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ABSTRACT

The design and the implementation of a real-time communication network
has to meet goals of fault-free and timely delivery of messages, as defined by the
applications served by this network. The time constraints of the applications are
projected as stringent constraints on the local knowledge of time. However, the
local knowledge of time in a distributed system requires the use of the communi-
cation network. The accuracy and coherence of this knowledge depend on the
way clocks are synchronized. Therefore, the performance of clock synchroniza-
tion algorithms due to the communication network, is a good criterion for analyz-
ing the adequacy of a particular network architecture to real-time application.

-- 14, this paper,w.ef examinesthe adequacy of LAN architecture for real-time
applications through a delay model of a typical LAN. The model is applied to
various clock synchronization algorithms, and error estimates for these algorithms

are derived. An efficient environment, in which the uncertainties in message
communication elapsed time is significantly reduced, is then described for a lay-
ered protocol architecture. In addition, it is shown that predictable communica-
tion elapsed time can be compensated for in synchronization algorithms,
significantly reducing the errors of these algorithms. .As an example of hierarchi-
cal protocols for this environment, we have chosen tos_ TCP, IP and ICMP.

a This work is supported in part by contracts N00014-87-K-0124 and N00014-87-K-0463 from the Office of Naval
Research to the Department of Computer Science, University of Maryland.

t The authors thank John Zahorjan for his constructive criticism on the initial version of this paper.
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I Introduction

1.1 Scope

The use of distributed systems has widely spread in applications that need high fault
tolerance. It is the relatively simple implementation of independent redundancy that makes
a distributed architecture attractive. Yet, distribution of the processing resources raises
many issues concerning compatibility of different processor types. These compatibility
issues necessitate the use of standardized "conversation" procedures, commonly called
protocols. A very popular distributed architecture is the network architecture. In this
architecture no transparency of resources is imposed on the nodes of the network: each node
accesses resources using their physical addresses. Locally, each node may be implemented
in a different architecture, creating a high degree of heterogeneity. The only common
restriction on the members of the network concerns the use of the proper communication
protocol.

A difficult and fundamental task in a real-time system is the management of a dis-
tributed set of real-time clocks. This set of clocks feed the application programs with the
knowledge of real-time. In addition to the restriction to maintain this knowledge locally
within a strict tolerance, difference between clocks should be strictly bounded as well.
These restrictions are met in a variety of clock synchronization algorithms. Some exam-
pies are given in the appendix. The accuracy of each of the algorithms depends on timing
parameters of the communication network. Only a network whose timing parameters sat-
isfy the requirements imposed by the time constraints of each of its applications may be
adequate for an implementation of a real-time system.

In this paper, we investigate the adequacy of Local Area Networks (LANs) for real-time
synchronization. The paper starts with introducing the real-time constraints and the clock
systems that feed the time to real-time systems. A model for real-time system based on
LAN communication is presented in section 2. Section 3 presents issues and algorithms
for synchronization in the context of the model. In section 4 we consider TCP/IP ([15,13J)
and ICMP ([14]) environment to examine the applicability of the model.

1.2 Time Constraints

A real-time system can be -described as a set of time constraints. Informally speaking,
a time constraint is a requirement to start executing a particular executable object after
a condition is satisfied and to complete the execution before a deadline has passed. The
execution time of the object is assumed to be given, and the constraint is extended to a
periodic execution of the object. The formal definition of a time constraint is based on the
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local knowledge of current real-time C,(t) - t + Ai(t), where Ci(t) is a mapping function
from real time to clock 9" time (see section 3.1) and Ai(t) is the incorrectness of this
clock. This knowledge is expressed using state predicates like

Taft,(Co)

which is true for Ci(t) CO and false otherwise, and

Tbef,(C.)

which is true for Ci(t) _5 C. and false otherwise.
A time constraint is formally defined as the quintuple

< Id, Taft(condition,), cd, fld, Tbef(condition2 ) >

where:

Id is the name of the executable object (process),

Taft (condition,) states the condition after which execution should begin (Simple true
stands for "as soon as possible"),

cd is the computation time of object Id 1,

fld is the frequency at which the computation should be carried out, in case this is a
periodic process. In case of a spontaneous (sporadic) process, this is the maximal
frequency expected (fzi = 0 stands for a single occurence of an execution),

Tbef (condition2 ) states the deadline dYd which should be met. condition2 -C=d(t) = oo
stands for an "off line" computation.

The resources of a distributed real-time system are allocated to execute the set of
time constraints. The resource allocation process and the various schedulers require a
priori knowledge about the execution times in a particular environment. This require-
ment implies a priori knowledge of the communication timing parameters in these optional
environments. Given a particular static allocation, the system can be viewed as a net-
work. Each processing node executes its own allocated tasks, each represented as a set of
time constraints, and communicate with other sites using a communication protocol. The
protocol is used to exchange time information in addition to other functional data.

In order to utse LANs for real-time systems we have to study LAN models and their
clock synchronization algorithms (see Appendix A) to show that a reasonable bounded
synchronization error can be obtained. The clock synchronization error is important for
multiprocess synchronization as well as for the correctness of the knowledge of time.

'If there ae more than one possible configurations to execute this object, then there is a list < azdjk] > for these possibilities.
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Figure 1: Network Interface Unit (NIU)

2 Architecture and Model

Our model is based on the observation that the errors in estimating communication delays
can be decomposed into a deterministic part and a non-deterministic part. The determin-
istic part can be compensated for by an enhanced algorithm, and thereby this error term
may be reduced to the non-determinstic part.

In order to derive a LAN timing error model, we first examine the LAN architecture
as defined by hierarchical models ([17]). Both the OSI seven layer model, and the IEEE
802 standards, are built on top of a physical layer. The second layer in the OSI model is
the link layer, which is represented in the IEEE model by two layers, the medium access
control (MAC) and the logical link control (LLC). All these layers constitute the the local
network (LN) protocols. On top of the local network layers, the higher layers provide a
modular and flexible design environment, but they also introduce the delay and timing
control problems. The architectural issues of these layers are not within the scope of this
paper and for a further review of these issues refer to [17]; the delays and timing control

issues are discussed here in details.

2.1 The Network Interface

Each of the nodes in the system is connected to the communication network through a

network interface (NIU). The network interface interconnects three items: the logical link

4



protocol that is executed on the host, the devices to which (or from which) the data should
be delivered (or got) and the communication medium. A general network interface unit is
described in Figure 1.

The network interface contains servers and drivers. The device servers are used to get
data from the output devices, while the drivers are used to put data to the input devices.
We denote the time required for these actions ter and tnt, respectively.

The data segments that are transferred between the devices and the communication
medium are buffered in input and output buffers. The buffering is controlled by the NIU-
control, allowing buffer filling at the protocol convenience, for various reasons as acknowl-
edgements, flow control, etc. We denote the time a message "waits" at the buffers as
tbu,-in and tbu ow, respectively.

The NIU also composes the frames to be sent, by dividing a long message into fragments
and appending the proper head/tail to the message. The time required for this action is
denoted as t,,P. Similarly, when a message is received it must be identified ("Is it for
me?") and decomposed by removing the head/tail. This time is denoted by t&€,,p. Both
t,,. and t&, contain CRC treatment (generation or check respectively).

The transmission of a message involves acquiring control on the communication medium.
In a CSMA/CD system, attempts to transmit may result in collisions, followed by retrans-
missions according to the persistency of the unit. In a token network, the unit waits for a
free token before attempting transmission. In some other architectures the unit waits for
its time-slot to transmit. We denote the time that elapses from the moment a message is
composed to the moment its successful transmission starts as tat, t.

Once a successful message transmission starts, it takes tzmlt time units to transmit it.
After a propagation delay of tprop, ate it reaches its receiving NIU. The capture mechanism
receives the message, an action that consumes t,,e.

The economical benefits in serving a number of devices with one NIU raise some timing
uncertainties. The state of NIU-control is not known at the time a message arrives, either
from a device or from the communication medium. Hence, it is difficult to predict how
long its response time is going to be. Furthermore, the fact that the logical link protocol
is not synchronized with NIU-control introduces additional time uncertainties:

* Upon sending: from initiation to xmit/attempt.

* Upon receipt: from capture to link protocol interruption.

We denote the time from identification ("It is for me!") to interruption of the logical link
protocol by t,,r. This time can also be expressed as tbuf-in + t+ , in cases data has to
be delivered to an input device. But in cases a message is purely a control function, the
NIU-control can inform the Link protocol in a shorter way, as can be observed in Figure 1.

. .. . .............. l, __ .. _ 4 ll,.,,,,,... i,, ... t,,. . ...
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Figure 2: Delay model for a LAN

2.2 Communication Elements and Timing Uncertainties

A general description of the actions that produce delay in a local area network is given
in Figure 2. The delay is generated and accumulated from the moment a host initiates a
specific activity (e.g., reading a clock) to the moment a remote variable is updated (e.g.,
clock difference). In the general case, we assume there can be an indirect connection
between the two communicants. In such a case relays are needed. For n - 1 relays, n
propagation delays are accumulated during a message transfer. We describe these delay
contributors according to the layered architecture of a local area network. In order to
simplify the description, we start with a restriction of an homogeneous implementation,
i.e., all the NIU's and protocols are the same in all the sites and all the communication
connections are the same. Later, this restriction is released.

2.2.1 Physical layer:

The delay from zmit to propagate to receive depends on properties of the physical layer:

* bandwidth,

* topology,

* medium technology.
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The above, with the frame size, produce a highly predictable delay. As shown above, this
delay can be parameterized, and expressed as

tgftt + tpropagate + trece,,e.

2.2.2 MAC layer:

The MAC activities consist of the the following:

" The attempt/wait phase in the transmission part.

" The frame composition in the pre-xmit phase.

* The frame identification and decomposition in the post-receive phase.

As shown above, this delay can be parameterized2 , and expressed as

tattempt + toomp + tdeco,, .

2.2.3 Link layer:

The link layer initiates sending a message from a device,or a data delivery to a device.
Its activities can be started (in case some conditions are satisfied, as discussed below)
t, r,a after NIU-control identifies a particular message arrived. The activities consist of
the following:

e Moving data from the device to the NIU.

* Filling the output buffer.

* Filling the input buffer.

9 Moving data from the NIU to the device.

As shown above, this delay can be parameterized, and expressed as

tgd + tbyf -ut + tbuy-i. + tput.

Additional time is required for composition of an outgoing frame at that level, as well as for
decomposition of an arriving frame. Similarly, if buffering is used at that level, additional
delay may be introduced.

2 W. assume that although containing non-determinstic components, the MAC and physical layers' contributions to the delays
are bounded. This assumption implies that some LAN protocols (e.g., Ethernet) are not to be used in real-time systems,
because there is no bound for their delays.

7



2.3 A Communication Delay Model

For a specific implementation of a network, we merge the delays due to composition,
decomposition and buffering of all the levels as if one level of the hierarchy generates
them. Yet, in order to complete our model we need to account for another delay, the one
introduced by the application program. We denote it as tagonthm.

To summarize our delay model, let us assume the following:

* One application initiates transmission to another.

• There are n - 1 communication relays between the source and the destination, as
described in Figure 2.

* No recovery mechanism retransmits a lost message without a proper update of its

content, since messages contain timestamps.

* Contention effects are contained within t.t. pt.

We can derive a bound for the total message delay ;d, and sum the maximal value of the
contributors:

tagorthm + n x (tp,.-,,i + ttgtempt + tGnat + tptopagage + treceisve + tpot.-receite)

where:
tpre-znt = tget + tbuf.-out + tconp

tpost-recei e tdecomp + tbu-in + tput.

This bound is too large for any real-time system and we examine an alternative approach,
in which a large portion of the above bound is known a priori and compensated for.

The restriction on having identical elements can be removed, and the delay { of a
message from i to j through the relays r, to rn-I can be written as the following sum
(instead of the above multiplication)'

= to m[i + tattempt[il + tsmtLi + tpropa auj + t .. ,i.. lj) + tdecop[,j) + tigr al [j) + talgorthmj)+

+ E (tcomp[k] + tatt-Pt[kJ + tzmstlk] + twvaggt.[kj + trecee[kl + tdcomp~k] + t,, 4iaki)
k=r1

The adequacy of LAN architecture for real-time applications has been examined before
in a qualitative way ([11]). Our model, as expressed above, provides a quantitative way

3 The indices relate each parameter to a participant node in the network. The index i stands for the source, the index j for
the destination and k for the relays. In the rest of the document we omit the indices for better readability.

. _ .M _ k 8



of expressing the delay of a message delivery in a LAN environment. The above model is
general and may be applied to any local area network topology or protocol. The elements in
the above sum equation contain, in general, a deterministic part and a non-deterministic
part in each of them. However, each of these deterministic parts of the elements can
be parameterized for a specific system configuration, and be uised later in compensation
procedures. We show the principle of such a compensation regarding clock synchronization *
algorithms, but first we introduce the principles of the algorithms themselves.

3 Time Synchronization

In a distributed system, different processing nodes that acquire the knowledge of time from
different clocks need to synchronize these clocks. There are two different synchronization
requirements, each of which originates in a system requirement. On one hand, clocks
should be synchronized with respect to each other to allow multiprocess synchronization.
In other words, the times acquired at any particular instance at distinct nodes should be
close to each other. On the other hand, clock should be synchronized with respect to real-
time, to allow correctness and accuracy of the knowledge of time. In real-time systems,
where decisions are made in accordance with time constraints (see section 1), meeting the
above two requirements are of crucial importance.

3.1 Clocks

We can divide the real-time systems into two groups:

1. Systems in which a computation is to meet a deadline, yet the computation itself does
4not require the knowledge of the Newtonian time

2. System in which a deadline is to be met, and the computation uses the Newtonian
time as well. An example of such a system is an inertial navigation system, that com-
putes place coordinates by applying a double integration over time to the measured
acceleration.

The second group generally imposes more stringent restrictions on the continuous correct-
ness of the knowledge of the time than does the first group. Therefore, the second group
is the one examined in this paper.

The source of this knowledge of the time is referred to as a clock. It is assumed that
each site has an access to a clock, which it can read.

'We shall not consider aspects of non-Newtonian time.
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3.1.1 Definitions

" Let Ci(t) denote a function that maps real time to clock "i" time.

" A standard clock "i" is one with Vt : Cj (t) = t.

" A clock "i" is correct at time to if C,(to) = to.

* A clock "i" is accurate at time to if the first derivative of C'(t) is 1 sec/sec at to.

3.1.2 Clock Synchronization

Clock synchronization is used for ordering purposes ([4]), as well as for enhancement of
the knowledge of the time ([71). We consider such a synchronization as a clock update:

C,(t) -- F(Ci,(ti,),Ci2(ti2),..,Ct(tik))

where the function F depends on the algorithm we use.

3.2 Types of Clock Systems

We divide the clock systems into three categories: central dictatoric systems, central demo-
cratic systems and distributed systems ([1]). We now introduce these categories briefly;
the latter two are examined in detail in Appendix A.

3.2.1 Central Dictatoric

This category is characterized by the following properties:

" One accurate clock feeds the whole system. The existence of other clocks in the system
is "ignored" as long as no failure is detected in the central controller.

" Redundancy of the central controller is used for fault tolerance.

" The method is accurate (within nanoseconds to milliseconds, depending on the central
clock) and expensive.

" This method needs a special purpose hardware integration into the processor, such
that the central controller sets this hardware to the proper value, and the site can
read it.

" The communication cost of this category is very low: only one message is required for
each site synchronization. In a broadcasting environment, one message is required for
a group of sites synchronization.

10



An example of this category is the GPS (Global Position System) that uses four broad-
casting satellites, and achieves a clock correctness of nano-seconds.

We shall not consider this group further, because its implementation does not interact
with any network implementation or network issue.

3.2.2 Central Democratic
This category involves distinguishing between two types of nodes. The following properties

characterize this category:

* A nominated master clock polls slave clocks.

* Clock differences are measured and slaves are corrected.

* In case the master clock fails, an election of a new master (from the slaves) is initiated
(e.g., [8]).

* Transmission times and delays are estimated, since they affect significantly the clock
difference measured.

Examples of this category are Tempo ([2,3]), Etempo ([10,1]), DCNet (1121).
Performance
It is shown in the appendix (see A.1) that the estimate of the clock skew ej is obtained

by
d- _ d 2_ )

where d, and d2 are the measured differences between the clock of the master and the clock
of the slave at the first and second synchronization messages, IA is the elapsed time of a
message travelling from node i to node j and E# (k = 1,2) are random noise components.

Note that if j ,z p., the error term due to communication is reduced. In addition, in
cases E' is known to be symmetrically distributed with a zero mean, a number of polls
can be used for averaging the result ([2,1]), thereby reducing the error in the estimate.

,= ,+ 1(g, - )-( -E .
2 2

The communication cost of each slave update is 2 messages for a poll and one for the
update. Therefore, n processors updated after p polls require (2 p + 1) x n messages.

The error Ek is significantly influenced by the granularity of the clocks. The resultof the averaging procedure 1 -
o(E' - Ej ) is that granularity is dominated by the "worst"

participant.



The assumptions that Ai s z .and i P , are not realistic. A better knowledge of
the communication times Ai and ,., along with a reduction of these times, significantly

improves the estimation of the clock skew j. We show later how it can be done.
In order to maintain a bounded synchronization error between updates, consider the

following model:

* the clock was synchronized at t = pj with a synchronization error of ej,

9 ej is the error of the above algorithm

1 tj - 1(Ej - EJ),
- -

e the clock drift rate is 6,, and

e the above algorithm is executed at least every r time units.

Hence, the maximal clock difference is bounded by ([31)

12r x max(6,)I + 14 x max(c,)I.
I j

The frequency of updates (T- 1) therefore controls the bounds on synchronization correct-
ness between updates.

3.2.3 Distributed

Various examples of this category have been published. The first and most fundamental
is by Lamport [4]. Later enhanced approaches include [6,5,7,91.

A distributed clock system can be characterized as follows.

* All the sites are homogeneous, each runs the same algorithm.

* Each site updates its own clock after receiving the time from other clocks and after
estimating their correctness.

* The fault tolerance is based on communication. In case a site fails, the other sites are
not affected. They only need to detect the failure and ignore that site.

* Generally, an enormous communication traffic is involved in this category, especially
where robustness to presence of malicious faults is r2quired ([5,9]).

12
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Figure 3: Synchronisation algorithms by Marsulo and Owicki, 1985.

Performance
Two algorithms are introduced in [7]: the minimize-maximum-error algorithm and the

intersection algorithm. The two are discussed in Appendix A and compared in Figure 3.
The minimize-maximum-error algorithm produces an error that can be expressed (171)

as:
IC,(t) - C.(t)I < 2EM(t) + 2p + (A + 6,)(,r + 2p.)

where EM is the smallest error interval of the participants and p is a bound for the
communication time. The intersection of time intervals results in an error (17]), when no
inconsistencies occur:

Ic,(t) - Ci(t)I < A + (,i + b,)r.
The intersection algorithm is superior in the accuracy performance, as can be observed

both from the above equations and from Figure 3. However, it is less robust: it can ignore
all the responses due to one erroneous response. Therefore, although the synchronizing
system does not fail upon an erroneous response, its fault tolerance performance is poor,
since the algorithm is not executed.

Both algorithms require a good knowledge of the communication time. It is used for
updating the intervals and for examining the the responses. Furthermore, even the fun-
damental ordering algorithm ([4]) requires this knowledge. In most cases a good estimate
is sufficient, but precautions should be taken in order to have sufficient confidence in the
estimate. This issue is addressed in the next section.

The assumption of having a good estimate for the communication time is different from
what we had in the master-slave approach. There, the assumption was Aj A A, which
means we want both communication times to be the same.

13



4 Model Based Implementation

This section describes an example of possible implementations of a distributed and a cen-
tral democratic clock synchronization algorithms. The major focus is the creation of an
environment in which communication delays are predictable and can be compensated for.
There are two possible environments for synchronized real-time clock systems to consider.
In the first, time services (get-time-of-day, etc.), including the clock synchronization, are
provided by the operating system. In the second, the application itself operates an inde-
pendent synchronization algorithm, but the operating system supports precedence requests
and urgency modes. The first is preferrable, since the application has only to deal with the
operating system. All the protocols relations in this case are supported by the operating
system, without any application intervention.

There are four participants in the clock synchronization algorithm for a real-time sys-
tem, excluding the clocks: the application program, the operating system, the high-level
communication protocols and the local network. In order to achieve high accuracy, they
should all be "real-time oriented", in the sense of being timely correct. But this is rarely
the case. There are no high-level communication protocols which are targeted for real-time
applications. Therefore, we assume that real-time efficiency and determinism exist at least
at the application program and at the operating system. In addition, we assume that
the local network allows imposing at'least precedence relation between messages, if circuit
switching is not possible.

There is no use in implementing a real-time system with clock synchronization algo-
rithm, in cases where the bounds on the communication durations are larger than the
correctness requirement. With the above assumptions, TCP/IP serve as good examples of
high level protocols with which one has to implement this type of systems. A summary
of these protocols is provided in appendix B, including their precedence control and their
timestamp mechanism.

Synchronization can be activated at lower level protocols (e.g., ICMP instead of TOP),
with no preliminary procedures required from the application, as those shown below. Yet,
in most cases this service is not supported, and the result is seen in increased uncertainties,
due to lack of control over the lower levels. We now discuss both cases, recalling that we
assume precedence and urgency are supported by the local network (NIU, MAC protocol
and logical link protocol) and by the TCP/IP package.

4.1 Application Level Synchronization

The application program implements some steps in which the synchronization algorithm
is activated. First, a proper link is established. Then, polls by the relevant clock synchro-

14
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nization algorithm are executed for each clock (see section 3.1). For each poll an urgency
mode is set, and the poll is then carried out. Finally, the link is released.

Connection Establishment
To establish a connection in TCP, an OPEN command is used. Upon starting the

connection, the precedence field should be set to "low delay". The TCP options field
may be used I to impose activation of the ICMP, but other ways are also possible. This
step should result in a connection in which all the participants (source, destination and
relays) impose low delay for message transfers. Furthermore, the IP modules should apply
frame formats with the timestamp options field (see Figure 9) for this logical channel. The
options field size is to be set to the number of relays in this connection, allocating a space
for timestamps to be collected. As the message travels, each of the relays appends its
timestamp and identifier to the message. In case there are more participants, the OVFLW
counter captures them, and the field may be updated for latter polls. The purpose of this
restriction is to provide the routing information needed for the communication duration
estimate.

Pre-poll Setting
Before each poll, an urgency state is to be imposed on the participants in the connection.

A preliminary command is sent by using the TOP flags (PUSH and URG), and setting
the urgent pointer to the current-sequence-number + p, where p is the number of polls to
be carried out. The result of this step is a buffer-cleaning throughout the connection, and
an urgency state that holds the receiver as long as the polls are not complete. Hence, the
uncertainties due to pre-xmit and post-receive are significantly reduced. In other words,

Atget + tbu.-out + tbuf-in + Atput -* 0.

With the above assumptions, the NIU can be assumed to provide a predictable t.,9 ,. For
n - 1 relays and the receiver it is accumulated to

n nFti. , t- + t,.,,).
1 1

Interrupts that might influence the algorithm execution time should be disabled ([21), and
thus

Atwo.oath, --+ 0.
Therefore, estimating the communication duration

ft

S= t.aloith.. + Z(tcomp + totPpt + tzm t + tpropagot + tre.eive + tdeeo..mp + ttgnala) + AA
1

8 One needs access to the TCP-IP connection in order to do it. So far only three options are defined for TCP options field,
and no TCP-ICMP connection is defined at all [14,15].
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or in other words

A i+AA.
If A ,

Am $ZX tattemp

All the other terms are predictable and compensated for, using the routing information
that is contained within the timestamp option field.

4.2 Enhanced Algorithms

The above result, of a parameterized deterministic communication, may be used to enhance
the performance of the synchronization algorithms in Appendix A, by compensating for
the deterministic part of the communication duration. Two examples follow.

4.2.1 The Algorithm: Master-Slave

do
for k = 1 to p:

T,+- C, (now);
Send(TI);

Receive(T2,Ts,is);
Read-Status(T4, n);

/* n is the number of relays */
estimate A, from n and timestamps using the above equation for A;

/*Atpro.a.gt + Ats,,, + At .,-0 /
Compute Cj skew Aj[k];

/* dj = T2 - TI */
1* d=T4 -T ,- *1/* A lk,.1*-(,/~)*Aj[] (d', +

Compute Cj skew Aj from Ai[1..p]
endo

Hence,

AMJ t. t.,.
1

-, - -- i -- J - .,' 18



4.2.2 The Algorithm: Distributed

do
for k = 1 to p:

Send(Request);
Receive(T[k], E[kJ)
Read-Status(C[k], n[k])

/* n[k] is the number of relays from clock k */
estimate &: from n and timestamps using the above equation for A;

/* Atpr.,e + Ats,t + Atrea, --* 0*/
compute C, error in Algorithm intersection (see A.5.3)

endo

Hence,
n

I - t. ,, ,, .
1

4.3 Operating System Synchronization

In the application level synchronization we have assumed that interrupts can be disabled,
ICMP messages can be used, and precedence and urgency control options are available. In
many cases, due to security reasons and others, this is not feasible. The operating system
support is then the only possibility for a clock synchronization with a reasonable accuracy.

In case of a distributed real-time operating system, the time service involves replicas of
the operating system, located at different sites. In case of a simple network, each site has
its own real-time operating system, and each pair of sites may synchronize with others.
In both cases, the access to ICMP for executing the proper synchronization is direct, and
there is no need for TCP involvement. Thus, one receives even lower te t and tsign, using
the direct access of the local link protocol to the NIU-control.

5 Conclusion

In this paper we model the behavior of a local area network such that real-time character-
istics of its services can be analyzed. In particular, the clock synchronization service was
examined, being the most crucially dependent on communication delays. A model was
built, and communication time between two sites that are n links apart from each other
was formulated.
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The approach, the model and the results presented in this paper are useful in designing
real-time systems with LAN communication environment. The applicability of our ap-
proach is shown to be adequate for designing time-servers for real-time systems. Not all
the aspects of time-service are dealt with here (e.g., fault tolerance and "on demand" times-
tamping). However, the determinism of clock synchronization algorithms is orthogonal to
these other aspects, and they all benefit from its enhancement.

It was shown that under precedence and urgency modes, and a very careful -implemen-
tation of LAN protocols, the uncertainties of the communication time can be reduced. The
deterministic part of the delay in a message delivery can be derived from routing informa-
tion which is appended to the messages and can be compensated for. The compensation
techniques, in general, depend on the specific application. For example, topology of the
network and the protocols play a major role in the implemented technique. We therefore
do not include a detailed technique in this paper. However, both distributed and central-
democratic algorithms result in enhanced correctness and accuracy using the approach
devised here.
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A Clock Synchronization Algorithms

A.1 Master - Slave Algorithms

A master clock initiates a clock synchronization procedure, at a time T. It reads its
current clock value, which is C,(TI), having an error el. It sends this clock value to a slave.
The message travels for a period of Al, and is received by the slave at T2. At that time
the slave clock has the value of Cj(T2) and an error e2. The slave can now compute the
difference

di = Ci(Ti) - C,(T,).

Comparing the receiving time to the sending time

Ci(T) + el + Af = Cj(T) + e2

yields
Cj(T) - C,(T,) = A4 + (C, - e2).

If we model the error difference such that Ci is the clock j skew and Ej' (k 1,2,..) is a
noise,

d, = p + C, - Ei.

Now, the process can be repeated, but in the opposite direction. The slave reads its
current clock value at a time T3, which is Cj(T) having an error e3. It sends this clock
value to the master, attaching d, to it. The message travels for a period of 14, and received
by the master at T4. At that time the master clock has the value of C,(T4 ) and an error
e4. The master can now compute the difference

d2 = C,(T) - C,(Ts).

Comparing the receiving time to the sending time

C,(T3) + e3+ = C,(T4 ) + e4

yields
C,(T) - C(T) =14-(e4 - e3)

and as above
d2 = - - E?.

From the above we receive

dl- d2 1 2(.2 - + 2(Ai - Ai ) - (E- .
22O
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T2 =C(T 2 ) + 2  Ts = C(Ts) + 6s

T, =,(T, + e, T, + #is' T4 -T."4 =C(T) + e4

Figure 4: Master - Slave synchronisation principle.

Assuming pA! W reduces this term significantly, and assuming E, to be symmetrically
distributed with a zero mean can be used in performing a number of polls and averaging
the results ([2,1]).

A.2 Tempo: a Master-Slave example.

Tempo is a clock synchronization algorithm that was developed for the distributed Berkeley
Unix (121). The algorithm was extended to hierarchical networks (ETempo [10]). Similar
algorithm is provided by the DCNET ([12]), and supported by the ICMP protocol messages
for time stamp and time stamp reply ([14]).

A.2.1 Algorithm for Master P:

" Upon Initiation of Clock Skew Measurement::

do
TA +- C, (now);
Vj : i: Send(TA) to j

endo

" Upon Receiving (TB, d 1) from Slave j::

do
4.- C,(now) - TB;

/* t4 j - E2 *1
Aj 1 j+
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/* = .+ (i +3 ) A(E. -E) *
end,

* Vj 3 i: Upon Complete Receiving All Polls::

do

A4-kZ~--, ik]; -/,= + (Ai - jj) -E )
Send(A) to j

endo

0

A.2.2 Algorithm for Slave P:

" Upon Receiving (TA) from Master i::

do
d'- Cy(now) - TA;

TB - Cj(now);
Send(TB,dI) to i

endo

" Upon Receiving (A) from Master i::

do
C,(t) - C,(t) + A

endo

0
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A.3 Distributed Clock Algorithms

The distributed approach is more expensive than the master-slave approach, especially in
the load it imposes on the communication network. Yet, its major advantage is the higher
degree of fault tolerance it achieves, increasing the cost mainly in communication, rather
than in special hardware. In the distributed approach all the clock owners use a uniform
approach, whose characteristics are as follows.

" Polling the rest of the clocks, or a subset of the rest.

" Applying a specific algorithm to the responses of the poll.

" Updating the local clock accordingly.

Apart from the algorithms introduced below, there are many others that deal with fault
tolerance enhancement ([6,5,91). The algorithms we introduce below were chosen to rep-
resent the ideas of ordering and accuracy enhancement, and their dependency on network
properties.

A.4 A Fundamental Ordering Approach

A basic ordering approach was introduced by L. Lamport in [4].
The assumptions taken are as follows:

• The clock accuracy is bounded by a drift rate b

Vt: 1d-t'~t  11 < b < 1.

" The communication graph is closely connected with a diameter d.

" The network imposes an unpredicted message delay, D, such that u < D < 77, where
A and 17 are the lower and upper bounds on D respectively.

The algorithm adopted in [41:

" Each process with a clock sends messages to the others at least every r seconds. Each
message includes its timestamp T..

" Upon reception of an external Tm, the receiver sets its clock

C,(t) +-- max(C,(t). T, + A).
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The correctness of each clock synchronization, as achieved in this algorithm is:

Vi: Vj: C,(t) - Cj(t)j < d(2br + ??)

for all t. The communication cost is n x (n - 1) messages for one update of the whole net-
work. Yet, this algorithm achieves only the ordering goal and results in updates according
to the fastest clock in the system, which is not necessarily the most accurate one.

A.5 Time Intervals Approach

Two important distributed algorithms are introduced in [7], both taking advantage of
the clock bounded incorrectness. Requiring the knowledge of this bound is a fairly easy
restriction, since the information is provided in the manuals of the equipment in use. These
algorithms have also a communication traffic of 0(n').

A.5.1 Assumptions and Error Model

Every clock owner i "knows" it is correct within the interval

(i ,(t) - E, (t), C, (t) + Ej (t) I

where E,(t) is a bound on i clock maximal error. The error interval is constructed from
the following contributors:

e The error that comes into effect right on the clock reset time (pi), as discretization
and other constant errors (e).

* The delay between the time this clock (i) is read until another clock (j) uses this
readout for its update (14).

e The degradation of time counting that develops between consecutive resets (6).

A.5.2 Algorithm: Minimize maximum error for P

* Upon receiving a time Request from j 5 i::

do
E (t) - e, + (C,(t) - pi) b;
Send(C,(t),E(t)) to j

endo
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* At least once every r time units::

do
Vj $ i: Request(Ci(t), Ey(t))
for j 0 i do begin

Receive(Ci(t), E3 (t))
if (Cj (t), Ej (t)) is consistent with (C, (t), E, (t))

then if Ei(t) + (1 + 6)Ap <_ E,(t)
then begin /* update *1

, C,(t) 4-- Ci(t);

4- E,(t) + (1 +
p, 4- Ci(t)
end

else ignore it
end

endo

El

A.5.3 Algorithm: Intersection of time intervals for P

* Upon receiving a time Request from j in

do
E,(t) -- Ci + (Ci(t) - p)A;
Send(C(t), E(t)) to j

endo

(exactly as in the previous algorithm).

* At least once every r time units

do
Vy 0 i:Request(Cy~t), Ei(t));

Vj $ i: Receive(C(t),E,(t))
Vi 5A i: Tj tW - Cj W) - EY W)) - C, (t);

/* T represents the left boundary */
Vj $ i: Ly(t) +- C,(t) + E,(t)) + (1 + 6,)/4. - C,(t);

/* L represents the right boundary */
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a -maxr(T); / -min(Li);

/* intersect all boundaries */
if (a < 0) /* consistent boundaries */

then begine, 4- 1 (p - a,);
C,(t), (/ + a);
P, +-- p ,,
end

else ignore them all
endo

0
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Figure 5: TOP - IP model

B Communication Protocols

B.1 Protocol Hierarchy Example

We demonstrate the environment for clock synchronization for real-time system, using
the TCP ([15]) and IP ([13]) communication protocols. The way these two protocols are
activated by the application levels can be seen in Figure 5. The result of these relations is
a multilayer architecture, as the figure clearly illustrates.

The U.S. Department of Defense adopted these two protocol ([16]) as the layers between
the local network layers (LN, i.e. physical i-. medium access a- logical link) and the
application layer. The Internet Protocol, IP MIL-STD 1777, provides the capability for
end systems to communicate across one or more networks. The IP does not depend on the
networks to be reliable, providing what is known as unreliable connectionless service. The
Transmission Control Protocol, TCP MIL-STD 1778, provides a reliable end-to-end data
transmit service, ensuring error free, in sequence, with no loss or duplication deliveries. In
many ways it is equivalent to OSI layer-4 transport protocol.

The MIL-STD IP is further required to interconnect a set of networks (a catenet [16]).
Hence, an IP module in a host or a gateway must be equipped with the information needed
to make correct routing decisions. In addition, it must possess the knowledge to use the
proper service access points (SAPs) of the local network (LN) layers.

The MIL-STD TCP provides its services to application layer programs as well as to
protocols at higher level than his 6. TCP numbers data segments it sends in a sequential
manner. The transmitted segments are subsequently acknowledged by this number by the
destination TCP module, hence providing means to reorder and detect lost messages. Con-

OExamplu ae the file transfer protocol, FTP MIL-STD 1780, and simple mail transfer protocol, SMTP MIL-STD 1781.
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1 2 3
123456789 123456789 123456789 1

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data UAPRSF
offset (Reserved) R C S SY I Window

GKHTNN

Checksum Urgent Pointer

Options Padding

DATA

Figure 6: TCP Frame Format.

trots on the quality of transmission, the urgency and security are provided and described
below.

In the next sections we describe the way in which the above requirements are achieved,
by frame format definitions and by the interfaces to lower and higher layer levels.

B.1.1 TCP

A TCP frame format is described in Figure 6. Using this message structure, which en-
capsulates data and control, the TCP provides the user with SAPs (service access points
[17]). We now describe the bidirectional interface.

User to TCP
The primitives and their parameters:

Open ( local-port, foreign-socket, active/passive [,timeout] [,precedence] [,security] [,op-
tions] ) ==* local-connection-ld.

Send ( local-connection-Id, buffer-address, byte-count, PUSH-flag, URGent-flag [,time-
out]).
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Receive ( local-connection-Id, buffer-address, byte-count) = byte-count, PUSH-flag,
URGent-flag.

Close (local-connection-Id).

Status (local-connection-Id) = status data.

Abort (local-connection-Id).

TCP to User
Generation and transfer of asynchronous signals that are caused by events is based on

the operating system services. The required ones are:

* Segment arrived.

e User timeout.

e Retransmission timeout.

* Time-wait timeout.

The information provided to the user by the TCP is:

• The local-connection-Id.

• Response string.

9 The buffer-address.

9 The byte-count.

* The PUSH-flag.

9 The URGent-flag.

B.1.2 IP and ICMP

An IP frame format is described in Figure 7. Using this message structure, the IP pro-
vides the user with an interface (SAPs: service access points [171). We now describe the
bidirectional interface.

IP to upper levels
The primitive used and their parameters are:

Send ( Source, Destination, Protocol, Type-of-Service, Buffer-pointer, Length-of-buffer,
Identifier, Don't-Fragment, Options). ==Result (OK/error).
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123456789 123456789 123456789 1

Version IHL Type-of-Service Toa Length

Identifier Flap Fragment Offset

Time-to-Live Protocol Header Checksum

Source Address

Destination Address

Options ( variable length) Padding

DATA
(possibly TCP header and data)

Figure 7: IP Frame Format.

Receive (Buffer-pointer, protocol ). ==* Source, Destination, Type-of-Service, Length-
of-buffer, Options, Result (OK/error).

TCP and IP Interface
In many cases (e.g the ARPA internetwork system [13,15]) the Type-of-Service and

Time-to-Live fields are defined in a very loose way, unless user programs change it:

e Type-of-Service:

1. precedence: routine,

2. delay: normal,

3. throughput: normal,

4. reliability: normal,

(i.e. 00000000).

* Time-to-Live: 1 minute (i.e. 00111100).

IP to lower levels
These lower levels are the NIU and MAC level functions, as described above.
ICMP messages
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ICMP uses the IP frame format to transfer its messages. ICMP provides a set of
messages to allow network control, exception handling, and error detection and handling.
The messages are:

e Destination-unreachable.

e Time-exceeded.

* Parameter-problem.

e Source-quench.

* Redirect-datagram.

* Echo and echo-reply.

* Time-stamp and time-stamp-reply.

* Info-request and info-reply.

B.2 TCP Urgent Information Push

The objectives of an urgency mode in an asynchronous protocol, particularly in the TCP,

are as follows.

e Allow a sending user to stimulate a receiving user to accept some urgent data.

* Permit a receiving TCP to indicate to a receiving user when all currently known urgent
data has been received.

We examine the use of this mode and its effects, for an initiating user of a synchronization
(e.g. master) to stimulate a receiving user (e.g. slave). In addition, a receiving TCP
indicates the end of the poll to the receiving user.

B.2.1 TCP Variables that Enforce Urgency

Let RCV.NXT be a TCP variable representing the currently received sequence number.
The following frame elements provide the means for urgent mode control:

* PSH bit: the segment contains data to be pushed through.

" URG bit: this urgent pointer is significant.

* Urgent pointer points the end of urgent info within the data stream.
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B.2.2 Urgent and Push Mechanisms

* Push:

1. A sending TCP is allowed to collect data from a sending user (and send it later)
until a PSH is signaled; then, it must send whatever it has.

2. A receiving TCP is allowed to collect data before indicating to a receiving user
until it sees a PSH; then, it must pass to the receiving user whatever it has, even
if the buffer is not full.

s Urgent:

1. When Urgent pointer is in advance of RCV.NXT, the receiving TCP informs the
receiving user to go into an urgent mode.

2. When RCV.NXT catches up with Urgent pointer, the receiving TCP informs the
receiving user to go into a normal mode.

3. At least one data octet is required.

4. PSH and URG: timely delivery of the urgent info to the destination process is
enhanced.

B.2.3 Effects on Error Model

Applying the PUSH and URGent mechanisms to the model introduced in section 2 signif-
icantly reduces

tgot + tbtuf-tA + tbuf-tfl + tput,

thereby reducing t 1, . Furthermore, when an urgent mode is set by the initiator and the
receiver applications, tg,*,jh, can also be reduced significantly. The uncertainties remain-
ing in these parameters can be controlled by the application, and allow compensation with
high confidence levels.

B.3 Internet Protocol Precedence Control

B.S.1 Typo-a-Service Control

The Type-of-Service field of the Internet Protocol is described in Figure 8. It is divided to
the following:

* Precedence: routine, priority, immediate, ... internetwork control, network control.

* D: delay = low/high.
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Precedence ID T IR 10 0

Figure 8: IP Type-of-Service Field

1 2 3
123458789 123456789 123456789 1

type=68 T length 7 pointer OVFLW FLAG

Internet Address

Timestamp

Figure 9: IP Options Field for Timestamping

* R: reliability = high/low.

* T: throughput = high/low.

B.3.2 Options field control

The Options field of the Internet Protocol, as defined for its time-stamp configuration, is
described in Figure 9. It is controlled by the following:

" pointer > length: time-stamps area is full.

" OVFLW: a count of how many tried to add their time-stamp and didn't succeed.

" FLAG=O: time-stamp only.

" FLAG=1: each time-stamp preceded by its address.

" FLAG=3: time-stamp without addresses ordered as predefined.

These options can serve the algorithm one implements to collect one or more time stamps
on the message route. Thus, communication load is reduced in some topologies (e.g. one
token cycle for the whole net) and useful routing data is returned (e.g. number of hoops).
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123456789 123456789 123456789 1

I , I I , , I I , I I I , I I

IP header with: version-4, type of service=0, protocol=1

Type Code Checksum (*)

Identifier () Sequence

Originate Timestamp

Receive Timestamp

Transmit Timestamp

Figure 10: ICMP Timestamp Frame Format.

B.3.3 Effects on Error Model

The enforcement of low delay is not well defined in the specification of the Internet Protocol.
The precedence control is also loosely defined. The releases allowed by the standardization
committees do not guarantee a specific timing response. Still, using the proper (highest)
precedence for a clock synchronization message, will result in a proper implementation in
reducing the delays in the relays, although most of today's gateways simply ignore it.

B.4 ICMP Clock Synchronization Messages

ICMP provides a special message procedure to allow a master-slave clock synchronization,
of the type described above in section A.1. To use this facility one uses the frame format
described in Figure 10 using the following parameters.

* type= 13, code=O: originator sends its time stamp.

* type=14, code=0: receiver replies.

* Identification and Sequence serve as session tags.

A similar service is provided by the DCNet ([12]), exclpding the fields of Identifier and

Checksum.
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