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Director
Defense Advanced Research Projects Agency

0 1400 Wilson Boulevard

Arlington, VA 22200

Attention: Program Management

This letter is the Annual Progress Report for our research program supported under
DARPA-ONR Contract N00014-82-K-0727.

During the period of 1 July 1986 to 30 June 1987, we have continued to make
progress on the acquisition of acoustic-phonetic and lexical knowledge. Specifically:

We continued our investigation into the contextual variations of speech sounds,
emphasizing the role of the syllable in these variations. From the analysis of
a large body of speech data, we found that the acoustic realization of a stop
depends greatly on its position within a syllable. We also began to address the
problem of how such syllable-based knowledge can be structured and utilized
in automatic speech recognition. At present, we have adopted a hierarchical
syllable description that enables us to specify the constraints in terms of an
immediate constituent grammar.

* We developed a featured-based framework for phonetic recognition, and im-
plemented a recognition system for semivowels in American English. The
recognition process is divided into two stages: first, acoustic regions that
potentially contain semivowels are detected. Second, various acoustic param-
eters are used to classify the region as either /w/, /1/, /r/, /y/, or as an
imposter. Recognition results ranging from 78 to 95% were obtained across

different contexts and speakers. (Higher performance was obtained when /w/
and /1/ were allowed to be confusable.)

e We continued our efforts to capture the knowledge used by human spectro-
gram readers and to incorporate it into an expert system. We have moved
from studying syllable-initial singleton stops to syllable-initial and -final stops
in clusters. Our emphasis has been on establishing human performance bench-
mark9, both for auditory perception and for spectrogram reading experiments.
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The results indicate that listeners can correctly identify stops in various en-
vironments with accuracy ranging from 85 to 97%. The performance of the
spectrogram readers is 10 to 15% lower, however. The results of these experi-
ments gave us insight into important acoustic cues and how they are combined.

* We refined our system for extracting visual objects from speech spectrograms,

using a combination of directional and non-directional edge detectors. We
evaluated the effectiveness of such representations in three ways: spectrogram
reading experiments using object-derived spectrograms, vowel recognition ex-

• periments, and speech resynthesis. Our results show that spectrogram readers
can recognize speech sounds from such impoverished representations with high
accuracy. Also, the recognition system using only the information contained
in the objects can achieve comparable performance to that realized using a
conventional signal representation. Finally, speech resynthesized from the vi-
sual objects is highly intelligible.

* We explored several models for the refractory effect of auditory nerve fibers

- that is, the fiber's inability to fire twice in rapid succession. This effect is
believed to be important at the onsets of acoustic events, and therefore plays a
major role in speech segmentation. A significant outcome of this study is that
the effect contributes a nonlinearity which operates like an automatic gain
control. This result is contradictory to certain observations that imply linear
behavior at onsets. Our tentative conclusion is that an enhancing nonlinearity
has evolved in the cochlea so as to nearly counterbalance the compressive

- refractory effect. The final model is relatively 9imple, and therefore could
easily be incorporated into a speech analysis system.

* We began work on a spelling recognition system that, taking the 26 letters of
the English alphabet as its vocabulary, would recognize continuously spoken

qletters in the context of spelled words. Our preliminary effort focused on
establishing the lexical constraints, and the baseline performance by humans
both from listening and spectrogram reading. Our lexical analysis reveals
that strong sequential constraints exist for letter strings, and such constraints
can be useful in determining permissible letter combinations for legitimate
English words. Listening and spectrogram reading performance were found
to be quite high (98% vs. 91%). For those letter pairs that were found to
be confusable by humans, we were able to find acoustic parameters that can
reliably disambiguate them.
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We are including with this report copies of the following publications, in the form

of theses and papers presented at various conferences, written with ONR support
during this contracting period:

0 e Zue, V. W., "Models of Phonetic Recognition III: The Role of Analysis by

Synthesis in Phonetic Recognition," July, 1986, 69-70.

e Randolph, M. A., and V. W. Zue, "The Influence of Phonetic Context on
the Acoustic Properties of Stops," 112th Meeting of the Acoustical Society of

"" America, Anaheim, CA, Dec. 1986.

# Randolph, M. A., and V. W. Zue, "The Role of Syllable Structure in the
Acoustic Realizations of Stops," Proc. 11th International Congress of Pho-
netic Sciences, 1987, 36.2.1-36.2.4.

C5 e Espy-Wilson, C. Y., "A Semivowel Recognition System," Proc. 11th Interna-
tional Congress of Phonetic Sciences, 1987, 95.4.1-95.4.4.

* Leung, H. C., and V. W. Zue, "Two-Dimensional Characterization of the
Speech Signal and its Potential Applications to Speech Processing," to be

l* presented at First International Conference on Communication Technology,
1987.

* Espy-Wilson, C. Y., "An Acoustic-Phonetic Approach to Speech Recogni-
tion: Application to the Semivowels," Ph.D. thesis, Massachusetts Institute

ql of Technology, May, 1987.

* Daly, N. A., "Recognition of Words from their Spellings: Integration of Mul-
tiple Knowledge Sources," S.M. thesis, Massachusetts Institute of Technology,
May, 1987.

Sincerely yours,

Victor W. Zue

Principal Investigator

Enc.

.-
4.

J-.

'i:* -':.-.',".-, " '.. -- -.. . ,.- . - - -. '. . -' . - ...... . - . .-. ',. .- "-4. ' .". . - ,-,



.:

9.:: I/ M e .

-- F:LL/M6

"Q OS1S',~R

',j -R

nrrG,3~

0 '

bb"

p,

p....

,?J<

O4



"niversity, Canada, July 21-22, 1986.
Lmii. - MODELS OF PHONETIC RECOGNITION Ill: and selectively attend to many acoustic cues, interpret their
4 THE ROLE OF ANALYSIS BY SYNTHESIS IN significance in light of other evidence, and combine the infer-PHONETIC RECOGNITION ences to reach a decision. This is an immensely difficult task,PHO I Rgiven the incomplete state of our knowledge about the impor-
' Victor W. Zue tant acoustic cues and the ways they should be combined.

In addition to contextual variations, there are several other
Department of Electrical Engineering and Computer Science sources of variability that can affect the acoustic realisation of

. and the Research Laboratory of Electronics, Massachusetts utterances (Klatt, 19s6). First, acoustic variations can arise
Institute of Technology, Cambridge, MA 02139, USA from changes in the environment or in the position and charac-

teristics of the transducer. Second, mtAsn-speaker variation
Abstract This paper proposes a recognition model that at- can result from changes in the speaker's physiological or psy-
tempts to deal with variabilities found in the acoustic signal. chological state, speaking rate, or voice quality. Third, differ-
The input speech signal is first transformed into a represen- ences in sociolinguistic background, dialect, and vocal tract
tation that takes into account known properties of the human sise and shape can contribute to across-speaker variations.
auditory system. From various stages of this transformation, Some of these variations may have little effect on phonetic
acoustic parameters are extracted and used to classify the ut- distinctiveness, whereas others will have dire consequences.
terance into broad phonetic categories. The outcome of this Successful phonetic recognition crucially depends on our abil-
analysis is used for lexical access. The constraints imposed ity to deal with all these sources of variability. Not only must
by the language on possible sound patterns should signifi- we extract and utilise information from phonetic variations
cantly reduce the number of word candidates. Finally, de- during recognition, we must also learn to disregard or deem-
tailed acoustic cues will be utilised to select the correct word phasise acoustic variations tLAt are irrelevant.
from the small set of candidate words. Utliing Constraints

Lit. .... ctlon The contextual variations observed in the speech signal can

The task of phonetic recognition can be stated broadly often be attributed to constraints imposed by the human artic-
* as the determination of the transformation of the continuous ulatory mechanisms. For example, the motion of the formant

acoustic signal into a discrete representation that can then be frequencies during the production of the diphthong /a'/ di-
- used for lexical access. In presenting my arguments, I will rectly reflects the movement of the tongue from a low posterior

assume that words in the lexicon are represented by a set of position to a high anterior position. However, superimposed
. phonological units. While the precise naturt. of these units, be on such articulatory constraints is the knowledge possessed by

they metrical feet, syllables, phonemes, or distinctive feature a native speaker that certain gestures need not be as precise
bundles, is not important fbr the present discussion, for the as others. In American English, for example, a speaker can

" sake of consistency I will assume that words are expressed as choose to nasalize vowels at will, since the degree of nasality
strings of phonemes. does not affect a phonetic decision. Similarly, a native sveaker

-.My proposed model of phonetic rcognition makes use of can produce a front, rounded vowel in place of a back, rounded

1 broad phonetic analysis and language-specific constraints to vowel (as in the word sequence 'two two') simply because the

reduce the number of lexical hypotheses, and to establish the I+backj is a redundant feature for rounded vowels in American

context for further, detailed phonetic analysis. This is the English.
third of a set of three papers from the MIT Speech Commu- Examples of such language-specific constraints are easy to
nication Group, expressing somewhat opposing views on the find. The so-called p/honotactsc constraints govern the per-
topic. Upon closer examination, however, there may not be missible phoneme combinations. There are also the prosodic
as many differences as there are similarities. Like Klatt (these constraints, limiting the possible stress patterns for a word.

* proceedings), I believe that the signal must be transformed Knowledge about these constraints is presumably very useful
into an acoustic, segmental description. However, I do not in speech communication, since it enables native speakers to
share his view regarding the feasibility of lexical access from fill in phonetic details that are otherwise unavailable or dig-
short-time spectra, nor the use of a set of uniform distance torted. Evidence of the usefulness of such language-specific
metrics to measure phonetic similarities. Like Stevens (these knowledge can be gleaned from experiments in which phoneti-
proceedings), I believe in a representation based on distinctive cians were asked to transcribe utterances (Shockey and Reddy,
features. However, I am increasingly frustrated by our inabil- 1975). The transcription error was typically high when the
ity to find invariance of these features in the acoustic domain, utterance was from a language unknown to the transcriber,
and thus I question the hypothesis that such invariance in fact suggesting that "knowing what to expect" is important for
exists. phonetic decoding.

s etolLarge dictionaries have been used in several recent inves-
"." Why Is Phonetic Recognition Difficult?Why tigations into the magnitude of phonotactic and prosodic con-

Phonetic recognition is difficult chiefly because the process straints for American English and other languages (Shipman

of phonetic encoding in the acoustic signal is highly variable, and Zue, 1982; Huttenlocher and Zue, 1984; Carlson et al.,

Specifically, the acoustic realisations of a given phoneme can 1985). All of these studies found that a broad phonetic repre-
vary greatly as a function of context (Zue, 1985). On the one sentation roughly corresponding to manner of articulation of

hand, different acoustic cues can signify the same underlying phonemes can often map words into equivalence classes with

phonological representation. For example, the acoustic real- extremely sparse membership. In American English, for ex-

ization of the phoneme /t/ is drastically different in words ample, the expected value of the class sise based on a six-
such as "tea,* 'tree,' 'steep,* "button," and 'butter." On category classification scheme was found to be 34, a reduction

the other hand, the same acoustic cue can signify influences of more than two orders of magnitude from the size of the

from different levels of the linguistic representation. For ex- original lexicon. Results such as these suggest that a com-

4 ample, duration of a phoneme can be influenced by factors plete and detailed phonetic analysis of the speech signal not

ranging from semantic novelty and syntactic structure to pho- only is undesirable but may indeed be unnecessary. Broad

netic context and physiological constraints (Klatt, 1976). In phonetic analysis by its nature focuses on acoustic cues that

* order to perform phonetic decoding, a computer must extract are more invariant against contextual influences. That such a

j - 69
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representation is also able to capture important phonological be provided to insure that correct word candidates are not ac-
- constraints imposed by the language suggests that large-scale cidentally pruned and irretrievably lost. Errors of this sort

lexical candidate reduction may be possible. Furthermore, be- occur for two reasons: either the coarse classifier makes a ms-
cause the exact phonetic context is specified by the candidate take or the lexicon does not anticipate a particular phonetic
words, detailed phonetic knowledge can be used with greater realisation for the word by the speaker. This problem can be
confidence. If 'tree* is a candidate word, then the verification alleviated by permitting the lexical access procedure to accept
process can use the predictive knowledge of the retroflexed reasonable insertions, deletions, and substitutions. If the er-
context, as specified by the following /r/. The recognition rors are indeed reasonable, the correct word candidates should
algorithm will then be able to focus its attention on the de- have bettr scores than the incorrect ones.
tection of the retroflexed /t/ rather than a generic /t/. While the discussion leading to this model has focused on
A Phonetic Recognition Model isolated words, the model can, in principle, deal with con-

-. " ASetotinuous speech as well. Instead of working with a set of word

Figure I shows a possible recognition model incorporating candidates, the verifier would deal with a lattice of word candi-
some of the previously discussed ways of dealing with variabil- dates. Provisions would then be made to determine and com-
ity. The input speech signal is first transformed into a repre- pare the relative goodness of words and word strings, subject
sentation that takes into account known properties of the hu- to phonological, syntactic, and semantic constraints. Recent
man auditory system, such as critical-band frequency analysis, lexical studies using larger linguistic units such as syllables and

. dynamic range compression, temporal and frequency masking, metrical feet (Huttenlocher and Withgott, personal communi-
adaptation and onset enhancement, and synchrony process, cation) show that these units exhibit constraints of similar
ing (see, for example, Seneff, 1985). From various stages of magnitude. Using these large units may prove to be a more
this transformation, acoustic parameters are extracted and elegant way of accommodating continuous speech.
used to classify the utterance into broad phonetic categories.
The coarse classification also includes prosodic analysis that [Research Supported by DARPA under contract N00014-82-
i dentifies regions where the speech signal is likely to be more K-0727, monitored throught the Office of Naval Research.]
robust. The outcomes of these analyses are used for lexical
access. The constraints imposed by the language on possible References
sound patterns should significantly reduce the number of word Bell, C. G., Fujisaki, H., Hens, J. M., and Stevens, K. N.
candidates. Once the phonetic context has been established, (.1961), 'Reduction of Speech Spectra by Analysis-by.SYnthesis
detailed acoustic cues can then be used to select the correct Techniques, J. Acoust. Sec. Amer., vol. 33, pp. 1725-1736.

* answer from the small set of candidate words.
Note that the proposed recognition model is essentially a Carlson, R., Elenius, K., Granstrom, B., and Hunnicutt, S.

hypothesis-test, or analysis-by-synthesis, model. It has been (1985), 'Phonetic and Orthographic Properties of the Basic
* proposed in the past for speech analysis (Bell et al., 1961) as Vocabulary of Five European Languages,* Speech Transmt-

well as for speech perception (Stevens and House, 1970). The sion Laboratory Quarterly Progress Report, STL-QPSR 1-2.

__.__Huttenlocher, D. P., and Zue, V. W. (1984), 'A Model of
C. 7 Lexical Access Based on Partial Phonetic Information," Proc.

Tatoi C e AICASSP-84, pp. 26.4.1-26.4.4.".T; ,rormstioa, O wsif ir Access i
Klatt, D. H. (1976), 'Linguistic Uses of Segmental Duration in
English: Acoustic and Perceptual Evidence,' J. Acout. Soc.

____.'.___ Deiaed1  Am., vol. 59, no. 5, pp. 1208-1221.
- Anawer

Verifer Klatt, D. H. (1986), 'The Problem of Variability in Speech
Recognition and in Models of Speech Perception," in Van-
ability and Invanance in Speech Processes, J S. Perkell and

Fibure 1: A Speech Recognition Model D. H. Klatt, Eds., Hillsdale, NJ: Lawrence Erlbaum Assoc.,
r.'."pp. 300-319.

A prnpnsed Fprch recornition model that attempts
to incorporate features for dealing with vanabilities. Seneff, S. (1985), 'Pitch and Spectral Analysis of Speech Based

on an Auditory Synchrony Model," Ph.D. Thesis, Massachusetts
Institute of Technology.

sFicess -f such a model relies heavily on the assumption that Shipman, D. W., and Zue, V. W. (1982), "Properties of Large
the nmber and the dimensionalityof the hypotheses remain Lexicons: Implications for Advanced Isolated Word Recogni-
small. In our case, this is achieved through large-scale hy- tion Systems," Proc. ICASSP-82, pp. 546-549.
pothesis pruning utilizing a proper set of constraints. Once Shockey, L., and Reddy, D R. (1975), 'Quantitative Analysis
the number of hypotheses becomes manageable, attention can of Speech Perception," in Proceedngs of the 5tockAolr Speech

", ce directed toward detailed acoustic cues that will enable us Commu caton Seminr, G. Fant, e d., New York: John Wi-

to make fine phonetic distinctions. The model is also compu. ey and Sons.

tationally efficient since detailed acoustic cues are computed

.nly when necessary. During verification, the acoustic cues Stevens, K. N., and House, A. S. (1970), 'Speech Perception,"
-in be determined in a prioritized manner as well. The corn- in Foundations of Modern Auditory Theory, J. Tobias and E.

- ptatinal savings, however, should be considered a side ben- Schuber, Eds., New York: Academic Press.
efit. the primary aipeal of the model stems from its ability Zue, V. W. (1985), 'The Use of Speech Knowldge in Auto-.." Z u ex w i t W .ib i y T1 9h e c o a r s a n a y s i i s d e s ie chl K n w l dee -A oto lel with variability. The coarse analysis is desirable be- matic Speech Recognition," Proceedings IEEE, vol. 73, no.
- a1se the resulting representation is relatively invariant across 11, pp. 1602-1615.
.:cntexts and yet implicitly captures lexical and phonotactic
.onstraints Since detaled phonetic recognition is often error-
prnne. deferring this pr,,ess will minimize error propagation.

To successfully implement such a model, mechanisms must
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The Influence of Phonetic Context on the
" Acoustic Properties of Stops

Mark A. Randolph & Victor W. Zue
Room 36-547

Department of Electrical Engineering
and Computer Science, and

* Research Laboratory of Electronics
Massachusetts Institute of Technology

1 Introduction

It is well known that the acoustic characteristics of speech sounds vary according to their
phonetic environments. Traditionally, systematic acoustic variation has been described in
terms of phonological rules. Over the past 20 years, a number of rule formalisms have
emerged. Perhaps the most common is a framework of context sensitive rules having the

S, form shown in Figure 1.
A rule such as this states that element A becomes element B in the context of elements

C and D. Usually, A, C, and D correspond, either to individual phonemes, or classes of
phonemes, whereas element B corresponds to a specific phonetic realization. As an example,
we have shown a rule in the figure that states that voiceless stop consonants become aspirated

#1 when followed by vowels.

More recently, it has been suggested that rules that only make reference to local phonemic
environment are inadequate for describing allophonic variation, and that these rules must
also incorporate the role being played by larger units such as the syllable. The example
concerning aspiration of prevocalic stops is a case in point. We know that, for example, in
the word sequence "walk in", the prevocalic stop, /k/, at the end of the word "walk", is
also syllable final. In casual speech, a /k/ in this environment is quite often unaspirated

.2. or perhaps unreleased.
Evidence in support of the syllable as a relevant unit in the formulation of acoustic

I= phonetic rules has come from a variety sources. For example, Kahn[2] has argued that
allophonic variation can be described more effectively using a syllable-based phonological
framework. Nakatani and his colleagues[l] have shown that minimal word pairs such as
"gray train" verses "great rain" are perceived differently by listeners depending on the
acoustic realization of the /tr/ sequence. Church3] has further demonstrated the utility of
the syllable within the context of speech recognition, by showing that a detailed phonetic
transcription can be parsed into syllables prior to lexical access, by exploiting knowledge
about syllable-based allophonic variation.

Although we find these arguments in favor of the syllable playing a role phonological
representations to be attractive, we have also found that acoustic evidence supporting these

J.°
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-Phonological Rule Frameworks

9 Context Senstive Rules:

AA-../.
A-BI/C- D

-Example-

P P

'Voiceless Stop@ ue aspirated when followed by vowels

Figure 1: Example of a phonological rule framework.

claims has been scarce. The purpose of our investigation has been to provide greater acoustic
justification for the validity of syllable-based phonological descriptions. In particular, we

* .have examined and compared the influences of both local phonemic context and syllable
structure on the acoustic realizations of stop consonants in American English.

2 Data Collection and Experimental Design

Data for our experiments was obtained from 1000 sentences spoken by 100 talkers (50
male and 50 female). The corpus was the first five hundred of the well-known Harvard
list of phonetically-balanced sentences; where during recording, lists of ten sentences were
read by one male and one female talker. For all the collected data, both phonemic and
phonetic transcriptions were provided and semi-automatically aligned with the waveforms.
In addition, syllable boundaries were marked in the transcriptions as well as lexical stress.
All of these steps are summarised in Figure 2. For the present study, a data sample of
approximately 5200 stops was extracted from this database.

For each stop, we measured the durations of the closure and release portions separately.
." The way these measurements were obtained is illustrated at the bottom of Figure 2. In ad-

dition, we measured the durations of adjacent phonemes. Since a time-aligned transcription
is available, all of these measurements could be made automatically. Also, we were able
to determine whether a stop was released, unreleased, or deleted. A stop was marked as
released if its release duration is greater than zero. It was marked as unreleased if the release

2
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Data
0 1000 'Phonetically Balanced' Sentences
* 100 Speakers

0 Phonemic & Phonetic Transcription Aligned with Waveforms

+ Syllable Boundaries

+ LexicalStress
e ow 5200 Stop Consonants

4 _- Duration Measurement.:

o
.,

_0A

[ ".".Rek-w r

Figure 2: Data Collection Procedure

duration equals zero. And it was marked as deleted if the entire stop duration equals zero.
We should note that a stop is transcribed as unreleased if it could not be heard, and if a
noticeable burst could not be observed from either the waveform or the spectrogram by the
transcriber. If the stop is released into a sonorant, as is the case in this example, the release
duration is the voice onset time, or VOT. For the purpose of this investigation, alveolar
flaps ( as in "butter') and and glottalized /t/'s (as in 'cotton') have been excluded.

* There were two response variables in each our experiments, a stop's acoustic realization,
which is categorical, and an associated duration measurement, which is continuous. We
were interested in quantifying the effects of two factors: I) local phonemic context, and
2) the position of a stop within the syllable. In order to reduce the number of categories
of local phonemic context to a manageable size, we characterized a stop's local phone-
mic environment using a broad phonetic specification of the phonemes that surrounded
it. We used seven broad phonetic categories corresponding roughly to manner of articula-
tion. A phoneme was classified as either Vowel, Glide, Nasal, Fricative, Stop, Affricate, and
Other (where this last category includes the phoneme /h/, along with markers indicating
a sentence-initial boundary and a sentence-medial pause). For example, a stop preceded
by an /s/ and followed by a /r/ would be marked as having a local phonemic context of
Fricative - Glide. This information is summarized in Figure 3.

Using the syllable markers that were embedded in the transcriptions, we grouped stops
according to their positions within syllables and according to their local phonemic context.

* ( There were 10 such categories, corresponding to the hierarchical syllable template shown in

3
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* Response Variables:

- Acoustic Realisation (Categorical):

Released, Unreleased, Deleted

- Durational Measurements (Continuous):

Closure Duration, Release Duration, Previous Vowel
Duration

e Factors:

- Local Phonemic Context

7 Broad Phonetic Categories:
Vowel

Glide

- -. Nasal

Fricative

Stop
r.. . Afflricate

Other

- Syllable Position

0'

Figure 3: Summary of Experimental Design Procedure

-.

Syllables

00Mse Peak coda Affix

Contex Example Context Ezampi. Context Example

0 V otes' V e 'back. at
-.G "druik"
-F V 'Skip,

Figure 4: Syllable-based phonemic contexts
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1076/171s (98%) o' the singleton stops (I.e., (. - V)) are
~released.

- Anomalies are mostly due to weak release and possible
transcription error.

. VOT depends on bed voicing and local phonemic context.

u1

700.0

/- ' !( (-- ,..(, _ ,,

M0.0 F

I"~~~~~~ f Ir

tu ' (9IRWtddf C--M A-e o 0 OOPI 711)

wFigure 5: Acoustic properties of syllable initial singleton stops

Figure 4. For example, a stop can appear in the onset position as a singleton or in a cluster
with a fricative or a glide. It can also appear in the coda or affix position as a singleton or
in a cluster. In our notation, the symbol as' denotes syllable boundary.

!: 3 Results
In the presentation of our results, two indications of a stop's acoustic characteristics shall

" be presented. For the qualitative response, an indication of the relative frequency of occur-

rence for a given stop realization will be stated. For the continuous response, histograms
conditioned on explanatory factors will be shown or indications of the relative locations of
the conditional means and standard deviations will be provided. Each of the histograms has
been smoothed by a raised cosine window, and areas under the curves have been normalized
to be qual.

TI..e results of our experiments seem to indicate that a stop's syllable position plays
*.a dominant role in predicting its acoustic realisation. However, for the most part, the

statement of these rules require conditioning on the local phonemic context as well.
For example, there were 1715 syllable initial singleton (or prevocalic) stops in our data

base. Approximately 98% of these stops were released. Closer examination of the data
revealed that the 39 'unreleased' stops belonging to the syllable-initial singleton category

either have very weak releases, or may have been incorrectly transcribed.
CWhen singleton stops are in the syllable initial position, VOT can be a robust measure-

:' %
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@ Two Cues:
I. Syllable Onset, (V * .V) (e.g., emy car')

2. Syllable Coda, (V - V) (e.g., 'back in")

* 035/660 (96%) of tie syllable-onset stope are released.

e 110/168 (65%) of the sitlable-coda stops are released.

o VOT depends on voicing and placement of syllable bounary.

* ..

- _V

. V

(Sttdnq.. Coia, Area - 0.00M49541

Figure 6: Influence of syllable position on intervocalic stops

." -Iv.*

ment for voicing discrimination. As seen from the histograms shown at the bottom of Figure
5, voiced and voiceless stops differ significantly in VOT. However, note how the VOT's are
substantially modified when the syllable-initial stops appear in consonant clusters. For ex-
ample, voiceless stops in a syllable initial cluster with an /s/ (e.g. 'sky'), as shown in this
figure, have substantially reduced VOT. In contrast, the VOT for voiced stops are increased
somewhat when in syllable-initial clusters with with glides (e.g., 'drink) (see figure).

In order to determine the role played by syllable structure alone, we compared several
pairs, of identical phonemic contexts differing only in the location of the syllable boundary.
For example, consider the cases where singleton stops appear between two vowels. In the
syllable initial position (e.g., 'my car*), 96% are released. In fact, the remaining 25 are
members of the anomalous set described earlier. On the other hand, only 65% are released

- when they appear in the syllable-final position (e.g., "back in"). For the syllable initial stops
that were released, VOT differs substantially along the voicing dimension. For Syllable final
voiceless stops (shown in this figure in red), VOT is substantially reduced, such that there is
considerable overlap between the distributions for voiced and voiceless stops. In summary,
syllable initial stops appearing between two vowels are almost always released, whereas
syllable final stops in the same environment are released approximately 2/3 of the time. As
shown at the bottom of Figure 6, even when stops are released, syllable final voiceless stops

.,. t. have considerably shorter VOT than their syllable initial counter parts.
Similarly, when stop-semivowel sequences appear between two vowels, the acoustic re-

-alisations of the stops depends on the location of the syllable boundary. In the syllable

6
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1. Syllable one, (V G VI (e.g., Ire' traln*)

2. Syllable coda, (V G C V) (a..,fpeal rain')
2 218/223 (98%) of the syllable-onese slope are released.

* 44/99 (45%) o( tb syllable-final coda are released.

O e When released, sjyUable coda stope have reduced VOT.
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Figure 7: Influence of syllable position on stop-semivowel sequences

initial position (e.g., 'gray train'), about 98% of the stops are released. On the other hand,
about 4S% of the stops are released when they appear in the syllable final position (e.g.

0 agreat rain'). Once again, in the syllable initial position, there appears to be substantial
differences in VOT between voiced and voiceless stops. In addition, these values tend to be
longer than their singleton counterparts. When syllable final voiceless stop. in this phonemic
environment are released, also shown in the figure, VOT is considerably reduced.

6 Thus far we have illustrated, with two examples, the important role played by syllable
structure in the description of acoustic phonetic facts. In the course of our investigation, we
have found many other case supporting this notion, some of these results are summarised
in the abstract. However, time limitation does not permit us to delve into these examples in
great detail. We found, for example, that /3/-stop sequences appearing between two vowels

40 are almost always released, regardless of the syllable position. However, VOT for voiceless
stops differ by more than two to one on average, depending on the location of the syllable
boundary. VOT is shorter for stop. that appear in a syllable initial cluster with /s/.

Our final result concerns the effect of voicing for a stop on the duration of a preceding
vowel. It is well known that the duration of a vowel is influenced by the voicing characteristic
of the following consonant (e.g, the vowel in 'bag' is longer than the vowel in 'back").
However, there seems to be evidence from our study that such influence is conditioned upon
whether the vowel and stop belong to the same syllable. When the stop is in the syllable
final position, the proceeding vowel is lengthened if the stop is voiced. However the trend

C is reversed when the stop belongs to the following syllable. These results are indicated in

7
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Effects of Voicing and Syllable Position on
Previous Vowel Duration

0.2 Within Syllabi,

Acram Pyllabe boundary

voiced voicelem

0.0
voiced voicelea

Figure 8: Influence of voicing and syllable position on previous vowel duration

Figure 8.

4 Summary

From the results on stop consonants that we have presented, it seems that the syllable is
indeed playing an important role in the acoustic realization of phonemes. Therefore, it would
be advantageous to recast many of the phonological rules which are conditioned entirely on
a phoneme's local phonemic context in terms of syllable based constituents.

Our results also point out another inadequacy of the context sensitive rule framework.
That is, these rules are often stated categorically and manipulate symbols, whereas their
acoustic consequences take on a continuous range of values. It would be most helpful if
these rules could be formulated in a probabilistic form as we have shown.

Being somewhat encouraged by our results, we are looking to extend this study along
two dimensions. First we intend to collect similar data for other classes of sounds. Secondly,

"-" ~*we are developing syllable based parsing techniques which incorporate this continuous prob-
abilistic data.

This paper was supported by AT&T Bell Laboratories Cooperative Research Fellowship
and by DARPA.
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ABSTRACT of the proposed framework for linguistic and speech recoKgntes

This paper examines the role of the syllable in the description research.
of systematic acoustic-phonetic variations. We present results of an
acoustic study based on over 5,000 stops collected from 1,000 sentences
,poken by 100 talkers. Our results indicate that the acoustic proper- THE SYLLABLE FRAMEWORK
ties of stope depend on the syllable locations in which they appear. On
the basis of these results we propose a syllable-baseed rule framework The notion that phonological rules may be sensitive to yl-
in order to describe acouqtic-phonetic variations in categorical as weU lable structure has been suggested by many linguists. Kahn I&I
as continuous terms. Implications to linguistic and speech recognition for example, argues that allophonic variation and phonotatic
research are discussed. constraints can be described more effectively using a syllable.

based phonological framework. Fujimura and Lovins 14[ base
provided articulatory data along with a summary of a our.
ber of acoustic-phonetic studies which provide concrete support

INTRODUCTION for the syllable. Nakatani and Dukes (81 provide evidence from

It is well known that the acoustic characteristics of speech the perceptual domain. Their experiments indkicate that the
sounds vary according to the context in which they appear. Tra- syllable-initial and syllable-final allophones of phonemes pr-
a.:ionally, asytematic acoustic variation has been described us- vide important perceptual cues for word juncture and that h,,.
ing context-sensitive rewrite rules of the form: A - B / C . D, mans may rely on this kind of information for paining phonrtir
where elements A. C. and D correspond either to individual sequences into words. While these studies provide compellint
phonemes or classes of phonemes and element B corresponds to evidence in support of a syllable-based phonological representa-
a specific phonetic realization [21. As an example, rile (1) states tion, we are still in need of considerably more acoustic-phonrcr
that voiceless stop consonants are aspirated when followed by data: qantitative results, derived from a large body of speech.
vowels. showiot that the surface acoustic realizations of phonetic .nit.

are governed by their positions within this unit.

P Ph In the next section. we show that if structured in the prope
I / - V (1) way, these results could be particularly relevant to the antics

k kh of a syllable hierarchy (31 [101, a structural description of the
syllable in terms of an immediate constituent grammar Lia.

There are at least two disadvantages associated with stch guists have fo,,nd this hierarchical description important for the
a r le description. First, it is awkward to describe the impor- concise statcment of plionotactic restrictions. As we will ditcio-
tant role played by larger phonological units such as syllables or later in this paper, this hierarchical representation also provid.
metrical feet. Second. it implicitly assumes that variations can an effective means of iueorp, rating the syllable into a descrtp-
be described in categorical terms, despite the fact that many tion of acoustic-phouetic moliications.
acoustic changes are inherently continuous.

This paper proposes an alternative framework for describing
acoustic-phonetic modifications. Central to this description is THE CURRENT INVESTIGATION
the notion of the syllable. We show how a rule framework based We begin by describing the .yllable template shown in Figt
on the syllable may be augmented so as to describe contextual ire 1. We have used this template to label our experimentt

- variations both concisely and accurately. We describe a set of database and for the subseqient interpretation of our re-,lt.
acoustic studies focusing on the stop consonants in American The form of this template closely resembles the syllable bir
English. and show that the proposed framework is well suited archy proposed by Fudge 131 We have modified his templote
for interpreting the results. Fin-ally, we describe the implications by positing three affix positio, and by providing labels for ,h,

This research was vupported by ONR ander coatract Ni Mlt4-2-K-0T27, outee-onset, inner-oneet. innerc,da, and outer-coda posit inn

monitored through Naval Electronic Systems Command and AT&T Bell In addition, we have ad,led an additional slot to the onset for th,
Laboratories Cooperative Research Fellowship Program phoneme. /s/. which forms syllable-initial clusters with eawit
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-read. we will present three examples from this larger pool of

results We will examine stops in two local phonetic euviron-
irtents. for each. we will examine the effect of syllable position
on a stop's Acoustic properties In a third example. we examine
the effect of post-vocalic voicing on vowel duration. also as a
function of the stop's syllable position.

-1111 .or Mn ...... Results
/ Oilr first set of'resutlts compares intcrvocalic singleton t-js

("0in the outer-onset verses oter-coda positions There were 6

top-seivowel se e. Te oouter-onet stops t this local photilic esuroncut. f which
h .erarhy ..r mannr of a were releasedp In cnitrast. only " fr outIr onter , ,&%l

I ' % :: ] t nlpS w ere released . F;or singh.tn stop l ip the ,ircr- nnsrte . V O T
_"Fligure It Syllable conqtuent structure described ia terlns A| 4r 1 is a reliable inewure for voicing contiramt. This can be seeni from

."egne the histograms for voiced Znd wnicelcts stops qihnwn in Firl ,rr2
-'iFor sytlable-final voiceless s-topst that were relese,i (atlso h-,wu

0""-.p9. &ad stop-sernivowel sequiences. The other termina ele- in Firt~re 2). VOT is sub!stantially irduced, mit-h that ther,. o
meat$ of this hierarchy are manner of articulation claises, (onsiderable overlap of the distrih,ttntr for olltrr ()wstt vocr,i

Acoustic Study tpq and outer-coda voireless stops.

Data for our acoustic study has been obtained from I,00 The second example involves stop-semivowel sequences ap-
.ntences spoken by 100 talkers (50 male and 50 female). The pearing between two vowels. e. the V - GV context, where

* .- rpus was first five hundred of the well-known Harvard the stop is voiceless. In the outer-onset position (e x . in the
[.. of phonetically-balanced sentences. During recording, lists word sequence 'gray train"), about 98% of the stops were rr-
of tea sentences were read by one male and one female talker. les-cd. On the other hand, only about 45% of the stops were
For all the collected data, both phonemic and phonetic tran- released when they appeared in the outer-coda position (e g

Si ,rptions were provided and aligned with the waveforms. In 'great raii'). In Figure 3 we have plotted VOT versus the av-
addition, syllable boundaries and lexical stress markers were in- eraged total energy within the release for voiceless stops in both
erted in the transcriptions. From this database, a sample of the outer-ontet and outer-coda positions. We see that syllable-

. approximately 5.200 stops was extracted for the present set of initial stops generally have releases that ar both longer and

xperiments. stronger than their syllable-final counterparts.

For each stop, we measured the closure duration and the-[ew duatio (VT) spartely Wealsomeauredthedu-Or final example onr,rtit the effect of voicing of a stop on
"toas of adjacent phonemes. Fro these measurements aidi the duration of a precediric vowel. It is well known that the
ritioas .ofwadaet pheles. ro tee mheas tp ad duration of the vowel is infl,inced by the voicing characteristic

,.. unrelase wreleto deerew a stop as of the following consonant ,- . the vowel in 'bag' is longer than
the vowel in back') (91. However. there seems to be evidence

J release duration was greater than zero, unreleased if the re- from our study that such infliuiece is conditioned upon whether
ewe duration equalled zero, and deleted if the stop was present the vowel and stop belong to the same syllable. When the stop

a the phonemic transcription, but absent in the phonetic. We i' in the outer-coda positin, the preceding vowel is lengtbened
h ould note that a stop was transcribed as unreleased if it could when the stop is voirc ed. However. the trend is reversed when

:ot be heard, and if a noticeable burst could not be observed the stop is in the onset of the following syllable. These results
'Im either the waveform or the spectrogram by the transcriber."" are summarized in Filpire 4.
in addition to duration measurements, we also computed several
'ergy related parameters in order to infer the relative strength

a-I stop's releae.

4w W, are primarily interested in quantifying the effects of a ,

*,ps ,yllablt position on these acoustic properties. However, ] ...

We are also interested in understanding any possible influence of
. o phonetic context. In order to-reduce the number of cate-
tones of local phonetic context to a reasonable size, we grouped a'.,

-he phonemes forming each stop's left and right coutext into
-,Yen equivalence categories corresponding roughly to manner _

-(Uatirulation These categories are- Vowel ( V), Semivowel (G,
'swa, (N). Fricative (F). Stop (S). Affricate (A). and Aspirate , ,,

5tops were categorized according to both local phonetic con
'. and syllable position. Space limitations prohibit its from Figure 21 Infinence nf iyllAhtle ruu1tiii on tbe )T of intervnralic.

;'.entini data for all combinations of these two factors. In- singlto st,, p

IC
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*oictao~iv *acouic differences he~tween phoneme* appearing in the ani
.0. Iresyllable positions. still do not provide an adequate deurnptin

* .of the facts. For example. aspirated stops r an appear both in
':' s the ouiter-onset and oiiter-coda positions, but with differerue" in

. *: * *.. *- * OT that turn out to be important for determining the sylfllle
.,.: ~4 *structure of an utterance. The second aspect of j~'r proposalft. isto augment this categorical representation with an acoustic

desripion

* *. A more accurate mechanism would be to state Leie riles in
the form of a conditional probability flunction *'i~h %s the ,n,1~. 0 - 0 shown in Equation (2)

-00.0 -70.0 -40.0

Figuire Si Influence of iyllable position on voiceless stops ini the V i ASe
G V context

The vector itiatitY A in this 'ritle" is a set of %r,-istic r IDISCUSSION crties, some of which may he discrrete fe , ri-rels. el jejeic
etc ), others niiy lie coitiulnos (r g . VO T. the iui-a,irrd, InFrom the results of our experiments, we may conclude that e~ri eesecITecniinn aibe nti i

the couticcbaactnstis o stp cnsoantsdepnd n teir explanatory factors, are phonological in natuire aoli regret tjjepositions within the syllable. However, our results also indicate phonemic identity of a segment and its phonological conti-itthat a more accurate description of thes, acoustic modifications Freape h atrSi hsrl a eoeapri~ltmay require an alternative rule framework in which acoustic phoneme (e.g., /p/, /t/. /k/, etc.) or a phoneme class it* information in the form of parameter values can be accommo- STOP, FRICA TIVE etc ), a denotes S's syllable pion r.dated. nuter-oneeg, ,nnec-oraet. peak, etc.), and is and 4 *peeify L,

The ropoed rameorkleft and right context, respectively.The rst asect o Paeourkooa sisie ytewr ic tatmt odsrb h cutcpoete fpo
hc firs aspcdu rooa is motivited by prncpheo iwom ork Sai-neme dietly athimps rulesribmewr byacossis anropies de

(octig. The idea is to encode the description of a phoneme's scription of the speech wavieform and therefore suggesits a parim
contextual environment in terms of the syllable hierarchy. As for research that is a hybrid of traditional phonetics and phono-r
a result, it becomes possible to replace a phonological gram- logical methodologies IT], The task involved in mile discovery is
mar consisting of context sensitive riles by one which is context to seek a par~imonious combination of explanatory (actors that
free in general. context free grammars descrtite languages that best account for the acoustic -phonetic data These steps woujilf
are easier to parse, and in many cases, provide a more concise be carried wit within the context of an acoustic study like the
statement of phonological rules. For example, rather than in- one-describe I above.
serting syllable boundary markers into a rule to describe the syl-
able positions for which stops are aspirated, one may describe

these' contextual environments more succinctly by restricting as- Implications for Automatic Speech Recognition
pirated stops to particular slots within the template shown in The applicability of this probabilistic rule framework for au-
Fuixrr 1. tomatic speech recognition may be readily seen by straigbtfor-

Thes ne ruls, oweer. inc the igorequanitaive wardl manipulations of the quantity shown in Equation (21 F~r
Thes ne rul', oweer, inc the igorequanitaive examiple. given a particular syllable hypothesis, and a hypoib

esizt'd local context, the 2s poeferioes probability of a paz-tucidir

segment hypothesis is p [SAo a ,~ and may be obtained u..

- 6...J* ,. ~ing 0Bayes title In this fuinction, the vector A ufenotesl *u-mi
appropriate set of acoustic parameters designed to identify 1z

The quantity given in Equation (2) may also be usieful for 1,TF in :,oir cral retrieval. Chuirch proposed a speech recognition framcw-i k
Y ~in which a narrow phonetic transcription is par-sed into qyllaill'

prior to lexical retrieval. ising extrinsic alloiphonic variatio s.

'A means of constraint The practical limitation of ('treb s %I-
- - proach is that it ma;y iiit be possible to obtain such a etails I

phonetic transcription fron ain acoustic fri-nt -cnn Wowevi-rN

piartial phonetic description of the speech igntall in the tro If
a broad phonet ic transcription consisting of a sequience m,.a I
categonies. may be a miore realistic alternative This -%ppr--%,l

FIgure 41 influence of vuicung andI syllable position on preceding has been "iggeted liy Hittenloerber and Z- [1 11f-r thb. -A f
4,jrs wolarge vorAluillAuy Isi it,. word recognition
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Church's grammar would have to be rewritten, more along 151 Huttenloee. 0 P and Zue, V W ' A mod.I . Lexica] Access
*the lines of the syllable template shown in Figure 1. The direct from Partial Phonetic lnformiliiona, Proc 1(' &SSP L984

.r. consequence is a grammar which has a higther degree of ambi-
ritty Fig'ire 5 shows the result of parsing the broad phonetic 161 Kahn, D.. "Syllable-haited C..-nralir at ions in Fngliih Phonom-

* ransrtptio of te phrae. blak lea. 'ri~~ o8Y Ph.D. Thesis. Department of Lingutsi-.~ascuet
Institute of Technology, September 1977

vided in the form of a allllable lattice: a set of arcg (shown as
rectangular boxes) spanning the input string. The arrs are Is. JTI Liberman. M.Y . -In Favorof Some Uncomn Appr'-tce to

* kc~ ,lle~ivrh the namef of-syllable constititents corresponding to the Study of Speech." in The risdecimai of ~'c~ ~ccl~
r.what the parse has hypotheiied For this example, we see ttbat P F . Ed., Sprtnger. Verlag. Ngiw York. 1993

the phoneme /k/ can be parsed as either the outer-coda of the 181 Nakataja. L , and Dukes. K D , Locus of S~gin~niaj ('1t 5 fr
First syllable or the outer-onset of the second. Such ambiguity Word Juncture* J. A coses Soc. Am,- VI 62. ao 3. pp

* irises because detailed phonetic information is no longer avil-
able. From rigure 3, however, we note that a voiceless stop in 191 Hou,~j A S. and Fairbanks. G(. -The lnffues- -.f nn.c
the outer-coda position will have reduced VOT and energy com- Environment upon the Secondary Acoustical Cbsractitrie of

pared to its outei-onset counterparts. For this example. these Vowels." J Acoust, Soc Am., Vol. 25. pp 1,5 113
attributes can be confirmed from the spectrogramn in Figure 5S0 ekr.L0 TeSlal, nTeSrrIIII I4rd

Our pprachto rducng he nmbe ofcomptin syla-Represena*on,, Part 11. Foris Publications. D-irdre.-ht Hol-
Our pprachto rducng he nmbe ofcomptin syla-land. pp 337-383

1,c hypothesis is to select a set of appropriately chosen acoustic
attributes (e g. VOT for stops) and to use the a posteriori.
probability p [ff1.1 .S, ,61. to aid in disambiguating a parse-
We believe that such a strategy offers the advantage of not re- ~7

*quiring a detailed transcription to be available, while directly
making use of aroustic measurements that are potentially more - -- -i

accurate. Efforts in implementing such a recognition strategy is
rurrrntly ander way.

SUMMARY -~I

We have examined the role of syllable structure in the acous-
tic realitationas of stop consonants in American English. The

* re!,ults of our acoustic study indicate that much of the apparent
variability that a stop is subject to. may be explained in tlrms
of its position within the syllabic unit. We have proposed a rule

*framework that is intended to capture this variability both con- la ~
-isely and accurately Each rule in our framework is stated in ksgs-s rM,---~--s
he form of a conditional probability function The conditioning

variables (i.e , each rule's inpiit) represent both the underlying- -

*phonemic identity of a segment and its phonological context.

The rule's output is a description of its acoustic consequences. J- - 4 - - - -

Finaly, the relevancy of our prnpc'sal to linguistic and automatic- -- -

-peech recognition research was discussed.
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A SEMIVOWEL RECOGNITION SYSTEM"

* Carol Y. Espy-Wilson
Department of Electrical Engineering and Computer Science

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract females and 8 males. The other sentence was said by 7 females

We discuss a framework for an acoustic-phonetic approach and 8 males. The speakers covered 8 dialects.

to speech recognition. The recognition task is the class of sounds Several tools described in (2) were used in the transcription
known as the semivowels (w,l~r.y) and the results obtained across and analysis of the data bases. Database-I and Database-2 were
several data bases are fairly consistent. We discuss some issues transcribed by the author and Database-3 was segmented and
which were manifested by this work. These issues include fea- labelled by several experienced transcribers.

, ture spreading, the assignment of phonetic labels and lexical Features, Properties and Parameters
representation

To recognize the semivowels, features are needed for separat-
Introduction ing the semivowels as a class from other sounds and for distin-

We have developed a framework for an acoustic-phonetic ap- guishing between the semivowels. Shown in Tables I and 2 are
proach to speech recognition Such an approach consists of four the features needed to make these classifications. The features
basic steps First. the features needed to recognize the sound(s) listed are modifications of ones proposed by Jakobson, Fant and
,f interest must be specified Second. acoustic correlates of the Halle [31 and by Chomsky and Halle [41. In the tables, a
fearures must be determined Third. algorithms to extract the means that the speech sound(s) indicated has the designated
properties must be developed. Finally, the properties must be feature and a '-" means the speech sound(s) does not have the
-Integrated for recognition designated feature. If there is no entry, then the feature is not

In this paper. we discuss briefly the application of the above specified or is not relevant.
mentioned steps to the development of a recogniter of voiced An acoustic study [5] was carried out in order to supplement
and nonsyllabic semivowels of American English. In addition, data in the literature (e g .-[61) to determine acoustic correlates
we ,iscus stme issues brought forth by this work These issues for the features. The mapping between features and acoustic

nrluide feature spreading and how it can possibly be explained properties and the parameters used in this process are shown in
with a ,heory of syllable structure, how feature spreading af- Table 3. As indicated, no absolute thresholds are used to ex-
fects lexical access, and if and when phonetic labels should be tract the properties. Instead, we used relative measures which

* a.i,-ned to acoustic events tend to make them independent of speaker, speaking rate and
speaking level. The properties are of two types. First, there are

Corpora properties which examine an attribute in one speech frame rel-

The initial step in this research vas the design of a data ative to another speech frame. For example, the property used

a.e for developing and testing the recognition algorithms. We to capture the nonsyllabic feature looks for a drop in either of
hs 233 polysyllabic words from the 20,000 word Merriam two mid-frequency energies with respect to surrounding energy

Webster rocket dictionary These words contain the semivow- maxima. Second, there are properties which, within a given

,:t and nther similar sourds in many different contexts. The speech frame, examine'one part of the spectrum in relation to

"-rnivowels ,ccur in clusters with yoiced and unvoiced conso- another. For example, the property used to capture the features

ians and thoy occur in word initial, word final and intervocalic front and back measures the difference between F2 and FI.
-ositions. The semivowels are also adjacent to vowels which are To quantify the properties, we used a framework, motivated

.ressed and unstressed, high and low, and front and back. by fuzzy set theory [71, which assigns a value within the range

For developing the recognition algorithihs, the data base was
r-corded by two males and two females We refer to this cor- voiced sonorant nonsyllabic nasal

is as Database-I Two corpora were used to test the recog- voiced senstopt grcates + - .t +

n system Database-2 consisted of the same polysyllabic voiced fricatie - -topoffri - +-

worr. spoken by two new speakers. one male and one female. cates
Database-3 consisted of a small subset of the sentences in the semotowels + + +
TI data base I]. In particular, we chose two sentences which nasal. + + + +

tarned a number of semivowels. One sentence was said by 6 vowels + +

"jpporte.d by a Xerox Fellowhsp Table It Features which characterite various classes of consonants
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,top high back front labial retroflex,

+ + ~- - + - x /

Slight /It + .

dark/I/, -/ + _ _ -

. Table i Features for discriminating between the semivowels

-" ture_-- Acoustic Correlate Parameter I'r pert Figure II (a) Spectrogram of the word 'flourish," (h) ft-mant tracks
- V,;,ed Low Frequiency Energy 200-700 I Ilislb and (c) Energy 640 Hr to 2800 Hz.

-. leriodlity
Soncirant Comra,"able Loi Energy Ratio AM I1..

ligh Freqlency Energy ish" shown in Figure 1 As can be seen. several acoustic events
Non-yllabic DiJp in Energy Energy 640-2800 Ia% Lo-*

Energy 2000-300 III Lo,-" signal the presence of the intervocalic /r/. These events include

Stop Abrupt Spectral lit Difference of Igh an energy dip, a small F2 dip and a strong F3 dip. Given the
Cainge Dandlimited Energies energy dip marked in part c, the recognition system will extract

,h..TFeny (poitire & Anegsie the surrounding energy maxima -orresponding to syllabic nu-
T*-Iih bwFIFeseC I - FO Low

fi" ck Low F: Freqiency Fl - F0 to,, lei. These latter points are used to define a region for furtheri-Front HiLh Ti Frequency FI - rI Ilrih analysis of the detected sound. Among the various events, the
Labial Do,,nwrd Transi. F3 - TO Lois" F3 dip is the most prominent one which gives some clue to the

tions for F2 and F3 F2 - FU Low. identity of the detected sound. Thus, it is in a small region
Retrofex I.- F3 Freqlency & F3 - FO Low

Clo e F2 and F3 r3 - F1 Low surrounding the time of this event that the formant based prop
T l 3erties are extracted. In addition, it is between the time of the F3Table SiParametrtand mPrimpm eriie dip and the surrounding energy peaks that we characterize the

rate of spectral change to determine its degree of abiptness.
1O.l. A value of I means we are confident that the property is Once the properties listed in Table 3 are extracted for the
present, while a value of 0 means we are confident that it is ab- detected sound, the control strategy, on the basis of the types of
,rut. Values between these extremes represent a fuzzy area indi- events marked, decides which semivowel rules to apply. Again,

-. :i - aing our level of certainty that the property is present/absent iince there is a strong F3 dip, the /r/ rule is applied first. The

Control Strategy miy other semivowel which is expected to sometimes have a
sizeable F3 dip is the labial sound /w/. Thus, the /w/ rule is

Phonotactic constraints are used heavily in the recognition sys-te hs ontanssat-htsmioesamstawy c applied iL the /r/ rule receives a low score I< 0,5).
tmn These constraints state that semivowels almost always oc- Rules for integrating the properties were wrtten for each
rur adjacent to a vowel. Therefore, they are usually prevocalic, of the semivow, Is In addition, because they are acoustically

titervocalic or postvocalic. For recognition, these contexts map similar, a rule was written for identifying a class that could
into three types of places within a voiced sonorant region. First be either /wl - r /I/. Across contexts, the rules are similar

the iemnivowels can be at the beginning of a voiced sonorant re- However, well kntown acoustic differences between allophones
gion. in which case they are prevocalic. Second, the semivowels such as the cl, .er spacing between F2 and F1 for sonorant-

-ran be at the end of a voiced sonorant region, in which case final /I/'s as opposed to sonorant-initial /II's are accounted for
they are postvocalic. Finally, the semivowels may be further Additionally, within the rules, primary versus secondary cues

inside a voiced sonorant region. We refer to these semivowels are distinguished. For example, the /r/ rule states that if the
.' inter.onnrant, and one or more may be present within such detected sound is retroflexed, classify it as an /r/. However.

a region Semivowels of this type can be either intervocalic or if the sound is 'iiaybe' retroflexed. look at other cues before

in a cluster with another sonorant consonant such as the /y/ in making a decision.
.banyan." Although there is one overall recognition strategy, Since the value of each property lies between 0 and 1. the

there are modifications for these contexts. score of any nile within the fuzzy logic framework is also in this

The recognition strategy for the semivowels is divided into range Thus. we consider a sound to be classed as a semivowel
two steps detection and classification. The detection process if the result of a nile is greater than or equal to 0 5.

marks certain acoustic events in the vicinity of times where there

is a potential influence of a semivowel. In particular, we look for Recognition Results

i."nima in the mid-freqency energies and we look for minima The overall recognition results are given in Table 4 for each
and maxima in the tracks of F2 and F3. Such events should of the data bases. The term 'nc in the table means that one
orresp nd to som e of the features listed in T ables I and 2. of th e smivow e e r w as in t t he m ea s t at le

F, rx~rplp an 2 mnimm idicaes sond wichis ore or more semivowel rules was applied, hut the score(s) was les
aF r ,examl. ana F2 minimum indicates a sound which is more than 0.5. The term 'others refers to flaps, voiced /h/'s andi i".",ark" than an adjacent seg ment~s). Thus, this acoustic event soratikvicdonons

wzH r,,ir wi,h mn most /'3 ' and within some /]/'3 and /r/'s. sonorant-like voiced consonants

r As can be seen. there is tirte a hit of confusion between /wt

('ire all a uiStic evnis have ,een marked, the classification and /1/ However, the degree to which they are confused varies

. r ..... il"rates them. extricts the needed acoustic proper. >nsiderably with co ntext For example, when they are prevo-

, i t hr, 'th exiirif semivowel riles decides whether the calic and are not preceled by a consonant, the system correctly

,* 0-11" ," -'l is a Pemiv)wel and. f so, which semivowel it is rlasslfies 80% of the /w/ m in Database- I and 67% of the /w/s

An examrrijle f this ;.roess is illustrated with the word "flour- in Database-2 Likewise, it rorrectly classifies 63% of the /1'
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* I * • a..ahs other. towe
L-1
.q

0 0 tok.. 30 $40 $58 223 464 SM 2385.

usd.tet.d(%) 1 4 33 2 2 10 24 11 &

S2 Tw 5 7 3 34 0 1 1

I(%) 1i 51.7 0 0 ii 3.3 I

(,.I%) $1 4 30.4 0 0 3 $ 2 Dot8b... 

,M 0 0 0 0ii 1 S 8 Figure 21 Spectrograms with formant tracks overlaid of 'cartw eel'
- d"t) 0 0 0 937 s ,(left) and 'harlequin' (right).

3 3 4.1 49 53 [1 4 39

.(s 11 2T4: 37 10 n13S 184 with the words "cartwheel" and "harlequin." In each instance,
* tokt.t ian 274 1 75 LOS 3 "14 it appears as.if the underlying /r/ and adjacent vowel combine

q uadt.d(% ) 4,7 3 s 4.3 . such that their acoustic realization is an r-colored vowel. The

occurrence of such feature assimilation is predicted by the syl-
S(s) 27 577 0 0 7 s 6 lable structure theory as explained by Selkirk [8). This syllable
- 1(-6) TO 336 0 0 0 t 4 fliib.,.-2 .tretiire is shown in Fi.nire 3. wherr the onirt rone.i.tq of atly

WS 1it 8 4 9 i 0 o s 4 syllable-iuitial cousouatits, the peak c.i.ots of either a vuwel ur
Y(%) 0 0 0 849 3 3 10 vowel and sonorant, and the coda consists of any syllable-final
Oc'% 8.7 29 4.3 13.3 SS 19 42 consonants. Selkirk states that when /1/ or /r/ is followed by

# 21a consonant which must occupy the coda position, it becomes
* 5tok. 25 40 49 53 44 ii 1r, opart of the peak. Thus, the structure for the first syllable in
.,d.i.-t.d(%) 36 75 0 4 $0 73 'cartwheel" is as shown in Figure 4. Since the /a/ and /r/ both
* (96) 46 io 0 0 iS 0 2 occupy the syllable peak. we might expect some type of feature
I(%) mi 1 128 0 0 3 5.5 9 assimilation to occur. If it is true that a vowel and /r/ in this

2--(4) 11 24 7 0 0 0 0 4 Databae-S context will always overlap to form an r-colored vowel, then no
. (%) 7 i 0 896. 0 6 25 is exception is needed in the phonotactic constraints of semivowels

Y M- a 0 0 76.1 0 9 for words like "snarl" where the /1/ is 'supposedly" separated

0 6.1 10 17.2 27 17 42 from the vowel by the /r/. Instead, the constraints can simply

Table 4: Overall Recognition Results state that semivowels m,:st always be adjacent to a vowel.

When a postvocalic /1/ or /r/ is not followed by a syllable-
in Database-I and 76% of the /1/'s in Database-2. This con- final consonant, Selkirk states that it will tend to be in the coda
text is not covered in Database-3. However, 71% of the prevo- although it has the option of being part of the peak. This op-
-arc !w/'s adjacent to unvoiced consonants in Database-3 were tion was clearly exercised across the speakers in Database-I and

I cl:%s.ifled correctly. Considering the many differences between Database-2. As an example, cousider the two repetitions of the
Database-3 and the other corpora which include coverage of con- word *carwash" shown in Figure 5. As in the word "harlequin,"
texts. coverage of dialects, recording methods and transcription the /a/ and /r/ in the word 'carwash" on the left appears to
b1iaees. the results across data bases are quite consistent, be one segment in the sense that retroflexion extends over the

" From Table 4 we see that there are several "misclassifica- entire vowel duration. However, in he repetition on the right,
tions' of nasals, vowels and other sounds as semivowels. It is the /o/ does not appear to be retr lexed. Instead, there is a
important to note. however, that the system has no method for clear downward movement in F3 which separates the /n/ and
detecttng the feature 'nasalization." Therefore, the distinction /T/ and thus the /"/ appears to be syllable-final.
- etween nasals and semivowels lies mainl, in the abruptness of We dealt with this feature spreading phenomenon in the

-. .pectrab change surroinding the detected sounds. As in the case recognition system by considering it a correct classification if
- 4 of the naal,, some misclasmifications of vowels and other sounds the vowels in words like "cartwheel," "harlequin" and "carwash"

as semivowels can be eliminated by including other features in were labeled /r/. This seemingly "disorder" was allowed since
' be recogmition system and by refining the parameters. How- the vowel's and following /r/'s appear completely assimilated.

.ver. the avoidance of other confusions is not straightforward Allowing this "disorder" at the acoustic level means that the
(In addition. some of the misclassifications do not appear to be ambiguity must be resolved at or before lexical access. There is

- errors of the system. but errors in the transcription). It is this at least one example in the data bases where a seemingly prevo-
- ,,,is which is addressed in the remainder of the paper. calic /r/ and adjacent vowel merged to form an r-colored vowel

Discussion If this is so, then there does not appear to be a clear method for

This research has highlighted several interrelated issues which syllab1.

'ire important to any recognition system based on an acoustic-
phonetic approach. One such issue relates to the spreading of
,n, or more features of a sound to a nearby segment, thereby OM4
reilring in a change of some of the features of the segment and
poqmibly a merging of the two segments. Although examples of
'him phenomenon occurred with several features, we will discuss

i in the context of the feature retroflexion which appears highly P..h "da

-- i'crptibl- t o spreading. Examples are illustrated in Figure 2 Figure 3i Tree structure of syllable.
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Table 5: Lexical Representation vs. Acoustic Realizations of /r/

. I

Figure 4: Trek tucture of iyllable car%. cations due to contextual influences and feature spre-itng iince

we are not trying to identify the individual sounds before lexical
k .",access. For example, consider the comparison given in Table 5

+of what may be a partial feature matrix in the lexicon for an

k /a/ and postvocalic /r/ with property matrices for these seg-
'. ments in the words "carwash" shown in Figure 6. The lexical

representation is in terms of binary features whereas the acous-

"' tic realizations are in terms of properties whose strentths as

' i determined by fuzzy logic lie between 0 and 1.
- . a 3 5 Acoustic realization #1 and the lexical representation are

Figure ft Spectrograms with formant tracks overlaid of two rpeti- a straightforward match. (Assume a simple mapping strate"y
tonof 'carwash.' where property values less than 0 5 correspond to a '-" and

property values greater than or equal to 0 5 correspond to a

determining whether an r-colored vowel is underlyingly a vowel +.') However, the mapping between acoustic realization #2

followed by /r/ or a vowel preceded by /r/. and the lexical representation is not as obvious. It may be pos-

This ambig-uity as well as the fact that some vowels and other sible for a metric to compare the two representations directly

voiced consonants are classified as semivowels raises the issue of since the primary cues needed to recognize the /a/ and /r/ are

whether or not phonetic labels should be assigned before lexical unchanged. On the other hand. we may need to apply feature

access In other words, is the representation of items in our spreading rules before using a metric. The rules can either gen-

lexicon in terms of phonetic labels or features? crate all possible acoustic manifestations from the lexical repre-

If we assume that lexical items consist of a sequence of pho- sentation or generate the unspreadP lexical representation from
netic labels, then it is clear from an analysis of the mis ifi- the acoustic realization.

Determining the mapping between features and properties
rations made in the semivowel recognition system that context which have varying degrees of strength is an important and dif-

must be considered before phonetic labels are assigned. That ficult problem which may give insights into the structure of the

i. some sounds are misclassified because contextual influences lexicon. The s, [ltion to this problem will require a better un-

" •. caused them to have patterns of features which normally cor-
re~pn~lto semvowl. or xampe. onsderthe ord"foe- erstanding of feature assimilation in terms of what features"i' ' 'respond to a se mnivowel. For example, consider the word 'fore-

warn" hown in Figure 6. Because of the laiial F2 transition are prone to sr'ading, and in terms of the domains over which

.war th downward F ransition Beaisi fro m the aa cetrnsto prrading occirq Resolntion of these matters is clearly impor-T ", "1 -u pt the downward F3 transition arising from the adjacentc/r/, tant to an anontic-phionetic approach to speech recognition

the beginmng of the first /o/ was classified as a /w/. It is clear

in cases like this that if phonetic labels are going to be assigned.

context should be considered before it is done. The issue then REFERENCES
,ec.mes. how much context needs to be considered. For exam- ill Lamel, L . Kalsel. R . and Senrff, S. "Speeh Database Dr.

ple. consider the word "firoi" also shown in Figure 6 which velopmpnt: Delign and Analysis of th, Acostic-Phonetic (or-

hLs a fairly steady state F3 frequency of about 1900 Hz. We pus, Proc Speeck Reog Workshop. CA. 1986

have observed that in words like this where a labial consonant 21 Cyphers. D , Kasel. R.. Kaufman. D Leung. H , Randolph.

q' preceded by a normally non-retroflexed vowel and followed by M. Seneff, S., tlvrferth. I. Wil-on. T and Zue, V -Th
Development of Speech Research Tools on N]T's Lisp Machine-

a retroflexed sound. the first vowel can be totally or partially Based Workstatis." Proc. Speech Recog Workshop. CA. 1986

reurflexed Such feature spreading is not surprising when we I31 Jakobson. R.. Fant. G and ialle. M.. 'Preliminaries to Sp ... h

"."der that the intervening labial consonant does not require Analysis," MIT Acoustics Lab Tech. Rep No. 13. 1952

a pecrific placement of the tongte 41 Chomsky, N and Halle. Nf The Sound Pattera of EagIhsA, Now

If instead of phonetic labels. lexical items are represented York- Harper and Row. 19rS.

as matrices of features, it may be possible to avoid misclasisifi- [5 Espy-Wilson, Carol Y . -An Aeoustie.Phontic Approach ti
Speech Recognition: Application to the Semivowels," Doctoral
Dissertation, MIT. to be completed in June 1987

[G Lehiste. I., "Acoustic Characteristics of Selected English Con-

sonants," Report No 0. IT of Mich , Comm Sri Lab . 1962,

-. T[ Dofori. Renato. Computer Models of Speech V'iton Fuzzy At
agorithss New York Plenum Press. 1983

j8] Selkirk. E 0 , -The cyllahl." The St'riture of Phosologscal

. , Repreteatatias (part II. 1 vsan der Huist, H and Smith N
., Dordreeht: Foris Publiati-ons. 1982.

Figure 6: Spectrorams with f,,rinant tracks overlaild of 'torewarn
-. ,!cft) and "ibroid" (right)
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'o be rnresented at the 1st International Conference on Co""iuni cation
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TWO-DIMENSIONAL CHARACTERIZATION
OF THE SPEECH SIGNAL

AND
ITS POTENTIAL APPLICATIONS TO SPEECH PROCESSING'

Hong C. Leun~g and Victor W. Z'ie

Department -)f Electrical Engineering and Computer Science, and
Rel*&rca Laboratory of Electronics

Massachusetts Institute of Technology
i,-,mbridge. Massachusetts 02130

ABSTRACT ot. research is to explore the possibility of extracting relevant

This paper ecrbsa system that applies twc..dimensionai prol- acoustic information from the speech spectrogram, and to use

-,iing techniquesi to extract acoustic patterns in the speech 'pectro- such information ir a number of speech processing applications.

irram. By processing a spectrographic image through nion-directional
and directional edge detector, and combining their outputs, the sysi- This paper is concerned with the simultaneous time-frequency

* temn otains two-dlimensional objects that characterize the formant characterization of speech. The specific aim is to capture the
patterns and general spectral characteristics for vowels and conso- essential time-frequency intergrated acoustic patterns so that

* nats.r~sectvel Auoniticvowe reogntio. sectogrm rad- these abstracted patterns may be used to characterize, encode,
to~ ig andi perch siynthesis experinti indicate that relevant inform&a- an reoizdfeetspchous.B tetngheim
tion is Indeed retained in this reduced representation. Thus the two- and freqciy diffeentspeecs h imltousl yten the timeec

J~nninl*jeo-ts 'au p. teritaily be usieful for speech processing anfrqec dinsosimlnouyteie-ruey
ippicati iis ,ucli as, phoiieic rprcgnitiou and low bit rate -*diig. dependency of the speech signal can be better captured. Tradi-

tional descriptions of acoustic-phonetic events based on formant

frequencies are often inadequate because the forusants cannot

always be resnlved reliably. Thus two-dimensionall characteriza-

* INTRODUCTION lion] of the sp,-ch may provide an alternative and more direct
description.

Over the past four -lecades the Fpeech spectrozram. a time-
5.fr-cliency-tiwensity repr-sentAtion of -he speech signal. has been CaLptuirinir -ie time-frequency integrated patterns from a spec-

usied exren~aively as a means3 to vislialize the acoustic patterns of troerAphic repr'sentation can also be viewed as an image pro-

-pee-h It provides a visiiAl Aisplay )f the temporal and spectral cessing problem However, our problem is different fromu general

"racterrtirs f the qpeerh sirnal It is an invaluable tool in image characterization in that specific speech knowledge about

,2e *teveiupmevit Jf :ir ui-iersanding of the acoustic-phonetic the 'peech signal can be applied. The three dimensions of the

A,~.rte~ speech spectrozram also correspond to different, physically meaningful

IAnnities nameiy. time. frequiency and amplitude. The two-
In IQ Zue and ( 'le iemronstrated that the underlying iimensiona) patterns are also restricted by the nature of our

uh nexiufccmiatv~u .f -a ,n.kunown titterauce can be extracted speech production mechauisni and the limited sound pattorns

wi'h hizb accuiracy thi-ouirb a visual examination of the speech 'fa iang'iagre
* .er~ram 3 8 In -hose "xperimenits. a trained spectro-

zram re-ider r-rrecrly :l,-nrt,i he 'inderlying phonetic ifor-

lit'nwith approximately 87 % accuracy MeYSure inSCRermsO
f ci~-cy and ran~k-order statistics the read(ers performance S S E E C ITO
V4s - i-raybeertathtothac.tchnicfronut- The 'w-imensional acoustic patterns in the spectrogram

111hera better atm at ofpe r -ni hon se; T1 e jr. rtatedj as visual objects These objects are extracted by
-i' f -he exeriatmntc -pggstcha rf-retor phonei heg arplyiuit edge detection to the spectrographic image. produc-

%..,;n sYstems .-ray e Jati~l, we 'an !ear-n the phonetic nc Aa -ecie map- As outrput The edge map includes explicit

Ic'r Amn pra)c.-Jir-s sred 1 y 'he -pertrocram, readers iuf'rrnmia about the position, the orientation, and the rela-
tive trenrizh of ediges Objiects are then localized by grouping

Aaayiis JA sperr'Airam reading experiments shows that the the v ice - lenieiitS into closed contours. This section describe-

A'' 'ine pr-rces1 '-ails for letection. reu-oernition and inre-gra- the Jse Jf different edge dIetectors and the arplication of je-ch

.nf rl"'evant 'jc-i~ric '- ;P In order to 'levelop -A recognition Kiti wl'-lce in extracting 'he relevant acous t c patterns from the

-v.tem 'hat irilizes -irh knowlpelec ar miist hrit be able to 4pCtrr'~ram

-x'rAcr 'he erievant %couici patterns from the 4pectroir-amt.

*F'irtherm.r,, if 'he -xr-Acted paterns -an retain most of the Non'directional Edge Detection
.cif,riation :a the .1*P'e sirnal then they can also be used The systemn ,btains a riarrow-band spectrog-raphiic epreri-

.rF ;pee'-h -oinr -At very !,, bit rate The greneral goal )f ration by compuiting a short-time spectru~m once every 5 ms with

hios resear-is was iupp-irt.. t s [ 4RPk sader -smtract NOMI4-2- a 256 s window The spectrogram is then processed through

t27 isntorr,] thito'iih iho thrc J NavalJ Research. a two-imensWUIot non-ditrectional Gaustsian edge detector:

...........................................................................7.-.
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i. fi re-'' nial lee c tir C in he i Lined ippropriately by t:-i
:tc pveeh knowle'iize A % n- 1rere'i nai iferertor i

qr't isei r) ,xrract 'he Acouistic ratternis y fetectIng edges

f ll U i ::' it%: o.15 1n 'he ' !W fre-,ilrC y - zr :n -t landwiclth
-- r.-111s b.e radius f"r',rn er ,f the fetec- 'ustraunr :s hlen applied b-asedl )a the Laslimption 'hat pat.
* ri. . n-I.wfl'na 'ier ect -r -an nd edges in 'el-us with ficantly lrze bandiwiths may repreient more

i ' L 7i, Cr '- ;on 'e pecoeramr 'hr,)iih the than 11ie foriiiant In 'he-3e cases the more subtle 1dges -a be
.:.- lir , 1-'-1 17 ,i s t', smoothing the spectrogram jetecre-A with a dJirectional (;aii35ian ie rietector By combin-

t w. L.A lins "ii Aus'-an Window. followed by taking ;LI the non-directional and lirecti'-nal edre ietectorm this way,
:.A cr~vaviv f -hie smcothed s;pectrogram. There- acoustic patterns in bo0th the 3sonorant avnd lb~strient revions

* e-,~'-~ins f 'he olipit correspond to edges in the can,1 be extracted reliably. Fievire I (e) shows the result -,f the
rizinAi rec r~ram Parsa n lo iueiso h nunirec'-,il And directional coimbination.

LarroW-,n1 :ai nd i fe an 4peCrrorams respectively, for the

w'ses wr-i ' t 'KeU Lv ai mie speaker. Part (h) If the extracted objects shown in Fig-tire Hl Inde-'d 'itr
411 ,ws 'lw eir 911 f.1,t-r!:C -he niarr-w-l:'a.nd spectrogram with the iiprrtant information in the 5pecirozram. thcn 'hey -an

,:;p %,on-i Irect:onal '-ize ietecter Visual inspection indicates be iiedi as a ima sk to filter out irrelevant acoustic ;Lif,)rmation.
hat the -oIjects capture Most of the relevant information in the as shown i'a Figtire I f). We can see that important aCumStic

z:~'na: pecr"~riiiinformation in the 5pectrogram has been accurately retaine'd

after processing. As a more elaborate example. Figure 2 hb)

Directional Edge Detection shows the objects obtained from a continuous sentence. -Susie

ks we.can see *n Figure li b) when f,-rm ants are close to each sells seashells'. spoken by a male speaker. For companson. the

her -he -dee ietertr :s miable to resolve them. In order to corresponding wide-band spectroKram is thown in Figure 2 (a).

* Inreae 'e re''li'in ne'-a prcesstheoriinalspetroram Fiv'ire 2 Ic shows the result of maskinz Figure 2 Ia) with the

' r"':zh :i,:n-directi-'al edre 1-eee'" with smaller scales. The bjcsin Fietire 2 hb)

irpit fr-~m Lfferenit -cAles can then be combined by performing

~are--tte racinz 5, 7' However. 'he robustness of the
rs iiust lrosa ecreases -.s the scales decreases EIXPERIM4ENTS

rme int' are ill y luehorizntal, another possibil- The -xat- s hiwii in Figtires I and 2 Alie,3t that the£ 'v q -- 'e h'~rt -i1 ai-'zsy means )f a directional edge procelire is e'utially uiseful in severil speech processing ap-

-' r'plitions. E-(: -'cnmeutal results show that the processed objects
'an be 'isei f. ieveloping automatic speech recognition systems
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inr sajnles the one with the smallest intra-sample distance as First Choice
the reference template. A dynamic time warping algorithm [41, w i t mase

' l with appropriate local path constraints, was used to compen- wide-band masked

sate for differences in duration between the test and reference spectrogram spectroeram
patterns. No attempt was made for normalizing the frequency Reader 1 93% 96%
scaie to account for inter-speaker differences. Reader 2 82% 62%

Reader 31 74% 78%
The objects determined by our processing system do not re-

Stain amplitude information which was often useful in charac- Table 31 Spectrogram reading results
(9 rerizing speech sounds. Therefore. a cartoonized spectrum was

r created from the objects for each time frame. Regions inside tion obtained using the least mean-squared error criterion. The
the objects were replaced by a constant value that is equal to speech waveform is then synthesized by exciting the resulting
the average value of the corresponding resions in the original impulse response of the polynomial approximation, where the

I. spectrum, whereas regions outside were set to zero. The car- exciting information is obtained by a pitch detector. Figure 3
* toonized spect-im was then smoothed with a Gaussian window, shows the result for the sentence, 'We were away a year ago'.

* A Euclidean distance was used to measure similarities between Parts (a) and (b) of Figure 3 illustrate, respectively, the wide-
spectra. For comparison, we also implemented an LPC-based band spectrogram. of the original waveform and the synthesized
system using the Itakuras distance metric [4). waveform. The similarity of the spectrograms and informal lis-

The results of our vowel recognition experiments, based on ening tests indicate that the objects can indeed be used for

the 238 vowel tokens from the 17 speakers are summarized in speech coding.

Table 1. The objects can be used to identify the vowels with Our preliminary calculation shows that if the speech signal is
77% accuracy. This result compares favorably to that using the band-limited to 4 KHz. approximately 2 to 3 objects am needed
LPC/itakir;a-Distance niethod. While it is premature to base to represent each phoneme. The shapes of the objects can be
our conclusion on such a restricted corpus. we are nevertheless matrix quantized with a codebook of 8 bits. In addition, 5 bits
encoitrazed by the realtes It appears that. for this data set may be used to code the frequency location of the objects, and
at least. oir processing .ystem does retain acoustic information 2 bits to code the amplitude. Therefore, each object requires
that is necessary for vowel identification. roughly 15 bits. On the average, 30 to 45 bits are needed for

n tcoding each phoneme. Assuming 10 phonemes per second, and 5
as[k the econd experiment. 3 trained spectroghr m raders pe bits for coding the duration of each phoneme. 3 bits per phoneme

tffor coding the pitch. the bit rate for coding is approximately 380
trograms and the masked spectrogram. Since this is a time- to 530 bits/second.
consuming process, they read only the vowels spoken by the
male speakers. Table 2 summarizes the results. Reader I iden-
tifies the correct vowel with 96% accuracy. We can also see that
the results based on the two different representations ae com- SUMMARY
parable. For two of the three readers, the results based on the In summary. we have developed an algorithm for the extrac-
masked Fpectrograms are actually better than those based on tion of acoustic patterns from speech spectrograms. Experimen-

.r the wide-band spectrograms. This may be an indication of the tal results suggest that the processing technique retains acoustic
.P fact that irrelevant acoustic information has been suppressed information that is useful for phonetic distinction and low bit
/ in the ma.ked spectrograms, thus enabling the readers to focus rate coding.

,n those aspects that bear linguistic information of the speech
signal.
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AN ACOUSTIC-PHONETIC APPROACH TO SPEECH RECOGNITION:
APPLICATION TO THE SEMIVOWELS

by
Carol Yvonne Espy-Wilson

Submitted to the Department of Electrical Engineering and Computer Science on

May 22, 1987 in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

ABSTRACT

A framework for an acoustic-phonetic approach to speech recognition was devel-
oped. The framework consists of: 1) specifying the features needed to recognize the
sounds or class of sounds of interests; 2) mapping the features into acoustic properties

* based on relative measures so that they are relatively insensitive to interspeaker and
intraspeaker differences; 3) developing algorithms to extract automatically and reliably
the acoustic properties; and 4) combining the acoustic properties for recognition.

The framework was used in the development of a recognition system for the class
of English sounds known as the semivowels /w,y,r,l/. Fairly consistent recognition
results were obtained across the corpora used to develop and evaluate the semivowel
recognition system. The corpora contain semivowels which occur within a variety
of phonetic environments in polysyllabic words and sentences. The utterances were
spoken by males and females who covered eight dialects. Based on overall recognition
rates, the system is able to distinguish between the acoustically similar semivowels

* /w/ and /I/ at a rate better than chance. Recognition rates for /w/ range from 21%
(intervocalic context) to 80% (word-initial context). For /1/, recognition rates range

from 25% (prevocalic context following an unvoiced consonant) to 97% (sonorant-final
context). However, if lumped into one category, overall recognition rates for these

semivowels range from 87% to 95%. Consistent overall recognition rates around 90%
Uwere obtained for /r/ and overall recognition rates in the range 78.5% to 93.7% were

obtained for /y/.
Several issues were brought forth by this research. First, an acoustic study re-

vealed several instances of feature assimilation and it was determined that some of the
domains over which feature spreading occurred support the theory of syllable struc-
ture. Second, an analysis of the sounds misclassified as semivowels showed that, due

to contextual influences, the misclassified vowels and and consonants had patterns of

features similar to those of the assigned semivowels. This result suggests that the

proper representation of lexical items may be in terms of matrices of binary features

as opposed to, or in addition to, phonetic labels. Finally, the system's recognition of

semivowels which are in the underlying transcription of the utterances, but were not
included in the hand transcription, raises the issue of whether hand-transcribed data

should be used to evaluate recognition systems. In fact, it appears as if insights into
how speech is produced can also be learned from such "errors."

Thesis Supervisor: Kenneth N. Stevens
Title: Clarence J. LeBel Professor of Electrical Engineering
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The ultimate goal of most speech recognition research is the development of a sys-

tern which allows the natural communication by speech from people to machines. That

is, we want recognition systems to be capable of understanding fluent conversational

speech from any random speaker. Such systems are desirable since speech is our most

natural mode of communication. Thus, unlike today when people must have special

skills such as typing to communicate with a computer, the use of such recognition

systems requires no training. Furthermore, since we speak much faster than we write

,/- and type, speech provides the highest potential capacity in human-to-machine com-

munication. Finally, computers which understand speech free the eyes and hands of

the operator to perform other tasks simultaneously.

Although research in speech recognition and other related areas has been going on

for several decades, recognition systems have yet to come close to realizing their f!'11

potential. With current systems, reasonable recognition performance is possible only

if the task is greatly simplified. Present state-of-the-art systems, with few exceptions,

can only recognize a small vocabulary of acoustically distinct words which must be

said in isolation by a particular speaker. Systems capable of understanding continuous

speech also reduce the recognition task by limiting the user to a particular speaker

and by constraining the way in which sentences can be formed.

One major reason for these necessary limitations is our present inability to deal with

the considerable variability in the speech signal. In addition to linguistic information,

the speech signal contains extralinguistic information regarding the talker's personal
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characteristics, his or her psychological and physiological state, and the recording

environment. Thus, to achieve the goal of speaker- independe nce and continuous speech

I. input, recognition systems must be able to separate out and decode the message-
bearing components of the spoken utterance.

What are these message bearing components? We believe that the answer to this

question is based on two widely accepted premises. First, the speech signal is composed

of a limited set of basic sound units known as phonemes. In English, the inventory of
phonemes includes about 16 vowels and 24 consonants. Second, the canonic represen-
tation of each phoneme is characterized by a small set of distinctive features, where a
distinctive feature is a minimal unit which distinguishes between two maximally close
but linguistically distinct speech sounds. For example, the single feature v~oice sep-

arates the phonemes /b/ and /p/. The distinctive features also organize the speech

sounds into natural classes on the basis of common characteristics. For example, the

feature nasal lumps the phonemes /m/, /n/ and /q/ into one such class. In languages

in general, there are about 20 distinctive features. However, any one language only

uses a subset of 10 to 15 for signaling phonetic contrasts.

Although the associations are not well understood in every case, it is hypothesized
that all the distinctive features have acoustic correlates. While the distinctive features

are binary in nature, the corresponding acoustic properties can have varying degrees of

strength due to the wide variability in the acoustic realization of the phonemes. This

variability is principally of two types. As we stated earlier, one kind of variability is due

(I, to the different vocal tract sizes and shapes of different talkers and the changes in voice

quality within the same speaker and across speakers. While there are definite acoustic

chage uue to these sources, the feature specification of the phonetic segments is

uSunilv uinchanged. Thus, if properly defined, acoustic properties for features should

nmM b e affected by such variability.

On the other hand, another kind of variability known as feature assimilation can

modify considerably the feature make-up of the underlying phonemes and the strength

of their corresponding acoustic properties. These changes, which occur when phonemes

are concatenated to form larger units such as syllables, words and sentences, are due

in part to the varying degrees of sluggishness in the articulators when moving from

cne target configuration to the next. That is, the adjustment of the articulators to

implement one set of features may be influenced by the adjustment needed to produce

an adjacent set. As a consequence, one or more features of a. phonetic segment may

18



spread to a nearby sound, resulting in several types of modifications.

First, some of the features of a segment may change. For example, this phe-

nomenon will sometimes occur when a weak voiced fricative (/v/ and /6/) is in an

intervocalic position. Whereas fricatives are characteristically nonsonorant with some

high frequency noise, in this context they can be sonorant with no noise. However,

features other than the sonorant feature remain unchanged. Such variants from the

canonical representation of a particular phoneme are referred to as allophones. Thus,

a Iv/ which occurs between two vowels is usually a different allophone from the one
which occurs in other contexts. Second, a feature which is normally unspecified for a

segment may become specified. An example of this phenomenon is the nasalization of

vowels when they are adjacent to a nasal consonant. Finally, a result of this feature

spreading may be the merging of two segments into one segment which has a number

of features common to both of the underlying sounds. This phenomenon is often seen

at word boundaries in continuous speech. For example, the word pair "did you" is@
often pronounced in fluent speech as "dija." That is, the word-final /d/ and the word-

initial /y/ can be coarticulated such that the resulting sound is a /'/. The degree to

which sounds undergo such feature assimilation is determined by several factors such

as speaking style, speaking rate and language specific rules.

Thus, the use of phonetic features as basic units upon which larger units such as

phonetic segments, syllables, words, sentences, etc. are recognized is appealing since,

if properly defined and extracted, they should not be affected by much of the within-

speaker and across-speaker variability seen in the speech signal. However, it appears

that some mechanism is needed to account for feature assimilation effects.

Before outlining and discussing these issues within the context of the class of sounds

focused upon in this thesis, we will first consider previous work in speech recognition.

A brief review of some of the findings of previous acoustic and perceptual studies of
-.- the semivowels, along with the results of an acoustic study conducted in this thesis,

are given in Chapter 3.

1.2 Literature Review

Considerable effort has been expended in the development of isolated word and

continuous speech recognition systems. Basically, there have been two standard ap-
" proaches: phonetically-based methods and mathematically-based models.
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The phrnetically-Iased approach to speech recognition has mainly been pursuej

n academia because of its long term investment. This method draws on the is-

tinctive feature theory first proposed by Jakobson, Fant and Halle (1952) and later

expanded by Chomsky and Halle (1968). Such an approach attempts to extract the

message-bearing ccmponents of the utterance explicitly by extracting relevant acous-

tic properties. While this approach has a strong theoretical base, limited success has

been obtained because of the lack of a good knowledge of acoustic phonetics and other

related areas. That is, researchers have yet to uncover the proper acoustic properties

for features and, therefore, they have not been able to reliably extract this informa-

tion for phonetic recognition. In addition, all aspects of feature assimilation are not

understood.

Researchers of the mathematically-based methods find the well-defined algorithms

which can be used within this framework attractive, and many consider the heuristics

used in the extraction of explicit speech knowledge ad hoc. This type of an approach
to speech recognition has mainly been pursued in industry because of its near term

success for constrained recognition problems. Such an approach attempts to extract

the message-bearing components of the utterance implicitly. That is, equipped with

V, large amounts of training data and sophisticated engi..ring techniques, recognition

s'steis are expected to either discover all of the regularities in the speech signal and

"average out" all of the variability, or effectively model nil of the variability. Presently.

none have been able to adequately cope with all types of variability.

0 Because o f the shortcomings of the mathematically-based approaches and yet their

'_ ? to 11:odel some speech variability that we presently do not understand, there

:ve -en recent efforts to develop ways of incorporating our increasing acoustic [,h-

% ... " i' ge within the statistical frameworks. It is hoped that such an integrati -a

. r' a ,r-raes will eventually lead to speaker-independent continuous speech rec,?_::-

n.

In this section, we give a brief review of these methods. For a more extensive

). verage of speech recognition research, we recommend reviews given by Lindgren

"195) and Lea (1980).

1.2.1 Phonetically-Based Approach

Recognition systems which attempt to extract acoustic cues from which phonemes

. phones are recognized date as far back as 1956 when Wiren and Stubbs developed a
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Li nary phoneme classiication system. In this system, acoustic properties were used to

classify sounds as voiced-unvoiced, turbulent-nonturbulent, acute-grave, and compact.

diffuse. Although no overall recognition score is given, the performance of this system

is encouraging in light of how little was known in the area of acoustic phonetics at

the time of its development. For example, vowels in monosyllabic words spoken three

- times each by 21 talkers were correctly classified as acute or grave 98% of the time.

Since that time, several recognizers based on this approach have been developed.

* - While most of these systems have obtained only moderate recognition rates for a

particular class of phonemes occurring in specific contexts, important concepts have

been introduced. For example, Martin, Nelson and Zadell (1964) used detectors which

not only indicated when a feature was present or absent, but also indicated the strength

of its acoustic correlate. As another example, Medress (1965), as far as we know, was

the first to take advantage of phonotactic constraints which restrict allowable phoneme

, sequences. This information was used to help identify word-initial and word-final

consonant clusters in an isolated word recognition system.

More recently, this approach has been applied to the recognition of continuous

speech. Between 1971 and 1976, the Advanced Research Projects Agency (ARPA)

funded the largest effort yet to develop continuous speech recognition systems. (See

Klatt (1977) for a review.) While these systems used some knowledge of acoustic

phonetics, most of them relied extensively upon high level knowledge of syntax and

semantics for sentence decoding. For example, Harpy, the most successful system in

terms of word and sentence accuracy, correctly recognized 97% of the words in the

utterances even though it correctly recognized only 42% of the phonetic segments.

This poor phonetic recognition was due to a primitive front end which segmented and

labelled the speech signal. Whereas the segmenter used acoustic cues extracted from

parameters such as zero crossing rates and smoothed and differenced waveforms, the

labeller used phone templates consisting of linear-prediction spectra. To deal with
-" .variability due to feature assimilation, 98 templates were used to represent all possible

allophones, and juncture rules accounted for some effects between phone sequences.

In addition, to deal with within-speaker variability, each template was computed by

averaging all occurrences of the particular allophone in a set of training sentences.

An exception to this heavy reliance on high level knowledge for continuous speech

recognition was the HWIM system developed at BBN which used considerably more

acoustic phonetic knowledge. To provide a phonetic transcription of an utterance, a
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Parametric representation and a set of 35 ordered acoustic-phonetic rules was used.

This processing resulted in a segment lattice which provided multiple segmentation

paths for portions of an utterance. With a dictionary of 71 allophones, 69% of the

correct phonetic segments were in the top two choices produced by the front end.

1.2.2 Mathematically-Based Methods

Most commercially available speech recognition systems are based on general pattern-

matching techniques which use little speech-specific knowledge. They are speaker de-

pendent and recognize a limited vocabulary of words which must be said in isolation.

- These systems are trained by having the talker to be recognized generate a set of

reference patterns or templates which are digitized and stored. The templates usually

consist of a series of spectral sequences computed every 10 to 20 msec. For recogni-

tion, these systems use a distance metric to select from a set of stored templates the

34 closest match to the pattern computed from the incoming word. The first complete

recognizer of this sort was developed in 1952 by Davis, Biddulph and Balashek. This

speaker-dependent system had a recognition rate of 97% for the digits zero(oh) to nine.

Since that time, several engineering techniques have been introduced to deal with

some of the variability in the speech signal. For example, to deal with varying speaking

rates which result in duration differences between stored and input templates, several

time-alignment procedures have been developed. Presently, the most effective and

widely used technique is dynamic time warping (DTW), introduced by Sakoe and

Chiba (1971). This algorithm, when comparing two templates, uses a distance metric

to ncnlinearly warp the time axis of one so that the templates are maximally similar. A

cninputationally efficient distance metric developed for use with DTW was developed

by Itakura in 1975.

In addition, since spectral templates are inherently splaker dependent, techniques

have been developed so that systems could accommodate multiple speakers. One such

system, developed by Rabiner et al. (1979), uses clustering algorithms to generate

multiple templates for each vocabulary item. While recognition accuracies obtained

from multiple speakers compare favorably to those obtained from equivalent speaker-

dependent systems, extension to speaker-independence is not foreseeable. Such an

extension would require knowing when the training data were large enough so that

.. C they adequately account for all allowable pronunciations. Furthermore, assuming a

sufficient data base could be collected, it is not clear that the recognition system will
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fini , from amongst all of the acoustic variability present, all of the allophonic variants.
While the techniques mentioned are important engineering advances, they are not

sufficient for extension of these systems to continuous speech recognition. That is,

there is still no mechanism for dealing with feature assimilation effects between word

boundaries. Presently, feature assimilation between phonemes is accounted for by

choosing words as the recognition unit, possibly storing multiple or averaged templates

for each word, and requiring sufficient silence (usually 200 msec) between words so that
there is no feature spreading between them. To recognize continuous speech, template

matching systems basically ignore feature spreading effects between words and use

isolated word templates to spot words in the utterance (Myers and Rabiner, 1981).

Although these systems have had limited success (greater than 94% string accuracy

in a restricted digit task when the string length is known), this type of "brute force"

approach cannot cope with some of the feature assimilation effects often seen at word

boundaries (discussed in Section 1.1). Thus, extensions along these lines are unlikely.

7." In addition to this drawback, isolated word template-matching systems are unable

to focus on phonetically relevant information needed to distinguish between acousti-

cally similar words such as "way" and "lay," where the vowels in the word pair are the
- same and the consonants, although different, share common acoustic characteristics.

This problem is the result of the distance metrics employed. Presently, in comparing

two word templates, all parts of the utterance are weighted equally. Thus, in the

example cited above, too much weight is given to the similarity in the frame-by-frame
variations of the steady state vowel and too little weight to the differences between the

consonants. As a result, for reasonable performance, the recognition vocabulary must

consist of acoustically distinct words. This poses yet another problem for template-

matching systems in that the size of the recognition vocabulary must be limited, since

the acoustic distinctiveness between words decreases as the number of words increases.

- -. During the past several years, many researcher have been investigating another

approach for isolated word recognition systems which is based on hidden Markov

models (HMM). With this technique, a labeled training data base is used to build

Markov models for each word. In recognition, a probability score is computed for

each word HMM given the unknown token, and the recognized word is the one whose

model probability is highest. In a comparison of a speaker-independent isolated word

recognition system based on HMM with one based on pattern-matching techniques

with DTW, Rabiner et al. (1983) found that the HMM system performed slightly
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worse. It was hypothesized that this difference in performance was due to insufficient

training data.

The most successful use of HMM to date has been in the speaker-dependent con-

tinuous speech recognition system developed at IBM (Jelinek et al., 1975; Jelinek,

1976; Jelinek, 1981). Recognition rates of 91% have been obtained for words selected

from sentences in the 1000 word vocabulary of Laser Patent Text. Instead of word

HMM models, this system uses HMM to model the time-varying spectral properties

of phonetic segments. Each word in the lexicon is then represented as a sequence of

phoneme models in a finite state graph, and feature assimilation between phonemes is
handled through rules.

While consistently high word-recognition rates have been obtained with the IBM

system for speakers who have trained the system extensively before use, extension of

its approach to speaker-independence is problematic. Presently, the signal representa-

tion used to train the phone HMM consists of raw spectra which, as we said earlier,

are intrinsically speaker dependent. Thus, to model all of the variability seen across

all speakers would require an inordinate amount of training data and comparable

computation and memory requirements.

1.2.3 Combined Methods

Over the past few years, efforts have been made t incorporate explicit speech

knowledge into the mathematically-based frameworks. Below we discuss two such

- efforts which have reported positive results.

One effort whi:h combined speech-specific knowledge and statistics is the FEA-

TURE system developed by Cole et al. (1983). Instead of spectral templates, FEA-
*.., TURE a:_-se out 50 acoustic properties to recognize the isolated letters of the English

_ -Iha bet. Motivated from a study of a large data base, these properties consisted of

easures such as forniant frequencies extracted from vowel regions and voice-onset

time extracted from consonant regions. To integrate the properties for recognition,

a statistical pattern classifier was used. For letters in the easily confused E set

" (B,C,D,EG.P,T,V and Z), FEATURE obtained error rates of only 10% as compared

to traditional spectral template matching systems which have error rates of between

30"" and 40,.

A more recent system which combines these approaches was developed at BBN

(Schwartz et al., 1985). In this speaker-dependent recognizer, context-dependent HMM
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models are used to recognize phonemes in continuous speech. However, in addition

to the raw spectra, acoustic properties extracted from the speech signal are used
within the HMM formalism to aid in certain phonetic contrasts. With this addition,

confusions between acoustically similar phonemes decreased by as much as a factor of
two. For example, Schwartz et al. state that the correct identification of the unvoiced

stop consonants /p,t,k/ increased from 83% to 91%.

1.3 Thesis Scope

A conclusion which can be drawn from the literature review is that research in
acoustic phonetics is of primary importance if speaker-independent continuous speech
recognition systems shall be realized. More specifically, systematic studies of large

data bases, combined with solid theoretical models of speech production and percep-
tion, are needed to uncover the proper acoustic properties for features and to gain an

understanding of feature assimilation effects. Such a study is the focus of this research.

In this thesis we develop a framework for a phonetically-based speech recognition

system. We view the recognition process as consisting of four steps. First, the fea-

tures needed to recognize the speech sounds of interest must be specified. Second, the
-. -: features must be translated into acoustic properties which can be quantified. Third,

algorithms must be developed to automatically and reliably extract the acoustic prop-

erties. Finally, these properties must be combined for recognition.

The task we have chosen to study is the recognition of the semivowels /w,y,r,1/.

This is a particularly challenging problem since the semivowels, which are acoustically

very similar to the vowels, almost always occur adjacent to a vowel. As a consequence,

spectral changes between these sounds are often quite gradual so that acoustic bound-

aries are usually not apparent. In this respect, recognition of the semivowels is more

difficult than recognition of other consonants.

We have limited the recognition task to semivowels which are voiced and nonsyl-

labic. Devoiced allophones, which may occur when the semivowels are in clusters with

unvoiced consonants, are excluded since some aspects of their acoustic manifestation

are considerably different from that of the other semivowel allophones. In addition,

the syllabic allophones of /r/ and /1/ in words like "bird" and "bottle" are excluded

since they are more correctly classified as vowels.

To make this st'idy manageable, we have simplified the semivowel recognition prob-
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.emn in several other ways. In particular, the recognizer is designed using polysyllabic

words excised from the simple carrier phrase "_pa." We chose this simple

:cntext as opposed to isolated words or more continuous speech because it allows for a

more controlled environment. That is, following the test words with "pa" reduces thc

pf-ssibilitv of glottalization and other types of variability that occur in utterance-final

4P2 position. In addition, since there is no sentence context to help convey the speaker's

message, he or she is more iikely to enunciate the words more clearly. Thus, the

acoustic cues signalling phonetic :ontrasts should in general be more salient.

Although the recognition task has been simplified, it remains quite challenging.

The data base chosen contains the semivowels in a variety of phonetic environments

so that variability similar to that observed in continuous speech due to stress and

feature assimilation is also found in the polysyllabic words. Thus, the methods used

to recognize the semivowels are extendible to more continuous speech. This extension

d-f the system is demonstrated with a small corpus of sentences.

The first part of this thesis lays the groundwork for the recognition system. We

,describe the data bases used to develop and test the recognition algorithms in Chapter

2. Also included in this chapter is a brief discussion of the tools used at different stages

* of this research.

Once a data base was collected to develop the recognition algorithm, we conducted

an acoustic study to supplement data in the literature regarding the acoustic correlates

for features needed to recognize the semivowels. The results of this study and a

* discussion of feature spreading and its apparent relation to syllable structure are given

.n Chapter 3.

After we identify acoustic properties for features, steps three and four of the frame-
work outiinec above are implemented. A description of how these steps are carried

out is given in Chapter 4.

Chapter 5 contains an overview and a breakdown of the recognition results ob-

tained for each of the data bases. The discussion therein points out the weaknesses

and strengths of the recognition system. In addition, an analysis of the misclassi-

fications brings forth several issues regarding feature spreading, attaching phonetic

labels to patterns of features before lexical access, and using hand-transcribed data

to evaluate recognition systems. The chapter closes with a comparison between the

.- , semivowel recognition results obtained in this thesis and those obtained in two earlier

phonetically-based systems.
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Finally, In Chapter 6, we summarize the results and discuss further some of the

- -" issues highlighted by this research. In particular, we discuss ideas regarding future

studies of feature assimilation and lexical access from acoustic properties.
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Chapter 2

Data Bases and Tools

This chapter describes the corpora used to develop and evaluate the semivowel

recognition system. In addition, we discuss some of the tools used in various stages of

this research. Among these tools is a formant tracker which we discuss in more detail

since it was developed as a part of this thesis.

2.1 Data Bases

The initial step in this research was the design of a data base for developing and

testing the recognition algorithms. Using ALEXIS, a software tool for lexicon search

(Zue et al., 1986), we chose 233 polysyllabic words from the 20,000-word Merriam-

Webster Pocket Dictionary. These words contain the semivowels and other similar

sounds, such as the nasals and, in some contexts, other voiced consonants, in a variety

of phonetic environments. They occur in word-initial and word-final positions such as

the /y/ and /1/ in "yell," in intervocalic positions such as the /r/ and /1/ in "caloric,"

and adjacent to voiced (sonorant and nonsonorant) and unvoiced consonants such as

the /w/ in the /dw/ cluster in "dwell," the /r/ and the /w/ in "carwash," the /y/

adjacent to the /n/ in "banyan" and the /r/ in the /str/ cluster in "astrology." In

addition, the semivowels occur adjacent to vowels which are stressed and unstressed

such as the word-initial /I/ and the prevocalic /1/ in "loathly," and they occur adjacent

to vowels which are tense and lax, high and low, and front and back. An alphabetical

listing and a grouping of the words according to various contexts are given in Appendix

A. Some words occur in more than one of the categories based on context. The purpose

of this overlap was to minimize the number of words in the data base while covering
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most contexts.

According to the phonetic transcription of the words given in the Pocket dictionary,

the data base should contain 145 tokens of /r/, 139 tokens of /1/, 94 tokens of /w/

and 61 tokens of /y/. However, the actual number of semivowel tokens enunciated

by each speaker differs because some words have multiple allowable pronunciations

and some words were mispronounced. For example, a word which has a vowel-to-

vowel transition where the first vowel has a /y/ offglide may be spoken with a /y/

inserted. Thus, the word "radiology" can be pronounced as [reYdiYyal;)'iY] with an

- . intervocalic /y/ or as [reYdiYaliY] without an intervocalic /y/. Similarly, if the first

vowel in a vowel-to-voweltransition has a /w/ offglide or is the retroflexed vowel //,

then a /w/ or an /r/ may be inserted respectively. Thus, the word "flour" may be

pronounced as [flaww 3,1 with an intervocalic /w/ or as [fla73] without a well enunciated

/w/. Likewise, the word "laceration" may be pronounced as [lmrmreTan] with an /r/

inserted or as [las~eYnJ without an /r/ inserted. In addition, a postvocalic /1/,

when followed by another consonant, may not be clearly articulated. Thus, the word

"almost" may be pronounced [olmowstj or [ornowstj. Furthermore, a postvocalic /1/

which follows a reduced vowel may be articulated as a syllabic /I/. Thus, "unilateral"

may be pronounced as fyunalararlj with a syllabic /I', or it may be pronounced

as 1yunalxraral] with a postvocalic /1/. Finally, one of the speakers systematically

confused /r/ and /w/. For example, the intervocalic /w/ in "rauwolfia" was replaced

by an /r/ and the prevocalic /r/ in "requiem" was replaced by a 1w/.
*For these reasons, judgement regarding the inclusion or exclusion of a semivowel

is often ambiguous. Several measures were used to make this decision if a semivowel

was not clearly heard when the utterance or a portion thereof was played. First,

within the region in question, we looked for significant formant movement towards

values expected of the semivowel. Second, we looked for other spectral changes such

as a decrease in energy since the semivowels are usually weaker than adjacent vowels.

Finally, we sometimes consulted with other transcribers.

For acoustic analysis and the development of the recognition algorithms, each word

was recorded by two males (one black and one white) and two females (one black

and one white). The speakers are from the northeast (New York and Rhode Island)

and the midwest (Ohio and Minnesota). They were recorded in a quiet room with

a pressure-gradient close-talking noise-cancelling microphone. The microphone was

placed about 2 cm in front of the mouth at a right angle just above the midline. All
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f thie words were hand-transcribed to facilitate the acoustic study (see Chapter 3).

When transcribing the data base, we placed markers at particular instants of time to

livide the speech signal into segments which were assigned labels that in some way

described some property(s) of the delineated regions.

Two corpora were used to test the recognition system. The first data base con-

sisted of the same polysyllabic words spoken by two additional speakers (one female,

one male, both white) from the same geographical areas cited above. The same record-

ing set-up was used. These words were also transcribed to facilitate the evaluation of

the recognition algorithms. The second data base consisted of a small subset of the

sentences contained in the TIMIT data base (Lamel et al., 1986). In particular, we

.hose the sentences "She had your dark suit in greasy wash water all year" (Sent-I)

and "Don't ask me to carry an oily rag like that" (Sent-2), since they contain sev-

eral semivowels in a number of contexts. Presently, the TIMIT data base is being

*i segmented and labelled by several experienced transcribers with the help of an auto-

matic alignment system (Leung and Zue, 1984). From the transcribed utterances, we

.selected 14 repetitions of Sent-I (6 females and 8 males) and 15 repetitions of Sent-2

(7 females and 8 males). The speakers cover 7 U.S. geographical areas and an "other"

v Wcategory used to classify talkers who moved around often during their childhood. Like

the words in the other data bases, these sentences were recorded using a close-talking

mic rophone.

2.2 Tools

The se!,ivowel recognition system was implemented on the MIT Speech Commu-

-:- icatVn Group's LISP machine facility for which several software tools have been

developed to aid speech research. The way in which the tools were used in this thesis

is described briefly in this section. A more detailed discussion of the tools is offered in

(Zue et al., 1986).

2.2.1 SPIRE

S- Initial processing of the data base was done with the Speech and Phonetics Interac-

tive Research Environment (SPIRE). First, the recorded words were digitized using a

6.4 kHz low pass filter and a 16 kHz sampling rate. Such a wide frequency range helps

in the identification of obstruents (stops, fricatives and affricates) and, therefore, in
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- - Table 2.1: Symbols Available in SPIRE for Phonetic Transcription
Unvoiced Stops: p t k 15
Voiced Stops: b d g I
Stop Gap@: p" t k" 7t " d" g" C
Nasals: n m rj
Syllabic Nasals: n rp . I
Unvoiced Fricatives: 5 1 f 9
Voiced Fricatives: z V

Glides: I r w y
Vouels: 13" a UU ae ^* 0" 11 u a 3"
Schwa: S 1 . "
H, Silences: h Ri 0o
Special Markings: # S - '

the discrimination between sonorant and nonsonorant sounds. This is approximately

the frequency range that is often used for spectrogram reading. Second, the speech

signals were preemphasized to compensate for the relatively weak spectral energy at

high frequencies, particularly for sonorants. This preemphasis means that the average
* ,spectral energy is similar at the higher and lower frequencies. Finally, SPIRE was used

to transcribe the data bases. The set of symbols available for phonetic transcription is

shown in Table 2.1. Most of these symbols were taken from the International Phonetic

Alphabet (IPA). However, there are some additions and modifications. For example,

the word initial sound in 'yell" is denoted by the symbol /y/ in SPIRE and by the

symbol /J/ in the IPA. In addition, the syllabic /1/ as in "table" is denoted by the

symbol /I/ in SPIRE and by /1/ in the IPA.

Although there are 58 phonetic symbols in Table 2.1, we found this list incom-

plete for some of the feature-spreading phenomena occurring between semivowels and

adjacent segments. These effects are described below.

e The features of a vowel or consonant and a following /r/ may overlap

considerably, such that the acoustic manifestation of these two segments is an

r-colored vowel or an r-colored consonant, respectively. An example of this

phenomenon is shown in Figure 2.1, which compares spectrograms of the words

"harlequin" and "marlin" spoken by the same person. In the case of "marlin,"

the lowest frequency of F3 clearly occurs in the /r/ region which follows the
vowel. However, in "harlequin," F3 is lowest at the beginning of the vowel and

remains steady for a considerable duration of the vowel, after which it rises due

to the influence of the /I/. In the latter case, an /r/ segment separate from the

vowel segment is not apparent. Thus, instead of forcing nonoverlapping
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Figure 2.1: A comparison of the words "harlequin" and "marlin." In "harlequin"

the underlying /a/ and /r/ sounds appear to be merged into one segment, in the

sense that the lowest point of F3 occurs at the beginning of the vowel. Thus, the

transcription should allow overlapping sounds. In 'marlin," F3 is well above 2000 Hz

in the beginning of the /a/, and it falls steadily to its lowest point in the /r/. Thus,
C the /a/ and /r/ appear to be separate segments.
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Figure 2.2: The /v/ in "everyday" appears to be sonorant and retroflexed. In fact,

the lowest point of F3 occurs within this segment. Thus, the /v/ and /r/ appear to

overlap.

juxtaposed segments, a more correct transcription facility would allow the

transcribed /a/ and /r/ regions to be combined into one region with an

appropriate r-colored vowel label. A similar example of this phenomenon, in

this case the retroflexed consonant /v/, is illustrated in Figure 2.2, where a

spectrogram of the word "everyday" is shown.

.- When in a cluster with unvoiced consonants, the semivowels are sometimes

devoiced. An example of this type of feature spreading i, T-hown in Figure 2.3,

which compares spectrograms of the word 'queen" spoken by two different

speakers. In the spectrogram on the top, the /w/ in the /kw/ cluster is only

partially devoiced such that there are considerable F2 and F3 transitions from

the /w/ into the following vowel. However, in the spectrogram on the bottom,

the /w/ is completely devoiced. In this case, little in the way )f F2 and F3

transitions occur between the fricated /w/ and the following vowel. Instead,

the acoustic cues indicating the presence of the /w/ are the low-frequency

frication and the low-frequency burst of the /k/. As in the case described

-above, these phonetic segments co-occur, causing segmentation to be difficult.
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Figure 2.3: Two spectrograms of the word "queen," spoken by different speakers. In

the example on the top, the /w/ is only partially devoiced. In the example on the

bottom, the /w/ is completely devoiced.
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Since SPIRE does not have phonetic symbols for devoiced semivowel allophones

that occur simultaneously with unvoiced consonants, and since the convention

within the speech research group regarding this phenomenon is to label some

portion of the beginning of the vowel region as being the devoiced semivowel,

part of the vowel was transcribed as /w/. To locate the beginning of the

fricated /w/, we successively removed frames from the beginning of the word

until the /k/ was no longer audible, so that we heard /wivn/.

2.2.2 SEARCH

SEARCH (Structured Environment for Assimilating the Regularities in speeCH) is

an exploratory data analysis tool which facilitates use of several statistical techniques

for examination of a large body of data. For example, questions such as "What per-

centage of the intervocalic semivowels have significantly less energy than their adjacent

vowels?" can be answered with this tool. In acoustic analysis, this software package

W4'as used in several ways. First, we used it to study the effectiveness of parameters in

capturing properties observable in spectrograms. Second, SEARCH was used to de-

termine the relationship between an acoustic property and the context of a particular

phonetic segment or class of phonetic segments. Finally, since SEARCH can display

data in various forms including histograms, scatter plots and a bar-like display, we

used it to determine thresholds for quantifying the extracted properties.

2.2.3 Knowledge-Based Formant Tracker

Although it is not yet offered as a general tool, a formant tracker implemented

in the SPIRE facility was developed as a part of the thesis. We based the formant

tracker on peak-picking of the second difference of the log-magnitude linear-prediction

(ISDLM-LP) spectra. Since the development of this software turned out to be a major

undertaking, a discussion of the strategy, techniques and constraints employed in the

automatic formant tracker is given below.

Strategy

Since we are interested in the recognition of voiced and sonorant semivowels, for-

rnant tracking is performed only in those regions specified by the voiced and sonorant

detectors (for the parameters used, see Section 3.2.3). To obtain initial estimates of
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the formant frequencies, a strategy similar to that developed by McCandless (1974) is

used. A block diagram of this strategy is given in Figure 2.4.

Before formant tracking, energy peaks, which usually correspond to syllabic nuclei

within vowel regions, and energy dips, which usually correspond to syllable boundaries

within sonorant consonant regions, are detected (a discussion of how they are obtained

is given in the subsection "Intersonorant Semivowels" of Section 4.3.1). Peak picking

I!. begins at an energy peak since the formants are most likely to be tracked correctly in

the middle of a vowel region, which is least affected by feature assimilation effects such

as nasalization or retroflexion. First, the algorithm back tracks, filling formant slots

with peaks based on continuity constraints (the frame rate is one per 5 msec) until

a boundary is reached. In this case, a boundary can be either the beginning of the

detected voiced sonorant region or an energy dip. Second, the algorithm forward tracks

from this energy peak, deciding on peaks in each successive frame until a boundary is

4 ; reached. In this case, a boundary can be either the end of the detected voiced sonorant

region or an energy dip. If there are other energy peaks within the voiced sonorant

region, this process is continued until the formants have been tracked in each frame.

Techniques

As mentioned above, we chose to pick peaks from the ISDLM-LP spectra. We

decided to use this spectral representation of the vocal tract transfer function for
several reasons. First, the semivowels are articulated orally with no side branches

(except possibly for /1/). Thus, in the frequency range of interest, the transfer function

of these sounds can be represented accurately by an all-pole model. Second, spurious

peaks which are common in many forms of spectral analysis are rare in the linear

prediction spectra, and, therefore, they are rare in the ISDLM-LP spectra. Thus, peak-

picking is a more tractable problem using a linear-prediction-based spectra. Finally,

shoulder resonances, which occur often in linear prediction spectra and usually cannot

be detected through peak picking, show up as distinct peaks in the ISDLM-LP spectra

- . (Christensen et al., 1976).

Although this spectral representation reduces the peak merger problem, this prob-

lem as well as problems due to nasalization still remain. In the former case, two peaks

which are completely merged in the linear prediction spectra will also be completely

merged in the ISDLM-LP spectra. As a result, there will be empty formant slots. In

such instances, we compute the ISDLM-LP spectra inside the unit circle. An iterative
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Figure 2.4: Block diagram of formant tracking strategy within a voiced sonorant region.
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prce=ure is used to resolve the merged peaks. The enhanced spectrum is first corn-

puted with a radius of 0.996. If the missing peak has not been resolved, the radius

Sq is decremented by 0.004 and a new enhanced spectrum is computed. This process is

continued until either the missing peak has been resolved or the radius is less than

0.88. Most merged peaks will be resolved through this type of enhancement. However,

in a few instances, further enhancement may be needed to resolve a missing formant.

In addition, in some cases, LPC may represent very close peaks by one pole pair. A

higher order LPC model is needed to resolve such peaks.

This missing-formant problem also occurs in nasal consonants. However, in this

case, the missing formant is not due to merged peaks; it is missed because the formant

has been cancelled by a zero.

Whether they are due to our inability to resolve them or zero cancellation, these

missing formant slots are filled in through interpolation in the final steps of the formant

tracker. This process is discussed below.

Constraints

Both frequency and amplitude constraints are used to decide which peaks to iden.

* tify as formants. Before formant tracking, we estimate the pitch frequency of the

speaker to determine whether the talker is male or female. The pitch detector (which

is part of the SPIRE facility) was developed by Gold and Rabiner (1969). Based on

this pitch frequency estimate, we use empirically-determined male or female formant
41 anchors for Fl, F2, F3 and F4. These anchors are used to decide on the peaks in the

frames marked by the energy peaks. When back tracking or forward tracking from

this frame, continuity constraints as well as frequency thresholds, which restrict how

much a formant can change within 5 msec, are used to decide which peaks will go into

the formant slots. Due to continuity constraints and using the strategy outlined in

Figure 2.4, the decision of which peaks are assigned to the formant slots in the frame

marked by the energy peak(s) is crucial. An incorrect decision in this frame will result

"- - in unreasonable formant tracks. To minimize the chances of making a wrong decision

in this frame, we compute the ISDLM-LP spectra on the unit circle and at several

radii inside the unit circle. In most cases, this procedure guarantees that all merged

formants are resolved.

Amplitude constraints are used when two peaks are competing for the same formant

slot. This situation happens when a nasal formant is present within a vowel region or,
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;n the case af females, when there is a strong harmonic below Fl. In most instances,

the amplitude of the nasal formant or the harmonic is weak compared to the amplitude

Df the adjacent peak(s). Thus, in each frame, we always choose the strongest peak

to go into the formant slot being considered, unless it does not meet the continuity

constraints.

Even with enhancement, and frequency and amplitude constraints, incorrect deci-

sions are sometimes made. Once the formants have been tracked throughout the voiced

sonorant regions within the utterance being analyzed, the formants are processed by an

algorithm which tries to ensure reasonable formant trac.3. This algorithm is described

in the next section.

Post-Processor

When formant tracking, the first five peaks in the ISDLM-LP spectra are candidates

for formant slot positions. Four of the five peaks are assigned to slots for F1, F2, F3

and F4. The peak not assigned to any of these positions is not thrown away, but is

kept in either a slot labelled "possible nasal formant" or a slot labelled "extra peak."

If the frequency of the additional peak is less than the frequency of the peak assigned

to the F2 slot, then it is placed in the possible nasal slot. Otherwise, it is placed in

the extra slot. Thus, the extra slot usually contains F5, and the possible nasal slot

may contain either a nasal formant (or the peak it was competing with, usually FL),

a spurious low frequency peak, or, in the case of females, a strong harmonic.

*These extra peak slots are used in the post-processor. In this stage of processing,

the formant tracks are checked for discontinuities. If one or more tracks possess a

liscontinuity, and if substitution or partial substitution of the tracks in either of the

extra peak slots will result in a more continuous track, they are switched. If such a

switch occurs between any one of the formant tracks and either of the extra peak slots,

then each formant track is checked again for discontinuities. This process is continued

until no change occurs for any of the formant tracks.

Two situations in which this post processing stage was necessary to obtain rea-

sonable formant tracks are illustrated in Figures 2.5 and 2.6 for the words "exclaim"

and "plurality," respectively. In both cases, the outputs of the formant tracker, and

the f,1rmant tracker plus the post processing stage and smoothing are compared. Also

shown in the figures are the locations of the energy peaks and energy dips used to

compute the formant tracks and the extra peaks obtained. For the word "exclaim,"
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no peaks are stored in the F2 slot during the nasal sound /m/ before the post process-

ing stage. Instead, due to the large discontinuity in F2 (a change of about 900 Hz)

#0 between the vowel /ey/ and the /m/, this information is stored in the extra slot for

possible nasal formants. However, after post processing, this information is placed in

the F2 slot.

In the case of the word "plurality" which was spoken by a female speaker, F3 and

F4 (2500 Hz and 3250 Hz, respectively) at the time of the first energy peak are both

close to the anchor frequency for F3 (2930 Hz). Since F4 is about 4 dB greater in

amplitude, it was placed in the formant slot for F3, and F3 was placed in the extra

formant slot. As can be seen, this resulted in a sharp discontinuity at 170 msec within

the F3 track. However, during one iteration of the post processor, the peaks placed

in the F3 slot before the discontinuity were replaced by the information stored in the

extra peak slot. From part d, we see that the corrected F3 track is always in the F3

range observable from the spectrogram.

Interpolation and Smoothing

Even with enhancement, the problem of peak mergers and the additional problem

W of nasalization result in frames with missing forrnants. After the post-processing stage

(discussed above), the tracks obtained for Fl, F2 and F3 are checked for missing data.

If any of these tracks have missing data, a polynomial is used to fit the the formant

track in a region surrounding the frames with missing data. This region is defined by

formant tracks on each side of the missing data where the sign (positive or negative) of

the slope is constant for several frames. The order of the least mean-square polynomial

used to fit the data depends upon the sign of the slopes of the tracks on both sides

of the niissing data. If the slopes on both sides are postive or negative, then linear

interpolation is done. However, if the slopes differ in sign, a second order polynomial

is used for interpolation.

Once the missing data have been filled in through interpolation, the formant tracks

of F1, F2 and F3 are smoothed twice with the zero phase filter

F,'(n) : 1F,(n - 1) + 1F,(n) + 1F, (n + 1).

Two situations in which interpolation was needed are shown in Figures 2.7 and 2.8

which contain formant tracks for the words "harlequin" and "urethra." For several

frames in the word "harlequin," F3, because it has a low amplitude, could not be
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Figure 2.7: An illustration of the performance of the interpolation algorithm.(a
Formant tracks obtained for "harlequin" before interpolation. Note that F3 during

the /I/ was not tracked. (b) Formant tracks for "harlequin" after interpolation and

smoothing.
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Figure 2.8: An illustration of the performance of the interpolation algorithm. (a)
Forrnant tracks obtained for "urethra" before interpolation. Note that F3 during the

u/ and /'r,' segments was not always tracked. (b) Formant, tracks for "urethra" after
nterpolation and smoothing.
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. tracked, even with enhancement. However, by using the frequency values of F3 on

both sides of the missing frames, reasonable estimates of F3 were obtained through
interpolation. Likewise, for the word "urethra," F3 was not tracked for several frames

during the /u/ and /r/. In this case, however, F2 and F3 were merged in the LPC

spectra such that enhancement did not resolve F3. Again, reasonable estimates of F3
were obtained through interpolation.

Performance

To refine the formant tracker, incorrect tracks obtained for the words said by
a particular speaker were corrected by modifying the code. Errors were detected

by overlaying the tracks on a spectrogram and by comparing the formant estimates
with the peaks occurring in wide-band and narrow-band short-time spectra. After

reasonable formant tracks were obtained for all words, F1, F2 and F3 were computed
* . for the words said by a different speaker. Again, errors were corrected by refining

the code. This process continued until reasonable tracks were obtained across all of

the words said by all of the speakers of the database used to develop the recognition

algorithms.

For the other two corpora, estimates of the formant tracks were computed once.

We have not looked at all of the formant tracks to determine the number of errors that

occurred. However, the results obtained in different stages of the recognition process

(discussed in Chapters 4 and 5) have led us to the discovery of formant-tracking errors
*occurring within semivowels. In the corpus containing polysyllabic words, incorrect

tracks were obtained for 1.4% of the 350 semivowels. In addition, 10 words were not

tracked at all due to a minor problem which has since been corrected. In the corpus of

sentences, incorrect tracks were obtained in 1.4% of the 141 semivowels. In this case,

one sentence was not tracked at all.
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Chapter 3

Properties of Semivowels

3.1 Introduction

The sounds /w,y,r,l/ are called semivowels because they have properties which are

similar to both vowels and consonants. Like the vowels, the semivowels are produced

orally without complete closure of the vocal tract and without any frication noise.

Furthermore, the rate of change of the formants and of other aspects of the spectrum
- tends to be slower than that of the other consonants and the degree of constriction

needed to produce these sounds does not inhibit spontaneous voicing. Thus, as in

the case of vowels, a voiced steady state (with a duration that is usually in the range

30 msec to 70 msec) is often observed from spectrograms of the semivowels. These

acoustic properties can be observed in Figures 3.1 and 3.2 (Zue, 1985) where, along
with x-ray tracings of the vocal tract, we show spectrograms of these sounds in word-

initial position within the two sets of minimal pair words "we," "ye," "reed" and "lee"

and "woo," "you," "rue" and "Lou."

The semivowels /1/ and /r/ are often referred to as liquids; their articulation in-
volves contact of the blade and/or tip of the tongue with the alveolar ridge. In the

production of /1/, a lateral constriction is made by placing the center of the tongue tip
against the alveolar ridge. In addition, when they occur before vowels, there is usually

a rapid release of the tongue tip from the roof of the mouth. As a result, an abrupt

spectral change between /1/'s and following vowels is often observable from a spec-
-r. trogram (Fant, 1960; Dalston, 1975). This phenomenon can be seen at the boundary

, between the /1/ and the following vowels in Figure 3.2.

In the production of /r/, the constriction is made toward the back of the alveolar

46

4 .- "-



.. .1 . .0 ....

0 I I I

M

.14

Figure 3.1: X-ray tracings of the vocal tract and wide band spectrograms of the words
Uwe" and "ye" (top), and "woo" and "you"(bottom).
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Figure 3.2: X-ray tracings of the vocal tract and wide band spectrograins of the words
"reed" and "lee" (top), and "rue" and "Lou" (bottom).
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,.: ridge, near the palate. This placement of the tongue tip creates a sublingual cavity

whose lowest natural resonance is usually at or below 2000 Hz and close to the lowest

natural resonance of the back cavity (Stevens, in preparation). These two resonances

constitute F2 and F3. This acoustic distinctiveness of /r/ can be seen in Figure 3.2.

The semivowels /w/ and /y/ are produced with a vocal tract configuration similar

to those for the vowels /u/ and /i/, respectively, but with a more radical constriction.

As a result, /w/ has lower F1 and F2 frequencies than /u/, and /y/ has a lower F1

- . frequency and a higher F2 frequency than /iY/. These differences can be seen in the

* - words "woo" and "ye" of Figure 3.1.

The semivowels /w/ and /y/ are often referred to as glides or transitional sounds

because they are produced as the articulators move towards or away from an artic-

ulation. That is, they are considered as onglides when they precede vowels (i.e., the

/y/ in the word "compute") or offglides when they follow vowels (e.g., the second

component of the diphthong /oY/ in the word "boy"). In addition, the glides are often

intermediate sounds when the articulators pass from the position of one vowel, with

the appropriate offglide, to the position of another vowel. An example of this is the

'/y sound often heard in the pronunciation of "the ice," due to the /y/ offglide of

the vowel /iY/. The glides are produced with constant movement of the articulators

such that the formants in the transition between them and adjacent vowels exhibit a

smooth gliding movement accompanied by either an increase in amplitude when they

occur before vowels, or a decrease in amplitude when they are the offglides of vow-

els. The semivowel /r/ is sometimes included in the definition of a glide. However,

1, is usually not included since, as mentioned above, the spectral change between a

prevocalic 'T' al'ophone and the following vowel is usually abrupt.

In addition to exhibiting a difference in manner of articulation, the semivowels differ

from other consonants from a distributional standpoint as well. The semivowels must

"ccupy a position in a syllable immediately adjacent to the vowel, with the exception

of words like "snarl" in which the /r/ occurs between the vowel and the word-final /1/.

(Some acoustic data obtained in the study suggest that there should not be such an

exception clause in the phonotactic constraints of semivowels. For further discussion,

.ee Section 3.3.) Furthermore, the semivowels are the only consonants that can be the

third member of a three-consonant syllable-initial cluster.

Like the other consonants, however, the semivowels usually occur at syllable mar-

gins. That is, they generally do not have or constitute a peak of sonority (sonority,
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in this case, is equated with some measure of acoustic energy). The relatively low

1 %"',amplitude of the semivowels as compared to the vowels is due in part to the fact that

they tend to have a low frequency first formant. It may also be due to a large F1

bandwidth caused by the narrower constriction, or to an interaction between the vocal

folds and the constriction (Bickley and Stevens, 1987). At present, this phenomenon

is not well understood.

3.2 Acoustic Study

*Q There have been many acoustic and perceptual studies involving some or all of

the semivowels (Lisker, 1957; O'Connor et al., 1957; Lehiste, 1962; Kameny, 1974;

Dalston, 1975; Bladon and Al-Bamerni, 1976; Bond, 1976). Mainly, these studies have

focused on the acoustic and perceptual cues which distinguish among the semivowels

and the coarticulatory effects between semivowels and adjacent vowels. We have used

the acoustic and perceptual findings of this past work to guide an acoustic study of

the semivowels and other sounds contained in the data base (see Chapter 2) designed

for the thesis.
V In this study, we attempt to quantify some of the findings of past acoustic and

perceptual research using energy based parameters, formant tracks and fundamental

frequency. While the parameters were selected on the basis of some informal work,

we realize that there may be other ones which better capture the desired acoustic

properties.

Most of the measurements made in the study are relative. That is, a measure either

% examines an attribute in one speech frame in relation to another frame, or, within a

given frame, examines one part of the spectrum in relation to another. As a result,

the relative measures tend to be independent of speaker, speaking rate and speaking

level.

The following sections are organized by measure(s). First, we discuss measures
which help to distinguish between the semivowels. These measures are based on for-

mant frequencies and formant transitions. Second, we discuss measures which help to

separate the semivowels from other classes of sounds. These measures are based on

bandlimited energies and measures of the rate of spectral change.

The features for which the measures are presumed to be correlates of are mentioned

in each section. However, a summary of this study is given in Chapter 4 in Table 4.3.
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This table includes the features needed to separate the semivowels as a class from
other sounds and to distinguish between the semivowels, the acoustic properties for

features, and the parameters from which these relative measure are extracted.

To conduct the study of the semivowels, we used the tool SEARCH (see Section
2.2.2). Recall that this tool is token-based such that the measurements are dependent

upon the hand transcription of the words.

3.2.1 Formant Frequencies

Past studies agree that important cues for distinguishing among the semivowels are
the frequencies of the first three formants (Fl, F2 and F3). Given minimal pair words,

F1 separates the glides /w/ and /y/ from the liquids /1/ and /r/, F2 separates /w/

" from /l,r/ from /y/, and F3 separates the liquids /1/ and /r/. The data in this study
concur with these observations. The formant frequencies were estimated by averaging

* •samples around the time of a minimum or maximum in a formant track within the

," hand-transcribed semivowel region. In the case of/w/ and /1/, the values of F1, F2 and

F3 were averaged around the time of the minimum value of F2. For /y/, the formant
values were averaged around the time of the maximum value of F2. Finally, for /r/,

the formant values were averaged around the time of the F3 minimum. At most, three

samples were used to compute the average. The results are shown for each speaker
and across speakers in Tables 3.1-3.5 for word-initial, prevocalic (including semivowels

that are word-initial and adjacent to a voiced consonant), intervocalic, postvocalic

(including the /1/ in words like "snarl") and word-final semivowels. Speakers SS and

SM are females and speakers MR and NL are males.

Also included in Tables 3.1-3.5 are the normalized formant values (FI-FO, F2-Fl,

F3-FO and F3-F2) which are used in the recognition system discussed in Chapter 4.
In addition, the distributions of the normalized formants are shown in Figures 3.3,
3.4 and 3.5 for the prevocalic, intervocalic and postvocalic semivowels, respectively.

The formants were normalized in this manner to better capture some of the acoustic

properties of the semivowels. The acoustic correlates of the features back and front are
usually thought of in terms of the spacing between F1 and F2, rather than the absolute

frequency of F2. Similarly, results from preliminary work suggest that, in addition to

the frequency of F3, the spacing between F3 and F2 is important in establishing the

acoustic correlate of the feature retroflez. We observed that /w/'s can have F3 values

comparable to that of some /r/'s. However, F3 and F2 tend to be much closer for
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Table 3.1: Average formant frequencies of word-initial semivowels broken down by

speaker and averaged across all speakers.

w I r y w 1 r y

F1 365 443 389 308 Fl 374 393 345 294

F2 696 1250 1270 2040 F2 768 1100 1090 1960

F3 2170 2480 1620 2710 F3 2340 2540 1490 2930

speaker: MR speaker: NL

w 1 r y w I r y

Fl 319 397 340 287 F1 324 384 360 240

F2 819 1420 1290 2350 F2 674 1110 969 2350

.F3 2420 2810 1880 3000 F3 2440 2730 1500 3480

" speaker: SM speaker: SS

w I r y

F1 347 404 358 281

F2 739 1220 1150 2190

F3 2330 2640 1620 3040

all speakers

w 1 r y

- Fl - F0 211 266 216 138

* F2 - Fl 392 821 794 1910

F3 - FO 2200 2510 1480 2900

F3 - F2 1600 1420 471 855

all speakers
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Table 3.2: Average formant frequencies of voiced prevocalic semivowels broken down

by speaker and averaged across all speakers.
LJ- !. -

w i l r y w 1 r y
F1 347 423 401 301 F1 381 394 370 323

. F2 691 1030 1240 2040 F2 788 1060 1150 2010

F3 2160 2410 1630 2750 F3 2320 2510 1590 2780

speaker: MR speaker: NL

w 1 r y w 1 r y

F1 339 387 366 311 Fl 337 386 392 266

F2 782 1200 1360 2330 F2 697 1060 1120 2350

F3 2440 12850 1970 2970 F3 2370 2600 1650 3100

speaker: SM speaker: SS

w 1 r y

F1 351 397 383 305

F2 793 1090 1220 2190

F3 2320 2600 1710 2910

all speakers

w 1 r y

F1 - FO 214 258 242 163

F2 - F 388 693 835 1890

F3 - FO 2180 2460 1570 2770

F3 - F2 15801 1510 491 719

all speakers
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Table 3.3: Average formant frequencies of intervocalic semivowels broken down by

speaker and averaged across all speakers.

w i r y w 1 r y

F1 314 424 444 333 F1 383 445 441 326

F2 I 652 934 1210 2110 F2 884 1050 1200 2010

F3 1 2230 2400 1570 2730 F3 2270 2580 1670 2750

speaker: MR speaker: NL

w I r y 1 I r y

F1 344 441 466 357 Fl 350 466 482 389

F2 603 1140 1330 2490 F2 718 1090 1220 2360

F3 !2470 2900 1950 3100 F3 2370 2670 1650 3010

speaker: SM speaker: SS

w 1 r y

F1 349 445 460 361
w F2 771 1060 1240 2270

F3 2340 2640 1720 2920

all speakers

w 1 r y

F1 - FO 211 305 317 213 1

F2 - F1 422 610 783 1910

F3 - FO 2200 2500 1570 2770

F3 - F2 1570 1580 473 648

all speakers

!2
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Table 3.4: Averaged formant values for postvocalic liquids broken down by speaker
and aveaged across all speakers.

r

F1 454 487 Fl 459 486

F2 821 1240 F2 875 1280

F3 2380 1690 F3 2690 1770

speaker: MR speaker: NL

I r 1 r

F1 493 528 Fl 457 509

F2 994 1350 F2 901 1330

F3 2830 2040 F3 2620 1840

speaker: SM speaker: SS

F1 465 503

F2 898 1300

F3 i2630 1830

all speakers

r

F1 - FO 323 363

F2- F1 433 799

F3 FO 2490 1690

F3 - F2 1740 531

all speakers
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Table 3.5: Average formant values for word-final liquids broken down by speaker and
averaged across all speakers.

I r 1 r
or

F 1  444 484 F1 454 444
F2 768 '1270 F2 841 1240
F3 2430 1670 F3 2680 1670

speaker: MR speaker: NL

I r 1 r

, Fl 481 472 F1 443 484

F2 932 1350 F2 864 1330

F3[ 2830 2050 F3 2590 1760
speaker: SM speaker: SS

I r

F1 455 471

F2 850 1300

F3"2630 1790
all speaker •

r
FI - FO 313 330

F2 - F1 396 828
13 - FO 2490 1650

F3 - F2 1780 493

all speakers
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r', whereas F2 and F1 tend to be much closer for /w/ (this difference between the

acoustic properties of these sounds can be seen in the formant plots of Figures 3.3

q - 3.5). Therefore, we included the measure F3-F2. In addition, while the acoustic

correlates of the features htgh, low and retroflex relate to the frequencies of FI and F3,

the sex of the speaker is usually considered before making any judgements regarding

their presence or absence. That is, since F1 and F3 will generally be higher for a

female than for a male, we usually normalize for sex. In a simple attempt to account

for the sex of the speaker, we normalized F1 and F3 by the average fundamental

frequency, FO, computed across the voiced regions of the utterance. More specifically,

we subtracted FO from F1 and F3.. Several observations can be made from these data. First, the average formant
" frequency values of the word-initial, prevocalic and intervocalic semivowels are com-

~parable. The generally higher F1 frequency for the intervocalic semnivowels suggests

that they are not usually as constricted as their prevocalic allophones. Second, the

difference in the formant values for postvocalic and prevocalic /I/ and /r/ allophones

support previous findings. That is, a postvocalic /I/ is more velarized than a prevo-

calic /1,/, resulting in a much lower F2, a higher Fl and, therefore, a smaller F2-F1

difference. This allophonic variation is shown in Figure 3.6 where the word-initial /1/

in "loathly" is compared with the word-final /1/ in "squall." Both words were spoken

by the same speaker. In the former case, the /1/ has F1, F2 and F3 frequencies of

about 370 Hz, 990 Hz and 2840 Hz, respectively. In the latter case, the frequencies of

* F1, F2 and F3 are about 465 Hz, 700 Hz and 2660 Hz, respectively.

As for /r/, Lehiste found that the postvocalic /r/ allophone (all word-final with

the exception of the /r/ in "wharf") has higher frequencies for FI, F2 and F3 than the

word-initial /r/ allophone. Furthermore, Lehiste found that the average word-final F2

frequency for a postvocalic /r/ is in the range of F3 for a word-initial /r/ allophone, and

that the average postvocalic F3 frequency is about 300 Hz greater than its average

F2 frequency. Our data agree with most of these findings. F1, F2 and F3 of the

postvocalic or word-final /r/ allophones are generally higher than their corresponding

values for prevocalic or word-initial /r/ allophones, respectively. However, for speaker

MR, the frequency values for F2 and F3 are similar for the word-initial and word-

final /r/ allophones, and for the prevocalic and postvocalic /r/ allophones. This is

also true for speaker SM if we compare F2 and F3 of the prevocalic and postvocalic

,r/ allophones; however, these frequency differences are greater for the word-initial

600o
J



I L

: 7

rr

L , ,lr

0.0 0.1 0. 0.3 0.4 0.6 O.6 0.7
Time (eatcnds)

" 

w I a

1 0 1

0.0 0.1 0., 0.3 0.4 0.5 0.6
Tbme (seconds)

Figure 3.6: Wide band spectrogram of the words "loathly" and "squall."
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, : ., . .,n. T;Iis, comparing the F2 and F3 values -btained tv

.,r ;nr icr ss AIll -PIakers e9 wrd-final and word-init il all,,hones, r t:.,-

sty c.l., an i prev...... i:. phones. we see that, unlike Lehiste's iata. VF
r 1, ph.cne f-I w::g i v wei is not close to F3 of the r all.ph.ne pr,' 1;:i,

,,L :'V her::-,r , " :.tfer , e between F3 and F2 of the r al oph,,ns wL, h

* . w I v we, ,s abt 500 Hz.

Th,;s i.: pt-h nic "iriat.n -: e seen in Figure 3.7 by - inparing the f, rn;int

.ien..:es A4 the w rd- n:tiai r .:, "rule" with the word-final r in "explre." B,,th

r i s were spken Lv the -ime ;,oaker. In the former case, the r has Fl, F2 and

F3 frJ 1 :,n.es r 4hout 340 liz, I IM Hz and 1550 Hs, respectiv. ly In the latter is,
'0e w r -K.aai r has F1. F2 v:,. ,-V3 frequencies of about 460 Hiz, 1280 Hz and 1(6o'

Hz, resi'e, t.vei'v.

"inalv, the wide spread n 'he distribution of average formant values r,

" -,'irs 3 1, 3.2 and 3.3 for the .revocalic, intervocalic and postvocalic semivowels

sh,-w, that the formant froqienr'es f the semivowels are affected by those of adjacent

sin ;s That ;s. the F1 frequenv fthe semivowels is usually -wer than the average

re,plienv f FI when they are a ijacent to high vowels, and usually higher than the

* vei',o'e 1 vI'ie when they are a7 jacent to low vowels. Similarly, the F2 frequency f

tr"ese::v w'e.s tends to be lower than the average F2 fre ;iency when Lhev are adjacent

toac v we.s, and higher than the average F2 frequen, y when they are adjacent t''

;- rnt v-wels. Furthermore, the F3 frequency of the semivowels w and I' tends

:, :e wer than their average value when they are either adjacent to r, such as the

in "-arwash," or they are one segment removed from an r , such as the v in

SE':r is.ar'-ini the 'I/ in "brilliant." In addition, F3 of /'r tends t,) he higher than its

iverie IV. 1e when it is adjacent to a front vowel(s). These , :itextuai effects ac,,unt

.S- -t f 'he o-verlap between /r' and the other semivowels -,n the basisf F3-FO.

3.2.2 Formant Transitions

Given the average formant frequencies of the semivowels, certain formant transi-

ti,)ns -an b.,e expected between them and adjacent vowels. To determine the direction

and extent f this formant mcvement, the average semivowel formant values were sub-

tracted from the average formant values of the adjacent vowel(s). The average vowel

fermant values were computed from the values occurring at the time of the maximum

value of Fl within the hand-transcribed vowel region and the frequencies occurring
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Table 3.6: Averages and standard deviations of the differences between the average

4P formant values of prevocalic semivowels and those of following vowels.

ZF I AF2 AF3

avg 1 std avg std avg std

w 194 124 516 275 17 315

y 175 135 -519 333 -503 393

1 158 123 436 308 -7 224

O r 128 107 281 307 466 382

in the previous and following frames (if they also occur within the hand-transcribed

region). The findings of this part of the acoustic study are shown in Tables 3.6, 3.7 and

3.8 for the average differences between the formant values of the vowels and adjacent

prevocalic, inter-vocalic and postvocalic sernivowels. respectively. Also included are the
-,

standard deviations. Below we discuss the results separately for each semivowel.
4

As expected, compared to the adjacent vowel, F1 and F2 are almost always lower

ftr a , w/. However, the data for F3 show that the transition of F3 between a /w/ and

in acjacent vowel can be positive or negative. A negative F3 transition from a/w/

into an adjacent vowel may seem surprising, since /w/ is produced labially. However,

we found this to be the case mainly when /w/ is adjacent to a retroflexed vowel.

The average change in F3 between prevocalic /w/'s and following retroflexed vowels

is about -215 Hz. In the case of intervocalic /w/'s, the average increase in F3 from

a preceding retroflexed vowel is about 300 Hz, and the average decrease in F3 into a

following retroflexed vowel is about 200 Hz. Examples of this phenomenon can be seen

in the spectrograms and formant tracks of the words 'thwart" and "froward" which

are displayed in Figure 3.8. Although F3, due to its low amplitude, is not always

visible within the /w/, the direction of the F3 movement can be inferred from the

visible transitions in the adjacent vowel(s), and it is apparent in the accompanying

formant tracks.
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Table 3.7: Average and standard deviation of the difference between the average for-

riant values of intervocalic semivowels and those of the surrounding vowels.

preceding vowel following vowel

'Z Fi AF2 ZF3 AFI AF2 A F3
avg std avg i std avg 1std avg std avg std avg std

w 123 76 657 342 -36 326 w 169 134 619 303 -24 291

y 108 130 -527 390 -499 400 y 176 153 -524 334 -346 295

1 1031 93 314 237 -140 217 1 84 117 378 205 -8 136

48 701 167 1292 r 5710264 274 433 324

.-.

Table 3.8: Averages and standard deviations of the differences between the average

formant values of postvocalic liquids and those of the preceding vowels.

Z Fl LF2 AF3

avg std avg std avg std

I 128 112 352225 -159 217

r 68 9039 269 317 242
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As expected, F1 almost always increases from a /y/ into an adjac'-.t vowe!(s), and

F2 almost always decreases between iy/ and adjacent vowel(s). Similarly, F3 of a v

Is normally higher than that of adjacent vowels. There were a few cases where this F3

movement was not observed. In these instances, F3 steadily rose from its value in the

v, and through the vowel due to the influence of another adjacent consonant, such

as the "n. in "brilliant" (brilvint') and the /1/ in "uvula"( yuvvul ').

/1/

As can be inferred from the data, Fl of the vowel is normally higher than Fl of the

prevocalic and postvocalic /1. In the few cases where a postvocalic 1/ had a slightly

higher F1 than that of the preceding vowel, the vowel was an /u/. Finally, in the case

of an intervocalic I', Fl may be lower than F1 of both surrounding vowels, or, due

to contextual influences, it may be higher than F1 of one of the surrounding vowels.

If /1, is preceded by a low vowel and followed by a high vowel, such as the second /I/
in "dillydally" ('dliYd2liY'), F1 of /1/ may be higher than F1 of the following high
vowel. The converse is true as well, That is, when /1 is preceded by a high vowel

and followed by a low vowel, Fl of the /1/ will sometimes be higher than FL of the
preceding high vowel.

The data also show that, as in the case of /w/, /1/ almost always has a lower

F2 fre'iuency than that of the adjacent vowel(s). However, there are a few interesting

exceptions which occurred when /1/ was in an intervocalic context. These cases involve

the borrowed French words "roulette" and "poilu," spoken by two speakers familiar
with the French language. It appears that, in these cases, they produced an 1// which

is different from any /I/ allophones typical of English. Examples of these /'1,"s are

shown in Figure 3.9.

Finally, the averages and standard deviations of the F3 differences show that F3
almost always increases significantly between /I/ and preceding vowels, and that there

is usually little change in F3 between /1/'s and following vowels. These data support
previous findings which show that /I/ tends to have an F3 frequency equal to or

higher than that of adjacent vowels. However, as can be inferred from the standard
deviations, there are several instances where /I/ had a significantly lower F3 frequency

than that of the adjacent vowel. This phenomenon, which usually occurs when /I/
is adjacent to a front vowel, can be observed in the words "leapfrog" and "swahili"
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Figure 3.9: Wide band spectrograms of the words upoilu" and "roulette," In both
* words, /I/ has a higher F2 frequency than an adjacent vowel.
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Figure 3.10: Wide band spectrograms of the words "leapfrog" and "swahili." In each

- case, /I/ has a lower F3 frequency than an adjacent vowel(s).
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Figure 3.11: Wide band spectrograms of the words "yore" and "clear."

71
., . . - . ..-..- .. ..-.-.. ,.-..,.- .-..-.. '.. ,. ,.,,.'_., -" .'< , V , . -L ,. . .,,,, .,... . ...

,' .. .. ... , . . .. . . ,. . . .. .- . ... . .- .- , .-.- ,- . -.., - ",, .. ,. -. .. . .. , ,. , - .. .., .. .. G . ,- ,.



0.0 0.1 0*A 0.3 0.4 0.8 0.6 0.?
To- (sems")

UU

0.0 0.1 0.8 0.3 0.4 0.8 0.6
1ft. (U"

0.0 0.1 0.8 0.3 *A 0A

Figure 3.12: Wide band spectrogram of the the words uquadruplet," "rule" and
"roulette."

72



may rise while F3 falls, narrowing the difference between F3 and F2. However, if the

vowel is front, both F2 and F3 will fall into the appropriate values for an /r/. This

behavior can also be observed in the words "yore" and "clear" shown in Figure 3.11.

As expected, F3 almost always increases between a prevocalic /r/ and the following

vowel. However, there was a notable exception. This case involved the the word
"rauwolfia" which, instead of being pronounced as [rowo'lfiYa], was pronounced as

r:rowlfiYaj. That is, the speaker replaced the intervocalic /w/ with an intervocalic

-'r/. Due to the influence of the intervocalic /r/, F3 falls by 220 Hz between the

prevocalic /r/ and the /3/. This behavior can be observed in Figure 3.13, where

F3 steadily decreases from its first visible value within the word-initial /r/ to its

lowest value within the intervocalic /r/. This behavior, which is observable from the

formant tracks which are extracted within the portion where F3 is not visible on the

spectrogram, was verified from wide-band and narrow-band short-time spectra. This

" ~ is the type of F3 movement we would expect to see between prevocalic /w/'s and

following retroflexed sounds. However, when this utterance is played, a clear word-

initial /r/ is heard.

In the case of intervocalic /r/, F3 is almost always equal to or lower than that of

adjacent vowels. There was an exception which occurred in the word "guarani," shown

in Figure 3.14. In this case, the vowel /a/ preceding the /r/ is retroflexed so that the

lowest point of F3 is within the vowel region.

Finally, the data of Table 3.8 show that postvocalic /r/'s generally have a lower

F3 value than the preceding vowel. However, as can be inferred by the large standard

deviation, there are some instances where a postvocalic /r/ has a higher F3 value than

that of the preceding vowel. This behavior was observed only in words where the /r/

is not in word-final position, but is followed by another consonant, such as the /r/'s in

"cartwheel," "harlequin" and "Norwegian." Furthermore, as was seen in the example

of the word "guarani," there is significant feature assimilation between the vowel and

the following /r/ such that the vowel is retroflexed throughout. In these cases, the

lowest point of F3 within the syllabic region can occur near the beginning of the vowel.

This phenomenon is discussed further in Section 3.3.

3.2.3 Relative Low-Frequency Energy Measures

As we stated earlier, the production of the semivowels is in many ways similar

to the production of vowels. The vocal folds vibrate during the articulation of the
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Figure 3.13: Wide band spectrogram with formant tracks overlaid of the word rau-
wolfia" where the intervocalic /w/ was replaced by an intervocalic /r/. Note the
downward movement from the word-initial /r/ and the intervocalic /r/.
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Figure 3.14: Wide band spectrogram of the word 'guarani." The lowest point of F3
occurs during the retroflexed vowel /a/.
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' A , . *. r: r :o ii, t. n frication noise 1s produ-,-' Ihe ,,,

r r" ns.nanti which har,- these r r ,rties are the nasals. lente, the -,P!nI:v,: , w

wels nd nasas are . ns,'iered to ,, viced sonorant sounds.

In hs p-art f the a, -usti c stu.iy, we attempted to determine r,bust acousti

" e: ~ f t!,ese roiced an .;onorant features. The acoustic correlate n,rmally 1se

,,r the feature rotced is low frequencv i-riodicity. However, the available pitch tracker

G( d and Rabiner, 1969) .es no-t a wavs accurately estimate the beginning of voiced

• and sonorant segments. Therefore, we used a low-frequency energy measure instead.

This energy measure is based on the bandlimited energy computed from 200 Hz to

700 Hz. More specifically, the value of the parameter in each frame is the difference

(in dB) between the maximum energy within the utterance and the energy in each

frame. An example of this parameter is shown in part b of Figure 3.15 for the word
"chlorination." As can be seen, the energy difference is small in the vowel, semivowel

and nasal regions, and large and negative in value in the stop and fricative regions.

The parameter used to capture the feature sonorant is the difference (in dB) be-

- tween the high-frequency energy computed from 3700 Hz to 7000 Hz and the low-

frequency energy computed from 100 Hz to 300 Hz. Thus, for vowels, nasals and

semivowels, which have considerable low-frequency energy and some high-frequency

energy, this difference should be small. However, for nonsonorant consonants, like

fricatives which have mainly high-frequency energy, this difference should be high.

This behavior can be seen in part c of Figure 3.15.

The results obtained with these parameters are shown in Figure 3.16. Separate

scatter plots are shown for the vowels, the nasals and semivowels, and the remaining

consonants. Statistical data concerning the averages and standard deviations are also

--. given.

. t As can be seen, there is almost complete overlap between the vowels (about 2400

tokens), and the semivowels and nasals (about 2200 tokens). However, there is very

little overlap between these voiced sonorant sounds and the remaining consonants

(about 2400 tokens). Only about 16% of the remaining consonants overlap with the

voiced sonorant sounds. Of these overlapping consonants, 79% are voiced consonants,

including flaps, glottal stops, fricatives, stops and affricates. Excluding the glottal

stops (which make up one fourth of these voiced consonants), 71% of the voiced con-

sonants are in intervocalic position or, more generally, in intersonorant (between two

sonorants) position. Spectrograms of words containing two of these consonants, the
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.ntervccac in "wagonette" and the intervocalic /v/ in "wolverine," are shown in

Figure 3.17. As can be seen, the intervocalic /g/ has no burst or voice onset time. In-

V stead, the /9/ segment appears to be sonorant throughout. Likewise, the intervocalic

v/, which has no frication noise, also appears to be sonorant throughout. Thus, the

feature sonorant, which is generally absent from voiced stops, fricatives and affricates,

;s sometimes shared by these sounds when they are surrounded by sonorant segments.

Many of the remaining nonintervocalic and voiced consonants that overlap with the

vowels, nasals and semivowels, are unreleased stops, which occur in word-final position.

Overlapping prevocalic stops usually occur before back or retroflexed sounds such that

* they have low-frequency bursts. This latter phenomenon can be observed for the/g/

burst in the word "granular," shown at the top of Figure 3.18. The nonintervocalic

and voiced fricatives which overlap with the sonorants are all /v/'s that occur mainly

in word-final position. An example of such a /v/ occurs in the word "exclusive," also

shown in Figure 3.18. Note that the word-final /v/ is very weak and has no frication

noise.

Finally, those unvoiced stops which overlap with the semivowels, vowels and nasals

are either unreleased and in word-final position, or they occur in prevocalic position

V"  before back sounds such that they have low-frequency bursts. Such a stop is the /k/

in the word "queen" shown at the bottom of Figure 2.3 of Chapter 2.

In summary, the results of this section show that, in addition to the semivowels

and nasals, other voiced consonants may appear as sonorant in certain environments.

- gHowever, with these parameters, a few nonsonorant consonants are confused with the

sonorant sounds.

3.2.4 Mid-Frequency Energy Change

Vowels, because they are less constricted, usually have considerably more energy in

the low- to mid-frequency range than the semivowels and other consonants. That is,

the semivowels, like other consonants, usually occur at syllable boundaries. A syllable

boundary can ba defined acoustically as a significant dip within some bandlimited

energy contour. To access this difference in energy between semivowels and vowels,

and, more generally, between consonants and vowels, we used two bandlimited energies

in the frequency ranges 640 Hz to 2800 Hz and 2000 Hz to 3000 Hz.

. We chose the frequency range 640 Hz to 2800 Hz because, relative to the vowels,

the semivowels tend to have less energy in this region. This can be seen in Figure 3.19
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S" -- ., o enegH w-r, a tinre F3 is norma dy between 2000 Hz an 3000 Hz

- .::er g-v w~ ".hesemivo.elsr .and o Hz for nsonants will usually be conswiterably

Sadjacent vwels'1 wa0 Hz Peasd H. Tange than an adjacent vowel(s).
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'.n ' -ew: s an other consonants when they occur in intervocalic,
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F --

"--, - Intervocalic Consonants

--F - .0. a energy parameters, the difference (in dB) between the minimum
":. :ergy w~t .-1 t, I"e semnivowels and other consonants, and the maximum energy within

,- • ?'.eadjacent vowels was measured. The smaller of these two differences determines

• " e -ph of the energy dIp. An example of this measurement is given in Figure 3.20

b ,-• ' :!: ,v rd"bewail." As can be seen from the bandlimited energy waveform shown

i ,:, .art 3 Fir.20, an energy (lip of 28 dB occurs within the intervocalic /w/ at

1; t 1)( :i sec.

T: 1termine if similar energy dips occurred within vowels, we used a similar

!;.easirement pr, cedure illustrated in Figure 3.21 for the word "yon." Within the

iand -transcribed vowel region, we made several measurements. First, we determined
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Figure 3.20: Measurement procedure for energy dips within intervocalic consonants.

(a) Wide band spectrogram of the word "bewail." (b) Energy 640 Hz to 2800 Hz.
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trograin of the word "yon." (b) Energy 640 H- to 2800 tz.

the minimum energy and the time at which it occurs. This instant of time is marked

* g as point A in part b of Figure 3.21. Second, we determined the maximum energy

between the beginning of the vowel region and point A. The frame in which this

maximum energy occurs is marked as point B. Finally, we determine the maximum

energy occurring between point A and the end of the vowel region. The frame at which

this maximum energy occurs is marked as point C. The smaller of the differences in

energy at times B and A and at times C and A determines the depth of the intravowel

energy dip. In this example, the depth of this dip is 4 dB.

The results of the above measurements are shown in Figure 3.22. In part a, which

contains measurements made on about 2400 vowels, we see that usually there is no

intravowel energy dip. In most instances where there is a significant intravowel energy

dip larger than 2 dB, the vowel is an /3,/ or a diphthong. For example, consider the

:,/ in the word "plurality" and the /iY/ in the word "queer," shown in Figure 3.23. In

both instances, portions of the transcribed vowels appear to be nonsyllabic. Although
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-'no clear r,,' and y/were heard, their exclusion from the transcription is questionable.

Most of the nonsonorant and nasal consonants shown in parts b and c of Figure 3.22
have significant energy dips in one or both bandlimited energies. Those consonants
which have as much or more energy than the adjacent vowels are the strong fricatives

and which have considerable energy in the range 2000 Hz to 3000 Hz. Recall

that the speech signals were preemphasized.

Finally, the results for the semnivowels, which are shown in part d of the figure, show
that they usually have significantly less energy than the surrounding vowels. However,
10% of the semnivowels did not have a significant ( ! 2 dB) energy dip in either of the
bandlimited energies. More specifically, 33% of the /y/'s, 14% of the /r/'s and 5% of
the /1/'s did not contain significant energy dips.

On close examination of the semnivowels which do not appear to be nonsyllabic,
certain patterns emerged. In nearly all of the words containing either an intervocalic
/1/ or /r/ with no energy dip, the /1/ or /r/ followed a stressed vowel and preceded an
unstressed vowel, such as the III's in "swollen," "plurality" and "astrology," and the

/r/'s in "heroin," "marijuana" and "guarantee." There was, however, an exception
which involved the /1/ in "musculature," where the /1/ followed an almost devoiced

/z/. Examples of one of the /1/'s and one of the /r/'s are shown in Figure 3.24.

*The case of the intervocalic / y/'s that do not contain significant energy dips is

-.

" more complicated. In 12 out of 14 words containing a /y/ with no significant energy

dip, the /y/ segment is a result of the offglide of a diphthong, such as the /ey/ in

"humiliate" and the /rY/ in "flamboyant." The two cases where this was not the case

involved the words "volume" (pronounced as [vayuml) and "cellular" (pronounced as

As in the case of /1/ and /r/, 64% of the /y/s with no significant energy dip
preceded vowels with less stress then the vowels they followed, such as the /y/'s in

the words "brian" and "diuretic." The exceptions to this pattern involved the words

"radiology," "humiliate," "unreality" and "riyal."

Fro-. a reexamination of these words, we found that a clear /y/ was heard in most of

them when we played either the entire utterance or some portion thereof. A comparison

of the words "humiliate," which contains a clearly heard /y/, and "Ghanaian," which

-' contains a questionable /y/, are shown in Figure 3.25.

It is not clear what we should conclude about this lack of significant energy dips

within 10% of the intervocalic semivowels. It may be that some syllable boundaries
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I

-ire per:eivei :nlv after we extract words from our lexicon. It may be that some ad-

!itional acoustic property(s), such as formant movement, helps us to perceive syllable
4- e Loundaries. Or, it may be that some other bandlimited energy would result in their

letection. For example, since i'y/ normally has F2 and F3 frequencies above 2000 Hz,

a bandlimited energy computed from 1000 Hz to 2000 Hz may contain dips within

more of the y! segments. Clearly this phenomenon needs to be studied further.

Prevocalic Consonants

To ascertain the effectiveness of the bandlimited energies in identifying the pre-
. vocalic semivowels and other consonants, we compared the minimum energy within

the consonants (the beginning of the consonant region was taken to be the smaller of

either 10 msec or 20% into the hand-transcribed consonant region) with the maximum

energy within the following vowel. For comparison, we also measured the depth of

' ,similar energy changes occurring naturally within word-initial vowels. An example of

the latter measurement procedure is given in Figure 3.26 for the word "always." First,

we :cimpute the maximum energy within the vowel and ,he time at which it occurs.

This frame is labeled point A in part b. Second, between the beginning of the vowel

starting at the smaller of 10 msec or 20% into the hand-transcribed vowel region)

and p.oint A, we compute the minimum energy and the time at which it occurs. This

•rame is labeled point B. The difference (in dB) between the maximum energy and

minimum energy at these times is the depth of the intravowel energy dip. For the /o/
n the example, the intravowel energy dip is 11 dB.

The results for the vowels and consonants are compared in Figure 3.27. As can

Se seen n Fart a, the average energy increase within vowel regions is about 12 dB.

H wever, ,ne energy can increase by as much as 30 dB. The average increase in energy
.:etween nonsonorant consonants and vowels and between nasals and vowels is between

28 dB and 33 dB. Between the semivowels and following vowels, the average energy

-ncrease is about 21 dB, and 40% of the semivowel-voweltransitions involve an energy

' .:. _rease of more than 30 dB. If we look only at the energy change between word-initial

.-iiv.-w,'ls -n i fcllowing vowels, the average energy increase is about 30 dB, and 62%

the semivcwel-voweltransitions have an energy increase of more than 30 dB.
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Figure 3.26: Measurement procedure for natural energy increase in word-initial vowels.
(a) Wide band spectrogram of the word "always." (b) Energy 640 Hz to 2800 Hz.
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Postvocalic Consonants

To determine the depth of energy dips occurring between postvocalic consonants

arid preceding vowels, we computed the difference (in dB) between the maximu

energy within the vowel regions and the minimum energy within the postvocalic con-

sonant (where the end of the consonant region is considered to be the larger of 10

msec before the end of the hand-transcribed region or 80% of the hand-transcribed

region). For comparison, we measured the natural decrease in energy within word-final

vowels. This measurement procedure for the vowels is illustrated in Figure 3.28 for the

word "bourgeois." First, we determined the maximum energy and the time at which

it occurs. This frame is labeled point A in part b. Second, we compute the minimum

energy occurring between this time and the end of the vowel region (where the end of

the vowel region is the larger of 10 msec before the end of the hand-transcribed region

or 80% of the hand-transcribed energy). This frame is labeled point B. The intravowel

energy dip is taken to be the difference between the maximum and minimum energy.

In this example, the intravowel energy dip is 14 dB.

The distributions of energy dips occurring within word-final vowels and between

vowels and postvocalic consonants are shown in Figure 3.29. As can be seen in part

a, the vowels have an average natural energy taper between 12 dB and 14 dB. Most

of the vowels with an energy dip of more than 20 dB are diphthongs. That is, a large

energy change is usually due to a /y/ or /w/ offglide. An example of this significant

decrease in energy is shown in Figure 3.30 for the word "view," which has a 50 dB

energy dip in the frequency range 2000 Hz to 3000 Hz. If we exclude diphthongs and

syllabic nasals from the word-final vowels, the average energy dip drops to 11 dB with

a maximum energy dip of only 25 dB.

Parts b, c and d of Figure 3.29 show that there is usually a significant drop in

energy between vowels and following consonants. The average energy change between

nonsonorant consonants and preceding vowels and between nasals and preceding vowels

is between 25 dB and 30 dB. However, between semivowels and preceding vowels, the

average energy changes are only 14 dB and 18 dB. If we remove postvocalic consonants

". " which are followed by a sonorant consonant, such as the /r/ in the word "harlequin,"

- -- the average energy change increases to 17 dB and 22 dB, and 43% of the vowel-

-. semivowel transitions involve an energy decrease of more than 25 dB.
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Figlile 3,28:- Measurement procedure for natural energy taper in word-hnal vowels.

(a) Wide band spectrogrami of the word "bourgeois."~ (b) Energy 640 Hz to 2800 Hz.
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Figure 3.30: Illustration of large energy taper in word-final diphthongs. (a) Wide band

spectrogram of the word "view." (b) Energy 640 Hz to 2800 Hz.
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3.2.5 Rate of Spectral Change

Fant (1960) observed that a distinguishing cue for /1/, when it precedes a v.,wei, is

an abrupt shift in F1 from the i1/ into the following vowel. Dalston (197.5) attributes

-his pro-perty to the rapid movement of the tongue tip away from the roof of the

mouth. In aidit zon, Daiston noted that this abrupt shift in Fl is often accompanied

by a transient in the higher frequencies.

The parameter used in the study to extract this abrupt rate of change in energy

between I./ and vowels and, more generally, between .onsonants and vowels is based on

the outputs of a bank of linear filters to which some nonlinearities (designed to model

the hair-cell/synapse transduction process in the inner ear) are applied to enhance

offsets and onsets (Seneff 1986). Compared to bandlimited energies based on the DFT,

we found that these parameters have much sharper onsets and offsets. An example is

.. shown in Figure 3.31 for the word "correlation." As can be seen, the abrupt spectral

*. changes between /1/ and the surrounding vowels are captured in the waveforms, part

b, which have sharp onsets and offsets between 300 Hz and 650 Hz and between 1070

Hz and 1700 Hz.

Based on these waveforms, we computed global onset and offset waveforms. The

onset waveform is obtained by summing, in each frame, all the positive first differences

in time (with a frame rate of 5 msec) of the channel outputs. Similarly, the offset
waveform is computed by summing, in each frame, all the negative first differences in

time. The resulting onset and offset waveforms for the word "correlation" are shown in

parts c and d of Figure 3.31, respectively. As can be seen, the sharp spectral changes

between the 1/' and the surrounding vowels show up in the onset and offset waveforms

as a peak and a valley, respectively.

We examined the rate of change of these waveforms between all consonants and
adjacent vowels. We defined the onset value to be the maximum rate of change between

the consonant and following vowel. Likewise, we defined the offset value to be the

maximum absolute value of the rate of change of the waveform between the preceding

vowel and the consonant. As can be seen in Figure 3.31, the offset before the /I/

occurs at about 270 msec and the onset after the /1/ occurs at about 330 msec.

The data across all words and all speakers are discussed separately below for prevo-

calic, intervocalic and postvocalic consonants. In each context, we compare the rate of

- - change associated with the semivowels with those associated with the nasals and non-

" .7 sonorant consonants. In addition, we compare the rate of spectral change associated
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Figure 3.31: An illustration of parameters which capture abrupt spectral changes. (a)

U Wide band spectrogram of "correlation.' (b) Channel outputs of an auditory model.

(c) Offset waveform. (d) Onset waveform.
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with 1 's with these associated with the other semivowels.

Prevocalic Consonants

Only onsets are associated with prevocalic consonants since they are not preceded

by vowels. Since the semivowels can be devoiced in this case, we only examined

the onsets between semivowels which were either word-initial or preceded by a voiced

consonant. These data, along with onset values associated with prevocalic nonsonorant

consonants and nasals, are compared in Figure 3.32.

As expected, the average onset values associated with nonsonorant consonants and

nasals, shown in parts a and b, are larger than those associated with the semivowels,

shown in parts c and d. In addition, the average onset value associated with /1/, part

c, is larger than that of the other semivowels, part d. However, as can be seen, there

is a wide spread in the distribution of onset values. It appears as if stress is a major

factor affecting the rate of spectral change between consonants and vowels. That is, the

onset values tend to be large when the consonants precede vowels which are stressed,

and small when the consonants precede vowels which are unstressed. Examples are

shown in Figure 3.33. The onset value between the /1/ and /A/ in "blurt" is 37 dB

(at about 130 msec), whereas the onset value between the /1/ and /jY/ in "linguistics"

is only 5 dB (at about 155 msec). Similarly, small onset values between nasals and

following vowels occur in words such as "misrule" and "misquote." An example of this

phenomenon is also shown in Figure 3.33. In this case, the onset between the /m/ and

/i/ in "misrule" is only 2 dB (at about 110 msec).

Intervocalic Consonants

Since intervocalic consonants are surrounded by vowels, they have associated with

them an offset and an onset. Figure 3.34 shows a comparison of the distribution of

offset and onset values for intervocalic nonsonorant consonants, intervocalic nasals and

intervocalic semivowels. The average and standard deviation of the offset and onset

values appear with each scatter plot.

As in the prevocalic case, the average rate of spectral change associated with the

nonsemivowel consonants, parts a and b, is greater than the average rate of spectral

change associated with the semivowels, parts c and d. In addition, the average onset

and offset values between //'s and surrounding vowels, part c, is greater than the ones

between the other semivowels and adjacent vowels, part d. Again, stress appears to

9 i9
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x " :' r -ff-.-1Ing t:e rate -f spectral change. That is, those I "'s associated

with the higher ouset values -ccur before stressed vowels. Examples are the "

.n "roulette" and "-ahric. Similarly, those /l/'s associated with offset values less

than -1.5 dB also occur before stressed vowels, such as those in the words "poilu" and
'walloon." In addition, some "s with abrupt offsets occur before vowels which have

secondary stress, such as those in "twilight" and "emasculate." Shown in Figure 3.35

is the word "walloon' which has an abrupt offset between the /1/ and the preceding

vowel, and an abrupt onset between the /I/ and the follov ing vowel. A3 can be seen,

* -the offset before the l/ occurs at -190 msec and is -18 dB. The onset after the /I/

occurs at 260 msec and is 22 dB.

As in the case of prevocalic , 1;'s, some intervocalic /1/'s are associated with a

gradual rate of spectral change. Such /I/'s usually occur after stressed vowels and

before unstressed vowels, such as those in the words "swollen" and "horology," or they

r" occur between unstressed vowels, such as the second /I/ in "soliloquize" and the inter-

vocalic '1/ in "calculus." This latter result is not surprising given the data of Section

3.2.4, which show that intervocalic '/1"s in this context may not have significantly less

:id-frequency energy than the surrounding vowels. For comparison, we included in

Figure 3.35 the word "swollen," which has a gradual rate of spectral change between

the I' and surrounding vowels. In this case, the offset is only -7 dB (at about 350

msec) and the onset is only 9.8 dB (at about 410 msec).

Postvocalic Consonants

The bstrii:ti:n cf offset values associated with the postvocaiic consonants are

7" F.g4:re 3.36. As can be seen, the spread of offset values associated with

...............- sv w".s. parts a anl b, is muich wider than the distributions associated with

anI r . parts c and d, respectively. Note that there is not a marked difference
VePtween the latter distributions. This result suggests that, in the case of postvocalic

s the tongue tip may not make contact with the palate. Or, it if does, it's release

........ : - f f the mouth is gradual.

3.2.6 Dip Region Duration

T. 'ata given in Set'-s 3-2 4 arl 3.2.5 show that, when the semivowels occur
,,v i v th ey i *>ally have le>s onergy than both of the surrounding vowels,

. ,i:h th it they have ass',ciatet with them an offset and an onset. The offsets and
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r-.sets ,an be ::nsiered to correspond to the beginning and end of the semivowels.

We shall define the time difference between them to be the duration of the energy dip

region. This correspondence can be seen in the word "correlation" shown in Figure 3.31

where the difference between the time of the offset occurring between the /I/ and the

preceding vowel, and the time of the onset occurring between the /I/ and the following

vowel, is equal to the duration of the intervocalic dip region.

In this part of our acoustic study, we compare the duration of the energy dip

regions when there is either one or two sonorant consonants occurring between vowels.

We have observed that when two sonorant consonants occur between vowels and the

first consonant is a semivowel (in which case it has to be e",her an /1/ or /r/ since

only they can be in postvocalic position), then the offset between the preceding vowel

and the intervocalic sonorant consonant cluster usually occurs after the semivowel,

at the beginning of the following sonorant consonant. This type of energy change is

illustrated with the word "harmonize" shown on the left side of Figure 3.37. This

word contains the intervocalic sonorant consonant cluster /rm/. As can be seen, the

offset occurs after the /r/ at the beginning of the /m/, and the onset occurs at the

boundary between the jm/ and the following vowel. Thus, only the /m/ is included

*in the energy dip region which is 75 msec in duration.

On the other hand, when the first member of an intervocalic sonorant consonant

Ciuster is a nasal, then the energy offset will occur before this sonorant consonant.

This type of energy change is illustrated with the word "unreality" shown on the right

side of Figure 3.37. In this case, the intervocalic sonorant consonant cluster is /nr/.

As can be seen, the offset between the sonorant consonant cluster and the preceding

vowel occurs before the /n/ at about 175 msec, and the onset occurs after the /r/

beff're the f-llowing vowel at about 295 msec. Thus, the energy dip region includes

2 both sonorant consonants and is 120 msec in duration.

Thus, by comparing the time difference between the offsets and onsets surrounding

the intervocalic sonorant consonant clusters, we see that the duration of the energy

dip region is usually much longer when the first member of the cluster is not a liquid,

than when the first member of the cluster is a liquid.

The results of the difference in duration (measured in frames where the frame rate

is .5 msec) between energy dip regions which contain only one intervocalic sonorant

consonant (a semivowel or nasal), an intervocalic sonorant consonant cluster where the

first member is a liquid, and an intervocalic sonorant consonant cluster where the first
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[ :,- :r .n Figure 3.38. As can be seen, the average duration

* -" r . ns :,:;:g nly one sonorant consonant is comparable to the

.ra:-n -f e.y gi rns involving a sonorant consonant preceded by a

T S' : Ps: ts that "he ilquid is not included in the energy dip region.

S..":.p regions involving a sonorant consonant which is

iv :asa. are ar,:ct 12 frames or 60 msec longer than energy dip regions

........ .r. :Iv ne sor ran: :-nsonant, and 10 frames or 50 msec longer than energy

s :.V:.v:ng a s.:n-rant :cnscnant preceded by a liquid. This result suggests

:nat.S !vpe _.f di region ,ontains both sonorant consonants. In fact, many of the

S .after xo.c reg:.:ns with Turations that overlap with the former cases are short because

"he n:asal J :es n-t appear as a separate segment, but is manifested by nasalization

within the vowel.

3.3 Discussion

This accustic study is an evaluation of two factors. First, it is an assessment of

the effectiveness of the selected parameters and measures used in capturing the desired

4ara,,cstic properties. Cleariy, in some cases, better attributes and more precise measures

'an ye develcped. For example, the grouping of some /k/"s, which have low-frequency

bursts with nasals and semivowels on the basis of the properties used to extract the

features voiced and sonorant (see Section 3.2.3) is undesirable. Second, this study is

-in analysis of how humans produce speech. For example, the inclusion of some voiced

fr:_atives and stops with voiced and sonorant consonants appears to be reasonable.

The z1i show that when these consonants occur between sonorant segments, there

:an "e n:s;icrable feature assimilation, such that they look sonorant as well.

In addition, the results seem to suggest that some features are distinctive while

others are redundant. For example, the data in Tables 3.6 -3.8 (see pages 64 and 65

show that /r/ almost always has a lower F3 value than that of the adjacent segment(s).

In the .ase s where this is not true, the vowel is r-colored with an F3 frequency at or

he el1,-,w 2000 Hz. Thus, it appears that the feature retroflex is always present, although

its acoustic correlate, due to feature assimilation, may have varying degrees of strength.

On the other hand, the data of Section 3.2.4 show that 14% of the inter-vocalic r

segments are not significantly weaker than the surrounding vow.-ls. That is, the /r/

does not always appear to be nonsyllabic. One interpretation of these results is that
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:Dr r the feature ret rofiez is distinctive, but the feature nonsyllabtc is redundant.

40 alThe data provide further support for the theory of redundancy in speech (Stevens et

al., 1986). While each of the properties investigated provides some separation between

the desired sounds, there remains some overlap. No one property always provides

a clear distinction. Instead, some discriminations require the integration of several

acoustic cues. For example, the data in Figures 3.3, 3.4 and 3.5 show that there is

some overlap between the /r//'s and other sernivowels on the basis of F3-FO. That is,
because of feature assimilation effects, F3 may not always be at a low enough frequency

such that on the basis of it alone, we can determine that the segment is an /r/. In

0 such cases, additional cues, such as the direction and extent of the transition of F3

between the /r/ and the adjacent sound(s) and the spacing between F3 and F2 within

the /r/ segment, may be needed before the /r/ can be correctly identified. Though

there are presently no features for which these additional cues are acoustic correlates,

they do appear to be needed for recognition of /r/.

Several general tendencies have been observed in the data. First, an F2 minimum

always occurs in a /w/ segment. This acoustic event enhances the detection of the

feature back. Second, an F2 maximum always occurs in a /y/ segment. This acoustic

event enhances the detection of the feature front. Similar tendencies occur for /I/

and / r/. That is, an F2 minimum and/or F3 maximum usually occurs in an /I/

segment and an F3 minimum usually occurs in an /r/ segment. However, due to

feature assimilation, there are noteworthy exceptions.

In the case of /r/, an F3 minimum almost always occurs within its hand-transcribed

region. However, as was discussed in Section 3.2.2, there are several exceptions to this

pattern. The exceptions involve words like "cartwheel" and "harlequin," where the

,/r/ is followed by another consonant. In these cases, either an F3 minimum occurs

in the vowel or F3 stays relatively constant at a low frequency throughout what can

be called the vowel and /r/ region. That is, acoustically, the vowel and /r/ appear

to be completely assimilated such that the resulting segment is an r-colored vowel.

For example, consider the first sonorant regions in the four repetitions of the words
"cartwheel" shown in Figure 3.39. As can be seen, F3 remains fairly constant at or

slightly below 2000 Hz in each case. No discernible acoustic cue points to two separate

a/ and //'r/ segments.

These acoustic data provide evidence for the syllable structure as explained by

Selkirk (1982, and others therein). This syllable structure is shown in Figure 3.40,
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0

syllable

-~onset rhyme

peak coda

Figure 3.40: Tree structure for syllable.

* where the onset consists of any syllable-initial consonant sequence, the peak consists

of either a vowel or vowel and sonorant, and the coda consists of any syllable-final
consonant sequence. Selkirk states that when a postvocalic liquid is followed by a

consonant which must occupy the syllable-final position, the liquid will be part of the
peak. Based on this theory, the structure for the first syllable in "cartwheel" is as

shown in Figure 3.41. Thus, this theory accounts in a natural way for some overlap in

the features of the vowel and liquid.

When postvocalic liquids are not followed by a consonant which must be syllable-

final, Selkirk states that they tend to be consonantal though they have the option of

being part of the peak or the coda. In the case of /r/, the acoustic data suggest that

both situations occur. Compare the spectrograms of the words "harlequin," "carwash"

- and "Norwegian" shown in Figure 3.42. In the cases shown in the first row, the vowel

and /r/ appear to be one segment in the sense that retrofiexion extends over the entire

vowel duration. Thus, it appears as if they are both a part of the syllable peak. On

the other hand, in the cases shown in the second row, the vowels do not appear to be

retroflexed. Instead, there is a clear downward movement in F3 which separates the
vowel and /r/. Thus, in these cases, the /r/ is probably in the coda.
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syllable

onset rhyme

k

peak coda

a r t

Figure 3.41: Tree structure for first syllable in "cartwheel."

Although a more extensive study is needed before any conclusive statements can

be made regarding this phenomenon, it appears from these data that there should be

no exception clause in the phonotactic constraints of semivowels for words like "snarl,"

where the /1/ is supposedly separated from the vowel by the /r/. Instead, it appears

that the semivowels always occur adjacent to vowels, even in words like "snarl." In

cases such as this, the vowel and /r/ probably both make up the syllable nucleus.

Spectrograms of the word "snarl" spoken by each speaker are shown in Figure 3.43.

Even though they are not transcribed as such, the two occurrences of "snarl," shown in

the top row, were pronounced as /snarol/ with an intervocalic /r/. Consequently, there

: '-.- is a significant dip in F3. A /o/ was not inserted between the /r/ and /1/ in the first

occurrence on the bottom row. In this case, F3 remains constant at a low frequency,

such that the vowel and /r/ appear to be completely assimilated. Finally, it is not

clear whether the last occurrence was pronouned as /snarl/ or /snarol/. Regardless

of how it was pronounced, a steady F3 frequency at about 2100 Hz can be traced

4., throughout most of the vocalic region.

Further support for this type of feature assimilation was given in Section 3.2.6,

where the data show that postvocalic liquids that are in an intervocalic sonorant

113
O.



---- ,, . '-V.:.

VI

* 6;, .
. . .. .. . - . .. ... .. .. . ..

,-q" -; -- --

I b

-" 2

-',:.-*

6!

-" igur 3.2: Wde and pectogrms o th wors hrleuin, "crwss" ad Nr

,.- wegian, each spoken~~~~~~~~ by-- twI ifrn paes nehwr ntetprw h

-. r n rcdn voe appar to bemre9nooesget nec odih

. botom rw, th/r/an precding owel ppearto b seaa segmnts

-.-

a .
ql,,"

• ,." ' . "% %." ,, . - . . '... ' - - -, .. '." .- -." . -."." -'- "' - . " - --- - - --•• dl' ' " "



1 0s ialnl a Ir ] o jOnI a r

0.0 0.1 OS3 0.3 0.4 0.6 0.6 0.7 0.0 o.3 0.2 0.3 0.4 0.8

n a Ini a V,

kiRS

0.0 0.1 05 0.3 0.4 0.4 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.6 0.6

Figure 3.43: Wide band spectrogramns of the word "snarl" spoken by each speaker.

The /1/ is either adjacent to a /a/ which has been inserted between the /r/ and /1/,

or it is adjacent to a retroflexed vowel.
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: ascnant cluster are not part of the energy dip region. Therefore, on the basis of

significant energy change, they do not appear to be nonsyllabic. Although this result

40 would seem to suggest that all such postvocalic liquids are part of the syllable nucleus,

we feel that in some cases there may be other cues which signal their consonantal

status. A case in point are the significant F3 dips occurring within the /r/'s in the

second row of words in Figure 3.42. It appears as if this acoustic event is used to

* separate the /r/ from the vowel.

This point brings us to our final discussion of the semivowel /1/. The data in

Tables 3.6 - 3.8 show that an F2 minimum usually occurs within an /I/ segment.

Furthermore, the data show that an F3 maximum also occurs within many of the /I/

*segments, particularly in the postvocalic allophones. However, much of the discussion

for /r/ applies for /I/ as well. That is, it appears as if postvocalic, but not word-final,

/I/'s will sometimes be part of the syllable nucleus and sometimes part of the coda. In

words like "bulrush," "walnut" and "almost," a clear /1/ is not always heard. Many

U " :times, no discernible acoustic cue separates the /1/ from the preceding vowel. A case

in point is the underlying /l/ in the word "almost' shown at the top of Figure 3.44.

As can be seen, an /1/ was not included in the transcription of this word. However,

in some repetitions of these words, there is a significant rise in F3 before the energy

dip region. This acoustic event could be the cue which signals a separate /1/ segment.

-. An example of this phenomenon is shown at the bottom of Figure 3.44, where a

spectrogram of the word "stalwart" is given. As can be seen, F3 rises about 200 Hz

. between the beginning of the /a/ and the end of the /1/.
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Chapter 4

Recognition System

This chapter describes the recognition system in detail. The recognition process

consists of four stages. First, the features needed to recognize the semivowels are

specified. Second, these features are mapped into properties which are quantified.

Third, algorithms are applied to automatically extract the properties. Finally, the

properties are combined for recognition. Each stage is discussed in detail below.

4.1 Feature Specification

To recognize the semivowels, features are needed for separating the semivowels as

a class from other sounds and for distinguishing among the semivowels. Shown in

* Tables 4.1 and 4.2 are the features needed to make these classifications. The features

listed are modifications of those proposed by Jakobson, Fant and Halle (1952) and

by Chomsky and Halle (1968). In the tables, a "+" means that the speech sound(s)

indicated has the designated feature and a "-" means the speech sound(s) does not

have the designated feature. If there is no entry, then the feature is not distinctive.

For example, the data of Section 3.2.2 show that /I/ (except when it is postvocalic)

and /r/ do not, in general, have as low an F2 frequency as /w/. In fact, Figure 3.2

shows that the difference between F2 and F1 of these -emivowels can be as high as

1300 Hz. For this reason, the feature back in Table 4.2 is left unspecified for /r/ and

prevocalic /'il/'s.

This raises the question of why, in Table 4.2, we divided /1/ on the basis of whether

it is prevocalic or postvocalic. This was done because of two distinct acoustic differ-

ences we observed between these allophones. As has been mentioned before, postvo-
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Table 4.1: Features which characterize various classes of consonants

voiced sonorant nonsyllabic nasal
voiced fricatives, stops, affricates + -+ _

unvoiced fric at ives,s tops, affric ates -- +-
semivowels + + +-
nasals + + + +

~vowels I + I-

Table 4.2: Features for discriminating among the semnivowels

____________stop high ]back front labial retroflex

/w/ - + + - +-

- + - + --

prevocalic /1/ + -- --

postvocalic /1/ - +

119

-.- W



's generally have a closer spacing between F2 and Fl (average difference of 433

Hz) than prevocalic /11's (average difference of 693 Hz). In fact, the former difference

0 is comparable to the average values obtained for prevocalic and intervocalic /w/ 's (388

Hz and 422 Hz, respectively). For this reason, postvocalic /1/'s are considered to be

back. In addition, the data of Section 3.2.5 show that the rate of spectral change (a

first difference computed with a frame rate of 5 msec) is generally higher between

prevocalic III's and following vowels (13 dB) than between postvocalic /l/'s and pre-pre
ceding vowels (5.5 dB). This difference is even more pronounced when the adjacent

vowels are stressed. In this case, abrupt spectral changes as high as 37 dB were ob-

served between prevocalic I'l/'s and following vowels. As stated earlier, this stop-like
qW characteristic of /I/'s in this context is probably due to the rapid release of the tongue

tip from the roof of the mouth in the production of this noncontinuant sound. In the

case of postvocalic /I/'s, the tongue tip may never make contact with the roof of the

mouth and, if it does, it's release is usually more gradual.

Unfortunately, since the transcriptions of the words do not include stress markers,

we are unable to divide the intervocalic /I/'s into those which tend to be syllable-initial

and those which tend to be syllable-final. However, we suspect, on the basis of the

data presented in Section 3.2.5, that the intervocalic /I/'s which are syllable-initial

tend to have abrupt offsets and abrupt onsets. Thus, in this sense, they resemble the

prevocalic /I/'s. On the other hand, /I/'s which are syllable-final tend to have gradual

offsets and gradual onsets. In this respect, they resemble the postvocalic /I/'s. Thus,

the intervocalic /II's are assumed to be covered acoustically by the prevocalic and

postvocalic /I/ allophones.

The feature specifications given in Tables 4.1 and 4.2 are based on canonic acoustic

representations of the different speech sounds. However, as was shown in Chapter 3,

the overlapping of features between adjacent phonetic segments can alter significantly

their acoustic manifestation. As a result, the class and phonetic distinctions given

in the tables cannot always be clearly made. For example, the results of Section

3.2.3 show that, in addition to the semivowels and nasals, other intersonorant voiced

consonants sometimes exhibit the property of sonoraacy.

lI
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Table 4.3: Mapping of Features into Acoustic Properties

, Feature Acoustic Correlate Parameter Property

Voiced Low Frequency Periodicity Energy 200-700 Hz High'Comprabl Low& Hih (-300)

Sonorant Comparable Low & High gy Ratio (30o-700 High

"-" iFrequency Energy

Nonsyllabic Dip in Energy Energy 640-2800 Hz Low*

Energy 2000-3000 Hz Low*

Stop Abrupt Spectral Change Onset Waveform" High

Offset Waveform" High

High Low F1 Frequency F1 - FO Low

Back Low F2 Frequency F2 - F1 Low

Front High F2 Frequency F2 - Fl High

Labial Downward Transitions for F3 - FO Low*

o F2 and F3 F2 - FO Low*

Retroflex Low F3 Frequency & F3 - FO Low

-. ____Close F2 and F3 F3 - F2 Low

R"Helatip to a maximum value within the utterance.
'Fur a definition of these l-arametern, see Section 3.2.5.

4.2 Acoustic Correlates of Features

This section is divided into two parts. First, we will discuss the mapping of the

featu-res specified in Section 4.1 into measurable acoustic properties. This will be

followed by a discussion of how the acoustic properties were quantified.

4.2.1 Mapping of Features into Acoustic Properties

Table 4.3 contains acoustic correlates of the features specified in Tables 4.1 and

4.2, the mapping of these features into properties which can be quantified and the

parameters from which the properties are extracted. Note that there is no parameter

from whiz h we extract the acoustic correlate of the feature nasal. Thus, on the ba-

sis of Table 4.1, we expect the system to make some confusions between nasals and

semivowels since they are both sonorant consonants.

The effectiveness of these properties in capturing the designated features was
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iemonstrated in Chapter 3. Recall that the properties extracted from these parame-
ters are based on relative measures which tend to make them insensitive to interspeaker

- and intraspeaker differences. The properties are of two types. First, there are proper-

ties which examine an attribute in one speech frame relative to another speech frame.

For example, the property used to capture the nonsyllabsc feature looks for a drop

in either of two mid-frequency energies with respect to surrounding energy maxima.

Second, there are properties which, within a given speech frame, examine one part of

the spectrum in relation to another. For example, the property used to capture the

features front and back measures the difference between F2 anci Fl. Some properties,

such as the one which extracts the feature sonorant, keep nearly the same strength

over intervals of time and, therefore, define regions within the speech signal. Other

properties, such as that used to capture the feature nonsyllabic, are highlighted by

maximum values of strength and, therefore, are associated with particular instants of

time.

Based on our present knowledge of acoustic phonetics, some parameters, and there-

fore some properties, are more easily computed than others. For example, the different

energy measures involve straightforward computations so that the energy-based prop-

p erties are easily extracted. On the other hand, computation of the formant tracks is

often complicated by nasalization and peak merging effects (see Section 2.2.3). Thus,

the extraction of formant-based properties is not as reliable. Likewise, we have ob-

served that the pitch tracks (Gold and Rabiner, 1969) are error prone at the beginning

4 of voiced regions. For several frames in the beginning of a voiced region, the pitch fre-

quency is sometimes registered as being several octaves higher than the average value

within the utterance, or it is sometimes zero due to a considerable delay between the

"nset of voicing and the detection of periodicity by the pitch tracker. For this reason,

the detection of voiced regions was based mainly on low frequency energy. However,

pitch information was used to refine initial estimates.

4.2.2 Quantification of Properties

To quantify the properties, we used a framework motivated by fuzzy set theory

(DeMori, 1983) which assigns a value in the range [0,I]. A value of 1 means we

are confident that the property is present. Conversely, a value of 0 means we are

:onfident that the acoustic property is absent. '"alues in between these extremes

represent a fuzzy area with the value indicating our level of certainty that the property
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;s present, absent.

As an example of how this framework is applied, consider the quantification of

the acoustic property used to extract the feature non.syllabic. As discussed in Section

3.2.4, the acoustic correlate of this feature is significantly less energy in the consonant

regions than in the vowel regions. In an attempt to define this property of "less energy"

more precisely, we selected the bandlimited energies 640 Hz to 2800 Hz and 2000 Hz

to 3000 Hz and examined their effectiveness in identifying the presence of inter-vocalic

semivowels. Scatter plots comparing the range of values of the energy dips for vowels

and intervocalic consonants are shown in Figure 3.22. Recall that less than 1% of the

vowels contain an energy dip. Furthermore, these energy dips tend to be less than 2

dB.

Based on these data, this property was quantified into the regions shown in Fig-

ure 4.1. An energy dip of 2 dB or more definitely indicates a nonsyllabic segment. If

an energy dip between 1 dB and 2 dB is measured, we are uncertain as to whether a

nonsyllabic segment is present or not. Finally, energy dips of less than 1 dB are not

indicative of a nonsyllabic segment.

Not all of the properties have a defined "maybe" region. Instead, "fuzziness" is

expressed in slanted tails as opposed to abrupt cutoffs which would result in quanti-

zation. For example, consider the quantification of the property used to capture the

features back and front. This property measures the difference between the first and

second formants. Shown in part a of Figure 4.2 are overlays of smoothed distributions

* of F2-F1 for each of the semivowels. Based on this plot, we quantified this property

into the four regions shown in Figure 4.2 b: very back, back, mid and front. Thus, a

sound with an F2-F1 difference less than 300 Hz will be classified as very back with a

confidtence of 1, whereas a sound with an F2-F1 difference of 1500 Hz or more will be

classified as front with a confidence of 1. On the other hand, a sound with an F2-FI

"ifference of 1450 Hz will be classified as front and mid with a confidence of 0.5

A listing of the qualitative descriptions given to the regions of the quantified prop-

erties is given in Table 4.4. As can be seen from this table, the number of regions

within the quantified properties is variable. This number was based on the data as

well as the type of discriminations needed to distinguish between the semivowels.
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syllabic maybe syllabic nonsyllabic

1
0

1 2
Breakpoints (dB)

Figure 4.1: Quantification of the acoustic correlate of the feature nonsyllabic.

Table 4.4: Qualitative Description of Quantified Properties

Feature Quantified Regions

Nonsyliabic syllabic, maybe syllabic, nonsyllabic

Stop gradual, abrupt, very abrupt onsets/offsets

High(Low) high, maybe high, nonhigh, low, very low

Back(Front) very back, back, mid, front

Retroflex retroflex, maybe retroflex, not retroflex

__________close f2 f3, maybe close f2 M3, not close f2 M3
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Figure 4.2: Quantification of the acoustic correlates of the features back and front.
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4.3 Control Strategy

* The recognition strategy for the semivowels is divided into two steps: detection
and classification. The detection process marks certain acoustic events in the vicinity

-f ':,es where there is a potential influence of a semivowel. In particular, we look

for minima in the mid-frequency energies and we look for minima and maxima in the
:racks of F2 and F3. Such events should correspond to some of the features listed in

Tables 4.1 and 4.2. For example, an F2 minimum indicates a sound which is more

"back" than an adjacent segment(s). Thus, this acoustic event will occur within most

w 's and within some /II's and /r/'s. Note that acoustic events occurring within other

sounds may be marked as well. For example, in addition to the semivowels, nasals and
:.ther consonants will usually contain an energy dip. Once all acoustic events have

been marked, the classification process integrates them, extracts the needed acoustic

.rcperties, and through explicit semivowel rules decides whether the detected sound

.3s a semivowel and, if so, which semivowel it is. At this time, by combining all the

7elevant accustic cues, the semivowels should be correctly recognized while the re-

ma:nIg detected ,ounds should be left unclassified. A more detailed description of
'he recDgnition stages is given in this section.

4.3.1 Detection

The aim of this part of the recognition process is to mark all regions within an

it.er,3.nce where semivowels occur. To do this we use phonotactic constraints which

res:ct where the semivowels can occur within an utterance and, more specifically,

:- a v-iced sonorant region. These constraints state that semivowels almost always
S:: ~ a.en o a vowel (with the exception of /rl/ clusters in words like "snarl").

Th:eef:re, they are usually prevocalic, intervocalic or postvocalic. While all of the

-,,:/ owels can occur in prevocalic and intervocalic positions, only the liquids /I/ and

r, can ,ccur in postvocalic positions.

These contexts map into three types of places within a voiced sonorant region. This
s. ilstrated in Figure 4.3. First the sernivowels can be at the beginning of

v i:ed s, norant region. Semivowels of this type are prevocalic and they may be
N rd-,r,;t:, ,r In a cluster with a nonsonorant consonant(s). Second, the semivowels

1111e at the end of a voiced sonorant region. Semivowels of this type are postvocalic

ii i thev may he word-final or in a cluster with a nonsonorant consonant(s). Finally,
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% voiced sonoraM region

t t t
librold lhwuul

lnleuvomllc CuleUIr

quqLM carwash

snadl
banin

Figure 4.3: Places within a voiced sonorant region where semivowels occur.

the semivowels may be further inside a voiced sonorant region. We refer to these

semivowels as intersonorant and one or more may be present. Semivowels of this type

can be either intervocalic or in a cluster with another sonorant consonant such as the

/y/ in "banyan" and the /r/ in "snarl." Note that all of the semivowels can be the

second member of an intervocalic sonorant consonant cluster since all of them can

be prevocalic. However, as stated earlier, only the seniivowels /I/ and /r/ can be

postvocalic. Thus, of the semivowels, only /I/ and /r/ can be the first member of an

intervocalic sonorant consonant cluster.

The detection strategy begins by finding all regions within an utterance which

are voiced and sonorant. Next, as stated earlier, anchor points are placed within the

voiced sonorant regions on the basis of significant energy change and significant formant

movement. That is, dip detection is performed within the time functions representing

the mid-frequency energies to locate all nonsyllabic sounds. Dip detection and peak

detection are performed on the tracks of F2 and F3 to extract some of the formant

based properties possessed by one or more of the semivowels. The F2 dip detection

algorithm marks sounds which are more "back" than adjacent segments. Thus, as the

data of Section 3.2.2 show, the detection of this type of formant movement shoul(

find most /w/'s as well as many /1/'s and /r/'s. The F2 peak detection algorithm

marks sounds which are more "front" than adjacent sounds. Thus, this algorithm

should locate most of the /y/ glides. Most of the retroflexed /r/ and some labial

/w/ sounds should be found from dip detection of F3. Finally, the F3 peak detection
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algorithm should locate many of the nonlabial and nonretroflexed sernivowels /I/ and

y/ since they usually have an F3 frequency greater than or equal to that of adjacent

sounds. In addition, as the data of Section 3.2.2 show, /w/'s which are in a retroflexed

environment may be detected in this way.

The results of the acoustic study of Chapter 3 are embedded in the different detec-

tion algorithms in other ways as well. Before marking a maximum or minimum in the

energy and formant parameters, the amount of change is taken into consideration. In

addition, for the formant dips and peaks, the frequency at which they occur must fall

within an expected range of values. Thus, not all maxima and minima within these

parameters are marked by the algorithms.

While the principle is the same, different detection algorithms were developed to

find the sonorant-initial, sonorant-final and intersonorant semivowels. The results of

some algorithms are used in other algorithms such that the detection of the semivowels

follows a hierarchy. Because they can be detected most reliably, the intersonorant

a :semivowels are detected first. The resulting anchor points are then used to detect

the sonorant-final semivowels. Finally, the results from both the intersonorant and

sonorant-final detection schemes are used to detect the sonorant-initial semivowels.

" ~.Discussion of these different algorithms will follow this hierarchy.

Intersonorant Semivowels

A recursive dip detection algorithm (Mermelstein, 1975) was implemented to find

* ~Miinima in the mid-frequency energies and in the tracks of F2 and F3. Peak detection

within the F2 and F3 waveforms is also performed by the d:p detection algorithm

by inverting the formant tracks. This algorithm marks minima which are surrounded

by maxima. An example is shown in Figure 4.4. Since the intersonorant semivowels

usually occur between vowels so that there are either V-C-V transitions or V-C-C-V

transitions, one or more of the parameters will have this type of waveform shape with

point B occurring within the semivowel, and points A and C occurring within the

adjacent vowels. As indicated in Figure 4.4, the strength or depth of the dip is also

computed. This value, which is labeled d, is the difference between the parameter

value at point B and the smaller of the parameter values at the surrounding local

maxima occurring at points A and C. The strength of the dips is used later in the

integration of the dips for classification (see Section 4.3.2).

Some results obtained by using this algorithm are shown in Figure 4.5 which con-
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,.'. .Figure 4.4: Illustration of intersonorant dip detection algorithm.

tains several displays relating to the word "willowy.* The detected voiced sonorant

., : region can be inferred from part a, which contains formant tracks that are computed

--. :

,-.'...only within this region. As can be seen from part c, the times of both of the F2 minima

• ?..?occurring within the intervocalic /I/ and /w/ segments re marked. The strengths of
~these dips are represented by the height of the spikes. Thus, while both semnivowels

have a dip in F2, the depth of the dip occurring within the /w/ segment is stronger

than the depth of the dip occurring within the /I/ segment.
"-"" "FAlthough most sonorant-initial and sonorant-final semivowels are not detected by

tais salgorih dsome relati event wodhil Th detmayece voied sotorant
considerable movement in a parameter due to an adjacent nonsonorant consonant.
An example of this phenomenon is shown in Figure 4.6 where the result of the F2

dip detection algoriehrepresen th h he word dwell." In this case, due to the for-

hiant transitions between the /d/ and /w/, the prevocalic /w/ was detected by an

"-"- intersonorant F2 dip.
tOn the basis of the anchor points placed by the energy dip detection algorithm, the

locations of vowels are easily computed. Syllabic nuclei are determined by computing

the time of m ximum energy between the series of acoustic events including the be-

ginning of the voiced sonorant region, the sequence of energy dips and the end of the

voiced sonorant region. Both of these types of ev,"ts within "willowy" are shown in

parts d and e of Figure 4.5, respectively. Since bosh energy dips occurring within the

intervocalic semivowels /1/ and /w/ are detected, the energy pe-ks occurring within
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Figure 4.5: Results of Intersonorant dip detection in 'willowy." (a) Wide-band spec-

trogram with formant tracks overlaid. (b) Phonetic transcription. (c) Location and

depth of F2 dips. (d) Location of energy peaks (e) Location and confidence of energy
-.- dips.

I13

o.

S.



-". Is

ilii

A6

.4)w.- (s )

Figure 4.6: Result of Intersonorant F2 dip detection in "dwell." (a) Wide-band spec-

trogram with formant tracks overlaid. (b) Phonetic transcription. (c) Location and

depth of F2 dip.

the vowels are also located. As is discussed below, the time of the energy maxima are
used in both the sonorant-initial and sonorant-final semivowel detection algorithms.

Sonorant-Final Liquids

Of the semivowels, only the liquids /1/ and /r/ occur in postvocalic and, therefore

sonorant-final positions. Thus, the F2 peak detection algorithm used to locate the /y/

Sglide is not used in this detection scheme.

The data of Section 3.2.2 show the type of formant movement indicative of a

sonorant-final /I/ and /r/. If an /I/ is at the end of a voiced sonorant region, there

is usually significant downward movement in F2 and/or significant upward movement

in F3 from the preceding vowel into the /I/. In the case of a sonorant-final /r/,

there is usually significant downward movement in F3 from the preceding vowel and

possibly downward movement in F2 if the vowel is "front." As in the previous section,

sonorant-final peak detection of F3 is performed by inverting the track of F3 and doing

dip detection. Thus, the detection algorithm marks minima in waveforms whose shape

at the end of voiced sonorant regions resembles the one shown in Figure 4.7. Points
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Figure 4.7: Illustration of sonorant-final dip detection algorithm.

A and B correspond to the times of the maximum and minimum formant or energy

values within the vowel and following semivowel segments, respectively. The strength

of the dip labeled d is simply the difference between the values occurring at these

times.

* To determine points A and B in a parameter, we need to monitor the movement of

the waveform throughout the vowel and semivowel regions. Recall that energy maxima

are computed once all the intersonorant energy dips are computed. Thus, the time

of the last energy maximum within the voiced sonorant region corresponds to point

A when the waveform is one of the mid-frequency energies. To determine point A

in the formant tracks, we estimate the beginning and end of the vowel within which

the last energy maximum occurs and compute the maximum formant value occurring

between these times. The onset and offset waveforms are used for this purpose. More

specifically, the vowel onset is taken to be the time at which there is the greatest

rate of change in energy between the sound preceding the vowel and the energy peak

occurring within the vowel. If an intersonorant energy dip indicating an intersonorant

sonorant consonant precedes the energy peak within the vowel, then the beginning

of the vowel is taken to be the time of the onset occurring between these events.

However, if no intersonorant energy dip precedes the energy peak, then the beginning

of the vowel is taken to be the time of the onset occurring between the beginning of

the detected voiced sonorant region and the time of the energy peak. In cases where

the vowel occurring before the sonorant-final liquid is preceded by a sonorant-initial
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Semivowel or nasal which has not as yet been detected (recall that sonorant-initial

ip detection is performed after sonorant-final dip detection), the vowel onset may be
4incorrectly estimated since the onset of the sonorant-initial consonant may be greater

than the onset of the vowel. However, we have not found this to be a problem in the

deterrmination of point A and, therefore, in the detection of the sonorant-final liquids.
Similar to the vowel onset, the vowel offset is taken to be the time of the greatest

rate of change in the offset waveform between the last energy maximum and the time

occurring 10 msec before the end of the voiced sonorant region. The time of the vowel

offset is also used to determine point B which is the time between this event and 10

insec before the end of the voiced sonorant region at which the minimum formant or

energy value occurs.

Results obtained with this algorithm are shown in Figure 4.8 which contains several

displays pertaining to the word "yell." As can be seen in parts d and e, estimates of the

vowel onset and offset, which occur at 154 msec and 256 msec, respectively, appear to

_ be reasonable. Thus, the movement of F2 and F3 between the /c/ and following /1/ is

detected. Both an F2 minimum and F3 maximum shown in parts f and g, respectively,

are found within the /1/.

Sonorant-Initial Semivowels

The strategy used to detect sonorant-initial semivowels is based on a comparison

between the beginning of a voiced sonorant region and the first vowel region. From

the data presented in Chapter 3, we have made several observations. First, many
-..' word-initial semivowels have significantly less energy than the following vowel. Sec-

ond, between a prevocalic /w/, /1/ or /r/ and the following vowel, F2 usually rises

significantly. Third, between a prevocalic /r/ and the following vowel, F3 usually rises

significantly from a value normally below 2000 Hz. Finally, following a prevocalic /y/,

F2 and F3 fall gradually from a fronted position.

As before, peak detection in F2 and F3 is done by inverting the tracks and doing

dip detection. Thus, if a semivowel is present, we expect one or more of the energy and

formant parameters to have a waveform shape a' the beginning of the detected voiced

sonorant region which is similar to that shown in Figure 4.9. Point A is the time of the

maximum parameter value within the first vowel in the voiced sonorant region. When

the parameter is one of the bandlimited energies, this point will correspond to the first

energy peak placed by the vowel detection program discussed above. As in the case
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Figure 4.9: Illustration of the sonorant-initial dip detection algorithm.

of the detection of sonorant-final semivowels, when a formant track is the parameter,

its movement throughout the first vowel must be monitored to determine point A.

. Again, the offset waveform is used to determine the end of the first vowel region which

is taken to be the time of the offset occurring between the first energy peak and the

following boundary. This boundary may be either an intersonorant energy dip, an

acoustic event marked by one of the sonorant-final dip detection algorithms or, if none

- of these exists, the end of the voiced sonorant region.

-- Point B is the time 10 msec into the voiced sonorant region. Thus, if the difference

d between the parameter values at points A and B s significant, point B is marked by

a spike with a height of d.

Results obtained with this algorithm are shown in Figure 4.10 where several dis-

plays relating to the word "yell" are presented. As can be seen in parts d, e and f, F2

and F3 maxima and an energy minimum are marked in the sonorant-initial /y/.

4.3.2 Classification

Based on the type of acoustic events marked within the region of the detected

sound(s), the classification step does two things. First, it extracts all of the acous-

tic properties from a region surrounding an anchor point selected from amongst the

acoustic events. This process involves the computation of average FI, F2 and F3 fre-

quencies which are based on the formant values at the time of the anchor point and
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Figure 4. 10: Results of sonoran t- initial dip detection in "yell." (a) Wide-band spectro-

gram with formant tracks overlaid. (b) Phonetic transcription. (c) Location of energy

peak. (d) Location and depth of F2 peak. (e) Location and depth of F3 peak. (f)

Location and depth of energy dip.
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:ne va 'ies ccurrng :n tne previous and following frarn.es. In addition, F0 is computed

by averaging together "reasonable' estimates occurring throughout the utterance (as

mentioned in Chapter 3). From these values, the formant-based properties listed in

Table 4.2 are computed and quantified. The anchor point is also used to extract the
acoustic correlate of the feature stop which characterizes the rate of spectral change

between the detected sound and surrounding segments. In particular, if the anchor

point is preceded by an energy maximum (which should occur within the preceding
vowel), the offset between these events is extracted and quantified. Similarly, if the

anchor point is followed by an energy maximum (which should occur in the following

vowel), the onset between these events is extracted and quantified. With the quanti-

Sfed properties determined, the second step in this recognition process decides which

semivowel rules should be invoked.

The implementation of these steps differs somewhat depending upon whether a

detected sound is thought to be sonorant-initial, intersonorant or sonorant-final. Thus,

we discuss separately below the classification strategies for these contexts. Finally, we

end this section with a discussion of the semivowel rules.

Sonorant-Initial Classification Strategy

A flow chart of the strategy used to classify sounds detected by one or more

scorant-initial dips is shown in Figure 4.11. Basically, the algorithm starts by trying

.* to deter'ine what, if any, acoustic events have been marked between the beginning of

the e*e'ed scnorant region and the first energy peak which should occur within the

":st v-wd. As implied in the flow chart, the determinati,-n .f what acoustic events

:. ye -a.ke follows a hierarchy. This is so because srme events, more so than

_- w he choice(s) of semivowels. For example. F2 peak is marked,

.. .. .. .o es, we will only investigate the possib., r' f the sound being a

Thus, branch 3 is implemented s:o that the F2 peak is sed as the anchor point

17-d .nly the rule is applied.

On the -ther hand, if an F2 dip is marked, then the detected sound could be a
In this case, branch I is implemented. To further narrow the choices,

":" ai,:- :'.:.5s t: see what -thor events, if any, have been ietected. Fr example,

in 2 1:p an F3 peak is marked, then the F2 ip is the anchor point
S ..:tv -ked. Instead, the I rule is aipp ,ed and, as ndicated by

**,- r 't ni. -lrr7W. e w and w- rles may also bre appiied Recall that the
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'.-a:. rs. Recall that the data of Section 3.2.6 show that the

na time t-etw,n the :ffset and onset surrounding an intersonorant energy
- .s , s:3,ily much -7r.;er when two sonorant consonants are present and the first

S'.s a na.sai than wnen ether cne sonorant consonant is present or two sonorant

r v• 1: I the nrsc- ne s either /r/ or 1/ (recall that ,. w, nd ,r i

..-: r If -in .nterionoralt cluster). Thus, to differentiate between

,s -i P ,.e etermine if there is either one sonorant consonant or

w' '"-v i, rs fant :onsonant, the algorithm looks to see if an F3 dip

S v. x:,.:xr in F3 Feak ,-r F2 dip (indicating an /) occurs between

• , :x.na. -it either before or just after the offset. Examples

iP "i-., 'rt" f', w~tnn the wrds 'harmonize" and "stalwart" are shown in

- 1 .R in -' n, n,, ,i'e m, In the /rr/ cluster of "harmonize' ,-irs

- •.b .. . :.et t 274 ,msec and 334 mec, respectively. The presence of

:':" A4, .. -ng F3 I;p shown in part f which occurs just before the

'- - . . .- e , the 1w' cluster in "stalwart" is indicated

*w. - .:.,- . re tne rfset at 352 rnsec.

- . ...... .'~.,.v; ne : nsonant is present in the dip region,

.* . 2 .itr : ,wn in * .. e 4 14 is implemente'i This
: ' ", -, , * ': s~fies sour. . etected by s,:norilnt-initial

. ,' "-'etrmnat -I A acoust,: events Ices not

... .' L. A~: ""'2 -..., r f, :iant lips peaks over energy

,:., tr-ngest a(:, 1ti,: event re -all that he
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Figure 4.13: Pattern of events expected when /r/ or /I/ are postvocalic and in an

itersoriorant cluster. (a) Wide band spectrograms of the words "harmonize" and

;talwart" with f,)rrnant tracks overlaid and phonetic transcriptions on top. (b) Loca-

tio-n of energy peaks. (c) Location and confidence of energy dips. (d) Onset waveformi.

e) Offset waveform. (f) Location and depth of F3 dip in "harmonize" arid F3 peak in
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not a semivowel and that the second consonant is either a nasal or semivowel. Thus,

we only want to classify the second consonant. To try to guarantee that only the

second consonant in the cluster is classified, the algorithm selects the last acoustic

event occurring in the energy dip region. This is the question which is being asked in

Path 2. For example, if the last acoustic event is an F3 peak, then the /y/ and /I/

rules are applied.

Sonorant-Final Classification Strategy

The classification strategy for acoustic events occurring in a sonorant-final region

*Q (loosely defined as the interval between the last energy maximum and the end of

the voiced sonorant region) is shown in Figure 4.16. As can be seen, this process is

straightforward since, of the semivowels, only /I/ and /r/ can occur in a sonorant-final

position. The hierarchy implied is not crucial except that branches I and 2, because

- dip or peak in F3 distinguishes between the liquids, should be implemented before

the !,ower ones.

Rules

Whle the #hresh-1,.1s ised to quantify the extracted perties are always the same,

,I? .':1es whi:h tre -ppi ed to ,ntegrate them for ident,ication of the semivowels are

n nt,+xt The riles fr the different contexts are compared in Tables

Sy I, 7 v; 0-t- ,bve. there is a w-I/ rule fcr ,I lass which is either w

Y ..- , r'., r'. w, is reatet sinc. , is the acoiustic st id is, . t n ('h tr

4 A r. . 1., ,1s t;,', yv V.er- -z i i i ar

.. .- fr:: w rk, i i tt. a s inal-g-us to i i r" v:. I .
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Tabl, 4.5: Prevocalic Semnivowel Rules

w =(very back) -r- (back)(high + maybe high)(gradual onset)

* (maybe close F2 F3 + not close F2 F3)

/I/ (back -±i mid)(gradual onset + abrupt onset)(maybe high + nonhigh + low)
* (maybe retroflex + not retroflex) (maybe close F2 F3 + not close F2 F3)

*/w-l/ =(back) (maybehigh) (gradual onset)(maybe close F2 F3 + not close F2 F3)

r/= (retroflex) (close F2 F3 +- maybe close F2 F3) +

(maybe retroflex) (close F2 F3) (gradual onset) (back + mid)
(miaybe high + nonhigh + low)

/'V (front)(high - maybe high) (gradual onset + abrupt onset)

-irrupt rate of spectral change between the detected sound and the following vowel.
Hc wever, the rule for a postvocalic /1/ requires that the rate of spectral change between
the detected sound and the preceding vowel be gradual. In addition, the closer spacing
".-eween F2 and FlI for a postvocalic /1/ as oppose to a prevocalic /1/ is also expressed.
Whereas the rule for a postvocalic /1/ allows for the sound to be "very back," the rule

r a 1rvc. ,/ does not. Instead, to classify as an /1/, the detected sound must

N te that ":,e fuzzy logic framework provides a straightforward m1echanism for
-;tinw'i.shing F--tween primary and secondary cues. For example, in the /w/ rules,
*: r-prty "very t. ick" is3 primary whereas the other cues are secondary. That is, if

n.~:r~ -is *',e pr'-perty "very back," it will be classified as a / w/ regardless of the

::. S: (therwise, to be :lsiidas a /w/ the sound needs to possess the

k,' "gaua, and either "high" or "maybe high." Likewise, regardless

;-1.:* i:iv th.er prmPrties, a soundi which has the prnperties "retroflex" and
- . .. 1- 2 :~ Fl r i -inavbe '-I'se F2 and F3" (the postvncalic 'r does not allow

A ' P -gnize'i -is Ln r

14 6



U Table 4.6: Intersonorant Semnivowel. Rules

w/ =(very back) - (back)(high + maybe high)(gradual onset)(gradual offset)

(maybe close F2 F3 + niot close F2 F3)

/I/ =(back + mid)(maybe high + nonhigh + low)

(gradual onset + abrupt onset)(gradual offset + abrupt offset)

(maybe retroflex + not retroflex) (maybe close F2 F3 + not close F2 F3)

1w1 (back) (maybehigh) (gradual onset) (gradual offset)

(maybe close F2 F3 + not clkse F2 F3)

- -r/ =(retroflex) (close F2 F3 + maybe close F2 F3) +

(maybe retroflex) (close F2 F3) (gradual onset) (gradual offset)

* (back + mid)(maybe high. + nonhigh + low)

"I (front)(high - maybe high) (gradual on ;et) (gradual offset)

Table 4.7: Postvocalic Rules

/1/ =(very back + back) (gradual offset) (not retroflex)

(not close F2 F3)(maybe high + nonhigh +~ low)

r, (retroflex) (close F2 F3)

(maybe retroflex) (close F2 F3)(maybe high -nonhigh - low)

(back - mid) (gradual offset)
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4.3.3 Summary

In summary, we have divided the control strategy into two procedures: detection

and classification. In the detec''on process, certain acoustic events (minima and max-

imia) which correspond to particular acoustic properties are automatically detected

from selected parameters. In the classification process, these acoustic events are used

in two ways. First, on the basis of their relative strengths and the time of their occur-

rence, they define a small region from which all of the acoustic properties for features

are extracted. Sec-ond, once the properties are quantified, the acoustic events are used

to decide which semivowel rule(s) will integrate the properties for classification of the

detected sound.
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Chapter 5

Recognition Results

5.1 Introduction

In this chapter, we evaluate the performance of the recognition procedures pre-

sented in Chapter 4. The detection and classification results are given separately for

each of the data bases described in Chapter 2. The data base used to develop the

recognition system is referred to as Database-I. Database-2 refers to the words con-

tained in Database-1 which were spoken by new speakers. Finally, Database-3 refers

to the sentences taken from the TIMIT corpus.

Recall that, whereas errors in the formant tracks of the words in Database-I were

corrected, those in the formant tracks of the utterances in Database-2 and Databse-3
were not. Consequently, we have excluded from the recognition results those semivow-

*! els which were not tracked correctly and words which were not tracked at all (see the

performance results for the formant tracker in Section 2.2.3).

In addition to overall recognition results for the data bases, separate results are

given for the sonorant-initial, intersonorant and sonorant-final semivowels. To further

establish the influence of context, additional divisions within these broad categories

are sometimes made.

Before presenting the recognition data, we shaUl discuss several key issues that

"have a earng -n the understanding of them. These issues include the criteria used for

-abulating the letectien and classification results, the effects of phonetic variability due

S. such phenonmena as stress and devoicing, and problems with some of the recognition

-arameters.

Finally, we will conclude this chapter with a comparison of the recognition sys-
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A

tern developed in the thesis and some ear!ier acoustic-phonetic front ends for which

semivowel recognition results have been published. Unfortunately, we do not know of

any statistically based recognition system for which recognition results for the semivow-
els have been published. Thus, we are not able to compare the performance of systems

based on the different approaches.

5.2 Method of Tabulation of Results

A semivowel is considered detected if an energy dip and/or one or more formant
dips and'or peaks is placed somewhere between the beginning (minus 10 msec) and
end (plus 10 msec) of its hand transcribed region by any of the detection algorithms.

The 10 msec margin, which was chosen arbitrarily, did not always include effects -,f the

semivowels on what is considered to be the neighboring phoneme in the transcr:,ti.:n.

Thus, for about l'c of the semivowels, further corrections were made when tabulating

the letectien results. For example, consider the word "choleric" shown on the left side

_f Fgure 5.1. Based on the above criterion, the F3 peak in part e occurs within the

.ntervcaiic ,but the first F2 dip in part d occurs in the preceding /a. However. .t

.s ".ear that the faiU of F2 fom its maximum value within *he ai is due to the influence
S:e IThus, when tabulating the detection results, he F2 ip is considered to be

an n! t i, the

In ntrast w~th this example, consider the word "harlequin." shown rn the r:gh,

g F:re I As -an be seen in part d, an F3 dip is ietected at the begmnncg

.... r.. nt -gn Based on the stated criterion, the F3 dip 1-es not -ccur withni
e .. e... However. a3 :n the previous example, this t~p .s .1, ea:- i:e

. the sem;v-wel. Nevertheless, since :t ,es n - r se

regicn, 'ut -ccurs It the beginning f the v-.e, the . a t

',to the I Th . 9. he r suts w." state that the r A s i.q t e 1

(n e -ther i :...f e .c .n h.s examrie is recognizei -Is- - ,
................ .. - " "he - ws -1 rr.c.t a-. sified and the A , nt :e :n:.uiei

: '" . ,. s,. Ied s This 1ispar;ty tet een :e :etect" n I:,

S - - ....-.. nts' the -r--,em' .n Fresent transc :t-n ti: 'ar 4s Wn.

7'. e A hnt. s:ris That~s.Ae: n ter s. r-

Zi. . ,t, a. than .- : r in t
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Section 3.3, the features of an r/ in this context may overIaj ,:.,.-., . .

preceding vowel. In this example, the underlying /a/ and fqlwmga realized as an r-colored /a/. Thus, in this sense, the /r/ is r-t. . H .-

by allowing this "disorder" (or more appropriately TAno order" iinre .

should be recognized as having the features of an /a/ and an r ) at tbe, t

the unraveling of this r-colored segment into a vowel followed by an - ,s

a vowel preceded by an /r/ must occur at or somewhere before lexw,-1 -i; Ss

concerning this mapping are discussed in chapter 6.

*5.3 Effects of Phonetic Variability

The detection results are affected by phonetic variability due to stress ani deV,

ing. Shown in Figure 5.2 are examples of unstressed semivowels. Formant tracks are

given in the figure since some formants within the semivowels are not visible from the

spectrogram. As can be seen, there appears to be little or no acoustic evidence for

the /1/ in "luxurious" and the /y/ in "ukulele." Thus, neither of these semivowels

is detected. This result is not surprising since perceptual findings (Cutler and Foss,

1977) have shown that acoustic cues of phonetic segments in unstressed syllables are

not as salient as they are in stressed syllables. In fact, on the basis of this finding and

their own work regarding lexical constraints imposed by stressed and unstressed sylla-

bles, Huttenlocher and Zue (1983) concluded that recognition systems may not need

* to be very concerned with the correct identification of phonetic segments in unstressed

syllables.

In addition to some unstressed semivowels, devoiced and some partially devoiced

Mivcwels are also undetected by the recognition system. Examples of such semivow-

i-.s .re shown in Figures 5.3 and 5.4. As can be seen, the /1/ in "clear," the /w/ in

- sw,(len" and the first /r/ i, "transcribe" are all considerably devoiced. As a result,
" >ey are not detected b" the recognition system. Similarly, the /w/ in "mansuetude"

'~ hrevoralic '1/ in "incredulously" are partially devoiced. In addition, these

i,e -nstressed. While there is enough formant movement so that the lat-

- .. :r :oetected, the transitions are not sufficient for a correct classification.

z -h semivowels, information in the preceding nonsonorant region is also

. .. -< ple, the pencil-thin vertical line occurring above 5 kHz and between

'wing 1/ on the spectrogram of "incredulously" corresponds to

152
0 ..



V. k

1Um 0k bft"

Time (aooi4a

1533

0.0 0 0 03 04 06 06 %



04 i9. 0!

154.



r."

0 02 0..9

1UM ("Caft)

[I,

Figure 5.4: Wide band spectrogram of the words 'mansuetude" and Aincredulously.2
Both words contain unstressed, partially devoiced semivowels.

i S

w, ..

"i-2"2-2
V

*4I 15



, - - -,, -r -'F- -. , 
. 

- ..

the lateral release of the 1/ (Zue, 1985). In addition, on the spectrogram of the word
Amansuetude," the low frequency frication seen in the /s/ just below the starting point

of F2 in the following voiced sonorant region is often referred to as a 'labial tail" and

is characteristic of a devoiced ,/w/. However, since analysis in the nonsonorant regions

of an utterance is outside the scope of the thesis, semivowels such as these may not

be detected. Recall that devoiced semivowels are not a part of our recognition task.

I., However, since some words in the data bases contain semivowels which are in clusters
with unvoiced consonants and since devoiced aUophones and voiced allophones are

transcribed with the same phonetic symbols, the detection and classification results
K': for devoiced semivowels are included in the recognition data.

5.4 Parameter Evaluation

An evaluation of the voiced sonorant detector shows that, in a few instances, very

V7 weak sounds are excluded from the detected voiced and sonorant regions. Examples of

this phenomenon are shown in Figures 5.5 and 5.6. As can be seen from the overlaid

formant tracks which are extracted only in the detected voiced sonorant regions, the

middle portion of the intervocalic /w/'s are excluded from the voiced sonorant regions.

If we use the bandlimited energy from 200 Hz to 700 Hz, the difference (in dB) between

the maximum energy within the utterance and the minimum energy within the /w/ is

37 dB for "bewail" and 41 dB for "bailiwick." As can be seen from the spectrograms,

the /w/'s also have very little energy below 200 Hs. These results suggest that the

iwi's are produced with a constriction which is too narrow for them to be sonorant.

Instead, they are produced as obstruents. Thus, their exclusion from the sonorant

regions is reasonable.

Even though the intervocalic /w/'s shown in Figure 5.5 are partially excluded from

the detected voiced sonorant region, they are still recognized. In each instance, enough

of the /w/ is included in the following voiced sonorant regions so that it is detected

and classified by the sonorant-initial recognition strategy.

While the exclusion of portions of the /w/'s in Figure 5.5 did not affect their

recognition, the partial or complete exclusion of other semivowels from the detected

voiced sonorant regions did cause them to be undetected and, therefore, unrecognized.

Examples of such semivowels are shown in Figures 5.6 and 5.7. As can be seen in

Figure 5.6, the last syllable in the word "harlequin," which contains a prevocalic
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Figure 5.5: The /w/'s in the words "bewail" and "bailiwick" are omitted from the

detected voiced sonorant regions. (a) Wide band spectrogram with formant tracks

overlaid. (b) Waveform.

0l 157



ji

Figur 5.:Wd adsetormwt omn rcsoelido"hreun ad

"lapro.
10



L9

Si

*A d

Figure 5.7: Wide band spectrogram with formant tracks overlaid of the sentence "Don't
ask ivie to carry an oily rag like that."
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4................ n eapfog" are left out of the detected v rwed sonorant
.'04: ns to adlition, the w r i ke," which contains a word-initial I. n the sentence

40 VFgre S 7. .s mnittel As .n the previous examples, the seiniv,)weis n Figure i.6
'ru-mttedi ecaise 4 tnr eiativeliv low amplitude. However, in the latter case,

?(e" lz we 1i as sever-ii 2-ther sounds in the sentence are excluded because

er~r ':.g requencvy onergy Although the sentences in the TI *>rpus were

~ V ~ a. se-taik;nig mic-'Mhone comparable to that used in the recording

f n r Is in Databaae-I -ind Database-2, the placement of the microphone was

In~ the rec -rding of Database- I and Database-2, the microphone wa placed

L t 2 entinieters in front of the mnouth. However, in the recording of Database-

V I ' here touched the mcu1.th. As a result, the sounds in the TI corpus
iVe: nsii5'erably more high frequency energy. Thus, since the ratio of low- to high-

;,-equenc-v energy of the utterances in Database-3 can be considerably different from

-f the ,t her utterances used to develop the voiced sonorant detector, several voiced

L2i s(-r'rant 5ouniJs in this corpus were excluded from the detected sonorant region.

k3 r the se-miv-weis contained in Database-3, only the /1/ shown in Figure 5.7 and

i were xcWldfrom n detected voiced sonorant regions.

'17e -pnoiemi - excluding very weak sonorant sounds can possibly be corrected in
U ~ a.wa'vs. Onle possible coDrrection is to adjust the relative energy threshold used

* x'ract v i*ced regions. Ho-wever, such a modification may result in the inclusion of

pa-sAlternative ly, estimates of the voiced and sonorant regions can be refined by

*7 F:K;:ig f,-ri:iants everywhere (not using continuity constraints outside of the initially

:-tectedl v-;ced sonorant regions) and expanding the initial region to include areas

.~-re >".:~.istracks are extracted.

In a illti-n to excluding a few voiced and sonorant sounds, the voiced sonorant

.~ ;r i, so nc!uided some unvoiced and nonsonorant sounds. In some instances,

N- h 'nclIusions resulted in a semivowel which was not classified because Its context
was nt corcl reonzd. For example, consider the classification of the /w/ in

he word "square" shown in Figure 5.8. As can be seen from the overlaid formant

tracks, the low-frequency /k/ burst is included in the detected voiced sonorant region.

As a result, an energy dip, shown in part c, is placed in the beginning of the /w/ and
an energy peak, shown in part b, occurs within the /k/. Therefore, the prevocalic

w/ is considered to be intervocalic. As a result, it is analyzed by the intersonorant

classification strategy. While this energy dip region has most of the features for an
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7V .,; C . ,he ffset occurring at approximately 280 msec is too abrupt for a

A in this context. Alth -ugh this offset is due to the /k/ burst, it is taken to be the

ffset of a preceding vowel. Thus, the /w/ is not classified.

This may be a diit:ult problem to solve without a reliable pitch detector. On

2!e aner : 1. s,-r.e modifications in the voiced and/or sonorant parameters may

'e suitient F-r exanmPe. -hanging the voiced parameter from a bandlimited energy

Su 0 Hz to 700 Hz to ,ne from 0 Hz to 300 Hz and using a similar relative measure

'he threshold may need to be changed) should exclude many of the low-frequency

;,.-,p bursts from the detected voiced region. In addition, a change in the sonorant

arameter may also give better results. That is, it may be more appropriate to look

t nly low-frequency energy as opposed to a ratio of low-frequency energy and high-

roquency energy.

Finally, intersonorant energy dips are sometimes detected in vowelsand in semivow-

-., which are prevocaiic or postvocalic. Unlike the case just discussed, these interson-

rant energy dips are not due to errors in the voiced sonorant detector. Such energy

! ps sometimes cause semivowels to go undetected or to be analyzed by an inappropri-

ite aigorithm which results in their being unclassified. Examples of this phenomenon

Are _Ahown in Figure 5.9. In the word "prime," shown on the left side, an energy dip

u -- rs *uring the r '. As a result, an energy peak is placed at the beginning of the

r Cnsequently, the upward movement in F3 from the /r/ and through the /ay/

.s not detected by the sonorant-initial F3 dip detector. (Recall from the discussion of

Section 4.3.1. that the detection of significant formant movement in sonorant-initia

semivowels is dependent upon accurate detection of the first vowel region which is as-

sumed to occur around the first energy peak in the detected voiced sonorant region.)

Instead, the /r, is analyzed by the intersonorant recognition algorithm. While the dip

* ~region has all of the features for an /r/, the movement in F3 is not appropriate for

an intervocalic /r/. Instead of F3 increasing slightly before the energy dip, F3 should

4ecrease from its value within the preceding vowel if the /r/ is indeed intervocalic. As

a consequence, the /r/ is not classified.

A similar situation occurs for the /r/ in "cartwheel." Due to the placement of

the energy dip and energy peaks in the first voiced sonorant region, the sonorant-final

F3 dip detector does not mark the downward movement in F3. (Again, detection

of significant formant movement signalling the presence of sonorant-final semivowels

depends upon the accurate detection of the last vowel region which is assumed to occur
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5.5 Semivowel Recognition Results

The . e- re _ , -, 6-esn.::,s ne - a:a ases are :::T:;.I: .: :.

: su 2 -.e '17 . t:,e ~e.2 -rs;swhic h are .eu a..--

-se. The ' r w spe:. es we:eis:. e. ! ens as trns.7. T .. A -

Sw' W-ne a.:a u2e tsmvw~ ntwr rnscr~bed K e 2 .- s ~ -I' -

Sse '.v w s jetec te, V ,ne 'r :,.-,e ac.,u.tc e'ent (dete'te - -1.. :--

, ,:.v 4 o - i v eacn type . a7u:s . event ma, rked V. e," "l

F-- exa:.re, the .ierection :aule '-r Databa.,e-I states that )7.......:-

AS ::ntu:ed an F2 Alp w:thin their se :::euted region

The -... :.at*on resu'ts f:r each Aata atase are g:ven -n -: , 4-

* "e, As .eft - .  the 'p , ,w 'es te 3eni "vow-' K - : .-. :A - :

" i v : .-:wS : hn: Se .. ber ; s we! #Dkens ..: . . .
w ee ': 9t--te-l t::,s u ber ::e :u:p.ement of thv " <: tte - - '

4'etet in! ' !,.e percentage I,* . se semivowei Re,- t. s-. :e ' A:. -

.. v tZe senivowel rules. F-, r exa ple. the resu.:s : )- 1 .:a.ase- 1 s , "-.:
9,)1 "te ;58 t:kens of r 's which were transcribed , were

term ": " n ':e bottom row) means that one or more seu..v *-. - -

"... . . : sund, but the classification scre(s3 wa s "::: ,

Recal'i fr in the discussion in Section 5 2 that there w:',: t i, :i s .... *'

etween the detection and classification results. That is, a se::v we. A::.'.S

-7ed undetected may show up in the classification results as be_1recgu.-,..t T

numbers in a column within the classification results may not a wavs add up ltoo

The teased recognition results are given in Tables 5.2 - -).7 see pages 173 17S1

Included in the tables are the classification results for nasais. These results are g:ven

because the nasals are the only other consonants which are son rant in all . -texts.

In addition, -is mentioned in Chapter 3, a parameter which captures the feature nasal

is not included in the recognition system. Thus, we expect there to be some niisclas-
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- '.,. - . ReF.'1ts fhr the Semivowels.

I Pet Iec ,,n Classification

Database- I

w I r 

:t tokens 369 540 558 222

in'ietected l) 1 4 3.3 2.6 2.9
74 *2

""5 2 7.5 3.4 0

9.1 55.7 0 0

w i,) 31.4 30.4 0 0-- . , ' I 92

4 .2 90 0

0 0 0 C3.7

ncr%) 2 3 4.7 4.9

1) aDatabase- 2
w 1 r y

i t*kns 181 274 279 105

,In<ete'<td( ) 1.7 1.5 4.3 2.8
4 1j' c 48 3.6 1.9 0

n~ -',, t :. 44 41
12.7 57.7 0 0

w It'l 29 33.8 0 0

35 .4 91.3 0

0 0 0 84.9

.7 2 9 4.3 13.3

I)atabase-3

•w I r y

- kens 28 40 49 23• = A I i ,1 ) >1

6,detectet e ) 3 6 7.5 0 4

'.4f- 10 0 0

C 21.6 26 0 0
w if%) 21.6 2,4.7 0 0

7.1 0 898 0-. r.i t , 4." '" 0,4 ,

G3 0 0 78.5

nc( ) 0 5.1 10.2 17.2
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ifications of nasals as semivowels.

Note that detection results are not given for the nasals. While formant dips and

peaks are marked in their hand-transcribed regions, it is not clear how to interpretI.
these results since the formants are influenced by the presence of nasal poles and zeros.

The nasals detected by energy dips can be inferred from the undetected results given

in the classification tables.

As can be seen in Tables 5.2 - 5.4, the sonorant-initial semivowels are divided into

the classes: semivowels which are not preceded by a consonant, semivowels which are

preceded by a voiced consonant, and semivowels which are preceded by an unvoiced

consonant. In the latter two categories, the semivowel may or may not be in the same

0 syllable as the preceding consonant. Thus, the category for semivowels which follow an

unvoiced consonant contains both of the /r/'s in the words "misrule" and "enshrine."

The intersonorant semivowels which are given in Tables 5.5 and 5.6 are separated on

- the basis of whether the semivowels are intervocalic or in a cluster with either another

" semivowel or a nasal. The latter division includes both the /y/ in "granular" where the

intersonorant /y/ occurs in an intervocalic sonorant consonant cluster and the /r/ in

"snarl" where the intersonorant /r/ occurs in a word-final sonorant consonant cluster.

Recall that the acoustic study of Chapter 3 shows that typically nonsonorant and

voiced consonants may appear to be sonorant when they occur between two sonorant

sounds. Thus, some voiced consonant and semivowel clusters such as the /v/ and /r/

in "everyday" are realized acoustically as an intersonorant sonorant consonant cluster.

*" However, since this phenomenon does not always occur, results for such semivowels

are given in either the data for the sonorant-initial semivowels or the data for the

sonorant-final semivowels.

When comparing the recognition results of the three data bases, the many differ-

ences between Database-3 and the other corpora which were summarized in Section

2.1 should be kept in mind. In addition to these distinctions, the sparseness of the

semivowels in Database-3 affects the recognition results. As can be seen from the

teased results, no /y/'s occur in intervocalic position and and all prevocalic semivow-

els are preceded by a consonant. In addition, only /r/'s which are not syllable-final

occur in sonorant-final position. Thus, several semivowels in particular contexts in

Database-I and Database-2 that rec:eive high recognition scores are not covered in

Database-3.
-" t,

In view of the differences between the data bases, the detection and classification
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results are fairly consistent. In terms of detection, the results from all three data bases

show the importance of using formant information in addition to energy measures.

Across contexts, F2 minima are most important in locating /w/'s and /1/' s, F3 minima

are most important in locating /r/'s and F2 maxima are most important in locating

When in an intervocalic context (see Table 5.5), however, the detection results using

only energy dips compare favorably with those using the cited formant dip/peak. Note

that 95% of the intervocalic semivowels in Database-1 are detected by an energy dip.

This is more than the 90% predicted by the acoustic study of Section 3.2.4. The

reason for this difference is that, while energy dips which were less than 2 dB were not

considered significant in the acoustic study, such energy dips were not disregarded in

the recognition system if a formant dip and/or peak also occurred in the dip region

marked by the surrounding energy peaks.

There are a few events listed in the detection results which, at first glance, appear

*. strange. In each data base, some of the /r/'s contained an F3 peak in addition to an

F3 dip. However, in all of these instances, the /r/ was adjacent to a coronal consonant

such as the /r/ which precedes the /s/ in "foreswear" and the /r/ which precedes

the /6/ in "northward." Thus, there is a significant rise in F3 at the end of the /r/.

Examples of this type of contextual influence are shown in Figure 5.10.

Similarly, there are a few /y/'s which, in addition to an F3 peak, contain an F3

dip. As can be seen in the words "yore," "pule" and "yon" shown in Figure 5.11, F3

starts from a value between 2500 Hz and 3000 Hz in the beginning of the /y/, and

then dips to a frequency between 2000 Hz and 2400 Hz before it rises to the necessary

frequency for the following sound(s) (note that an F3 dip was not marked in the /y/ of

"yon, because the minimum occurred around 2400 Hz which is too high a frequency

for it to be due to an /r/). This type of F3 movement was seen across all speakers in

many such words. However, this finding is not reflected in the results for Database-,

and Database-3 since the F3 dip was said to occur in the hand-transcribed region of
the following vowel. This phenomenon for /y/ has also been noted by Lehiste (1962)

who states that this type of F3 transition is part of the phonetic distinctiveness of /y/.

From her acoustic study of word-initial /y/'s, Lehiste found that the F3 transition

from the /y/ into the following vowel involved a downward movement to a specified

value near 2000 Hz and then a rapid movement to the target for the following vowel,

if the vowel target was different from approximately 2000 Hz.

.1%,-'.
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Figure 5.10: An illustration of formant movement between /r/'s and adjacent coronal

consonants in the words "foreswear" and "northward." (a) Wide band spectrogram

with formant tracks overlaid. (b) Location and depth of F3 dips placed by interson-

orant dip detector. (c) Location and depth of F3 peaks placed by sonorant-final dip

detector.
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As for the classification results, there is a considerable number of the /w/'s and /l/'s

which get classified as w-l in all three data bases. This result is not surprising given

I .h the acoustic similarity of these two sounds. As the acoustic study discussed in Chapter

3 shows, no one measure used in the recognition system provides a good separation

between these sounds. Note, however, that in several contexts, the system is able to

correctly classify these sounds at a rate better than chance. Considering the contexts

in which both sounds occur, the best results are obtained when they are word-initial

(that is, sonorant-initial with no preceding consonant). As can be seen in Table 5.2,
only a few /w/'s are called /I/ and only a few /II's are called /w/. This result is not

surprising. The prevocalic /1/ allophone occurs in this context. Therefore, an abrupt

spectral change due to the release of the tongue tip will usually occur between the /I/
[-.and the following vowel. Between a/lw/and adjacent vowel(s), however, the spectral

change is usually gradual. Furthermore, since there is no influence of a preceding

Ssound,many of the sonorant-initial /w/'s have a high degree of the feature back and,

therefore, a very low F2, whereas most of the prevocalic /1/'s will not have such a

close spacing between F1 and F2. As can be seen from the other tables, the number

of confusions as well as the number called /w-l/ increases significantly when they are

" Dpreceded by other sounds.

If we consider the classification of /w/'s as either /w/, /I/ or /w-l/ to be correct,

then the scores for the /w/'s in Database-i, Database-2 and Database-3 are 92.5%,

89.7% and 89.2%, respectively. Similarly, the lumped scores for the //'s in Database-i,

. Database-2 and Database-3 are 93.6%, 95.1% and 87.3%, respectively. Alternatively,

since it is equally likely that a sound classified as /w-l/ is a /w/ or an /1/, we can

assign half of the /w-l/ score to the scores for /w/ and /1/. With this tabulation,

the scores for the /w/'s in Database-i, Database-2 and Database-3 are 68%, 62.5%

and 56.8'3, respectively; and the scores for the /1/'s in Database-i, Database-2 and

Database-3 are 70.9%, 74.6% and 64.9%, respectively.

From a comparison of the results for Database-I and Database-2, we see that a

considerably larger percentage of the /w/'s in Database-2 were not classified. This

result accounts for the difference in correct classification scores. Most of these "no

classifications" are due to a particular speaker who had strong low frequency /k/

bursts which were included in the detected voiced sonorant region. An example of

a no classification caused by the inclusion of such sounds within the voiced sonorant

regions was discussed in the previous section.
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The /w/ and /I/ scores for Database-3 are lowest. However, as stated earlier,
some contexts occurring in Database-I and Database-2 were not covered by Database-

3. For those contexts in which /w/ and/or /1/ occur, their scores in Database-3

are comparable and sometimes better than those contained in the other data bases;

however, the classification scores in the other contexts tend to be higher. Thus, it is

the lack of coverage which accounts for the apparent decrease in correct recognition of

these sounds and the apparent increase in the number of confusions between them.

The overall results for the /r/'s in the data bases are comparable. However, the

detection and classification results for the sonorant-final Ir's given in Table 5.7 appear
to be significantly worse for Database-3. This is so because all of the sonorant-final

/r/'s in Database-3 were followed by the consonant /k/ in "dark." Only 12 of the 14

repetitions of this word were transcribed with an /r/. In three of the 12 repetitions,
a situation similar to that discussed for "cartwheel" in the previous section occurred.

-7 That is, an intersonorant energy dip occurred somewhere in the /a/ and /r/ regions.
0

As a result, any downward movement in F3 between the coronal consonant /d/ and the

retroflexed /a/, was not detected. This outcome is apparent from the detection results

which state that only 75% of the /r/'s contained an F3 dip. Thus, we feel that had

this data base contained some syllable-final /r/'s which were also sonorant-final, the

classification score for the /r/ in this context would be comparable to that obtained

for the other data bases. A finding in support of this claim is the many /3'/'s and

77'"s contained in Database-3 which were called /r/. These syllabic /r/'s occurred in

the words "your" and "water." The word "your" was also contained in Database-1
-- and Database-2 (in these data bases, it was spell as "yore"). However, in these data

bases, this word was always transcribed with a vowel followed by an /r/.

As for the /y/'s, the overall results show that the classification scores for Database-

2 and Database-3 are lower than the scores for Database-1. For Database-2, this
lower score is due mainly to one of the two speakers for whom the classification of

intersonorant /y/'s in clusters with nasals wa' poor (see Table 5.6). The reason for

this poor classification is illustrated in Figure 5.12. Given on the left side are several
displays corresponding to the word "banyan" which is a part of Database-1. The

' :pattern of events illustrated is typical for the intervocalic nasal-semivowel clusters

seen in this data base. In contrast, the same displays are shown for the same word

said by the speaker of Database-2. The main differences between the pattern of events

for these two words lies in the energy dip region which is defined by the offset preceding
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Figure 5.12: A comparison of the /ny/ regions in the words "banyan" spoken by
two different speakers. (a) Wide band spectrogram with formant tracks overlaid. (b)
Location of energy peaks (c) Location and confidence of energy dips. (d) Location
and depth of F2 peaks. (e) Location and depth of F3 peaks (f) Offset waveform. (e)
Onset waveform.
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Table 5.2: Recognition Results for Sonorant-Initial Semivowels Not Adjacent to a

AConsonant.

Detection Classification

Database-1

w 1 r y nasal
#..w r y
# tokens 70 40 56 46 64

#ltoets 100 90 10 undetected(%) 0 10 0 4.3 14~detected(%) 100 90 100 95.7w()8 5 5 0 5

*.-.. Energy dip(%) 43 33 25 43 (%) 80 6 5 0 0
IM% 1.4 63 0 0 20

*~i:::! F2 dip(%) 97 70 79 0 w-l(%) 17.1 15 0 0 3
F2 peak(%) 0 0 0 95 r(%) 0 0 95 0 5

F3 dip(%) 57 10 98 2 0 0 0 91.4 9

F3 peak(%) 37 55 0 95 nc(%) 1.4 7 0 4.3 44

Database-2

w I r y nasal
w I y # tokens 33 21 27 19 28

-# tokens 33 21 27 19..." tkns 3 2 7 9undetected(%) 3 5 4 0 7

detected(%) 97 95 96 100 t7 3 5 .4 0 7

Energy dip(%) 18 50 30 10
1(%) 9 76 3.8 0 10.7

F2 dip(%) 97 81 89 0 w-l(%) 21 5 0 0 3.6
F2 peak(%) 0 0 0 00
'p (0 01r(%) 0 0 81 0 10.7

F3 dip(%) 36 14 93 0 y( 0 0 0 94 3.6

F3 peak(%) 48 62 0 100-'"nc(%) 0 14 7.6 6 64.3
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Table 5.3: Recognition Results for Sonorant-Initial Semivowels Adjacent to Voiced

Consonants.

Detection Classification

b Database-I

w I r y nasalw 1 r y

# tokens 35 29 67 30 # tokens 35 29 67 30 0
• detected(%) 94 100 94 97 undetected(%) 6 0 6 3 0

Energy dip(%) 40 55 18 13 W( 37 24 6 0 0

F2dip(%) 94 86 55 0 l(%) 11 28 0 0 0

F2 peak(%) 0 0 1 87 w-l(%) 40 48 0 0 0

F3 dip(%) 40 31 90 3 r(%) 3 0 88 0 0

F3 peak(%) 43 48 0 77 Y(%) 0 0 0 90 0
nc(%) 3 0 0 7 0

Database-2

w I r y nasalw 1 r y

5 # tokens 18 13 31 14 # tokens 18 13 31 14 0

detected(%) 100 100 100 100 undetected(%) 0 0 0 0 0
w(% 78 8 0 0 0

Energy dip(%) 56 62 42 21 (M 7 8 0 0 0
F2dip(%) 94 100 52 0 l(%) 0 38 0 0 0
F2 peak(%) 0 0 0 79 w-(%) 22 54 0 0 0
F3 dip(%) 61 8 94 0 (% 0 0 97 70 0
F3 peak(%) 17 62 6 93(%) 0 0 0 9 0nc(%) 0 0 3 21 0

Database-3

w I r y nasal
w I r y

#tokens 0 13 13 9 #tokens 0 13 13 9 0

detected(%) 0 92 100 89 undetected(%) 0 8 0 11 0

Energy dip(%) 0 31 31 0 w(%) 0 0 0

F2 dip(%) 0 85 85 0 (M 0 46 0 0 0

F2 peak(%) 0 0 0 77 w-1(%) 0 38 0 0 0
r()0 0 92 0 0

F3 dip(%) 0 23 100 0 r(%)

F3 peak(%) 0 38 0 55y( 0 0 0 56 0
nc(%) 0 8 8 33 0
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Table 5.4: Recognition Results for Sonorant-Initial Semivowels Adjacent to Unvoiced

II Consonants.

Detection Classification

Database-1
w I r y nasal

# # tokentk s 144 123 129 69 4"''" #tokens 144 123 129 69

detected(%) 98 93 98.4 97 undetected(%) 2 7 1.6 0 25

Energy dip(%) 10 11 10 4 W(%) 51 20 4.6 0 0
F2 dip(%) 94 85 53 0 lM 11 32 .8 0 25'" w-l(% 25 37 0 0 0
F2 peak(%) 0 0 3 94 r(%) 25 37 0 0
F3 dip(%) 53 27 95 3
F3 peak(%) 19 46 1 72 Y(%) 0 0 0 90 25

nc(%) 3 3 9.3 10 25
Database-2

w I r y nasal
w I r y

# k6 5 0# tokens 69 56 60 30 2
# tokens 69 56 60 30

detected(%) 97 100 93 100 u)detecte(I%) 3 0 7 0 0
- Energy dip(%) 26 16 10 13 W(%) 45 12.5 2 0 0

F2 dip(%) 87 93 58 0'."-w-l(% 22 62.5 0 0 50
F2 peak(%) 0 0 3 93 r(%) 2 0 0 0
F3 dip(%) 45 20 85 0
F3 peak(%) 22 71 0 87 Y(o) 0 0 0 97 0

nc(%) 12 0 5 3 50
Database-3

w I r y nasal? 7 ". ,w i r y

#tokens 14 0 0 0 #tokens 14 0 0 0 13

undetected(%) 7.14 0 0 0 23

Energy dip(%) 21 0 0 0 w(%) 71.43 0 0 0 38
1(%) 7.14 0 0 0 23

F2 dip(%) 86 0 0 0--. w-l(%) 7.14 0 0 0 0
F2 peak(%) 0 0 0 0 r(%) 7.14 0 0 0 0

r(%) 7.14 0 0 0 8F3'- di(%) 57 0 0 0

F3 peak(%) 64 0 0 0 P0% 0000 0
nc(%) 0 0 0 0 8
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Table 5.5: Recognition Results for Intervocalic Senivowels.

Detection Classification

Database-I

I w I r y nasal

# tokens 73 188 145 44 88

# tokens 73 188 145 44

detected(%) 100 100 100 98 ntcd 0 0 0 2w(%) 35 1 3 0 2
Energy dip(%) 99 97 93 86 14 54 0 0 24

F2 dip(%) 100 88 52 0 w-()48 43 0 0 1
F2 peak(%) 0 0 0 95 w3 0 97 0

F3 dip(%) 23 2 99 0 r% 3 0 9 0 6

F3 peak(%) 16 43 0 89 y(%) 0 0 0 0 14€.nc(%) 0 2 0 0 53

Database-2
w "I r y nasal

w I r y

tokens 42 99 79 25 # tokens 42 99 79 24 42

detected(%) 100 100 1 undetected(%) 0 0 0 4 0
w()21 1 1.25 0 16.6

Energy dip(%) 88 96 96 84 WM%0

F2 dip(%) 100 86 53 0 57 0 0 4.7
w-()48 40 0 0 4.7

F2 peak(%) 0 0 0 96

F3 dip(%) 22 1 96 0 r(%) 10 1 97.5 0 4.7

F3 peak(%) 37 57 0 72 0 0 0 87.5 4.7

nc(%) 2 1 1.25 12.5 69

Database-3
w I r y w I r y nasal

tokens 14 13 24 0 # tokens 14 13 24 0 8

detected(%) 100 100 100 0 undetected(%) 0 0 0 0 37.5

Energy dip(%) 100 92 96 0 w(%) 21 0 0 0 0

F2 dip(%) 100 70 83 0 1(%) 36 62 0 0 0

F2 peak(%) 0 0 0 0 r(%) 7 0 96 0 12.5

F3dip(%) 36 15 100 0 y(%) 0 0 0 0 0

F3peak(%) 57 54 0 0 nc(%) 0 0 4 0 25
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Table 5.6: Recognition Results for Semivowels in Intersonorant Cluster.

Detection Classification

Database.- I

ww r y n asal
# tokens 47 57 73 3 4"'" tokens 47 5773 33

in:detectedi 0) 1) 7 8 8 6:'"detected( 7,) 100 93 92 92
"'"wiT 7 ) 51 9 0 1) ,)

' Energy dip(7o) 89 62 23 38

F2 dip(%) 100 52 i 0 -(6) 47 0 0

F2 peak(%) 0 0 0 85

F3 dip(%) 11 4 90 0 yM% 0 0 o 100 4
F3 peak(%) 21 50 0 54

nc(%) 2 7 12 0 78

Database-2
w I r y nasal

'on #tokens 19 32 36 18 26" tokens 19 32 36 18

,!-.reefed(%) 100 90.6 92 89 w(d)e5843 0 1 .4

Enerqy dip(7o) 95 56 39 71

F2 (lip(7)) 95 56 19 0 0 0 11.5
w-l(%) 32 22 3 0 3.8

F2 peak(%) 0 0 0 100 r(%) 0 0 86 0 7.7

F3 ip(7) 21 9 86 0 Y(7) 0 0 0 56 3.8

F3 pcak(%,) 21 78 0 82 0 0 05 .
nc() 5 6.2 11 33 53.8

Database-3

w I r y nasal
w I r y tkn

tokens 0 14 0 14 0
#tokens 0 14 0 14# oes01 4undetected(%o 0 14 0 0 0

detected(%) 0 86 0 100 w t e) 0 14 0 0 0

Enery dipr(7 0 64 0 93 w(7) 0 29 0 0 01(%) 0 50 0 0 0
F2,tipl 0 21 0 0

w-l(%) 0 0 0 0 0
F2 PakI 7) 0 0 0 100

r( 0 0 0 0 0
F3 lipt7) 0 36 0 0

yij' 0 0 0 93 0
F3 peak(%) 0 14 0 79

nc() 0 7 0 7 0
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Table 5.7: Recognition Results for Sonorant-Final Seinivowels.
Detection Classification

Database-I

p.I r nasal

# tokens 103 88 # tokens 103 88 260
detected(%) 99 97 undetected(%) 1 3 37
Energy dip(%) 8 10 w%

*F2 dip(%) 93 18 l(%) ~ ~
F2 peak(%) 0 1 r-(%)1 0 91 3
F3 dip(%) 1 95 ()09 1
F3 peak(%) 89 7 y%

nc(%) 1 6 51
Database-2

-'1I r nasal

# oen 3 8# tokens 53 48 134
*detected(%) 100 94undetected(%) 0 6 40

Energy dip(%) 38 9 w%
F2 dip(%) 91 26 ()9. 0 6

F2pak% 0 2w-1(%) 5.6 0 2
F2pe(%) 0 85 r(%) 0 90 0y(% 00(% 2 8
F3 peak(%) 89 9 Y

nc(%) 3.8 2 50
Database-3

1 r nasal

# tokens 0 12 #tkn 2 2
deece(% 10undetected(%) 0 0 70

W(% 0 0 9Energy dip(%) 0 25 1%
F2 dip(%) 0 80 0 4

F2 peak(%) 0 0 w-l(%) 0 0 0

r3 dip(%) 0 75 r(% 0 75 0

F3 peak(%) 0 17 y(% 0 0 0
nc(%) 0 25 17
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and the onset following the intersonorant energy dip occurring within the n TheMlocation and confidence of the energy dip is shown in part b. In the word on the left,
the offset, which can be seen in part f, occurs at about 280 msec. The onset, which

.6- can be seen in part g, occurs at about 420 msec. Thus, the duration of the energy dip

region is approximately 140 msec and the region includes both the in/ and the v,.

In the word on the right, however, the offset occurs at about 190 msec and the onset

occurs at about 260 msec, so that the duration of the energy dip region is only 70 msec.

In this case, the energy dip region includes only the /n/. Recall that duration s one

of the main cues used to determine if an intervocalic dip region contains one or two

sonorant consonants. Thus, the recognition system correctly decides that the energy

dip region in the word on the left contains two sonorant consonants. Consequently,

the abrupt offset marking the beginning of the /n/ is not included in the classification

of the /y/. However, in the case of the energy dip region in the word on the right,

*the algorithm decides that it contains only one sonorant consonant. Thus, the abrupt

offset due the in/ and the F2 and F3 peaks due to the /y/ are assumed to be cues

for the same sound. Consequently, this /y/, as well as most /y/'s occurring in this

context spoken by this speaker, is not classified.

5.6 Consonants called Semivowels

The teased results as well as Table 5.8 show that many nasals are called semivowels.

As stated earlier, one main reason for this confusion is the lack of a parameter which

captures the feature nasal. Presently, the main cues used for the nasal-semivowel

distinction are the offsets and onsets. This accounts for the generally higher misclas-

sificaticn of nasals as /I/. While the rate of spectral change is often abrupt between

nasals and adjacent sounds, the data of Section 3.2.5 show that this is not always the

case, particularly when the nasals are adjacent to unstressed vowels. Thus, they are

sometimes classified as other semivowels as well.

In addition to the nasals, a few flaps, /h/'s and sonorant-like voiced consonants are

also called sernivowels. The latter sounds are grouped into a class called "Others" and

their recognition results are shown in Table 5.8. Examples of these types of confusions

are shown in Figure .5.13.

In "frivolous," the intervocalic /v/ is classified as an /I/. Note that it does have

frequency values in the range of those acceptable for an /1/. In "waterproof," the F3
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Table 5.8: Recognition of Other Sounds as Senivowels.

Database-I

nasals others vowels
# tokens 464 508 2385
undetected(%) 24 81.5
w(%) 1 1 1
(%) 11 3.3 5.5

w-l(%) 3 .8 2
r(%) 2 .6 6
y(%) 6 1.4 8.6
nc(%) 53 11.4 39

Database-2
nasals others vowels

# tokens 232 135 1184
undetected(%) 24 69
w(%) 5 0 1

1(%) 7 6 5
w-l(%) 3 1 4
r(%) 3 2 4

I. y(%) 3 3 10
nc(%) 55 19 42

Database-3

nasals others vowels
# tokens 44 121 350
undetected(%) 50 73
w(%) 15 0 2
S(%) 13 2.5 9
w-1(%) 0 0 4
r(%) 5 2.5 15
y(%) 0 5 9
nc(%) 17 17 62
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Figure 5.13: Wide band spectrograms with formant tracks overlaid of four words

which contain consonants that were misclassified as semivowels. The /v/ in "frivolous"

was classified as an /I/. The /t/ in "waterproof" was classified as /r/. The /h/ in

"behavior" was classified as /y/. The /b/ in "disreputable" was classified as /w-l/.
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dip occurring in the /, resulted in it being classified as an /r/. Recall that the /r/

rnles will classify the detected sound as an /r/ if it is determined to be "retroflex" with

either a "close F2 and F3" or a "maybe close F2 and F3." Since the /r/ has these

k.u properties, the abrupt onset and offset surrounding it were not used in its classification.

The h' in "behavior" occurs after the /y/ offglide in the vowel /i/ and before

another front vowel. Thus, it was probably articulated with a vocal tract configuration

i6 similar to that of a iy/. As can be seen, it has formant frequencies in the range of

those acceptable for a /y/. As a result, it was misclassified as this semivowel. Finally,

the /b/ in "disreputable" was classified as /w-l/. Note that, in addition to formant

frequencies acceptable for a /'w/ and an /1/, the /b/ does appear to be sonorant, and

the rate of spectral change between it and the surrounding vowels is gradual.

J In conclusion, the nonsemivowel consonants do share some of the features expected

of the assigned seinivowels such that the confusions made are not random. However, it

is apparent that more features are needed to make the necessary distinctions. For ex-

ample, the property "breathiness" may be the only additional cue needed to recognize

that the /h/ in "behavior" is indeed an /h/ and not a /y/.

5.7 Vowels called Semivowels

The classification results for the vowels are also given in Table 5.8. No detection

results are given for the vowels since different portions of the same vowel may be

* detected and labelled a semivowel. For example, across several of the speakers in

Database-I and Database-2, the beginning of the /oy/ in "flamboyant" was classified as

either /w,/, /I/ or /w-l/ and the /y/ offglide was classi ed as a /y/. When phenomena

such as this occur, the vowel shows up in the results as being misclassified as /y/ and

either w J/1 or w-l/. Similarly, though this situation never occurred for this word,

if the beginning of the /oY/ was detected but not classified and the /y/ offglide was

classified as /y/, then the vowel would show up in the results as being not classified

and as being misclassified as a /y/. Thus, for these reasons, the vowel statistics for

the data bases in Table 5.8 may not add up to 100%.

As can be seen in Table 5.8, there are a number of vowels or portions thereof

which are classified as semivowels. Most of the misclassifications are understandable.

That is, vowels or portions thereof which are called /y/ are high and front. Vowels

- or portions thereof which are called /w/, /1/ and /w-l/ are back. Finally, vowels or
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portions thereof which are called /r/ are either retroflex or round. A sampling of some

of the vowel portions which are called semivowels is given in Appendix B.

The classification of vowels as semivowels occurs for several reasons. First, some

misclassifications occur because what has been labeled as a vowel is probably a semivowel.

Examples of such possible mislabelings are shown in Figure 5.14. As can be seen, the
"offglides" of these vowels do in fact appear to be semivowels.

In "stalwart," the significant rise in F3 from the beginning of the /a/ region resulted

in the classification of the end of the transcribed /a/ as an /I/. Recall from Sections

3.2.2 and 4.3.2 that this type of F3 movement is often indicative of a postvocalic /I/.

Thus, while the /1/ was not included in the transcription, it was correctly recognized

as/'!.

Recall from Section 3.2.4 that the /3" in "plurality" and the /iY/ in "queer" both

contain significant intravowel energy dips which suggest that parts of them are non-

syllabic. In addition, there is a significant F3 minimum in the /3/ and significant F2

and F3 maxima in the /jY/. As a result, the mid portion of the /./ was classified as

S.. 1 ir/ and the mid portion of the /iY/ was classified as /y/. These classifications also

appear to be reasonable.

Finally, the /w/ offglide of the /e in "wallflower" was classified as /w/. Although

an intersonorant energy dip was not detected in the /w/ offglide, an F2 dip was

detected in this region. In addition to the results of Section 3.2.4, the detection

results of Table .5.5 for /w/'s show that, across the data bases, intervocalic /w/'s

always contain an energy dip. (Even though energy dips occur in the /w/'s which

are excluded from the detected voiced sonorant regions, they are not included in the

detection results. This accounts for the result in Database-2 which states that only

,-SSr8% of the intervocalic /w/'s contained energy dips.) Thus, it does not appear as if

a well enunciated /w/ was produced. However, whether a clear /w/ was articulated

" :or not, the recognition of the /w/ offglide as /w/ should not be detrimental to any

system which is trying to recognize this word.

Second, such misclassifications occur because a label is being assigned too early an

the recognition process. That is, as we will discuss in Chapter 6, either a label should

not be assigned until more information regarding context is known, or a label should

perhaps not be assigned at all. Examples of such assignments are shown in Figure 5.15.

In the word "forewarn," the beginning of the first /:/ is called a /w/ because of

the labial F2 transition and the falling F3 transition arising from the following /r/.
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Figure S.15S: Wide band spectrograms with forrnant tracks overlaid of words with vowel

portions which, due to contextual influence, were classified as a semnivowel. Beginning

of first /3/ in "forewarn" was classified as /w/. Beginning of /ae/ in "guarantee" was

classified as /y/.
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Figure S. 16: Wide band spectrograms with formant tracks overlaid of three words with

vowel portions which were classified as /r/. The vowel portions are the end of the /I/

1- in "whippoorwill," the end of the first /o/ in "conflagration" and the end of the /u/

in "miscue."

186



Recail that the data of Section 3.2.2 show that /w/'s in retroflexed environments are

characterized by this type of F3 movement.) Similarly, in "guarantee," the beginning

of the / ! is called a /y/ due to the transitions of F1, F2 and F3 caused by the

preceding /9/ and the following /r/. In the latter example, it is not clear that the

assignment of a /y/ is incorrect since it is possible to pronounce "guarantee" with a/y/

between the /q/ and ,//. In fact, when this utterance is played from the beginning

of the sonorant region, a clear /y/ is heard.

Along these same lines are somre examples shown in Figure 5.16. In the word

"whippoorwill," the retroflexion due Lo the /r/ is anticipated in the vowel/i/ As can

be seen, F3 falls to about 2000 Hz near the end of this vowel. This sort of spreading!.. of the feature retroflex across labial consonants which do not require a particular

placement of the tongue was seen for many such words in the data bases. Although
it is not as clear cut, it appears as if a a similar phenomenon occurs in the word
"conflagration." As before, F3 of the vowel, which in this case is the first /o/, falls to

about 2100 Hz. Presumably, the declination in F3 is due to both the /r/ which causes

the /9/ burst to be low in frequency, and the /g/ which is responsible for the velar

pinch in F2 and F3 of the /;/. Finally, as mentioned earlier, some rounded vowels are

called /ri. The reason that this happens is shown in the word "miscue." Although

F3 typically rose during the /w/ offglide of a sonorant-final /u/, as can be seen in

Figure 5.16, F2 and F3 both fall from the /y/ to the end of the /u/ such that their

frequency values are acceptable for a sonorant-final /r/.

Finally, the classification of vowels as semivowels is sometimes due to intravowel

energy dips. Examples of this occurrence are shown in Figure 5.17. As can be seen,
an energy dip, shown in part c, occurs in the word-final/jY/ in "guarantee" and in

the second vowel of the word "explore." As a result, these portions of the vowels were

analyzed by the recognition system. In the former case, the detected portion of the
.iY/ was classified as a /y/. In the latter case, the detected portion of the transcribed

D/ was classified as /w-l/. Even in these instances, the classification of what may be

the offglide of the /iY/ and an inserted /w/ as semivowels is not unreasonable.

5.8 A Comparison with Previous Work

The approach and performance with respect to the recognition of semivowels of two
acoustic-phonetic front ends are discussed in this section. In particular, the acoustic-
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phonetic front end developed at Lincoln Laboratories (Weinstein et al., 1975) and the

ac oustic-phonetic front end of the MEDRESS recognition system (Medress, 1980) are

compared with the semivowel recognition system of the thesis. It is important to note

that the implementation of these systems, particularly the one at Lincoln Laboratories

since it was documented more thoroughly, were studied prior to initiating the present

work, and in some ways guided this research.

5.8.1 LLAPFE

The semivowel recognition results obtained by LLAPFE (the Lincoln Laboratories

Acoustic-Phonetic Front End) across 111 sentences spoken by six males and one female

are summarized in Table 5.9. Like the data in the thesis, the results are divided on

the basis of where the semivowels occurred within the voiced sonorant region. Further

teasing of the data is not possible from the tabulated results.

SAs can be seen, LLAPFE does not attempt to recognize all semivowels occurring

in all possible contexts. Although the data base contained the prevocalic /y/ in "com-

" pute," it was recognized in conjunction with the adjacent vowel. Thus, no recognition

results are given for this semivowel. In addition, no attempt was made to recognize

sonorant-final /r/'s. The authors felt that recognition of this sound was considerably

more difficult than sonorant-initial /r/'s, since speakers will slur and sometimes omit

it. Finally, the semivowels /w/ and /1/ are recognized as a single class. No further

acoustic analysis is done to differentiate between them.

There are many similarities and many differences between the approaches used in

LLAPFE and those used in our system. First, in both systems, the utterance is divided

Into scnorant and nonsonorant regions. Second, whereas recognition is divided into

Ietection and classification in our system, these two steps are sometimes combined

in LLAPFE. For intersonorant semivowels these steps are separated, whereas, for

sonorant-initial and sonorant-final semivowels, they are combined. In the latter case,

an /r/ identifier simultaneously segments and labels sonorant-initial /r/'s and a/w-l/

identifier simultaneously segments and labels sonorant-initial and sonorant-final /w/'s

and /1/'s.

Third, both systems look for certain acoustic events to occur within semivowels.

However, compared to the detection process in our system, the types of events marked

in LLAPFE are not as exhaustive nor as uniform across context. For example, inter-

sonorant semivowels are detected solely on the basis of significant energy dips (note
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Table 5.9: Semnivowel Recognition Results for LLAPFE: A " in the tables mean

that the desired number could not be computed from the stated results. (Weinstein

et al., 1975)

io Sonorant- Initial Semivowels

w-l r

Ictkens - 88

0unietected(%) 30 17

w-1 (7c) 70 0

r(% 0 64

3,(% ') 0 19

Intersonorant Sonorant Consonants

(*ccmputed from the percentage of those detected)

W-1 r w-l + r Pasals v,6

Stokens >S9 >22 87 >117 >38

undetected(%/') - - 7 - -

w-l ('0) 8.3 0 56* 2 5

r()0 91, 23* 0 0

n c (% 9 14' 96, 95*

Sonorant-Final Semivowel.

W-l

#tokens -

undetected(%) 30

w - (% f) 70
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-. o7, 11nters,;norant c,'nsonant clusters such as the /n/ and /I/ in "only" are treated as

a single dip region). As the results show, only 93% of the intersonorant semivowels

are detected in this way. This result is consistent with the data of Section 3.2.4 which

show that some intervocalic semivowels which follow stressed vowels and precede un-

stressed vowels do not contain energy dips. The example cited by Weinstein et al. of

an intersonorant semivowel which did not contain an energy dip occurs in this context.

The example given is the /I/ in "millisecond." Whereas Weinstein et al. atribute the

failure to detect these intervocalic semivowels to their energy dip detector, we would

F->'-. attribute it to the way these sounds are produced.

These detection results highlight the importance of using additional acoustic events

which are based on other spectral changes. As can be seen from a comparison of the the

intervocalic energy dip results of Tables 5.5 and the intersonorant energy dip results

in Figure 5.9 (we are assuming that all of the intersonorant semivowels are the second

member of the cluster), the detection data obtained by our system and LLAPFE are

comparable. However, by combining acoustic events based on energy measures with

those based on formant tracks, our system detects all of the intervocalic /w/'s, //'s

and r',"s occurring in all three data bases. In addition, we have found these formant

Minima and maxima to be particularly important in the detection of postvocalic /r/'s

and /I/ 's which are in clusters with other sonorant consonants. As the data of Section

3.2.6 show, these liquids do not usually contain an energy dip.

This latter point brings up another major difference between the two systems.

Several cues are used in our system to detect the occurrence of more than one sound

within an :ntersoncrant dip region. However, LLAPFE treats intersonorant clusters

as a single p region. This inability to resolve both sounds in such clusters probably

-i:: unts f:r rmcst of the intersonorant /w/'s and /1/'s which are misclassified as nasals.

.- hz.gh these confusions are not shown in Table 5.9 (they are a part of the data

r "nc'), Weinstein et al. state that 12% of the intersonorant /w/'s and /1/'s were

:.assified as nasals.

For both systems, the degree of formant movement is important for the identi-
- rtion f s, nrant-initial and sonorant-final semivowels. Both systems look for an

F .3 :nium: to C cur within a sonorant-initial /r/. Similarly, they look for an F2
:niim to .*-::r within a sonorant-initial and sonorant-final 'w/ and 'l/. However,

a dit r n. -r system looks for F3 peaks to occur within most /II's and within some

* . s which are in a retroflexed environment. As can be seen in our detection data,
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the marking of F3 peaks is important for the detection of /1/'s. This additional acols-

tic cue may account for the improved recognition performance of these sounds by our

svstem.

As in our system, LLAPFE classified the beginnings of many back vowels which
are preceded by labial consonants as /w-l/. In fact, Weinstein et al. state that 27% of

the sounds classified as /'w-l/ were vowels preceded by /f/, /v/, /p/, /b/ /n/.
* Fourth, temporal information regarding the rate of spectral change is one of the

properties used in our system to distinguish semivowels from other sounds and to

distinguish between /w/'s and prevocalic /1/ allophones. Based on the classification

results given in Table 5.2, this cue is useful in distinguishing between these sounds.

While the time of spectral measures similar to the onsets and offsets are used in

LLAPFE to segment semivowels, the values of these parameters are not used to dis-

tinguish between /w/'s and /1/'s.

Fifth, the acoustic properties in our system are directly related to specified fea-

- tures. Although similar measures are used in LLAPFE, no association with features

is explicitly stated. In addition, the properties in our system are all based on relative

measures which tend to make them speaker-independent. However, the acoustic cues

used in LLAPFE are sometimes based on relative measures and sometimes based on

absolute measures. Consequently, speaker dependent thresholds as well as thresholds

based on the sex of the speaker are sometimes needed.

Finally, in our system, the acoustic properties are quantified using fuzzy logic such
* rqthat the result is a confidence measure. Therefore, acoustic properties with different

units are normalized so that they can be integrated, and the result will be another

confidence measure. In addition, with this formalism, primary and secondary cues can

be distinguished and qualitative descriptors can be assigned to the acoustic properties

so that the rules can be easily understood. These features are not present in LLAPFE.

In that system, rules are a composite of measurements and there is no convention for

quantifying, on the same scale, measures with different units. Thus, /r/ and /w-l/

rules use only formant frequencies such that the application of them results in another

frequency measure which does not relate directly to an acoustic event. For example,

the /r/ rule in LLAPFE segments and labels a sonorant-initial /r/ if the result of the

composite measurement is less than 400 Hz.

S - 19 2

0," . " . - " . . """ " . ." - . ' '' ' ' , . , -. - " " J •, . -% / , " ' ."• " ' . " "

, .,'/" " , .'-" . - -. .. z.... .
,
• -,'- :'- z . " " ': :-. , ','. ' - ',: ' w ,' a:.h " .,. , ' aa 

, :,
.- . .'



-- - -i -"

Table 5.10: Semivowel Recognition Results of the MEDRESS System: A "-" in the

tables mean that the desired number could not be computed from the stated results

(Medress, 1980).

w 1 r y

. tokens 90 164 359 37

undetected(%) 28 38 9 43

w (%) 56 - - -

I(M) - so - -

r(%) - - 85 -

y (%) - - - 30

5.8.2 MEDRESS Recognition System

The semivowel recognition results obtained by the phonetic analysis component
of the MEDRESS system are summarized in Table 5.10. The results given are based

on the same 220 alphanumeric sequences (two, three and four words long) and data

management commands used to develop the system. The utterances were spoken by

three males.

Unfortunately, the semivowel recognition results are not separated on the basis

of context. Furthermore, confusions between the semivowels and misclassifications of
. 'other sounds as semivowels are not given. Thus, a thorough comparison of the recog-

nition results obtained by that system and those obtained by our system is difficult,

especially in the case of /I/ and /w/. However, as can be seen from a comparison of
the overall recognition results obtained by each of the data bases used in the thesis

and the overall recognition results given in Table 5.10, our system does significantly

better in the recognition of /r/'s and /y/'s.

In the paper describing the MEDRESS system, the discussion regarding the pho-

netic analysis component is brief. Therefore, an in-depth comparison of the recognition

approach used in that system and that used in our system cannot be made. However,

some similarities are evident. Like our system and LLAPFE, the MEDRESS system

divides the speech signal into sonorant and nonsonorant regions and uses an energy dip
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detector to locate intersonorant semivowels. Furthermore, similar formant frequencies

and movements are used to recognize the semivowels. It is not clear if minima and

maxima in formant tracks are also used to detect semivowels, and it is not clear if de-

tection and classification are done separately or simultaneously. Unlike LLAPFE and

like our system, temporal information is also used to recognize /1/'s. In the MEDRESS

system, this information consists of a measure which captures discontinuities in F1 at

the junctures between sernivowels and adjacent sounds. Finally, no speaker-dependent

or sex-dependent adjustments are made.

I9
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Chapter 6

Summary adDiscussion

6.1 Summary

* In this thesis, we have developed a general framework for an acoust ic- phonetic

approach to speech recognition. This approach to recognition is based on two key
assumptions. First, it assumes that phonetic segments are represented as bundles of

features. Second, it assumes that the abstract features have acoustic correlates which,

due to contextual influences, have varying degrees of strength. These assumptions

are the basis for the framework which includes the specification of features and the

determination, extraction and integration of their acoustic correlates or properties for

recognition.

Although the implementation of this framework or control strategy has been tai-

lored to the recognition of semnivowels, it is based upon the general idea that the

acoustic manifestation of a change in the value of a feature or group of features is

marked by specific events in the sound. These acoustic events correspond to maxima

or minima in particular acoustic parameters.

Thus, a major part of the control strategy of the semnivowel recognition process has

been to mark those acoustic events which may signal the occurrence of a semnivowel.

Once marked, the acoustic events are used in two ways. The time of their occurrence in

conjunction with their relative strengths are used first to determine a small region from

which all uf the values of the acoustic properties are extracted and, second, to reduce

the number of possible classifications of the detected sound. It is important to note

that almost all of the acoustic properties are based on relative measures. Therefore,

-: they tend to be independent of speaker, speaking rate and speaking level.
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Although there is room for improvement in the implementation of each step in

the framework, the recognition results show that the acoustic-phonetic framework is

io a viable methodology for speaker-independent continuous speech recognition. Fairly

consistent overall recognition results in the range of 78.5% to 95% (obtained across

contexts for a class consisting of both /w/ and /1/) were obtained. These results

are for corpora which include polysyllabic words and sentences which were spoken by

many speakers (both males and females) of several dialects. Thus, the recognition

data show that much of the across-speaker variability is overcome by using a feature-

based approach to recognition where relative measures are used to extract the acoustic

properties.

On the other hand, there is still variability due to phenomena such as feature

assimilation. In essence, the correct classification results and the misclassifications

which occur show that the system is identifying patterns of features which normally

correspond to semivowels. That is, many mislabelings of vowels or portions thereof

and of other consonants as semivowels are caused by contextual influences and feature

spreading effects which introduce feature patterns that are similar to those expected

of the semivowels. These sorts of misclassifications bring into question the assignment

of phonetic labels to the patterns of features. This issue is discussed in the following

section.

6.2 Discussion
VW

Throughout the thesis we have seen a number of instances of feature spreading. For

example, the data of Section 3.2.4 and the recognition results given in Table 5.8 show

that consonants that are normally classified as nonsonorant and voiced will sometimes

appear as sonorants when they occur between vowels and/or semivowels. In addition,

the feature retroflex appears to be highly susceptible to spreading. In this case, this

phenomenon can not only result in spreading of the feature retroflez from an /r/ or

T'/ to nearby vowels and consonants, but, in certain circumstances (see Section 3.3),

an underlying vowel and following /r/ can merge to form an r-colored vowel. Although

it is not as clear, this same sort of phenomenon appears to occur between vowels and

postvocalic, but not word-final, /l/'s as well.

Except when mergers occur, we have considered it to be an error when, due to

feature spreading effects, segments that are transcribed as vowels or portions thereof,
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or as consonants other than semivowels, are identified by the system as semivowels.

However, it is clear that in most of these cases, the sounds do have patterns of features

expected for the semivowels. In fact, as was shown in Chapter 5, many segments

that would be classified as semivowels in the underlying lexical representation were

not transcribed as such, although they were detected and correctly classified by the

system. The reasons for their exclusion from the transcription are two-fold. First,

the transcription of the utterances was done in the early stages of the thesis when

we did not understand as well as we do now the more subtle cues which signal the

presence of a semivowel. For example, when a postvocalic /I/ follows a vowel which has

many of the same properties, such as the /I/ in "wolfram," the distinguishing cue for

the /I/ is often a rising third formant. Without the automatically extracted formant

tracks, this F3 transition was not always apparent. Second, when we listened to the

utterances, a clear semivowel is not always heard. That is, in words like "wolfram,"

judgement regarding the presence of an /I/ is often ambiguous. Thus, since the system

, sometimes recognizes semivowels which were not transcribed, but are in the underlying

transcription of the utterance, it appears as if it is often correct rather than performing

a misclassification, and it is probable that the transcription is incorrect instead.

*Along these same lines, an analysis of some of the misclassifications of vowels as

semivowels revealed that contextual influences can also result in vowel onglides and

offglides which have patterns of features that normally correspond to a semivowel.

That is, in the case of vow els which already have some of the features of a semivowel,

*] adjacent sounds can cause formant movements which make portions of them look like

a semivowel. These effects are apparent from many of the misclassifications listed

in Appendix B. For example, across all of the speakers in Database-1 and Database-

2, there are many instances where part of the transition between vowel sequences

such as the transition between the /eY/ and /i/ in "Ghanaian," and the transition

between the /aw/ and /3"/ in "flour," were recognized as a /y/ and /w/, respectively,

"ut were not transcribed as such. Similarly, as was shown in Chapter 5, there are

several instances where sonorant-initial back vowels preceded by labial consonants are

called either /w/, /1/ or /w-l/, and sonorant-initial front vowels preceded by coronal

consonants are called /y/.

It is not clear that the labeling of the offglides of diphthongs as semivowels should

be called an "error." In addition, it is not always clear that the labeling of the onglide

Of vowels as semivowels is an error. A case in point is the example shown in Figure 5.15
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- 2
where the beginning of the /ar/ in "guarantee" is called a /y/. The initial segment has

a high front tongue body position, leading to formant trajectories similar to those for a

,- * !y/. However, in other cases, the classification of a vowelonglide as a semivowel is not

as acceptable. An example is also shown in Figure 5.15. In this case, the beginning

of the first /,/ in "forewarn" was labelled as a /w/. While this onglide has several

acoustic properties in common with a /w/, this mislabeling is not as palatable, since

/f/ and /w/ do not form an acceptable English cluster.

What these sorts of misciassifications show is that the system is recognizing certain

patterns of features. In most instances, the patterns of features do correspond to

a semivowel, even though some semivowels are not transcribed. However, in some

instances, they do not, and it is this type of mislabeling which suggests that either

labels should not be assigned to the patterns of features, or that contextual effects

need to be accounted for before labeling is done.

If phonetic labels are assigned to the patterns of features, it is clear that some

mechanism which accounts for feature spreading effects is needed. That is, we need

to understand feature assimilation in terms of what features are prone to spreading,

and in terms of the domains over which spreading occurs. In addition, techniques for

, dealing with other contextual influences such as those seen in the words "forewarn"

and "guarantee" are needed. Such a mechanism may consist of rules which, if based

on phonotactic constraints, will "clean up" phone sequences such as /fwo.../ so that

they will appear as /'f: /.

If, instead of phonetic labels, lexical items are represented as matrices of features,

it may be possible to avoid misclassifications due to contextual influences and feature

spreading, since individual sounds are not labeled prior to lexical access. For example,

consider the comparison given in Table 6.1 of what may be a partial feature matrix in

the lexicrn for in /a/ and postvocalic /r/, with property matrices for these segments

in the two repetitions of "carwash" which are shown in Figure 3.42. The lexical

representation is in terms of binary features, whereas the acoustic realizations are

in terms of properties whose strengths, -s determined by fuzzy logic, lie between

0 and 1. We have not researched any metrics for comparing binary features and

quantified properties. However, this is an important problem which needs to be solved.

Instead, we will assume a simple mapping strategy where property values less than 0.5

correspond to a "-" and property values greater than or equal to 0.5 correspond to a
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Table G.: Lexical Representation vs. Acoustic Realizations of /ar/.

lexical representation realization #1 realization #2

C r a r a

high - - 0 0 0

low - 0 1

back - - 11 1

retroflex 0 1 1

With this simple metric, a match between acoustic realization #1 and the lexical

representation is straightforward. However, the mapping between acoustic realization

#2 and the lexical representation is not as obvious. It may be possible for a metric to

compare the two representations directly, since the primary cues needed to recognize

the /a/ and /r/ are unchanged. That is, the features low and back are indicative of

the vowel /a/ and the feature retroflez is indicative of an /r/ or /:r/. On the other

hand, we may need to apply feature spreading rules before using a metric. The rules

:an either generate all possible acoustic manifestations from the lexical representation

or generate the "unspread" lexical representation from the acoustic realization. For

example, the data presented in Section 3.3 show that many r-colored vowels may

underlyingly be represented by a vowel followed by /r/. Thus, acoustic realization #2

'an be translated into icoustic realization #1.

In sunimary, many interrelated issues are highlighted by the thesis. These issues

;nclude the proper structure of the lexicon, feature assimilation, the mapping between

" <nary features and quantified acoustic properties, and the determination, extrac-

tion and integration of the acoustic correlates of features. A fuller understanding of

these matters is clearly important for an acoustic-phonetic approach to recognition

and, therefore, in our opinion, they are important for speaker-independent continuous

speech recognition.
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6.3 Future Work

There are many directions in which this research can be extended. The issues
discussed in the previous section and the analysis of the the misclassifications and no

classifications in the recognition data suggest several logical extensions. In this section,
we discuss some ideas and propose some experiments.

Some of the results presented in Chapter 5 show that we need a better understand-

ing of how some features are manifested in the acoustic signal. The acoustic properties
for some features are well established. However, the proper acoustic properties for oth-

ers are not as clearly defined. For example, we defined the acoustic correlate of the

feature "sonorant" in terms of a ratio of low frequency energy (computed from 100 Hz
to 300 Hz) and high-frequency energy (computed form 3700 Hz to 7000 Hz). While the
use of a parameter based on this acoustic definition resulted in the inclusion of most
sonorant sounds in the detected sonorant regions, some sonorant sounds in Database-3
which had considerable high frequency energy were excluded, and a few stops with low-

and based on our understanding of the mechanism of production of sonorant sounds,
a more appropriate definition of this feature should probably be in terms of very low
frequency energy. That is, it appears as if a relative measure based on only the signal

energy in some range below F1 may produce better results. Clearly, much work needs
to be done in determining the proper acoustic properties of some features. Knowledge

gained in the areas of articulatory and perceptual correlates of features can guide this

research.

The recognition data also show that some of the parameters used to capture the
acoustic properties need to be refined. In some cases, there is a straightforward trans-

lation of the definition of an acoustic correlate into an adequate parameter for its
extraction. However, in other cases, the transformation of an acoustic property into
a reliable parameter is not as clear. Such dilemmas will probably be resolved as we
gain more knowledge in areas such as auditory processing. For example, consider the

V formant tracker developed in the thesis. As in past attempts at formant tracking, in-
correct tracks due to effects such as peak mergers, increased formant bandwidths, and
nasalization are sometimes produced. The solution to this problem may be the devel-

opment of a better formant tracker, or other techniques which extract the same sort
of spectral information (e.g., Seneff (1987) has developed an auditory-based technique

which extracts "line-formants," straight-line segments which sketch out the formant
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trajectories without explicitly labelling F1, F2, F3, etc.). On the other hand, the so-

lution to this problem may be the use of additional measures, such as spectral tilt and

the frequency range of the major spectral prominence, in conjunction with formant

tracks. Such measures do not require the resolution of spectral peaks. Thus, their use

in regions where formant tracks are likely to be incorrect (e.g., in nonsyllabic regions

where, due to a constriction, formants may come together or their bandwidths may

increase) may give better results.

A better understanding of the acoustic properties for features and parameters from

which they can be reliably extracted will not only improve the performance of the

present recognition system, but will also allow for the natural extension of this ap-

proach to the recognition of other sounds, including the devoiced and nonsonorant

semivowel allophones. The addition of other features should also reduce the miscias-

sifications of other consonants as semnivowels.

~Cm.K.Another extension along the same line is an investigation of the confusions made

between semivowels. The recognition data show that in some contexts, there is consid-

erable confusion between /w/ and /1/, and, to a smaller extent, between /w/ and /r/.

Perceptual tests where different acoustic cues can be manipulated and further acousticLii analysis of the sounds which were confused may reveal additional or more appropriate
acoustic cues needed to make these distinctions. In addition, such research may give

insights into how the different acoustic properties should be integrated. That is, such

a study may allow for the distinction between acoustic properties which are primary

and those which are secondary.

Finally, feature assimilation and lexical representation are important issues which

need to be better understood. The mapping between the acoustic signal which con-

tains the effects of spreading phenomenon and items in the lexicon is a difficult and

inportant problem. The recognition results of Chapter 5 lead us to believe that the

proper representation of lexical items is in terms of feature matrices. Thus, we need

to develop techniques for accessing lexical items, which are represented by binary fea-

tures, from quantified acoustic properties which, due to phenomena such as feature

spreading, have varying degrees of strength and extent over time. Spectrogram read-

ing provides an expedient framework in which this question can be studied, since it

eliminates the problem of computer extraction of the acoustic properties. That is, the

acoustic properties can be identified from this visual representation. In attempting

to compare the lexical items and the extracted acoustic properties, several issues will
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have to be addressed. First, the proper structure of these representations must be

ieveloped. For example, whereas lexical items are represented in terms of matrices of

features, it is probable that some further structure is imposed on these matrices, taking

into account what is known about syllable structure, larger units such as words and

feet, relations between features, etc. Certainly, units larger than segments are needed

to adequately capture contextual influence. Thus, for example, the feature matrix may

consist of columns which describe the transitions between the phonetic segments as

well as a column for the steady state characteristics of the sounds. Second, this type

of spectrogramn reading experiment should give some insight into the features which

are susceptible to spreading and the contexts in which spreading is likely to occur.

Finally, this experiment should help to determine whether or not feature spreading

rules are needed or if this phenomenon can be accounted for in a natural way without
L

elaborate rules.
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Table A.1: Alphabetical listing of the polysilabic words and their phonemic transcrip-
tions. The transcriptions, originally from the Merriam-Webster Pocket Dictionary,
were checked to ensure consistency.

Words Phonemic Transcription
African 'atfrikin
afterward 'acf tawad
airline lacr*l'oyn
albatross laclbatr'os
almost 01lmowst,
already olr'Ediy
always 3wa
anthrax nr'k

Aquarius akw'aeriyos
arteriosclerosis art'Irn Yolsklir'o'sis

assuage QSW'cyj

astrology ostr'clofiy
bailiwick b'eyliw'ik
banyan b'genyon
beauty by'utiy

behavior bih'eyvya,
bellwether bcwca
bewail biyw'eyl
bless bl'Es

blurt bl',Tt
bourgeois b'ur~wla
brilliant br'ilyont
bucolic byuk'ailik
bulrush b'ujlr'Af

w. A
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Word Phonemic Transcription
bureaucracy byaakrisiY
bureaucratic by'3'akr'atik
bushwhack b'uI*hw'ak

calculus k'alkyulas
caloric kal'orik
canalize kon'zl'ayz
carwash k'arw'al
cartwheel k'art*hw'iyl

4 cellular s'clyula,
chignon 'iYy'an

chivalric I;v'x1rik
chlorination kl'o-ron'eylin
choleric k'alarik

clean kl'iYn
clear kl'ir
cognac k'o'ny'zk

imp coiffure kwafy'ur
conflagration k'anflogr'ey n
contrariwise k'antr'EriYw'aYz

cordwainer k'ordw'eyna,
correlation k'orol'e7ln

cream kr'iYm
cumulative ky'umuhtiv
curator kyur'eyta.

cutthroat kAt*Ortowt
darwin d'arwin
demoralize dam')rol'a~z
derogatory dir'agtowriy
devoir dovw'ar

dillydally d'iliY*d'aliY

dislocate d'is1owk'eyt
disqualify d'iskw'alof'a

disquisition d'iskwaz'fin
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K' Word Phonemic Transcription

disreputable d'isr'EpyutobI
diuretic d'aYyur'ctik
donnybrook d'aniy*br'uk

dossier d'-sy'ey

dramatic dram'atik
dwell dw'El

ellwood 'clwud
emasculate rn'askyul'eyt
ennui 'anw'iy

enshrine inr'ayn
esquire 'Eskw'ayr
Eurasian yur'eYlin
eurologist yur'alo]tst
everyday 'EvriY*d'ey

exclaim ikskl'eym
exclusive ikskl'usiv

exploitation 'Ekspl'o~t'eyXfn

explore Ikspl'olr
expressway Ikspr'Es*w'eY

exquisite Ekskw'izit
extraordinarily ikstr'ordn'EroliY
extrapolate Ikstr'apol'eYt
familiarity frm'ily'aratiY

farewell far* w'l
- fibroid f'aybroyd

flamboyant flmmb'o Ynt

flirt fl"t

flour fl~awr
flourish fl'uri§
fluorescence flur'Esns
foreswear forsw' r
forewarn fowrw'orn
fragrant fr'e Ygrnt
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Word Phonemic Transcription

,v fraudulent f r' j'ul~nt

frivolous fr'ivl~s

froward fr'o'wad

" frustration fr'Astr'eYlin

fuel fy'ul

Ghanaian 9an'eypn

gladiolus 91'aedi 'o'ls

" glass yl'as

granular gr'anyula-

grizzly 9r'izliY

guarani 9w'ar~n'iY

guarantee 9'mr~nt'iY
- harlequin h'arlikwon

harmonize h'armon'az

heirloom 'erl'um

heroin h'croln

horology howr'aloiY

humiliate hyum'rliY'elt

incredulously 'inkr'Ejul~sliy

infrequently 'infr'iYkw~ntliY

interweave 'intaw'iYv

inward 'inwad

Israelite 'zrikyl'ayt

- kyat kiyy'at

laceration l'as-'e 7 fin

leapfrog l'iyp*fr'g

legalistic l'i yl'istik

legislation l'Efsl'eNyin

librarian laYbr'eri7n

linguistics lilgw'istiks

livelihood l'ayvliyh'ud

loathly l'o'dliy

locale lowk'zl
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Word Phonemic Transcription
luxurious Nl'guriyos

rnansuetudle in'acnswit'ud

mrarijuana rn'acrawyano

marlin in'arlin

memoir icatiw'ar

menstrual &E'nstrul

m~iniscule rn' irnsky'ul
miscue Mi A sy'u
misquotation rn'iskwowtVeyhr

misquote rn'iskwlowt

misrule i sr'ul

muscular rn'Askyula,

musculature rni Askyulo'ur

northward ni'orOwa-d

Norwegian norw 'Ii)'n

oneself W' Ans'clf

onslaught lan*sI'fl

)rnery 13rna-iy

periwig P'criw'ig

picayune p'ik I Tun

plurality plur'athtiY

poilu PwaIl'u

pollywog P'liIYw'ag

postlude p'o'stllud

postwar p'o'stw'-3r

prime pr'ayrn

promiscuously prain'iskyu~asiY

pule py'ul

puree p yur'e Y

purulent py'ur1ant

quadruplet kwadr'Apht,

quarry kw':)r IY

queen kw'i Yn

queer kw'ir

04 213



Word Phonemic Transcription
queue ky'u
quotation kwo"t'e Yin

radiology r'eYdiYal;TiY

rationale r' n'zl

rauwolfia radw'ulfiYo
reconstruct r'Ikfnstr'Akt
requiem r'ckwi7Ym

resplendent rispl'endint
reunion r'i Yy'uny~n

rhinoceros rayn'ams
ringlet r'liht
riyal riYy'ol
roulette rul'Et

rule r'ul

scroll skr'owl

seaward s'i Y w-ad
W shrill fr'il

silhouette s(Ilo"'Et

skew sky'u
sling sl'irj
slop sl'ap
snarl sn'arl
soliloquize sal'ilkw'ayz

splenetic splin'ctik

splice spl'aYs
spurious spy'uri'Ts

squall skw'ol
square skw'zr
squeamish skw'iynmi

stalwart st'alwat

Swahili swah'iyliy

swap sw'ap
swing Sw'I

swirl sw' 3l
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Word Phonemic Transcription
p~.swollen SW)Owhin

swung SW')AI)

thwart Ow'ort
transcribe tracnskr'ayb

twain tw'eyn
twilight tw'ayl'ayt
ukulele y'uk~l'eyli7
unaware 'Anaw'zr
unctuous 'AIqawas

unilateral Y'unol'aetaj
unreality 'Anriy'chtiY
urethra yur'iy~ro
vuvula y'UvyuI*
view vy'U
volume v'QlyVM
voluntarily v'alin'r-ahY
voyageur VW'Qy'q'3T

wagonette w xgafl'Et

wallflower w)')l*f1'a
Walloon wal'un
walnut W'olf'At

walrus w'olris

waterproof W'ota *Pr'uf
weatherworn w7E§awcowrn
whippoorwill hw'ip3aw'il

whitlow hw'itltol
widespread w'ayd*spr'Ed

willowy W)IlowiY
withdraw W'iO*dr'o
withhold wiO*h'owld
wolframn w'ulfrom
wolverine wgulvaiyn

worthwhile w'Ar*hw'Qyl

wristlet r'istlIt

215



Word Phonemic Transcription

wrought r't

yawl y'0l

yell y' l

yearlong y'ir*l'oij

yon yan

yore y'owr

Table A.2: Word-initial semivowels which are adjacent to stressed vowels.

w I r y

wallflower leapfrog requiem uvula

walnut livelihood ringlet yearlong

walrus loathly wristlet yell

waterproof rule yawl

weatherworn wrought you

widespread

willowy

wolfram

wristlet

Table A.3: Word-initial semivowels which are adjacent to vowels which are either

unstressed or have secondary stress.

w I r y

Walloon librarian rauwolfia Eurasian

withhold linguistics resplendent eurologist

locale rhinoceros urethra

riyal

L___ __ __ roulette
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Tal AA rvclcsmvoesta r dacn oafiaie.n daett

stese owl

w

Table ~ ~ wa l.:Peoai eioeisatioare acent rctv n daett

swn stin stresedlowel

assuage slirt direpuabl oifr

dwoloir flu nhriunet fue

Y ~~swapg leisaiorulet

thwart shrill

- I- whippoorwill

whitlow

worthwhile

bourgeois
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Thble A.5: Prevocalic sernivowels that are adjacent to a fricative and adjacent to a

v.,wel which is either unstressed or has secondary stress.

w I r y

bushwhack conflagration anthrax behavior

cartwheel dislocate cutthroat dossier

" mansuetude flamboyant frustration humiliate

ri. northward fluorescence leapfrog uvula

Swahili grizzly African

- voyageur incredulously everyday

livelihood Israelite

loathly urethra

onslaught wolfram

'a promiscuously

wallflower

Table A.G: Prevocalic senivowels which are adjacent to a stop and adjacent to a stressed

vowel.

w I r y

Aquarius bless brilliant cumulative

dwell blurt bureaucratic pule

linguistics clean conflagration purulent

quarry clear cream queue

queen granular

queer grizzly

twain incredulously

twilight librarian

quadruplet

withdraw
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P-l T e A.7: Prevocalic semivowels which are adjacent to a stop and adjacent to a vowel
' which ;s either uinstressed or has secondary stress.

w I r y

coiffure chlorination albatroqs bucolic

cordwainer gladiolus bureaucracy bureaucracy

guarani infrequently contrariwise bureaucratic

harlequin plurality donnybrook calculus

infrequently quadruplet dramatic curator

poilu whitlow fibroid disreputable

quadruplet fragrant puree

* quotation waterproof

requiem

soliloquize

Table A.8: Prevocalic semivowels which are adjacent to a fricative-stop cluster and

adjacent to a stressed vowel.

1 r y

disqualify exclaim astrology miscue

exquisite exclusive expressway spurious

misquote explore extrapolate skew

postwar resplendent frustration

squall splice reconstruct

square scroll

squeamish transcribe
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Table A.9: Prevocalic semivowels which are adjacent to a fricative-stop cluster and
adjacent to a vowel which has secondary stress.

w I r y
esquire exploitation extraordinarily miniscule

postlude widespread

VTable A.10: Prevocalic semivowels which are adjacent to a fricative-stop cluster and
adjacent to unstressed vowels.

w r y

disquisition arteriosclerosis menstrual emasculate
misquotation splenetic muscular

wristlet musculature

_____.-__promiscuously

Table A. 11: Intervocalic Semivowels which occur before stressed vowels.4p

w l r y
bewaA1 caloric arteriosclerosis kyat

interweave correlation curator picayune
marijuana legalistic derogatory reunion
rauwolfia roulette diuretic riyal
unaware soliloquize Eurasian

ukulele eurologist

unilateral fluorescence

Walloon horology

plurality
-__"_urethra
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Table A.12: Intervocalic Semivowels which follow vowels which are stressed.

w 1 r y

froward astrology Aquarius Ghanaian

seaward bailiwick caloric

bucolic demoralize

choleric extraordinarily

disqualify familiarity

eurologist flourish

gladiolus heroin

- horolog,' librarian

humiliate luxurious

1i. plurality periwig

pollywog purulent

radiology spurious

soliloquize voluntarily

swollen

Junreality

___,"___ willowy

Table A.13: Intervocalic Semivowels which occur between unstressed vowels.

% w 1 r y

afterward calculus chlorination diuretic

unctuous cumulative choleric

dillydally contrariwise

fraudulent correlation

incredulously guarani

musculature marijuana

silhouette

______ voluntarily

q % %
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40
Table A.14: Intersonorant Semivowels which are adjacent to other senlivowels.

rw rl Ir 1w ly

carwash harlequin bulrush bellwether brilliant

Darwin marlin chivalric stalwart cellular

forewarn snarl walrus Ellwood volume

V Norwegian airline

heirloom

yearlong

Table A.15: Intersonorant Semivowels which are adjacent to nasals.

w I r y

ennui walnut forewarn banyan

inward almost harmonize granular

memoir ringlet unreality chignon

weatherworn cumulative
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Table A.16: Word-final sernivowels.

I r

bewail clear
. cartwheel coiffure

dwell devoir
farewell esquire

fuel explore

locale flour

miniscule foreswear

misrule memoir
pule musculature

rationale postwar

riyal queer

shrill square

squall unaware

swirl
whippoorwill

worthwhile

rule

yawl

yell

Table A.17: Postvocalic semivowels which are not word-final.

; 1 r

oneself bourgeois
wolfram foreswear

wolverine northward

withhold cartwheel

cordwainer

thwart

223



br~~~~~N-w- W ~rrrr .- u--v-~--~*--

Table A. 18: Word-initial vowels.

tense lax

African Aquarius
afterward assuage

*airline astrology

albatross Ellwood
almost emasculate

already enshrine

always esquire

anthrax everyday
arteriosclerosis exclaim

ennui exclusive

heirloom exploitation

onslaught explore

ornery expressway
* exquisite

extraordinarily

extrapolate

incredulously

infrequently

interweave

inward
* - Israelite

unaware

unctuous

unreality
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Table A.19: Word-initial nasals and /h/'s.

m n h
mansuetude northward harlequin
marijuana Norwegian harmonize

marlin heroin

memoir horology
menstrual humiliate

miniscule:i :.i ":miscue

",-.? "m isq u o ta tio n
~misquote

:.': m isru le

.? '.) "m u scu la r

musculature

Table A.20: Intervocalic nasals and /h/'s.

m n h
demoralize canalize withhold

dramatic chlorination behavior
familiarity donnybrook livelihood
humiliate Ghanaian Swahili

promiscuously harmonize

squeamish miniscule

rhinoceros

splenetic

unilateral
_wagonette
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Table A.21: Word-final nasals.

M n -g

cream African sling
exclaim airline swing

40heirloom banyan swung
requiem chignon

volume chlorination
0.wolfram clean

9 conflagration

correlation

Darwin

disquisition

enshrine

Eurasian

exploitation

frustration

Ghanaian
harlequin

heroin

laceration

legislation

librarian

marlin

misquotation

Norwegian

picayune

queen

quotation

reunion

swollen

twain

Walloon

wolverine
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Appendix B

* Vowels Misclassified as Semivowels

The following list of words contains a sample of vowel onglides and vowel offglides

which were recognized as semivowels. The portion of the vowel which was "misclassi-

fied" as a semivowel can be inferred from the phonemes within the parenthesis follow-

ing the words. These sounds surround the vowel onglide or vowel offglide. Thus, the

phonemes (/bu/) after the word "bourgeois" in the column labeled "w,w-l,l" indicate

that the beginning portion of the vowel /u/ was sometimes recognized as /w/, /w-l/

and ,1/. Similarly, the phonemes (/iYA/) after the word "aquarius" in the column

labeled "y" indicate that in one or more repetitions of this word, a /y/was not tran-

scribed, but the offglide of the /iY/ was recognized as a /y/. Note that the symbol

"" iS sometimes included in the parenthesis. This symbol denotes a word boundary.

Thus, the ( '') following the word "behavior" in the "r" column means that in one

,-.r more repetitions of this word, the last sound was transcribed as an /3,/, but was

recognized as an /'r/. Finally, in examples of "misclassifications" of vowel portions as

rI which involve spreading of the feature retroflex, three sounds are in the parenthe-

sis. As in the other cases, the sounds surrounding the vowel portion classified as /r/

-ire given. However, to mark the direction of feature spreading, the position of the /r/

.r 3 / with respect to these sounds is also shown.
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Table B.1: Portions of vowels which were classified as a semivo',el.

w,w-l,l r y

bourgeois (/bu/) albatross (/ ,b/) african (/afr/) aquarius (/iYA/)

bulrush (/bu/) almost (/om/) aquarius (/,Ti/) arteriosclerosis (/tt/)

bushwhack (/bu/) always (/ow/) behavior (/,70/) arteriosclerosis (/iYow/)

foreswear (/fo/) disqualify (/faY/) cellular (/:ri4/) astrology (/jiY/)

forewarn (/fo/) disreputable (/ I f/) conflagration (/ogr/) correlation (/e'Y/)

flamboyant (/b Y/) locale (/o*44/) cordwainer (/Zr*/) Eurasian (/eyl/)

postlude (/ud/) miscue (/uO/) disreputable (/r £p/) everyday (/eyf/)
* loathly (/o"6/) rau wolfia (/uf/) everyday (/cvr/) dillydally (/dae/)

promiscuously (/uA/) skew (/uHf/) extraordinarily (/rA/) dossier (/iyeY/)

unctuous (/uA/) stalwart (/atw/) fibroid (/aybr/) flamboyant (/iYc/)

wallflower (/aw3,/) wallflower (/of/) horology (/aa/) fraudulent (/Ti/)
1V unilateral (/ 10/) laceration (/ey/) gladiolus (/iyow/)

view (/uO/) luxurious (/:ri/) Ghanaian (/eyc/)

walrus (/:r/) periwig (/:r,') guarantee (/gat/)

" whitlow (/o*0/) plurality (/3zre/) humiliate (/iYey/)

* withdraw (/a"O/) urethra (/A4/) mansuetude (/tu/)

wolfram (/uf/) unilateral (/r'/) radiology (/iYa/)

wolverine (/uv/) wallflower (/30/) radiology (/j'Iy/)

whippoorwill (/tp"/) reconstruct (/kt/)

wolverine (/-fiy/) requiem (/iy/)

riyal (/iyu/)

wagonette (/g/)
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ChapterI

Introduction

A 1.1 Speech Recognition

The computer is one of the most important tools employed by people today, and as

* time goes on, its use will, become more widespread and its functions more diverse.

Therefore, finding ways to provide graceful communication between humans and

computers is both desirable and essential. Currently, people communicate with

computers primarily via text, a method which is reliable, but also slow and often

awkward. Since voice is the most natural and efficient means of communication for

humans, it would be advantageous to provide voice as an alternative method for

- communication with computers.

1.1.1 Current Speech Recognition Systems

So far, almost all speech recognition systems that have been successfully imple-

mented are spe aker- dependent, isolated-word recognizers with limited vocabulary.

Such systems use a variety of techniques to recognize words, including template

matching and dynamic programming techniques [18]. In this method, the input
signal is compared with stored templates using dynamic time warping and a dis-

tance measure (e.g., the Itakura distance [81) until the best match is found. This

A. . ni 5
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technique yields a recognition rate of better than 95% for limited vocabulary tasks

in which the system has been trained for a particular speaker. Pattern matching

works fairly well for isolated word recognition, but is not readily extendible to con-

tinuous speech recognition. In continuous speech, boundaries between words are

not clearly defined and coarticulation, the influence adjacent sounds or words have

on each other, becomes an important factor.

IBM [9 has developed both a successful speaker-dependent isolated word recog-

nition system and speaker-dependent continuous word recognition system. Both

systems employ Hidden Markov Modeling [131, a probabilistic approach to recog-

nizing speech. In this approach, the input speech signal is sliced into segments and

statistics are used to find the best phonetic match. Using a vocabulary of 1000

words, the continuous speech recognizer has a success rate of about 91%, and with

a vocabulary of 5000 words, the isolated word recognizer is correct 95% of the time.

Other systems, such as HARPY [141 and Hearsay 151, rely more heavily on

higher-level speech knowledge. HARPY, which was developed in the 1970. as part

of the ARPA speech understanding project, is a continuous speech recognition sys-

tern that allows a limited set of grammatical constructions. Its recognition rate

is over 95%. Similarly, Hearsay, another continuous speech recognizer, uses high-

level knowledge of semantics and syntax, but very little low-level knowledge of the

acoustic-phonetic features of the signal. With a vocabulary of 1000 words, the sys-

tem is only able to correctly guess that a word is one of 50 candidates in 70% of

all cases. However, Hearsay's overall recognition rate (after syntactic and semantic

constraints have been applied) was as good as HARPY.

1.1.2 The Use of Speech Knowledge

Despite some successes, none of these systems represent the realization of the ul-

timate goal of speaker-independent unlimited vocabulary continuous speech recog-

nition. Current technology in speech recognition possesses many limitations. For

'................."-.....-...... .. ""....."....".. .... "''= .. ""
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W example, most systems can only recognize isolated words; the few that recognize

continuous speech can only do so in certain highly constrained circumstances, such

as only allowing a small number of possible sentence structures. In addition, most

of these systems require training on a single speaker and are only capable of ac-

curately recognizing the speech of that person. Also, all of the system mentioned

above are limited vocabulary recognizers, and because of the way. they have been

implemented, increasing the vocabulary size means increasing the amount of mem-

1P ory required, increasing the amount of necessary training, or needing additional

time to perform the task. None of these requirements is desirable, so a different

approach must be taken to solve the problem.

4' While helpful for a restricted set of applications, the current technology does

not extend directly to the desired goal of continuous speech recognition. Speech

is more difficult to deal with when words are spoken continuously because the

4V acoustic properties of a word can vary depending on its context. On the other

hand, as in isolated word recognizers, syntactic and semantic constraints aid in

recognition. Also, the system ideally ought to be speaker- independent, and therefore

needs to exploit interspeaker properties of speech signals, using acoustic features and

syntactic constraints in order to recognize utterances. Present and future work on

speaker- independent, unlimited vocabulary continuous speech recognizers depends

not only on conventional signal processing techniques, but also on being able to

apply speech knowledge, such as information about stress [I] or broad phonetic

features [2 1,71 toward solving the problem.

A phonetic ally- based approach may offer the solution, but the problem is too

difficult to tackle without imposing some restrictions. Solving a small portion of

the problem will hopefully make the overall goal of speaker- independent unlimited

vocabulary continuous speech recognition one step closer to realization.

One way to reduce the size of the problem is to restrict one of the parameters

mentioned above, such as vocabulary size, when developing a phonetically- based
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recognizer. This makes it easier to extract both low-level and high-level knowledge

and to determine what information is relevant to the task.

One vocabulary that has been widely used in this approach is that of the digits

zero through nine. Obviously, continuous digit recognition is a popular task because

it can be used in a wide variety of applications. Digits form a good vocabulary to

K: use because they are acoustically distinct. However, continuous digit recognition

does present some challenges, because coarticulation greatly modifies the phonetic

features of speech, and syntactic constraints are non-existent, since any digit may

-, follow another in a given string. Several successful continuous digit recognition

systems have already been developed [2,121. Another interesting vocabulary, one

* that is somewhat more complicated than digits, is that of the letters of the alphabet.

However, continuous letter recognition has not yet been successfully achieved.

1.2 The Spelling Task

1.2.1 Motivation

Continuous letter recognition is a meaningful task both because of its contribu-

tion toward solving the continuous speech recognition problem and because of its

immediate practical applications. Like continuous digit recognition, recognition of

continuously spoken letters is a small enough task to be manageable since only a

limited vocabulary is used. However, letter recognition is more difficult than digit

* recognition. First of all, the number of words in the vocabulary has increased, from

ten to twenty-six. Secondly, letters are not as acoustically distinct as numbers. Peo-

-- r ple often have difficulty distinguishing the letters of the alphabet from one other,

hence the common practice of giving a clarifying example (e.g.,"D as in DOG*)

when spelling words. However, there are a few ways in which letter recognition

may be easier than digit recognition. For instance, digit strings may be affected

more by coarticulation than do letter strings because, in general, speakers may say
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i ddigit strings casually. Also, syntactic constraints are non-existent in digit strings:

knowledge of the ordering or structure of a string gives no useful information since

digits may appear any number of times in any order. On the other hand, unless

random letters are being spoken, syntactic constraints that may aid in recognition

do exist for letter strings.

The development of a continuous spelling recognizer is a worthwhile task which

has several applications. It can be used to distinguish between homonyms (e.g.,p' 'bear* and "bare'), or to recognise acronyms (e.g., 6MIT' or 4IBM" or 9VLSP)

which occur frequently in technical situations. In addition, a spelling recognizer

would be useful in cases in which an utterance is ambiguous: a speaker could be

4 asked to spell a word not recognized by the system. It could also be used to add

words to the vocabulary of a speech recognition system. Of course, a continuous

letter recognizer could be used to recognize any string, but recognizing spelled

* •English words is a manageable and well-defined task.

1.2.2 Difficulties of Task

* •The twenty-six letters of the alphabet can be divided into subclasses based on their

acoustic-phonetic properties. One such approach is to classify letters based on their

contained vowels. This means the letters B, C, D, E, G, P, T, V and Z form a

subclass (the /jY/ set), as do A, J and K (the /ey/ set), F, L, M, N, S and X

(the /e/ set), I and Y (the /ay/ set), and Q and U (the /u/ set). 0, R and

W are singletons or unique elements. Another method is to group letters based

on general phonetic characteristics. For example, the letters that fit the pattern

[FRICATIVEI[VOWEL are C V and Z. These two classification methods can be

combined to further subdivide the vocabulary. Ideally, there should be enough

acoustic-phonetic cues to place each word in its own subclass, thereby facilitating

C recognition. However, this goal has not as of yet been reached. The obvious acoustic

similarities between some letters, such as B and V, or M and N, make continuous

'
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(a) (b)

Figure 1.1: Spectrograms of (a) THAT and (b) TAJT

letter recognition a difficult task.

*In order to get a better idea of the difficulties involved in continuous letter recog-

nition, it is instructive to examine isolated letters first. A system for recognizing

isolated letters and digits which uses acoustic features for discriminating among

sounds has been developed by researchers at Carnegie-Mellon University [3,41. The

- -system, known as FEATURE, has an average accuracy rate of 89.5% when tested

*. i on 10 male and 10 female speakers. However, since FEATURE's analysis depends

on the fact that the endpoints of letters are known, its extendibility to continuous

letter recognition is questionable.

" ". In general, it is difficult to apply isolated word recognition techniques to con-

tinuous speech because the signal is difficult to segment into individual words. For

example, a system may be hard-pressed to determine whether an unknown utterance

[04
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(a) (b)

*Figure 1.2: Spectrograms of (a) L and (b) IL

is AJ or HA without knowing where the boundary is. Figure 1.1 shows wideband

spectrograms of the utterances THAT and TAJT spoken by the same person, and it

can be seen that the two spectrograms are virtually identical. Also, coarticulation

can be quite severe in spelled strings. Part (a) of Figure 1.2 shows a spectrogram of

the letter L spoken in isolation, and part (b) shows a spectrogram of IlL extracted

from continuous speech. It can be seen that the L in part (b) of the figure is mod-

ified by its phonetic environment: the preceding I has raised the beginning of the

second formant of the L.

The letters are remarkably similar acoustically (especially the /iY/ set) and

people often have difficulty distinguishing between them. In addition, segmenting

the an utterance of spelled speech into individual letters may be difficult. The

development of a recognition method must take into account both the characteristics

of spelled speech and the difficulties associated with it.

"
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1.2.3 Knowledge Sources

The best way to approach the spelling task is to use information from all relevant

sources of knowledge. The two primary sources of knowledge that are available are

acoustic and syntactic.

The acoustic knowledge source is rich in information, and listeners are usually

able to extract enough from it to recognize continuous speech. However, current

speech recognition systems are unable to perform as well as humans. Some recog-

nition cues are too subtle and cannot be detected using currently available signal

processing techniques. This means that acoustic information is insufficient for the

realization of this task.

7 Since the problem cannot be solved solely by relying on acoustic features, other

methods of analysis must be considered. In the general speech recognition problem,

if the permissible combinations of the words are constrained, then syntax may be

used to aid in recognition. Similarly, in this task, if the strings of letters to be

recognized form words, then the rules of English spelling may be used to help

* recognize the letters.

In situations where acoustic ambiguities cannot be completely resolved, as in

trying to determine if an utterance is either "CHAT' or "ZAJT," knowledge of

spelling rules of English would definitely point to the first alternative as being the

correct choice. So the solution to the problem of connected letter recognition can

be found by combining information from the two knowledge sources.

1.3 Thesis Overview

1.3.1 Problem Statement

In order to recognize words from their spellings, both acoustic- phonetic information

and lexical constraints may be used. The purpose of this thesis is to study the
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acoustic- phonetic and lexical knowledge sources and to determaine what informiation

is useful to spelling recognition and how the knowledge sources might be integrated

to accomplish the task.

C 1.3.2 Summary

A number of step. are taken to realize the goals of this thesis. First, a lexical

study is undertaken in an effort to obtain information about syntactic constraints

0. in spelled words and to try to quantify the rules of spelling.

Also, the relationship between acoustic -phonetic and lexical information is ex-

amined. We surmise that both knowledge sources are used to recognize spelled

words, but the relative importance of each one to the realization of the task is not

known. In order to determine the individual usefulness of the knowledge sources,

experiments to determine the sufficiency of acoustic information for recognizing

spelled speech are performed. Auditory perception tests are conducted to estab-

lish a benchmark recognition rate as a goal for a speech recognition system, and

spectrogramn reading tests are conducted because spectrogramn readers use a feature-

based approach to speech recognition that we could emulate in order to implement

a spelling recognition system.

The results of these experiments are analyzed and errors made by listeners and

readers are compared to try to determine why they occur and how they might be

resolved. As part of this analysis, the acoustic characteristics of spelled speech

are studied to try to determine what makes it different from ordinary continuous

speech.

Finally, ways of integrating acoust ic- phonetic and lexical knowledge are ex-

plored. A model for a spelling recognition system that incorporates information

from both sources is proposed and discussed.



Chapter 2

Exploring Lexical Constraints

o * 2.1 Introduction

2.1.1 Description of Task Vocabulary

The letters of the alphabet form a vocabulary with several distinctive properties.

The vocabulary contains twenty-six symbols, all but one of which are monosyllabic.

*The letters are structurally similar to one another: most follow either the pattern

[CONSONANT)[VOWEL) or [VOWEL][CONSONANT]. The letters are composed

of twenty-six different phonemes out of the set of forty ordinarily found in English.

All the letters except W !.ontain one vowel out of the set /a, ay, L, ey, iY, ow,

A, u/ (W contains two). Consequently, many letters share the same vowel, and

this results in a great deal of acoustic similarity between letters. As can be seen

by the example of the spectrogram of the letters GPT shown in Figure 2.1, the

parts of the letters that are different are often overwhelmed by the parts that are

similar. These acoustic similarities make many letters difficult to distinguish from

,,ne another. Acoustic sim-larities between letters can not only cause problems in

recogni ing individual letters, but can also create additional difficulties when trying

to rer.ogn ze letters in continuously-spelled strings. For example, Figure 2.2 shows

184,l

f .d~Z~~
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ZA C_ 1 M.Wt ~

i'. 11zW U
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Figure 2.1: Spectrogram of the letters GPT

a spectrogram of the letters 0 and L, each spoken in isolation. Figure 2.3 shows

0 and L spoken continuously. In the former case, the letters are separated from

each other and are quite distinct. However, in the latter case, it is much harder

to decide how many acoustic segments there are and where the boundary between

them is. As arinther example, if spelled quickly, the string BEET could be mistaken

for BET.

Even if the signal contains all the acoustic cues necessary for identifying the

letters, some of these cues are more subtle than others and are more 1iflcult to

extract. Consequently, attempts to recognise continuously-spoken letters solely

based on acoustic cues are prone to errors. In order to recognize the letters reliably

from the acoustic signal, other sources of information are necessary

C

r ,
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Fiur 22 Spctoga of the letr OL /o'I

Fiur 2_____3:___ Spcrga .fteltesO ow

• .

r,

Figure 2.2: Spectrogra.m of the letters OL /o'cl/

Figure 2.3: Spectrogram of the letter OL /o'wcl/
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Sentence String

Words Letters

0 Phonemes Phonemes

Figure 2.4: Comparison of Spelling to General Speech RBecoguition Task

2.1.2 Characteristics of Syntax

In the general speech recognition problem, knowledge of syntax often aids in the

realization of the task. Syntax rules place constraints on the possible sequence of

t recognition units. As shown in Figure 2.4, if we know that a string of words to

be recognized comprise a sentence, we can use the rules of English grammar to

facilitate recognition. Similarly, in continuous letter recognition, if we know that

0 there are syntactic constraints on spelled strings, we can exploit such knowledge

to achieve our goal. Specifically, if the task is limited to the recognition of spelled

English words, then the rules of spelling can be used to aid in recognition. In order

to determine how strong lexical constraints are, and how much lexical knowledge

might help in spelling recognition, an effort to determine what they are must be

made. Some constraints are easier to define than others: for example, the letter

Qis always followed by U. However, other rules are not as obvious; these rules of

spelling must all be quantified.

4.
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* 2.2 Data Collection

* 2.2.1 Lexicon

In endeavoring to determine the rules of spelling, it is instructive to study as many

words as possible, in hopes that certain lexical patterns will emerge. If they do,

these patterns may be used to induce spelling rules. The largest body of words

available to us for a lexical study is the twenty-thousand word Merriam Pocket

Dictionary (MPD) with Brown's Corpus counts for word frequency.

A good way to find lexical patterns in a large lexicon such as this is to gather

:1:...statistics about the frequency of letters and sequences of letters, both dependent

on and independent of context. This is necessary in order to provide an indication

of what letter sequences are more likely than others in certain situations. Also,

frequency statistics such as these can also show what letter sequences are possible,

if not for English in general, at least for the lexicou in question. However, one may

expect that the larger the lexicon, the closer the statistical characteristics of the

lexicon are to general English.

Finding letter frequencies in the lexicon by weighting the words by frequency of

occurrence in English can give an idea of what word patterns are common. On the

other hand, studying the lexicon in the same way, but weighting each word equally

gives a clearer picture of what word patterns are possible. In this study, the MPD

is analyzed in both ways.

2.2.2 Gathering Letter Frequency Statistics

The statistics gathered in this lexical study were obtained by using a lexical analysis

package called ALexiS [10]. Statistics were gathered about the frequency of the
V.'..,following letter sequences: individual letters, pairs of letters and triplets of letters.

- These statistics included overall frequency of appearance of letter sequences, and

also frequencies of occurrence of sequences at the beginnings and ends of words. In
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Event Most Freq(%) Top N Comprise

Common P %

Single Letter E 12.4 10 75

Word Initial Letter T 19.0 10 80

Word Final Letter E 24.0 10 80

Pair of Letters TR 5.4 10 25

12S 85

£ 200 95

Word Initial Pair TH 14.1 10 41.0

Word Final Pair HE 10.8 10 40.2

Triplet of Letters THE 5.6 20 18.6
£ U U 100 38.0

Table 2.1: Weighted Case

addition, forward and backward dependent probabilities of appearance were also

calculated.

An examination of the results reveal. some interesting facts. First of all, al-

though the statistics for words weighted by frequency of occurrence differ from

those for words weighted equally, they share some of the same characteristics. This

can be seen by comparing the statistics in Tables 2.1 and 2.2.

.21 Table 2.1 contains a summary of statistics for letter frequencies using words

rweighted by appearance. Each row of the table gives information about a certain

aspect of the statistics. For example, the first row indicates that E is the most

common single letter in the MPD; 12.4% of all letters in the lexicon are E. The first

row of Table 2.1 also shows that the ten most frequent letters occur 75% of the time;

:,t
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The other rows of the table can be interpreted in the same way. This figure also
shows the ordering of the letters of the alphabet by frequency of appearance. The
constraints on letters in word-initial and word-final positions are even stronger: in
both casnes, the ten most frequent letter, occur 80% of the time.

For pairs and triplets of letters, similar frequencies were found, and some results
are shown in the table. It can be seen that the results are greatly influenced by the
word THE, which is extremely commnon.

Table 2.2 lists similar statistics found when each word in the MPD wasn weighted
equally. Although the frequency of appearance of specific letter sequences are dif-
ferent from the weighted case, it is true here, as in the weighted case, that the
ten most frequent letter, occur 75% of the time. Figure 2.6 shows the cumulative
letter frequencies for the unweighted case, and it can be seen that the cumulative
distributions are similar in the two cases.

By weighing all words equally when analysing the MPD, knowledge of what
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Event Most Freq(%) Top N Comprise

Common P %

Q Single Letter E 10.7 10 75

Word Initial Letter I 16.7 10 80

Word Final Letter E 15.1 10 80

Pair of Letters IN 4.2 10 25

125 85

* " 6 200 95

Word Initial Pair CO 3.9 10 23.0

Word Final Pair ON 6.3 10 35.8

Triplet of Letters ION 1.0 20 10.6

1 100 25.2

Table 2.2: Unweighted Case

90P9 9 9 r~ ;99 0 LA

Figure 2.6: Cumulative individual letter frequencies (unweighted)

'S
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letter sequences occur can be obtained. It was found that all one-letter sequences,

A to Z, can be found in the lexicon. Also, it was discovered that 82.2% of all

possible two-letter sequences and only 28.3% of all1 possible three-letter sequences

can be found in lexicon. Of the two-letter sequences, the most frequent one-third of

all existing letter pairs comprise 96% of all letter pair occurrences. This mean that

the majority of possible letter pairs rarely occur, and that most words are composed

of a combination of letter pairs drawn from a total of approximately two hundred.

The conclusion that can be drawn from these results is that the more letters

known in a word, the greater the constraints that are placed on what the other

letters in the word could be.

* Another statistic obtained from the MPD measures the frequency of appearance

of phonemes. The most common phoneme is /iy/, which is not surprising. This

is because /1Y/ is found in nine letters, including E and T. Both are among most

common letters and together comprise approximately 23% of all letter occurrences

(Figure 2.5). As expected, the four most common phonemes are all vowels, since

every letter must contain a vowel and the set of vowels found in this vocabulary is

somewhat limited. The frequencies for this statistic are shown in Figure 2.7 for the

case when the words are weighted by frequency of appearance. These frequencies

map directly to the letters in the MPD because each letter was substituted for its

phonemic transcription in order to obtain this statistic.

The final statistic of importance deals with the lengths of words in the MPD.

It was found that all the words in the lexicon are between one and sixteen letters

long, and that the average number of letters per word is 7.35 when the words are

weighted equally and 3.98 when the words are weighted by frequency of appearance.

The graphs in Figure 2.8 show that the distributions for word lengths, particularly

for the case in which words are weighted equally, look Gaussian in nature. The

standard deviations for word lengths, weighted and unweighted, are 2.40 and 2.12,

respectively.

4 '.I a'.
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I.

a~ ff t te ' a E n r U b A W P 1 Z

Figure 2 7: Phoneme frequencies (weighted)

The statistics obtained for the MPD described above are valid for the lexicon,

and one may argue that these statistics can be considered to describe the entire

English language. However, for lexicons of smaller sizes, the statistics may not

* reliably reflect properties of the language.

In order to establish the robustness of the statistics, twenty lexicons of two-

thousand randomly-selected words each were taken from the MPD and the means

and variances of single letter and letter pair frequency statistics were obtained,

weighting each of the words equally. Means of single letter frequencies for the MPD

and these smaller lexicons are shown in Figure 2.9 and Figure 2.10. The ordering

and actual probabilities of occurrence for the two lexicons are very similar. A closer

look at the statistics show that, while the frequency means for these smaller lexicons

are close to the original ones, the standard deviations are very large. This is due to

the fact that the size of the sublexicons is too small.

Graphs for the letter frequency statistics obtained for the MPD (words weighted

and unweighted by frequency of appearance) and the smaller lexicons (words un-

weighted by frequency of appearance) can be found in Appendix A, along with letter

- triplet frequency statistics obtained for the MPD (words weighted and unweighted).

4.

i.
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j 2'' I 11 3 k LL~ 0.3 0.1 01'l00 00 00 0.0 0.0 01)
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(a)

9

1 2 3 4 5 13 7 9 9 10 1 1 12 13 14 15 16 I1 i 1 9 i 20

(b)

Figure 2.8: Lengths of words in the MPD, weighted (a) and unweighted (b)
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I.

O4 4 ' 4,

r 0 I I a M f I d ¢ w 0 b g k I I

Figure 2.9: Individual letter frequencies for MPD (unweighted)

h fI I d C ' n '

Figure 2.10: Individual letter frequencies for smaller lexicons (unweighted)
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* 2.3 Discussion of Lexical Constraints

2.3.1 Analysis of Results

It was found in the last section that there are a large number of lett',r sequences that

* rarely or never occur, which places strong syntactic constraints on what letters may

make up a particular word. This was particularly striking for three- letter sequences

less than 30% of all possible letter triplets can actually be foand in words. Also, the

letter sequence frequency statistics were found to be robust for the smaller lexiconrs

These findings allow us to h: potbesize that over a small set of words, the statistics

gathered will be reasonably sound, unless tbe word set in pathological ,r siewedi U

some way. Of course, very small lexicons cannot be expected to behave this way-

the larger the lexicon, the more closely its frequency statistics will mat.6 those of

*the MPD, Also, the statistics -an be -'2osider- d valid for the Englisb languae .n

general. Increasing the size -4 1 iexicot means that t frequency statastic:s boecome

("loser to their true vaiues, b~ut as the size -f the lek un increases. trie mrarginaji

c-hange in frequency statistics e-.reaaes t tepitweeI -rorae.

lexic-on size produces no noticeable :hinge ;n As statistic a mzeu-p 'he M4PD tw

ts robust statistics, can be considered to :pueLte rbnt~ ~eEgs

language is a whole.

The apparent strong constrains an p 'ssibie sequences f 'etteri Z; Lu -e,-Iuo

-Aancy in speiled strings. For cxample, 0n the :a" of the etter sequence Qli A

the U following the Q is redundant that is, it -,,uveys no additionali information

Measuring this redundancy ishelpful in determining the predictability of letters ;n

English words.

2.3.2 Redundancy of Letters in Words

Claude Shannon '201 attempted to measure the information content of letters in

words by determining the redundancy of speling. Redundancy measures the amount

00

'2.
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W If -,'rnstrant .rpose4 n a text .n the lang-uage due to its statistical structure. He

, rpted 7,, -;eaSure Ze entropy H), or average number of bits per letter nec-

-583s : rePrent I, w 'rl Shannon studied N-gram entropies first, in which N

* ihe :,:er fijacent :ast etters known, .n order to see how much increasing

arnc.ZAs f fi w eCe at,'At Fast ,etterv fostered redundancy To calculate N-gram

In-n Isc' f:equenA :f 'etter sequences tables used by cryptographers

S ;'. 1 . ftte.s .N C gram

*, .s ,::e z:_;.: ,r:. . ....tv f etter after the block b,,

.. ters Jn 'i e ta e2 f * ,W g way-

" ,: . : :; ',. w n;ge's S n-a N r tr-pis !,-r N 1 2, 3 and over

7 1 th,,se t-taned f-r the MPD

a .. ',ated the N graom entcpies using 26 symbol ani 27 symbol (the

'et'er" the a.phabet. plus the blank symboi' character sets. He also discounted

W~~ ".VO-L.-."'. . " -- ' J, '" ""' d a " ,,,
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- I N-gramn Entropy
N Shannon (26) Shannon (27) MPD

1 4.14 4.03 4.13

2 3.56 3.32 3.08

3 3.30 3.1 2.52

Word_ 2.62-[ 2.14 [2.12 J
Table 2.3: Comparison of N-gram Entropies

boundaries between words in text, so that many two- and three-letter sequences not

found in the MPD are included in his measure. Consequently, the predictability

of Shannon's letter sequences is lessened. Also, Shannon's method for obtaining

F3 is somewhat questionable: since the only three-letter sequence statistics he had

available to him were for letter triplets within words, he approximates probabilities

for three-letter sequences across word boundaries using a 'rough formula" that gives

an F3 he admits is "less reliable' than the other entropies he calculates.

Shannon's results, as well as the results obtained for the MPD, show that past

information is helpful in predicting future events: the more letters known, the

greater the redundancy of information, as demonstrated by the lowering entropy

rate for higher N. According to Shannon, the entropy of spelled words, F.d is

2.62 bits per letter. His entropy rate is higher than it is for the MPD because

Shannon used word frequency statistics for the entire language, whereas in this

study, statistics were obtained using for only twenty-thousand words.
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2.4 Possible Uses of This Knowledge Source

2.4.1 Exploiting the Predictability of English

ip The lexical study conducted using the MPD indicates that the constraints on letter

sequences within words are very strong. These constraints can be used in a variety

4P A string generator that uses letter frequency statistics to compose a string would

be more likely to generate real words than a random string generator, and the chance

of generating actual words increases as the order of the statistics used increases. For

example, a string generator is more likely to synthesize a word if it uses information

about the frequency of letter pairs rather than single letters. In addition, knowing

proper lengths of words is also helpful in generating words.

A string generator using information about letter pairs and triplets was devel-

W oped to aid in another aspect of this thesis. It is described in Chapter 3.

2.4.2 Conclusion

The conclusion that can be drawn from this study is that lexical knowledge aids

spelling recognition because it greatly constrains letter syntax. While the primary

source of information is still acoustic-phonetic, syntactic constraints are important

because we are not always able to extract adequate acoustic- phonetic information

from the signal to recognize continuously-spoken letters.

Lexical knowledge is important, but it is difficult to quantify its importance

in the spelling task: how much lexical information is necessary for a listener to

recognize a spelled word? Also, how much of the lexical information available to a

listener does he use to recognize the letters?

In order to determine how important lexical information is to spelling recog-

nition, it is necessary to determine the sufficiency of acoustic information. This

can be done by conducting continuous-letter recognition experiments in which the
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Chapter 3

Establishing Confusability

3.1 Introduction

Because of acoustic similarities between various letters of the alphabet, confusions

are bound to occur. However, what confusions actually occur is not known, nor is

the severity of these confusions.

* In order to find out more about the acoustic confusability of letters in spelled

* strings, a set of recognition experiments was conducted. In these tests, subjects

1. were asked to recognize letters using only acoustic-phonetic information. This was

done to determine the sufficiency of acoustic information and to measure acoustic

confusability. Both words and non-word strings were used in these experiments for

two reasons. First of all, although we ideally would like to conduct experiments

using only words since the task is spelling recognition, lexical knowledge might

be used to guess some letters. Secondly, using both types of strings allows for

comparisons of results.

Auditory perception tests were conducted to find out what letters were confus-

able to listeners, and spectrogram reading tests were conducted because the tech-

niques employed by spectrogram readers incorporate explicit speech knowledge, and

acoustic similarities between letters are easier to quantify in this acoustic feature-

35
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based approach than in listening tests.

3.2 Preliminary Experiments

3.2.1 Isolated Letter Reading Experiment

To obtain an initial impression of what letters are often confused with each other,

a pilot experiment was conducted. Four speakers spoke the letters of the alphabet

in isolation and in random order, and ten trained spectrogram readers were asked

to read spectrograms of the utterances and to identify the letters. Besides the
spectrogram itself, the only information given about an utterance wa the identity

of the speaker.

It was found that in 1040 trials, the readers correctly identified the letter being

spoken 923 times on the first choice and an additional 30 times on the second choice,

giving first and top two choice accuracy rates of 88.8% and 91.6%, respectively. An

extensive analysis of errors was then done, and a confusion matrix was formulated

(Table 3.1). The confusion matrix is a plot of actual utterances versus confusions.

In analyzing the results, several interesting patterns emerge. The majority of

confusions fall within letter groups that contain the same vowel (87 out of 117,

or 74%), so in most cases, vowel recognition is not the problem. Most of the

confusions resulted from mistaking members of the /iY/ set for one another: Out

of 117 confusions, 81 fall in this category. Some of the confusions appear to be

among consonants having the same place of articulation. For instance, B-V and V-

B confusions occur presumably because they are both labial, and thus have similar

formant transitions into /iY/. Also, there may not have been much frication noise

in the /v/, causing it to be mislabeled as a /b/.

Unusually large amounts of frication noise were observed in many consonants,

often causing unvoiced stops such as /t/ to be mistaken for affricates such as

. Also, voiced and unvoiced stops were confused because in most instances, voice

'o'. zo
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Table 3.1: Confusion matrix for isolated letters
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onset times (VOTs) for voiced stops were longer than usual, and there was a greater

amount of turbulence noise than expected in the voiced stops. This may be due

to the fact that speakers tried to enunciate the letters as clearly as possible, but
instead created distortions due to overarticulation.

3.2.2 Speaker Dependent Nonsense Strings

Experiments on isolated letters are important in order to determine what features

could be used to distinguish among them. However, since the task is the recog-

nition of spelled words, experiments on continuously spoken letters should also be
i-' conducted. In continuous speech recognition, coarticulation across word boundaries

° makes the segmentation of utterances into recognizable words much more difficult.

In our case, segmentation means the breaking up of spelled strings into their cor-

responding letters. However, we suspect that coarticulation may not be a severe

problem here because of the nature of the task. Letters are not spoken as continu-

ously as other sounds; speakers subconsciously tend to insert pauses or glottal stops

between letters to clarify the utterance (Figure 3.1). Also, letter pairs thought to

be confusable, such as UI and UY may have enough acoustic differences that they

can be distinguished from each other (Figure 3.2).

in order to study the effects of coarticulation, the following steps were taken:

first, a list of all pairs of letters occurring in English words was made. Then, strings

of random length were generated by selecting pairs at random from the list in such
a manner that each pair of consecutive letters in a list actually occurs in English.

" *. .This procedure ensures that we do not examine coarticulation for situations that

will not occur. Thus, the random string OXQUI would be acceptable, while the

string OXQJI would not. Random strings were used to ensure that readers would

not guess letters based on lexical information. Next, fifty such strings were given

to a speaker, who was asked to spell each as if it were an actual word. Next,

spectrograms were made of the utterances, and several expert spectrogram readers

V = U

.,,..'.-; .-
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Figure 3.1: Spectrogram of ABSURD which shows pauses and glottal stops being

inserted at letter boundaries
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Type of Error % of Total

Substitution 71.3

Insertion 14.7

Deletion 14.0

Table 3.2: Description of errors made in a continuous letter recognition experiment
9

were asked to read them. Once the readers had completed their task, their answers

were analyzed to determine the effects of coarticulation on the spoken letters. The

results are shown in Table 3.2.

3.2.3 Evaluation of Results

Results of these preliminary experiments indicate that acoustic confusability is

clearly a problem in spelling recognition. Similar confusions were made in both

experiments, but the overall results from the first test were slightly better than the

second: readers scored 91.6% on isolated letters versus 92.3% on continuous letters.

There are a number of reasons why readers may have done better in the second

experiment. First of all, some cues may be clearer in continuous letters than in

isolated letters. For example, B-V confusions are less likely to be made in continuous

letter recognition because the closure portion of the /b/ of B, not found in V, is

discernible, whereas in isolated letters, since /b/ appears at the beginning of the

utterance, the stop gap is not observable.

Also, letters embedded in a string are not prone to endpoint errors. Finally,

the readers were more familiar with the task in the second experiment: the first

experiment could be regarded as "training" of the readers in letter recognition.

However, statistics on these confusions cannot be obtained reliably from such a

small set of data. In order to do an extensive study of confusions, a much larger

amount of data collected from multiple speakers must be used.

.,,jM . ..,, .,.,e~..#... ,, . _. - , . .- . , .. , .,:.. ,, _ , , - .o .a a d ta 1 .,~
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3.3 Data Collection

3.3.1 Corpus Development

In order for strings to be considered devoid of lexical information and thus eligible to

be included in the corpus, they must meet certain requirements. The strings must

be "wordike," that is, they must have some of the same characteristics as words,

while not necessarily being words. For instance, within strings, each pair of letters

-. should be one that actually exists in English words. The effect of coarticulation on

two adjacent segments that are an impossible combination in an English word (e.g.,

QX) are not relevant to the task.

-'As mentioned before, we have argued that the corpus should not be entirely com-

posed of real words because lexical information can potentially distort the results of

an acoustic confusability experiment. On the other hand, the corpus should not be

made up entirely of non-words for the same reason: because knowledge that a string

cannot be a word is in itself a lexical constraint. The solution is to create a corpus

- -
i containing words and non-words, and withhold information on the distribution of

words and non-words from the subjects of an experiment.

The corpus is made up of a total of 1000 strings, 350 of which are words and

650 of which are non-words. All strings are between three and eight letters in

length, because approximately 70% of all words are of those lengths, as shown in

Figure 2.8(b). No nine- and ten-letter strings are included in the corpus, even

though words with these many letters are quite common, as can be seen in the

figure. This is because very long strings are harder to spell naturally. In addition,

lexical information is more likely to be used to identify longer words.

Of the 350 words in the corpus, 310 were selected at random from MPD without

regard to their frequency of appearance in English. In order to include enough J,

Q, X and Z tokens, 10 each of strings containing these letters were added in. There

are no duplicate words.

04b
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Figure 3.3: Histogram of letter occurrences for spelling corpus

650 strings were generated using the statistics obtained in the lexical study and

a set of rules. The rules are as follows: strings must begin with a pair of letters that

could begin a real word, and must end with a pair of letters that could end a real

word. Within the word, three-letter sequences are ones that could be found in a

real word. This means that strings like CAPPOST could be generated, while ones

like GTAQIZ could not. Beginning and ending pairs, as well as intraword triplets,

were selected at random from a list of pairs and triplets that are found in words,

weighted by frequency of appearance. Of the total number of letter pairs that can

be found in English, 68.7% are covered in this database. There are a total of 5607

letters in the spelling corpus.

Statistics of single letter occurrences can be found in Figure 3.3. When compar-

ing them to Figure 2.9, it can be seen that the distributions of letters in this corpus

are similar to those in the large lexicon analyzed in the lexical study. Eight of the

ten most frequently-occurring letters (E, A, R, N, T, I, 0 and S) are common to

both the MPD and the spelling corpus.

Use of these rules yield very wordlike strings: in fact, out of the 650 generated

for this corpus, 56 (8.6%) were real words. Many of the non-words differed by only

K.



"r. P.r ----

CHAPTER 3. ESTABLISHING CONFUSABILITY 44

one letter from a word (e.g., LYLLABLE), and most were at least "pronounceable."

Also, because statistics were used to create the strings, some letter sequences were

included in several strings: for example, CON was generated five times.

3.3.2 Recording

After the corpus was created, it was recorded by twenty speakers, ten male and

ten female, of standard American English. Recording was done using a Sony chest

microphone in a sound-treated room. Each subject spelled 50 strings, of which, on

* the average, 35% were words and 65% were non-words. Each string in the corpus

was spelled once by only one speaker. All the letter strings were subsequently

* digitized and stored on a computer using the SPIRE [101 facility.

* 3.4 Auditory Perception Experiment

3.4.1 Purpose and Procedure

An auditory perception experiment was conducted to establish a baseline recogni-

tion performance against which spectrogramn reading and recognition system per-

formance can be measured. The corpus was divided into ten groups of one hundred

words each, five words from each speaker. h of these groups constituted a lis-

tening test. Eight subjects listened to one or two tests each, for a total of fourteen

tests. The tests were administered using headphones in a sound-treated room. The

utterances were randomized within each test, and each utterance was said twice in

succession. Subjects were told that they were listening to spelled strings, and were

allowed to provide one answer per string.

*.r...
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Word Length

Error Type 3 4 5 6 7 8 Total % of Total

Substitution 7.5 11.5 6.0 14.0 9.5 12.0 60.5 68.4

Insertion 01 0 0.5 1.0 1.5 7.5 10.5 11.9

Deletion 0 0 0 1.0 2.0 5.5 8.5 9.6

Exchange 0 0 0 0 2.5 2.5 5.0 5.6

q Boundary 0.5 2.0 0.5 1.0 0 0 4.0 4.5

Total 8.0 13.5 7.0 17.0 15.5 27.5 88.5 100

Table 3.3: Distribution of listening test error.

3.4.2 Results

The overall listener accuracy rate in recognizing letters was 98.4% with a stan-

dard deviation of 0.72% (a detailed breakdown of errors made in this test can be

found in Table 3.3). Also, the subjects performed with an accuracy rate of 98.4%

and a standard deviation of 0.87% across speakers (Figure 3.4). Listeners made

proportionately the same number of errors on words as on non-words: 41% of the

strings in the corpus were words, and listeners made 42% of their errors on word

strings. Errors made by listeners included substitution, insertion, deletion and gem-

ination or boundary errors. Each error made was weighted according to how many

people listened to the string in question. In one type of substitution error, a letter

is incorrectly transcribed (e.g., J transcribed as G.) In another type of substitution

error, a phoneme is incorrectly transcribed, resulting in two incorrect letters. For

example, if part of an utterance is labeled /eYi/, when instead it should be /eyi/,

the reader will transcribe those segments as HE rather than AG. In a deletion er-

ror, a letter is omitted from the transcription, and in an insertion error, a letter

is added. In a gemination or boundary error, a phoneme is incorrectly divided,

usually at a letter boundary. For example, SE could be transcribed as SC if the

: B, .... ,. .,- .: .............--.- .- -. -,. :- , .- ..........................................,.......................ili~i~i' Il
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Figure 3.4: Listening test errors grouped by speaker

subject mistakenly assumes that /s/ is shared by two letters.

The most common errors made by listeners were substitution errors. Of all

errors made, 68.4% were of this type. The worst confusions made by listeners were

B-D, S-F, M-N, O-L and P-T (Table 3.4).

Other significant errors made include insertion or deletion errors, which account
for 21.5% of all errors. These errors tended to occur in sonorant regions, and were

usually due to the insertion or deletion of a vowel (e.g., BOL mistaken for BL).

Listeners also made a few exchange errors (5.6%) and gemination/boundary

errors (4.5%). In exchange errors, letters are correctly identified, but are in the

wrong order (e.g., TAC mistaken for CAT). This happened only on seven- or eight-

-,. letter non-word strings, and could be attributed to listeners' lack of attention or poor

short-term memory. Boundary errors occurred primarily on short, quickly spelled

strings, which makes letter segmentation somewhat more difficult than usual.

Listeners made very few string length errors (1.9%). Of these errors, 68.4% were

made on eight-letter strings. The fact that so many.of these errors were made on

,~~~~~~~.'.'......... ....-...-..-.... .. .. ,.....i-.---",-.."'-".?"-'.,"',.°.--.---.
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long strings may again be partly due to listeners' poor recall.

3.5 Spectrogram Reading Experiment

3.5.1 Purpose and Procedure

N The purpose of this experiment was to determine the sufficiency of acoustic informa-

tion in recognizing letters from spectrograms. A spectrogram reading experiment

is useful because, in contrast to the listening test, subjects are explicitly using

acoustic- phonetic knowledge. Because of this, we can get an idea of the recognition

performance that we can expect based on our current acoustic-phonetic knowledge.

However, these results may provide only an upper bound, since spectrogram reading

-% results are typically better than currently-available acoustic-phonetic front-ends.

Six trained spectrogram readers attempted to read spectrograms of some of the

one-thousand utterances in order to simulate computer recognition of speech. Each

of the six readers was given one hundred utterances, five from each of the twenty

speakers. Approximately one-third of the one hundred spectrograms given to each

reader were spectrograms of real words, and the rest were of non-words.

Readers were told that some of the spectrograms were words, but were not

told the exact proportion. Other information provided included the identity of the

speaker, the fact that each utterance contained between three and eight letters, and

that all the strings were "wordlike,3 as described in the previous section. They

were asked to transcribe each utterance using letters of the alphabet rather than

phonetic symbols. In cases of uncertainty, readers were encouraged to write down

second or third choices for segment transcriptions.

In general, spectrogram readers transcribe an utterance phoneticaly, and then

propose an orthography for the sentence based on this transcription. There were

two reasons for asking readers to transcribe the utterances with letters. First of

all, it would make the conditions of the spectrogram reading test similar to those
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Iv Reader % Correct % Correct (Top 3 Choices)

1 94.8 96.1

2 1 93.3 97.2

3 91.8 94.1

4 90.7 93.2

5 88.4 194.7

*6 86.8 192.6

Table 3.5:. Individual recognition rates of spectrogram, readers

of the auditory perception test, thereby enabling a direct comparison of results.

4 Secondly, a reader's proposal is based not only on acoustic evidence but also on

lexical access and syntactic constraints. However, in this experiment, syntactic

constraints were minimal, so a reader's guess would be primarily based on acoustic

information, and in case of uncertainty, on the best available acoustic features for

correctly identifying a segment. For example, if a reader phonetically transcribes a

segment as /tey/, he then must decide if the segment should really be /key/, for K,

* or /tiy/, for T. The letter the reader chooses indicates which features he considers

most important.

3.5.2 Results

As a group, spectrogram readers were asked to identify a total of 5601 tokens

in 600 spectrograms. They did so with an overall accuracy rate of 91%. Individual

accuracy rates ranged approximately between 86% and 95% (Table 3.5). Although

accuracy rates improve somewhat when second and third choice transcriptions are

included, rising from 91.0 ± 2.6% to 94.6 ± 1.6%, the higher rate is not as infor-

mative as the original one, because some readers are more conservative in guessing

than others. Interspeaker variability in error rate was more striking than in the



CHAPTER 3. ESTABLISHING CONFUSABILITY 50

14.0

12.0

t 2 4 5 6 1234 5 4

ii....FDW..ES

Figure 3.5: Spectrogram reading test errors grouped by speaker

listening tests: across the twenty speakers, error rates were between 2.4% and 16%

(Figure 3.5). As can be seen from the figure, readers had more difficulty recognizing

female speech than male speech.

Readers were more likely to make mistakes on non-words than on words. Al-

though 41% of the utterances read by the readers were words, they only made 27%

of their errors on this group. When questioned, all of the readers emphatically

stated that they did not use lexical access to aid their transcriptions when uncer-

6.0

tainties arose. However, knowing that strings were 'wordlike' may have had some

influence on their final transcription.

The types of mistakes made by the readers were substitution, deletion, insertion,

and gemination errors. A detailed breakdown of results from this test can be found

in Table 3.6. Exchange errors were not made by spectrogram readers, presumably

because they need not rely on memory.

As might be expected, substitution errors accounted for the majority of the

errors. 92% were substitution errors, and of these,. over 80% were single-letter

* ...
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Error Type Number % of Total

S ubstitut ion:

By Letter 274 84.3

Across Letters 25 7.7

Insertion is 4.6

Deletion 8 2.5

Boundary 1 31 0.91

Total 13251 100.01

Table 3.6: Distribution of spetrogram reading-test errors

substitution errors. As can be seen in Table 3.6, insertion and deletion errors were

infrequent: about 7% of the errors are of either type. In fact, out of 600 strings, only

23, or 3.8%, were transcribed with the wrong number of letters. A confusion matrix

for single-letter substitution errors was constructed (Table 3.7). Substitution errors

made by both listeners and readers are plotted here to aid direct comparison. The

confusion matrices contain a great deal of information about the types of errors

made by readers and listeners. As can be seen from the plot, some errors are

symmetric, that is, roughly the same number of Letter 1 to Letter 2 confusions

were made as Letter 2 to Letter 1 confusions, while others were not. Some of

the errors are unimportant; for example, U in the string-final position was once

transcribed as F, a mistake not likely to be made often. A summary of the most

common errors can be found in Table 3.8. The table is arranged so that Letter 1

to Letter 2 errors are paired with Letter 2 to Letter 1 errors so that the presence

or absence of symmetry can be seen.

This sumnmary shows that the most common errors made by spectrogram readers

are symmetric, and that most of the errors can be attributed to confusions between

only a few letter pairs. In fact, the four most frequent confusions, G-T, A-E, M-N

:% .
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Pair # of Errors Pair # of Errors Total

T-G 27 G-T 10 37

* A-E 19 E-A 16 35

M-N 16 N-M 11 27

L-0 15 O-L 11 26

F-S 7 S-F 3 10

G-J 7 J-G 1 8

P-T 7 T-P 1 8

R-I 6 I-R 2 8

V 0-1 5 1-0 2 7

(a)

Pair # of Errors Pair # of Errors Total

T-P 4 P-T 3 7

S-F 4 F-S 1 5

M-N 3.5 N-M 1.5 5

O-L 3 L-0 1.5 4.5

B-D 4 D-B 0 4

(b)

Table 3.8: Most common substitution errors for (a) readers and (b) listeners

, ~~~~~~~~~~~~~~~~~~~........ ....... .. ....... .,.. .. .... ,.........,- . .,-:.-.... , ..- :,, ?.
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and O-L, account for 47% of the single-letter confusions. Also, these four confusions

occur significantly more frequently than any other; the fourth most common one,

L-O, occurred 26 times, while the fifth most common, F-S, occurred only 10 times.

Some of the errors were asymmetric, such as R-I confusions. R was incorrectly

transcribed as 1 6 times, while I was mistaken for R only twice.

The accuracy rate for this experiment was slightly lower than that in the pilot

study in which readers tried to identify letters in random strings spoken by one

person (91% versus 92.3%), and this may simply be due to the fact that this exper-

iment used multiple speakers, so there was more variability in speech than in the

pilot experiment.

3.6 Conclusions

3.6.1 Comparison of Experiments

The two sets of experiments performed were similar in that they used the same

corpus, and each test taken by subjects contained the same number of strings, but

there are many more differences between them. The subjects used in the perception

test were different from the ones used in the reading test. Also, none of the speakers

were subjects for either experiment. Different information about the strings were

given in the tests: listeners were told they would be hearing strings of letters, while

readers were told they would be seeing 'wordlike3 strings of letters. Also, readers

were told speaker identities, and they knew each string had to be between three

and eight letters long. Listeners only heard each string twice, whereas readers were

allowed unlimited time, and were also allowed to collaborate with other readers.

Listeners were given less information than readers because they have a slight ad-

vantage over readers to begin with: the auditory system easily and automatically

processes speech.

The purpose of the auditory perception experiment and the spectrogram reading

. " ..:
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4 experiment was to determine the sufficiency of acoustic information. It can be seen

from the accuracy results, 98.4% and 91.0% respectively, that acoustic information

is the primarily knowledge source for obtaining information to recognize spelled

strings. A comparison of results of the tests suggests some interesting similarities

and differences between them.

Listeners did significantly better than readers, and had less variation in results,

both across subject and across speaker. Both listeners and readers guessed the

correct number of letters very accurately (98.1% and 96.2%). Substitution errors

predominated for both listeners and readers (68% and 92%). Also, most of the

substitution errors made by readers were also made, to a lesser degree, by listeners,

as shown in Tables 3.4 and 3.7. However, listeners and readers usually did not

make the same specific errors: that is to say, they rarely made mistakes on the

same tokens.

3.6.2 Summary of Acoustic Confusabilities

As mentioned above, most errors made in both experiments were substitution errors.

,m, Some of the errors were more likely to be made by readers than by listeners. For

example, the confusion B-D, one of the worst errors made by listeners, was rarely

made by readers. Some of the errors, such as G-T, A-E and M-N were symmetric,

and others were asymmetric, such as P-G and I-R.

The results of these experiments raise a number of questions about the nature

of spelled strings and errors that are made in trying to recognize them. An acoustic

study is necessary to determine what characteristics of spelled strings make them

different from ordinary speech, to answer questions about why certain errors occur

and to explore ways in which these errors can be resolved.

I,.
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Chapter 4

Acoustic Study of Spelling Corpus

4.1 Purpose of Acoustic Study

In order to develop a method for recognizing spelled strings, an understanding

of their acoustic properties is essential. Therefore, the next step is to undertake

an acoustic study in an effort to determine what differences exist between spelled

* strings and ordinary speech, and whether or not these differences could be exploited

to aid in recognition. Also, this study offers the opportunity to study the spelling

corpus more closely. The results of the auditory perception and spectrogramn reading

experiments lead to a number of questions about the types of errors made that are

best answered by a study of this kind. For example, why did the mistakes made by

listeners differ so much from the mistakes made by readers?

Some of the possible errors anticipated before beginning the recognition experi-

mnents rarely or never occurred. For example, the problem of insertion and deletion

of segments was much less serious than expected. A study of sonorant regions

(where this problem was expected to appear), concentrating on vowels in the con-

text of a vowel followed by a vowel would help determine how two adjacent vowels

can be distinguished from a single vowel.

In addition, the errors made by the subjects of the experiment were mainly

* 56
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1 substitution errors, and an acoustic study presents the means for examining these

errors, determining their causes, and exploring ways to resolve them.

This acoustic study was undertaken using SPIRE, a speech processing software

package, and SEARCH, another software package which allows users to interactively

explore ways to analyse acoustic data [101.

4.2 Phonological Properties of the Corpus

4.2.1 Characteristics of Vocabulary

The acoustic properties of individual letters are not discussed here in detail, be-

cause they have been documented in the literature [3,4]. For example, the success

of the FEATURE system indicates that a great deal about these acoustic features

is known. But continuous speech has the problem of ambiguous letter boundaries,

which means the acoustic features cannot be solely relied upon for a.. r'ate recogni-

tion. However, the letter recognition task is aided by syntactic constrainti on letters

and the insertion of glottal stops. Unfortunately, continuously spoken letters are

subject to gemination errors as well, especially at boundaries between vowels.

4.2.2 Lexical Constraints on Letters

Spelled strings differ from ordinary speech in a number of ways. First of all, they

are composed of a limited set of symbols, namely, the twenty-six spoken letters

of the alphabet. The letters contain only twenty-six of the forty phonemes found

in English, and the possible combinations of phonemes that may occur in spelled

strings ii limited. For example, if a phoneme is known to be /c/, it must be followed

by either /f/, /1/, /m/, /n/, /s/ or /ks/ because it must be part of one of the letters

F, L, M, N, S or X.

Even less specific phonetic constraints, such as broad classification by manner
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FRICIVOWEL VOWELAFF VOWEL STOPIVOWEL

C H A B

V E D

Z I K

0 P

A G T

Figure 4.1: Letter combinations for [FRICIVIVI[AFFIV[SIV]

* of articulation [21,71, greatly reduces the possible sequences of letters that could be

found in a spelled string.

For example, the word CHAT when spelled, can be phonetically transcribed

using broad manner classes as

[FRICATIVE] [VOWEL [VOWEL] [AFFRICATE] [VOWEL] [STOP] [VOWEL]

The only letters that can begin the string are C, V and Z, because they are

the only ones that are composed of a fricative followed by a vowel. Similar state-

ments can be made about the other segments in the string, and all the possible

combinations of letters are shown in Figure 4.1.

Another distinctive property of spelled strings is that most syllables are stressed.
This characteristic is beneficial to recognition because the acoustic-phonetic features

of stressed syllables are clearer and easier to extract than those of unstressed or

reduced syllables.

1 %%',. . . : . . .. . . . ..~ •' ,- . . .,* ,,, :-..-. .v ' 4K1.'-" .".'v.,-.\'-. "..
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4.2.3 Glottal Stop Insertion

One of the most interesting characteristic of the spelling corpus is that it contains

a far greater number of glottal stops that would be found in ordinary speech. The

average number of glottal stops in the corpus is about 2.3 per string. A closer look

at this feature may lead to an understanding of the properties of glottal stops and

why they are so prevalent in spelled speech.

In Chapter 1, differences between isolated and continuously spoken letters were

discussed. We surmised that for the problem of finding letter endpoints in con-

tinuous speech, letter boundary detection would not be easy, because finding word

boundaries in ordinary continuous speech is a difficult task.

If this is truly the case, then it is to be expected that attempts to recognise

spelled speech would be prone to a large number of insertion or deletion errors.

However, in the auditory perception and spectrogram reading experiments described

in the previous chapter, both listeners and readers made far more substitution

errors than insertion and deletion errors combined. 68% of the listeners' errors

were substitution errors, and 21.5% were either insertion or deletion errors. Results

for the readers are more striking: 92% of their errors were substitutions, while only

7% were insertions or deletions. In fact, both listeners and readers chose the correct

number of letters very accurately (98.1% and 96.2%). This leads to the conclusion

that finding letter boundaries in spelled speech is not as difficult as anticipated.

It appears to be the case that when people spell words, they know from expe-

rience that many letters are easily confusable. As a result, they tend to enunciate

clearly to make the letters easier for listeners to recognize. In sonorant regions of

speech, the consequence is often the insertion of glottal stops.

Glottal stops are produced by a change in the rate at which the vocal cords

vibrate by a sudden closing and opening of the glottis during voiced speech, without

changing the rest of the vocal tract configuration 17, pp. 38-421. Acoustically, this

means that the speech waveform becomes irregular in the fundamental period, but

_ ~....................... .............................-..... :.......:.-:. .
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"."

i]oil

Figure 4.2: An example of a glottal stop

the forniant frequencies remain the same. Figure 4.2 shows an example of a glottal

stop.

Glottal stops account for 17.2% of the phonetic segments in the spellng corpus,

and 99% occur between letters, forming clear letter boundaries. The other 1% of

the glottal stops occur between a //or /if and a vowel. In all cases found, the

preceding letter is an M, N or H. Figure 4.3 shows an example of this type of glottal

stop insertion. If the inserted /a/ is considered to be part of the preceding letter,

then all glottal stops occur at letter boundaries.

Although there are many situations in which two vowels are adjacent in the

phonermic transcription of a string, these vowels are often separated by a glottal

stop in the phonetic transcription. In the spelling corpus, glottal stops were inserted

between 66.5% of the adjacent vowels, while an additional 22.2% were separated by

a glide. This meant that in the spelling corpus, the sequence [VOWEL]/?/[VOWEL]

.o ..

L "



.9 CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 61
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Figure 4.3: An example of an inserted /a/ in the word NEN (/cn~iycn/)

was six times more common than the sequence [VOWEL][VOWEL] and three times

more common than [VOWEL] [(inserted)GLIDE[VOWELJ.

Speakers tend to deliberately insert glottal stops between vowels: 60.2% of the

glottal stops in the corpus occur between vowels, and an additional 16.2% occur

before a word-initial vowel. All of the remaining glottal stops occur either in the

r. environment [VOWEL)/?/GLIDE or [GLIDE]/ /VOWEL. Since so many vowels

are separated by glottal stops, the likelihood of insertion or deletion errors is re-

duced. This is confirmed by the fact that the number of insertion and deletion errors

was small in both the auditory perception and spectrogram reading experiments.

A closer look at insertion and deletion errors reveals that listeners and readers

respectively made about 71% and 80% of their insertion and deletion errors on

vowels, and about 14% and 20% on glides. As discussed in Chapter 3, most of these

errors occur in short, rapidly-spoken strings. In these cases, fewer glottal stops are

inserted and vowel durations are shortened, making. insertion and deletion errors

. .. . .. .. .-... :. .. .. . . , ,,, , -, .-. '::<-' N N
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Figure 4.4: KRAAL /keyareyeycl/

more likely.

4.2.4 Analysis of Vowel Gemination Errors

Another anticipated problem in spelling recognition is that of errors due to gemi-

nation, that is, the blending of two similar or identical into one. An example of this

is recognizing the string BEET as BET by mistaking /iyiy/ for /iY/.

When gemination occurs in ordinary continuous speech, the total duration of

the two segments is usually lengthened, but the total duration is less than twice the

combined durations of the individual segments in other contexts. In the spelling

task, single vowels are sometimes mistaken for two consecutive vowels, and vice-

-

versa. Figure 4.4 shows the spelled string KRAAL. In situations such as this, the

number of vowel segments in the region may be determinied from its duration.

A study of [VOWEL) and [VQWEL11VOWELJ regions confirms this hypothesis.

@4
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The average duration of single vowels is 142 milliseconds and average duration of

vowel pairs is 286 milliseconds. Some examples of duration distributions are shown

in Figures 4.5a and b. It can be seen that the duration of two consecutive vowels is

* almost exactly double that of a single vowel, suggesting that gemination of vowels

does not greatly increase the difficulty of the task.

According to Klatt [I11, the median duration of a stressed vowel is 130 millisec.

onds. The longer average duration of these vowels may be attributed to the fact

that approximately 75% of the vowels in this corpus are tense. Figure 4.6 shows

smoothed distribution for durations of tense and lax vowels. The tense vowels in

this corpus, /iy, ey, ay, a, ow, u, u, z/, have an average duration of 155 milliseconds,

while the lax vowels, /C, A, i/ have a average duration of 117 milliseconds. A table

of average durations of individual vowels spoken by male speakers can be found in

Table 4.1.

9 •In ordinary continuous speech, pre-pausal lengthening tends to increase the du-

ration of phrase- or sentence-final segments [1]. This trend is also found in the

spelling corpus. The average durations of vowels in string-final and non-string-final

* positions are 201 and 139 milliseconds, respectively (Figure 4.7).

4.3 Comparison of Errors

The results of the experiments described in Chapter 3 confirm that some of the

letters of the alphabet are easy to distinguish from each other acoustically, but

some are very difficult. As discussed in Chapter 2, some letters are similar in their

phonological structure, with the vowel portion of a letter being similar or identical.

While the vowel serves to reduce the number of letter candidates, the rest of the

letter, usually a relatively small part of it, must provide the acoustic information

necessary to make a final decision. As an illustration, consider a letter whose

structure is known to be [CONSONANTJ/i7/. Given this information, the letter

4'.
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Figure 4.5: Duration# of (a) Single Vowels and (b) Vowel Pairs
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- Vowel js(inec) a~ (msec) # of Tokens

p.-.il 146.7 47.9 1027

ey 157.6 44.2 324

Gy208.8 48.7 273

o140.7 33.6 205

ae138.2 22.9 7

ow 157.2 42.9 188

u 138.4 54.9 81

u 113.6 42.1 51

C121.3 33.1 639

58.6 25.9 28

A 77.2 21.8 28

~OVERALL:] 146.0 [50.3 2851

Table 4. 1: Statistics for Vowel Durations
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Figure 4.8: Spectrogram of S (/csl) and F (/cf/)

could be either B, C, D, G, P, T, V or Z.

Based on existing speech recognition systems' performance, 19,14,51, we can hy-

pothesize that they would be able to recognize acoustically dissimilar letters. How-

ever, such a system would probably have great difficulty distinguishing some letters,

such as M and N. It is therefore instructive to focus on errors made by subjects of

the auditory perception and spectrogram reading tests described in Chapter 3.

One of the questions that arises from analyzing the results is why the listen-

ers made different mistakes from the spectrogram readers. Although listeners and

readers sometimes made the same type of mistake (e.g., substituting B for D), one

of the groups made it proportionately far more often than the other, and usually

not on the same particular token.

An illustration of the difference in results is shown in Figure 4.8. The figure

shows a spectrogram of the letters S and F, which is a pair of letters that the

:i~ ~ ~ ~ ~ ~ ~~~r at:... ... .... " ".-".''..-.:. ". ''""''-. '"? - ..i..:::i
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listeners confused more often than the readers. Spectrogram readers can distinguish

between the /s/ of S and the /f/ of F more easily than listeners can because they

can see the difference in energy between the two phonemes in the mid-frequency

range more easily than listeners can hear it. Spectrogram readers performed poorer

in other instances, presumably due to the fact that they had not learned to utilize

subtle acoustic cues. From this we may conclude that listeners and readers make

. different errors because some acoustic cues are more obvious to listeners than to

- readers, and vice-versa.

When examining the errors, we should focus on those made by spectrogram

readers rather than listeners, because spectrogram reading makes explicit use of

* acoustic-phonetic knowledge that can potentially be extracted and implemented in

a recognition system. Also, the emphasis should be placed on studying substitu-

' tion errors, since they comprise 68% and 92% of listening and reading test errors,

respectively.

Substitution errors made in these tests were described in Chapter 3. Some of

the errors were symmetric; Letter I was mistaken for Letter 2 about as often as

Letter 2 was for Letter 1. Other errors were asymmetric. Why these asymmetric

errors occur and how they can be resolved are questions that may be answered by

examining specific asymmetric confusions.

4.4 Analysis of Readers' Asymmetric Errors

Some of the most common asymmetric errors are listed in Table 4.2. Together, they

comprise 30% of all asymmetric errors.

The letter R is more likely to be called an I than the other way around, and

an examination of I-R errors helps explain why these confusions occur. Figure 4.9

- shows a spectrogram of the string CRUR, which was transcribed as CIUR by a

-. spectrogram reader. Unlike the second R, the first R of the string does not have
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Letter Pair # of Errors

vw 1st 2nd 1st mistake for 2nd 2nd mistaken for 1st

%I R 2 6

1 0 2 5

G P 0 61

*Table 4.2: Most Common Asymmetric Errors Made by Readers

'St

.4 A

Figure 4.9: Spectrogramn of CRUR (/$iyaryuczr/)
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(a) (b)

Figure 4.10: Spectrograms of (a) /'ay/ and (b) /,ar/

a low third formant characteristic of /r/. Instead, it is raised due to the influence

of the following /y/, causing it to strongly resemble /ay/, shown in part (a) of

Figure 4. 10. Most of the R tokens that were mistaken for I were followed by /y/ or

/i/. Part (b) shows a typical /ar/, and a comparison of the two shows that if an R

is followed by a segment that raises or lowers the second and third forinants, it can

be confused with an I.

The asymmetric confusion between I and 0 has a similar explanation. 0 was

more likely to be mistaken for I than vice-versa, and an examaination of the tokens

on which this error was made show why. If 0 was followed by U, it was sometimes

* called 1, because, as in the I-R confusion, the third formant of the 0 was raised from

its characteristic low position (see part (a) of Figure 4.11) to a higher frequency

more ty,.Acally seen in the letter I (shown in part (b) of Figure 4.11). Once again,

'I tic
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uu

(a) (b)

Figure 4.11: Spectrograns of (a) /o'/ and (b) /al/

as in the previously described confusion, the right context of the 0 can cause it to

be mistaken for 1.

This explains why 0 and R are sometimes called 1, but it does not explain why

the reverse is not as common. In order for I to be called an R or 0, it could be

followed by a segment that lowers the third and second formants, respectively. This

situation did not occur in the spellng corpus. However, it was found that both

1.R confusions occurred when I was at the end of a string. Segments at the ends

of utterances are subject to pre-pausal lengthening, and this makes the formant

transitions more gradual than is usually seen in /ay/. Also, the signal near the end

of an utterance can be noisy due to excess aspiration, and in both confusions, the

trajectory of the third forinant was hard to track. Both of these characteristics are

C shown in Figure 4.12 for the last two letters of the string RIANCEPI. The figure

• t-- .
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LA LO 1* z! U1 LI 14 L

il

Figure 4.12: Spectrogramn of P1 (/piya7/)

shows the last two letters, P1, which were transcribed by a spectrogram reader an

* PR.

1-0 confusions occurred when the right context of the I caused the second for-

mant of /ay/ to be lowered so that it resembled /owl/. Figure 4.13 shows a spec-

trogram of IL, the last two letters of the string MISTIL, which were transcribed by

the reader as OL.

The third asymmetric confusion in the table is for G versus P. The letter P was

mistaken for G six times, but the opposite mistake was never made. A closer look

at this confusion reveals that 5 of the 6 P-G errors were made when P occurred in

a string-initial position, as shown in the spectrogram of P from the string PRIN in

part (a) of Figure 4.14. String-initial /p/ is unusually strong and the release contains

a great deal of aspiration noise, so that it resembles the inshown in Figure 4.14b.

An ordinary /p/ is far less likely to be mistaken for a //,since it has the pencil-

, %'

A,!t ' '
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Figure 4.14: Spectrogram of (a) P (/piy/) and (b) G (/J'iy/)
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thin burst and comparatively little frication noise. Also, /17 is voiced while /p/ is

unvoiced, and evidence of this distinction is usually seen by examining the voice bar

and voice onset time of the segment. The voice bar is found in the closure portion

of voiced stops and affricates, and is caused by tissue vibration around the neck.

The voice onset time is shorter for voiced segments than unvoiced ones. However,

sentence-initial segments usually do not contain prevoicing, whether or not they

are voiced, so that cue for distinguishing between /p/ and /J/ is not available to

the reader. Therefore, he is forced to rely on the presence of aspiration noise in

the burst and voice onset time, both of which are misleading for /p/. These /p/

segments are not pathological, they are merely products of overarticulation which

can sometimes be a problem.

Examining specific asymmetric confusions has led to some interesting insights

as to why they occur, and allows us to conclude that such confusions arise because

the acoustic properties of some phonemes are modified when they occur in certain

phonetic environments. These confusions may be resolved if context is taken into

account when attempting to recognize the letter.

4.5 Analysis of Readers' Symmetric Errors

4.5.1 Introduction

While some confusions are asymmetric and can be explained and resolved by taking

their context into account, others occur independent of phonetic environment and

are more symmetric. Symmetric errors are more prevalent than asymmetric errors,

and they occur presumably because subjects cannot find the right acoustic-phonetic

cues for distinguishing between certain pairs of letters or phonemes. Resolution of

these errors may be possible by studying the confusing pairs and finding acoustic

cues for distinguishing between them.

Spectrogram readers made fifty-one different substitution errors, but the four

O4
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most frequent confusions, G-T, A-E, M-N and O-L together comprise 42.8% of the

total. If acoustic cues can be found for resolving these symmetric errors, the number

of confusions and the overall error rate will be drastically reduced. Therefore,

we conducted a set of experiments focusing on finding acoustic features that can

distinguish these letter pairs.

4.5.2 Description of the Experiments

In these experiments, acoustic features are used to determine the identities of letters.

However, the conditions under which these experiments are performed differ from

those of the auditory perception and spectrogram reading experiments. First of all,

in this experiment, the endpoints of the segments we are trying to recognise are

given: that is to say, we assume that segmentation of the signal has already been

done. Also, the decision being made here is a binary one: the segment in question

must be one of only two. These two combine to make the task easier than that of

the listeners and spectrogram readers. Other differences between the experiments

include difference in information given about speaker identity. Listeners were given

no speaker information, readers were given speaker identities, and in the acoustic

resolution experiment, male tokens were separated from female tokens.

Most of the acoustic resolution experiments were performed on male data only.

Because of the smaller dimensions of the female vocal tract, the fundamental fre-

quency of female speech and is higher than for male speech. The optimal window

for processing male speech is too long for female speech [17, pp. 310-3141, which

means that the frequency resolution of female speech is greater than desired. As

shown in the spectrogram of Figure 4.15, strong harmonic structures, particularly

in the region around the first formant, are often present for female speakers. A

trained spectrogram reader has learned to ignore these extraneous spectral peaks.

! However, automatic formant trackers will have a great deal of difficulty with them.

For this reason, female speech is not used in most of these experiments.

E,/
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LI tinL ,

----

Figure 4.15: Spectrogram of R (/or/) spoken by a female speaker.

Different acoustic parameters determined by examining approximately 90% of

the data. Once the appropriate parameters were determined from the training

data, these cues were tested on the remaining 10% of the data to determine their

effectiveness.

4.5.3 G-T Confusions

The most common substitution error made by spectrogram readers was mistaking
G for T, and vice-versa. Spectrograms of the two letters are shown in Figure 4.16.

The confusion is between the /t/ in T, which is often unusually strong in spelled

speech due to overarticulation, and the /r/. Two features were used to resolve this

confusion. The first is the presence or absence of voicing in the closure portion
of the consonant, before the burst. Since /j/ is voiced and /t/ is not, we would

expect to see some prevoicing during the closure for /I/ but not for /t/. This is

04
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a good feature except for string-initial G and T tokens, because prevoicing does

not ordinarily occur at the beginning of an utterance. The second feature is the

characteristics of the noise following the burst. Since /T/ is an affricate, it contains

frication noise, and since /t/ is a stop, it contains aspiration noise. Frication noise

tends to have a fiat spectrum, while the aspiration noise contains peaks in energy

around the higher formant frequencies of the following sonorant. For /t/ this means

that the second and third formant are visible in the noise, as can be seen in Fig-

ure 4.16. This difference in noise type is expressed quantitatively by the amount

of energy found in the region 3100-3600 Hs for males. For /t/, this represents the

region between the emerging third formant and higher-frequency frication noise.

Even though the appropriate frequency band varies from speaker to speaker, such

variability is greatly reduced since all the /t/ tokens are followed by /iY/.

The results of this experiment are shown in the first row of Figure 4.17 with

the training and testing accuracy rates combined, along with the results from the

auditory perception and spectrogram reading experiments. The results from this

experiment are shown for male speakers only, whereas the results from the other

experiments are for both male and female speakers. These results are shown in

the form of confusion matrices that indicate how well each individual confusions

are resolved. Average error rates are shown in Figure 4.18 for easier comparison

of overall results. It can be seen from both figures that while listeners have the

best performance record for distinguishing G from T (99.5% correct), the acoustic

resolution test using only one or two acoustic features has a higher accuracy rate

than spectrogram readers (96.8% versus 89.9%).

4.5.4 A-E Confusions

The second largest group of substitution errors were A-E confusions. Spectrograms

of these two letters are shown in Figure 4.19. The formant trajectories of the vowels

/eY/ and /jy/ are sometimes modified by phonetic context in such a way as to cause

IAt
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Ia.

Guessed Letters (%)

p Acoustic

Listeners Readers Experiment

G T G T G T

G 100 0 G 89.3 10.7 G 94.6 5.4

T 0.9 99.1 T 11.5 88.5 T 0.9

E A E A E A

E 99. 1 0.9 E 97.38 2.

Lq A 0 100J A A . 9.

0 L 0 L 0 L

0 o 0 98.4 1.6 0 0 94.4 5.6

L 100 L-10.3 89.7 L 4.5 95.5

M N M N M N

M 98.5 1.5 M 0  M 80.3 19.7

N 0.8 99.2 N . N 6.2 93.8

Figure 4.17: Analysis of Worst Substitution Errors
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V Figure 4.20- Spectrograms of ME (/ciy/)

them to be mistaken for each other. As shown in Figure 4.20, for example, if the

letter E is preceded by the letter M, the /m/ of the M can lower the second formant

of the following /j7/ so that it resembles /e 7 /.

A number of acoustic features were tested on the A and E 6'c'kens, and it was

found that the best separation results were obtained when the tokens were separated

according to left phonetic context. Tokens preceded by phonemes such as /1/, /w/

or /m/ were partitioned from the rest, and then the same features were used to

resolve tokens in both groups. The two features used were the average value of the

first and second formants across each token, which are generally lower for /iY/ or

/ey/ preceded by /1/, /w/ or /m/.

A-E confusion matrices and overall error rates for the three recognition experi-

ments can be found in Figures 4.17 and 4.18, respectively. A comparison of results

for this experiment to those of the previous recognition experiments show that, as

-
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Hil

a..-... a..& a

IL I 1. IIL

(a) (b)

Figure 4.21: Spectrograms of (a) 0 (/o'/) and (b) L (/rl/)

in the case of G-T, the listening te elded the highest accuracy rate (99.5%),

followed by this acoustic resolution ext.ariment (98.3%) and the spectrogram read-

ing experiment (97.0%). Once again, a careful acoustic analysis gives better results

than those obtained by spectrogram readers, and this not only be because formants

were more accurately measured, but also because the identity of the left phonetic

context was known.

4.5.5 O-L Confusions

Spectrogram readers also had difficulty distinguishing 0 from L. At first glance, this

confusion is a surprising one, since the acoustic differences between these letters are

evident to a listener. However, the letters are actually very similar acoustically,

so much so that even listeners occasionally mistook one for the other. Figure 4.21

04,
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shows spectrograms of the two letters which demonstrate the resemblance between

the letters; each is composed of a vowel followed by a semivowel. The semivowels,

/w/ and /1/ are one of the most difficult pairs of English phonemes to resolve.

Efforts made to use the semivowel part of each letter to help distinguish them from

one another proved fruitless, so attention was instead directed towards the vowel

portion.

The vowel of 0, /o'/, is a back vowel, while the vowel of L, /c/is a front vowel,
so the average value of the second formant is a good feature for distinguishing

between them. However, using the average value of the formant over the entire

vowel yields poor results because the following semivowel lowers the last part of the

second formant, resulting in average second formant frequencies for /ow/ and /e/

that are virtually the same. Using the average second formant calculated over the

first seventy-five milliseconds of vowel gives better separation results.

As in the A-E resolution experiment, the vowel formants are modified by the

phonetic environment, so the data is partitioned by context and the same features

is used to distinguish 0 tokens from L tokens within each group. Here, tokens that

are preceded by phonemes that tend to raise the second formant, such as /iy/, /y/

and /1/, are separated from the rest.

Besides the average value of the beginning of the second formant, duration of

the vowel segment is also helpful for resolving O-L confusions. The vowel /E/ is a

lax vowel, while /o/ is not, and therefore typically has a shorter duration than

/o-/.

Using these two features, we can acoustically resolve 0 and L tokens with an

overall accuracy rate of 95.0%. This is a higher accuracy rate than that obtained

by spectrogram readers (94.0%), but, once again, the listeners' performance was

significantly better (99.2%).

4.5.6 M-N Confusions

,, . . .. . -. _. < ... . .. , -: ,; ; " .. _,.. .,. ',o.', .. . . .. . . . . . ...... . . . . . . . . . . . . . . . . . .-.. . .-. .-. .. .'
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The letters M and N are the final pair of symmetric confusions to be examined.

This confusion was often made not only by spectrogram readers, but by listeners

as well. Spectrograms of M and N are shown in Figure 4.22. Both M and N consist

of the vowel /c/ followed by a nasal, /m/ or /n/.

Acoustically, the letters M and N are almost identical. The primary difference

between them is in the place of articulation The place of articulation, labial for /m/

and alveolar for /n/, influences the trajectory of the preceding vowel. Figure 4.22

shows that in M, the labial /m/ causes the formants of the preceding /c/ to fall

sharply at the end of the vowel. An examination of the formant frequencies of N in
I.

the same figure show no such rapid changes in /c/.

S"The second formant of /c/ in M is affected by the following labial more than

the other formants, while the second formant of // in N is more stable than other

formants. The locus for the second formant of an alveolar sound is approximately

1800 Hs for male speakers, so we would expect that the second formant of /c/ would

be at that frequency immediately before the /n/, and that it would be fairly level.

A good way to express this difference quantitatively is as a measure the slope of the

second formant during the last ten milliseconds of the vowel.

E Using this feature, an attempt was made to separate M tokens from N tokens. As

in the previous experiments, comparisons of the results of the auditory perception,

spectrogram reading and acoustic resolution experiments are shown in Figures 4.17

and 4.18. This time, both the overall accuracy rates of the auditory perception

and spectrogram reading experiments (98.9% and 90.8%) were better than those

obtained in the acoustic resolution experiment (87.1%).

The fact that this acoustic resolution experiment did not yield better separation

results than those obtained in the spectrogram reading experiment is due to two

factors. First, unlike the other acoustic resolution experiments, only one feature

was used to try to accurately partition the data. All three of the other experiments

used two features, and higher accuracy rates than those in the spectrogram reading

-Pd
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experiment were obtained. Obviously, the feature used did not adequately capture

the acoustic differences between M and N. Second, as was mentioned before, the

techniques used in these experiments to find formant frequencies do not work well for

female speech, and sometimes perform poorly on male speech. Formant information

is imperative for resolving many confusions. However, formant tracking is error-

prone, which partially explains the difficulty in acoustically resolving M and N.

Since only the last ten milliseconds of the vowel were used, this meant an error in

formant tracking could not be smoothed out very well.

There are two paths that may be taken to better resolve this confusion. First of

all, the acoustic resolution experiment can continue as before, and other features can

* •be tested to see how well they separate the tokens. For example, the nasal murmur

itself has not yet been used to try to distinguish N from M. According to Glass

. - [61, there are some spectral differences between /m/ and /n/, but they are usually

diminished in a large data-set such as this because the differences are speaker- and

context-dependent. However, in this experiment, speakers are separated by sex and

the left phonetic context is the same for all tokens. Features of the nasal, along

with better measurements of formant movement at the end of the vowel may lead

to better separation of M tokens and N tokens.

Secondly, a different approach developed by Seneff [19], in which the spectrum of

the vowel portion of a letter is characterized without specifically tracking formants,

may be the answer. This method, which incorporates a non-linear auditory model

into the analysis of vowel spectra, yields spectrographic representations of these

vowels that consist of a series of lines, called "line-formants." Once obtained, these

line formants contain enough information about formant frequencies and trajectories

to be used to discriminate between vowels.

Line formants for /E/ followed by /m/ and /n/ are represented in a two-dimen-

sional probability distribution of the frequency and slope of the lines, and are shown

in Figure 4.23. It can be seen that acoustic differences between the two sets of /c/

-'-." -. *. .. . . -. '. . . - • . .... - . .... i. '" ." ".' -'' .. i- ', : ... .l -'
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Figure 4.23: Line formants for /c/ followed by /mn/ and /n/

J

dp



,O

CHAPTER 4. ACOUSTIC STUDY OF SPELLING CORPUS 88

Proposed Letters (%)

Training Testing

.4.M N M N

'.-~ M 88.6 11.4 N 88.2 11.8

M 15.4 84.6 N 24.2 75.8

Figure 4.24: Resolution of M vs. N using Line Formants

tokens are accentuated by the application of the auditory model. In a preliminary

experiment using the majority of /c/ tokens for training and the remainder for

testing, the auditory model was used to attempt to discriminate between M and N

tokens. The results are shown in Figure 4.24.
.The overall recognition rate for this test, which was performed on both male

and female data combined, was 88.6% for training data and 82.0% for test data.

Although this is lower than the rates obtained in the other recognition experiments,
the data does include both male and female speakers. This approach seems to

be promising and may eventually lead to improved resolution of M-N and other

confusions.

4.6 Conclusions

Spelled strings differs from ordinary continuous speech in three major ways: spelled
A' .. strings are composed of a smaller phoneme set and a limited number of permissible

phonetic sequences within letters, they are primarily made up of stressed syllables,

and they contain a far greater number of glottal stops. All of these features can be

'1. used to facilitate continuous letter recognition.

Errors made in trying to recognize spelled strings are primarily susbstitution

S-4.:
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ones. Other errors, which result from not being able to find letter endpoints within

a string, do not often occur because natural boundaries formed by, among other

things, glottal stops, help to segment strings into letters. Some substitution errors

q* were asymmetric, and occur because the effects of coarticulation cause one letter to

resemble another, while the opposite problem does not occur. These errors may be

resolved by taking the phonetic environment of a letter into account when trying

to determine its identity.

I.. Other errors were symmetric, and tended to occur independent of context. By
measuring certain acoustic differences between the letters, three of the four worst

symmetric confusions were resolved with a higher accuracy rate than that obtained

by spectrogram readers, who used a similar approach.

These results lead to two conclusions. First of all, since better overall perfor-

mance than spectrogram readers was achieved in these acoustic resolution experi-

* Wments, using only one or two simple and rather crude acoustic measurements, we

expect that accuracy results would be even better if a greater number of more so-

phisticated acoustic features were used. Second, since the accuracy rate for these

experiments is so high for these difficult confusions, we expect even higher accu-

racy rates for other, less acoustically similar confusions. Therefore, we hypothesize

that if spectrogram readers can achieve an accuracy rate of approximately 91%

using only acoustic-phonetic information, a spelling recognition system using only

acoustic measurements similar to those described in the above acoustic resolution

experiments may be able to achieve an even better performance rate.

S.,



Chapter 5

Conclusion

5.1 Summary of Results

Although acoustic-phonetic information is important for recognition, it is not suffi-

cient; continuously-spoken letters are difficult to recognize due to acoustic similari-

ties between some of them. Information from other knowledge sources may aid in

spelling recognition.

In the general continuous speech recognition problem, syntactic constraints may

be exploited to facilitate recognition. In continuous letter recognition, if the task is

restricted to recognizing spelled words, then knowledge of the rules of spelling can

improve accuracy.

Knowledge of spelling rules aids in continuous letter recognition because lexical

constraints on words are strong. A lexical study conducted using the MPD showed

that not only were some letters and sequences of letters much more likely to occur

than others, but also that there were a limited set of letter combinations that

were permissible. The predictability of English was demonstrated; the more letters

known in a word, the greater the constraints on what the other letters could be and

the greater the redundancy of information contained in the word.

Both acoustic-phonetic and lexical information are used to achieve recognition of

3.. 90
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ordinary spelled words. However, it is difficult to determine how much information

is derived from each of the knowledge sources. Although acoustic-phonetic informa-

tion alone is not adequate for perfect spelling recognition, its actual performance

rate is not known. Determining the sufficiency of acoustic information shows the

relative importance of each of the available knowledge sources.

Spelling recognition experiments were conducted using a corpus composed of

words and 'wordlike" non-words to determine the adequacy of acoustic-phonetic

knowledge alone. In an auditory perception experiment, listeners achieved an ac-p curacy rate of 98.4% and in a spectrogram reading experiment, spectrogram read-

era achieved an accuracy rate of 90.7%. These results show that listeners may

rely almost exclusively on acoustic-phonetic information to recognise continuously-

spoken letters. Also, spectrogram readers, who use similar recognition techniques

as would be used by a spelling recognition system, perform fairly well using only

acoustic-phonetic information. Adding lexical information and doing a more sophis-

ticated acoustic analysis should further increase the accuracy rate of the acoustic-

phonetic feature-based approach used by spectrogram readers. The next step is

to explore possible ways of integrating information from the acoustic-phonetic and

lexical knowledge sources.

5.2 Integration of Knowledge Sources

Based on the results of the spectrogram reading experiment, the assumption that

we can develop a fairly accurate spelling recogniser using just acoustic-phonetic

information and the techniques used by spectrogram readers is a valid one. Spelled

speech possesses certain acoustic characteristics which are not found in ordinarily

continuous speech. These include a limited vocabulary and phoneme set, a large

number of glottal stops and a predominance of stressed syllables. These features

may be exploited to aid in recognition.

. ...................... ....... . ... ......................... .... ...-... "....'...--... ..-... -.'---.
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s ie e eti

4-. z

Figure 5.1: Phonetic transcription lattice for the word CHAT.

Letter Lattice

z H A

Figure 5.2: Letter lattice for the word CHAT.
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Oth Order lit Order 2nd Order

CHAT 947.8 1.0921 .00381

ZHAT 20.97 0 0

ZAJT 0.589 0 0

CAJT 26.698 0 0

Table 5.1: Path probabilities (x 10-4) using Markov Models

Acoust c-phonetic information alone can reduce the number of possible letter

transcriptions of a spelled string. As an example, suppose we are asked to recognise

the spelled string CHAT. Using only acoustic information, a phonetic transcription

lattice, shown in Figure 5.1, may be obtained. Using knowledge about the phonetic

*P characteristics of letters, the phonetic transcription lattice can be translated into a

letter lattice, which is shown in Figure 5.2.

Any one of the paths shown in the letter lattice of Figure 5.2 is acoustically

valid. However, only one at most is actually correct. The next step is to determine

the best way to decide which path to follow.

One approach is to simply follow the best acoustic path. When creating the pho-

netic transcription lattice, the signal is segmented and one or more phonetic tran-

scriptions is proposed for each segment. Ordinarily, the transcriptions are ranked

according to probability of correctness, and this ranking could be taken into account

when determining the final transcription of the word.

The fact that there is more than one reasonable path proves the insufficiency of

acoustic information. However, if the letter string must form a word, then knowledge

of the syntax of English words as expressed by the rules of spelling can be used.

Lexical information can be applied toward finding the best path through the lattice

to come up with the most likely word candidate.

....
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Lexical Lookup

Table

Phonetic Transpti Path Through Word

Waveform Classifier Lattice Po
Lattice

Figure 5.3: Proposed spelling recognition system.

The application of lexical knowledge can be demonstrated using CHAT once

more as an example. Information about the frequencies of letters and letter se-

quences gathered in the previously-conducted lexical study can be used to find the

best path through the letter lattice. Table 5.1 lists path probabilities using zeroth-,

first- and second-order Markov Models. The order of the Markov model describes

how many past states are used to determine the probability of the proposed next

state. For example, in a second-order model, -given that a two letter sequence is

"-.. CH, what is the probability that the next letter of the sequence is A? From the
table, it can be seen that no matter which Markov model is used, the best path is

always the one for CHAT, which also happens to be the only word among all the

candidate strings.

The example described above shows a methodology for recognising words from

their spellings that could be incorporated into a model for a spelling recognition

system. Figure 5.3 shows a block diagram for a proposed recognition system. The

system takes the input spelled speech waveform and performs as fine an acoustic

analysis on it as possible. This acoustic analysis yields a phonetic transcription

- .-.. - . . . . . . . . . - - . . . . . . ..P . . . - . . - , .
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lattice, which is in turn transformed into a letter lattice using the phonetic charac-

teristics of letters as a guide. Lexical knowledge is then applied to the letter lattice

to find the best path through it, and the result is an orthographic transcription

0 that hopefully corresponds to the input spelled word.

5.3 Suggestions for Future Work

There are many ways in which this work may be extended. First of all, the acoustic

study of the spelling corpus can be continued in an effort to find out more about

acoustic-phonetic features particular to spelled speech. Also, ways to better resolve

spelled speech acoustically can be explored.

The system described in the previous section assumes that the acoustic analysis

of the waveform will result in detailed segmental classification in order to obtain

a sparse letter transcription lattice. However, as was demonstrated in Chapter 4,

even broad classification reduces the number of possible letter sequences due to the

structural characteristics of letters. Although broad classification generally leads to

a more dense letter transcription lattice than detailed classification, lexical knowl-

edge may still be able to find the correct path through the lattice. Experimentation

would indicate how detailed the segmental classification should be in order to obtain

accurate orthographic transcriptions.
C Work can also continue in the area of fine acoustic resolution. As discussed

in Chapter 4, although the most difficult confusions could be resolved with a few
acoustic parameters better than by spectrogram readers, the accuracy rates ob-

tained were still not in the same range as those realised by the listeners. It may be

possible to further improve scores by using more sophisticated features. Also, using

alternate means of representing the signal, such as in the form of line formants, may

provide another way of improving recognition scores.

The lexical study should also be extended because more information about lex-

.. . % n
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ical constraints are needed. Although the statistics obtained about the frequency

and existence of letter sequences are powerful and very useful to this task, they do

not fully capture the rules of spelling. The inherent structure of words has not been

exploited; for example, the rule that all words must contain at least one vowel letter

(i.e., A, E, I, 0, U or Y) has not been used.

Although substitution errors axe by far the most common error made in spelling

recognition, other errors, such as deletion and insertion errors, do occur. Ways for

resolving these and other types of errors should also be studied.

In order to implement a spelling recognition system, information from the lexical

and acoustic-phonetic knowledge sources must be combined. The optimal integra-

tion of information from these two sources may be obtained through experimenta-

tion. From the results of the recognition experiments described in Chapter 3, it can

be seen that the primary source of information is acoustic-phonetic, but the proper

weighting of information from the two sources is not yet known.

In addition, the relative importance of knowledge from each of the sources may

vary. In some cases, a fine acoustic resolution of a spelled string is not necessary,

since lexical knowledge can compensate for acoustic uncertainty. For example, in

Chapter 4, attempts were made to disambiguate the four most common substitution

errors made by spectrogram readers. However, not being able to distinguish between

these letters may not matter if the distinction can be made using lexical information.

An analysis of the MPD was conducted to explore this hypothesis. Specifically,

we looked for all minimal pairs of words that differ only in one of the four minimal

pairs of confusable letters that we investigated. For example, the word BAT could

be confused with the word BAG if T were confused with G. Table 5.2 shows the

percent of words containing at least one of the confusable letters that would be

subject to such a confusion. The table shows that an inability to resolve one of

these confusions matters for only a small percentage of words containing one of the

confusable letters. Therefore, we conclude that perfect acoustic resolution may not

.o.



CHAPTER 5. CONCLUSION 97

Confusable Pair % Confusable Words

G-T 2.3

A- E 2.9

O-L 0.6

M-N 1.5

Table 5.2: Percent of words, that are confusable due to containing one of a confusable

S letter pair

* . be necessary to obtain the correct solution.
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Appendix A

Summary of Letter Frequency

* Statistics

This appendix contains information about letter frequencies to supplement what is

shown in the text of this thesis.

A.1 Equally- Weighted Words

22*

I b 9 8 n 1 m ,

Figure A.1: Histogram of Beginning Letter Occurrences
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Figure A.2: Histogram of Cumulative Beginning Letter Occurrences
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Figure A.3: Histogram of Ending Letter Occurrences
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Figure A.4: Histogram of Cumulative Ending Letter Occurrences
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Figure A.8: Histogram of Ending Letter Triplets Occurrences
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Figure A.9: Histogram of Joint Letter Triplets Occurrences
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A.2 Words Weighted by Frequency of Appear.
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Figure A.14: Histogram of Cumulative Ending Letter Occurrences
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A.3 Statistics for Unweighted Words from Twenty

- Lexicons
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