
D-1664 ORRSATHOYOFIPSS-RYCARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF PSYCHOLOGY
K VANLEHN 12 FEB 87 PCG-i N88814-86-C-B349

UNCLASSIFIED F/G 5/ L .

EhhEEEEEEEoiE
smhhEEEEEEEEE

EEEEEEEE

II 1.0
11.2 IA11.6

'.

WCROC(,P RIESOLUTICN TEST CHA
14AT ONA.. BUR[AU, Of STINrARDs 19631

- OgLE-COL

Towards a Theory of
Impasse-driven Learning

a Technical Report PCG-1

Kurt VanLehn

Departments of Psychology and Computer Science

Pittsburgh,PA 15213 U.S.A.

DTIC.
SLECTED

- of

PSYCHOLOGY .* .

Carnegie-Mellon University

Towards a Theory of
Impasse-driven Learning

Technical Report PCG-1

Kurt VanLehn

Departments of Psychology and Computer Science
Carnegie-Mellon University,

Schenley Park,
Pittsburgh,PA 15213 U.S.A.

DTlC
ELECTEWh

February 12, 1987 OCKM2187.

To appear in H. Mandl & A. Lesgold (eds.)
Learning Issues for Intelligent Tutoring Systems

New York: Springer.

Running Head: Impasse-driven learning

This research was supported by the Personnel and Training Research Programs, Psychological Sciences
Division, Office of Naval Research, under Contract No. N00014-86K-0349. Reproduction in Whole or in
part is permitted for any purpose of the United States Government. Approved for public release;
distribution unlimited.

REPORT DOCUMENTATION PAGE
to. REPORT sacunlv CLASSKWITN 112. RESTRICTIVE MARKINGS

5.. secumorIy CLaSW-WAnoft AurINTY 3. 0iSTRI9UTON/ AVAj&i~BUrY OF REPORT

2b. DECLAS Fi~fF OOWWMOAIWG SCEDL Approved for public release;
Distribution unlimited

ORPRFRIG AFATI NUMBER(S) S. MONITORING ORGA149ZATION REPORT NUMBER(S)

PROMIN REOTSam as Performing Organization

6a. %lAME OF PERFORMING ORGANIZATION Go. OPPICE SYMBOL 7a. NAME OF MONITORIG ORGANIZATION

Caregi-Melo Unvrst Personnel and Training Research
Carege-elon nierit __________ Offic of vlRsach (Code 11 4 PT),

&c. AOOXESS 'Gmy state. .ag 110cae. 7b. AOORIESS (Ciep State. -ZIP Comi
Department: of Psychology 800 N. Quincy St.

Pittburh, A 1213Arlington, VA 22217-5000

So. 'lAME OF -';N 4lNG. SPONSORINtG $1b1 OPPiCe S"YM11O 9 PROCUREMENT iNSTRUMENT DEINTICKATiON NaUBERl
ORGANIZATION (if apkbv N00014-86-K-0349

lame as Monitoring Organizatio
ek. OORSS 0ty Stce.MW IPCft)10 SOURCE OF SUNOoNG 'dUMBERS42358-02/12-15-86

PROGRAM PROjECT TASK WVORI 4NIT
ELEMENT No NO. NO. ACESSION NO0

NAN/A N/A [AN/A
rI i OI(ncludo SoCunt Cfawssa w)~n

Towards a theory of impasse-driven learning.

2 -2VRSONAL. aurI4OR(s)

Kurt VanLehn
I]&~ "PE OF ;EPORT ibo TIME COVEREo 1it DATE OF REPORT ;Yar, Afno.o Oft S PAGE Ur

Technical I ROMa ..ILunj ' li a tU A7 1h 12 T 34CON
*& sPLEVj9ElARY '4OTArioN

7 COW[T C:)DES 9 sI.jsjEcT rERMS (contiuf On merw. I; npceu~and EWno owntf Op, oes iew
I ROUP SUB-GROUP

Learning, skill acquisition, failure"driven learning,
impasse-driven learning, impasse

9 18S'AC- Canntu on roe"@z f mqconaiy ana aenrVfy y OWN~ n eRo IM

See reverse side.

IQ'SI/ON'AVAIABIL,TY OF .BS 7RACT 2 %6S*RAC' qifC.nri C .. SjIsPCA ,ON
C ..NC.AS.P.EO/UNLLM,?O (3 SAME AS 4P? :r -sivS

Z2 14AME Or QESPONSiBt. NOIVIOUA&. IZ* 'Z.0-041 1Ifl(uM Area COgew "2C Os 4VVBO%
Susan Chipman (202) 696-4322 114, PT

00 FORM 1473. "tMAR 63 APR .ajtior *o w .RT 0214' uva.itee Slcnir,?v '.AssiP'cArTOF " wis 8a&G
All 01:14or eations are oesote

Unc lassif ied

-q 4

Abstract

"qar~li work has shown that students often reach impasse while trying to use a procedural skill that

they are acquiring. The step that they believe should be executed next cannot be performed. If they are

, -in a test-taking situation, where they may not receive help, they perform a specific, simple kind of problem

solving, called epair.k. This report speculates about what happens when impasses occur during

instructional situations where help is available. The conjecture is that the help that students receive -

either from the teacher, from examining the textbook, or from other information sources - is reduced to a

sequence of actions that will get the Students past the particular impasse that is preventing them from

completing the exercise problem This action sequence is generalized to become a new subprocedure.

,, The new subprocedure is inserted into the old procedure at the location where the impasse occurred.

The oroposed learning process is called impasse-driven learning.

OP-
I.%

Cl

Table of Contents1. Introduction 2
2. Learning elemtentary mathematical skills 42.1. Leming from lesson sequences of examples and exercises 4

2.2. Describing systematic errors with "bugs's 53. An introduction to the model: Explaining Always-Barrow.Left 64. The stable bug problem 104.1. The Patch HypothesM 11
4.2. Representing Stable bugs with mai-ruies 145. Lemring occu re at Impasses is1

6. Imnplications for remedlatlon is*7. General DiscussIon 207.1. Related models of skill acquisition 217.2. Summary 23

COO

MAI '

D4I ;,

L., 7

Towards a Theory of Impasse-driven learning

Kurt VanLehn

1. Introduction
Learning is widely viewed as a knowledge communication process coupled with knowledge compilation

process (Anderson, 1985). The communication process interprets instruction thereby incorporating new

information from the environment into the mental structures of the student. Knowledge compilation

occurs with practice. It transforms the initial mental structures into a form that makes performance faster

and more accurate. Moreover, the transformed mental structures are less likely to be forgotten. At one

time, psychology concerned itself exclusively with the compilation process by using such simple stimuli

(e.g., nonsense syllables) that the affects of the communication process could be ignored. The work

_q presented here uses more complicated stimuli, the calculational procedures of ordinary arithmetic. For

such stimuli, the effects of the knowledge communication process cannot be ignored. It will be shown

later that certain types of miscommunication can cause students to have erroneous conceptions. The

long-term objective of the research reported here is to develop of theory of the neglected half of learning,

knowledge communication. Consequently, whenever the term "teaming" appears below, it is intended to

mean knowledge communication.

Earlier work has shown that Students often reach "impasses" while trying to use a procedural skill that

they are acquiring. An impasse occurs when the step that they believe should be executed next cannot

be performed. If they are in a test-taking situation, where they may not receive help, they perform a

specific, simple kind of problem solving, called "repair." This chapter speculates about happens when

impasses occur during instructional situations, where help is available. The conjecture is that the help

.hat the student receives -- either from the teacher, from examining te textbook, or from other information

sources -- is reduced to the sequence of actions that will get the student past the impasse. This action

sequence is generalized to become a new subprocedure. The new subprocedure s inserted into the old

procedure at the location where the imoasse occurred. The proposed learning process is called impasse-

driven learning.

The research presented here began with the "buggy" studies of Brown and Burton (1978). Those

st,,dies 'ound 'Mat students of certain procedural Skills, such as ordinary multicolumn subtraction. had a

@4

3

surprisingly large variety of bugs (i.e., small, local misconceptions that cause systematic errors). Early

investigations into the origins of bugs yielded a theory of procedural problem solving, named Repair

Theory (Brown & VanLehn, 1980). Among other accomplishments, Repair Theory predicted the

occurrence of certain patterns of short-term instabilities in bugs. These instabilities were subsequently

found (VanLehn, 1982). Recent research has investigated the relationship between the curriculum, the

students' learning processes and the acquisition of bugs. A learning theory, named Step Theory, has

been added to Repair Theory, yielding an integrated explanation .for the acquisition of correct and buggy

procedures (VanLehn, 1983a. VanLehn, 1983b). Step Theory describes learning at a large "grain size."

Given a lesson and a representation of whal the student knows prior to the lesson, Step Theory predicts

what the student's knowledge state will be after the lesson.

Recently, attention has turned toward describing learning at a finer grain-size. The object of the current

research is to describe the student's cognitive processing during a lesson. The research strategy is to

replace Step Theory by augmenting Repair Theory, which already provides a fine-grained account of

problem solving processes during diagnostic testing sessions, so that the new theory provides a fin-

grained account of learning. If this strategy succeeds, the cognitive processes will account for both

problem-solving behavior and lesson-learning behavior. Thus the new theory will provide a more

integrated account of cognition as well as describing learning behavior at a finer grain size. In order to

make it easier to contrast old and new theories, the new one will be dubbed RT2, and the old theory,

which is a conglomerate of Repair Theory and Step Theory, will be referred to as RTI.

This chapter introduces RT2. It is, for the most part, speculation. Unlike RT1, RT2 has not been

implemented as computer simulation, nor has its internal coherence and empirical accuracy been

scrutinized with competitive argumentation (VanLehn, Brown & Greeno, 1984). Although the ideas behind

RT2 are simple extensions of the principles of RT1, they seem capable of explaining much about human

behavior. Moreover, they relate to current research in machine learning and language acquisition A

4 discussion of RT2, even in its current underdeveloped form, should be at least timely, and perhaps

interesting as well.

The chapter begins with a discussion of the task domain and the kinds of behavior one finds students

displaying. It then introduces the old theory, RT1. Readers who are familiar with RT1 from earlier

publications may safely skip sections 2 and 3. The remainder of the chapter presents RT2 and discusses

its relationship to other work in cognitive science

lop

4

2. Learning elementary mathematical skills

The goal of this research is to develop a rigorously supported theory of learning by taking advantage of

Al's new modelling power. The long term research strategy is to begin by studying a particular kind of
cognition, then if all goes well, to test the theory's generality on other kinds of cognition. The initial studies

focused on how elementary school students learn ordinary, written arithmetic calculations. The main

advantage of arithmetic procedures, from a methodological point of view, is that they are virtually

meaningless to most students (Resnick, 1982). Most students treat arithmetic procedures as arbitrary

formal manipulations (i.e., "symbol pushing*). Although this may frustrate teachers, it allows

psychologists to study a complex skill without having to model a whole world's worth of background

knowledge.

This section introduces the domain. First it describes the instruction that students receive, and then it

describes the behavior they produce. The theory's main job is to explain what kinds of mental structures

are engendered by that instruction and how those structures guide the production of the observed

behavior.

- , 2.1. Learning from lesson sequences of examples and exercises

In a typical American school, mathematical procedures are taught incrementally via a lesson sequence

that extends over several years. In the case of subtraction, there are about ten lessons in the sequence

* that introduce new material. The lesson sequence introduces the procedure incrementally, one step per

lesson, so to speak. For instance, the first lesson might show how to do subtraction of two-column

problems. The second lesson demonstrates three-column problem solving. The third introduces

borrowing, and so on. The ten lessons are spread over about three years, starting in the late second

grade (i.e., at about age seven). These lessons are interleaved with lessons on other topics, as well as
many lessons for reviewing and practicing the material introduced by the ten lessons. In the classroom, a

typical lesson lasts an hour. Usually, the teacher solves some problems on the board with the class, then

9. the students solve problems on their own. It they need help, they ask the teacher, or they refer to worked

examples in the textbook. A textbook example consists of a sequence of captioned "Snapshots" of a
problem being solved (see figure 1). Textbooks have very little text explaining the procedure, perhaps

because young children do not read well. Textbooks contain mostly examples and exercises.

5

Take a ten to Subtract Subtract

make 10 ones. the ones. te tens.

2 15 2 15 2 15.

1 9 1 9 1 9

6 16

Figure 1: A typical textbook example.

2.2. Describing systematic errors with "bugs"

The observable output of the students' learning process is their performance while solving exercise

problems. Error data are a traditional measure of such performance. There have been many empirical

studies of the errors that students make in arithmetic (Buswell, 1926; Brueckner, 1930; Brownell, 1935;

Roberts, 1968; Lankford, 1972; Cox, 1975; Ashlock, 1976). A common analytic notion is to separate

systematic errors from slips (Norman, 1981). Systematic errors appear to stem from consistent

application of a faulty method, algorithm or rule. Slips are unsystematic "careless" errors (e.g., facts

errors, such as 7-3=5). Since slips occur in expert performance as well as student behavior, the common

opinion is that they are due to inherent "noise" in the human information processor. Systematic errors, on

the other hand, are taken as stemming from mistaken or missing knowledge, the product of incomplete or

misguided learning. Only systematic errors are used in testing the present theory. See Siegler and

Shrager (1984) for a developmental theory of addition slips.

Brown and Burton (1978) used the metaphor of bugs in computer programs in developing a precise,

detailed formalism for describing systematic errors. A student's errors are accurately reproduced by

taking a formal representation of a correct procedure and making one or more small perturbations to it,

such as deleting a rule. The perturbations are called bugs. A systematic error is represented as a list of

one or more bugs. Bugs describe systematic errors with unprecedented precision. If a student makes no

slips, then his or her answers on a test exactly match the buggy algorithm's answers, digit for digit. Bug

data are the main data for testing this theory.

-4

* *. -

6

Burton (1982) developed an automated data analysis program, called Debuggy. Using it, data from

thousands of students learning subtraction were analyzed, and 76 different kinds of bugs were observed

(VanLehn, 1982). Similar studies discovered 68 bugs in addition of fractions (Shaw et al., 1982), several

dozen bugs in simple linear equation solving (Sleeman, 1984), and 57 bugs in addition and subtraction of

signed numbers (Tatsuoka & Baillie, 1982).

It is important to stress that bugs are only a notation for systematic errors and not an explanation. The

connotations of "bugs" in the computer programming sense do not necessarily apply. In particular, bugs

in human procedures are not always stable. They may appear and disappear over short periods of time,

often with no intervening instruction, and sometimes even in the middle of a testing session (VanLehn,

1982). Often, one bug is replaced by another, a phenomenon called bug migration.

Mysteries abound in the bug data. Why are there so many different bugs? What causes them? What

causes them to migrate or disappear? Why do certain bugs migrate only into certain other bugs? Often a

student has more than one bug at a time--why do certain bugs almost always occur together? Do

co-occurring bugs have the same cause? Most importantly, how is the educational process involved in

the development of bugs? One objective of the theory is to explain some of these bug mysteries.

Another objective is to explair' how procedural skills are acquired from multi-year curricula. This

objective seems to require longitudinal data, where each student in the study is tested several times

during the multi-year period. Such data is notoriously difficult to acquire. Bug data are readily available

and nearly as good. The bug data discussed here were obtained by testing students at all stages in the

curriculum. Thus, the bug data are like between-subjects longitudinal data. Instead of testing the same

student at several times at different stages of his or her learning, different students at different stages are

tested just once. As will be seen later, such cross-sectional data can perform nearly as well as

longitudinal data in testing a learning theory, and yet they are much easier to collect.

3. An introduction to the model: Explaining Always-Borrow-Left

Most of the mental structures and processes proposed by the theory can be introduced and illustrated

Iby going through an explanation for a certain subtraction bug, called Always-Borrow-Left. Students with

this bug always borrow from the leftmost column in the problem no matter which column originates the

borrowing. Problem A below shows the correct placement of borrow's decrement. Problem B shows the

'aL.

7

bug's placement
5 2 5

A. 3 61S B. 3 615 C. 61S
-10 9 -10 9 -19
2 56 1 66 4 6

Always-Borrow-Left is moderately common. In a sample of 375 students with bugs, six students had this

bug (VanLehn, 1982). It has been observed for years (Buswell, 1926, pg. 173, bad habit number s27).

However, this theory is the first to offer an explanation for it.

The explanation begins with the hypothesis that students use induction (generalization of examples) in

learning where to place the borrow's decrement. All the textbooks used by students in our sample

introduce borrowing using only two-column problems, such as problem C above. Multi-column problems,

such as A, are not used. Consequently, the student has insufficient information to induce an

unambiguous description of where to place the borrows decrement. The correct placement is in the

left-adjacent column, as in A. However, two-column examples are also consistent with decrementing the

left-most column, as in B.

The next hypothesis of the theory is that when a student is faced with such an ambiguity in how to
describe a place, the student takes a conservative strategy and saves all the relevant descriptions. When

inducing from two-column problems (e.g.. C), the student describes the borrow-from column as 'a column

that is both left-adjacent to the current column and the left-most column in the problem."

Suppose that our student is given a diagnostic test at this point in the lesson sequence and that the

test contains borrowing problems of all kinds. Suppose the student is faced with solving problem D,

below.
D. 3 65 Z. 3 615

-1 09 -10 9

The student starts to borrow, gets as far as E, and is suddenly stuck. The student's description of where

to borrow from is ambiguous because there is no column that is both left-adjacent and the left-most

column. In the terminology of the theory, getting stuck while problem solving is called reaching an

impasse.

It is hypothesized that whenever students reach an impasse on a test, they engage in local problem

solving. Local problem solving is just like classical puzzle solving (Newell & Simon, 1972) in that there is

8

an initial state, a desired final state, and state-change operators. Here, the initial state is being stuck, and

the desired final state is being unstuck. Unlike traditional problem solving, the state-change operators of

local problem solving don't change the state of the exercise problem. Instead, they change the state of

the interpreter that is executing the procedure. The operators do things like pop the stack of goals or

relax the criterion for matching a description to the exercise problem. They do not do things like writing

digits on the test paper. Because the local problem solver modifies the state of the procedure's

interpretation, it is a kind of meta-level problem solving. The sequences of meta-level operators that

succeed in getting students unstuck are called repairs. Note that what is being repaired is, roughly

speaking, the impasse. Repairs do not change the procedure. To put it in terms of Newell's (1980)

problem space hypothesis, the procedure works in one problem space, and local problem solving works

in a second problem space that is "meta" to the base problem space. Returning to our stuck student,

three common repairs to the impasse are illustrated below.
2 5

r. 3 615 G. 3 615 H. 3 615
-1 09 1 09 -10 9

*.~' 6

In F, the student has relaxed the description of which column to borrow from by ignoring the restriction

that the column be left-adjacent to the current column. The remaining restriction, that the column be the

left-most column in the problem, has the student decrement the hundreds column, as shown in F. This is

one repair. It generates the bug Always-Borrow-Left. Another repair is shown in G. Here, the student has

relaxed the borrow-from description by ignoring the left-most requirement. The decrement is placed in the

* ,~ left-adjacent column, yielding G. This repair generates a correct solution to the problem. In H, the student

has Chosen to skip the borrow-from entirely, and go on to the next step in the procedure. This repair

q generates a bug that is named Borrow-No- Decrement- Except-Last, because it only executes a borrow-

from when it is unambiguous where to place the decrement, and that occurs only when the borrow

originates in the last possible column for borrow. To sum up, three different repairs to the same impasse

generate two different bugs and a correct version of subtraction.

It was mentioned earlier that students' bugs are not like bugs in computer programs because students'

bugs are unstable. Students shift back and forth among bugs, a phenomenon called bug migration. The

theory's explanation for bug migration is that the student has a stable underlying procedure, but that the

procedure is incomplete in such a way that the student reaches impasses on some problems. The

student can apply any repair she can think of. Sometimes she chooses one repair, and sometimes she

'S.,

9

chooses others. The different repairs manifest themselves as different bugs. So bug migration comes

from varying the choice of repairs to a stable, underlying impasse. In particular, the theory predicts that

the three repairs just discussed ought to show up as a bug migration. In fact, they do. Figure 1 is a

verbatim presentation of a diagnostic test showing the predicted bug migration.

2 * '0 2; 1

A a C 0 9 0 /' 6 , 4 E ox F X 10 a 0

4 3 23 7 0 8 6 7 3 9 8 6
3 9 27 3 9 187 7 3 1 9 2 2 2

H I 1K LM
7 16 3 11 a a 5 , 9/ 8 3 5 So0
S98 214 2 0 5 2 6 9 ? 3 43

18 97 680 2904 8352 6068

N 'S 0 p ' o 0 * , S *

S ,, X 6 3 7 0, /OX /Y 0 o 1 X/ X 4
607 35 4 *103 2 1 4 13 6

2 471-8 6 0 2 4006 6 0 9 2 0 8 6 18

Figure 2: Verbatim presentation of a test by subject 8 of class 17 showing three
repairs to the same impasse. On problems D, E and G, one repair generates

the bug Borrow-No-Decrement-Except-Last. (N.B. The subject does not always
use scratch marks to indicate borrowing.) On problems H and I, another

repair generates the correct borrow-from placement. On problems K, M, N, P.
Q, R and S, a third repair generates the bug Always-Borrow-Left. There are
slips on problems D, P, 0 and S. On problem R, a second kind of impasse

occurs. While processing the hundred's column, the subject tries to decrement
the zero in the ten thousand's column. A repair to this impasse ultimately

leads to the answer of 2 in the hundred's column.

This discussion of the bug Always-Borrow-Left has illustrated many of the assumptions of the theory.

First, procedures are the result of generalization of examples, rather than, say memorization of verbal or

written recipes. The main evidence for this assumption is that there are accidental, visual characteristics

of the examples, viz. the placement of the decrement, that a non-example source of instruction, such as a

verbal recipe, would not mention. The appearance of these visual characteristics in the acquired

procedure is evidence that they were learned by induction (see VanLehn (1986) for a full defense of this

idealization).

.4 ,. A *4 ~ I A Kill,

10

A second assumption is that learning occurs in the context of a lesson sequence, and that many bugs

are caused by testing students who are in the middle of the lesson sequence on exercise types that they

have not yet been taught how to solve. Perhaps such bugs should be welcomed as signs of a healthy

learning process that may eventuate in a correct understanding of the procedure. Such a view of bugs is

radically different from the traditional view, which considers bugs to be "bad habits" that need to be

remediated. On the other hand, the bad-habit view may be appropriate for older students, some of whom

have bugs long after the lesson sequence has been completed (VanLehn, 1982).

Another set of assumptions involves the notions of interpretation, impasses and repairs. A particularly

important hypothesis is that repairs occur at the meta-level and change only the state of the

interpretation. This hypothesis predicts the existence of bug migration. In fact, this prediction was made

before any evidence of bug migration had been found (Brown & VanLehn, 1980). The surprising success

of this forecast and the fact that it is an almost unavoidable consequence of the hypothesis provide strong

support for the theory.

4. The stable bug problem

Although some students' behaviors can be characterized as bug migrations, other students appear to

have the same bug throughout a test. When such students are tested again two days later, they often

have the same bug (VanLehn, 1982). Some students even show the same bug when tested twice six

months apart (VanLehn, 1982). Such data encourage the interpretation that some students have learned

their bugs. That is, their bugs have become a part of the knowledge structure they use to encode their

procedure. Such relatively permanent bugs are called "stable" in order to differentiate them from bugs the

may exist only for a short time, then migrate/change into other bugs'.

Stable bugs present a problem for RTI. Repairs do not modify the core procedure, but instead modify

the state of the interpreter that is executing the core procedure. After a repair has been accomplished

and the :nterpreter is running again, there is no trace of the effects of repair on the core procedure. Bug

migrations are explained by assuming that the students apply different repairs at different occurrences of

'The proportion of students whose errors are due to stable bugs varies significantly with the grade level. In one study. 49% of the
third graders had stable subtraction bugs, vs. 27% of the fourth graders and 13% of the fifth graders (VanLehn, 1982). The variation
is due to the fact that more older children know the correct algorithm: 19% of the third graders were bug-free vs. 39% of the
fourth-graders and 60% of the fifth-graders.

11

the impasse. In order to explain a stable bug, one must assume that the student chooses to apply the

same repair every single time the impasse occurs. Intuitively, this seems quite unlikely.

One way to explain stable bugs within the RT1 framework is to assume that the set of possible repairs

is different for different individuals. Some students may only know about one repair, so they always

choose that repair at an impasse. They will appear to have a stable bug. However, this hypothesis has

difficulties. There are stable bugs that can only be generated by assuming that the students have two

different impasses, and that the student repairs the first one with one repair, and the second one with a

different repair. Students with such bugs must know at least two repairs, yet they consistently choose the

same one at each choice point. Assuming that different students have different repairs does not help

explain such multi-impasse stable bugs.

4.1. The Patch Hypothesis

As another potential explanation of stable bugs, one could augment RT1 by assuming that there is

some memory of previous episodes of impasses and repairs. Stable bugs are generated by assuming

that the student recognizes the impasse as one that has occurred before, and recalls the repair that was

selected before and employed successfully. To perform such recall, the student must have some

memory of the impasse and the repair. That is, the student's knowledge of the skill must consist of a set

of impasse-repair pairs in addition to the core procedure. Such pairs are called patches (Brown &

VanLehn, 1980). Thus, if the students have a stable bug, then they have a patch for that impasse. If they

don't have a patch, then the impasse may cause bug migrations.

There are problems with the hypothesis that the student's knowledge consists of patches as well as the

core procedure. First, it seems inelegant and unparsimonious. Patches are, essentially, condition-action

rules. The condition is a description of particular interpreter states (i.e., a certain kind of impasse). A

patch's action is some modification to make to the interpreter's state. The core procedure is also made up

of condition-action rules. The only differences between patches and the core procedure's rules is that the

rules' conditions can test the external problem states (i.e., the state of a partially completed subtraction

problem) and the rules' actions can modify the external problem state. That is, the patches operate

exclusively on the interpreter's state, while core procedure's rules operate on the external problem state

as well. Nonetheless, there are more similarities than differences between patches and rules. It would be

parsimonious to combine them.

4

12

The second problem with patches is that they must be somewhat abstract in order to function propely.

In order for the patch to apply to multiple occurrences of an impasse, it must be a description of the

interpreter's state. Thus, if a patch is acquired from, say, the first occurrence of an impasse, then the

condition half of the patch must be abstract. It must not mention details of the interpreter state that are

idiosyncratic to this particular occurrence, such as the values of digits in the problem. Similarly, the

repairs must also be abstract descriptions of the modifications that were performed to the interpreter's

state. Con~equentiy, acquiring a patch is not simply a matter of storing a state and a state-change.

Rather, patch acquisition requires non-trivial abstraction.

A third, more technical problem with patches is that they do not interface well with the pattern matching

component of the interpreter. In order to represent descriptions of the external problem state, the

procedure employs patterns. Such patterns are, just like the usual ones found in, for instance the

conditions of production rules. They consist of sets of relations whose arguments are variables or

constants. In order to employ such patterns, the interpreter must have a pattern matcher. The matcher

tries to fit the pattern to the representation of the external problem state. If the pattern matches, then the

objects matched by the variables are often "read" and become a part of the interpreter's state. We saw

an instance of this earlier, in the discussion of the bug Always-Borrow-Left. A pattern is used to represent

the idea that the place to borrow from is (1) the left-most column in the problem, (2) a column that is

adjacent to the column that is the current focus of attention, and (3) a column that is left of the current

focus of attention. Speaking very approximately, the pattern for this concept employs three relations, one

for each of the constraints listed above. It has two variables: one for the current focus of attention, and

one for the column to be borrowed from. The following is an informal presentation of the pattern:
(Is-leftmost-columm Now-focus) &
(Is-adjacent-to Now-focus Cuzent-focus) a
(Is-left-of New-focus Cuzent-focus)

If the pattern matches, the object that is matched to the New-focus variable, namely a particular column in

the problem, becomes the focus of attention for the borrow-from subgoal. The bug Always-Borrow-Left is

generated when this pattern fails to match. Such mismatching occurs when borrowing originates in the

units column of problems with more than two columns. In such problems, there is no column that meets

all three constraints. The bug is generated when the second one is relaxed, allowing the pattern to match

and picking out the left-most column of the problem as the focus of attention for borrowing-from. This

causes the student to borrow from the left-most column, which is exactly what the bug Always-Borrow-

Left does.

01MA

13

If the patch hypothesis is co'rect, then it Should be possible to build a patch for Always-Borrow-Left.

The impasse half of the patch can be quite simple. It can achieve the appropriate degree of abstraction by

merely referring to the pattern. The description in the condition-haf of the patch would read: "The pattern

,% that fetches the borrow-from column does not match." However, there are problems implementing the
.-,

repair-half of the patch. The following paragraphs present three possible implementations, all of which

fail.

The repair could also be expressed in terms of the pattern. It needs to say something like 'relax the

second relation of the pattern." However, if this is taken literally, it means actually modifying the pattern

by removing the second relation from it. Such modifications change the procedure itself. This makes it

hard to explain bug migration--one would have to assume that the relaxation repair puts the deleted

relations back, forinstance.

A second possibility for the Always-Borrow-Left patch involves interrupting the pattern matching

process. In order to accomplish the requisite relaxation, the repair would have to interrupt the pattern

matcher right when it was about to apply the second constraint of the pattern, and somehow cause the

pattern matcher to skip over that relation. Expressing this repair as a patch is difficult. It would require a

precise specification, at the theoretical level, of a pattern matching algorithm, thus embroiling the theory in

a layer of irrelevant detail.

A third option for the Always-Borrow-Left patch is to include a revised pattern that has all the relations

except the second one. The interpretation of this description is for the local problem solver to perform

pattern matching using this pattern, and substitute the results into the interpreter's state just as if the

original pattern had been matched. This option works, usually. However, it has the flaw that on some

occasions, the pattern stored in the patch does not match. This causes an impasse inside the local

problem solver. That is, there can be an impasse while a person is trying to fix another impasse. The

local problem solver is running "meta" to the interpreter, trying to repair the interpreter's impasse. We

could assume that there is a meta-meta level, where another local problem solver runs, trying to repair

:he impasse that occurred inside the meta-level local problem solver. Such "towers" of meta-level

interpreters have begun to appear in Al (Smith, 1982), but their properties are largely unexplored at this
I,'e

time. It is probably best to avoid postulating such multi-level arcitectures of students until they are better

understood comoutationally.

oI.P

14

To sum up: there are three methods, for representing the repair-half of the patch: (1) modifying the core

procedure by deleting a relation from the pattern, (2) having the repair cause the pattern matcher to

ignore the relation, and (3) storing a substitute pattern in the patch and matching it from inside the local

problem solver. Because all these methods have defects, it seems that patches cannot represent the

stability of bug that, like Always-Borrow-Left, depend on pattern relaxation in their repairs. This is just one

problem with the patch hypothesis. The others, mentioned earlier, are its lack of parsimony,. since-U.

patches are quite similar to rules, and the fact that non-trivial abstraction is required for patches to be

A'i~ acquired,

4.2. Representing Stable bugs with mal-rules

The new version of the theory, RT2, takes the position that there are no patches. The student's

knowledge of the skill consists only of a procedure. In order to represent stable bugs, the core procedure

I~ has "mal-rules2 ." Mal-rules are identical in format and function to the core procedure's regular rules. The

difference is only that they cause the student to answer incorrectly, rather than correctly. Furthermore,

RT2 assumes that mal-rules are acquired by the same learning mechanism as regular rules. Regular

rules are acquired by induction of the teacher's examples. Mal-rules are acquired by induction from the

"mal-examples" produced by local problem solving. If a student does not induce a mal-rule from the

mal-example, pehaps because he did not attend to the mal-example, then bug migration may occur

Thus, stable bugs occur when mal-rules are induced, and unstable bugs occur otherwise.

Mal-rules are a much more parsimonious solution to the stable bug problem than patches. They are

identical to rules, and they are acquired by the same mechanism as rules. Thus, mal-rules escape the

first objections raised against patches.

Another objection was that patches couldn't represent stable pattern-relaxation bugs. This objection is

also taken care of by the mal-rule hypothesis. To illustrate how, consider the bug Always-Borrow-Left

again, in the normal course of events, students are first taught borrowing with two-column problems.

Later they are taught how to solve three-column borrow problems. Recall that after the first lesson, the

%, pattern is over constrained:

2 erek Sleeman coined the term "mal-rule" for his method of describing bugs in an objective. theoretically neutral fashion
Although the mal-rules of RT2 are interpreted as lying at a deeper, more pSyChologically plausible level, the use of the term seems
lust as descnptive of how the rules function.

e 4s

(Ia-leftmost-colm, New-focus) &
(Is-adjacent-to New-focus Current-focus) a
(Is-left-of New-focus Current-focus)

The second borrowing lesson shows that when borrowing originates in the units column of three-column

problems, it is the tens column that one borrows from. The learning mechanism utilizes such examples to

eliminate the first relation from the pattern. That is, the learning mechanism does pattern relaxation.

If, on the other hand, mal-examples had been presented where the hundreds column was borrowed

from, then pattern relaxation would delete the second relation. Such mal-examples can be generated

when the learner is tested between the first and second lessons on borrowing. The over-constrained

pattern will causes impasses, and the repair of those impasses generates the mal-examples. On this

account, stable bugs like Always-Borrow-Left seem to be caused, ironically, by learning from one's

mistakes.

5. Learning occurs at impasses
The introduction of this chapter promised a description of a fine-grained learning process. Although tt~e

0-ii responsibilities of the learning process have been increased, by including the generation of mal-rules as

well as rules, the large-grained description of the learning process has not yet been refined. This section

ventures a finer-grained description.

If learning occurs as a result of local problem solving, then the learning processes is likely to be

interwoven with the local problem solving process. The main hypothesis is that inductive learning occurs

at impasses. The "ar is used here in two senses. Learning occurs only when an impasse occurs. If

there is no impasse, there is no learning3 . The second sense of learning "at" impasses is more subtle.

When an impasse occurs, the student is "ar some place in the procedure. That is, the interpreter for the

procedure is reading some part of the control structure of the procedure. The hypothesis 's 'ma: !rme

control location of the impasse is the place where the newly learned piece of procedure will be rse,!ec

That is, if the control structure is visualized as layed out spatially, say as a tree, then tme hypothes S :"a!

learning occurs "at" impasses takes on a spatial interpretation: the spatial location of the 'mpasse s Ire

U,- place where the new subprocedure will be attached to the existing procedure. So, the hypothesis has 'wo

31(nowledge compilation may occur without impasses, but that is not the kind of learning that the theory describes The ?teory
aims to descnbe initial learning, or knowledge communication Also, even if ther is an impasse, learning may not occ ,r Por

, instance, the student may not attend to the instruction at that time Thus, the claim can be restated more precsely as it ' ere s
knowledge communication learning, then it occurs at impasses

-Op3

. .. r

16

independent aspects: (1) learning occurs "at- impasses in the temporal sense, and (2) teaming occurs

at impasses in the control stucture sense.

First, let's examine the implications of the temporal aspect. According to RTI, the only activity that

occurs in response to impasses is repair. The goal of repair is merely to get the interpreter past the

mrrpasse .,1 any way possible. In particular, repair is not concerned with answering the problem correctly.

Consequently, repairs rarely modify the interpretation is such a way that the problems are solved

correctly. However, the impasse-driven learning hypothesis is intended to explain the acquisition of

regular rules as well as mal-rules. To do this, the theory must be amended to allow other activities in

reponse to impasses. Once the history of this research is reviewed, it will be easy to see what those

activites should be.

The bug data that initiated the theory were collected in testing situations. The students were asked to

answer problems without help from their teacher, friends or textbooks. If they got stuck, they would have

to rely on their own knowledge to get unstuck. Thus, they repaired. However, students are not always in

lest taking situations when they solve problems. Often, they solve practice exercises in class or at home.

in such situations, melo is permitted. Indeed, students are encouraged to ask for help if they get stuck.

So. the second kind of activity that may occur at impasses is receiving nelp.

Help seems to be the source of information that allows correct rules to be learned at impasses. For

instance, suppose that a student gets stuck while doing seat work. He raises his hand. His teacher

comes over. He asks, "I got to here and got stuck. What am I supposed to do next?" The teacher shows

hm what to do, saying, "You do this, and then this, then this." This short sequence of actions is just what

the student needs. Not only does it get him around the impasse, but it is an example of a new subskill.

The student may abstract the actions, leaving behind details that are specific to the particular problem

:hat is being solved, such as the numerical values of the digits. The abstracted actions become a new

. sublorocedure, which the student can attach to his existing procedure. Thus, correct rules can be

l acquired by the same mechanism that acquires mal-rules, provided that there is some way of obtaining

help at impasses.

The actual method of delivering help is probably of secondary importance. The student can obtain help

Dy comoaring his solution to his friend's solution. The comparison isolates a subsequence of actions

'1ustratnrg tne new suborocedure just as effectively d5 asking the teacher, but it may cost the student

17

some effort to make the comparison. With slightly more effort, the student could generate a subsequence

by drawing a "near" analogy to a worked problem in the textbook (Anderson, Farrell, & Saurers, 1984).

The student may even be able to generate the subsequence from a "far" analogy, given a ;ttle coac!.,r'g

from the teacher (Resnick & Omanson. 1987). For instance. some teachers might have the student *,nir'K

of the problem's base-ten numerals as piles of pennies, dimes and dollars. Under the teacher's orocc,"g.

the student maps the impasse over to ine monetary reorese'a:ror. so yes !Ile mpasse there witrho2!

violating principles of fair exc-arge , e 3 .o , i ... c" es. "e" ""aos t'cse

monetary manipulators bacK ,'to oaper-arc-oe'c, ac:o s 'e A e " eoresetaior, Srce :"e

lmpasse was solved correctly n 'e mo,'etary 'eo'ese",at or. t'e wrt!e r aralog of :nat so u:ion snou c oe

a correct subsequence of act.ors The DOi't is "rat *"e'e are a va ey ol ways "'at a wrt'er, act c"

suosequence may be ootaec De'or.s, a. o0 0O-'a -
" " -' ."3 ocy a'e 0" y a 'ew

-, of tThe many possoie ways. aitrougr trey -ay oe :e - . _

0 As soon as ore discovers that there are several Knds of ,outs to a cogr'tive process, one wondeis

whether those differences r"ae any difference Does t matter wrether t"e studert receives help via

individualized demonstrations. vs co- c ,o" etc T'e s,,i'plest "Yot' ess s tmat it is :*e subsecue,-ce

of actions that determines the contents of the suoproceoure, and not t'e source 'or *',at s,.osec .ence o'

actions If two methods of obtaining help yield the same subsequence of actions for the impasse, ther

the subprocedure that the Student induces should be the same.

Like most simple hypotheses, this one is likely to be only half right, at best. The various methods of

ootaining help may require different cognitive resources, and that may affect the inductive learning

process- For instance, suppose far analogy takes longer and requires more problem solving of the

Student than attending to the teacher's demonstration. The heavier demands of far analogy could interfer

with the retention of the interpreter's state at the time of the impasse. This may decrease or perturb

.-. nductive learning, because retaining (or reconstructing) the interpreter's state is necessary 'or

determining where to attach the new subprocedure. This interference could be considered, however, a

second order or "performance" factor

The second aspect of the hypothesis that learning occurs "at" impasses concerns the place where !"e

new suborocedure will be attached to the existing procedure The hypothesis is that the attachment Do,r':

will be the same as the location of the interpreter at the occurrence of the rmoasse The notion of !ocat of,

,s complicated by the 'act that the student's procedures have a hierarchical control structure That s. t'e

AIR a

18

procedure has goals, which call subgoals, which call sub-subgoals and so on. There may even be

"ec,.rs~on a goal calling itself. Consequently, at the time of an impasse, there may be a whole stack of

goas Pen:crg However, it is the lowest goal, the one that is a subgoal of all the others, that is suffering

from the impasse 4 This has implications for where new subprocedures will be attached, given the

"nypotess that subprocedures are attached at the place in the goal structure where the impasse

.1 occurrec Roughly speaking, new subprocedures will tend to be attached low in the goal tree. This

o-ec c, c, s a 'ecessary implication of the hypothesis.

s a so a '.e orec.ction for the data available now. In order to predict the locations of subprocedure

a::ac-'e":s as "fer'ea 'rom r*e arithmetic bug data, RT1 had an ad hoc hypothesis, called the lowest-

a'e't -1,4 ces s ;a-_.-- "983a, It s;rroly s' o- aed *"a: n'ew s.,orocec,,es be anacnea as low as

:coss - e - --e ;oa - e,a,c-y .is y'ypothesis is no longer needed. The attachment points are predicted

',c- ar "eoer'ce":y mot~vated hypothesis, viz., that learning occurs at impasses.

6. Implications for remediation

C'e o, "e rost obvious facts about arithmetic is that remediation of bugs tends to work. Many

stuaents nave arthmetic bugs when tested in the early grades (e g., 49% in the third grade). The

prooortion decreases with grade level. The proportion of adults with bugs is much smaller. Apparently,

students' bugs are being remediated somewhere in the educational process. The question addressed in

this section is how this remediation takes place. Section 4.2 discussed how mal-rules are learned, and

section 5 discussed how regular rules are learned. This section speculates about how regular, correct

rules may be learned when they have to Compete with mal-rules that were learned earlier.

Suppose a student enters a remedial session with a stable bug. The stability of the bug indicates that

a real-rule was learned during some prior episodes of local problem solving. Those impasses no longer

occur because the mal-rule circumvents them. Consequently, the Student can work all the relevant

problems without reaching an impasse. As mentioned earlier, if there are no impasses, there is no

'iHore is an informal proof that only t lowest goal can be stuck Suppose that some goal other than the lOWest goal a stick.
This means at tre is some subgoal of it that s pending but not stuck. But of that lower goal a not stuck. te t can oontviue until
it succeeds or falls In wie case it would be removed from the stack of psing goals. So the only goals left in t stack when
interpretation is forced to stop are the stuck goal and all the goals that depend on it completion in order for thm to complet. ,o.
.me supergoals of the stuck goal. Im shon. it is always ft lowest goal on the stack that is the current locus of control when an
impasse occurs

19

learning. Yet, remediation works. How can the hypothesis be reconciled with the facts?

The simplest reconciliation is to assume that remediation occurs when the teacher stops the student

just as the student makes a wrong move in the problem solving process. For instance, the teacher may

-- be carefully watching the student do a borrow, and interrupts just as the student has placed a scratch

mark where no scratch mark should occur. Suppose further that the student interprets the teacher's

interruption in a similar fashion to an impasse. The student observes the subsequence of actions that the

teacher suggests, abstracts them, and plugs them into the existing procedure as a new subprocedure.

Treating interruptions in tutorial situations as impasses could extend the theory to cover remediation.

Such interruptions are rare events, which explains why stable bugs are often found. However, if we

postulate that Such remediation is effective when it does occur, and that tutorial efforts persist for years,

then the assumption also explains why stable bugs eventually disappear.

However, there is a small problem. Typically, the teacher's interruption occurs just after the first

incorrect action instead of before it. Yet, that action is the result of a mal-rule which is running in place Df

the impasse. We want the new subprocedure to be placed where the impasse used to occur, just as if

the instruction had been delivered then instead of now. This would cause the new subprocedure to be

attached correctly. However, the teacher's interruption is too late. The impasse-place has been passed.
.. In princ:ple, the student could be asked to reason backwards in order to locate the impasse-place.

However, a better remediation technique may be to have the student solve the same problem again (or a

very similar one) and interrupt just before the incorrect action. This interruption would at the impasse

place, or at least much closer. This is, of course, a testible suggestion concerning the effectiveness of

two remediation strategies.

There is a more significant problem with the kind of remediation proposed so far. Suppose the

interruption is completed, and the student has installed the new subprocedure at the impasse place.

There is already another subprocedure attached there, the mal-rule. It was generated in response to that

impasse. So both the rule (subprocedure) and mal-rule are attached at the same impasse place.

Subsequently, when the student comes to that place in solving a problem, how will the student know

whether to execute the rule or the mal-rule? Since both were constructed in order to handle the same

impasse, both will be applicable. All other things being equal, the student will pick the rule half the time

and the mal-rule the rest of the time. This predicts a new kind of instability, where buggy problem solving

-, alternates with correct problem Solving.
*'V

20

There is annecdotal evidence that this prediction might be close to the mark. The evidence concerns

the spontaneous reappearance of bugs after their supposed remediation. Teachers have noted that when

students with bugs are shown the correct procedure in a remedial session, they pick it up easily. They can

solve dozens of problems successfully in the session. Apparently, they have learned the correct

procedure. However, when tested again several weeks later, they are either back to using their old buggy

procedure, or they are alternating between their old buggy procedure and the correct procedure, It is

common to heard anecdotes about this phenomenon. Resnick and Omanson (1987) have carefully

documented several cases of such bug regression in a study designed to investigate new remediation

strategies. Bug regression occurred despite the fact that the remediation was particularly thorough.

Nonetheless, Resnick and Omanson report that 60% of the students reverted to using their buggy

procedures for answering written subtraction problems when tested about four weeks later.

Bug regression makes intuitive sense, given the cognitive process sketched above. Suppose the

student has enough context during the remediation session to differentiate the newly learned rule from

the mal-rule, which was learned some time ago. The similarity between the learning context and the

application context allows the student to reliably differentiate the correct rule from the older rule, and

thereby apply the new rule throughout the remediation session. However, at a later testing session, the

context during the session may not be similar enough to the remediation session that the student can

recall which rule is the one to use. This would cause the student to be uncertain which rule was correct;

they might alternate rules in order to maximize their test score. Another possibility is that the mal-rule

was learned during a testing session. The present context, another testing session, may be more similar

to the context in which the mal-rule was learned than the context in which the correct rule was learned.

This may cause the student use the mal-rule exclusively. Thus, depending on when the mal-rule was

learned, the students may either apply the buggy procedure exclusively, or they may alternate between

J'. the correct procedure and their buggy one. The predictions of impasse-driven learning are in accord with

'te phenomenon of bug regression.

7. General Discussion
Many cognitive theories of learning have hypothesized that learning was some kind of automatic

phenomenon. Mental activity leaves a trace that somehow makes it easier to perform that activity the

next time. Automatic learning has been the dominate paradigm for the last few decades of psychology, if

riot longer. Particular examples of tl.s kind of learning for skill acquisition are Anderson's (1983) ACT*

0
. .. .,.., ,, ,.,. - ,.. , , , , . -.

21

theory and Anzai and Simon's (1979) theory of learning by doing. These theories feature automatic
learning of new material (i.e., task-specific productions) by repeated usage of older material (i.e., weaker,

more general productions).

Automatic learning theories have begun to draw fire from computer scientists who have noted that the
lack of control over what is learned causes the system to acquire vast quantities of useless knowledge

(Minton, 1985). For instance, Roger Schank (1982) has rejected automatic learning as a totally

impossible way to acquire common sense knowledge about, e.g., how to dine in a restaurant. He points

out that most mundane thinking is so banal and disconnected that to remember it all would be pointless

and a poor model of our introspective experience of learning. To put it in a phrase, automatic learning

'p' would generate mental clutter.

Impasse-directed learning does not generate mental clutter. Learning only occurs when the current

knowledge base is insufficient. Moreover, it is not just any incompleteness that causes learning. The

incompleteness must be relevant enough to the person's affairs that it actually generates an impasse.

The person's problem solving must require a piece of knowledge that isn't there. Consequently,- one

learns only when there is a need to learn. Mental clutter is avoided, and only pertinent knowledge is

acquired.

7.1. Related models of skill acquisition

Impasse-directed learning is a species of failure-driven learning. Failure-driven learning is a common

theoretical idea in the learning literature. For instance, in Wexler and Culicover's (1980) theory of

language acquisition, whenever the learning model can't understand a sentence, it randomly deletes a

rule from its grammar, or it makes a change in an existing rule by randomly choosing 1rom a small class of

legal perturbations. Their theory is typical of a class of learning theories where negative reinforcement of

an internal kind causes a more-ar-less random change in the learner's knowledge. Impasse-driven
learning is more specific than these theories in that it postulates exactly what kinds of negative
reinforcement cause learning (i.e., impasses) and exactly what kinds of changes the learner makes to its

knowledge. The impasse-driven learning hypothesis is a new member of the class of failure-driven

learning theories.

The idea of impasse-driven learning is central to the SOAR architecture (Laird, Rosenbloom, & Newell,

* 1986). SOAR is a production system. When SOAR reaches an impasse, it does some problem solving at

22

the meta-level. As it returns from that problem solving, it automatically builds a new production rule whose

conditions are exactly the-conditions pertaining at the impasse and whose actions are the results of the

meta-level problem solving that was just completed. If ever those conditions occur again, the production

will fire, thus saving SOAR the effort of reaching an impasse and resolving it at the meta-level. SOAR's

authors call this kind of learning *chunking" and the productions built this way are called chunks.

Soar's authors claim that chunking is the only kind of learning that people do. However, this claimi is not

very restrictive, because the SOAR architecture allows arbitrary meta-level problem solving at impasses.

The chunking mechanism saves the results, but the programmer can generate those results any way she

wants by writing the appropriate problem solving into SOAR's meta-level. RT2 will be more specific than

that. The theory will describe in detail the meta-level problem solving qua learning that occurs at

impasses.

The impasse-driven learning hypothesis has appeared in the literature on formal theories of natural

language acquisition. Robert Berwick (1985) has developed a theory of how English syntax is learned.

His theory is strikingly similar to RT2, despite the fact that the two theories were developed-

independently. Berwick assumes that a person has a grammar and a parser. The grammar and parser

- . are analogous, respectively, to the procedure and interpreter postulated by RT2. As internal state,

Berwick's parser employs a stack and some other temporary structures. These have analogs in RT2 as
well. In Berwick's theory, the parser can get stuck because no grammar rules apply (the analog of

reaching an impasse in RT2). One of four actions is taken. All four actions modify only the parser's

internal state just like repairs would. Two of Berwick's four "repairs" have nearly exact analogs to the

repir fondin RT2. So the architecture postulated by Berwick for understanding English is nearly

isomorphic to the one we have arrived at for following procedures.

Berwick goes on to state his version of the impasse-driven learning hypothesis: grammar rules are

induced when the parser gets stuck. Which rules are induced depends on external information, namely, a

perceptually given understanding of the sentence. To put it intuitively, if the child can't understand a

sentence, she figures out what it meant from context, then invents a rule that would both get her parser

unstuck and be consistent with the sentence's meaning. This process is analogous to the one we

postulate, except that the typical learner may appeal to a blackboard, a Dienes Blocks algorithm (given an

implementation of Resnick and Omanson's suggestion) or some other source of information about the

skill, rather than inferring its meaning from context.

23

V,7.2. Summary

Impasse-driven learning has been put forward as a conjecture about how students learn procedural

skills. It employs the meta-level architecture proposed by Repair Theory. It postulates additional

processes that run at the meta-level. When an impasse occurs, the student can either repair or seek help;

both processes run at the meta-level and fix the problem of being at the impasse. When the impasse is

fixed, the student can choose either to abstract the actions taken to resolve it, or not. In general, inducing

a new subprocedure from the actions taken at the impasse will result in either a correct subprocedure, if

help was sought, or a buggy subprocedure, if repair was used.

Impasse-driven learning seems to make the right sort of predictions about bugs and their stability. It
predicts that bugs can migrate as well as be stable over long periods. It predicts that remediation of bugs

will appear effective at the end of the remediation session, but that bugs will tend to reappear over time.

* Impasse-driven learning also seems to correctly predict the shape of cognitive structures that are built

by learning. It predicts that new subprocedures will be attached as deeply apossible the goal-subgqal

hierarchy of the student's procedures.

Impasse-driven learning is a form of failure-driven learning. Failure-driven learning has traditionally

been advanced as more cognitively economical than automatic learning, its traditional opponent
-hypothesis, in that it predicts that new knowledge is acquired only when there is a need for that

knowledge. Automatic learning tends to generate mental clutter--cognitive structures of little or no

relevance to subsequent thinking.

Impasse-driven learning seems to have great potential generality. It has been investigated in a
powerful general learning system, SOAR (Laird, Rosenbloom, & Newell, 1986). It has been shown

capable of learning English grammar (Berwick, 1985). The future of this hypothesis seems quite bright

indeed.

.4,.
-. 4.

,!'g,4

oa

24

References

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard.

Anderson, J. R. (1985). Cognitive psychology and its implications. New York: Freedman.

Anderson, J. R., Farrell, R., & Saurers, R. (1984). Learning to program in LISP. Cognitive Science, 8,

87-129.

p , Anzai, Y. & Simon, H.A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.

Ashlock, R. B. (1976). Error Patterns in Computation. Columbus, OH: Bell and Howell.

Berwick, R. (1985). The Acquisition of Syntactic Knowledge. Cambridge, MA: MIT Press.

Brown, J. S., & Burton, R. B. (1978). Diagnostic models for procedural bugs in basic mathematical skills.

Cognitive Science, 2, 155-192.

Brown, J. S. & VanLehn, K. (1980). Repair Theory: A generative theory of bugs in procedural skills.

Cognitive Science, 4, 379-426.

Brownell, W. A. (1935). Psychological considerations in the learning and teaching of arithmetic. In

W. D. Reeve (Ed.), The Teaching of Arithmetic. New York, NY: Teachers College, Bureau of

Publications.

Brueckner, L. J. (1930). Diagnostic and remedial teaching in arithmetic. Philadelphia, PA: Winston.

Burton, R. B. (1982). Diagnosing bugs in a simple procedural skill. In D. H. Sleeman & J. S. Brown

(Eds.), Intelligent Tutoring Systems. New York: Academic. 157-183.

Buswell, G. T. (1926). Diagnostic studies in arithmetic. Chicago, IL: University of Chicago Press.

Cox, L. S. (1975). Diagnosing and remediating systematic errors in addition and subtraction

computation. The Arithmetic Teacher, 22,151-157.

Laird, J. E., Rosenbloom, P. S., and Newell, A. (1986). Chunking in Soar: The anatomy of a general

learning mechanism. Machine Learning, 1(1), 11-46.

Lankford, F. G. (1972). Some computational strategies of seventh grade pupils. Charlottesville, VA:

University of Virginia.

Minton, S. (1985). Selectively generalizing plans for problem-solving. In Proceedings of UCAI 85. Los

Altos, CA: IJCAI,

Newell, A. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1-15.

Resnick, L. (1982). Syntax and semantics in learning to subtract. In T. Carpeter, J. Moser & T. Romberg

(Ed.), A cognitive perspective. Hillsdale, NJ: Erlbaum.

.4

25

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.),

Advances in instructional psychology. Hillsdale, NJ: Erlbaum.

Roberts, G. H. (1968). The failure strategies of third grade arithmetic pupils. The Arithmetic Teacher, 15,

442-446.

Schank, R. (1982). Dynamic Memory: A Theory of Learning in Computers and People. Cambridge:

Cambridge University Press.

Shaw, D. J., Standiford, S. N., Klein, M. F. & Tatsuoka, K. K. (1982). Error analysis of fraction arithmetic--

selected case studies (Tech. Report 82-2-NIE). University of Illinois. Computer-based Education

Research Laboratory.

Siegler, R. S. & Shrager, J. (in press). Strategy choices in addition: How do children know what to do?

In C. Sophian (Ed.), Origins of Cognitive Skill..

Sleeman, D. H. (1984). Basic algebra revised: A study with 14-year olds. International Journal of

Man-Machine Studies,.

Sleeman, D. (1984b). An attempt to understand students' understanding of basic algebra. Cognitive

Science, 8, 387-412.

Smith, B.C. (1982). Reflection and semantics in a procedural language (Technical Report MIT-TR-272).

M.I.T. Laboratory for Computer Science.

Tatsuoka, K. K. & Baillie, R. (1982). Rule space, the product space of two score components in signed-

number subtraction: an approach to dealing with inconsistent use of erroneous rules (Tech. Report

82-3-ONR). University of Illinois, Computer-based Education Research Laboratory. Urbana, IL.

VanLehn, K. (1982). Bugs are not enough: Empirical studies of bugs, impasses and repairs in

procedural skills. The Journal of Mathematical Behavior, 3(2), 3-71.

VanLehn, K. (1983). Felicity conditions for human skill acquisition: Validating an Al-based theory (Tech.

Report CIS-21). Xerox Palo Alto Research Center.

VanLehn, K. (1983). Human skill acquisition: Theory, model and psychological validation. In

Proceedings of AAAI-83. Los Altos, CA: Morgan Kaufman,

VanLehn, K. (1983). Arithmetic procedures are induced from examples. In J. Hiebert (Ed.), Conceptual

and Procedural Knowledge: The Case of Mathematics. Hillsdale, NJ: Erlbaum.

VanLehn, K., Brown, J. S., & Greeno, J. G. (1984). Competitive argumentation in computational theories

of cognition. In W. Kinsch, J. Miller & P. Poison (Ed.), Methods and Tactics in Cognitive Science.

Hillsdale, NJ: Erlbaum.

26

Wexler, K. & Culicover. P. (1980). Fotrnal princiles of language acquisition. Cambridge, MA: MIT

Press.

a w

V a a 0-

a 0 ! 14
Ph on 6 1 b

0 ml0 - 6 0
aa A 0--I -

-o 0 - 0

0m a *@ Cbq .- U~ - ;
- . 0 as) 00 0 A.

. -0 A- £

C.-.- an P- ao 1w, *1 C~ b .O "o

4. -0 £b#S m1 00 30pb A. 10. to 6- 0A inU 001 q

* isp~ a in C v

10 Pd a 101 6

o 0~ IL Is I

00 44 030.0 0 a - ,-a 1. .3 000 Za
ra us z 0 A -k A . 1&Alb Ut

. . - fO.~~ 0 o- a

4D 2 w a 1. 0-Sb 6
OPI - 4 -- 0 W ~ a Fl 3L0Z * !

*--- ~ 01 V,-*W 00 h 0 a -- O

- -0 6a aS S6 *

ab0. us do, u go -63 Jo :AU1 - a'~ W*a' W* z a 66

c-rn& Vm Cc ao au. In e - @6

z . A 0 00 ~ *-

0 0
10, - P. A 0
ft file 0 a0 al0 a CS A 0

o 0 f4 0 *
5- . w - 9 0 go 6

3 O0A 0f 11. 1; a~ e4P .1
V ~ .3 was 0 a0a ;I

7 -6-9 Z~ As 0 31% ZV,
a so * 60 -.

40-664~~ ~~ oa 0: 0 3 vC U

=,A 4u a ; a 6 SO0

2o %60 so a k

0 6 0
0 A* '0 2 6-,.. o ' *a

0 - -, 66
t ** A. 0 a

0 0 6 c

100 A I P.1 fA6 P

C: V
.k Wi *O6F 4Plb

0 1 - S .5

IO ON

Uto a 0 5

- 88 80

0* 0 0.2
1 . - a - I V U* t@u

1pl 0 OC II C.le . I-IIII.II' 140 M

0 *k 6 AN 6

56 le z A 6= 0 c'8 6. .

149 02 .0 l .. o2

-5I a h1 • im: 0 I l I I ~ e~ ;:l • •0. hb 0 00. 0 -- U 0 .+

, I w - a 4 * o -a* 0 ON a' , • a, * I

bl~l , II~bCI : 0a a-- a a It

'i vi

_l a . t- . a 0 + - ft
0

f, - m a - ~ l r=t 1= • i h-I. l- v.I

400

On i

• S. .U

4 U 0: - .- 8
" Z ,• IL N -..

* , -0 0 u go -a : 0 0 K u a an

50 a I. a 0 in b

6 b. a a-- V0
I sO l os b 4 i *b 11 So a 1 i! -

A. a a i i a

a+ C- *S --III kI l I e OS~ Vil t-- Sil -t l t. C .

au:. - : b : I
* w b-

so -; ib " - :

o'.. w b0 0. Ohk , 0.' S E £ 0.1 S

V. ., W A u a.. co.". , . ..

Oa 1- 8 . 3 bb ;_. "

v O,

0.0

0 C.. ,&= , d•
S ... I.. 0.. ,,0 ..,!. C; .

5 0. - 5 I N S. 0 -,- I-

0 W 0 0. cmU x

W o 5A Is be "1 05

Ol -S5 l U- " -iC

'I l• k • I 0. P I -

..
....

-- -- --- --- --

-u0 42, SO
0 0 - tv0-

06 60
lo, Z-. 1E 0. 0- = ,0 t: .

0 00 ft .* 6ft 09 "L C.

u-a~ - c s

0.00 . 0 -f 9 05 - - 6 S0601 0
0 .

U0 -u -0 - a b . 0*'!: Ii ,- "C .P
o::A'6*4 rn 40 *O IA; 4rC 00 0 40 :

-6 6 ZOO Co ~ . .0
0,60 500. on9--r-56 0 0

- 60.. -in3 a16 036 0 a-2 x 0~ 6 0

el di 0- a A6 0 * I - a~ .00 a
0l~d l.U'0 001 0Z 0 S 0114 1 Z:* Z.0Z....

c a0 ,- 03 tf oIaC

t 0 1 -, 30

a Ie -. -. : 1. A .
=C 6N 22 :06 C 0 0 2 '

0~I -0 vUf V00 0 1 0 iI 6 f

60 Jog .00 *4 -0-f a-- ;c~ I.--* 0 25

A top 62 4

SU S N - 0 0 U £ U Z1 20. o -0 £
680~l ft A. 00 ad0 A0 3 00

1 . 660 0 669,0 u4 99 4 0 11 £ .0 -65t

060 no 0 x 42w 0 .- .09 aw go. US -w 0
-- 6 a09 660 =06 %. -SCOIL8 -a:~aso 11,1 9 0@ v ftw M02 6 KIU

UU IOI -60-9L.00
.6 06 2~ 00 111 c el- 0 0 a - :6 : 0

A .01 9 .K 6 61- o is.00 2 6 086 --- 'a 0.. 0
* 6 W f ~ 0 6 6 0- A 0 a a a6 a- 60 6 0 0.0 u IS0

0-~~~~~~~ a-2 04 ft4 4 4 0 t60601 0 9 - 0 04

-0
*I0es 0 4

4b o A. It' 190 -

00 -

ft 0 6 0 22 ft 00 64 0

066 b 4 * 9 4Ot. e 09

363~ ~ 6~ INu .- sk VWsb 605 3 sgl -*Ot
:so! -W * 6J4* 60 0 -S ;;. alo O~66 6-9 6
66. AW6 000 0 06 0

ao-w 665 9 *S0-2'so 6 3 0. *

a 44: s m. a a. -W S l i A

a - 0 &a 0 0 1 0.7
6. m Uy v - -

0 0 -.0

46 6 4 45 0 -9 %oO 0 so
Sea £61 "0 6- 0 6 -

a a6 6 04 a* 63 6 0 t0 f.u 0 4 MU IL -

a.S alb- As a z- I-~6* -.

16 2 - 6
lb*0- ea

46e s--- aJ m -1..U -. --LU

@66 i-6- -. @ 6 6 -6 6 - 5CC . @

Urn-6~~l in2* 6~5 8 U

65. 3 1U0 4 6 6,: 0 * ;: 6 6 5 - L
- O b - -c~ - £6 5- - 4 £ ~ 4 3 ~5 6 -

4555 of,1
C, I66

d 6 4 6 0 6 5 ~N ~ 6 I

W 6

%. c 6t

-s W k Ll
6. r. A, !

6 z 0 0 D. - 4,6o:; = I.0I
oL0o * 40

Iv 0000P 0 6 - 6 b - 3 05

46 0 A -L o- U @ ., 6 0-- - - -

16 0 -S - b.ft 6 1
-b coa 4m a aa e O s-0. c ma

U0~~
C0

4 6 I . S r 6 e 4 -

60 .- a. 61 44 6 6a. - a -- - .- a. u-a r*~.~ez - 6 ~ o. O 6N r006 6 6 0

v1 -IL£6 £:..e ~ 16a .1a 2s
02 5-

*~ - 0I 0S.£ n A1

-066~~~~ ~ 6. 0 6 655 6 6 0

M~~~@£~ AA£ Z :~O I6 5 ~ IU

* on AL=-0

-6 o.6

urn~ ~~~ ar -

6 00 0 lab6 6 063 A

e -. .e- H is 1 z:6 5* a

_ 6! 0 0 a S 0 -5 l n3
040 - - as 0 6U 6 00

a .4 aZ a UN I- I 6~ 6 - 666 -

ell I' O--
* o-

so-S

a . IN av So * a3 6 a . a
40 Ow ft to 6 0 z O6 6I III

0.1 34.4 SO, 6 1 5. -- C E .i C 0 f 0

*~~~~6 S 9 . N e

-IL *e A 6w 5 f 66 * eW =6 -16 1.

-. I0S-K* I Ls-w aa I 0-d a- b0 I 0- .1 m a f 3

0 04' 0 4 S .U

*a 0
6 0 6

c a 0

o 0 -

%6 6 0 ~ wo

0.a S - a z 106 6 I E . 0 N. I L S a

ic w 0 00 -0 4 w 3D 0 ft 0

0 - -~ U 6 %0 ,a6 . -06 0 6

a 0 0 0 6 0 -60 * 0 . 6 OW 1 6 6
I- r r 1. -0 0.0 so 10 0. F, 06 .1 0- 6

* *664 61 66 U* - -v 6 -- 00 a~ C

65~~I .8 0 0V ~~ SNN -
-4 !,:006

ow "a *-0 LI
01 ~ 41 a b.

4 £6 lo-w0 .0 60- 0 0.

Lin *w 06 0 i4 F U f

S~~~v 64 0 a1 WI4 0Z WI 6~ v3e -~1. 6 0 0

0--a :tI -0!:: :

A -£- - 0 6 b. 6 - N6 6

Ubce-sit ..b 0 6 0 6 -

X me f 80 .0

I~~~~s 4.: -4fla61
-w lb-m Ion 946 6 - -.

'IV - 61 A- 3w3010

SOI WOa * a- 6iC 61- U - a

0 0 . 0U

st .0 . At 0 06b

0 a0 .1 M

W-6 -, 1-. I

wm : 0 eho . 0 tv 3

6s 01 u 0 6

I -a -- " 0 .

v, 655 SaM ba agg I-n -

J~ Z Oni. AL aw
60050 b. 6 9b5 a56 0 Q1. 20

a5 m

*~~ a C 4s
oft 6 - 60 C

*.~ IL :, 01 0 S ~ I
a- v '1 -O 00 - A.- S 0 0 - 6

sk - 6j U- 5 1 -- 0u Ij A @ 2 N £ &
40~ - 60'* a a- a 0i a 4 . -.c

;:e'~~~~ a 0 0b 0 5 66 ~ .~
0 A6

ObIL ~ b 5 ~ o i a I -C6 0- 1- 0 0.

***1 S S 65 4 a a- 0 ~ u a-5 s

b6 0 0e

al
dh~~ 0 0n ~ ~ .I - 0 A0 ' ,. k44

a ft

U SiU U . S0
*~ 4L f. * 6

*1 wit 0.0 p1 :! don0 *

P . 0U.- 0 6. 0 CN U
6~~I ! :~;

5-O~ ~~~ .1 3 A A L"04

U 0 0 6- 6
*~~~~ 0 4

4, = 00 - 46 -

. w N

"3 4 5 6Jos N -y 4 a , r %I

v64 -W-.. 44. 1 a6 6 &-0

0664t P1 04l1 66- 6m 66- 0 6 0
36 - 5-5 3- - 3 6 6 3 0.a U ~ 6is

p...

i ! - 'A3 c o. 6 .- 6 0 "1 -
aI 20 w c 0* c *6 s 400 , 0§1

6 A 6. A ~ a a0 0w #A 0 U .
6 6 ~ 6. 111 -. 0 0U 0 3P 6 1 4o

09 0 a.4 3O -O 064 0 ' 4
0 s 0 6. -o A -3 64 606 *4L - 0 01 0*aa ~. a a I . Z 1 6

U 6 A- 6 6 . 0' 6 0C 1
.ava6 a6. -OB 'a' I636 A66 £ 6 'a AD 0, a* A, 6 .4 s

I~~f 4 m m 6 - 6 6 6 ~ m 6. 6 a au a 6-V - r 6 86 6 66- U 6 V C0 0 46- 66 616 - 6
61i 106 so 01 6.- 6C6 . M 3. I. t .I -

£4 c 0-, frv 666 =0 .11 60 £ *6U
660- 6 666 Nm 6 6 - 6 . 6 6 6 - 6 6 6 1 6

0 r I - z. z ! 6

-- -. 600
a a a . -o

6 c z 60a s 6 a-- 3066

646 G. Is Ag 6 - 0

6- a s a 626W a V -a d g 6 6 0 16 s
3* .0 60 6 - O-a -d 6* in 1 2 -Cas6 P

4 P S 11. 0 v 6. Am - ~ 1 ~ 6 4 1 6

6. 66. 0 -.. 66. 6..1 6 006 a 6 0
a A - -06 A - 4 .1 t4 a- z rC

: 1 6 - 0 6 Z. m * 0 6 . 6 0.6 6 1 WE 61 6 f

66~~c t- 66 60 - 6

-- 0 0~ V. - 0 w -6 - z2 660 1 £60- W4CI

WO.. I I a1~ A~~. -2 @6 0 4a

-- z6 0 *£ 1 6 £ 4L6 - as I6-@

~&a Ccb zs~Z~ 0i) 3 &a~ 162 C6 0 I

o .,
la3.VI ti 0i e oli9 Vdc Agb. m 1paVlo i 0 4

-~~ ~a '0 40P a l6 6 6 6
- - 6 6 S65 - .3

6 6 6466 66 El 666 I 6 *P1 66 W 6
*~~~~~~ 6= 616 0 6 1 - a - f

!1 a;3 0-o4 9 i3 61: 6 , 4 1

.-- a:- 0. wB- 1 66.6 !1_:,:- !46~ 0 0 . a-0%

61 0; w: A A0- - a S4 a. . 2 66 :366

it be, low 3611- 6 oo a6 .

j ~ =we -' s63~-

_a 6PA6&,6m a ii

-'p.

i

'I'

a *
"i 0
b 0
* 6

60 I
S. g'-

iv
* -ft
U- *E,~
66
S. *.g

3 6
U -.

SE
* owes
* - -
~0- *
W~v 38

-0 -
-we-

b S
001.104

J~41E

f/LA? LI)

