
\7l

A SOFTWARE PLANNING AND DEVELOPMENT

METHODOLOGY WITH RESOURCE ALLOCATION CAPABILITY

A dissertation

.b.y

JOSEPH BRUCE MICHELS

Submitted to the Graduate College of
Texas A 4 M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 1986

Major Subject: Industrial Engineering

87 11 10 092
i^ououtkiftjftJUjiMtttKVjrofiüftjOüAüM

00
00 o

00

<
I

D
<

lINCLASSlFIKn
StCURITV CLASSIFICATION OF THIS PAOB (Whtt DmlmKnl»t»d) ' . -~ *

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

AFIT/CI/NR 87-129D
2. GOVT ACCESSION NO

4. TITLE fand 5ubf/f(»;

A Software Planning And Development Methodology
With Resource Allocation Capability

5 TYPE OF IIWRT"» WTOO MWWJ

7. AUTHORS«;

Joseph Bruce Michels

9. PERFORMING ORGANIZATION NAME AND ADDRESS

AFIT STUDENT AT:

Texas A&M Univ
II. CONTROLLING OFFICE NAME AND ADDRESS
AFIT/NR
WPAFB OH A5433-6583

14. MONITORING AGENCY NAME t ADORESSCff dltlifnl Iram Controlling Ofllet)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

J. RECIPIENT'S CATALOG NUMBER

/jfaW&fe/DISSERTATION

6. PERFORMING OIG. REPORT NUMBER

i. CONTRACT OR GRANT NUMBERft;

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

^

12. REPORT DATE

1986
II. NUMBER OF PAGES

im.
IS. SECURITY CLASS, (ol Ihl» rmperl)

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRAOINO

SCHEDULE

It. DISTRIBUTION STATEMENT (ol (M. Ropotl)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED DTIC
17. DISTRIBUTION STATEMENT (ol lh» mbtlfel anlararf In Block 10, II dlllotonl Itom ftoport)

li. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 LYBN E.~W0LAVER M*i?f)
Dean for Research and

Professional Development
AFIT/NR

19. KEY WORDS (Conllnuo on rararta tid* II nacaaaary and Idtnllly by block numbor)

20. ABSTRACT fCoftdnu» on ravaraa «Ida II nacaaaary and Idtnllly by block numbtt)

ATTACHED

DD | JAN 71 1473 EDITION OF I NOV SS IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Whon Dmlm Enlarad)

;. •! ' . ^7 ff /Ö oiz
■ * ft

ill

^ ^

ABSTRACT

A Software Planning and Development Methodology with

Resource Allocation Capability. (December 1986)

Joseph Bruce Michels, B.S., Weber State College;

M.S., University of Southern California

Chair of Advisory Committee: Dr. Leland T. Blank

>• The purposes of this research are to examine the

planning and development. of large, generic based

software development projects and to propose a

structured methodology for software planning and

development (SPD). The SPD methodology presented

parallels the classic software life cycle protocol and

can be used in conjunction with this life cycle model to

structure decision making and resource planning in a

variety of environments. The concepts of kernel

construct and "templates'* are developed in conjunction

with a resource planning and allocation procedure.

Three distinct elements are integrated throughout the

proposed methodology: Technical, Managerial, and

Resource Use determination. Manpower loading

relationships are developed to devise an allocation

scheme for different personnel resources required within

the software development effort. ") n
H

^R
n
a

/■■. i', ■-<•'■.'; Of

•O. CM

'tCTSUV^v./.. M üto^AlMJWÜUUftiWWQUQirafflü^^

'?, u rf

■' The generic kernel and associated templates are

shown to apply to virtually any type of software

development environment. A major software development

project is comprised of many different generic kernels,

each one representing a different function or routine

within the software design. Various templates are used

to tailor the kernels to a specific application

environment. This tailoring facilitates graphical

depiction of the necessary interconnections, databases,

and protocols to be identified. C

Cost estimation based on resource use is determined

for in-house personnel development and external contract

vendor development. A building block approach to cost

estimation is presented. Each block represents a

specific development step of the SPD methodology for

software design and development. A personnel resource

allocation matrix (PRAM) is designed, which shows the

relationships between the personnel resource types, the

personnel types available in-house for each step, and

the requirements for external contract support. The

total personnel cost of the project can be estimated

from the various entries of .the PRAM, broken down by

quantity of in-house and contract support. The fiscal

and equipment resources are discussed in the SPD

methodology and the cost estimation for personnel is

modeled.

9^

All examples presented are based upon a

manufacturing scenario; however, the methodology is

applicable to any type of software development activity.

^v«tt&rt*AtiW^^

A SOFTWARE PLANNING AND DEVELOPMENT METHODOLOGY

WITH RESOURCE ALLOCATION CAPABILITY

A Dissertation

by

JOSEPH BRUCE MICHELS

Approved as to style and content by:

Leland T. Blank
(Chair of Committee)

jr^S^M^L. ojg
Sallie V. Shep^rd

(Member)

(Member)

Donald R. Smith
(Member)

MiTtoH^ JVoxr üfwltlfüenni G. s^mble Bennett
(Head of Department)

December 1986

tontnmKMMIMtMMHaMMffi^

vl

DEDICATION

To my twin brother, Dave, whose untimely death

during this endeavor caused me to realize what is the

true value of life.

vll

ACKNOWLEDGEMENTS

There are many people who must be acknowledged for

the support they provided during my graduate program at

Texas A&M

Dr. Lee Blank, my Committee Chairman, must be

commenaed for the tremendous support, guidance, and

direction he so aptly provided.

The enthusiasm of my committee. Dr. Sallle

Sheppard, Dr. Bob Fox, Dr. Don Smith, and the graduate

college representative. Dr. Eugene Sander, were

Instrumental in providing a strong support base in which

to carry out the necessary research activities.

The sage, wise, and often sought counsel of Dr.

Horace Van Cleave was important. Dr. Van Cleave

provided support at times when it was needed the most.

Major General M. Gary Alkire and Lieutenant Colonel

David J. Hewer were instrumental in allowing me to go

back to school. Without their support, this work would

not have been possible.

Mary Dudic of the Honeywell Corporation provided

the needed manpower loading relationships data. Her

help was invaluable in developing the personnel

resourcce allocation model.

My parents must be recognized for providing the

moral support and encouragement during the many trying

times when I wondered why certain things happen.

vlll

Colonel and Mrs. Henry Hill were instrumental in

providing the support I needed after the death of ray

brother. Their caring will never be forgotten.

V

iir<iiiTi<.T Timitifcinimnaniiaiifl iBi^fttwuMMiifc^M MMvaiUMuw

Ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION 1

Background on Information and
Automation 1

Systems Engineering 4
Need for a Comprehensive Planning

Methodology 6
Software Planning and Development

(SPD) Methodology Overview 8
Characteristics of the Developed

Methodology 11
Organization 13

II PERTINENT LITERATURE . 16

Overview of Recent Literature 16
Need for the SPD Methodology 22

III DESCRIPTION OF SOFTWARE PLANNING AND
DEVELOPMENT METHODOLOGY 25

Scope of the Methodology 25
Comoonents of SPD Methodology 28
Introduction and Definition of tne

Kernel Construct 33
Applying the Generic Kernel to an

Application Environment 37
Definition of the Template 40
Example of a Template. 42

IV DESCRIPTION AND USE OF SPD TEMPLATES . . 45

Technical Element Templates 45
Constraint Identification Template. 45
Generic Kernel 50
Organizational Database Definition. 51
Software Technical Factors 57

Management Element Templates 62
Managerial Decision Making 62
Organizational Management Structure 64
Automation Steering Committee ... 66
Software Development Team 70
Software Development Support

Environment 72

voasj/jwuKiAXKa iU> W>. V^aMC*\JkAAnjUVAAM\VL\AVLAAA.\AAAA>JU4^^

CHAPTER Page

VI

Resource Use Determination 83
Determination of In-House or

Vendor Development 83
Allocation of Specific Resources . . 91
In-House Code Development and

Integration 92
Vendor Development Procedure 94

Documentation and Training Requirements 97
Summary of Template Usage 101

SPD METHODOLOGY FOR PERSONNEL RESOURCE
ALLOCATION MODELING 103

Introduction 103
Description of the Development Steps. . 103
Components of Personnel Resource

Allocation Model 105
Resource Building Blocks 106
Manpower Loading Relationships . . . 108
Personnel Resource Allocation

Matrix (PRAM) 110
Cost Estimation Model 114

Other Resource Allocation Methods
Considered 117

CONCLUSIONS 119

Results of the Research 119
Recommendations for Further Work. . . . 121

REFERENCES 123

APPENDIX 1 132

Manpower Loading Relationships 132

VITA 140

LIST OF FIGURES

xl

Figure Page

1,1 Software Life Cycle 14

3.1 Correspondence of Software Life Cycle
and SPD Methodology 26

3.2 Software Planning and Development
Methodology 29

Generic Kernel 34

Generic Kernel Applied to Production
Scheduling 39

Database Template Example 43

Templates Which Apply to Technical
Elements of SPD Methodology. . . 46

Constraint Identification Template. . 47

Typical Organizational Databases. . . 53

Database Hierarchy 55

Division Hierarchical Databases ... 56

Software Technical Factors 58

Templates Which Apply to Managerial
Elements of SPD Methodology ... 63

Corporate Organizational Structure. . 65

Automation Steering Committee 67

Example of Project Development Team
Structure 71

Software Development Support Environment 73

Hardware Component of Development
Environment 74

4.13 Software Component of Development
Environment 77

3 .3

3 .4

3 .5

4 . 1

4 2

4 3

4. 4

4. 5

4. 6

4. 7

4. 8

4. 9

4. 10

4. 11

4. 12

xli

Figure Page

4.14 People Component of Software
Development Environment 81

4.15 Templates Which Apply to Resource Use
Phase of SPD Methodology 84

4.16 Resource Allocation Tree 85

4.17 Resource Capability Decision Tree . . 90

4.18 Implementation Procedure for In-House
Developed Code 93

4.19 Vendor Development Procedure 95

4.20 Documentation and Training Requirements 98

5.1 Resource Building Blocks 107

5.2 Personnel Resource Allocation Matrix
(PRAM) Ill

5.3 Personnel Resource Allocation Matrix
with Pij Coefficients 115

•

CHAPTER I

INTRODUCTION

Background on Information and Automation

With the introduction of the computer into virtually

all facets of enterprise and modern life, information and

information flow are vital to the success of any

organization. Without the receipt of timely information,

decision makers are at a serious disadvantage as

contrasted with their competition when key managerial

decisions are required. Computer systems that are fully

integrated allow for the access of various data types

within the enterprise. This integration allows decision

makers real time data access that otherwise would not be

available. Software is a key bridging link for

information integration between people, geographic

locations, technologies, and processes. With full

information integration between these elements, better

managerial decisions are made. The end result is an

increase in productivity and overall cost effectiveness

of the enterprise operation.

In order for information integration to be effective

in a corporate enterprise, careful planning must be

This dissertation follows the format used in IEEE
Tranactions on Software Engineering.

accomplished in the early developmental stages of

overall system design. The life cycle approach to

system development allows the designer to analyze all of

the elements of the system and study the various

interactions which affect each element before any system

component is actually developed. In this process

particular factors which may affect overall software

systems development must be identified early in the

design and development stages.

The development of an integrated information

management system is valuable in many different sectors

of business. As is well known, one of the sectors in

which significant economic return, productivity

enhancement, and quality improvement can be demonstrated

is manufacturing. Manufacturing is a prime example

because of the many high technology systems which

involve computers and information processing systems

that control manufacturing equipment. People,

production equipment and software are closely linked in

the manufacturing environment. Improved information

processing in all three elements enhances overall

efficiency.

Automation can be defined to be the "application to

established industrial processes of artificial devices

which can simulate the human psychic functions (senses,

memory, standards, Intelligence) in order that these

hdßÖMSAä

processes may acquire characteristics of adaptability

and self-optimization" [25]. An essential feature of

this definition is its implication that somewhere in a

physical process, or Its control system, there exists

data which plays a vital role. In fact, much of the

activity In a manufacturing system concentrates upon

data, rather than the actual material processing

activities as emphatically pointed out in the following

statement made by Mr. James Lardner, Director of

Manufacturing Operations, John Deere Company [45]:

"The principal activity of most people engaged in

manufacturing is creating, analyzing, transmitting,

and managing data, while the actual material

transformation is a secondary activity."

If information is defined as the data that is

playing the vital role, some type of control function is

required which insures that data coordination is totally

effectuated. Software must provide much of the control

for total information systems integration in an

automated environment.

The driving economic factor for manufacturing

automation is software development [39]. Industry

estimates that software is tne determining cost factor

of over 90% of the total cost of an automation project

[9]. Manufacturing has historically, except for the

last five to ten years, been a definite strength of the

American economy. However, that strength has been

severely eroded by foreign manufacturers due In large

part to their effective Introduction and use of

automated manufacturing methods In the workplace here

and In overseas companies.

The factories of America are often disjointed,

disorganized, and lack the total Integration of all the

manufacturing functions [47]. This disorganization has

allowed the various manufacturing activities (design,

production scheduling, inventory control, machining,

forming, and assembly) to develop and operate unique

types of hardware, software, and databases for each

discrete activity. This development has become

characteristically known by the term "islands of

automation*. None of the various functions are

integrated to capitalize on the synerglstic effect

present in an overall systems design [24], The result

is that many factories have little information system

integration, yet, they have many systems developed over

time and for many excellent, but poorly

coordinated programs.

Systems Engineering

A system is a set of interrelated components

working together toward a common goal or objective.

Systems are composed of components, attributes, and

relationships. Relationships may be described as

follows [3]:

1) Components are the operating parts of a system

consisting of input, process, and output.

2) Attributes are the properties or discernible

manifestations of the components of a system.

These attributes characterize the parameters of

a system.

3) Relationships are the links between components

and attributes.

In the context of software development, the system

can be considered to be comprised of two characteristic

elements—the managerial and the technical. Diametric

opposition of these two elements usually occurs when the

managerial elements have specific constraints on time,

budget, and degree of technological level thought to be

necessary to achieve the desired design function. The

technical element, on the other hand, usually has little

consideration of these problems; rather, it attempts to

define the degree of technological sophistication wnich

the project should develop. The result, in many cases,

is competing project objectives which do not easily lead

to overall project success.

The systems engineering approach to technology

management provides an environment for the integration

of both elements. Systems engineering is a process that

has been recognized to be essential in the orderly

evolution of man-made systems. It involves the

application of efforts necessary to (1) transform an

operational need into a description of system

performance parameters and a preferred system

configuration through the use of an iterative process of

functional analysis, definition, design, synthesis,

optimization, test and evaluation; (2) integrate related

technical parameters and -assure compatibility of all

physical, functional, and program interfaces in a manner

that optimizes the total system definition and design;

and (3) integrate performance, productibility,

reliability, maintainability, supportability, and other

specialities into the total engineering effort.

Need for a Comprehensive Planning Methodology

An understanding -of the software requirements as

specified in any system specification indicates that a

method is required which assists in planning for

information synthesis and integration in manufacturing

systems software. When the software is utilized to

operate and control the manufacturing activities,

information and decision integration will be present in

the overall manufacturing system of the enterprise.

MM^^

This system should provide cost estimation and

resource allocation models which can track cost

accumulation throughout the software system life cycle.

The model itself should be based on factors more

encompassing than simply lines of software code, and it

should be able to Identify the significant phases of the

life cycle in which substantial resources are expended.

The model should be able to be accessed at various parts

of the overall systems life cycle and should possess the

capability to graphically represent the various

components, attributes, and relationships of a system.

The design and development of such a methodology is the

result of the research presented in this dissertation.

The purposes of this research are to examine the

planning and development of large software projects and

to use the systems engineering approach to develop a

structured methodology for software planning and

development (SPD) activities. It is conceived that such

a structure can be applied in a variety of working

environments i.e., defense, manufacturing, services,

health care, etc. The end product of this research

effort is a documented structure including a graphics-

based resource allocation model that can be applied to

software development personnel assignments.

ito^M^^^^

8

Software Planning and Development

(SPD) Methodology Overview

The systems engineering approach provides a global

perspective of any problem and allows the analyst the

ability to systematically define, design, develop and

operate systems by taking into account all aspects of

the environment and the system itself from the

perspective of the management and technical decision

points [9]. Good system design reflects an optimum

balance among performance, support, and economic factors

which is attained through a trade-off and analysis

effort accomplished in the early stages of the system

development [?].

The systems approach in the development of software

cost estimation allows an analyst to understand the

various interactivities that the software has and the

equipment that must be interconnected. The developed

methodology employs two distinct elements—one

technical, the other managerial. The technical element

addresses the various technical factors that are

required for software development. These factors

include system connectivity, data protocols, use of

different types of equipment, dependence on various data

types, and the like. The managerial element considers

proper staffing of the development team, proper

organizational placement in the overall corporate

hierarchy of the development team, and definition of the

support environment in which the software is developed.

The support development environment Includes the

components of people, hardware, and software

productivity enhancement tools.

Many senior decision makers organizationally

responsible for the development and implementation of

software projects do not have the technical background

required to fully understand the various aspects of

software development and the different amounts of

resources required to adequately complete a software

development project. The significant problem with the

introduction of Computer Integrated Manufacturing (CIM)

is a question of managerial acuity rather than technical

diligence [17]. The result in many cases is an

industrial software development project which does not

adequately achieve all of the initial design objectives

and has a final cost overrun of four to six times the

initial cost estimate [87].

An organizational and cost modelling approach is

required which clearly illustrates how costs are

accumulated during software systems development life

cycle. This modelling approach should provide

strategic management a more responsive method to

<-^.H", «
%mb

10

allocate resources and to improve managerial decision

making.

Many of the available software cost estimation

models, for example, RCA Price S, Jensen, C0C0M0, and

Putnam C5], fail to address the overall cost

estimation/resource allocation question from a strategic

management perspective. The result in most cases is a

model that is typically based upon lines of developed

code. The level of accuracy available from these models

may be sufficient as an intermediate step in the

overall cost estimation/resource allocation process;

however, these models may fail to provide strategic

level management with a good understanding of how the

overall cost estimates and resource allocations are

achieved. Thus, in a global sense, these models are

possibly not 'robust' enough to adequately track costs

incurred throughout the entire system life cycle.

The system life cycle begins with the initial

identification of a need and extends through planning,

research, design, production or construction,

evaluation, consumer use, field support, and ultimate

product retirement [7]. A model is required which

addresses cost accumulations in all these phases for

varying software development environments.

Characteristics of the Developed Methodology

11

This research has resulted in a software planning

and development methodology which possesses project

organizing, resource identification, and cost

estimation. Technical and managerial elements important

to software development are addressed and integrated

into the developed methodology. Development by in-house

personnel and external contract vendors is considered.

The methodology is equally suited for use in a variety

of applications that address government, business, or

commercial requirements. The examples used in this

research are focused on manufacturing. A resource

allocation formulation is presented for allocation of

three types of resources present in a software

development project: (1) personnel, (2) equipment, and

(3) fiscal. The concept of a design kernel is

presented. A kernel, as used in this context, is

defined to be a set of functions necessary for

accomplishing a particular task. Generic kernels are

developed for different functional applications and then

detailed for specific software needs. This approach to

software planning and development provides a global

viewpoint of the project or list of projects. The

various interactions, connections, common data elements,

interfaces, and protocols can all De graphically

12

displayed. This type of display identifies most

incongruities in the design phase before the system is

actually implemented.

The SPD methodology focuses on the method in which

software development programs are managed and how

various resource categories are allocated in a software

development project. The methodology does not consider

the various types of information that are coded in the

software, methods of particular data coding, information

data structures, data scheduling or handling techniques,

or the quality or richness of the information in the

system. The SPD methodology could be extended to

include some or all of these components as separate

research efforts. Unlike the SPD methodology, however,

these extensions would not be generic as they would

require domain specific information.

A variety of templates is designed to examine

certain development actions of a software project.

These development actions are important from a strategic

management perspective and are considered to be critical

to the overall success of such a project. Lach template

is a flow-chart-style document which addresses critical

development questions. These templates, along with the

kernels, form the crucial parts of tnis methodology.

Although the various templates are generic in design and

can be transported to a variety of application unique

13

environments, this work addresses the manufacturing

context.

Academic and industrial research by Boehm [11] has

shown that 86% of the total software development costs

excluding maintenance costs are contained within the

implementation and testing phases of the overall

software life cycle which is presented in Figure 1.1.

As these phases constitute the majority of the cost and

resource expenditures for software development, the SPD

methodology specifically addresses these life cycle

phases (shaded boxes in Figure 1.1).

Organization

The second chapter reviews the literature pertinent

to this research. Chapter III discusses the development

of the system which is proposed for software planning

and development management. The concept of the kernel

and template are introduced and shown to be applicable

to software development activities. Chapter IV explores

the design of the various managerial and technical

templates as they are utilized in the SPD methodology.

The overall methodology is shown and then each series of

templates which applies to that part of the methodology

is detailed. Chapter V illustrates the resource

allocation/cost modelling process. The personnel

m

NEEDS

ANALYSIS

SYSTEM

REQUIREMENTS

SOFTWARE

REQUIREMENTS

PRELIMINARY;

^5 DETAILED S
:^ DESIGN^
^Vwwmmv^

fÄTEST AND^S

PRE-OPERATIONS

OPERATIONS AND

MAINTENANCE

LZGOC: PV

PHASES OF LIFE CYCLE TO WHICH r-ETHXOLOGY APPLIES

FIGURE 1.1—SOFTWARE LIFE CYCLE

toiÄ^SW^^

■i^WBVIBWVW

*

s

15

resource is used as an example to show how the approach

works. Chapter VI summarizes results of the work and

makes recommendations for extensions.

aaaaiiMx^^

16

CHAPTER II

PERTINENT LITERATURE

Overview of Recent Literature

Throughout the past ten years much work has been

done to develop adequate cost modelling methods for

software development. Putnam [70] developed the SLIM

cost estimation model based on his analysis of the

software life cycle in terms of the Rayleigh

distribution of project personnel level versus time.

Frelman and Park [26] report on the application of the

RCA Price S model which is particularly developed for

embedded systems in military applications. This model

uses a two-parameter beta distribution rather than a

Rayleigh curve to estimate the distribution of

development effort versus calendar time.

Boehm [10] developed the Constructive Cost Model

(C0C0M0) for software cost estimation. The model is

comprised of three increasingly sophisticated models

analyzing work breakdown structure and phase sensitive

multipliers for cost drivers. The basic model

determines the number of man-months required for a

particular software development from delivered source

instructions. The total project development time is

iaS^"

7^
IM*

17

determined from the estimated number of man-months.

Equations for maintenance actions and tightly

constrained embedded models are also included in the

basic COCOMO model. The intermediate COCOMO model

considers fifteen additional factors of software

development. These factors include categories and

subcategories of product attributes, computer

attributes, personnel attributes, and project

attributes. The COCOMO model uses multi-variate linear

regression to determine the statistical coefficients

required.

Thibodeau [86] proved that comparative results of

software cost estimation models were possible. His

research was inconclusive, however, as he was unable to

obtain definite results because each dissimilar model

examined was evaluated with different qualities of data

subsets. No one standard data set was used to evaluate

each of the different models. The best results were

obtained using models with calibration coefficients

against data sets with a minimal number of calioration

points. Nelson [62] determined that of 169 different

united States Air Force (USAF) software development

projects, there were too many non-linear aspects of

software development for a linear cost estimation model

to adequately predict software costs.

;^^Mtötö^^

■WMOTWHOTWWWVW

18

Devanney [19] identified three possible factors

that may contribute to software cost estimation errors:

1) Element of chance which makes cost estimation a

random variable

2) The estimation technique itself

3) Non-uniform and unskilled application of the

cost estimation technique

Wolverton [94] identifies traditional cost

estimation techniques to include the following:

1) Top Down Estimating—This type of estimating

relies on the total cost of large portions of

previous projects that have been completed to

estimate the cost of all or large portions of

the project to be estimated. History coupled

with informed opinion or intuition is used to

allocate costs between packages.

2) Similarities and Differences Estimating—The

estimator breaks down the jobs to be

accomplished to a level of detail where the

similarities to, and differences from, previous

projects are most evident.

3) Ratio Estimating—The estimator relies on

sensitivity coefficients or exchange ratios

that are invariant (within limits) to the

details of the design. The analyst estimates

the size of a module by its number of object

19

instructions, classifies it by type, and

evaluates Its relative complexity.

4) Standards Estimating—The estimator relies on

standards of performance that have been

systematically Developed. These standards then

become stable reference points from which new

tasks can be calibrated. This method is

accurate only when the same operations have

been performed repeatedly and good records are

available.

5) Bottom-up Estimating—This is the technique

most commonly used in estimating government

research and development contracts. The total

job is broken down into relatively small work

packages and work units. The work breakdown is

continued until it is reasonably clear what

steps and talents are involved in doing each

task.

The SPD methodology compares with these five

different categories in a variety of ways. The SPD

methodology is a top down hierarchical approach,

investigating each layer of design sequentially. The

use of the different types of kernels allows

similarities and differences of software functions to be

examined. The kernel/template concept allows a certain

I PWWWWVP

20

1%

standard to be designed for many types of different

software application environments.

One clear conclusion that may be drawn from the GAO

study Is that some type of plan that encompasses both

managerial and technical consideration is essential If

the project Is ever to deliver a product that can be

used. In each statement of why the software was

unacceptable to the government, lack of structured

planning appears to be a main contributory factor.

Bender, et al., [7] reported that limited results

were obtained for enterprise models and economic

environment models, but that their use has been limited

because of substantial development cost and difficulties

in establishing the data relationships and interpreting

model output. The terra enterprise as used in this

context means different types of companies or

organizations. Thus, different enterprise models

signify models developed for one particular type of

company or organizational environment.

Research by Parker [64] found that most enterprises

evaluated new software development projects by simply

studying subenterprise or application areas and tnen

attempting to integrate these various studies into

overall strategic and operational plans. This approach

was found not to be successful when the area was subject

to a variety of external influences over which minimal

■m^^^MM^^^^^

21

control could be exercised. What proved to be an

optimal solution in one part of the enterprise was not

necessarily overall optimal for the entire organization

External influences are defined to be political

persuasions, that is, increased requirements and add-on

specifications after the initial needs analysis has

already been accomplished.

Ahituv, et al., [1] found that lack of a documented

project plan and an inadequately defined project scope

were the reasons for a majority of project failures when

vendors were used to construct software. Their research

finds that a clearly written request for proposal (RFP)

removes most of this type deficiencies between the

customer and vendor. It was also determined by Cooper

[17] that the successful software development project

manager must have a software life cycle management plan

that encompasses not only the software development

phase, but all other" life cycle phases of software as

well.

Snyder and Cox [31] report that problems in

software development occur because essentially static

models of analysis and design might be avoided if more

effort were expended in the analysis and preliminary

design and development phases. Additionally, the

benefits of greater emphasis on the developmental phases

of analysis early in the system life cycle are

föS&ÄmM&Äi^^

22

recommended by McKeen [53]. Parikh [63] states that the

use of different software development methodologies can

save substantial costs, depending on the methodology

employed and the needs of the software.

Boehm [11] Interviewed several senior executives of

large companies and found that a viable strategic

company plan and senior leadership commitment are the

two vital parts of a successful software development

program for any company.

Need for the SPD Methodology

The process of software cost estimation Is very

uncertain. No one cost estimation moael or development

methodology exists which is conclusively superior to any

other. Most currently employed models use some form of

linear regression to determine model coefficients.

Research based upon a significant number of government

software development projects concludes that a

parametric linear cost relationship does not exist in

software cost estimation, thus questioning the validity

of the linear regression assumption.

Each of the above mentioned methods relies on

either past work, that is, a job that was done

previously and was similar (analogy) , or some form of

intuition on the part of the development analyst. None

23

of the methods discussed specifically divides resource

categories into those of personnel, fiscal, and

equipment within the estimation procedure.

Statistical distributions have been the basis for

some cost estimation models. The Rayleigh distribution

is used in the RCA Price S model. Other research,

however, found that the element of chance makes cost

estimation a random variable with non-uniform and

unskilled application of the cost estimation technique.

The lack of an overall structured development plan

provides various software designers no real way in which

to uniformly manage any type of development action. In

order to have effective project organization, both the

management and technical elements must be simultaneously

considered.

The SPD methodology presented here uses existing

cost estimation models to help support resource

requirements, but also provides the structure and focus

of a basic design architecture. The existing cost

estimation models are used before any actual resource

allocation is performed. This allows the analyst to

possess yet another input into the quantities of

resources required in developing the software projects.

This architecture uses the various types of templates

and kernels to provide both technical and managerial

structure to a development activity. The variety of

fewÄÜÄM^

2M

different templates allows different kernel types to be

adapted to the specific development activity. The

allocation approach considers resource subcategories and

provides an estimation of the overall cost of the

development activity.

fimsam^^A^

25

CHAPTER III

DESCRIPTION OF SOFTWARE PLANNING

AND DEVELOPMENT METHODOLOGY

This chapter introduces the SPD methodology and

compares it to the software life cycle. Contrasts and

differences between both are noted. The identification

of salient technical and managerial elements required

for software are identified and differences between

requirements for in-house development and external

contract vendor development are discussed. The

construct of the kernel and template is defined and

illustrated.

Scope of the Methodology

The correspondence of the classical software life

cycle to the SPD methodology is presented in Figure

3.1. The software life cycle contains the needs

analysis as an integral part of its overall system.

This is not the case with the SPD methodology which

requires that .the systems specification be an input to

the technical element. Since technical documents do not

usually include the managerial resource needs and

ramifications associated with technical specifications,

managerial resource requirements are normally applied to

mmmmmmmi

• «■■■a ■■■■«>■•■■■■•■■■ • mnm

26

SOFTWARE LIFE CYCLE

rCEDS ANALYSIS

SYSTEM

REOUIRD€NTS

SOFTWARE

REQUIREMENTS

PRELIMINflRY

DESIGN

DETfllLED

DESIGN

CODE, DEBUG
AND

TEST

OPERATIONS

AND
MAINTENANCE

SPD HEIHODOLOÖY

SYSTEM SPECFICATIONS

 1
TECHNICAL ELEMENT

UNDERSTANDINQ

OT SOFTWARE

NEEDS AND
REQUIREMENTS

ANALYSIS

USE OF DIFTERENT

GENERIC 'KERNELS

TOR APPLICATION

FUNCTIONS

MANAGERIAL ELEMENT

ORGANIZATIONAL

DECISION

MAKING

MODEL

SOFTWARE

DEVELOPMENT

SUPPORT

ENVIRONMENT

RESOURCE
USE

DETERMINATION

SOFTWARE

DEVELOPMENT

SYSTEM

OPERATION

FIGURE 3.1—CORRESPONDENCE OF SOFTWARE LIFE CYCLE

AND SPD METHODOLOGY

27

a project which is approved and deemed to be technically

complete.

From the viewpoint of the SPD methodology, the

understanding of the software needs and requirements

analysis is analogous to the system and software

requirements of the classical software life cycle. The

preliminary design and detailed design steps of the

software life cycle are analogous to specifying the

different kernels for., the various application

functions. In the context of this research, a kernel is

the nucleus or core of the functions that the software

is designed to perform. The kernel will be discussed in

greater detail later in this chapter.

The code, debug, and test blocks of the software

life cycle are analogous to the resource use

determination and software development blocks of the SPD

methodology. The system operation block of the

methodology compares with the operations_and maintenance

block of the software life cycle. Once the code has

been developed, tested, and integrated, the SPD

methodology stops since the planning and development

phases are complete. The phase of software maintenance

nnd enhancements/modifications are not specifically

^ luded in the SPD methodology.

This methodology introduces the managerial element

in parallel with the technical element. Several

28

distinct benefits occur because of this alignment.

Overall project communication between management,

development staff, and the actual personnel associated

with the results of the development effort is improved.

Better knowledge and understanding of exactly what is

required by the systems specifications provides for the

allocation of the various resources required for the

development effort.

Components of the SPD Methodology

■r.

.V.

1*

Mi

The first block of the technical element of the SPD

methodology (Figure 3.2) is defined as understanding of

software needs and requirements analysis. The systems

specifications document has stated this same

requirement, however, the reason for inclusion of this

block in tne SPD methodology is that it provides a

further clarification of what is required in terms of

software systems and their interfaces with already

implemented systems and databases. Many large software

projects are developed which result in an end product

that has failed to satisfy the original systems

specification document. In some cases, another

development effort is required to complete the design

and implementation of software to fulfill the original

specifications. The understanding block develops a

Ä&&&&^^

29

TECHNICAL ELEMENT MANAGERIAL ELEMENT

UNDERSTANDING
OF SOFTWARE

NEEDS AND

REQUIREMENTS
ANALYSIS

ORGANIZATIONAL

MANAGEMENT

STRUCTURE

APPLYING

GENERIC KERNELS

TO APPLiCATlON:

ENVIRONMENT

1
RESOURCE USE

DETERMINATION

SOFTWARE

DEVELOPMENT

1
SYSTEM

OPERATION

SOFTWARE

DEVELOPMENT

SUPPORT

ENVIRONMENT

FIGURE 3.2—SOFTWARE PLANNING AND

DEVELOPMENT METHODOLOGY

m

30

mechanism for Increased communication between the

technical and managerial staffs of a large corporate

enterprise by Insuring that both staffs fully understand

what the software should do. If a disagreement or

misunderstanding occurs, the requirements can be better

defined and described before any substantial sum of

fiscal and personnel resources have been expended.

Once an understanding of the software needs and

requirements analysis is complete the number and role of

the generic kernels is established. Generic kernels are

used to determine the kinds and types of software

required for application functions. The various types

of protocols, interconnections, and data elements that

are required for successful information integration are

graphically depicted in the generic kernel.

The managerial element of the methodology is

comprised of two blocks. The organizational management

structure block is comprised of defining the overall

managerial support for the project and determining the

actual managerial structure of the software development

team. It is suggested that an automation steering team

be developed at senior management levels. This team

would be comprised of functional representatives of the

various departments affected by the introduction of new

software. Representatives from finance, personnel,

31

budget, engineering, and supervisory production

personnel should serve on the steering committee along

with the director of software development. The director

of software development would have a subordinate team

whose sole function is to develop the required software

specified by the systems specification document. This

approach improves communication and cooperation between

all concerned parties.

The software development support environment block

requires the definition of the necessary tools and

resources required to develop the actual software.

Three components comprise this environment:

1) Hardware

2) Software

3) People

The hardware component includes the necessary types

of machines required for the development and testing of

the newly developed software. This includes equipment

such as personal computers, executive workstations, and

micro-mini and mainframe computers. The software

component includes software development productivity

aids and support tools which assist the programmer in

developing the software. The people component of the

support environment includes the necessary managers,

engineers, technical support personnel, and programmers.

The resource use determination Mock is the key to

Wv* ^^mm is

i iiiBi ans UP ■■■i» ■■>■«■■

32

effective utilization of resources in the completion of

a software development project. Within this block are

included the two primary methods of completing the

project. One for in-house software development, the

other external contractor development. In-house

software development is concerned with having the

necessary resources required to develop the complete

system using the corporate enterprise's own staff. If

insufficient in-house personnel are available, either

partial contractor support or full contractor support

will be required. Partial contractor support would be

required to augment those in-house personnel available

to be assigned to the project while full contractor

support would be necessary if no in-house personnel were

qualified or available.

If a project is unable to be accomplished with

organic personnel, the necessary scope, size, and

pitfalls of the development effort are usually

recognized after determining available resources. The

scope of the overall project requires that the in-house

staff be familiar with overall resource requirements.

Many large software development projects have been

completed by contractors with in-house personnel

monitoring the contract. In most cases, when the

contract changes are requested by the contractor they

are granted because in-house personnel responsible for

l-JlTtfl V-

wvwviww^w^^wmww*

33

contract monitoring fail to realize the overall scope

and magnitude of the development effort. This

methodology assists the in-house staff in understanding

the overall scope of the software development project

and determining the necessary level of resource

expenditures.

The last shaded block in Figure 3.2 is labelled

software development. This block is concerned with the

actual coding process, tests for functionality,

modification of the developed code, and integration of

the code into plant operations. If the code is

developed by an external vendor, consideration is given

to the purchase of off-the-shelf code, modification of

off-the-shelf code, or development of new code to

fulfill customer needs. Training and documentation are

also addressed within this block.

Introduction and Definition of the Kernel Construct

The SPD methodology uses the concept of a generic

kernel (Figure 3.3) to model various software

activities, processes, and functions. Each major type

of process control, utility, or function that is to be

performed by a software package or system can be

represented by a kernel. Each kernel has different

levels associated with it, with each level performing

vi

3«

SYSTEM ;

■INTERFACE

:• DATABASE

i INPUT i:. CONTROL ;

PROCESS \

MODULE •

DATA

; REFEMNCE j

;: MODULE j
| CONTROL ;

I MODULE
1

CONTROLLED

ACTIVITY

wwrwrmwwwrf

CONTROL
SUPPORT .

SACTIViTY
 ■

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

CONTROLLED

TASKS

FIGURE 3.3—GENERIC KERNEL

35

different functions in the overall software package or

system. Depending upon the type of kernels required for

any one particular development, different levels could

interface with various databases, have various

communications protocols, application packages, utility

programs, or database management and control systems to

provide control to other parallel or subordinate kernel

levels.

A certain hierarchy of ordered elements is inherent

to the generic kernel. Level one components provide an

interface to the organizational information system.

Databases and programs at this level contain data about

a particular department and certain utilities to provide

the information interface to other departments within

the corporate enterprise. The linking of two or more

kernels is made at level one when more than one kernel

is used within a specific application.

The number of kernels that are contained in any

given software development project should be minimized.

This minimization of different kernel types allows a

integrated, homogeneous development while providing for

kernels which contain a maximum number of similar

functional elements, thereby improving overall coding

speed and operational efficiency.

Level two modules provide the actual control of the

activity that is being automated. The key module of the

36

kernel is in level two—the control process module.

This nodule is integrally connected with the system

interface database, and has as inputs the data reference

raodule(s) and input control(s). The input control

module allows for one or more different control actions

that can be accomplished either in series or parallel

depending upon the actual process. The data reference

module can be attached to the control process module in

either a serial or parallel configuration.

Level three modules serve as a buffer between the

control process module and the actual controlled tasks

that are found in level four. A buffer as used in the

kernel context provides for connection of different code

protocols, languages, or data types. It is possible

that different language types and software tools already

developed would be simultaneously contained within level

three. A controlled activity could be a type of

process, operation, or event that requires simultaneous

inputs and outputs. The control support activity is

designed to serve as a reference function for the

controlled activity. This reference function could

serve as a database, data element dictionary,

measurement standard, or utility package required by the

controlled activity.

Level four activities are the controlled tasks that

receive driving signals from the level three modules.

t^M^m^^^^^

37

4

The actual type of tasks may vary dependent upon organi-

zational environment. However, these activities are at

the lowest level in the organizational hierarchy. These

types of activities include machines, purchase order

writing, quality control functions, flow level control,

vision inspection systems, and the like.

Each of the modules within the kernel are designed

to perform a specific function regardless of the

operational environment. The kernel construction allows

for the possible introduction of off-the-shelf software

to fulfill any module function. Each level of the

generic kernel is designed to consist of approximately

1000 delivered source instructions of code. The 1000

source instructions size of the kernel is considered by

industry to be a realistic kernel size [22]. Although

the SPD methodology does not specifically use the

delivered source instructions metric for a measurement

standard, most individuals who are conversant with

software design can easily relate to such a measurement

tool. This metric provides a rougn guide to nominal

kernel size.

Applying the Generic Kernel to

an Application Environment

To apply the kernel construct to an operational

environment an example from manufacturing production

38

scheduling is developed in Figure 3.^. The level one

function in the production scheduling example is the

manufacturing database which provides the information

interface of the manufacturing function to the other

sectors of the enterprise. Most data common to the

manufacturing function is usually contained within this

database. There are three serially ordered input

controls in level two for this example. The engineering

design database inputs to the computer aided design

process information giving the general specifications

and characteristics of the parts processed through

manufacturing. Process planning uses the design from

the computer aided design and develops the controls for

the production scheduling procedure. Data reference

modules in this example are parallel in nature.

Material requirements planning, automated storage, and

retrieval and many other activities must be considered

independently before the final production schedule is

complete.

Level three activities include (at a minimum)

computer driven and conventional machinery and the

quality control module. These modules are equivalent to

the controlled activity and the control support

activity, respectively, in the generic kernel. The

quality control module is labelled a 'controlled support

activity' because of the supporting role that the

&Mfe>ffl^^

39

COMPUTER.
AIDED;':

DESIGN-il

• PROCESS ■••'•:
PLANNINO

ENGINEERINa
,;.:; DESIGN ■;:■:■:;::;

DATABASE

J~
DRILLS:

MÄNÜFACTÜRiNG

DATABASE]

PROOUCTION

SCHEDULING)•

•^^^^v^^

COMPUTER

AIDED .j4

MACHINERY

L
LATHES

WWWWWW'WWffW'W

ROBOTS:

LEVEL 1

MATERIALS

REQUIREMENTS ;

■s'Pl^NiNGl

LEVEL 2

■: I'.yTPM.^Tf.PS

STORAGE

^ND ;;

RETRiEVAL

m QUALITY CONTROL
 • ■

LEVEL 3

LEVEL 4

!!.;.,-M-;v-v.|*vw-:'V!i

iFLEXIBLE -
MACHINING I

mCENTER

i ASSEMBLY I

SYSTEMS

FIGURE 3.4--GEN.ERIC KERNEL APPLIED

TO PRODUCTION SCHEDULING

&v:v>S

40

quality control function performs. Once the production

schedule is developed, the various data is delivered to

manufacturing system machinery so that the respective

part can be produced.

Level four activities are the discrete controlled

tasks which comprise the entire manufacturing process.

Each of the various machines are assumed to be computer

driven.

Definition of the Template

The SPD methodology uses templates as critical

design tools that allow the various generic kernels to

be tailored to a particular application environment. As

discussed earlier, the generic kernel is applicable to a

wide variety of software development environments.

Thus, any software development project is initially

comprised of generic .templates depicting the various

functions required of the software. Several of these

templates are discussed in this section. Others may be

added as the situation warrants. After the various

templates are applied to the application environment,

the kernel becomes tailored to the specific application

environment under development.

The frequency in which the templates are used for

any one particular development activity is contingent

41

upon many factors. Managerial thread templates would

most likely have minimal change once the template was

used. Once a team development managerial structure is

designed, minimal changes usually result. However, this

is not the case for the technical thread templates.

Technical thread templates may be used several times in

one development, depending upon number, complexity, and

type of the various design kernels contained in the

overall software development.

During the entire software planning and development

process, the series of technical templates focus on the

various technical considerations with which a software

designer is concerned. These concerns are type of

language (high or low level), protocols,

interconnections (between different databases),

machines, and types of data.

The managerial templates focus on matters such as

software development team size, composition, and

staffing. The software development team is actually

responsible for developing, coding, testing, and

implementing the software system. The types of various

team members and the disciplines they represen:, that

is, engineers, accountants, supervisory shop floor

personnel, and managers are also considered. The

development team work environment is also a managerial

concern. If tne development process is to progress

;M^Ms^iMW^^

H2

smoothly, the different types of hardware available for

the team to use, programming aids that enhance

productivity, test bed environments for developed

software are all managerial resources that must be

planned and allocated.

Each template possesses certain characteristics

which make it adaptable to many types of application

environments and any size of software development

effort. These characteristics include:

1) Use of generic template labels

2) Identification of interfaces, protocols, and

data elements necessary for interconnections

3) Accommodation for a structured, hierarchical

process necessary in software development.

Example of a Template

The example of a template (Figure 3'5) shows the

various databases that are located within a specific

division of an enterprise. The hierarchy of tne

databases are displayed, as are the different types of

databases for the division. If this template were to be

used in an actual development environment, the analyst

would identify the applicable division and department

level and lower databases, the relevant data elements in

each database, Communications protocols currently used

'^^M^^^^

43

;A; DIVISION DATA BASE AV
t * « t * t » 1 t » t « t t « « t « • « t « t t « « 1

 i 1 J
;v OEPÄBTMENT •;«; >;>.oePA«TMeNf;

;$ bÄTÄBÄSE V%
/W\W//»***#V////i */*/*#*/,/***/***/***y**'*,/*i

:<:>: DATABASE <;>;<;•; ;;;;.DWTäBASE.V;;;
iftt»fttit,t$,t,,. #%*/*** W/#V/%V#*#*#*/*<
* ,\'.'.'.WW'.WWW '.'/.'.'/.','.''.'.'.'.''''.'

1
i J
Mil IM M frr-n (department section

dAUbtses)

FIGURE 3.5—DATABASE TEMPLATE EXAMPLE

■■■■■■■■■■V« IP«»»W»»1»^» rw^^rwrn ^|» »■ l»

aa

and those that may be required in the future to access

the data, and the types of interconnections necessary.

This identification of database parameters by this

template allows a (generic) database kernel to be

tailored to a specific application environment for

database requirements. This same procedure would be

utilized with each of the templates discussed later

until each kernel is tailored to the selected

application environment.

The various templates discussed later comprise the

•shell' of the actual software development. Each actual

development project will be different and the shell is

designed to accommodate those anomalies by aiding the

analyst in an adaptation of the templates to the

specific application environment for which the software

is being developed.

■jMiiiiiiteä^^

45

CHAPTER IV

DESCRIPTION AND USE OF SPD TEMPLATES

This chapter divides the various SPD methodology

templates Into the three categories to which they

apply. Each template series—technical, managerial, and

resource use is presented in coordination with the

overall SPD methodology as described in Chapter III. A

description of what each template means and how it is

used in the context of a software development

environment is presented.

Technical Element Templates

There are five different templates (Figure 4.1) that

apply to the technical element of the SPD methodology.

Each template will be discussed except for the

application of the generic kernel since this was

described in Chapter III.

Constraint Identification Template

The constraint identification template (Figure 4.2)

is one of the first steps in the use of the SPD

methodology. Many software development projects have

been initiated and terminated after significant

46

I*I i^ wi i T i i i *■ imi^\ ii i P'I i lyt'ii'*

ahrsrzMS spinncimoHS

TECHNICAL ELEMENT

M ■'..■ "";'■.' —i

UNDERSTANDING
ill'ör sartWÄwc'lll

NEEDS AND:.':

REQUEREHENTS
■ ' • ■

f| ANALY?

IIWUM,!,!,!-!;1 ..-

.-^JAmYlNö
ÖD^c'KnUTOLS"

mmmmmmmm
J TO APPUCATION
sDIVmONHENT

\

SYSIZtlS SPECIFICATIONS

H CONSTRAINT rH
[iDDrraScATioN"
^TDiJMTEii

USE GENERIC KERNEL .'■
TO pPmiY SCTTWAME
E?^ FÜi^ONSl^i^
TirnfMiTirtuMiuMiiUiiAHUiiiiiniiiiii

A»LY G»pyc KPNP.
|||TÖjÖnJCÄTION^
:HH ENVIRONMENT SSs

; DEHNE ORGANIZATIONAL ■■
■^•DATABASÜT""

■■■■w»iwwiwiwww>iiiM»niimwii>niwigwf

• IDENTITY TECJWICAL:
rsÖmÄWE ifÄCTORS 5

FIGURE 4.1—TEMPLATES WHICH APPLY TO TECHNICAL

ELEMENTS OF SPD METHODOLOGY

^7

jj^YSTgMJ'sptClFiiC^TIQWS OCCUMEMTI

lUNPERSTANO FEATURES xi

" AND' I',::,'',:.

FU^^T1Ö^4S OF SPECIFIED

SOFTWARE

SäS;/;; USE GENERIC J

KERNEL TO IDENTIFY

SOFTWARE FUNCTIONS

NO ♦—♦

YES

REASSESS

:;; NEEDS AND

REQUIREMENTS
FOR

CURRENT

'TECHNOLbCY
'-"• ■'•nV-in'- -Yi'-'ir-'-r'

. .1, .■'. ..TI
1
."..--

REDEFINE; .
NEEDS SO THAT

CONSTRAINTS

ARE OVERCOME

FIGURE 4.2—CONSTRAINT IDENTIFICATION TEMPLATE

p mm mm* •■ 11« ■ ^ ■■ P« « ■ ■ ■ ■

48

personnel, fiscal, and equipment resources have been

expended only to find that the requirements in the

systems specification document were actually not

technologically feasible or faced so many possible

constraints that the project should have been declared

infeasible at its inception. The use of this terapla e

allows the analyst the ability to identify possible

technological deficiencies in a systems specification

before an inordinate amount of work is expended trying

to develop some system, process, or procedure that is

not able to be successfully accomplished.

The systems specification document is an input to

the methodology. One subset of the specifications

document should be the software requirements which

define the functions of all needed software and,

therefore, the actual code requirements. The desirable

properties of a specification should include

completeness, consistency, comprehensibility, trace-

ability to the original requirements, unarabiguity (hence

testability and/or verifiability), modiflability, and

write-ability [92]. Costs and constraints should also

be stated in the specifications document [74],

Knowledge of the final cost that the project is not to

exceed as set by management and of the constraints that

may impact the final product allow creative solutions to

be investigated early in project design.

^tö&r^M^^^

U9

Graphic tools are available that assist the design

engineer in software specification development. The use

of the visual table of contents (VTOC) [41] provides a

broad overview of the "raodules" or paragraphs of the

different source code requirements comprising a

program. The VTOC provides a means for others to gain a

broad scale perspective of the finished program and

indicate how the corresponding modules are interrelated.

To meet the written software requirements using the

SPD methodology the first step is to establish a

complete and thorough understanding of the desired

functions and features of the software. This step is

one of basic engineering feasibility, that is, a

determination of what Is requested and if it can Indeed

be accomplished with available technology. The results

of a state-of-the-art survey are used to determine if

the software requirements represent a system that is

technically feasible or if technology gaps are present

which could prohibit the successful completion of the

project. If the analysis finds the system as specified

to be technically feasible, the next step is constraint

identification (Figure 4.2). This step involves

identification of any constraint that may sincerely

hinder successful development. The key point is to

remember that all major constraints that would hinder

the implenentation of the project should be identified

50

at this step. If the specifications are found to be

both technically feasible and not severely constrained

by factors that would hinder successful project

completion, the generic kernels are developed to detail

the software functions required to satisfy the

specifications document.

If the systems specifications (or some part of

them) are not technologically feasible, a reassessment

of the specifications must be conducted for use with

current technology. This is an iterative procedure that

must be executed until the needs and current technology

are congruent. The same logic applies to constraint

Identification and resolution. Satisfactory completion

of both these steps is important before the

determination and use of the generic kernels proceeds.

Generic Kernel

Once the technological feasibility and constraints

are. resolved, the use of the generic kernel identifies

the various software functions. The description of the

generic kernel and an application environment were

presented in Chapter III.

■■■■ •••■•>«-*«v>«■*•vvi I IIS II ■■■ I I I PI^I^IIWIWI«

Organizational Database Definition

51

The identification and definition of existing and

required databases are important in the use of the SPD

methodology. Knowledge of the location of various

installed databases, the types of data elements

contained within each database, the type of

architectural structure of each database, and the

required data communications protocols necessary between

databases provide the system analyst with vital

information. Knowledge of these above-mentioned factors

insures that newly designed systems can be developed

with minimal difficulty, cost, and redundancy.

Failure to spend adequate time in database

definition before full scale systems development begins

has proven to be extremely costly. General Motors

studies [71] have found that approximately 50% of the

integration cost is spent on communication equipment and

33% of the integration time and cost is expended

developing custom software for each different type of

device. These costs could probably be substantially

reduced if the analyst investigated the database factors

before beginning actual development.

Database definition should always be done for

projects involving fwo or more databases. If only one

database is in\i.\^u, this step may or may not be

52

£

accomplished depending upon the level or depth of change

being made in the respective database.

Many different databases may exist in any large

corporate enterprise. The purpose of the template in

Figure 4.3 is to identify each of the applicable

databases at division level or higher in an

organization. A division is comprised of a grouping of

like-type activities or departments in the enterprise.

Although the labels of the databases in Figure 4.3

reflect a manufacturing concern, note that many

divergent databases are present in an organization. The

personnel database may contain administrative data on

the various employees, but also contains skills

inventory and work standards necessary for different

types of manufacturing activities. The financial

database may contain budgetary and financial information

on the overall economic condition of the enterprise.

The marketing database may contain client lists, new

orders, descriptions of the various products tnat are

manufactured, and other types of sales information. The

engineering database may contain engineering drawings,

engineering change requests, and currently developed

products that are being engineered but not yet in

production. The manufacturing database contains master

schedules, work in progress, work completed, parts on

order, and inventory. Certain manufacturing standards

tt^:tt>M>;^^^

53

CORPORATE 'v

uiiiiii.iJHiIiiiiiwiiiii «miiimiiiiliiiiuiiiiia ■iiiiitiiiiiuiiifini/nriiii ■iiiiiiiiiiiiiliJiiiiiiiJi...a nfiiiifflmiiln.

//PERSONNEL

»^DATABASE'

FINANCIAL/:
ÖÄTABASE^ BfiilTM^.™

?MS^ETING1: ENGINEERING.
v DATABASE v.

fiwmwtwwimi

•~ MANUFACTURING '^
:Vä-DATABASE ÄvHv

FIGURE 4.3—TYPICAL ORGANIZATIONAL DATABASES

5^

fr

including time, labor, or parts consumption (bill of

materials) may also be included in this database.

After the divisional databases are identified, the

next step is to identify departmental databases. Figure

4.4 identifies a database hierarchy in which a division

database has three subordinate departmental databases.

In each level, the identification of data commonalities,

data elements, communications protocols, and unique

computer requirements must be completed as explained

above.

This same hierarchical process of database

identification must be completed to the lowest level

database in a department. Figure 4.5 illustrates a

possible divisional database hierarchical schema in

which departmental and lower databases are classified

according to their application, not their resident

organization, that is, department. In some cases, the

task unique databases may be difficult to locate or

non-existent. Some of the lower level databases may

have information contained in a variety of locations or

on several computer or manual systems, that is, not in

the form of a typical computer database. Often tnese

files are as important as the data contained within

large, formal, and maintained databases.

i&mMM^k^^

""

55

; CORPORATE

INFORMATION ;

SYSTEM

! ,

OIVISION

DATABASE , •;

i t 1 i
DEPARTMENT |

DATABASE
:.: DEPARTMENT

; DATABASE
DEPARTMENT : :

DATABASE'

FIGURE 4.4—DATABASE HIERARCHY

MÖÖMMÖM^^

■ i IMIU i ivifwiBM nvn« n ■!(■ PP« n ■ uv^v *• v *■ T«

30

FIGURE 4.5—DIVISION HIERARCHICAL DATABASES

57

Software Technical Factors

There are many different technical factors that

comprise software development. However, five of them

(Figure 4.6) are considered significant when considering

overall resource planning. Whenever a large software

development project is to begin, substantial thought

must be given to the initial functions to be considered

for automation. In the context of this research, a

function is defined to be a set of related operational

activities that perform a distinct action or control

upon some type of work place.

Most development engineers have found that

introducing automation oriented software incrementally

into the plant is more satisfactory than to attempt

automation of the entire plant at one time [37]. A

systematic, incremental introduction of automation

allows learning and problem resolution before

significant overall difficulties occur. In a

manufacturing context, consider as prime candidates for

automation those functions where the smallest amount of

recognizable change or least ■ possible factory line

disruption will occur. Such functions usually provide

the least disruption to the overall factory process and

may be placed on the previous operation method if

software problem resolution is required.

i^^^M^

58

*i SELECT FUNCTIONS I

Mill , i) »"-. ~-». —~»—Hg^j

?i IDENTIFY AND ESTABLISH
i ÖAfA ELEMENTS AND DATA llH

' * ELEMENT DICTIONARY

X
"'■ IDENTIFY INTERFACE Ä

'RETIREMENTS TO L;.'

1 OTHER SOFTWARE ANOpi

^•fl DATABASES

ESTABLISH LANGUAGE TYPES I

I FOR SOFTWARE DEVELOPMENT |
■ i.i i i rVi»:

 ^■ii.j.y j.. . i iii

DEfERMINE TYPE OF :
....

;CONTROL
- ■ •■■ ■ ■----■ ■ ■ ■

FIGURE 4.6—SOFTWARE TECHNICAL FACTORS

I"« " ■ H« ■«■^* ^v*

59

If an enterprise has had previous experience with

automation software and information systems integration,

the identification of initial functions is required to

recall the problems encountered during previous

automation projects and to insure that those problems

are not repeated. This may be done through a meeting of

those involved in the current software development

activity and the personnel (if possible) who had

responsibility for the previous project.

After the functions for automation have been

identified, new data categories and the addition/

establishment of the data dictionary must be

considered. This step is placed after the

identification of functions for automation for several

reasons. Knowing which functions are initially

automated and the data categories involved helps the

analyst identify the need in the software development

effort. Also, knowledge of the data categories involved

in the automation project assists in the identification

of the various interfaces and data exchanges that may be

required.

Often individual sofcware projects are completed

and found to be independently functional, however, once

an attempt is made to integrate the discrete package

with a system, the problems are identified.

Identification of the data interfaces provides

imt WVW'VVaVVl'V

60

knowledge of the various protocol requirements and

should prevent substantial interface problems.

The language in which the software will be

developed is selected after the successful

identification of the data categories and interface

requirements. Higher order language possess distinct

benefits for software development, especially in terms

of productivity of programmers. Documentation and

maintenance of a higher , order programming language is

considered to be easier than working with a lower level

language [79]. Maintenance and problem resolution on

lower level languages usually requires more time to

debug because of the amount of time necessary to learn

exactly what the program is doing [27]. Language type

is a major concern of the development engineer as

personnel resources are a large factor in the cost of

overall software development. Detailed discussions of

different language choices is presented in [55] and

[77]. The C, LISP, and PASCAL languages are discussed

in [16].

The determination of the type of control which tne

software will provide is the final technical factor that

requires consideration. In most industrial automation

applications real time control is necessary. Batch

control is seldom preferred because of the dynamic

characteristics of tne manufacturing environment. Often

>>>K7;

61

automation projects developed by programmers who are

highly experienced in batch mode development and

naturally feel qualified to develop real time software,

have poor results. This experience may be present

because programmers who do not possess a basic

familiarity with real time control software may be

unsuited to develop automation software which has a real

time control. This unsuitability is caused because of

the dynamic, interactive .characteristics of real time

software when compared to software developed in a batch

mode. Real time software is dynamic in nature, that is,

parameters and data elements are constantly changing,

depending upon the application. Programmers who fail to

possess these characteristics and the necessary

'mindset' that is required for real time control attempt

to force the system design into a batch mode

orientation.

Each of the technical factors described above are

important in determining the overall resource

expenditure for automation software development.

Failure by the software development engineer to consider

any one of these factors when determining the scope of

the development effort may possibly result in an

underestimate of the several resources required.

■mtixs mmtimm

rwm

Mangement Element Templates

There are four different templates that apply to

the management element of the SPD methodology. These

templates are identified in Figure 4.7 and described

below.

Managerial Decision Making

62

In a corporate enterprise decision making usually

occurs at three levels. The strategic level is con-

cerned with long range planning, competitive position,

market share analysis, research and development, and

financial posture for the planning horizon of five to

fifteen years [38]. This level is most concerned with

concepts, policies, and how new innovations and products

may substantially contribute to the overall competitive

posture of the enterprise.

Contrasted with the strategic management level is

the tactical level which focuses on decision making

within the enterprise itself. Concerns at this level

utilize a planning horizon of one to three years and

primarily address production quotas, assigned goal

attainment, and implementation of policies made at the

strategic level [42]. Less conceptual planning is done

at the tactical level since more attention focuses on

achievement of enterprise goals.

63

MANAGEMENT ELEMENT

4
■^OIWANIZATIONAL

'|||yiANÄaiD^rri|

1STRUCTUIU::

 .

.kj SOFTWARE

^ DEVELOPMENT ,
:J /SUPPORT

ENVIRONMENT
—-—« ,

H- DETERMINE LEVEL Hi
v OF DECISION MAKINO ~

:Dm^.OMÄNI?Ä?5.0NAL

 I Timin I

•v; APPOINT AUTOMATION JS
iHvi STEERING TEAM iH

■SELECT PROJECT TEAM"'

^ DjE^E SOITW^ v^

^SUPPORT "^WRÖNMENT"

FIGURE 4.7—TEMPLATES WHICH APPLY TO MANAGERIAL

ELEMENT OF SPD METHODOLOGY

s
64

The operational management level is at the heart of

corporate enterprise and is responsible for planning and

execution of the tasks that make the enterprise

operate. The planning horizon of decision making is

very near term, usually several months up to a year

[31].

Senior level management support is necessary for a

successful large scale software development project.

This support should take the form of dedicated

personnel, equipment, and fiscal resources required to

accomplish the task, and more importantly, a will and

dedication to implement new and significantly different

operations procedures once the project is complete.

This type of support is garnered from a senior executive

who has a vested interest in the success of the

particular system and who has overall responsibility for

primary user departments [30]. This individual should

be at the vice president level and have a significant

influence in overall corporate decision making.

Organizational Management Structure

The organization chart in Figure 4.8 is adapted

from Koontz and O'Donnel [43] and shows a typical

manufacturing organization. The company has four

divisions which are headed by vice presidents. Numerous

65

BOARD OF DIRECTORS

PRESIDENT

P

MARKETING ENGINEERING PRODUCTION

RESEARCH

MARKET
PLANNir/G

ADMINISTRATION

DESIGN

PRODUCTION
PLANNING

INDUSTRIAL

ADVERTISINO
ELECTRICAL
ENGINEERING

ENGINEERING

AND

PROMOTION

SALES
ADMINISTRATION

MECHANICAL
ENGINEERING

HYDRAULIC

PURCHASING

TOOLING

SALES
ENGINEERING

QUALITY CONTROL

PACKAGING

FINANCE

FINflNCIftL PLflMING

BUDGETS

GENERAL ACCOUNTING

COST ACCOUNTING

STATISTICS (*€>
DATA PROCESING

aeamnauanaB

FIGURE 4.3—CORPORATE ORGANIZATIONAL STRUCTURE

1
■1
•

66

1 subordinate departments are contained within each

J division. Although the vice presidents of engineering,

j production, or finance might be equally well suited as

| the automation sponsor, in this case the vice president

Y for finance is probably best suited for the task because

P this division is responsible for financial and economic

E planning decisions. More important, however, is the
1
,,■ vast experience that this individual possesses with

I different types of information and corporate data

" automation systems. The broad experience gained from

] knowledge and use of other corporate data systems allows
»

I the financial vice president to effectively articulate
i

1

[to senior corporate management the benefits and results

obtained from automation software.

j Automation Steering Committee

• s ...__. ...
The vice president for finance may be the senior

executive responsible for automation and software

development, but the specific managerial, technical, and

administrative details are best left to an automation

steering committee (Figure 4.9). This committee is

structured to function as a working committee to

implement policy decisions. The committee should report

to the top echelon of the organization and have

delegated to it specific discretionary authority. Each

^ii
<*/■•. iiiF' ÜMMMA

67

iHMIMIIHWfWi

•>; STEERING

COMMITTEE.;

^DIRECTOR^

 i '
TTWTtTfffTffffWwmTtWWfTfmilllllH ffmif**tlllllllllllllllin

iiiunniiuiiiimiiiiiiiiiii

:? iNFÖRMÄTi'ÖN
:••: MANAGEMENT
HCONSULTANT:

: FUNCTIONAL;

REPRESENTATIVES ■•-

vv; ACCOUNTING v//

*tltifflttttttlttt4

V FINANCIAL MGTVJ
'////////< ^F^^^^rt^pT^^^^^^

V/ MARKETING V-VV/
1,1,1,1,1,1,1,1,1,1,11111,11

> t > > * 1111

PRODUCTION
' / if t/t

iiiiiiiiinnfmffffiffffv

■■sÖFfWARE'DEVELÖPMENT':

JL
/>V AUTOMATIONAV,^

''PROJECTNMANAGER ■

iiiininriHii uiiiiiiiiiiiiiim

ENGINEERING

■ EXPERTISE»"

■ffttttttft/tftttt
,x*\\ •■'■■•■■ " V\S\

»» DESIGN, ;.V^
OJ < \'/V>'>'i'i'/^'/n'/V

FIGURE 4.9--AUT0MATI0N STEERING COMMITTEE

68

steering committee member is partially responsible for

the effective use of the resource the committee

oversees. The committee has the power to establish

priorities, control expenses, make economic and policy

rulings, and provide policy direction to the automation

project manager [88]. The director of the automation

steering committee should come from the information

systems department under the vice president for

finance. This individual, will be responsible for the

day to day activities and management of the steering

committee.

Because automation software development crosses

many functional lines, various users should also

participate in the steering committee. These users

should represent each of the activities that may be

influenced or effected by the software development

activity. Thus, representatives from finance,

accounting, production, and engineering are all

potential steering committee members. The assignment of

production personnel from the shop floor has been found

to be very beneficial in obtaining labor personnel

support for increased industrial automation [58]. A

complimentary benefit of production personnel xembership

on the steering committee is that they can usually

identify problems with certain functions to be automated

before the actual development and implementation takes

b&fci/Ä^

69

place. The production personnel should be considered

and respected as "functional experts" in their

particular area.

An information management consultant may be used as

a technical advisor to the steering committee director

if the director fails to possess the requisite technical

training necessary to successfully complete the

automation project. The role of the advisor is to

provide technical guidance about the various components

and elements of the automation system [44]. This

individual can be a commercial consultant, a university

professor who possesses a background in factory

automation, or an individual, who by virtue of previous

work experience in industrial software, is qualified to

address techn.cal questions.

Other research has shown that user participation in

software system development is effective if users exert

influence toward both conflict generation and conflict

resolution [73]. Many territorial conflicts exist in

development of automated information management

systems. User participation on the steering committee

tends to reduce this type of conflict.

Further discussion of the benefits and viaoility of

the steering committee is contained in [15, 21, 69].

Software Development Team

70

The structure and composition of the software

development team can take on a variety of forms.

Organizationally, software development teams can be

divided into many different types [3, 6, 12, 54, 67, 68,

90]. Three distinct types of software development team

organizational structures are functional, project, and

matrix. The first accommodates the functions of

programming, systems analysis, and computer operations.

Each function has a manager and each manager reports to

a department head [18]. Project teams are formed

combining a mix of skills under a project leader who is

responsible for accomplishing all tne various tasks

required for a given system [84]. Matrix organizational

development concentrates on interdependence of

functional elements and project elements. These are

comprised of overlapping, task-oriented friendship

groups of people with complimentary specializations

[72].

One type of project development team is shown in

Figure 4.10. The project manager is the same individual

labeled automation project manager, who is subordinate

to the director of software development in Figure 4.9.

In this organizational structure task managers supervise

two or more line managers who oversee the various types

71

FIGURE 4.10—EXAMPLE OF PROJECT DEVELOPMENT

TEAM STRUCTURE

4W-A(kk)aüfk><Utf.ÜiK^kXSLttO^^

(■■■U■■■■■!■ ■ mnwiwiwimpii«! ■iiiiaii«ii*iiiiiii «11^ in in

72

of programmers. A task Is defined to be major

subsections of code which perform a certain software

function. Depending upon the size of the task, this

could include complete kernel development.

Software Development Support Environment

To maximize productivity from the software

development team, a complimentary software development

support environment must be created and maintained. A

software development support environment consists of (1)

techniques and automated tools which assist developer of

software systems, and (2) an organizational structure to

manage the process of software production [91]. Three

key factors of the support environment depicted in

Figure 4.11 are people, software, and hardware. The

people component includes managers, programmers, and

clerical personnel. The hardware component includes the

development system, the target machine, and other

hardware elements of the new system. The software

component includes support and utility software

necessary for the development of automation software.

The hardware component as shown in Figure 4. 12 is

composed of five types of hardware. The communications

category includes modems, acoustical couplers, local

area networks, and other communications devices required

^e^a&Ä&a^^

73

FIGURE 4. 11—SOFTWARE DEVELOPMENT SUPPORT ENVIHONMEHT

ttAiMiMUicyjfcibcac^äkjfUaauCi

74

 '' " '

^MAINFRAMES/1

MINI-COMPUTERS

———————
i COMMUNICATION

. REQL " :NTS
.n; ' , '■-■'■'■

PERSONAL*

COMPUTER1

REPRESENTATIVE

I TARGET ili

"«j'i MACHINE ü

. ;. COMPUTER

I CONTROLLED

MACHINES^
- •-• ■

<-PERIPHERALS

iSOEVICES ■
»i—■■.■—■■■■■■— ■■■

II

FIGURE 4. 12 —HARDWARE COMPONENT OF

DEVELOPMENT ENVIRONMENT

^v1>^w/M^,^tfiü«>a>^iu>1]'n^'>fti1i«rfifk'ifiriftfiihiitfi^iyiitniyii>iiing

75

to assist software integration. Mainframe/minicomputers

are host computers that are available for the develop-

ment team to use for the software project. In a large

software development environment where many different

types of software are being developed simultaneously,

target (host) machines which operate the developed

software are necessary. If the software is to be

developed by a contractor, the contractor may have

machines similar to those.^he actual developed software

is designed for. Personal computers and executive

workstations are hardware components of the development

environment that can be used in either a stand alone

mode or can be networked with mainframes or

minicomputers.

The representative target machine and computer

controlled machines are devices on which the developed

software will actually operate. Computer controlled

machines can be either scale model equipment or the

actual machines that will operate the developed system.

Peripheral devices are defined to include plotters,

printers, display devices, and other hardware components

that will be used with the developed software. Each of

these devices are used to ensure that the software

provides the designed responses necessary when the

system is operational.

76

The software component of the devexopraent

environment as shown in Figure 4. 13 is comprised of five

different resources. Each of the resources is used to

not only increase the actual productivity of the

software development team, but aid in the actual

development and testing of the software.

One necessary resource is structured software

development tools that offer a programmer an

architecture for the overall development effort and may

enhance his/her proauctivity. Modular programming,

process ordered design technique, single independent

functions, and single exit/entry point modeling methods

are some tools discussed by Yau and Tsai [95].

Functional decomposition, stepwise refinement, and other

design techniques should also be considered [65, 93].

The structured design approach [57, 97] which maps the

data flow of a problem into its software structure using

design analysis techniques is useful. The Structured

Analysis Design Technique (SADT) is a graphical language

for explicitly expressing hierarchical and functional

relationships among objects and activities [75, 76J.

This system structure graphically highlights software

interfaces which can be used in top-down, structured,

modular, and hierarchical architeutur^^.

Some data structure design methods which emphasize

problem structure, construct architecture, and detailed

'^'^'^ i——^——■ iwmiw

77

STRUCTURED

SOFTWARE

DEVELOPMENT

TOOLS1

p
APPLICATION

TESTBEC

Jt
. GRAPHICS

-'■ ■ ;<■:■:.;■;■:■:■:•:■;■;■;-■■:■:■:■:■:■;■■■;"

:■>>>:-;■■■:■:-:';':',:::;;:; ;>■:■:■:':

:■:■;■:-:;:;^>:;^-:->^;X-M:
;:;.;.;.;■:■;■;•;■:■:■:■:;■:■:■:::•:::■:;;

I CAPABILITY
:;;::j;|;;:<;:^:o:;:;:i:|:;i::;:-i;-;

■^^rrrff!!'! nwwwwwwwwflw

DOCUMENT ATIOiNl'
>;^;;::;;";:A.::::>:-;->::;;::::::>;:;:>:^-:.:::.;^::'>;':^<

LIBRHPY
-ii ,

, DEVELOPED

[APPLICATION i

MPACKAGES 11
"'■^■■j mm—mm

FIGURE 4. 13—SOFTWARE COMPONENT OF

DEVELOPMENT ENVIRONMENT

. ^ tjm vm ^ wm L^ ■***.***** m*w*mummmj* um.■***>.*

73

A'
A*

design concurrently are presented in [40, 92]. The

Hierarchy, Input, Process, Output (HIPO) method provides

the ability to represent the relationships between

input/output data and the software process (66, 83).

Nassi-Shneiderraan diagrams [61] provide a well defined

functional domain which simplifies the determination of

scope for local and global data. A control free grammar

structure is designed for use with structured

programming and top down methods [14]. The method uses

structured English and a syntax similar to that of a

programming language. Additional structured software

development tools are discussed in [13, 28, 29, 30, 49,

50, 51, 52]. These methods allow the programmer wide

latitude in the type of tool selected and method of

utilization in an actual development environment.

The application test bed resource (Figure 4.13) is

coupled with the equipment listed in the hardware

component to allow the developed software to be tested

as it will actually be employed in the operational

environment. Testing is necessary to determine if

errors exist and to identify discrepancies between a

product and its specification. There are seven

different categories of software tests [35]:

demonstration, benchmark, complete feature test, new

feature test, performance test, reliability test, and

stability test. Each of these is explained in the

jfc»yMöö&ttä^^

79

section entitled In-house Code Development and

Integration.

A graphics capability is listed in the software

component so that graphics can not only be used in the

developed software, but to also capture graphics output

produced by the software. This graphics capability is

comprised of automated drawing aids, necessary

computers, plotters, and driving devices required to

allow full operation of software capabilities.

The documentation library contained in the software

development support environment is a key tool for the

programmer and manager [4]. Documentation must be the

same quality as the developed software and adequate

enough to fully explain all types of software functions

[56]. Documents contained in the library include the

following [20]:

Problem definition documents

System, module, and component specifications

Programs and their descriptions

Test specifications, test drivers, and test data

An additional resource in the software component of

the development library are preprogrammed application

packages. These packages are designed to fulfill a

variety of needs commonly encountered with software

development. Networking, file handl.ing, graphics,

80

programming language compilers, and communications

packages are Just some of the various packages that

could be available.

The people component of the development environment

(Figure 4.14) involves the actual personnel that will be

involved with developing the software. The automation

project manager, who is responsible for actual code

development, is usually an individual who has an

excellent background in computer science or engineering

and who clearly understands not only the management of

large scale software development, but also the various

technical implications of different types of coding

methods.

Test development engineers support the automation

project manager in the conduct of the various tests.

These individuals responsible for the test plan

development and i - execution to see if the developed

software performs as described in the specifications

document. The individuals who develop the test plan are

independent of the programming staff. This independence

ensures test objectivity and early identification of any

flaws or problems in the developed software.

The support staff includes librarians,

documentation clerks, and technical illustrators. The

librarian is the interface between the programmer and

the computer. All changes in the project library are

liA&t, J TTI Ti ii r n mifirr iMifmriii rnrnni

31

M

AUTOMATION §
■%:^ttl,trtW,%**liVr«.;'i.-!:i'rV-H>1!i'-'i'i

PROJECT

MANAGER I I

MANAGERS

* i 1' ■u ■' ■ ■ ■

i PROGRAMMERS;

f-!'T-ff-r!i?T-W-?5?T!-W^!ffH'fWTO!'^

! TEST ENGINEERS
:xi:-S:s;:;:i:|:;:;:;:;:i;;:|;;:::-!;:;r|:;:j:;:::|;;:;^:!ji:|T

-^CLERICAL

i. t PERSONNEL i
UliMYMiliii M- I'

FIGURE 4.14—PEOPLE COMPONENT OF SOFTWARE

DEVELOPMENT ENVIRONMENT

fwV. ■ >-1f-f'-
,-,-^r'"-ui<"T •nTi'Mf Vinrnniinnrinn'nnnnmiiniinnfiiirnriiniinininirninMiiiirTMmirM

82

handled by the librarian C98]. In moat automation

software environments, self documenting software is used

to reduce the burden on programmers and to insure tne

conciseness of the documentation while the development

effort proceeds. Problem statement languages and

analyzers allow system development activities to be

recorded using a computer database to store all basic

systems data [85]. Some clerical personnel are still

needed, however, to maintain the other paper products

previously identified as being stored in the library.

At this point all of the templates that comprise

the technical and managerial elements of the SPD design

methodology have been explained. If a new software

development project is just beginning, each of the

templates would be used to tailor the generic kernels to

the specific application environment. If a modification

or enhancement to an existing system is the main thrust

of the software development effort, it fs possible that

not all of the templates would be required because of

the existing organizational structure, available data

and databases, and presently operating systems.

However, each template should be consciously considered

before eliminating its use to ensure a completeness of

planning.

kWMIVM^V>aMMAIU^^

83

Resource Use Determination

After the technical and managerial phases of the

methodology have been performed, the next step is to

determine the various resources necessary to implement

and complete the software development project. The four

templates shown in Figure 4.15 address the resource use

determination phase of the SPD methodology.

Resource use determination is placed at this point

in the SPD methodology (after the managerial structure

has been determined and the various technical questions

have been resolved) because it allows the user to have a

good understanding of what is required for the software

project. If in-house resources are not available and

contract vendor resources must be employed, the in-house

staff has a good knowledge of the magnitude of the

overall project to be accomplished by the vendor.

Determination of In-House or Vendor Development

The question of sources of software development is

dual-faceted; either develop the required software

in-house or contract the development effort to a

qualified vendor. Several questions must be addressed

before a clear determination can be made to use either

method. Figure 4.16 is a template useful in

"•"'''^'"'^innnnnrbrninrnrnnnnnn vi—jtiwi iwixwrnr 'irwi rvifwifviiwiiv rmrt irmrv rm mi ni ir«i-> i">i inrmi n • ivaL'tawAwrHusw.. i^xtrauvuitM

84

iiüiiiiiüiii
ii RESOURCE USE iil

igffüB r^- »iiilliÄiiiii illll SOFTWARE iir
, i DEVELOPMENT III

ti.iiiii.aaäi;iiiiiifi#i5aiSiiiiisrii!i^

SYSTEM
OPERATION

iiiiiiHimiiuiimifmfffnmiiiiHiimi
E DETERMINE IN-HOUSE/^i
.^VENDOR RESOWCESs:

^ ALLOCftTtON OF ps
& ^awc RgsouRais"^

T

: IN-HOUSB SOFTWARE ?.

•fAND"iNfEGRÄfrÖN""^

VENDOR SOFTWARE)
i^5vniM..Ei^E;
fDEyijo^NrfiNpl
'i INTCGR Äfl'oN v§>H
] IM

OPERATE
INTEGRATED

SYSTEM

FIGURE 4.15—TEMPLATES WHICH APPLY TO RESOURCE

USE PHASE OF SPD METHODOLOGY

85

i;iijiMiiiJiiiJiiiiJiimiiiiji.ijmJi
; DETERMINE INITIAL:
//////^////*///////////////M////////////

liilZEpF JOB

■ HI

NMMMIS
noouifsop cooe

TVK OF pmcessm
TYPE OF UWQUMe

INTERfACt RCgUIROCHTS
mncR or UMCLS

TunoestoN
use or exisriHO SOFTHMC MZIHG^USTINO «ooeis

 wiiini i

■"i DETERMINE ADEQUACY is;

wMiueu IN-Houa Re 1N-H0USE RESOURCES

S RESOURCES S : VENDOR RESOURCES
mmmmmmamm

PROGRAMMERS

MANAGERS

SUPPORT STAFF

PEOPLE
EQUIPMENT

j:FisCAL'j

OPERATIONAL

SUPPORT

RESEARCH AND
DEVELOPMENT

OPERATIONAL

SUPPORT

FIGURE 4. 16—RESOURCE ALLOCATION TREE

.VAW^mvVUNSftMttUO^Mflfe&MmW^^

86

ascertaining which is more judicious based upon the

quantity of resources available.

The initial job size is the first step to be

determined. There are several software engineering

metrics listed beside the first block that can be used

[5]. Because this methodology employs the concept of

the kernel, determining the number of kernels required

for the effort is an important metric. The complexity

of some software development projects requires that the

quantity of kernels, coupled with one or more of the

listed metrics, may be required to ascertain an (the)

initial size of the job.

Existing software size and cost estimation models

can also be employed at this step. A variety of models

exist, but few proven formulas are known [48]. Thus,

each model uses different metrics and factors to

determine size and resource requirements. The existing

models are in no way intended to supplant the SPD

methodology, but only provide additional information

about overall size determination.

A variety of different software sizing and resource

estimation models are discussed by Moranda [60]. Robust

mathematical treatment of the Norden-Rayleigh model is

studied by Putnam [70]. A multiplicative cost

estimation model in which the cost driver variables are

constrained to the values (-1, 0, 1) is presented by

87

Walston and Felix [89]. The Doty multiplicative model

constrains the cost driver variables to integers of 0

and 1 [36]. An analytical model in which the overall

development effort is a function of cost driver

variables is presented by Halstead [35]. Table models

which relate values of cost driver variables to either a

part of the overall software development effort or

multipliers for effort are discussed by Aron [2].

Further discussions of available sizing and cost

estimation models are available [23, 35, 59, 78, 94,

96].

Once the development size is determined the

adequacy of in-house resources must be considered.

Three different types of resource categories should be

considered: personnel, fiscal, and equipment. The unit

of measure for personnel is man-hours, for fiscal

resources the unit measure is dollars, and for equipment

utilization the unit measure may be memory size, speed,

and other characteristics.

In the personnel resource category, three

subcategories are considered: programmers, managers,

and support staff. The programmers are the personnel

which will be responsible for the development of the

actual code required by the needs analysis statement.

Three additional subcategories of programmers are

88

considered: experienced, Intermediate, and novice.

Managers may also be classified into three sub-

categories: project, task, and line managers. The

relationship of the managerial categories was presented

in Figure 4.10. The support staff is comprised of

clerks and documentation technicians necessary to

maintain the paperwork associated with a development

effort.

Fiscal resources are - also subdivided into two

categories: operational and support. The operational

category is defined to contain fiscal resources that are

primarily intended for actual software development,

testing, and implementation. The support category

identifies funds that are not directly mission related,

but serve to support operational activities. Examples

of this type of funding category are graphics support

and telecommunications support. The fiscal resources

may also be described in terms characteristic of how

they will be expended. Typical fund categories include

such types as operations and maintenance, procurement

and research, and development test and evaluation. Each

enterprise has different interpretations on how these

funds may be spent, but usually these definitions are

quite similar.

The equipment resource category is defined to

include three different types of equipment: research

rtfZ^^MyMM^^^WiC-!

89

and development, operational, and support. Research and

development equipment that is too costly to justify on a

one-time need basis may be required to support the

development effort. Specialized equipment, hardware, or

other devices that would be beneficial to the overall

development action are included in this category.

Operational equipment includes all types of equipment

listed in the software and hardware components of the

software development environment (Figure 4.12 and Figure

4.13). Support equipment is not directly mission

related but used to enhance the overall development

action. If inadequate or no in-house equipment

resources are available in one or more categories,

vendor resources through leasing may be considered.

Vendor resources are listed as only people or

equipment, for these are the two most salient resources

that the vendor provides. The quantity of resources

provided by the vendor is totally dependent upon the

availability of in-house resources dedicated to a

particular development project.

The decision tree of Figure 4.17 can assist in

determining where various development resources may be

obtained depending upon how the software project is to

be completed and implemented. There are three basic

steps in the vendor development support branch. If full

vendor development support is required, a review of the

90

Mm. PERFORM IN-HOUSE Mi

M CÄPÄBILiTY ASSESSMENT S

POSSESS FULL IN-HOUSE

MWWILITV

: BEGIN NEW

CODE civEL^lpi^NT

POSSESS NO

IN-HOUSE UMBIUTV

POSSESS PMTIAL

IN-HOUSE CAPABIUTY

mEMPLOY m
iiSVä^DÖRll
DEVELOPMENT
if; SUPPORT ||

1
| DETERMjNE AMOUNT S

OF IN-HÖÜSE/ VENDOR

CAPABILITY
'" •<•""'""'''"■'''""

(MflTIAL IN-HOUSE

CAPABILITY

PMTIAL VENDOR

.MPABILITY
N..

/

BEGIN NEW CODE
S: DEVELOPMENT Si

111 M I I I 11 n I ff I^^^^^^^TTT

[BEGIN VENDOR :

DEVELOPMENT ::;

: SUPPORT :.,

REVIEW CLIENT;

RFP

use orr-Tte-swi/
PRCOUCTS

DETERMINE;

EXTENT OF!

CODEMÖDIFicÄTION

NEW cooe

OEVELOnCNT

; BEGIN NEVy CODE i

i^DEVELÖPMENT ^:

FIGURE 4. 17 —RESOURCE CAPABILITY DECISION TREE

91

request for proposal (RFP) is done to determine neces-

sary requirements. The use of off-the-shelf products

are considered in meeting software specifications. If

a direct application of off-the shelf products cannot

be done, the amount of modifications necessary to

fulfill the specifications must be determined. If

off-the-shelf and modified packages are not adequate to

fulfill the specifications, then new code development is

required by the vendor.

Allocation of Specific Resources

After the various job sizing methods identified in

Figure 4.16 are used to determine job size,

consideration is given to the adequacy of various

in-house resources. For the personnel resource, lack of

sufficiently qualified personnel for a major project may

suggest use of external contractor support. Lack of

available equipment resources may suggest that

commercial leasing of a computer time sharing service

may be necessary. A resource allocation matrix is

developed in Chapter V which considers the various steps

of software development. The matrix provides an analyst

with insight on which steps require additional personnel

or where large resource requirements overall are

necessary. The use of the matrix will be illustrated

92

with the personnel resource, however, the matrix is

applicable to equipment and fiscal resources also.

In-House Code Development and Integration.

After the source of development is determined

(Figure 4.17), the next step is code development,

testing, and integration. Figure 4.18 is the template

for use with in-house developed code. The actual coding

of the requirements in the specifications document is

contained in the develop code block. The various

interface and communications protocols are contained

within the develop interfaces block. These two blocks

lead to the functionality testing of the developed code.

The test plan mentioned earlier should be

comprehensive and the different types of tests for the

developed software identified. Since there are several

types of tests commonly utilized, a brief statement

about each is presented here. A more comprehensive

description is available in reference [34]. The

demonstration test uses controlled input to produce

expected output. This test is used to show that a

product has reached some level of completeness. The

benchmark test certifies that the product is capable of

processing input from a real user environment and

producing correct results. The complete feature test

93

.V DEVELOP CODE//
v . r > . r . > . |Y > ... ^j

/V/^ DEVELOP VAV^
TTTTTT

. J * t * * .•

.www T* t t t / f , . , ,
% % » \ % % V » % H * V \ S \ V \ V \ \ \ '

V///; INTERFACES ///^

; TEST DEVELOPED. CODE FORV-
t A * VV C\' V\ V *'\' \" *\' \'\' W » V v* v \'\' v \'\'\ »' \ \ i-
W/'v'v: FUNCTIONALITY ///////^
^ i 1 v v v v i v v v v ^ LV v ^ v ^ v v * «■ v v ^v v v v v-

YES

'./ INTEGRATE NEWLY DEVELOPED /

',-'. CODE INTO SYSTEM AND TEST V

V\\\\\\ FOR FUNCTIONALITY v;v:vj

DOES
CODE

INTEGRATE
WITH EXISTING

SYSTEM
CORRECTLY?

YES

OPERATE 'INTEGRATED SYSTEM

i \ \ \ \ • / / / / >
• t i t * i

NO W MODIFY CODE/VvV

vyFORVFUNCTIONALlfY I

/ MODIFY DEVELOPED ///;

CODE FOR. INTEGRATION,

"OF ALL SYSTEMSA'AV

FIGURE U. 18 —IMPLEMENTATION PROCEDURE FOR

IN-HOUSE DEVELOPED CODE

p r^wn wi"!Tn »'«WWTTWW^W m

certifies that all features specified in a product's

external specifications are present and operate as

described. The new feature test is used to evaluate new

functions. The performance test evaluates performance

characteristics such as execution speed, size,

throughput, data transfer rate, compilation, assembly or

generation speed, overhead, response time, and human

interface. The reliability test evaluates a product

under conditions that produce stress to discover its

ability to operate without failure or to recover from

failure such as parity errors or lost data. The

stability test certifies successful integration of

products into a product set or system. These are the

type of tests that may be performed on the developed

software before it is installed in the overall system

and prior to the performance of integration tests.

Testing is not totally finished until all errors are

corrected. After the error correction, the newly

developed code is then able to integrate with the

existing system.

Vendor Development Procedure

94

The template in Figure 4.19 is the development

procedure for vendor written code. In order to insure

that the software requirements of the system

95

i I.I'.IÜÜÜIMI

II! I SOFTWARE i
'i!i!i!i SYSTEMS \'<\<l
11 INSTALLATION

Jli INTEGRATION!,

ili [TEST FOR lilili!

i FUNCTIONALITY ■
j!i!i!i;i;i;i;i!t!i;i!i!i!t!i;i;tiL

'\'\''t'',' MODIFY I 1 '

'''COMMERICALLY

lilllllllllülülüüüiüüüllliiiül
111 DEVELOP NEW I
| CODE TO FULFILL
1 CÜStÖMER NEEDS

I'iii'itiiliiiliiii'lilii'liliiiiiilii

',!.!,!.>,!.!,!.I.!,!. I :>;<.!I!.!I!I!I!.!•'.!!'
llliiililllillillililililiiilililililiÜlilillliiiili
TEST FOR FUNCTIONALITY

HUi ^JI!!'IJ'il^!'iii!j'li'i!i"l^'^^^

i ■i|>i i ■■■>■!. ■'■■i'i'i'i'ihi'i'tli'

■Hi/

/riiiiüüiiiiiiiiiiüiiliüiiüiiüüüüüü!^
INTEGRATE CODE INTO

YES

i| DEVELOPED
>!,i!i,t,ltili*i>ili!l,i,l
itijpnrip il I It!

ftj!i!|!!!!l!!!li!il!!i!!l!l!l!>
iii FUNCTION ill

i!is;!i!i!i'i!i?i!ififi! ! jjjl , .. I lililHlilllDlil
iiiili ili i TEST i

/(iiilüüllülÜlllüülii!
ILOPERATEJII
ll!t!lllllll!l!ll!llll!li
INTEGRATED

|j|i lilltliillllliUllj I

YES

! ACCEPT n
I I VENDOR
iiiliiiiiiiiiiiiiiiiiiil

ii DEVELOPED!;!
Üüül'i'i »"lütt

J CODE i

<t!l|lll!lil|!!!|!i!|lill\
! INTEGRATE :
>|i|i!l!t|itl|l!l|l!itl|l
! DEVELOPED i
ijiliijiiiliütlililillj i i!i!i!tli!i!i!i!i!i!iJi!

iliCODE INTO
t iiiiiittiilftii!:i!ii];

'-'-•-■-■-■■nfi'

XL

^OPERATE COMPUTER!
üililMililllilllililltiü!

!|i|i|ll!l!|l|i<l|!|i|l|;|lli|i|i|!|i|i|i|l|l
lliiliililiilidiilllitilllillllillililllli

■j INTEGRATED SYSTEM:

FIGURE 4.19—VENDOR DEVELOPMENT PROCEDURE

96

specification will be adequately fulfilled by a vendor,

the use of the request for proposal (RFP) is suggested.

The RFP is a contracting document that allows all

vendors to provide a work submission in a format which

t^e company can evaluate equally, insuring that a vendor

does not skew their proposal for their own favor.

Distinct advantages of using a RFP include [33]:

detailed requirements and specifications, unbiased

evaluations, consistent information, and standardized

vendor proposals. The RFP should contain an objective

statement, system description, proposal evaluation

criteria and procedures, progress time table, user

contacts, and a statement of confidentiality.

If off-the-shelf packages are available that will

satisfy the systems specifications, these packages are

considered first. These packages are installed and

integrated into the factory environment and tested for

functionality as soon as possible. The system is tested

and a decision made about the acceptability of the

software. If the software is not acceptable, necessary

modifications are made and functionality tests again

performed.

If off-the-shelf code is available and

modifications are required, the modifications are made,

tested, integrated, and tue system operated. If new

code development is required, the same tests are also

97

performed. The requisite protocols and interface

connections must be developed independent of which

method is selected.

There are many facets to the use of contract

vendors for software development that are not discussed

in detail here. Issues such as contract making, testing

responsibility, machine usage, prototype development,

patented development work, and many more must be

considered and decided. After the various tests are

performed and full compatibility of the code is

achieved, the code is then integrated into the existing

system.

Documentation and Training Requirements

A final step required before the actual developed

software system can be made fully operational is the

completion of documentation and training manuals for all

parties who will interface with the new software (Figure

4.20). Documentation is needed not only to understand

the code and how it operates, but to understand what

support is required (hardware and software) so that full

advantage may be taken of the various features of the

newly developed product.

Documentation can be defined to be computer based

and printed information that describes how the actual

98

i DOCUMENTATION AND TRAINING:

■;•■:: RESOURCE REQUIREMENTS ^

DEVELOP TYPES

OF TRAINING

_w EXECUTIVE:

-^.W?//

OPERATOR

:: DEVELOP TYPES;:.-:

OF bocÜMENTATlÖN/
 1 ' ' • I

7p77777777777777m
^OPERATOR/USER-^ ', '/////////////////

■4.
Up777777777777m

PROGRAMMER f/////////////J/A

y//////////////////////////m
^/SYSTEMS DOCUMENTATION^

FIGURE 4.20—DOCUMENTATION AND TRAINING REQUIREMENTS

vmnm^mmmrvmmmmamnmm

99

program is designed to function. This may be in a

graphic, printed, or data format. Cross references

should be provided in the documentation to other

relevant or interfacing programs [82]. Automated

documentation routines generate documentation from the

source code of a program. Other automated documentation

schemes provide information how data structures work,

what the data is doing, and how it is used. Still other

automated documentation programs provide system flow

charts, system reports, and sample screens [82].

The type of documentation must be adapted to the

user. Technical personnel require flow charts and

system operating diagrams on the software product.

Managers require overview information, while system

operators and analysts need information about data types

and structure, cross reference information about other

(linked) programs, and the like.

Operator/user documentation can be developed using

five different presentation styles [32]: prose,

cookbook style, numbered instruction, playscript style,

and the four-step method. The prose type of

documentation tells a story to the reader on how the

software performs, what inputs are required, and what

actions must be taken by the reader when certain

responses are necessary. The cookbook style is

directive in nature: terse and succinct. This type of

100

documentation is good for personnel who require a

regimented operational structure, but do not need to

understand why each action is required. The numbered

instruction method is similar to the cookbook style and

provides each step broken down into numbered

instructions, with sub-instructions subordinate to major

instructions. The playscript style allows basically a

dialogue type of presentation, with each different

responsible par^y having his/her part identified. The

four step method uses motivation, effect, general steps,

and an example to illustrate the various ways in which

the software product works. Further discussion on

software documentation can be found in Skees [80].

Training is also required before the new system can

be used to its full capacity. Different classes (Figure

4.20) can be held for executives, mid-managers, users,

and system operators. The classes for executives should

focus on capabilities that the system includes and how

they can use executive workstations to gain greater

productivity and improve managerial decision making.

Training for users of the system is different in

scope and level of detail than that for the executive

and focuses on the details of system features. This

would include some detail and description of the various

capabilities and interface data inclusion, types of

calls, and procedural functions that the user requires

101

to effectively interface with the system in an

operational environment.

Surveys which investigate the inherent knowledge of

the users before the training classes commence provide

for an identification of the training needs of the

system users [46]. If the users understand the benefits

of the new system, they more readily learn how the

system will allow them to perform their job. This also

allows the training staff to focus on areas with which

users do not possess a familiarity.

Summary of Template Usage

This chapter has presented a discussion of the use

of the various templates for planning software

development activities. Different templates identify

critical factors in both the technical and managerial

elements of which the user of the SPD methodology must

be cognizant before the overall project is initiated. A

variety of templates addressing key issues of both a

technical and managerial nature allow identification of

the links between the currently existing software

systems and those to be developed.

In manufacturing software planning and development

the questions asked are the same. Many of these

questions have been addressed in this chapter. However,

the answers vary from one project to another.

102

Therefore, the frequency of use of the various templates

depends upon a variety of factors. Some of the

managerial templates, for example, the organizational

structure, steering team or project development team,

may not be used as often as templates pertaining to

resource use determination. The templates used to

determine whether in-house or vendor development should

be pursued would probably be used most of the time that

any new project is considered. The various in-house or

contract implementation/integration templates would be

used in each development activity. The type of the

template, the size of the project, and currently used

software are some of the factors which determine the use

frequency.

103

CHAPTER V

SPD METHODOLOGY FOR PERSONNEL RESOURCE

ALLOCATION MODELING

Introduction

This chapter investigates one method of allocating

personnel resources to specific development steps of the

software life cycle using the SPD methodology. The

method investigated is applicable to personnel,

equipment, and fiscal resources, however, the personnel

resource has been selected for development here. The

method uses the concept of resource building blocks for

each step of the SPD methodology to prescribe the amount

of resource required. A resource allocation matrix is

combined with the respective building blocks to

determine the total estimated cost of the project.

Various manpower loading relationships' representative of

the software development industry have been selected and

used to demonstrate how this approach is implemented.

Description of the Development Steps

The procedure and templates of the SPD methodology

have been organized into eight progressive steps for use

in the allocation of personnel and other resources.

These steps are briefly defined here and the applicable

k^i^mm^Mi^m^^^^

104

1

figure numbers from the SPD methodology description are

identified. A more detailed explanation of the contents

of the steps is presented in Appendix 1.

Step 1 is the Constraint Identification Step. This

step involves the feasibility/understanding of the

systems specifications of the newly proposed development

project and possible technical conflicts which may

inhibit successful software design. Figure 4.2 applies

to this step.

Step 2 is the Generic Kernel Application Step. The

generic kernels are applied to the requirements of the

systems specifications to construct a functional

software conceptual design. Figure 3.3 applies to this

step.

Step 3 is the Software Technical Factors Step. The

specific technical factors pertinent to the various

generic kernels are identified. Figure 4.6 applies to

this step.

Step 4 is the Kernel Application Environment Step.

This step develops the functional software conceptual

design into an actual application environment. Figure

3.4 applies to this step.

Step 5 is the Code Development Step. Actual

software is developed from the generic kernel depiction

of the application environment listed in Step 4. Some

105

preliminary developmental tests are conducted in this

step. Figures 4.6 and 4.17 apply to this step.

Step 6 is the Test Verification/Validation/Integra-

tion Step. All of the developed modules of code are

tested for operational effectiveness. Any deficiencies

identified in Step 5 are corrected in this step.

Figures 4.18 and 4.19 apply to this step.

Step 7 is the Systems Functionality Testing Step.

This step integrates the newly developed code into the

physical process which is being automated. Tests are

conducted to see if the newly developed code provides

the desired response identified in the requirements

portion of the systems specifications document. Figures

4.18 and 4.19 apply to this step.

Step 8 is the Documentation and Training Step.

This step develops the documentation and training

courses needed to use the newly developed software.

Figure 4.20 applies to this step.

Components of Personnel Resource

Allocation Model

The personnel resource allocation procedure is

composed of four components which utilize the

development steps defined above.

,••

m.vk

1. Resource building blocks

2. Manpower loading relationships

3. Personnel resource allocation matrix (PRAM)

4. Cost estimation model

106

Resource Building Blocks

The building block approach to personnel allocation

provides a structured and systematic construct which

assists in the estimating, tracking, and monitoring of

resource consumption and cost accumulation during each

step of the SPD methodology. The resource building

block approach in Figure 5.1 utilizes a three

dimensional model. The estimated time to accomplish

each development step is shown on the x-axis, the amount

of each resource type is indicated on the y-axis, and

the applicable SPD methodology template is shown on the

z-axis for reference only. The measurement scale for

each axis is relative to the resource type being

depicted. For personnel, the number of full time

equivalent (FTE) personnel, number of man-hours

estimated to be expended, or other relevant measure is

used for the y-axis. The height of each block is the

quantity of a particular resource applied to a

development step. For example, in Figure 5.1 the larger

height of Block 4 signifies that more of the personnel

107

NUMKR

OF

F7E

PERSOtCL

STEPS

STEP?

STEP 6

STEP 5

STEP 4

STEP 3

STEP 2

STEP1

A

u-
P

\S 71
APPLICABLE

SPD

TEMPLATE

DEVELOPMENT TI«

FIGURE 5.1—RESOURCE BUILDING BLOCKS

.V

■"

108

resource is needed for this step than for Step 1. The

length of the blocks (x-axis) signifies the amount of

time necessary to complete the development step.

For other resource types the scales could be

totally different. For example, if the fiscal resource

is considered, the x-axis could indicate the total

amount of dollars needed in a particular development

step, and the y-axis could represent the amount of funds

from a specific source, such as, procurement,

operations, or maintenance funds.

Manpower Loading Relationships

For the manpower loading requirements, three types

of personnel resources are normally used in software

development: programmers, managers, and support staff.

There are definable subcategories of each type. Each

personnel type may be generally allocated via a model

for the individual steps of the development process.

Thus, in one step the support staff may be the prime

necessary resource with several other resources assigned

in some proportion to the time allocation of the staff.

In another step, the programmer may be the prime

resource needed. The following resource types are used

in this presentation:

109

Xl

X2

x3

X4

X5

X6

x7

X8

x9
x10

Xll

= Novice Programmer

= Intermediate Programmer

= Experienced Programmer

= Maintenance Programmer

= Project Manager

s Line Manager

= Task Manager

= General Manager

= Documentation Librarian

= Clerical Personnel

= Engineering Staff

The three categories of personnel resources can be

identified in these definitions: programmers (X-]

through X4; managers (X5 through X3); and support

staff (Xg through X-ii). Depending upon which

development step is considered, different personnel

types are utilized, that is, not every personnel type is

used in each software development step.

The manpower loading relationships used in this

work are all linear. Although the proportions of the

various resource types may vary throughout the

development steps, each varies in the same proportion as

its relationship to the prime personnel resource.

The manpower loading relationships used in this

research were obtained from a commercial industry source

involved in software engineering [22]. These

110

Ä

relationships are heuristically based, but provide a

good reference point of how various personnel rsources

are allocated to software development projects. These

relations are applicable for moderate to large

development efforts.

The first development step, Constraint

Identification, has a loading relationship identified

as:

2X5 + 1X3 + 1X10 + 30Xn (5.1)

This relationship states that for every thirty hours of

personnel type X-ii (engineering staff) there should be

one hour each of types X-JQ
and ^3 and two hours of

type X5 assigned to accomplish the step. Another

interpretation is that type X-|i is applied at a rate

thirty times greater than X3 and X-JQ and fifteen

times greater than X5 in Step 1. Each of the eight

development step loading relationships are further

discussed in Appendix 1.

Personnel Resource Allocation Matrix (PRAM)

The PRAM is used to assign personnel resources to

the development steps. The matrix format (Figure 5.2)

lists the development steps Sj across the columns (j =

1, 2, ..., 8) and the types of personnel resources X^

down the rows (i = 1, 2, ..., 11). The entries in the

DEVELOPMENT STTP j

111

X,

x;
PERSONNEL

TYPE •

X 11

1 s 1
s

2 1 • • • s8 1
k '« 253 ^

7iJ '«

•a •u

k 'u p

i 'i

7IJ
pu

•ii

FIGURE 5.2—PERSONNEL RESOURCE ALLOCATION

MATRIX (PRAM)

■ v.« mmmm rww mm u"« ■ i ■ ■■■

112

PRAM cells include the following:

Zjj = number of full time equivalent (FTE)

personnel of type i assigned to step j.

Pij = manpower loading relation coefficient

applicable to personnel type i for step j ,

in hours,

ajj = maximum FTE personnel of type i available

for allocation to step j.

> = 0. Pi -i > r .0. a, -i > = 0) (zi. 0, Pij > r.0, Sij

If no entries are present in a cell, the step does not

normally need this personnel type for its completion.

The values of a^j and Zjj entered into the PRAM

are dependent upon the size of the PH for the cell.

If there are available the number of hours indicated by

the P^j coefficient, the value ajj = 1.0 is present

in the cell, whereas twice the number of hours of the

coefficient means that a^j = 2.0 is correct.

The Pjj values used in this research are

generally applicable for the personnel resource to a

variety of software development projects and do not need

to be re-defined for each type of project. If the size

of the software project is judgea to require about tne

number of man-hours equal to the P^j in the loading

relation, Zjj = 1 is entered for all cells where there

is a positive Pji present. If, however, the software

tasks for the specific development step j are expected

113

.1

to require, for example, two times the indicated P^j,

the entry is Zij = 2. The other Zjj values are

entered accordingly using the relative weightings of the

Pji values. As an illustration, if a project planner

is utilizing relation (5.1) for personnel planning in

Step 1, and believes the effort will require 120 hours

of engineering staff time (Xn)f the entry will be

Zii 1 = 4.0. To correctly use the guideline of

relation (5.1), the entries for all Zjj will be 4.0.

The planner may wish to deviate from the guidelines, or

include the use of personnel types not included in the

loading relation. This departure from the guideline

relation is accounted for in the personnel cost

estimation model presented below.

If in a particular application of the PRAM, (Zij

-ajj) > 0, there is an indication that the in-house

personnel level is insufficient to support the

requirements of the development step. The use of

external contract personnel is necessary if the Z^j is

a realistic estimate of the personnel needs.

If, on the other hand, (aji - Zjj) > 0, the

manager has excess personnel resources for step j and

has the option of redistribution of personnel to other

cells. The reallocation would normally be done within

the same category, that is, programmers, managers, or

support staff. In this manner, deficiencies within a

114

particular resource category can be eliminated by

similar personnel types.

The value of Z^j assigned to a cell of the PRAM

is dependent upon the judgemental experience of the

manager and the size of the loading coefficient Pjj.

A large value of Pjj indicates a large need of that

particular type of resource. Additionally, other

resource types should be allocated in a reasonable

proportion according to the PM values in the loading

relation for the step. Completion of each step of the

PRAM is independent. However, interchangeability of

personnel types between steps provides flexibility in

the matching of the resource availability with that

estimated to be required by the software development

manager.

A PRAM with the Pjj entries from the manpower

loading relationships of the eight development steps is

presented in Figure 5.3«

Cost Estimation Model

The estimated total personnel cost TC of the

software development project may be written as

11 8 11 8
TC =£ £ ICiZijPij+i. £ 0Ci(Zij-aij)Pij (5.2)

i=1 j=1 i=1 j=1

115

I s. s8 s3 s4 s5 s. s7 N
x, 100 100 10 100

Xe 100 100 10 100

x. • • 100 100 10 100

x.
x5

2 5 2 1 9 6 3

x6
10 4 2 6 12 12 6

x7
40 20 20 5 « 30 45

xn
1 1 6

x9
20 180 180

^10
1 100 20 120

Xa X SO 100 60 60 90 90

FIGURE 5.3--PERSONNEL RESOURCE ALLOCATION MATRIX

WITH Pij COEFFICIENTS

116

where IC^ s cost per man-hour of in-house personnel

resource i

OCi = cost per man-hour of external contract

personnel of type i

The values for IC and OC may be obtained from company

sources, national surveys, and quotations from external

vendors. The values should include base salary plus

benefits and normally associated overhead costs for the

type of resource.

If no in-house personnel are available for the

project, the first double summation term of equation

(5.2) is zero. Hence the complete project would require

contract development. As mentioned in Chapter III,

being able to carefully identify how the project

workload is apportioned assists the in-house contract

monitor in determining the total cost for contracted

tasks.

The resource allocation matrix cost estimation

capability could be easily adapted to a spread sheet

format for more rapid data manipulation. Some layering

of current spread sheets would provide enhanced

identification of resource short falls and also allows a

greater sensitivity analysis to be performed on the

various cost estimates. This capability allows in-house

personnel to evaluate various cost estimates before

determining the optimum strategy.

Other Resource Allocation Methods Considered

117

I-

Several significant operations research algorithms

to include simulation, dynamic, and integer programming

[67] were investigated for possible applicability to

this research. In all cases, however, the lack of the

necessary data or implicit assumptions of the various

models prohibited adaptation to the research effort.

A linear programming resource allocation problem

formulation was explored in detail. The objective

function was stated to be a minimization of the

personnel resource costs, with the constraint equations

to be various manpower loading relationships coupled

with an appropriate man-hour limit for each relation-

ship. Diraensionability of variables became a

significant problem that was difficult to resolve and

continue to maintain implicit model assumptions.

Because the objective -function was a minimization, all

constraint equations had inequalities of a less than or

equal to nature. The obvious solution was zero

resources applied. A dual problem formulation was

attempted, trying to somehow quantify human

productivity. No robust manner was found in which to

logically measure and equate human productivity for

resource allocation. Since no convex hull could be

developed that had practical measurable parameters, a

*m ^*v**w fm^BW. r^*Tr*^]iv> mnmffrnifmwmifmTrwirwwrwrTwirwTn

118

linear programming formulation was determined to be

infeasible.

Another problem identified was that the linear

programming model did not address the possibility of

external resources being required if insufficient

in-house resources were available. For these reasons,

the resource allocation matrix was developed and used.

& ^Vtv'ta

ii !<■ ii« ii mmwmm

CHAPTER VI

CONCLUSIONS

This research has developed a planning and

development methodology for the design, implementation

and cost estimation of large software projects. The

overall approach of systems engineering is applied to a

problem which has proven to be unwieldy, not only from a

managerial and technical perspective, but from a

resource estimation and allocation viewpoint.

119

Results of the Research

There are several major results of the research

included in the SPD methodology. A summary of the more

important ones is given here:

1. A high level, strategic planning methodology

for software is developed which integrates technical and

managerial elements with an approach to resource use

determination. The methodology, developed as a parallel

to the classic software life cycle provides identifica-

tion and coordination of the essential facets identified

with software engineering.

2. The concept of the kernel construct is

presented and demonstrated as an approach to

w pm^w^» ■ ^»"■wnmiwmiwgww^w^wT

120

functionally planning a large software engineering/

development effort. The kernel construct is shown in

the generic form and in a form applicable to the

software design of a coraputsr integrated manufacturing

environment. Each software project is comprised of

different types of kernels with each kernel related to

one type of function.

3. Generic kernels are tailored to specific

improvements through the use of templates, which address

the significant technical, managerial, and resource

determination factors pertinent to software system

planning. Each template includes a flowchart, decision

chart, or structural diagram useful in the information

collection and planning stages of a development

project. Each template is linked to specific blocks in

the SPD methodology.

4. The resource allocation function includes the

coordinated use of templates and a building block

approach to software systems planning. A part of this

approach is the use of a personnel resource allocation

matrix (PRAM) . The PhAM makes use of linear manpower

loading relationships which characterize different types

of manpower necessary for software development. These

relations have been determined and applied heuristically

and provide an idea of how manpower could be allocated

to the various steps of software development.

mrawwi laiRinvHiP ■«wan^K^n^n^R^v«

121

5. An ability to provide personnel resource cost

estimates for software development is possible by

utilizing the PRAM and costs for organization organic

and external contract personnel. Although only the uses

of personnel resources is detailed, the development of

the approach using the methodology for fiscal and

equipment resources may be possible using a similar

method.

Recommendations for Further Work

This work has developed the kernel construct for

the strategic planning level. Additional work can be

initiated on developing kernels that are at the tactical

and operational planning levels. These lower level

kernels would focus on less breadth and more depth for

technical and managerial planning levels. The overall

result could be a complete kernel system that would be

used to assist in developing and implementing

operational software.

Investigation of the different types of fiscal

resources necessary to fund the development of software

may be undertaken. This investigation would address the

breakout of funds by proportion from procurement/

acquisition, research/development, and operations/

maintenance sources. The concept of a resource

mm

>^"^*»T'i»"<Wt"> i PH D« mm^ivi i t-il^'lfn" i^ IIP'»« 'iw".PHF wurn»! vm i

allocation matrix could be adapted to provide a graphic

pictorial of the amounts of money necessary to

accomplish the different facets of the development

work. Specific fiscal resource allocation equations

similar to the personnel loading relationships may be

developed for fiscal categories.

Additional research is warranted in using the SPD

methodology and resource allocation process for software

development for areas other than the manufacturing

environment. Software development for the financial

services and construction sectors, for example are areas

where the SPD methodology could have substantial

applicability.

Investigation as to whether the SPD methodology can

be adapted to environments other than the software

design is warranted. An environment in which the

managerial and relevant technical elements are best

understood and coordinated through an organized resource

planning and allocation procedure may benefit from this

approach.

122

m

mmmmmm

i^mm*mmmm^rtmmw^mw^m*mm*mwmmmww ■ ■ m

123

REFERENCES

1. Ahituv, Niv, I. Borovits and Z. Pomeranz,
"Managing Large Sub Contracted Projects,"
Journal of Information Systems Management, Vol.
<if NO. Si Summer lyab, pp. ^7-35T

2. Aron, J. D., Estimating Resources for Large
Programming SystemsT NATO Science Committee,
Rome, Italy, October 1969.

3. Baker, F. T., "Chief Programmer Team Management of
Production Programming," IBM Systems Journal,
Vol. 11, No. 2, 1972, pp. 5^73-

4. Baker, F. T., "Structured Programming in a
Production Programming Environment,"
Proceedings, International Conference on
Reliable Software, IEEE Computer Press, Los
Angeles, California, 1975, pp. 172-183.

5. Basili, Victor R., Models and Metrics for Software
Compu

:"ornia, 1980.
Management and Engineering, IEEE Computer
Press, Los Alaraitos, Califc

6. Bell, T. E., et al., "An Extendable Approach to
Computer-Aided Software Requirements
Engineering," IEEE Transactions on Software
Engineering, Vol. SE-3, No. 1, January 1977,
pp. 4y-ou.

7. Bender, P. S. et al., "Practical Modelling for
Resource Management," Harvard Business Review,
Vol. 59, No. 2, March-April 1981, pp. 163-173-

8. Blanchard, Benjamin S. and W. J. Fabrycky,
Systems Engineering and Analysis, Prentice
Hall, Englewood Cliffs, New Jersey, 1981.

9. Blank, Leland T. and H. Carrasco, "System
Development Methodologies," Report for ICAM
Technology Transfer, United States Air Force,
Department of Industrial Engineering, Texas
Engineering Experiment Station, College
Station, Texas, 1984.

Boehm, Barry W. ,
Prentice Hall
1981.

Software En
EngiewooT"

ineenn
liffs,

Economics,
ew Jersey,

rim

124

m

M

11.

12.

13.

14.

15.

16.

17.

18.

19.

!0.

21.

22.

Boehm, Barry W., "Software Engineering," IEEE
Tranaactions on Computers, Vol. C-25, No. 12,
December 1976, pp. 1226-1241.

Brooks, F. P., Jr., The Mythical Man Month,
Addison Wesley, Reading, Mass., 1975.

Buckle, J. K., Managing Software Projects,
American Elsevier, New York, New York, 1977.

Caine, S. H. and E. K. Gordon, "PDL-A Tool for
Software Design," AFIPS Conference Proceedings
National Computer Conference, Vol. 44, No. l7
1975, pp. 223-234.

Carlin, J. W., "A Steering Committee for Equal
Representation," Management World, Vol. 7, No.
4, April 1978, pp. 32-33.

Chorafas, Dimitris N., The Software Handbook,
Petrocelli Books, Princeton, New Jersey, 1984.

Cooper, Jack, "Software Development Management
Planning," IEEE Transactions on Software
Engineering, Vol. Sti-iu, No. 1, January 1984,
pp. 22-26.

DeMaagd, Gerald R., "Matrix Management,"
Datamation, Vol. 14, No. 10, October 1970, pp.
100-103.

Devenney, T. J., An Exploratory Study of Software
Cost Estimating at ESP, GSM/SM/76S-4: Thesis,
Air Force InstitüTe of Technology, Wright
Patterson AFB, Ohio, July 1976.

Devert, Ernst, "The Project Library—A Tool for
Software Development," Proceedings, 4i.h
International Conference on Software
tngmeering, Munich, Germany, SeptemDer 17-19, ngmeermg, Munici
979, pp. 153-163.

Drury, D. H., "A Survey of DP Steering
Committees," Information and Management, Vol
No. 1, August 1985, pp. 1-7.

Dudic, Mary, personal letter, April 15, 1986,
Honeywell Sea Systems, Seattle, Washington.

9,

r^ro^^rrmwi

125

23. Elshoff, J. L.f "An Investigation into the Effects
of the Counting Method Used on Software Science
Methods," ACM SIGPLAN NOTICES. Vol. 13, No. 2,
February 1?7¥, pp. W-W.

24. Elshoff, J. L., "An Analysis of Some Commercial
PL-1 Programs," IEEE Transactions on Software
Engineering, Vol. C-2b, No. b, June ig7b, pp.
113-120.

25. Ford, F. Nelson, et al., "The Evolving Factory of
the Future: Integrating Manufacturing and
Information Systems," Information and
Management, Vol. 8, No. ö, 19Ö5, ppTT6-102.

26. Freiraan, F. R. and R. D, Park, "Price Software
Model Version 3—An.Overview," Proceedings IEEE
PINY Workshop on Quantitative Software Models,
TETE Catalog Tir:oöö7-g, October 1979, pp. 32-41.

27. Gaffney, J. E. Jr., "The Impact of

28.

Development Costs Using HOL • s,"
Software
IEEE

Transactions on Software Engineering, Vol.
SE-12, No. 3, March 1986, pp. 496-499.

Gane, C. and T. Sarson, Structured Systems
Analysis, Prentice Hall, Englewood Cliffs,
Jersey, 1979.

New

29. Gilbert, Philip, Software Design and Development
Science Research Associates^ Chicago, Illinois,
1983.

30.

31.

32.

33.

Gilhooley, Ian A., "A Methodology for
Software Development," Journal of
Systems Management, Vol. 3, No. 1,
pp. 3b-4T:—

Productive
Information
Winter 1986,

Griffin, Ricky, Management, Haughton-Mifflin,
Boston, Massachusetts., 1984.

Grimm, Susan J., How to Write Computer Manuals for
Users, LifetimeTTearning Publications^ Öelraont,
California. 1982, pp. 50-55.

Guerrieri, John A., Jr. "How to Develop Effective
Request for Proposals," Journal of Information
Systems Management, Vol. 1, No. 4, Fall 1984,
PP. 40-4T:—

I JNUHUailVLfBIII *m i^ i ^i i «^ i

126

34. Günther, Richard C, Management Methodology for
Software Product Engineering, John Wiley and
Sons, New York, New York, 1978, pp. 133-137.

35. Halstead, M. H., Elements of Software Science,
Elsevier-North Holland, New York, New York,
1977.

36. Herd, J. R. et al., Software Cost Estimation
Study--Study Results, Final Technical Report,
RADC-TR-77-220, Vol. I, Doty Associates, Inc.,
Rockville, Maryland, June 1977.

37. Huggins, Lawrence P., "Robotics The Coming
Challenge for MIS Managers," Journal of
Information System Management, Vol. 2, No. 4,
Fall 19Ö4, pp. 3-7* •

38. Huse, Edgar, T., Management, West Publishing
Company, Saint Paul, Minnesota, 1982, pp.
262-266.

39. Hyraowitz, Carol, "Manufacturing Change: A Special
Report on Technology in the Workplace," Wall
Street Journal, Section 3» September 16, 1985,
pp. 10C-12C.

40. Jackson, M. A., Principles of Program Design,
Academic Press, New York, New York, 1975.

41. Janossy, James G., Commercial Software
Engineering, John Wiley and Sons, New York, New
York, 1985, pp. 9-10.

42. Kircher, Paul and R. 0. Mason, Introduction to
Management: A Systems Approach, Melville
Publishing Company, Los Angeles, California,
1975, p. 94.

43. Koontz, Harold and C. O'Donnel, Management,
McGraw-Hill Book Co., New York, New York, 1976,
p. 309..

44. Kriendler, Jerry, "Contracting for the Development
of Customized Software," The SCOTT Report, Vol.
4, No. 9, September 1985, pp. l-l^.

45. Lardner, James, Unpublished ICAM Industry Days
address. New Orleans, Louisiana, May 1982.

IllllHUIIIIVf

127

46. Ledbetter, William N., et al., "Education and
Training Needs Must be Assessed Before Systems
Implementation," Information Management, Vol.
24, No. 5, May 1986, pp. 16-1^

47.

48.

49.

Levulis, R. J., "CIM—A
Awareness Bulletin—
Information Analysis
Spring 1985, p. 3.

Perspective," Current
Manufacturing Technology
(MTIAC), Vol. 1, No. 1,

Lewis, T. G., Software Engineering—Analysis and
Verification, Reston Publishing Co., Reston,
Virginia, 1982.

Lundeberg, M., et al., Information Systems
Development—A Systematic Approacnj "~
Prentice-Hall, Eng^ewood Cliffs, New Jersey,
1981.

50. Lundeberg, M., et al., "A Systematic
Information Systems Development,"
Systems, Vol. 4, No. 1, 1979. pp. I^TT

Approach to
Information

51. Lundeberg, M., et al., "A Systematic Approach to
Information Systems Development," Information
Systems, Vol. 4, No. 2, 1979, pp. 93-118 ~

52. Lundeberg, M., "An Approach for Involving the
Users in the Specification of Information
Systems," Formal Models and- Practical Tools for
Information~5ysTem3~Pe3Tgn, Schneider,
Amsterdam, North Holland, 1979, pp. 195-217.

53. McKeen, J. D., "Activity Analysis: An Approach to
Understanding the System Development Process,"
Proceedings ASAC 1982 Conference, University of
Ottawa, Ottawa, Canada, 1982, pp. 41-50.

54. Metzger, P. J., Managing a Programming Project,
Prentice Hall, tnglewood Cliffs, New Jersey,
1973.

55. Metzner J. R., "A Graded Bibliography on Macro
Systems and Extensible Languages," SIGPLAN
NOTICES, February 1979.

56. Meyers, G. J., Composite/Structure Design, Van
Nostrand Reinhold, New York, New York, 1978.

57. Meyers, G. J., Software Reliability, John Wiley and
Sons, New York, New York, 19^'C'pp. 220-246.

128

58.

i

59.

61.

Mize, Joe H., et al., "Strategic Planning for
Factory Modernization: A Case Study," National
Productivity Review, Winter 1984-85, pp. 33-44

Mohanty, Siba N., "Software Cost Estimation:
Present and Future," Software Practice and
Experience, Vol. 11, No. 2, February 1^81, pp.
1Ö3-151.

60. Moranda, P. B., "Software Quality Technology:
Status Of, Limits To, Alternative To," IEEE
Computer Society, Computer Magazine, Vol. 13,
No. 11, November 1978, pp. 72-78.

Nassi, I. and B. Shneiderman, "Flowchart
Techniques for Structured Programming," ACM
SIGPLAN NOTICES, Vol. 8, No. 8, August 1973, pp.
12-26.

Nelson, E. A., Management Handbook for Estimating
Computer Programming Costs, System Development
Corporation, Boston^ MA., October 31, 1966.

Parikh, Glrish, "How to Pick a Winner, A Look at
Software Methodologies," ACM SIGSQFT, Software
Engineering Notes, Vol. 8, No. 2, April 1983,
PP. 33-39.

Parker, M. M., "Enterprise Information Analysis:
Cost Benefit Analysis and the Data Managed
System," IBM Systems Journal, Vol. 21, No. 1,
1982, pp."UTS-121.

Parnas, D. L., "Designing Software for Ease of
Extension and Contraction," IEEE Transactions
on Software Engineering, Vol. SE-5, No. 3, March
T779, pp. 128-138.

Peters, L. J., Software Design; Methods and
Techniques, Yourdon Pressj New York, New York,

Phillips, Don T., et al.. Operations Research,
Principles and Practice, John Wiley and Sons,
New York, New York, 1976.

Pressman, Roger S., Software Engineering, McGraw
Hill, New York, New York, 1982.

Prince, T. R., Information Systems for Management
Planning and Control, R. D. Irwin, Horaewood,
Illinois,~Tg75^

62.

63.

64.

65.

66.

67.

68.

69.

navB^n^v^H^M«*

129

70.

I
71.

72.

73.

74.

Putnam, L. H., "A General Estimating Solution to
the Macro Software Sizing and Estimating
Problem," IEEE Transactions on Software
EngineeringT^Toi. st-i, NO. T7 July ly/S, pp.
345-361.

Raunch-Hindin, Wendy, "Flexible Automation,"
Systems and Software, Vol. 4, No. 12, December
1$85, pp. 28^37":

Reynolds, William H., "The Executive Synecdoche,"
MSU Business Topics, Vol. 17, No. 4, Autumn
T5F9, p. 2b.

Robey, D. and D. Farrow, "User Involvement in
Information Systems Development: A Conflict
Model and Empirical Test," Management Science,
Vol. 28, No. 1, 1982, pp. 73-85T

Ross, D. T., "Reflections on Requirements,"
Transactions on Softwar
TTol 1, January 1977, PP

IEEE
Transactions on Software Engineering, Vol. SE-3

7 110-115.

75.

76.

77.

78.

79.

80.

Ross, D. T., and K. E. Schoman, Jr., "Structured
Analysis for Requirements Definition," IEEE
Transactions on Software Engineering, Vol. SE-3,
No. 1, January 1977, pp. 69-84.

Ross, D. T., "Structured Analysis (SA): A
Language for Communicating Ideas," IEEE
Transactions on Software Engineering, vol. SE-3,
No. 1, January 1977, pp. 16-34.

Sammett, J., "Roster of Programming Languages for
1976-1977," SIGPLAN NOTICES, November 1978.

Schneider, V., "Prediction of Software Effort and
Project Duration—Four New Formulas," SIGPLAN
NOTICES, Vol. 13, No. 6, June 1978.

Shooman, M. L., Software Engineering; Design,
Reliability and Management, McGraw Hill, New
York, New ior^J T7H3TT7~T22.

Skees, William D., Writing HandbooK for Computer
Professionals, Lifetime Learning Publications,
Belmont, California, 1982.

■r ■
130

81. Snyder, Charles A. and J. F. Cox, "A Dynamic
Systems Development Life Cycle Approach: A
Project Management Information System," Journal
of Management Information Systems, Vol. Ii, No.
1, Summer 19Ö5, pp. 61-76.

82. Snyders, Jan, "Blueprinting Systems for Better
Productivity," Infosystems, Vol. 32, No. 12,
December 1985, pp. 40-42.

83. Stay, J. F., "HIPO and Integrated Program Design,"
IBM Systems Journal, Vol. 15, No. 2, 1976, pp.
W5-1W.

84. Stuart, Walter J., "An Experiment in DP
Management—Revisited," Datamation, Vol. 13»
No. 11, November 1969, pp. 149-157.

85. Terchroew, D. and E. A. Hershey, "Structured
Documentation and Analysis," IEEE Transactions
on Software Engineering, Vol. SE-3, No, 1,
January iy/7, pp. di-30.

86. Thibodeau, R., "An Evaluation of Software Cost
Estimation Models," General Research
Corporation, Report T10-2670, Boston, MA., April
1981.

87. Trainor, W. L., "Software: From SATAN to SAVIOR,"
Proceedings, NAECON, Los Angeles, CA., May 1973.

88. Umbaugh, Robert E., "How to Make the Most of an
MIS Steering Committee," Journal of Information
Systems Management, Vol. 1, No. 3, Summer 19Ö4,
pp. 13-19.

89. Walston, C. E. and C. P. Felix, "A Method of
Programming Measurement and Estimation," IBM
Systems Journal, Vol. 16, No. 1, January 1977,
pp. b4-7T:

90. Walston, C. E. and C. P. Felix, "A Method of
Programming Measurement and Estimation," IBM
Systems Journal, Vol. 16, No. 1, January 1977,
pp. 64-65.

91. Wasserraan, Anthony I., Software Development
Environments, IEEE Computer Society Press, Los
Airaitos, uaiifornia, 1981, pp. 15-35.

w

131

92. Wasserman, A. I. and S. K. Stinson, "A
Specification Method for Interactive Information
Systems," Proceedings; Specifications of
Reliable Software, It.EE computer Society, 1979,
pp. 58-79.

93. Wirth, N., "Program Development by Stepwise
Refinement," Communications of the Association
for Computing Machinery, Vol. 14, No. 4, April
Wl, PP. 221-227.

94. Wolverton, Ray W., "The Cost of Developing Large
Scale Software," IEEE Transactions on Computers,
Vol. C-23, No. 6,"June 1974, pp. bl^IFT

95. Yau, Stephen S., and J.. J. P. Tsai, "A Survey of
Software Design Techniques," IEEE Transactions
on Software Engineering, Vol. SE-12, No. 6, June
W86, pp. 24^

96. Yourdon, Edward Nash, Classics in Software
Engineering, Yourdon Press, ¥ew York, New York,
1979.

97. Yourdon, E. and L. L. Constantine, Structured
Design, Van Nostrand Reinhold, New York, New
York, 1979.

98. Zelkowitz, Marvin V., et al., Principles of
Software Engineering and Design, Prentice
Engiewood ulirrs, iMew~7ersey, 1979.

Hall,

m^mmm^^^

^mn um '■»»" PKBKVnBI« mnwwwiimtvmjimvim n

APPENDIX 1

Manpower Loading Relationships

132

The following manpower loading relationships are

taken from an industrial source [22]. Each organization

or company may have its own set of relationships, but

those presented here may typically represent how

manpower is applied to software development projects.

There are several types of personnel categories

utilized in software development projects. For the

purposes of resource allocation, the applicable types

are defined here and related through the manpower

loading relationships. There are eleven different types

of personnel resources:

Xi = Novice Programmer

Intermediate Programmer

Experienced Programmer

Maintenance Programmer

Project Manager

Line Manager

Task Manager

General Manager

Documentation Librarian

Clerical Personnel

Engineering Staff

X2 =

X3 =

X4 =

x5 =

X6 =

X7 =

X8 =

X9 =

x10 =

X11 =

M-^mMä^^

W———^M U^»■■■■■■ UM U^M^Uigww^MWsi^-mi rnwwmm* rw*amwrm*w

133

Three categorizations of personnel resources can be

identified. The programmers, (X-) through X4) are

the first category, the management staff (X5 through

X3) are the second category and the support staff

(X9 through XT|) are the third category. Depending

upon what step of the methodology is being considered

determines which personnel types are employed. It is

not necessary to use each personnel type in each

software development step. . .

In the development of software, there are several

sequential steps that must be executed before

operational code is realized. Although different code

development processes, methodologies, and procedures use

different names for the various steps, the function of

each step is similar. For the purpose of this research

each of the development steps will be defined. There is

one key personnel resource that is considered to be the

"prime" resource for the development step. The

allocation of respective manpower for each step will

focus on the proportionality of the key resource to all

other resource types in that step.

Step 1 is the Constraint Identification Step. This

step involves the feasibility/understanding of tne

systems specifications of the newly proposed development

project. The objective of this step is for the analyst

to possess a clear understanding of the problem to be

:mmaamw^«M^

f « «WBJP ■ P mmm u.nmmmnn*imnmM*mt'

134

solved and how the developed software will perform that

task. Figure 4.2 applies to this step.

Step 2 is the Generic Kernel Application Step.

This step defines the accepted baseline definition of

the user/mission requirements or system specifications.

This understanding of the overall system requirements is

translated into a form compatible with the specified

design processes and the requisite hardware through use

of the various generic kernels. The identification of

interface protocols and system performance testing

requirements are identified during this step. Figure

3.3 applies to this step.

Step 3 is the Software Technical Factors Step.

This step includes detailed analysis and concept designs

through use of the generic kernels to determine the

operational/performance requirements for the hardware

and software, trade offs between hardware and software

capabilities and economic benefit, system loading and

timing, and interface protocol requirements between

hardware and software. Figure 4.6 applies to this step.

Step 4 is the Kernel Application Environment Step.

This step develops the software design to the point

where all of the kernel interfaces are designated.

Orders of hierarchy for the various kernels, code

modules within each kernel, data base design, inputs to

and outputs from each module and kernel along with

135

understanding of protocols would be addressed in this

step. Figure 3«4 applies to this step.

Step 5 is the Code Development Step. This step

converts the generic kernel depiction of the application

environment to actual software. Depending upon

decisions made in the software technical factors

template, (Figure 4.6) determines the type of language

the code is written in. Some preliminary developmental

test are also conducted In this step. Figures 4.6 and

4.17 apply to this step.

Step 6 is the Test Verification/Validation/Integra-

tion Step. All of the various modules of code developed

in Step 5 are tested for operational effectiveness.

Deficiencies identified during the preliminary develop-

mental tests are corrected in this step. The initial

loading of the developed software to operate and control

physical devices is done in Step 6. Figures 4.18 and

4.19 apply to this step.

Step 7 is System Functionality Testing. This step

integrates the newly developed software into the

physical process which is being automated. Testing is

conducted to insure that the newly developed software

provides the desired response that was stated in the

systems specifications document. Design errors

identified in this step are resolved in Step 6 and

136

w

testing re-accomplished. Figures 4.18 and 4.19 apply to

this step.

Step 8 constructs the documentation and training of

the newly developed code. Training is conducted at all

levels which will have any interface with the new code.

Documentation is usually prepared as the code is being

developed. New self documenting software development

languages alleviate a great burden of the documentation

step. Figure 4.20 applies to this step.

The various manpower loading relationships for each

of the steps are given below.

In Step 1, the key resource is X^i, the

engineering staff. The specific relationship is as

follows:

2X5 + 1X8 + 1X10 + 30X11

The interpretation of the relationship states that for

every thirty hours of resource type Xii that is

applied to a software development project, one hour of

resource type XIQ, one hour of resource type Xg, and

two hours of resource type X5 should be applied to the

project. Another way to look at this relationship is

the following: For this particular step, resource type

X is applied at a rate thirty times greater than either

resource types XQ or X-|o ■ and fifteen times greater

than resource type X5. The interpretation of the

remaining manpower loading relationships is just the

137

same as that given above. The only difference is the

number of resource types that are contained within the

respective manpower loading relationship.

Although only manpower loading relationships for

personnel are discussed in this research, the concept

remains valid for other types of resources. The

proportionality of resource types does not clearly have

to be linear. Square root, cube root, and exponential

coefficient relationships .can also be considered valid

coefficient types depending upon the particular resource

category.

The particular manpower loading relationship for

Step 2 is:

5X5+IOX6+4OX7+1X8+20X-I0+100XH

The prime resource in this step is resource type X-j 1,

the engineering staff. The composition of the

engineering staff includes software engineers,

electrical and mechanical engineers, along with software

system analysts.

The particular manpower loading relationship for

Step 3 is:

2X5+4X6+20X7+20XT0+50XT T

The prime resource in this step is resource type X-] 1,

the engineering staff.

The particular manpower loading relationship for

Step 4 is:

iiSiSiSi&lM

mvnvnw^nBBMiau mum wwmrm rv*w ii. ■ «a ■ u tmm M v-m

138

1x5+2x5+40x7+1 OOXn

The first four development steps has had the

engineering staff resource type X-|i as the prime

resource. The bulk of the requirements definition,

technical feasibility, kernel design, protocol

interface, and communication requirements are basic

engineering tasks.

The manpower loading relationships for Step 5 is:

1 OOXT + 1 OOX2+I OOX3+6X6+5X7+IZOXTO+OOXT-i

Although the coefficient value (Pij) of resource type

X-|i is greater than any other singular resource type,

the prime resource that must be considered here is the

programmers. These resource types are prime due to the

function of the phase, software development. The

training that is accomplished in this step is why the

Pji of X-IQ is high.

The manpower loading relationship'for Step 6 is:

IOOXT + 1 OOX2+IOOX3+9X5+12X6+45X7+bXQ+60Xii

The prime resource type in this step is programmers.

The bulk of the integration and primary validation/

verification work is accomplished by programmers.

The manpower loading relationship for Step 7 is:

10X!+ IOX2+IOX3+6X5+12X6+30X7+3X9+30X11

The prime resource in this step is both the programmers

and engineering staff. Formal verification testing

^nn^TrTTWVW*TT7TVrrrr^r7*vrrTrrnrrrir-j'*'^ r«

139

requires both technical skills in order to identify and

correct any identified deficiencies.

The final step in the development of software is

the documentation step. The manpower loading

relationship for Step 8 is:

100X^1 OOX2+IOOX3+3X5+6X5+45X7+18OX9+9OX-j!

The prime resource in this step is Xg, the documenta-

tion librarian. This step considers that the

documentation librarian • resource also develops and

conducts the training.

jVJl

IPMVIlVUPiUilUPI M-mmm mm mm mm mm

140

VITA

JOSEPH BRUCE MICHELS

Captain, United States Air Force

Bachelor of Science/Electronic Engineering Technology
Weber State College
Odgen , Utah
June 1976

Master of Science/Systems Management
University of Southern California
Los Angeles, California
June 1980

Current Assignment
Headquarters United States Air Force
Deputy Chief of Staff, Logistics and Engineering
Directorate of Logistics Plans and Programs
Division of Logistics Concepts
Washington, D.C. 20050

The typist for this dissertation was Jimraye Hill

