
AD-A1lS 936 TYPES AND EFFECTS TOWARDS THE INTEGRATION OF FUNCTIONAL 1/2
AND IMPERATIVE PR.. (U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LAS FOR COMPUTER SCIENCE.. J M LUCASSEN

UNCLASSIFIED AUG 7 MIT/LCS/TR-49 NNS±4-83-K-925 F/G 12/5 W

Eli EhhhhhhhEIE
I BhhEhhIhII|
mmhmhhhhmhmhhl
IIIIIIIIIIIIIl
EllllllllllIIl
mhhllllllmmhl

llama

111611-10

IL2 K5 I Q16

U ~ ~ ~ ~ - w 0 U U U U U U -0

C),
00

TYE ADE-ET

Q

TOWADS THEae aNTEGRATIONk
* ~ ~~~ oa pimci

EURITY LASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified 4#1JI&
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION IDOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-408 N00014-83-K-0125

6a NAME OF PERFORMING ORGANIZATION 6o OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (of applicable) Office of Naval Research/Departmevv

Science1 r i, . -
6c. ADDRESS (Oty, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code) E L E- C

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217 NOV 1 8 198

ga NAME OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATN MBER
ORGANIZATION (it applicable)

DARPA/DODI %
8c. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Cia tfication)
Types and Effects - Towards the Integration of Functional and Imperative Programming

12 PERSONAL AUTHOR(S)
Lucassen, John M.

13a TYPE OF REPORT 13t TIME COVERED 14 DATE OF REPORT (Year.Month.Oay) 15 PAGE COUNT
Technical I FROM TO_ August 1987 153

16 SUPPLEMENTARY NOTATION

17 COSATi CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number)
FIELD GROUP SUB-GROUP programming languages, types, effects, effect checking, i

side-effect specifications, polymorphism, concurrent
programming, multiprocessing, flow analysis, FX

19 ABSTRACT (Continue on reverse if necessary and iaentty by block number)

We propose a new class of programming languages in which every expression has both a
type and an effect: the type describes what sort of value the expression may return, and
the effect describes what sort of side-effects the expression may have. Effects are de-
scribed in terms of regions, which describe what part of the state of the computation may
be affected.

We show how the type system of the second-order lambda-calculus can be generalized to .',

incorporate effect and region specifications. This leads to polymorphism with respect
to types, effects, and regions. %.%

Our type and effect system makes it possible to embed functional program fragments within
imperative programs, and vice versa, while retaining the benefits of the chosen programming
style in each program fragment. The type and effect system can also be used to verify the
encapsulation invariant of a monitored data type. It also offers a clean solution to the
problem of first-class polymorphism in an imperative language. (continued on back)

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 OTIC USERS Unclassified

2,a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Judy, Little. Publications Coordinator (617) 251-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other eitions are obsolete ,'. ,

OUL O. u I ftbgw I Of"WO: U .1-W44O %,
%,%

-8.1 ! Unclassified.

* .*% ", *
'

% % %% %
%.. ..% . . .%. j.'f'/........:"-,,.' .:- .. , ,. '.- ,- ._ .-- ,- . ", " •, 'v "•. . . . ","•".",",- ,".

19. To test our ideas, we have designed a small imperative
language called MFX,

and we have implemented a compiler that analyzes MFX programs
and translates

them into dataflow graphs. Our long-term objective is the integration of

functional and imperative programming into a single programming
model that

retains the benefits of both programming styles.

oyr I C

COPY

INSP~e

r)T!C A
t Ur..,inoi'Le ed
Juf , t i f I c.It 4 n-

_l V !tr.at" mni ...

Av. i't:; ; V Cndesl

Dist1 1 a-; ,:d=,

". a " dr , "W'''$ #, k,"W "w, , ", " "I". . , ..4 " ,I

Types and Effects
Towards the Integration of

Functional and Imperative Programming

by

John M. Lucassen

S.B., Electrical Engineering and Computer Science
S.M., Computer Science and Engineering

Massachusetts Institute of Technology
(1983)

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1987

@ Massachusetts Institute of Technology 1987

Signature of Author

Departrivpt Electrical Engineering and Computer Science
Au t 6, 1987

Certified by
David K. Gifford

Thesis Supervisor

A ccepted by
Arthur C. Smith

Chairman, Committee on Graduate Students

• "' ". .,. "- . 2' ". ,," ' .',. 2 • ,.-. ,,. ,..": .:,, S

Types and Effects
Towards the Integration of

Functional and Imperative Programming

John M. Lucassen

Abstract

We propose a new class of programming languages in which every expres-
sion has both a type and an effect: the type describes what sort of value
the expression may return, and the effect describes what sort of side-effects
the expression may have. Effects are described in terms of regions, which
describe what part of the state of the computation may be affected.

We show how the type system of the second-order lambda-calculus can
be generalized to incorporate effect and region specifications. This leads to
polymorphism with respect to types, effects, and regions.

Our type and effect system makes it possible to embed functional program
fragments within imperative programs, and vice versa, while retaining the
benefits of the chosen programming style in each program fragment. The
type and effect system can also be used to verify the encapsulation invariant
of a monitored data type. It also offers a clean solution to the problem of
first-class polymorphism in an imperative language. , ,

To test our ideas, we have designed a small imperative/language called
MFX, and we have implemented a compiler that analyzes MFX programs
and translates them into dataflow graphs. Our long-term objective is the
integration of functional and imperative programming into a single program-
ming model that retains the benefits of both programming styles.

Thesis supervisor: David K. Gifford ,
Title: Associate Professor of Computer Science

Key words and phrases: programming languages, types, effects, effect
checking, side-effect specifications, polymorphism, concurrent programming,
multiprocessing, flow analysis, FX

1987 CR Categories: D.1.3 [Programming Techniques] Concurrent Pro-
gramming; D.1.m [Programming Techniques] Miscellaneous; D.3.2 [Program-
ming Languages] Language Classifications; D.2.1 [Software Engineering] Re-
quirements and Specifications - Languages; F.3.1 (Logics and Meanings of
Programs] Specifying and verifying and reasoning about programs - me-
chanical verification, specification techniques

I-eN

%S

B ,N
%

. -

Acknowledgements

I would like to thank my thesis supervisor, Professor David Gifford, for
his guidance, encouragement and support, and my thesis readers, Professors
Albert Meyer and Rishiyur Nikhil, for their supportive criticism.

I also wish to acknowledge the advice and support I have received from
my friends and fellow students - in the Laboratory for Computer Science,
the Graduate Student Council, the Ballroom Dance Club, and elsewhere.
In particular, I would like to thank Steve Berlin, Mike Blair, Mark Day,
Pierre Jouvelot, Gary Leavens, Brian Oki, Jonathan Reese, Mark Reinhold,
Richard Schooler, Mark Sheldon, Jim Stamos, and Jim O'Toole. IN

Finally, I am grateful to the IBM Corporation for supporting part of my
graduate study through the IBM Fellowship Program. This research was also
supported in part by DARPA/ONR contract number N00014-83-K-0125.

1'°

• .. rv'

%I

MA12%0

Table of Contents

1. Introduction 1
1.1. Motivation 1
1.2. Background. 2
1.3. Proposal. 3
1.4. Outline 4
1.5. A Note on Rigor.................................. 5

2. Effect Specifications 7
2.1. Introduction 7
2.2. Utility of Effect Descriptions 7
2.3. Suitability for Static Analysis. 11
2.4. Fine-Grain Specifications 12
2.5. Types, Effects, and Regions 17
2.6. Related Work. 18

3. The MFX Language. 23
3.1. Introduction 23
3.2. Overview 23
3.3. Syntax 24
3.4. Description Conversion and Inclusion. 33
3.5. Static Semantics. 39
3.6. Aliasing. 46

4. Dynamic Semantics 49
4.1. Introduction 49
4.2. Overview 49
4.3. Standard Semantics 50
4.4. Type and Effect Preservation. 58
4.5. Effect Soundness 60
4.6. Location Invariance 61
4.7. Typeless Semantics 63

5. Private Regions. 65
5.1. Introduction 65
5.2. Overview 66
5.3. New Language Features. 66

5.4. Dynamic Semantics 71

5.6. Effect Soundness 76
5.7. Storage Reclamation. 77

6. Explicit Concurrency 79U
6. 1. Introduction 79
6.2. Overview 80

iii

% % %6

%. %.S

6.3. New Language Features............................ 81
6.4. Dynamic Semantics............................... 87
6.5. Type Soundness.................................. 93
6.6. Effect Soundness 95

7. Language Extensions 97
7.1. Trivial Extensions. 97
7.2. Higher-order Descriptions. 101
7.3. Recursion * * ** *109
7.4. Immutable Regions 115
7.5. Polymorphism and Effects 116

8. Practical Use of Effect Information. 119
8.1. Introduction. 119
8.2. Interference. 120
8.3. Constructing a Minimal Conflict Graph 124
8.4. Compilation into Dataflow Graphs 126
8.5. Simulation Results 139

9. Conclusion. 141
9.1. Limitations 141
9.2. Future Research 142
9.3. Summary. 148

Bibliography. 149

Index of Definitions 152

iv

...... Y

.\V V~ %AJ%% I

Table of Symbols

A type assignment Dom domain
b Boolean (Bool) Pow power set
B kind assignment FV free ordinary variables
C context FDV free description variables
d description variable (Dvar) FL free locations
b description (Desc) FRC free region constants
e expression (Exp) kind of a description
e effect description (Effect) : type of an expression
7 region map ! effect of an expression
x kind (Kind) R region tag of a location
1 location (Loc) T type tag of a location

m monitor (Mon) Reach reached locations
p permutation of locations 47 reduction
r region constant (Rconst) M[I meaning of an expression
p region description (Region) Acc accessible region constants
or store (Store) A allocated locations
t type constant (Tconst) IZ read locations
r type description (Type) W written locations
9 state (State) - equivalence of states
v value (Val) Erase type erasure
z ordinary variable (Var) 62!V typeless reduction

I'

\., V
P N.. £ ?¢ J - 22¢-? ?,:',", e".x_,.3". ". , . "' ,,- -,,: ,,,%

4

Chapter 1. Introduction

1.1 Motivation
Our research focuses on two important classes of programming languages:

functional languages and imperative languages. In a functional language,
program fragments are referentially transparent, and their evaluation has no
side-effects. In an imperative language, program fragments are not generally
referentially transparent, and their evaluation may have side-effects that af-
fect the evaluation of subsequent program fragments. Examples of functional
languages include FP and ID as well as the pure dialects of Lisp; examples
of imperative languages include a whole spectrum of languages ranging from
assembly language and FORTRAN to Ada, as well as Lisp, Scheme and ML.

Each class of languages has its advantages and disadvantages. Functional
languages, on the one hand, correspond closely to conventional mathematical .4

notions such as variables, functions and functionals. As a result, they are
quite amenable to mathematical analysis. This gives rise to a variety of
benefits, including the ability to formally prove programs correct and, it is
hoped, the ability to implement them efficiently on highly parallel hardware.
On the negative side, even state-of-the-art functional languages seem to lack
the expressive power needed to write programs that interact with users, with
other programs, or with persistent data. Moreover, functional languages
generally do not permit the programmer to specify explicitly when memory
can be reused. This makes it difficult to implement such languages efficiently
on conventional hardware.

Imperative languages, on the other hand, correspond closely to conven-
tional computational notions, such as processors, memory, input and output
and so on. As a result, they are quite amenable to efficient implementation
on conventional hardware, and the relation between a program and its im-
plementation is easily understood by the programmer, which is important
if efficient programs are to be written. On the negative side, the use of
side-effects in imperative programs tends to make it difficult to prove such
programs correct, and it has been argued that imperative programs are in
general more difficult to understand and to maintain than functional pro-
grams. Moreover, imperative languages generally force the programmer to
combine the description of a computation with the description of how that
computation should be organized, and the language constructs for doing so
are generally based on conventional computer architectures. This tends to
make it difficult to implement such languages efficiently on highly parallel
hardware.

We believe that much can be gained by integrating functional and imper-
ative programming into a single programming model, so that programmers
can take advantage of the best aspects of both.

%--,%7~~ %'~%.~ % 4% % - - .--- . . - *

1.2 Background
We take the view that an imperative language is in essence a functional

language extended with side-effect operators. According to this view, an
imperative program actually consists of functional fragments and impera-
tive fragments, all written in the same language. In order to achieve the
full benefit of each of these programming styles in the corresponding pro-
gram fragments, it is essential that the compiler as well as the programmer
are capable of distinguishing between functional and imperative program
fragments, and that they generally agree on the classification of individu.'l
program fragments.

The process of determining the side-effects of a program fragment is usu-
aly known as flow analysis; in keeping with the terminology used in the
remainder of this thesis, we will refer to it as effect analysis. Conventional
optimizing compilers employ effect analysis in order to identify optimization
opportunities. We take the view that such analysis must be interprocedural,
so that the programmer can make use of procedural abstraction without in-
curring a performance penalty. Moreover, we take the view that procedures
should be first-class values, i.e. that it should be possible to pass procedures
as parameters, return procedures as the values of procedure calls, assign
procedures to variables and store procedures in data structures.

Although there has been a great deal of research on interprocedural ef-
fect analysis, none of the standard methods are effective when procedures
are first-class values [Ban78] [Bar78] [Wei80]. Specifically, all the algorithms
we encountered in our survey require that the call graph of the program be
!:nown statically. When procedures are first-class values, however, the call
graph of a program cannot in general be computed in advance, and can only

be approximated. The use of approximation algorithms in a performance-
critical optimization creates uncertainties and discontinuities in the behavior
of the compiler, and may therefore discourage the use of procedural abstrac-
tion, which is contrary to our philosophy.

Since the call graph of a program cannot in general be computed in ad-
vance, we sought to find some way to perform effect analysis without using
a call graph at all. One way to do this is to require the programmer to sup-
ply enough information to turn the effect estimation problem into an effect
verification problem that can be solved exactly. Our proposal for doing this
is described in the next section.

2

@

,A p %S %I ". **' S...
%... . ..- %

'-',,,' ,',''', ."'"' . "'.- ,'''' ,,''.r['f'.,-' " " ,"-,. , " .""" * "- " . " ' ." """ " "'. " ""OP"'- ."

1.3 Proposal
In this thesis we propose a new approach to programming language design.

The core of our proposal is a polymorphic type and effect system, in which
type %ind effect specifications are integrated into single, coherent framework.
The effect specifications are sufficiently detailed to permit interprocedural
effect analysis without the use of a call graph.

The central idea is that every expression in a program should have both
a type and an effect specification: the type specification describes the value
returned by the expression, and the effect specification describes the potential
side-effects of the expression. Most of these specifications can be inferred
automatically by the compiler; the programmer must supply specifications
only at certain points in the program. We propose to enlist the power of
the type system to ensure that the effect specification of each subroutine is
propagated to all the points in the program where it may be called, even
if the subroutine is passed as a parameter, returned as a value, stored in a
data structure, or compiled separately. This permits interprocedural effect
analysis using exact, well-defined, and efficient algorithms, and avoids the .
uncertainties and performance discontinuities associated with approximation
algorithms.

The benefits of type checking have long been recognized:

" programmers can use types to express machine-verifiable assertions and
interface specifications;

* compilers can take advantage of type information to produce a more
efficient implementation; and

" language designers can use types to express constraints in the language
design.

Although many programming languages support type checking, most do not
provide any support at all for effect checking, i.e. for the use of machine-
verifiable effect assertions and specifications. Notable exceptions include
Euclid [Lam77] and the work of Reynolds [Rey78].

By incorporating effect specifications into the type system, we hope to
achieve three major advantages:

* A type and effect system helps programmers specify the potential side-
effects of program modules in a way that is machine-verifiable. We believe
that the use of effect specifications may lead to improvements in the design
and maintenance of imperative programs.

e A type and effect system helps compilers identify opportunities for opti-
mizations that would be difficult to perform otherwise in a higher-order
imperative language, such as concurrent evaluation and memoization. We
believe that the ability to perform these optimizations effectively in the
presence of side-effects represents a major step towards the integration of
functional and imperative programming.

woo

* A type and effect system lets language designers express and enforce effect 0
constraints as part of the language definition. We believe that this will
substantially widen the set of programming errors that can be detected
by a compiler. Moreover, it permits a clean resolution of the interaction
between side-effects and first-class polymorphism.

Types and effects are surprisingly similar; most strikingly, all the language e..
constructs of Reynolds' second-order lambda-calculus [Rey74], McCracken's
higher-order lambda-calculus [McC791 [McC82], and Cardelli and Wegner's'
second-order lambda-calculus with bounded quantification [Car85] can be
generalized to effects. Consequently, we believe that effect systems are a
natural companion to conventional type systems.

1.4 Outline
The rest of this thesis is organized as follows.

In Chapter 2 we present the objectives for our effect specification language.
We survey a variety of possible forms of effect specifications, and we assess
the extent to which they meet our objectives. We next describe and motivate
the new effect specification language that has emerged from our research. We
conclude with a discussion of related research.

In Chapters 3 through 6 we present a higher-order, imperative demonstra- p.

tion language with a type and effect system. We have called this language
MFX, for Mini-FX. (FX is a complete programming language with a type and
effect system that is currently being developed at MIT by the Programming

System Research Group [Gif87].) In an attempt to introduce the features of
MFX gradually, we introduce the language in three stages.

In Chapter 3 we present the syntax of MFX-1 (Mini-FX level 1), a subset
of MFX that has polymorphism and side-effect operators but that does not
have constructs for dealing with private regions or explicit concurrency. We
also give an informal description of its semantics, and we present the static
semantics, which determine whether or not a given MFX-1 program is well-
formed.

In Chapter 4 we present the dynamic semantics of MFX-1, and present our
propositions regarding the soundness of the type and effect system.

In Chapter 5 we extend MFX-i with constructs for declaring and using
private regions; the extended language is called MFX-2.

In Chapter 6 we extend MFX-2 with constructs for introducing and man-
aging explicit concurrency; the extended language is called MFX-3.

In Chapter 7 we present various possible extensions to MFX, including
syntactic sugar and built-in data types; higher-order types; and recursion.
The specific benefits of an effect system in relation to polymorphism are also
discussed in this chapter.

4

0r

In Chapter 8 we show how to use the effect information in an MFX pro-
gram to find opportunities for concurrent evaluation. We present a compiler
that compiles MFX programs into dataflow graphs. Topics covered include
interference, graph minimization, and the construction of dataflow graphs.
We also present simulation results.

In Chapter 9 we discuss the limitations of our approach, sketch some
topics for future research, and summarize the results of our research.

1.5 A Note on Rigor
In the course of our research, we have come across far more opportuni-

ties than we have been able to investigate in detail. We have limited the
scope of this thesis to a body of results that we believe is solid and fairly -

well-contained, but broad enough to suggest the opportunities that we have
identified. Our primary objective has been to formulate and explain what we
consider to be the major results of our research; while we outline the proofs
of most of our propositions in some detail, we do not always provide rigor-
ous proofs. We hope that the product of this approach will prove to be of
interest to a broad audience ranging from programming language designers
to programming language theorists.

5%

5p

% % % V

F % % 0 %

% % % %% % %

Chapter 2. Effect
Specifications

2.1 Introduction
In a language with a type and effect system, the potential effect of each

expression and the potential latent effect of each subroutine are described by
effect specifications. We have adopted the view that it should be possible to
perform effect analysis strictly on the basis of effect specifications. In the de-
sign of the effect specification language we adopted the following objectives:
effect specifications should be

" useful to the programmer and to the compiler;
" applicable to user-defined as well as built-in constructs;
" suitable for static analysis;
* sufficiently fine-grain; and yet
" sufficiently abstract.

The purpose of this chapter is to describe and justify the form of effect
specifications that has emerged from our research.

The rest of this chapter is organized as follows. We begin by reviewing
the objective of utility in more detail, especially from the compiler's point of
view. We then consider the limits of static analysis. Next, we turn to fine-
grain effect specifications, and consider the advantages and disadvantages of
a variety of possible approaches. We then focus on the chosen approach, and
illustrate how it fits into a type and effect system. We conclude by comparing
our results with previous work on fine-grain effect specifications.

2.2 Utility of Effect Descriptions
First and foremost, effect specifications must be useful, both to the pro-

grammer and to the compiler. From the programmer's point of view, effect
specifications serve as documentation that enhances program readability and
identifies effect invariants that may be important for performance. From the
compiler's point of view, effect specifications provide information that help
it identify optimization opportunities. In this section we focus on utility to
the compiler; we will return to the programmer's point of view later in this
chapter.

In determining the utility of effect specifications to the compiler, we have
focused on two classes of optimizations:

" relaxations of evaluation order, such as concurrent evaluation, and
" common subexpression elimination and memoization.

7

%VV~% %' %~ \~ - %~% .~

2.2.1 Effect Information and Evaluation
Order
Any sequential program can be transformed into a (possibly concurrent)

program in which expressions are evaluated in an order different from that
specified by the standard semantics. Such program transformations include

code motion, or CM, and eager, lazy and concurrent evaluation.

In a functional language, expressions are referentially transparent: the
value of every expression is completely determined by the values of its free
variables, which are fixed throughout their lifetimes. Since the value of an
expression is determined as soon as its free variables are bound, the value
of the expression is the same regardless of when it is computed. Therefore,
none of these program transformations changes the meaning of a functional
program.

In an imperative language, on the other hand, expressions are not refer-
entially transparent: an expression not only returns a value, but may also
have side-effects, and both are determined not only by the values of the free
variables, but also by the contents of the memory locations read by the ex-
pression. Since the contents of memory may change during the course of a
computation, the value and the effects of an expression generally depend on
when the expression is evaluated. Because of this, program transformations
that change the evaluation order generally change the meaning of an imper-
ative program. Nevertheless, there are situations in which the compiler can
perform such program transformations without changing the meaning of the
program.

In a sequential language, two expressions are said to interfere iff one ex-
pression may write to locations that the other expression may read or write.
Given any pair of expressions, the absence of interference between two ex-
pressions is a sufficient, although not necessary, condition to guarantee that
evaluating the expressions out of order or concurrently does not change the
meaning of the program [Ber66]. For example, consider the expression

(BEGIN el e 2)

which evaluates el and then e2. If neither expression writes to locations

that the other expression may read or write, then the expressions do not
interfere, and can be evaluated out of order or concurrently without changing
the meaning of the program.

Given a set of expressions, a compiler can identify opportunities for CM
and concurrent evaluation by determining whether or not the expressions
may interfere with one another. To make this analysis possible, the effect
specifications of an expression must indicate the locations that may be read
and/or written by the expression.

Determining opportunities for eager and lazy evaluation is somewhat more
difficult, since a program that would halt under the standard evaluation order

8

- € " . ,e i#- . " ." -' ,"4' 4 ' ' - ",' d ." I .t" =" ' " • " -#" '-t

might diverge under eager evaluation, and conversely for lazy evaluation.
Except for divergence, however, a compiler can identify opportunities for
eager and lazy evaluation by determining whether or not a given expression
may interfere with other expressions. Therefore, except for divergence, the
analysis of eager and lazy evaluation requires the same information as CSE
analysis.

2.2.2 Common Subexpression Elimination
and Memoization
Any program that contains two identical instances of an expression in

the same scope can be transformed so that the expression will be evaluated
just once and its value communicated to the two places in the program that
need it. This program transformation is known as common subexpression
elimination, or CSE.

Similarly, any subroutine f can be replaced by a subroutine f' that keeps
a table of the argument tuples and resulting values of past invocations, and
that simply returns the value stored in the table whenever it is called with
an argument tuple on which it has been called before. This program trans-
formation is known as memoization. Memoization can be regarded as a form
of dynamic common subexpression elimination.

In a functional language, identical expressions in the same scope return
the same value, and every subroutine returns the same value each time it is
called with the same arguments. Therefore, neither CSE nor memoization
changes the meaning of a functional program.

In an imperative language, CSE and memoization generally do change the
meaning of a program. Nevertheless, there are situations in which a compiler
can perform these program transformations without changing the meaning ,
of the program.

The process of CSE can be divided into two steps: given two identical
instances of an expression in the same scope, the instances must be

1. moved to the same point in the program, and subsequently
2. merged into a single expression whose value is shared.

In order to identify opportunities for CSE in an imperative language, the
compiler must determine whether either of these two steps (code motion and
merging) may change the meaning of the program.

The first step, code motion, is possible iff the expression instances are
not separated by an expression with which they may interfere. Once the
expression instances have been moved to the same point in the program, the
second step, merging them, is possible iff the expression is idempotent, i.e.
if evaluating it repeatedly has the same effects, and returns the same value,
as evaluating it just once.

An expression that only reads memory locations and does not write them
is idempotent. Similarly, an expression that only writes memory locations
and does not read them is also idempotent. However, such blind writes

9

A % e e.' '',,",,.k'', q,','"%."'' ',.3 % k'~w... ",)'jk %'w/ ,. .,,, ,-, ., .,. r-.-,:.,,,w_". - _-. .,. - ,. ._•"'
% ,. %,, %e %, , , , " ,' - ,,, , .•,,, , ,- . .

seem to be rare in practice. In general, an expression that reads and writes
overlapping sets of locations is not idempotent. Finally, an expression that
allocates new (writable) memory locations is not generally idempotent, since
two instances of a single location are in general distinguishable from two
distinct locations that happen to contain the same value.

Given two identical expression instances in the same scope, a compiler
can determine whether CSE is possible by verifying that the expression in-
stances do not interfere with any of the expressions that separate them, and
that the expression itself is idempotent. To make this analysis possible, the
effect specifications of an expression must indicate the locations that may be
allocated, read and/or written by the expression.

Memoization, like CSE, can be regarded as consisting of two steps: the
first call with a given argument tuple is evaluated normally, and all subse-
quent calls with the same argument tuple are

1. moved (in time) to the time of the first call, and
2. merged into a single expression whose results are shared.

Since successive calls on the subroutine can be separated (in time) by arbi-
trary expressions, the first step is possible if[the subroutine has no latent
effects that can interfere with other expressions, i.e. iff the subroutine can-
not read and/or write any (global, writable) memory locations. As for the
second step, successive calls can be merged iff the body of the subroutine is
idempotent. Therefore, analysis of memoization opportunities requires the
same information as CSE analysis.

2.2.3 Explicit Concurrency
In a language that permits explicit concurrency, evaluating two expres-

sions out of order or concurrently can change the meaning of the program
even if the expressions do not read and/or write any common locations:

" if two expressions el and e2 both read the contents of a location that is
incremented concurrently by some third computation, then evaluating el
and e2 out of order may cause them to observe inconsistent values;

" if el and e2 write to distinct locations that are read concurrently by some
third computation, then evaluating el and e2 out of order may cause the
third computation to observe inconsistent values.

In fact, the presence of explicit concurrency creates invisible, asynchronous
channels of communication between otherwise unrelated locations. This
tends to inhibit optimizations such as CM and concurrent evaluation.

In chapters 2 through 5 we deal exclusively with sequential languages, in
which this difficulty does not arise. In chapter 6 we show how to use the
concepts introduced in the previous chapters to design a language with ex-
plicit concurrency in which all interference between concurrent expressions
is mediated by monitors and critical sections. This permits the compiler
to identify opportunities for CM and concurrent evaluation using the same

10

~~~~~~~ %~*V*~~ % %. %. '~*



analysis that is used for sequential programs. The interaction between con-
current computations is expressed using a new effect, MCALL, which stands
for "monitor call". Interference in the presence of MCALL effects is discussed
in detail in Chapter 8.

2.3 Suitability for Static Analysis
In general, most interesting properties of programs, such as the reacha-

bility of subexpressions, are undecidable. Therefore, one of the challenges
in developing a method for static program analysis is to identify program
attributes that are informative, and yet can be determined statically. As an
illustration of the difficulties of static analysis, consider the expression

(IF el e2 e3 )

which evaluates el, and then evaluates either e2 or e3 depending on whether

the value of el was TRUE or FALSE. This expression is equivalent either to

(BEGIN el e2)

or to

(BEGIN eC1 e)

depending on the value of el. It is clear that unless e2 and e3 happen to

have the same effect, the effect of the expression as a whole depends on the
value of el. This value cannot in general be determined statically; moreover,
it is not generally the same each time the expression is evaluated. In order

to meet our goal of static effect analysis, we have decided not to allow effect
specifications to depend on run-time values.

In the example above, this means that we can only conclude that the
expression as a whole either has the effect of the expression (BEGIN e l e2) or

that of the expression (BEGIN e l e3 ), depending on whether the value of el
is TRUE or FALSE. Since both of these cases may occur, we conclude that the

effect of the expression as a whole is some combination of these two effects.

11 3

% %
®rp



2.4 Fine-Grain Specifications
When analyzing expressions for interference, it matters not only whether

a given expression may read and/or write: it also matters which locations
the expression may read and/or write. We call this the extent of the effect.
Consider, for example, the expression

(BEGIN el e2)

which evaluates eI and e2 , in that order, and returns the value of e2. If both
eI and e2 may read and write an unspecified set of locations, then they might
interfere, and evaluating them out of order or concurrently might change the
meaning of the program. If, on the other hand, it is known that there are
no locations that may be both written by e l and read or written by e2,
nor vice versa, then the expressions do not interfere, and may be evaluated
out of order or concurrently. For example, in the expression below, the
assignments to x and y may be performed concurrently, provided that x and
y denote distinct locations.

(BEGIN

(SET X TRUE)

(SET y FALSE))

Similarly, when analyzing subroutines for memoizability, it matters not
only whether each subroutine may allocate writable memory locations; it
also matters what happens to those locations afterwards, i.e. whether they
are strictly for local use or whether they are exported. Consider, for example,
the subroutine

(LAMBDA (X:BOOL)

(mkref x))

which allocates a new (writable) memory location, initializes it to the value of
its argument x, and returns the location, and compare it with the subroutine

(LAMBDA (X:BOOL)

(contents (mkref )))

which allocates a new (writable) memory location, initializes it to the value
of its argument x, and returns the contents of the location, i.e. the value of x.
Clearly, the first subroutine can not generally be memoized without changing
the semantics of the program, since two instances of a single writable memory
location are in general distinguishable from to two distinct locations that
happen to contain the same value. The second subroutine, on the other hand,
can be memoized without changing the meaning of the program, even though
it allocates a writable memory location and reads its contents, because the
extent of these effects is confined to the subroutine body.

The observation that not only the sort of effect is important, but also its
extent, leads to the notion of fine-grain effect specifications. The basic idea

12



is to use effect specifications of the form (sort extent), where sort indicates I
the sort of effect (which may be allocation, reading, writing and so forth),
and extent indicates its extent. We now turn the question of how the extent
of an effect should be expressed.

2.4.1 Locations
The most direct way to express the extent of effects is in terms of memory i

locations. Using this technique, the effect of each expression is expressed as
a combination of zero or more effects of the form (ALLOC 1) (short for ALLO-

CATE), (READ 1) and (WRITE 1), where I ranges over locations. For example,
an expression that increments the contents of the location l0 would have the K
effect {(READ lo), (WRITE lo)}. This notation is simple and unambiguous,
and provides the compiler with precisely the information it needs. However,
it is not particularly attractive from the programmer's point of view, since it
forces the programmer to be aware of the details of memory management. In
most contemporary high-level languages, these details are hidden from the
programmer. *

In fact, this method has a more serious drawback: it can be used only when
the locations used by the program are known statically. In practice, this
is not the case: most contemporary high-level languages support dynamic
memory allocation (on a stack, in a heap, or both). In fact, even in languages
in which memory allocation is static, the locations used by a relocatable
program fragment are not known until it has been linked with the rest of
the program. Clearly, we need to find some way to express the extent of an
effect in symbolic form.

2.4.2 Variable Names
One way to express the extent of effects without direct reference to mem-

ory locations is to express it in terms of variable names. This method has
several advantages: not only are the variables of a program known stati-
cally (in most languages), but they are also familiar to the programmer, and
therefore more suitable for inclusion in program specifications. Using this
technique, the effect of each expression is expressed as a combination of zero
or more effects of the form (ALLOC X), (READ X) and (WRITE X), where x

ranges over variable names. For example, an expression that increments the -

value of the variable x0 would have the effect {(READ Xo), (WRITE Xo)}.

Although this approach is commonly used in conventional effect analysis,
it is less appropriate as a basis of a type and effect system, for the following
reasons.

First, a program may contain several variables with the same name. If so,
the use of variable names in effect specifications may suggest that two ex-
pressions interfere, say through a variable named x, when they actually refer
to different variables that happen to have the same name. In conventional
effect analysis, this problem can be avoided by means of systematic renam-
ing. However, in a language with a type and effect system, where the effect

13



specifications are visible to the programmer, such renaming is undesirable
since it goes against the programmer's choice of variable names. '-

Even if no two variables have the same name, each variable may in general
have many instances. For example, the local variables of a subroutine are
instantiated each time the subroutine is called. In a language that supports
either recursive subroutine calls or closures, there can be arbitrarily many
instances of the same variable, and the compiler may conclude that two
expressions interfere, say through a variable x, when they actually refer to
different locations that happen to be instances of the same variable. This
problem cannot be solved by statically renaming the variables in the source
program.

Furthermore, if the language treats locations as first-class values, as is
the case in most languages that support heap allocation, then there is no
fixed correspondence between locations and variable names. For example, a
location that is accessible through the variable x when it is allocated, can
subsequently be assigned to another variable, say y. The lack of such a fixed
correspondence also introduces the problem of aliasing.

Based on these considerations, we have decided not to rely on variable
names to express the extent of an effect.

2.4.3 Types
To permit a meaningful characterization of the extent of effects on objects

that are dynamically allocated in a heap, we considered expressing the ex-
tent of effects in terms of data types. For example, the operators for dealing
with arrays could have effect specifications such as (ALLOC array), (READ

array) and (WRITE array). This method can deal with heap-allocated ob-
jects, unlike the methods discussed above, because the types of these objects,
unlike their locations and their names, are known statically and remain con-
stant throughout their lifetime.

In view of the objectives listed at the beginning of this chapter, type names
could be an attractive way of expressing the extent of effects, provided that
(i) the programmer can easily instantiate a given type under different names,
to indicate how the values of the resulting types are used, and provided that
(ii) the method apply equally well to built-in and programmer-defined types.

We found that the second objective cannot be met using the conventional
notion of abstract types. Consider, for example, a data abstraction for ta-
bles in which each table is internally represented as an array. We would like
the operators of this abstract type to have effect specifications of the form
(WRITE table) and so forth, even though they are actually implemented in
terms of arrays. In order to verify that operations on tables do not interfere
with operations on arrays and vice versa, it is necessary to distinguish be-
tween those arrays that are used as arrays and those that are used as tables.
Unfortunately, no programming language that we know of can prevent the
implementation of an abstract data type from coercing values of the repre-
sentation type to the abstract type and vice versa. Such a coercion is said to

14

M1*1 Ell



expose the representation type, since subsequent modifications of the value
of the representation type may be visible in some value of the abstract data
type and vice versa.

Since conventional type systems are concerned only with verifying that
types are equivalent, and never that they are not equivalent, exposure of '

the representation of an abstract type does not constitute a type loophole
in a conventional type system. If, on the other hand, the extent of effects
is expressed in terms of types, the compiler needs to be able to verify that
types are disjoint. In this case, exposure of the representation of an abstract
type is not simply a programming practice to be discouraged, but actually
constitutes a loophole that renders effect analysis based upon type names
unsound...

2.4.4 Regions
Having found neither locations, nor variables, nor types to be a suitable

vehicle for expressing the extent of an effect, we decided to introduce a new
concept specifically for this purpose. In this section we show how to express
the extent of an effect in terms of regions.

A region corresponds to a set of writable memory locations. Using regions,
the effect of each expression is expressed as a combination of zero or more
effects of the form (ALLOC p), (READ p) and (WRITE p), where p ('rho') ranges
over regions. For example, an expression that increments the value of a N

location in the region po would have the effect {(READ P0), (WRITE po)}. It
is our intention to leave it up to the programmer to specify in which region %
any given memory location should be allocated.

Regions are orthogonal to existing programming language features: they
are intended exclusively for the purpose of describing the extent of effects,
and are not tied to any existing programming language concepts such as vari-
able names or types, nor to implementation considerations such as storage
allocation. In particular, a programmer can use regions to group together a

set of locations regardless of when, where, what for, or under what name they
are allocated. Regions subsume all previous ways of expressing the extent of .

effects, and then some:

" coarse-grain effect specifications can be simulated by allocating all lo-
cations in the same region;

" effect specification in terms of locations can be simulated by allocating """
each location in a separate region; " "

• effect specification in terms of variable names can be simulated by defin- 7

ing a separate region for each variable;

" effect specification in terms of data types can be simulated by defining
a separate region for each type; ,

" effect specification in terms of named fields of data structures [Steele78,
p. 48] can be simulated by defining a separate region for e.± field; and :

-.- r



-~ .> W.' . V Awl -n I LA %#I Von Xr W ' iI l ~ 1 ~~'W ]~ WV W1 'rrrll V V L VI l W" VI - kV

0 effect specification in terms of named properties on property lists 1
[Mar83, p. 82] can be simulated by defining a separate region for each
property.

It is left up to the programmer to decide in which region each memory
location should be allocated. For example, a programmer who does not wish
to reveal the locations accessed by a given abstraction, the names of the
local variables of a subroutine, or the representation of an abstract data
type, can allocate all locations, variables, or instances of the abstract data

type in a single global region. At the same time, a programmer who wishes
to document the fact that computations involving certain data structures
can safely be evaluated out of order or concurrently can allocate those data
structures in distinct regions.

In a language with a type and effect system based on regions, a location
has two attributes: the type of value that may be stored in the location, and
the region to which the location belongs. This information is introduced,
maintained, and utilized as follows:

" when allocating a new location, the programmer must specify both the
desired type and the region to which the location should belong;

" both of these attributes, the region and the type, are reflected in the type
of the resulting location;

" the compiler uses this information to determine the effect specification of
any expression that subsequently reads or writes the location.

In a more general language, region information is not only found in the types
of locations, but also in the types of more complicated mutable values such
as arrays and lists, as well as in programmer-defined abstract types.

Much of the power of regions is due to the fact that they are orthogonal to
existing programming language concepts. However, this very property also
leads to their two main disadvantages.

" Since regions are not tied to variable names or data types, the burden of
indicating which location belongs to which region appears to fall squarely

on the programmer. Fortunately, it appears that a compiler can assume
much of this burden, using techniques borrowed from type inference, pos-
sibly in combination with sensible defaults.

" Because region information must be communicated across subroutine in-
terfaces, the types of locations, arrays, lists and other mutable data struc-
tures must carry region information. This complication of the type system
is certainly the most visible aspect of a type and effect system based on
regions, and probably the most controversial.

We believe that on balance, the extra expressive power of a type and effect
system based on regions is worth the additional complexity.

16

% --%," ,%.,, .



2.5 Types, Effects, and Regions
As it turns out, types, effects and regions have a lot in common. All -V

three are, in some sense, descriptions of computational entities: types de-
scribe expressions and the resulting values, effects describe expressions and
the corresponding computations, and regions describe mutable values and

the corresponding memory locations. Types, effects and regions are closely
interrelated. In particular,

" the type of a location is expressed in terms of the type of its contents and
the region to which the location belongs, and

" the type of a subroutine is expressed in terms of its argument type, its
return type, and its latent effect.

Moreover, effects themselves are expressed in terms of the regions that indi-
cate their extent. %

The similarity between types, effects and regions is probably best illus-
trated by the fact that all three can be regarded as base kinds in a higher-
order, kinded type system along the lines of the type system proposed by Mc-
Cracken [McC79]. McCracken showed how to generalize the familiar concepts
of type abstraction and type polymorphism [Rey74] to permit abstraction
and polymorphism over a larger class of descriptions, including descriptions
that map types to types.

We propose to regard types, effects and regions as base kinds. This makes
it possible to abstract types and expressions over types, effects, and regions,
and hence introduces the notions of effect and region abstraction and effect
and region polymorphism. For example, the mapcar subroutine [Ree86] can
be abstracted over the argument type, return type, and latent effect of the
mapping subroutine, and even over the regions that contain the input and
output lists, if these are mutable. Moreover, the type constructors for such
types as locations, arrays and lists can be parameterized not only with respect
to the type of its contents, but also with respect to the region to which the
corresponding locations belong.

One unexpected advantage of the analogy with the higher-order lambda- Vo
calculus is that the standard rules for higher-order abstraction guarantee
that any program fragment that can be abstracted over a given region ha.-
no knowledge of any locations in that region. This property forms the basis
for a set of language constructs for dealing with private, anonymous regions,
which are described in Chapter 5.

The connection to the higher-order lambda-calculus demonstrates that
effect and region information, like type information, can be a analyzed stat- ,
ically and then discarded: there is no need to keep track of effect or region
information at run-time.

17

% % - mp; Po0



I~~~ r,7.T' - .

2.6 Related Work

2.6.1 Conventional Effect Analysis
Effect analysis is a critical aspect of the design of optimizing compilers,

and there is an extensive literature on the subject. Since the availability of %S_

effect specifications affects only interprocedural effect analysis, we focus on
the literature on that subject specifically [Ban79] [Bar78] [Wei80].

Interprocedural effect analysis generally proceeds in two steps, which can
be performed either sequentially or concurrently. The first step is to analyze
each subroutine and compute a (possibly parameterized) summary of its
effects; the second step is to combine these summaries with information " -

about the calling pattern between the subroutines, and to compute the true -

effects of each expression while taking account of the effects of subroutine
calls. The second step can be regarded either as a transitive closure problem
or as a graph flow problem, and algorithms of both types have been proposed
[Ban79] [Bar78]. In all cases, the calling pattern must be known in advance.

Our approach to interprocedural effect analysis is very different. Because
we are dealing with languages in which subroutines first-class values, we
cannot assume that the calling pattern is known in advance. Instead, we
have recast the problem as a verification problem:

" wherever a subroutine is declared, the programmer must specify its latent
effect as part of the declaration;

" the compiler uses these declarations to compute the effect description of
every expression and program fragment;

" these computed effect descriptions are then used to verify the declarations
given by the programmer.

Since the latent effect declarations include the effects of nested and recursive ".0

subroutine calls, there is no need for a global computation that requires 5.

information about the calling pattern. :' *

A second important difference concerns the format of the effect summaries.
In a conventional compiler, these effect summaries are for internal use only,
and need not be human-readable. In a language with a type and effect
system, on the other hand, the effect specifications must be human-readable, -

and hence must be expressed in terms that are reasonably high-level and
related to the programmer's view of the program. This difference explains
why we do not use, for example, information such as the depth at which

individual subroutines are defined [Bar78].

I,.

18 4e

%0
",~~~~~~~~~~~~~~~~~~~~.:..:.....&,'.'¢...'.,.,','-..'.€................-. -. :.,.... .. :.... ,. ,....... ... ....-,.,.. .,,

.','.: .,.-. ..",-,y ."..,: ...,.'.-.'.' : . -,'...... '., ,... ''... '., , .' '.. . . "., . . '".',.., .". . , .''2'''



II

2.6.2 Syntactic Control of Interference
The idea of imposing syntactic restrictions on programs to simplify the

detection and analysis of interference has been discussed by Reynolds in
the context of a language with higher-order procedures and call-by-name
semantics [Rey78] (see also [Ten83]). Reynolds proposed to characterize
every expression and procedure by its support set, which is the set of variables
that the expression or procedure may access. By permitting an application
only if the support sets of the procedure and its argument do not overlap,
all aliasing is prevented. Moreover, by permitting concurrent evaluation of
two expressions only when their support sets do not overlap, determinacy is
assured. The restrictions are subsequently relaxed to some extent.

Because the investigation is conducted in a call-by-name context, there
is no opportunity to distinguish between types and effects: any expression,
even an ordinary variable, can have an effect. Likewise, there is no way to
distinguish between the support set of an expression and the support set of
the value returned by that expression. Finally, there is no way to distinguish
between the support set of an expression and the extent of its potential
effects. Nevertheless, Reynolds' paper can be regarded as a precursor of our
present research.

Several of the unresolved questions posed by Reynolds are addressed in
this thesis [Rey78, p. 44]. Because we are dealing with applicative evaluation

order, we are able to distinguish between the support set of an expression
and the extent of its potential effects. In particular, our type and effect
system can identify situations in which certain expressions are passive and
can never be executed; the effects of such expressions do not affect the effect
specifications of surrounding expressions.

2.6.3 Abstract Interpretation
The idea of computing aliasing and support sets using the techniques of

abstract interpretation has been discussed by Neirynck et al. [Nei86]. Their
point of departure is similar to ours, namely that "the main difficulty is to
determine if a subroutine application produces side-effects" [id., p. 3]. The
two approaches diverge quickly, however, since Neirynck et al. take the view
that the effects of a subroutine application may depend on the arguments
of the subroutine application, if these in turn are subroutines [id., p. 3]. By
contrast, in our framework such a dependence arises only if the subroutine
being applied is polymorphic in the latent effect of its argument.

In order to make the analysis tractable, Neirynck et al. confine their at-
tention to a language in which subroutines and references are not storable
and references may not be returned out of the scope in which they were
created. Within these restrictions, they define a pair of semantic functions,
one to indicate the effects of an expression and one to indicate its value, and
a corresponding pair of abstract interpretation functions: one to indicate I

19i



the support set of the expression, and one to indicate how to compute the

support set of the resulting value in the event that it is a subroutine.
The strength of the abstract interpretation approach lies in the close corre-

spondence between the abstract interpretations and the standard semantics
of the language [id., p. 20]. The approach presented in this thesis can be
regarded as a variant of the abstract interpretation approach. In particular,
the rules for computing the type and effect of an expression can be regarded
as an abstract interpretation of the expression, and there is a close correspon-
dence between this set of rules and the semantics of the language. Moreover,
the instantiation of a polymorphic type corresponds to application of an ab-
stract interpretation function, in that it specializes a description (which may
incorporate type, effect and region descriptions) with respect to some other
description (which may itself be a type, effect or region).

The distinguishing feature of our approach is our reliance on the type
system. Since we take the view that effect analysis should be performed
strictly on the basis of effect declarations, our analysis is not hindered even a-

when procedures and references may be passed, returned and stored as first-
class values. We believe that our approach provides a basis for the study of
abstract interpretation of more powerful languages than has been attempted
to date.

2.6.4 Euclid's Collections
The programming language Euclid features a notion of a collection, which -

denotes a set of locations that are grouped together to assist the verifier
(a person or a computer) in reasoning about the extent of effects [Lam77]
[Pop77]. Collections resemble regions in that "the programmer can partition
his dynamic variables and pointers into separate collections to indicate some
of his knowledge about how they will be used; the verifier is assured that
pointers in different collections can never point to overlapping variables"
[Pop77, p. 14].

Collections differ from regions in several ways. Some of these differences
are minor: for example, a collection can contain only values of a single type.
This appears to be an arbitrary restriction imposed by the designers of Eu-
clid, and is not a fundamental limitation. The more fundamental difference
is that Euclid treats collections as values, syntactically as well as semanti-
cally. This gives rise to a number of interrelations between collections and
pointers that make the language as a whole appear far from orthogonal. For
example, every subroutine that accesses the values in a collection must be
passed the collection itself as an extra parameter, and yet this parameter is
supplied implicitly by the compiler if it is omitted by the programmer. In
reality, collections, like regions, are a static concept. Implementations of Eu-
clid must therefore rely on an ad-hoc mechanism to eliminate the overhead
that would result if these extra parameters were actually passed at run-time.

We believe that our decision to make regions descriptions rather than

values clearly differentiates the two approaches, and we believe that our

20

% .



approach is more consistent with the fact that regions are a static concept.
Moreover, we believe that our approach is more general and more powerful
because of effect and region polymorphism.

2.6.5 Relation to Previous Work
We have extended the results reported in an earlier paper [Gif86] in several

respects:

* Effect descriptions have been generalized from a small, fixed set of effect
classes to a countably infinite set;

* The introduction of regions has permitted the treatment of locations as
first-class values;

* The notion of polymorphism has been generalized from type polymor-
phism to region and effect polymorphism;

* The introduction of private regions has permitted the masking of provably
local effects.

9 The use of monitors and critical sections has permitted the integration of
implicit and explicit concurrency.

If we compare the current state of our research with the issues for future
research cited in the earlier paper, we find that we have actually aggravated
the burden of providing explicit declarations by our decision to introduce
regions into the type and effect system. However, our research in this area
has reinforced our belief that a compiler can assume much of this burden,
using techniques borrowed from type inference. On the other hand, the gen-
eralization of polymorphism to effects and regions has alleviated the adverse
impact on software reusability, and the introduction of effect masking has
alleviated the need for effect loopholes.

21 e

% %'

"._N- . . . ; . " ". . ' . '" 



Chapter 3. The MFX
Language

3.1 Introduction
In chapters 3 through 6, we present a demonstration language with a type

and effect system. We have called this language MFX, for Mini-FX. (FX is a
complete programming language with a type and effect system that is cur-
rently being developed at MIT by the Programming System Research Group
[Gif87].) MFX is a lexically scoped, higher-order, imperative language with
static typing and left-to-right, applicative order semantics. In an attempt
to introduce the features of MFX gradually, we introduce the language in
three stages. In this chapter we present MFX-1 (Mini-FX level 1), a subset of
MFX that has side-effect operators but no constructs for dealing with private
regions or explicit concurrency.

The purpose of this chapter is to present the syntax and static semantics
of MFX-1. The dynamic semantics of the language, along with the major
propositions relating the static and dynamic semantics, are presented in the
next chapter.

The rest of this chapter is organized as follows. We begin by giving a
general overview of the MFX language, concentrating on the features that
all three versions of MFX language have in common. Next, we present the
syntax of MFX-1, and give an informal description of its semantics. We also
introduce some notation related to free and bound variables. We then give
a formal definition and semantic motivation of description conversion and
inclusion, and we present the static semantics of MFX-1. We conclude with
a discussion of aliasing.

3.2 Overview
MFX is a lexically scoped, higher-order, imperative language with static

typing and left-to-right, applicative order semantics. The type system of
the language is based on the higher-order lambda-calculus of McCracken
[McC79], which is a generalization of the second-order lambda calculus of
Reynolds [Rey74]; the dynamic semantics and the parameter passing con-
ventions are based on languages such as Scheme and CLU [Ree86] [Lis79],
although they are formalized in a way that closely parallels the operational
semantics of the lambda-calculus. In order to make the language into an im-
perative language, we have added three operators called NEW, GET and SET

that can be used to allocate (writable) locations in a store and to read and
write their contents. MFX is expression-oriented: every expression returns a
value, and every expression may have side-effects.

23

N N Z N N

! ' 
N.

M.U Z ZZ Z



In MFX, every expression has a type description, which describes what sort
of value the expression may return, and an effect description, which describes 46

what sort of side-effects the expression may have. Type descriptions may
incorporate effect descriptions; in particular, the type of every subroutine
incorporates a description of the latent effect of the subroutine. This
latent effect description indicates what sort of side-effects the subroutine
may have when it is applied. Effect descriptions, in turn, may incorporate
region descriptions; these region descriptions describe the extent of the effect
in question.

Types, effects and regions are collectively called descriptions. Every well-.%
formed description has a kind, which acts as the 'type' of the description.
There are only three different kinds in MFX: TYPE, EFFECT and REGION.

MFX consists of three levels: expressions, descriptions and kinds. Within
each level, all language constructs are orthogonal. For example, any expres- -

sion, regardless of its type or effect, can be abstracted over any of its free
ordinary variables, regardless of its type. Similarly, any expression can be
abstracted over any of its free description variables, regardless of its kind.
Thus, an expression can be polymorphic with respect to any number of de-
scription variables regardless of their kinds. Finally, all values are storable,
including ordinary subroutines, polymorphic subroutines and locations.

Although McCracken's language supports type functions and recursive
types, we have omitted these features from MFX in order to simplify the
presentation. However, in order to make our treatment of types and effects
more uniform, we have added type inclusion (also known as subtyping).
Finally, we have added constructs for conditional and sequential evaluation
in order to illustrate how such control flow constructs can be treated.

In order to keep the presentation simple, we have kept the language to
a bare minimum. It should be understood from the outset that the type . .

and effect system presented here is compatible with a wide variety of built-in
types, control structures, and type constructors. In Chapter 7 we show how
to integrate some of these features into the language.

3.3 Syntax
In this section we present the syntax of MFX-1. The language consists

of three levels: kinds, descriptions and expressions. The names of syntactic
classes are written in a Slanted Typeface; reserved words are written in
SMALL CAPITALS. The meta-variable for each syntactic class is shown in
parentheses. The superscripts and + stand for zero or more and one or
more repetitions respectively.

24

W ' I r V:

% X%. N ~% 45 % %



3.3.1 Kinds
Kinds act as the types of descriptions. There are three kind constants:

REGION, EFFECT and TYPE.

Kind - - kinds (x)
REGION - the kind of regions
EFFECT - the kind of effects
TYPE - the kind of types

3.3.2 Descriptions
Descriptions describe the types and effects of expressions. The sim-

plest sort of description is a description variable. There is an infinite set of

descriptions variables:

Dvar {dl, d 2 ,... } -description variables (d)

A description variable may have any kind.
We now present the three kinds of descriptions (regions, effects, and types)

in turn.

Region descriptions correspond to countably infinite sets of locations (lo-
cations are defined in Chapter 4). There is an infinite set of region constants,
which denote disjoint sets of locations:

Rconst = {rl, r 2 ,...} -region constants (r)

The grammar of region descriptions in general is given below. A region
description is one of the following: a region constant, a region variable, or I P
the union of one or more region descriptions.

Region = - region descriptions (p)
Rconst - region constant
Dvar - region variable
(UNION Region+) - union of one or more regions

Since a region description must correspond to an infinite set of locations, the
union of zero region descriptions is not a valid region description.

Effect descriptions correspond to countabl.e sets of store operations, which K
can be thought of as pairs of the form (sort, loc), where sort is an effect
constructor (one of ALLOC, READ, and WRITE) and loc is a location. There
is one effect constant, which corresponds to the empty set:

Econst = PURE - the constant denoting "no effect"

The grammar of effect descriptions in general is given below. An effect de-
scription is one of the following: an effect constant, an effect variable, a .
combination of an effect constructor and a region description, or a combina-
tion of zero or more effect descriptions.

25 "1

r.~~~~~~ orIr .. . . -.



Effect = - effect descriptions (e)

Econst - the effect constant PURE
Dvar - effect variable
(ALLOC Region) - effect of allocating in a given region
(READ Region) - effect of reading from a given region
(WRITE Region) - effect of writing to a given region
(MAXEFF Effect*) - combination of zero or more effects

A combination of zero effect descriptions is itself a valid effect description; in
fact, the effect constant PURE and the empty combination "(MAXEFF)" are

synonymous. Note that a combination of effects is a set union; the reserved
word MAXEFF is somewhat misleading.

Type descriptions correspond to countable sets of values, which we view

as syntactic entities. There are two type constants, the meaning of which
will be defined shortly:

Tconst = (UNIT, BOOL) - type constants (t)

The grammar of type descriptions in general is given below. A type descrip-
tion is one of the following: a type constant, a type variable, an ordinary
subroutine type, a polymorphic subroutine type, or a reference type.

Type = - type descriptions (r)
Tconst - type constant
Dvar - type variable
(SUBR (Type) Effect Type) - types of ordinary subroutines
(POLY (Dvar:Kind) Effect Type) - types of polymorphic subroutines
(REF Region Type) - types of locations

The type description (SUBR (r1 ) f r2 ) is a generalization of the type
"T -T2" in the typed lambda-calculus. The effect description e represents
the latent effect of the subroutine. The parentheses around the formal

parameter type are present only to simplify a generalization to subroutines
of multiple arguments.

The type description (POLY (d:.) f r) is a generalization of the type
"At:K.r" in the higher-order lambda-calculus of McCracken [McC83], which
in turn is a generalization of the type "At.r" in the second-order lambda-
calculus of Reynolds [Rey74]. The effect description e represents the latent
effect.

The type description (REF p r) is a generalization of the type "ref r" in
programming languages such as ML [Gor79a].

The grammar of descriptions in general is given below. A description is
one of the following: a region description, an effect description, or a type

description.

26I

U.% %.* .~~ . .. *



Desc = - descriptions (b)
Region - region descriptions

Effect - effect descriptions
Type - type descriptions

3.3.3 Expressions
Expressions correspond to programs. The simplest sort of expression is

an ordinary variable. There is an infinite set of ordinary variables:

Var= {XI, X2,...} -ordinary variables (z)

An ordinary variable may have any type.

There are three ordinary constants, all of which have specific types: NIL

has type UNIT, and TRUE and FALSE have type BOOL.

Unit = {NIL} - the unit type
Boo) = {TRUE, FALSE} - the Booleans (b)

Const =- ordinary constants (c)

Unit - the unit type
Boo] - the Booleans

The grammar for expressions in general is given below. There are three
general classes of expressions: expressions that come from the higher-order
lambda-calculus; expression that deal with evaluation order; and expressions
that deal with side-effects. The first class consists of constants and vari-

ables, ordinary abstraction and application, and polymorphic abstraction
and application. The second class consists of expressions for conditional and
sequential evaluation. The third class consists of expressions for the allocat-
ing, reading, and writing of locations.

Exp= -expressions (e)
Const - ordinary constant

Var - ordinary variable [U
(LAMBDA (Var:Type) Exp) - ordinary abstraction
(Exp Exp) - ordinary application e
(PLAMBDA (Dvar:Kind) Exp) - polymorphic abstraction

(PROJ Exp Desc) - ()Ivmorphic application U
(IF Exp Exp Exp) - ,.T ditional evaluation
(BEGIN Exp+) - sequential evaluation

27

-% % .%% . %



Wif fV VW*W WW W SW VW rW V~~W MWW V-.W -

(NEW Region Type Exp) - allocating a location
(GET EXp) - reading a location
(SET Exp Exp) - writing a location

Certain expressions, such as applications, represent computations; other
expressions, such as constants, do not exhibit any computational behavior,
and represent values.

Definition. An expression is a value iff it is a constant, a LAMBDA
expression, or a PLAMBDA expression. We use Val to denote the set of values
and v to denote individual values. In other words,

Val = - values (v)
Const - ordinary constant
(LAMBDA (Var:Type) Exp) - ordinary abstraction
(PLAMBDA (Dvar:Kind) Exp) - polymorphic abstraction

3.3.4 Informal Semantics
We have already informally described the semantics of regions, effects and

types; we now sketch the semantics of the different expressions.

Informally, the semantics of ordinary abstraction and application are as
follows. The expression (LAMBDA (z:,r) e) returns an ordinary subroutine
with formal parameter x of type r and with body e. The ordinary applica-

tion (e, e2 ) has the following semantics. First, the expressions el and e2 are
evaluated, in that order. Next, provided that el returns an ordinary subrou-
tine, the body of the subroutine is evaluated with the formal parameter of
the subroutine bound to the value of e2 , and its value returned.

For example, the expression

(LAMBDA (X:BOOL)

(IF X FALSE TRUE))

denotes a subroutine that returns the negation of its argument, which must
be of type BOOL. Since this subroutine has argument type BOOL, latent effect
PURE and return type BOOL, the expression has type

(SUBR (BOOL) PURE BOOL) I

Expressions may have free variables, provided that they are defined in the
surrounding scope. For example, if int is declared in the surrounding scope

as a type and e as an effect, and f is declared as a subroutine that takes
an argument of type int and returns a value of type int, then the ordinary
subroutine

(LAMBDA (x:int)

(f (f x)))

28

.0, 0 to J* "r,;~R -e4~

% ,..: -,.'¢.<:<- ,- , 5,,.-,.€€ € ,.- .. ....-. - ......-.
.#' e #..e e & A . A_. '.- e .. .ee ", . %; . •"J



is equivalent to the self-composition of the subroutine f.
Note that only the argument type of the subroutine, int, is manifest in

this expression; the latent effect of the subroutine and its return type must
be inferred from the body of the subroutine and the types of its free variables.
In this case the return type is int, and if the latent effect of f is e then the
latent effect of the expression is (MAXEFF e e), which is equivalent to e.

The semantics of polymorphic abstraction and application are as follows.
The expression (PLAMBDA (d:K) e) returns a polymorphic subroutine with
formal parameter d of kind K and with body e. The polymorphic application
(PROJ e b) has the following semantics. First, the expression e is evaluated.
Next, provided that e returns a polymorphic subroutine, the body of the
subroutine is evaluated with the formal parameter of the subroutine bound
to 6, and its value returned.

For example, the expression

(PLAMBDA (t :TYPE)

(LAMBDA (X:t)

X))

denotes the polymorphic identity function; it has type

(POLY (t:TYPE) PURE

(SUBR Wt) PURE
t;))

Expressions may be polymorphic not only in types, but also in effects and
regions. For example, the expression

(PLAMBDA (t :TYPE)

(PLAMBDA (e:EFFECT)

(LAMBDA (f :(SUBR Wt) e ))
(LAMBDA (X:t)

(f Cf x))))))

denotes the polymorphic self-composition functional, polymorphic in the ar-
gument type and the latent effect of its argument. This expression has the
following type:

(POLY (t:TYPE) PURE

(POLY (e:EFFECT) PURE

(SUBR ((SUBR t) e )) PURE

(SUBR Mt) (MAXEFF e e)

where the latent effect of the innermost subroutine, (MAXEFF e e), is equiv-
alent to simply e.

The semantics of the conditional expression (IF el e2 C3 ) are as follows.
First, el is evaluated. Provided that it returns TRUE or FALSE, either e2 or e3 ,

29

!_. ....... o . .... . . .. .. **. . 4. . ,* . ** .-* -_.. .. .*........... ... * ,,. . .. .. ,.
a. P I? A



respectively, is evaluated and its value returned. This expression is non-strict
in the branch that is not taken: for example, if f is bound in the surrounding 'S.

scope to a subroutine that diverges on FALSE, then the expression

(IF TRUE 
1%

NIL N
Cf FALSE))

returns NIL.

The semantics of the sequencing expression (BEGIN el ... e,) are as follows:
the expressions el ... e, are evaluated sequentially, from left to right, and the
value of e, is returned. For example, the expression

(BEGIN

(IF TRUE NIL (f FALSE)) --

FALSE)

returns FALSE.

The semantics of the expression (NEW p r e) are as follows. First, e is
evaluated. Next, a new writable memory location capable of holding values of
type T is allocated in the region p and initialized to the value of e. Finally, this
location, which has type (REF p r"), is returned. For example, the expression 4.

(PLAMBDA (r: REGION)

(PLAMBDA (t:TYPE)

(LAMBDA (X:t)

(NEW r t x))))

emulates the NEW expression, in that it takes a region r, a type t, and a value
x, and returns a new location of type (REF r ) that has been initialized to
x. This expression has type

,:. .,

(POLY (r:REGION) PURE

(POLY (t:TYPE) PURE

(SUBR t) (ALLOC r)
(REF r t))))

The semantics of the expression (GET e) are as follows. First, e is evalu-
ated. Provided that e returns a location that contains a value, the expression
as a whole returns that value. For example, the expression

((LAMBDA (X: (REF rl BOOL))

(GET X))

(NEW rl BOOL TRUE))

30

d P



returns TRUE. This expression has type BOOL and effect (MAXEFF (ALLOC

ri) (READ ri)).

Finally, the semantics of the expression (SET el e2) are as follows. First,
el and e2 axe evaluated, in that order. Next, provided that el returns a
location, the value of e2 is written to this location. The expression as a
whole returns the value NIL. For example, the expression

((LAMBDA (X: (REF rl BOOL))

(BEGIN

(SET X FALSE))

(GET X))

(NEW rl BOOL TRUE))

returns FALSE. This expression has type BOOL and effect (MAXEFF (ALLOC

rl) (WRITE rl) (READ ri)).

3.3.5 Free Variables
To illustrate the scoping rules of the language, we present the rules for

determining the free (ordinary and description) variables of an expression or
description. Note that these rules are the same as in the higher-order typed
lambda-calculus; in particular, LAMBDA binds ordinary variables, PLAMBDA -'

and POLY bind description variables, and all other constructs simply pass on
the free variables of their components. The scoping rules are formalized in
the following definitions.

Definition. The free ordinary variables of an expression are given by
the function FV Exp -. Pow(Var) defined below.

FV(c) = -
FV(x) = x}

FV(LAMBDA (x:r) e) = FV(e) - {X}

FV(el e2) = FV(el) U FV(e2 )
FV(PLAMBDA (d:K) e) = FV(e)

FV(PROJ e 6) = FV(e)

FV(IF el e 2 e3) = FV(el) U FV(e 2 ) U FV(e3 )
FV(BEGIN el -.. e,) = FV(el) U ... U FV(e.) 7

FV(NEW p 7 e) = FV(e)

FV(GET e) = FV(e)

FV(SET el e 2 ) = M(el) U FV(e 2 ) I
Definition. The free description variables of a description are given by

31

- % %. % % % % %

i ',. ,:' .,:,.':,:,:.:.'',4,;.,> :,, ' e.',,';,.,,ed d ,,;.a,.','.. ,,-/.-,..,'.,' -,.., ,._e..,.-.,/-.-.. .. ./ ..... ........



the function FDVde.C : Desc --* Pow(Dvar) defined below.

FDVd..c(d) = {d}
FDVd..(r) = 0"

FDVdec(UNION p... P,) = FDVdec(pi) U... U FDVd,,(P,)_
FDVdesc(ALLOC p) = FDVde.c(p)

FDVde.c(READ p)= FDVde.c(P)

FDVd ac(WRITE p) = FDVes8 (p)

FDVdeac(MAXEFF el ... Cn) - FDVdeac(fl) U ... U FOVdesc(Cn)

FDVde.c(SUBR (7-1) f -2) = .FDVde.c() U FDVde.c('E) U FDVde.c(T 2 )
FDVdec(POLY (d:,) c r) = F lVdesc(e) U FDVde.c(-) - d} 4,

FDVjic(REF p 7) =FDVdeac(p) U FDVdeac(T)

Definition. The free description variables of an expression are given
by the function FDV,, : Exp -- 1ow(Dvar) defined below. ,

FDVexp(c) = 0
FDVz,(x) = 0

FDVezp(LAMBDA (x:r) e) = FDVdcc(r) U. FDVezp(e)
FDV.p(el e2 ) = FDVezp(el)U FDVezp(e2 )

FDVzp(PLAMBDA (d:n) e) = FDVe,,zp(e) - {d}
FDVezp(PROJ e 6) = FDVzp(e) U FDVde.c(6)

FDV..,(IF el e2 e3) = FDVezp(el) U FDV,.,(e2) U .DV..,(e 3 )
FDVp(BEGIN el ... en) = FDV,,p(ei) U ... U FDV,,p(en)

FDVezp(NEW p 7 e) = FDVdeoc(p) U FDVde.e(T) U FDV,,p(e)
FDVezp(GET e) = FDVe,,,(e)

FDV.p(SET el e 2 ) = FDV..p(ei) U FDV,p(e2) 5-

We adopt the usual conventions for alpha-renaming and beta-substitution.
We use the notation 616'/ld, e[b'/d and e[e'/x] to indicate substitution, where
bound variables are renamed as needed to avoid capture. We adopt the usual
definition of closed descriptions and expressions: _

Definition. A description 6 is closed iff it has no free description
variables, i.e. iff FDVde,(6) 0.

Definition. An expression e is closed iff it has no free ordii,-ry variables
and no free description variables, i.e. iff FV(e) = 0 A FDV,, p(e) = 0. :-

32

.4

% %'% ' m % • . % % • -- -" • • - •-o %% %%•% ' =- •'," %' , % ,% ".'. .
' 

"
% % %

%5,



3.3.6 Free Constants
It is convenient to define the free region constants of a description,

FRCdeac(b), and of an expression, FRCezp,(e). Since region constants cannot
be bound, this definition is trivial: all the region constants that occur in
a description or expression are free. We give a more precise syntactic defi-
nition anyway, in order to highlight the differences between FRCxp(e) and
FDVp(e).

Definition. The free region constants of a description are given by the
function FRCdec : Desc --- Pow(Rconst) defined below.

FRCd..c(d) = 0
FRCde.c(r) = {r}

FRCd,.c(POLY (d:K) f r) = FRCdec() U FRCd,,c(T)

The remaining clauses are analogous to the corresponding clauses in the
definition of FDV...(b).

Definition. The free region constants of an expression are given by the
function FRCZp : Exp - Pow(Rconst) defined below.

FRCerp(NIL) = 0
FRC..p(b) =
FRCex.p(x)=0

FRCezp(PLAMBDA (d:tc) e) =FRC,.,p(e)

The remaining clauses are analogous to the corresponding clauses in the
definition of FDVep(e).

3.4 Description Conversion and
Inclusion
Every description corresponds to a set: a region description corresponds

to a set of locations, an effect description corresponds to a set of store oper-
ations, and a type description corresponds to a set of values.

In general, two distinct descriptions may correspond to the same set: for
example, the region descriptions

(UNION rl r2)

and

(UNION r2 ri)

correspond to the same set of locations. Similarly, the effect descriptions

(WRITE (UNION ri r2))

and

33

j

% % %% %
~~~~% %'* .. . . . .


(MAXEFF (WRITE r) (WRITE r2))

correspond to the same set of store operations. Finally, the type descriptions

(POLY (t:TYPE) PURE

(SUBR t) PURE

(SUBR (t) PURE

BOOL)))

and

(POLY (U:TYPE) PURE

(SUBR (U) PURE

(SUBR (U) PURE

BOOL)))

correspond to the same set of values.
We would like to say that two descriptions b, and b2 are convertible iff

they correspond to the same set of locations, store operations, or values. Un-

fortunately, there are many type descriptions that correspond to the empty
set, such as

(POLY (t:TYPE) PURE

t)

and

(POLY (t:TYPE) PURE

(SUBR ((SUBR Wt) PURE t)) PURE

t))

and it makes little sense to regard all such type descriptions as convertible.
Aside from empty types, however, we say that two descriptions are convert-
ible iff they correspond to the same set of locations, store operations, or

values, and we write b, t_ 62. Empty types may be convertible to other

empty types, but not to nonempty types. With the same proviso for empty
types, we say that 6i is a subregion, subeffect or subtype of 62, depending
on the kinds of 6 and 62 (which must be the same), iff the set corresponding
to the description b, is a subset of the set corresponding to the description
62, and we write b, _ 62. Empty types may be subtypes of nonempty types,
but not vice versa. The conversion relation t- is an equivalence relation;
the inclusion relation C_ is a partial order.

Below we present a set of description conversion and inclusion rules for re-

gions, effects and types, in that order. These rules constitute a complete def-

inition of the inclusion relation; additional conversions not explicitly shown
can be obtained from the identity

61 z-6 2 0 (6 b2) A (b, 2)

There are no conversion or inclusion rules for descriptions of different kinds,
since a description is included in another only if they have the same kind.

34

' ~... ' ~ '
v~~~~ % ~

'.2% %,' . . vv%% % % %*
A A A A

3.4.1 Region Descriptions
A region constant or variable corresponds to a countably infinite set of

locations, and the UNION of one or more region descriptions corresponds

to the union of the corresponding sets of locations. It follows that every

region description is uniquely characterized by its set of free region constants

and variables, regardless of how they are combined, and hence that region

descriptions can be flattened, i.e.

(UNION (UNION pi ... P) Pn+l ... Pm) -- (UNION P1 ... Pm)

(UNION p) = p

that order does not matter, i.e.

V~rn . (UNION Pi ... Pn) S (UNION Pw.(1) ... Pr,(n))

(where 7rn ranges over the permutations of the integers 1 ... n), and that

duplicates can be eliminated, i.e.

(UNION Pi P1 ... Pn) :- (UNION P ... P,,)

This leads to the definition of region inclusion given below.

Definition. The inclusion relation C on region descriptions is the

partial order generated by the conversion rules given above and the single

inference rule given below. When p - p', we say that p is a subregion of p'.

Vi 3j. pi = p-
(UNION P1 ... Pn) C (UNION p' ... pu)

Using the conversion rules given above, one can convert any region descrip-
tion to a union of one or more region constants and variables. If we regard

the arguments to UNION as a set, we find that two region descriptions that

have been put in this form are convertible iff they correspond to the same set.
Thus, the set of closed region descriptions modulo conversion is isomorphic
to the set of all possible nonempty combinations of region constants, i.e. to
the set

Pow(Rconst) - {0

When region variables are taken into account, the set of region descriptions
modulo conversion is isomorphic to the set

Pow(Rconst U Dvar) - {}

The region descriptions modulo conversion form a powerset lattice with the

bottom element removed. The region constructor UNION acts as the least
upper bound operator on regions.

It would be possible to add a top element to the set of regions. We have

decided not to do so, in part in order to keep MFX simple, and in part for
reasons discussed at the end of Chapter 5.

35

" - . .

3.4.2 Effect Descriptions
An effect constant or variable corresponds to a set of store operations, and

a combination of zero or more effect descriptions corresponds to the union of

the corresponding sets. It follows that the effect constructors ALLOC, READ

and WRITE distribute over the least upper bound operator:

(ALLOC (UNION P1 ... P.)) = (MAXEFF (ALLOC P1)... (ALLOC P.))

(READ (UNION P1 ... P.)) = (MAXEFF (READ pi) ... (READ p,,))

(WRITE (UNION P1 ... Pn)) (MAXEFF (WRITE p1)... (WRITE pn))

Note that the least upper bound operator on regions is denoted by the symbol
UNION, whereas the least upper bound operator on effects is denoted by the
symbol MAXEFF.

It also follows that effect descriptions can be flattened, i.e.

(MAXEFF (MAXEFF el ... en) en+1 ... em) = (MAXEFF el ... em)

(MAXEFF e) = e

that order does not matter, i.e.

V *rn . (MAXEFF el ... en) -, (MAXEFF er(I) ... e,(n))

(where r, ranges over the permutations of the integers 1 ... n), and that
duplicates can be eliminated, i.e.

(MAXEFF e1 e 1 ... fn) = (MAXEFF 1 ... fn)

This leads to the definition of effect inclusion given below.

Definition. The inclusion relation 1_ on effect descriptions is the partial
order generated by the conversion rules given above and the single inference
rule given below. When e C e', we say that e is a subeffect of e'.

Vi 3j .e - j

(MAXEFF el ... en) Q (MAXEFF e ... E'm)

This definition gives rise to the following derived rule:

P P,
(ALLOC P) E (ALLOC p')

(READ p) [(READ p')

(WRITE p) [(WRITE p')

Using the conversion rules given above, one can convert any effect de-
scription to a combination of zero or more effect variables and zero or more
effect descriptions of the form (sort extent), where sort is a effect constructor

36

%. % P%

e tio t.3r;q - _

and extent is a region constant or variable. If we regard the arguments to
MAXEFF as a set, we find that two effect descriptions that have been put in
this form are convertible iff they correspond to the same set.

Thus, the set of closed effect descriptions modulo conversion is isomorphic
to the set of all possible combinations of pairs of effect constructors and region
constants, i.e. to the set

POW({ALLOC, READ, WRITE} x Rconst)

When region variables and effect variables are taken into account, the set of
effect descriptions modulo conversion is isomorphic to the set

POW(({ALLOC,READ, WRITE} x (Rconst U Dvar)) U Dvar)

The effect descriptions modulo conversion form a powerset lattice with PURE,

the synonym for "(MAXEFF)", at the bottom. The effect constructor MAXEFF %

acts as the least upper bound operator on effects.
It would be possible to add a top element to the set of effects. We have

decided not to do so, in part in order to keep MFX simple, and in part for
reasons discussed at the end of Chapter 5.

3.4.3 Type Descriptions
A type corresponds to a countable set of values, which we regard as syn-

tactic entities. In type descriptions that have bound variables, the choice
of bound variables is immaterial. This is illustrated by the rule for alpha-
conversion, where [d'/d] indicate substitution of d' for all free instances ofd:

(POLY (d:K) Tr) ' (POLY (d':rc) T[d'/d]) (d' V FDVdeC(r))

Unlike the region and effect descriptions, the type descriptions do not
have rules for reordering, flattening and duplicate elimination. Indeed, the
type conversion and type inclusion rules for the various type constructors
are not even symmetric, nor are they in all cases monotonic. The formal
type inclusion rules are given below; an informal explanation with examples
follows. r

Definition. The inclusion relation C on type descriptions is the partial
order generated by the conversion rule given above and the inference rules
given below. When r E r', we say that r is a subtype of r'.

The type inclusion inference rule for the type constructor SUBR reflects
the fact that SUBR is monotonic in its effect and return type components,
but anti-monotonic in its parameter type component. This is consistent with
its interpretation as corresponding to a set of subroutines [Mit84, p 272].

-r r A eEe' A T2 2

(SUBR (7-1) f T2) E (SUBR (7) C' 72)

37
-'4

Ir %

% ''' 'p vP.f ' p.
4

* ~ *% 5 *S~

The rule for the type constructor POLY reflects the fact that POLY is mono-
tonic in its effect and return type components. This is consistent with its
interpretation as corresponding to a set of polymorphic expressions [id.].

eCe' A rEr'

(POLY (d:c) e r) E (POLY (d:tc) e' T')

The rule for the type constructor REF reflects the fact that REF is mono-
tonic in its region component but neither monotonic nor anti-monotonic in its
type component. This is consistent with its interpretation as corresponding
to a set of (writable) memory locations.

pep' A 1 -'

(REF p T) E (REF p' r')

To see why REF is monotonic in its region component but neither monotonic
nor anti-monotonic in its type component, consider the following argument.
Conceptually, a location is equivalent to a pair of subroutines, one for reading
and one for writing. Thus, the type (REF p T) is in some sense equivalent to
a pair of types, (SUBR (UNIT) (READ p) T) and (SUBR (7) (WRITE p) UNIT).

Since p appears as the latent effect in both cases, (REF p r) is a subtype of
(REF p' r) whenever p E p'. However, since r appears as the return type in
the first type and as the parameter type in the second type, (REF p r) is a
subtype of (REF p r') only if r C r' and r -1 r', i.e. only if r - r'. It follows
that (REF p r) is neither monotonic nor anti-monotonic in r.

The type descriptions modulo conversion do not form a lattice, because
the set is not closed under U and fl. For example, there is no type description
,r such that UNIT C 7- and BOOL E T"; similarly, there is no type description
T ' such that -r' C UNIT and r' C BOOL. However, the partial order E on type
descriptions does have the property that any two type descriptions that have
an upper bound also have a least upper bound, and any two type descriptions
that have a lower bound also have a greatest lower bound.

It would be possible to add top and bottom elements to the set of types,
but we have decided not to do so in order to keep MFX simple.

We conclude this section with a few examples that illustrate the type
inclusion rules. If int is a subtype of real and r is a region description,
then

(SUBR (real) PURE

int)

is a subtype of

(SUBR (jnt) (READ r)

real)

38

NV- -
.

%, % % %% .' % % %_.,.'

Similarly, if r is a region description, then

(POLY (t:TYPE) PURE

(SUBR ((REF r t)) PURE

(REF r t)))

is a subtype of

(POLY (U:TYPE) (ALLOC r)

(SUBR ((REF r u)) (READ r)

(REF r u)))

Finally, the type inference rule for REF types is illustrated by the following ,

examples: if int is a subtype of real and ri and r2 are region descriptions,
then the type description

(REF rl int)

is a subtype of the type description

(REF (UNION ri r2) int) %

but not of the type description

(REF rl real)

3.5 Static Semantics .

The grammar of the language, which was presented in the first section
of this chapter, defines the syntax of kinds, descriptions and expressions.
However, not all syntactically correct descriptions or expressions make sense:
for example, the following expressions are meaningless, since TRUE is not a
subroutine, NIL is not a Boolean, and FALSE is not a location.

(TRUE NIL)

(IF NIL TRUE FALSE)

(GET FALSE)

In order to define what descriptions and expressions do make sense, we
introduce the notion of well-formed descriptions and expressions. Informally,
a description is well-formed iff it can be assigned a kind, and an expression
is well-formed iff it can be assigned a type.

Below, we give a formal definition of what we mean by a well-formed
description or expression. For descriptions, this definition is expressed in the

form of a set of kind axioms and kind inference rules. For expressions, the
definition is expressed in the form of a set of type axioms and type inference
rules.

Every well-formed expression has not only a type, but also an effect. The
effect of an expression is determined by a set of effect axioms and effect
inference rules. In order to emphasize the interplay between types and effects,

we present the effect inference rules together with the type inference rules.

39

3.5.1 Kind Inference
Because a description may have free variables, the kind of a description

is defined in the context of a kind assignment , which is a partial function
B : Dvar --- Kind that maps description variables to their kinds.

Definition. A description 6 has kind K with respect to the kind
assignment B iff the formula

B - 6 :,

can be derived using the axioms and inference rules given below.

We write 6 : x when B F 6 : K. for all B. e

The kind axioms, below, give the kinds of the description constants and
variables.

r : REGION

t : TYPE
B F- d: B(d)

The sole kind inference rule for region descriptions (shown below) states
that the UNION of one or more descriptions of kind REGION also has kind
REGION. ,Vi, 1 < i < n .B - pi :REGION

B - (UNION P1 ... pn) :REGION

There are two kind inference rules for effect descriptions. The first rule
states that if p has kind REGION, then the effect descriptions (ALLOC p),

(READ p) and (WRITE p) all have kind EFFECT.

B - p: REGION

B F (ALLOC p) :EFFECT -.

B F (READ p):EFFECT

B F (WRITE p) :EFFECT

The second rule states that the MAXEFF of zero or more descriptions of kind
EFFECT also has kind EFFECT. In particular, the effect description (MAXEFF)

or PURE has kind EFFECT.

Vi, 1 < i < n. B - ej : EFFECT

B F- (MAXEFF El ... en) :EFFECT

Finally, there are three kind inference rules for type descriptions. The first -. ."

two rules are direct adaptations of the corresponding rules in the higher-order
typed lambda-calculus, changed only to handle the effect component of the
SUBR and POLY type descriptions. We write B[d +-]c) to denote the kind
assignment obtained by patching B at d so that B[d --](d) = K.

B TI: TYPE

B e: EFFECT

B F2 : TYPE

B F (SUBR (71) T2): TYPE

40

L" s

B[d T-:] T:TYPE

B[d f- :] • EFFECT

B - (POLY (d:K) e r) : TYPE

The rule for REF type descriptions simply states that if p has kind REGION

and r has kind TYPE, then (REF p r) has kind TYPE.

B F-p: REGION

B r : TYPE

B - (REF P r):TYPE

Definition. A description 6 is well-formed with respect to a kind.,
assignment B iff it has a kind under that kind assignment, i.e. iff B F 6 :
for some Kc.

The kind inference rules have been constructed so that any well-formed
description has a unique kind: if B - 6 : tK and B - 6 : K-2 then r. = K2.

3.5.2 Type and Effect Inference
In this section we present the axioms and rules for determining the type

and effect of an expression. The axioms and rules for determining the type of
an expression are intended to be as routine as possible; they closely resemble
the corresponding axioms and rules for the higher-order lambda-calculus.

The axioms and rules for determining the effect of an expression are
new, and merit some advance explanation. The effect axioms for constants,
LAMBDA expressions and PLAMBDA expressions (in other words, the axioms
for values) are straightforward: since values do not exhibit any computa-
tional behavior (i.e. they cannot be reduced), all values have effect PURE.

Likewise, all ordinary variables have effect PURE.

The effects of the remaining expressions are given by effect inference rules.
In general, the effect of an expression consists of two components, namely
its inherited effect and its intrinsic effect:
o the inherited effect of an expression consists of the effects of those of its

subexpressions that may be evaluated in order to evaluate the expression.
Specifically,
" an (ordinary or polymorphic) abstraction inherits no effects, and has

an inherited effect of PURE;
" any other expression has an inherited effect equal to the least upper

bound of the effects of its immediate subexpressions.
* the intrinsic effect of the expression is the effect that is introduced by the

expression itself rather than by one of its subexpressions. Specifically,
" an (ordinary or polymorphic) application has an intrinsic effect equal

to the latent effect of the subroutine;
" a NEW, GET or SET expression has an intrinsic effect consisting of a

ALLOC, READ or WRITE effect, respectively, on the region to which the
location in question belongs;

41

" ..-. -

*
'r

0 any other expression has an intrinsic effect of PURE.

The cumulative effect of an expression is the least upper bound of its inherited
and intrinsic effects, either or both of which may be PURE.

Because an expression may have free ordinary and description variables,
its type and effect are defined in the context of both a kind assignment and a
type assignment. A type assignment is a partial function A: Var -- Type
that maps ordinary variables to their types.

Definition. An expression e has type r with respect to the type
assignment A and the kind assignment B iff the formula

A,B F- e:

can be derived using the axioms and inference rules given below. Similarly,
the expression has effect e iff the formula

A,B I- e!e

can be derived. .

We write e :r when AB F e : r for all A and B, and e e when
A,B I- e ! e for all A and B.

The type axioms, below, give the types of the ordinary constants and
variables.

NIL : UNIT

b: BOOL

A,B - x:A(x)

The effect axioms, below, give the effect of values and ordinary variables,
which is always PURE.

t ! PURE

X ! PURE

The type inference rule for ordinary abstraction (shown below) is a gener- r
alization of the corresponding rule in the typed lambda-calculus. The main
difference is that the effect of the body of the LAMBDA expression is incor-
porated into the type of the expression itself. This reflects the fact that the
body is not evaluated when the LAMBDA expression is evaluated, but when
the subroutine is applied. We write A[x -- T] to denote the type assignment
obtained by patching A at x so that A[x - r](x) = r. Note that the effect of
a LAMBDA expression is always PURE, since a LAMBDA expression is a value.

B - T : TYPE

A[x r],B F e:r'
A[x -r],B F e!e

A, B (LAMBDA (X:r) e): (SUBR (T) e T')

42

',% % % %.

FM Pon .. . _ , , . .WV . .VW .

The type and effect inference rule for ordinary application is a general-
ization of the corresponding rule in the typed lambda-calculus. The main
difference is that the latent effect incorporated in the type of the subroutine
becomes part of the effect of the application as a whole. This reflects the fact
that the body of the subroutine is evaluated when the subroutine is applied.
Note that the type of the actual parameter need not match that of the formal
parameter exactly, but must be included in it.

A,B I- e : (SUBR (ri) f 7r2)
A,B I- e2 :r A r C: r1

A,B e" el!ei
A,B - e2 ! 2

A,B I- (el e2) r2

A,B I- (el e2) ! (MAXEFF el e2 f)

The rule for polymorphic abstraction is a generalization of the correspond-
ing rule in the higher-order typed lambda-calculus. Again, the main differ-
ence is that the effect of the body of the PLAMBDA expression is incorporated
into the type of the expression itself, reflecting the fact that the body is not
evaluated when the PLAMBDA expression is evaluated, but when the subrou-
tine is applied. Note that the effect of a PLAMBDA expression is always PURE,

since a PLAMBDA expression is a value.

A,B[d'- F e:T
A,B[d -K] F- e! e

Vx E FV(e) . d € FDVdeac(A(x))
A,B I- (PLAMBDA (d:) e) : (POLY (d:tc) e 7-)

This rule ensures that the free description variables of the types of the free
variables of the body are not captured by the bound description variable.

The rule for polymorphic application is a generalization of the correspond-
ing rule in the higher-order typed lambda-calculus. Again, the latent effect
incorporated in the type of the subroutine becomes part of the effect of the
application as a whole. Note that 6'[6/d] denotes the result of substituting 6
for all free instances of d in b', renaming the bound variables in 6' as needed
to avoid capture.

A,B " e!f

B F- 6 :
A,B F- (PROJ e 6)
A,B F- (PROJ e 6) ! (MAXEFF f c'[6/d])

The rule for conditional expressions ensures that the first subexpression
has type BOOL, and that the remaining two subexpressions have types whose

43

i*i
All 4.1 % % %

FWVM -~ W A ,'a.- , an..p, W..V PVTFWV - wVwun V arU UW1 .r vau rur. w,.rVR TV.. r" 'W7%. a r 1 W _W MX. tr'u r.

least upper bound exists. When this is the case, the type of the IF expression
is this least upper bound, and its effect is the least upper bound of the effects
of its subexpressions.

A,B - e1 :BOOL A,B F e l ILA
A, B F e2 :T 2 A, B I e2 !E 2

A,B F e: 3 A,B - e3! 3
T2 U T3 = T

A,B F (IF el e2 e3) T

A, B - (IF e1 e 2 e3) ! (MAXEFF C1 C2 E3)

This inference rule is rather conservative: it is written as if both branches
of a conditional are always evaluated. It might be possible to express the
fact that the effect of the expression depends on the value of el, for example
by using dependent effects of the form (IF e el E2), which correspond closely
to dependent conditionals [Car86, p. 13]. However, we are not currently

exploring this line of research.

The rule for sequencing expressions is straightforward: provided that each
subexpression is well-formed, the type of a BEGIN expression is the same as
that of the last subexpression, and the effect is the least upper bound of the
effects of the subexpressions.

Vi, 1<i<n.A,B - ei:Ti
Vi,1 < i < n. A, B F- ei ei

A,B F (BEGIN eI ... en) :n

A,B I- (BEGIN el ... e) ! (MAXEFF f ... en)

The remaining three rules deal with the operators for allocating, reading,
and writing locations in the store. The rule for the NEW expression can be
read as follows: provided that p has kind REGION, r has kind TYPE, and e is
well-formed, and provided that the type of e is a subtype of r, the type of
the expression as a whole is (REF p r), and the effect of the expression is the
least upper bound of the effect of e and the effect (ALLOC p).

B F P; REGION A
B F- T :TYPE

A,B F e:r' A r'Cr
A,B F e!e

A,B - (NEW p r e) : (REF p T)

A, B F (NEW p T e) ! (MAXEFF e (ALLOC p))

The rule for the GET expression can be read as follows: if the type of e is
(REF p r), then the type of the expression as a whole is r, and its effect is
the least upper bound of the effect of e and the effect (READ p).

A,B F e: (REF p T)

A,B F e!e
A,B F (GET e) : T

A,B F (GET e) ! (MAXEFF e (READ p))

44"

The rule for the SET expression can be read as follows: provided that the

type of el is (REF p r) and the type of e2 is a subtype of r, the type of the
expression as a whole is UNIT, and its effect is the least upper bound of the
effects of el and e2 and the effect (WRITE p).

A, B F- e 1 : (REFp r)
A,B - e2 :r' A r'Er

A,B -e l E1

A, B I e2 !2
A,B F (SET el e2) : UNIT 6

A,B F (SET el e 2) ! (MAXEFF f1 e2 (WRITE p))

3.5.3 Properties of the Static Semantics
Although the type and effect inference rules appear to be interleaved, the

rules are structured so that any expression that has a type also has an effect.
We call such an expression well-formed.

Definition. An expression e is well-formed with respect to a type
assignment A and a kind assignment B iff it has a type under A and B, i.e.
iff A, B F e : r for some 7. If e is well-formed with respect to the empty
type and kind assignment we write W.F-e.p(e).

The type and effect inference rules have been constructed so that the
type and effect of a well-formed expression are themselves well-formed and
of kind TYPE and EFFECT respectively: if A, B F e : r and A, B - e ! f
and B - A(x) : TYPE for each x E FV(e), then B F r : TYPE and
B - f : EFFECT.

The type and effect inference rules have been constructed so that any
well-formed expression has a unique type and effect: if A, B - e : r1 and
A, B - e : r 2 then rl = T2, and likewise for effects.

Finally, two properties of type and effect inference are of particular signif-
icance: a well-formed ordinary application yields a well-formed result with
the expected type and effect, and a well-formed polymorphic application
yields a well-formed result with the expected type and effect in which the
actual parameter has been substituted for the bound description variable of
the operator.

* If an expression e has type r and effect c under a type assignment A and
a kind assignment B such that A(x) = 7', and e' is a closed expression

whose type is a subtype of r', then e[e'/x] is well-formed under A and B,and has a type that is a subtype of 7- and an effect that is a subeffect of E. , -

" If an expression e has type -r and effect f under a type assignment A and
a kind assignment B such that B(d) = K, and b is a closed description of
kind r., then e[bld] has type T-[bld] and effect E[bld] under A and B.

These two properties are used in the next chapter to prove the all-important
type and effect preservation proposition.

45

%.
,.':": :- , . ':"% up-":-- ',":X " % %- --. :,€- % ¢ - ?:: .: :' . . " - " :""":-.,

3.6 Aliasing
The notion of aliasing usually refers to a situation in which two distinct

identifiers (i.e. constants and/or variables) refer to overlapping sets of lo-

cations. Since we take the view that effect analysis should be performed

strictly on the basis of effect specifications, we are interested only in aliasing
between description identifiers.

Most programming languages offer two ways to bind ordinary variables:
as formal parameters or as local variables. The actual value of the variable is

unknown in the former case, but known in the latter. Similarly, a description

variable can be either an abstract type, effect or region, or a synonym for a

specific type, effect or region description. The actual description correspond-
ing to the variable is unknown in the former case, but known in the latter.

We regard description synonyms as mere syntactic sugar, and we have not

included them in MFX; in Chapter 7 we show how they can be added. In this

section we discuss the issue of aliasing as it relates to description variables
that represent abstract types, effects, and regions respectively.

Since we take the view that effect analysis should be performed strictly
on the basis of effect specifications, the MFX type and effect inference rules
use only the description information that has been supplied in the form of
declarations, even when the corresponding actual parameter is known.

3.6.1 Abstract Types
For type variables, the only property of interest is convertibility. Since

distinct type variables are treated as if they were unrelated type constants,
a type variable is not convertible with any other type description. This
guarantees representation independence.

3.6.2 Abstract Effects
For effect variables, there are two properties of interest: convertibility and

interference. As for convertibility, distinct effect variables are treated as if
they were unrelated effect constants, and an effect variable is not convertible
with any other effect description. As for interference, no additional assump-

tions are made: thus, any conservative syntactic effect analysis algorithm
has to assume that an effect variable may interfere with any effect, including
itself. For a detailed discussion of interference, see Chapter 8.

We have considered augmenting MFX with some form of bounded quan-
tification over effects; this would permit the programmer to specify, as part

of the declaration of a formal effect parameter, an upper bound (such as a
read-only effect description) that the corresponding actual parameter must
satisfy. However, a detailed investigation of bounded quantification is beyond
the scope of this thesis.

46.".46 '4

....,. ".. -. - - .- -

%'" P P d o pv.•%1 '" % % %, ,,,€.'. ,. "% % . .'.-.".*,-.-% , .% .. ,

3.6.3 Abstract Regions
For region variables, there are also two properties of interest: convertibility

and overlap. As for convertibility, distinct region variables are treated as if
they were unrelated region constants, and a region variable is not convertible
with any other region description. As for overlap, the treatment of regions
differs somewhat from the treatment of types and effects. If no additional
assumptions were made about region parameters, any conservative syntactic
effect analysis algorithm would have to assume that any two region variables
may correspond to overlapping regions. This would discourage the use of
procedural abstraction, which is contrary to our philosophy.

We have considered augmenting MFX with constrained quantification over
regions; this would permit the programmer to specify, as part of the decla-
ration of a formal region parameter, a set of constraints (such as disjoint-
ness from certain other region descriptions) that the corresponding actual
parameter must satisfy. However, a detailed investigation of constrained
quantification is beyond the scope of this thesis.

,* %*"

As a compromise, we have adopted a simple language restriction that en-
sures that there is no aliasing between region identifiers. The main advantage
of this restriction is that it permits a conservative effect analysis algorithm
to _.ssume that distinct region identifiers correspond to disjoint regions. Of
course, the main drawback of the restriction is that, due to its conservative
nature, it rules out many programs that do not actually introduce aliasing
at all.

The MFX anti-aliasing rule is modeled after the rule employed by Eu-
clid [Lam77] [Pop77]. However, since the rule concerns aliasing between
region descriptions, it does not affect ordinary applications. Only polymor- .--
phic applications are affected, and then only when the operand is a region
description.

The objective of the anti-aliasing rule is to ensure that for any polymorphic
application (PROJ e p), the region description p be disjoint from all region
constants and variables that are used by the value of e, which must be a
polymorphic subroutine. Fortunately, the region constants and variables
that are used by a value all appear free in its type. This leads us to the
following restriction:

Restriction. In a polymorphic application (PROJ e p), where e has
type T, no region constant or variable may appear free in both 7 and p; in
other words, FRCdesc(r) n FRCdsc(P) and FDVdesc(7) f FDVdesc(p) must be %
empty.

Since the region constants and variables that are used by a value all appear
free in its type, the above restriction is sufficient to maintain the invariant
that effects on distinct region constants and/or variables in any scope do
not interfere. The restriction is rather conservative: it is)ossible that more
precise anti-aliasing rules can be devised. But, to paraphrase Reynolds,

47

'.'" "." ..'"." "'". '. ".". a'."..'" '" .'", " ..."."...". . ." . ". "''...'"." "." ..*'. -* "%,%"q'*," - ."" .*, "
-%

" ,* " * *
% %

%. '%*, " S.
N~' _NA .AA ... ~A.'.'.. .S.'& ' ~ . t A P

where to stop is ultimately a question of taste: the anti-aliasing rule should
permit expressions that obviously do not interfere [Rey78, p. 41, emphasis
in original]. We regard the current anti-aliasing rule as no more than a
reasonable compromise.

S& A

6 Ea

a.,,

p ,.

48
'

I
,

Chapter 4. Dynamic
Semantics

4.1 Introduction
In this chapter we continue our presentation of MFX-1 by defining its

semantics and presenting our propositions regarding the soundness of the
type and effect system. In particular, we present our claims regarding type
and effect preservation, type soundness, static typing, effect soundness, loca-
tion invariance, and typeless semantics. We give proof sketches for all these .
propositions.

The purpose of this chapter is to define the semantics of the language
formally, and to demonstrate the soundness of the type and effect system.

The rest of this chapter is organized as follows. We begin by defining the
standard semantics of the language, which is expressed in terms of a set ofe
rewriting axioms and rewriting inference rules. Next, we present some prop-
erties of these rewriting rules that illustrate the structure of the standard se-
mantics. We then present the type soundness and static typing propositions,
followed by the effect soundness proposition. We conclude by discussing some 4N
additional important properties of the semantics, namely location invariance
and typeless semantics.

4.2 Overview
The standard semantics of the language is based on the standard rewrit-

ing rules for the second-order typed lambda-calculus [Bar84]. In particular,
we have expressed the semantics of application in terms of beta-substitution.
Consequently, there is no environment that maps free variables to their val-
ues, and expressions ought not to have free variables.

This way of treating free variables appears to be rather unusual: the most
popular ways of specifying the semantics of an imperative language, such as
denotational semantics [Gor79b] [Sco82] [Sto77], so-called structured opera-
tional semantics [Plo8l, and the meta-circular evaluator approach [Abe85]
all use environments to represent the relation between variables and their
values. We have adopted the current approach primarily in order to simplify
our proofs.

In our standard semantics, effects are modeled using a store that maps
locations to values. To avoid the complications that arise when a computa-
tion runs out of unused locations, we define a store to be a finite function
from locations to values. Since the number of locations is infinite and every
finite computation allocates only a finite number of locations, this definition
ensures that a computation never runs out of unused locations.

49

%- 4 .MP :V JP % -_%',, .. ",€ ,",, ,"-,v'.. I.,'¢'".' -" . ',-a,', ' (v.- -- .,., . ..- -"

The state of a computation consists of an expression and a store. Com-

putation proceeds by repeatedly rewriting the state until a terminal state is
reached. The rewriting inference rules ensure left-to-right applicative order
evaluation by designating, for each state, the unique innermost expression (if
any)- that can be rewritten next. Since the rewriting rules are uni-directional,
we use the term reduction rather than rewriting, and we refer to the rules as
reduction rules.

To avoid over-specification, we have defined the standard semantics so
that new locations, when needed, are chosen nondeterministically. We show
that the course of computation is not affected by the choice of locations, and
that the result of a computation is unique modulo the choice of locations.
This gives the language implementation a great deal of flexibility, which is
essential for optimization.

Although there is type and effect information available during the reduc-
tion process, we show that the standard semantics does not make use of this
information. The compiler described in Chapter 8 takes advantage of this
fact.

The main propositions presented in this chapter are the type and effect
soundness propositions.

" The type soundness proposition states that if a well-formed expression
has a certain type description, then the type of the value returned by the
expression is a subtype of that type description.

" The effect soundness proposition states that if a well-formed expression
has a certain effect description, then the actual side-effects of the expres-
sion are a subeffect of that effect description.

The effect soundness property forms the basis for the use of syntactic effect
specifications to identify optimization opportunities.

4.3 Standard Semantics

4.3.1 Locations
Before we can describe the semantics formally, we must define what we

mean by locations. Formally, locations are a countably infinite set of con-

stants:b

Loc = {lI,12,... } -locations (1) 1.t

Const = ... - ordinary constants
Loc - locations

A location can be tagged with a region description and a type description. 0
The region tag of a location indicates to what region the location belongs,
and the type tag of a location indicates what types of values the location
may contain. Specifically, a location tagged with a region description p

50

% . ,. %"..-" " '. *--,*.. a I,=' - - *. " J ' 2. . J..' -* ..' ** ..* .'." * 4" * " .°"r J''" . 4 ,

belongs to the region p, and a location tagged with a type description T may
contain values whose type is a subtype of r. The tags of a location ought
to be closed; tags that contain free description variables are meaningless.
We write R(l) for the region tag of the location 1 and T(1) for its type tag.
Moreover, we write 1,,,, to indicate that R(I,) = p and T(1p,) = r.

Every closed region description p corresponds to a nonempty set of region
constants, namely FRCdeac(p). If p is a region constant, then the location
lp,. belongs to the region corresponding to that region constant. If p is a
UNION of several region constants, then the location 1,, belongs to the union
of the corresponding regions. This situation reflects either uncertainty or
indifference about the region constant to which the location actually belongs.

Definition. A location can be reached through a region p, 1 E Reach(p),
iff the region tag of I overlaps with p, i.e. iff FRCdeac(R(l)) fl FRCdeac(p) # 0.

It is convenient to define the free locations of an expression, FLex p(e).
Since locations are constants, the definition of FLe, is trivial: all the loca-
tions that occur in an expression are free. We give a more precise syntactic
definition anyway, in order to highlight the differences between FLe~p(e) and
FV(e).

Definition. The free locations of an expression are given by the
function FLp : Exp -- Pow(Loc) defined below.

FLeZp(NIL) --

FL,,p(b) = 0
FLep(l)= {1}

.FLex ,(x)=0
FLep(LAMBDA (x:T) e)-- FLep(e)

The remaining clauses of the definition of FLep(e) are identical to the cor-
responding clauses of the definition of FV(e).

Since locations are constants and therefore expressions, we must define
their free ordinary and description variables, their free region constants,
their types, and their effects. The first few are easy: since locations are
constants, they have neither free ordinary variables nor free description vari-
ables. However, because of its region and type tag, a location may have free
region constants:

FRCep(lpr) = FRCdec(P) U FRCde. (r)

Because locations are constants, their effect is PURE. Finally, the type of a
location is a REF type whose region and type parameters are equal to the
region and type tags of the location:

P'r :(REF p 7)

51

~~d~ V ? %--

4.3.2 Stores and States
The state of a computation consists of two components: an expression,

which represents the computation that remains to be performed, and a store,
which maps locations to values. Stores and states are formally defined below.

Definition. A store is a finite function a : Loc --+ Val that maps
locations to values. We use Store to denote the set of stores and a to denote
individual stores.

Definition. A state is a tuple (e, a) of the form (Exp x Store). We use

State to denote the set of states and 0 to denote individual states.

Definition. A state 0 is called a terminal state iff its expression
component is a value, i.e. iff 0 = (v, a) for some v and a.

4.3.3 Reduction
Computation proceeds by repeatedly reducing the current state until a

terminal state is reached. The reduction relation =4 on State x State is
defined by a set of reduction axioms and a set of reduction inference rules.
The reduction axioms show how to reduce an expression when certain of its
(immediate) subexpressions have already been reduced to values; the reduc-
tion inference rules show how to reduce an expression to which none of the
reduction axioms applies by reducing one of its (immediate) subexpressions.

A terminal state cannot be reduced; in other words, there are no v, a
and 9 such that (v, a) 4:. 0. The reduction axioms and inference rules make
extensive use of this fact in order to ensure the correct evaluation order.
For example, the reduction axiom for ordinary application (shown below) is
applicable only when the operator is a LAMBDA expression, which is a value,
and the operand is a value as well. This technique is used throughout to keep
the reduction axioms and inference rules from being invoked prematurely.

The relation 'reduces to' or ':.' on (State x State) gives the states, if
any, to which a given state can be reduced.

Definition. The relation 'reduces to' is the relation generated by the
axioms and inference rules given below.

The first two axioms, which deal with ordinary and polymorphic appli-
cation, are adapted directly from the second-order typed lambda calculus.

As before, the notation e[v/x] and e[6/d] indicates beta-substitution, where
bound variables are renamed as needed to avoid capture. Note that the store
is not involved in these reductions.

(((PLAMBDA (d:r) e) v),O') L (e[v/d], a)

Note that the first of these axioms may duplicate the actual parameter v.

This does not cause any problems, despite the possibility of side-effects,

52

pIle.

-.. -. N. %h'.., ~ %,.- O,,. %_,% ,,. '"J.. ' '' ' . . 4 I.,/ * .'.'J.# .,' # ., ,. "'.,,,.,, er.,€, ., . - o %- . % -, , .. % ,, -,% . ,,-. . %,. . .
VP - WO " " % %,, "%',". " % %.A,," " 4"- , %--",."""' . .'''" .'? ' ,',,?, , . v d., .

because the actual parameter is a value, which cannot be reduced and may
therefore be duplicated freely.

The next set of axioms, which deal with conditional and sequential eval- P

uation, should be more or less self-explanatory. Note, once again, that the
store is not involved in these reductions.

((IF TRUE e2 e3), a) :Z* (e2,oa)

((IF FALSE e 2 e 3), Or) : (e3,or)

((BEGIN V), a) (Or)

((BEGIN V el ... e,),or) = ((BEGIN el ... e,,), a) (n > 0)

The remaining axioms deal with the allocating, reading, and writing of
locations.

The axiom for the NEW expression can be read as follows. To reduce the
expression (NEW p r v), choose any location I that is not bound in the store,
and tag it with the descriptions p and T. Then bind I to v in the store, and
replace the expression by the value 1.

((NEW p r V),a) 99 (lp,,a[lp,, - v]) (I not bound in a)

This axiom represents a non-deterministic reduction: unlike the other ax-
ioms, this axiom permits a state to be reduced in one step to any of a

countably infinite number of states, differing only in their choice of the new
location. We show that the choice of new locations does not affect the course
of a computation.

To reduce the expression (GET 1), where 1 is bound to v in the store,
simply replace the expression by the value v. The tags of the location are
immaterial.

((GET 1), a) =- (ar(l), r)

Note that this reduction duplicates the value v. This does not cause any
problems, despite the possibility of side-effects, because a value cannot be
reduced and may therefore be duplicated freely.

To reduce the expression (SET I v), where I is bound in the store, simply
bind 1 to v in the store and replace the expression by the value NIL. In this
case, too, the tags of the location are immaterial.

((SET 1 V),oa) 4* (NIL, a[/ +- V])

This concludes the set of reduction axioms. Note that these axioms can be
invoked only when the outermost expression of the state matches the pattern
of an axiom.

53

' "''aVa - e "€ -€" e . ' - r t-" •@ ."'"." ."•. . ' ''.' " " " ° " " " " * * " ° - " • • • " • - . • '',

', l r : , : -IJ, -, = := S ' J ll . E ~ l J , . FI . W ',L I ,q ,.TIJ . . f*J , U..,U2U_ T7=J.V V .

The reduction inference rules show how to reduce a state 0 that does not
match any reduction axiom by reducing a designated subexpression of the
expression component of 0. In order to describe the reduction inference rules
we need to define the notion of a context.

Definition. A context C is an expression containing a single "hole" in NI%"

which an expression can be placed, i.e. such that C[e] is an expression for any
expression e. For example, if C is (GET (e (I)) then C[e'] is (GET (e e')).

The reduction inference rules are all of the following form:

(C[e], a) = (C[e'], ')

Each rule can be represented by an appropriate context C: for example, the
reduction inference rules for application,

and

((VI C2), a) : ((V,1 e2), al)

can be represented by the contexts ([e2) and (vi]). The reduction
inference rules of MFX as a whole are represented by the following contexts:

* ordinary constants and variables: none
* ordinary abstraction: none
e ordinary application: ([I e2) and (vi [])
Is polymorphic abstraction: none
Is polymorphic application: (PROJ [6)
* conditional evaluation: (IF [] e2 e3)
* sequential evaluation: (BEGIN [] e2 ... en)

* allocating a location: (NEW p r [])
* reading a location: (GET t 1)
* writing a location: (SET 2 e2) and (SET V1 [])

Together with the reduction axioms, these rules guarantee left-to-right, ap-
plicative order evaluation.

The meaning of an expression is a map from stores to terminal states
(where rd is the transitive closure of):

Definition. The meaning of an expression e is the map M[e :
Store -+ State that maps every store a to the set of terminal states that can
result from reducing the state (e,a), i.e.

M[ea { (v, 0) I (e, a), (v,)}

54 .

This map is many-to-many: for example, the expression (NEW r BOOL -

TRUE) maps the store a to the set of states (1, a[l -- TRUE]) for all I .

Dom(a), and the expressions TRUE, (BEGIN TRUE), (BEGIN (BEGIN TRUE)),

and so forth all map any store a to the state (TRUE, a).

In a subsequent section we show that for any expression e and store a, the
terminal states in the set M[e]a are all equal up to the choice of locations.

4.3.4 Properties of the Standard Semantics
The reduction axioms and inference rules have been designed so that every

expression matches at most one reduction axiom or one reduction inference
rule. - - j

For example, consider the expression

((PROJ (PLAMBDA (t:TYPE)

(LAMBDA (X:)

x))
BOOL)

(GET 1))

Although this expression is an application, it does not match the applica-
tion reduction axiom, since neither the operator nor the operand are values.
However, it does match the first of the two reduction inference rules for . "
application, since the operator is a polymorphic application that can be re-
duced by the corresponding reduction axiom. This reduction changes the
expression to

((LAMBDA (X:BOOL)

X)

(GET 1))

without accessing or changing the store.
The resulting expression still does not match the application reduction

axiom, since the operand is not a value, as required by the axiom. It also
does not match the first application reduction inference rule, since there is
no way to reduce the operator. It does, however, match the second reduction
inference rule, since the operator is a LAMBDA expression, which is a value.
If the store maps 1 to TRUE, this reduction changes the expression to

((LAMBDA (X:BOOL)

X)
TRUE)

while reading the store to obtain the contents of 1.
Since the operator and the operand of this expression are both values,

this expression can be reduced by the application reduction axiom. This
reduction changes the expression to

TRUE

55

§7- .91

%.

without accessing or changing the store. Note that since every expression U
matches at most one reduction axiom or one reduction inference rule, the

order in which the reduction axioms and inference rules are listed is imma-

terial. ,

By induction on the number of inference rules employed in a reduction

step, it can be shown that every state can be reduced in at most one way, Ii
except for the choice of free locations. The expressions that can participate
in the next reduction step of a state are called the active expressions of that

state.

Definition. The active expressions of an expression are given by the 1-6

following inductive definition:
1. any expression is an active expression of itself, provided that it is not a

value;

2. if C[e] is an active expression of eo, and there exists a reduction inference
rule that states that (C[e], a) can be reduced to (C[e'], a') if (e, a) can be
reduced to (e', a'), then e is an active expression of e0 , provided that it is
not a value.

The active expressions and contexts of a context are defined analogously.

Definition. The active expressions of a state are the active expressions
of its expression component.

The active expressions of an expression form a chain: the chain begins at
the expression itself, and the active (immediate) subexpression of each active
expression forms the next link of the chain. The last expression on this chain
is called the active redex of the expression. For example, the expression

((LAMBDA (X:BOOL) X)

(BEGIN

(SET 1 FALSE)

(GET 1)))

has the following chain of active expressions:

((LAMBDA (x:BOOL) X)

(BEGIN

(SET 1 FALSE)

(GET 1)))

(BEGIN

(SET 1 FALSE)

(GET 1))

(SET 1 FALSE)

56 A

......................% % % % %... %................ -..e : c;f:, ,./, ; ,,,... :.r,.....'.,.'. ;' .,.,, .~ ..r.'.: .. ,,.. .., .,,. ,.%.' V% %,,'.,,,_€ '.'. '?

an n~n Un tr&W V nn n w W L'- W WWTrw VW MNt-W W XI W . 31nMn . t % w~ rWr~ur ~ Ir ~ V-S-S r W_ r Ar

.- 4.

The active redex of the expression is (SET 1 FALSE).

The expression (LAMBDA (X: BOOL) x) in the above expression is not
active because it is already a value; the expression (GET 1) is not active
because the reduction inference rule for BEGIN reduces only the first subex-
pression.

Since every state has at most one active redex, it follows that every state
can be reduced in at most one way, namely by invoking the reduction axiom,
if any, that matches the active redex. Since all the reduction axioms are
deterministic except for the choice of free locations it follows that reduction
in general is deterministic except for the choice of free locations.

4.3.5 Stuck States
Definition. A nonterminal state (e, a) (where e V Val) is stuck iff it

cannot be reduced, i.e. iff there is no 9 such that (e, a) =7 0.

In a stuck state, the active redex is one of the following:

1. a variable
2. (v1 v2) where v, is not an ordinary subroutine
3. (PROJ v 6) where v is not a polymorphic subroutine

4. (IF V e2 e3) where v is not a Boolean
5. (GET v) where v is not a location
6. (GET 1) where I is not bound in the store
7. (SET V1 V2) where v , is not a location

These expressions can be divided into various categories:

* case 1 represents an attempt to use an undeclared variable,
" case 6 represents an attempt to use an uninitialized location, and
* cases 2-5 and 7 represent type errors.

Proposition. If the state (e, a) is stuck, then either e is ill-formed, or it
contains some location whose contents is undefined.

Proof. A state (e, a) is stuck iff its active redex matches one of the cases
1-7 listed above. Let e' be this active redex. If e' contains some location
whose contents is undefined, then so does e, and if e' is ill-formed, then so
is e (by the monotonicity of the type inference rules). Therefore, it remains
to verify that if e' matches one of the cases 1-7 listed above, then it is either

ill-formed or contains some location whose contents is undefined. We discussthe first few cases. N

1. If e' is a variable, then e' is not closed, and therefore ill-formed.
2. If e' is of the form (vi v2) where v, is not an ordinary subroutine, then

e' is not well-formed because no value other than an ordinary subroutine
can have a type of the form (SUBR (ri) f r 2).

The remaining cases are similar. 0

., %' %. %, %~E. %~U~ N!
%ri% % % '..l ~~ J .j

4' & ' .

In the next section we show that reduction of a well-formed state never
gets stuck. In practical terms, this means that static type checking pre- to

vents all run-time type errors and all attempts to use undeclared variables
or uninitialized locations.

4.4 Type and Effect Preservation
In this section we show that reduction of a well-formed state yields another

well-formed state whose type and effect are at most those of the original state. %

Since a well-formed state is not stuck, it follows as a corollary that reduction
of a well-formed state never gets stuck.

A state is consistent iff all the locations that occur in the state are bound

in its store component, and have the same tags everywhere. Before we can
formalize this definition, we must define what it means for a location to occur

in a store or state.

Definition. A location 1 occurs in a state (e, a) iff it occurs in the .N
expression component e or in the store component a. The locations that
occur in a state are given by the function FLata, which is formally defined
below.

FL.to(a) = Domr(a) U U FLezp(a(1))
IEDom(au)

a(ep))(e) U FL 10(a)

Definition. A state is consistent, C((e, a)), iff every location that occurs
in the state is bound in the store and has the same tags everywhere, i.e. iff
FLt.((e, a)) _ Dom(a), and Ip, E FL.t,((e, a)) and Ip,,,, E FL~to((e, a))
implies that p = p' and r = r'. Y,

Definition. A store is well-formed, W.F.1to(a), iff every value in the

store is well-formed and has a type description that is a subtype of the type
tag of its location. In other words,

W. Ftor(a) 1 E Dom(a) =. (a(l) : r A r C T(l))

We can now define what constitutes a well-formed state.

Definition. A state (e,a) is well-formed, WF. 't((e, a)), iff it is
consistent and e and a are both well-formed. In other words,

W.Fatatc((e,oa)) -t C((e,o,)) A W.F,.,,(e) A W.Fa'tore(Oa)

If (e,a) is well-formed and e : r, we write (e,a) : r and say that (e,a) has
type r; similarly, if (e, a) is well-formed and e ! e, we write (e, a) ! f and say
that (e, a) has effect f. Note that every terminal state has effect PURE.

58

%4~

% -, .T.Z'5,,'Yz~.".,,..".", ,{.*/ ".".,.,"."."'A.(.''" v.%'.'..".",..'-"."," . . -.. :'-.%." '..r.,

We can now express the type and effect preservation proposition. This
proposition is a generalization of the type preservation theorem of the second-

order typed lambda-calculus, which states that reduction of a well-typed
expression yields another well-typed expression of the same type.

The proposition presented here is more general than the type preservation
theorem of the lambda-calculus in three respects: side-effects, type inclusion,
and effect descriptions.

" In order to deal with side-effects, we have generalized our proposition from
expressions to states.

* In order to deal with type inclusion, we have relaxed our proposition so
that the reduction of a state of type r may yield a state of any type r' C r.

" Finally, in order to deal with effect descriptions, we have added the propo-
sition that the reduction of a state with effect e yields a state with some
effect c' E e.

Proposition. (Type and Effect Preservation) Reduction of a well-formed
state preserves or decreases the type and effect descriptions of the state.

e: : r' where T' -r

e f l, e' ! where e' C E(e, a _ (e', o')

Proof. By induction on the number of inference rules employed in a
reduction step, with a case analysis for the reduction axiom employed. 0

During the course of a computation, both the type and the effect of the
state may decrease. As is customary, the decrease in the type reflects the
decreasing uncertainty regarding the type of the eventual result of the com-
putation, and the same is true of the decrease in the effect. However, the
decrease in the effect also reflects the fact that during the course of reduc-
tion, certain effects actually take place, during which process the expressions
that actually cause the effects are replaced by values, which cannot cause
any further effects.

This difference is most apparent when the computation reaches a terminal
state, by which time the effect of the state must have decreased to PURE. The
type of the state, on the other hand, is not constrained a priori to converge
to a certain type.

Corollary 1. (Type Soundness) If reduction of a well-formed state (e, a)
terminates in a state (v, a'), then the type of v is a subtype of the type of e.

Corollary 2. (Static Typing) Reduction of a well-formed state never
gets stuck; in particular, reduction of a well-formed state never encounters
an undefined variable, an uninitialized location, or a type error.

In practical terms, this means that an implementation of the language
does not need to check for these conditions at run-time.

59

iV

4.5 Effect Soundness
In this section we show that the effects of reduction of any well-formed

state are a subeffect of the effect description of that state. This property
forms the basis for syntactic effect analysis.

Lemma. In a well-formed state, every active expression is closed.
Proof. Since every well-formed state is closed, all expressions contain-

ing free variables must appear inside of LAMBDA and PLAMBDA expressions.
By definition, these expressions are values, which have no active subexpres-
sions. "

Since every active expression in a well-formed state is closed, we can re-
fer to the effect of an active expression without specifying a type or kind
assignment.

Lemma. (Effect Propagation) In a well-formed state, the effect of each
active expression is a subeffect of the effect of its parent expression. In
particular, the effect of the active redex is a subeffect of the effect of the
outermost expression.

Proof. There is a direct correspondence between the reduction inference
rules, which determine which of the subexpressions of an expression can be
active, and the effect inference rules: the effect inference rules are deliberately
structured so that the effect of every expression is at least the least upper
bound of the effects of its (immediate) subexpressions that can be active. It r "
follows that the effect of each active expression is a subeffect of the effect of
its parent expression. 0

In order to state our effect soundness proposition, we need to be able to
refer to the locations that are involved in effects in a reduction step.

Definition. For all 9 and 0' such that 0 0 9', let
" A(9, 0 ') denote the set of locations allocated in the reduction step 9 9'

" 1Z(O, 0') denote the set of locations read in the reduction step 0 , 9'
" W(O, 0') denote the set of locations written in the reduction step 0 0'

Proposition. (Effect Soundness) Reduction of a well-formed state al-
locates, reads, and writes only locations that can be reached through the
regions specified by its effect. In other words, if 0 4:. 9' and 0 ! e where

f (MAXEFF (ALLOC PA) (READ PR) (WRITE pw))

then
A(0,0') _ Reach(PA)

IZ(9,O') _ Reach(PR)

W(0,0') _ Reach(pw)

Proof. By the effect propagation lemma and the fact that every NEW,
GET or SET expression has a corresponding ALLOC, READ or WRITE effect. El

60

0ti

. * ~ * ~ * ~ S ~ ~

Since reduction preserves or reduces the effect of a state, this proposition N
generalizes immediately to 961d * 0'.

In practical terms, the effect soundness proposition implies that the effect

description of an expression is a conservative approximation of the actual
side-effects that the expression may have. This effect information, which can
be inferred and verified statically, can be used to identify a variety of op-
timization opportunities, including concurrent evaluation and memoization. %
This means that it is possible to integrate functional program fragments into
imperative programs while retaining the benefits of functional programming
within those program fragments.

4.6 Location Invariance
In this section we show that the meaning of an expression is independent of

the choice of locations that are allocated during the computation. In practical
terms, this means that the semantics of the language are independent of the
storage allocation policy employed by the implementation.

The proof of this property is fairly routine. We begin by defining an , •

equivalence relation that relates stores that are equal up to the choice of
locations, and likewise for states. We then show that if a state can be reduced
in one step to multiple states, then these resulting states are all equivalent,
and we show that subsequent reduction preserves this equivalence. We finally
consider the equivalence classes of stores and states modulo the choice of
locations, and we show that the meaning of an expression corresponds to a
function from equivalence classes of stores to equivalence classes of terminal
states.

Definition. A location permutation is a bijection y Loc -- Loc. A
permutation y fixes a set of locations L iff p(l) = I for all I E L.

We extend permutations to stores and states as follows: p(o) and p(O)
denote the store and state, respectively, obtained by simultaneously replacing
every location occurrence 1 in o or 0 (as defined by FLso) and FL8 ta(9))
by p(l).

When two states are equal up to a location permutation, we consider them
to be equivalent. If this permutation fixes a set of locations L, the states are -

equivalent with respect to L.

Definition. Two states 0 and 0' are equivalent with respect to a set of
locations L, 0 'L 0'. iff ' = p(8) for some p that fixes L.

This relation is an equivalence relation: it is reflexive (since the identity
permutation fixes every set L), it is symmetric (since the inverse of a per-
mutation that fixes L also fixes L) and it is transitive (since the composition
of two permutations that fix L also fixes L).

When two states are equivalent with respect to FL.p(c) or FL,j(9), we
say that they are equivalent with respect to c or 0, respectively.

61

%a.. %.%

% ~ Ac

a,*- -A, 4

Since a reducible state can be reduced in precisely one way except for
the choice of locations that are allocated during the reduction, the states %
to which a given state can be reduced are all equivalent with respect to the
locations that occur in the original state.

Proposition. If a state reduces to more than one state, then the resulting
states are equivalent with respect to the locations that occur in the original
state

0: ' A 0 ; -0 implies 6, -'FL.,.(o) 62

Proof. If the reduction does not allocate a location, reduction is deter-
ministic and 0' = 0'. Otherwise, let 11 and 12 be the new locations allocated
in 0' and 62 respectively. Choose u so that 9 = p(O) and 12 = J(11i). Such

a is guaranteed to exist because neither 11 nor 12 is in FLota(B). We then Ihave 0'= p(. 0

In fact, a stronger result holds: any state that is equivalent to a reducible
state with respect to some set of locations L is itself reducible, and the results ,
of these two reductions are also equivalent with respect to L.

Proposition. (Location Invariance) Equivalent states reduce to equiva-
lent results.

01 02 A 01 02

Proof. Omitted. 0 A

This proposition subsumes the previous proposition, as can be shown by
taking L = FLata(O1).

The location invariance proposition generalizes immediately to reduction
sequences of any length. Moreover, using the fact that any state that is
equivalent to some terminal state is itself a terminal state, it follows that
either all reduction sequences of a particular state diverge, or all reach a
terminal state after the same number of steps, in which case these terminal
states are all equivalent with respect to the original state. This leads to the
following corollary:

Corollary. The meaning of an expression, M1 e 1, maps stores that
are equivalent with respect to e to terminal states that are equivalent with
respect to e.

In fact, for all e, the union of the sets M[e]or for any set of stores that
are equivalent with respect to e is closed under --" .-(,)" It follows that
the meaning of an expression, M[e 1, corresponds to a function from the
equivalence classes of stores a modulo the permutations that fix FL,,,(e) to
the equivalence classes of terminal states modulo the permutations that fix

FLerzp(e). % %
In practical terms, this means that the semantics of the language are

independent of the storage allocation policy employed by the implementation.

62

- 11,.,

4.7 Typeless Semantics
In this section we show that the meaning of an expression does not depend

on the type, effect or region information present in the expression. In practi-
cal terms, this means that the implementation does not need to perform any
type checking, effect checking, or other description computation at run-time.

The proof of this property is fairly routine. We begin by defining a non-
standard, typeless semantics that parallels the standard semantics exactly.
We then show that 0 reduces to 0' iff the typeless state that results from
erasing all type information from 0 reduces to the typeless counterpart of 0'.

The definition of the non-standard semantics consists of two parts: type
erasure and typeless reduction. The type erasure function Erase is defined
as follows:

Erase(C) = c

Erase() = x
Erase(LAMBDA (X:T) e) = (LAMBDA X Erase(e))

Erase(el e 2) = (Erase(el) Erase(e2))

Erase(PLAMBDA (d:K) e) = (PLAMBDA Erase(e))

Erase('ROJ e b) = (PROJ Erase(e))
Erase(IF el e 2 e3) =(IF Erase(el) Erase(e2) Erase(e3))

Erase(BEGIN el ... e,) = (BEGIN Erase(el). .. Erase(en))

Erase(NEW p T e) = (NEW Erase(e))

Erase(GET e) = (GET Erase(e))

Erase(SET el e 2) = (SET Erase(el) Erase(e 2))

We generalize the type erasure function to stores and to states as follows:

Erase(@) =

Erase(a[l 4-- v]) = Erase(a)[l -- Erase(v)]

Erase((e,a))-- (Erase(e), Erase(o))

The typeless reduction relation "n parallels the standard reduction
relation , and is defined in the same way, by a set of reduction axioms
and a set of reduction inference rules. In fact, the axioms and inference rules

for == are textually the same as for = , except for the three axioms and
two inference rules in which description information appears. The erased
counterparts of the axioms are:

(((LAMBDA X e) V), ') (e[V/x]I a)

((PROJ (PLAMBDA e)),a)e (e, a)

((NEW e), a) e: (1, a[I -- v]) (1 not bound in a)

The erased counterparts of the inference rules are represented by the fol-
lowing contexts:

63

- W, -e r . * _ ".. 'r

% ~ ~ ~ ~ 6 % %

" polymorphic application: (PROJ [])
" allocating a location: (NEW [1)
Despite the absence of type, effect and region information, typeless re-

duction proceeds exactly in the same way as typed reduction. Thus, for
every reduction sequence in the standard semantics there is a corresponding
reduction sequence in the typeless semantics, and vice versa:

Proposition. (Typeless Semantics) Reduction does not make use of type
or effect information.

0 e 0' iff Erase() * Erase(0')

Proof. By inspection of the reduction axioms and inference rules. 0

It follows that M[e]a can be defined as

{(V,a") I Erase((e, a))' Erase((v, c'))}

instead of
{(V, a') I (e, o) . (v,a')}

In practical terms, this means that the typeless semantics can serve as the p

basis for an implementation: after static type checking, which prevents all
run-time type errors and all attempts to use undeclared variables or unini-
tialized locations, there is no more need to keep track of type, effect or region
information.

64 :

%* %

.. ,Z',:. _-, ,._ _-. _,:,- _ . ,,.-... _, : .,.,...... ... ,-... :f,,...., .,, ,..,,.:-,p.

" ',p " ."," .'. .'. .'. .'. .'.'.'.'... .-. '.'.'.'. .- ' '.'--.'.-.'.-.'.-.-.-. .-- . 4" .. *." ,(P -

Chapter 5. Private Regions

5.1 Introduction
The language defined in the preceding chapters, MFX-1, permits functional

program fragments to be incorporated in an imperative program while retain-

ing the benefits of functional programming within those program fragments.

In this chapter we extend MFX-1 with constructs for declaring and using

private regions. We call the resulting language MFX-2, for Mini-FX level 2.
Private regions can be used to integrate imperative program fragments into

functional programs while retaining the benefits of functional programming
in the surrounding program.

The purpose of this chapter is to explain the notion of private regions and

to demonstrate the soundness of the type and effect system in the presence
of constructs for declaring and using private regions. We focus on two cases
in particular:

" we show how private regions can be used to prove that certain imperative
program fragments that have a functional specification but that are im-
plemented imperatively, typically for performance reasons - for example,

a program fragment that performs an in-place sort - are functional;

" we show how private regions can be used to prove that certain program
fragments that have a functional specification except for allocation but

that are implemented imperatively, typically for reasons of expressive
power - for example, a program fragment that constructs and returns

a circular data structure - are functional except for allocation.

The rest of this chapter is organized as follows. We begin by giving an
overview of the characteristics of MFX-2. We then present the syntax, infor-
mal semantics, and static semantics. Next, we present the dynamic seman-
tics, and we consider the impact of the new language features on type and

effect soundness. We conclude with a discussion of the use of region and
effect information for storage reclamation.

65 eN

'U

:.'t _.:''.''.-'.''.-_':,_',',.-_'.'."-- L',.'-.'-'-:-'.X "-. "'Z:'*.. ".' -,-': '. - " " " '','." '%","X''U

5.2 Overview
If a region is declared for use by a certain computation, used, and then

abandoned, then effects on that region are not visible outside of its scope.
Such a region is called a private region. In this chapter we introduce two
new expressions that take advantage of this principle: the PRIVATE exprf-ssion
and the EXTEND expression.

The PRIVATE expression declares a private, anonymous region for local use

that becomes inaccessible when the expression returns. Effects on this region
cannot be observed outside of the expression, and need not be reported; we

say that such effects can be masked. Moreover, the locations belonging to
the region can be deallocated when the expression returns. The PRIVATE

expression allows functional program fragments to be implemented using
imperative constructs.

The EXTEND expression also declares a private, anonymous region for local
use, but when it returns it merges this anonymous region with a target region
specified by the programmer. Effects on the anonymous region cannot be
observed outside of the expression, and can be masked; merging the two
regions is tantamount to allocating and initializing zero or more locations in
the target region, and therefore has an ALLOC effect on the target region. The
EXTEND expression allows functional program fragments to create and return
circular data structures without resorting to general recursion equations.

The introduction of private regions invalidates the effect soundness propo-
sition of the previous chapter: reduction of an expression that employs a
private region may allocate, read and write locations in that region, even
though this is not specified in the effect description of the expression. In this
chapter we refine the definition of effect soundness to take account of effects
on private regions.

5.3 New Language Features

5.3.1 Syntax
The grammar clauses for the PRIVATE and EXTEND expressions are given

below.

Exp = ... - expressions
(PRIVATE Dvar Exp) - declaration of a private region

(EXTEND Region Dvar Exp) - extension of an existing region

.I
66

%r%

% % %

5.3.2 Informal Semantics
The semantics of the expression (PRIVATE d e) are as follows: the body e is

evaluated with d bound to a fresh region constant, and its value is returned.
From the programmer's point of view, this is equivalent to the polymorphic
subroutine application

(PROJ (PLAMBDA (d:REGION)

e)
r)

where r is a fresh region constant. The bound region variable d must not
occur free in the type of e; this ensures that the private region becomes
inaccessible when the expression returns. Since effects on the private region
cannot be observed outside of the expression, they can be masked.

The semantics of the expression (EXTEND p d e) are as follows. First,
the body e is evaluated with d bound to a fresh region constant. Next,
the region associated with d is merged with the target region p. Finally, the
value of e is returned. Since the use of the private region cannot be observed,
this is equivalent from the programmer's point of view to the polymorphic
subroutine application

(PROJ (PLAMBDA (d:REGION) -,P)

The bound region variable d may occur free in the type of e; this allows
the expression to return values that can refer to locations in the temporary
region. After the two regions are merged, these values refer to locations in
the target region. Since effects on the region denoted by d cannot be observed
outside of the expression, they can be masked.

The following two program fragments should illustrate the use of PRIVATE * -

and EXTEND, and highlight the differences between them. The first expression .
declares a local region r, allocates a location in r with initial value FALSE,
writes TRUE in it, and returns its contents. This expression has type BOOL, -
and it has effect PURE because the effects on the private region r can be

masked.

(PRIVATE r

((LAMBDA (X: (REF r BOOL))

(BEGIN

(SET X TRUE) ,

(GET X)))

(NEW r BOOL FALSE)))

67

%-.V4V
...~~~~~~~~~~~~ % . .,.....-.

The second expression extends the existing region r with an extension called
r', allocates a location in r' with initial value FALSE, writes TRUE in it, and
returns it. The temporary region r' is private to the expression, so the effects
on it can be masked; however, the overall effect of allocating in r must be
reported. This expression has type (REF r BOOL), and it has effect (ALLOC

r) because the effects on the private region r' can be masked.

(EXTEND r r'

((LAMBDA (X: (REF r' BOOL))

(BEGIN

(SET X TRUE)

x))
(NEW r' BOOL FALSE)))

Note that this expression could not have been written using PRIVATE, since

the bound region variable r' appears free in the type of the body.

5.3.3 Free and Bound Variables
The free variables of PRIVATE and EXTEND expressions are the same as the

free variables of the corresponding polymorphic subroutine applications:

FV(PRIVATE d e) = FV(e)

FV(EXTEND p d e) = FV(e)

FDVzp(PRIVATE d e) = FDVzp(e) - {d}

FDV,,,p(EXTEND p d e) = FD1dec(p) U (FDVzp(e) - {d})

5.3.4 The Empty Pseudo-region
In order to mask the effects on a private region, we introduce the pseudo-

iegion 4. Conceptually, 4 corresponds to an empty region, i.e. a region to
which no locations belong. Thus, (UNION 4 p) is convertible with p (for all

p), and the effects (ALLOC 4), (READ 4) and (WRITE 4) are convertible with
PURE. The pseudo-region 4 can be regarded as the bottom of the region
lattice.

Since the pseudo-region 4 corresponds to the empty set, it is not a region,
since a region must correspond to an infinite set of locations. The following

example should make clear why 4 cannot be treated as a well-formed region
description. Consider the following expression:

((LAMBDA (X: (REF 4 BOOL))

(BEGIN

(SET X TRUE)

(SET X FALSE)

(GET X)))

(NEW 4 BOOL FALSE))

68

0

The two assignments to x have effect (WRITE 0), which is convertible with

PURE. As a result, it appears as if the expressions do not interfere. However,
evaluating the expressions concurrently or out of order may result in a final
value of TRUE, which does not agree with the value of FALSE predicted by the
standard semantics.

The problem with this example is that the expression (NEW 4 BOOL

FALSE) violates the assumption that 4 corresponds to the empty set by
allocating a location in 4. This is prevented by declaring that 4 is not a
well-formed region description.

When 4 is substituted for a region variable in an effect description, the
result is always convertible to an effect description that contains no instances
of 4. This is because a region variable in an effect description can appear only %%%
as part of an effect description, and any effect on 4 is convertible to PURE.

We use this fact as follows: in order to mask the effects on a description ",
variable d in an effect e, we substitute 4' for d in e. For example,

(MAXEFF (READ d1) (WRITE di)) ['/d1 -_ PURE

(MAXEFF (READ dl) (WRITE d2)) [4'/dl] n (WRITE d2)

(ALLOC (UNION d, d2 d3)) [4'/dl] -- (ALLOC (UNION d2 d3))

By contrast, there is no way to eliminate 4' from the type (REF 4 BOOL).

5.3.5 Static Semantics
The type and effect inference rule for the PRIVATE expression is given

below. This rule can be read as follows. First, determine the type and the
effect of e under a kind assignment in which d denotes a region. Next, verify
that d is bindable in e. Finally, verify that d does not appear free in the type
of e. When all goes well, the type and effect of the expression are the same
as the type and effect of e, except that all effects on d are masked.

A,B[d - REGION] - e :

A,B[d-REGION] e! e
Vx E FV(e) . d FDVd,,,(A(x))

d FDVdesc('T)

A, B F (PRIVATE d e) : 7
A, B F- (PRIVATE d e) e 44'd]

As might be expected, this rule resembles a composition of the rules for poly-
morphic abstraction and polvmorphic application, as applied to the polymor-
phic subroutine application

(PROJ (PLAMBDA (d:REGION)
e)

69

% %.
% %

--

In fact, the only difference is the additional premise that requires that d
not be free in the type of e. This ensures that the private region becomes h

inaccessible when the expression returns.
Note that the type of the expression, r, is equal to r[b/d] because d does

not appear free in r. Thus, the type and the effect of the expression are

constructed in the same way. The restriction d FDVdeac(r) is necessary
and sufficient to ensure that r = r[O/d].

We now turn to the type and effect inference rule for the EXTEND expres-
sion, which is given below. The rule can be read as follows. First, verify that
p has kind REGION, and determine the type and the effect of e under a kind
assignment in which d denotes a region. Next, verify that d is bindable in e.
When all goes well, the type and effect of the expression are the same as the
type and effect of e, except that all occurrences of d in the type are replaced
by p, all effects on d are masked, and an ALLOc effect on p is added.

B I- p:REGION
A, B[d - REGION] I- e T

A,B[d ' REGION] F- e!f

Vx E FV(e) . d f FDVde.(A(x))
A, B F- (EXTEND p d e) r[p/d]
A, B - (EXTEND p d e) ! (MAXEFF e[tk/d] (ALLOC p))

As might be expected, this rule resembles a composition of the rules for poly-
morphic abstraction and polymorphic application, as applied to the polymor-
phic subroutine application

(PROJ (PLAMBDA (d:REGION)

e)
P)

In fact, the only difference is that the effects on p, whatever they may be,
are masked and replaced by an ALLOC effect.

5.3.6 Aliasing
Although a PRIVATE expression is equivalent to a polymorphic application

to a region, no aliasing is introduced because the region in question is fresh,
and disjoint from all other regions past, present or future.

In the case of the EXTEND expression, however, there is a possibility of
aliasing because the bound region variable becomes an alias for the target
region when the expression returns. In the current MFX language, aliasing
between the bound variable and the target region is prevented by a syntax
restriction that forces the programmer to use a single description variable to
denote both the bound region variable and the target region. This makes
the target region inaccessible in the body.

J.t

70

,~~~..-.-......-..........-.......-.............-.-.-... ...-..........-..-.-........-**~*.*,~~I*....,.-. -.-.-...-.- ,.*

€ + +'2 ,. ',-.'.'..-..'.. , . .." '._' '.. -. .-.' '.'.. ' '. .•.,.-, '.,,,'_' ..'N- ,.-,'.~ .W .-

5.4 Dynamic Semantics

5.4.1 Auxiliary Expressions
The simplest way to define the semantics of the new expressions would

be with the following very simple reduction axioms, where r denotes a fresh d1%
region constant:

((PRIVATE d e), O) :Z (e[r/d], o)

((EXTEND p d e), a) -_d, (e[p/d], a)

Unfortunately, these reduction axioms would invalidate the type preserva-
tion proposition by removing the expression that masks the effects on the
private region. Since type preservation is the foundation of our type and
effect soundness propositions, we have developed a technique for reducing
expressions such as PRIVATE and EXTEND while maintaining the type preser-
vation property.

The semantics of the PRIVATE and EXTEND expressions are defined in terms
of auxiliary expressions. The basic technique is this: instead of being reduced
directly using the beta-substitutions given above, a PRIVATE and EXTEND . .:

expression is reduced to a corresponding auxiliary expression. During this
initial reduction step, a fresh region constant is chosen and embedded in the
auxiliary expression. While the body of the auxiliary expression is reduced
recursively, the auxiliary expression serves as a reminder that the chosen
region constant is private to the expression, and that any effects on it can
therefore be masked. When the body has been reduced to a value, there are
no more effects to be masked and the auxiliary expression can be reduced to
its body.

The auxiliary expressions for PRIVATE and EXTEND are *PRIVATE- and
*EXTEND- respectively. Their syntax is given below.

(*PRIVA'lE* Rconst Exp) - PRIVATE in progress
(*EXTEND* Region Rconst Exp) - EXTEND in progress

In each expression, the region constant represents the private, anonymous
region. In the 'EXTEND* expression, the region description identifies the
target region.

The *PRIVATE* and *EXTEND* expressions are binding expressions: in each
case, the region constant that represents the private region takes the place
of the bound variable in the corresponding PRIVATE or EXTEND expression.
To facilitate a generalization later on, we use the term auxiliary binding
expressions to refer to *PRIVATE* and *EXTEND* expressions. T.]

The type and effect inference rule for the *PRIVATE* expression is given

below. It is derived directly from the rule for the PRIVATE expression. The

71 71

% 4. % %.%P * t; . ,' P t ,' ,,%' "1.. 0 %r ' ,t,.,€ , ','.',". .% ,.',.. "." ,.. ",".','...,_.*.. %;...;. ."d

rule requires that the body be well-formed, and that the private region not
be free in the type of the body. The effects on the private region are masked.

A,B - e:T
A,B - e!e

r 0 FRCde...(T)
A, B I- (*PRIVATE* r e) r
A,B I- (*PRIVATE* r e) ! e[tk/r

The type and effect inference rule for the *EXTEND* expression is given
below. This rule is derived directly from the rule for the EXTEND expression.
To obtain the type and effect of the expression, all occurrences of r in the 1%
return type are replaced by p, any effects on r are masked, and an ALLOC
effect on p is introduced.

B I- p: REGION

A,B F- e:%
A,B l- e!e : ,

A, B - (*EXTEND* p r e) Tr[p/r]

A, B F (*EXTEND* p r e) ! (MAXEFF e[OI/r] (ALLOC p))

5.4.2 States
The reduction axioms for the PRIVATE and EXTEND expressions must pick

fresh region constants that can be used to identify the private, anonymous
regions. To ensure that a recursive reduction does not pick a region con-
stan that is in use in the surrounding context, we augment the state of a V,
computation with a list of the region constants that are in use. To facilitate

a generalization later on, this list is represented as a finite partial function
from region constants to the singleton set {USED}.

Definition. A region map -y is a finite partial function with signature

Rconst -- {USED}.

Definition (revised). A state 0 is a tuple (e, a, y) consisting of an
expression, a store, and a region map.

The existing reduction axioms and inference rules do not require any sub-
stantive change to accommodate this revised definition of states, since they
neither use nor alter the region map. To accommodate the new definition of
states, each reduction axiom of the form

ae,) (e',a'J". %

must be replaced by a corresponding axiom of the form

(e, a, -) :1 (e', a#, 0

72

% % % % %.

% % NN.%

Note that -y appears on both sides of the axiom: the region map is not
involved in these reductions.

As for the reduction inference rules, each rule of the form

(e, a c) (e', ,')

(C [e],oa):9 (C [e'], a'
must be replaced by a corresponding inference rule of the form(e, a,, 7) =* (e', a', -f') !

(C[elor., _f) (C[e'l,',_'

5.4.3 Reduction Axioms and Inference
Rules
The semantics of the new expressions are defined by four new reduction

axioms, one for each expression, and two new reduction inference rules, one
for each auxiliary expression. .',

The reduction axioms for PRIVATE and EXTEND, shown below, are quite %2
simple: each rule simply chooses an unused region constant, marks it as USED,
and replaces the expression by the corresponding auxiliary expression after
substituting this region constant for the bound region variable throughout
its scope. 10.

((PRIVATE d e),oy) a ((*PRIVATE- r e[r/d]),o, -y[r - USED])

((EXTEND p d e), o,y) 9: ((*EXTEND* p r e[r/d]), a, o [r +-- USED])

(r not bound in 7)
When the body of a *PRIVATE* expression has been reduced to a value

(by means of the reduction inference rules given below), the *PRIVATE* ex-
pression, which serves to mask the effects on the private region, is no longer
needed and can be reduced to a value.

((*PRIVATE* r v), o,y-) 94 (v, a,)

The private region constant r is not made unused because references to this
region may still exist, both in the value v and in the store a. However, if the
state is well-formed, any remaining references to the region can never occur
as the first argument to an active GET or SET expression.

When the body of an *EXTEND* expression has been reduced to a value,
the expression can be reduced to that value while, simultaneously, the region
description p is substituted for all instances of the private region constant r %
throughout v and a. Since every trace of the region constant r is erased, r
could be made unused in the region map; we will not make use of this. %

((*EXTEND* p r v), a,"y) (v[p/r],o[p/r],y)

The new reduction inference rules, which show how to reduce the body
of a *PRIVATE' or *EXTEND* expression to a value, are represented by the
following contexts:

* PRIVATE in progress: (*PIVATE* r [])
" EXTEND in progress: (*EXTEND' p r [])

73

0e P

5.5 Type Soundness
Because of the introduction of effect masking, the proof of type soundness

no longer hold as originally formulated; in particular, the effect propagation
lemma m,:st be modified to deal with effect masking. In what follows, we
refine thie definitions and propositions that are affected by the introduction
of private regions.

We begin be refining the notion of a consistent state. %

Definition. A region constant r occurs in a state (e, a, _0 iff it occurs
in the expression component e, the store component a, or the region map
7. The region constants that occur in a state are given by the function

FRCstate, which is formally defined below.

FRCt.re(,) = U FRCep(a(l))

IE Dom(ua)

FRCtae((e,a,7)) = FRC,,p(e) U FRCtor,(a) U Dom(3')

Definition (revised). A state is consistent , C((e,a,-y)), iff every
location that occurs in the state is bound in the store and has the same tags
everywhere, and every region constant that occurs in the state is bound in the
region map, i.e. iff FL,,t((e,o, -y)) _ Dom(a), FRCt9gi((e,a, ̂j)) 9 Dom(3Y),
and lor E FLta((e,oa)) and Ep,,' E FLata((e,a)) implies that p = p' and
T = t1 .

In a well-formed state, the private, anonymous region of an auxiliary bind-
ing expression must be accessible only within said expression. The following
definition helps define this more precisely.

Definition. A region constant r is accessible in a context C, r E
Acc(C), iff it appears in the effect of any active expression in that context,
i.e. iff some active expression in C has an effect f such that r E FRCdeac(f).

In a well-formed state, a region constant that is accessible only within a
given expression is inaccessible after that expression is reduced to a value.
This is true because the expression itself has effect PURE after it has been re-
duced to a value, and the region constant cannot become accessible anywhere
else because the effects of all active expressions propagate to the outermost
expression, whose effect is always preserved or decreased..i

A second invariant of well-formed states is that an auxiliary binding ex-
pression must occur only as an active expression, i.e. an expression whose

reduction is in progress. This ensures that such an expression is never du-
plicated (as a result of ordinary application or of reading a location).

As a summary of the invariants relating to auxiliary binding expressions,
we define the notion of a legal state.

Definition. A state 0 = (e, a, -y) is legal, (O), iff

74 U

P r. ...P P rI

1. every auxiliary expression in 0 is active;
2. no two auxiliary binding expressions in O have the same private region

constant; and
3. the private region constant of an auxiliary binding expression is inacces-

sible in the context that surrounds the expression, e.g. if the expression e
is of the form C[(*PRIVATE* r e')] then r V Acc(C).

We can now restore the validity of the type soundness and static typing
propositions in the presence of private, anonymous regions by revising the
definition of well-formed states as follows.

Definition (revised). A state 0 = (e, a, y) is well formed, W.F'tate(O),
iff it is consistent and legal and e and a are both well-formed. In other words,

W.Fstaie(9) C(O) A C(O) A W.Fez p(e) A WYFatore(a') N'

-_.4

Lemma (revised). (Effect Propagation) In a well-formed state, the effect v
of each active expression is a subeffect of the effect of its parent expression ,
unless this parent expression is an auxiliary binding expression, in which case
the effects on its private region constant are masked.

Proof. The proof proceeds as before, using the correspondence between
the new reduction inference rules and the new effect inference rules. In
particular, the effect of a *PRIVATE* or *EXTEND* expression is obtained from
the effect of its body by masking the effects on its private region constant. 0

Proposition (revised). (Type and Effect Preservation) Reduction of a
well-formed state preserves or decreases the type and effect descriptions of
the state.

e: e' : ' where r' C r
e f T e where EC f

(e, al (e',a',

Proof. The proof proceeds as before, but there are several new cases to
be considered, as well as some new properties whose preservation must be
verified.

It is easy to see that reduction preserves the new, stronger notion consis-
tency: new region constants are introduced only by the reduction axioms for
PRIVATE and EXTEND, each of which binds the new region constant in the
region map. Since a region constant bound in the region map never becomes
unbound, reduction preserves consistency.

To show that reduction preserves legality, we consider each property of
legal states in turn.

9 The first property, activeness, is preserved because (i) every auxiliary
expression is active when it is created, and (ii) an active expression remains
active until it becomes a valu.

75

a, ,e ~~~~~~~~~~~.-_.... .. ~:_-_ ,---,-.... ,........................... :% % % %. .i""
p =. .. - o j , ' .% . % " " . . - -' - " . % % .. " " . "-% " -" - -' -" "N' . '" "- ."

" The second property, uniqueness, is preserved because (i) every auxiliary
expression has a unique private region constant when it is created, and (ii)
every auxiliary expression is active, and therefore cannot be duplicated.

" The third property, locality, is preserved because (i) the private region
constant chosen when an auxiliary expression is initially only accessible
within the expression, and (ii) this remains true by virtue of effect preser-
vation and the revised effect propagation lemma. 0

5.6 Effect Soundness
We are left with the task of restoring the effect soundness proposition,

which has been invalidated by the introduction of private regions. For exam-
ple, if a state 9! e contains an active expression of the form (*PRIVATE* r e),
then reduction of 9 may have effects on the region r, even though r does not
appear in E.

Below, we present a revised effect soundness proposition that relates the
syntactic effect of each expression to the actual effects on the regions that are
accessible in the context surrounding the expression. Although this proposi-
tion is weaker than the original proposition, its power to identify opportuni-
ties for concurrent evaluation and memoization has not diminished because
effects on private regions do not inhibit these optimizations.

Rather than considering the effects of a reduction as a whole, the revised
effect soundness proposition considers the individual active expressions that
participate in a reduction, and focuses on the actual effect of the reduction
on only those regions that are accessible in the context surrounding each
active expression.

Proposition (revised). (Effect Soundness) Reduction of an expression
in a well-formed state allocates, reads, and writes only locations that can be
reached through the regions specified by its effect and/or through regions that
are accessible only within the expression. In other words, if 9 = (C[e],o, y),
Of = (C[e'],ca',7') and , 9', and e ! e where

f (MAXEFF (ALLOC PA) (READ PR) (WRITE pw))

then
A(O,9') n Reach(Acc(C)) C Reach(pA)

1Z(, ') fn Reach(Acc(C)) C Reach(pR)

W(,9') l Reach(Acc(C)) C Reach(pw)

Proof. As before, using the revised effect propagation lemma. 0
This proposition generalizes immediately to 0 ="='* 9'.

In practical terms, the revised effect soundness proposition implies that
it is possible to integrate imperative program fragments into functional pro-
grams, while retaining the benefits of functional programming in the sur- I
rotii ding program, provided that the interface of the imperative program
fragments is entirely functional.

76

•I
S . - .'. . .. e'. ". . .. , " " *" " % %

b I .1. 0e . % % S*

It would be possible to extend MFX with a region constant, such as
UNIVERSE, of which every region is a subregion, and with an effect constant,
such as PROCEDURE, of which every effect is a subeffect. This would change
the language in certain predictable respects: for example, an effect such
as (WRITE UNIVERSE) would interfere with any effect. However, the effect
masking constructs PRIVATE and EXTEND depend critically on the fact that
an identifier or expression can (be used to) access the locations in a region r
only if r appears free in the type or the effect of the identifier or expression.
If it were possible to coerce a reference of type (REF r BOOL) to type (REF

UNIVERSE BOOL), or to coerce a subroutine of type (SUBR (BOOL) (WRITE

r) BOOL) to type (SUBR (BOOL) (WRITE UNIVERSE) BOOL) or even (SUBR

(BOOL) PROCEDURE BOOL), then the import restriction of EXTEND and the
export restriction of PRIVATE would have to be modified to prohibit the im-
port and export of any identifier or value in the type of which either UNIVERSE
or PROCEDURE appears free. This would make these two constants much less
useful. We have therefore decided not to include them in MFX.

5.7 Storage Reclamation
The practice of optimizing a program by identifying opportunities for

storage reclamation statically is known as compile-time garbage collection
or stack-consing [Hud86]. In this section we describe how effect and region
information can be used to assist in compile-time garbage collection.

In a well-formed program, the private region of a PRIVATE expression be-
comes inaccessible after the expression returns. In practice, this means that %.
the locations in the private region can be reclaimed. For example, consider
the expression

(PRIVATE r

((LAMBDA (X:(REF r BOOL))

(GET X))

(NEW r BOOL TRUE)))

which chooses a new region constant, allocates a location initialized to TRUE
in the corresponding region, and returns the contents of the location (which,
of course, is TRUE). Since the location is inaccessible after the PRIVATE % .

expression returns, it can in theory be reclaimed.-%-.
Although there have been earlier proposals for compile-time garbage col- %

lection, none of the standard methods are effective when procedures and •
locations are first-class values. This may discourage the use of procedural
abstraction, which is contrary to our philosophy.

In MFX-2, the type an(l effect system p~rovi(les infoirmation that makes.
compile-time garbage collection feasible even when i)roce(lur(s and lowat ions
are first-class values. Compile-time garbage collection)ase(d i effect auiId

77 .

%" - . %% % " .- . - ..
.~t ? . .. ~ .. ~%

region information is more powerful than existing methods, in that it per-
mits the reclamation of inaccessible locations even when references to those
locations continue to exist. This is illustrated below by a rather trivial exam-
ple; we ask the reader to imagine more realistic examples, perhaps involving
aggregate data structures. Consider the expression

(PRIVATE r

((LAMBDA (X:(REF r BOOL))

(LAMBDA (y: BOOL)

(BEGIN

X

y)))
(NEW r BOOL TRUE)))

which chooses a new region constant, allocates a location initialized to TRUE

in the corresponding region, and returns a subroutine of one argument that
imports the location but discards it and returns its argument. This expres-
sion reduces to a value of the form

(LAMBDA (y:BOOL)

(BEGIN

Y))

where I is a location that belongs to the private region, which we will call r.
Both the original expression and the resulting value have type 4

(SUBR (BOOL) PURE

BOOL) . .*

and effect PURE. Although the final value does contain a reference to 1, %

it is clear that this reference is never used to access the location. In fact,
this is true regardless of how complex the final value is, since I belongs to
tie region corresponding to r and the type and effect inference rule for the
PRIVATE expression ensures that r does not appear in the type, and hence
not in the latent effect, of the final value. Thus, the location 1, and in
general all locations that belong to the region corresponding to r, can safely
be reclaimed when the PRIVATE expression returns, even when references to
those locations continue to exist. %I

When this scheme is used together with a conventional garbage collector, -

it may be necessary to modify the latter to ensure that it does not trace or Z
copy locations, such as 1 above, that are inaccessible and have been reclaimed.

It appears that this can be done by maintaining a list or map of the locations
that have been reclailned, and erasing all references to these locations as they
are encountered during the sweep or copy phase of the conventional garbage
collector, When all references to the locations have been erased, the locations
can be reused.

78 %

A
0 P 0 r e0

% % % %

Chapter 6. Explicit
Concurrency

6.1 Introduction
The languages defined in the preceding chapters, MFX-1 and MFX-2, are

sequential languages: according to the standard semantics, expressions are
evaluated in left-to-right, applicative order. This ensures that the language
semantics specify a unique result for every computation, but it limits the
amount of concurrency.

In this chapter we extend MFX-2 with constructs for introducing and man-

aging explicit concurrency. We call the resulting language MFX-3, for Mini-

FX level 3. Explicit concurrency can be used to increase the concurrency in
a program at the expense of determinacy, as has been pointed out by Brinch-
Hansen and others [Bri72]. As is customary for a concurrent language, the
semantics of MFX-3 do not specify precisely how the evaluations of concur-
rent expressions are interleaved. Consequently, the language semantics do
not specify a unique result for every computation.

The purpose of this chapter is to demonstrate that a type and effect system
can support explicit concurrency in several ways:

" we show how regions can be used to ensure that the data associated with
a monitor can only be accessed within a critical section for that monitor,
even if pointers to the data can be passed freely outside of the monitor;

* we show how the type and effect system can be used to ensure that all
interactions between concurrent expressions are mediated by monitors and
critical sections; and

* we show how program fragments that use explicit concurrency can be inte-
grated into functional programs while retaining the benefits of functional
programming in the surrounding program.

The rest of this chapter is organized as follows. We begin by giving an

overview of the characteristics of MFX-3. We then present the syntax, infor-
mal semantics, and static semantics. Next, we present the dynamic seman-
tics, and we conclude by considering the impact of the new language features
on type and effect soundness.

79

, , , . 1 . 1 % .1 -e e .. . e , .. ,, ,,-- . , - 1

6.2 Overview
In this chapter we introduce a new expression, COBEGIN, that allows the

programmer to indicate that two or more expressions are to be evaluated
concurrently. Semantically, concurrent evaluation of two or more expres-
sions means that the computations of the expressions may be interleaved in
arbitrary order.

The result of a concurrent computation may in general depend on how
the computations are interleaved: for example, if two concurrent expressions
write distinct values to the same location, then the final value depends on
which expression was the last to write. To give the programmer some control

over the way in which computations are interleaved, we introduce an expres-
sion, MONITORED, for declaring monitored regions, as well as an expression,
EXCLUSIVE, for evaluating an expression as a critical section for a given mon-
itored region. The language definition guarantees mutual exclusion between
all evaluations of the critical sections for a given monitored region.

We have adopted the view that "intelligible programming requires all in-
teractions between parallel processes to be mediated by some mechanism
such as a critical section or monitor" [Rey78, p. 40]. Such a discipline helps
not only the programmer, but also the compiler since uncontrolled interfer- t
ence between concurrent computations tends to inhibit optimizations such
as CM and concurrent evaluation.

* We have devised a set of effect restrictions that enforce the above disci-
pline. These restrictions, which are part of the type and effect inference rules
for the COBEGIN, MONITORED and EXCLUSIVE expressions, ensure that two or
more expressions are evaluated concurrently only if all interactions between
them are mediated by monitors. Because of these restrictions, the evalu-
ation of a well-formed program never encounters a race condition between
two attempts to read or write a certain location; race conditions occur only
between attempts to enter critical sections. We believe that this contributes
greatly to "intelligible programming", however elusive a concept that may
be.

]V

)I

80 ,

% %

-AWAJKWW

6.3 New Language Features

6.3.1 Syntax
In order to extend the language to deal with concurrency, we introduce

one new effect constructor and one new type constructor. I
Effect = - effect descriptions

(MCALL Region) - effect of accessing a given
region in exclusive mode

Type = -type descriptions I
(MONITOR Region) - types of monitors

The type description (MONITOR p) corresponds to the monitor for the region
p. In a well-formed program, there is at most one monitor for any region.

The grammar clauses for the COBEGIN, MONITORED and EXCLUSIVE ex-
pressions are given below.

Exp = -expressions
(COBEGIN Exp*) - concurrent evaluation
(MONITORED D'var Var Exp) - declaration of a monitored region
(EXCLUSIVE Exp Exp) - critical section

6.3.2 Informal Semantics
The semantics of the expression (COBEGIN el ... en) are as follows: the

expressions ei . .. e, are evaluated concurrently, and NIL is returned when
they have all terminated. The expressions must have effects that do not

interfere with one another except through MCALL effects. This restriction,
which is formally specified in the type and effect inference rule given below,
ensures that all interaction between concurrent expressions is serialized by
means of critical sections. For a more detailed discussion of interference in
the presence of MCALL effects, see Chapter 8.

The semantics of the expression (MONITORED d x e) are as follows: the
body e is evaluated with d bound to a fresh region constant and x bound to
the corresponding monitor, and its value is returned. From the programmer's
point of view, this is equivalent to the expression -

((PROJ (PLAMBDA (d:REGION)

(LAMBDA (X : (MONITOR d))

e))
r)

M)

81

-..

e 0. d, 0 'r F sp "2€; 'J .2, 2e5 " '2. ".. ..". " "."". .,2"" "_¢ ". " " '.: ..4 e" .0 P' .".. '¢.- ".X.% ." ., ,

..I

where r is a fresh region constant and m the corresponding monitor. The %

bound region variable d must not occur free in the type of e; this ensures
that neither the monitored region nor the monitor itself are accesible in
the surrounding scope. Moreover, all READ and WRITE effects on d in e
must be encapsulated within EXCLUSIVE expressions; this ensures that the
monitored region is accessed only within the critical sections for that region.
This restriction could be relaxed at the expense of complicating the effect
restriction on COBEGIN expressions. Since effects on the monitored region
cannot be observed outside of the expression, they need not be reported.

Since the MONITORED construct introduces a region and the corresponding
monitor simultaneously, there can never be more than one monitor for any '

given region. This ensures that any expression that acquires the monitor for
a region has exclusive access to that region until it releases the monitor.

The semantics of the expression (EXCLUSIVE ei e2) are as follows. First, 1%

el is evaluated. Provided that el evaluates to a monitor, the monitor is
acquired, e2 is evaluated, the monitor is released, and the value of e2 is re-
turned. In other words, e2 is evaluated as a critical section for the monitored
region corresponding to the value of el. Note that the acquisition of the
monitor is delayed if the monitor is not idle.

In order to keep the semantics simple, we have decided not to guaran-
tee fair scheduling. Fair scheduling traditionally means that any active ex-
pression that is not stuck is guaranteed to make progress eventually. The
semantics of MFX-3, by contrast, guarantees only that as long as there is
at least one active expression that can make progress, some active expres-
sion will make progress. From our point of view, this has two advantages
over fair scheduling: its semantics are easier to express, and it permits a
non-preemptive uniprocessor implementation. .3

The following program fragments illustrate the use of the new expressions.
The first example illustrates the use of the COBEGIN expression. It declares a
local monitored region r with monitor m, allocates a location in r initialized
to FALSE, writes the values TRUE and FALSE to the location in unspecified
order, and returns the contents of the location. The expression has type
BOOL. and effect PURE: the monitored region r is private to the expression,
so the effects on it need not be reported.

(MONITORED r m ,.

((LAMBDA (X: (REF r BOOL)) ,

(BEGIN

(COBEGIN
(EXCLUSIVE 3 S

(SET X TRUE))

(EXCLUSIVE M

(SET x FALSE)))

(EXCLUSIVE M

82
.0k

,. ." % - % .

(GET X)))) 4%
(NEW r BOOL FALSE)))

Even though this expression may return different values if it is evaluated more

than once, the compiler can safely memoize it because it is not guaranteed -

to return different values. In fact, it is very well possible that this expression
always returns the same value in a given concurrent implementation.

The next example shows how to use the EXCLUSIVE expression to imple-

ment atomic operations. For this example we will assume that int represents

the type of integers, that the literals 0, 1 and 2 represent the corresponding
integers, and that + represents a subroutine that performs integer addition.
The expression declares a local monitored region r with monitor m, allocates
a location in r with initial value 0, increments the contents of this location

twice, and returns its contents. This expression has type int and effect PURE.

(MONITORED r m

((LAMBDA (X:(REF r jnt)) .

(BEGIN

(COBEGIN

(EXCLUSIVE M

(SET X (+ (GET X) 1)))

(EXCLUSIVE iM

(SET X (+ (GET X) 1))))

(EXCLUSIVE M %

(GET X)))) A .

(NEW r int 0)))

This example also shows how to use critical sections and associative operators
(such as addition) to implement deterministic programs using nondetermin-
istic language constructs: the above expression always returns the value 2.

In the above expression, each increment operation accesses the contents '
of the region r twice: once to read the contents of x and once to write the
new value. If these operations were interleaved without any synchronization, 7

one of the updates could be lost. However, the EXCLUSIVE expression, which
acquires the monitor and holds it while it evaluates its body, ensures mutual .. V

exclusion and guarantees that each increment operation is evaluated atomi-.

cally. If, for some reason, a non-atomic increment operation is desired, the
subexpression

(EXCLUSIVE IM

(SET x (+ (GET X)1)))

in the expression above can be replaced by

83

,0 .
7.:, 7-, .% N.iaL

((LAMBDA (old-value: int)

(EXCLUSIVE Mi

(SET X (+ old-value 1))))
(EXCLUSIVE Mn

(GET X)))

Finally, note that the new expressions make the PRIVATE construct super-
fluous: from the programmer's point of view, the expression (PRIVATE x e)
is equivalent to the expression

(MONITORED X M-

(EXCLUSIVE Mie))

where m is any variable not free in e. It would be possible to define a moni-
tored version of EXTEND as well, but we decided not to do so in order to keep
the language simple.

6.3.3 Free and Bound Variables
The free and bound variables of the new expressions and descriptions are

defined as usual; the following definitions are supplied for completeness only.
The free ordinary variables of the new expressions are defined below. .

FV(COBEGIN el ... e,,) = FV(el) U... U FV(e.)
FV(MONITORED d x e) = FV(e) - {x}

FV(EXCLUSIVE el e 2) = FV(el) U FV(e 2)

The free description variables of the new descriptions are defined below.

FDVdeac(MCALL p)= FDVdec(,P)

FDVdesc(MONITOR p) = FDVde.c(p)

The free description variables of the new expressions are defined below.

FDV,p(COBEGIN el ... e) = FDV,,p(e ,)U... U FDV,,,p(e,,)
FDVp(MONITORED d x e) = FDVp(e) - {d}

FDVerp(EXCLUSIVE el e2) = FDVp(ej) U FDVerp(e2)

The free region constants of the new descriptions and expressions are
determined in the same way as the free description variables.

81

8% % ..% %

6.3.4 Description Inclusion and Kind
Inference
The new effect constructor MCALL has the same distributive properties as

ALLOC, READ and WRITE:

(MCALL (UNION Pi ... Pn)) = (MAXEFF (MCALL Pl).-. (MCALL Pn))

This gives rise to the following derived rule:

P E P' .P.

(MCALL p) E (MCALL p')

There are no description inclusion rules for MONITOR types, and only a
single description conversion rule:

p,.p, .-d

(MONITOR p) " (MONITOR p')

To see why MONITOR is not monotonic in its region component, consider the
following example. If the type (MONITOR rl) were a subtype of (MONITOR
(UNION ri r2)), then the monitor for the region ri could be mistaken for a
monitor for the region (UNION ri r2). This would create the false impres-
sion that acquiring the monitor would ensure exclusive access to the region
(UNION ri r2), which is not true. In particular, if the monitor for the re-
gion r2 were similarly mistaken for a monitor for the region (UNION ri r2),
then there would be two monitors claiming to grant exclusive access to the
same region, which is impossible. Hence (MONITOR p) is not monotonic in p.

The kind inference rules for the new descriptions are routine, and are
given for completeness only. The first rule states that if p has kind REGION,
then the description (MCALL p) has kind EFFECT.

B I- p:REGION

B I- (MCALL p) :EFFECT

Similarly, the rule for MONITOR type descriptions states that if p has kind
REGION, then the description (MONITOR p) has kind TYPE.

B I- p:REGION

B - (MONITOR p) : TYPE

The MONITORED expression introduces monitors with types of the form
(MONITOR d), where d is a description variable. Since these types cannot
oe coerced to types of the form (MONITOR (UNION ...)), it follows that
any such type is empty. It would be possible to define the language so that
these types were considered syntactically invalid or ill-formed; however, this
would create complications since kind-respecting beta-substitution would no
longer preserve syntactic validity and well-formedness. We therefore opt for
the current approach, in which certain MONITOR types are simply empty.

85

'~~~~ %%- -

;.-r5

6.3.5 Static Semantics
There are three new type and effect inference rules, one for each new

expression. The type and effect inference rule for the COBEGIN expression
can be read as follows: provided that each subexpression is well-formed, and
provided that the effect descriptions of the subexpressions do not contain
interfering READ and WRITE effects (either manifestly or hidden in effect
variables), the type description of a COBEGIN expression is UNIT, and its

effect description is the least upper bound of the effect descriptions of the
subexpressions.

Vi, 1 < i < n . A,B F ei : ri
Vi,l < i < n .A,B l- e! fi

Vi j, p, d, d' or (READ P) fj

(WRITE p) .ei (WRITE p) gfi

A, B F- (COBEGIN el ... en) : UNIT

A,B l-" (COBEGIN el ... en) ! (MAXEFF el ... en)

Note that interfering MCALL effects are allowed; in fact, they are the only way
in which the branches of a COBEGIN expression can interact. For a derivation
of the interference restriction, see Chapter 8.

The type and effect inference rule for the MONITORED expression is given
below. This rule is identical to the rule for the PRIVATE expression except
in two respects: (i) the type of the body is determined in a type assignment
in which the extra variable of the MONITORED expression is bound to an
appropriate monitor type; and (ii) the body must not have any READ or
WRITE effect on the monitored region. This effect restriction ensures that
the monitored region is accessed only from within critical sections.

A[x *- (MONITOR d)], B[d 4-REGION] F e : T
A[x - (MONITOR d)], B[d - REGION] - e e
VX' E (FV(e)- {x}). d € FDVd.,c(A(x'))

d FDVdec()
(READ d) e A (WRITE d) e

A,B F (MONITORED d x e) : r

A,B F (MONITORED d x e) ! e[tb/d]

Naturally, MCALL effects on the monitored region are allowed. ALLOC effects
on the monitored region are also allowed: since the allocation and initializa-
tion of new locations cannot interfere with other concurrent computrtions,
prcgram fragments that perform allocation need not be encapsulated within
a critical section. In fact, it is possible to create circular data structures
in the monitored region without acquiring the monitor, using an EXTEND
expression.

86

N,-, <-%J .1 1%*~.

Finally, the type and effect inference rule for EXCLUSIVE expressions en-
sures that the first subexpression has type (MONITOR p) for some region
constant or variable p, and that the second subexpression, which constitutes
the body of the EXCLUSIVE expression, is well-formed and does not have any
MCALL effects on the region p. When this is the case, the type of the ex-
pression is simply the type of the body, and the effect of the expression is
obtained by combining the effect of the monitor expression, the effect of the
body (after masking any effects on the region denoted by p), and the effect
(MCALL p).

A, B - eI :(MONITOR p) A, B I- el ! c1
A, B - e2 :r A, B I- e2 !E 2

p E (Rconst U Dvar) (MCALL p) IE2
A,B F- (EXCLUSIVE el e2) : T

A,B - (EXCLUSIVE el e 2) ! (MAXEFF e1 C2 1b/P] (MCALL p))

Note that the restriction on the effect of the body prevents deadlock due to
recursive invocation of the monitor. We will not make use of this property.

6.4 Dynamic Semantics
From the programmer's point of view, the introduction of explicit con-

currency into the language does not change the semantics of programs and
program fragments that do not make use of the new expressions. In partic-
ular, any program or program fragment that is free of COBEGIN expressions
is evaluated in left-to-right, applicative order and is deterministic.

The subexpressions of a COBEGIN expression, however, are evaluated con-
currently: their evaluations proceed independently and may be interleaved
subject only to the constraints imposed by critical sections. The semantics of
the EXCLUSIVE expression ensure that the evaluations of two critical sections
for the same region are never interleaved.

The standard semantics of MFX-3 does not guarantee fair scheduling; pro-
grams that rely on interleaving may not work as intended.

6.4.1 Monitors
Before we can describe the semantics formally, we must define what we

mean by monitors. Conceptually, a monitor is an object with one bit of 7111
state that indicates whether or not some process currently has access to the

corresponding monitored region. Since a monitor is a shared resource with"
state that can change, moni'ors resemble locations.

Formally, monitors are a countably infinite set of constants:

Mon= {m, m 2,... } - monitors (m)

Const = ... - ordinary constants
Mon - monitors

87

"'"%',,,

There is an implicit one-to-one correspondence between monitors and region

constants with the same subscript: we regard each monitor mi as the monitor

for the region constant ri.

In order to represent the state of the monitor for each monitored region,
we augment the range of the region map with the symbols IDLE and BUSY.

Definition (revised). A region map -r is a finite partial function with
signature Rconst -* {USED, IDLE, BUSY} .

We have adopted the following convention regarding the use of the symbols

USED, IDLE and BUSY:

" if -f(r) =USED, then r is an ordinary region;.:,7

" if y(r) = IDLE, then r is a monitored region to which no process cur-

rently has exclusive access; and

if (r) = BUSY, then r is a monitored region to which some process

currently has exclusive access. ,

Although two symbols would be sufficient, we decided to use three distinct ;
symbols so that it is always clear whether a given region is an ordinary region

or a monitored region. We do not actually make use of this property.

Since monitors are constants, they are also expressions. This means that
we must define their free ordinary and description variables, their free loca-
tions and region constants, their types, and their effects. The first few are
easy: since monitors are constants, they have neither free ordinary variables
nor free description variables. However, because of the correspondence be-
tween monitors and region constants, we nmust treat a monitor constant as

if it refers to the corresponding region constant:

E7?Ce,,(n,) =r,'

The type of a monitor is a MONITOR type whose region parameter is the
corresponding region constant:

(MONITOR r,)

Finally, all monitors have effect PURE because they are constants.]
_]

% .. .t%

%, % %

6.4.2 Auxiliary Expressions -

The semantics of the MONITORED and EXCLUSIVE expressions are defined
in terms of auxiliary expressions. The basic technique is the same as for

PRIVATE and EXTEND: each expression is reduced to a corresponding auxiliary
expression, the body of which can then be reduced recursively. In the case
of MONITORED, a fresh region constant is chosen during this initial reduction
step, and embedded in the auxiliary expression. In the case of EXCLUSIVE,

the initial reduction step makes the corresponding monitor BUSY, and the

final reduction step makes it IDLE. As always, the auxiliary expression serves
to express the applicable effect masking rule while the body of the auxiliary

expression is reduced recursively.

The auxiliary expressions for MONITORED and EXCLUSIVE are -MONITORED-

and -EXCLUSIVE- respectively. Their syntax is given below.

Exp ... expressions

(-MONITOREI)" Rcorst Exp) MONITORI) in progress
(-EXCLUSIVE" .Ioi Exp) [X(" Islv 11 progress

In the "MON ITOI:" expression, the region 'lliStalit identifies the private.

aMno lVInolUS I0lni t(r(d regi 1 Ii tlie " r I I-'\ expressioil, the iolit or

constant ideitifies tile i,,i ti azi heicc' th, revit)n, to which tlie expression

has exclusive access

The od)(fYH t I'!,xre.%,ltz - al) w1xibazv hiltxg eXpressinll: the re-

Ki 1i c nlist alit t hat repl'se'ili, tie ti vat CK1,• 1' i takes1 th" place , t ie 0 l,, d

variable In the c1respozidi N ll D II 1'xpr,-ss)(ilozi " I[,\(I e"IV - ex-

)ress(lo i.,% it iah ltl" . *'c. , l' 1 I t ,I\ t ,'×pj('ji I (t(f*' Ilt
binid ally -Milathl,', s

Thic tyt,' aiid,-t ii,.,ii e iifi ,lt- f,,i thc --o,,\ ,..r i,, t ° \;ife"'.l1l 1, 'IN''Vll

It 1, d ' l e 1 1 ,t \ f : 1 1 , ' 1 I - \ , % f i 1

lel

• -.-

4.. . , ,

, U € t ' API F - '.

A' I? *\t~iN [" [I I t . * -"

.t*-p. . *

i ",, "i i
t

." "-""," 1 '" " €" ",' ",' " ,
t'

." "- " " -• " ," - ." -• -" ," - . - . . - . -" - " " '. -" , . ". -' . . ".• . "- --. % " -"A . " ,, "

-A196 932 TYPES AND EFFECTS TOWARDS THE INTEOUATIO OF FUNCTIM 24
AND IMPERATIVE PR..(U) MASSACHUSETTS INST OF TECH
CARIDGE LAS FOR COMPUTER SCIENCE.. J M LUCRSSEN

UNCLASSIFIED AUG 87 MIT/LCS/TR-498 N99614-83-K-9i25 F/G 12/5 Nt

Sll.lfllllflfllflfl

Illllllllllll
lllllhlllllllu
lllElllllllEE

%65 J'JQ'
HU11 III1 lll

IIn

S 5 U111 .5 S S S S SJ.S.4

1y %~~w 'q

' .• •

have any MCALL effects on the region ri.

A,B F- e:r A,B - e!e
(MCALL ri) g e

A, B - (*EXCLUSIVE* m i e) T

A, B - (*EXCLUSIVE* mi e) ! (MAXEFF e[o/ri] (MCALL ri))

6.4.3 Reduction Axioms and Inference
Rules
The reduction axiom for COBEGIN is very simple: when all the subexpres-

sion of a COBEGIN expression are values, the expression reduces to NIL.

((COBEGIN V1 ... V.n), Oa, -f) : (NIL, 01,y7)

Subexpressions of a COBEGIN expression that are not values can be reduced
recursively; the recursive reduction inference rules will be presented shortly.

The reduction axiom for MONITORED expressions, which is given below,
is straightforward: the rule simply chooses an unused region constant ri,
marks it as IDLE, and replaces the expression by the corresponding auxiliary
expression after substituting ri for the bound description variable d and m
for the bound ordinary variable x.

((MONITORED d x e), oa,)
ted

((-MONITORED* ri e[r,/dj[mj/x]), r, 7[ri 4--IDLE])
(ri not bound in 7)

When the body of a 'MONITORED* expression has been reduced to a value
(by means of the reduction inference rules), the *MONITORED* expression,
which serves to mask the effects on the private region, is no longer needed

and can be reduced to a value.

((*MONITORED- r v), o', 7) = (v, a, 7)

Note that the private region constant r cannot be made unused when the
expression returns, because references to this region may still exist (as was
the case for the PRIVATE expression). However, if the state is well-formed, any
remaining references to the region can never occur as the first argument to
an active GET or SET expression, and any remaining instances of the monitor
can never occur as the first argument to an active EXCLUSIVE expression.

The reduction axiom for EXCLUSIVE expressions can be read as follows:
an EXCLUSIVE expression whose first subexpression has been reduced to a
monitor represents an attempt to acquire exclusive access to the correspond-
ing region. Such an expression can acquire the monitor whenever the region
corresponding to the monitor is IDLE. Acquiring the monitor simply means

90

%-%"""

Z

making the region BUSY and replacing the expression by the corresponding
auxiliary expression.

((EXCLUSIVE mi e), a, -J) :! ((-EXCLUSIVE' m, e), a, -[BUSY])
(y(ri) = IDLE)

An *EXCLUSIVE* expression represents a critical section whose evaluation
is in progress. When the body of the critical section has been reduced to a
value, the monitor can be released and the value of the body returned.

((*EXCLUSIVE* m i v), a", -f) =. (v, a, -y[ri +- IDLE])

The new reduction inference rules are presented below. The reduction
inference rule for COBEGIN is different from the others: it is the only rule
that permits a given expression to have more than one active subexpression.(ei,, 0'* (4, a,', Y')

((COBEGIN . ei ...),aU, 7) = ((COBEGIN ... e..), a', 7)

The remaining rules are routine, and can be represented by the following
contexts:

" MONITORED in progress: (*MONITORED* r

" critical section: (EXCLUSIVE [] e2)
* EXCLUSIVE in progress: (*EXCLUSIVE* M [])

One technicality remains to be resolved: due to the introduction of explicit
concurrency, a state may have more than one active redex, which means that
the context of an active expression can change while the expression is being
reduced. This introduces a technical problem in the reduction axiom for the
EXTEND expression given in Chapter 5: the scope of the substitution of the
target region for the private region constant must be widened to encompass
the entire expression component of the state, rather than just the body of the
EXTEND expression, in addition to the store. This can be done by merging
the definitions of contexts and active expressions [Fel87, p. 317]; we omit the
details.

6.4.4 Properties of the Standard Semantics
Since an active COBEGIN expression may have more than one active subex-

pression, states can now in general be reduced in more than one way. Ac-
cordingly, we find that the active expressions of a state no longer form a
chain but a tree: the root of the tree is the expression itself, and the active
(immediate) subexpressions of each active expression are its children in the
tree. Every leaf of the tree is an active redex. For example, the tree of active
expressions of the expression

91

~ *~ -p 4. ~TV%

(COBEGIN

(EXCLUSIVE M
(SET I TRUE))

(EXCLUSIVE m

(SET I FALSE)))

has two branches, one for each subexpression of the COBEGIN expression.
Although the individual reduction axioms are still deterministic, except

for the choice of free locations, reduction is no longer deterministic overall,
and the value returned by an expression is no longer unique up to the choice
of locations. Formally, the meaning of an expression, M[e], no longer maps
equivalent stores to equivalent terminal states. However, it is still the case
that the semantics of the language are independent of the storage allocation
policy: the meaning of an expression, M[e], corresponds to a one-to-many
mapping from the equivalence classes of stores a modulo the permutations
that fix FLeZp(e) to the equivalence classes of terminal states modulo the
permutations that fix FL.t.((e, a)).

6.4.5 Suspended Expressions
Definition. An EXCLUSIVE expression in a state (e, a, -) is suspended if

it cannot be reduced because it is waiting to acquire a monitor that is BUSY,
i.e. if it is of the form (EXCLUSIVE mi e) for some i such that y(ri) = BUSY.

More generally, an active expression e in a state (C[e], a, -f) is suspended
iff all its active subexpressions are suspended, i.e. if every active redex in e is
of the form (EXCLUSIVE mi e') for some i (not necessarily the same for each
expression) such that 7(ri) = BUSY.

A suspended expression is not stuck, since it becomes reducible when the
corresponding monitor becomes IDLE. However, since suspended expressions
have no control over when their suspension ends, a variety of deadlocks can
result.

" If an expression acquires the monitor m and then calls a subroutine that
attempts to acquire m recursively, then a deadlock results. In a well-
formed expression, deadlock due to recursive monitor invocation cannot
occur.

" A more intricate example is the so-called deadly embrace [Lam8O]. If one
expression attempts to acquire the monitors m, and in2 , in that order,
while another expression attempts to acquire the same monitors in the
opposite order, then a deadly embrace results whenever m, is granted to
the former expression and m 2 to the latter. There is a standard technique
for avoiding deadly embrace, namely to insist that the set of resources that
can be accessed by any given process must be totally ordered, and must
always be acquired in a sequence consistent with this ordering [Bri75].
Unfortunately, this technique cannot be employed in a language with first-
class monitors unless the declarations of monitors and monitored regions

92

Pd;W

%W 4N %

are augmented with information about this ordering, which would require
some form of constrained quantification over regions. We have not pursued
this option.

e Finally, there are a variety of so-called dynamic deadlocks, in which one
process is forever prevented from making progress by one or more other
processes that share some of the same resources. A detailed investigation
of dynamic deadlocks is beyond the scope of this thesis.

As long as a state contains any active expression that is not suspended,
there is some way to reduce the state unless it is stuck. This justifies our
earlier claim that as long as there is at least one active expression that can
make progress, some active expression is guaranteed to make progress.

6.5 Type Soundness
Because of the introduction of concurrency, the proof of type soundness

no longer holds as originally formulated: in particular, the effect propagation
lemma must be extended with two new cases. In what follows, we refine the
definitions and propositions that are affected by the introduction of concur-
rency.

We begin be refining the notion of a legal state.

Definition. A state 0 = (e, a, 7) is legal, L(8) , iff
1. (as before) every auxiliary expression in 0 is active;
2. (as before) no two auxiliary binding expressions in 0 have the same private

region constant;
3. (as before) the private region constant of an auxiliary binding expression

is inaccessible in the context that surrounds the expression;
4. (new) no two 'EXCLUSIVE* expressions in 0 have the same monitor; and
5. (new) a monitor mi is BUSY, -y(ri) = Busy, iff 0 contains an -EXCLUSIVE'

expression of the form (-EXCLUSIVE* mi e').

Lemma (revised). (Effect Propagation) In a well-formed state, the effect
of each active expression is a subeffect of the effect of its parent expression,
unless

1. (as before) the parent is an auxiliary binding expression, in which case
the effects on its private region constant are masked; or

2. (new) the parent is an *EXCLUSIVE* expression, in which case the effects
on its monitored region are masked and replaced by an MCALL effect on
that region.

Proof. The proof proceeds as before, using the correspondence between
the new reduction inference rules and the new effect inference rules. In
particular, the effect of a *MONITORED* expression is obtained from the effect
of its body by masking the effects on its private region constant, and the
effect of an *EXCLUSIVE* expression is obtained from the effect of its body

93

by replacing the effects on its monitored region by an MCALL effect on that

region. 0

As before, using the fact that the new effect inference rules parallel the

structure of the new reduction inference rules. 0

Proposition (revised). (Type and Effect Preservation) Reduction of a

well-formed state preserves or decreases the type and effect descriptions of

the state.

Proof. The proof proceeds as before, but there are some new cases to be

considered.

It is easy to see that reduction still preserves consistency: new region con-

stants are introduced only by the reduction axioms for PRIVATE, EXTEND and

MONITORED, each of which binds the new region constant in the region map.

Since a region constant bound in the region map never becomes unbound

(although the state of a monitored region may alternate between IDLE and

BUSY), reduction preserves consistency.

To show that reduction preserves legality, we consider each property of

legal states in turn. The first three properties are the same as before, so we
consider only the two new properties.

" The fourth property, mutual exclusion, is preserved because (i) an

EXCLUSIVE expression can be created only when the region in question

is IDLE, and this makes the region BUSY until the expression is reduced
to a value; and (ii) every *EXCLUSIVE* expression is active, and therefore

cannot be duplicated.

" The fifth property, monitor consistency, is preserved because (i) when

a monitored region constant is created, it is IDLE and there are no
EXCLUSIVE expressions for it; and (ii) a region can be made BUsY only

by creating a corresponding *EXCLUSIVE* expression, and it can be made

IDLE only by reducing that *EXCLUSIVE* expression to a value. 0

94

.,'

I. N N, ****% % %1~~s V.

% %* -
' ,,J,,.- - . . . , , " - -- J' " -. ' ' - . -"'" '''%."'" . . -, .'' -'"""''"" %,' -"2W""

6.6 Effect Soundness
We are left with the task of extending our effect soundness proposition,

which has been invalidated by the introduction of MCALL effects. For exam-
ple, if a state 0 contains an active expression of the form (*EXCLUSIVE* mi e)
with effect e, then a reduction of that active expression may access locations
in the region ri even though e does not incorporate any ALLOC, READ or

WRITE effects on ri. This is reflected in the following revised effect sound-
ness proposition:

Proposition (revised). (Effect Soundness) Reduction of an expression
in a well-formed state allocates, reads, and writes only locations that can be
reached through the regions specified by its effect and/or through regions that
are accessible only within the expression. In other words, if 0 = (C[e], o, ,

(' = [e'],a',y') and o 0', and e !e where

f _ (MAXEFF (ALLOC PA) (READ PR) (WRITE PW) (MCALL PM))

then
A(O, ') n Reach(Acc(C)) C Reach(PA) U Reach(pM)

IZ(O, 0') n Reach(Acc(C)) C Reach(pR) U Reach(pM)

W(0, 0') n Reach(Acc(C)) C Reach(pw) U Reach(pM)

Proof. As before, using the revised effect propagation lemma. 0

This proposition generalizes immediately to 0 :* 0'.

Although this proposition is weaker than the previous effect soundness
proposition, its power to identify opportunities for concurrent evaluation and
memoization has not diminished because the locations that can be reached
through a monitored region can be read and/or written only in exclusive
mode.

Definition. A location 1, read and/or written in the reduction
step 0 !g 0' is read and/or written in exclusive mode iff the active re-
dex reduced in the reduction step is embedded in a context of the form J"
(*EXCLUSIVE* m []) for each monitored region constant ri E FRCd,.c(p).

Proposition. (Monitor Encapsulation) In a well-formed state, a location
that can be reached through a monitored region is read and/or written only
in exclusive mode.

Proof. By the effect propagation lemma, and the fact that the body of
a *MONITORED- expression has no READ or WRITE effects, a READ or WRITE

effect on a monitored region can be masked only by an 'EXCLUSIVE* expres-
sion. It follows that in every active redex that reads or writes a location that

can be reached through a monitored region is embedded in an *EXCLUSIVE*-

expression for the corresponding region. "

Therefore, although an expression that has an MCALL effect on a monitored "**)
region may allocate, read, and write locations that are accessible through

95

00 0 0 e % % %P PW

that region, it must acquire exclusive access to the region in question in
order to read or write.

In practical terms, the revised effect soundness and monitor encapsula-
tion propositions show that is possible to state and enforce a set of language
restrictions that ensure that all interference between concurrent tasks is me-
diated by monitors and critical sections. This makes it possible to integrate
explicit concurrency into a programming language designed to promote im-
plicit concurrency while preserving all existing opportunities for concurrent
evaluation and memoization.

MOW,

;...

1. "o % Aa,

OF ~ ~ ~ ~ ~ ~ ~ % . PP.0e.1 0 .%.

If Z e R P 0-O

r4

di " ' '% .. ', ' i ' d d" " d . ,. " €.o -. r. ¢ " w-€- .- ' d ," " 4"€'. d" . d" ' d • 4 -

Chapter 7. Language
Extensions
The MFX language is far from being a complete programming language. In

this chapter we present several language extensions that make the language
more practical, such as parameterized and recursive types, and we discuss
their interaction with the type and effect system. The purpose of this chapter
is to demonstrate the general applicability of the type and effect system.

We conclude the chapter with a discussion of polymorphic abstraction
and its performance implications, and we propose an alternative definition
of polymorphism that permits an implementation in which polymorphic ap-
plication has no run-time cost.

7.1 Trivial Extensions
In this section we introduce syntactic sugar for subroutines of multiple

arguments, for local variables, and for local description synonyms, and we
show how to define pre-declared descriptions and constants, such as the type
of integers and the usual integer literals and operators.

7.1.1 Subroutines of Multiple Arguments
Thus far, all the constructs for abstraction and application bind only one

parameter at a time. As a result, subroutines of multiple arguments must be
curried, and there is no way to define subroutines that take no arguments.
We now remove this restriction: from now on, all constructs for abstraction
and application, including the derived constructs, will accept any number %
of parameters. To improve readability, all parameter declarations should be !
enclosed in parentheses. All the variables bound by an expression must be
distinct.

This generalization is fairly routine, but we will illustrate it by means of
a few examples. For these examples we will assume that int is the type of
integers, that the literals 0, 1 and 2 represent the corresponding integers,
and that + denotes a subroutine that takes two integers and returns their
SUm.

The following expression takes three integers and returns their sum:

(LAMBDA (x: int y: int z: int)
(+ (+ x y) z))

This expression has the following type:

(SUBR (int int int) PURE

int)

The following expression emulates application for subroutines of a single
argument:97

97"

(PLAMBDA (tl:TYPE e:EFFECT t2:TYPE)

(LAMBDA (X:tl f:(SUBR (ti) e t2))
(f x)))

This expression has the following type:

(POLY (tl:TYPE e:EFFECT t2:TYPE) PURE

(SUBR (ti (SUBR (t1) e t2)) e
t2))

The necessary changes to the grammar, description inclusion rules, type
and effect inference rules, and semantics are straightforward, and will be
omitted.

7.1.2 Local Variables
MFX can easily be extended with the usual LET construct, the semantics of

which can be expressed as a source-to-source transformation that generates
an application of an ordinary subroutine. The syntax of the LET construct
is given by the following grammar clause:

Exp = ... - expressions
(LET ((Var Exp)*) Exp) - let-expression

The expression (LET ((X1 el). .. (xe, e.)) e) has the following semantics.
First, the ei are evaluated, in order. Next, the resulting values vi are sub-
stituted for the corresponding variables xi throughout the body e. Finally,
the body, thus modified, is evaluated and its value returned. In other words,
this expression is equivalent to the expression

((LAMBDA (x1:r1 ... x,,:) e) el ... e.)

where the ri are the types of the expressions ej.

Because of the possibility of side-effects, this expression is not equivalent
to the expression obtained by simultaneously substituting the expressions ej

for the corresponding variables xi throughout the body e, i.e.1

For example, the expression

(LET ((X (NEW rl BOOL TRUE)))

(BEGIN

(SET X FALSE))

(GET X))

is equivalent to the expression

, 98",I'

XlV

((LAMBDA (X: (REF rl BOOL))

(BEGIN

(SET X FALSE))

(GET X))

(NEW rl BOOL TRUE))

and not to the expression '9

(BEGIN

(SET (NEW rl BOOL TRUE) FALSE)

(GET (NEW ri BOOL TRUE)))

The type and effect inference rule for LET expressions is given below.
This rule, which is a composition of the rules for ordinary abstraction and
application generalized to Tt arguments, can be read as follows: provided that
the ei are all well-formed, the type of the expression as a whole is equal to
the type of the body in a type assignment in which each xi has the type of
the corresponding e3 . The effect of the expression is the least upper bound r..
of the effects of the ei and the effect of the body.

Vi,l<i<n.A,B F- ei:r1 i

Vi, 1 < i < n . A, B I- ej ! ei ri.

A[x +- rl- ... x r-.1,B F e r

A[xA ,B 7-... [x, -], B I- e e
A, - (LET ((xi el) .. (x, e,,)) e) : T

A,B (LET((X, el)... (x, e,)) e) ! (MAXEFF eI.. .e, e)

7.1.3 Description Synonyms
MFX can easily be extended with a construct for defining transparent

description synonyms. The semantics of this construct can be expressed in
terms of a source-to-source transformation. The syntax of the DLET construct
(for Description LET) is given by the following grammar clause:

Exp = ... - expressions
(DLET ((Dvar Desc)*) Exp) - diet-expression

The expression (DLET ((d 6 1). .. (d b,)) e) has the following semantics:
the descriptions bi are substituted for the corresponding description variables
di throughout the body e, and the body, thus modified, is evaluated and its
value returned. In other words, this expression is equivalent to the expression

e [1,Id, ... bId,]

Because of the static type checking algorithm, this is not equivalent to the
expression obtained by abstracting the body over the description variables

di ... d,, and applying the result to the corresponding description, i.e.

(PROJ (PLAMBDA (dl:/ l ... dn,:K,) e) 61" .. " n) '

For example, the expression

99 9-

%, % 9 % . ..
.

%.. . ..

(DLET ((apples int)
(oranges int))

((LAMBDA (n:apples r:oranges)

(n m))

23))

is equivalent to the expression

((LAMBDA (n: int z: int)
(+ Un))

2 3)

and not to the expression

(PROJ (PLAMBDA (apples:TYPE oranges: TYPE)

(J,&\MBDA (n:apples m:oranges)

(+ n m))

2 3))

int int)

In fact, the latter expression is ill-typed in two respects:

" the application (+ n m) is ill-typed since + expects two values of type
int but n and m have type apples and oranges respectively;

" the application of the LAMBDA expression is ill-typed since it expects
values of type apples and oranges respectively but 2 and 3 both have

type int.

The type and effect inference rule for DLET expressions is given below. It
can be read as follows: provided that the b, are all well-formed, the type

and effect of the expression are equal to the type and effect of the body after ft

substituting the descriptions b, for the corresponding description variables

d,.
Vi,1 < i <n. B F- bi : e

A,B F- e[,6/d, ... bn/dn] r

A,B F e[,, 1d,... bnld,,] 'e
A, B F (DLET ((d, (di)... (d, b)) e) T ii
A,B F (DLET ((d, 61)... (dn bn)) e) f

100

% % % % % % % ftf .**.%

%-at % 4. S

A %

7.1.4 Built-in Types
MFX can easily be extended with a variety of pre-declared variables, de-

noting types, effects, regions, subroutines, literals and so forth. The existing
abstraction constructs provide a formalism for describing such language ex-
tensions. We illustrate this below by showing how to extend MFX with a pre-
declared type variable int and a set of pre-declared variables corresponding
to the usual integer liteials and operators.

The existing abstraction constructs are not powerful enough to extend the
language with additional type, effect or region constructors (such as array.%
and list). Constructs for introducing user-defined type constructors are
presented in the next section.

In order to extend the language with a type int and a suitable set of
integer literals and operators, it suffices to abstract every program over the
type variable int and the ordinary variables +, -, and so forth:

(PLAMBDA (int :TYPE)

(LAMBDA (+: (SUBR (int int) PURE int)

-(SUBR (nt int) PURE int)
*:(SUBR (int int) PURE int)

/:(SUBR (int int) PURE int)

=:(SUBR (nt int) PURE BOOL)
<: (SUBR (int int) PURE BOOL)

O:int 1:int -1:int 2:int -2:int ...)
c))"..

From the point of view of the programmer, the type int is an abstract
type with four binary operators, two binary predicates, and a countably S.

-nfinite number of literals. Because of type abstraction, there is no need to
specify the actual type and the actual values to which the program is applied: :..

it suffices to give a description (algebraic, axiomatic or otherwise) of their
semantics. Since any reasonable definition will suffice, we will not belabor
this point.

7.2 Higher-order Descriptions
M.'X is based on the higher-order lambda-calculus of McCracken [McC82],

which su)i)orts ty)e functions and recursive types. We have omitted these
features from M,'X in order to simplify the presentation. However, AlEX can
easily be extended with both.

In this section we show how to extend AlFX with higher-order descriptions.

'%...

.-

7.2.1 Syntax

In order to express the kinds of higher-order descriptions, we need to
extend the grammar of kinds accordingly. The new grammar of kinds is
given below. A kind description is one of the following: a kind constant (one
of REGION, EFFECT and TYPE), or a higher-order kind. There are no kind
variables, since there is no construct for abstraction over kinds.

Kind = - kinds (n)
REGION - kind of regions
EFFECT - kind of effects
TYPE - kind of types
(DFUNC (Kind) Kind) - kinds of description functions "

The kind (DFUNC (K 1) tC2) is a generalization of the kind "K 1 =-2" in the
higher-order lambda-calculus of McCracken [McC82], i.e. it is the kind of
description functions that map descriptions of kind K, to descriptions of %
kind K2.

The grammar of higher-order descriptions in general is given below. A
higher-order description is one of the following: a description variable, a
description function, or a description application.

HDesc = - higher-order descriptions
Dvar - description variables
(DLAMBDA (Dvar:Kind) Desc) - description functions
(HDesc Desc) - description applications

The description function (DLAMBDA (d:K.) b) corresponds to the type "Ad:K.6"
in the higher-order lambda-calculus of McCracken [McC82].

The updated grammar of descriptions in general is given below. A descrip-
tion is now one of the following: a region description, an effect description,
a type description, or a higher-order description.

Desc = - descriptions (b)
Region - region descriptions
Effect - effect descriptions
Type - type descriptions
HDesc - higher-order descriptions ,

A description application, like a description variable, can in principle have
any kind, including REGION, EFFECT or TYPE. The grammars of regions,
effects and types must be updated accordingly. We omit the details.

In what follows, we assume that the constructs for description abstraction
and application has been generalized to accept any number of parameters,
using the same syntactic conventions as before.

102 -:3I S-

7.2.2 Informal Semantics
The description function (DLAMBDA (d:K) b) acts as a function that, when

applied to a description of kind r, yields a description of the kind of 6. This is
useful particularly in connection with a construct, such as DLET, for defining
transparent description synonyms.

For example, the description function

(DLAMBDA (r REGION)

(MAXEFF (ALLOC r) (READ r) (WRITE r)))

maps any region p to the effect (MAXEFF (ALLOC p) (READ p) (WRITE p)).
Since this description function takes a region as argument and returns an
effect, it has kind

(DFUNC (REGION) EFFECT)

Descriptions may have free variables, provided that they are defined in e
the surrounding scope. For example, if sum is declared in the surrounding "
scope as a higher-order description of kind (DFUNC (TYPE TYPE) TYPE) %

and prod is declared as a higher-order description of kind (DFUNC (REGION

TYPE TYPE) TYPE), then the description

(DLAMBDA (r:REGION t :TYPE)

(sum UNIT (prod r t t)))

is well-formed and has kind

(DFUNC (REGION TYPE) TYPE) p

Like a manifest description function, a higher-order description variable '

acts as a function that, when applied to a description of the appropriate
kind, yields a description of some other kind - in other words, it acts as a
parameterized region, effect, type, or other description.

For example, a higher-order description variable of kind

(DFUNC (TYPE) TYPE)

acts as a parameterized type. If the description variable vector has this
kind, then the description applications (vector BOOL) and (vector int)
are well-formed and have kind TYPE. If vectors are implemented as sub-
routines that map integers to vector elements, then the parameterized type
vector could correspond to the description function (or parameterized rep-
resentation type)

(DLAMBDA (t:TYPE)

(SUBR (int) PURE t)) .

103

S'

7.2.3 Description Conversion
The higher-order descriptions call for the addition of rules for alpha, beta

and eta-conversion.

(DLAMBDA (d:n) S) (DLAMBDA (d':K) 6[d'/d]) (d' V FDVd,,c(6))

((DLAMBDA (d:tc) 6) b2) 6 [b2/d]

(DLAMBDA (d:K) (6 d)) b 6 (d 0 FDVdec(6)) %

Two description applications are convertible whenever their respective %
operators and operands are convertible:

6 2 L-b2

Description conversion in the presence of parameterized regions and effects
presents some interesting anomalies, due to the fact that the region and effect
constructors are all monotonic and distributive. We will return to these
anomalies at the end of this section.

7.2.4 Static Semantics
The kind inference rules for description abstraction and application are

taken directly from the higher-order lamnbda-calculus. Note in particular that
the kind of the actual parameter of a description application must match the
kind of the formal parameter exactly: there is no "subkinding".

B[d +- ic] F- 6 : .'

B I- (DLAMBDA (d:ic) 6) : (DFUNC (K) K')

B - 6 : (DFUNC (K 1) K2)

B I- 62 :

B - (6 b2) : K2

Our notion of description abstraction is more general than that of the higher-
order lambda-calculus, since we have more than one base kind. However, this
generalization is not visible in the inference rules.

The type and effect inference rules are not affected by the introduction
of higher-order descriptions: polymorphic abstraction over higher-order de-
scriptions is no different from polymorphic abstraction over descriptions of
base kind.

104

.'. -on, V ..V V. V,

7.2.5 Parameterized Types
Using abstraction over higher-order descriptions, it is possible to define a

variety of mutable parameterized types, such as array and list, that are pa-
rameterized over the region to which the corresponding locations belong. For
example, given an immutable parameterized type vector, of kind (DFUNC

(TYPE) TYPE), with operators

vector-new: (POLY (t:TYPE) PURE

(SUBR (int (subr (int) PURE t)) PURE

(vector t)))

vector-get: (POLY (t:TYPE) PURE

(SUBR ((vector t) int) PURE

t))

it is possible to implement a mutable parameterized type array, of kind
(DFUNC (REGION TYPE) TYPE), with operators

array-new:(POLY (r:REGION t:TYPE) PURE

(SUBR (int t) (ALLOC r)

(array r t)))

array-get: (POLY (r:REGION t :TYPE) PURE

(SUBR ((array r t) int) (READ r)

t))
array-set: (POLY (r:REGION t:TYPE) PURE

(SUBR ((array r t) int t) (WRITE r)

UNIT))

where the parameterized type array could correspond, for example, to the
description function (or parameterized representation type)

(DLAMBDA (r:REGION t:TYPE)
(vector (REF r t)))

Parameterized types such as array meet the objectives set forth in Chap-
ter 2, which we reproduce below with a slight change to reflect the use of
regions:

" the programmer can easily instantiate a given type in several different
regions, to indicate how the values of the resulting types are used; and

* the method applies equally well to built-in and programmer-defined types.

105

%. , IV•N. -I,--, . - % %-- "

%; Zs % %I

7.2.6 The Side-effect Operators Revisited
Using abstraction over higher-order descriptions, it is possible to replace

the type constructor REF and the operators NEW, GET and SET by a pa-
rameterized type ref and polymorphic subroutines new, get and set. To
make these variables built-in, it suffices to abstract every program e over the
description variable ref and the ordinary variables new, get and set:

(PLAMBDA (ref: (DFUNC (REGION TYPE) TYPE))

(LAMBDA (new: (POLY (r: REGION t: TYPE) PURE

(SUBR (t) (ALLOC r)

(ref r t)))
get:(POLY (r:REGION t:TYPE) PURE

(SUBR ((ref r t)) (READ r)

)
set: (POLY (r:REGION t:TYPE) PURE

(SUBR ((ref r t) t) (WRITE r)

UNIT)))

e)

From the point of view of the programmer, ref is a parameterized type
with three operators and no literals. Because of type abstraction, there is no
need to specify the actual description function and the actual values to which
the program is applied: it suffices to give a description (algebraic, axiomatic
or otherwise) of their semantics.

The combination of the parameterized type ref and the polymorphic sub-
routines new, get and set is almost as powerful as the built-in type construc-
tor REF and the built-in constructs NEW, GET and SET. However, it falls short
in two respects: implicit polymorphism and tonicity.

The first difference, implicit polymorphism, lies in the fact that the GET

and SET constructs are implicitly polymorphic: they can operate directly on
locations of any type, without a need for the programmer to supply region or '.

type information. The polymorphic subroutines get and set, on the other
hand, must be applied to appropriate descriptions before they can be used.

Nevertheless, instances of NEW, GET and SET expressions can always be 6
rewritten in terms of new, get and set, and vice versa. This is illustrated
below, where r and t are the region and type components, respectively, of
the type of location.

(NEW r t value) 4-* ((PROJ new r t) value)

(GET location) - ((PROJ get r t) location)

(SET location value) +-* ((PROJ set r t) location value)

This rewriting could be done automatically by the compiler, with the aid of
some relatively simple type inference. Therefore, the polymorphic subrou-
tines new, get and set are essentially equivalent to the built-in constructs
NEW, GET and SET.

106

The second difference lies in the fact that REF is a type constructor: ac-
cording to the type inclusion rules, REF is monotonic in its first argument.
The parameterized type ref, on the other hand, is not monotonic in any of
its arguments. In other words, (REF p T-) is a subtype of (REF p' r) whenever
p _ p', but(ref p r) is a subtype of (ref p' r) only if p : p'.

Because of this difference, certain well-formed expressions are no longer
well-formed when ref is substituted for REF. An example of such an expres-
sion appears below.

(LAMBDA (ref 1: (REF rl int)
ref2:(REF r2 int))

(IF p refl ref2))

this expression has type

(SUBR ((REF ri int) (REF r2 int)) PURE

(REF (UNION ri r2) int))

where the region description (UNION rl r2) reflects the uncertainty about
the region to which the location in question actually belongs.

When ref is substituted for REF, this expression is not well-formed be- rv* .,
cause no type is a supertype of both (ref rl int) and (ref r2 int).

7.2.7 Tonicity
The difference between REF and ref comes down to the fact that in MFX

there is no way to represent the tonicity of a higher-order description vari-
able, e.g. the monotonicity or anti-monotonicity of the description variable
with respect to a given argument. It would be possible to augment the kinds
of description functions with tonicity information, just as we have augmented
the types of subroutines with latent effect information. Such a tonicity spec- . .. ,

ification would influence the convertibility of applications of the description
function, just as the latent effect specification of a subroutine influences the
effect specifications of applications of that subroutine.

Our research on this subject has suggested a four-fold classification: a
description function 61 can be

* non-monotonic, i.e. (b, 62) "- (61 ') iff b2 " b, for example

(DLAMBDA (t:TYPE)

(SUBR (t) PURE t)) I
* monotonic, i.e. (,5 62) (6 6) if 6-, for example b2)2

(DLAMBDA (t :TYPE) %
(SUDR (int) PURE t))

(DLAMBDA (t:TYPE)

(SUBR (t) PURE int)) r 0

107 /. %

I- Pr or -or r.r.of0% "s....?e;",'__",.'r V '0',A

",£.",,~~~~ ~ ~ ~ %'.+ .% "%,+ % %, %+ .% ,+ ,, +. ., ,.'... , , ., .

* constant, i.e. (6b 62) C- (6b b') for all 62 and 6, for example

(DLAMBDA (t:TYPE)

(SUBR (int) PURE int))

The last case may seem trivial, or even absurd; however, it logically comple-
ments the other three cases, as the examples clearly show.

The type constructor ref, which maps a region and a type to another
type, is monotonic in its first argument and non-monotonic in its second
argument.

We have not found any prior research on the subject of tonicity specifica-
tions. However, since our primary focus is on types and effects rather than
type inclusion, a detailed investigation of higher-order kinds with tonicity
specifications is beyond the scope of this thesis.

7.2.8 Parameterized Effects and Regions
We now turn to the anomalies presented by description conversion in the

presence of parameterized effects and regions. The problem lies in ensuring
the completeness of the description conversion and inclusion rules.

Since the region and effect constructors are all monotonic and distributive,
every description function that returns a region or effect is also monotonic
and distributive. As a result, the conversion and inclusion rules for applica-
tions of parameterized effects and regions would be incomplete unless they
take these properties into account.

For example, any description function of kind

(DFUNC (REGION EFFECT) EFFECT)

is monotonic and distributive, i.e. if 6 has the above kind, then

" (b p e) E (6 p' f') whenever p E p' and f e ',

* (6 (UNION pl P2) E) is convertible to (MAXEFF (6 pI f) (6 P2 e)), and

• (6 p (MAXEFF el f 2)) is convertible to (MAXEFF (6 p f 1) (b P E2)).

Moreover, since there are no region constructors that take effects or types
as arguments, and no effect constructors that take types as arguments, every
region function is necessarily constant with respect to all its type and effect
arguments, and every effect function is necessarily constant with respect to %
all its type arguments. For example, any description function of kind

A

(DFUNC (TYPE EFFECT) EFFECT)

is constant with respect to its first argument, i.e. if 6 has the above kind,
then (6 r e) s" (6 r' f) for all r and r'.

These complications can be avoided by a language restriction that limits
polymorphic abstraction to types, effects, regions and parameterized types.
This restriction ensures that effect and region functions are always mani-
fest, so that they can be eliminated by beta-reduction before the question

108

z - -, . .
% 0. % % % %

of convertibility arises. Since we have been unable to find any use for pa-
rameterized regions or effects, we believe that this restriction is a reasonable
compromise.

7.3 Recursion
In this section we show how to extend MFX with recursive types and

expressions (but not with recursive effects, regions, or kinds). The higher-
order lambda-calculus of McCracken, which has served as a basis for much
of our type system, supports recursive types; however, it requires explicit
coercion between a description and its recursive instances [McC83, p. 6]. We
show that such coercions are unnecessary in MFX.

Note that recursion i- not needed to write non-terminating expressions in
MFX: this is already possible through the use of side-effects. For example, it
is possible to emulate Landin's LETREC construct by means of effects [Ree86].
However, this technique seems rather inappropriate in a language in which
the effects of an expression are part of its specification.

7.3.1 Recursive Descriptions
In the description domain, we introduce a new construct, DLETREC (which

stands for Description LETREC), for defining mutually recursive type descrip- ..

tions. The syntax of this new construct is given below.

Desc = ... - descriptions
(DLETREC ((Dwar Type)*) Desc) - recursion introduction

The description (DLETREC ((d r1). .. (d,, rn)) 6) is convertible with the
description.4

6[rd .. -

where
=' = (DLETREC ((d, TI)... (d,, r,,)) di)

When the above conversion axiom is applied repeatedly to a DLETREC

description, the description may expand without limit:

(DLETREC ((list (sum UNIT list'))
(list' (prod BOOL list)))

list)

(sum UNIT

(DLETREC ((list (sum UNIT list'))

(list' (prod BOOL list)))

list'))

(sum UNIT

(prod BOOL

109

(DLETREC ((list (sum UNIT list'))

(list' (prod BOOL list)))

list)))

(SUM UNIT
(prod BOOL ,. .e

(Sum UNIT

(DLETREC ((list (sum UNIT list'))
(list' (prod BOOL list)))

list')

and so on. If either the body or one of the definitions contains none of the
bound variables, the conversion process may terminate after a finite number
of steps:

(DLETREC ((list (sum UNIT list'))

(list' BOOL))

list)

(SUm UNIT

(DLETREC ((list (Sum UNIT list'))

(list' BOOL))

list'))

(Sum UNIT BOOL)

If one of the bound variables is defined as itself, either directly or indirectly,
successive conversions yield a repeating, rather than an expanding, series of
descriptions:

(DLETREC ((t1 t2)(t2 t1))
ti)

(DLETREC ((tl t2)(t2 t1))
t2)

(DLETREC ((tl t2)(t2 t1))

ti)

and so on.
In general, applying the above conversion rule repeatedly yields a descrip-

tion, whether finite or infinite, that is free of DLETREC descriptions except
for DLETREC descriptions whose body is a variable that is defined as itself.

Since all recursively defined descriptions are of kind TYPE, which is a base
kind. the recursion equations of a DLETREC description form a regular system
[CouS3], and all descriptions, whether finite or infinite, correspond to regular
trees. Equality of regular trees is equivalent to equality of deterministic

110

a '1 W

% -'. -_ " ' . , , _-- ..,,@. #_V,,,_. e. % ,€ e , ,,,V % % %_ .,, % %,$# ,, j ,@ , ,e . '." "e ,',''. ; ,", ,'~ -%- .'

finite automata, which is efficiently decidable [Cou831. It follows that type

conversion and inclusion are efficiently decidable even in the presence of the
infinite descriptions generated by the DLETREC construct.

A DLETREC description whose body is a variable that is defined as it-
self corresponds to a singular unknown [Cou83]. Singular unknowns do not
appear to be of any use, and it would be possible to define the language so
that descriptions containing singular unknowns were considered syntactically
invalid or ill-formed. However, this would create complications since kind-
respecting beta-substitution would no longer preserve syntactic validity and A,

well-formedness. We have therefore decided to admit singular unknowns.
We arbitrarily treat all singular descriptions as convertible.

The kind inference rule for DLETREC descriptions is given below. It can be
read as follows: provided that the ri have kind TYPE in a kind assignment in
which each di has kind TYPE, the kind of the description as a whole is equal
to the kind of the body in the same kind assignment.

Vi, 1 < Z < n . B[d +- TYPE]... [dn 4- TYPE] - T" : TYPE

B[di +- TYPE]... [d, 4- TYPE] - 6 : K

B F (DLETREC ((di r1) ... (d in)) b): r

As indicated by the grammar and the kind inference rule, the DLETREC

construct can be used only to define mutually recursive type descriptions - it
cannot be used to define recursive region, effect, or higher-order descriptions.
We have imposed this restriction deliberately, in order to keep the language
simple.

As for recursive region or effect descriptions, they do not appear to add
any power to the language because all region and effect constructors are
idempotent: for example, defining d recursively as (UNION d ri) is equivalent
to defining d directly as rl. The same is true of effects. Although the three
base kinds have equal standing in most other respects, we believe that this
restriction is a reasonable compromise.

Unlike recursive effects and regions, recursive higher-order descriptions
could be quite useful. For example, the type function list of kind (DFUNC

(REGION TYPE) TYPE) could be defined as the following recursive type func- .5

tion, given suitable parameterized types sum and prod:

(DLETREC ((list (DLAMBDA (r:REGION t:TYPE)

(sum UNIT (prod r t (list r t))))))

Unfortunately, even if only first-order type functions were allowed, the
descriptions generated by the DLETREC conversion rule would correspond to
algebraic trees, because the recursion equations of a DLETREC description
would form an algebraic system [Cou83]. Equality of regular trees is equiv-
alent to equality of deterministic pushdown automata, the decidability of
which is an open problem [Cou83I.

111

% % %
J- F'. .. .r J 0 -

-wn

Fortunately, many useful recursive type functions can be rewritten as
nonrecursive type functions that return recursive types. For example, the

type function list could be defined as follows:

(DLET ((list (DLAMBDA (r:REGION t:TYPE)

(DLETREC ((list' (sum UNIT (prod r t list'))))

list'))))

In view of this, we believe that our decision to disallow recursive higher-order
descriptions is a reasonable compromise.

As a shorthand, we allow DLETREC to be used in the expression domain
as well, with the following semantics:

(DLETREC ((d, rl) ... (d. r.)) e)

is equivalent to

(DLET (d, r') ... (d,, r,,)) e)

where, as before, r (1 < i < n) is equal to

(DLETREC ((d, 7"1) ... (dn "rn)) di)

To avoid capture, the bound variables di must not appear free in the type of
any free variable of the body e.

7.3.2 Recursive Expressions
MFX can easily be extended with the usual LETREC construct, the seman-

tics of which can be expressed as a source-to-source transformation. The
syntax of the LETREC construct is given by the following grammar clause:

Exp = ... - expressions
(LETREC ((Var:Type Exp)*) Exp) - recursive expressions

The expression (LETREC ((XI:ri el)... (x,:r,, e,)) e) has the following
semantics. First, the ei are evaluated, in order. Next, the resulting values
are substituted for the corresponding variables x, throughout the values of
the e, and throughout the body e. Finally, the body, thus modified, is
evaluated and its value returned.

We have imposed the restriction that all the ei must be LAMBDA or
PLAMBDA expressions. This restriction is sufficient, although not necessary,
to ensure that the e, can be evaluated even though the recursively defined
variables x, are not yet bound to their values.

The type and effect inference rule for LETREC is given below. This rule can
be read as follows: provided that each ej is well-formed in a type assignment
in which each x, has the corresponding type ri (which must itself be of kind
TYPE), and that the type of each e, is a subtype of the corresponding r,, the
type of the expression as a whole is equal to the type of the body in that.

1%I1 1 2 0 F -1, ," ".,I

same type assignment. The effect of the expression is the least upper bound
of the effects of the ei and the effect of the body.

Vi, 1 < i < n . B F- T1 :TYPE

Vi,1 < i < n. AIX, +- Tl]...[X n n -],B F- e,:i T,

Vil<i <i n .Ax -71r...[x, 7n),B F- ei!e,

Vi, 1 < i < n . r' C_ ri
A[x, 7-r11...[x 4-r],,B I- e 7.
AIXi'E-ri1]... [Xn -- j, B e- ee

A,B (LETREC ((xl:ri el).. (Xn:rn en)) e) :

A,B F- (LETREC ((xl:T1 el)... (x.:r, en)) e) ! (MAXEFF C1 ... En)

As an example of the use of the LETREC, we present an expression that
computes 10 factorial using a recursive subroutine:

(LETREC ((fact: (SUBR (int) PURE int)
(LAMBDA (n: int)

(IF (<= n 1) 1 -
n (fact (- n 1)))))))

(fact 10))

The semantics of a LETREC expression can be expressed directly in terms
of LET and DLETREC, using a construction that was suggested to the author
by J. O'Toole. The construction is inspired by the Y-combinator, but has
been adapted to ensure termination under applicative order evaluation. The
basic idea is as follows:

" encapsulate each of the ei within a LAMBDA expression that expects to
be passed, as arguments, a set of functions which, when applied to them-
selves, yield the values of the xi.

" throughout the scope of the bound variables, i.e. throughout the e, and
throughout the body, replace every occurrence of any of the bound vari-

ables by a self-application of the corresponding variable to all the x,._6

In order to make this self-application possible, these functions must all have e. .
recursive types.

The transformation is as follows: the expression d

(LETREC ((XI :71 el) ze.

is equivalent to the LETREC-free expression

113

(DLETREC ((tl (SUBR (t1 ... t,,) PURE rl))

(t, (SUBR (ti ... t) PURE rn)))

(LET ((X' (LAMBDA (X' :t 1 ... X. tn)
e,[... (X X,... Xz)/I ,...l)

(Xn (LAMBDA (X'1 :tl ... X :tn)e, [... (X SX ... X')lM ...]))I
e[... (X X ... X')/Xi...I)'

To illustrate this transformation, we show the transformed version of the

previous example, namely the expression that computes 10 factorial using a
recursive subroutine:

(DLETREC ((t (SUBR (t) PURE (SUBR (int) PURE int))))

(LET ((fact' (LAMBDA (fact':t)

(LAMBDA (n: int)
(IF (<- n 1) 1

(* n ((fact' fact') (- n 1))))))))
((fact' fact') 10))) ""

It is crucial that the self-application takes place only after the original -..

parameter (in this case, n) has been supplied: for example, the following

expression would diverge due to the recursive call on the third line.

(DLETREC ((t (SUBR (t) PURE (SUBR (ist) PURE int))))

(LET ((fact' (LAMBDA (fact':t)

(LET ((fact (fact' fact')))

(LAMBDA (n: int)

(IF (<- n 1) 1

n (fact -n 1))))))))

((fact' fact') 10))))

'a

114

- - --.-

7.4 Immutable Regions
In this section we present an extension of MFX that is designed to permit

a uniform treatment of mutable and immutable data types. This extension
makes use of the types, effects and regions of MFX.

Most real programming languages provide a rich set of type constructors
for data structuring, such as pairs, tuples, records, lists, and arrays. In many
languages such types are mutable, i.e. the corresponding values have some
state that can be updated and observed by the program.

In a language with an effect system, such as MFX, there is a pervasive
difference between immutable and mutable values: reading the contents of
an immutable value has effect PURE, whereas reading the contents of a muta-
ble value has a READ effect on the corresponding region. Similarly, creating
an immutable value has effect PURE, whereas creating a mutable value has
an ALLOC effect on the corresponding region. In order to keep the effect de- V.
scriptions of program fragments to a minimum, it is important for a language
with an effect system to provide type constructors for immutable types.

Some programming languages offer the programmer two complete sets of
type constructors, namely mnutable ones and immutable ones [Lis79, pp. 108--
120]. Using this approach, it is evident from the type of a value whether the
value is mutable or immutable. However, the approach has two drawbacks.
First, it requires substantial duplication in the specification of the type con-
structors and their operators. Second, since there is no way of viewing an
immutable value as mutable, it is impossible to create, for example, a circular
immutable data structure.

It is possible to combine mutable and immutable type constructors in a
single, uniform framework. This technique, which makes use of the types,
effects and regions of MFX, has the following characteristics:

1. there is no need for two separate sets of type constructors;
reading the contents of an immutable value has effect PURE;

3. creating an immutable value has effect PURE;

4. immutable values can be initialized imperatively.

The basic idea is very simple. Recall that all potentially mutable type con-
structors, such as pairs, tuples, records, lists, and arrays, are parameterized.
with respect the region to which the writable location(s) of the corresponding I
values belong. We arbitrarily designate a region, which we call the immutable
region IM, upon which no WRITE effects are allowed. It follows that any pair. 7.\

tuple, or other value whose writable locations belong to the immutable region
is immutable. This establishes property 1 above.

Provided that the type and effect checker rejects any expression that has I
a (WllrITE INM) effect, thereby enforcing the inlmnutability of the region IM, it is
safe to colvert aillv (cIm..\I) I) or (ALLOC IM) effect to IlUiuR. This establishes

iroperties 2 and 3 above. Property 4 follows from the fact that the EX:TEi :ND

115

. ..,? Y. Y -,.. *., 3C ,e:,a'¢ , ',":,: , : ..,'r,.,.,. , :.,",',,- ,." v.. ."' -" ". . ."-. ''.'',.'.',z -'%-''., -.If- AAL ml- ' ._.ma -:_

construct can be used for any target region, including the immutable region
IM.

In summary, the notion of an immutable region permits a uniform treat-
ment of mutable and immutable types, while at the same time permitting
the imperative initialization of immutable values.

7.5 Polymorphism and Effects
In this section we present a variation of MFX that achieves polymorphic

application with zero cost while keeping polymorphic values first-class. This
is made possible by the MFX effect system.

In MFX, polymorphic values are first-class values, and the body of a poly-
morphic subroutine is evaluated each time the subroutine is applied. This
design evolved as a generalization of the second-order lambda-calculus.

In polymorphic programming languages such as CLU [Lis79], all polymor-
phic subroutines must be defined at top-level, and the body of a polymorphic
subroutine is evaluated only once for each actual type parameter to which
it is applied; in the terminology of MFX, all polymorphic subroutines are
automatically memoized. This approach has two main advantages:

1. the programmer can refer to the result of a polymorphic application by
simply repeating the polymorphic application without causing unneces-
sary re-evaluation;

2. the state variables that are created when the body of the polymorphic
subroutine is evaluated are automatically shared by all program fragments
that apply the subroutine to the same actual type parameter.

Besides the fact that polymorphic subroutines are not first-class, we find that
this approach has several other disadvantages:

1. the effect of a polymorphic application depends on whether it is the first
application of a given polymorphic subroutine to a given actual type pa-
rameter, which cannot be predicted by the caller, and which may not be
anticipated because polymorphic application normally has no effect;

2. the implementation must keep track of type information at run-time in
order to determine whether a given polymorphic application is the first of
a given polymorphic subroutine to a given actual type parameter;

3. the mechanism for sharing state variables allows such sharing only be-
tween program fragments that apply a polymorphic subroutine to the
same actual type parameter, which seems an arbitrary and unnecessary
restriction.

We believe that the semantics of languages such as CLU would be sim-
pler, and their implementation more efficient, if the body of a polymorphic
subroutine were evaluated just once, rather than once for each actual type
parameter. This would address the latter two objections we raised above;
and if the evaluation can take place when the expression is defined rather

116

4.-% %

:' ',% .k ", .Z' , V -, ,.',.,,, , .t ,.. ' . ,, ,F,,"-,,. ,,, .,, ,.,. , . ,, .. ,% % X,, . , -,, ",,9 ,, ,, " r -..-

than when it is applied, our first objection would also vanish. Unfortunately,
evaluating the body of each polymorphic subroutine just once without fur-
ther precautions would create a type loophole [Gor79a, p. 52]: it would
permit the allocation of a mutable value of a type that is not closed, and the
subsequent coercion of this value to multiple incompatible instantiations of
this type.

In order to close this loophole, we propose a variation of the polymorphic
abstraction construct of MFX, in which polymorphic abstraction is restricted
to expressions without side-effects, i.e. expressions with effect PURE. Since
an expression with effect PURE can be memoized without changing the mean-
ing of the program, this restriction ensures that the body of a polymorphic
subroutine can be evaluated just once, rather than once for each application
(as in MFX) or once for each actual type parameter (as in CLU), without cre-
ating type loopholes. Moreover, provided that the programmer is informed
that a program may diverge if it contains a polymorphic subroutine whose
body may diverge, the body of a polymorphic subroutine can be evaluated .
when it is defined, rather than when it is first applied.

This proposed variation of MFX has the following characteristics:

1. polymorphic subroutines are first-class values;

2. there is no need to keep track of type information at run-time;
3. type computation and value computation are separated; .

4. polymorphic application has no run-time cost and no side-effects; and
5. unnecessary re-evaluation of polymorphic subroutines is avoided. --

This variation does not reduce the expressive power of the language: the
body of a polymorphic subroutine may be a subroutine with arbitrary latent
effects. ,-

Due to the effect restriction, the body of a polymorphic subroutine can be
evaluated just once, rather than once for each application or once for each
actual type parameter. In practice, this means that polymorphic abstraction
and application can simply be erased: %

Erase(PLAMBDA (d:K) e) = Erase(e) '

Erase(PROJ e b) = Erase(e)

If the latent effect of a polymorphic subroutine is always PURE, it can be ',

omitted altogether from all polymorphic subroutine types: for example, the
type of the polymorphic self-composition functional can be written as

(POLY (t:TYPE e:EFFECT)

(SUBR ((SUBR (t) e t)) PURE

(SUBR (t) e t)))

We have adopted the effect restriction described in this section in the
design of the programming language FX [Gif87]. Our experience with the
various dialects of FX has confirmed our expectation that this approach is
elegant, practical, expressive, and efficient.

117 % le 1.

_W. -of "
" " : " "€ € 'P " t', d ' " 1 " % .' .' ,, " % ",%. t 4 ., ." " ' " , " , i . t , /] t£ ' ' , , , ¢ 2 ' _g , t ¢ ,' _ t t ,' t

S

.4

I

,i.'

A' 118

.Waf w i wf WS 7 VrKVTW.trJ W9 rJV r..7 MW PJWU Vr W X wwp7rcpl r . n Wr..1 Aw VVYU.r -7U

Chapter 8. Practical Use of
Effect Information

8.1 Introduction
The type and effect system of MFX has been designed to support a variety

of program transformations and optimizations. When considering a program
transformation or optimization, the compiler must determine whether the

program transformation preserves the meaning of the program, and how this
will affect the performance of a program. Effect and region information

supports the former of these two tasks.

When compiling a program for concurrent evaluation, it is of critical im-
portance to choose an appropriate grain size for the concurrency: the optimal
grain size increases with the cost of process creation and synchronization. We
have chosen to side-step this difficult issue by focusing on compilation for a
dataflow architecture: the target language for our dataflow compiler has a
fixed grain size.

We have implemented a compiler that translates MFX programs into

dataflow graphs that reflect the implicit concurrency in the source program.
Constraints on evaluation order are represented in the datafiow graphs by
conflict edges and delay edges. We have extended an existing tagged-token
dataflow simulator with operators hat support (writable) memory locations

and monitors; the dataflow graphs produced by the compiler can be evalu-
ated directly by the simulator.

The purpose of this chapter is to illustrate how the effect information

in an MFX program can be utilized to identify opportunities for concurrent .5..

evaluation, and to show how to translate an MFX program into a dataflow
graph that reflects this implicit concurrency.

The rest of this chapter is organized as follows. We begin with a discussion
of interference between program fragments. Next, we present an algorithm

for computing minimal conflict graphs. The third and largest section of this
chapter is dedicated to the dataflow compiler. We conclude by presenting
some simulation results.

119 iii?

t% %%

8.2 Interference
When analyzing a program for opportunities for concurrent evaluation,

it is useful to be able to determine, given two expressions, whether these

expressions can be evaluated concurrently without changing the meaning of ".4
the program. In a language such as MFX, in which subroutines and locations
are first-class values, this is in general undecidable. We therefore settle for a
conservative approximation. In this section we define a notion of interference
between effect descriptions such that any two expressions that have effect
descriptions that do not interfere can be evaluated concurrently without
changing the semantics of the program.

We begin by considering effect descriptions without free effect or region
variables; we subsequently generalize the definition to deal with arbitrary
effect descriptions.

8.2.1 Closed Effect Descriptions
In a sequential language, evaluating two expressions concurrently can

change the meaning of the program only if one expression may write to
locations that the other expression may read or write [Ber66I. By the effect
soundness proposition, the effect description of an expression gives a conser-
vative approximation of the (global, writable) locations that the expression
may read or write. This leads to the following definition of interference:

Definition. In the absence of MCALL effects, two closed effect descriptions
el and C2 interfere with each other iff there exists some region constant r such
that el has a WRITE effect on r and e2 has a READ or WRITE effect on r or
vice versa (with ei and C2 interchanged).

In a concurrent language, evaluating two expressions concurrently can
change the meaning of the program even if the expressions do not read and/or

write any common locations. In MFX, however, all such interactions are
mediated by monitors and critical sections. As a result, the definition of

% interference between READ and WRITE effects does not need to be revised
in order to deal with explicit concurrency. Moreover, MFX prevents any

* interaction between MCALL effects and READ or WRITE effects: READ and
WRITE effects on a monitored region are allowed only within the scope of an
EXCLUSIVE expression for the corresponding region, where MCALL effects on
the region are disallowed (but could not cause interference even if they were
allowed, since the expression would deadlock). As a result, the definition of
interference does not need to be revised in order to deal with interference
between MCALL and READ or WRITE effects.

As for interference between MCALL effects, recall that evaluating two ex-
5 :, pressions concurrently can change the meaning of the program even if the

expressions do not access any common locations. This is illustrated in the
fo~llowing prograin fragment, where ml, m2 and m3 are bound to the moni-
tors for the regions ri, r2 and r3 respectively, and where flagl, flag2 and

120

1,I e%%

%

fl ag3 are bound to references in the regions ri, r2 and r3 respectively, all
initialized to FALSE.

(COBEGIN
(LET ((vall (EXCLUSIVE ml (GET flagi))))

(BEGIN
(EXCLUSIVE m2 (SET flag2 vall))
(EXCLUSIVE m3 (SET flag3 TRUE))))

(LET ((val3 (EXCLUSIVE m3 (GET flag3))))
(EXCLUSIVE ml (SET flag1 val3)))) e .

The first branch of the COBEGIN expression binds vall to the contents of
flagi, which is FALSE, saves this value in fiag2, and finally stores the value

TRUE in fl ag3. Concurrently, the second branch of the COBEGIN expression
binds val3 to the contents of flag3, which may be either FALSE or TRUE
depending on the relative execution speed of the two branches, and saves
this value in f lagl. Since the contents of flagl is read and stored in flag2
before the value TRUE is stored in f lag3, the final contents of flag2 is always
FALSE.

The EXCLUSIVE expressions in the first branch of the COBEGIN expression VA
have effects (MCALL rl), (MCALL r2) and (MCALL r3) respectively. Thus,
it might seem as if these expressions cannot interfere with one another. How-
ever, if the expressions

(EXCLUSIVE ml (GET flagl))

and

(EXCLUSIVE m3 (SET flag3 TRUE))

were evaluated out of order, the second branch of the COBEGIN expression
could update the contents of flagl to TRUE before it is read by the first
branch. This would leave the value TRUE in flag2, which does not agree
with the standard semantics.

As the example demonstrates, MCALL effects interfere with each other
even if their regions do not overlap. This leads to the following definition of
interference:

Definition (revised). Two closed effect descriptions El and E2 interfere
with each other iff both have MCALL effects or there exists some region con-
stant r such that e1 has a WRITE effect on r and C2 has a READ or WRITE
effect on r or vice versa (with el and e2 interchanged).

Although the region parameter p in the effect (MCALL p) plays no role in
the definition of interference, it is far from useless:

* programmers can regard it as machine-verifiable documentation,
* the compiler uses it to mask effects on private monitored regions, and
* we have used it to specify a language restriction that prevents deadlock

due to recursive invocation of a monitor.

121

%" %,%"

* I * *~ ~ a.. V a..

8.2.2 Region and Effect Variables
When region variables are added, the definition of interference depends

on whether or not aliasing between region variables and region constants
is permitted. If aliasing were permitted, then a WRITE effect on a region
variable would interfere with a READ or WRITE effect on any region constant
or variable, and a READ effect on a region variable would interfere with a
WRITE effect on any region constant or variable.

Since the use of disjoint regions is the primary means provided by MFX to

represent the fact that two effects do not interfere with each other, we have
decided to prohibit all aliasing in MFX (see Chapter 3). This guarantees that
in any scope, the regions denoted by effect constants and effect variables are
disjoint. This means that for the purpose of defining interference, effect
variables can simply be treated as effect constants:

e For any region variable d, the effect (WRITE d) interferes with the effects
(READ d) and (WRITE d) and vice versa.

For effect variables the situation is very different: since MFX does not
impose any restrictions on actual effect parameters, an effect variable can
correspond to (almost) any effect at all. This leads to the following definition
of interference: .5.

* An effect variable interferes with any effect variable, including itself, and
with any READ, WRITE or MCALL effect.

In summary, two effects e1 and e2 interfere iff

3]p, p' .(MCALL p) C ei A (MCALL p') Ce 2

or

(READ P) 9;f
3p (WRITE p) e- i A or €'

(WRITE P) C- f2

or

or

(READ P) C- f2 %

3d, d',p d C el A or
(WRITE p) _ E2

or

(MCALL p) E e2

or vice versa (with cl and f2 interchanged).
This definition of interference serves as the basis for the effect restric-

tion on the COBEt;IN expression (see Chapter 6). However, ill a ('OBEGIN
expression interference between M(CALL effects is permitted.

122

% %- .,. %

~. ~ . .

8.2.3 The Question of Scope
In fact, an effect variable cannot correspond to just any effect: for example,

an effect variable can never correspond to an effect on a private region that
is defined within its scope. For example, consider the expression

(PLAMBDA (e: EFFECT)
(LAMBDA (p:(SUBR () e UNIT))

(PRIVATE r

(LET ((X (NEW r BOOL FALSE)))

(BEGIN
(COBEGIN

(p)
(SET X TRUE))

(GET X))))))

(cf. [Hal84, p. 246]). Since the effect variable e is bound before the private
region r is declared, e cannot possibly correspond to an effect on r. Under the
current rule for COBEGIN, however, the above expression is not well-formed,
because the effects e and (WRITE r) are assumed to interfere.

We have considered changing the definition of interference, and the effect
restriction on COBEGIN expressions, to reflect the fact that an effect variable
can never correspond to an effect on a private region that is defined within

its scope. Unfortunately, this more powerful definition of interference relies

on information that does not propagate across abstraction boundaries. For
example, when the expression

(PLAMBDA (e:EFFECT r:REGION)

(LAMBDA ((p:(SUBR C) e UNIT))
(X:(REF r BOOL)))

(BEGIN

(COBEGIN

(p)

(SET X TRUE))

(GET x))))

is considered in isolation, it can no longer be considered well-formed. Thus,

the more powerful definition of interference may discourage the use of pro-
cedural abstraction, which is contrary to our philosophy.

In contemplating various ways to refine of the definition of interference,
we have concluded that where to stop is ultimately a question of taste: the

interference restriction should permit expressions that obviously do not in-

terfere. We regard the current definition of interference as no more than a

reasonable compromise.

123

%4
% "%

L 0 A

8.3 Constructing a Minimal Conflict
Graph
In this section we show how to analyze a program for opportunities for

concurrent evaluation. We only cover the language constructs of MFX-1; in
the next section we show how to deal with the additional constructs of MFX-2

and MFX-3.

When analyzing a program for opportunities for concurrent evaluation, we
consider each subroutine body separately. This is a natural decomposition of
the problem, since each subroutine body is a maximal program fragment such
that nothing is known about what expressions may come before or after. For
each subroutine, we construct a conflict graph, which is a directed, acyclic
graph whose nodes correspond to the expressions in the subroutine body and
whose edges indicate constraints on evaluation order that are due to side-
effects. The constraints expressed by the conflict graph must be respected
by any implementation.

By the effect soundness proposition, two expressions can conflict only if
their effects interfere. Recall that the effect of an expression consists of two
components: its intrinsic effect, and its inherited effects. Since the inherited
effects are inherited from other expressions within the same subroutine body,
it suffices to consider interference between the intrinsic effects of expressions.

In the absence of conditional expressions, it is easy to construct the con-
flict graph: simply draw a conflict edge between any two expressions whose
intrinsic effects interfere. In the presence of conditionals, a conflict edge
should be drawn between any two expressions that are ordered under the
standard evaluation order and whose intrinsic effects interfere.

This conflict graph is sufficient, in the sense that it represents all the
constraints on evaluation order that are due to side-effects. We next turn
to the problem of constructing a conflict graph that is minimal given the
available effect information.

In order to define what constitutes a minimal conflict graph, we must make
certain assumptions about the target architecture that will interpret the a,

conflict graph. Some of these assumptions are justified by the requirement
that the architecture be feasible; others are more arbitrary. For the purpose
of this chapter, we make the assumption that the target architecture has the
following properties:

* an application (ordinary or polymorphic) does not begin executing until
the operator subexpression has returned a value; -'

o a branch of an IF expression does not begin executing until the predicate
has returned;

o a NEW expression does not allocate and return a location until its argument,
subexpression has returned and the new location has been initialized;

* a GET expression does not read and return the contents of the location in
question until its argument subexpression has returned;

124

Fir-I
% % %i%" " % % % + ,% % "

i= ,- +.,'t., ', . .- * ,%" ,t N, , .. -- ., __ ,". .. __ _ _. .% _%.%, . ,,,-% ". % _ .% , ., "- I ,t -

a SET expression does not update the contents of the location in question

until both its argument subexpressions have returned, and does not return

a value until the contents of the location has been updated.

We do not consider target architectures that evaluate expressions (such as -,

the branches of a conditional) before it is known whether or not they should 7'

be evaluated, nor do we consider architectures that return place holders (such

as futures, see [Hai85]) for values that have not yet been computed.

Given these assumptions, a conflict edge may be redundant because the

correct evaluation order is guaranteed by the target architecture. For exam-
ple, in the expression below there is no need for a conflict edge from the GET

expression to the SET expression, even though they are ordered under the

standard evaluation order and their intrinsic effects interfere:

(SET X ((BEGIN ,
expl .
(IF (GET x) exp2 exp3))

exp4)) V

We can represent this information in the form of a guarantee graph. This

is a directed, acyclic graph whose nodes correspond to the expressions in a

subroutine body and whose edges indicate constraints on evaluation order

that are guaranteed to be satisfied by the target architecture. By design, the

edges in the guarantee graph do not impose any constraints on evaluation

order. Consequently, any edge that appears in the conflict graph as well as

in the guarantee graph can safely be omitted from the conflict graph:

Lemma. (Guarantee Redundancy) Adding or removing a guarantee edge

to or from the corresponding conflict graph does not alter the constraints

imposed on evaluation order.

If a conflict edge links two expressions that can also be reached via some

other chain of conflict edges, this edge is redundant: omitting it from the

conflict graph, or adding such an edge, does not change the constraints that

the graph imposes on evaluation order. For example, if the subexpressions

expl, exp2 and exp3 in the expression (BEGIN expi exp2 exp3) all conflict

with one another, it suffices to have a conflict edge from expi to exp2 and one

from exp2 to exp3. In general, two conflict graphs are equivalent whenever

they have the same transitive closure:

Lemma. (Transitive Closure) Any two conflict graphs that have the same

transitive closure impose the same constraints on evaluation order. %

125

.• % % %
- % 0 %. " 4. % % % .% % %

The following algorithm shows how to compute, for any conflict graph
Gc and corresponding guarantee graph Gg, the minimal equivalent conflict
graph Gm. ,

1. merge G, and Gg into a single directed acyclic graph G;
2. compute G*, the transitive closure of G;
3. compute the least graph G- that has transitive closure G*;
4. subtract Gg from G- to obtain the minimal conflict graph G,,. "N

Proposition. The conflict graph Gm is the minimal conflict graph given
the available effect information that imposes the same constraints on evalu-
ation order as G,.

Proof. By the guarantee redundancy and transitive closure lemmas
above, the graphs G , G, G*, G- and G.. all impose the same constraints on
evaluation order. Moreover, G,, is the minimal such graph: any edge that
is in G* but not in Gm cannot be generated by merging the graph with Gg,
taking the transitive closure, or both. G,, is unique because each step of the
algorithm, including step 3, produces a unique result. 0

8.4 Compilation into Dataflow
Graphs
In this section we show how to translate programs from MFX, with its

precisely specified evaluation sequence, into dataflow graphs. We view MFX

as a functional language that has been extended with side-effect operators.
Accordingly, we have patterned our compiler after an existing dataflow com-
piler for the functional language ID [Nik87] [Tra86]. Our compiler consists
of three phases: a,

* the front end parses the program, verifies that it is well-formed, and ana-
lyzes it for implicit concurrency;

o the graph generator converts the parsed, annotated program to a program
graph; and

e the back end performs various optimizations and converts the program
graph to a machine graph.

Except for the treatment of constraint edges, the graph generator is quite
standard, and is therefore not described here. The back end is shared with
the existing ID compiler, and is not described here.

The remainder of this section is organized as follows. We begin by describ-
ing two transformations on MFX-1 programs that simplify further processing.
Next, we describe the target language. We then turn to the problem of ensur-
ing the correct evaluation order, and we present an algorithm that computes 10

the minimal sufficient set of extra edges that must be added to the dataflow

graph of each subroutine, given the available effect information. We then
turn to the issues that arise in the compilation of MFX-2 and MAFX-3.

126 %
%s

% -. .

% i a- % , %.j~~% % %.V, .
a~~4 Op %~ ~ d .

8.4.1 Type Erasure
By the static typing and typeless semantics propositions, static type check-

ing prevents all run-time type errors and all attempts to use undeclared vari-
ables or uninitialized locations, and no type, effect or region information is
needed at run-time. The compiler takes advantage of these properties: after
verifying that the source program is well-formed and analyzing it for implicit ,
concurrency, the compiler erases all type information before translating the
program into a dataflow graph. For example, the program fragment

(LAMBDA (f: (SUBR ((REF r int)) PURE int)
x: int)

(f (NEW r int x))) -"

is transformed into the typeless program:

(LAMBDA (f X)

(f (NEW x)))

The type erasure algorithm is the same as that given in Chapter 4.

8.4.2 Lambda Lifting
MFX supports nested subroutine definitions and closures; the target lan- .

guage supports neither of these. The target language does, however support ..

partial application. The compiler employs a technique called lambda lifting
to convert any source program that uses closures into an equivalent pro-
gram in which all subroutines are defined globally and have no free variables-
[Joh85]. For example, the program fragment

(LET ((p (LAMBDA (f X)
(LET ((g (LAMBDA (h) (h x x))))(g f))))) .: t

in which the subroutine g is nested and has free variable x, is transformed
into:

(LETREC ((p' (LAMBDA (f X)

(g' x f)))
(g' (LAMBDA (x h) ii

(h x x)))) :,

LN.

in which the subroutine g' is defined at top-level and has no free variables.
If several mutually recursive subroutines have different sets of free variables,
then they must all be abstracted with respect to all of these free variables.
The details of this process are straightforward [Joh85].

127 j

P1 '.- 01. .

8.4.3 The Target Language
Our target language is the program graph language developed by the

FLA research group [Arv87]. Programs in the target language are (directed,
acyclic) datafow graphs in which every node represents an operator and
every edge represents a path along which data tokens can flow from one
operator to the next. We use three kinds of operation nodes to implement the
functional subset of MFX: application nodes, conditional evaluation nodes,
and identity nodes. In addition, we use two kinds of constant nodes: ordinary
constants (such as TRUE and FALSE) and subroutine nodes.

In the target language, every subroutine is represented by a dataflow graph
and a corresponding frame. The frame of a graph indicates how the graph v
can be connected to other graphs: for each input edge of the graph the
frame has a corresponding source, and for each output edge the frame has
a corresponding sink. Franes correspond to basic blocks in conventional
compilers: there are no edges that point into or out of the graph for a
frame. Evaluation proceeds one frame at a time: when a frame becomes
eligible for evaluation (e.g. as a result of subroutine application), a copy
of the graph is made and a suitable input token is placed on each input
edge. The evaluation of the graph terminates when every output edge has
produced an output token. We use two kinds of frames: subroutine bodies
and conditional branches.

To keep the analysis and presentation simple, we deal only with frames
that have a single output. Although the target language supports conditional
branches with multiple outputs, we do not make use of this feature since there
is no corresponding feature in MFX.

We use three kinds of operation nodes: application nodes, conditional
evaluation nodes, and identity nodes.

An application node has two inputs, one for the operator and one for the
operand, and one output for the result. Application nodes may be curried.
As an example, the graph for the expression (f x y) is shown below.

<f > <X>
\ /

I apply I
------ <y>

\ /

I apply I

<output>

128 I.

<0
W W,Y :+ ;-: ;:>: :.-,:-,"4:.::4 ," :.q :'-::- -,::. :.-:4- -:-,'.- '" 4.. :, :, "::,: : ..' bq:-: ::-" ':":.' :'-: ' i-.. A... 'f

A conditional evaluation node contains two frames, one for each branch
of the conditional. Each frame contains the entire dataflow graph for the
corresponding branch. The frames indicate how the input and output edges
of these graphs correspond to the free variables and result value of each
branch. The conditional node itself has one input for the predicate value,
one input for each free variable of the branches, and a single output for
the result. As an example, the graph for the expression (IF p (f x) (f (g
x))) is shown below.

<p> <f > <g> <X>

-0
+-------------------------+---+---+.-----------

I ---- +------------- ---- +------------- I
I I II I I I I I-I
I I I I I --I--+- -- -I I..

I I I I I I apply I

\ I/ I I I I I , I

I I -- +---+- I...-+---+-
apply I I apply I I I

---------- - --------

<output>

An identity node has one value input, zero or more trigger inputs and one
output. An identity node passes on the value received on the value input,
but only after it has received values on all its trigger inputs. The illustration
below depicts an identity node with two trigger inputs.

<value> <trl> <tr2>
\ I / "'

-- ---------- 5:
I identity I
--------------+----------4.

<output>

We use two kinds of constant nodes: ordinary constants (such as 'tRU
and FALSE) and subroutine nodes.

129

or.. .""." "-

An ordinary constant node has one input and one output. The input of

a constant node is called a trigger input: it is used to indicate to the node

when it should produce a value on its output. We will not be concerned with

trigger edges, since the existing ID compiler supplies them automatically

when they are omitted. The illustration below depicts a constant node that

produces the value FALSE.

<trigger>

I FALSE I

<output>

A subroutine is represented by a frame containing the dataflow graph for

its body. The frame indicates how the input and output edges of this graph

correspond to the actual parameters and return value of the subroutine.

A subroutine may have any number of parameters; multiple parameters are

supplied by curried application. Like an ordinary constant node, a subroutine

node has a single trigger input and a single value output. The graph for the

subroutine

(LAMBDA (f: (SUBR (int int) PURE int)

x:int y:int)

(f X y)

130

%* %* % % % %

"U

is shown below.

<trigger>

----- ---+--------

I ---- +------------- I

I Ilapply I I
--- ----- +--

I

<output>

Note that the subgraph for the body is connected to two parameter sources
that provide the parameter values to the graph, and to a sink that receives
the result of the application. Subroutines with free variables are not allowed
in the target language.

In order to express MFX programs that use the side-effect operators NEW,

GET and SET, we have extended the target language with three new built-in-.
operation nodes: alloc, read and write.

" An alloc node has one input and one output. When a value arrives at
the input, an alloc node allocates a new (writable) memory location,
initializes it to that value, and sends it to the destination(s) of its output. ,:7
alloc nodes are used to implement NEW expressions. P.A- %

" An read node has one input and one output. When a location arrives at
the input, a read node reads the contents of that location and sends it to
the destination(s) of its output. read nodes are used to implement GET

expressions.

" A write node has two inputs and one output. When a location arrives
at the first input and a value at the second input, a write node u)dates
the location in question with the value, and sends the value Nil, to the

destination(s) of its output. write nodes are used to implement sE'r
expressions.

131

%~~% % %%-%% -'p ~' ~.' ~ 'p V

- ? ". , -, " - ", , -e- -e"e-, ,,e ,?.,.-w-, " * ".~,d ".'e *.'.e.-.w c~d .,* * * *- .. ,. e. - *ew J,,., . ".P

WtpnX %X-%XlL K~r rW'VE7 r w-Vwn

Note that these new operation nodes destroy the referential transparency
of the target language just as NEW, GET and SET destroy the referential
transparency of the source language. l

8.4.4 Conflict and Delay Edges
In the target language, evaluation order is constrained only by the flow

of data tokens from node to node. The compiler must therefore ensure that
operations that may interfere with one another, such as read and write
operations on locations in the same region, are evaluated in the order dictated
by the standard semantics. This is done by inserting conflict edges and delay
edges into the target dataflow graph.

The purpose of a conflict edge is to ensure that two nodes are always

evaluated in a certain order. More precisely, the purpose of a conflict edge
from a node ni to a node n2 is to ensure that all the effects of ni take place
before any of the effects of n2 take place. To this end, the conflict edge e
connects the output of ni to an identity node that delays one of the inputs
of n2. The output of ni is interpreted as a signal that all the effects of ni
have taken place.

For example, in the diagram below, evaluation of the node corresponding r-r

to the expression (read exp3) is delayed until after the node corresponding
to the expression (write expi exp2) has been evaluated.

<expl> <exp2>

I write I
<exp3> --------

/

I identity I

I read I

The purpose of a delay edge from a node to the output edge of the graph
containing that node is to ensure that the graph does not produce a value
until the node in question has been evaluated. More precisely, its purpose is
to ensure that the graph does not produce a value until all the effects of the
node have taken place. To this end, the delay edge connects the output of
the node in question to an identity node that delays the output of the graph.

132

%U

For example, in the diagram below, the value computed by the graph
labeled <...> is delayed until after the write node in question has been
evaluated. d

w rite I

----------- I
1<...> I ,I

\ I
"I

I identity I I

I ~ II
---- --------------------

There are only four kinds of nodes that can have side-effects: alloc, read,
write, and apply nodes.

" An alloc node cannot interfere with any other computation. Thus, there
is never any need to connect a conflict or delay edge to either the input
or the output of an alloc node.

• By assumption, a read node does not read the contents of the location in
question until its input (a location) has arrived. Thus, a read node can be

delayed by delaying this input. Since a read node produces a result token

only after reading the location in question, its output can be interpreted
as a signal that all its effects have taken place.

" By assumption, a write node does not update the contents of the location
until both its inputs (a location and a value) have arrived. Thus, a write
node can be delayed by delaying either of these inputs. Since a write
node produces an acknowledgment token only after writing the location
in question, its output can be interpreted as a signal that all its effects
have taken place. L

" By assumption, an apply node does not begin executing until its sub-
routine input has arrived. However, it may start executing the body of
the subroutine even before the actual parameter values are known. Thus,
an apply node can be delayed only by delaying its parameter input. To
ensure that an apply node produces a value only after all its effects have
taken place, the compiler inserts appropriate delay edges into the graph
for each subroutine, using the algorithm given below. This ensures that
the output of an apply node can be interpreted as a signal that all its
effects have taken place.

133

I

,....,_. ., . .

8.4.5 Constructing the Conflict and Delay
Graphs
For each subroutine, the compiler constructs a conflict graph and a delay

graph. Each is a directed, acyclic graph whose nodes are the expressions in
the subroutine body. The graphs are subsequently merged with the guarantee
graph for the subroutine and minimized; the remaining conflict and delay
edges are inserted into the target dataflow graph.

The edges of the conflict graph indicate where in the corresponding
dataflow graph conflict edges edges are needed in order to ensure that every
evaluation of the dataflow graph produces a result that agrees with the stan-
dard semantics; likewise, the delay graph indicates where delay edges edges
are needed.

The simplest algorithm for computing the conflict and delay graphs would
be as follows:

1. to compute the conflict graph G , draw a conflict edge between any two
expressions in the subroutine body that are ordered under the standard
evaluation order and whose intrinsic effects interfere;

2. to compute the delay graph Gd, draw a delay edge from any expres-
sion that has an intrinsic effect other than ALLOC to the outermost
expression of the subroutine body.

However, this algorithm is not quite acceptable: it creates edges that point
into and out of conditional branches, but the target language requires that
each conditional branch be a self-contained graph that can be placed in a
frame.

" Edges that point into a conditional branch can easily be accommodated
by the target language: they can be treated as if they were free variables.
We have adopted this approach: every conditional node generated by the
compiler has one input for the predicate value, one input for each free
variable of the branches, and one input for each conflict or delay edge

pointing into a branch, and the frames for the branches each have one
source for each free variable and one source for each conflict or delay
edge. The implementation ensures that the tokens that arrive on these
edges are switched to the appropriate branch expression as needed.

" Dealing with edges that point out of a conditional branch is more prob-
lematic. One way to address this problem is to generalize the conditional
construct to have multiple outputs: one for the value of the conditional
and one for each edge that points out of a branch [Veen85]. For each such
edge, a dummy source has to be created that produces a token when the
branch from which the edge originates is not taken. We have adopted a
simpler approach: the compiler inserts delay edges into the graph for each
conditional branch to ensure that a conditional branch produces a value
only after all the effects of the chosen branch have taken place. Edges

134

NON' WI

that would have pointed out of a conditional branch can then replaced by
edges that originate from the output of the conditional.

In order to ensure a correct treatment of conditionals, we have augmented
the algorithm given above with a third step:

3. redraw any edge that points out of a conditional branch so that it
emanates from the output of the conditional instead.

This algorithm (steps 1, 2 and 3) can be organized as follows. Enumerate
the expressions in the subroutine body, in any order that is consistent with
the standard evaluation order, and maintain a list of the expressions whose
evaluation always precedes that of the current expression. The branches of
past conditional expressions (and their subexpressions) must be omitted from
this list. For each new expression, scan the expressions in the list and draw
an conflict edge for each expression that has an intrinsic effect that interferes
with the intrinsic effect of the new expression. Moreover, draw a conflict
edge for each conditional expression for which the least upper bound of the
cumulative (i.e. inherited and intrinsic) effects of the branches interferes
with the intrinsic effect of the new expression. When all the expressions
in a subroutine body or conditional branch have been processed, scan the
expressions in the list and draw a result delay edge for each expression that
has an intrinsic effect other than ALLOC.

The conflict and delay graphs computed by the above algorithm can be
minimized by the same procedure as the conflict graph considered earlier:

1. merge G,, Gd and GY into a single directed acyclic graph G;
2. compute G*, the transitive closure of G; /1

3. compute the least graph G- that has transitive closure G*;
4. subtract Gg from G- to obtain the minimal conflict and delay graph

Gm.
Proposition. The graph G. is the minimal conflict and delay graph

given the available effect information that imposes the same constraints on
evaluation order as the graphs G, and Gd.

8.4.6 Private Regions
As we showed in Chapter 5, the semantics of PRIVATE and EXTEND can be

expressed in terms of polymorphic abstraction and application. The compiler
takes advantage of this fact, and transforms every program into an equivalent
program that does not contain any PRIVATE or EXTEND expressions. For

example, the expression

(PRIVATE r

(LET ((X (NEW r BOOL FALSE)))

(BEGIN

(SET x TRUE)

(GET X))))

135

:..'..- .. , .V>' ":,':f ':" L " _ "<".' ",' .- ' '- b' ', . , : :b' , -,.@..:,-..:. .".,. ,....1.

. = . %,5,/ (, .t 5 , X , ./ ., . ,•,"• - , ". , . 4 -"- -", - . , - , . • .. " -.. ." ,K

is transformed into the typeless program:

((LAMBDA)

(LET ((X (NEW FALSE)))

(BEGIN

(SET X TRUE)

(GET X)))))

Similarly, the expression

(EXTEND Z r

(LET ((X (NEW r BOOL FALSE)))

(BEGIN

(SET X TRUE)

is transformed into the typeless program:

((LAMBDA)

(LET ((X (NEW FALSE)))

(BEGIN

(SET X TRUE)

The compilation of the subroutine ensures, by means of a delay edge, that the
value of x is not returned until after the write operation has been performed.

In the present compiler, the dataflow graphs for PRIVATE and EXTEND are

actually subjected to procedure integration. This has the advantage that the
result edges in the body of the subroutine may turn out to be redundant,
or may be replaced by constraint edges that are more direct. In fact, any
result delay edge that delays the value of the body of a PRIVATE expression
solely because of an effect on tlie private region of the PRIVATE expression can

simply be omitted, since the private region is inaccessible after the expressionreturns. "')
8.4.7 Monitors and Explicit Concurrency

In order to express MFX-3 programs that use monitors, we have extended
the target language with three new built-in operation nodes: new-monitor,

acquire-monitor and release-monitor. ,..*

* A new-monitor node has one input and one output. When a trigger token
arrives at the input, a new-monitor node allocates a new (writable) mem-
ory location, initializes it to IDLE, and sends it to the destination(s) of its
out)ut. new-monitor nodes are used to implement MONITORED expres-

sions. The trigger token is generated automatically by the surrounding
frame, and is of no further concern.

" An acquire-monitor node has one input and one output. When a loca-
tion arrives at the input, an acquire-monitor node determines whether

136

% % % %% % 0 J.P .

Jk %~ %,-p~.* J~. a ~ ~ ~ - -

,t.

the contents of that location is IDLE, and if so it updates the contents to
BUSY and sends an acknowledgment token to the destination(s) of its out-
put. If the contents of the location is BUSY, the destination of the output
is added to an (initially empty) list of pending requests associated with
the location. The entire operation is performed atomically.

* A release-monitor node has one input and one output. When a location
arrives at the input, a release-monitor node sends an acknowledgment
token to the destination(s) of its output. If there are no pending requests
in the list associated with the location, the contents of the location is
updated to IDLE. Otherwise, one of the destinations on the destination
lists (for example the one that has been on the list longest) is removed
from the list and is sent an acknowledgment token. acquire-monitor and
release-monitor nodes are used to implement EXCLUSIVE expressions.

It is an error if the location passed to acquire-monitor contains something Oro.
other than IDLE or BUSY, or if the location passed to release-monitor con-
tains something other thani BUSY. When evaluating a dataflow graph that
was generated by the compiler, these errors cannot occur.

Compiling the expression (COBEGIN expi ... expN) into a datafiow
graph is relatively straightforward: it suffices to generate dataflow graphs
for the subexpressions expi through expN, and a single constant node that
produces the value NIL. The output edge of the constant node is the output
edge of the COBEGIN graph. No delay edges need to be added: this is done
automatically, as needed, by the algorithm described earlier in this section.

As we showed in Chapter 6, the semantics of MONITORED can be expressed
in terms of abstraction and application. The compiler takes advantage of this
fact, and transforms every program into a form that does not contain any
MONITORED expressions. For example, the expression

(MONITORED r m

exp)

is transformed into the typeless program: IP

(LET ((m (new-monitor)))
exp')

where exp' is the result of erasing all type, effect and region information
from exp, and where new-monitor is a special subroutine that invokes the
corresponding operation node (this subroutine is not available to the pro- ft,

grammer).

Similarly, the semantics of EXCLUSIVE can be expressed in terms of
LET, LAMBDA and two special subroutines, acquire-monitor and release-
monitor, that invoke the corresponding operation nodes (these subroutines
are not available to the programmer). For example, the expression ..

137

- ,.... .-. -.

(EXCLUSIVE expl

exp2)

is transformed into the typeless program:

(LET ((m expi') 4%

(body (LAMBDA () exp2'))) I

(LET ((acki (acquire-monitor mn))

(result (body))
(ack2 (release-monitor m)))

result))

where expl' and exp2' are the result of erasing all type, effect and region

information from expi and exp2, respectively.
By encapsulating the body of the EXCLUSIVE expression into the subrou-

tine (LAMBDA C) exp2') we kill two birds with one stone: first, we avoid

name conflicts with the local variable m; second, compiling this subroutine

in the usual way ensures that all the effects of the body take place between

the calls to acquire-monitor and release-monitor. Conflict edges must

be drawn from the acquire-monitor node to the apply node that invokes

the body, and from there to the release-monitor node. Note that the ac-

knowledgment values returned by acquire-monitor and release-monitor

are discarded: only the value of the body is returned.

, , 138

% % %.

'A % e R

% % % -e

I 1_

%ri

8.5 Simulation Results
The compiler described in this chapter has been implemented, and has

been run on a variety of test cases and sample programs. The dataflow
graphs produced by the compiler have been executed on the tagged-token
dataflow simulator built by the FLA group [Arv87]. In this section we discuss
some of these simulation results.

8.5.1 Simple Functional Programs
As might be expected, simple functional programs axe evaluated in asymp-

totically optimal time as long as the computation is not limited by the num-
ber of processors. For example, consider the subroutines fact and prod
defined below. They are defined such that (fact n) and (prod 1 n) re-
turn the same value for all n > 1.

(LETREC ((fact: (the (SUBR (int) PURE int)

(LAMBDA (n: int)
(IF (< n 3) n

(* n (fact (- n 1))))))))

(prod:(SUBR (int int) PURE int)
(LAMBDA (lov:int high:int)
(IF (= low high) low

(LET ((mid ((+ low high) 2)))
(* (prod low mid)

(prod (+ mid 1) high))))))

The first subroutine, fact, uses simple tail-recursive iteration; the second
subroutine, prod, uses a divide-and-conquer technique. Accordingly, fact
should take time proportional to n, whereas prod should take time propor-

tional to [log 2 n]. In both cases, the total number of instructions executed
should be linear in n. This is verified by empirical results: using T(n) for .%

the latency (in instruction cycles) and I(n) for the number of instructions
executed, we have

28, for n < 3
-lln + 6, for n > 3

49, for n <3
Ifact(fl 121n +7, for n >3

and
Tp,od(n) = 12[log2 n] + 28 for n > 1

Ipod(nl) = 44n + 7 -

As might be expected, prod is faster than fact for all n greater than a
certain value, namely for n > 5. The number of instructions executed by
(prod 1 n) is slightly more than twice the number of instructions executed
by (fact n), regardless of n, for all n > 1.

139

% %

*-e. p. .. %

F 'd '

8.5.2 Imperative Programs and Effect
Masking
In MFX, a functional program can call an imperative subroutine without

losing the concurrency in the surrounding program, provided that this sub-
routine has a functional specification. For example, consider the expression
below, which declares a private region r, defines the subroutines circular-
list and nth, and returns the sum of the 30eth elements of two circular lists
containing the value 1 and 2 respectively.

(PRIvATE r
(LETREC ((circular-list:(SUBR (int) (ALLOC r)

(list r int))

(LAMBDA (val: int)
(EXTEND r r'
(LET ((cons (PROJ cons r' int))

(emptylist (PROJ emptylist r' int))
(rplacd (PROJ rplacd r' int)))

(LET ((1 (cons val emptylist)))
(BEGIN (rplacd 1 1) 1))))))

(nth: (SUBR ((list r int) int) (READ r)
int)

(LAMBDA (l:(list r int) n:int)
(LET ((car (PROJ car r int))

(cdr (PROJ cdr r int)))
(IF (- n 0) (car l)

(nth (cdr 1) (- n 1))))))
(+ (nth (circular-list 1) 30)

(nth (circular-list 2) 30)))))

The subroutine circular-list calls rplacd, which presumably has a
(WRITE r) effect. However, this WRITE effect is masked by the EXTEND

construct, so that circular-list itself has a latent effect of only (ALLOC

r). Thus, the two calls on circular-list should be performed concurrently,
even though both calls mutate lists in the region r. Indeed, the above expres-
sion takes precisely two instruction cycles longer than a similar expression in
which the body of the LETREC expression is just (nth (circular-list 1)

30). The expression as a whole returns 3, and has effect PURE.

In order to verify the performance implications of effect masking on larger
programs, we implemented a subroutine that sorts an array of integers, using
recursive descent quick-sort on large arrays, and switching to bubble-sort
when the array size falls below a certain threshold. When a large number of
processors is available, the recursive descent should be unfolded in parallel,
so that the overall execution time, which is dominated by the merging of the
sorted sub-arrays, should be linear in n. This prediction has been verified
empirically.

140

- r ,' .-. .. . , " " "% % % .-.

If 00. o0 A% % J.. JZ ; z
~ %

Chapter 9. Conclusion
In this chapter we discuss the limitations of our approach, sketch sometopics for future research, and summarize the results of our research. -

9.1 Limitations
Our research has focused on the use of human-readable, machine-verifiable :_:

program specifications. In this section we discuss some of the limitations of ..,
this approach.il"

9.1.1 Benevolent Side-Effects
The term benevolent side-effects refers to side-effects on a data structure

that are not observable to the user of the data abstraction. A typical example ,
is the reorganization of a data structure that is conceptually immutable.
From a program specification point of view, it may be desirable to mask
benevolent side-effects. However, from the point of view of a compiler that
performs automatic concurrency analysis, benevolent side-effects must not be
masked, since concurrent evaluation of expressions with so-called benevolent ";
side-effects could lead to erroneous results. Thus, there is a tension between :
two important clients of the effect system - the programmer and the compiler. :.
Even if it is agreed that benevolent side-effects ought to be masked, it seems i:--
difficult to provide a general language facility for doing so in a way that is
machine-verifiable. For these reasons, it seems unlikely that our type and, ,
effect system can easily be extended to support benevolent side-effects.

9.1.2]Futures
Many functional or near-functional programming languages provide con-

structs for eager and lazy evaluation. Two such constructs are futures inr,.:
Multilisp and promises in Scheme: .-

" "the expression (FUTURE e) immediately returns a future for the value of.'
the expression e and concurrently begins evaluating e. When the evalua- '~

.4..

tion of e yields a value, that value replaces the future." [Hal85, p. 502];
" "the expression (DELAY e) returns an object called a promise which at ..

some point in the future may be asked (by the FORCE procedure) to eval- :,
uate e and deliver the resulting value." [Ree86, p. 10]. "

Promises, which provide lazy evaluation, are simply memoized closures :
without arguments, and could be implemented as such within the MFX lan- ,
guage. In fact, promises are provided as a standard type in the FX language ..-
[Gif87]: Since the difference between a promise and its value is known to the -
programmer, a promise cani have a distinctive type, so the type systemn can ,-
be used to propagate its latent effect specification to all the points in the
programn where it may he forced, even if it mnay be passed as a param-eter,"
returned as a value, or stored in a data structure.,- :

141 %

',.4,'..

% %*
lkIL

,(. .,,

9.

Futures differ from promises in two respects. First, the semantics of a

future specify concurrent evaluation, whereas a promise is evaluated only
when it is forced. Consequently, futures provide a combination of eager and
lazy evaluation, at the option of the implementation. This does not pose any
special problems for the effect system, provided that the body of a future
is restricted to be an expression that has no direct READ or WRITE effects. aJ

Second, a future can be used and passed wherever its value is needed, whereas
a promise must be forced explicitly. Thus, the specification of a future is
indistinguishable from the specification of its value.

It is this second difference that makes futures incompatible with our type
and effect system: since a future has the same type as its value, there is no
way to use the type system to propagate its effect specification to the points
in the program where it may be used. We have not found a good way to
extend our type and effect system to deal with languages that have futures
or other constructs that involve call-by-name or call-by-need parameters.

9.1.3 Jumps, Exits and Continuations
In languages that rely on the compiler to identify opportunities for con-

current evaluation, the use of jumps, exits or continuations can reduce the
amount of implicit concurrency drastically. For example, if the first subex-
pression of (BEGIN expl exp2) contains a nonlocal jump, exit, or continua-
tion invocation, then the expressions cannot be evaluated concurrently even if
their effects do not interfere. Although it may be possible to extend our type
and effect system with certain special effects, such as GOTO and COME-FROM,

representing various control transfers, we have not found a good way to avoid
the adverse impact of such control transfers on concurrency.

9.2 Future Research
In the course of our research, we have come across far more opportunities

than we have been able to investigate in detail. In this section we discuss
some of the opportunities for future research that have arisen from our work.

9.2.1 Type, effect and region inference
In MIFX, the programmer must supply complete declarations of all for-

real parameters, and every polymorphic subroutine must be applied to an
appropriate set of description parameters before the resulting value can be
used. In many programs, however, much of this information can be inferred
from context. Certain programming languages, such ML and Poly, perform
such type inference [Gor79a] [Mat85]. The type and effect system of MFX,
however, is far more complex than the type system of either Poly or ML. In
)articular,

" ordinary application permits implicit subtyping;

" polymorphic subroutines are first-class values; and
a the constructors MAXEFF and UNION have strong algebraic properties.

142

V%

J
% eW

)A

In view of these factors, the general type inference problem for MFX may
be undecidable.

However, it may be possible to solve a special case of the type inference
problem, namely implicit projection. This term refers to the use of a poly-
morphic value where a monomorphic instance of it is expected. For example,
if mapcar is abstracted over the argument type, return type, and latent effect
of the mapping subroutine, then the ordinary application (mapcar f 1) is
an instance of implicit projection, shorthand for the expression

((PROJ mapcar T1 7-2

f 1)

where f : (SUBR (- 1) c 72). In MFX, not only the return type of f prop- Nor

agates automatically through the enclosing application of mapcar, but also
its latent effect.

Implicit projection greatly simplifies the textual appearance of programs,.
and may make programs easier to write, read, and maintain. We have
adopted implicit projection in the design of the programming language FX
[Gif87]. In general, however, the limits of type, effect and region inference in
general are unclear.

9.2.2 Implicit Effect Masking
In MFX, effect masking is performed only on PRIVATE and EXTEND ex- V

pressions. In fact, however, it seems that the effect masking rules could be
applied to any expression, using the following rules:

A,B - e:r
A,B I- e !

B F d:REGION

x E FV(e) d FDVd...(A(x))
d FDVdesc(T)

A,B - e![O/d]

A,B - e:r
A,B e!e

B d: REGION

x E FV(c) = d V FDVdJ(A(x)).e
A, B F e ! (MAXEFF E[?'/d] (ALLOC d))

Although it would be possible to add these rules to MFX, we have not

done so for two main reasons. .

e Although it seems that the type and effect soundness propositions would
remain valid, our current proofs would no longer suffice: the reduction.
axioms rely upon the presence of the PRIVATE and EXTEND expressions to -

indicate when fresh region constants should be allocated, and the sounld-
ness proofs rely upon these region constants. and on the *PI\VA'I'E* an(1 %

143

sq~-.~. .~.*, .~%* .% -. * -P .1 e .- ~ *
'¢ ''¢2""", ''.+,',..- . , . . , "&.'S,,;-,,':''., %...':- --... , "-%-..- .,"".-.-, , """""".",+"",Y"," ".,. -% ... " ".c '. e,

' ',',,' '. " d~ ' ', .",
' ''. ' t . - -. - ," , " ,+ - . - ,.. % ,. - ,,' t, . ' .,' + r ,,.' . r . • "' } , ' . ." ,P ., ,, , _¢ +. # " ". . . . a ", ,%'-,

EXTEND auxiliary expressions, to express what constitutes a well-formed
state.

9 By shifting the burden of effect masking from the programmer to the
compiler, we would promote greater reliance on the compiler to identify or
optimization opportunities th t may be performance-critical. This would
be contrary to our philosophy: we believe that the invariants that make
such optimizatior.n-, ssible should be expressed in the program.

Nevertheless, the p'iv 0ciples behind implicit effect masking seem to be sound,
and the concept appears to work well in practice. We have adopted implicit
effect masking in the design of the programming language FX [Gif87].

9.2.3 Constrained quantification
The MFX type and effect system can be extended with bounded quantifica-

tion over types and effects [Car85]; in fact, the compiler described in Chapter
8 supports bounded quantification. The most useful form of bounded quan- "
tification is probably the following pattern: in order to constrain a formal
effect variable di to effects that contain no WRITE or MCALL effects, it suf-
fices to abstract the polymorphic subroutine in question over a fresh region
variable d2 and to bound di above by (MAXEFF (ALLOC d 2) (READ d2)).
This technique can be used, for example, to define a version of mapcar that
can be applied only to subroutines that do not interfere with themselves.
Due to the effect bound on the formal parameter, the compiler described in
Chapter 8 would automatically compile this version of mapcar so that the ap-
plications of the mapping function to the individual elements are performed
concurrently as the recursion unfolds.

Ideally, one would like to be able to express more general constraints on ,,.
effect and region variables than mere subeffect relationships. For example, it

would be nice if one could express the absence of self-interference (as in the
example above) without resort to an additional region parameter. Similarly,
it would be nice if one could constrain two formal effect variables d, and
d 2 to effects that do not interfere with each other, or if one could express
the constraint that a given effect variable does not correspond to any effect
on a given region variable. Finally, it would be nice to have a means of
indicating explicitly whether or not certain region variable are allowed to be
aliases for certain other region variables or constants: this would eliminate
the need for the current general anti-aliasing rule, which has proved to be
rather restrictive in practice. le

The main disadvantage of bounded quantification and of more general IN

constrained quantification seems to be the sheer complication of the resulting
type and effect system. This has an impact in three areas:

e programmers will suffer if they have to specify the necessary constraints
on formal parameters;

e the semantics of the language and the soundness proofs will be complicated
dramatically;

144

v.- N -

* type and effect checking and inference will be more complicated and less
efficient.

Despite these complications, we believe that constrained quantification is
an attractive means of augmenting the power of a type or type and effect
system.

9.2.4 Processes as First-Class Values N'
It appears that MFX can be extended with asynchronous processes with

unlimited lifetimes that can be treated as first-class values. Such processes
can be regarded as a combination of futures and promises:

* The expression (FORK e) returns an object called a process and concur- -

rently begins evaluating e. At some point in the future, the process may
be asked (using the JOIN expression) to deliver the resulting value.

Since a process must be joined explicitly, it can have a distinctive type, so
the type system can be used to propagate its latent effect specification to all e ._,
the points in the program where it may be joined. Thus, the possible effects
caused by joining a process can be analyzed syntactically.

A forked process differs from a promise in that its semantics specify con-
current evaluation, whereas a promise is evaluated only when it is forced. ., .d

This does not pose any special problems, provided that the body of a process
is restricted to be an expression that has no direct READ or WRITE effects.

Because of its semantics, a FORK expression may be evaluated lazily, and
a JOIN expression eagerly, without changing the semantics of the program.
This can be modeled using two new effect constructors, START and TOUCH,

which are defined so that

(MCALL p) - (MAXEFF (START p) (TOUCH p))

Using this equivalence, the effect of a FORK expression can be defined as the
ALLOC and START effects of its body, while the TOUCH effects of the body form
the latent effect of the resulting process. The constraints on evaluation order
can then be expressed in terms of an asymmetric definition of interference
between START and TOUCH effects. "V,

A forked process differs from a COBEGIN branch in that its lifetime is not
limited. In particular, a process that accesses a given monitored region may
survive the MONITORED expression that created the region. As a result a
private monitored region can not simply be reclaimed automatically when
the expression that created it returns.

If forked processes are allowed to survive surrounding MONITORED ex-

pressions, effects on a private monitored region cannot be masked. This is

illustrated in the following program fragment. In this program fragment we -. :.
assume that all effects on a MONITORED region can be masked and derive a
contradiction.

145 . -

%* .%
V %w-.f q t Al!,

-

z ze2,. x tZe:, Z,4, ""#"# "#: "#2 :¢ "W ' e , _. . '.-. - .. '._-..- .. '_" e .

(MONITORED ri ml

(LET ((y (NEW rl int 0))
(fork (NEW rl (PROCESS pure UNIT) (FORK NIL)))
(flag (NEW rl bool FALSE)))

(LET ((f (FORK

(MONITORED r2 m2

(LET ((X (NEW r2 int 1)))
(BEGIN

(FORK

(BEGIN

(WHILE (not (EXCLUSIVE ml (GET flag)))

NIL)

(LET ((ff (EXCLUSIVE ml (GET fork))))

(BEGIN

(JOIN ff)

(EXCLUSIVE m2

(EXCLUSIVE ml

(SET y (GET X))))))))

(EXCLUSIVE m2 (SET x 2)))))))) 0.

(BEGIN

(EXCLUSIVE ml (SET fork f))
(EXCLUSIVE ml (SET flag TRUE)) ..

(EXCLUSIVE ml (GET y))))))

The intended operation of this program fragment is as follows. First, the
variables y, fork and flag are allocated in the monitored region rl and
initialized. Next, the fork f is created and stored in the reference fork, and
flag is set to TRUE. Finally, the contents of y is read and returned. Since
y was initially 0, the program fragment may return the value 0. Another
possibility is due to the fork f. This fork declares a private monitored region :"

r2, where it allocates and initializes a variable called x. It then creates a
second fork, updates the contents of x to 2, and returns NIL. This second
fork, finally, waits until the contents of flag is TRUE, which indicates that f
has been stored in fork, retrieves f, JOINs it (to force the contents of x to
be updated to 2), copies the contents of x to y, and returns NIL. Since all
this may take place before the outermost expression reads and returns the
contents of y, the program fragment may also return the value 2.

Since the process f has latent effect PURE (by assumption), the compiler
need not ensure that the expression (JOIN ff) is completed before the con-
tents of x is copied to y. This leads to a third possible outcome: because
of the incorrect effect declaration, the program fragment may return the
value 1. However, this outcome is inconsistent with the requirement that
every actual execution sequence is equivalent to some execution sequence in
which the expressions within each process are evaluated in applicative order.

146

%.s %

It follows that the assumption we made must be incorrect: effects on a pri-

vate monitored region cannot be masked when processes may have unlimited
lifetimes.

Despite these complications, we believe that it is possible to design a set
of constructs for creating and joining first-class process values in MFX in a
way that preserves and extends the properties of the type and effect system.

9.2.5 Object-level monitors
In MFX, each monitor corresponds to a particular monitored region. Since

there is at most one monitor for each region, and since this region appears free
in the type of the monitor, distinct monitors have different types. This makes
it impossible to manipulate sets of monitors or sets of objects containing
monitors.

In certain programming languages, such as MESA, it is possible to define
classes of monitored objects, in which each object has its own monitor lock
[Lam8O, p. 1101. The use of individual monitors can drastically increase
the maximum concurrency that can be obtained. Although MFX currently
provides no such capability, it seems that it could be augmented with a
construct for defining a class of monitored objects that belong to the same
monitored region but that have individual monitor locks.

9.2.6 Application of Effect Information
In this thesis we have sketched one application of effect information in

some detail, namely compilation for a dataflow architecture. In fact, how-
ever, the information provided by a type and effect system can be used
for compilation for a variety of other architectures, including conventional
shared-memory and distributed-memory multiprocessors. Although this the- r

sis has avoided the issue of grain size (see Chapter 8), it appears that a com- ' -

piler for a multiprocessor can use effect information to identify opportunities
for concurrent evaluation in a way that is similar to the way in which such
information is used by our dataflow compiler. Furthermore, a compiler for a
multiprocessor may be able to use knowledge about the distinction between
mutable and immutable regions (see Chapter 7) to maintain cache coherence.

As we showed in Chapter 5, a type and effect system with private regions
can be used for storage reclamation. Unlike conventional garbage collection -'.
algorithms, the reclamation of private regions is not based on the mere ex-
istence of references, but rather on high-level information about whether or .
not these references can be used. Specifically, the reclamation of a particular
location is independent of whether or not references to that location may
still exist. As a result, it appears that storage reclamation based on region
information may be particularly suited for distributed storage reclamation.

Finally, type and effect systems can also improve compilation for unipro-
cessor architectures in at least two respects: concurrency can be used to
keep a uniprocessor busy during slow I/O operations and page faults, and
memoization can reduce the overall amount of computation required.

147

V €, . ,, , , , ",r-- , "

" .-X' ''' %

9.3 Summary
In a language with a type and effect system, every expression has a type,

which describes the value returned by the expression, and an effect, which
describes the potential effects of the expression. Effects are defined in terms
of regions, which correspond to partitions of the store. The type of every
subroutine includes a specification of the latent effect of the subroutine; the
type of every location includes a specification of the region to which the
location belongs.

In analyzing the theory and practice surrounding type and effect systems,
we have shown that

e a conventional type system, to wit the typed lambda-calculus, can be
extended into a type and effect system;

* the familiar type polymorphism of the second-order lambda-calculus %IV
can be generalized to polymorphism with respect to types, effects, and
regions;

* effects on private regions can, under certain circumstances, be masked
by the type and effect inference system;

* an effect system based on regions can be used to ensure that all inter-
actions between concurrent expressions are mediated by monitors and
critical sections;

e effect information can be used to compile imperative programs into
dataflow graphs that reflect the implicit concurrency in the source pro-
gram.

We believe that our research represents a step towards the integration of
functional and imperative programming by providing a single programming
model in which imperative and functional program fragments can coexist
and interact. Moreover, we believe that it represents a step towards the
integration of implicit and explicit concurrency by providing a programming
model in which the analysis of implicit concurrency is not hampered by the
presence of explicit concurrency.

148

p.
- -: - '~' - .~.wellI

J 9 *ww ee

Bibliography

Abe85 Structure and Interpretation of Computer Programs, Harold Abel-
son, Gerald Jay Sussman and Julie Sussman, MIT Press/McGraw N
Hill (1985)

Arv87 Executing a Program on the MIT Tagged-Token Dataflow Architec-
ture, Arvind and Rishiyur S. Nikhil, MIT LCS Computation Struc-
tures Group Memo No. 271 (March 1987)

Ban79 An Efficient Way to Find the Side Effects of Procedure Calls and
the Aliases of Variables, John P. Banning, Fifth Annual ACM Sym-
posium oil Principles of Programming Languages (January 1979),
pp. 29-41

Bar84 The Lambda Calculus - Its Syntax and Semantics, H. P. Baren-
dregt, Studies in Logic and the Foundations of Mathematics,
Vol. 103, North-Holland (1984)

Bar78 A Practical Interprocedural Data Flow Analysis algorithm, Jeffrey
M. Barth, Communications of the ACM, Vol. 21, No. 9 (September
1978), pp. 724-736

Ber66 Analysis of Programs for Parallel Processing, A. J. Berstein, IEEE
Transactions on Electronic Computers, Vol. EC-15, No. 5 (October
1966), pp. 757-763

Bri72 Structured Multi-programming, Per Brinch-Hansen, Communica-
tions of the ACM, Vol. 15, No. 7 (July 1972), pp. 574-578

Car85 On Understanding Types, Data Abstraction, and Polymorphism,
Luca Cardelli and Peter Wegner, Brown University Technical Report
No. CS-85-14 (1985)

Car86 A Polymorphic A-calculus with Type:Type, Luca Cardelli, DEC Sys-
terns Research Center (May, 1986)

Cou83 Fundamental Properties of Infinite Trees, B. Courcelle, Theoretical I
Computer Science, Vol. 25, No. 2 (March 1983), pp. 95-169

Fe187 A Calculus for Assignments in Higher-Order Languages, Matthias
Felleisen and Daniel P. Friedman, Fourteenth Annual ACM Sym-
posium on Principles of Programming Languages (January 1987),
pp. 314-325

Gif86 Integrating Functional and Imperative Programming, David K. Gif-
ford and John M. Lucassen, 1986 ACM Conference on LISP and
Functional Programming (August 1986), pp. 28-38

Gif87 FX-87 Reference Manual, David K. Gifford et al., MIT LCS TR-407,
in preparation (August 1987)

Gor79a Edinburgh LCF, Michael J. C. Gordon, Robin Milner and Christo-
pher Wadsworth, Lecture Notes in Computer Science no. 78,
Springer Verlag (1979)

149

%i

• t ' 'J3 " , '*" ,'.' V ',-, *.(W L* .5 rp* % % * " %"% % * * - * %~ " .. '_ r , *.' - , _',- '

Gor79b The Denotational Description of Programming Languages -- An In-
troduction, Michael J. C. Gordon, Springer Verlag (1979)

Hal84 The Semantics of Local Storage, or What Makes the Free-Lkt Free?
(Preliminary Report), Joseph Y. Halpern, Albert R. Meyer and
B. A. Trakhtenbrot, Eleventh Annual ACM Symposium on Prin-
ciples of Programming Languages (January 1984), pp. 45-257

Hal85 Multilisp: A Language for Concurrent Symbolic Computation,
Robert H. Halstead, Jr., ACM Transactions on Programming Lan-
guages and Systems, Vol. 7, No. 4 (October 1985), pp. 501-538

Hoa74 Monitors: An Operating System Structuring Concept, C. A. R.
Hoare, Communications of the ACM, Vol. 17, No. 10 (Oct. 1974),
pp. 549-557

Hud86 A Semantic Model of Reference Counting and its Abstraction (De-
tailed Summary), Paul Hudak, 1986 ACM Conference on LISP and
Functional Programming, pp. 351-363

Joh85 Lambda Lifting: Transforming Programs to Recursive Equations,
Thomas Johnsson, in Functional Programming Languages and Coin-
puter Architecture, Lecture Notes in Computer Science No. 201,
Springer Verlag (1985), pp. 190-203

Lam77 Report on the Programming Language Euclid, Butler W. Lampson,
James J. Horning, Ralph L. London, James G. Mitchell and Gerald
J. Popek, SIGPLAN Notices, 12 (1977), pp. 1-79

Lam78 Revised Report on the Programming Language Euclid, Butler
W. Lampson, James J. Horning, Ralph L. London, James G. Mitchell
and Gerald J. Popek, Xerox Technical Center TR CSL-78-2 (1978)

Lam80 Experience with Processes and Monitors in Mesa, Butler W. Lamp-
son and David D. Redell, Communications of the ACM, Vol. 23,
No. 2 (February 1980), pp. 105-117

Lis79 CLU Reference manual, Barbara H. Liskov et al., MIT LCS TR-225
(1979)

Mar83 The Bath Concurrent Lisp machine, Jed B. Marti and John Fitch,
Eurocal '83, European Computer Algebra Conference, Lecture Notes e

in Computer Science No. 162 (1983), pp. 78-90

Mat85 POLY Manual, D. C. J. Matthews, SIGPLAN Notices, Vol. 20, No. 9
(September 1985), p. 52-76

McC79 An Investigation of a Prcgramming Language with a Polymorphic
Type Structure, Nancy Jean McCracken, Ph. D. Thesis, Syracuse
University School of Computer and Information Science (June 1979)

McC82 A Finitary Retract Model for the Polymorphic Lambda-Calculus,
Nancy Jean McCracken, submitted for publication in Information
and Control (1982)

Mit84 Type Inference and Type Containment, John Clifford Mitchell, In-
ternational Symposium on Semantics of Data types, Lecture Notes
in Computer Science no. 173 (1984), pp. 257-277

150

>WV.
0

Nei86 Computation of Aliases and Support Sets, Anne Neirynck, Prakash
Panagaden and Alan J. Demers, Cornell University TR 86-763 (July
1986)

Nik87a Id Nouveau Reference Manual - Part I: Syntax, Rishiyur S. Nikhil,
MIT LCS Computation Structures Group Memo (April, 1987)

Nik87b Id Nouveau Reference Manual - Part II: Operational Semantics,
Rishiyur S. Nikhil and Keshav K. Pingali, MIT LCS Computation
Structures Group Memo (April, 1987)

Plo8l A Structural Approach to Operational Semantics, G. Plotkin, Corn-
puter Science Department Report, Aarhus University (1981)

Pop77 Notes on the Design of Euclid, G. J. Popek, J. J. Horning and
R. L. London, Proceedings of an ACM Conference on Language De-
sign for Reliable Software, SIGPLAN Notices, Vol. 12, No. 3 (March
1977), pp. 11-18

Ree86 Revised3 Report on the Algorithmic Language Scheme, Jonathan
Rees, William Clinger (eds.), SIGPLAN Notices, Vol. 21, No. 12 %
(December 1986), pp. 37-79

Rey74 Towards a Theory o Type Structure, John C. Reynolds, Interna-

tional Programming Symposium, Lecture Notes in Computer Sci-
ence No. 19, Springer Verlag (1974), pp. 408-425

Rey78 Syntactic Control of Interference, John C. Reynolds, Fifth Annual
ACM Symposium on Principles of Programming Languages (Jan-
uary 1978), pp. 39-46

Sco82 Domains for Denotational Semantics, Dana S. Scott, in Automata,
Languages and Programming, Lecture Notes in Computer Science
No. 140, Springer-Verlag (1982), pp. 577-613

Ste78 Rabbit: A Compiler for SCHEME (A Study in Compiler Optimiza-
tion), Guy Lewis Steele Jr., MIT AI TR-474 (May 1978)

Sto77 Denotational Semantics: The Scott-Strachey Approach to Program-

ming Language Theory, Joseph E. Stoy, MIT Press (1977)
Ten76 The Denotational Semantics of Programming Languages, R. D. Ten-

nent, Communications of the ACM, vol. 19 no. 8 (1976), pp. 437-453
Ten83 Semantics of Interference Control, R. D. Tennent, Theoretical Com- !

puter Science, Vol. 27 (1983), pp. 297-310
Tra86 A Compiler for the MIT Tagged-Token Dataflow Architecture, Ken-

neth R. Traub, S.M. Thesis, MIT Laboratory for Computer Science
(August. 1987)

VeeS8 The Misconstrued Semicolon - Reconciling Imperative Languages
and Dataflow Machines, Arthur Hugo Veen, Doctoral Thesis, Tech-

1ische Hogeschool Eindhoven, the Netherlands (September 1985)
Wi(80 IntelJprocedural Data Flow Analysis in the Presence of Pointers, Pro-

cedure Variables, and Label Variables, William E. Weihl, Seventh
Annual ACM Symposium on Principles of Programming Languages
(January 1980), pp. 83-94

151

% ° % .0 P J" %0 -, . % % e. -. % " e %, °" % % N. '.% - ,, - =°.-# . *° .* % - - ...
-01 P e ,.p . %% %0

J - .

Index of Definitions

accessible region constants 74
active expressions 56
aliasing .. 46, 47

allocated locations 60
Boolean .. 27
closed description 32
closed expression 32
conflict edge .. 132
conflict graph 124
consistent state 58, 74
context ... 54
delay edge 132

description conversion 34
description inclusion 34
description variable 25
description .. 25
effect description 25
effect inclusion 36
effect of an expression 42
empty pseudo-region 68
equivalence of states 61
exclusive mode 95
expression ... 27
free description variables 31
free locations ... 51
free ordinary variables 31
free region constants 33
immutable region 115
inherited effect 41
interference ... 120
intrinsic effect .. 41
kind assignment 40
kind of a description 40
kind .. 25
latent effect 24, 26
legal state .. 74, 93
location .o. s 50
masking of effects 68
meaning of an expression 54
monitored region 81

152

% %

,,w

monitor .. 87
occurrence of locations 58
occurrence of region constants 74
ordinary variable 27
permutation of locations 61
private region 66
reached locations 51
read locations 60
reduction ... 52
region constant 25
region description 25
region inclusion 35
region map 72, 88
region tag of a location 50
state .. 52, 72

store .. 52
stuck state .. 57
suspended expression 92
terminal state 52
tonicity .. 107
type assignment 42
type constant .. 26
type description 26
type erasure ... 63
type inclusion 37
type of an expression 42
type tag of a location 50
typeless reduction 63
value 28 "
well-formed description 41
well-formed expression 45
well-formed state 58, 75
well-formed store 58
written locations 60

153

, ,, , - 'a"-. , ,- ,. .. ',o.
%~

,N'~.5h

OFFICIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433 V.

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

IVD
FjEb

16,NAN

