
b-A164 965 EVOLUTION OF MEAN SQUARE MAGNETIC VECTOR POTENTIAL IN i107 COMPRESSIBLE THO-DI..(U) NAVAL RESEARCH LAB WASHINGTON
NC 9FIE DC R I DAHLBURG 09 SEP 97 NRL-MR-69127 uNCLASSIFIED F/G 20/9 Ni.



11111 I Q 12 2

-IJI2 l j=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS 1963 A

-W - -WW SW WW .W WWV

l$% I - r

0,z ,



Naval Research Laboratory
Waft4"% DC 207S.5000 U..

I NRL Memorandum Report 6012

In00

lq" Evolution of Mean Square Magnetic00
Vector Potential in Compressible,

Two-Dimensional, Magnetofluid Turbulence

R.B. DAHLBURG

Canter for Conmputaional Physicws Developments
Laboratory jr Computational Physics and Fluid Dynamic

September 8, 1987

DTICS ELECTEA

SEP 2 5 1987

Apgroved for pubic roelese; distnbution unlimited.

87 9 18 O



StUR CLASSIFICATION OFTH

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution
2b. DECLASSIFICATON / DOWNGRADING S04EDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Memorandum Report 6012

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Research Laboratory

6c. ADDRESS (Cty, State, MW Z/PCode) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

S& NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATIONI (if a --kale
Office of Naval ResearchI
Be. ADDRESS (City, State. and ZCode) ?0. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. RRO 11- NO. ACCESSION NO

61153N 09-43

11. TITLE (Incude Security COAush~at )

Evolution of Mean Square Magnetic Vector Potential in Compressible, Two-Dimensional
Mane o fluid Turbuslenc~e

12. PERSONAL AUTHORS
Dahlburg, R.B.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yea, Mlonth, Day) 5, PAGE COUNT0Interim I FROM TO 1987 September 8 11

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 118. SUBJECT TERMS (Conine on reverse it neesr and idntify by block number)

FIELD GROUP SUB-GROUP Compressible Magnetohydrodynamic turbulence
I Numerical simulation

19.STRACT (Contnue on reverse if necessary and identify by block number)

The mean square magnetic vector potential is not invariant in ideal, two dimensional,
compressible, magnetohydrodynamicturbulence. A new, related invariant for the compressible

case is given. The results are demonstrated by numerical simulation. In the compressible

case large amplitude fluctuations in the mean square magnetic vector potential are observed.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
P UNCLASSIFIEDAJNLIMITED 03 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
202-767-6326

D FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.



CONTENTS

Introduction .............................................................................................

Results of numerical simulations............................................................................. 4

Discussion ................................................................................................

Acknowledgements............................................................................................ 6

References.................................................................................................. 6

Accession For

TIS GRA&i
DTIC TAB

Unannounced
justification

By --- ----

Distribution/
i Avilability Codes%

lAvail and/oi Wi

Dit Special cf



EVOLUTION OF MEAN SQUARE MAGNETIC

VECTOR POTENTIAL IN COMPRESSIBLE,

TWO-DIMENSIONAL, MAGNETOFLUID TURBULENCE

Introduction

Incompressible, two-dimensional magnetohydrodynamic (MHD) turbulence has

been investigated under a wide range of conditions1 2 3 4 5 6 7. The starting point

of these investigations is the identification of the quantities which remain constant

in the absence of physical dissipation. A striking difference in compressible, two-

dimensional MHD is the absence of the mean square magnetic vector potential

as an ideal invariant. In this report we discuss this absence, and suggest a related

invariant for the compressible case. The supporting results of numerical simulations

are then given.

The nonlinear partial differential equations which govern the behaviour of an

ideal, two-dimensional, compressible magnetofluid, written in a dimensionless form,

are:

-p -. (pv), (la)

8(pv) _ -V. (pvv - BB + 1(p + B2 )I), (1b)

OgA
= v x B, (lc)
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=-V.((E+p)v+(Bj2 I- 2BB). v), (id)

where p(x, y, t) - mass density, v(z, y, t) flow velocity, p(x, y, t) mechanical

pressure, I a unit dyad, A(z, y, t) magnetic vector potential, B(x, y, t) mag-

netic induction field, and E(x, y, t) total energy density. In addition, we utilize

and ideal gas equation of state, viz., p(x, y, t) = (- - 1)U(z, y, t), where U(x, y, t)

is the internal energy density, and y is he ratio of specific heats (assumed equal to

1). The normalization s is such that Eo = po = B2 /8ir = pVA/2, where VA is the

square of the Alfvdn speed. The effects of thermal conduction are not considered.

The ideal conservation properties of the mean square magnetic vector potential

are determined by equation Ic'. Upon multiplying this equation by A, we have:

9A2

& =-V.(vA2 )+A 2 V.v. (2)

Integrating this over a periodic box, or one with perfectly conducting boundary

conditions, we have, after some algebra:

5fA2d = (A2V. v)d 2. (3)

For an incompressible magnetofluid, V v = 0, and the right hand side of equation

3 equals zero. In the compressible case, however, the right hand side of this equa-

tion can be finite, as can easily be shown by example. Thus, the magnetofluid's

compressibility both removes the constraint that the mean square magnetic vector

potential be an ideal invariant of the system, and provides a possible source or sink

for this quantity.
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A new, related, ideal invariant for the compressible, 2-d magnetofluid can be

found by utilizing the mass density equation (la). First, multiply equation 2 by the

mass density p. After substituting from equation la, this gives:

OpA 2
l -x -V)(5)

at

When equation 5 is integrated over a periodic box, the right hand side will equal

zero, implying that

J pA 2 d 2z (6)

is an ideal constant of the motion for the compressible, two-dimensional mag-

netofluid. Note that equation 6 reduces to the mean square magnetic vector po-

tential as p --+ 1. This is the situation in compressible magnetofluids which exhibit

negligible variation in mass density.

We note that f pAnd 2z is constant for n = 0, 1,2,3,.. Hence the question

naturally arises as to why we have singled out the n = 2 case for consideration. We

believe that this is the significant value of n because of it's close analogy with the

kinetic energy, J p v d2x. Both of these quantities exhibit smooth transitions

to the incompressible limit, e.g., as p - 1.
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Results of numerical simulations

We have written a computer code which solves the physically dissipative ver-

sion of equations la - Id. For the discretization, a dealiased Fourier pseudospec-

tral method is used which will be described in greater detail elsewhere. For the

run described here, 32 x 32 Fourier modes are used, and At = 1/250. A static,

uniform, equilibrium state is considered. To initiate a nontrivial evolution in the

magnetofluid, we initialize the magnetic field with random noise. With no physical

dissipation, the code should exhibit conservation of the ideal invariants.

Figure 1 shows the evolution of the mean square magnetic vector potential as

a function of time. Low-frequency, large amplitude oscillations in this quantity are

apparent, suggesting that the compressible term serves alternatively as a source

or sink of this quantity. The mean square magnetic vector potential varies by as

much as approximately 25 % from its initial value. Figure 2 shows the integral

given in equation 6 as a function of time for the same run. Note the difference in

scaling between the two figures. The maximum variation of this quantity from its

initial value is approximately 0.3 % over the course of the run. The conservation is

especially good for the first three Alfvin transit times.

We have repeated these calculations for other randomly initialized cases, with

similar results being obtained.
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Discussion

Statistical description has proven to be the most useful method for charac-

terizing turbulent magnetofluids. The first step in such descriptions is to identify

those quantities which remain invariant for the ideal equations of motion. These

invariants serve to define hypersurfaces in the phase space of Fourier coefficients of

the independent variables of the system. If such a statistical theory can be formed

for compressible, 2-d MHD, then it will differ from the incompressible case from the

start because the ideal invariants are not the same.

Absence of conservation of mean square magnetic vector potential in a 2-d com-

pressible, turbulent magnetofluid implies several things. First, an inverse cascade

of mean square magnetic vector potential is no longer to be expected, since this is

not a conserved quantity. Second, there exists in this case the possibility of a 2-d

compressible turbulent dynamo. A related matter is the following: the magnetic

energy need no longer decay selectively with respect to the mean square magnetic

vector potential4 , since the decay of this latter quantity can be hastened or retarded

by compressibility effects.

The new invariant which we have given reduces to the mean square magnetic

vector potential in the limit of weak compressibility, where the variation of the mass

density will be insignificant. Perhaps for this reason the mean square magnetic vec-

tor potential has proven a useful quantity in compressible magnetofluids like the

solar wind, in which there is little variation in the mass density. In other mag-

netofluids, e.g., the upper solar atmosphere, variation of the mass density cannot

be ignored. The new invariant ( equation 6) takes the mass density variation of

the magnetofluid into account. We conjecture that the new invariant replaces the
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mean square magnetic vector potential in compressible, 2-d, magnetofluid turbu-

lence. Further calculations will be required to support this conjecture. The rather

difficult question of identifying the regions of Fourier space where the Fourier trans-

formed version of equation 6 remains positive definite must also be addressed ( a

problem which must also be faced with respect to the kinetic energy). We also

note here that the results of this paper can be extended in a straightforward way to

the conservation of enstrophy in a compressible, 2-d, neutral fluid which is either

isentropic or barotropic.
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Figure 1. Plot of mean square magnetic vector potential. f .4d'x. vs time.
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