

MICROCOPY RESOLUTION TEST CHART NATIONAL RUREAU OF TANEARS THE A

AD

OTTC FILE COPY

Technical Memorandum 20-87

BRAIN POTENTIALS AND PERSONALITY: A NEW LOOK AT STRESS SUSCEPTIBILITY

Linda F. Mullins Jeffrey H. Lukas

September 1987 AMCMS Code 611102.74A0011

Approved for public release; distribution is unlimited.

U. S. ARMY HUMAN ENGINEERING LABORATORY Aberdeen Proving Ground, Maryland

Destroy this report when no longer needed. Do not return it to the originator.

1

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial products.

R		OCUMENTATIC	N PAGE		Form Approved OMB No 0704-0188 Exp. Date. Jun 30, 1986			
+ REPORT SECURITY CLASSIFICATIO	N		15 RESTRICTIVE	MARKINGS	0	21		
Unclassified SECURITY CLASSIFICATION AUTH	OBITY	<u> </u>		<u> </u>		7/		
				AVAILABILITY OF				
DECLASSIFICATION / DOWNGRAD	ING SCHEDU			for public r ion is unlim				
PERFORMING ORGANIZATION REP	PORT NUMBE	R(S)		ORGANIZATION RE		IBER(S)		
Technical Memorandum 2	097				Acce	ssion For		
NAME OF PERFORMING ORGANI		66. OFFICE SYMBOL	Za NAME OF MO	ONITORING ORGAN	NIZATION	CRALL E		
		(If applicable)			1	TAB		
uman Engineering Labora	-				Tues			
ADDRESS (City, State, and ZIP Co	de)		76. ADDRESS (Cit	y, State, and ZIP (code)"			
berdeen Proving Ground,	. Marylan	ad 21005-5001			By			
						ribution/		
NAME OF FUNDING/SPONSORING ORGANIZATION	U.	8b OFFICE SYMBOL (If applicable)	9. PROCUREMEN	INSTRUMENT IDE		Mitty Codes		
					Deat	Avail and/or		
. ADDRESS (City, State, and ZIP Cod	te)			UNDING NUMBER				
			PROGRAM ELEMENT NO	PROJECT NO		WORK UNIT ACCESSION NO		
			6.11.02.A	1L161102B74				
	Jeffrey H							
Final	136 TIME CO		14 DATE OF REPO September			PAGE COUNT 18		
Final SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB 06 10 05 08	FROM	TO TO 18 SUBJECT TERMS Augmenting- Sensation S Auditory Ev	September (Continue on revers Reducing eeking roked Potentia	1987 e if necessary and		18		
Final 6 SUPPLEMENTARY NOTATION 7 COSATI CODES FIELD GROUP SUB 06 10 05 08 9 ABSTRACT (Continue on reverse	FROM if necessary oldier if can affe This is the sold lying con ays a ro	TO TO 18. SUBJECT TERMS Augmenting- Sensation S Auditory Ev and identify by block s confronted v ct the soldier' seen as a bread dier's capacity istitutional failed in how excit	September (Continue on revers Reducing eeking roked Potentia number) with physiolo 's ability to eakdown of pe y to cope. actor, involv	1987 e if necessary and al function ef erformance w This experin ving the cen vidual will	psychol fective hen sus ment in ntral n be duri	ogical ly and tained vesti- ervous ng any		
Final 6 SUPPLEMENTARY NOTATION 7 COSATI CODES FIELD GROUP SUB 06 10 0 05 08 9 9 ABSTRACT (Continue on reverse - - Today's so - hardships that - appropriately. - stress exceeds - gates an under I - system, that plases ful or are - 0 DISTRIBUTION / AVAILABILITY OF - UNCLASSIFIED/UNLIMITED XX	FROM -GROUP if necessary oldier i can affer This is the sold lying con ays a ro ousing s - ABSTRACT (SAME AS F	18. SUBJECT TERMS Augmenting- Sensation S Auditory Ev and identify by block s confronted w ct the soldier' seen as a bread dier's capacity nstitutional faile in how excit ituation.	September (Continue on revers Reducing reeking roked Potentia number) vith physiolo s ability to eakdown of pe to cope. actor, involv able an indiv	1987 e if necessary and function ef rformance w This experin ving the cen vidual will (see CURITY CLASSIFICA	psychol fective hen sus ment in ntral n be duri reverse	ogical ly and tained vesti- ervous ng any side)		
Final SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB 06 10 05 08 9 ABSTRACT (Continue on reverse - Today's so hardships that appropriately. stress exceeds gates an underl system, that pla stressful or are 0 DISTRIBUTION / AVAILABILITY OF	FROM -GROUP if necessary oldier i can affer This is the sold lying con ays a ro ousing s - ABSTRACT (SAME AS F	18. SUBJECT TERMS Augmenting- Sensation S Auditory Ev and identify by block s confronted w ct the soldier' seen as a bread dier's capacity nstitutional faile in how excit ituation.	September (Continue on revers Reducing reeking roked Potentia number) vith physiolo s ability to eakdown of pe to cope. actor, involv able an indiv	1987 e if necessary and al ogical and function ef orformance w This experin ving the cen vidual will (see CURITY CLASSIFIC) ied Include Area Code	psychol fective hen sus ment in ntral n be duri reverse ATION	ogical ly and tained vesti- ervous ng any side)		

19.

Subjects listened to 1,000-Hz tone bursts ranging from 40 to 85 dB sensation level (SL) in 5-dB steps in a block-randomized fashion. The brain's electrical response to the tones was averaged and collected online. The peak amplitudes were measured and the slope of the line of best fit between evoked potential amplitude and intensity was computed. Auditory augmenters have positive slopes, that is, as intensity increases so does the evoked potential amplitude. Reducers show the opposite effect. The brain potentials become smaller or reduce as intensity increases, producing a negative slope. In addition, each subject completed Zuckerman's Sensation Seeking Scale (SSS) and Vando's Reducer-Augmenter The slope measure was significantly correlated with the (R-A) Scale. experience seeking subscale of the SSS. The results indicate that auditory augmenters prefer and seek out novel and exciting experiences. And in conjunction with previous human and animal research, the results also suggest that the augmenter may cope better with stress and high workloads.

AMCMS Code 611102.74A0011

222233 • 833355

Technical Memorandum 20-87

BRAIN POTENTIALS AND PERSONALITY: A NEW LOOK AT STRESS SUSCEPTIBILITY

Linda F. Mullins Jeffrey H. Lukas

September 1987

APPROVED irector Human Engineering Laboratory

Approved for public release; distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY Aberdeen Proving Ground, Maryland 21005-5001

CONTENTS

INTRO	DUC	T	0	I	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	3
метно	D	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	5
	Sut																																5
	Sti																																5
	Phy																																6
	Pro	oce	edu	re	9	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	6
RESUL	TS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	9
DISCU	SSI	[0]	I	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	13
REFER	ENC	CE S	5	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	17
FIGUR	ES																																
	1.	T	.1.		- -	-4	~	1 ס				**	F	~~		ha		Ta	-	. T.		- +		P 1	~ -								
	1.																						-										-
	2.									In																			•	•	•	•	7
	۷.									(1)																							8
	3.									sit															•	•	•	•	•	٠	•	•	0
	٦.									lit																							12
		1	00	.et	ac	18	T	ΑI	ч р		.ua	e	U8	La	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
TABLE	S																																
	1.	P	lea	ins	8	สก	d	St	:a1	nda	rd	ם	ev	ia	ti	01	8	f	01	c 1	P1	NI	а	nd									
			-							28																							10
	2.									at																			-	•	•	•	10
										ind																	,						
										lit																			_	_	_		11
	3.									at																•		-	•	•	•	•	••
										in)at	: a						14
	4.									EA															-		_		•	-	-	•	- •
										and																							
				-						•													-										15

٠.

BRAIN POTENTIALS AND PERSONALITY: A NEW LOOK AT STRESS SUSCEPTIBILITY

INTRODUCTION

This research program studies one of the key problems concerning soldier performance during stressful situations. It examines the underlying neurophysiological basis for individual differences in response to stress and the ability to cope with that stress effectively. Although the psychological and physiological effects of stress have been well-documented (Grinker & Speigel, 1945), the individual differences that underlie effective behavior in stressful situations are not well-understood and remain a problem for predicting human performance. This is especially pertinent in the selection of military personnel who must function effectively in a variety of stressful situations ranging from a radar operator monitoring a complex audiovisual display to a front line commander and his troops during combat. Military personnel are expected to respond effectively in all situations maximizing the probability of successful completion of all operations. Nevertheless, some individuals cannot cope during a stressful or challenging situation (Grinker & Speigel, 1945). The reasons for individual differences in coping behavior are not known. However, an ongoing line of research indicates that an underlying constitutional factor involving the central nervous system plays a key role in how excitable a person will be during any stressful, arousing, or challenging situation. Internal modulation of sensory experience is one factor that may account for differences in how an individual perceives and thereby responds to a situation.

Petrie (1967) introduced this line of research with the kinesthetic figural after-effects (KFA) test, a tactile-size judgment task, measuring individual differences in perceived intensity of sensation. Blindfolded subjects ran the thumb and forefinger of their dominant hand over a test block. Their task was to judge the width of the test block by rubbing a tapered block until they reached a width equal to that of the test block. Some individuals, called augmenters, perceived the test block to be larger following a period of tactile stimulation while other individuals, called reducers, perceived the test block to be smaller (Petrie, Holland, & Wolk, 1963; Petrie, McCulloch, & Kazdin, 1962). Petrie attributed this to the existence of a central nervous system control mechanism that regulates the intensity of sensory input.

Buchsbaum and Silverman (1968) developed a procedure using the brain's response to sensory stimuli called evoked potentials that appeared to establish a neurophysiological measure of stimulus intensity modulation. The relationship between stimulus intensity and the evoked potential is measured by calculating the slope of the line of best fit between evoked potential amplitude and intensity. Augmenters have positive slopes indicating that the evoked potential amplitude increases with intensity; reducers have less positive or negative slopes due to decreasing amplitudes at higher intensities. Buchsbaum and Silverman (1968) found that evoked potential reducers were also reducers on the KFA test. They hypothesized that reducers have hypersensitive nervous systems and respond strongly to minimal intensity levels and thereby require "compensatory adjustments" to protect themselves from high intensity stimulation.

Many studies have related visual augmenting-reducing to a number of behaviors and personality traits, suggesting that this measure of cortical functioning indicates how individuals will respond behaviorally. One personality dimension of interest here is sensation seeking. Zuckerman (1979b) designed the Sensation Seeking Scale to assess individual differences in the optimal level of stimulation or arousal required by an individual. Visual augmenters were sensation seekers indicating they needed and sought out a higher level of stimulation than reducers¹ (Buchsbaum, 1971; Lukas, 1987; Zuckerman, Murtaugh, & Siegel, 1974). Zuckerman et al. (1974) attributed this to the existence of a reticulocortico-reticular negative feedback loop that maintains an individual's level of arousal within an optimal range. Reducers have a lower threshold for initiation of this inhibitory process thereby guarding against sensory overload. This lower threshold for inhibition is manifested behaviorally by a reduced propensity for seeking novel experiences.

Other research in this area found that augmenter cats reacted in an aggressive manner towards aversive, threatening stimuli; whereas, reducers remained passive or cowered in a corner (Lukas & Siegel, 1977b). Augmenter cats were also more explorative and active which appears analogous to the sensation-seeking behavior of human augmenters. In a separate animal experiment, Lukas and Siegel (1977a) observed that cats with reduced cortical responsiveness (reducers) were unable to cope with aversive noise during a food-rewarded task. Other cats explored the speakers and then resumed their normal behavior, whereas reducers were totally disrupted by the noise and attempted to escape. Reducers were able to continue with appropriate goal-directed behaviors only after prolonged noise exposures. In addition, Lukas and Mullins (1985) used a task requiring the subject to keep track of up to four items simultaneously and found augmenters performed better than reducers under high cognitive workloads. **Based** on these results, augmenters may perform better under high arousal and high workload situations including combat. Therefore, this research focused on developing techniques for assessing human cortical functioning in order to predict performance under stress and to form a screening device to select soldiers better able to cope.

The concept of a central controlling mechanism for stimulus intensity modulation implies that augmenting-reducing is a trait dimension and therefore independent of which sensory modality is tested. Two studies have failed to find a significant correlation between visual and auditory augmenting-reducing recorded from the same subjects (Kaskey, Salzman, Klorman, & Pass, 1980; Raine, Mitchell, & Venables, 1981). In fact, they found little evidence for auditory reducing. However, others have reported

¹Zuckerman et al. (1974) found this effect to be strongest for the disinhibition subscale of the Sensation Seeking Scale. High disinhibitors had significantly larger visual evoked potential (VEP) amplitudes at the highest stimulus intensity.

examples of auditory evoked potential (AEP) reducing (Coursey, Buchsbaum, & Frankel, 1975; Schechter & Buchsbaum, 1973) and indicated that insomniacs were more likely to be AEP reducers and nonsensation seekers (Coursey et al., 1975). The purpose of the present research is to determine the prevalence of auditory reducing in normal subjects and to explore the relationship between auditory augmenting-reducing and sensation seeking. If the relationship between auditory augmenting-reducing and behavior is not modality specific then auditory augmenters should be sensation seekers, further supporting the concept of a central mechanism regulating sensory input and consequently behavior.

ME THOD

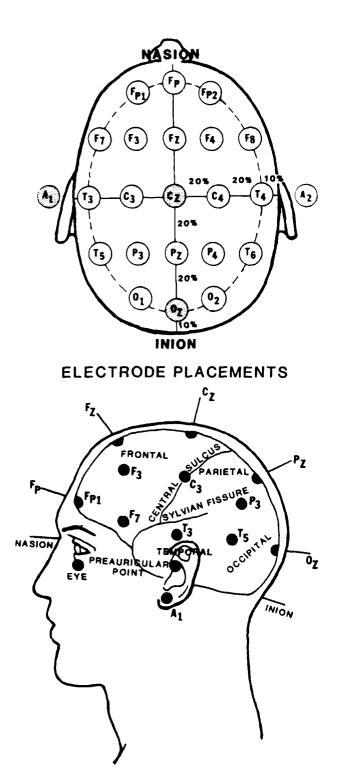
Subjects

Thirty subjects, 27 males and 3 females, 18 to 50 years old, participated in this experiment. All subjects had normal audiograms and were not taking any drugs or medication. Ten subjects whose evoked potential data were unreliable and difficult to measure were excluded from the final analysis. Previous experiments conducted by Mullins and Lukas have had a similar proportion of subjects excluded because of noisy data. The distribution of personality scores for the excluded subjects was similar to the scores that were included. That is, excluded subjects consisted of both high and low sensation seekers.

Stimuli

Auditory stimuli consisted of 1,000-Hz tone pips with a duration of 25 milliseconds and a rise-fall of 5 milliseconds. Tone pips were delivered binaurally at a rate of 1 per second through Sennheiser HD 414-13 headphones. Each subject's threshold was determined for the 1,000-Hz tone pips and based on this, two block-randomized series were established. A series consisted of five intensities, each repeated 100 times. Stimuli were block-randomized by intensity, so that two stimuli of the same intensity never occurred consecutively. The low-intensity series ranged from 40 to 60 dB sensation level (SL) and the high-intensity series covered 65 to 85 dB SL, in 5-dB steps. Each intensity series was presented twice and counterbalanced. Tone pips were generated by a voltage controlled oscillator in series with a programmable attenuator, rise-fall gate, and audio mixer amplifier. Tone-pip frequency was analyzed by performing a spectral analysis on pure tones passed through a calibrated microphone in a Brüel & Kjaer Type 4153 artificial ear. The equipment was calibrated each day at 85 dB sound pressure level (SPL) using an artificial ear and a Brüel & Kjaer Type 2605 microphone amplifier.

Physiological Recordings and Apparatus


The evoked potential is an electrical response of the brain to sensory stimuli. Data are computer-averaged so that the brain's response, which is time-locked to stimulus onset, increases in amplitude while the ongoing EEG, which is not synchronized with the stimulus, is canceled out. Auditory evoked potentials were simultaneously recorded from C_zA_1 and C_zO_z electrode configurations with A_2 serving as ground (Figure 1). Electrode sites were cleaned with alcohol and Grass gold electrodes were attached with collodion. Electrode impedance was maintained below 5 kilohms. The EEG was amplified 10,000 times and bandpass filtered between 1 to 100 Hz. AEPs were averaged and sorted on-line until 100 sweeps were collected for each intensity. The artifact reject mode was used to eliminate sweeps contaminated with eye blinks or muscular activity.

Procedure

Following an explanation of the experimental procedures, such as the application of electrodes, subjects signed a volunteer consent form. Audiograms were collected and only those subjects who had normal audiograms (+ 10 dB) participated in the study. After electrodes were applied, subjects reclined comfortably on a cot in an electrically shielded, soundattenuated Industrial Acoustics Company chamber. Subjects were instructed on the need for complete relaxation and lack of muscular activity. Thev were requested to keep their eyes open, to restrict blinking, to maintain fixation on a centrally located focal point, and not to move the headset. A television monitor was used to assure that subjects complied with these instructions. The lights were dimmed and the subject indicated when ready to begin. After completion of the first two intensity series, subjects were given a break and completed the Vando Scale and Form V of Zuckerman's Sensation Seeking Scale (SSS). The SSS consists of 10 items for each of 4 thrill and adventure seeking (TAS) that measures interest in factors: physical risk-taking activities such as parachuting; experience seeking (ES) reflects interest in music, art, drug use, and a spontaneous lifestyle; disinhibition (Dis) measures a hedonistic, extraverted lifestyle including drinking, parties, sex, and gambling; boredom susceptibility (BS) indicates an aversion to routine activities or boring people. A total score is based on all 40 items. The Vando Reducer-Augmenter (R-A) Scale (Vando, 1974) was developed to measure Petrie's conceptualization of stimulus intensity modulation and has been found to significantly correlate with Zuckerman's SSS (Goldman, Kohn, & Hunt, 1983; Kohn & Coulas, 1985).

Electrode impedance was checked before the subjects returned to the experimental chamber to complete the last two intensity series. AEPs were stored on disks for later analysis. The entire testing session lasted less than an hour.

Latency and peak-to-trough amplitude measurements for the Pl, Nl, and P2 components were obtained by positioning two cursors along the AEP. Data were plotted and examined to ascertain that appropriate and consistent components were measured across the entire intensity range (Figure 2). An average of the two repetitions was used for statistical analysis.

RELATIONSHIP BETWEEN MAJOR CORTICAL AREAS AND ELECTRODE PLACEMENTS (LEFT VIEW)

• Editoria da Sala

Figure 1. Electrode placements for the ten-twenty electrode system of the International Federation. (Odd numbers refer to the left side, even numbers refer to the right side. The present study used C_z in reference to A_1 and O_z .)

and the stranger where we want the star and the holding my manuar highings and weller any header * " " The start of AND and here and more working and 50 Monopolar (c_zA_l) audítory evoked potentials from four (Note that the 40-to 60-dB intensity series consistent components. In addition, evoked potential amplitude does not appear intensities, with a schism 60 ົດ INTENSITY dB the ten produce clear, We War War was was 2 Money Marson & Masser 2 Asardy and 2 between 65 and 60 dB.) continuous across subjects. does not Figure 2. 8

RESULTS

RECEIPT CONTRACTOR

Evoked potentials from the low-intensity series (40 to 60 dB SL) were small and difficult to measure in all but a few subjects (Figure 2). This may have been partially due to the method used to present the tone bursts. Stimuli of the same intensity presented in consecutive order result in a more coherent AEP than a randomized presentation (Pratt & Sohmer, 1977). However, in this study it was necessary to block-randomize the stimuli to control for the effects of shifts in arousal during the recording session. This analysis is based on data from the 65 to 85 dB SL tone bursts series.

Average auditory evoked potential amplitudes across the high-intensity range are presented in Table 1. The slopes were all positive, ranging from .09 to .21 μ V/dB. Individual amplitude-intensity slopes are presented in Table 2, and as can be seen, few negative or reducing slopes were observed. There was one negative PINI slope at C_zA₁ (monopolar configuration). There were more negative slopes recorded with the bipolar configuration (C_zO_z); five for PIN1 and two for N1P2. The two N1P2 reducers were also PIN1 reducers.

Using visual evoked potential (VEP) measures to determine augmentingreducing, Zuckerman et al. (1974) found a significant interaction between disinhibition (a subscale of Zuckerman's Sensation Seeking Scale) and intensity. This interaction indicated that individuals who were high disinhibitors were augmenters for the visual mode. That is, high disinhibitors had increasing VEP amplitudes with increases in intensity. In an effort to determine if auditory augmenters would also be high disinhibitors. we divided subjects into 2 groups of 10 based on disinhibition scores using Zuckerman's t-score norms for that scale (Zuckerman, 1979a). Separate fixed-effects factorial designs were analyzed for amplitude and latency data using ANOVAs, with peaks (Pl, Nl, and P2 for latency; PlNl and NlP2 for amplitude), area (C_zA_1, C_zO_z) , and intensity (65 to 85 dB) as within variables. Latency data showed the expected main effect for peaks, F(2, 36) = 551.98, p < .001; however, main effects for area, intensity, and disinhibition were not significant. A significant Disinhibition x Peak x Intensity interaction indicated low disinhibitors had a longer P2 latency at higher intensities.

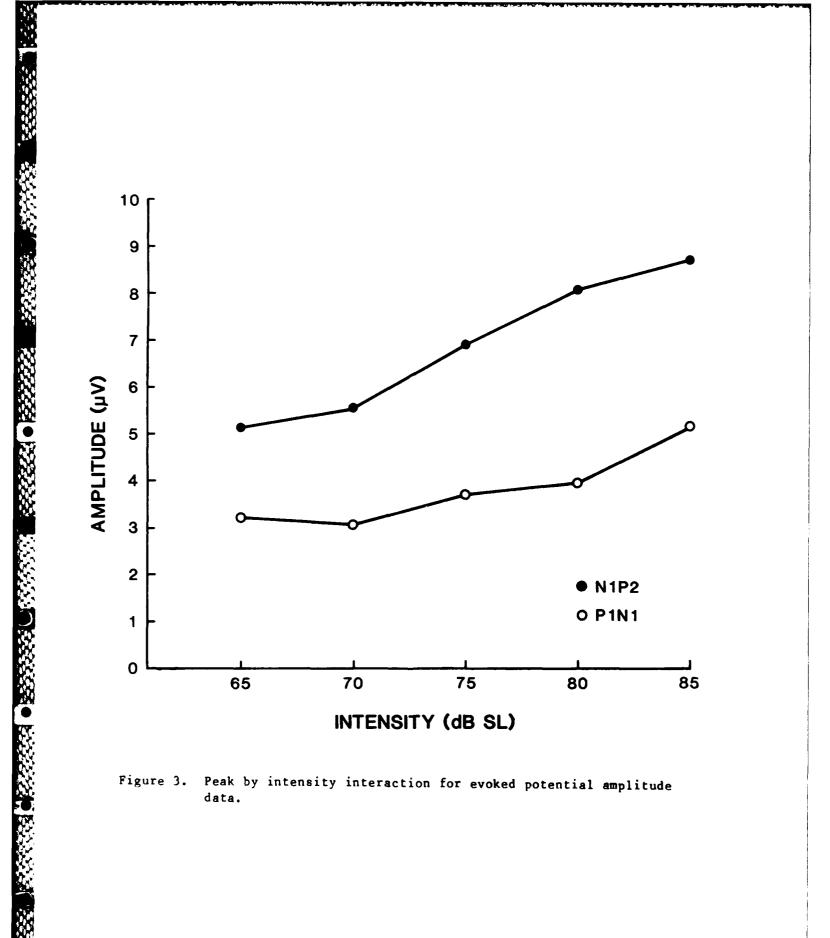
Evoked potential amplitude significantly increased with increasing intensity, F(4, 72) = 27.8, p < .001. Main effects for area and peaks were also significant; C_zA_1 was 18 percent larger than C_zO_z , F(1, 18) =26.2, p < .001, and N1P2 was 44 percent larger than PlN1, F(1, 18) = 41.6, p < .001. A significant Peak x Intensity interaction, F(4, 72) = 10.2, p < .01, indicated N1P2 augmented more rapidly than PlN1, with a greater difference between peaks at the highest intensity (Figure 3). A significant Area x Peak interaction, F(1, 18) = 9.5, p < .01, showed that N1P2 increased more at C_zA_1 than at C_zO_z . The main effect and interactions for disinhibition were not significant. The mean amplitude for the high and low disinhibitors were very close; the high disinhibition group had a mean amplitude of 5.6 μ V and the low disinhibition group had a mean of 5.1 μ V.

In agreement with other research (Goldman et al., 1983; Kohn & Coulas, 1985), Vando and Sensation Seeking Scale total scores were significantly

Area Intensity	P	1 N 1	N1P2				
dB SL	<u>x</u> (µv)) <u>SD</u>	x (_µ v)	<u>SD</u>			
C _z A ₁							
65	3.30	1.69	5.73	2.38			
70	3.32	1.91	6.24	2.58			
75	4.03	2.13	7.71	3.14			
80	4.49	2.38	8.99	3.58			
85	5.72	2.51	9.66	4.20			
r	.95		. 99				
<u>r</u> Slope	.12		.21				
$C_z O_z$							
65	3.08	2.17	4.65	1.89			
70	2.76	1.71	4.92	1.84			
75	3.48	2.05	6.03	2.52			
80	3.90	2.15	7.17	3.41			
85	4.64	2.26	7.86	3.90			
<u>r</u>	.92		. 99				
Slope	.09		.17				

Means and Standard Deviations for PlN1 and N1P2 Amplitudes by Intensity and Area

Note. $\underline{N} = 20$. $\underline{r} = product-moment correlation$. $\overline{x} = mean$. $\underline{SD} = standard deviation$.


SSS		CzAl				CzOz						
Scor	es	P	PINI		P2	P	1N1	N1P2				
es ^a	Dis ^b	<u>r</u> ^c	Slope ^d	<u>r</u>	Slope	r	Slope	<u>r</u>	Slope			
8	4	.97	. 35	.91	.42	.95	. 34	.94	.51			
8	4	.85	.08	.79	.09	.58	.04	.92	.10			
7	7	.73	.15	.75	.10	<u>79</u>	<u>11</u>	.73	.09			
7	5	.71	.07	. 98	.26	.77	.16	.88	.24			
7	2	.64	.08	.93	.15	.48	.03	• 95	.08			
5	6	.97	.16	• 99	. 34	.80	.12	.93	.29			
6	3	.93	. 20	• 94	. 39	.79	.13	.90	.33			
6	7	.84	. 29	.96	.50	04	01	.93	. 34			
5	8	.35	.04	.84	.14	. 37	.03	.93	.18			
5 5	7	.85	.18	.81	.19	.65	.13	. 89	• 26			
5	2	.49	.07	.93	.15	.48	.07	.89	.17			
5	1	59 ^e	03	.92	.14	49	01	.75	.07			
4	1	.94	.18	.98	.49	.86	.09	.89	. 29			
4	3	.86	.09	.71	.07	.88	.09	.96	.10			
4	3	.45	.02	.84	.05	49	03	<u>10</u>	01			
4	6	.72	.15	.84	.25	.80	. 20	.68	.08			
3	3	.71	.06	.42	.03	.93	.07	•42	.02			
3 3 3	7	.88	.08	.87	.10	.73	.10	.90	.18			
	9	.35	.04	.88	.12	90	03	<u>39</u>	04			
1	6	• 24	.06	.89	.15	.91	.19	.47	.08			
Pool	led											
Mea	n	.94	.12	.98	.21	.91	.08	. 98	.17			

Subjects' Sensation Seeking Scale Scores (SSS); Correlations and Slopes of Auditory Evoked Potential Amplitude With Intensity

Table 2

Note. Subjects are ranked by experience seeking scores.

^aExperience seeking subscale of Sensation Seeking Scale. ^bDisinhibition subscale of Sensation Seeking Scale. ^cr = product-moment correlation. $d_{\mu}V/dB$. ^eUnderlined scores indicate a negative slope.

correlated, r(18) = .658, p < .001. Vando and sensation seeking scores for the present subject population were comparable to those of normative data Correlations were computed between bases (Table 3). individual amplitude-intensity slopes with Vando and sensation seeking scores (Table 4). In reviewing the augmenting-reducing literature, Buchsbaum (1976) determined that the monopolar vertex PlNl component was the optimal site to As shown in Table 4, all the C_zA_1 PlN1 correlations with measure. personality were positive with the experience seeking subscale reaching statistical significance. Experience seeking was also significantly correlated with $C_z O_z$ NIP2 slopes indicating auditory augmenters are experience seekers.

DISCUSSION

These data indicate the relationship between cortical augmentingreducing and sensation seeking is not dependent on sensory modality. The significant correlations between experience seeking and evoked potential slopes are in accordance with findings for the visual mode indicating augmenters are more likely to seek out novel, exciting experiences (Buchsbaum, 1971; Lukas, 1987; Zuckerman et al., 1974). Cortical augmenting-reducing has been related to a wide array of behaviors (Zuckerman, 1984). Augmenters perform better under high cognitive workloads (Lukas & Mullins, 1985); are more explorative, more active, and more aggressive than reducers (Lukas & Siegel, 1977b); and cope better with stress (Lukas & Siegel, 1977a). Therefore, this evoked potential technique offers an entree into the human nervous system and allows an assessment of how individual soldiers will cope with highly arousing, stressful experiences.

With the exception of the PlNl components for C_zO_z , few auditory reducers were observed (Table 2). There was one vertex PlNl reducer (5 percent) and five reducers using the bipolar C_zO_z site (25 percent). Klingaman and Anch (1972) compared monopolar and bipolar recording configurations and are in agreement with the present results. They found the average monopolar configuration had larger amplitudes and steeper PlNl slopes. Studies comparing auditory and visual augmenting-reducing for the same subjects (Kaskey et al., 1980; Raine et al., 1981) also found that auditory reducing was not as prevalent as visual reducing. Approximately 50 percent of their subjects were visual reducers; whereas, only 3 to 7 percent were auditory reducers.

Why isn't auditory reducing as prevalent as visual reducing? Visual reducing is elicited using white light that activates all types of retinal cones. Most auditory studies use pure tone bursts, stimulating only a small portion of the basilar membrane. In an effort to make auditory and visual cortical stimulation analogous, Mullins and Lukas (1984) used gated Reducing at PIN1 occurred in 50 percent of the white noise bursts. 38 subjects $C_z O_z$ and percent $C_z A_1$. at at Stimulating more receptors may activate more cortical neurons thereby initiating the inhibitory processes that produce evoked potential reducing.

13

	Present	: Study ^a	Normative Data					
Scales	x	SD	x	SD				
Vando	26.90	7.17	29.13 ^b	11.02 ^b				
sssd								
TAS	7.90	2.40	7.35°	2.25 ^c				
ES	5.05	1.84	4.70 ^c	1.96 ^c				
Dis	4.70	2.40	4.74 ^c	2.40 ^c				
BS	2.40	1.95	2.65 ^c	1.81°				
SSS Total	20.05	4.78	19.49°	7.03°				

Vando and Sensation Seeking Scores for the Present Study in Comparison With Normative Data

Table 3

 $a_{\rm N} = 20$.

A CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR

 $b\overline{N} = 80$; Vando's (1969) normative data base is based on a 54-point scale. The Vando scores in the present study are based on a 50-point scale.

 $c_{N} = 1,023$; Adapted from Zuckerman's (1979a) normative data base for American undergraduates.

dSSS = Sensation Seeking Scale; TAS = Thrill and adventure seeking;

ES = Experience seeking; Dis = Disinhibition; BS = Boredom susceptibility.

Correlation of	Auditory Evoked Potential Slopes With Va	ndo and
	Sensation Seeking Scale Scores	

				Sensation Seeking Scale ^a							
Peak	Area	Vando	TAS	ES	Dis	BS	Total				
	· · · · · · · · · · · · · · · · · ·										
	C_zA_1		.133	.431*	.130	.128	.357				
	$C_z O_z$	026	057	.025	086	025	073				
N1P2											
	C A1	167	079	.310	050	110	.010				
	$C_z A_1 C_z O_z$.082	.106	.488*	022		.010				

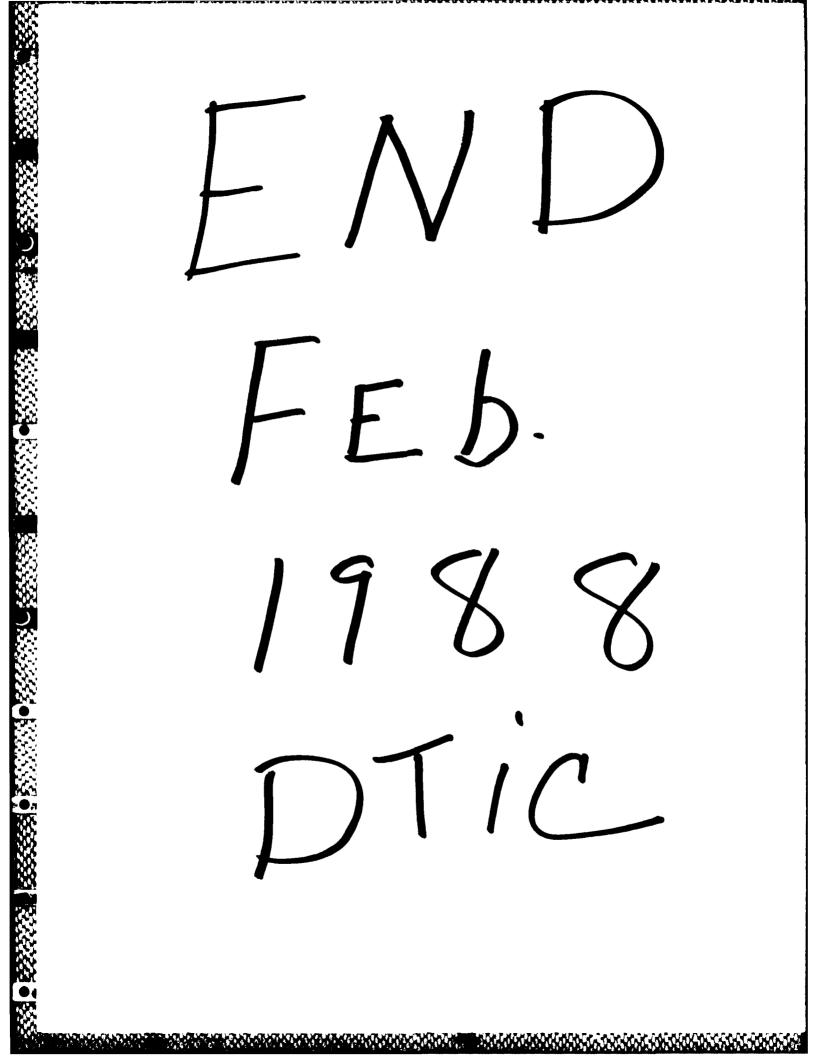
<u>Note</u>. $\underline{N} = 20$.

^aTAS = Thrill and adventure seeking; ES = Experience seeking; Dis = Disinhibition; BS = Boredom susceptibility.

*p < .05.

The present study utilized the classic augmenting-reducing paradigm where subjects are instructed simply to relax, consequently there is little or no control over what each subject is attending. However, the N1 component has a larger amplitude when tones are attended (Hillyard, Hink, Schwent, & Picton, 1973), and the PIN1 amplitude-intensity slope is leaved affected by the subjects' allocation of attention (Schechter & Buchshaum, 1973). Since augmenting-reducing is determined by measurement of the P.N. slope to an intensity series and since PINI amplitude is dependent on whit the subject is attending, then it follows that augmenting-reducing studies must control what the subject actually attends. In support of this Mullins and Lukas (1984) compared the classic passive augmenting reduces paradigm with an attention paradigm where subjects attended the audition stimuli and reacted with a button press to randomly occurring targets Only the slopes from the attention paradigm were correlated with to-Sensation Seeking and Vando Scales. Slopes in the passive paradigm were random and not significantly correlated with personality measures. It is tempting to speculate that controlling subjects' attention to the auditor. stimuli would have enhanced the number of significant correlations with Certainly, all future augmenting-reducing studies should personality. control this important variable.

Produce Bassisse


REFERENCES

Buchsbaum, M. S. (1971). Neural events and psychophysical law. <u>Science</u>, <u>172</u>, 502.

- Buchsbaum, M. S. (1976). Self-regulation of stimulus intensity: Augmenting/ reducing and the average evoked response. In G. E. Schwartz & D. Shapiro (Eds.), <u>Consciousness and self-regulation: Advances in research</u> and theory (Vol. 1) (pp. 101-135). New York: Plenum Press.
- Buchsbaum, M. S., & Silverman, J. (1968). Stimulus intensity control and the cortical evoked response. Psychosomatic Medicine, 30, 12-22.
- Coursey, R. D., Buchsbaum, M. S., & Frankel, B. L. (1975). Personality measures and evoked responses in chronic insomniacs. Journal of Abnormal Psychology, 84, 239-249.
- Goldman, D., Kohn, P. M., & Hunt, R. W. (1983). Sensation seeking, augmenting-reducing, and absolute auditory threshold: A strength-of-thenervous-system perspective. <u>Journal of Personality & Social Psychology</u>, 45, 405-411.
- Grinker, R. R., & Speigel, J. P. (1945). <u>Men under stress</u>. New York: McGraw-Hill.
- Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. <u>Science</u>, <u>182</u>, 177-180.
- Kaskey, G. B., Salzman, L. F., Klorman, R., & Pass, H. L. (1980). Relationships between stimulus intensity and amplitude of visual and auditory event related potentials. <u>Biological Psychology</u>, <u>10</u>, 115-125.
- Klingaman, R. L., & Anch, A. M. (1972). Human auditory evoked response intensity functions from monopolar and bipolar scalp recordings. <u>Psychonomic Science</u>, 29, 17-19.
- Kohn, P. M., & Coulas, J. T. (1985). Sensation seeking, augmentingreducing, and the perceived and preferred effects of drugs. <u>Journal of</u> <u>Personality and Social Psychology</u>, 48, 99-106.
- Lukas, J. H. (1987). Visual evoked potential augmenting-reducing and personality: The vertex augmenter is a sensation seeker. <u>Personality</u> and Individual Differences, 8, 385-395.
- Lukas, J. H., & Mullins, L. F. (1985). Auditory augmenters are sensation seekers and perform better under high workloads (Abstract). <u>Psycho-</u><u>physiology</u>, <u>22</u>, 580-581.
- Lukas, J. H., & Siegel, J. (1977a). Aversive noise effects on performance and thalamocortical responsiveness in cats. <u>Physiology & Behavior</u>, <u>19</u>, 555-559.

- Lukas, J. H., & Siegel, J. (1977b). Cortical mechanisms that augment or reduce evoked potentials in cats. <u>Science</u>, <u>198</u>, 73-75.
- Mullins, L. F., & Lukas, J. H. (1984). Auditory augmenters are sensation seekers - if they attend the stimuli (Abstract). <u>Psychophysiology</u>, <u>21</u>, 589.
- Petrie, A. (1967). Individuality in pain and suffering. Chicago, IL: University of Chicago Press.
- Petrie, A., Holland, T., & Wolk, I. (1963). Sensory stimulation causing subdued experience: Audio-analgesia and perceptual augmentation and reduction. Journal of Nervous and Mental Disorders, 137, 312-321.
- Petrie, A., McCulloch, R., & Kazdin, P. (1962). The perceptual characteristics of juvenile delinquents. Journal of Nervous and Mental Disorders, 134, 415-421.
- Pratt, H., & Sohmer, H. (1977). Correlations between psychophysical magnitude estimates and simultaneously obtained auditory nerve, brain stem and cortical responses to click stimuli in man. Electroencephalography and Clinical Neurophysiology, 43, 802-812.
- Raine, A., Mitchell, D. A., & Venables, P. H. (1981). Cortical augmenting-reducing - modality specific? <u>Psychophysiology</u>, <u>18</u>, 700-708.
- Schechter, G., & Buchsbaum, M. (1973). The effects of attention, stimulus intensity, and individual differences on the average evoked response. Psychophysiology, 10, 392-400.
- Vando, A. (1969). <u>A personality dimension related to pain tolerance</u>. Unpublished doctoral dissertation, Teachers College, Columbia University.
- Vando, A. (1974). The development of the R-A scale: A paper-and-pencil measure of pain tolerance. <u>Personality and Social Psychology Bulletin</u>, 1, 28-29.
- Zuckerman, M. (1979a). <u>Abbreviated manual with scoring keys and forms for</u> <u>Form V of the Sensation Seeking Scale</u>. Unpublished manuscript, University of Delaware, Newark.
- Zuckerman, M. (1979b). <u>Sensation seeking: Beyond the optimal level of</u> <u>arousal</u>. Hillsdale, NJ: Lawrence Erlbaum Association.
- Zuckerman, M. (1984). Sensation seeking: A comparative approach to a human trait. <u>Behavioral and Brain Sciences</u>, 7, 413-471.

Zuckerman, M., Murtaugh, T. M., & Siegel, J. (1974). Sensation seeking and cortical augmenting-reducing. <u>Psychophysiology</u>, <u>11</u>, 535-542.

