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Abstract

From August 1985 through September 1986 NEDU conducted a three phase
evaluation of commercially available open circuit SCUBA regulators. Phase one

-consisted of unmanned testing of 51 SCUBA regulator,6odels or-systems
commercially available in the UnitedStates.N Breathing resis'tance, work of
breathing, and first stage performance was evaluated. PhasetAwo consisted of
unmanned tests of selected open circuit SCUBA regulators, equipped with low
temperature conversion kits. Breathing resistance, work of breathing, first
stage performance and performance in cold water was evaluated. Phase-three.
consisted-of an open water human factoras evaluation of the regulators tested
in phasetwo. As a result of phase,6n-e'testing a new NEDU open circuit SCUBA
regulator performance criterion was developed to superpede the 1981 NEDU
performance standard for 132 FSW. The new standard is work of breathing not

S to exceed .14 kgm/2. (1.4 J/i)>at all depths and RN' up to 62.5 RKV at 198
FSW. From the field of 51 regulator models and systemttested, 8 met or
exceeded the upgraded performance standard at 198 FSW, 17 met or exceeded the
1981 NEDU standard at 132 FSW, 43 met or exceeded the military standard of
respiratory pressures (Mil-R-24169B)'6' failed, to meet the military standard...
Additionally, two regulators were unable to undergo objective analysis of
breathing resistance and work due toesecond-stage inhalation pressure
incompatibility with the test analysiS, systems. Results of phase two testing,

,indicated that low temperature conversion modifications frequently increased
the work of breathing. .In cold water'five regulators were considered to have
superior performance,Adife considered moderate, andfour unacceptable., Phase
three testing rated regulators from adequate to good, with the exception of
one regulator that was rated unsafe.

KEY WORDS:

Commercially Available
Open Circuit Demand
SCUBA Regulators
Breathing Resistance
Breathing Work
First Stage Pressure Drop
Cold Water Function
Human Factors
Unmanned Testing
Manned Testing
Open Water Evaluation
NEDU Test Plan 85-21
N1EDU TeSt Plan 86-13
NEDU Test Plan 86-18
1LEVSE Task 85-08
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General Introduction

In June 1985 the U.S. Navy Diving Manual, Volume I was revised to permit
no-decompression open circuit SCUBA diving with air to a maximum depth of
190 FSW. U.S. Navy uses commercially available SCUBA regulators, as
authorized and appearing on the Authorized for Navy Use Listing, reference (a)
(ANNEX A).

Of those regulators originally listed for use to 130 FSW, and tested in
1979, only a limited number were identified as being suitable to 190 FSW.
Many of those original regulators are now out-of-production and an updated ANU
list of commercially available SCUBA regulators was necessary.

In June 1985, NAVSEA Task 85-08, reference (b), directed the Navy
Experimental Diving Unit (NEDU) to conduct a survey of commercially available
open circuit SCUBA regulators, then perform unmanned testing to determine
those regulators whose performance would remain satisfactory to a depth of
190 FSW. The tasking included the test and evaluation of low temperature
conversion kits.

Q •In August 1985, NEDU commenced an initial two phase evaluation of
breathing resistance, work of breathing and cold water studies of certain
selected regulators. Later the evaluation was modified to include a third
phase "human factors open water study" to complement the first two phases.
The complete evaluation concluded in September 1986.

This report summarizes the test results of all phases of the evaluation
and provides full technical information requested by reference (b).

xii
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PART I - UNMANNED TESTING: BREATHING RESISTACI, WORK OF BREATHING
AND FIRST STAGE INTERMEDIATE PRESSURE DROP

I. INTRODUCTION

NEDU initially conducted a survey of commeraially available open circuit
SCUBA regulators manufactured or distributed in the United States. Specific
models, representing a broad spectrum of different functional design, were
selected for evaluation.

From August through October 1985 NEDU's Experimental Diving Facility
conducted unmanned breathing resistance and work of breathing studies on 51
SCUBA regulator models and systems produced by 19 manufacturers. (NOTE: The
term syste describes a combination of first and second stage regulators
produced by different manufacturers.) Evaluated regulator models and systems
are listed in Table 1. A list of manufacturers is contained in ANNEX B.

Regulators were purchased from various commercial distributors (SCUBA
shops, diving warehouses). Only one complete regulator of each model was
purchased.

NOTE: The AGA DIVATOR MK II full Zace mask, presently utilized by the
U.S. Navy when through water communications are required, was evaluated

Jb: combined with another manufacturer's first stage regulators as a ystem.
Additionally, the MK II breathing valve (positive pressure) with AGA
mouthpiece was .v.wluated. AGA does manufacture a non-positive pressure
breathing valv fo. use with the mouthpiece. The non-positive pressure unit
was evaluated by NEDU, however specific results are not included in this
report.

Each regulator was calibrated to manufacturers' specifications for first
stage static intermediate and second stage cracking pressures. The
calibration of each unit followed the standard practices utilized in SCUBA
regulator planned maintenance routines conducted by all USN diving
activities. Manufacturer's technical representatives, having been invited to
obsorve the unmanned breathing resistance testing of their respective
regulators monitored and assisted in calibrations held imediately prior to
testing.

The last major evaluation of commercial SCUBA regulators was conducted in
June 1979. The result of that evaluation, NEDU Report 2-80 [reference (c)]
was the basis for the establishment of performance standards of open circuit
demand SCUBA regulatot set forth in Standardized NEDU Unmanned UBA Test
Procedure, NEDU Report 3-81 [reference (d)]. This standard being, moximum
respiratory work level is not to exceed 0.14 kg.m/t or 1.4 j/1 at all depths
and RMV up to and including 132 FSW and 62.5 RZV with 1000 psig supply
pressure to the regulator first stage. This standard coincided with the
superior performance regulator group that were later Authorized for Navy Use

A to a maximum depth of 1O0 FSW.

- - - -



TABLE 1

REGULATOR MODELS AND SYSTEMS EVALUATED FOR
BREATHING RESISTANCE/WORK OF BREATHING

1. AGA DIVATOR MK II (full face mask) complete first and second stage with
AGA cylinder.

2. AGA DIVATOR MK II (full face mask) used with U.S. DIVERS CONSHELF XIV
first stage (system).

3. AGA DIVATOR MK II (full face mask) used with U.S. DIVERS ROYAL SL first
stage (system).

4. AGA DIVATOR MK II breathing valve equipped with AGA mouthpiece used with
U.S. DIVERS ROYAL SL first stage (system).

5. CRESSI SUB GALAXIE 105

6. CRESSI SUB POLARIS IV

7. DACOR PACER AERO 950A

8. DACOR PACER XL 950

9. DACOR PACER XLE 360

10. INTERNATIONAL DIVERS INC. STAR !I

11. INTERNATIONAL DIVERS INC. SUPER STAR II

A 12. NEMEROD SATURN 300

13. NEMROD SATURN 300 PRO

14. OCEAN DYNAMICS RB-3000

15. OCEANIC OMEGA 1I

S16. OCEANIC OMEGA II MAX FLOW

17. PARKWAYS ATLAS

18. CYKLOI 300 distributed by PARKWAYS - POSEIDON Systems Pre 1986 model

19. CYKLON MAX II distributed by PARKWAYS - POSEIDON Syste-m Pre 1986 model

20. POSEIDON CYKLON 300 distributed by POS DIVE - POSEIDON Systems 1986 model

21. POSEIDON CYKLON 5000 distributed by POS DIVE - POSEIDON Systems 1986 model

1-2



22. POSEIDON ODIN distributed by POS DIVE - POSEIDON Systems 1986 model

23. POSEIDON THOR distributed by POS DIVE - POSEIDON Systems 1986 model

24. PRO SUB MAXAIR I

25. PRO SUB PROAIR I

26 SCIUBAPRO MK III/High Performance

27. SCUBAPRO MK IX/Air I

28. SCUBAPRO MK IX/Balanced Adjustable

29. SCUBAPRO MK IX/High Performance

30. SCUBAPRO MK X/D 300

31. SCUBAPRO MK X/G-250

32. SCUBAPRO MK X/Adjustable

33. SCUBAPRO MK X/Air I

34. SCUBAPRO <( X/Air II

35. SCUBAPRO MK X/Balan e Adjustable

36. SCUBAiLAO MK X/HRgh Perfo:-amce

37. SEA PRO FSD4-I0

38. SEA PRO FSDS-50

39. SEA QUEST AMF MARES MR 12 - III

40. SEA SPORT ZEPHER ZR-01

41. SHERWOOD BRUT SRB 2100

42. SHERWOOD MAGNUM M.1Z1ZARD SRB-3200

43. SHERWOOD MAGNUM II SRB-3300

44. SPORTSWAYS X-2

45. SPORTSWAYS X-3

S46. TABATA TR-100

1-3



47. TEKNA 2100 BX

48. U.S. DIVERS CONSHELF XIV

49. U.S. DIVERS CONSHELF 21

50. U.S. DIVERS CONSHELF SE2

51. U.S. DIVERS PRO DIVER

1.JR
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In view of the excellent historical record of the operational performance
of the 1979 superior group regulators, the new Navy requirement of diving
no-decompression SCUBA to 190 FSW and dramatic improvements in regulator
performance since 1979, it was logical to project the established performance
standard to 198 FSW vice 132 FSW as an attainable criteria.

Evaluation data analyzed clearly indicated the existence of a group of
regulators that meet the evaluation criteria for work of breathing not to
exceed 0.14 Kg.m/9, (1.4 J/1) at all depths and RMV up to and including 198 FSW
and 62.5 RMV with 1000 psig supply pressure to the first stage regulator.

Other standards of performance, NEDU Report 3-81, reference (c), standard
at 132 FSW and the USN Military Specification revised, reference (e), (see
Figure 1) were additionally applied to further select the best performing
regulators in this significantly large test field.

II. FUNCTIONAL DESCRIPTION OF SCUBA REGULATOR MODELS/SYSTEMS

Basic functional descriptions of SCUBA regulator models and systems,
consist of a picture and short narrative description (Figures 2 through 52);
input was provided by the manufacture and his on-site representative.
Descriptions are provided in Alpha numerical sequence.

a=TE: By circumstance POSEIDON regulators pre 1986 models and 1986 models
were provided by two separate distributors. Identifying nomenclature on graph
and narratives have been purposely modified to avoid confusion between model
years and regulator performance.

III. TEST PROCEDURES

A. 9snAt. Regulators were scheduled for testing based on the receipt
of units and the availability of manufacturers representatives. A reasonable
attempt was made to allow a manufacturers representative to be on site to
observe the test set up, regulator calibration and subsequent evaluation of
respective models.

All test regulators were calibrated to manufacturers specification,
obtained from the manufacturers in advance of testing. Unmanned test
equipment systems were set and evaluation conducted in accordance with the
KEDU test plan, reference (f). Prior to each days testing and between each
individual evaluation of a regulator model the breathing machine and test
analysis system underwent calibration check.

Upon completion of testing of all models, six regulators from the group
were selected at random for separate evaluations to confirm repeatability of
data. These regulators were bench tested and recalibrated as necessary to
identical specifications of the original evaluation. From these six
regulators, 10 separate and complete breathing resistance evaluations were
conducted.
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Figure 2. AGA DIVATOR MK II (FULL FACE MASK) COMPLETE WITH! AGA CYh.11414;RS

The AGA DIVATOR It first stage, constructed of chrome plnted k...•,l.
balaticd piston regulat~or t.hat provides three low preasure porta• an~d one hig~h
pressure port.

The second stAge (breathing• valve), balanced pilot tyli., 1:• ma.dv of
ve.•tamid and mates to a rubber full face mask. The second atige 1ýtz ý%'•ienignl
to maintain a slight positive pressure (Q cm of water column). The• ponitive
pressure is automatically actioned when the individual inhales And ma•y tit
switched off, when not in use, via a lever located on the second stage.

m1.
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Figure 3. AGA DIVATOR HK II (FULL FACE HASK)/USD CONSIILF XIV FIRST STAGE

The AGA DIVATOR II full face mask with A•A intermediate pressure hose
(mates with North American standard thread first stage fittings). The
U.S. Divers Conshelf XIV first stage, constructed of chrome plated bras., is a
balanced piston regulator that provides three lov pressure ports and one high
pressure port.

S1I-S



Figure 4. AGA DIVATOR MK II (FULL FACE MASK)/USD ROYAL SL FIRST STAGE

The AGA DIVATOR MIX II FFIN vith AGA intermediate pressure hose for mating
vith standard thread first stage fittings. The U.S. Divers Royal SL first

stage, constructed of chrome plated brass, is a balanced piston regulator that
provides four loy pressure ports and one high pressure port.

4
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Figure 5. AGA DIVATOR 1WC II BREATHING VALVE WITH

AGA NOUTHPIECE/USD ROYAL SL FIRST STAGE

The AGA DIVATOR MK II breathing valve adapted vith AGA mouthpiece vice
full face mask utilizes the AGA intermediate pressure hose for mating to
standard thread first stage fittings, combined vith the U.S. Divers Royal SL
first stage. The tlK 1I breathing valve utilized vas the same as that tested
vith the full faco mask providing positive pressure on inhalation. AGA
additionally manufactures a non-positive pressure breathing valve.

1-10
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Figure 6. CR.SSI-SUB CALAXIS 105

The CiMSSI-SUB GALAXIR 105 first stagle, constructed of chrome plattd
S~ brass, is a balanced piston regulator that features three lov pressure ports

S~and one high pressure port.

The second sagme, constructed of chrome plated brass and Ah•S plastic$
utilizes a Venturi assist.

1-11
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Figure 7. CRESSI-SUB POLRIS IV
SThe CR£SI-SUB POLARIS IV first staIe, constructed of chrome plated brass,

•• is a unbalanced piston regulator that provides threefoy pressure ports and
,• one high pressure port.
SThe second stage, constructed of chrome plated brass, utilizes a Vortex
0• assist,
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Figure 9. DACOR kACER XL950

The DACOR PACER XL950 first stage, constructed of chrome plated brass, is
a balanced diaphragm regulator that provides four low pressure on the swivel
and two high pressure ports located on the main body. Regulator can be
adapted to DIN regulator/tank valve connection.

The second stage, constructed of chrome plated brass, utilizes a Venturi
assist and Uouble exhaust valves. The unit is also provided with an external
fine adjustment.

S1-14
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I.NIT P:ATIGINAl. DIVERS, INC. (11)1) STAR 11

A~;i I v :;t enn. -- rutctd of chromei plaite~d bran';. Is a
A: ~ p1 n ref-u ~t or tha~t providen~ four low presaure ports;

ltrtvr (w ut III ized in th is corif i gtrAt ion ) and tvo

'-:L'~t~ vt ~ A-H i t. A l onal ly, the iexha'unt V-~14 ve (lWritt wit ti
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,Figure 12. INTERNATIONAL DIVERS, INC. (IDI) SUPER STAR II

Ti 1ilb S114.,','iTR i1 first stage is the same as that used by the l1)I
STAR II with the excepLion that the one large bore low pressure port is
utilized along with a larger bore intermediate pressure hose.

The serond stage, is slightly modified from the STAR II. It. contains an

internal aspirator tube for smooth air injection and silicone rubber parts.

4*
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Figure 13. NEMROD SATURN 300

The NEMROD SATURN 300 first stage, constructed of chrome plated brass, is
a balanced flow through piston regulator that is teflon coated for cold water
environmental protection. It provides five low pressure ports and one high
pressure port.

The second stage, constructed of chrome plated brass, utilizes a
conventional downstream demand valve with Venturi assist. Rubber components
are made of ozone and ultraviolet resistance rubber. Silicone rubber is used
for •he mouthpiece and exhaust valve.

1-18
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Figure 15. OCEAN DYNAMICS RB-3000

The OCEAN DYNAMICS RB-3000 first stege, constructed of chrome plated
brass, is a balanced piston regulator that provides four lov pressure ports
and two high pressure ports. The yoke assembly is rated at 4,000 psi.

The second stage, constructed of chrome plated brass and ABS plastic,
utilizes a Ventuti assist.

1-20
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Figure 16. OCEANIC OMEGA II

The OCEANIC OMEGA II first stage, constructed of triple chrome plated
brass, is a balanced piston regulator that provides five low pressure ports
and two high pressure ports.

The second stage, constructed of noryl plastic utilizes a pilot
(servo-controlled valve) assist.

4
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Figure 17. OCEANIC OMEGA II KAXFLO

The OCEANIC OMEGA II MAXFLO first stage is the same as that of the
OMEGA Il, except that the fifth low pressure port (large bore) and a large
bore intermediate pressure hose are utilized.

The second stage remains the same as the OMEGA II.

04 1-22
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Figure 18. PARKWAYS ATLAS

The PARKWAYS ATLAS first stage, constructed of chrome plated brass, is a
balanced flow through piston regulator that provides four low pressure ports
and two high pressure ports.

The second stage, constructed of cycolac, utilizes a downstream piston and
Vortex assist.

1-23
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Figure 19. CYKLON 300

(DISTRIBUTED BY PARKWAYS AND MANUFACTURED BY POSEIDON)

The CYKLON 300 first stage, constructed of chrome plated brass, is a
unbalaniced diaphragm regulator that provides three low pressure ports and one
high pressure port. The first stage rated to 4,267 psi is adaptable to
U.S./European tanks.

The second stage, constructed of chrome brass utilizes an ejector (for air
flow direction) assist

1-24
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Figure 20. CYK'LON MAXIKMUM 11
(DISTRIBUJTE-D BY PARKWAYS AND MA117FACTURED BY POSEIDON)

The CYKLON MAXtIMUMH 11 first stace, constructed of c•,-ome plated bra.-tn, is
a halanced diaphragmn regu•lator that provides four low pressure portat an~d one
high prenaure port. The first stage rated to 4,300 psi is adaptable to

The -.evon~d ,;tage, rovo• truz-ted from cyrolac, utilizefs a pilot a.q,•st. It
ktliiO fe-titure, it +. -oaitrh for diver control over the second stage diaphragm
(diving./non dlivirg position).

a-
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Figure 21. POSEIDON CYKLON 300
* (DISTRIBUTED BY POSDIVE)

The POS"IDON CYKLION 300 first stage, constructed of chrome plated brass,
is an unbalanced diaphragm regulator that provides three pressure ports and
one high pressure port. The First stage, equipped with a newly designed first
stage teflon valve seat is rated at 4,400 psi and is adaptable to
U.S./European tanks.

The second stage, constructed of chrome plated brass, utilizes a ejector
assist, and is equipped with new silicone Inhalation and exhalation diaphragms.

1-26
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Figure 22, POSEIDON CYKLO, 5000

(DISTRIBUTED BY PO$DIVE)

The POSEIDON CYKt.OH 000 first 2 tage, constructed ofI chrome pa00d bran,

is a balanced diaphragm regulator that provides four lov presure ports and
one high presszure port. The first stage equipped with newly designed first
stage teflon valve seat and heavier duty diaphragm spring is rated to 4,400
psi and is adaptable to U.S./European tanks.

The second stage is the same ag the Poseidon CYKLOH# 300.

1-27
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Figure 23. POSEIDON ODIN
*• (DISTRIBUTED BY POSDIVE)

The POSEIDON ODIN first stage is the same as the POSEIDON CYKLON 5000.

The second stage, constructed of cyclolac, "itilizes a balanced
(upstream/downstream) servo assist and is equipped with a new combined silicon
inhalation-exhalation diaphragm, new silicon mouthpiece and stainless steel
retainer clamp. The second stage also incorporates a "deaensitizing" switch
employed for "safety second" aiid buddy breathing.

: -28
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I,'r•';Figure 24. POSEIDON THlOR

(D)ISTRIBUgTE'D BY POSDIWE)

I• ~The 110OF.ID~t; THIOR first ut~age is the same as the CYU.ON 300.

o, •
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o ifirs 5 PRO osu MA o

.1b~anc,.,d piston resulauor thait provides four low pesrpottwo high

prsurtc ports (7116" thrt'ad), a 3600 swivel yoke and 360' swivel low pressure

1-30

4 maifl I a12

.,@• The P'eROt SI AANIfrtstage,, contstrutctedofcrm plated brassatdernpasc , is a

b'fl..mved tiittem that utilizes a Venturt assist. The inlet hose swivel can
S i •10.m be rctattrd awa•y from the divitng position to a safety restricted position

w.bicht elimtnatei free flow during water enttry or other unattended occasions.

!• 1-30
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kFigure 26. PRO SUB PROAIR I

* The PRO SUB PROAIR I first stage, is the same as that used on the PRO SUB

- MKXAWIR I.

The second stage, constructed of chrome plated brass and plastic, utilizes
a standard down stream valve with Venturi assist.

4
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Figure 28. SCUBAPRO MK IX/AIR I

The SCUBAPRO MX IX first stage, constructed of chrome plated brass, is a
balanced piston regulator that provides five low pressure ports (in stationary
head), two high pressure ports and standard silicon protection environmental
"cap.

The second stage (SCUBAPRO's AIR 1), constructed of fiberglass filled
polyester, utilizes a balanced coaxial flow demand valve with Venturi assist.
Additionally it provides a dive predive switch.

4 1-33
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.• ~Figure 29. SCUBAPRO N. X/tranCED AD)JUSTAdBLI

SThe SCUBAPRO HK IX/Balancrd Adjnlstable ;ntilime the HK IX first stage.
The second stage "balanced adjusta~le". constructed of chrome plated brass is

a balanced downstream poppet valve sy.st• U~h~ch operates vith moderate Venturi
assist. Additionally, a diver's .,djust for inhalation resistance to provided.

"¶1-34
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~ Figure 30. SCUB APRO HK W~HI Gl H PE RZFO RMA•NCE

,•; The SCUBAPRO MK( IX/Htgh Perfor mance utilizes SCU BAPRO's MK IX firs t st aize

:.and high performance second stage.
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The. Figure 31. SCUBPRO IK X/D300

41-3

*) The SCUBAPRO lUC X -first stage, constructed of chrome plated brass, is a

,•:v'' blanced piston regulator that provides five low pressure ports on a 360'

•.,-. .•lveltng manifold head, tvo high pressure ports and standard silicon

•e, lprotection environmental cap.

•,• The second stage (SCIJ;iAPR'O's D300) is a newly design version of the AIR I,

•O.• having the same functional mechanisms as the AIR I but is lighter and has
[•-•.•, high~er fio• capacity.
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Figure 32. SCUBAPRO MK X/G250

The SCUBAPRO MK X/G250 utilizes the MK X first stage. The second stage
(SCUBAPRO's G250), constructed of graphite reinforced nylon, is a
pneumatically balanced poppet valve system that utilizes Venturi assist and
flow vain, Additionally, a diver's adjust for inhalation resistance is
provided.

• 1-37



f " ' . ":

Figure 33. SCUBAPRO MK X/ADJUSTABLE

The SCUBAPRO MKC X/Adjustable utilizes the MKC X first stage.

The second stage (SCUBAPRO's Adjustable), constructed of chrome plated
brass, is a unbalanced downstream poppet valve system which operates with
moderate Venturi assist. Additionally, a divers adjust for inhalation
resistance is provided.
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S~Figure 34. SCUBAPRO MK X/AIR I

The SCUBAPRO Ilk X/AIR I utilizes the lOC X first stage and AIR I second

......... ~~ .. ...

I r A1-39
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Figure 35. SCUBAPRO NK X/AIR 11

..T.The SCUBAPRO KK X/AIR II utilizes the 14K X first stage.

h5 The second stage (SCUBAPRO's AIR II) is a combination backup of
regulator/power Inflator. It 12 Unf a primary diver life support regulator
system. The AIR 110 constructed of fiberglass reinforced polyester, utilizes
an unbalanced downstream poppet valv~e system autd moderate Venturi assist.

04 1-40
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Figure 37. SCUBAPRO MK X/?IGH PERFORMANCE

The SCUBAPRO MK X/hIgh Performance utilizes the MK X firat stage and high
performance seconad stage.

1 -4?
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Figure 38. SEA PRO FSDS-1O

The SNA PRO FSDS-iO first stiage, constructed of chrome plated brass, is a
toalanced piston regulator that prvides four low pressure ports on a swiveling
low pressure man.t'old head, two high pressure ports, the yoke is rated at
1000 psi.

Th'e second Ar,,v, oirructed of A1BS plastic atnd chrome plated brass,
utili•es a downstream poppet valve with Venturi assist.

* 1-43
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Figure 39. SEA PRO FSDS-50

The •FA PRO FVt)S50 first st+ige, constructed of chrome plated brass, is a
b~lanced piston retgulaitor with two complete piston assemblies, one large
(primacry) ani one small (setcondary). The secondary piston provides air flow
to "safe necotid" /opecial SEA PRO inflation system. The unit has four low
pressure ports and one high pressure port on a 3600 sIvel.

The secondl stage ia the slime ass that of the FDS-lO.

1-44



F'igure 40. SEA QUEST AMP' MARES MR 12 111

The SEA QUEST AMP' MARES MR-12 III first stage, constructed of chrome
plated brass, is a balanced diaphragm regulator that provides one primary,
three secondary low pressure ports and one high pressure port.

The second stage, con~structed of chrome plated brass and thermal plastic
-l resin, utilizes a downstream valve system with "AMF' Inc. patented vortex

assist,

'4.
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Figure 41. SEASPORT ZEPHER ZR-O1

The SEASPORT ZEPHER ZR-O1 first stage, constructed of chrome plated brass,
is a standard piston regulator with adjustable valve seat to alter
intermediate pressure setting. It provides four low pressure ports and two
high pressure ports. The unit is adaptable to U.S./European tanks.

The second stage, constructed of impact resistant plastic, utilizes a
Servo-controlled (pilot), pressure activated flow valve. Additionally, a
"lock-out" button is provided to present inadvertent air flow when the
regulator is not in use.

1
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.• ~Fig;ure 4Z, SHIERWOOD BRUT SRB 2100
$

The S1HRW0OOD BRIIT SRIB 2100 first stage, constructed of chrome plated
brass, ts a unbalsauced piston regulator that provides three low pressure

S~ports, one high pressure port, a 360" swivel yoke and is designed for service

I• pressure of" 3,500 psi. The high pressure port is orificed to provide

hosewhip. A dry air-bleed system is utilized, designed to keep the interior

•| of the first, stage, !ucludlng the~ maint spring chamber dry end free of
S~~~contaminationt, elimbitatlig the reqtuirewent to use silicon grease.

The second tstage, cow:attruacted o* lexan plastic utilizes a downstream valve

.• and Venturi assist.
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Figure 43. SHERWOOD MAGNUMI BLIZZARD SRB 3200

The SHERWOOD MAGNUM BLIZZARD SRB 3200 first stage, constructed of chrome
plated brass, is a balanced piston regulator with teflon coated components,
3600 swivel yoke, four low pressure ports, one high pressure port and is
designed for service pressure of 3,500 psi. The high pressure port is
orificed to prevent hose whip. A "dry air-bleed system" is utilized, designed
to keep the interior of the first stage, including the main spring chamber,
dry and free of contamination eliminating the use of silicon grease.

The second stage, constructed of lexan plastic, has teflon coated
components and a unique heat retention system directing heat from exhaled gas
to the downstream demand valve body. The unit operates with Venturi assist.

1-48
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Figure 45. SPORTSWAYS X-2

The SPORTSWAYS X-2 firat stage, constructed of chrome plated brass, is a
balaticed large bore piston regulator that provides five low pressure ports and

two high pressure ports.

The SWC',Wd stage, consotructed #f ABS plastic, utilizes a downstream poppet

valve with Ventur! assist.

1.-50
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Figure 46. SPORTSWAYS X-3

The SPORTSWAYS X-3 tir.a't stage, constructed of chrome plated brass, is a
balanced piston regulatur that provides four low pressure ports and one high
pressure port.

The second stage hit the same as that used on the X-2.
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Figure 47. TABATA TR-100

The TABATA TR-100 first stage, constructed of chrome plated brass, is a
- hbalanced piston rogulator that provides four low pressure ports on a swivel

manifold head and two high pressure ports and is designed for a maximum of
4,000 psi service supply.

The sevHond stage, constructed of derlin plastic and chrome plated brass,
utilizes a downstream poppet valve with Venturi assist.
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Figure 48. TEKNA T-2100BX

0 ~~The TUN~rA 'rrs staoýKez~ constructed of nickel plated brassa, is a
ha8alinctd l'in:taortl l~ that provides four low pressure ports anid two high

pre.±su:e potn

The~ .econtO :-nt co:ti sructed of thermo plastic , is a selftuig
corr~:V:~ rc:2 ~ l kii~' t11 1?s a pi lot demand system.
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~11~49. U.S. DIVERS CO?(SIELF XIV

The i•.ii, i t. t .qttg.a, constructed of chrome plated bransu, hr a
alhn'd d ,,;> ,', r tit provides three lov pressure ports and one

high preo,+-.,.ur, .,•t

The art~ z *- :.tt rutd, of' chrome~ p~mtd brans utII1'esý at
Adout v, quuast.
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""4kirc S-O U.S. DIVERS CONSIIELF 21

6 Th' W,• ........... tit 1;: the CONSIIELF XIV first stage.

1.4 f d % * ;trut-ed of norel plantic, functions via a
dntrad1y hWitwt,rv A r~ poppet valve vitti Venturi ausist. It features

n eov:y A-rrzr, jvrt fqiltIuttment of the afteland Artae.
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Figure 51. U.S. DIVERS CONSHELF SE2

The USD CONSHELF SE2 utilizes the CONSHELF XIV first stage.

The second stage, constructed of norel plastic, is equipped with large
bore intermediate pressure hose and fittings. It functions via a dynamically
balanced downstream poppet valve with Venturi assist. Additionally it
features an easy access port for adjustment of the second stage.
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Figure 52. U.S. DIVERS PRO DIVER

Thet USD PRO D•IVER 1irit 4tape utilizes the USD "ROYAl. S." first itage.
(-t •.tru•'ted of chrome plated brns,- it is a balanced diaplphragm regulator that
!;,ovids four low pressure ports aud onie high p.essure port.

S. _2,. '[The ,necond stag..(-, .upplied vin large bore intermodlit te :ires'-ure hose and
i: 1 , t L 11 te sa i t t' ; I I I at u' "d On the COtNSIELF SEZ

1.
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B. Parameters Controlled. The following parameters were controlled:

Simulated
1. Breathing Rate / Tidal Volume / RMV / Diver's Work Rate

a. 15 BPM 1.5 Liters 22.50 Light

b. 20 BPM 2.0 Liters 40.0 Moderate

c. 25 BPM 2.5 Liters 62.5 Moderately Heavy

d. 30 BPM 2.5 Liters 75.0 Heavy

e. 30 BPM 3.0 Liters 90.0 Extreme

2. Exhalation/inhalation time ratio: 1.00/1.00

3. Breathing wave form: sinusoid

* ,•4. Arc water temperature: ambient

5. Air supply pressure: 1000 psig at all depths except 0, 99 and
198 FSW where data was taken at 1000, 500, and 300 psig supply pressure.

6. Incremental descent stops: 0 to 198 FSW in 33 FSW increment and

300 FSW.

C. parameters Measurgd

1. Inhalation peak in cm H20

2. Exhalation peak in AP in cmH20

3. AP vs volume plots

4. Change in dynamic overbottom pressure at first stage outlets

D. Paramete .. Respiratory work from AP vs volume plots (Kg.m/%)

1. Inhalation and exhalation breathing resistance vs depth for each
1RMV in cm 1120 and KPa at 1000, 500 and 300 psig.

'019 2. Breathing work vs depth for each RMV at 1000 psig supply in
(Kg.m/l) and (j/1).

3. Change in dynamic overbottom pressure at the first stage for each
RMV at 1000 psig supply in psig and KPa.
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IV. TEST RESULTS

Detailed test results are shown in ANNEX C. Graphs are presented in alpha
numerical sequence based on manufacturers name and model number.

NOTE: POSEIDON systems pre 1986 models supplied by PARKWAY Distributorship
are listed as model no. distributed by Parkway; while POSEIDON systems 1986
model supplied by POS DIVE are listed as POSEIDON model number distributed by
POS DIVE.

Regulator performance was analyzed and data obtained at all supply
pressures, RMVs and depths up to the point at which breathing resistance
(inhalation/exhalation AP factor) became excessive, greater than 40 cm H2
(+ 40 cmH20 - 40 cmH2 0) of the calibrated range scale. Graphs which are not
fully complete indicate this occurrence.

Two regulator models, the SEA SPORT ZEPHER ZR-O1 and the TEKNA 2100BX
displayed specific inhalation characteristics that prohibit the objective
analysis and accurate data reduction of breathing pressure and work of
breathing. Therefore, rather than to publish suspect, inaccurate or faulty

* data, applicable graphs for these models will not be displayed. To maintain
an unbiased position th1ese regulators continued to be evaluated through phases

-!! two and three.

=- Analysis of the 10 random evaluation conducted to evaluate repeatability
of data was consistent with the mechanical repeatability of data established
in reference (d) of 10% stated value.

The tolerance of 1 l0% of the 1.4 Kgom/2 value was applied in finalization
of performance categories.

V. DISCUSSION

From the analysis of data and subsequent grouping of performance levels in
relation to established criteria, five performance/group levels were
identified.

G:o-u A. Regulators which met or exceeded the upgraded performance
requirement of .14 kg.m/2 (1.4 J/1) at all depths and RV up to and including

0 198 FSV and 62.5 RMV with 1000 puig supply pressure to the regulator first
stage (* 10% tolerance/mechanical repeatability).

Gro. B. Regulators which met or exceeded the 1981 performance

requirement of .14 kg.m/2 (1.4 J/f) at all depths and RM up to and including
132 FSW and 62.5 RMV with 1000 psig supply pressure to the regulator first
stage (* 10 tolerance/mechanical repeatability).

Grop . Regulators which met or exceeded Nil Spec MIL-R-24169-B (SH)
dated 22 Feb 1982 based on established breathing resistance
inhalation/exhalation maximum values at 40 RMV, 1000 psig and stated depths.
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Group D. Regulators which did not meet Mil Spec MIL-R-24169-B (SH) dated
22 Feb 1982 based on established breathing resistance inhalation/exhalation
maximum values at 40 RMV, 1000 psig and stated depths.

Group E. Regulators that could not be objectively evaluated by breathing
resistance vs depth and work of breathing vs depth due to second stage
inhalation pressure patterns incompatible with data analysis systems.

The 51 regulator models and systems are subsequently placed by group
performance levels and presented in Alpha Numerical Sequence within those
performance levels.

Group A

1. AGA DIVATOR MK II FFM with U.S. DIVERS ROYAL SL first stage
regulator

2. AGA DIVATOR MK II breathing valve with AGA mouthpiece and U.S.
DIVERS ROYAL SL first stage

3. POSEIDON CYKLON 5000 (distributed by P0S DIVE, POSEIDON 1986 model)

4. POSEIDON ODIN (distributed by POS DIVE, POSEIDON 1986 model)

5. POSEIDON THOR (distributed by POS DIVE, POSEIDON 1986 model)

6. SCUBAPRO MK X/G-250

7. U.S. DIVERS CONSHELF SE-2

8. U.S. DIVERS PRO DIVER

* 1, AGA DIVATOR MK II (FFM) complete first and second stages with AGA

cylinders

2. AGA DIVATOR tHK II (FFM) used with U.S. DIVERS CONSUELF XIV first
stage

3. AGA DIVATOR MK II (FFM) used with U.S. DIVERS ROYAL SL first stage

4. AGA DIVATOR HK II breathing valve equipped with AGA mouthpiece
used with U.S. DIVERS ROYAL SL first stage

5. DACOR PACER XL 950

6. DACOR PACER XLE 360

7. OCEANIC OMEGA II Max Flow
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8. POSEIDON CYKLON 300 (distributed by POS DIVE, POSEIDON 1986 model)

9. POSEIDON CYKLON 5000 (distributed by POS DIVE, POSEIDON 1986 model)

10. POSEIDON ODIN (distributed by POS DIVE, POSEIDON 1986 model)

11. POSEIDON THOR (distributed by POS DIVE, POSEIDON 1986 model)

12. SCUBAPRO MK X/D-300

13. SCUBAPRO MK X/G-250

14. SHERWOOD MAGNUM II SRB-3300

15. U.S. DIVERS CONSHELF 21

16. U.S. DIVERS CONSHELF SE-2

17. U.S. DIVERS PRO DIVER

S• Group C
.1

1. AGA DIVATOR MK II (FFM) complete first and second stages with AGA
cylinders

2. AGA DIVATOR MK II (FF1) used with U.S. DIVERS CONSHELF XIV first
stage

3. AGA DIVATOR H1K II (FF1) used with U.S. DIVERS ROYAL SL first stage

4. AGA DIVATOR MK II breathing valve equipped with AGA mouthpiece
used with U.S. DIVERS ROYAL SL first stage

5. DACOR PACER AERO 950 A

6. DACOR PACER XL 950

7. DACOR PACER XLE 360

8. INTERNATIONAL DIVERS INC SUPER STAR II

"9. NEMROD SATURN 300 PRO

10. OCEAN DYNAMICS RB-3000

11. OCEANIC OMEGA II

12. OCEANIC OMEGA II Max Flow

13. PARKWAYS ATLAS

14. CYKLON 300 (distributed by PARMWAYS, POSEIDON pro 1986 model)
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15. CYKLON MAXIMUM II (distributed by PARKWAYS, POSEIDON pre 1986

model)

16. POSEIDON CYKLON 300 (distributed by POS DIVE, POSEIDON 1986 model)

17. POSEIDON CYKLON 5000 (distributed by P0S DIVE, POSEIDON 1986 model)

18. POSEIDON ODIN (distributed by POS DIVE, POSEIDON 1986 model)

19. POSEIDON THOR (distributed by POS DIVE, POSEIDON 1986 model)

20. PRO SUB MAX AIR I

21. PRO SUB PRO AIR I

22. SCUBAPRO MK III/High Performance

23. SCUBAPRO MK IX/Air I

24. SCUBAPRO kK IX/Balanced Adjustable

25. SCUBAPRO MK IX/High Performance

26. SCUBAPRO MK X/D 300

27. SCUBAPRO HK X/G-250

28. SCUBAPRO MK X/Adjustable

29. SCUBAPRO MK X/Air I

30. SCUBAPRO MK X/Balanced Adjustable

31. SCUBAPRO MK X/High Performance

32. SEA PRO FSDS-S0

33. SEA QUEST AMF MARES MR 12-111

34. SHERWOOD BRUT SRB-2100

35. SHERWOOD MAGNUM BLIZZARD SRB-3200
36. SHERWOOD MAGNUM 1 A SRB-33 00

36. SHERWOOD MAGAYS II SRB-3300

37. SPORTSWAYS X-2
38. SPORTSWAYS X-3

39. TABATA TR-100
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40. U.S. DIVERS CONSHELF XIV

41. U.S. DIVERS CONSHELF 21

42. U.S. DIVERS CONSHELF SE 2

43. U.S. DIVERS PRO DIVER

Group D

1. CRESSI SUB GALAXIE 105

2. CRESSI SUB POLARIS IV

3. INTERNATIONAL DIVERS INC. STAR II

4. NEMROD SATURN 300

5. SCUBAPRO MK X/Air II (NOTE: A buoyancy compensator
inflator/mouthpiece not a Drimary refulator.)

6. SEA PRO FSDS-10

.. Group E

1. SEA SPORT ZEPHER ZR-O0

2. TEKNA 2100 BX

VI. CONCLUSIONS

A. Unmanned breathing resistance and work of breathing evaluations have
identified reliable open circuit demand SCUBA regulators for operational use
to 198 FSW. The new performance criteria is a natural progression of the 1981
standards from 132 FSW to 198 FSW based on new USN operational requirements.
These performance achievements are directly attributable to manufacturer's
improvements in the design and operation of commercially available open
circuit SCUBA regulators.

B. From the field of 51 regulatore/systems, eight were found capable of
meeting or exceeding a new performance criteria at 198 FSWI 17 were found
capable of meeting or exceeding the 1981 performance goals; 43 were found
capable of meeting or exceeding the military standard; six were found no
capable of meeting the military standard; and finally two could not be
objectively evaluated from the stand point of unmanned evaluation, due to
incompatibility with the data analysis systems.

In comparison to the Karch 1980 report, reference (b), significant
achievements have been made.
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C. Additionally it is reminded that:

1. The establishment of performance criteria at 198 FSW is solely a
Navy requirement and is not an endorsement that casual/standard SCUBA air
diving operations be conducted to such depths.

2. It is important to understand that while eight regulator
* models/systems met the upgraded 1987 NEDU performance requirement, regulators

that meet or exceed the Mil Standard [MIL-R-24169B (SH)], reference (e), are
considered to be safe and effective. The 1987 NEDU performance criteria at
198 FSW was specifically designed to identify the highest performance
equipment available.

3. Unmanned breathing resistance and work of breathing evaluations,
although considered to be a severe test of regulator performance, is not a
lifecycle/mechanical failure study.

is
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PART II - UNMANNED TESTING: BREATHING RESISTANCE/WORK OF
BREATHNG AND COLD WATER FUNCTION EVALUATION OF
SELECTED OPEN CIRCUIT SCUBA REGULATORS EQUIPPED
WITH LOW TEMPERATURE CONVERSION KITS

I. INTRODUCTION

From April through May 1986, NEDU conducted unmanned breathing resistance
and cold water function evaluations of selected open circuit SCUBA regulators
equipped with low temperature conversion kits or standard first stage
environmental silicon grease injection. A total of 10 regulator
models/systems were evaluated under laboratory conditions. Units were
selected primarily on their ability to meet NEDU performance criteria at
198 FSW (Group A performance regulators - able to support USN diving
operations to 190 FSW). Additional regulators were added to the evaluation
study; those of Group E not having been objectively evaluated for breathing
resistance/work, therefore included to maintain an unbiased evaluation; and
the SHERWOOD MAGNUM BLIZZARD SRB 3200, although not of Group A its reputation
of performance as a cold water regulator, in the civilian diving community,
warranted evaluation.

NOTE: The AGA DIVATOR MK II breathing valve with mouthpiece was selected
for the evaluation, vice the full face mask configuration, in order to
parallel the physical characteristics of all other second stage regulators in
the study, (i.e. breathing box and oral mouthpiece configuration). Also the
use of a full face mask would have unnecessarily complicated the evaluation.

Those regulators selected for the purpose oi this study are listed in
Table 2.

Also during this period a comparative evaluation of U.S. DIVERS cotton
backed vs nylon backed main first stage diaphragm used in the "USD CONSHELF
XIV" first stage regulator was conducted. The purpose of the evaluation was
to examine the effects that these diaphragms had on first stage regulator
static overbottom pressures once exposed to freezing conditions.

Breathing resistance evaluations were conducted on regulators equipped
with cold water conversion kits and standard first stage environmental silicon
Sgrease injettion to ascertain whether such configurations negatively effected
the work of breathing. The SHERWOOD MAGNUM BLIZZARD vwa not evaluated as it
underwent no modifications. The SEA SPORT ZEPHER ZRO1 and TEKKA 2100BX were
not evaluated due to incompatibility with test analysis systems and resultant
absence of a baseline comparison.

* II. FUNCTIONAL DESCRIPTIONS OF COLD WATER PROTECTION/CONVERSION KITS ON
TESTED REGULATORS

A. AGA DIVATOR HlK 11 reathina Valve with AGA Mouthpiece/US. DIVERS
ROYAL SL First Stage (see Part I, Fi=ure25). The ACA HK 11 breathing valve
(second stage) undergoes no modifications for cold water conditioning. The
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TABLE 2

REGULATOR MODELS AND SYSTEMS SELECTED FOR COLD WATER EVALUATION

1. AGA DIVATOR MK II, Breathing Valve with AGA Mouthpiece/U.S. DIVERS ROYAL

SL First Stage (System)

2. POSEIDON CYKLON 5000

3. POSEIDON ODIN

4. POSEIDON THOR

5. SCUBAPRO MK X/G-250

6. SEA SPORT ZEPHER ZR-O1

7. SHERWOOD MAGNUM BLIZZARD

8. TEKNA 2100 BX

9. U.S. DIVERS CONSHELF SE2

10. U.S. DIVERS PRO DIVER

1
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second stage incorporates a split inhalation/exhalation breathing box with a
one way check valve located on the inhalation side. The check valve allows
the passing of inhaled air into the mouthpiece (or full face mask if fitted),
but prohibits exhaled gas from passing over the pilot valve assembly.

The U.S. DIVERS ROYAL SL first stage is modified to a "supreme"
configuration with emplacement of a low temperature conversion kit, U.S.
DIVERS part no. 1022-75. The kit consists of a cotton backed diaphragm and
generic first stage fittings including: a modified spring retainer (threaded
for spring adjusting screw and outer diagram packing ring), modified first
stage spring, an outer rubber diaphragm, a diaphragm packing ring, adjusting
wrench and silicon liquid. Following a supplied instruction sheet the first
stage is modified, overbottom static pressure set to approximately 135 psig
vice 145 psig. The spring cavity is then filled with silicon liquid, the
outer diaphragm emplaced and secured via the packing ring and seals the
silicon liquid within the spring cavity. As the outer diaphragm is secured it
slightly compresses the silicon liquid, providing back pressure to the spring
and raises the same pressure setting to approximately 145 psig. The inner
spring cavity is now environmentally sealed from the ambient environment.

B. POSEIDON: CYKLON 5000. ODIN and THOR (see Part I. Flaures 22. 23. 24
respectively). The CYKLON 5000, ODIN and THOR's second stages undergo no
modification for cold water conditioning. The first stage is modified only by
the emplacement of a standard conversion kit part number POSEIDON 1286
consisting of rubber anti freeze cap and two plastic locking straps (1
spare). The first stage spring cavity is filled with a non-toxic anti freeze
liquid, i.e. silicon liquid, etheyl alcohol, etc. The anti freeze cap is then
placed over the first stage body and secured in position with a locking
strap. The spring cavity is then environmentally sealed.

C. SCUBAPRO MK X/G-250 (sfe Part. L Figure 32). The SCUBAPRO HK X/G-250
first and second stages undergo no modification for cold water conditioning,
except for the injection of environmental silicon SCUBAPRO part number
41-035-000, into the standard silicon protection environmental cap. The
silicon grease incases the first stage piston and spring assembly, fills the
void of the spring cavity and ultimately displaces all water.

D. SEA SPORT ZEPR-ZRO1 (See Part I. FIaure 411. The SEA SPORT
ZEPHER-ZRO1 first and second stages undergo no modification for cold water
conditioning, except for the injection of environmental silicon in the first
stage piston/spring cavity.

E. SHERWOOD MAGNMt BLIZZARDi SiR 3100 (See Part I. Flaure 43 . The
SHERWOOD MAGNM BLIZZARD first and second stages are specifically designed for
cold water use and undergo no modification nor silicon injection.

F. TEKNA 2100 BX CSee Part 1. FInure 48). The TEM 2100 BX first and
second stages undergo no modifications for cold water conditioning, except for
the injection of environmental silicon into the first stage piston/spring
cavity.
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G. U.S. DIVERS COr hsLF SE-2 (See Part 1 Figur.eg 511. The U.S. DIVERS
CONSHELF SE-2 second stage undcrgoes no modification for cold water
conditioning. The first stage is modified to a "supreme" configuration with
the emplacement of a low temperature conversion kit, U.S. DIVERS Part No.
1076-75. The kit consists of generic fittings for the "CONSHELF XIV" first
stage. Inventory and instructions remain the same as that described with the
"USD ROYAL SL" first stage ut!lized with the AGA DIVATOR NK II breathing valve
and AGA mouth piece.

H. U.S. 2DIVERS PRO DIVER (See Part I. Figure 52). The U.S. DIVERS PRO
DIVER second stage undergoes no modification for cold water conditioning. The
first stage a "Royal SL" is modified to a "supreme" configuration in identical
manner as described under the AGA DIVATOR MK II breathing valve with AGA mouth
piece equipped with U.S. DIVERS ROYAL SL first stage.

III. TEST PROCEDURE

A. Comparison Evaluation U.S. DIVERS Cotton Backed and Nylon Backed Main
First Stage DiaDhraMj

1. Subigective flexibility study: ComDarison

a. Three of each diaphragm types were separately sealed in
plastic bags, placed in a freezer and frozen for a minimum of 12 hours at
0IF/-17.7 *C.

b. On completion of the 12 hour freeze the diaphragms were
immediately anailysed for flexibility. Each diaphragm was pl.ced edgewise on a
counter top and compressed by index finger pressure to the point of flexing.
Subjective evaluation of index finter pressure required to flex the diaphragms
was noted.

2. bAetive f t static intermediat es re tv after in
freeaing aonditio•na Corn ar A•

a. Four U.S. DIVERS CoNSHELF XIV first stages were prepared with
cold water conversion kits, set to manufattur" specification, and
instrumented to monitor first stage inter?3 ste1 reeAure. Two first stages
contained cotton backed diaphragm and two nylon backed. Each regulator wav
appropriately marked; all four were thct froitn for a ttinimum of 12 hours at
0F/-17.76C.

b. On completion of the 12 hour *xposure each first stage was
removed and immediately con.ected to a U.P. air source. The intermediate
static pressure was recorded,

c, On completion of monitoring all regulators were allowed to
re-warm to room temperature, over hottom specifications were rechecked and the
procedure in b. va repeated.

SII1-4
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B. Areathing Resistance and Work of BreathinA Evaluation of Selected
SCUBA ReAulators Eoui~ped with Low Temperature Conversion Kits or Standard
First Stage Snvironmental Silicon Grease Injecti•_n. As previously described
all regulators except the SHERWOOD MAGNUM BLIZZARD, SEA SPORT ZEPHER ZR-Ol and
TEKNA 2100 BX were modified and evaluated for breathing performance. Test
procedures and parameters were as stated in Part I Section III Paragraph B or
as contained in reference (g).

C. Cold _ ater Function Evaluations of Selected SCUBA Regulators Eguipped
with Low Temperature Conversion Kits or Standard First Stage Environmg-tal
Silicon Crease Inlection

1. Introduction to test procedures. All open circuit SCUBA
regulators, both first and second stages can mechanically malfunction as a
result of cold (affecting such things as spring tension, flexibility of
O-rings and diaphragms, etc.) or by a combination of moisture and cold were
the formation of ice blocks or alters mechanical functions. Such failures
occur when regulators are exposed to cold surface environments, or during
diving operations where subsurface temperatures are at or below 376F/2.779C.

a. Common malfunctions are as follows:

(1) Rise in first stage overbottom pressure. Regulator fails
to properly reduce high pressure (HP) air source to nominal operating low
pressures: caused by prolonged exposure of regulator to cold surface
conditions whereby first stage component spring and diaphragms become more
rigid in operation. This generally leads to a pressure increase on the low
pressure side in order to balance the effect of the rigidity and close the HP
valve seat. Ultimately, static overbottom pressure rises above the specified
norm and forces the atcond stage down stream valve open, driving the regulator
into freeflow.

(2) First stage exterior freeze while immersed. First stages
freeze in the open or closed position due to ice formation on the regulator
spring and , ithin the spring cavity (occurs in both diaphragm and piston
types). Water which enters the spring cavity, via the ambient pressure
reference ports, is cooled to the freezing point. Sufficiently cold
temperature, to freeze the water is created inside the first stage during the
reduction of HP air to low pressures. As ice begins to form, intermediate
pressures rise or drop, and the diaphragm or piston ran ultimately freeze in
an open or close position.

(3) First stage interior freeze. HP valve mechanism can
freeze in the open or closed position. This is caused by moisture freeze-up
inside the first stage. During reduction of air from high to low pressure,
temperatures drop and the regulator cools; moisture condenses and freezes on
the HP valve, its seat, and other components.

(4) Second stage down stream valve failure. Second stage
supply valves freeze in the open or closed position as a result of the cold's

11-5



effect upon moisture that has entered the second stage from the following
sources:

(a) Water vapor continues to condense from the supply
gas, as pressures are reduced.

(b) Moisture from humid exhaled gas.

(c) Residual water left in the breathing box as a result
of immersion.

(d) Moisture that has entered the regulator via the
exhaust valve on exhalation (splash back).

b. The probability of a malfunction occurring increases as
surface/subsurface environmental conditions increase in severity. Certain
standard operating procedures can be adopted to lessen the chance of
malfunctions, these include:

(1) Prior to cold water diving operations, regulators are
*1 fully serviced and checked for proper function. First stages are modified

with cold water conversion kits or silicon grease injection.

NOTE: Cold water conversion kits and use of silicon grease on first stage
are designed specifically to prevent first stage exterior freeze while
immersed.

(2) Supply air should be as dry as possible [low dew point
(low water vapor content)] to prevent internal first stage freeze up and to
reduce the probability of the second stage valve of other low pressure action
devices (i.e. dry suit inflator, bouyancy compensation inflators) from
freezing.

(3) Regulators should be dry, especially second stages; kept
A warm as long as possible prior to diving, and have as little exposure as

possible to harsh cold surface environments. If snowing, (blowing snow etc.)
second stages should be covered to prevent entrance of moisture.

* (4) Once exposed to cold surface conditions regulators should
rnot be breathed or exhaled into; nor should they be purged for more than one
second while on the surface.

(5) If possible, make water entrance by taking a deep breath,
place regulator in the mouth, enter the water, after entrance exhale and
breathe normally with the regulator, keeping it submerged at all times. This
is important where surface temperatures are lower than the ambient water.
(This method keep' the regulator from flooding during entrance and prohibits
excess water moiscure entering the second stage).

(6) While submerged breath normally, avoid extreme work
conditions which demand high gas flows through the regulator. High gas flows
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will produce a cooling effect on valve mechanisms and produce condensation.
Again avoid prolonged purging of the second stage; if equipped with e suit
inflation or bouyancy compensation devices inflate them with short burst-- of
air.

(7) If the regulator is removed and flooded, attempt to clear
the regulator with exhaled gas rather than purging. If purging is necessary,
again avoid any prolonged bursts of air.

2 Test procedures, cold water function

a. Based on the common types of malfunction and standard
operation procedure, test procedures were developed as contained in unmanned
test plan for cold water function, reference (g).

All test regulators were equipped as necessary with applicable cold water
conversion or silicon injection. Prior to each evaluation regulators were
checked for proper operation, calibrated to manufactures specification,
completely dried, and instrumented. Regulators were then frozen for a minimum
of 12 hours at temperatures 00F/-17.770 C. After removal from the freezer they
were transported to the test chamber via- packed ice chest.

Regulators were immediately placed into the arc, connected to analysis
systems, and the first stage HP supply opened. The second stage was then
purged for one second, dipped and flooded in salt water brine at below
freezing temperature. The regulator was then drained and connected to the
breathing machine. The salt water brine arc level was raised to cover tne
regulator and the breathing machine started. High pressure supply air was
cooled to arc temperature and regulators breathed at 40 IPM, exhaled gas was
heated and a high relative humidity of 90% maintained. Water vapor content of
the supply gas was also noted. The evaluations continued for one hour or
until malfunction occurred. If malfunction occurred the regulator was removed
and inspected. Ten separate evaluations were scheduled to provide a
statistical data base. NOTE: The purging of the regulator was conducted to
confirm proper mechanical function of first and second stages. The
dipping/flooding of the second stage in the below freezing salt water brine,
although not recommended as a standard operating procedure was conducted to
create a worse case situation of water moisture residue in the second stage.

b. Submergent liquid and control temperature. A salt water
brine, with a salinity at 290/00, was selected as the submerging agent. This
salinity was selected as it represent possible polar conditions. Additionally
when cooled to a temperature of 29*F/-1.66*C the salt water bath was at the
freezing point. Salt water/arc temperatures below 290 F could not be attained
due to the limitations of arc conditioning system.

4I
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c. Parameters controlled. The following parameters were
controlled:

Simulated Diver's
(1) Breathing Rate / Tidal Volume / RMV / Work Rate

(a) 20 BPM 2.0 40.0 Moderate

(2) Exhalation/inhalation time ratio: 1.00/1.00

(3) Breathing wave form: Sinusoid

(4) Arc salt water salinity 290/00

(5) Arc salt water brine temperature: 290 F ±I1F/-1.66*C

r(6) Air supply: 2,250 psig (maximum supply pressure
available due to system configuration. Represented worse case pressure AP
drop possible for first stage reducing regulator)

(7) High pressure air supply temperature: 290F/-1.660 C

(8) Water vapor content high pressure air supply to the first
stage: average mean due point -40°F/-40-C, 120 ppm (v/v), .089 mg/I

(9) Evaluation depth and times: .5 FSW for one hour or until
regulator malfunctioned

(10) Exhaled gas temperature: 80OF/26.66°C

(11) Exhaled gas minimum relative humidity: 90%

d. Parameters measured:

(1) Breathing resistance in cmH20 and work of breathing
kg.m/9. at 40 RMV

(2) Change in dynamic intermediate over bottom pressure at
first stage outlet

(3) Maximum and minimum first stage over bottom pressures
controlled during operation

(4) Water arc temperatures

(5) Gas supply temperature

(6) First stage regulator low pressure temperature

(7) Water vapor content/dew point of high pressure air supply
to first stage
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IV. TEST RESULTS

A. Comparison Evaluation U.S. Divers Cottoned Backed and Nylon Backed
Main First Stage Diaphragms

1. Subjective flexibility study: Comparison. Subjective
observations indicated nylon backed diaphragms became very rigid and required
-ignificant index finger pressure to flex. Cotton backed diaphragms became
far less rigid than nylon units, required significantly less index finger
pressure to flex.

2. Obiective First Stage Static Intermediate Pressure Study After
Freezing Conditions. U.S. Diver's Conshelf XIV first stage static pressures
of all units equipped with nylon diagrams greatly exceed the preset static
pressure of 145 psig. Readings recorded were 187, 197, 220 and 230 psig.

First stage static pressures of units equipped with cotton backed
diaphragms although exceeding the preset static pressure of 145 psig remained
consistently close to that value. Reading recorded were 147, 150, 150 and
157 psig.

B. Breathing Resistance/Work of Breathing Evaluation of Selected SCUBA
Regulators Equiped with Low Temperature Conversion Kits or Standard First
Stage Environmental Silicon Grease Iniection

1. Test results are presented, Tables 3 through 9, in a format to
allow direct comparison of breathing resistance and work of breathing under
normal configuration and then with conversion kit. Data displayed is at 1000
psig, at RMV levels of 22.5, 40 and 62.5 and to a depth of 198 FSW. Test
results indicated that in all circumstances breathing resistance and work of

breathing increased as a result of low temperature conversion kits.

2. Results are indexed as follows:

Table No. Regulator Name

3 AGA DIVATOR MK II Breathing Valve with AGA
Mouthpiece/USD Royal SL first stage

4 POSEIDON CYKLON 5000

5 POSEIDON ODIN

6 POSEIDON THOR

4 7 SCUBAPRO MK X/G-250

S8 U.S. DIVERS CONSHELF SE-2

9 U.S. DIVERS PRO DIVER

11-9
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C. Cold Water Function Evaluations Selected SCUBA Regulators Eauipued
with Low Temperature Conversion Kit or Standard First Stage -Environmental
Silicon Grease Iniection.

NOTE: Due to system limitations a statistical data base of 10 runs per
regulator could not be achieved. Data obtained during condition where arc
temperatures rose out of the prescribed temperature control of 294F *10F was
disregarded.

1. AGA DIVATOR MK II. breathina Valve with AGA Mouthpiece/USD ROYAL
SL First Stage (total of 4 separate runs condAuted under acceptable test
conditions)

a. Successful: 3 runs completed successfully, no malfunctions,
regulator operated normally.

b. Minor malfunctions: 1 run completed despite minor malfunction
of slight free flow. At 12 minutes into the evaluation a minor free flow from
second stage was observed. The free flow continued throughout the evaluation
but did not increase in severity.

c. Major malfunction, evaluation stopped. 0 runs

d. Initial first stage overbottom pressure after freezingt
preset pressure was 155 psig. Recorded pressures 156, 176, 173, and 180 psi&.

e. First stage intermediate pressure control during 1 hour
immersion: The first stage intermediate 0/8 pressures rose from 139 to 153
puig maximum and dropped from 117 to 112 psi& minimum.

f. Observation/analysis of malfunctiont Despite severe exterior
freezing on first stage components, the regulator controlled first stage
pressure satisfactorily. Work of breathing did not vary from previous
non-freezing analysis. Cause of minor malfunction (second stage free flov)
could not be specifically identified.

2. POSEIDNCUKLON5000 (total of 5 separate runs conducted under
accettable test conditions)

a. Successful: 4 runs completed successfully, no malfunctions,

regulators operated normally.

b. Minor malfunction: 0 runs

c. Major malfunction, evaluation stopped: 1 run. Regulator
initially free flowed when first stage supplied vith high pressure air. Upon
dunking, free flow stopped, evaluation was continued. At 30 minutes into the
evaluation minor free flow at second stage occurred and increased in severity
to point at which evaluation was stopped.

d. Initial first stage overbottom pressure after freezing:
Preset pressure was 168 psig. Recorded pressure 160, 161, 172, 174, 183 poig.
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e. First stage intermediate pressure control during one hour
immersion: The first stage intermediate 0/B pressures rose from 156 to 171
psig maximum, and dropped from 135 to 112 psig minimum.

f. Observations/analysis of malfunction: Despite exterior
freezing on first and second stages components regulator controlled first
stage pressures satisfactorily. Work of breathing did not vary from previous
non-freezing analysis. Free flow at second stage was identified as having
been caused by ice formation between the interface link/ejector sleeve
prohibiting second stage low pressure valve piston from fully seating.

3. POSEIDON ODIN (total of 6 senarate runs completed under acceptable
test conditions)

a. Successful: 4 runs completed successfully, no malfunctions,
regulator operated normally.

b. Minor malfunction: 1 run. Regulator initially free flowed
when first stage supplied with high pressure air. Upon dunking, free flow
stopped, continued with the evaluation no further malfuncticn occurred.

c. Major malfunction, evaluation stoppedt 1 run. Regulator went
into severe free flow when first stage supplied with high pressure air. FreeI flow would not cease, despite dunking.

d. Initial first state overbottom pressure after freezing:
Preset pressure was 130 paig. Recorded pressures 112, 125, 130, 128, 130 psig.

NOTEz 112 psi& reading coincided with regulator that initially free flowed
then stopped. Unable to attain accurate first stage reading of regulator that
vent into severe free flow.

e. First stage intermediate pressure control during 1 hour
immersion: The first stage intermediate 0/B pressures rose from 118 to 137
psi& maximum, and dropped from 98 to 78 psi& minimum.

f. Observations/analysis of malfunction: Despite exterior
freezing on first stage components, regulator controlled first stage pressure
satisfactorily. Work of breathing did not vary from previous non-freezing
analysis. Both situations of free floe were attributed to the second stage.
Specific identification of malfunctioniag component could not be attained.

4. POSEIDON.TKOR (total of 4 seDarate-runs comaleted under-acceotable
test-conditions)

a. Successful: 4 runs completed successfully, no malfunctions
regulator operated normally

b. Minor malfunction: 0 runs

c. Major malfunction, evaluation stopped: 0 runs

11-18



d. Initial first stage overbottom pressure after freezing:
Preset pressure was 130 psig. Recorded pressures: 160, 160, 164, 167 psig.

e. First stage intermediate pressure control during one hour
immersion: The first stage intermediate O/B pressures rose from 123 to 127
psig maximum, and minimum values held at approximately 103 psig.

f. Observations/analysis of malfunction: Despite severe
exterior freezing on first stage components, regulator controlled first stage
pressures satisfactorily. Work of breathing did not vary from previous
non-freezing analysis. No malfunctions occurred.

5. SCUBAPRO MK X/G-250 (total of 5 senarate runs completed Mder
acqeotable test conditions)

a. Successful: 3 rmus completed successfully. However first
staae overbottom pressure consistently increased to high values.

b. Minor malfunction: 1 run completed despite minor malfunctions
of slight free flow from second stage noted 12 minutes into the evaluation.
Freelowi -continued throughout the evaluation but did not increase in severity.

c. M4jor malfunction, evaluation stopped: 1 run. At 3 minutes
into the evaluation second stage went into a severe free flow.

d. Initial first stage over bottom pressure after freezing:
Preset pressure 118 psig. Recorded pressures 138, 146, 117, 141, 142.

e. First stage intermediate control during one hour immersion:
SThe first stage intermediate 0/B pressures rose from 140 to 176 psi& maximum,

and dropped from 110 to 80 paig minimum.

f. Observations/analysis of malfunctions: Exterior freezing
occurred on all regulators which completed one hour of evaluation. First
stage 0/B bottom pressure consistently incressed throughout the period of

•. . immersion to pressures well beyond the preset value. Cause of the one minor
malfunction was attributed to ice forming over the interface between the
demand lever and the poppet valve. Analysis of severe free flow indicated
that substantial ice had formed over the interface between the demand lever
*tkd poppet valve, keeping the demand lever depressed. Additionally ice had
formed on the inhalation diaphragm and the area immediately adjacent to the
exhaust valve.

6. SEA SPORT ZEPIIERZR-01-ftotal of 3 saearate-runs-conducted under
acceptable tes.t conditions)

a. Successful: 0 runs

b. Minor malfunction: 0 runs

c. Major malfunction, evaluation stopped: 3 runs. During two
runs, the second stage immediately vent into free flow when the first stage

S~11-19



was supplied with high pressure air. Free flow could not be stopped. During
the third run the second stage went into severe free flow after 10 minutes
into the evaluation.

d. Initial first stage overbottom pressure after freezing:
Preset pressure was 150 psig. Recorded pressures at 160, 164 psig. One
pressure reading could not be accurately attained.

e. First stage intermediate pressure control during one hour
immersion: Recorded pressures were only attainable during the first 10
minutes of one study. Maximum over bottom pressure rose from 164 to 174 psig,
minimum over bottom held at 138 psig prior to entering a free flow condition.

f. Observations/analysis malfunction: On two separate occasions
the regulator went into severe free flow condition, very shortly or
immediately after opening high pressure air supply, no specific cause could be
identiAied. During the one study that resulted in free flow after 10 minutes
of the immersion analysis, ice had formed in the first stage upring cavity and
on the first stage pistoa 0 ring despite the presence of silicon grease. In
the secondstage, ice had formed on the defect.,r plate and poppet assembly.
The regulator could not be analyzed for relative vork of breathing.

7. QHERWOOD MABNUM BLIZZARD (total of 4 sevyrate. runs conducted under
acceptabla tcst conditijons)

a. Successfult 4 runs compleaed auctesafullyno malfunctions,
regulator operated normally.

b. Minor Malfunction: O runs

c. Major Malfunction; Evaluation Stopped: 0 runs

d. Initial first stage overbottom pressure after freezing:
Preset value was 133. Recorded pressure at 130, 130, 133, 133.

e. First stage intermediate pressure coitrol during one hour
immersiont Regulators initially began the immersion with maximum O/B pressure
of 147, pressures remained relatively constant throughout the period only
rising briefly to a maximum 163 psig. Minimum values remained consistent
throughout, fluctuating between 120 akid 115 psi&.

f. Observations/analysis of malfunctions: Despite external
freezing on first stage the regulator satisfactorily maintained first stage
pressure, work of breathing did not vary from previous non-freezing analysis.

4. TEU A 2100 BX (total of 3 aeoarate runs conducted under acceptable

test coaditlonas

a. Suceessful: 1 run completed successfully, however, first
stage overbottom pressure increased dramatically from 137 to 185 psig over the
one hour period.

11-20



b. Minor Malfunction: 1 run. 50 minutes into the evaluation
second stage commenced a minor free flow. Again first stage overbottom
pressure increased dramatically over the immersion period to 190 psig.

c. Major malfunction, evaluation stopped: 1 run. 12 minutes
into the evaluation the second stage vent into severe free flow condition.

d. Initial first stage overbottom pressures after freezing:
Preset pressure was 118 psig. Recorded pressures were 119, 121, 127 psig.

e. First stage intermediate pressure control during one hour
immersion: The first stage intermediate O/B pressure rose from 140 to 190
psig maximum, and minimum values held at approximately 115 psig.

f. Observation/analysis of malfunction: First stage regulatur
exterior freezing occurred on all completed evaluations. First stage
overbottom pressures dramatically increased throughout the period of
immersion. Analysis of the second stages showed ice formation about pilot
valve stem. R jyn breathing work of TEKR& remained consistent throughuut
the evaluation.

9, U..S RV=IS CONSHULF SE-2 (•otal of A 8enarate runs couductAe
under accertance test conditions)

a. Successful: 1 run completed successfully, no malfunctions,
regulator operated normally.

b. Minor Malfunctions: 1 rum. Regut.ator seeond stage went into

slight free flow at 56 minutes Into the evaluation. First stage overb'ttom
pressure had consistently risen from 138 pot& to maximum of 190 psis then
dropped and held at 170 pasig.

c. Major malfunctions; evaluation stopped: 2 runs, regulator
second stage vent into severe f-ee flowt it 17 and 22 minutes into the
evaluations. On both cases the 1ree flow iicreased in severity. First stage
pressure remained in the window of tormal operating pressures.

d. Initial first stage overbottom pressures after freezing:
Preset pressure was 138. Recorded pressures were 156, 145, 148, 164 pals.

e. First stage intermediate pressure control during one hour
immersion: Regulator initially began the imersion period with a maximum 0/B
pressure of 140 psi&. Pressure varied up to 190 psi& but then returned to 170
psi&. Minimum values began at 130 psi# and a then dropped to 105 pasg.

f. Observations/analysis of malfunctions: First stage exterior

icing occurred In all cases. First stage pressures were erratic in some
cases. Analysis of severe free flow situations indicated the second stage had
ice formed about the interface between the horseshoe valve and the poppet
valve, on the inhalation diaphragm, also immediately adjacent to and in the
exhaust valve. Analysis of the minor free flow incident indicated that small
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quantities of ice had again formed on the interface between the horseshoe
valve and the poppet; free flow was evidentally caused by high overbottom
pressure. Work of breathing did not vary from previous non-freezing analysis.

10. U.. DIVERS PRO DIVER (total of 3 separate runs conducted under

acceptable test conditions)

a. Successful: 0 runs

b. Minor malfunction: 0 runs

c. Major malfunction, evaluation stopped: 3 runs . In all three
cases regulators went into severe free flow when first stage supplied with
high pressure air.

4. Initial first stage overbottom pressure after freezing:
Preset pressure was 140 psi&. During these three evaluations accurate first
stage pressures could not be attained. The regulators were subsequently
monitored in a static condition, pressures recorded were at 200, 200, 220 psig.

e. First stage intermediate pressure control during one hour
immersion/Analysis of Malfunction: In all three cases first stage overbottom
pressure had risen to such an extreme as to imediately over power the
dynamically balanced second stage valve.

f. Observation/analysis of malfunction: Regulator malfunction
was directly attributed to high first stage intermediate pressures.

V. DISCUSSION

A. Cogmiarison Evaluation U.S. Divers Cotton Backed andW lon Backed First
Stage Dianhraems. Subjective and objective test results clearly indicated
that the cotton backed diaphragm became far loss rigid than nylon backed units
and as such had far less affect in raisiqg USD CONSHELF XIV first stage static
overbottom pressure above preset pressures for regulators exposed to cold
environments. Pressures recorded from nylon units would have been more than

Ssufficient to immediately over-drive dynamically balanced second stage demand
valve into free flow.

B. Breathing Resistaine/Work of Broathint. Data indicated that in all
cases, whether dealing with conversion kits for diaphragm or silicon injection
for piston first stages, that such configuration reduced the performance of
the regulator as measured at 706F. As depth and RKV levels increased,
regulators equipped for cold water function had inhalation resistance and work
of breathing values higher in comparison to their normal configuration.
Analysis of volume vs. AP XY loops consistently shoved an increase in area on
the inhalation side. This larger area directly correspoads to an increase in
york of breathing. The SCUBAPRO KK X/0-250, a first stage piston regulator,
was the least affected in comparison to the remaining regulators equipped with
diaphragm first stages. No further increase in work of breathing was noted
when converted regulators were subsequently tested in the freezing
environment. The work of breathing goal of .14 kg.a/I (1.4 J/1) at all depths
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and RMVs up to and including 198 FSW on 62.5 RMV with 1000 psig supply
pressure to the first stage regulator could not be attained by POSEIDON CYKLON
5000, POSEIDON ODIN, POSEIDON THOR, U.S. DIVERS CONSHELF SE2 and U.S. DIVER
PRO DIVER. The goal was attained by the AGA DIVATOR MK II wfth AGA
mouthpiece/USD ROYAL SL first stages and the SCUBAPRO ISK X/G-250. However, in
all cases exhalation/ inhalation values were well within the established
values of the Nil Spec MIL-R-241698-SH 22 Feb 1982, reference (e).

C. Cold Water Function

1. First stage external spring cavity freeze. Use of environmental
cold water conversion kits and silicon grease injection

a. The cold water conversion kits used on the diaphragm first
stage regulators proved to be totally effective in preventing first stage
exterior freeze of the spring cavity. No exterior freezes of diaphragm first
stage regulators were recorded.

b. Environmental silicon grease injection proved to be effective

in preventing spring cavity freezing. However, one case of first stage
exterior freeze was recorded with SEA SPORT ZEPHER ZR-O1. In this case
silicon grease had been forced out of spring cavity through the first stage

ambient sensing ports by piston action, Water entered the resulting void and
a freeze occurred. All piston first stage regulators that used environmental
protective silicon grease were checked for extrusion prior to each evaluation
and silicon injected as necessary. The extrusion of silicon gresew is a
common problem with piston regulators. It can be limited, but not prohibited,
via the adaptation of smaller ambient sensing ports as found on the SCUBAPRO
HIX environmental standard silicon protection environmental cap.

c. The dry air bleed system utilized on the SHERWOOD NAGNIU
BLIZZARD also proved totally effective in protecting its first stage from
spring cavity freeze.

2. First stage interior freeze. No occurrence of first stagse

interior freeze was recorded$ even though the average water vapor content in
the supply air remained relatively high with a mean dev point of
-40F/-40.O0C/moisture content of 120 ppm, .089 mg/I.

3. First stage intermediate nresmures

a. First stage Intermediate pressure imediately after freezing:
Relatively excessive first stage intermediate static pressures vwer recorded
with AGA DIVATOR I1 with USD ROYAL SL first stage and the US DIVER PRO DIVER
also equipped with the ROYAL SL first stage. The AGA breathing valve, a
balanced pilot second stage, never vent into free flow. However, the U.S.
DIVERS PRO DIVER second stage, a dynamically balanced down stream poppet valve
vent into free flow on every evaluation. The ROYAL SL first stage did have
cotton diaphragms Installed, but its performance after freezing was not as
controlled as the USD COHSHELF (XIV) first stage used with the USD SE2. All
other first stage regulators static pressures remained near preset standards.
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The most precise intermediate static pressure control consistent to preset
pressures was demonstrated by the SHERWOOD MAGNUM BLIZZARD.

b. First stage intermediate pressure control during one hour
immersion: Once the breathing machine was started all first stage
intermediate pressure returned to optimum, with the exception of the SEA SPORT
ZEPHER ZR-Ol. In this case intermediate pressure increased to 175 psig from a
preset value of 150 psig, shortly thereafter the regulator malfunctioned with
the first stage freezing and the regulator attained free flow.

The ACA DIVATOR MK II/USD ROYAL SL, POSEIDON CYKLON 5000, ODIN, and THOR;
SHERWOOD BLIZZARD, all continued to operate within preset first stage pressure
ranges.

The US DIVER SE2 operated normally but on one instance pressures increased
to a maximum of 190 psig, then dropped and maintained at 170 psig, this
coincided with the occurrence of a slight free flow, but the evaluation was
completed. The SCUBAPRO MK X/G-250 and TEKKA 2100 BX both consistently
increased their overbottom pressure with HIK X/G-250 rising to a maximum of 174
psig and TEKNA to 190 psig. The design characteristics of both second stages
(the SCUBAPRO a balanced adjustable, the TEKNA a pilot) prevent the second
stages going into free flow as a direct result of excessive first stage
overbottom pressures.

4, Second stage failure

a. Second stage failure, due to excessively high first stage
overbottom pressure: The U.S. DIVERS PRO DIVER was the only regulator
specifically identified as having malfunctioned due to excessive first stage
pressure. The US DIVER CONSHELF SE-2 (identical second stage to the PRO
DIVER) did attain a slight free flow as previously mentioned where pressure
went as high as 190 psi&. However pressures returned to 170 psi& and the
regulator completed the evaluation without attaining a severe free flow.

b. Second stage failure, due to freezing of valve assembly: The
POSEIDON 5000 (one occurrence), the SCUBAPRO HK X/G-250 (two occurrences), SEA
SPORT ZEPIER ZR-O1 (two occurrences), TEKNA 2100 BX (two occurrences) and US
DIVER CONSHELF SE-2 (three occurrences ) could be identified as having failed

* due to icing on second stage demand valve mechanisms, Specific cause, whether
by condensed water vapor, residual moisture, humidified exhaled gas, etc.
could not be precisely determined; however, both the SCUBAPRO HK X/G-250 and
U.S. DIVERS SE-2 second stages had ice form on demand diaphragms in the area
immediately adjacent to the exhaust valve and in the case of the SE-2 on the

[,, interior surface of the exhaust valve. This would tend to suggest some
moisture may have entered due to splash back from the exhaust valve.

S. Performance in cold water based on second state desian features*.+4

a. Unbalanced/dynamically balanced demand poppet (POSEIDON CYLKON
5000, SHERWOOD MAGNMn BLIZZARD, U.S. DIVERS CONSIIELF SE-2 (same as PRO
DIVER).): Comparing the performance of the SHERWOOD MACNUM BLIZZARD second
stage to the U.S. DIVERS CONSMELF SE-2 (both of similar structural design)
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would indicate the SHERWOOD MAGNUM BLIZZARD to be the superior of the two.
The SHERWOOD teflon coated components and heat retention system were effective
in preventing second stage malfunction under test conditions. The POSEIDON
CYKLON 5000 second stage design (side mount inhalation/exhalation diaphragms,
operation device linkage with ejector) was also considered effective.

b. Pneumatically balanced, demand poppet (SCUBAPRO MK X/G-250):
The SCUBAPRO G-250 second stage did malfunction due to second stage icing.
Its relative performance, being the only second stage in this category, is
considered moderate. However, its balanced design was considered to have
played an important role in preventing free flow, as first stage pressures
rose from a preset value of 118 psig to as high as 176 psig during the
immersion study.

c. Pilot/Servo (AGA DIVATOR 14K II Breathing Valve with AGA
Mouthpiece, POSEIDON ODIN, POSEIDON THOR, SEA SPORT ZEPHER ZR-Ol TEKIA
2100BX): The SEA SPORT ZEPHER ZR-O1 and TEKNA 2100BX second stages were both
identified to have malfunctioned due to icing. The AGA HK II breathing valve,
POSEIDON second stage in the POSEIDON ODIN and THOR (both identical second
stages) could not be specifically identified as having failed due to icing
during the immersion study. In any case these second stages clearly out
performed the SEA SPORT ZEPHER and TEKNA and are considered to be effective.

6. Total Derformsnce ratina in cold water. Based on performance
during cold water function evaluations the 10 open circuit SCUBA regulators
are grouped in the following performance categories (present in
alpha-numerical sequence):

a. Superior Performance:

AGA DIVATOR IK 11 Breathing Valve with AGA Mouthpiece/U.S.
DIVERS ROYAL SL First Stage

POSEIDON CYILON 5000

POSEIDON ODIN

POSEIDON THOR

SHERlWOOD MAGMM• BLIZZARD

b. Moderate Performances

SCUBPRIlK X/0-250

c. Unacceptable:

SEA SPORT ZEPHER ZI-01

TECIUA 2100 IX

U.S. DIVERS CONSHELF SE-2

U.S. DIVERS PRO DIVER
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VI. CONCLUSIONS

A. U.S. DIVERS Cotton Backed Diauhragms. Results of studies conducted
with the U.S. DIVERS CONSHELF XIV, first stage, clearly indicated that cotton
backed diaphragms substantially enhanced the control of intermediate pressures
after exposure to cold conditions.

B. Breathing Resistance/Work of Breathinn. In all cases, breathing
resistance and the work of breathing values, of regulators equipped with cold
water conversion kits or silicon grease, increased as a direct result of the
modifications. Although total effects varied, all units evaluated were
considered to be functionally safe at all depths up to 198 FSW.

C. Cold Water Function. Ten regulators were evaluated under laboratory
condicions and grouped into three distinct performance categories. The
results indicated a strong interdependence between first and second stages
performance. In instances where first stage intermediate pressures rose
excessively high immediately after freezing or during the immersion exposure,
the use of pneumatically balanced second stages prevented total system failure.

During immersion studies, diaphragm first stage regulators provided
greater consistency of control on overbottom pressures in comparison to piston
regulators that use environmental silicon grease. Additionally, diaphragm
units recorded no external freezes while silicon injected units did. Piston
regulators required continuous checks and maintenance for extrusion of grease
while diaphragm units suffered no extrusions. Materials used in the
manufacture of main first stage diaphragms should be specifically selected to
provide maximum flexibility and minimu rigidity during exposure to cold.

Second stage regulators of a conventional design (U.S. DIVERS and
SCUBAPRO), exempting SHERWOOD, were consistently out performed by regulators
of unconventional design (AGA, POSRIDON) that utilized balanced pilot/servo
assist mechanisms. These units also incorporated features that lessened the
effects of moisture ,and cold via the use of plastics, rubbeir valve sleeves,
check valves, reduced area of exposed mechanical linkage, and removal of
primary second stage actuation devices from the imsediate and direct path of
exhaled gases and splash back (moisture residue) from exhaust valves.

Overall, five regulators vere considered superior perfomers, one
considered moderate, and four unacceptable. It is gupA&Jaa that regardless
of a regulators superior performance, proper standard operating procedures for
cold water operations should always be followed.
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PART III - MANKED TESTING: HUMAN FACTORS OPEN WATER STUDIES

I. INTRODUCTION

From August through September 1986, NEDU conducted manned human factor
open water studies on selected commercially available open circuit SCUBA
regulators. A total of 11 regulator model/systems were evaluated under open
water conditions. This was a follow on evaluation, complimenting Phase One
and Two. The evaluation was subiective in nature. Those regulator
model/systems selected for the study are listed in Table 10.

II. MANNED TEST PROCEDURE

Human evaluation was conducted per NEDU Test Plan 86-18, reference (h).
During the evaluation 156 dives were conducted. Maximum depth of dives was to
130 FSW. Diver-subjects completed a regulator questionnaire and entered
appropriate remarks on the conclusion of each dive.

III. MANNED TEST RESULTS

Manned test results are contained in table format and classified into
three categories. Responses required a numerical score or a YES/NO answer.
Tables are as follows:

A. Table 11 - Physical Characteristic - Numerical Rating

B. Table 12 - Breathing Performance - Nuerical Rating

C. Table 13 - General Regulator Function - YS/XO Rating

IV. DISCUSSION

A. Physical Characteristics. Subjective responses indicated
diver-subjects rated regulators from not quite adequate to good. Total
averaging, however, indicated regulators performed at an adequate or good
level. Highest scores vent to the U.S. DIVERS CONSHEL? SE-2 and PRO DIVER
with the AGA DIVATOR K 11 breathing valve with AGA mouthpiece and U.S. DIVERS
ROYAL SL first stage following closely. Lowest marks were assigned to SEA
SPORT ZEP213 2R-O1.

B. hreathil t Petfomance. Total average scores of subjective responses
indicated the highest rating assigned to the U.S. DIVERS CONSHELF SR-2 and PRO
DIVER, followed very closely by the A(QA VIVATOR NK II with AGA mouthpiece/U.S.
DIVER ROYAL SL first scea& and the SCUBAPRO 1K X/G-250. Lowest scores were

o assigned to SEA SPORT ZEPiUR Z-01 at the not quite adequate level.
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Table 10

REGULATOR MODELS AND SYSTEMS SELECTED FOR MANNED HUMAN FACTORS EVALUATION

1. AGA DIVATOR MK II (Full Face Mask) Used With U.S. DIVERS ROYAL SL First
Stage (System)

2. AGA DIVATOR MK II Breathing Valve Equipped With AGA Mouthpiece Used With
U.S, DIVERS ROYAL SL First Stage (System)

3. POSEIDON CYKLON 5000

4. POSEIDON ODIN

5. POSEIDON THOR

6. SCUBAPRO MK X/G-250

7. SEA SPORT ZEPHER ZR-O0

8. SHERWOOD MAGNUM BLIZZARD

9. TEMA 2100 BX

10. U.S. DIVERS CONSHELF SE-2

11. U.S. DIVERS PRO DIVER
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C. General Regulator Function. Overall favorable responses went with the
AGA DIVATOR MK II breathing valve with AGA mouthpiece/U.S. DIVERS ROYAL SL
first stage, SCUBAPRO MK X/G-250 and U.S. DIVERS CONSHELF SE-2 and PRO DIVER.
The least favorable went to the SEA SPORT ZEPHER ZR-01.

NOTES: (1) Only one mechanical failure was recorded. The piston o-ring
on the SCUBAPRO MK X first stage was scored and required
replacement.

(2) The SEA SPORT ZEPHER ZR-O1 pressed in air channel-way, on the
second stage, was removed during the evaluation as it was
considered a safety hazard. The channel-way could easily
separate from the second stage case and possibly become lodged
in the diver's airway.

V. CONCLUSION

The subjective human factors evaluation indicated that relatively,
diver-subjects assigned high scores to AGA DIVATOR MK II breathing valve with
AGA mouthpiece/U.S. DIVERS ROYAL SL first stage, AGA DIVATOR MK II full face
mask/U.S. DIVERS ROYAL SL first stage, SCUBAPRO MK X/G-250, the U.S. DIVERS
CONSHELF SE-2 and PRO DIVER.

Moderate scores to the POSEIDON CYKLON 5000, POSEIDON ODIN, POSEIDON THOR,

SHERWOOD MAGNUM BLIZZARD and TEKRA 2100 BX.

Low scores to the SEA SPORT ZEPHER ZR-Ol.

Overall, regulators evaluated in this phase, with the exception of the SEA
SPORT ZEPHER ZR-01 were considered to have operated at the adequate or good
levels. The ZEPHER was considered to have operated at the not quite adequate
level.

Regulators from Group E Performance Categorv Phase One: By subjective
evaluation, the TEKNA 2100 BX ia considered an adequate and safe regulator.
The SEA SPORT ZEPHER ZR-01 in normal configuration, with air channel-way
installed, was considered not quite adequate and unsafe.
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ANNEX B

LIST OF MANUFACTURERS

1. AGA/IISIERSPIRO U.S. Distributor
Intersiro AB AGA/INTERSPIRO
S-181 81 Lidingo Sweden Pistol Shop Road

Rockfall, Connecticut 06481
Phone: 203-481-3899

2. CRESSI SUB
677 S.W. First Street
Miami, Florida 33130
Phone: 305-545-9000

3. DACOR
161 Northfield Road
Northfield, Illinois 60093
Phone: 312-446-9555

4. INTFRNATIONAL DIVERS INC.
14747 Artesia Boulevard
Suite 5-A
La Mirada, California 90638
Phone: 714-994-3900

5. WENOD
P.O. De La Ribera, S/N
Apart Ado, 51
08420, Canovellas
(Barcelona) Spain

6. OCEAN DYNAMICS
363 W. Victoria Street
Gardena, California 90248
Phone: 213-538-9540

7. OCEANIC
14275 Catalina Street

* San Leandro, California 94577
Phone: 415-352-5001

8. PARRWAYS
241 Raritan Street
South Amboy, Nev Jersey 08879
Phone: 201-721-5301
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9. POSEIDON SYSTEMS U.S. Distributor
POSEIDON, Industri AB VIKING AMERICA INC.
Akeredsvagen 1 55 Old South Avenue
Box 850 S-421 08 Stratford, Connecticut 06497
Vastra Frolunda Sweden Phone: 203-377-6974
Phone: 031-49 8440

NOTE: U.S. Distributorship for POSEIDON SYSTEMS shifted from PARKWAYS to
POS DIVE to Viking America, Inc.

10. PRO SUB, INC.
341 East Alondra Boulevard
Gardena, California 90248
Phone: 1-800-222-7241

11. SCUBAPRO
3105 E. Harcourt
Rancho Dominguey, California 90221
Phone: 213-639-7850

12. SEA PRO
18030 S. Euclid Street
Fo-.ntaln Valley, California 92708
P.ane: 714-979-6730

13. SEA QUEST
21sl-r Las Palmas Drive
Carlsbad, Califor-i& 92009
Phone: 619-438-1101

14. SEA SPORT/SMY
P.O. Box 58828
Tukwila, Washington 98188
Phone: 206-575-0886

15. SHERW00D
120 Church Street
P.O. Box 790
Lockport, New York 14094
Phone: 71-433-3891

16. SPORTSWAYS
2050 Laura
Huntingtcn Park, California 90255
Phone: 213-587-4173

17. TABATA
P.O. Box 2429
Huntington Park, California 90255
Phone: 213-587-4173
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18. TEKNA
P.O. Box 849
Belmont, California 94002
Phone: 415-592-4070

19. U.S. DIVERS
3323 W. Warner Avenue
Santa Ana, California 92799-5018
Phone: 714-540-8010

B-3

.4f



ANNEX C

Graphs: Unmanned Evaluation Breathing Resistance, Work of Breathing, and
First Stage Pressure Drop

1. AGA DIVATOR MK II (Full Face Mask) Complete First and Second Stage
with AGA Cylinder

2. AGA DIVATOR MK II (Full Face Mask) Used with U.S. DIVERS CONSHELF XIV
First Stage (System)

3. AGA DIVATOR MK II (Full Face Mask) Used with U.S. DIVERS ROYAL SL
First Stage (System)

4. AGA DIVATOR MK II Breathing Valve Equipped with AGA Mouthpiece Used
with U.S. DIVERS ROYAL SL First Stage (System)

5. CRESSI SUB GALAXIE 105

6. CRESSI SUB POLARIS IV

S 7. DACOR PACER AERO 950 A

* 8. DACOR PACER XL 950

9. DACOR PACER XLE 360

10. INTERNATIONAL DIVERS INC. STAR II

11. INTERNATIONAL DIVERS INC. SUPER STAR II

4 12. NEMROD SATURN 300

13. NEMROD SATURN 300 PRO

%, 14. OCEAN DYNAMICS RB-3000

15. OCEANIC OMEGA II

"16. OCEANIC OMEGA II MAX FLOW

17. PARKWAYS ATLAS

18. CYKLON 300 Distributed by PARKWAYS - POSEIDON Systems Pre 1986 Model

0, 19. CYKLON MAX II Distributed by PARKWAYS - POSEIDON Systems Pre 1986 Model

20. POSEIDON CYKLON 300 Distributed by POS DIVE - POSEIDON Systems 1986

Model
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21. POSEIDON CYKLON 5000 Distributed by POS DIVE - POSEIDON Systems 1986

Model

22. POSEIDON ODIN Distributed by POS DIVE - POSEIDON Systems 1986 Model

23. POSEIDON THOR Distributed by POS DIVE - POSEIDON Systems 1986 Model

24. PRO SUB MAXAIR I

25. PRO SUB PROAIR I

26. SCUBAPRO MK III/High Performance

27. SCUBAPRO MK IX/Air I

28. SCUBAPRO MK IX/Balanced Adjustable

29. SCUBAPRO MK IX/High Performance

30. SCUBAPRO MK X/D 300

31. SCUBAPRO MK X/G-250

32. SCUBAPRO MK X/Adjustable

33. SCUBAPRO HK X/Air I

34. SCUBAPRO MK X/Air II

35. SCUBAPRO MK X/Balance Adjustable

36. SCUBAPRO MK X/High Performance

37. SEA PRO FSDS-10

38. SEA PRO FSDS-50

39. SEA QUEST AMF MARES M 12 - III

* 40. SHERWOOD BRUT SRB 2100

41. SHERWOOD MAGNUM BLIZZARD SRB-3200

42. SHERWOOD MAGNUM II SRB-3300

43. SPORTSWAYS X-2

44. SPORTSWAYS X-3

45. TABATA TR-100
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46. U.S. DIVERS CONSHELF XIV

47. U.S. DIVERS CONSHELF 21

48. U.S. DIVERS CONSHELF SE2

49. U.S. DIVERS PRO DIVER
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