e w

129

A SOFTWARE PLANNING AND DEVELOPMENT
METHODOLOGY WITH RESOURCE ALLOCATION CAPABILITY

A dissertation
nb .y
JOSEPH BRUCE MICHELS

Submitted to the Graduate College of
Texas A & M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 1986

Major Subject: Industrial Engineering

87 11 10 092

= ol

UNCLASSIF1ED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) > .,)
READ INSTRUCTIONS
2 1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

¢

AFIT/CI/NR 87-129D N5 -6l uua El ' E !n
4. TITLE (and Subtitie) 5. TYPE RT' &] UQH_

A Software Planning And Development Methodology
With Resource Allocation Capability /A#5YS /DISSERTATION

6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(as)

Joseph Bruce Michels

NT, PROJECT, TASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. P
A IT NUMBERS

AFIT STUDENT AT:

o
2
X
cz
zm

Texas A&M Univ

AD-A186 088

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AFIT/NR 1986
WPAFB OH 45433-6583 13, NUMBER OF PAGES
140

4. MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Olfice) | 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

Sa, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D I I(:
ELECTE

17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 OLAVER Jfonf?)

Dé&an for Research and
Professional Development

AFIT/NR
19. KEY WORDS (Continue on teverse side If necessary and Identily by block number)
20. ABSTRACT (Continue on reverse side If necessary and Identily by block number)
ATTACHED
|
|
|
FORM
DD ,5on'ss 1473 eoition oF 1 nOV 68 1S oBsOLETE
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)]

o G T AR 10 093 H

) '

- p - V2T

ABSTRACT

A Software Planning and Development Methodology with
Resource Allocation Capability. (December 1986)

Joseph Bruce Michels, B.S., Weber State College;
M.S., University of Southern California

Chair of Advisory Committee: Dr. Leland T. Blank

~ The purposes of this research are to examine the
planning and development of large, generic Dbased
software development projects and to propose a
structured - methodology for software planning and
development (SPD) . The SPD methodology presented
parallels the classic software life cycle protocol and
can be used-in conjunction with ' this life cycle model to
structure decision making and resource planning in a
variety of environments. The concepts of kernel

>
are developed in conjunction

construct and zfempla?es"
with a resource planning and allocation procedure,
Three distinct elements are integrated throughout the
proposed methodology: Technical, Managerial, and
Resource Use determination. Manpower loading
relationships are developed to devise an allocation

scheme for different personnel resources required within

the software development effort., —) 1T oy

114

T ——

7@

) The generic kernel and associated templates are
snown to apply to virtually any type of software
development environment. A major software development

project 1is comprised of many different generic kernels,

each one representing a different function or routine
within the software design. Various templates are used
to tailor the Kernels to a specific application
environment. This tailioring facilitates graphical
depiction of the necessary interconnections, databases,
and protocols to be identified. — -

Cost estimation based on resource use is determined
for in-house personnel development and external contract
vendor development. A building block approach to cost
estimation i{s presented. Each block represents a
specific development step of the SPD methodology for
software design and development. A personnel resource
allocation matrix (PRAM)— is designed, which shows the
relationships between the personnel resource types, the
personnel types available in-house for each step, and
the requirements for external contract support. The
total personnel cost of the project can be estimated
from the various entries of .the PRAM, broxen down by
quantity of in-house and contract support. The fiscal
and equipment resources are discussed in the SPD

methodology and the <cost estimation for personnel is

modeled.

127

All examples presented are based upon a

manufacturing scenario; however, the methodology 1is

applicable to any type of software development activity.

A SOFTWARE PLANNING AND DEVELOPMENT METHODOLOGY

WITH RESOURCE ALLOCATION CAPABILITY

A Dissertation
‘by
JOSEPH BRUCE MICHELS

Approved as to style and content by:

Kot T R Auk,

"Leland T. Blank
(Chair of Committee)

o1k) Lomet/ W ot

L
D

Sallie V. Shepyard Donald R. Smith
(Member) (Member)

Tritelen Q ISy A flaH—

Milton JJ/ Fox~
(Member) (Head of Department)

December 1986

DEDICATION

To my twin brother, Dave, whose untimely death
during this endeavor caused me to realize what is the

true value of life.

vii

ACKNOWLEDGEMENTS

There are many people who must be acknowledged for
the support they provided during my graduate program.at
Texas A&M.
Dr. Lee Blank, my Committeae Chairman, must be
J commended for the tremendous support, guidance, and
direction he so aptly provided.

The enthusiasm of my committee, Dr. Sallie

e

Sheppard, Dr. Bob Fox, Dr. Don Smith, and the graduate
college representative, br. Eugene Sander, were
instrumental 1in providing a strong support base in which
to carry out the necessary research activities.

The sage, wise, and often sought counsel of Dr.
Horace Van Cleave was important. Dr, Van Cleave
: provided support at times when it was needed the most.

Major General M. Gary Alkire and Lieutenant Colonel
David J. Hewer were instrumental in allowing me to go
back to school. Without their support, this work would
not nave been possible.

Mary Dudic of the Honeywell Corporation provided
the needed manpower 1loading relationships data. der
help was invaluable in developing the personnel
resourcce allocation model.

) My parents must be reqgognized for providing thne

moral support and encouragement during the many trying

times when I wondered why certain things happen.

viil

Colonel and Mrs. Henry Hill were instrumental in

providing the support I needed after the death of my

brother. Their caring will never be forgotten.

=
> - -
> -

- - o

(<~

ol - -
s

at
o
4
W

TABLE OF CONTENTS

CHAPTER
I INTRODUCTION o ¢ ¢ v o ¢ o ¢ o o o o o o

Background on Information and
Automation., . . « « ¢+ ¢ ¢ ¢ s e .

Systems Engineering. . . s &
Need for a Comprehensive Planning
Meth°d°1°8y [] L] L] L [] L[] L] L] L] L] L[] []
Software Planning and Development
(SPD) Methodology Overview.
Characteristics of the Developed
MethodologY « « « ¢ « ¢ o o o o o &
Organization . . ¢ ¢ ¢« ¢ ¢ o o« o o o

II PERTINENT LITERATURE . + ¢ ¢ « & « o o+ &

Overview of Recent Literature.
Need for the SPD Methodology-.

III DESCRIPTION OF SOFTWARE PLANNING AND
DEVELOPMENT METHODOLOGY « . &

Scope of the Methodology . . « ¢« « .+
Components of SPD Methodology.
Introduction and Definition of the
Kernel Construct. . . « « « & ¢ o«
Applying the Generic Kernel to an
Application Environment
Definition of the Template
Example of a Template. . . « « + « o &

Iv DESCRIPTION AND USE OF SPD TEMPLATES . .

Technical Element Templates. . . . 5
Constraint Identification Template.
Generic Kernel. « . &
Organizational Database Deflnition.
Software Technical Factors.

Management Element Templates
Managerial Decision Making.
Organizational Management Structure
Automation Steering Committee ., . .
Software Development Team
Software Development Support

Environment. . . . « « « . ¢+ .

[,]

25

25
28

33

37
40
42

45

45
45
50
51
57
62
62
64
66
70

72

ix

CHAPTER Page

Resource Use Determination 83
Determination of In-House or
Vendor Development « . 83
Allocation of Specific Resources . . 91
In-House Code Development and
Intesration L] L L] [] L] L) L] L L) L] L] 92
Vendor Development Procedure . . . 94
Documentation and Training Requirements 97
Summary of Template Usage 101

v SPP METHODOLOGY FOR PERSONNEL RESOURCE
ALLOCATION MODELING . « &« ¢« & ¢« « o o o« 103

Introduction . . . SICHE . e ¢« » 103
Description of the Development Steps. . 103
Components of Personnel Resource
Allocation Model « « . « +» 105
Resource Building Blocks 106
Manpower Loading Relationships . . . 108
Personnel Resource Allocation

Matrix (PRAM) [] L] [] L] L] [] L] [} . L] 110
Cost Estimation Model., . . « o o 114
Other Resource Allocation Methods
Considered . . . « ¢« ¢ ¢ ¢« ¢ o o « o« 117
Vi CONGLUSTONS o 5% 5 el o el ol =l 6l 5 a 5l 9 el lils

Results of the Research . . . + « . . « 119
Recommendations for Further Work. . . . 121

REFERENCES ¢« . & ¢ ¢ ¢ o o o o o o o o o o 123
APPENDIX 1 . ¢« o & o & & & ... N -

Manpower Loading Relationships. 132
L S F IR N ST R S i [0

Figure

1.1
3.1

3.2

3.3
3.4

3.5
4.1

4.2
4.3
4.4
4.5
4.6
4.7

u.8
4.9
4.10

4.11
u.12

LIST OF FIGURES

Software Life Cycle . . « ¢« ¢ ¢ « o &

Correspondence of Software Life Cycle
and SPD Methodology . « « ¢« « «

Software Planning and Development
MethcdologyY « « « ¢ ¢ ¢ o o o o

Generic Kernel, . . « ¢ ¢ o o s o o

Generic Kernel Applied to Production
SChedulingo L] L L] * L] L] L] L] L] L] L]

Database Template Example

Templates Which Apply to Technical
Elements of SPD Methodology. . .

Constraint Identification Template. .
Typical Organizational Databases. . .
Database Hierarchy. . « ¢« ¢« ¢« ¢« « «
Division Hierarchical Databases . . .
Software Technical Factors.

Templates Which Apply to Managerial
Elements of SPD Methodology . . .

Corporate Organizational Structure. .
Automation Steering Committee

Example of Project Development Team
Structure . . . ¢« ¢ ¢ e e e .

Software Development Support Environment

Hardware Component of Development
Environment « + ¢ ¢ ¢ o o

Software Component of Development
Environment ¢ + + ¢« ¢ .

Page
14

26

29
34

39
43

U6
u7
53
55
56
58

63
65
67

71
73

T4

77

xi!

Figure Page

4,14 People Component of Software

Development Environment 81
4,15 Templates Which Apply to Resource Use

Phase of SPD Methodology. . « . 84
.16 Resource Allocation Tree. . . . « . o 85
4,17 Resource Capability Decision Tree . . 90
4.18 Implementation Procedure for In-House

Developed Code. . . ¢« ¢« ¢ ¢ ¢ +« & 93
4.19 Vendor Development Procedure. 95

4,20 Documentation and Training Requirements 98

5len] Resource Building Blocks . . « « . . 107

5.2 Personnel Resource Allocation Matrix
(PRAM). [] L] L] * . L] [] [] [] [] [] L] [] 111

5.3 Personnel Resource Allocation Matrix
with Pjj Coefficients 115

CHAPTER I

INTRODUCTION

Background on Information and Automation

With the introduction of the computer into virtually
all facets of enterprise and modern life, information and
information flow are vital to the success of any
organization. Without the receipt of timely information,
decision makers are at - a serious disadvantage as
contrasted with their competition when key managerial
decisions are required. Computer systems that are fully
integrated allow for the access of various data types
within the enterprise. This integration allows decision
makers real time data access that otherwise would not be
available. Software is a key bridging 1link for
information integration between people, geographic
locations, technologies, and processes. With full
information integratioé between these elements, better
managerial decisions are made. The end result is an
increase in productivity and overall cost effectiveness

of the enterprise operation.

In order for information integration to be effective

in a corporate erterprise, careful planning must be

This dissertation follows the format used in IEEE
Tranactions on Software Engineering.

accomplished in the early developmental stages of
overall system design. The 1life cycle approach to
system development allows the designer to analyze all of

the elements of the system and study the various

interactions which affect each element before any system
component is actually developed. In this process
particular factors which may affect overall software
systems development must be 1identified early in the
design and development stages.

The development of° an integrated information
management system 13 valuable in many different sectors
of business. As 1is well known, one of the sectors in
which significant economic return, productivity
enhancement, and quality improvement can be demonstrated
is manufacturing. Manufacturing is a prime example
because of the many high technology systems wnich
involve computers and information processing systems
that control manufacturing equipment. People,
production equipment and software are élosely linked in
the manufacturing environment. Improved information
processing in all three elements enhances overall
efficiency.

Automat.on can be defined to be the "application to
established industrial processes of artificial devices
which can simulate the human psychic functions (senses,

memory, standards, intelligence) 1in order that these

-

processes may acquire characteristics of adaptability
and self-optimization" [25]. An essential feature of
tnis definition {s 1its implication that somewhere in a
physical process, or 1its control system, there exists
data which plays a vital role. In fact, much of the
activity in a manufacturing system concentrates upon
data, rather than the actual material processing
activities as emphatically pointed out in the following
statement made by Mr. James Lardner, Director of
Manufacturing Operations, John Deere Company [45]:

"The principal activity of most people engaged in

manufacturing 1s creating, analyzing, transmitting,

and managing data, while the actual material
transformation is a secondary activity."

If information 1s defined as the data that is
playing the vital role, some type of control function is
required which insures that data coordination is totally
effectuated. Software must provide much of the control
for total information systems integration 1in an
automated environment.

The driving economiec factor for manufacturing
automation is software development [39]. Industry
estimates that software 1is the determining cost factor
of over 90% of the total cost of an automation project

[91]. Manufacturing has historically, except for tne

last five to ten years, been a definite strengtn of the

American economy. However, that strength has been
severely eroded by foreign manufacturers due in large
part to their effective introduction and use of
automated manufacturing methods in the workplace here
and in overseas companies.

The factories of America are often disjointed,
disorganized, and 1lack the total integration of all the
manufacturing functions [47]. This disorganization has
allowed the various manufacturing activities (design,
production scheduling, inventory control, machining,
forming, and assembly) to develop and operate unique
types of hardware, software, and databases for each
discrets activity. This development has become
characteristically known by the term 'islands of
automation'. None of the various functions are
integrated to capitalize on the synergistic effect
present in an overall systems design [24]. The result
is that many factories have little information system
integration, yet, they have many systems developed over
time and for many excellent, but poorly

coordinated programs.

Systems ZIngineering

A system 1is a set of interrelated components

working together toward a common goal or objective.

Systems afe composed of components, attributes, and
relationships. Relationships may be described as
follows [38]:

1) Components are the operating parts of a system

consisting of input, process, and output.

2) Attributes are the properties or discernible

manifestations of the components of a system.
These attributes characterize the parameters of
a systenm.

3) Relationships are ‘the 1links between components

and attributes.

In the context of software development, the system
can be considered to be comprised of two characteristic
elements--the managerial and the technical. Diametric
opposition of these two elements usually occurs when the
managerial elements have specific constraints on time,
budget, and degree of technological level thought to be
necessary to achieve the desired design function. The
technical element, on the other hand, usually has little
consideration of these problems; rather, it attempts to
define the degree of technological sophistication which
the project should develop. The result, in many cases,
is competing p;oject objectives which do not easily lead
to overall project success.

The systems engineering approach to technology

management provides an environment for the integration

of both elements. Systems engineering is a process that
has been recognized to be essential 1in tne orderly
evolution of man-made systems. It involves the
application of efforts necessary to (1) transform an
operational need into a description of system
performance parameters and a preferred system

configuration through the use of an iterative process of

functional analysis, definition, design, synthesis,
optimization, test and evaluation; (2) integrate related
tecnnical parameters and .assure compatibility of all
physical, functional, and program interfaces in a manner
that optimizes the total system definition and design;
and (3) integrate performance, productibility,
reliability, maintainability, supportability, and other

specialities into the total engineering effort.

Need for a Comprehensive Planning Methodology

An understanding -of the software requirements as
specified in any system specification indicates that a
method is required which assists in planning for
information synthesis and 1integration in manufacturing
systems software. When the software 1is utilized to
operate and control the manufacturing activities,

information and decision integration will be present in

the overall manufacturing system of the enterprise.

This system should provide cost estimation and
resource allocation models which can track cost
accumulation throughout the software system life cycle.
The model itself should be based on factors more
encompassing than simply lines of software code, and it
should be able to identify the significant phases of the
life cycle 1in which substantial resources are expended.
The model should be able to be accessed at various parts
of the overall systems life cycle and should possess the
capability to graphically represent the various
components, attributes, and relationships of a system.
The design and development of such a methodology is the
result of the research presented in this dissertation.

The purposes of this research are to examine the
planning and development of large software projects and
to use the systems engineering approach to develop a
structured methodology for software planning and
development (SPD) activities. It is qonceived that such
a structure can be applied in a va;iety of workKing
environments i.e., defense, manufacturing, services,
health care, etc. The end product of this research
effort 1s a documented structure including a grapnhics-

based resource allocation model that can be applied to

software development personnel assignments.

Software Planning and Development

(SPD) Methodology Overview

The systems engineering approach provides a global
perspective of any problem and allows the analyst the
ability to systematically define, design, develop and
operate systems by taking into account all aspects of
the environment and the system 1itself from the
perspective of the management and technical decision
points [9]. Good system design reflects an optimum
balance among performance, éupport, and economic factors
wnich 1is attained through a trade-off and analysis
effort accomplished in the early stages of the system
development [7].

The systems approach in the development of software
cost estimation allows an analyst to understand the
various 1interactivities that the software has and the
equipment that must be interconnected. The developed
methodology employs two distinct elements-=-one
technical, the other managerial. The technical element
addresses the various technical factors that are
required for software development. These factors
include system connectivity, data protocols, use of
different types of equipment, dependence on various data
types, and the 1like. The managerial element considers

proper staffing of the development team, proper

organizatibnal placement in the overall corporate
hierarchy of the development team, and definition of the
support environment in which the software is developed.
The support development environment includes the
components of people, hardware, and software
productivity enhancement tools.

Many senior decision makers organizationally
responsible for the development and implementation of
software projects do not have the technical background
required to fully understand the various aspects of
software development and the different amounts of
resources required to adequately complete a software
development project. The significant problem with the
introduction of Computer Integrated Manufacturing (CIM)
is a question of managerial acuity rather than technical
diligence (171. The result in many cases is an
industrial software development project which does not
adequately achieve all of the initial design objectives
and has a final cost overrun of four to six times the
initial cost estimate [87].

An organizational and cost modelling approach is
required which clearly illustrates how costs are
accumulated during software systems development life

cyele, This modelling approach should provide

strategic management a more responsive method to

10

M5
¢

allocate resources and to improve managerial decision
Ei making.
?& Many of the available software c¢ost estimation
i models, for example, RCA Price S, Jensen, COCOMO, and
;i‘ Putnam (5], fail to address the overall cost
Ei estimation/resource allocation question from a strategic
P‘ management perspective, The result in most cases is a
ﬁ% | model that is typically based upon lines of developed
5% code. The level of accuracy available from these models
ﬁ may be sufficient as an intermediate step in the
:ﬁ overall cost estimation/resource allocation process;
gé however, these models may fail to provide strategic
ﬁ; level management with a good understanding of how the
‘% overall cost estimates and resource allocations are
E{ achieved. Thus, in a global sense, these models are
ﬁi possibly not 'robust' enough to adequately track costs
‘{. incurred throughout the entire system life cycle.
3: The system 1life <cycle begins with the initial

identification of a need and extends through planning,
research, design, production or construction,
evaluation, c¢onsumer use, field support, and ultimate
product retirement [7]. A model 1is required which
addresses cost accumulations in all these phases for

varying software development environments,

' NSO OO I MO R AR AX KA OSONOMAOOCO000 OO0 AROALS
n Bt L T e """;J'"t..-‘:il'e'ﬁ'ﬂ.":..i'o‘&'o"'i" RO L AN AN INCAOAONS '4':‘0",%_‘-'0‘@ AXE RS AR RR BTN ey

Characteristics of the Developed Methodology

This research has resulted in a software planning
and development methodology which possesses project
organizing, resource identification, and cost
estimation. Technical and managerial elements important
to software development are addressed and integrated
into the developed methodology. Development by in-house
personnel and external contract vendors is considered.
The methodology 1is equally suited for use in a variety
of applications that address government, business, or
commercial requirements. The examples wused 1in this
research are focused on manufacturing. A resource
allocation formulation 1is presented for allocation of
three types of resources present in a software
development project: (1) personnel, (2) equipment, and
(3) fiscal. The concept of a design kernel is
presented. A kernel! as used in this context, is
defined to be a set of functions necessary for
accomplishing a particular task. Generic xernels are
developed for different functional applications and then
detailed for specific software needs. This approach to
software planning and development provides a global
viewpoint of the project or 1list of projects. The
various interactions, connections, common data eleaents,

interfaces, and protocols can all bpe graphically

1

——m EREEEVW W ¥ NS " " wT R W T N SV 4T 0T ST RN etw WO R RS NN T Y R N

displayed. This type of display 1identifies most

incongruities in the design phase before the system is

actually implemented.

The SPD methodology focuses on the method in which
software development programs are managed and how
various resource categories are allocated in a software
development project. The methodology does not consider
tne various types of information that are coded in the
software, methods of particular data coding, information
data structures, data scheédling or handling techniques,

or the quality or richness of the information in the

system. The SPD methodology could be extended to
include some or all of these components as separate
research efforts. Unlike the SPD metnodology, however,
these extensions would not be generic as they would
require domain specific information.

A variety of templates 1is designed to examine
certain development actions of a software project.
These development actions are important from a strategic
management perspective and are considered to be critical
to the overall success of such a project. Lach template
is a flow=chart-style document which addresses critical
development questions. These templates, along with the
kernels, form the crucial parts of this methodology.
Although the various templates are generic in design and

can be transported to a variety of application unique

TR

13

environments, this work addresses the manufacturing
context.

Academic and industrial research by Boehm [11] has
shown that 86% of the total software development costs
excluding maintenance costs are contained within the
implementation and testing phases of the overall
software 1life cycle which 1is presented in Figure 1.1,
As these phases constitute the majority of the cost and
resource expenditures for software development, the SPD
methodology specifically‘ éddresses these 1life cycle

phases (shaded boxes in Figure 1.1).

Organization

The second chapter reviews the literature pertinent
to this research. Chapter III discusses the development
of the system which is proposed for software planning
and development management. The concept of the kernel
and template are introduced and shown to be applicable
to software development activities. Chapter IV explores
the design of the various managerial and technical

templates as they are utilized in the SPD methodology.

The overall methodology is shown and then eacn series of
templates which applies to that part of the methodology
is detailed. Chapter V illustrates the resource

allocation/cost modelling process. The personnel

14

NEEDS
ANRALYSIS
SYSTEM
REQUIREMENTS
SOFTWARE
REQUIREMENTS
YN \\ ‘ A\
PRELIMINARY
N\ DESIGN \\3\\
R
A N
JEST OO NN
PRE-OPERATIONS
MBI NN
OPERATIONS AND
MAINTENANCE
LECEND:

PHASES OF LIFE CYCLE TO wHICH METHODOLOGY APPLIES

FIGURE 1.1--SOFTWARE LIFE CYCLE

Wt (TR .“ '-"‘ oL :‘!' '! ! ‘|.‘|‘ N j'.; M “!_, “‘.‘.-.‘ ’ X oty o 4-.|_.. | i

gy =r ri ‘;&_ﬁ’ 90'4- “}‘rlii;.
W K 3 a "R avwe

= M Shad o WU W WU Aot et Aok

resource {8 wused as an example to show how the approach
WOrKks. Chapter VI summarizes results of the work and

makes recommendations for extensions.

CHAPTER II

PERTINENT LITERATURE

Overview of Recent Literature

Throughout the past ten years much work has been
done to develop adequate cost modelling methods for
software development. Putnam [(70)] developed the SLIM
cost estimation model baged on his analysis of the
software life cyele in terms of the Rayleigh
distribution of project personnel level versus time.
Frelman and Parx [26] repor; on the application of the
RCA Price S model which is particularly developed for
embedded systems in military applications. This model
uses a two-parameter Dbeta distribution rather than a
Rayleigh curve to estimate the distribution of
development effort versus calendar time,

Boehm [10] develdped the Constructive Cost Model
(COCOMO) for software <cost estimation. The model 1is
comprised of three increasingly sophisticated models
analyzing work breakdown structure and phase sensitive
multipliers for cost drivers, The basic model
determines the number of man-months required ftor a
particular software development from delivered source

instructions. The total project development time is

16

determined from the estimated number of man-months.
Equations for maintenance actions and tightly
constrained embedded models are also 1included in the
basic COCOMO model, The intermediate COCOMO model

considers fifteen additional factors of software

developnment. These factors 1include categories and
subcategories of product attributes, computer
attributes, personnel attributes, and project

attributes. The COCOMO model uses multi-variate linear
regression to determine the statistical coefficients
required.

Thibodeau [86] proved that comparative results of
software cost estimation models were possible. His
research was inconclusive, however, as he was unable to
obtain definite results because each dissimilar model
examined was evaluated with different qualities of data
subsets. No one standard data set was used to evaluate
each of the different models. The best results were
oobtained using models with <calibration coefficients

against data sets with a minimal number of calioration

points. Nelson [62] determined that of 169 different
United States Air Force (USAF) software development

projects, there were too many non-linear aspects of

software development for a linear cost estimation model

to adequately predict software costs.

WY Y.y WY W - A bl ohd oAl badh o aad dabl adil Adde add doli bal Lol Aol ool and

18

Devanney [19] 1identified three possible factors

that may contribute to software cost estimation errors:

1) Element of chance which makes cost estimation a
random variable

2) The estimation technique itself

3) Non-uniform and unskilled application of the
cost estimation technique

Wolverton (94] identifies traditional cost

estimation techniques to inq;ude the following:

1) Top Down Estimating--This type of estimating
relies on the total cost of large portions of
previous projects that have been completed to
estimate the <c¢ost of all or large portions of
the project to be estimated. History coupled
with informed opinion or intuition is used to
allocate costs between packages.

2) Similarities and Differences Estimating--The
estimator breaks down the jobs to be
accomplished to a 1level of detail where the
similarities to, and differences from, previous
projects are most evident.

3) Ratio Estimating-=The estimator relies on
sensitivity coefficients or exchange ratios
that are invariant (within 1limits) to the
details of the design. The analyst estimates

the size of a module by its number of object

WA
SHERTIAT M,

19

% instructions, classifies it by type, and
Sé; evaluates its relative complexity.

ﬁs 4) Standards Estimating--The estimator relies on
ﬁ? standards of performance that have been
;a‘ systematically aeveloped. These standards then
%3 become stable reference points from which new
;5? tasks can be calibrated. This method is

accurate only when the same operations have

been performed repeatedly and good records are

o available.
nﬁl 5) Bottom-up Estimating--This 1is the technique
%? most commonly used in estimating government
?% research and development contracts. The total
éﬁ Job is broken down into relatively small work
g&s packages and work units. The work breakdown is
ﬁﬁ; continued until it 1is reasonably clear what
{ steps and talents are involved in doing each
ﬁ: task.
W
}f The SPD methodology compares with these five
i different categories 1in a variety of ways. The SPD
g& methodology is a top down hierarchical approach,
f%, investigating each layer of design sequentially. The
%W ' use of the different types of Kernels allows
3’ similarities and differences of software functions to be
?

examined. The kernel/template concept allows a certain |

standard to be designed for many types of different
software application environments.

One c¢lear conclusion that may be drawn from the GAO
study 1is that some type of plan that encompasses both
managerial and technical consideration is essential if
the project 1is ever to deliver a product that can be
used, In each statement of why the software was
unacceptable to the government, 1lack of structured
planning appears to be a main contributory factor.

Bender, et al., [7] reported that limited results
were obtained for enterprise models and economic
environment models, but that their use has been limited
because of substantial development cost and difficulties
in establishing the data relationships and interpreting
model output. The term enterprise as used in this
context means different types of companies or
organizations. Thus, different enterprise models
signify models developed for one particular type of
company or organizational environment.

Research by Parker [64] found that most enterprises
evaluated new software development projects by simply
studying subenterprise or application areas and then
attempting to 1integrate these various studies into
overall strategic and operqtional plans. This approach

was found not to be successful when the area was subject

to a variety of external influences over which minimal

control could be exercised. Wwhat proved to be an
optimal solution in one part of the enterprise was not
necessarily overall optimal for the entire organization
External influences are defined to be political
persuasions, that s, increased requirements and add-on |
specifications after the 1initial needs analysis has
already been accomplished.

Ahituv, et al., [1] found that lack of a documented
project plan and an inadgguately defined project scope
were the reasons for a majority of project failures when
vendors were used to construct software. Their research
finds that a clearly written request for proposal (RFP)
removes most of this type deficiencies between the
customer and vendor. It was also determined by Cooper
{171 ¢that the successful software development project
manager must have a software life cycle management plan
that encompasses not only the software development
phase, but all other” life cycle phases of software as
well,

Snyder and Cox ([81] report that problems in
software development occur because essentially static
models of analysis and design might be avoided if more

effort were expended in the analysis and preliminary

Y

)

:f; design and development phases. Adaitionally, the
°

ﬁ;. benefits of greater emphasis on the developmental phases
o) Ot

o of analysis early in the system 1life cycle are
W

recommended by McKeen [53]). Parikh [63] states that the
use of different software development methodologies can
save substantial costs, depending on the methodology
employed and the needs of the software.

Boehm [11] interviewed several senior executives of
large companies and found that a viable strategic
company plan and senior leadership commitment are the
two vital parts of a successful software development

program for any company.

Need for the SPD Methodology

The process of software cost estimation is very
uncertain. No one cost estimation model or development
methodology exists which is conclusively superior to any
other. Most currently employed models use some form of
linear regression to determine model coefficients.
Research Dbased upon a significant number of government
software development projects concludes that a
parametric linear cost relationship does not exist in
software cost estimation, thus questioning the validity
of the linear regression assumption.

Each of the above mentioned methods relies on
either past work, that 1is, a Jjob that was done

previously and was similar (analogy), or some form of

intuition on the part of the development analyst. None

22

of the methods discussed specifically divides resource
categories into those of personnel, fiscal, and
equipment within the estimation procedure.

Statistical distributions have been the basis for
some cost estimation models. The Rayleigh distribution
is used in the RCA Price S model. Other research,
however, found that the element of chance makes cost
estimation a random variable with non-uniform and
unskilled application of the cost estimation technique.

The lack of an overaii structured development plan
provides various software designers no real way in which
to uniformly manage any type of development action. In
order to have effective project organization, both the
management and technical elements must be simultaneously
considered.

The SPD methodology presented here uses existing
cost estimation models to nelp support resource
requirements, but also provides the structure and focus
of a basic design architecture, The existing cost
estimation models are used before any actual resource
allocation 1is performed. This allows the analyst to
possess yet another input 1into the quantities of
resources required in developing the software projects.
This architecture uses the various types of templates
and kernels to provide both technical and managerial

structure to a development activity. The variety of

23

different templates allows different kernel types to be
adapted to the specific development activity. The
allocation approach considers resource subcategories and
provides an estimation of the overall cost of the

development activity.

R T N T T T AT K T AN RO A P PN R P M OB M Ul

25

CHAPTER III

DESCRIPTION OF SOFTWARE PLANNING

AND DEVELOPMENT METHODOLOGY

This chapter introduces the SPD methodology and
compares it to the software life cycle. Contrasts and
differences between both are noted. The identification
of salient technical and managerial elements required
for software are 1identified and differences between
requirements for in-house development and external
contract vendor development are discussed. The
construct of the kernel and template 1is defined and

illustrated,

Scope of the Methodology

The correspondence of the classical software life
cycle to the SPD methodology 1is presented in Figure
3% [ife The software 1life <cycle contains the needs

analysis as an integral part of 1its overall system.

This 1is not the case with the SPD methodeclogy which

requires that .the systems specification be an input to

the technical element. Since technical documents do not
usually include the managerial resource needs and
ramifications associated with technical specifications,

managerial resource requirements are normally applied to

26
SOFTWARE LIFE CYCLE SPD METHODOLOGY
: SYSTEM SPECIFICATIONS
NEEDS ANALYS] T
2 T!CHNICAI} ELEMENT MANAGERIAL ELEMENT
) UNDERSTANDING ORIANIZATIONAL
SISEEN OF SOFTWARE DECISION
REQUIREMENTS NEEDS AND
REQUIREMENTS MAKING
ANALYSIS MODEL
SOFTWARE .]
REQUIREMENTS USE OF DIFFERENT SOF TWARE
GENERIC 'KERNELS DEVELCERT
FOR APPLICATION SUPPORT
PRELIMINARY FUNCTIONS ENVIRONMENT
DESIGN
DETAILED RESCURCE
DESIGN USE
DETERMINATION
y
COOE, DEBUG .
AND SOFTWARE
TEST DEVELOPMENT H

SYSTEM
OPERATIONS
OPERATION
AND
MAINTENANCE

FIGURE 3.1--CORRESPONDENCE OF SOFTWARE LIFE CYCLE

AND SPD METHODOLOGY

.i's..' . o ey ; TR e = - Cow v q ™ 2 P NG a
G LRGN R GG aThene i e S i andndnratuntaatiioti gt e ettt ey ity i gt o Wl eyt

a project which is approved and deemed to be technically
complete.

From the viewpoint of the SPD methodology, the
understanding of the software needs and requirements
analysis is analogous to the system and software
requirements of the classical software life cycle. The
preliminary design and detailed design steps of the
software 1life cycle are analogous to specifying the
different kernels for ., the various application
functions. In the context of this research, a kernel is
the nucleus or core of the functions that the software
is designed to perform. The kernel will be discussed in
greater detail later in this chapter.

The code, debug, and test blocks of the software
life cycle are analogous to the resource use
determination and software development blocks of the SPD
methodology. The system operation block of the
methodology compares with the operatians—and maintenance
block of the software 1life c¢ycle. Once the code has
been developed, tested, and integrated, the SPD
methodology stops since the planning and development
phases are complete. The phasé of software maintenance
and enhancements/modifications are not specifically

luded in the SPD methodology.

This methodology introduces the managerial element

in parallel with the technical -element. Several

27

—— A gad A o) STV TURTON O T O YO Y PvT Ladl an o a4

distinct benefits occur because of this alignment,
Overall project communication between management,
development staff, and the actual personnel associated
with the results of the development effort is improved.
Better knowledge and understanding of exactly what is
required by the systems specifications provides for the
allocation of the various resources required for the

development effort.

Components of the SPD Methodology

The first block of the technical element of the SPD
methodology (Figure 3.2) is defined as understanding of
software needs and requirements analysis. The systems
specifications document has stated this same
requirement, however, the reason for inclusion of this
block in tne SPD methodology 1is that it provides a
further clarification of what 1is required in terms of
software systems and their interfaces with already
implemented systems and databases. Many large software
projects are developed whicn result in an erd product
that has failed to satisfy the original systems
specification document. In some cases, another
development effort 1is required to complete the design
and implementation of software to fulfill the original
The block

develops a

specifications. understanding

28

S ENVIRONMENT i

29

MANAGERIAL ELEMENT

= MANAGEMENT :
STRUCTURE

SUPPORT

RESOURCE USE

SYSTEM
OPERATION

FIGURE 3.2--SOFTWARE PLANNING AND

DEVELOPMENT METHODOLOGY

B e e S B e e el e L e e s i e o

30

mechanism for increased communication between the
technical and managerial staffs of a large corporate
enterprise by insuring that both staffs fully understand
what the software should do. If a disagreement or

misunderstanding occurs, the requirements can be better

defined and described before any substantial sum of
fiscal and personnel resources have been expended.

Once an understanding of the software needs and
requirements analysis is complete the number and role of
the generic kernels is established. Generic kernels are
used to determine the kinds and types of software
required for application functions. The various types
of protocols, interconnections, and data elements that
are required for successful information integration are
graphically depicted in the generic kernel.

The managerial element of the methodology 1is
comprised of two blocks. The organizational management
structure block 1is comprised of defining the overall
managerial support for the project and determining the
actual managerial structure of the software development
team. It is suggested that an automation steering team
be developed at senior management 1levels. This team

would be comprised of functional representatives of the

various departments affected by the introduction of new

software, Representatives from finance, personnel,

budget, engineering, and supervisory production

personnel should serve on the steering committee along |

with the director of software development. The director
of software development would have a subordinate team
whose sole function is to develop the required software
specified by the systems specification document. This |
approach 1improves communication and cooperation between
all concerned parties.

The software development support environment block

requires the definition of the necessary tools and
resources required to develop the actual software.
Three components comprise this environment:

1) Hardware

2) Software

3) People

The hardware component includes the necessary types
of machines required for the development and testing of
the newly developed 3oftware. This includes equipment
such as personal computers, executive workstations, and
micro-mini and mainframe computers. The software
component includes software development productivity

aids and support tools which assist the programmer in

developing the software. The people component of the
W, support environment includes the necessary managers,
engineers, technical support personnel, and programmers.

The resource use determinatior tlock is the key to

I R TR o AR NN AN IR R R T QA O R PR b TR RN NN

effective wutilization of resources in the completion of
a software development project. Within this block are
included the two primary methods of completing the
project. One for in=-house software development, the
other external contractor development, In-house
software development is concerned with having the
necessary resources required to develop the complete
system wusing the corporate enterprise's own staff. If
insufficient in-house personnel are available, either
partial contractor support or full contractor support
will be required. Partial contractor support would be
required to augment those in-house personnel available
to be assigned to the project while full contractor
support would be necessary if no in-house personnel were
qualified or available.

If a project 1is wunable to be accomplished with
organic personnel, the necessary scope, size, and
pitfalls of the development effort are usually
recognized after determining available resources. The
scope of the overall project requires that the in-house
staff be familiar with overall resource requirements.
Many large software developmént projects have been
completed by contractors with in-house personnel
monitoring the contract. In most cases, when the

contract changes are requested by the contractor they

are granted because 1in-house personnel responsible for

32

i
|

contract monitoring fail to realize the overall scope
and magnituce of the development effort. This
methodology assists the in-house staff in understanding
the overall scope of the software development project
and determining the necessary level of resource
expenditures.

The 1last shaded block 1in Figure 3.2 is labelled
software development, This block is concerned with the
actual coding process, . tests for functionality,
modification of the developed code, and integration of
the code 1into plant operations. If the code 1is
developed by an external vendor, consideration is given
to the purchase of off-the-shelf code, modification of
of f-the-shelf code, or development of new code to
fulfill customer needs. Training and documentation are

also addressed within this block.

Introduction and Definition of the Kernel Construct

The SPD methodology uses the concept of a generic
kerﬁel (Figure 3.3) to model various software
activities, processes, and functions. Each major type
of process control, utility, or function that is to be
performed by a software package or system can be

represented by a kernel, Each kernel has different

levels associated with 1it, with each level performing

33

34

: REFERENCE :

LEVEL 3

LEVEL 4

CONTROLLED
TASKS

FIGURE 3.3--GENERIC KERNEL

different functions 1in the overall software package or
system. Depending upon the type of kernels required for
any one particular development, different levels could
interface with various databases, have various

communications protocols, application packages, utility

programs, or database management and control systems to
provide control to other parallel or subordinate kernel
levels.

A certain hierarchy of ordered elements is inherent
to the generic kernel. Level one components provide an
interface to the organizational information systenm.
Databases and programs at this level contain data about
a particular department and certain utilities to provide
the information interface to other departments within
the corporate enterprise. The linking of two or more
kernels 1is made at level one when more than one kernel
is used within a specific application.

The number of kérnels that are contained in any
given software development project should be minimized.
This wminimization of different Kkernel types allows a
integrated, homogeneous development while providing for
Kernels which contain a maximum number of similar
functional elements, thereby improving overall coding
speed and operational efficiency.

Level two modules provide the actual control of the

activity that is being automated. The key module of the

35

T

St) m ooy B B e B e e e S e B e B B A s ety ')t st e e

36

kernel 1s in level two-=-the <control process module.
This module 1is integrally connected with the system
interface database, and has as inputs the data reference
module(s) and 1input control(s). The 1input control
module allows for one or more different control actions
that can be accomplished either in series or parallel
depending upon the actual process. The data reference
module can be attached to the control process module in
either a serial or parallel configuration.

Level three modules serve as a buffer between the
control process module and the actual controlled tasks
that are found 1in level four. A buffer as used in the
kernel context provides for connection of different code
protocols, languages, or data types. It is possible
that different language types and software tools already
developed would be simultaneously contained within level
three, A controlled activity could be a type of
process, operation, or event that reduires simultaneous
inputs and outputs. The control support activity is
designed to serve as a reference function for the

controlled activity. This reference function could

serve as a database, data element dictionary,
measurement standard, or utility package required by the
controlled activity.

Level four activities are the controlled tasks that

receive driving signals from the level three modules.

§ fhe - - E 5 . - r r » -
1%t A A ATy Y, A Y 'y IR R e U] f) P g 4 ™ UL
L] & N ,a' .r R ;-.dﬂ,r X Dl o W s X W) N 'i'.‘i (AR .‘h‘:'(3 :I" ..' ..I.U’Q,..Q:.'G"!. .!. ‘!. I".D‘ K I.".l;'.'.‘:'.'.'e‘..’.'«5. _’.’ th‘!.l.,..‘.

|)

The actual type of tasks may vary dependent upon organi-
zational environment. However, these activities are at
the lowest level in the organizational hierarchy. These
types of activities 1include machines, purchase order
writing, quality control functions, flow level control,
vision inspection systems, and the like.

Each of the modules within the kernel are designed
to perform a specific function regardless of the
operational environment. The kernel construction allows
for the possiple introduction of off-the-shelf software
to fulfill any module function. Each level of the
generic Kkernel 1is designed to consist of approximately
1000 delivered source instructions of code. The 1000
source instructions size of the kernel is considered by
industry to be a realistic kernel size [22]. Although
the SPD methodology does not specifically use the
delivered source instructions metric for a measurement
standard, most individuals who are conversant with
software design can easily relate to such a measurement
tool. This metric provides a rough guide to nominal

kernel size.

Applying the Generic Kernel to

an Application Environment

To apply the kernel construct to an operat.ional

environment an example from manufacturing production

37

N e S - -—---—-—-v—“'—“—‘-’-T

38

scheduling 1is developed 1in Figure 3.4. The level one

function 1in the production scheduling example is the

manufacturing database which provides the information
interface of the manufacturing function to the other
sectors of the enterprise, Most data common to the
manufacturing function 1is usually contained within this
database. There are three serially ordered input
controls 1in level two for this example. The engineering
design détabase inputs to the computer aided design
process information giving the general specifications
and characteristics of the parts processed through
manufacturing. Process planning uses the design from
the computer aided design and develops the controls for
the production scheduling procedure. Data reference
modules in this example are parallel in nature.
Material requirements planning, automated storage, and
retrieval and many other activities must be considered
independently before the final production schedule is
complete.

Level three activities 1include (at a minimum)

computer driven and conventional machinery and tne

quality control module. These modules are equivalent to

3

the controlled activity and the control support

activity, respectively, 1in the generic «xernel. The

s

quality control module is labelled a 'controlled support

activity! pecav-~e of tne supporting role that the

LEVEL 3

MACHINERY

FIGURE 3.4--GENERIC KERNEL APPLIEZD

TO PRODUCTION SCHEDULING

R

Ve (P TR A MR T ey BT (
B S L AL (R

quality control function performs. Once the production
schedule 1is developed, the various data is delivered to
manufacturing system machinery so that the respective
part can be produced.

Level four activities are the discrete controlled
tasks which comprise the entire manufacturing process.
Each of the various machines are assumed to be computer

driven.

Definition of the Template

The GSPD methodology uses templates as critical
design tools that allow the various generic kernels to
be tailored to a particular application environment. As
discussed earlier, the generic kernel is applicable to a
wide variety of software development environments.
Thus, any software development project 1is initially
comprised of generic _templates depicting the various
functions required of the software. Several of tnese

templates are discussed in this section. Others may be
added as the situation warrants. After the various
templates are applied to the application environment,
the kernel becomes tailored to the specific application
environment under development.

The frequency 1in which the templates are used for

any one particular development activity is contingent

40

upon many factors. Managerial thread templates would
most 1likely have minimal change once the template was
used. Cn:e a team development managerial structure is
designed, minimal changes usually result. However, this
is not the case for the technical thread templates.
Technical thread templates may be used several times in
one development, depending upon number, complexity, and
type of the various design kernels contained in the
overall software developmenp,

During the entire software planning and development
process, the series of technical templates focus on the

various technical considerations with which a software

designer is concerned. These concerns are type of
language (high or low level), protocols,
interconnections (between different databases),

machines, and types of data.

The managerial templates focus on matters such as
software development team size, ' composition, and
staffing. The software development team is actually
responsible for developing, coding, testing, and
implementing the software system. The types of various
team members and the disciplines they represenz, that
is, engineers, accountants, supervisory shop floor
personnel, and managers are also considered. The

development team work environment is also a managerial

concern, If the development process 1is to progress

- TV hadddeda s da o Ak Mo da e dad ol dobbodedd dial dad

smoothly, the different types of hardware available for
the team to use, programming aids that enhance
productivity, test bed environments for developed
software are all managerial resources that must be

planned and allocated.

Each template possesses certain characteristics
which make it adaptable to many types of application
environments and any size of software development
effort. These characteristics include:

1) Use of generic tempiate labels

2) Identification of interfaces, protocols, and

data elements necessary for interconnections

3) Accommodation for a structured, hierarchical

process necessary in software development.

Example of a Template

The example of a template (Figure 3.5) shows the
various databases that are 1located within a specific
division of an enterprise. The hierarchy of the
databases are displayed, as are the different types of
databases for the division. If this template were to be
used in an actual development environment, the analyst
would 1identify the applicable division and department
level and lower databases, the relevant data elements in

each database, communications protocols currently used

42

DOCC00C00000000
\n\\\\t\\\i\\‘\\\\\\\\\\\\\

i DIVISION DATA BASE 1)

L]

(cepertment section
databases)

FIGURE 3.5--DATABASE TEMPLATE EXAMPLE

and those that may be required in the future to access
the data, and the types of interconnections necessary.
This identification of database parameters by this
template allows a (generic) database kernel to be
tailored to a specific application environment for
database requirements. This same procedure would be
utilized with each of the templates discussed later
until each kernel is tailored to the selected
application environment.

The various templates discussed later comprise the
'shell' of the actual software development. Each actual
development project will be different and the shell is
designed to accommodate those anomalies by aiding the
analyst in an adaptation of the templates to the
specific application environment for which the software

is being developed.

by

CHAPTER IV

DESCRIPTION AND USE OF SPD TEMPLATES

This chapter divides the various SPD methodology
templates into the three categories to which they
apply. Each template series--technical, managerial, and
resource use 1is presented 1in coordination with the
overall SPD methodology as described in Chapter III. A
description of what each 'template means and how it is
used in the context of a software development

environment is presented.

Technical Element Templates

There are five different templates (Figure 4.1) that
apply to the technical element of the SPD methodology.

Each template will be discussed except for the

application of the generic kernel since this was

described in Chapter III.

Constraint Identification Template

The constraint identification template (Figure 4.2)
is one of the first steps 1in the use of tnhe SPD
methodology. Many software development projects have

been initiated and terminated after significant

TECHNICAL ILEMENT

CONSTRAINT =
ENTIFICATION

.........................

TO IDENTIFY SOFTWARE

" DEFINE ORGANIZATIONAL -
i DATABASES iy

Y

Sl

FIGURE 4.1--TEMPLATES WHICH APPLY TO TECHNICAL

ELEMENTS OF SPD METHODOLOGY

46

47

STATED NEEDS
TECHMOLOGICALLY
FEASIBLE ?

£ IDENTIFY e
i CONSTHHI S TH
Hﬁ‘r H[NDEFI' SUCCESSFUL

. DEVELOPMENT

ARE
COMSTRAINTS

IMPOSSIBLE
.. TD CHANGE?

- SOFTWARE FUNCTIONS

FIGURE 4.2--CONSTRAINT IDENTIFICATION TEMPLATE

4,

R e e P M X e o

personnel, fiscal, and equipment resources have been

expended only to find that the requirements in the

systems specification document were actually not
technologically feasible or faced so many possible
constraints that the project should have been declared
infeasible at its 1inception. The use of this templa e
allows the analyst the ability to identify possible
technological deficiencies in a systems specification
before an 1inordinate amount of work is expended trying
to develop some system, process, or procedure that is
not able to be successfully accomplished.

The systems specification document is an input to
the methodology. One subset of the specifications
document should be the software requirements which
define the functions of all needed software and,
therefore, the actual code requirements. The desirable
properties of a specification should include
completeness, consistency, comprehensibility, trace-
ability to the original requirements, unambiguity (hence
testability and/or verifiability), modifiability, and
write-ability [(921]. Costs and constraints should also
be stated in the specifications document [T74].
Knowledge of the final cost that the project is not to
exceed as set by management and of the constraints that

may 1impact the final product allow creative solutions to

ope investigated early in project design.

_—— T T W W— S

Graphic tools are available that assist the design
engineer 1in software specification development. The use
of the visual table of contents (VTOC) [41] provides a
broad overview of the ™"modules™ or paragraphs of the

different source code requirements comprising a

progranm. The VTOC provides a means for others to gain a
broad scale perspective of the finished program and
indicate how the corresponding modules are interrelated.
To meet the written software requirements using the
SPD methodology the first step 1is to establish a
complete A and thorough understanding of the desired
functions and features of the software. This step is
one of basic engineering feasibility, that 1is, a
determination of what is requested and if it can indeed
be accomplished with available technology. The results
of a state-of-the-art survey are used to determine if
the software requirements represent a system that is
technically feasible or 1if technology gaps are present
which could prohibit the successful completion of the
project. If the analysis finds the system as specified
to be technically feasible, the next step is constraint
identification (Figure 4.2). This step involves
identification of any constraint that may sincerely
hinder successful development. The key point is to
remember that all major constraints that would hinder

the implementation of the project should be identified

49

at this step. If the specifications are found to be
both technically feasible and not severely constrained
by factors that would hinder successful project
completion, the generic kernels are developed to detail
the software functions required to satisfy the
specifications document,.

If the systems specifications (or some part of
them) are not technologically feasible, a reassessment
of the specifications must be conducted for use with
current technology. This is an iterative procedure that
must be executed until the needs and current technology
are congruent, The same 1logic applies to constraint
identification and resolution. Satisfactory completion
of both these steps is important Dbefore the

determination and use of the generic kernels proceeds.

Generic Kernel

Once the technological feasibility and constraints
are . resolved, the use of the generic kernel identifies
the various software functions. The description of the
generic kernel and an application environment were

presented in Chapter III.

g L Ban Aok ded Ao o od e ol £af g.2 a0 oo oL o

Organizational Database Definition

The 1identification and definition of existing and
required databases are important in the use of the SPD
methodology. Knowledge of the 1location of various
installed databases, the types of data elements
contained within each database, the type of
architectural structure of each database, and the
required data communications protocols necessary between
databases provide the .System analyst with vital
information. Knowledge of these above-mentioned factors
insures that newly designed systems can be developed
with minimal difficulty, cost, and redundancy.

Failure to spend adequate time in database
definition before full scale systems development begins
has proven to be extremely costly. General Motors
studies ([71] have found that approximately 50% of the
integration <c¢ost is spent on communication equipment and
33% of the integration time and cost 1is expended
developing custom software for each different type of
device. These <costs <could probably be substantially
reduced 1if the analyst investigated the database factors
before beginning actual development.

Database definition should always be done for

projects involving ‘. or more databases. If only one

database is invoiveu, this step may or may not be

51

b el A hadd A8 i a4 _ad

52

accomplished depending upon the level or depth of change
being made in the respective database.

Many different databases may exist 1in any large
corporate enterprise. The purpose of the template in
Figure 4,3 is to 1identify each of the applicable
databases at division level or higher in an
organization, A division is comprised of a grouping of I
like-type activities or departments in the enterprise.
Although the 1labels of the databases 1in Figure 4.3
reflect a manufacturing concern, note that many
divergent databases are present in an organization. The
personnel database may contain administrative data on
the various employees, but also contains skills
inventory and work standards necessary for different

types of manufacturing activities. The financial

database may contain budgetary and financial information

on tne overall economic condition of the enterprise.

The marketing database may contain client lists, new

orders, descriptions of the various products tnat are

manufactured, and other types of sales information. The

engineering dutabase may contain engineering drawings,

engineering change requests, and currently developed

products that are being -engineered but not yet in

production, The manufacturing database contains master

schedules, work in progress, work completed, parts on

order, and inventory. Certain manufacturing standards

....... 3

FINANCIAL 3 | MARKETING 7 LENGINEERING § L2 MANUFACTURING
- DATABASE :_:. o DATABASE] L DATABASE .- | pesseece DATABASE ood

FIGURE 4.3--TYPICAL ORGANIZATIONAL DATABASES

54

including time, 1labor, or parts consumption (bill of
materials) may also be included in this database.

After the divisional databases are identified, the
next step is to identify departmental databases. Figure
4.4 identifies a database hierarchy in which a division
database has three subordinate departmental databases.
In each level, the identification of data commonalities,
data elements, communications protocols, and unique
computer requirements must: be completed as explained
above,

This same hierarchical process of database
identification must be completed to the lowest level
database in a department. Figure 4.5 illustrates a

possible divisional database hierarchical schema in

whicnh departmental and 1lower databases are classified
according to their application, -not their resident
organization, that 1is, department. In some cases, the
task unique databases may be difficult ¢to locate or
non-existent, Some of the 1lower level databases may
have information contained in a variety of locations or
on several computer or manual systems, that is, not in
the form of a typical computer database. Often these
files are as 1important as the data contained within

large, formal, and maintained databases.

R R S S

w"‘p"

S

-
-
L.

EPARTMENT
DAT P!B ASE

FIGURE 4.4--DATABASE HIERARCHY

PPLICATION §

i A

NIQUE IS

1k Ui
CATADASRS |

FIGURE 4.5--DIVISION HIERARCHICAL DATABASES

Software Technical Factors

There are many different technical factors that

comprise software development. However, five of them

(Figure 4.6) are considered significant when considering
overall resource planning. Whenever a large software
development project 1is to begin, substantial thought
must be given to the initial functions to be considered
for automation. In the context of this research, a
function is defined to be a set of related operational
activities that perform a distinct action or control
upon some type of work place.

Most development engineers have found that
introducing automation oriented software incrementally
into the plant 1is more satisfactory than to attempt
automation of the entire plant at one time [37]. A
systematic, incremental introduction of automation
allows learning and problem resolution before
significant overall difficulties occur. In a
manufacturing context, consider as prime candidates for
automation those functions where the smallest amount of
recognizable change or least . possible factory line
disruption will occur, Such functions usually provide
the 1least disruption to the overall factory process and
may be placed on the previous operation method if

software problem resolution is required.

57

58

CIDENTIFY AND 'esmausa
DATA ELEMENTS AND DATA |

: ESTABLISH LANGUAGE TYPE
S R i
FOR SOFTWARE DEVELOPPENT

ETERMINE TYPE OF

-
~

N

ko

FIGURE 4.6-=-SOFTWARE TECHNICAL FACTORS

ol'!;,-
l‘ W ‘-" (A

If an enterprise has had previous experience with

automation software and information systems integration,
the 1identification of 1initial functions is required to
recall the problems encountered during previous
automation projects and to insure that those problems
are not repeated. This may be done through a meeting of
those involved in the current software development
activity and the personnel (if possible) who had
responsibility for the previous project,

After the functions for automation have been
identified, new data categories and the addition/
establishment of the data dictionary must be
considered. This step is placed after the
identification of functions for automation for several
reasons. Knowing which functions are 1initially
automated and the data categories 1involved helps the
analyst 1identify the need 1in the software development
effort. Also, knowledge of the data categories involved
in the automation project assists in the identification
of the various interfaces and data exchanges tnat may be
required.

Often individual software projects are completed
and found to be independently functional, however, once
an attempt 1is made to integrate the discrete package
with a system, the problems are identified.

Identification of the data interfaces provides

MRty

60

knowledge of the various protocol requirements and
should prevent substantial interface problems.

The language in which the software will be
developed is selected after the successful
identification of the data categories and interface
requirements. Higher order language possess distinct

benefits for software development, especially in terms

of productivity of programnmers, Documentation and
maintenance of a higher ,order programming language is
considered to be easier than working with a lower level
language [79]. Maintenance and problem resolution on
lower 1level languages usually requires more time to
debug because of the amount of time necessary to learn
exactly what the program is doing [(27]. Language type
is a major concern of the development engineer as
personnel resources are a large factor in the cost of
overall software development. Detailed discussions of
different language choices 1is presented in [55] and
(771. The C, LISP, and PASCAL languages are discussed
in [16].

The determination of the type of control whicn tne
software will provide is the final tachnical factor that
requires consideration. In most industrial automation
applications real time control 1{s necessary. Batch
control 1is seldom preferred because of the dynamic

characteristics of tne manufacturing environment. Often

automation projects developed by programmers who are
highly experienced in batch mode development and
naturally feel qualified to develop real time software,
have poor results. This experience may be present
because programmers who do not possess a basic
familiarity with real time control software may be
unsuited to develop automation software which has a real
time control. This unsuitability is caused because of
the dynamic, interactive ,éharacteristics of real time
software when compared to software developed in a batch
mode., Real time software is dynamic¢ in nature, that is,
parameters and data elements are constantly changing,
depending wupon the application. Programmers who fail to
possess these characteristics and the necessary
'mindset' that is required for real time control attempt
to force the system design into a batch mode
orientation,

Each of the technical factors described above are
important in determining the overall resource
expenditure for automation software development,
Failure by the software development engineer to consider
any one of these factors when determining the scope of

the development effort may possibly result 1in an

underestimate of the several resources required.

Mangement Element Templates

There are four different templates that apply to

the management element of the SPD methodology. These

templates are identified in Figure 4.7 and described

below.

Managerial Decision Making

In a ccrporate enterprise decision making usually

occurs at three levels, The strategic level is con-

cerned with long range planning, competitive position,
market share analysis, research and development, and
financial posture for the planning horizon of five to
fifteen years [38]. This level is most concerned with
concepts, policies, and how new innovations and products
may substantially contribute to the overall competitive
posture of the enterprise.

Contrasted with the strategic @adégement level is
the tactical 1level which focuses on decision making
within the enterprise 1itself. Concerns at this level
utilize a planning horizon of one to three years and
primarily address production. quotas, assigned goal
attainment, and implementation of policies made at the
strategic 1level [42]. Less conceptual planning is done

at the tactical 1level since more attention focuses on

achievement of enterprise goals.

63

> OF DECISION MAKING -3

- DEFINE ORGANIZATIONAL

.....

- SUPPORT ENVIRONMENT ::

FIGURE 4.7-~TEMPLATES WHICH APPLY TO MANAGERIAL

ELEMENT OF SPD METHODOLOGY

The operational management level is at the heart of
corporate enterprise and is responsible for planning and
execution of the tasks that make the enterprise
operate. The planning horizon of decision making ic
very near term, usually several months up to a year

(311,

Senior level management support is necessary for a
successful 1large scale software development project.
This support should take the form of dedicated
personnel, equipment, and fiscal resources required to
accomplish the task, and more importantly, a will and
dedication to implement new and significantly different
operations procedures once the project 1is complete.
This type of support is garnered from a senior executive
who has a vested interest 1in the success of the
particular system and who has overall responsibility for
primary user departments [30]. This individual should
be at the vice president level and have a significant

influence in overall corporate decision making.

Organizational Management Structure

The organization <chart in Figure 4.8 is adapted
from Koontz and O'Donnel [43] and shows a typical
manufacturing organization, The company has four

divisions which are headed by vice presidents. Nuwmerous

64

I | I I

MARKETING ENGINEERING PRODUCTION EINANCE
RESEARCH ADMINISTRATION PRODUCTION FINANCIAL PLANNING
AR PLANNING =
PLANNTI'IG DESISH INDUSTRIAL
* A
s1 ELECTRICAL ENGINEERING o aillens KNG
ADVERTISING ENG INEERING COST ACCOUNTING
AND PURCHASING
PROMOT ION MECHANICAL STATISTICS AND
ENGINEERING TOOLING DATR PROCESING
SALES
ADMINISTRATION HYDRAULIC INFORMATION SYSTEMS
ENG INEERING
SALES

QUALITY CONTROL

PACKAGING

FIGURE U4.8--CORPORATE ORGANIZATIONAL STRUCTURE

TP T W T W

subordinate departments are contained within each
division, Although the vice presidents of engineering,
production, or finance might be equally well suited as
the automation sponsor, in this case the vice president
for finance is probably best suited for the task because
this division 1is responsible for financial and economic
planning decisions. More important, however, is the
vast experience that this individual possesses with
different types of infprmation and corporate data
automation systems. The broad experience gained from
knowledge and use of other corporate data systems allows

the financial vice president to effectively articulate

to senior corporate management the benefits and results

obtained from automation software.

Automation Steering Committee

The vice president for finance may be the senior
executive responsible for automation and software
development, but the specific managerial, technical, and
administrative details are best 1left to an automation
steering committee (Figure 4.9). This committee is
structured to function as a working committee to
implement policy decisions. The committee should report
to the top echelon of the organization and have

delegated to it specific discretionary authority. Each

R

o

-
g

p
=

=

ol SN

S

= STEERING ZIII

X COMMITTEE

> INFORMATION

3 MANAGEWNT

-2 DIRECTOR =

........

L CONSUL TANT -

DIRECTOR, =

- ENGINEERING ;

- SOF TWARE DEVELOPMENT = Fome: EXPERTISE ==

000000000
\\\\\\\\\\\\\\\\\\\\N

S ACCOUNTING
II\IIIIIIIIIIIII‘I‘I‘I\I‘I

3,00 00 LA 0 0 0 0 L S S b S)

OOOOOO0000C
RASARSAR AR SR TR NN

................
VAV VYV
RN NN NN NN NN XN NN NNNN]

D000 0DLLOLDODLT
\\\\\\\\\\\\\\\\\\

% MARKETING /00

NN DO
L)\\\\L;\\\)__\\\L)\\

VAAMAAAYAYAAAAANNA NN VY
SN A W A A R

mooucnow

.............

RN NN NN ENNNNNNNNN]

sa: AUTOMATION b

................
\\\\\ \\\\\\\

3 “PROJECT MANAGER 3]

ROOD0DLCOLDG

RN RN XN XN
AT SN RN X x2S

'\’\"\,\' DES]G

DO

A AR AR IR

N
LAY
72421
LYY Y

IR

FIGURE 4.9--AUTOMATION STEERING COMMITTEE

W WYY W W W W W W WV WS WS WS Wi R W W VS WYY W WV WY RS W WYY G e

steering committee member 1is partially responsible for
the effective use of the resource the committee
oversees, The committee has the power to establish
priorities, control expenses, make economic and policy
rulings, and provide policy direction to the automation
project manager [88]. The director of the automation
steering committee should come from the information
systeus department under the vice president for
finance, This 1individual . will be responsible for the
day to day activities and management of the steering
committee.

Because automation software development crosses
many funectional lines, various users should also
participate 1in the steering committee. These users
should represent each of the activities that may be
influenced or effected by the software development
activity. Thus, representatives from finance,
accounting, production, and engineering are all
potential steering committee members. The assignment of
production personnel from the shop floor has been found
to be very beneficial 1in obtaining labor personnel

support for 1increased 1industrial automation ([58]. A

complimentary benefit of production personnel mTembership
on the steering committee 1is that they <can usually
identify problems with certain functions to be automated

before the actual development and implementation takes

Raad ool aslh Aok oel

68

place, The production personnel should be considered

and respected as "functional experts" in their
particular area.

An information management consultant may be used as
a technical advisor to the steering committee director

if the director fails to possess tne requisite technical

training necessary to successfully complete the

automation project. The role of the advisor is to

provide technical guidance about the various components

and elements of the automation system [44]. This

individual can be a commercial consultant, a university

professor who possesses a background 1in factory

automation, or an individual, who by virtue of previous

work experience 1in industrial software, is qualified to

address techrical questions.

Other research has shown that user participation in

software system development is effective if users exert

influence toward both conflict generation and conflict

resolution [73]. Many territorial conflicts exist in

development of automated information management

systems. User participation on the steering committee

tends to reduce this type of conflict.

Further discussion of the benefits and viapility of

tne steering committee is contained in (15, 21, 69].

-y -y A aah dad bl de b Ao dhad A A bde addh o

Software Development Team

The structure and composition of the software
development team can take on a variety of forms.
Organizationally, software development teams can be
divided 1into many different types [3, 6, 12, 54, 67, 68,
90]. Three distinet types of software development team
organizational structures are functional, project, and
matrix. The first accommodates the functions of
programming, systems analysis, and computer operations.
Each function has a manager and each manager reports to
a department head [18]. Project teams are formed
combining a mix of skills under a project leader who is
responsible for accomplishing all tne various tasks
required for a given system [84]. Matrix organizational
development concentrates on interdependence of
functional elements and project elements. These are
comprised of overlapping, task-oriented friendship
groups of people with complimentary specializations
ifrad.

One type of project development team is shown in
Figure 4.10., The project manager is the same individual
labeled automaéion project manager, who is subordinate
to the director of software development in Figure 4.9.

In this organizational structure task managers supervise

two or more line managers who oversee the various types

.
)
{
{
4

-

VRSt PTANACER

LINE MANAGER LINE MANAGER LINE MANAGER

PROGRAMMERS #

o PROGRAMMERS PROGR AMMERS

FIGURE 4.10--EXAMPLE OF PROJECT DEVELOPMENT
TEAM STRUCTURE

LA B\ WAL WAL NGO A DAY

71

of programmers. A task s defined to be major
subsections of code which perform a certain software
function. Depending upon the size of the task, this

could include complete kernel development.

Software Development Support Environment

To maximize productivity from the software
development team, a complimentary software development
support environment must 'Be created and maintained. A
software development support environment consists of (1)
techniques and automated tools which assist developer of
software systems, and (2) an organizational structure to
manage the process of software production [91]. Three
key factors of the support environment depicted in
Figure 4,11 are people, software, and hardware. The
people component includes managers, programmers, and
clerical personnel. The hardware component includes the
development system, the target machine, and other
hardware elements of the new system. The software
component includes support and utility software
necessary for the development of ‘automation software.

The hardware component as shown in Figure 4.12 is
composed of five types of hardware. The communications

category includes modems, acoustical couplers, 1local

area networks, and other communications devices required

73

HARDWARE SOF TWARE

'\ FIGURE 4.11--SOFTWARE DEVELOPMENT SUPPORT ENVIRONMENT

T4

'REPRESENTATIVE i
1R

FIGURE 4.12--HARDWARE COMPONENT OF

DEVELOPMENT ENVIRONMEWT

to assist software integration. Mainframe/minicomputers
are nost computers that are available for the develop-
ment team to wuse for the software project. In a large
software development environment where many different
types of software are being developed simultaneously,
target (host) machines which operate the developed
software are necessary. If the software 1is to bve
developed by a contractor, the contractor may have
machines similar to those the actual developed software
is desigzned for. Personal computers and executive
workstations are hardware components of the development
environment that can be wused 1in either a stand alone
mode or can be networked with mainframes or
minicomputers.

The r¢cpresentative target machine and computer
controlled machines are devices on which the developed
software will actually operate, Computer controlled
machines c¢an be either scale model equipment or the
actual machines that will operate the developed systemn.

Peripheral devices are defined to include plotters,
printers, display devices, and other hardware components
that will be used with the developed software. Each of
these devices are used to ensure that the software
provides the designed responses necessary when the

system is operational,

75

The software component or the deveiopment
environment as shown in Figure 4.13 is comprised of five
different resources, Each of the resources is used to
not only increase the actual productivity of the
software development team, but aid in the actual
development and testing of the software.

One necessary resource is structured software
development tools that offer a programmer an
architecture for the overall development effort and may

enhance nis/her productivity. Modular programming,

process ordered design technique, single independent
functions, and single exit/entry point modeling methods
are some tools discussed by Yau and Tsai [95].
Functional decomposition, stepwise refinement, and other
design techniques should also be considered [65, 93].
The structured design approach [57, 97] which maps the

data flow of a problem into its software structure using
design analysis techniques is useful. The Structured
Analysis Design Technique (SADT) is a graphical language
for explicitly expressing hierarchical and functional
relationships among objects and activities [75, 76].
This system structure graphically highlights software
interfaces which can Dbe wused in top-down, structured,
modular, and hierarchical architeot

Some data structure design methods which emphasize

problem structure, construct architecture, and detailed

76

v v Wt L ade alh aif obd Ea ol Lo o dd e 1

77 |

PEOPLE

/ HARDWARE SOFTWARE

FIGURE 4,13--SOFTWARE COMPONENT OF
DEVELOPMENT ENVIRONMENT

design concurrently are presented in (40, 92). The
Hierarchy, 1Input, Process, Output (HIPO) method provides
the ability to represent the relationships between
input/output data and the software process (66, 83).
Nassi-Shneiderman diagrams [61] provide a well defined
functional domain which simplifies the determination of
scope for local and global data. A control free grammar
structure is designed for use with structured
programming and top down methods [14]. The method uses
structured English and a syntax similar to that of a
programming language. Additional structured software
development tools are discussed in [13, 28, 29, 30, 49,
50, 51, 521]. These methods allow the programmer wide
latitude in the type of tool selected and method of
utilization in an actual development environment.

The application test bed resource (Figure 4.13) is
coupled with the equipment 1listed in the hardware
component to allow the developed software to be tested
as it will actually be employed 1in the operational
environment. Testing 1s necessary to determine 1if
errors exist and to identify discrepancies between a
product and its specification. There are seven
different categories of software tests B85k
demonstration, benchmark, complete feature test, new

feature test, performance test, reliability test, and

stacility test. Each of these 1is explained in the

78

I

e

section entitled In-house Code Development and
Integration.

A graphics capability 1is 1listed 1in the software
component so that graphics can not only be used in the
developed software, but to also capture graphics output
produced by the software. This graphics capability is
comprised of automated drawing aids, necessary
computers, plotters, and driving devices required to
allow full operation of software capabilities.

The documentation library contained in the software
development support environment 1is a key tool for the
programmer and manager [4]. Documentation must be the
same quality as the developed software and adequate
enough to fully explain all types of software functions
(561]. Documents contained in the library include the
following [20]:

Problem definition documents

System, module, and component specifications

Programs and their descriptions

Test specifications, test drivers, and test data

An additional resource in the software component of
the development library are preprogrammed application
packages. These packages are designed to fulfill a

variety of needs commonly encountered with software

development. Networking, file handling, graphics,

79

programming language compilers, and communications
packages are just some of the various packages that
could be available.

The people component of the development environment
(Figure 4.14) involves the actual personnel that will be
involved with developing the software. The automation
project manager, who 1is responsible for actual code
development, is usually an individual who has an
excellent Dbackground 1in computer science or engineering
and who <clearly understands not only the management of
large scale software development, but also the various
technical implications of different types of coding
methods.

Test development engineers support the automation
project manager in the conduct of the various tests.
These 1individual: responsible for the test plan
development and 1 execution to see if the developed
software performs as described in the specifications
document. The individuals who develop the test plan are
independent of the programming staff. This independence
ensures test objectivity and early identification of any
flaws or problems in the developed software.

The support staff includes librarians,

documentation c¢lerks, and pechnical illustrators. The

librarian is the interface between tne programmer and

the computer. All changes in the project library are

80

PEOPLE

MANAGERS

FIGURE 4.14--PEOPLE COMPONENT OF SOFTWARE

DEVELOPMENT ENVIRONMENT

31

handled by the 1librarian [98]. In most automation
software environments, self documenting software is used
to reduce the burden on programmers and to insure tne
conciseness of the documentation while the development
effort proceeds, Problem statement languages and
analyzers allow system development activities to be
recorded using a computer database to store all basic
systems data [85]. Some clerical personnel are still
needed, however, to mainggin the'other paper products
previously identified as being stored in the library.

At this point all of the templates that comprise

the technical and managerial elements of the SPD design

methodology have been explained. If a new software

development project is just beginning, each of the

templates would be used to tailor the generic kernels to
the specific application environment. If a modification
or enhancement to an existing system is the main thrust
of the software development effort, if is possible that
not all of the templates would be required because of
the existing organizational structure, available data
and databases, and presently operating systems.
dowever, each template should be consciously considered

before eliminating its wuse to ensure a completeness of

planning.

83

Resource Use Determination

After the technical and managerial phases of the

LR o & M S 8 o o ok buias hs op gy [O U6 S5 A%

methodology have been performed, the next step is to
determine the various resources necessary to implement

and complete the software development project. The four

T E X N _E_ A,

templates shown in Figure 4.15 address the resource use

determination phase of the SPD methodology.

F Resource use determination is placed at this point

: in the SPD methodology (after the managerial structure

has been determined and the various technical questions

have been resolved) because it allows the user to have a

=W LT .

good understanding of what is required for the software
project. If 1in-house resources are not available and
contract vendor resources must be employed, the in-house
staff has a good knowledge of the magnitude of the

overall project to be accomplished by the vendor.

Determination of In-House or Vendor Development

The question of sources of software development is

! dual-faceted; either develop the required software
; in-house or contract the development effort to a
qualified vendor. Several questions must be addressed
before a clear determination can be made to use either

method. Figure 4.16 is a template wuseful in

[\Mﬁmmmmmmmwmmm\mw LAY LA A L0 L0 LW LA LA A0 AP VI LS L AT AT AN AT A BN L, ¢ LR ATNCASM LA

84

2 DETERMINE IN-HOUSE/ 4

q
, < - IN-HOUSE SOFTWARE 4] | VENDOR SOF TWARE 1
STeTE SYSTEM DEVELOPMENT] [SYSTEM o
SR i AND INTEGRATION = | DEVELOPMENT AND:
2 INTEGRATION s

)

OPERATE
INTEGRATED
SYSTEM

FIGURE 4.15--TEMPLATES WHICH APPLY TO RESOQURCE
USE PHASE OF SPD METHODOLOGY

85

...................... HANHOURS

: DETERMINE INITIAL / NOOULES OF COOE
sii4t SIZE OF JOB i TYPL OF PROCESSOR
TYPE OF LANGUAGE

INTERFACE REQUIRCIENTS
HUIBER OF KERNELS
TEAN OESIGN
USE OF EXISTING SOFTWARE SI2ING/CUSTING MODELS

N \\ v

: DETERMINE ADEQUACY :

Y \\\\\\\\\\\\\

\\\\\\\\\\ ISEAARALALAATHARARIAALARIRINA NN L MMM

RN V'8 ‘E\\\\\\\\\\“\\ TITTITL LA LAA RN

WR Esodnces - NDOR RESOURCES

\\\

PEOPLE
EQUIPMENT

Wi PERSONNEL i
PROGRAMMERS OPERATIONAL RESEARCH AND
MANAGERS SUPPORT DEVELOPMENT

SUPPORT STAFF OPERATIONAL
SUPPORT

FIGURE 4,16--RESOURCE ALLOCATION TREE

ascertaining which is more judicious based upon the
quantity of resources available.

The 1initial job size 1is the first step to be
determined. There are several software engineering
metrics 1listed beside the first block that can be used
E51]. Because this methodology employs the concept of
the kernel, determining the number of kernels required
for the effort is an important metric. The complexity
of some software development projects requires that the
quantity of kernels, coupled with one or more of the
listed metrics, may be required to ascertain an (the)
initial size of the job.

Existing software size and cost estimation models
can also be employed at this step. A variety of models
exist, but few proven formulas are known [48]. Thus,
each model uses different metrics and factors to
determine size and resource requirements. The existing
models are in no wa§ intended to supplant the SPD
methodology, but only provide additional information
aboﬁt overall size determination.

A variety of different software sizing and resource
estimation models are discussed by Moranda [60]. Robust
mathematical treatment of the Norden-Rayleigh model is
studied by Putnam [70]. A multiplicative cost

estimation model in which the cost driver variables are

constrained to the values (-1, 0, 1) is presented by

86

e e N R e oa

A N g W R T A T R, W i T T G

Walston and Felix [89]. The Doty multiplicative model
constrains the <cost driver variables to integers of 0
and~ 1— [36]. An analytical model in which the overall
development effort is a function of cost driver
variables 1is presented by Halstead [35]. Table models
which relate values of cost driver variables to either a
part of the overall software development effort or
multipliers for effort are discussed by Aron [2].
Further discussions of .‘available sizing and cost
estimation models are available [23, 35, 59, 78, 94,
961].

Once the development size 1is determined the
adequacy of 1in-house resources must be considered.
Three different types of resource categories should be
considered: personnel, fiscal, and equipment. The unit
of measure for personnel 1is man-hours, for fiscal
resources the unit measure 1s dollars, and for equipment

utilization the wunit measure may be memory size, speed,

and other characteristics.

-In the personnel resource category, three
subcategories are considered: programmers, managers,
and support staff. The progrémmers are the personnel

which will be responsible for the development of the

actual code required by the needs analysis statement.

Three additional subcategories of programmers are

87

considered: experienced, intermediate, and novice.
Managers may also be classified into three sub-
categories: project, task, and 1line managers. The
relationship of the managerial categories was presented
in Figure 4.10. The support staff 1is comprised of
clerks and documentation technicians necessary to
maintain the paperwork asscociated with a development
effort.

Fiscal resources are - also subdivided into two
categories: operational and support. The operational
category 1is defined to contain fiscal resources that are
primarily intended for actual software development,
testing, and implementation. The support category
identifies funds that are not directly mission related,
but serve to support operational activities. Examples
of this type of funding category are graphics support
and telecommunications support. The fiscal resources
may also Dbe described in terms chéracteristic of how
they will be expended. Typical fund categories include
such. types as operations and maintenance, procurement
and research, and development test and evaluation. Each
enterprise has different 1interpretations on how these
funds may be spent, but usually these definitions are
quite similar. 1

The equipment resource category 1is defined to

include three different types of equipment: research

N 3..1."0 AN AN

and development, operational, and support. Research and
development equipment that is too costly to justify on a
one-time need basis may be required to support the
development effort. Specialized equipment, hardware, or
other devices that wouid be beneficial to the overall
development action are included 1in this category.
Operational equipment includes all types of equipment
listed in the software and hardware components of the
software development environment (Figure 4.12 and Figure
4.13). Support equipment is not directly mission
related but wused to enhance the overall development
action. If inadequate or no in-house equipment
resources are available in one or more categories,
vendor resources through leasing may be considered.

Vendor resources are 1listed as only people or
equipment, for these are the two most salient resources
that the vendor provides. The quantity of resources
provided by the vendor 1is totally dependent upon the
availability of in-house resources dedicated to a
parficular development project.

The decision tree of Figure 4,17 can assist in
determining where various development resources may be
obtained depending upon how the software project is to
oe completed and implemented. There are tnree basic
steps 1in the vendor development supiort branch., If full

vendor development support is required, a review of the

90

DEVELOP
R
TWARE 551
VENDOR OEVELOPHENT
., SFPoRT
POSSESS FULL IN-HOUSE POSSESS NO e
CAPABILITY IN-HOUSE CAPABILITY PRODUCTS

POSSESS PARTIAL
IN-HOUSE CAPABILITY

CODE DEVELOPMENT

PARTIAL IN-HOUSE

CAPABILITY

BEGIN NEwW CODE

FIGURE 4, 17--RESOURCE CAPABILITY DECISION TREE

request for proposal (RFP) is done to determine neces-
sary requirements. The use of off-the-shelf products
are considered 1in meeting software specifications. If
a direct application of off-the shelf products cannot
be done, the amount of modifications necessary to
fulfill the specifications must be determined. If
off-the-shelf and modified packages are not adequate to
fulfill the specifications, then new code development is

required by the vendor.

Allocation of Specific Resources

After the various job sizing methods identified in
Figure 4,16 are used to determine Job size,
consideration is given to the adequacy of various
in-house resources. For the personnel resource, lack of
sufficiently qualified personnel for a major project may
suggest wuse of external contractor support. Lack of
available equipment resources may suggest that
commercial leasing of a computer time sharing service
may be necessary. A resource allocation matrix is
developed 1in Ch;pter V which considers the various steps
of software development. The matrix provides an analyst
with insight on which steps require additional personnel
or where large resource requirements overall are

necessary. The wuse of the matrix will be illustrated

91

with the personnel resource, however, the matrix is

applicable to equipment and fiscal resources also.

In-House Code Development and Integration.

After the source of development 1is determined
(Figure 4,17), the next step 1is code development,
testing, and integration. Figure 4.18 is the template
for use with in-house developed code. The actual coding
of the requirements in the specifications document is
contained in the develop code block. The various
interface and communications protocols are contained
within the develop interfaces block. These two blocks
lead to the functionality testing of the developed code.

The test plan mentioned earlier should be
comprehensive and the different types of tests for the
developed software identified. Since there are several
types of tests commonly utilized, a brief statement
about each 1is presented here, A more comprehensive
description is available in reference [34]. The
demonstration test wuses controlled input to produce
expected output. This test 1s used to show that a

product hnas reached some level of completeness. The
benchmark test certifies that the product is capable of
processing input from a real user environment and

producing correct results. The complete feature test

92

93

DEVELOP CODE :\:\'\: N vy \'\' v \' Vv :\ \
\ ‘/\ -‘:\":""\1‘1\4‘/‘1‘;‘1\1\1‘/\ v SN INTERF ACES ,\,\'\,

ARRARARRATAIRARRIRY \-‘\»‘
'I/IIIIIIIII/IIIIIII 1/1//11 SN
SAMIANAAVA A VAAN Y MDA MV

ST TN S T T L L LAY
-'Jlf?fiifliif!ilir.‘fl.ﬂ.‘if{lf‘-‘ill

\’\'\' TEST DEVELOPED CODE FOR v/ v

\\I\I\I\III AAVAVAMAVAY AV VYN I\I\I\I\l\l\l.’

Sy FUNCTIONALITY Sy,
\\\\\\\\\\\\\\ AR

LA NRS .‘ ERA RS 742

DO

DOES
CODE SATISFY

SPECIFICATIONS?

“‘\ RN ‘\“\
e MODIFY CODE viviy

IIIIIIIIIIII llllll!lll

w FOR FUNCTIONALITY

YES

AR AARAAR AR AR RARERA AR ARTARARY
(XXXXXXXXXRNX XXX RRRAXXXXRNXXNXNXNN
VANV VY AVLAVAYA VY

INTEGRP.TE NEWLY DEVELOPED

AANDDRBROABABI SIS NIARR SRR AN

'I'I'.‘?Q‘?E.INT.O. SYSTEM AND TEST v
A FOR FUNCTIONALITY Wiy

DOES
CODE
INTEGRATE
WITH EXISTING OUE FUR 114 TEGRATION

L o JSTEM
CORRECTLY?

YES

AAARARAAATANARRARARARARAAARARRARR]
R R R A N R N N
DA A AAA AR
NN RN RN NN NN 2118, 1s 1

- OPERATE lNTEGR ATED SYSTEM

(RN IR AR

’
VAV DA AN A ANV
AR A R R N A A A A N N

FIGURE 4.18--IMPLEMENTATION PROCEDURE FOR
IN-HOUSE DEVELOPED CODE

certifies that all features specified 1in a product's
external specifications are present and operate as
described. The new feature test is used to evaluate new
functions. The performance test evaluates performance
characteristics such as execution speed, size,
throughput, data transfer rate, compilation, assembly or
generation speed, overhead, response time, and human
interface. The reliability test evaluates a product
under conditions that produce stress to discover its
ability to operate without failure or to recover from
failure such as parity errors or lost data. The
stability test certifies successful integration of
products into a product set or system, These are the
type of tests that may be performed on the developed
software before it 1is 1installed in the overall system
and prior to the performance of integration testsL
Testing 1is not totally finished until all errors are
corrected. After the error corréction, the newly
developed code 1is then able to integrate with the

existing system.

Vendor Development Procedure

The template in Figure 4,19 1is the development

procedure for vendor wWwritten code. In order to insure

thnat the software requirements of the system

94

95

!
i

|

H

SYSTE
BY

THH T

LI

J

IHUBHHH U]
CUSTOMER

OPERATE

IR
T
SOFTWARE

1

INTEGRATED
ACCEPTABLE?

SYSTEMS
e
INTEGRATION

YES

l YES

UG

ARE
CODE
MODIFICATIONS
REQUIRED?

OFF-THE-SHELF-
CODE AVAILABLE?

MU LMY

Hitididadadaditi

YENDOR

]
INTEGRATE

ACCEPT

DE INTEGRATE ?>—

CUSTOMER NEEDS

HRHRHHHHRRHHHHH

-

gt TR Y

INTEGRATE CODE INTO

co
FIGURE 4.19--VENDOR DEVELOPMENT PROCEDURE

e

96

specification will be adequately fulfilled by a vendor,
the use of the request for proposal (RFP) is suggested.
The RFP 1is a contracting document that allows all
vendors to provide a work submission in a format which
t»e company can evaluate equally, insuring that a vendor
does not skew their proposal for their own favor.
Distinct advantages of using a RFP include ([33]:
detailed requirements and specifications, unbiased
evaluations, consistent information, and standardized
vendor proposals. The RFP should contain an objective
statement, system description, proposal evaluation
criteria and procedures, progress time table, user
contacts, and a statement of confidentiali