software

I Byte 6+7: Integral Multiplier I

Byte 8+9: Derivative Multiplier D

Byte 10+11: Limit Value L

ffl

$ b

The control byte permits to set the operation mode of the PID
routine, namely, the scaling of the integral component, the
output limiting operations, and the wind-up protection. The
decimal values of the control byte listed below correspond
therefore to the following operations:

CNTL

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
lb

16
17
18
19

20
21
22
23

24
25
26
27

IS Limit Wind- -Up Prot. Integr.Lim

256 ±32767 OFF ±32767
65536 ±32767 OFF ±32767

256 ±L OFF ±32767
65536 ±L OFF ±32767

256 ±32767 ON Mode A ±32767
65536 ±32767 ON Mode A ±32767

256 ±L ON Mode A ±32767
65536 ±L ON Mode A ±32767

256 ±32767 OFF ±32767
65536 ±32767 OFF ±32767

256 ±L OFF ±32767
65536 ±L OFF ±32767

256 ±32767 ON Mode B ±32767
65536 ±32767 ON Mode B ±32767

256 ±L ON Mode B ±32767
65536 ±L ON Mode B ±32767

256 ±32767 OFF 4L
65536 ±32767 OFF ±L

256 ±L OFF ±L
65536 ±L OFF ±L

256 ±32767 ON Mode A *

65536 ±32767 ON Modo A *

256 ±L ON Mode A *

65536 ±L ON Mode A •

256 ±32767 OFF ±L
65536 ±32767 OFF ±L

256 ±L OFF ±L
65536 ±L OFF ±L

- 89 -

flyft * * • » - 'v -N A -v -% '-N -s ■ ■■fc^ii^ '-•^'-SV/V|"| ■V-V.%'.
-N"' - S

5?

4. The Czochralski Growth Control System Software

IS Limit Wind-Up Prot. Integr.Lim.

256 ±32767 ON Mode B *

65536 ±32767 ON Mode B *

256 ±L ON Mode B *

65536 ±L ON Mode B *

CNTL

28
29
30
31

Wind-up Protection Mode A entails that the integral component
is set to the limit value minus the sum of the proportional
and the derivative components if the output exceeds the limit;
in l'.zze B, the integral component is set to the positive or
negative limit value, as appropriate.

* Wind-up protection overrides integral limiting.

An analysis of the various limiting and anti-windup approaches
available with FRPIDC is given in Appendix J.

v
ft
ft

4.5.2 THE DIAMETER CONTROLLER - TASK DIACNT

4.5.2.1 THE DIAMETER CONTROLLER ROUTINE PROPER - MODULE
DIACNT

The Fortran module DIACNT constitutes the main routine of the
Diameter Controller Task. This task is triggered every ten
seconds by a "flag interrupt" generated by the Timer Task.

DIACNT uses a command message of its own in order to perform
automatic RESET and MODE commands. The commands issued by
DIACNT are not recorded in the Control Output file, and the
command message issued by DIACNT is returned to this task
after having been processed by the Command Executor. This
implies that DIACNT has to retrieve this message from its
response exchange before it can be permitted to use it again.
The FXACPT call at the beginning of the infinite loop in
DIACNT performs exactly this task.

A sequence immediately following this subroutine call checks
for mode changes into Diameter Controlled while the Diameter
Evaluation routines have not been reset yet. The following
steps ensue if such a condition is detected:

(1) DIACNT issues a RESET command which sets the weight and
crystal length grown locations to zero, and generates a
pertinent message.

(2) It stores the current MODE value (which can be 2, 3, or 4)
in an auxiliary location INTMOD, sets the operation mode

- 90 -

8

w^w^wv^^^^w^w^ J £. t* J •»>■,•> ™

4. The Czochralski Growth Control System Software

to Manual, and marks this condition with a SHSTOL value of
-3. The remainder of the task loop is skipped.

This procedure triggers a Reset operation when the Command
Executor runs the next time? the actual diameter value is
still meaningless because the Diameter Evaluation routine
runs only after a Reset, but it will be ignored because
the operation mode is still set to Manual.

(3) During its next pass, ten seconds later, DIACNT will set
the MODE value back to the value saved in INTMOD? ix will
duly execute the Diameter Evaluation routines which will
return a meaningful diameter value now, but it will skip
the Diameter Control sequence.

The Command Executor runs only after DIACNT has finished
(because its priority is much lower) , and it will find a
meaningful Actual Diameter value which it can copy to the
Diameter Setpoint locations (because of the mode change to
Diameter Controlled).

(4) Only at the third pass, twenty seconds after a mode change
to Diameter Controlled without preceding Reset was detect-
ed, DIACNT will resume its standard operation.

Under regular operating conditions, DIACNT copies the opera-
tion mode value into a local location in order to avoid con-
fusions if the mode is changed while this task is running.

DIACNT retrieves now from the array of analog input data the
Crucible Position and the Differential Weight values, and
converts the latter into floating-point notation, scaling it
with the proper scaling factor. This data is first submitted
to the subroutine ANOMAL (compare chapter 4.5.2.2) which per-
forms an anomaly compensation if required, and subsequently,
to the function SHAPE (compare chapter 4.5.2.3). SHAPE cal-
culates a Diameter value (returned in DIAMET), and, in addi-
tion, the Length grown (scaled with the same factor as the
Seed Position input data), and a Crucible Position setpoint
(in SCRUCP) which is in the same format as the Crucible Posi-
tion input data. (Several other auxiliary values are returned
by SHAPE which are primarily intended for testing and debug-
ging purposes.) SHAPE provides a status value in SHSTAT which
is evaluated subsequently; corresponding (error) messages are
issued the first time a certain SHSTAT value is returned, and
the operation mode is set to Manual if either a Zero Seed Lift
Speed or a Speed Overflow error was detected. With the excep-
tion of changes to or from a Zero Seed Lift Speed condition
and of an Oxide Height Overflow, a Data Dump to the Documenta-
tion output and an additional record in the Data file are

- 91 -

^;^^^^^tf^•v:v^^^^^:^^^Vs^^^;^v^v^ .•vvy.-yy-Y r-"YYy •yyy-.«y ■•yyyyy
M.

I

V

->

4. The Czochralski Growth Control System Software

triggered. DIACNT tries to re-activate SHAPE after a Speed
Overflow error with a call to the subroutine REACTV which is
part of the assembly language module holding SHAPE; after six
succeeding unsuccessful attempts, DIACNT decides that the
problem is too serious to deal with it on its own, and dis-
ables SHAPE permanently (until a RESET command is issued
again).

Subsequently, DIACNT enters the actual diameter controller
sequence: While in Monitoring or in Manual mode, DIACNT has
nothing to control. The routine resets, however, the Error
Integral locations of the PID Data arrays and the Previous
Error values (compare chapter 4.5.1) to zero. This is done to
provide a defined environment when diameter control is acti-
vated.

In any one of the Diameter Controlled modes (Diameter, Diame-
ter/ ASC, and Automatic), DIACNT has to generate three Heater
Temperature setpoints. Each of these setpoints is obtained
from two stacked PID controllers which permit to obtain a non-
linear control response (compare chapter 4.5.1). The first
PID controller receives the proper current Heater Temperature
setpoint (i.e., the value obtained from operator or Macro
commands) from the STPNT1 array as a Bias value; its output is
used as a Bias for the second PID controller. All six Diame-
ter controllers use the actual Diameter and the Diameter set-
point as inputs. The output of the second PID controller of
each Heater channel is stored in the setpoint array STPNTO.

An additional control loop is executed in Automatic mode: The
crucible lift speed is controlled according to the difference
between the actual Crucible Position and the pertinent set-
point calculated by SHAPE. Two stacked controllers are used
for this commission, too; similar to the Diameter controllers,
the Crucible Lift Speed setpoint input by the operator (or

'/. from a Macro file) is used as a Bias value for the first con-
troller, whose output is fed to the Bias input of the second
controller. The second controller's output is stored as an
actual Crucible Lift setpoint.

The approach chosen for the PID controllers in DIACNT, namely,
passing the "manual" setpoint through the controller routines

X via the Bias inputs, has various advantages: Since the "manu-
al" setpoint can be chosen to lie close to the actually re-
quired controller output, the PID controllers need only make
small modifications to the "manual" setpoint, which improves
the accuracy and the dynamic response of these routines.
Furthermore, it is possible to limit the output of the con-
trollers to lie within a relatively small range around the

I Bias value. This prevents, for example, the Diameter control-

& - 92 -
K •".'
h *»*
u .'• v
s
»

JM BWBBl

4. The Czochralski Growth Control System Software

ler from totally turning off the heater if the actual crystal
diameter seems to be much smaller than the pertinent setpoint,
which may easily happen particularly during cone growth. In
fact, a smooth transition from manual to diameter controlled
growth may be obtained if the controllers' PID parameters are
ramped from zero to their final values, or if the Limit values
are initially set to zero and slowly ramped to their intended
final values. There is, indeed, hardly any limit set to the
control schemes which may be obtained from dynamically modify-
ing the parameters of the controllers provided.

4.5.2.2 ANOMALY COMPENSATION - ROUTINE ANOMLY

Prior to the evaluation of the diameter, the Differential
Weight value derived from the A/D converter can be submitted
to a compensation for anomaly effects. According to the con-
ventional anomaly compensation approach, a corrected Differen-
tial Weight X can be calculated from the "raw" weight Y by
solving the differential equation

X = (Y - b-X') ' (1)

where X' is the first derivative of X with regard to time.
Equation (1) can be re-written as

b-X" + X - Y' (2).

In the CGCS, we expanded the above approach to:

b-X" + a-X' + X = Y' (3)

Numerically, the above differentiations have to be replaced by
differences. With X0, the current Differential Weight, X1; the
previous value, and X2, the previous but one, we can write:

xo' = x0 ~ xl

xl* = Xl * x2 <4)

X0" = X0' - Xx' = X0 - 2-Xi + X2

Substituting eqs. (4) into eq. (J) results in a linear equa-
tion for XQ which can be solved as:

Y' + (a + 2«b)»Xi - b«X2

1 + a + b
X0 - (5)

- 93 -

iiaatirijAfciu^

The Czochralski Growth Control System Software

™ The "raw" Differential Weight Y1 is input directly from the
analog differentiator circuitry. A corrected Differential

JK Weight X0 can be calculated from the "raw" value Y and the
v previous results X]_ and X2 according to (5) . The Fortran

subroutine ANOMAL evaluates X0 from eq. (5) if the Mode value
is greater than 2 (i.e., in Diameter/ASC and Automatic modes);

W otherwise, it sets XQ equal to V. In addition, ANOMAL stores
V» its X]_ value in X2, and the X0 value thus determined, in X^_,

in order to have proper previous results for the next pass.

ft

i

,V

4.5.2.3 DIAMETER EVALUATION ALGORITHMS - ROUTINE SHAPE

™ The assembly language routine SHAPE constitutes the heart of
the diameter evaluation algorithms. SHAPE calculates the fol-

5? lowing data:

(1) A crystal Diameter value which is derived from the Differ-
, ential Weight which previously may have been submitted to

*< anomaly compensation. SHAPE takes into account the buoy-
-% ancy in the boric oxide melt.

(2) The current height of the boric oxide melt in the cruci-
ble.

(3) The Crystal Length grown.

(4) A Crucible Position setpoint which is used for determining
the crucible lift speed in Automatic mode.

>! When the length of a crystal grown increases by Sx, a portion
of the crystal whose length is Sy emerges from the boric oxide

<, melt. The two differential lengths are not necessarily equal
y since the height h of the boric oxide melt may have been

changed by 5h due to a change of the crystal volume immersed
(compare Fig. 10). We can write:

Sy « Sx - 5h (6)

YJ The height, h of the oxide melt can be determined from the
Sj oxide melt volume Vm and the volume Vj_ of the immersed part of

the crystal, with R, the radius of the crucible:

}[vm + vi = R2'*-h (?)

During the major part of a crystal growth run, Vm is constant.
Towards the end of the run, however, the semiconductor melt
starts retracting from the crucible wall, resulting in a disk

- 94 -

EW<^>.^:<^^.^^^>>:.^<,^^;^^^;,^■>^■^

The Czochralski Growth Control System Software

of molten gallium arsenide in the center of the crucible whose
height remains roughly constant but whose diameter decreases.
The gap between this disk and the crucible is filled by boric
oxide, causing the effective oxide volume (i.e., the volume
measured from the extension of the top surface of the semicon-
ductor melt disk upwards) to decrease. Differentiation of
eq. (7) results in:

5 V. m SVi = R^-Tr-Sh (3) ,

SVm = - e-SV2-(dx/dxm)

and

6Vj_ = SV2 - 5V]

where

and

SV2 = r2
2*iT'6x

svl = ri2'ir«5y

(9)

(10),

(ID

(12).

The parameter e in eq. (9) is equal to zero during regular
growth, and equal to 1 when the melt contraction has started.
The effective boric oxide volume is reduced in this case by
the volume of semiconductor melt required to grow the differ-
ential cylinder 6V?; d^ and dx stand for the densities of
molten and solid semiconductor material, and r^ and r2 are the
radii of the crystal at the oxide surface and the melt-crystal
interface, respectively. With d0, the density of the boric
oxide melt, the change of the crystal's weight 5W can be writ-
ten as:

5W - SV2«(dx - d0) - 6V]/(dx - d0) + 5Vx*dx =

= 6V2.(dx - d0) + SVrd0 (13),

The differential cylinder close to the semiconductor melt
contributes to the weight only with the difference of the
crystal and oxide densities, due to buoyancy; the differential
cylinder which emerged from the oxide melt had previously a
weight proportional to (dx - dQ) which is now proportional to
dx only.

With eqs,
of 6x:

(6) and (8) to (12), we can express Sy as a function

- 95 -

>^>^^\>: :<.:*:<&:*;<£

8

i

■
V

ä

I
£

I
■?

a

4. The Czochralski Growth Control System Software

Sy =
ß-r2<

R2 - rx
2

6x

with

ß = 1 - e-(dx/dxm)

(14),

(15)

Note that ß is equal to 1 during regular growth, and it ap-
proaches 0 when the melt recession starts (because the ratic
of densities is close to 1). With eq. (14), we can re-write
eq. (13):

SW
jffj = r22.(dx - dQ - ß-da) + R2.d£

with an "adjusted oxide density" da

r,a 1

(16),

da = do' = d,
R2 - rx

2 " (R2/r!2) - 1

Eq. (16) permits to calculate the square of r2:

- R2-da

(17).

r2
2 =

SW
TT'SX (18)

dx ~ do ~ ß*da

With the Differential Weight (SW/St) *nd the Growth Rate

v = Sx/St (19),

we finally can write for eq. (18):

(SW/St> - R2.d.
r22 =

ir«v *a
dx " do " ß*d

(20)
a

The Growth Rate v is determined by the combined effects of the
Seed Lift Speed vs and the speed v<j with which the gallium
arsenide melt drops:

v = vs + vd (21).

For a length Sx of crystal grown, the semiconductor melt in
the crucible will drop by Sz in order to provide the crystal
mass solidified while the crystal is within the regular growth
regime. The melt level will hardly drop any more when the
melt contraction towards the end of the growth run started.
Since the total mass must be constant, we can write:

- 96 -

■-5.W. VJWJV-V.V-% _V:N■_-,-.y .'.-.-. "■ -. ;- ■N.%.-..% .-->>,-.»>•■■ VVVV V V »y.y.v.y; *:K .*-v

The Czochralski Growth Control System Software

R2 "ir-d xm Sz = r- 'TT'dv* (Sx + 5z - vc«St) (22) ,

with djjjj, and dx, the densities of the semiconductor melt and
the solid crystal, respectively, and vc, the actual Crucible
Lift Speed. We can solve eq. (22) for 5z and can, finally,
obtain:

vs " vc
v =

>2-d,
(23)

1 - a'
R^ «d xm

The constant a is equal to 1 if (23) is obtained as an exact
solution of eq. (22). In a heuristic way, however, assigning
values different from 1 to a can help to compensate for non-
ideal effects caused by the crucible shape and/or surface
tension. Assigning values greater than 1 to a could compen-
sate for a decrease of the crucible diameter close to its
bottom; in contrast, a could be set to values less than 1 to
take into account the receding of the gallium arsenide melt
during the final stages of the growth process, an effect which
obviously more than compensates for the beveling of the cruc-
ible. The surface of the melt does, in effect, not drop any
more when the semiconductor melt starts receding from the
crucible walls because the material used up by the growing
crystal is supplied by reducing the melt's diameter rather
than height. This corresponds to a crucible with infinite
diameter, or to an a value of 0. At the end of the body
growth, a may simply be ramped down to 0, starting at the
point when melt recession usually begins. (A Variable named
ALPHA is provided for this purpose. It is initialized with
the value 1 but may be modified with the standard SET or
CHANGE commands.)

The constant e defined in eq. (9) follows exactly the opposite
behavior, compared to a: it is equal to zero during the regu-
lar growth, and assumes a value of 1 at the end of the pro-
cess. It appeared therefore to be a reasonable approach to
set

e = 1 - a (24)

within the SHAPE software.

Obviously, the currently grown crystal diameter can be deter-
mined as twice the square root of the left side of eq. (20) .
SHAPE returns an INTEGER*2 value in the Variable IDIAMT; this
value is converted to floating-point notation, scaled proper-
ly, and stored in the Variable DIAMET by the Command Executor.

- 97 -

tofttitöä^^ ^V^V;<:VV> >>>_>: yrfV.V ;■: ;■:;.; * ;■;»: y. ;■: K ;■: ;■:

PJTK.M"K WTUT*. iRVUVTi V* VW WWW WW1 fSH »SA «V\ »VI -V\ !V1 V\ *H H.* Jen IM« K^Mniinu T « n y H *j*m si'FWR» !U««WV«\

The Czochralski Growth Control System Software

The evaluation of eq. (20) implies a division by the Growth
Rate v. Obviously, this value must not be equal to zero to
permit the calculation of the diameter. SHAPE checks there-
fore the difference of the seed and the crucible lift speeds,
vs and vc, respectively, right at the beginning of its opera-
tions; SHAPE skips the remainder of its code and provides an
error flag if it detects a zero value. The error flag is
monitored by DIACNT; suitable actions are taken (compare chap-
ter 4.5.2.1), and an appropriate message is output in the case
of an error.

In order to solve eq. (20) , the square of the radius of the
crystal at the surface of the oxide melt, r^2, has to be
known. This entails that the actual height of the boric oxide
melt, h, and the total volume of the crystal immersed in the
boric oxide, Vj_, are also known; the latter parameters are
required for calculating the optimum crucible position. SHAPE
determines this data by keeping a table of crystal diameter
squares in an array DIATAB. (In fact, SHAPE operates with
diameter rather than radius squares; with the exception of a
factor of 4 in the denominator of the first term in the numer-
ator of t j. (20), the algorithms within SHAPE are identical to
those above. We used radii rather than diameters in the above
derivation in order to avoid naming confusions with the densi-
ties.)

Since SHAPE can only store the shape (i.e., the diameter) of
the crystal at discrete length positions, an interpolation
approach had to be developed which permits an approximate
evaluation of the crystal's diameter at any arbitrary posi-
tion. An obvious method would have been a linear interpola-
tion between the stored diameter values. For the application
in mind (where the squares of diameter values are more often
required than the plain diameters) , a linear interpolation of
the squares of the diameter data proved to be considerably
more efficient. Assuming that the square of the diameter or
the radius is a linear function of the position x within the
crystal, we can write

r2 = k* (x + x0) (25]

with k and x0, constants determined by the crystal's shape.
(We return again to radii rather than diameters in order to
match the above nomenclature.)

Equation (25) entails that a section of the crystal is approx-
imated by a section of a paraboloid. Figure 11 depicts the
radius r' of a section with the height hs; the radius at the
bottom of the section is rfo, and on top of the section, r[.

.V

- 98 -

VV a V V.- V > -,' £ £ V VV V.V V V ».V.»V V y -,\ ».VvV - - - a - c i rf' f •.■■ .y.*.+..*i^w.w..

ru* rvm r\j* t~v*. t w* i J-W^VJ *r^ ■■

4. The Czochralski Growth Control System Software

Applying eq. (25) to x = 0 and x = hs, respectively, permits
to replace the constants k and x0 with rfo, rj_, and hs:

k =
n 2 - r.2

(26)

*c = hs'
*b<

n 2 _ *6'
(27;

The volume V of the parabolc^l section obtained from rotation
of the shaded area in Fig. 11 around the x axis can be calcu-
lated as:

V = ir • f r^ • dx (23)

With (25) through (28) , we obtain finally:

TT'he
V = (r^ + r^) (29)

During regular crystal growth, SHAPE accumulates the volume
within one "slice" of the crystal by adding the volumes of
"differential" cylinders with the diameter of the crystal
calculated in the previous pass and with a height determined
by the difference of the crystal length values for the current
and the previous pass. This volume increment may be negative
during meltback conditions, or if the new length value was
less than the previous one due to noise superimposed on the
seed and crucible position signals. A "slice" boundary is
detected when the two byte integer representation of uhe crys-
tal length exceeds a multiple of 64, which corresponds to a
length difference of approximately 1.17 mm. A new "slice" is
added to SHAPE'S image of the crystal in memory which is kept
in DIATAB, a 64 element floating-point array of squares of
diameters, calculating the square of the diameter of a cylin-
der with a height equal tc the distance from the previous
slice boundary, and a volume equal to the sum of "differen-
tial" volumes accumulated since then. (Due to noise and the
limited resolution of the crystal length, the height of this
cylinder may be slightly greater than 64 length counts.) (A
previous approach to approximate the crystal by slices of
paraboloids proved to be unstable because errors of the previ-
ously calculated diameter squares propagated into the newly
calculated data when eq. (29) was solved.) All entries in

- 99 -

S^^W^v\y^y^v>A,y.^
v.v.

4. The Czochralski Growth Control System Software

DIATAB are shifted up one step, and the new diameter square is
stored as the crystal's bottom diameter. The top entry is
lost.

In order to prevent erratic diameter square average values
from being entered in the table and from eventually corrupting
the diameter calculation when the slice in question arrives at
the encapsulant surface, the Fortran subroutine CHKDTB was
provided which is part of the module DIACNT but called from
SHAPE. CHKDTB compares the absolute value of the difference
between the preceding and the current squares, and adjusts the
new value to differ by not more than the specified limit
(which is kept in the Variable XTLSHP) from its predecessor.
This approach allows for greater absolute and relative diame-
ter fluctuations in stages where the crystal diameter is small
(e.g., in the early cone sections) and where such fluctuations
are quite normal; it is more restrictive within.the full-dia-
meter crystal body. (The data stored in DIATAB is in square
millimeters; XTLSHP must therefore be set to the maximum per-
mitted difference between the squares of the diameters (in
millimeters) of two adjoining crystal sections.)

During meltback conditions, i.e., when the crystal length
decreases rather than increases with time, the entries in the
array of diameter squares are shifted down one step when a
slice boundary is reached; the top entry is reduplicated.

A subroutine of SHAPE, CALCSD, uses the entries in DIATAB to
calculate the square of the diameter of the crystal at the
surface of the boric oxide melt (corresponding to r^2 in our
calculations). Since the position of the oxide melt surface
relative to the crystal depends on the total height of the
oxide melt, which is, in turn, a function of the total crystal
volume immersed in the boric oxide, the melt height and the
immersed volume must be re-calculated in each pass of CALCSD.
The following procedure is used in CALCSD (compare Fig. 12):

The portion of the crystal immersed in the boric oxide melt is
divided into slices of uniform height hs whose radii (or
rather, diameter squares) are stored in DIATAB. The top and
bottom slices are obviously exceptions to this rule. The
bottom slice is the portion of the crystal grown since the
last slice boundary was encountered; the height of the top
slice is determined by the position of the oxide surface.

In order to determine r^2, CALCSD assumes that the encapsulant
melt height did not change since the last pass. CALCSD first
checks whether the boric oxide height is less than 75 milli-
meters, i.e., less than the length of the portion of the crys-
tal whose diameter squares are stored in DIATAB. The oxide

- 100 -

tva i' &U&£k&3^^

4. The Czochralski Growth Control System Software

height is limited to the maximum permitted value, and an error
output is triggered if this is not the case. In order to
prevent the "Oxide Height Overflow" error from either being
reported every ten seconds, or from eventually hiding any
other error condition which is flagged by the same parameter
of SHAPE, SHSTAT, a counter byte is incremented for every
occurrence of this error; SHSTAT, in contrast, is set to indi-
cate the problem only when the counter wraps around to zero
after 256 increments. Depending on the number of iterations
required in CALCSD, this may happen every 5 to 20 minutes if
the condition persists continuously.

Having checked the oxide height, CALCSD subtracts the height
of the bottom slice, h0, from the previous melt height h and
determines by a simple modulo operation the distance x the
melt surface lies above the center of the last slice which is
immersed to more than 50 percent of its height. The square of
r^ is obtained from a linear interpolation of the two adjacent
entries in the table (in Fig. 12, from the squares of r^ and
r£), i.e., by an interpolation which assumes a paraboloid
shape of the current section. Using the centers of the slices
rather than the slice boundaries as top and bottom surfaces of
a paraboloid section guarantees a better accuracy.

The melt height h, however, may have changed since the previ-
ous pass if the volume added at the growth zone was not equal
to the volume withdrawn from the boric oxide. In order to
determine the current value of h according to eq. (7) , the
immersed crystal volume Vj_ must be known. For a crystal with
n slices covered by the oxide melt to at least 50 percent of
their height, we can calculate V^ according to:

Vj_ « v« + ir«hs-[r5
2 + r[2 + ...

+ r^!2 + r£2/2] + ir-x^r^2 + r1
2)/2 (30)

(V* is the volume of the currently grown section of the crys-
tal with the height h0.)

Equation (7) permits now to calculate a new melt height value
(assuming the oxide volume Vm and the crucible radius R are
known) which is compared to the previous height. CALCSD re-
turns if both values differed for less than one height unit
(approximately 0.02 mm); otherwise, the procedure is repeated
from the calculation of r^ on. CALCSD is left, though, if a
certain number of iterations (currently, 5) was not suffici-
ent, which constitutes a protection against "hanging up" in
the case of bad convergence.

- 101 -

t>^:^^>^^^

The Czochralski Growth Control System Software

ft

During the major part of the growth run, the oxide volume Vm
in eq. (7) is, indeed, known and constant. Towards the end of
the run, however, the active boric oxide volume starts de-
creasing as the semiconductor melt recedes from the crucible
wall, and the resulting gap is filled with boric oxide.
Therefore, Vm has to be corrected after each pass in this
regime for the apparent oxide volume loss 6Vm according to eq.
(9):

vm ~ vmo ' *- ° vm ~ vmo z (e-sv2.dx/dxra)

where Vmo is the initial boric oxide melt volume,

31"

-v

K

One more task of SHAPE is the evaluation of a Crucible Posi-
tion setpoint which also enters into the calculation of the
Length Grown. The apparent weight of the growing crystal, w,
can be written as

W = w, o + Wx . (Vi - vio).dc (32),

a

where W0 is the measured initial weight at the beginning of
the growth run, and Wx, the actual weight of the crystal
grown. The last term in eq. (32) takes into account the buoy-
ancy in the boric oxide melt. The mass Wx has been withdrawn
from the contents of the crucible, essentially by lowering the
surface of the semiconductor melt. Towards the end of the
growth run, however, the semiconductor melt volume required to
grow the crystal is supplied by shrinking the diameter rather
than the height of the semiconductor melt. The volume thus
obtained is identical to the boric oxide volume lost according
to eqs. (9) and (31) . The crucible must be raised by a dis-
tance z in order to keep the semiconductor melt surface at the
same location within the puller:

•.-

s

Wx = R^.E-d^ - E SVjn-d^ (33)

(Keep in mind that 6Vm is negative; the contribution of the
right term in eq. (33) is therefore either zero - during the
regular growth - or positive.)

The density of the melt, dxm, is different from the density of
the crystal, dx. The crucible position setpoint, zs, can be
calculated from eqs. (32) and (33) with the initial crucible
position z0:

ft

zs = zo + z =

w + vrd0 - (Wc V lo 'do) + 2 SVm-d m ^xm
= z0 +

■ IT • d xm

(34)

I
- 102 -

lc^>^<;^v^;^
v- O^O • • ...

4. The Czochralski Growth Control System Software

We ii^y substitute with eqs. (7) and (31) for the immersed
volumec V^ and V^Q, and we obtain with the melt height h0 at
the beginning of the growth run:

W
- + h-

do
+

w

S 5Vm

-(I -
do

zs -

(z0 " ho"

dxm R2«7T

0

dxm

+
dxm •TT '

)
dxm

(35)

The term in the second line of eq. (35) is an initialization
constant. The calculated Crucible Position setpoint is re-
turned by SHAPE in the INTEGER*2 Variable SCRUCP.

The actual position za of the crucible as obtained from the
Crucible Position potentiometer may be different from zs; with
the initial and actual seed position values x0 and xa, respec-
tively, the length 1 of the crystal can be calculated as:

1 = (xa - x0) + (zs - za) (36).

An accordingly determined Crystal Length value is returned by
SHAPE in the Variable ILENGT (in INTEGER*2 notation); it is
eventually converted to floating-point format and scaled by
the Command Executor and stored as LENGTH.

Note that different approaches are used for the calculation of
the actual Growth Rate and of the Crucible Position setpoint
and Length Grown values. In the first case, the Growth rate
is derived from (measured) speed values, while the Crucible
Position setpoint calculation is based on the weight of the
crystal. Although this approach may appear redundant, it was
indispensable in order to obtain an acceptable accuracy of the
results. (In general, it is preferable to use an input value
which constitutes already an integral magnitude (such as the
crystal weight), rather than calculating the integral; similar
considerations apply to derivative data such as speeds.)

A Meltback condition is indicated by SHAPE and subsequently
reported by DIACNT if the Crystal Length value calculated was
decreased by more than one "slice", i.e., by more than 1 mm.
This may be due to any effect which reduces the distance be-
tween the seed and the semiconductor melt surface, whether it
was caused by a movement of the seed, or of the crucible. A
"Regular growth resumed" message is similarly issued after a
RESET command, upon the detection of a non-zero Seed Lift
speed after a "Zero seed lift speed" error, or if the Crystal

- 103 -

ft^y^fe^:^

*'-

i

S

■A

ft

V

4. The Czochralski Growth Control System Software

Length was increased again by more than one "slice" after a
Meltback condition.

SHAPE is called as an INTEGER*1 Function from Fortran; the
Differential Weight is passed to it as a parameter. It re-
turns an integer flag which indicates the status of its opera-
tion. The following values are currently defined:

3
2
1
0
-1
-2

Oxide Height overflow.
Seed Lift speed is zero - no diameter calculated.
Meltback.
Regular growth.
Speed overflow - RESET or REACTV call required.
SHAPE is not yet initialized - RESET required.

All other parameters are passed to and from SHAPE via memory
locations in COMMON blocks most of which can be accessed as
Variables.

4.5.2.4 THE INITIALIZATION OF THE ROUTINE SHAPE - ROUTINE
RESET

Although the subroutine RESET is logically part of the Command
Executor Task CMMDEX, it is kept in one assembly language
module together with SHAPE, and it is discussed here. The
essential commission of RESET is to prepare SHAPE for its
operations. RESET has to be called before usable Diameter,
Length grown, and Crucible Position setpoint values can be
obtained from SHAPE if the status value returned by SHAPE is
negative (compare chapter 4.5.2.3). This value is negative

(a) After the start of the system, before RESET was called the
first time, and

*G (b) After a "Speed overflow" error which happens if SHAPE is
no more able to update its stack of crystal "slices". This

■^ is the case if less than one diameter value per "slice" is
»•j available, corresponding to speeds in excess of 4 00 mm/h.

(In the latter case, a call to the subroutine REACTV may be
§ sufficient to re-establish proper operation of SHAPE; compare

chapter 4.5.2.5.)

The following items are initialized by RESET:

(1) The initial values of the crystal Weight, the Seed, and
the Crucible Positions.

- 104 -

4. The Czochralski Growth Control System Software

(2) The Diameter Square Table DIATAB is filled assuming a
cylindrical crystal with a diameter equal to the Seed
Diameter which was specified with the INITIALIZE func-
tion. The initial immersed crystal volume is calculated
accordingly.

(3) The initial melt height is derived from the Melt Weight
and Density values obtained from INITIALIZE, and from the
above initial immersed volume.

(4) The parameter ALPHA (compare chapter 4.5.2.3) is set to 1,
and the encapsulant volume "lost" by melt recession (com-
pare eq. (9)) is reset to zero.

4.5.2.5 THE RE-ACTIVATION OF SHAPE - ROUTINE REACTV

The subroutine REACTV is kept in one module together with
SHAPE. It permits to safely resume the operation of SHAPE
after a Speed Overflow error which was not likely to have
caused significant changes to the volume of the crystal im-
mersed in the boric oxide melt. REACTV simply resets the
internal location which is used to accumulate the volume of
the crystal "slice" grown since the last pass of SHAPE, and it
activates SHAPE again by resetting its status byte.

4.5.3 THE ANALOG DATA CONTROLLER - TASK ANACNT

4.5.3.1 THE ANALOG CONTROLLER ROUTINE PROPER - MODULE ANACNT

The main part of the Analog Data Controller Task is kept in
the Fortran module ANACNT. The following operations are done
by the Analog Data Controller Task:

(1) ANACNT requests from the A/D Converter board the A/D con-
verted values for 25 analog input channels, and it prepro-
cesses the Weight value by subtracting the offset weight-
determined by RESET.

(2) It controls the power output for three heaters, running
PID controller routines with the Heater Temperature set-
points and actual values as inputs.

(3) It generates similarly the control output to the four mo-
tors.

- 105 -

SM843feSfttef■* v v v v vv -' e vi *■• > vi v •■»•■••■••••-•,- v ■.-■»». -. - -;; .> •. :■;•;-; -^ -^ ^ - - .^ ■ - - - r • ^ ._• tf ^ *; ._. pj.. *_..

4. The Czochralski Growth Control System Software

8(4) It provides input from and output to the Motor Direction
relay circuitry, and it takes care of the Controller Se-
lection output.

Jft (5) It writes the control data determined above and the Plot
data collected by the Command Executor (compare chapter

j 4.4.4.7) to the D/A Converter hardware.

<v ANACNT runs once every second, being triggered directly by the
Timer Task. Immediately after having been started, it sets an

(üj auxiliary seconds flag, SECFLG, which, in turn, sets to work
|£ the Command Executor.

The first major operation of ANACNT is obtaining input data
> from the A/D Converter board. This is done within the assem-
'** bly language subroutine ANAINP (compare chapter 4.5.3.2). The

ANAINP call is skipped if the flag TEST is set to -1. ANAINP
<tl returns the input from the Converter hardware in the 25 ele-
g ment array ANALOG, as two-byte integer data. (The contents of

this array may be patched with arbitrary simulation data which
(, can even be ramped if required if ANAINP was disabled with
j8j TEST.)

Having read the input data, ANACNT prepares the data and par-
& ameter locations for the seven PID controllers which are run
pj by this task. The three Temperature controllers (one for each

zone of a three-zone heater) use the pertinent Heater Tempera-
,» ture setpoints and actual values as input data; the Power
j& Limit setpoint serves as a common Limit value for all three
® controllers. The controllers' Bias values are kept at zero.

Q A totally different approach is used for the Motor Speed con-
£v trollers: On principle, the motor controller hardware could

be driven directly by the D/A converted speed setpoints. Due
.»• to nonlinearities and offset errors within the motor control-
J5 ler hardware, this approach would result in unsightly differ-
** ences between the speed setpoints and the actual speeds. In

order to alleviate this problem, one PID controller was pro-
*¥, vided for each of the four motor channels which receives the
& pertinent setpoint as an input and as a Bias value and which

generates output data which is eventually fed to the motor
«jj controller hardware, using the actual motor speed as its sec-
» ond input. In contrast to the Temperature controllers which

employ genuine PID operation, the Motor controllers are cur-
rently programmed to operate as integral controllers only;

V their only task is to correct the original setpoint values
>! slightly in order to force the difference between a Motor

Speed setpoint and the pertine it actual value to zero.

- 106 -

&&vv^^

4. The Czochralski Growth Control System Software

ANACNT prepares the inputs to the PID routines in any case; it
runs the PID controllers only if the CGCS is in charge of the
puller. In contrast, it resets the Previous Error and Error
Integral locations of all controllers while the system is in
Monitoring mode, and it provides the Motor Speed setpoints for
output by the D/A Converter board. (This provision was made
in order to permit an easier test of the output hardware. The
Motor Speed control signals are thus available at the outputs
of the Digital Controller in any case.)

A special treatment is required for the Motor Speeds: Due tc
the offset usually introduced by the PID controllers, a non-
zero output signal results even if the corresponding setpoint
was actually set to zero. Although this non-zero output sig-
nal might only compensate for an opposite offset of the hard-
ware, it would prevent the Motor Direction Relay controller
routine MOTDIR (compare chapter 4.5.3.3) from switching the
motors actually off. ANACNT branches therefore according to
the Motor Speed setpoint values, and provides a zero output
explicitly when required.

Having trapped possibly negative Temperature Controller output
values (there is no negative heater power), ANACNT copies the
internal array of analog input data, ANALOG, to the array
ANADAT, shifting the contents of the ANALOG array by one ele-
ment. This was done to guarantee that the important input
data (i.e., the first 17 elements of ANADAT) is actually
sampled at the same time. The first element in ANALOG was
measured at the end of the previous call to the Analog Data
Input routine ANAINP (compare chapter 4.5.3.2), and it is
therefore approximately one second older.

Finally, ANACNT calls the Motor Direction Relay controller
routine MOTDIR (compare chapter 4.5.3.3), and writes the fif-
teen Analog Output values in the array ANAOUT (three tempera-
tures, four motors, and eight chart recorder output channels)
to the D/A Converter board, calling the Analog Data Output
routine ANAOPT (compare chapter 4.5.3.4). Both operations are
skipped if TEST is set to -1.

4.5.3.2 THE ANALOG DATA INPUT ROUTINE ANAINP

ANAINP is an assembly language routine which reads data from
the A/D Converter board in a random access mode, and submits
the values obtained to digital low-pass filtering.

In order to permit random input of data from the hardware,
ANAINP uses a special parameter array ANIPAR which consists of

- 107 -

Sffia&fiiffi3ff2ai2&^ ^

4. The Czochralski Growth Control System Software

i V

two bytes for each channel. It is, therefore, very easy to
connect a logical data channel within the CGCS to an arbitrary
hardware channel and to modify the gain and filtering parame-
ters of any channel by changing the contents of ANIPAR. In
addition, the number of input channels actually read is not
built into ANAINP but derived from the parameter array ANIPAR:
The operation of ANAINP is terminated, and the routine returns
to the calling task, when the most significant bit of an odd
element of ANIPAR is set, corresponding to any negative value.
(The remainder of the parameter byte does not matter.) It is
therefore essential that at least one negative value is pro-
vided in ANIPAR lest ANAINP might indefinitely continue read-
ing data; since the output is stored in an array which is
specified as the second parameter of ANAINP, this data input
would exceed the boundaries of the array and eventually over-
write important data. The two parameter bytes per channel in
ANIPAR hold the following information:

V*
r ANIPAR (2n ± 1): (n = 0, 1, 2, 3 ...)

■
3

Bit 5
_1

Gain:
0 0
0 1
1 0
1 1

= 1
= 2
= 4
= 8

0
_j

A/D Converter Channel (0 31)

0 ... Active input channel
1 ... Last entry in ANIPAR; bits 0 to 6 don't matter

k

ANIPAR J2n + 2): (n = 0, 1, 2, 3 ...)

Low-pass filter flag, determines the cut-off frequency of the
digital low-pass filter routine:

>,
v.

Value
0
1
2
3
4

Cut-Off Frequency (Hz)
infinite
0.1150
0.0461
0.0213
0.0103

«■

ANAINP supposes that a valid result is held by the A/D Conver-
ter hardware for the first input channel. Correspondingly,
the last action of ANAINP prior to its return, and one of the
actions of the initialization routine for ANAINP, ANAINI, is
to prepare and trigger the conversion of the first input chan-

- 105

fc^^-iiiÄ^^l^^ .^v_v_- .^^ia^a^ik i A-A\.'.JJAA.V «■ W- -V-

4. The Czochralski Growth Control System Software

nel. Since approximately one second passes between the return
from ANAINP and the next call to this routine, this data is
already slightly outdated when it is retrieved at the begin-
ning of the next pass of ANAINP, which may or may not matter.
Each input value is immediately submitted to the digital low-
pass filter routine in LOWPAS which corresponds to a first
order analog low-pass (compare chapter 4.5.3.5). LOWPAS needs
the previous data value of each analog channel which it de-
posited in the output array ANALOG; the contents of this array
nay, therefore, only be read but not modified. (This is not
true if ANAi:"? which calls LOWPAS is disabled altogether with
the TEST flag.; Prior to calling LOWPAS, ANAINP prepares the
A/D Converter board for the input of the next channel, pro-
gramming the input multiplexer accordingly. The set-up time
required by the multiplexer, i.e., the time which must pass
before valid data can be submitted to the A/D Converter pro-
per, is approximately equal to the execution time of LOWPAS.
The A/D Converter hardware will therefore be ready for the
next step when LOWPAS has finished its job. ANAINP triggers
the conversion proper when the A/D Converter board's hardware
indicates that the board is ready; the routine waits in a loop
until converted data is available. (The synchronization with
the hardware is done with waiting loops rather than using
interrupts. This approach was preferable because each inter-
rupt processed involves a considerable system overhead which
cakes several hundred microseconds. The A/D conversion is
even faster than the processing of an interrupt, and the time
required by the hardware for channel switching is used within
ANAINP for the low-pass routine call.) Emergency timeouts
were provided for either loop in order to avoid a total block-
age of the system if the A/D Converter does not respond pro-
perly. (It turned out that the system is blocKod, though, if
no A/D Converter board is installed, and ANAINP is not dis-
abled with TEST.)

4.5.3.3 THE RELAY CONTROLLER ROUTINE MOTDIR

This assembly language routine provides the input from and the
output to the digital (relay) interface. It has the following
tasks:

(1) Provide output to the Controller Selection relay which
must not be energized in Monitoring mode 0, and energized
if the C3CS is in charge of the puller (i.e., in operation
modes 1 through 4).

(2) Read the current status of the Motor Direction relays, and

- 109 -

u

I
B

y

8

i

4. The Czochralski Growth Control System Software

set the Motor Speed input values to zero if the correspon-
ding motor is switched off.

(3) Check the sign of the Motor Speed output values, and pro-
vide the proper Motor Direction relay output.

(4) Determine the absolute value of the Motor Speed output for
the D/A Converter.

A special approach had to be chosen for the relay output:
using just one output bit for turning on and off one relay
would have been impeded by the fact that the status of the
output ports may be undefined when the CGCS is not in charge
of the controller computer. Furthermore, the PPI (Peripheral
Parallel Interface) used comes up with all I/O lines in high
impedance after a system reset, which would result in all
relays either turned on or off. Therefore, three bits, namely
bits 0 through 2 of one output byte, have to be set to defined
values in order to actually permit control of the relays: Bit
0 represents the Controller Selection output; it has to be
high to switch control to the CGCS and to activate the Motor
Direction relays. In addition, bit 1 must be low, and bit 2,
high, to enable the relays.

The Cambridge Motor Controller uses three relays for Motor Up/
Clockwise, Motor Stop, and Motor Down/Counterclockwise, re-
spectively. The CGCS is therefore connected.to the puller by
three relay control lines for each motor; these lines are
energized by the Cambridge console if the analog circuitry is
controlling the puller, and by the CGCS, if the CGCS is in
charge. The status of the relay control lines is monitored by
MOTDIR, and MOTDIR provides output to them when required.
Since exactly one of the Motor Control relays must be ener-
gized for each channel, the status of the three lines may be
represented by two bits:

Output: Motor Status: Speed Value:

0 0 Stop 0
1 0 Up/Clockwise +
0 1 Down/Counterclockwise -
1 1 Stop 0

Input:

0 0
1 0
0 1
0 0

MOTDIR uses two relays for the Motor Direction output whose
contacts are wired to result in the above signals, i.e., the
Stop line is energized if either no relay or both of them are
on.

First, MOTDIR reads the current Motor Direction status, and
resets the Motor Speed input value to zero if the Stop relay

- 110 -

SS^:*-. V.'.V
.V.Vi

4. The Czochralski Growth Control System Software

is on. This step prevents noise and offset errors within the
analog circuitry from disturbing -he Motor Speed output on the
CGCS■s console. The four times two Direction input bits are
read and internally stored as one byte. Next, MOTDIR checks
the Motor Speed setpoint values, and determines a relay set-
ting according to the magnitude and sign of each setpoint.
These four times two bits are also assembled in one byte. The
input and output bytes are now "cr"-ed, which sets all bits in
the output byte which are set ir. one of the two input bytes,
or in both. The two bits corresponding to one particular
motor are reset to zero if a zerc Speed value was submitted as
a setpoint. This resulting byte is output to the Motor Direc-
tion relays in any case. Actual output to the control lines
is, however, only generated if the CGCS is in charge of the
puller.

The chosen approach may appear unnecessarily complicated but
it is, in fact, indispensable to guarantee valid Motor Direc-
tion signals. The combination of the output data with the
previous input data has no effect if the direction of the
setpoint speed is the same as the actual speed; the current
motor direction will be maintained. The puller requires,
however, a few fractions of a second in "Motor Stop" position
if the rotation direction of a motor is to be reversed. This
is automatically accomplished by the chosen approach: Both
bits corresponding to one motor are set if the actual Motor
Speed and the pertinent setpoint have different signs, which
energizes the "Stop" control line. At the next pass of
MOTDIR, one second later, two zero bits are input accordingly,
and the Motor Direction output will be determined by the sign
of the setpoint. A one second "Motor Stop" is therefore guar-
anteed in any case.

4.5.3.4 THE ANALOG DATA OUTPUT ROUTINE ANAOPT

The Analog Data Output routine uses a similar approach as
ANAINP for providing easily programmable output to random
hardware channels, of the D/A Converter board: The channel
numbers are kept in an array whose size is not limited by
ANAOPT. Output values are read from an array in the order in
which they are stored; there is no limit to this array either.
ANAOPT returns to the calling routine when a negative channel
number is detected in the parameter array (which is referred
to as the Variable ANOPAR).

ANAOPT has to scale the data submitted to it by a factor of 8
since the D/A Converter board supports only a 12 bit unipolar
data range. Round-off is provided according to the magnitude

- Ill -

*.

1\
la

«

4. The Czochralski Growth Control System Software

of the highest-order bit which has to be discarded. Negative
output values are trapped and replaced by zero.

Incidentally, the (assembly language) routine ANAOPT is kept
in the Data rather than in the Code area of the CGCS. This
was necessary because ANAOPT "patches" its own program code
according to the analog channel which is currently in use.
This approach is, however, incompatible with the memory check-
ing done by the Command Executor (compare chapter 4.4.4.8).
(Although patching program code is legitimately considered a
bad programming technique it was indispensable in this case
because the 8085 processor used does not allow otherwise to
access I/O port addresses which have been calculated before.)

e
4.5.3.5 THE LOW-PASS FILTER ROUTINE LOWPAS

The algorithm used by LOWPAS is very simple and efficient:
With xk, the current input value, and yk and yk-i, the current
and the previous output values, respectively, LOWPAS calcu-
lates:

yk = a-xk + b.yk_! (1),

with

= ->-n

and

(2),

5
*.

fc

b=l-a=l- 2"n (3),

where k and n are positive integers (0, 1, 2, ...). The re-
striction of eq. (2) permits a very fast evaluation of eq.
(1). Eq. (3) guarantees an overall gain of 1 for constant
(DC) signals. We can re-write eq. (1) to:

V

.->

b'(Vk " yjc-l) + (1 - b)'Yk " a#xk (4)

Eq. (3) can be divided by T, the time interval between two
runs of LOWPAS:

Yk " Yk-1 1 ~ b
 +

b-T
'Yk

b-T
xk (5)

The difference in the left term in eq. (5) can be approximated
by a differential, transforming eq. (5) to the differential
equation:

- 112 -

•V^-V-".«v\'V'
..A.^ -■,.-r.->■ J. JI, j» j». jt..«. >

4. The Czochralski Growth Control System Software

Sv
fit

+ 1 - b
b-T -y = b-T (6)

This is evidently the response of a simple first-order (R-C)
low-pass filter. Eq. (5) is an approximation, though, which
is only valid for very slowly changing input values x^. A
more accurate analysis of the filter's frequency response must
be based on the theory of digital filters: The complex fre-
quency response H(ft»T), with

2 *TT • f (7) ,

where f is the input signal frequency and T the time interval
between two sampling points, can be obtained by a z-transfor-
mation of the filter's response to a single pulse with the
amplitude 1. It can easily be seen from eq. (1) that, for an
input signal

,1 for k = 0
k { 0 for k > 0

the output signal h^ will be:

k =
*k =

0 12 3
a a«b a*b2 a«b3

m
a«bm

(8),

(9)

With the definition of H(n»T)

00

H(n-T) = Z hk-[exp (j-n«T)]"k

k=0
(10),

and the summation formula for an infinite geometric series

1
1 + x + x2 + x3 + ... =

we can obtain the complex frequency response

a
H(n-T) =

1 - b-exp (-j-n-T)

(ID,

(12)

Since we are not interested in the phase but only in the am-
plitude response, we derive the absolute value |H(n«T)| from
eq. (12):

|H(fl.T)| =
(1 + b2 - 2«b-cos (fl'T))*/2

(13)

- 113 -

:^>>^>^^>^^>>s

4. The Czochralski Growth Control System Software

The cut-off frequency

n0 = 2--rr-f0 (14)

of a low-pass filter is defined as the point where the ampli-
tude response drops to 1/72 of its DC value:

lH(nn-T)l = i
H(0)| IT {lb}

With eqs. (13) and (15) , we can write:

cos (n0-T) = 1 - (1
27b

b) (16)

The cut-off frequency values listed in chapter 4.5.3.2 were
obtained from eq. (16), with a sampling point interval T =
1 second.

4.6 PROGRAM CONFIGURATION

The CGCS consists of a number of Fortran and assembly language
program source modules each of which holds one or several
routines. These modules must first be converted into object
machine code, which is done by a Compiler and Assembler pro-
gram, respectively. The resulting object program files must
be linked together by a special Linker utility which also
resolves mutual references; the output of the Linker which
still does not refer to absolute memory locations must be
modified to do so by a Locater. A special Configuration Mod-
ule must be provided for the iRMX-80 operating system; this
module may either be written in assembly language, or it can
be created much more comfortably with a special Interactive
Configuration Utility for iRMX-80, ICU-80. (All the mentioned
development software is supplied by Intel.)

The actual configuration process is, however, much more com-
plicated, due to the overlay structure chosen, and due to the
fact that certain memory locations have to be "tied" together.
In general, the configuration procedure follows the approach
described in the Fortran-RMX-80 Interface documentation (com-
pare Appendix A) , particularly with the treatment of COMMON
blocks which we will not discuss here due to its complexity.

The configuration procedure starts with linking all assembly
language and Fortran modules together which constitute the
main body of the CGCS (i.e., the permanently resident code).
These routines refer extensively to Interface, Fortran, and

- 114 -

;s£S£aiaiaaaaa&aa£a&&aa£& ■ ■••■ ■• •-- -^ & ■■■■ - • aaaas ■ ■ - ■

4. The Czochralski Growth Control System Software

iRMX-80 routines which are linked with the combined assembly
language and Fortran modules in the next step. A Dummy mo-
dule, TRVMOD, provides references which would be made by over-
lay routines otherwise; this permits to keep all support rou-
tines within the resident code. After this procedure, all
references to external routines should be satisfied, with the
exception of the routines which constitute Command Interpreter
overlays. Despite of these missing external references, the
resident code is located to absolute memory addresses.

Next, the overlay routines (which may be one or more program
modules per overlay) are linked separately, satisfying their
external references to routines which are already contained in
the resident part of the CGCS. (The addresses of these rou-
tines only are linked in this case, rather than the complete
program code.) Since no overlay may directly refer to a dif-
ferent overlay, all references contained in the overlay must
be satisfied now, and the overlay code can be located to re-
side in the reserved overlay area.

The last step, finally, entails linking the resident CGCS code
to the start addresses of all Command Interpreter overlays,
which satisfies the last yet open external references. In
addition, the Initialization code of the Command Interpreter
which was prepared separately like an overlay is linked to the
resident CGCS code in its entirety. The resulting modules
still contain a vast overhead of various references which were
required for linking and which are used by various debugging
approaches. These references are not required for program
execution and would only unduly consume disk space and loading
time; they are, therefore, stripped in the last step of soft-
ware preparation.

In addition to the main resident CGCS module CZOCHR.BIN and
the 21 Command Interpreter overlay modules CZOV01 through
CZ0V21, plus the Data module CZOOVD, two more files are re-
quired on a CGCS system disk: The file CZOMEN holds a spe-
cially formatted Help menu which is displayed upon a HELP
command (compare chapter 4.4.3.4); this file needs no special
attention if a new system version is being generated, unless
significant modifications of the command structure were made.
A special treatment is, in contrast, required for the CZONAM
file which holds the list of Variable addresses (compare chap-
ters 3.6 and 4.4.3.2). This file must hold the current ver-
sion code in its file name extension (CZONAM.V23 refers, for
example, to version 2.3 of the CGCS), and it must be generated
from a source file which may have required updating due to a
possible shift of the addresses of some Variables because of
software modifications. This source file is converted into
the special CZONAM format (compare Appendix H) by means of the

- 115 -

'V* J* "V" ,"/"*> *«f "^ ms *j* *J> '-* "^ *.* ".» V *** *w*''J1 *J" "J* 'f "w *v ''d- V" **■ m- "Jt ■* rf* •■ J* .r wt J" w -" -" ." w" w" «-*■

I
9)

I

4. The Czochralski Growth Control System Software

auxiliary program CONVAD. CONVAD is designed to run under
ISIS-II; it could also be executed under RXISIS-II but that
will hardly be necessary.

The last step in preparing a work disk for a new CGCS version
is, finally, up to the operator: All Macro command files
which were used under a previous version and which are still

S required must be converted to the new system version using the
N Macro Command Editor facilities (compare Appendix A).

- 116 -

I» c
PI \g A JM ■Jkifll AA'-W A "A A A A'A'A^LCA*^ -1» JAJ ,1 * , * - >- • U* ii, -^ ZJ ■*-* JUL-A£-1 L-fci ■*J>.i*-VJ'-^'vJ A V- £dfci B^ *"* *"■- *."> /*-V--/.--< *~* MJ. fcJL^L-J

Appendix A: Additional Documentation

APPENDIX Ar ADDITIONAL DOCUMENTATION

iRMX-80™- User's Guide; Intel Corporation 1979, 1980; Manual
Order No 9800522-05:
General information about iRMX-80.

The Alternative Loader Task - Library ROLOAD.LIB; Karl
Riedling, September 1984:
Information within this documentation complements and
replaces information in the iRMX-80™ User's Guide.

The Alternative Terminal Handler - Library ATHxxx.LIB; Karl
Riedling, February 1985:
Information within this documentation complements and
replaces information in the iRMX-80™ User's Guide.

RXISIS-II User's Guide; Karl Riedling, February 1985:
General information about RXISIS-II and its supporting
routines, the RXISIS-II Monitor, and the RXISIS-II Confi-
dence Test. Short overview over utility software avail-
able under RXISIS-II.

ISIS-II User's Guide; Intel Corporation, various issues and
order numbers:
Documentation of Intel supplied utility software which is
also available under RXISIS-II.

Additional System Programs for Intel Development Systems; Karl
Riedling, March 1981:
Documentation of additional utility routines; all programs
listed are compatible with RXISIS-II.

Fortran - RMX-80 Interface Program Package; Karl Riedling,
February 1985 (Issue 3):
Extensive documentation of all Interface routines used in
the CGCS, containing also discussions of various program-
ming approaches and of the system configuration.

Additional Fortran Numeric Routines; Karl Riedling, 1985:
Documentation of alternative Fortran floating-point system
routines which use the 8231 Numeric Processor.

Czochralski GaAs Crystal Growth Controller - Short Reference;
Karl Riedling, December 1986 (Issue 4):
User's reference manual for the CGCS.

Czochralski GaAs Crystal Growth Controller - Operator's Manu-
al; Karl Riedling, December 1986:
Operation guide for RXISIS-II and the CGCS. (Subset of
the Short Reference Manual.)

- 117 -

Appendix A: Additional Documentation

Czochralski Growth Control System - Digital Controller Emer-
gency Procedures; Karl Riedling, December 1986:
Procedures for emergencies caused by the CGCS hardware or
software. (Subset of the Operator's Manual.)

Czochralski Growth Control System Macro Command Editor COMMED;
Karl Riedling, April 1986:
User's reference manual for the Macro Command Editor pro-
grams COMMED and READCM.

Program SHODAT - Short Reference: Karl Riedling, May 1986
(Issue 2):
User's reference manual for the Data file display utility
SHODAT.

- 118 -

Vh££&££übj£lÄ&&&>£^&L£& »l-. v^/l^yjv^-^j'r-l-'-I **. ■Ute»*

Appendix B: Memory and I/O Maps

APPENDIX B: CGCS MEMORY AND I/O MAPS

B 1; MEMORY MAP

FFFFH

FEBOH

FEACH

FE34H

FD3 0H

»F5F0H *

5C00H

5400H

2D00H

2800H

2000H

0000H

Loader Buffer, Disk I/O Stack

System Version Code (2x)

RXIROM (COMINT) Stack

Disk Buffer Area

Memory Pool Area

Resident CGCS Program Code

COMINT Overlay Program Code + Data

Resident CGCS Data

COMMON Blocks

Data of ROM Resident System

ROM Resident Program Code

* This boundary is most subject to changes due to
program modifications. The value given applies to
Version 2.3.

B 2; I/O MAP

2 OH
21H
24H
26H
27H

4 OH
41H
42H
43H

5EH
5FH

A/D Converter Control/Status Register, low byte
A/D Converter Control/Status Register, high byte
A/D Converter Multiplexer Address Register
A/D Converter Output Data Register, low byte
A/D Converter Output Data Register, high byte

D/A Converter Channel 0, low byte
D/A Converter Channel 0, high byte
D/A Converter Channel 1, low byte
D/A Converter Channel 1, high byte

D/A Converter Channel 15, low byte
D/A Converter Channel 15, high byte

- 119 -

m JAJ^JAI •*\J.>J •J.V.V y^v^^ V,

Appendix B: Memory and I/O Maps

BOH ... I/O Expansion Board Base Address

B4H ... Motor Direction Relay Input
B5H ... Motor Direction Relay Output
B6H ... Controller Selection Relay Output

COH - FFH ... CPU Board I/O Addresses

Various I/O ports on the iSBC 80-24 CPU and iSBC 517 I/O Ex-
pansion boards are used by system routines, e.g., by the Ter-
minal Handler and the alternative Fortran floating-point rou-
tines.

- 120 -

Appendix C: System Tasks

APPENDIX C: SYSTEM TASKS

Appendix C lists all primary tasks within the sysrem; it does
not include tasks which are dynamically created at runtime by
any primary task. SUSPEND information is given for the genu-
ine CGCS tasks; it indicates whether a task may be suspended
with the DEBUG Suspend command. It is generally prohibited to
suspend any iRMX-80 System or Interface task!

C l: ROM RESIDENT SYSTEM TASKS

Task RXIROM: ROM resident root of RXISIS-II and the CGCS
Command Interpreter.

Entry Point:
Stack Length:

Priority:
Task Descriptor:
Extra:

RXIROM
50, extended to 120 by the
CGCS
250
RXIRTD
20

Task RQTHDI: Alternative Input Terminal Handler.

Entry Point: RQTHDI
Stack Length: 40
Priority: 97
Task Descriptor: THDITD
Extra: 0

Task RQTHDO: Alternative Output Terminal Handler

Entry Point: RQTHDO
Stack Length: 4 0
Priority: 113
Task Descriptor: THDOTD
Extra* 0

Task RQLOAD: Alternative Loader Task.

Entry Point: RQLOAD
Stack Length: 60
Priority: 140
Task Descriptor: LOADTD
Extra: 0

- 121 -

^tf*jw>a^AV.Vvy.v: '»I'"*. <»-*''O'Ö'^'' ■MMMMI r^-M-^-^-^-M

Appendix C: System Tasks

1

S

Task DISKIO:

Task :

iRMX-80 Disk I/O Task.

Entry Point: RQPDSK
Stack Length: 48
Priority: 129
Task Descriptor: RQDIOD
Extra: 0

Unnamed Disk Controller Task.

£
Entry Point: RQHD4
Stack Length: 80
Priority: 33
Task Descriptor: CNTLTD
Extra: 0

C 2: iRMX-80 SYSTEM TASKS IN THE CGCS

I

Task RQFMGR: Free Space Manager.

Entry Point: RQFMGR
Stack Length: 40
Priority: 50
Task Descriptor: RQFSMD
Extra: 0

v

Task DIRSVC: Disk Directory Services.

Entry Point: RQPDIR
Stack Length: 48
Priority: 200
Task Descriptor: RQDRSD
Extra: 0

\

C 3: FORTRAN - iRMX-80 INTERFACE TASKS

Task FXCFLG: Flag Interrupt Generation Task.

Entry Point: FXCFLG
Stack Length: 36
Priority: 149
Task Descriptor: FXCFTD
Extra: 0

- 122 -

Appendix C

Task INDATX: Input Interface Task.

Entry Point: FXINTI
Stack Length: 184
Priority: 134
Task Descriptor: INDTTD
Extra: IS

Task OUTDTX: Output Interface Ta sk.

Entry Point: FXINTO
Stack Length: 200
Priority: 135
Task Descriptor: OUTDTD
Extra: 18

Task FXDISK: Disk I/O Interface Task.

Entry Point: FXDISK
Stack Length: 38
Priority: 133
Task Descriptor: DISKTD
Extra: 0

Task FXTIME: System Timer Task.

Entry Point: FXTIME
Stack Length: 34
Priority: 34
Task Descriptor: TIMETD
Extra: 0

System Tasks

C 4; CONTROLLER TASKS

Task CMMDEX: Command Executor Task.

Entry Point: CMMDEX
Stack Length: 120
Priority: 240
Task Descriptor: CMEXTD
Extra: 20

Suspend: no

- 123 -

"- N ** *- S. % %
-~--'.*-_.f_- ,iV-1„-.■..,-.-ft. -ft ,^

1 Task MEASDO:

Appendix C:

Measured Data Output Task.

Entry Point: MEASDO
Stack Length: 120
Priority: 220
Task Descriptor: MEASTD
Extra: 20

Suspend: yes

System Tasks

Task CMFINP: Command File Input Task.

v.
v.

Entry Point: CMFINP
Stack Length: 50
Priority: 230
Task Descriptor: CMFITD
Extra: 20

Suspend: yes

Task CMFOUT: Command File Output Task.

i

.V

Entry Point:
Stack Length:
Priority:
Task Descriptor:
Extra:

CMFOUT
50
251
CMFOTD
20

Suspend: yes; f

Task DSKOUT: Data Disk File Output Task.

Entry Point:
Stack Length:
Priority:
Task Descriptor:
Extra:

DSKOUT
50
180
DSKOTD
20

Suspend: yes

Task DIACNT: Diameter Controller Task.

Entry Poir^
Stack Len . .'
Priority:
Task Descriptor:
Extra:

DIACNT
120
160
DIACTD
20

Suspend: yes

for short time only

124 -

Appendix C: System Tasks

Task ANACNT: Analog Data Controller Task.

Entry Point: ANACNT
Stack Length: 60
Priority: 150
Task Descriptor: ANACTD
r.xtra: 0

Suspend: no

- 125 -

Kfö^äft^

Appendix D: Routine Names

APPENDIX D: ROUTINE NAMES

The following table lists the names of all routines which do
not belong to iRMX-80 or Interface libraries. The name of the
source file which holds the routine is either equal to the
routine's name, plus the extension ".SRC", or it is equally
derived from the name given in parentheses. The main chapter
in this documentation where references to a particular routine
occur is specified, too. The following abbreviations were
used:

A
B
D
F
R
T

Assembly language module.
(Fortran) BLOCKDATA program.
Data module.
Fortran module.
Subroutine or Fortran FUNCTION.
Task or main routine of a task.

ff

i
s

'S
V

3

ANACNT
ANAINI

ANAINP
ANAOPT
ANOMAL
BEEP
BITCNT
BLKDTA

CALCUL
CHKAN1

CHKANS
CHKDTB
CHKFNM
CLEARO

CLIPRL
CLRBUF
CLRSCR
CLSFIL
CMFINP
CMFOUT
CMMDEX
CNTRL
COMINT
COWMEN
CONDIT
CREATE
CZINIT
CZOV01

T-F
R-A

R-A
R-A
R-F
R-F
R-A
B-F

R-F
R-F

R-F
R-F
R-A
R-F

R-F
R-F
R-F
R-F
T-F
T-F
T-F
R-A
T-F
R-F
R-F
R-A
R-A
B-F

Analog Data
Analog Data
(4.5.2)
Analog Data
Analog Data

Controller Task (4.5.3.1)
Input Initialization routine (ANAINP)

Input routine (4.5.2.2)
Output routine (4.5.2.4)

Anomaly Compensation routine (4.5.2.2)
Beeping Routine (AUXCOM) (4.4.2)
Bit Counting routine (4.4.3.17)
CZOOVD Data Initialization BLOCKDATA program
(4.4.3)
Calculator Utility routine (4.4.3.11)
Operator Answer Checking routine (MENOUT)
(4.4.3.4)
Operator Answer Checking routine (AUXCOM)
Check Diameter Table routine (DIACNT) (4
File Name Checking routine (4.4.3, 4.4.4
Conditional
(4.4.3.21)
Input Line Clearing Routine
Buffer Clearing routine
Scrolled Screen Area Clearing routine (4.4.3.4)
File Closing Routine (AUXCOM) (4.4.3)
Command File Input Task (4.4.6)

File Output Task (4.4.7)
Executor Task (4
Mode Determining
Interpreter (4.4
Entry routine (4

(4.
5.2.
1)

Command Clearing overlay routine

(AUXCOM) (4.4.2)

Command
Command
Control
Command
Comment
Conditional
CGCS System

(4.4.4)
4.4)
routine
3)
4.3.3)

Command Entry routine (4.4.3
Creation routine (CZINIT) (4

4.2)

14)
4.3)

CGCS Initialization Routine (4.4.3)
Overlay Identification BLOCKDATA module (SETPAR)

v

V

- 126 -

'>'v;%*\-*-.iv<-,i-.-.v:%'.N:-»
ILJL A..A.M- A.»1 ML^J:. .'- .1 .V*- W- J^ »-- rfkifci *A£*j£m£* if- i dJMjJk»V * .»f.if-f. «P.»'^f^tC^jf.. j -jf-jf.«.. j .» .n

Appendix D: Routine Names

CZOV02
CZOV03
CZOV04
CZOV05
CZOV06
CZOV07
CZOV08
CZOV09
CZOV10
CZOV11
CZOV12
CZOV13
CZ0V14
CZOV15
CZOV16
CZOV17
CZOV18
CZOV19
CZOV20
CZOV21
CZOVER
DASHES

DATAFI
DATIN
DATOUT
DEBUG0
DEBUG1
DIACNT
DIRECT
DISINT
DISPLY
DOCUMT
DSKOUT
DUMP
DUMPDT
ENINT
ERRMSG
EXICZO
FILES
FINDAD
FIRSTM

FRAME
FRPIDC
FRSETT
FXTIME
FXUSIN

B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
B-F
D-A
R-F

DASHLN R-F

R-F
R-A
R-A
R-F
R-F
T-F
R-F
R-A
R-F
R-F
T-F
R-F
R-F
R-A
R-A
R-F
R-F
R-A
R-A

R-F
R-A
R-A
T-A
P-F

Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
Overlay Identification BLOCKDATA module
System Version code
Half Line Of Dashes Generating routine

,3.8)
Line Of Dashes Generating routine
,3.8)
File Maintenance routine (4.4.3.12)

Input Interface routine (DATOUT)

SETVAR)
COMMEN)
MENOUT)
OPMODE)
DEBUG0)
DEBUG1)
FRAME)
FILES)
REQCMF)
CALCUL)
DATAFI)
EXICZO)
CONDIT)
DISPLY)
DOCUMT)
DIRECT)
RESOVL)
INIDAT)
PLOTOV)
CLEARO)

(FRAME)

(FRAME)
(4.4
Full
(4.4
Data
Special Input Interface routine (DATOUT) (4.3.1)
Special Output Interface routine (4.3.1)
DEBUG routines, part 1 (4.4.3.6)
DEBUG routines, part 2 (4.4.3.7)
Diameter Controller Task (4.5.2.1)
Disk Directory Display routine (4.4.3.17)
Interrupt Disabling Routine (AUXASM) (4.4.4.7)
Variable Display routine (4.4.3.15)
Documentation File Maintenance routine
Data File Output Task (DSKDAT) (4.4.8)
Data Dump Triggering routine (DUMPDT)
Data Dump Generation routine (4.4.4.6)
Interrupt Enabling Routine (AUXASM) (4.4.4
Error Message Output routine (AUXASM) (4.4
CGCS Exit routine (4.4.3.13)
Output File Status Display routine (4.4.3.9)
Variable Address Finding routine (4.4.3.2)
First module in Code area - used by MEMCHK
(4.4.4.8)
Console Output Mask Generation routine (4.4.
Generic PID Controller routine (4.5.1)
Reset Timer routine (FXTIME) (4.3.2, 4.4.3)
Timer Task (4.3.2, 4.4.3)
Initialization routine (INIT) (4.4.3)

(4.4.3.16)

(4.4.4.6)

7)
2)

- 127 -

„VA ,%>' *'&,<&• v"£##vttv fts'&£>töv£*-

Appendix D: Routine Names

w INIDAT R-F
) .-/. INIDTA B-F

! 9 ■ INIPRT R-A
LOVLAY R-F

1 LOWPAS R-A

i K
LSTRAM D-A
MAKEFN R-A

1 A> MEASDO T-F
1 MEMCHK R-A

£ MENOUT R-F s MESSGE R-A
MOTDIR R-A

* * OPMODE R-F
5 OPNFIL R-F
• w*

PEEKDW R-A
PLOTOV R-F

2
1: i

PLOTPR R-F
PRETTA R-A

c> PROMPT R-A

.-•
QUITCM R-F

1 REACTV R-A

RSQCMF R-F
(4.4.3. 10)
RESET R-A

RESOVL R-F

s SETPAR R-F
SETVAR R-F

:•. SHAPE R-A
SHIFTB R-F
SHIFTB R-F

>::, SPLITM R-A
STARTP R-A

r» STODAT R-A s STRIN R-A te^ STRIPN R-F
STROUT R-A

ft
TESTHD R-A
TIMLIN R-F

V TRVMOD D-A
* I TTJ.DXTM1 B-F S' y muuiA
V

WTOUTP R-F
:*• XCHDSK R-F

Initial Data Input routine (4.4.3.16)
Built-in Data Initialization BLOCKDATA program
(4.4.3)
Special Output Interface routine (DATOUT) (4.3.1)
Overlay Loading routine (AUXCOM) (4.4.3)
Low-Pass Filtering routine (4.5.2.5)
Dummy routine: Last program code module
File Name Building routine (AUXASM) (4.4.3)
Measured Data Output Task (4.4.5)
Code Memory Checking routine (LSTRAM) (4.4.4.8)
Help Menu Output routine (4.4.3.4)
Message Output routine (AUXASM) (4.4.2)
Motor Direction Output routine (4.5.2.3)
Operation Mode Entry routine (4.4.3.5)
File Opening Routine (AUXCOM) (4.4.3)
Data Retrieval routine (AUXASM) (4.4.3.1)
Data Plotting Setup Overlay (4.4.3.20)
Plot Data Collecting Routine (4.4.4.7)
Auxiliary Command Interpreter routine (AUXASM)
(4.4.2)
Command Prompt Generation routine (AUXASM)
(4.4.2)
Macro Command Quitting routine (4.4.3)
Diameter Evaluation Reactivating routine (SHAPE)
(4.5.2.5)
Command Output File Maintenance routine

Diameter Controller Resetting routine (SHAPE)
(4.5.2.4)
RESET Command Processing routine (4.4.3.18)
Parameter Setpoint Entry routine (4.4.3.1)
Variable Setpoint Entry routine (4.4.3.2)
Diameter Controller routine (4.5.2.3)
Buffer Left Shifting routine (DEBUGO) (4.4.3.6)
Buffer Left Shifting routine (PLOTOV) (4.4.3.20)
Mode Code Splitting routine (AUXASM) (4.4.4.1)
Special Output Interface routine (DATOUT) (4.3.1)
Data Storage routine (AUXASM) (4.4.4.1)
Special Input Interface routine (DATOUT) (4.3.1)
Strip Binary Zeros routine (DIRECT) (4.4.3.17)
Special Output Interface routine (DATOUT) (4.3.1)
Hardware Testing routine (CZINIT) (4.4.3)
Top Of Screen Line Output routine (4.4.3,
4.4.3.8)
Trivial Module; needed for system configuration
Auxiliary DEBUG COMMON Block Initialization
(DEBUGO) (4.4.3,6)
MEASDO Delaying routine (MEASDO) (4.4.5)
Disk Exchange routine (AUXCOM) (4.4.3)

- 128 -
«V

Appendix E: Common Blocks

APPENDIX E; COMMON BLOCKS

The following table shows the Fortran COMMON blocks used in
the CGCS, arranged in increasing address order. For each
block, its size and the names of the routines referencing it
are specified.

LOCATED IN THE MAIN COMMON AREA:

PLOTPR, MEASDO, DSKOUT, ANACNT,

INIDTA, BLKDTA

BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

MEASDO, INIDTA

COMINT, SETPAR, SETVAR, OPMODE,
DEBUG1, EXICZO, CONDIT, RESOVL,
CLEARO, CMMDEX, CMFINP, DIACNT

COMINT, SETPAR, SETVAR, OPMODE,
DEBUG1, EXICZO, CONDIT, RESOVL,
CLEARO, CMFINP, CMFOUT

INIDTA, BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

CMMDEX, MEASDO, DSKOUT, INIDTA

CMMDEX, CMFINP, INIDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

/ANAOUT/ (32) CMMDEX,
INIDTA

/ANIPAR/ (52) ANACNT,

/ANOMLY/ (8) ANOMAL,

/ANOPAR/ (17) ANACNT,

/AUXILD/ (62) PLOTPR,

/CNDCNT/ (1) CMMDEX,

/COMMEX/ (10) FXUSIN,
DEBUGO,
PLOTOV,

/COMMFL/ (10) FXUSIN,
DEBUGO,
PLOTOV,

/CONLIM/ (2) MEASDO,

/CRUCOP/ (12) DIACNT,

/CRUC1P/ (12) DIACNT,

/DEBUG/ (43) FXUSIN,

/DEBUGE/ (1) COMINT,

/DIA10P/ (12) DIACNT,

/DIA11P/ (12) DIACNT,

/DIA20P/ (12) DIACNT,

/DIA21P/ (12) DIACNT,

/DIA30P/ (12) DIACNT,

- 129 -

V

■8

I * ■

1
&

$

S

>

£

F

/DIA31P/ (12) DIACNT,

/DISKFN/ (56) OPNFIL,
DOCUMT,

/DOUTEX/ (10) FXUSIN,

/ENDBGO/ (1) MENOUT,

/INTRVL/ (2) EXICZO,

/MODE/ (1) COMMEN,
MEASDO,

/OVLNM1/ (6) LOVLAY,

/OVRLAY/ (1) COMINT,

/PLOTAD/ (16) CMMDEX,

/REALDT/ (88) CMMDEX,

/RECORD/ (3) COMINT,

/RESTDO/ (3) FXUSIN,

/RMPPAR/ (401) EXICZO,

/SECFLG/ (1) CMMDEX,

/SETPTO/ (33) FXUSIN,
PLOTPR,
INIDTA

/SETPT1/ (33) FXUSIN,
DIACNT,

/TEMP1P/ (12) ANACNT,

/TEMP2P/ (12) ANACNT,

/TEMP3P/ (12) ANACNT,

/TEST/ (1) FXUSIN,

/WAITEX/ (10) FXUSIN,

/XTDCNT/ (48) ANACNT,

/XTDDAT/ (2) EXICZO,

Appendix E: Common Blocks

INIDTA, BLKDTA

TIMLIN, FILES, REQCMF, DATAFI,
CMMDEX, INIDTA

DSKOUT

OPMODE, FRAME, DIRECT, MEASDO, INIDTA

WTOUTP, INIDTA, BLKDTA

OPMODE, EXICZO, RESOVL, CMMDEX,
DSKOUT, DIACNT, ANACNT, INIDTA

CZOVxx, INIDTA, BLKDTA

CZOVxx, FILES, INIDTA

PLOTPR

DUMPDT, PLOTPR, DIACNT, INIDTA

FILES, REQCMF, CMFOUT, INIDTA

FRAME, EXICZO, CMMDEX, MEASDO, INIDTA

CMMDEX, MEASDO, INIDTA

ANACNT

SETPAR, EXICZO, INIDAT, CMMDEX,
MEASDO, DSKOUT, DIACNT, ANACNT,

INIDAT, CMMDEX, MEASDO, DSKOUT,
INIDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

INIDTA, BLKDTA

ANACNT

QUITCM, EXICZO, INIDAT, WTOUTP

BLKDTA

DOCUMT, DUMPDT, DUMP, INIDTA

- 130 -

fös.j"»j%>* Sfr>^^^ >^

Appendix E: Common Blocks

/XTLSHP/ (4) CHKDTB, BLKDTA

TIED TO THE DATA AREA (USED BY ASSEMBLY LANGUAGE MODULES):

MODULE FXTIME:

/FOTIME/ (65) FXUSIN, COMINT, QUITCM, COMMEN, DATAFI,
EXICZO, CMMDEX, DUMPDT, DUMP, CMFINP, CMFOUT,
DSKOUT, DIACNT, ANACNT

MODULE DATOUT:

/IOFLAG/ (4)

/DISKLC/ (4)

/DATE/ (8)

/RUNID/ (20)

FXUSIN, COMINT, CLSFIL, OPNFIL, QUITCM,
COMMEN, TIMLIN, FILES, REQCMF, DATAFI,
EXICZO, DOCUMT, CMMDEX, DUMPDT, CMFINP,
CMFOUT, DSKOUT, INIDTA

CLSFIL, OPNFIL, FILES, REQCMF, DATAFI,
DOCUMT, DIRECT, INIDTA

FXUSIN, CLIPRL, TIMLIN, DATAFI

FXUSIN, TIMLIN, DATAFI

MODULE SHAPE:

/ANADAT/ (65)

/DIAMET/ (2)

/LENGTH/ (2)

/SCALE/ (72)

/AUXDIA/ (26)

/ZEROWT/ (2)

/GROWTH/ (4)

/DIATAB/ (256)

FXUSIN, RESOVL, CMMDEX, PLOTPR, MEASDO,
DSKOUT, DIACNT, ANACNT, INIDTA

CMMDEX, PLOTPR, MEASDO, DSKOUT, DIACNT,
INIDTA

COMMEN, RESOVL, CMMDEX, MEASDO, DSKOUT,
INIDTA

SETPAR, INIDAT, RESOVL, CMMDEX, PLOTPR,
MEASDO, DIACNT, INIDTA, BLKDTA

INIDAT, PLOTPR, DIACNT, BLKDTA

ANACNT

PLOTPR

CHKDTB

- 131 -

1^V^^O^J1-ÄV!'WÄ
%
^^-1:-L.^':^-1^.*''

Appendix E: Common Blocks

LOCATED ON TOP OF THE COMMAND INTERPRETER OVERLAY AREA:

/DBGCOM/ (21) DEBUGO, VARNM1, DEBUG1

/SCONDT/ (8) FXUSIN, BLKDTA

LOCATED CLOSE TO THE HIGH ADDRESS END OF THE RAM AF.EA fIN
CONTROLLER ADDRESSABLE MEMORY)

/DSKBUF/ (128; DSKOUT, INIDTA

- 132

"-^Ä^

Appendix F: Variable Names

APPENDIX F: VARIABLE NAMES

F 1; MOST IMPORTANT VARIABLES

Name Type Size Meaning

Raw Analog Input Data (2 Byte Int.)

ITEMPI * 12 1
ITEMP2 * 12 1
ITEMP3 * 12 1
ISEEDL * 12 1
ICRUCL * 12 1
ISEEDR * 12 1
ICRUCR * 12 1
IPOUT1 * 12 1
IPOUT2 * 12 1
IPOUT3 * 12 1
IWEIGH * 12 1
IDWGHT * 12 1
ISEEDP * 12 1
ICRUCP • 12 1
IBASET * 12 1
IGASPR * 12 1
CONTAC * 12 1
ANALOG * 12 8

Heater #1 Temperature
Heater #2 Temperature
Heater #3 Temperature
Seea Lift
Crucible Lift
Seed Rotation
Crucible Rotation
Power Output #1
Power Output
Power Output
Weight
Diff. Weight
Seed Position
Crucible Position
Base Temperature
Gas Pressure
Contact Device
Spare Analog Channels

#3

MTEMP1
MTEMP2
MTEMP3
MSEEDL
MCRUCL
MSEEDR
MCRUCR
MPOUT1
MPOUT2
MPOUT3
MWEIGH
MDWGHT
MSEEDP
MCRUCP +
MBASET +
MGASPR +
MCONTC +
MANALG +

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Measured Analoc Data (2 Bvte Int.)

1 Heater #1 Temperature
1 Heater #2 Temperature
1 Heater #3 Temperature
1 Seed Lift
1 Crucible Lift
1 Seed Rotation
1 Crucible Rotation
1 Power Output #1
1 Power Output #2
1 Power Output #3
1 Weight
1 Diff. Weight
1 Seed Position
1 Crucible Position
1 Base Temperature
1 Gas Pressure
1 Contact Device
8 Spare Analog Channels

- 133 -

fo&&;&^^^^

Appendix F: Variable Names

Raw Analog Output Data (2Byte Int.)

PWR1IN * 12 1 Input Power (to SCR Controller) #1
PWR2IN * 12 1 Input Power (to SCR Controller) #2
PWR3IN * 12 1 Input Power (to SCR Controller) #3
SEEDLO * 12 1 Seed Lift
CRUCLO * 12 1 Crucible Lift
SEEDRO * 12 1 Seed Rotation
nSUCRO * 12 1 Crucible Rotation

Processed Analoq Data (REAL)

DIAMET * R 1 Crystal Diameter
TEMPI * R i Heater #1 Temperature
TEMP2 * R 1 Heater #2 Temperature
TEMP3 * R 1 Heater #3 Temperature
SEEDL * R 1 Seed Lift
CRUCL * R 1 Crucible Lift
SEEDR * R 1 Seed Rotation
CRÜCR * R 1 Crucible Rotation
POWER1 * R 1 Power Output #1
POWER2 it R 1 Power Output #2
POWER3 * R 1 Power Output #3
WEIGHT * R 1 Weight
DWGHT * R 1 Diff. Weight
SEEDP * R 1 Seed Position
CRUCP * R 1 Crucible Position
BASTMP * R 1 Base Temperature
GAS PR * R 1 Gas Pressure
PWRIN1 * R 1 Power Input (to SCR Controller) #1
PWRIN2 * R 1 Power Input (to SCR Controller) #2
PWRIN3 * R 1 Power Input (to SCR Controller) #3
LENGTH * R 1 Crystal Length Grown
ADJDW * R 1 Anomaly Adjusted Diff. Weight

Current Setpoints (2 Byte Int.)

STDIAM * 12
STTMP1 * 12
STTMP2 * 12
STTMP3 * 12
SETSL * 12
SETCL * 12
SETSR * 12
SETCR * 12
STPWRL * 12

1 Diameter
1 Heater #1 Temperature
1 Heater #2 Temperature
1 Heater #3 Temperature
1 Seed Lift
1 Crucible Lift
1 Seed Rotation
1 Crucible Rotation
1 Power Limit

.V

- 134

^^^N»A^^N^>^1>^>:

Appendix F: Variable Names

PID Controller Parameters:

Seed Lift Motor

SLGAIN 11
SLCNTL 11
SLPROP 12
SLINT 12
SLDIFF 12
SLLIM 12

CLGAIN 11
CLCNTL 11
CLPROP 12
CLINT 12
CLDIFF 12
CLLIM 12

PRGAIN 11
SRCNTL 11
SRPROP 12
SRINT 12
SRDIFF 12
SRLIM 12

CRGAIN 11
CRCNTL 11
CRPROP 12
CR1NT 12
CRDIFF 12
CRLIM 12

T1GAIN 11
T1CNTL 11
T1PROP 12
T1INT 12
T1DIFF 12
T1LIM 12

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier
1 Differential Multiplier
1 Limit

Crucible Lift Motor

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier
1 Differential Multiplier
1 Limit

Seed Rotation Motor

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier
1 Differential Multiplier
1 Limit

Crucible Rotation Mr tor

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier
1 Differential Multiplier
1 Limit

Temperature *1
(#2 and #3 analogously)

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier
1 Differential Multiplier
1 Limit Value

- 135 -

[WA '. -*. •••y..v"-

V

i

GAIN10 11
CNTLIO 11
PROPIO 12
INTIO 12
DIFFIO 12
LIMIO 12

GAIN11 11
CNTL11 11
PROP11 12
INT11 12
DIFF11 12
LIM11 12

GAIN20 11
CNTL20 11
PROP20 12
INT 20 12
DIFF20 12
LIM20 12

GAIN21 11
CNTL21 11
PROP21 12
INT21 12
DIFF21 12
LIM21 12

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

Appendix F: Variable Names

Diameter #1 (controls Temp. #1)
(#3 analogously)

Main Controller

Gain
Control
Proportional Multiplier
Integral Multiplier
Differential Multiplier
Limit Value

Auxiliary Controller

Gain
Control
Proportional Multiplier
Integral Multiplier
Differential Multiplier
Limit Value

Diameter #2 (controls Temp. #2)
(#3 analogously)

Main Controller

Gain
Control
Proportional Multiplier
Integral Multiplier
Differential Multiplier
Limit Value

Auxiliary Controller

Gain
Control
Proportional Multiplier
Integral Multiplier
Differential Multiplier
Limit Value

Crucible Lift

Main Controller

COGAIN
COCNTL
COPROP
COINT

II
11

12
12

1 Gain
1 Control
1 Proportional Multiplier
1 Integral Multiplier

- 136 -

i* r V f f
./_V_V_v.

CODIFF
COLIM

12
12

Appendix F: Variable Names

Differential Multiplier
Limit Value

Auxiliary Controller

C1GAIN 11 1 Gain
C1CNTL 11 1 Control
C1PROP 12 1 Proportional Multiplier
CUNT 12 1 Integral Multiplier
C1DIFF 12 1 Differential Multiplier
C1LIM 12 1 Limit Value

11

Low-Pass Filter Values fO . • 4)

ANIPAR(4) Heater #1 Temperature
ANIPAR(6) 11 Heater 42 Temperature
ANIPAR(8) 11 Heater #3 Temperature
ANIPAR(IO) 11 Seed Lift
ANIPAR(12) 11 Crucible Lift
ANIPAR(14) 11 Seed Rotation
ANIPAR(16) 11 Crucible Rotation
ANIPAR(18) 11 Power Output #1
ANIPAR(20) TT_ Power Output #2
ANIPAR(22) 11 Power Output #3
ANIPAR(24) 11 Weight
ANIPAR(26) 11 Diff. Weight
ANIPAR(28) 11 Seed Position
ANIPAR(30) 11 Crucible Position
ANIPAR(32) 11 Base Temperature
ANIPAR(34) 11 Gas Pressure
ANIPAR(36) 11 Contact Device
rut Ä. i rviv \ JO; T 1 gnaro fhannol 11

ANIPAR(40) 11 Spare Channel #2
ANIPAR(42) 11 Spare Channel #3
ANIPAR(44) T\ Spare Channel #4
ANIPAR(46) 11 Spare Channel #5
t\it x r /vn.

ANIPAR
ANIPAR

(50
(2)

ANOMLY

ALPHA
A 1 i JO n r

CDIÄ3Q
SDIASQ

II
II

R

K
R

Spars Channel #6
Spare Channel #7
Spare Channel #8

Other System Control Parameters

Anomaly Compensation Factors

Shape Controller

Diameter Evaluation Mode Parameter
Crystal Shape Smoothing Parameter
Square of Crucible Diameter
Square of Seed Diameter

- 137 -

tfr^^^:^:^;:^^ :,,,.-,,

1 OXWGHT * R 1
R RHOXTL * R 1

RHOMLT * R 1

*& RHOOXI * R 1

* SCRUCP * 12 1
lyi HEIGHT * p 1

§
GROWTH * R 1

EXTMP1 * 12 1
'•-• EXTMP2 * 12 1

EXTMP3 * 12 1
La. EXTMPB * 12 1

OFFST1 R 1
OFFST2 R 1
OFFST3 R 1
OFFSTB R 1

rvi RANGT1 R 1
Ü RANGT2 R 1

RANGT3 R 1
RANGTB R 1
GRRATE * 12 1

>v DIAERR * 12 1
CRPERR * 12 1

i ZERO 12 1

g TEST 11 1
w INTRVL 11 1

DUMPIN 11 1

5 DUMPFL 11 1
DIASTA 11 1
CONLIM 11 1

V*. TIME * 12 1
fc RAMPNG * 11 1
ih CNDCNT * 11 1

DUMMY 12 8

fi
*

§

Appendix F: Variable Names

Oxide Weight
Crystal Spec. Weight (scaled)
Melt Spec. Weight (scaled)
Oxide Melt Spec. Weight (scaled)
Setpoint for Crucible Position
Boric Oxide Melt Height in Crucible
Actual Growth Rate
Chart Recorder Output

Expanded Temperature 1
Expanded Temperature 2
Expanded Temperature 3
Expanded Base Temperature
Offset for Temperature 1 Expansion
Offset for Temperature 2 Expansion
Offset for Temperature 3 Expansion
Offset for Base Temperature Exp.
Range for Temperature. 1 Expansion
Range for Temperature 2 Expansion
Range for Temperature 3 Expansion
Range for Base Temperature Exp.
Expanded Growth Rate
Expanded Diameter Error
Expanded Crucible Position Error
Location Holding Zero

Miscellaneous System Parameters

Test Mode Flag
Wait Interval for Data Display (>0)
Interval between Data Dumps
Data Dump Request Flag
Diameter Evaluation Routine Status
Limit Value for Contact Device
System Time (Seconds Counter)
Number of Parameters Ramped
Number of Conditional Commands
Scratchpad Locations

* Read-only parameter, do not change!
+ Parameters can only be changed in Test mode.

- 138 -

fc

* ^^*^^

Appendix F: Variable Names

F 2: COMPLETE LIST OF VARIABLES, SORTED BY ADDRESS

ZERO
DISKIO
RQTHDI
RQTHDO
RQLOAD
COMINT
RXIROM
PWR1IN
PWR2IN
PWR3IN
SEEDLO
CRUCLO
SEEDRO
CRUCRO
PLOTDT
ANAOUT
ANIPAR
ANOMLY
ANOPAR
OFFST1
OFFST2
OFFST3
OFFSTB
RANGT1
RANGT2
RANGT3
RANGTB
EXTMP1
EXTMP2
EXTMP3
EXTMPB
DIAERR
CRPERR
GRRATE
DUMMY
CNDCNT
CONLIM
COGAIN
COCNTL
COPROP
COINT
CODIFF
COLIM
CRUCOP
C1GAIN
C1CNTL
C1PROP

12
T
T
T
T
T
T
12
12
12
12
12
12
12
12 8
12 16
II 52
R 2
11 17
R
R
R
R
R
R
R
R
12
12
12
12
12
12
12
12 8
II
12
II
II
12
12
12
12
12 6
II
II
12

LOCATION HOLDING ZERO
TD FOR TASK DISKIO
TD FOR TASK RQTHDI
TD FOR TASK RQTHDO
TD FOR TASK RQLOAD
TD FOR TASK COMINT = RXIROM

INTEGER: POWER INPUT (TO SCR MODULE)

INTEGER: SEED LIFT OUTPUT
INTEGER: CRUCIBLE LIFT OUTPUT
INTEGER: SEED ROTATION OUTPUT
INTEGER: CRUCIBLE ROTATION OUTPUT
INTEGER: CHART RECORDER OUTPUT DATA
ARRAY OF INTEGER OUTPUT DATA
PARAMETER ARRAY FOR ANALOG INPUT ROUTINE
ANOMALY CORRECTION PARAMETERS (TWO REAL)
PARAMETER ARRAY FOR ANALOG OUTPUT ROUTINE
TEMPERATURE OFFSET - HEATER TEMPERATURE I

HEATER TEMPERATURE II
HEATER TEMPERATURE III
BASE TEMPERATURE

TEMPERATURE CHART RECORDER OUTPUT RANGE - T
HEATER TEMPERATURE II
HEATER TEMPERATURE III
BASE TEMPERATURE
EXPANDED HEATER TEMPERATURE I
EXPANDED HEATER TEMPERATURE II
EXPANDED HEATER TEMPERATURE III
EXPANDED BASE TEMPERATURE
EXPANDED DIAMETER ERROR
EXPANDED CRUCIBLE POSITION ERROR
EXPANDED GROWTH RATE
EIGHT DUMMY LOCATIONS
COUNTER FOR CONDITIONAL COMMANDS
INTEGER: LIMIT VALUE FOR CONTACT DEVICE
CRUCIBLE LIFT CONTROLLER ARRAY: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIP.
DIFF. MULTIP.
LIMIT

CRUCIBLE LIFT CONTROLLER ARRAY
AUXILIARY CRUC. LIFT CONTROLLER: GAIN

CONTROL BYTE
PROP. MULTIPL.

- 139 -

MSmax* «o «o <Ll • *-' K.

:^^^^^^^^^ ̂̂
V./^'A^^A'V^ , ,,,■. ,.,.;..v/,^/av' <\ -f. f. -- tMLäLdLJJAU

Appendix F: Variable Names

CUNT 12
CIDIFF 12
C1LIM 12
CRUC1P 12
GAIN10 11
CNTLIO 11
PROPIO 12
INT 10 12
DIFF10 12
LIM10 12
DIA10P 12
GAIN11 11
CNTLU 11
PROP11 12
INT 11 12
DIFF11 12
LIM11 12
DIA11P 12
GAIN2 0 T -I

XX

CNTL20 11
PROP20 12
INT20 12
DIFF20 12
LIM20 12
DIA20P 12
GAIN21 11
CNTL21 IJ.

PRO^i 12
INT21 12
DIFF21 12
LIM21 12
DIA21P 12
GAIN30 11
CNTL30 11
PROP30 12
INT30 12
DIFF30 12
LIM3 0 12
DIA30P 12
GAIN31 11
CNTL31 11
PROP31 12
INT31 12
DIFF31 12
LIM31 12
DIA31P 12
INTRVL 12
PLOTAD 12
DIAMET R
TEMPI R

INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

AUXILIARY CRUCIBLE LIFT CONTROLLER
MAIN DIAM. CNTL. I: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

MAIN DIAMETER CONTROLLER I
AUX. DIAM. CNTL. I: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

AUXILIARY DIAMETER CONTROLLER I
MAIN DIAM. CNTL. II: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

MAIN DIAMETER CONTROLLER II
AUX. DIAM. CNTL. II: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

AUXILIARY DIAMETER CONTROLLER II
MAIN DIAM. CNTL. Ill: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

MAIN DIAMETER CONTROLLER III
AUX. DIAM. CNTL. Ill: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

AUXILIARY DIAMETER CONTROLLER III
INTERVAL FOR MEASURED DATA OUTPUT
ADDRESSES OF VARIABLES SUBMITTED TO PLOT OUTPUT
MEASURED DATA (REAL): DIAMETER

TEMPERATURE

- 140 -

Appendix F: Variable Names

TEMP2
TEMP3

R
R

SEEDL R SEED LIFT
CRUCL R CRUCIBLE LIFT
SEEDR R SEED ROTATION
CRUCR R CRUCIBLE ROTATION
P0WER1 R OUTPUT POWER (FROM SCR)
POWER2 R
POWER3 R
WEIGHT R WEIGHT
DWGHT R DIFF. WEIGHT
SEEDP R SEED POSITION
CRUCP R CRUCIBLE POSITION
BASTMP R BASE TEMPERATURE
GAS PR R GAS PRESSURE
PWRIN1 R POWER INPUT (TO SCR)
PWRIN2 R
PWRIN3 R
LENGTH LENGTH GROWN
ADJDW R ADJUSTED DIFF. WEIGHT
REALDT R 22 MEASURED DATA ARRAY (REAL)
RAMPNG 11 NUMBER OF VARIABLES RAMPING
STDIAM 12 CURRENT SETPOINT: DIAMETER
STTMP1 12 TEMPERATURE
STTMP2 12
STTMP3 12
SETSL 12 SEED LIFT
SETCL 12 CRUCIBLE LIFT
SETSR 12 SEED ROTATION
SETCR 12 CRUCIBLE ROTATION
STPWRL 12 POWER LIMIT
SETPTO 12 9 CURRENT SETPOINT ARRAY (INTEGER)
T1GAIN 11 TEMP. CNTL. I: GAIN
T1CNTL 11 CONTROL BYTE
T1PROP 12 PROP. MULTIPL.
TlxNT 12 INT. MULTIPL.
T1DIFF 12 DIFF. MULTIPL.
T1LIM 12 LIMIT
TEMP1P 12 6 TEMPERATURE CONTROLLER I
T2GAIN 11 TEMP. CNTL. II: GAIN
T2CNTL 11 CONTROL BYTE
T2PROP 12 PROP. MULTIPL.
T2INT 12 INT. MULTIPL,
T2DIFF 12 DIFF. MULTIPL.
T2LIM 12 LIMIT
TEMP2P 12 6 TEMPERATURE CONTROLLER II
T3GAIN 11 TEMP. CNTL. Ill: GAIN
T3CNTL 11 CONTROL BYTE
T3PROP 12 PROP. MULTIPL.
T3INT 12 INT. MULTIPL.

- 141 -

*"**>,."» .r»«Tk -,

Appendix F: Variable Names

T3DIFF 12
T2LIM 12
TEMP3P 12
TEST 11
SLGAIN 11
SLCNTL 11
SLPROP 12
SLINT 12
SLDIFF 12
SLLIM 12
SEEDLP 12
CLGAIN 11
CLCNTL 11
CLPROP 12
CLINT 12
CLDIFF 12
CLLIM 12
CRUCLP 12
SRGAIN 11
SRCNTL 11
SRPROP 12
SRINT 12
SRDIFF 12
SRLIM
SEEDRP 12
CRGAIN 11
CRCNTL 11
CRPROP 12
CRINT 12
CRDIFF 12
CRLIM 12
CRUCRP 12
DUMPIN 11
DUMPFL 11
XTLSHP R
CMMDEX T
MEASDO T
CMFINP T
CMFOUT T
DSKOUT T
DIACNT T
ANACNT T
ALARMF 11
TIME 12
DIFFTM 12
DTINTV 11
m*r\tr*-TT>rry T *i

IOFLAG 11
ITEMP1 12
ITEMP2 12

DIFF. MULTIPL.
LIMIT

TEMPERATURE CONTROLLER III
TEST MODE FLAG
SEED LIFT CKTL.: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

SEED LIFT CONTROLLER
CRUC. LIFT CNTL.: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

CRUC. LIFT CONTROLLER
SEED ROT. CNTL.: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

SEED ROT CONTROLLER
CRUC. ROT. CNTL.: GAIN

CONTROL BYTE
PROP. MULTIPL.
INT. MULTIPL.
DIFF. MULTIPL.
LIMIT

CRUC. ROT. CONTROLLER
INTERVAL FOR DATA DUMPS
DUMP FLAG
CRYSTAL SHAPE PARAMETER
TD FOR CMMDEX
TD FOR MEASDO
TD FOR CMFINP
TD FOR CMFOUT
TD FOR DISKOUT
TD FOR DIACNT
TD FOR ANACNT
ALARM TIMER INTERRUPT FLAG
SYSTEM TIME (INTEGER)
DIFFERENTIAL TIME FOR MACRO EXECUTION
DATA FILE UPDATING INTERVAL
SETPOINT FOR ALARM TIMER (MACRO EXECUTION)
I/O FLAG ARRAY
MEASURED DATA (INTEGER): TEMPERATURE

- 142 -

0vCv»>Avi»: ' "\ f. <m *

Appendix F: Variable Names

ITEMP3 12
ISEEDL 12
ICRUCL 12
ISEEDR 12
ICRUCR 12
TP0UT1 12
IPOUT2 12
IPOUT3 12
IWEIGH 12
IDWGHT 12
ISEEDP 12
ICRUCP 12
IBASET 12
IGASPR 12
CONTAC 12
ANALOG 12 8
ANADAT 12 25
IDIAMT 12
ILENGT 12
SCADIA R
SCATMP R 3
SCAMOT R 4
SCAPWO R 3
SCAWGT R
SCADWT R
SCAPOS R 2
SCABST R
SCAGAS R
SCAPWR R
SCALE R 18
CDIASQ R
SDIASQ R
OXWGHT R
RHOXTL R
RHOMLT R
RHOOXI R

TO

ZEROWT 12
GROWTH R
ALPHA R
DIATAB R 64
IHEIGH 12
OLDLEN 12
DIFFLG 12
RDWGHT R
RHOOXA R

T-»

DIA2SQ R
HEIGHT R
RCRSET R

SEED LIFT SPEED
CRUCIBLE LIFT SPEED
SEED ROTATION
CRUCIBLE ROTATION
POWER OUTPUT (FROM SCR)

WEIGHT
DIFF. WEIGHT
SEED POSITION
CRUCIBLE POSITION
BASE TEMPERATURE
GAS PRESSURE
CONTACT

EIGHT SPARE ANALOG CHANNELS (INTEGER)
COMPLETE ARRAY OF ANALOG DATA (INTEGER)
CRYSTAL DIAMETER (INTEGER)
LENGTH GROWN (INTEGER)
SCALING FACTORS: DIAMETER

TEMPERATURES
MOTORS
POWER OUTPUT
WEIGHT
DIFFERENTIAL WEIGHT
POSITION
BASE TEMPERATURE
GAS PRESSURE
POWER INPUT AND LIMIT

ARRAY OF SCALING FACTORS
SQUARE OF CRUCIBLE DIAMETER
SQUARE OF SEED DIAMETER
BORIC OXIDE WEIGHT
DENSITY: CRYSTAL

MELT
OXIDE

SETPOINT FOR CRUC. POSITION (INTEGER)
WEIGHT ZEROING OFFSET
ACTUAL GROWTH RATE
CORRECTION FACTOR FOR GROWTH PATE
DIAMETER SQUARES TABLE
MELT HEIGHT (SCALED AS LENGTH)
LENGTH AT LAST SLICE BOUNDARY
HEIGHT OF CURRENT SLICE
(ADJUSTED) DIFFERENTIAL WEIGHT (FLOATING-POINT)
ADJUSTED OXIDE DENSITY
SQUARE OF DIAMETER AT OXIDE SURFACE
SQUARE OF DIAMETER AT MELT SURFACE
BORIC OXIDE HEIGHT IN CRUCIBLE (REAL)
CRUCIBLE POSITION SETPOINT (REAL)

- 143 -

$
8

V
VOLSUM R
OXIVOL R
CORRVL R

«\ BETA R
RDLIFT R
RLNGTH R
PRLNGT R

R INICRP R
ADJLEN R
DIASTA 11

5% LOOPCT 11

Si OXOVFL 11
53 MTEMP1 12

MTEMP2 12
MTEMP3 12

' % MSEEDL 12
MCRUCL 12

JS MSEEDR 12
MCRUCR 12

1 i
MPOUT1 12
MPOUT2 12

ft MPOUT3 12
MWEIGH 12
MDWGKT 12

1 MSEEDP 12
MCRUCP 12
MBASET 12
MGASPR 12

1 MCONTC 12
MANALG 12

f ,v

25

Appendix F: Variable Names

SUM OF VOLUMES IN CURRENT SLICE (UNSCALED)
VOLUME OF BORIC OXIDE MELT
OXIDE VOLUME CORRECTION
CORRECTION FACTOR
SEED - CRUCIBLE LIFT SPEEDS
UNSCALED LENGTH
UNSCALED LENGTH DURING PREVIOUS PASS
CRUCIBLE POSITION AT RESET
LENGTH ADJUSTMENT PARAMETER
DIAMETER CONTROLLER STATUS
LOOP COUNTER LOCATION
OXIDE HEIGHT OVERFLOW FLAG
PRIMARY MEASURED DATA (INTEGER): TEMPERATURE

SEED LIFT SPEED
CRUCIBLE LIFT SPEED
SEED ROTATION
CRUCIBLE ROTATION
POWER OUTPUT (FROM SCR)

WEIGHT
DIFF. WEIGHT
SEED POSITION
CRUCIBLE POSITION
BASE TEMPERATURE
GAS PRESSURE
CONTACT

ANALOG DATA INPUT ARRAY

F 3; VARIABLE ADDRESSES FOR CGCS VERSIONS 1.6 THROUGH 2.3

V1.6 V2.0 V2.1 V2.2 V2.3

1FF6 1FF6 1FF6 1FF6 ZERO 12

2136 2136 2136 2136 2136 DISK 10 T

2KA 2KA 2KA 2KA 214A RQTHD1 T

215E 215E 215E 215E 215E RQTHDO T

2172 2172 2172 2172 2172 RQLOAD T

2186 2186 2186 2186 2186 COM1NT T

2186 2186 2186 2186 2186 RXIROM T

2800 2800 2800 2800 2800 PUR1IN 12

28C2 2802 2802 2HQ? 2802 PUR21N 12

2804 2804 2804 2Ö04 2804 PWR3IN 12

LOCATION HOLDING ZERO

TD FOR TASK DISKIO

TD FOR TASK RQTHD1

TD FOR TASK RQTHDO

TD FOR TASK RQLOAD

TD FOR TASK COMINT = RXiROM

INTEGER: POWER INPUT (TO SCR MODULE)

y

- 144 -

J£&&&&&£&^^ *L/- ...'■.',
I "' M • ! * *- * -- - '- fc M ■* - J -*» ■'-!,'» .'-» >*a .

V1.6 V2.0 V2.1 V2.2 V2.3

Appendix F: Variable Names

t

2806 2806 2806 2806 2806 SEEDLO 12
2808 2808 2808 2808 2808 CRUCLO 12
280A 280A 280A 280A 280A SEEDRO 12
280C 280C 280C 280C 280C CRUCRO 12
 280E 280E 280E 280E PLOTDT 12 8

2800 2800 2800 2800 2800 ANAOUT 12 16

280E 2820 2820 2820 2820 ANIPAR 11 52

2842 2854 2854 2854 2854 ANOHLY R 2

284A 285C 285C 285C 285C ANOPAR 11 17

286D 286D 286D 286D 0FFST1 R
2871 2871 2871 2871 OFFST2 R
2875 2875 2875 2875 OFFST3 R
2879 2879 2879 2879 OFFSTB R
 287D 287D 287D RANGT1 R
 2881 2881 2881 RANGT2 R
 2885 2885 2885 RANGT3 R
 2889 2889 2889 RANGTB R
287D 288D 288D 288D EXTMP1 12
287F 288F 288F 288F EXTMP2 12
2881 2891 2391 2891 EXTMP3 12
2883 2893 2893 2893 EXTMPB 12
2885 2895 2895 2895 D1AERR 12
2887 2897 2897 2897 CRPERR 12
2889 2899 2899 2899 GRRATE 12
288B 289B 289B 289B DUMMY 12 8

2852 289B 28AB 28AB 28AB CNDCNT 11
2867 28B0 28C0 28C0 28C0 CONL1M 12
2869 28B2 ZZiZ 28C2 28C2 C0GAIN 11
286A 28B3 28C3 28C3 28C3 COCNTL 11
286D 28B6 28C6 28C6 28C6 COPROP 12
286F 28B8 28C8 28C8 28C8 COINT 12
2871 28BA 28CA 28CA 28CA CODIFF 12
2873 28BC 28CC 28CC 28CC COLIM 12
2869 2882 28C2 28C2 28C2 CRUCOP 12 6

2875 28BE ?8CE 2SCE 28CE C1UAIN 11
2876 28BF 28CF 28CF 28CF C1CNTL 11
2879 28C2 28D2 28D2 28D2 C1PROP 12
287B 28C4 2SD4 28D4 2804 CUNT 12
287D 28C6 28D6 28D6 28D6 C1PIFF 12
287F 28C8 28D8 28D8 2808 C1LIM 12
2875 28BE 28CE 28CE 28CE CRUC1P 12 6

28AD 28F6 2906 2906 2906 GAIN10 11
28AE 28F7 2907 2907 2907 CNTL10 11
28B1 28FA 290A 290A 290A PROP10 12
28B3 28FC 290C 290C 290C INT10 12
2835 28FE 290E 290E 290E DIFF10 12
28B7 2900 2910 2910 2910 LIM10 12
28AD 28F6 2906 2906 2906 D1A10P 12 6

2889 2902 2912 2912 2912 GAIN11 11

INTEGER: SEED LIFT OUTPUT

INTEGER: CRUCIBLE LIFT OUTPUT

INTEGER: SEED ROTATION OUTPUT

INTEGER: CRUCIBLE ROTATION OUTPUT

INTEGER: OUTPUT TO CHART RECORDER

ARRAY OF INTEGER OUTPUT DATA

PARAMETER ARRAY FOR ANALOG INPUT

ANOMALY CORRECTION PARAMETERS (REAL)

PARAMETER ARRAY FOR ANALOG OUTPUT

TEMPERATURE OFFSET - HEATER TEMP 1

HEATER TEMPERATURE II

HEATF.R TEMPERATURE III

BASE TEMPERATURE

TEMP. CHART RECORDER OUTPUT RANGE • I

HEATER TEMPERATURE II

HEATER TEMPERATURE III

BASE TEMPERATURE

EXPANDED HEATER 1 TEMPERATURE

HEATER II

HEATER III

BASE

DIAMETER ERROR (FOR PLOT)

CRUCIBLE POSITION ERROR (FOR PLOT)

GROWTH RATE (FOR PLOT)

EIGHT DUMMY LOCATIONS

COUNTER FOR CONDITIONAL COMMANDS

INTEGER: LIMIT VALUE FOR CONTACT DEV.

CRUCIBLE LIFT CONTROLLER ARRAY: GAIN

CONTROL BYTE

PROP. MULTIPL.

INT. MULTIP.

D1FF. MULTIP.

LIMIT

CRUCIBLE LIFT CONTROLLER ARRAY

AUXILIARY CRUC. LIFT CONTROLLER: GAIN

CONTROL BYTE

PROP. MULTIPL.

INT. MULTIPL.

D t = F. MULTIPL.

LIMIT

AUXILIARY CRUCIBLE LIF'i CONTROLLER

MAIN DIAM. CNTL. 1 GAIN

CONTROL BYTE

PROP. MULTIPL.

INT. MULTIPL.

DIFF. MULTIPL.

LIMIT

MAIN DIAMETER CONTROLLER I

AUX. DIAM. CNTL. I GAIN

- 145 -

I
'"«''•*",•

"'■ "-■-'•■' ' -^&&^^

V1.6 V2.0 V2.1 V2.2 V2.3

Appendix F: Variable Names

'v

B
iwj

i

P
5

a

v,

28BA 2903 2913 2913 2913 CNTL11 11 CONTROL BYTE

28BD 2906 2916 2916 2916 PROP11 12 PROP. MULTIPL.

28BF 2908 2918 2918 2918 INT11 12 INT. MULTIPL.

28C1 290A 291A 29U 291A DIFF11 12 OIFF. MULTIPL.

28C3 290C 291C 291C 291C LIM11 12 LIMIT

28B9 2902 2912 2912 2912 DIA11P 12 6 AUXILIARY DIAMETER CONTROLLER I

28C5 290E 291E 291E 291E GAIN20 11 MAIN D1AM. CNTL. II GAIN

28C6 290F 291F 291F 291 F CNTL20 11 CONTROL BYTE

28C9 2912 2922 2922 2922 PROP20 12 PROP. MULTIPL.

28CB 2914 2924 2924 2924 INT20 12 INT. HULTIPL.

28CD 2916 2926 2926 2926 DIFF20 12 D1FF. MULTIPL.

28CF 2918 2928 29P3 2928 LIM20 12 LIMIT

28C5 290E 291E 291E 291E DIA20P 12 6 MAIN DIAMETER CONTROLLER II

28D1 291A 292A 292A 292A GAIN21 11 AUX. DIAM. CNTL. II GAIN

28D2 291B 292B 292B 292B CNTL21 11 CONTROL BYTE

28D5 291E 292E 292E 292E PROP21 12 PROP. MULTIPL.

2807 2920 2930 2930 2930 1NT21 12 INT. MULTIPL.

28D9 2922 2932 2932 2932 0IFF21 12 DIFF. MULTIPL.

28DB 2924 2934 2934 2934 LIM21 12 LIMIT

2801 29U 292A 292A 292A D1A21P 12 6 AUXILIARY DIAMETER CONTROLLER II

28DD 2926 2936 2936 2936 GAIN30 11 MAIN DIAM. CNTL. Ill GAIN

28DE 2927 2937 2937 2937 CNTL30 11 CONTROL BYTE

28E1 292A 293A 293A 293A PROP30 12 PROP. MULTIPL.

28E3 292C 293C 293C 293C INT30 12 INT. MULTIPL.

28E5 292E 293E 293E 293E DIFF30 12 DIFF. MULTIPL.

28E7 2930 2940 2940 2940 LIM30 12 LIMIT

2800 2926 2936 2936 2936 DIA30P 12 6 MAIN DIAMETER CONTROLLER III

28F.9 2932 2942 2942 2942 GAIN31 11 AUX. DIAM. CNTL. Ill GAIN

28EA 2933 2943 2943 2943 CNTL31 11 CONTROL BYTE

28ED 2936 2946 2946 2946 PROP31 12 PROP. MULTIPL.

28EF 2938 2948 2948 2948 INT31 12 INT. MULTIPL.

28F1 293A 294A 294A 294A D1FF31 12 DIFF. MULTIPL.

28F3 293C 294C 294C 294C LIM31 12 LIMIT

28E9 2932 2942 2942 2942 DIA31P 12 6 AUXILIARY DIAMETER CONTROLLER III

293C 2985 2991 2991 2991 INTRVL 12 INTERVAL FOR MEASUREMENT DATA OUTPUT
 298F 299B 299B 299B PLOTAD 12 8 ADDRESSES OF CHART RECORDER OUTPUT

2946 299F 29AB ^9AB 29AB DIAMET R MEASURED DATA (REAL): DIAMETER

294A 29A3 29AF 29AF 29AF TEMPI R TEMPERATURE

294E 29A7 29B3 29B3 29B3 TEMP2 R
2952 29AB 29B7 29B7 29B7 TEHP3 R
2956 29AF 29BB 29BB 29BB SEEOL R SEED LIFT

295A 29B3 29BF 298 F 29BF CRUCl R CRUCIBLE LIFT

295E 29B7 29C3 29C3 29C3 SEEDR R SEED ROTATION

2962 29BB 29C7 29C7 29C7 CRUCR R CRUCIBLE ROTATION

2966 29BF 29CB 29C8 29CB POWER 1 R OUTPUT POWER (FROM SCR)

296A 29C3 29CF 29CF 29CF POWER2 R

296E 29C7 29D3 2903 29D3 P0UER3 R
2972 29CR 2907 2907 29D7 WEIGHT R WEIGHT

2976 29CF 290 B 290 B 290B DWGHT R DIFFERENTIAL WEIGHT

- 146 -

X

tä^W^^ v.v &£&&&£ z±j&tei >:^£iii&:kfc&a

V1.6 V2.0 V2.1 V2.2 V2.3

Appendix F: Variable Names

297A 29D3 29DF 29DF 29DF SEEDP R SEED POSITION

297E 29D7 29E3 29E3 29E3 CRUCP R CRUCIBLE POSITION

2982 290 B 29E7 29E7 29E7 BASTMP R BASE TEMPERATURE

2986 290 F 29EB 29EB 29EB GASPR R GAS PRESSURE

298A 29E3 29EF 29EF 29EF PUR INI R POWER INPUT (TO SCR)

298E 29E7 29F3 29F3 29F3 PWRIN2 R

2992 29EB 29F7 29F7 29F7 PWRIN3 R

2996 29EF 29FB 29 FB 29FB LENGTH R LENGTH GROWN

299A 29F3 29FF 29FF 29FF ADJDU R ADJUSTED DIFF. WEIGHT

2946 299F 29AB 29AB 29AB REALDT R 22 MEASURED DATA ARRAY (REAL)

29A4 29FD 2A09 2A09 2A09 RAKPNG 11 NUMBER OF VARIABLES RAMPING

2A55 2B9E 2BAA 2BAA 28AA STDIAM 12 CURRENT SETPOINT DIAMETER

2A57 2BA0 2BAC 2BAC 2BAC STTHP1 12 TEMPERATURE

2A59 2BA2 2BAE 2BAE 2BAE STTMP2 12
2A5B 2BA4 2BB0 2BB0 2BB0 STTMP3 12
2A5D 2BA6 2BB2 2BB2 2B82 SETSL 12 SEED LIFT

2A5F 2BA8 2BB4 2BB4 2BB4 SETCL 12 CRUCIBLE LIfT

2A61 2BAA 2BB6 2BB6 2BB6 SETSR 12 SEED ROTATION

2A63 2BAC 2BB8 2BB8 2BB8 SETCR 12 CRUCIBLE ROTATION

2A65 2BAE 2BBA 2BBA 2BBA STPWRL 12 POWER LIMIT

2A55 2B9E 2BAA 2BAA 2BAA SETPTO 12 9 CURRENT SETPOINT ARRAY (INTEGER)

2A88 2BD1 2BDD 2BDD 2BDD T1GAIN 11 TEMP. CNTL. I GAIN

2A89 2B02 2B0E 28DE 2BDE T1CNTL n CONTROL BYTE

2A8C 2B05 2BE1 2BE1 2BE1 T1PR0P 12 PROP. MULT1PL.

2A8E 2BD7 2BE3 2BE3 2BE3 T1INT 12 INT. MULTIPL.

2A90 2BD9 2BE5 2BE5 2BE5 T1DIFF 12 DIFF. MULTIPL.

2A92 2BDB 2BE7 2BE7 2BE7 TUIH 12 LIMIT

2A88 2BD1 2BDD 2BDD 2BDD TEMP1P 12 6 TEMPERATURE CONTROLLER I

2A94 2B0D 2BE9 2BE9 2BE9 T2GAIN 11 TEMP. CNTL. II GAIN

2A95 2BDE 2BEA 2BEA 2BEA T2CNTL 11 CONTROL BYTE

2A98 2BE1 2BED 2BED 2BED T2PR0P 12 PROP. MULTIPL.

2A9A 2BE3 2BEF 2BEF 2BEF T2INT 12 INT. MULTIPL.

2A9C 2BE5 2BF1 2BF1 2BF1 T20IFF 12 DIFF. MULTIPL.

2A9E 2BE7 2BF3 2BF3 2BF3 T2LIM 12 LIMIT

2A94 2BDD 2BE9 2BE9 2BE9 TEHP2P 12 6 TEMPERATURE CONTROLLER 11

2AA0 2BE9 2BF5 2BF5 2BF5 T3GA1N 11 TEMP. CNTL. Ill GAIN

2AA1 2BEA 2BF6 2BF6 2BF6 T3CNTL 11 CONTROL BYTE

2AA4 2BED 2BF9 2BF9 2BF9 T3PR0P 12 PROP. MULTIPL.

2AA6 2BEF 2BFB 2BFB 2BFB T3INT 12 INT. MULTIPL.

2AA8 2BF1 2BFD 2BFD 2BF0 T3DIFF 12 DIFF. MULTIPL.

2AAA 2BF3 2BFF 2BFF 2BFF T2LIM 12 LIMIT

2AA0 2BE9 2BF5 2BF5 2BF5 TEMP3P 12 6 TEMPERATURE CONTROLLER III
 2BF5 2C01 2C01 2C01 TEST 11 TEST MODE FLAG

2AB6 2CO0 2C0C 2C0C 2C0C SLGAIN 11 SEED LIFT CNTL.: GAIN

2AB7 2C01 2C0D 2C00 2C00 SLCNTL 11 CNTL

2ABA 2C04 2C10 2C10 2C10 SLPROP 12 PROP. MULTIPLIER

2ABC 2C06 2C12 2C12 2C12 SLINT 12 INT. MULTIPL.

2ABE 2C08 2C14 2CH 2C14 SLDIFF 12 DIFF. MULTIPL.

2AC0 2C0A 2C16 2C16 2C16 SLLIM 12 LIMIT

- 147 -

VI.6 V2.0 V2.1 V2.2 V2.3

Appendix F: Variable Names

i
a

m

ft s

2AB6 2C00 2C0C 2C0C 2C0C SEEDLP 12 6 SEED LIFT CONTROLLER

2AC2 2C0C 2C18 2C18 2C18 CLGAIN 11 CRUC LIFT CNTL.: GAIN

2AC3 2C0D 2C19 2C19 2C19 CLCNTL 11 CNTL

2AC6 2C10 2C1C 2C1C 2C1C CLPROP 12 PROP. MULTIPLIER

2ACB 2C12 2C1E 2C1E 2C1E CLINT 12 INT. MULTIPL.

2ACA 2C14 2C20 2C20 2C20 CLDIFF 12 D1FF. MULTIPL.

2ACC 2C16 2C22 2C22 2C22 CLLIM 12 LIMIT

2AC2 2C0C 2C18 2C18 2C18 CRUCLP 12 6 CRUC LIFT CONTROLLER

2ACE 2C18 2C24 2C24 2C24 SRGAIN 11 SEED ROT CNTL.: GAIN

2ACF 2C19 2C25 2C25 2C25 SRCNTL 11 CNTL

2AD2 2C1C 2C28 2C28 2C28 SRPROP 12 PROP. MULTIPLIER

2AD4 2C1E 2C2A 2C2A 2C2A SR1NT 12 INT. MULTIPL.

2 AD 6 2C20 2C2C 2C2C 2C2C SRDIFF 12 DIFF. MULTIPL.

2AD8 2C22 2C2E 2C2E 2C2E SRLIM 12 LIMIT

2ACE 2C18 2C24 2C24 2C24 SEEDRP 12 6 SEED ROT CONTROLLER

2ADA 2C24 2C30 2C30 2C30 CRGAIN 11 CRUC ROT CNTL.: GAIN

2ADB 2C25 2C31 2C31 2C31 CRCNTL 11 CNTL

2A0E 2C28 2C34 2C34 2C34 CRPROP 12 PROP. MULTIPLIER

2AE0 2C2A 2C36 2C36 2C36 CR1NT 12 INT. MULTIPL.

2AE2 2C2C 2C38 2C38 2C38 CRDIFF 12 DIFF. MULTIPL.

2AE4 2C2E 2C3A 2C3A 2C3A CRL1M 12 LIMIT

2AB6 2C24 2C30 2C30 2C30 CRUCRP 12 6 CRUC ROT CONTROLLER

2AE6 2C30 2C3C 2C3C 2C3C DUMPIN 11 INTERVAL FOR DATA DUMPS

2AE7 2C31 2C30 2C3D 2C3D DUMPFL 11 DUMP FLAG
 2C3E 2C3E XTLSHP R CRYSTAL SHAPE PARAMETER

2F52 3152 3152 3120 3120 CHMDEX T TD FOR CMMDEX

2F7A 317A 317A 3148 3148 HEASDO T TD FOR MEASDO
2FA2 31A2 31A2 3170 3170 CHFINP T TD FOR CMF1NP
2FCA 31CA 31CA 3198 3198 CMFOUT T TO FOR CMFOUT

2FF2 31F2 31F2 DISKOO T TD FOR DISKOO
3006 3206 3206 DISK01 T TD FOR DISK01
 31C0 31C0 DSKOUT T TD FOR DSKOUT

302E 322E 322E 31E8 31E8 DIACNT T TD FOR DIACNT

3056 3256 3256 3210 3210 ANACNT T TD FOR ANACNT

3187 3387 3387 3341 3341 ALARMF 11 ALARM TIMER INTERRUPT FLAG

3188 3388 3388 3342 3342 TIME 12 SYSTEM TIME (INTEGER)

318A 338A 338A 3344 3344 DIFFTM 12 DIFFERENTIAL TIME FOR MACRO EXECUTION

31A4 33A4 33A4 335E 335E DTINTV 11 DATA FILE UPDATING INTERVAL

31A6 33A6 33A6 3360 3360 TIMSET 12 SETP01NT FOR ALARM TIMER (MACRO EXE.)

3243 3443 3443 33FD 33FD 10FLAG 11 4 I/O FLAG ARRAY

32FD 34F0 3581 353B 3S3B ITEMP1 12 MEASURED DATA i. NTEGER): TEMPERATURE

32FF 34FF 3583 353D 3530 ITEMP2 12

3301 3501 3585 353F 353F ITEMP3 12

3303 3503 3587 3541 3541 1SEEDL 12 SEED LIFT SPEED

3305 3505 3589 3543 3543 ICRUCL 12 CRUCIBLE LIFT SPEED

3307 3507 358B 3545 3545 ISEEDR 12 SEED ROTATION

3309 3509 358D 3547 3547 ICRUCR 12 CRUCIBLE ROTATION

330B 350B 358F 3549 3549 I POUT 1 12 POWER OUTPUT (FROM SCR)

330D 350D 3591 354B 354B 1POUT2 12

- 148 -

V1.6 V2.0 V2.1 V2.2 V2.3

Appendix F: Variable Names

330F 350F 3593 3540 354D IP0UT3 12

3311 3511 3595 354F 354F I WEIGH 12

3313 3513 3597 3551 3551 IDWGHT 12

3315 3515 3599 3553 3553 ISEEDP 12
3317 3517 359B 3555 3555 JCRUCP 12

3319 3519 359D 3557 3557 IBASET 12

331B 351B 359F 3559 355? IGASPR 12

3310 351D 35A1 355B 355E CONTAC 12

331F 351F 35A3 355D 355C ANALOG 12 8

32F-D 34FD 3581 353B 353E ANADAT 12 25

332F 352F 3 5B3 356D 356C ID I AMT 12

3331 3531 35B5 356F 356F ILENGT 12

3333 3533 35B7 3571 3571 SCADIA R

3337 3537 35BB 3575 357! SCATHP R 3

3343 3543 35C7 3581 358< SCAMOT R 4

3353 3553 35D7 3591 3591 SCAPUO R 3

335 F 355F 35E2 359C 359C SCAUGT R
3363 3563 35E7 35A1 35A SCADUT R
3367 3567 35EE 35A! 35A5 SCA70S R 2

336F 356F 35F2 35AC 35AC SCABST R
3373 3573 35F7 35B1 35B1 SCAGAS R
3377 3577 35FE 35B5 35B! SCAPUR R
3333 3533 35B? 3571 357 SCALE R 18

337B 357B 35FF 35BS 3589 CDIASQ R
337F 357F 3603 35BC 35BC SDIASQ R
3383 3583 3607 35C1 35C1 OXUGHT R
3387 3587 360E 35C« 35C! RHOXTL R
338B 358B 360F 35CS 35C9 RHOMLT R
338F 358F 36H 35CC 35CD RHOOX! R
3393 3593 3617 35D1 35D SCRUCP 12
3395 3595 3619 35D2 35o: ! ZEROUT 12
 3597 361B 35D! 350' > GROWTH R
3397 359B RHEIGH R

339B 359F INICRP R

339F 35A3 INIWGT R

33A3 35A7 RCRSET R

33A7 35AB ADJLEN R

33AB 35AF DIATAB R 64

34A0 36B1 D1ASTA 11

34B2 36B6 HEIGHT 12
3464 36B8 RHOOXA R

34B8 36BC DIA1SO R

34BC 36C0 DIA2SQ R

34C2 36C6 POINTS 12

34C4 36C8 DIA1SH R

34C8 36CC DIA2SM R

3400 36D4 STEP R

34D4 GROWTH R

34D8 36D8 RSEEDL R

WEIGHT

OIFF. WEIGHT

SEED POSITION

CRUCIBLE POSITION

BASE TEMPERATURE

GAS PRESSURE

CONTACT

EIGHT SPARE ANALOG CHANNELS (INTEGER)

COMPLETE ARRAY OF ANALOG DATA (INT.)

CRYSTAL DIAMETER (INTEGER)

LENGTH GROWN (INTEGER)

SCALING FACTORS: DIAMETER

TEMPERATURES

MOTORS

POWER OUTPUT

WEIGHT

DIFFERENTIAL WEIGHT

POSITION

BASE TEMPERATURE

GAS PRESSURE

POWER INPUT AND LIMIT

ARRAY OF SCALING FACTORS

SQUARE OF CRUCIBLE DIAMETER

SQUARE OF SEED DIAMETER

BORIC OXIDE WEIGHT

DENSITY: CRYSTAL

ME'.T

OXIDE

SETPOINT FOR CRUC. POSITION (INTEGER)

WEIGHT ZEROING VALUE

ACTUAL GROWTH RATE

MELT HEIGHT IN CRUCIBLE (REAL)

INITIAL CRUCIBLE POSITION (AT RESET)

INITIAL CRYSTAL WEIGHT (AT RESET)

SETPOINT FOR CRUC. POSITION (REAL)

LENGTH ADJUSTMENT (REAL)

TABLE OF CRYSTAL DIAMETERS

DIAMETER CONTROLLER STATUS

MELT HEIGHT (SCALED AS LENGTH)

ADJUSTED OXIDE DENSITY

SQUARE OF DIAMETER AT OXIDE SURFACE

SQUARE OF DIAMETER AT MELT SURFACE

NUMBER OF DATA POINTS IN SUMMATION

SUM OF DIAMETER SQ. AT OXIDE SURFACE

SUM OF DIAMETER SQ. AT MELT SURFACE

STEP FOR MELT HEIGHT EVALUATION

ACTUAl GROWTH RATE

SEED LIFT SPEED (FLOATING-POINT)

- 149 -

5

$

ft

i

*

/.

VI. 6 V2.0 V2.1 V2.2 V2.3

34DC 360 C RCRUCL R
... • 361F 35D9 35D9 ALPHA R
... - 35 5 3500 DIATAB R
... • 3623 "J 3600 IHEIGH 12
... • 3625 36DF 360 F OLDLEN 12
... • 3627 36E1 36E1 DIFFLG 12
... - 36E5 RDUGHT R
... - 362F 36E9 36E9 RHOOXA R
... - 3633 36EU 36ED DIA1SQ R
-• - 3637 36F1 36F1 DIA2SC R
-- - 363B 36F5 36F5 HEIGHT R
•■ - 36F9 36F9 RCRSET R
•• ■

 363F 36FD 36F0 VOLSUN R
•- • 3643 3701 3701 OX I VOL R
•- - 3705 3705 CORRVL R
•- • 3709 3709 BETA R
-- 3647 3700 370D ROLIFT R
•• • 364B 3711 3711 RLNGTH R
-• • 364 F 3715 3715 PRLNGT R
•• - 3657 371D 371D INICRP R
-- ■-

 3658 RCRSET R
•• •• 365F 3721 3721 ADJLEN R
•• •- 3663 DIATAB R
•- -• 3765 3727 3727 DIASTA 11
•• •• 3766 3728 3728 LOOPCT 11
•- -■

 3729 3729 OXOVFL 11
3EAB 4164 41EB 4133 4179 MTEMP1 12
3EA0 4166 41ED 4135 417B MTEMP2 12
3EAF 416S 41EF 4137 417D HTEMP3 12
3EB1 416A >tP4

■♦in «» U7 417F nSEEDL 12
3EB3 416C 41F3 413B 4181 HCRUCL 12

3EB5 416E 41F5 4130 4183 KSEESR 12

3EB7 4170 41F7 413F 4185 HCRUCR !2

3EB9 4172 41F9 4141 4187 MPOUT1 12

3EBB 4174 41FB 4143 4189 MPOUT2 12

3EBD 4176 41FD 4145 418B MPOUT3 12

3EBF 4178 41FF 4147 4180 MUEIGH 12
3EC1 417A 4201 4149 418F MDUGHT 12

3EC3 417C 4203 414B 4191 MSEEDP 12

3EC5 417E 4205 4140 4193 MCRUCP 12
3EC7 4180 4207 4UF 4195 M8ASET I?

3EC9 4182 4209 4151 4197 MGASPR 12

3ECB 4184 420B 4153 4199 MCONTC 12

3E A9 4162 41E9 4131 4177 MANALG 12

Appendix F: Variable Names

CRUCIBLE LIFT SPEED (FLOATING-POINT)

CORRECTION FACTOR FOR GROWTH RATE

64 DIAMETER SQUARES TABLE

MELT HEIGHT (SCALED AS LENGTH)

LENGTH AT LAST SLICE BOUNDARY

HEIGHT OF CURRENT SLICE

(ADJUSTED) DIFFERENTIAL WEIGHT

ADJUSTED UXIDfc DENSITY

SQUARE OF DIAMETER AT OXIDE SURFACE

SQUARE OF DIAMETER AT MELT SURFACE

BORIC OXIDE HEIGHT IN CRUCIBLE (REAL)

CRUCIBLE POSITION SETPOINT (REAL)

SUM OF VOLUMES IN CURRENT SLICE

VOLUME OF BORIC OXIDE MELT

OXIDE VOLUME CORRECTION

CORRECTION FACTOR

SEED - CRUCIBLE.LIFT SPEEDS

UNSCALED LENGTH

UNSCALED LENGTH DURING PREVIOUS PASS

CRUCIBLE POSITION AT RESET

CRUCIBLE POSITION SETPOINT (REAL)

LENGTH ADJUSTMENT PARAMETER

64 DIAMETER SQUARES TABLE

DIAMETER CONTROLLER STATUS

LOOP COUNTER LOCATION

OXIDE HEIGHT OVERFLOW FLAG

ANALOG MEASUREMENT DATA: TEMPERATURE I

TEMPERATURE II

TEMPERATURE III

SEED LIFT

CRUCIBLE LIFT

SEED ROTATION

CRUCIBLE ROTATION

POWER OUTPUT (FROM SCR)

WEIGHT

DIFFERENTIAL WEIGHT

SEED POSITION

CRUCIBLE POSITION

BASF TPMPf PATIJBF

GAS PRESSURE

CONTACT DEVICE

25 ANALOG DATA INPUT ARRAY

- 150 -

.*-«». 'i£iü^^^^^^^t^^^^^^£^^S^^i^^^
:*S$sFsTstiifo V V \« v

Appendix G: Disk Error Codes

AgFENDxjC ja» JiuK £iRROR CODES

RXISIS-II and the CGCS return a numeric error code in the case
of a disk error. The error codes are the same in either en-
vironment. Although some error messages are trapped by appli-
cation programs (under RXISIS-II) or by the CGCS, and replaced
by more detailed message text, many errors are displayed by
the generic error message generation routines which provide
tne error code only, without an explanation. The CGCS re-
turns, in addition to the plain error code, a message

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) *****

which is accompanied by a "beep". In the above message, "xxx"
is replaced by the major, and "yy", by the minor error codes;
"tsknam" stands for the name of the task which detected the
error, and "hexl" represents the absolute program code address
where the error was recognized.

The task name displayed with the disk error message indicates
which CGCS file was involved in the error:

General System Operations:
RXIROM - Overlay or auxiliary file handling.

Macro Command File:
RXIROM - (Conditional) Macro call from console.
CMMDEX - (Conditional) Macro call from console or Macro

file.
CMFINP - Macro command execution.

Print File:
RXIROM - At all times.
CMMDEX - (Error) message output.
CMFINP - (Error) message output.
DIACNT - (Error) message output.

Data File:
RXIROM - During opening and closing and upon a COMMENT

command.
DSKOUT - During regular operation.

Control Output File:
RXIROM - During opening and closing.
CMFOUT - During regular operation.

- 151 -

fcQÄÖQw&to^

ft

Appendix G: Disk Error Codes

The following error codes are returned by RXISIS-II and by the
CGCS:

2 Invalid file number
3 Attempt to open more than 6 files simultaneously *)
4 Illegal file name
5 Illegal device name
6 Attempt to write to a file open for input
7 Disk is full
8 Attempt to read from a file open for output
9 Disk directory is full

y$ 10 Different disks in RENAME call
11 File name is already in use

jn, 12 File is already open
H> 13 No such file
*' 14 Attempt to write to a write protected file

15 Attempt to load into protected memory area
jjK 16 Incorrect object program format
y 17 Attempt to access a non-disk file

18 Unrecognized message type or system call
h- 19 Attempt to seek on a non-disk file
■\\ 20 Attempt to seek in front of beginning of a file
■ 22 Illegal access parameter in OPEN call

24 Disk I/O (hardware) error
*m 26 Illegal attribute parameter in ATTRIB call
™ 27 Illegal mode parameter in SEEK call

28 Missing file name extension *)
y 29 End of console file
iV 30 Disk drive not ready

31 Attempt to seek on a file open for output
32 Attempt to delete an open file

J^ 3 5 Attempt to seek past end of file open for input
*\> 40 Request sent to wrong exchange

41 Insufficient free memory to open file
«).■ 42 Drive not in configuration table
JJf 4 3 Drive timeout

120 Insufficient memory to open new file #)
121 Attempt to load a main program

Rj 218 Unallocated disk file block prior to EOF

*) RXISIS-II only
vs #) CGCS only

Minor error code information is only displayed in case of an
error 24 (Disk I/O error):

y 01 Deleted record
02 Cyclic redundancy check error (data field)

<f» 03 Invalid address mark
04 Seek error

V

152 -

I
Appendix G: Disk Error Codes

08 Address error
0A Cyclic redundancy check error (ID field)
0E No address mark
OF Incorrect data address mark
10 Data overrun or underrun
20 Disk is write protected
40 Write error
80 Not ready

\l
A

'<
•6

K

X

- 153 -

, ym _ - _

^v:-,.,.:«,, aa^ttttiaai^aa^aiiMi^^i

Appendix H: CGCS File Formats

APPENDIX H; CGCS FILE FORMATS

H 1: VARIABLE NAME FILE CZONAM.Vmn

The file name extension of the Variable Name file has to hold
the major and minor version codes of the CGCS system release
to which the file refers. (CZONAM.V23 is, for example, the
Variable Name file for CGCS Version 2.3.) The file is built
of records of 128 bytes, each of which holds 14 entries of 9
bytes each; each record is terminated by a Carriage Return -
Line Feed pair.

Each entry contains:

Bytes 1-6: Variable name (1-6 uppercase characters,
left justified, right filled with spaces.

Byte 7: Variable type and array size, encoded as
(type number + (array size - 1) * 4),
where "array size" is the number of array
elements (1 to 64). The following "type"
values are defined:

type = 0 ... iRMX-80 control structure
type = 1 ... one-byte integer (INTEGER*1)
type = 2 ... two-byte integer (INTEGER*2)
type = 3 ... floating-point number (REAL)

Bytes 8-9: Start address of the specified variable.

H 2: VARIABLE NAME SOURCE FILE

The source file which holds the variable names and which is
eventually converted to a CZONAM file with the utility program
CONVAD does not reguire very strict formatting but must follow
the subsequent rules:

(1) Each entry must be held in a separate line in the follow-
ing order:

(a) Address (in hexadecimal notation, with or without
trailing "H") .

(b) Variable name (in capitals), 1 to 6 characters.

(c) Variable type number (0 through 3; see chapter H 1).

- 154 -

wk^tt&&^^

Appendix H: CGCS File Formats

(d) Number of array elements (optionally); a missing num-
ber is interpreted as "1".

(e) Comment (optional); the comment field should not con-
tain digits lest they could be interpreted as an array
size.

(2) Entries must be separated from one another by one or more
blanks (spaces, TAB characters, etc.).

H 3; MACRO COMMAND FILES

Macro files (and therefore also the Command Output files) are
built of records of 16 bytes each. They consist of one header
record and an arbitrary number (including zero) of data rec-
ords .

Header Record:

Bytes 1-2: Zero.
Byte 3: Minor CGCS Version code.
Byte 4: Major CGCS Version code.
Bytes 5-16: Don't care.

Data Records:

Bytes 1-2:

Byte 3:
Bytes 4-16:

Command Codes:

Relative time of command as unsigned two-
byte integer (0 - 65535) .
Command code byte.
Depend on command code; see below.

11H Set Diameter
12H Set Heater Temperature #1
13H Set Heater Temperature #2
14H Set Heater Temperature #3
15H Set Seed Lift speed
16H Set Crucible Lift speed
17H Set Seed Rotation speed
18H Set Crucible Rotation speed
19H Set Power Limit

21H Modify Diameter
22H Modify Heater Temperature #2
23H Modify Heater Temperature #2
24H Modify Heater Temperature #3

- 155 -

wu> i v> w> ,•• »"> «■> AVMiT* »"•.,"««.>
^Ä>ä^^'>^ä<<-^^-:<«:./O .'V\«'-VJ.

Appendix H: CGCS File Formats

25H Modify Seed Lift speed
26H Modify Crucible Lift speed
27H Modify Seed Rotation speed
28H Modify Crucible Rotation speed
29H Modify Power Limit

Bytes 4-5: New setpoint or setpoint change
(INTEGER*2).

Bytes 6-9: Transition time in seconds (REAL).
Bytes 10 - 16: Don't care.

3OH Macro Command
Bytes 4-9: Macro Command name (left justified,

right filled with spaces).
Bytes 10 - 16: Don't care.

31H Clear Conditional Macros Unconditionally
Bytes 4-16: Don't care.

4OH Mode = Monitoring
41H Mode = Manual
42H Mode * Diameter
43H Mode = Diameter/ASC
44H Mode = Automatic

Bytes 4-16: Don't care.

7OH Reset
Bytes 4-5: New weight (INTEGER*2).
Bytes 6-7: New length (INTEGER*2).
Bytes 8 - 16: Don't care.

. 7FH End of Command Record
Bytes 4-16: Don't care.

90H Set Variable
AOH Change Variable

Byte 4: Variable type:
2 ... INTEGER*!
4 ... INTEGER*2
6 ... REAL

Bytes 5 - 6: Variable address (INTEGER*2).
Bytes 7-10: New setpoint or change value (REAL).
Bytes 11 - 14: Transition time in seconds (REAL).
Bytes 15 - 16: Don't care.

BOH Conditional Command
Byte 4: Variable type + 16 * Relation code #2

S + 64 * Relation code #1, with:
Variable type:

2 ... INTEGER*!
4 ... INTEGER*2

- 156 -

>,

t&^ffiä&2&^^ . .y>;;

Appendix H: CGCS File Formats

6 . . . REAL
Relation code:

1 ... "<"
2 H = ll

3 ... ">"
Bytes 5-6: Variable address (INTZGER*2).
Bytes 7-10: Comparison value (REAL).
Bytes 11 - 16: Macro Command name.

B1H Clear Conditional Commands Selectively
Byte 4: Don't care.
Bytes 5-6: Variable address (INTIGER*2).
Bytes 7-16: Don't care.

EOH Assign Plot Channel
Byte 4: Plot channel number (1-8)
Bytes 5-6: Variable address (INTIGER*2).
Bytes 7 - 16: Don't care.

F2H Debug Continuously
F3H Debug Modify
F4H Debug Resume
F5H Debug Suspend

Byte 4: Variable type + 16 * Output location,
with:
Variable type:

1 ... ASCII (1 character)
2 ... INTEGER*1
3 ... one-byte hexadecimal
4 ... INTEGER*2
5 ... two-byte hexadecimal
6 ... REAL
7 ... four-byte hexadecimal

Output location: 1-4
Variable address (INTEGEP*2).
New value.
Don't care.

(Most Debug commands need only part of the informa-
tion in bytes 4 - 10)

Bytes 5-6:
Bytes 7-10:
Bytes 11 - 16:

The contents of a command message are ..uentical to those of
the corresponding command record bytes 3 through 16.

H 4: DATA FTLES

A Data file is mads up of records of 128 bytes each. It con-
sists of one Header record and an arbitrary number of Data and
Comment records. With the exception of the first two bytes,

- 157 -

1
1

Appendix H: CGCS File Formats

Data records are built of two-byte words, i.e., 64 words per
record. All data is in INTEGER*2 format unless noted other-
wise.

«j
Header Record:

1

Bytes 1-8:
Bytes 9-28:
Bytes 29 - 30
Byte 31:
Byte 32:
Bytes ; 33 - 12

Data Record:

Byte 1:
Byte 2:

Word 2:
Word 3:

Word 4:
Word 5:
Word 6:

Word 7:
Word 8":
Word 9:
Word 10:

Word 11:
Word 12:
Word 13:

Word 14:
Word 15:
Word 16:
Word 17:

Word 18:
Word 19:
Word 20:

Word 21 - 28:

Word 29:
Word 30:
Word 31:

Date (8 ASCII characters).
Run Identification (20 ASCII characters).
Record interval (two hexadecimal digits).
Major CGCS system version code.
Minor CGCS system version code.
Contents of bytes 1-32 repeated three
times.

Always 0.
Operation Mode (INTEGER*1).

System time.
Length grown.

Temperature #1 (Measured Data).
Temperature #2.
Temperature #3.

Seed Lift.
Crucible Lift.
Seed Rotation.
Crucible Rotation.

Power Output #1.
Power Output #2.
Power Output #3.

Weight.
Differential Weight.
Seed Position.
Crucible Position.

Base Temperature.
Gas Pressure.
Contact Device.

Eight Spare Analog Input Channels,

Power Input #1 (Control Output).
Power Input #2.
Power Input #3.

- 158 -

«,

Word 32:

Word 33:
Word 34:
Word 35:

Word 36:
Word 37:
Word 38:
Word 39:

Word 40:

Word 41:

Word 42:
Word 43:
Word 44:

Word 45:
Word 46:
Word 47:
Word 48:

Word 49:

Word 50:
Word 51
Word 53:
Word 54
Word 56:
Word 57
Word 59:
Word 60

Word 62:

Word 63:

Word 64:

52:

55;

58:

61:

Appendix H: CGCS File Formats

Diameter (Current Setpoints).

Temperature #1.
Temperature #2.
Temperature #3.

Seed Lift.
Crucible Lift.
Seed Rotation.
Crucible Rotation.

Power Limit.

Diameter (Final Setpoints).

Temperature #1.
Temperature #2.
Temperature #3.

Seed Lift.
Crucible Lift.
Seed Rotation,
Crucible Rotation.

Power Limit.

Debug Continuously Address #1.
Debug Continuously Data #1 (4 bytes).
Debug Continuously Address #2.
Debug Continuously Data #2 (4 bytes).
Debug Continuously Address #3.
Debug Continuously Data #3 (4 bytes).
Debug Continuously Address #4.
Debug Continuously Data #4 (4 bytes).

Diameter (Calculated Value).

Spare.

Debug Continuously Type Flags (compare
chapter H 3, Debug Variable types-)

TYPE(l) + 16*TYPE(2) + 256*TYPE(3) +
4096*TYPE(4)

- 159 -

Appendix H: CGCS File Formats

Comment Records:

Byte 1:
Bytes 2-6:
Bytes 7 - 128;

Always -1.
as in Data Records.
Comment input (122 ASCII characters; only
the first 79 are displayed by SHODAT).

- 160 -

.".» V»» . *V»»'* «■»«>.' .'• .>■ .^ .'- .'- .1- .

Appendix I: Czochralski Growth Control System Messages

APPENDIX It CZOCHRALSKI GROWTH CONTROL SYSTEM MESSAGES

In addition to immediate responses to operator commands, the
CGCS may issue messages to the console and to a Documentation
output (if available) which need not obviously be triggered by
operator entries. For reasons of brevity, only the messages
which are not generated by the Command Interpreter are listed
below in alphabetical order. (The Command Interpreter respon-
ses are self-explanatory and always immediately related to an
operator entry.) In general, messages starting with "*****"
have informational character only, whereas "#####" may indi-
cate a genuine error condition. The latter messages are, in
general, accompanied by a "beep". (Exceptions to this rule
are the Disk, Input, Output, Printer, and System error messa-
ges which are tagged with asterisks. They are generated by
the operating system and are displayed only on the console.)

***** All Conditional Macros cleared *****

An Unconditional CLEAR command (i.e., a CLEAR command
without any parameter) was entered from the console or
from a Macro Command file.

***** Automatic RESET executed - automatic Mode changes will
follow *****

The operation mode was changed into a Diameter control-
led mode while the Diameter Evaluation routines were not
yet initialized with a RESET command. The system takes
care of that on its own in a somewhat complicated proce-
dure.

Can't calculate diameter with zero seed lift speed

The actual seed lift speed is still zero when RESET is
commanded, or it is set to zero while the Diameter Eval-
uation routines are active.

Can't control system

The operator or a Macro Command attempted to SET or
CHANGE a parameter or Variable while in Monitoring
mode. The command is executed, though, but it may be-
come ineffective in the case of a change to any con-
trolled mode.

161 -

Appendix I: Czochralski Growth Control System Messages

Can't ramp parameter

The maximum number of parameters or Variables (20) were
already being ramped when a SET or CHANGE command with
non-zero transition time was issued. The change is
effected immediately, without ramping.

Command Macro call ignored

A specified Macro was not found, or a disk error occur-
red while the Macro file header was read.

***** Command Macro preempted *****

A Macro Command was activated, either from a pending
Conditional command, or through an unconditional Macro
Command, while another Macro was active.

***** Conditional Macro cleared *****

A Selective CLEAR command has removed one Conditional
Macro from the Conditional Command queue. This message
is repeated for each Conditional Command cancelled with
a Selective CLEAR; it may therefore appear multiplely.

Conditional Macro Command ignored

A Conditional Macro Command was encountered while al-
ready the maximum number of Macro Commands (8) were
pending.

***** conditional Macro started *****

A Conditional Macro Command has met its condition and is
activated.

Continued speed overflow - RESET required

The system cannot automatically recover from a serious
problem.

- 162 -

^*v^>v>Nyvs>>V^

Appendix I: Czochralski Growth Control System Messages

Crystal shape adjusted

The calculated diameter value changed faster than per-
mitted. The diameter value stored in memory for the
diameter and crucible position evaluation is corrected
to differ from the value stored before exactly by the
permitted maximum. Crystal shape adjustments may cause
minor transients in the calculated diameter and/or cruc-
ible position setpoint.

***** DISK ERROR xxx yy (TASK tsknam, LOC hexl) *****

Disk error message provided by the operating system.

***** End of Macro command file *****

The end of a Macro file was reached, or a disk error
prohibited its further execution.

***** Executing Macro MACNAM *****

The Command file with the name MACNAM was started either
from an unconditional Macro Command, or from a Condi-
tional Macro Command whose condition was met.

Jl il ii Jl Jl TT1-— -.1 —- — J <i1. •£____.!- 1t V it V 1t llieLjäl ^uiiuuaiiia LXJLC LUiiuat

A Macro Command file has an improper format and cannot
be processed.

***** INPUT ERROR *****

Error message generated by the operating system, most
likely due to illegal data entry on the console. This
message should hardly appear, though.

Macro command not executable

A command referring to a Variable or absolute memory
location was encountered in a Macro Command file gener-
ated for a different CGCS version The command is ig-
nored.

- 163 -

"^Jtt^^ä^B^^^^^^^^^^^^^^^^^Mtffl

18 Appendix I: Czochralski Growth Control System Messages

■ ##### Macro MACNAM doesn't exist

The Macro Command with the name MACNAM was supposed to
gv be executed either from an unconditional or from a Con-
■> ditional Macro Command but the file MACNAM.CMD was not
"* found on drive 0. The command is ignored.

S ##### Meltback detected

,T> The crystal * s length was reduced by more than approxima-
*$ j tely 1 mm since an earlier pass of the Diameter Evalua-

tion routines. The Diameter Evaluation routiner, con-
tinue to operate normally.

£

I
£

fo

Ci

*.

Mode automatically set to Manual

m A zero seed lift speed or a speed overflow error was
detected by the Diameter Evaluation routines.

19 $ ***** New Mode: MODE NAME *****
The CGCS operation mode was set to the mode indicated,
either from the operator console, from a Macro Command,
or, automatically, in case of a diameter evaluation
error.

Non-matching Command Macro system version - restricted
Q command set

A Macro Command file generated under or for a different
CGCS version was invoked. All commands referring to
Variables or absolute hexadecimal addresses will be
skipped.

r,
N ***** OUTPUT ERROR *****

Error message generated by the operating system. This
ft message should never be encountered!

Overflow - result limited to permitted maximum

As a result of a SET or CHANGE command, a parameter or
Variable would have been set to a value exceeding the
permitted range for the particular location.

- 164 -

"RifTm^

Appendix I: Czochralski Growth Control System Messages

Oxide height overflow - Diameter may be incorrect

The height of the boric oxide melt exceeded the permit-
ted maximum of ca. 75 mm. The maximum melt height is
used for diameter and crucible position setpoint evalua-
tion. This data may therefore be incorrect.

Parameter can't be negative

A SET or CHANGE command attempted to set a diameter,
temperature, or power limit setpoint to a negative
value. The setpoint is set to zero instead.

***** PRINTER NOT READY *****

Error message generated by the operating system. The
printer was in off-line mode while the system attempted
to transfer data to it.

PROGRAM CODE DAMAGED AT XXXXH #####

At least one byte within the memory page (= 256 bytes)
starting at the address specified in the message was
changed since the last pass of the code checker routine,
approximately 30 seconds ago. This message should never
appear! Preserve all data of the run if it does happen,
and report it immediately.

£
***** Recorder channel N is negative *****
***** Recorder channel N is positive *****

The output to the chart recorder channel N (N is an
integer between 1 and 8) changed its sign. Initially,
the output data of all channels is supposed to be posi-
tive.

***** Regular growth resumed *****

A meltback, zero seed lift speed, or speed overflow
condition has been terminated; the Diameter Evaluation
routines can resume correct operation.

- 165 -

8

>:
A

X

3 N

Appendix I: Czochralski Growth Control System Messages

Speed overflow

The calculated length of the crystal was increased or
decreased by more than 2 mm during the last 10 seconds.
This may be due to a very fast seed lift, or to an ab-
rupt change of the crystal's weight. The system tries
to recover automatically from such a condition.

***** SYSTEM ERROR (TASK tsknam, LOC hexl) *****

This error message should never appear. Preserve all
data of the run if it does happen, and report it immedi-
ately.

- 166 -

Appendix J: Dynamic Behavior of the PID Controller Routine

APPENDIX J: DYNAMIC BEHAVIOR OF THE PID CONTROLLER ROUTINE

Simulations of the PID controller's response were performed
for the most important operation modes in order to compare
their dynamic response to various shapes of the error signal.
For all simulations shown in the subsequent illustrations, the
following parameters were used:

Proportional Multiplier P = 256
Integral Multiplier I = 64
Derivative Multiplier D = 256
Limit L = 25
Integral Scaling Factor IS= 256
Bias B = 0

The setpoint S was kept at 0, and the Actual signal A was set
to follow the function depicted in Fig. Al. The first part of
this simulation, consisting of two series of 25 passes of
FRPIDC with A equal to +10 and -10, respectively, was chosen
to represent a small but persistent error for which the pro-
portional (plus derivative) components of the output signal
are well below a limit value (if one was chosen). During the
next part of the simulation, A was increased to ±20 units for
5 passes each; for the ensuing error, the limit is to be in-
curred essentially due to the proportional and derivative
components. The simulation is concluded with two single-pays
pulses of A with a magnitude of ±50 units which were provided
to represent the behavior of the controller for large trans-
ients.

In Fig. A2, the controller's response is shown for a CNTL
value of 0, i.e., for no limiting and anti-windup operation.
Note that, according to eq. (1), the sign of the controller's
output is opposite to the sign of the input value A. (This
approach results in positive controller parameters for most
applications.) During the first part of the simulation, the
response of the controller is essentially determined by the
integral component; the integral and derivative components are
only superimposed. Note that it takes a long time after the
error reversed its sign until the controller's output signal
(full line) changes its sign. The dynamic response is im-
proved during part 2 of the simulation since the proportional
and derivative components dominate there. The concluding
single error pulses result in a strong output signal in the
proper direction, followed by the opposite overshoot caused by
the reaction of the derivative component to the trailing edge
of the pulse. Since the controller is linear and the input
signal symmetrical, the error integral returns to zero after
each part of the test.

- 167 -

Appendix J: Dynamic Behavior of the PID Controller Routine

>

i

This is also true for the second set of control flags tested,
namely, for CNTL equal to 2 (Fig. A3) . In this case, the
controller's output is limited to ±25, but aside from this
limiting, the controller is still linear. Tht major drawback
of simple output limiting can be seen in the first part of the
controller's response curve, where there is no indication in
the output signal that the error went to zero, and eventually
changed its sign. (Note that, due to internal programming
reasons, the output signal is limited to -2 6 units rather than
-25. This fact is very unlikely to matter in actual applica-
tions, though, considering an output signal range of the con-
troller of ±32767 units.) Similarly, the controller goes into
saturation immediately at the beginning of the second part of
the test, and remains there, although the error drops back to
zero, aside from a short spike caused by the derivative compo-
nent. It requires a considerable error with the opposite sign
to obtain an output signal with the expected direction. Out-
put limiting also strongly affects the response to large
transients: The controller's output bounces back and forth
between its negative and positive limits. Since transients of
this kind are most likely artifacts which better should not be
regarded by the controller at all, output signal limiting
obviously contributes to a suppression of these short pulses;
the positive and negative spikes will cancel their effects
mutually in most applications.

§

v,

In order to improve the dynamic response, particularly, to
long-term error conditions where the integral component pre-
dominates, the anti-windup function Mode A was provided in
FRPIDC. Fig. A4 shows the response of the controller with
this feature activated in addition to output signal limiting
(CNTL = 6) . Indeed, the transition of A from 10 to 0 units
has a clear influence upon the output signal, and a response
with the expected sign is almost immediately obtained when A
changes from 0 to -10 units. There is also a reasonable re-
sponse to the larger error pulses in the second part of the
test; in fact, the response is very similar to the one ob-
tained for no output limit, but, for anti-windup Mode A, the
output signal is better centered around zero independent from
the preceding history of the controller. However, Mode A
fails to function totally for the large transients of the
third part of the test. While there is only a small effect of
a transient on the steady-state signal after the transient in
the operation modes discussed above, Mode A sets the error
integral to a large value whose sign depends on the relative
magnitude of the proportional and the derivative multipliers
and the previous "history" of the controller; in fact, any
output value between the positive and the negative maximum may
ensue after a larger transient.

- 168 -

Appendix J: Dynamic Behavior of the PID Controller Routine

In order to counteract this not very desirable behavior, anti-
windup Mode B was developed where the error integral is not
set to a value depending on the proportional and derivative
components if the output exceeds the limit as it was in Mode
A; in contrast, the error integral is clamped to the positive
or negative limit value, depending on the sign of the total
controller output. The response in Mode B (CNTL = 14) is
shown in Fig. A5. There is no big difference between Modes A
and B for small long-term errors, although Mode B reacts more
slowly to changes of the controller's input than Mode A does.
The end of the first part of the test sequence, and, even more
pronounced, the end of the second part shows, however, the
main drawback of this mode: The error integral tends to "get
stuck" at either of the controller's limits, and positive
action (i.e., an input signal which eventually will reverse
the error integral's sign) is required to remove it from
there. Furthermore, some anomalies may also happen in Mode B
when large error transients are encountered. More or less the
expected result is returned for the first spike: The output
signal (and the error integral) bounces from the positive to
the negative limit, and returns to the positive limit. The
treatment of the second spike is less obvious. There is no
visible response to the leading slope of the spike because the
positive output which would have resulted from it is clipped
off by the limiting operation. During the trailing slope,
however, the derivative component determines the output sig-
nal. Incidentally, an output signal resulted in our simul-
ations which was next to the negative limit but, from the
controller's point of view, not beyond the limit. The inte-
gral component was therefore not modified but remained at its
positive limit. (Had we used a pulse amplitude of 51 rather
than 50 units, we would have obtained a reversal of the inte-
gral component's sign.)

The remaining two simulations (Figs. 6 and 7) were based upon
a different approach: Rather than modifying the error inte-
gral when the output signal exceeds a limit, the error inte-
gral itself is kept within the bounds of a limit, no matter
what the output signal looks like. This error integral limit-
ing may be used with or without limiting of the final con-
troller output. (The same limit value must be used, though,
in both cases.) A simulation without output limiting (CNTL =
16) is shown in Fig. A6, while Fig. A7 shows the effects of
output limiting (CNTL = 18) . Again the behavior of the con-
troller suffers from the nonlinear response of the error inte-
gral which does not return to zero when an error condition
occurred although the input signal is symmetric. (It is ques-
tionable, however, how representative the test signals chosen
here are with respect to actual operating conditions.) In-
deed, the response shown in Fig. A7 for integral and output

- 169 -

LL± k^aieLe ̂ *>^^ w^ w^ w v vv .v. -• '-• •■• v >.> •'^'"•-'---•w.y.v..

J

Appendix J: Dynamic Behavior of the PID Controller Routine

limiting is very similar to the one obtained with anti-windup
Mode B in Fig. A5. The only differences occur for the
handling of the large transients in the third part of the
test. In this case, integral limiting seems to render nore
consistent and reasonable results, compared to the anti-windup
schemes.

Changing the integral scaling factor IS from 256 to 65536 has
no effect on the behavior of the controller except that the
integral reacts by a factor of 256 slower. Setting IS to
6553 6 and I to 163 84 (64*256) resulted in exactly the same
responses as discussed above.

Note that the PID controller routine checks for an output
signal overflow after it calculated (and possibly limited) the
error integral. In general, there is no point to keep inte-
gral limiting and any of the anti-windup schemes active at the
same time because the anti-windup algorithms' will override
(and overwrite) the results of the integral limiter, except
for some extremely weird operating conditions where an error
reduces its magnitude at a rate fast enough to have the pro-
portional component of the controller output overcompensated
by the derivative component, without the error changing its
sign. In this case, limiting of the error integral might
occur without the output signal exceeding the limit. For
obvious reasons, this case was not investigated; for all prac-
tical purposes, operation modes 20 through 23 and 28 through
31 are identical to the corresponding modes 4 through 7 and 12
through 15.

- 170 -

/r^>>>^^;v^^<^^^>;^v;-.yv^^.,^.,\\f^H^.vvv oy...-, • ■, „

Appendix K: Documentation Printing History

APPENDIX K; DOCUMENTATION PRINTING HISTORY

Issue i: January 1986 (vii + 133 pages)

Valid for CGCS versions up to 1.5.

Issue 2: July 1986 (vii + 155 pages)

Valid for CGCS versions up to 2.0.

Issue 3i December 1986 (xi + 182 pages)

Valid for CGCS versions up to 2.3.

- 171 -

.•» »-<■

ILLUSTRATIONS

Illustrations

WEIGHT GAUG r—
C

SEED LIFT MOTOR

MELT-CRYSTAL
INTERFACE

\

SEED ROTATION
MOTOR

CRYSTAL BODY

ENCAPSULATION MELT

*—HEATER

MENISCUS

CRUC. LIFT
MOTOR

X
X

CRUCIBLE

CRUC. ROTATION
MOTOR

V.

Fig. 1: A Czochralski Puller for Compound Semiconductor Crys-
tal Growth.

- 172 -

a. - iL "- •- ■>- Si ■- -

Illustrations

Fig. 2: Implementation of the Digital Czochralski Growth Con-
trol System.

FFTFH

EOOOH

C00OH

fiOQl

8G0OH

6G0OH

4G00H

200QH

0G0OH

RAH

EXPANSION

ON-BOARD RAH

ROH BANK i ROH BANK 0

48 KBYTES

8 KBYTES

2 * 8 KBYTES

Fig. 3: Hardware Memory Map of the CGCS Computer.

- 173 -

»-* I'.-Q «.- °s»-■-' s" «.**■' ac ** ** hi «-**■' a *-" ? ' ' n * i ' ' '

&

Illustrations

MOTOR CHART HEATER MOTOR ANALOG
RELAYS RECORDER SCR DRIVERS SOURCES

CRT RELAY DDTMITD DISK SIGNAL
CONS OLE DRI')ERS DRIVES CONDI!

1/ '0 MEMORY DISK D/A A/1
wu EXP, EXP, | CNTL. CONV, COM,

INTEL MULTIBUS (R)

Fig. 4: Hardware Configuration of the CGCS Computer.

FFFFH

EOOOH RXISIS-II OPERATING SYSTEM

COOOH

AOOOH
APPLICATION PROGRAMS RUNNING UNDER
RXISIS-II 3000H

6000H

4000H
DATA AREA FOR ROM RESIDENT SVSTTM

2000H !

-ROM: MONITOR
CONFIDENCE TEST

1
OOOOH !

Fig. 5:

ROM RESIDENT SYSTEM: TERMINAL HANDLER, B00TLÖADER
Memory Map of the Computer Under RXISIS-II.

y

- 174 -

^^^^ j . fc *

Illustrations

FFFFH

EÖ00H

COOOH

3000H

6000H

4000H

2000H

0000H

HEMORV POOL, BUFFERS

CZOCHRALSKI SVSTEM PROGRAM CODE

OVERLAY AREA

DATA AREA FOR CZOCHMSKI SVSTEH
DATA AREA FOR ROM RESIDENT SYSTEM

ROM: MONITOR
CONFIDENCE TEST

ROM RESIDENT SYSTEM: TERMINAL HANDLER, BÖOTLOADER
Fig. 6: Memory Map of the Computer Under the CGCS.

CONSOLE
(OPERATOR) —7

COMMAND
INTERPRETER —>

COMMAND

EXECUTOR

DISK
(MACRO FILE)

\

) DISK
(MACRO FILE) (

i

Fig. 7: Function Blocks of the CGCS.

- 175 -

£

8

£N

6

ft

A

\ U

Illustrations

OMEELAV i i

(FUNCTION II)

OUERLAV 12

(FUNCTION 12)

OVERLAY S3

(FUNCTION S3)

OUEELAVS REPLACE ONE ANOTHER WHEN REQUIRED

Fig. 8: Program Overlays,

to
V

n:

12-20-86 21:19 :54 Run ID: Demonstration Screen MACRO System Time: 27 .16:22

Actual: Setpoints: | Mode: Automatic Length: 85.45
Diameter (D); 83.73 82.00 82.00 |

| Ramping: 2/20 Condit.: 1/8
Temp. 1 (Tl) : 23.65 23.63 23.50 |
Temp. 2 (T2) : 23.98 23.95 23.80 | Weight: 2348. Diff.Wt.: 1.476
Temp. 3 CO) : 23.39 23.36 23.25 | Seed Pos.: 246.7 Cruc.Pos.: 23.89

80.00
| Base Temp: 20.19 Gas Press: '.97.6

| Actual: Setpoi its:
Seed Lift (SL) : 9.003 9.000 9.000 | Seed Rot. (SR): 4.997 5.000 5.000
Cruc Lift (CL) : 1.487 1.492 1.500 | Cruc Rot. (CR): -30.0 -30.0 -30.0

Power In/Out: 47.37/45 .29 49.12/48.28 45.40/42.12 Contact : *32*

28B1H- -28 28C9H- 31 2842H- 0.001250 36F9H- 23.67148
set propio -20 300
macro
***** Executing Macro MACRO *****
deb c rcrset 4
Please Command:
com This is a demonstration screen with arbitrarily invented data_

Fig. 9: Console Screen of the CGCS,

5
- 176 -

Illustrations

CRYSTAL

OXIDE —

SEM1C0ND,
MELT

CRUCIBLE

Fig. 10: Growth of a Crystal Partially Immersed in an Oxide
Melt.

Fig.11: Volume of a Paraboloid Section.

- 177 -

^^irr-^ **?• .'«J» Jn.n .'<-'■ ;y.:»;v,V>j».>j<ji>» ".'■.V ■■>■■■■<■'' ."'-'■ -'■ ■•■'-' -' *WT?^?*

1
Illustrations

#5

i

t

Fig. 12: Interpolation Algorithm for the Evaluation of the
Crystal Diameter at the Boric Oxide Encapsulant
Surface and of the Volume Immersed.

8
- 178 -

Illust: ations

1—r~T 80- i ■ i

Fig, A;:

fig- A?

60 _1

40 i
-j

20
—i

Q __; 1 1
-

20t
H

40
1 J

-60

80^
0 10 20 30 40 50 60 70 80 90

"Actual" input signal used for the simulations.

10 20 30 40 50 60 70 80 90

Controller output signal (full line) and error inte-
gral (broken line) for unlimited operation with no
option active.

- 179 -

Illustrations

80

60
t- CNTL = 2

Fig» A3:

10 20 30 40 50 60 70 80 90

Controller output signal (full line) and error inte-
gral (broken line) for output signal limiting with
no anti-windup.

Fia. A4
0 10 20 30 40 50 60 70 80 90

Controller output signal (full line) and error inte-
gral (broken line) for output signal limiting with
anti-windup Mode A.

- 180 -

Illustrations

80

60
L CNTL = 14

i ■ i

-80-
10 20 30 40 50 60 70 80 90

Fia. A5:

Fig. A6:

Controller output signal (full line) and error inte-
gral (broken line) for output signal limiting with
ant-i-windur. Mode B.

- 80h_L__
0 10 20 30 4~Ö 50 6<r 70 80 90

Controller output signal (full line) and error inte-
gral (broken line) for integral limiting but no
output signal limiting.

- 181 -

Illustrations

i
ft

la

1
B

©

i

0 10 20 30 40 50 60 70 80 90

Fig. A7: Controller output signal (full line) and error inte-
gral (broken line) for integral and output signal
limiting.

tt
A

- 182

B

