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PREDICTING MAGAZINE AUDIENCES WITH A LOGLINEAR MODEL

Abstract

A loglinear model for predicting magazine exposure distributions is developed and it's

parameters are estimated by using the maximum likelihood technique. The accuracy of

the loglinear and a Dirichlet-multinomial model are compared using 1985 AGB: McNair

data. The results show that the loglinear model has significantly smaller prediction errors

than the Dirichet-multinomial model. A simple algorithm for optimal media scheduling

is given.

Introduction

The annual advertising budget for Anheuser-Busch Incorporated in 1983 was

$290,616,400 (Advertising Age 1984). Having spent such an enormous amount of money

on advertising, the company wants to be certain their money is being spent efficiently.

Their advertising money is not spent efficiently if they have poor estimates of the potential

audience for their advertising campaigns. An underestimate of the audience does not reflect

the actual efficiency of the advertising campaign; instead, a reduced expenditure may still

achieve the advertiser's desired audience. An improvement in the audience estimates for

Anheuser-Busch, reducing the annual advertising budget by only 1%, would amount to a

saving of $2,906,164.

Most ad agencies and advertisers use the exposure distribution (e.d.) to assess cam-

paign efficiency. The e.d. is the proportion of the target population which sees none, one,

two, or up to all of the ads in the campaign. In turn, the e.d. is used to estimate reach,

the proportion of the population which is exposed to at least one insertion, frequency, the

proportion of the population which is exposed to at least one, at least two, or up to all of

tU ads, and effective reach, the mean of the e.d. Effective reach is also known as "Gross

Rating Points" (Naples 1979).
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Many methods have been employed to estimate the e.d. However, the majority are ad

hoc and lack accuracy over a range of advertising campaigns (Chandon 1976). A survey

of media directors from 288 advertising agencies in the U.S. showed that media directors

place "more sophisticated reach analyses" high on their list of important future media

research services (Russell and Martin 1980). This finding was corroborated by a more

recent survey (Leckenby and Kishi 1982b) which showed that 90% of media directors from

the 100 largest advertising agencies believe that between "some" and a "great deal" of

improvement is needed in e.d. models. The same survey indicated that only about one-

third of the directors perceive that the models they currently use estimate the observed

e.d. to within five percent.

Another important use of e.d. estimates is in media selection (Aaker 1975; Lee 1962,

1963; Little and Lodish 1969). All advertising campaigns have a budget. It usually costs
more to advertise in magazines with high readership. An advertiser can achieve a high

reach by placing many ads in a magazine with a high readership although the campaign cost

will be high also. Alternatively it is usually possible to achieve high reach by placing ads in

a range of magazines, with more ads in lower readership magazines, thereby reducing the

overall campaign cost. Accurate reach estimates are needed to juggle insertion placement

in a variety of magazines so as to maximize the reach or effective reach, whilst keeping

within the budget.

The first known attempt to estimate reach for a media schedule was by Agostini
4-

(1961). However, Agostini's method was not successful when applied to British magazines

(Metheringham 1964). Metheringham's (1964) own method used the beta-binomial distri-

bution (BBD) (Skellam 1948; Ishii and Hayakawa 1960). The BBD has also been used as

an e.d. model by Greene and Stock (1967), Liebman and Lee (1974) and Chandon (1976).

Io addition the BBD has been applied to TV schedules (Headen, Klompmaker and Teel

1977; Rust and Klompmaker 1981), consumer purchasing behavior 'Chatfield and Good-

2
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hardt 1970; Morrison 1979), household disease distributions (Griffiths 1973), proportions

with extraneous variance (Kleiman 1973) and as an indicator of TV loyalty (Sabavala and

Morrison 1977). However, Metheringham's method was shown to overestimate reach and

odd-numbered exposures (Schreiber 1969; Chandon 1976). His method also fails to es-

timate the characteristic shape of the e.d. (Liebman and Lee 1974; Leckenby and Kishi

1982a).

Chandon (1976) made an empirical comparison of six ad hoc, ten stochastic and three

simulation methods of estimating the e.d. His study showed that two of the better methods

used Waring's formula (cf. Feller 1969) to estimate terms in the formula where triplicate

and higher order probabilities were needed. One method was introduced by Kwerel (1964)

and the other by Hofmans (1966). An empirical study by Leckenby and Kishi (1982a)

* showed that Hofmans' method is superior to Kwerel's.

A model currently popular for estimating the e.d. is based on the Dirichlet- multi-

nomial distribution (DMD) (Chandon 1976; Leckenby 1981; Leckenby and Kishi 1982a,

1984). The DMD has also been applied to brand choice models (Goodhardt, Ehrenberg

and Chatfield 1984), mixed media models (Rust and Leone 1982, 1984) and to pollen

counts (Mosimann 1962). The best known method to date for estimating the e.d. is a

DMD model of Leckenby and Kishi's (1984) which uses Hofman's geometric distribution

to estimate the between-vehicle duplication. However, the major deficiency with Leckenby

and Kishi's model is that it is designed primarily for schedules with equal insertions in all

the magazines, but equal insertion placement infrequently occurs in practice. Leckenby

and Kishi state that their model can be used for unequal insertions by "treating multi-

ple insertions in a vehicle as single insertions in multiple identical vehicles." The danger

with this procedure is that it ignores the within-vehicle duplication, a factor known to be

important due to reading loyalty.

We propose to develop three models to allow for e.d.s with one, two, and three or more

3
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magazines. The models build on each other in that the model for one magazine is used to

improve the fit of the model for two magazines and the model for two magazines is used

to estimate the parameters of the model for three or more magazines. In contrast to some

past e.d. models we will use rigorous statistical methodology in developing the models for

magazine e.d.s in addition to employing statistically-efficient parameter estimation.

The model for one magazine introduces an additional parameter to the BBD to account

for reading loyalty. This simple generalization of the BBD was first suggested by Chandon

(1976) although his method of parameter estimation was naive, sometimes leading to

. inconsistencies in his estimates. We will improve upon his estimation method.

The model for two magazines uses the DMD to model a bivariate magazine e.d. The

model is capable of handling unequal insertions and, again, we will use efficient parameter

estimation.

The model for three or more magazines uses a loglinear model to estimate the cells

of a multidimensional contingency table. Bishop, Fienberg and Holland (1975) give a

full account of the derivation and application potential for loglinear models. We make a

reasonable simplifying assumption for the loglinear model from which it follows that only

bivariate data are needed to fit the model. Thus our model, for it's improved accuracy,

uses only as much data as existing models.

Our three models are empirically tested against the best currently-known models using

sample exposure data from the AGB:McNair "National Media Survey" conducted in 1985.

Finally we give a simple algorithm for which our e.d. models can be used to maximize

either reach or effective reach while keeping within a campaign budget.

The Models

One-Magazine Model

Many people subscribe to one or more magazines. Among them is a proportion which

always reads a particular magazine.

4



Chandon (1976) suggested a modification of the BBD which he called the "two segment

beta-binomial model". One segment is definite readers and the other is probable readers.

They represent proportions w and 1-w respectively. The parameter w may be viewed as

a loyalty factor. A high value of w indicates an appreciable reading loyalty whilst a low

value indicates little or no loyalty to a particular magazine.

By mixing this loyalty proportion with the mass function of the BBD we obtain the

modified BBD (MBBD). Let X be the number of exposures a person has to k insertions

in a single magazine. The mass function of the MBBD is

f M B = X ( W(k) F(a+3) F(k-z+3) F(z+a) +(1) xrl +#3+k) r(p3) r

where I(i + 1) = i(1), the usual gamma fuction, and I(Xk} is 1 when X = k and 0

otherwise. Note that when w=0 the MBBD reduces to the BBD.

Chandon (1976) estimated a, 3 and w by equating the sample proportion of non-

readers to the proportion of nonreaders given by the MBBD model for k 1 1, 2, 3. These

data cannot be obtained from our sample data (cf. Q1 and Q2 below). Chandon's system

of three equations sometimes results in an inconsistent solution which forces him to set

w = 0, thereby losing any advantage of using the MBBD.

We use maximum likelihood estimation to estimate a, 3 and w. The likelihood

equations are given in the technical appendix. Danaher (1987) proved that the maximum

likelihood estimates (MLEs) of a, 3 and w are best asymptotically normal (BAN), which

means that as the sample size (n) tends to infinity these estimates tend to their true values

and these estimates have the smallest variance among all estimates. Serfling (1980, p. 142)

gives a formal definition of this concept.

Two-Magazine Model

Let Y = the number of exposures ezclusaive to magazine 1, Y2 = the number of

exposures eZclusive to magazine 2, and Y3 = the number of exposures to both magazines 1

5



and 2, with 0 < Yi < k , i = 1, 2,3, i.e., initially there are k insertions in both magazines.

Let Y=(Y, Y2, Y3 ); then the DMD has mass function (Mosimann 1962)

fDMpi=y k! r(r) r(k - i, + -yo) r(y, + -,)
(k -Z 3 _ y,)! r(,+k) r(-Y)

3 3^Yi>o,, T= y-i, 0 <y <_5, i = 1, 2, 3, y-] ,_ k.
i=O i= 1

Now let X, = Y + Y3 and X2 = Y2 + Y3 ; then (X,, X2 ) is the bivariate e.d. of the

numbers of exposures to magazines 1 and 2 with mass function,

k!r(r) Ein({i"s2}gx1,x2(X1 =,x 2 = z2) = r +

(2) (T=MaXm{O,sl+X2-k)
r(x1 - Z 3 + -Y)r(X2 - X3 + - 2)r(x 3 + -Y,)r(k + x3 - - x2 + -Yo)

(X 1 - .3)!(X2 - 3 )!X3 !(k + x3 - - X2)! Hi,=or(-,)
O<zxik, i =1,2.

At this stage we have a model for a bivariate e.d. when there are equal insertions

in both magazines. If the media schedule requires unequal insertions then add dummy

insertions to the magazine with the lesser insertions to get insertion equality. This method

of adding dummy insertions was used by Rust and Leone (1984) for two different media,

viz., TV and magazines. Following the construction of the bivariate e.d. using (2) a

hypergeometric adjustment is made (Chandon 1976; Rust and Leone 1984) as follows.

Suppose ki insertions are placed in magazine i, i = 1,2. When k, > k2 ,

k-k+ ; ( k 2 )(kI-k )
(3) hx,x;(zz) = 0 < k , i = 1,2.

Now hx;,x; is the bivariate e.d. model when the insertions are unequal and gx,,x,

comes from (2).

The final step in constructing the bivariate e.d model is to adjust (3) so that it has

MBBD marginals from (1) by using iterated proportions (Deming and Stephan 1940).
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To estimate the parameters of (3) we will use the data from Q1 below where k = 1

and denote it {n,, 2}, where n.. 2 is the number of people in the sample who have x,

exposures to magazine i, i = 1,2 (0 xi :1 ), and n is the sample size. The problem now

is that we have only three linearly independent data (since n = 1-Z 2 n 1 2 ) and four

parameters to estimate.

The MLEs of the yi are

(4) 'Yo = -- T, - 1 -T fr- , 1 3 -T.

From (4) it can be seen that in order to estimate the -yi ,i = 0, 1,2,3, it is necessary to

estimate r also. Basu and de B. Pereira (1982) prove that X, and X2 have beta-binomial

distributions with parameters ai and fli defined as follows

-Yl + " 3 = ai , 1Yo +712 =01,
(5)

1 2 + 13 = a2 , -Yo + "1 =/ 2•

Let &i and 4 be MLEs or method of moments estimates of a, and /A, i = 1, 2. From

(5), ai+/3 = 10+1 + 2+-Y3 = T, i= 1,2. However, in general &I + &2+2

so that some authors take a weighted average of &I + 41 and &2 + 42 to estimate r with

i2_ where wi = - i = 1,2 (Chandon 1976, Leckenby and Kishi 1984,

- Rust and Leone 1984). We found this unappealing since this estimator of r is rather ad

hoe. The authors could equally well have chosen the arithmetic, geometric, or harmonic

mean of (&i + 4i), i = 1,2. In addition this estimate is usually inconsistent, i.e., as the

sample size tends to infinity, the weighted average estimate of r above does not tend to r

(Danaher 1987).

Our estimate of r is

(6) f + + + +

This estimate is numerically close to the geometric mean of (&j + 0i), i = 1,2. This

estimate is consistent and after (3) is adjusted to conform to MBBD marginals, by iterated

-i~e 7

N..,....
w ' Uz r r - "' r '' ' r * "*U .,' r - -. % r * - 7. • " *



proportional fitting, the estimate of the bivariate e.d. obtained by substituting (4) and (6)

into (3) is BAN (see Danaher 1987).

Model for Three or More Magazines

Here we construct a loglinear model to estimate the rn-dimensional probabilities for an

m-variate e.d. To fix ideas we will examine the case m = 3 and estimate the 3-dimensional

e.d. of (XI, X 2 , X 3 ), where X, is the number of exposures a person has to magazine

j, j = 1,2,3.

Using the notation of Fienberg (1977) the general loglinear model for three dimensions

is

log mijk = U + Ui(i) + U2 (j) + U3(k) + U 1 2 (.,) + UL13(ik) + U23(jk) + U123(ijk)

(7)
i = O, 1... ki, j = O, 1,... k2 , k = 0, 1,... k 3

where mik = the expected number of people in the sample exposed to i out of k, insertions

in magazine 1, j out of k2 insertions in magazine 2 and k out of k3 insertions in magazine

3. Constraints on the parameters in (7) are given in Fienberg (1977).

Let Z1 3'k = the number of people in the sample exposed to i,j and k insertions in

magazines 1, 2 and 3 respectively.

The loglinear model with no second-order interaction has U123(ijk) = 0 for all i,j,k

in (7). We tested the validity of the no second-order interaction assumption on 220 com-

binations of three magazines with one insertion in each magazine. Using an asymptotic

chi-squared test given by Feinberg (1977 33) we found only 15 of the 220 combinations

had significant second-order interaction at the 5 % level of significance. Since we have a

large sample size of 5201 the asymptotic chi-squared test is powerful which means we can

be confident that the assumption of no second-order interaction is reasonable for most of

our data.

There is no closed-form solution for the MLEs of f{m,,k) but Fienberg (1977), provides

an iterative solution, performing the following steps to obtain the MLEs of (mk}.
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Step 1: set , 1o) = I for all i,j, k, then for v = 0,

Step 2: r(h'3+ '3 ) = (3v-r )

sjk AJ3+)rh l3 .,+ 2) X - h . ( a.,+ l)
Step 2: i3'k N2) Lw+1)ijk I

"'-,&,+2

Step 4: (,.k += 2 i k  I

where xij +  Zk xijk etc.

Now repeat steps 2 to 4 for v = 1, 2,... until the change in ,h3., 's from one cycle to

the next is small. This technique is called iterative proportional fitting and was introduced

by Deming and Stephan (1940). We have already used this technique for the two-magazine

model.

It can be seen from steps 2 to 4 above that the only data required to fit the loglinear

model with no second-order interaction is {zx.+}, {z 1 +k} and {x+,k}. In a typical situation

for a loglinear fit the {xi3 k} come from the sample (Fienberg 1977). It is possible to get

{Xij} from the sample data for some values of i, j, and k (c.f. Q1 and Q2 below). However,

if we knew {xijk} for all i,j and k there would be no need to estimate the e.d.

Since we only need to know {zxj+}, {zi+k} and {z+jI} the sensible thing to do is

obtain accurate estimates of these three sets of bivariate statistical-frequencies. Hence,

our method is to pretend that our two-magazine bivariate e.d. estimates obtained from

(3) (and marginal adjustment) are the observed values in steps 2 to 4 above. Note that

we must multiply the probability estimates by n to get the "observed values".

Once we have {rhO3 k} we can estimate the mass function of the three dimensional

e.d. (with no second-order interaction). Now let X - ":U= X, be the total number of

exposures an individual has to a media schedule. Then the mass function of X (denoted

f(X)) is estimated by

, ! 3

(9) i(x = =-Mj 1 1..11 k.
n E

{ (i,3..k) :i-P3-Ik =x } "--1

An efficient algorithm was written to compute the { then construct (9). It is

9



clear how this procedure, with the assumption of no second-order or higher interaction

generalises to m magazines (m > 3).

Danaher (1987) proved that the estimates of the e.d. probabilities arising from this

loglinear model are BAN.

We can think of the two-magazine DMD model above as being a "saturated" loglinear

model (Fienberg 1977). Hence, from now on we will consider that we have two models,

the MBBD for one magazine and a loglinear model for two or more magazines.

Empirical Tests

The Available Data

To fit and test the accuracy of our e.d. model we used the AGB:McNair Surveys New

Zealand Ltd. "National Media Survey" data from a sample of n = 5201 residents of New

Zealand, 10 years or older. This multistage cluster sample covered the period July through

December 1985, with about 200 people interviewed each week. It is assumed that reading

habits are stationary over time so that we may think of all 5201 people as a sample from

a single population. Many questions were asked of the respondents although the only two

question formats relevant to us were (for weekly magazines),
Q1) "Have you personally read or looked into any issue of ... (magazine name) in the

last seven days - it doesn't matter where?" (Has a Y/N answer)

Q2) "How many different issues of ... (magazine name) do you personally read or look

into in an average month - it doesn't matter where?" (Has answer 0,1,2,3,4 issues)

Table 1 shows how Q1 and Q2 are modified for monthly, two-weekly, and two-monthly

magazines. Q1 and Q2 were asked for 40 different magazines. There were ten general

appeal magazines, eight business magazines, six were women's magazines, six were news

magazines, five were hobbies magazines and five were sports oriented. The magazines

rai.ged in single issue reach from 0.7% to 39% of New Zealand's population.

We extract univariate exposure data from Q2 and bivariate exposure data from Q1,

10



Table 1: Question Inserts for Different Magazine Periods.

Magazine Q1 period Q2 period

Weekly last seven days average month
Two-weekly last two weeks last three months
Monthly last month last six months
Two-monthly last two months last twelve months

to fit the models above. The Simmon's data used by Leckenby and Kishi (1984) allowed

them to test their model only for schedules with up to two insertions in each magazine.

In contrast, we can test our models at insertion levels ranging from 1 (using Q1), 4 (for

weekly magazines, using Q2) and 6 (for nonweeklies, using Q2). We can also test our

models for schedules with unequal insertions by using a mixture of Q1 and Q2 to get the

observed e.d. This should permit a thorough test of our models.

Test Design

Since our one-magazine model, the MBBD, is different from the loglinear model for

two or more magazines we will test this model separately. The test is exhaustive in that

the MBBD model is fitted then used to predict observed sample e.d.s for all 40 magazines

at two insertion levels, k = 1 and k = 4 (for weeklies) or k = 6 (for nonweeklies), making

80 total schedules. We chose the BBD as the best currently available model to compare

with MBBD.

For schedules with two or more magazines we constructed a completely randomized

design, selecting 340 schedules ranging in size from 2 to 6 vehicles. The schedules were

chosen so that half of them had equal insertions. Of the schedules with equal insertions

half had one insertion in each magazine while the other half had 4 or 6 insertions in each

magazine. For the schedules with equal insertions we also fitted Leckenby and Kishi's

(1984) "DMD1" model (renamed DMDLK) as this model performed the best out of the

eight models they tested.

In the case of the two-magazine schedules, with one insertion in each magazine, both

the loglinear and DMDLK models reproduce the sample data exactly, thereby giving no

11



prediction error. Owing to this, our equal-insertion schedules for two magazines have only

insertion levels 4 or 6.

Definition of errors

The most common technique for assessing model accuracy is to use the model to

estimate the e.d. for a schedule whose observed sample e.d. is already known (Liebman

and Lee 1974; Chandon 1976; Leckenby and Kishi 1982a, 1984; Rust and Leone 1984).

Denote fi = f(X = i) and 11, i = 0,1,... ,k, respectively, as the observed and

estimated probabilities of the e.d. Reach and effective reach are denoted p and pe. Four

measurements of error will be used. They are,

i) Mean squared error (MSE) where

1MSE + =O )

ii) Relative error in reach (RER) where

RER- o - fo l  L- A.1-:fo p

iii) Error in the exposure probabilities over schedule reach (EPOR) where

EPOR = E IIf -hi
1 - fo

iv) Absolute error in effective reach (AEER) where

AEER = p. A- &I.

The MSE is a popular measure of error in statistics whilst the other three measures

of error are designed more specifically for magazine exposure models. RER and EPOR

Ii e been used by Liebman and Lee (1974) and Leckenby and Kishi (1982a, 1984). Notice

that (RER + EPOR)(1 - fo) "-=o Ifi - fi , which is the sum of the absolute errors.

12
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Thus EPOR may be thought of as the contribution to the sum of absolute errors which

is attributable to nonzero exposure levels.

Results and Discussion

The average errors for the four error measures are given in Table 2. The MBBD has

smaller average error than the BBD for all but the RER. A one-way analysis of variance

showed that the difference in the average errors between the two models is significant (p-

value< 0.025) for the EPOR and AEER. That is, the MBBD gives significantly smaller

errors than the BBD for half the error measures.

Insert Table 2 About Here

Table 2 also shows the variation of the average errors for the loglinear and DMDLK

*, models across schedule sizes ranging from 2 to 6. The loglinear model gives smaller average

*i errors than the DMDLK for all the error measures and schedule sizes. In addition, the

loglinear model's errors do not increase in magnitude as the schedule size increases from 3

to 6, as occurs for the DMDLK. The overall average for the entire 340 schedules is given

£in the last row of Table 2 and in Table 3 these averages are compared by using a one-way

analysis of variance. The result of the analysis of variance F-tests is that the loglinear

model gives significantly smaller (p-value< 0.001) errors than the DMDLK for all four

error measures.

Insert Table 3 About Here

We were able to test the loglinear model for schedules with unequal insertions. The

magnitude of the errors for these schedules did not differ significantly from the errors for

schedules with unequal insertions.

Generally, the errors for schedules having one insertion in each magazine were smaller,

by a factor of at least 10, than for schedules with unequal or high, equal, insertions.

Fc, this reason the average errors for the two-magazine schedules are unexpectedly high

(being larger than for three-magazine schedules, for instance). This is because all the
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two-magazine schedules had four or more insertions in each magazine, as explained above.

One drawback of the loglinear model is that it's computation time increases as sched-

ule size and insertion levels increase. For example, schedules comprised of three and six

magazines, with each magazine having four insertions, took 0.1 and 201 CPU seconds,

respectively, on a CYBER 760 mainframe. However, the increased computation time is

not felt to be a major shortcoming since, in practice, few schedules exceed six magazines

(Stroeven, Managing Director of AGB:McNair Suveys N.Z. Ltd., personal communication).

Danaher (1987) discusses ways in which the computation time for very large schedules can

be significantly reduced, at the expense of accuracy.

Optimal Media Scheduling

Now that we have excellent models for estimating the e.d. we can use these models to

answer the following question, "How many insertions should be placed in each magazine

to maximize reach or effective reach whilst keeping within a predetermined budget?"

Suppose we have m magazines with ki insertions in each magazine, at a cost of ci for

each insertion, j = 1,2,... ,m. Let f(X = x) denote the e.d. mass function as before and

let the total allowable campaign cost be C. A formal statement of the integer programming

optimization problems is to vary (ki, k2 ,..., k, ) so as to

Maximize p = 1- f(X = 0) (reach),

or PC = E k(a, + wjfi,) (effective reach under the MBBD model),

subject to E kici <5 C, ki = 0,1 ... < 00, M 1 .

Most integer programming techniques are suited only to linear objective functions

(Garfinkel and Nemhauser 1972). We can see that PC is linear in ki , but p is not, so

w- need to use some nonstandard techniques to maximize p subject to the constraint.

Solution algorithms for this optimization problem by the branch and bound (Garfinkel
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and Nemhauser 1972) and dynamic programming (Denardo 1982) methods are available.

A feasible solution is an m-tuple (k1 ,..., k,,) which satisfies the above constaint. We

devised an ad hoc solution method which considers the entire solution space, defined by

the constraint --=1 ici C C, searching for the feasible solution with the highest reach

or effective reach. However, we can eliminate many of the feasible solutions by exploiting

the following monotonicity property of reach.

Denote by p(kL,..., k,,) the reach achieved by placing ki insertions in the jth maga-

zine. If we add one insertion to the 1th magazine then

p(k...,k, +,...,km) > p(k...,k,...,k,) , I=1,...,m, ki  0, j= 1,... ,M.

In words, this inequality says that adding an insertion to any magazine is guaranteed to

increase the reach.

This componentwise monotonicity property of reach is very important since it greatly

reduces the computation needed to solve the reach optimization problem. For instance, we

know p(2, 1,1) > p(1, 1,1) so if (2,1,1) is a feasible solution there is no need to find P(1, 1,1)

((1,1,1) is clearly also a feasible solution) since we know it to be less than p(2, 1, 1).

A formal statement of the algorithm is:
k.O) = [C/cij =1,..., ,, Pm = 0 ,

Order the magazines so that cl <_ C2 C "" <c_ then,

for j=1 to m

for i = ky to 0 step -1

if E' I kicy < C then prn. +- maz{p, , p(k 1 ...,k,)

update optimal solution if 9,n. changes

ki , k0 )

k j+1 +- k '+1 - 1

begin j loop over again
end if

eJ d i loop

end j loop.
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Effective reach also has the componentwise monotonicity property so the same algo-

rithm above can be used to find the optimal schedule when maximizing effective reach.

Table 4 gives the cost and readership information for a group of three magazines as well

as the optimal solution for reach and effective reach with a campaign cost, C, of $30,000.

The effective reach is maximized by putting all of the insertions in the magazine with the

highest ratio of single issue reach to cost per insertion, whilst the reach is maximized by

placing as many insertions as possible in the most popular magazine. There were 102

feasible solutions to this particular optimization problem of which 82 were eliminated by

the the monotonicity property of reach and effective reach, an 80% reduction in the number

of schedules to be tested. Without using the monotonicity property, the execution times

for maximizing p and p. are 24.4 and 0.072 CPU seconds, respectively, on a CYBER 760.

If the monotonicity property is used the corresponding execution times are 4.8 and 0.061

CPU seconds. These represent, respectively, an 80% and 15% reduction in computer time.

Clearly, we have made a major saving in computation time when maximizing p and a

smaller, though significant, saving when maximizing Pe.

Insert Table 4 About Here

Conclusion

We used a simple generalization of the BBD suggested by Chandon (1976), viz. the

MBBD, with our efficient parameter estimation and empirically showed that it performs

better that the BBD.

The major contribution of this study is the application of a loglinear model to estimat-

ing multidimensional e.d.s. Leckenby and Kishi (1984) showed that exposure models based

on the DMD are accurate in estimating magazine e.d.s. However, a loglinear model, with

no second-order or higher interaction, is shown to be statistically significantly better than

L, kenby and Kishi's most accurate DMD model. We also found that their model loses

accuracy as the schedule size increases whereas the loglinear model sustains it's accuracy
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over a range of schedule .- - In addition, the DMDLK is not designed for schedules with

unequal insertions. In contrast, the loglinear model handles unequal insertions, giving the

same accuracy as for schedules with equal insertions.

The trade-off for the increased accuracy of the loglinear model is an increase in com-

putation time. This is felt to be a tolerable shortcoming considering the significant im-

provement the loglinear model makes over the best currently known model.
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Technical Appendix

Let ni be the number of people in the sample exposed to i out of k insertions in a

magazine. Denote the likelihood function for the MBBD as L and define

C=C(a,) = r(a+k) r(a+ 0)

r(a) r(a + 0 + k)

and AyL) -= o 1/(-1 + j). Then the likelihood equations are

a logL k-I

aa (ai)n -(n-nk)AI(a+3,k)
i=1

(1 - w)c[AI(a,k) - AI(a + ,k)]nk
w + (1-w)c

8logLk-1a log- - l(/,k- i)n, - (n- nk)AI(a +,k)
58 i=O

(1 - w)cAi(a + 0, k)flk

w+ (1-W)c

alog L -(n -nk) ( -c),
aw 1 -w W + (1 -w)c

We calculate Z' by equating ! to zero and get h = /n-c(&,.

When (; is substituted into the first order partial derivatives of a and /3 the following

second order partial derivatives result,

a2 logL (n - nk)c[(A(ac), k)- (A(a + /,k)) 2 /(1 -c) + A 2 (a + ,k) -A(a,k)]
Oa 1 - C

k-I

- A2 (a,i)n + (n - nk)A2(a + P,k),
i=1

O2 logL =(n[(A (a + f,k) - a, ))A(a + fk)/(1 - ) + A (O +

+ (n - njk)A2(a + ,),
2 logL - (n -nk)C[(A(a + ,k))/(1-c) + A 2 (a + /,k)]
5#2 1 - C

k-I

- Z A2 (,n - i)n, + (n - nk)A2(a + 6,k),
i=O

18



where A 2 (-Y,1) The MBBD likelihood equations have no closed form

solution but may be solved by the Newton-Raphlon method where the above second order

partial derivatives are utilized. Since W^ is an explicit function of & and / the numerical

work is considerably reduced.
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Table 2: Average Errors for Schedules of size I to 6 vehicles: Comparison Between
MBBD and BBD Models and Between Loglinear and DMDLK Models

Schedule Model Error Type
Size MSE x 10" EPOR% RER% AEER%

MBBD 3.13 11.70 3.63 0.33
1

BBD 5.20 15.24 3.20 0.90

2 Loglinear 4.74 14.71 1.98 1.04

DMDLK 9.23 24.22 5.23 3.75

3 Loglinear 2.90 11.34 1.32 0.79

DMDLK 4.90 13.48 2.24 2.68

4 Loglinear 6.98 13.89 1.74 1.91

DMDLK 8.89 15.51 2.14 3.28

5 Loglinear 5.54 11.01 1.01 0.93

DMDLK 18.69 18.12 2.30 4.08

6 Loglinear 4.98 11.17 1.85 1.06

DMDLK 21.97 19.35 2.12 6.47

Overall Loglinear 4.55 12.95 1.57 1.10

for sizes 2-6 DMDLK 8.94 18.03 3.20 3.46

-204°
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Table 3: Analysis of Variance Comparison of DMDLK and Loglinear Models

Error Source d.f. Mean F
Type Square

MSE Between models 1 2.13 x 10 - 7 16.20
Error 502 1.31 x 10- 8

EPOR Between models 1 0.286 27.2a
Error 502 0.0105

RER Between models 1 0.0294 38.1a
Error 502 0.00077

AEER Between models 1 0.0616 50.7a
Error 502 0.00121

ap-value < 0.001.
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Table 4: Optimal Solution for a Three Magazine Schedule.

Magazine Cost per Single Issue Optimal Soln Optimal Soln
Insertion $ Reach % for p for pe,

Readers Digest 2400 25.8 0 12
Womans Weekly 5602 37.9 1 0
N.Z. Listener 6061 39.0 4 0
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