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ABSTRACT

It is generally agreed that some type of vision system capable of providing a

preview of terrain is an important attribute of a driverless vehicle. One approach

to providing this capability is to use active images such as those obtained by

sonar or radar. This thesis is concerned with a computer simulation study of an

approach to data processing for range images obtained from an optical radar

system using a scanning laser beam. The system studied is modeled after the

ERIM scanner mounted on the Adaptive Suspension Vehicle walking machine

developed at Ohio State University. Both the problem of registering successive

images in the presence of vehicle motion and of optimally averaging such images

to obtain more accurate terrain elevation data are investigated in the thesis.
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I. INTRODUCTION

Robots have long been in man's thinking. From the early science fiction

writers to today's cartoons, the idea of robots that operate on their own has

fascinated us. There have been, and still are, many research programs concerned -.

with realization of an autonomous robot. These programs include wheeled

machines, tracked vehicles, and legged vehicles.

There are many uses and advantages to each type of robotic machine. Legged

vehicles .or walking machines have an advantage over wheeled or tracked vehicles

in that they can traverse a greater variety of terrains. A walking machine can

traverse terrain that is heavily wooded, can walk over muddy terrain, and can

negotiate obstacles that a wheeled or tracked vehicle may not be able to

overcome. However, before any robotic machine can travel anywhere by itself, it

has to be able to see where it is going and decide where it wants to go based on

what it sees. Once all of these research areas have been mastered, widespread

application of autonomous robots may follow. -"

A. GOALS

The goal of this thesis is to explore methods to obtain accurate terrain

altitude information that may be used by some type of route planning program

for an autonomous vehicle. The process of obtaining these altitude values will

7
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include some type of filtering of noisy information and correction of errors in the

vehicle's location information. The sensors involved in this process are assumed

to be some type of inertial navigation system (INS) and an optical radar scanner.

The vehicle used as a reference for setting up the model used in this thesis is

the Ohio State University Adaptive Suspension Vehicle (ASV), which is a six-

legged walking machine. The ASV is equipped with an optical terrain scanner

manufactured by the Environmental Research Institute of Michigan (ERIM).

[Ref. 1]

A secondary purpose of this thesis is to develop a simulation model for the

optical scanner and terrain that will be used in the testing of the techniques

presented in the thesis. These models could also be used in future studies that

involve a scanner and terrain.

B. ORGANIZATION

Chapter II presents a discussion of work dealing with early robotic systems as

well as current projects under development. The optical terrain scanner used as a
,.-

reference in this thesis is discussed in some detail. Finally, a general discussion on

regression analysis and Kalman filtering are presented.

The reason for obtaining an accurate terrain altitude map is discussed in a.

Chapter III. A detailed discussion is presented on how the inertial navigation and

optical scanner data are mathematically manipulated to obtain the x and y

coordinates and the terrain altitude of the terrain being scanned. Finally, a more

8
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detailed discussion of Kalman filtering and regression analysis as they apply to

this thesis are presented.

Chapter IV presents the simulation models used for the terrain and the
'p.

optical scanner. Also, flow charts showing how data is handled during the

simulation runs are included.

Finally, Chapter V discusses the simulation experiments conducted and their

results. The last chapter, Chapter VI, puts forward some conclusions about the

work presented in this thesis followed by some recommendations for future work.

10
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II. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

For many years, man has been working toward the goal of making an

autonomous robot. However, before a robot or machine can be truly autonomous,

it has to have some way of seeing the world in which it is to operate. In this

chapter, past robotic systems and their vision systems are reviewed along with

ways of handling the data from these vision systems.

B. MOBILE ROBOT SYSTEMS

1. Early Robot Systems

Inventors have been fascinated for centuries with the idea of creating

machines that act like animals or human beings. The earliest of these were

"clockwork" machines like the "artificial duck" built by Jacques de Vaucanson in

the 1730's., and Baron Wolfgang von Kempenlen's chess-playing automaton of the

late eighteenth century (later proved a hoax). Clockwork machines, as the name

implies, were based on complex mechanical gears and linkages which provided the

timing and required movements for the machine. Until the advent of digital

computers and component miniaturization technology, robots remained little

more than mechanical novelties. [Ref. 2: pp. 254-264]

10
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In the 1960's, researchers at Johns Hopkins University built what could

possibly be considered the first truly autonomous mobile robot. The sole activity

of this robot was to navigate the hallways of the laboratory "searching" for

electrical power outlets to keep its batteries charged. Special purpose circuitry

(rather than a programmable computer) was used to direct the robot's actions,

and information from an elementary sonar system kept the robot centered

between the walls. Although simplistic, the machine demonstrated an ability to

interact with its enviroment and to sustain itself through its own actions (i.e.

searching for outlets and recharging its batteries). [Ref. 2: pp. 254-2641

The next major step in autonomous robot development was accomplished

in 1969 at the Stanford Research Institute (SRI). A mobile robot dubbed

"Shakey" was linked to a digital computer via radio giving it the much needed

additional "brainpower" to more fully interact with its enviroment and solve

relatively complex problems. Using a television camera as a sensor and

hierarchical software control, Shakey was able to negotiate obstacles and

accomplish simple path planning when moving Irom one location to another.

This first attempt at machine interaction with an uncertain enviroment

encountered many problems. Rather complex image processing algorithms were

required to discern potential obstacles and complicated computer programs were

needed to map the obstacles onto a spatial grid coordinate system that the robot

could "understand". Shakey kept track of its own position through a crude "dead

reckoning" system in which sensors counted the number of rotations of the robot's
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I



wheels to determine how far it had moved from its initial starting position. It was

soon discovered that, while multiple sensors can provide a more comprehensive

representation of the enviroment, coordinating the incoming data from those

sensors represents a major hurdle. For instance, on the Shakey robot, wheel

slippage caused position errors which in turn induced grid map drift and resulted

in multiple representations of individual obstacles cluttering the map. [Ref. 3: pp.

10-15]

For all its problems, the Shakey robot remained state-of-the-art until the

mid-1970's. During this decade, research involving incorporation of new

technologies into autonomous robots continued. Advances in integrated

electronics manufacturing made possible relatively powerful single-board

computers and smaller, more compact sensor systems. Still, many of the robots

built during this time frame were tethered to an off-board computer either via

cables or radio link. Among the robots of this period were the Jet Propulsion

Laboratory's Mars Rover, the Stanford Cart, and France's Laboratoire

d'Automatique et d'Analyse des Systemes' HILARE robot. These robots all

shared the common goal of integrating multiple sensor systems and developing

algorithms to allow autonomous operation in uncertain enviroments. [Ref. 3: pp.

20-25]

The JPL Rover used a laser range finder, stereo TV cameras, tactile, and

proximity sensors to observe its enviroment, and a gyrocompass and optical

encoders on the wheels to keep track of its own position. Like the Shakey robot,

12
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sensor integration and error propogation problems plagued the system and, due to

the heavy computing requirements, the robot was dependent on its mainframe

computer link. [Ref. 3: pp. 20-30]

The Stanford Cart employed a complex image processing scheme to

improve obstacle recognition. A TV link to an off-board computer and a

moveable, slide-mounted camera system were used to reduce imaging errors, but

this system proved slow and very sensitive to light and shadow effects. Like

previous robots, the Stanford Cart's dead reckoning system induced errors into

the system which it could not overcome. [Ref. 3: pp. 20-251

The French Hilare robot incorporated a number of techniques most often

associated with artificial intelligence. "Expert system" modules worked together,

sharing information about navigation, obstacle identification, etc., under a

computing hierarchy of onboard microcomputers linked to an off-board

minicomputer and mainframe. The Hilare used a laser range finder and a

prediction algorithm to anticipate what the obstacle map would "look" like after

the robot moved. It could then correct its perception and/or position information

to merge the predicted and actual image information and thereby alleviate many

of the errors experienced in the earlier systems. [Ref. 3: pp.20-25]

A departure from wheeled vehicles is the Ohio State University (OSU)

Hexapod. The Hexapod is a six-legged walking machine which first operated in

1977. Although the OSU Hexapod is strictly a laboratory robot, a truly

autonomous walking machine, like its animal counterpart in nature, would be

13
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ideally suited to traversing rough, unpredictable terrain. The OSU machine's legs

are controlled to provide static stability; that is, at least three legs are on the

ground providing a stable supporting tripod for the robot at all times. The

robot's sensors include stereo TV cameras and motion sensors to maintain stable

body position while moving or climbing. While sophisticated computer routines

automate many of the Hexapod's balance, leg movement, and coordination

functions, the Hexapod remains tethered to its external power supply and

minicomputer and relies on human interaction for navigation and for some foot-

placement decisions. [Ref. 4: pp. 3-17]

2. Autonomous Land Vehicles

The Autonomous Land Vehicle (ALV) is the newest, and thus far the

most successful, of the various autonomous wheeled robots which have been tested

to date. Designed for the Defense Department's Advanced Research Projects

Agency (DARPA), the vehicle is a hydraulically powered, eight-wheeled platform

equipped with the computers and sensors required to negotiate unfamiliar

territory without human intervention. The ALV's mission is conceptually more

difficult than the robots previously described since it is designed to operate

outdoors in a much more unpredictable enviroment. The ALV's sensors include a

TV camera and optical radar for sensing the enviroment, and an inertial

navigation system for position information. During initial testing, the sensor data

was successfully integrated and processed, providing the vehicle with "road

following" information able to keep it between ditches. [Ref 5]

14



Another ALV was built in 1985 by FMC Corporation. This vehicle is an

armored personnel carrier which is a tracked, instead of wheeled vehicle. This

ALV has an inertial navigation system, a vehicle control computer, and a sonic

imaging sensor. The architecture of the FMC vehicle consists of 5 subsystems

called a Planner, Observer, Mapmaker, Pilot, and Vehicle Control. In general,

the Planner plans the route of the ALV using preloaded digitized maps of the

local terrain. The Observer uses the sensors input to create an obstacle map, then

the Mapmaker generates a pilot map using the information from the Planner and

the obstacle map. The Pilot uses the pilot map and guides the vehicle along an

optimum path by passing instructions to the Vehicle Control subsystem. The

first test of the FMC ALV was conducted in 1985 in which it successfully avoided

obstacles and performed path execution at a speed of 5 mph. [Ref. 6: pp. 14-231

3. DARPA Adaptive Suspension Vehicle

A more advanced six-legged walking machine, called the Adaptive

Suspension Vehicle (ASV), is currently undergoing test and evaluation at Ohio

State University. The ASV differs from the OSU Hexapod in that it is completely

self-sufficient (no external power or computing required). The ASV uses an

internal combustion engine to provide power to its hydraulic systems and on-

board computers. The ASV carries its own computers that control leg movement

and stability, and provide vision information. The vision system consists of an

optical radar mounted on top of the control cab. At present, the ASV requires an

on-board human operator to plan and control the motion of its body using a

15



three-axis control stick. With continuing research, the ASV could become the

first autonomous legged walking machine. [Ref. 1: pp. 1-601

C. DESCRIPTION OF OPTICAL RADAR

1. Physical Description

The ASV is equipped with an optical terrain scanner. The optical

scanner is manufactured by the Environmental Research Institute of Michigan

(ERIM). The scanner is 26 inches wide, 12.5 inches high and weighs 75 pounds

[Ref.l: pg. 35]. The optical scanner consists of a scanning mechanism, transmitter

optical train, and receiver optical train. The scanning mechanism consists of a

nodding mirror and a four-sided polygon mirror which combine to scan up and

down and left and right. The transmitter optical train consists of a GaAIAs laser

diode, collimating lens, anamorphic prism pair and a beam expansion telescope.

[Ref. 7: pp. 3-4].

2. Performance Data

The optical scanner has a scan rate of 2 Hertz. The horizontal field of

scan is +40 to -40 degrees in 128 increments while the vertical field of scan is from

-15 to -75 degrees elevation in 128 increments. The instantaneous field of view is

0.5 degrees and the range resolution is 0.125 feet. The maximum horizontal range

is 32 feet. [Ref. 7: pp. 2-3]

Due to various factors such as weather, obstacles and equipment errors,

the range value returned by the ERIM scanner is not exact [Ref. 7: pg. 5]. The

16
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ASV has or will have gyro or magnetic compasses for azimuth, elevation and roll

inputs along with an altimeter for altitude information and geoposition satellite

(GPS) inputs for horizontal position. Even though the ASV will be able to

receive position inputs from GPS and the altimeter, they are inaccurate. That is,

although the gyro's give angles within fractions of a degree, the errors associated

with GPS and the altimeter are of the order of tens of feet; therefore, x, y, and z

need to be corrected. Detailed information regarding these two sources of terrain

mapping error was not available at the time of writing of this thesis.

D. ESTIMATION TECHNIQUES

1. Regression Analysis

In regression analysis, a number of noisy measurements of a variable are

used to approximate a functional relationship. Using the notation of Ref. 8, if the

measured variable of the system is

YOt - W(t,r0) + e(t) (2.1)

then the objective of regression analysis is to find a vector, F , which approximates

the true parameter vector, t., in the presence of the measurement error, e .

Typically, this is accomplished by minimization of some type of sum squared error

function.

If the response of the system under consideration can be represented

linearly as

17



go AFO + 1 (2.2)

where i. is a vector of samples of V., A is the coefficient matrix, to is the true

parameter vector, and ? is a random error vector, then the sum squared error

function , f, can be defined as

# - Co- At)CVo - At) (2.3)

where i is the trial parameter vector. To minimize 9 , the partial derivatives of 9

with respect to each component of Z are equated to zero. Applying this to Eq.

(2.3), the result is

a -V4 - -2AI. + 2AT A - 0 (2.4)

or

A TA , -A rgo  (2.5)

Solving Eq. (2.5) for the least squares estimate of the true parameter vector, the

result is

F -A TA]-ATgo (2.6)

This is the least squares parameter estimate of the true parameter, F. [Ref. 8: pp.

65-681

2. Iterative Methods

The Kalman filter is an iterative method used to obtain an optimal

estimate of a variable in an environment that has noise present. Unlike regression

18
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analysis, in using a Kalman filter, it is not necessary to store past measurements

for present or future computations. For the purposes of this discussion, the

notation in Ref. 9 is used. It is assumed the reader has some knowledge of

Kalman filtering.

Assume a system is described by

'k -,-1 + k-1 (2.7)

and

1A - H Il + 'A (2.8)

where 1i is the state variable at time 41 Ok-1 is the transition matrix at time t _,

0.-_ and l are the random noise vectors with zero mean and covariances Q and

R1 , respectively, , are the measurements, and Hk is the observation matrix. An

updated estimate of the state, 1,(+), based on the measurement 1. and the past

estimate, i,(-), can be obtained from the recursive form

- K',(-) + 1,44 (2.9)

where K. and Kb are the time-varying weighting matrices (Kalman gain matrices).

[Ref. 9: pp. 60-110]

If i. denotes the estimation error, such that

h(+)- 'k + i,(+) (2.10)

and

2, +) - 4 + 4(-) (2.11)

then Eqs. (2.8-2.11) yield

19
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,{+) - 1K1 + Kb// -- /]h + K 1 ib(-) + Kkik . (2.12)

By definition, E[ 1] = 0 and if E[l 1(-)] = 0, this estimator will be unbaised for any z.

if

K4+KH-I-o . (2.13)

Thus, Eqs. (2.10) and (2.12) become

- + KbIl, - Hjh(-)j (2.14)

and

I- I- KH,),(-) + K,?, (2.15)

By definition, the error covariance matrix, P,, is given by

Ph(+) - Eli,(+)i,(+)TJ (2.16)

and

Pb{-) - r[.- {) ]  (2.17)

If it is assumed that the measurement errors are uncorrelated, then

E[i,=-)Vh'] - EIv,,(-)TI - 0. (2.18)

Applying Eq. (2.12) to Eqs. (2.16) and (2.17)

Pk =(- K 1H)Ph(-)(I - KT (2.19)

The Kalman gain matrix, K,, is defined as

K1 = Ph(-)H2 j[HP(-)H + R] (2.20)

Substituting Eq. (2.20) into Eq. (2.19)

20



Pi(+) - f1 - KHlP(-) . (2.21)

From Eqs. (2.14), (2.20) and (2.21), a recursive filter can be set up to obtain the

optimal estimates of i,(+) [Ref. 9: pp. 60-110].

E. SUMMARY

As has been discussed in this chapter, there have been in the past and are 44

now in progress, many projects to develop autonomous vehicles. To become

autonomous, such a vehicle ought to have a vision system and one such system

was described. In the next chapter, methods for handling the vision information

are applied to the problem addressed by this thesis.

-,

'a,
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III. PROBLEM STATEMENT AND PROPOSED SOLUTION METHOD

A. INTRODUCTION

Before a vehicle can become autonomous, it needs to know what the terrain it

is operating in looks like then be able to pick a path it wants to travel along. In

this chapter, some path selection techniques are discussed in general terms along

with some detailed discussion on filtering of terrain data.

For the remainder of this thesis, when reference is made to an optical radar

scanner, -the ERIM discussed in Section C of Chapter II is assumed to be the one

in use. This assumption will show up in performance data assumed for the data

conversions and simulation.

B. IMMEDIATE-AREA TERRAIN SENSING AND PATH SELECTION

The need for information about the terrain in the immediate area of a

walking machine in crucial. As long as the machine has a human driver, he can

navigate the terrain manually, picking where to walk and, if necessary, placing

the feet in appropriate positions. However, before a walking machine can become

truly autonomous, it needs to be able to navigate on its own and pick its own

path to walk along. Moreover, even in the case of a manned vehicle, it is highly

desirable that the driver be concerned only with control of the body of the vehicle

with foothold selection being accomplished automatically from vision data.

22
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There have been many approaches and schemes for solving the problem of

selecting adequate footholds and avoiding obstacles. The Autonomous Land

Vehicle (ALV) uses a vision system that is a combination of a color video TV

camera and the ERIM optical radar scanner [Ref. 5: pp. 19-23]. The color camera

detects differences in color between the road and off-road areas, while the optical

scanner is used strictly to detect differences in smoothness between the two areas.

A major disadvantage of this system is that the color camera is greatly affected by

changes in lighting and weather conditions..J

Another obstacle avoidance system is used in the FMC ALV. In that system,

the Observer uses information from a sonic image sensor to detect obstacles not

already known on the stored digitized map and then creates an obstacle map.

The sonic image sensor is a phased array sensor that has a range of 32 meters and

an arc of 120 degrees. The sensor utilizes sonic waves and produces a map every

0.2 seconds. [Ref. 6: pp. 14-23]

With a vision system consisting of just an optical radar terrain scanner, the

problem of autonomous navigation becomes even more difficult. Before an

"optimal" path can be picked to walk along, accurate information about the

terrain altitude in the immediate area has to be known. Once this information is

available, a scheme can be used to decide what areas can be walked over and

what areas cannot.

One possible terrain classification scheme was developed by Poulos in Ref. 10.

In his work, a least squares quadratic surface is fitted to a surface pixel and its
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A.

eight neighbors. From the x, y, z information of each pixel, he uses the gradient

vector and Hessian matrix and solves for the eigenvalues of the Hessian matrix.

From these solutions, he classifies each pixel as a saddle, depression, ridge, plane,

valley, hill or pass [Ref. 10: pp. 50-691. To further refine the terrain picture, he

also takes into account the slope associated with a pixel. Depending on what

criteria is set for what is a safe slope to traverse, each pixel is also classified as

being level or having a safe or unsafe slope. The property of being level, safe

slope, or unsafe slope is called the primary terrain cell classification, while the
I.

above mentioned categories derived from the Hessian matrix are called the

secondary classification [Ref. 10:pp.70-78].

With each terrain cell classified, it becomes possible to use some type of

artificial intelligence technique to select the "optimal" path to traverse [Ref.11].

The only problem is to make sure that the terrain information provided to the

classifying scheme is the best and most accurate possible.

C. TERRAIN SENSING USING THE OPTICAL RADAR

To be able to use the information obtained from the optical scanner, the data

must first be converted into Cartesian coordinates. This conversion of the data

will allow manipulation of any prior or future information that is not in the same

data format as the incoming data [Ref. 7: pp. 2-3]. In order to convert the optical

scanner information into Cartesian coordinates, it is necessary to use not only the

5,-
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scanner information, but also the information from the Inertial Navigation System

(INS).

To do the scanner data conversion, it was decided to model the INS and

optical scanner systems as a nine link manipulator and to use the Denavit-

Hartenberg (D-H) transformation for this purpose [Ref 12:.pp. 36-41]. The inputs

from the INS system consist of an x, y, z translation from the INS origin, and the

body azimuth, elevation and roll angles. The inputs provided by the optical

scanner are scanner elevation and azimuth angles and range to the terrain. The

first three links and the last link of the model are translational transformations,

while the others are rotational transformations. Figure 1 is the representation of

the resulting nine link manipulator. Table I explains what each value in Figure 1

represents.

In drawing Figure 1 and setting up the D-H transformation matrices, the

following assumptions were made: [Ref. 12:pp.36-41]

1. The reference coordinate system for the ASV body is positive z down, positive

x out of the front of the vehicle, and positive y out the right side.

2. The z,_, axis lies along the axis of motion of the ith joint and the z, axis is

normal to the z,-, axis.

3. When possible, the direction of the ith twist axis, z,, associated with a

particular link in the manipulator model is picked to make the twist angle

(a) positive.
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TABLE 1
D-H TRANSFORMATION SYMBOL MEANINGS

Symbol Represents
di  displacement from the INS origin in the z direction

d2  displacement from the INS origin in the x direction
da displacement from the INS origin in the y direction

0 ASV body azimuth angle

es ASV body elevation angle

06  ASV body roll angle

scanner elevation angle

es scanner azimuth angle

dq range to terrain

ae  distance between INS origin and scanner origin

a? distance between scanner mirrors "1

The- following definitions are needed for the discussion of the D-H

transformation matrices for link i: [Ref. 12 :pp.36-41

1. Link length (a.) is the linear displacement from the inboard motion axis to

the outboard motion axis along the twist axis, (z,).

2. Twist angle (a) is the angular displacement of the outboard motion axis, (zj,

from the inboard motion axis, (z,-,), about the twist axis, (zj.

3. Joint displacement (d) is the linear displacement of the outboard twist axis,

(z,), from the inboard twist axis, (z,-), measured along the inboard motion

axis, ( -,

4. Rotation angle (e0) is angular displacement of outboard twist axis,(X,), from

the inboard twist axis, (Z,_,), measured about the inboard motion axis,
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Using these assumptions and definitions, Table 2 shows the joint and link

parameter values for the ASV scanner system. The values in Table 2 in

parentheses are for the reference configuration shown in Figure 1 while the others

are fixed values.

Using the information in Table 2, the general D-H transformation matrix, Eq.

(3.1), can be used to form each link as follows:

cO, -CaiseO, dasO ace,

.ei cacOi -aieO i aa, 1
=- (3.1)

Ai 0 aai  ca, di j
0 0 0 1

1

In Eq. (3.1), '-'A is the D-H transformation matrix for link i going from origin (i-

1) to origin i. Also, ce, represents cosOi and se represents sine,. To obtain the

TABLE 2

LINK AND JOINT PARAMETER VALUES

Link i e di ai a,

1 90 d g0 0
2 90 d2  90 0

3 90 d3  90 0

4 e4 (180) 0 90 0
5 es(-90) 0 90 0
6 e6 (180) 0 90 a.

7 e7 (-0) 0 -90 a7

8 es (-9o) 0 9o 0
9 0 d 0 0
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01

Cartesian coordinates of the terrain at the end of the scanner beam, each

transformation matrix is multiplied in order as shown in Eq. (3.2).

0At - 0Al z IA2 z 2 A. z aA4 zA s z A 6 z 6A. z 7 A. z 'At (3.2)

In order to simulate the scanning of terrain on the graphics computer, the

matrix °A, which specifies the position of the ASV body is computed and then

multiplied by the matrix 6A. to get the coordinate transformation for the beam

tip. Using Eq. (3.1) and Table 2, the following results are obtained

c4c5c6-S-46 c4s5 c45#s-s4c6 d2  pfI 1
,4cU6-c4,6 .4,5 .4c5#6+c4c6 ds  (3.3)

85c6 -c5 8586 di

0 0 0 1

and

e7c8 -s7 c7e8 dTc7s8+a7c7

A 7c8 e7 .7s8 da7a8+a7s7 (3.4)

-A = -8 0 c8 d9c8

0 0 0 1

In Eqs. (3.1), (3.3), and (3.4), the notation has again been abbreviated so that, for

example, c7 stands for cose 7 and s7 stands for sine 7. Also, the origins of the

scanner and the INS system are assumed to be in the same place, thus making a.

= 0. While this is in fact not the case for the ASV, this assumption simplifies the

computations needed to evaluate Eq. (3.2) and at the same time has no effect on

the validity of the simulation studies carried out in the work of this thesis.
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D. PROPOSED METHOD OF DATA FILTERING

Under the present scheme used by Ohio State University, the ASV scans the

terrain using the optical radar scanner, and using whatever information the INS

provides, a terrain map is calculated and stored. On all successive scans, the

terrain map is recalculated with the given data, and the resulting new terrain

elevation values replace the old ones. Each map is stored using the x, y, and z

values calculated using the noisy range values provided by the optical radar

scanner, which makes these x, y, and z values incorrect. The following discussion

presents an approach to correcting for the z value errors separately from the x and

y value errors. It is proposed to use Kalman filtering for the z values and

regression analysis for the x and y values.

1. Stationary Walker Case

In the case where the ASV is standing still, the only significant errors

introduced into the system are the noisy range values from the optical radar

which in turn affect the calculated values of the altitude, z. In this case, to obtain

the optimal values of the altitude for each terrain cell, Eqs. (2.14), (2.20) and

(2.21) can be used. If the assumption is made that H. in Eq. (2.14) is equal to 1,

then Eq. (2.14) becomes

!A(+) = !k(-)+ K - (3.5)

where Z,(+) is the estimate of the terrain altitude after the range measurement.

Also, (-) is the estimate before the measurement and K. is the Kalman gain
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matrix. Finally, r;' is the value of the altitude calculated using the noisy range

measurement.

From Eq. (2.20), Ph(-) is defined as the variance of the error before the

measurement and RA is the variance of the measurement. For the purposes of this

problem, R, is the same as the variance of the altitude with respect to the range

and P,(-) is the total variance of the altitude. Thus, R, can be written as

1 8z 2 25
RA -i a - ).a (3.6)

where o' is the variance associated with each scan of the optical radar scanner.

h

In the case of P,(-), there is not only a variance in the z direction but there is also

a variance in the x and y calculations due to the noisy range values. Thus, P,(-)

can be written as ",

ph 2 a)z ax

,-)= 2, 2a,2. a U, + (_) 30 + (- ) o (3.7)

Using Eqs. (3.6) and (3.7), Eqs. (2.20) and (2.21) can be written as

+ 2,-1

K, + (3.8)

and

P ( ) - o,,, -) , ,1 (3.9)

2. Compensating for Walker Motion

When the ASV is walking, or when there is an INS initialization error,

the problem becomes one of computing the optimal value for the altitude and

ensuring it is stored in the correct terrain cell. Due to the inaccuracies of the
31



altimeter and GPS inputs discussed in Section C of Chapter II, it is necessary to

estimate the difference in the horizontal coordinates, Ar and AV. For this part of

the problem, regression analysis will be used to select the correct terrain cell.

Then the optimal altitude value calculated from Kalman filtering will be stored.

Two methods of regression analysis will be discussed for use in this problem: the

gradient descent method and a grid search method.

a. Gradient Descent Method

In this approach, there is a criterion function, 0, for a given set of

parameters. The criterion function will be the sum squared error between the

range returned by the optical radar scanner, A, and the range computed from the

internal terrain map pre-stored in the ASV computers, R. From this, Eq. (2.3)

can be written as

4 r (A - R)rT(/ - R) .(3.10)

To correct for the x and y coordinate drift, the gradient of 0, V*, and

the Hessian matrix, H, will be estimated using a 3 x 3 grid around the INS values

of the x and y coordinates. Using the procedure described by Poulus in Ref. 10, I

the 3 x 3 terrain cell mask is set up with the cell of interest at point where x=O

and y=O with its associated value of 0 ., Table 3 shows the relative distances of

the cells and the criterion functions associated with them.

A quadratic function can be fitted to the cells of interest as a function

of x and y which has the form
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TABLE 3
RELATIVE DISTANCES OF TERRAIN

CELL MASK AND CRITERION FUNCTIONS

x=-1 x=O x=1

x=-1 x=O xc=1 -

y=O y=O y=O .

x=-1 x=O x=1 -

y=-1 y=-1 y=-1

Aki +k2:+ks + k4 z + kzy+ k1
2  (3.11)

Eq. (3.11) can be written as

A 26, k6s, (3.12)

where the subscripts are the dimensions of the matrices and

k - (k, k, ks k, ks kG) (3.13)

and

A. zi (1 , , 2 y 21) (3.14)

By substituting Eqs. (3.12-3.14) into Eq. (3.10) and taking the partial derivatives

with respect to the k, sa, Eq. (2.4) becomes
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N- VO - -2A T* + 2ArAk = 0 (3.15)
aki

or

A Ak =A 0'. (3.16)

Rearranging terms, Eq. (2.6) can be written as

k = A"A]-'A '0' (3.17)

The gradient of the terrain cell of interest is [Ref. 10: pg. 591

= k21l + kay (3.18)

and the Hessian matrix is [Ref. 10: pg.60]

H = [ (3.19)
UkS ke

Applying Eqs. (3.18) and (3.19), the optimum amount of Az and Ay

can be computed as

(Az'AV) = ir'V4 (3.20)

which leads to the best estimate for the x and y coordinates of the terrain cell as

('M =pli.. = (XINS + AZ, YINS + AY) (3.21)

where XINS and YlS are the coordinates supplied by the INS system.

In order to be able to compute the optimum values of Ax and ay, the

values of the k's in Eq. (3.17) have to be computed. Equation (3.17) can be re-

written as
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k [A IAT AI -Ar r = Bf r  (3.22)

where

B- (AA]-AT (3.23)

To avoid repeated lengthy matrix computations, Ref. 10 shows B to be

-1/9 2/9 -1/9 2/9 5/9 2/9 -1/9 2/9 -1/9

-1/6 0 1/6 -1/6 0 1/6 -1/6 0 1/6

1/8 1/6 1/6 0 0 0 -1/6 -1/6 -1/6

B = 1(3.24)
1/6 -1/3 1/6 1/6 -1/3 1/6 1/6 -1/3 1/6

-1/4 0 1/4 0 0 0 1/4 0 -1/4

1/6 1/6 1/6 1/3 -1/3 -1/3 1/6 1/6 1/6

b. Grid Search Method

For this search method, the assumption is made that the criterion

function, 9, is definitely reduced when a sufficiently small step is taken in the

direction of the actual terrain cell. Applying this to the terrain cell mask in Table

3, the distances between each cell will be assumed to start at one standard

deviation, a, of the INS system estimate of x and y instead of a unit

displacement. After each computation of the 's in the 3 x 3 mask, the least

value 0 is moved to the center of the mask and the coordinates of that terrain cell

become the terrain cell of interest and the 3 x 3 mask and the associated 's are

again calculated with each cell being displaced by a. Once the least value of o

remains in the center cell for two successive searches, then the displacement of
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each cell, A, becomes

1
S,-) 2,3 (3.25)

2

The advantage of this type of search is that it does not depend on the

cell of interest and its surrounding neighbors being able to be fitted with a

quadratic function and thus can be applied to a larger variety of terrains.

E. SUMMARY

This chapter has presented the necessity for an accurate terrain altitude map

before a vehicle can become autonomous. After the data from an optical radar

scanner is converted into a form that can be used for route planning, there are

various ways to compute the optimal altitude values and store them in the proper

terrain cell. One method for computing the optimal altitude values was presented

along with two ways to determine the proper terrain cell to store the altitudes. In

the next chapter, the simulation model is presented that will be used to test these

data manipulation methods.
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IV. EXPLANATION AND JUSTIFICATION OF SIMULATION MODELS

A. INTRODUCTION

In Chapters H and III, various ways of handling data with INS and optical

scanner errors were discussed. In order for these schemes to be tested, it is

necessary to make use of either the ASV or similar vehicle, or an accurate

computer simulation. The obvious choice for this thesis is the computer. In this

chapter, a simulation model is presented that will allow simulation of terrain

scanning by the optical-scanner and then data manipulation using the schemes

presented earlier.

B. TERRAIN AND OPTICAL SCANNER MODELS

The computer chosen for the simulation studies of this thesis is an ISI

Optimum V Workstation. This is a graphics workstation with an UNIX4.2BSD

operating system. The workstation has a high-resolution display for a two-

dimensional, black and white graphics display. The display is 1280 pixels wide

and 1024 pixels high with the upper left corner of the screen functioning as the

reference point. The operating system has installed libraries of graphics routines

which are accessed by the computer language C, which is the language chosen for V

this thesis. These libraries provide graphics tools which make it easy to run a

visual simulation. [Ref. 13]
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In order to simulate the operation of the optical scanner, a simulated terrain

is needed. The method for generating and drawing this terrain is the same as

that presented in Ref. 10. An elevation oblique projection is used in this thesis to

display a three-dimensional model of the terrain [Ref. 14: pp.272-316]. In the

elevation oblique representation, lengths and angles of lines in a vertical plane are

preserved while others are distorted. Figure 2 shows the coordinate systems used

for the Cartesian coordinate system, the ISI screen coordinate system, and the

image coordinate system. Using these coordinate systems, the following equations

apply:

U= z - .y (4.1)

= -z - .5y (4.2)

X .' +(4.3)

Y= Yo.. -r V(4.4)
'4

The use of the multiplier value of 1 in Eqs. (4.1) and (4.2) means that each pixel

in x and z corresponds to one inch in physical units. The use of a scale factor of

.5 for the y coordinate in both of the equations means that y is foreshortened by a

factor of .707 relative to the scale of x and z. With these scale factors, the terrain

shown in Figure 3 is of dimension 64 ft. x 64 ft. With Eqs. (4.3) and (4.4), the

reference of the terrain is set in the lower left corner of the terrain.
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Figure 3
Simulated Terrain
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The terrain data is generated by

= r4 too 2r rS) (4.5)
30

where r3 and r4 are random numbers and x and y are the horizontal coordinates S

of the altitude map measured in inches. Figure 3 is a picture of typical terrain

generated by Eq. (4.5).

Figure 4 is a flow chart for the simulation program. The computer code in

Appendix A is commented for further explanation of each segment of code.

Figure 5 is a flow chart of the simulation of the optical scanner scanning the

terrain. In scanning the terrain, the optical scanner's beam length is increased

one pixel (one inch) at a time. After each increase of the beam, the x, y, and z

coordinates of the end of the beam are calculated using the D-H transformation

discussed earlier. The calculated value of z is then compared to the value of the

altitude stored at the x and y coordinate of the actual terrain data. If the

calculated value of z is greater than the actual terrain value, the beam length is

increased and the process starts again. If the calculated value is less than the

actual terrain value, then the optical scanner's range is set to

R= -5 (4.6)

where R,, is the range to the z value that is less than the actual terrain value

and the .5 adjustment brings the range back to a value closer to the actual range.

The actual ERIM optical scanner scans the terrain in 128 increments, both in

elevation and azimuth. However, due to the time requirements of simulating the
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scanning process, the simulation of this thesis uses twelve increments of one

degree each in both the azimuth and elevation.

It is assumed that the error associated with the the optical scanner is range

dependent; that is, the greater the range to the surface, the greater the error of

the returned range value. For the purposes of this thesis, this error will be

represented by

2 2
r

2
D

2

affi a o + OR (4.7)

where a2 is the total variance of the scan and R is the range from Eq. (4.6).

Also, lacking any information about the scanner errors, ao and a' are set at

a: .02 i. (4.8)

and

2 = .04 . (4.9)

After the variance in the range measurement is computed, the new value of

the range, A, is computed by

A = R + no0co (4.10)

where n is the output of a gaussian random noise generator with zero mean and

unit variance and

Gas0a = ,/ °,n (4.11)
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C. DATA HANDLING DURING SIMULATION

Once the terrain has been scanned by the optical scanner, regression analysis

is applied to compute any errors in the INS values for the x and y coordinates.

Figure 6 is a flow chart of the gradient search method of regression analysis.

Using the INS values of the x and y coordinates, to is computed using Eq. (3.10).

The INS value of the x and y coordinates are then changed by the values in Table

3 and the associated O's are computed. To compute the #'s, the terrain is

scanned, but this time without noise added to the range value. In the actual ASV,

this would be done internally with the pre-stored terrain map of the area and not

an actual scan of the terrain. From these values of t, Eqs. (3.22) and (3.19) are

used to compute the k's and the H matrix. With these, Az and Ay are

determined by Eq. (3.20). With these values of Az and Ay, the INS values for x

and y can be adjusted by Eq. (3.21).

The second regression analysis method is the grid search method. Figure 7 is
I-

the flow chart for this search method. It is much the same as the gradient search

method except that the INS values of the x and y coordinates are changed by the .

standard deviation, a, of the INS estimate of x and y. After each cell's ' is

computed, the minimum value of 0 is determined, and if it is not in the center

cell, then it is moved to the center along with its associated value of x and y. If

the minimum 0 is already in the center cell, it is left there. If the minimum 4,

was not in the center cell, then after it is moved to the center, the x and y values

are again changed by o. This process continues until the minimum 0 stays in the
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center cell for two successive iterations. Once this condition is satisfied, the x and

y values are changed by a/2' and the O's are again computed. This process

continues for n=1,2,3. Upon completion of the search method, the cell with the

minimum 0 has the new INS value of x and y to replace the old values.

After completion of the regression analysis, the Kalman filter is used to store

the optimal values of the altitude in the appropriate altitude map cell. The cell
J.

indices are determined using the new INS values for x and y determined by .,

regression analysis. Figure 8 is the flow chart for the Kalman filtering. For

initialization of the Kalman filter, if a cell in the altitude map does not have a

stored value for a, then the v of that cell is set to be (120)2, which is the square

of the vehicle's height. From Eq. (3.7), the partial derivatives with respect to x,

y, and z are dependent on the nature of the terrain. Eqs. (4.12) and (4.13) show

that v. and o: are given by

2 2 av 2

aU oR( (4.12)

2 2 ( "-' (4.13)

3R

For purposes of this thesis, the values of a. and a are set to 1, but in reality, they

are dependent on range as well as azimuth and elevation scan angles.

From the terrain data generated for this simulation, an average value for

a:
-')2 was determined from the difference in the altitude value in the x direction
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with the y value held constant. From these calculations, the average value of this

quantity is

az 2 116 i. (4.14)

az

The average value for (-Z) 2 was calculated in the same manner as that for (-z )2
ay ax

with the results the same as those in Eq. (4.14). Next, a, is set to be

2 .2 2

=. - sinZ 07 V, . (4.15)

With the value of computed, Eqs. (3.5) and (3.9) are applied to each cell of

the altitude map to store the optimal value of the altitude. Upon completion of

the filtering, the program returns to scanning the terrain.

D. SUMMARY

In this chapter, the computer simulation was discussed. The creation and

scanning of the simulated terrain and the scanning of it was presented along with

the two regression analysis schemes and the Kalman filtering scheme for handling

the data obtained from the scanning. In the next chapter, the results of the

simulation runs will be discussed.
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V. SIMULATION PERFORMANCE

A. INTRODUCTION

In the previous chapters, methods for correcting INS drift errors were

presented that might contribute to an effort to make the ASV an autonomous

vehicle. After development of a computer simulation model in Chapter IV,

numerous simulation runs were needed to validate not only the model but the

various schemes for handling data so that an accurate terrain altitude map can be

developed for future use in possible route planning. In this chapter, simulation

runs are planned and run for a stationary walker and a walker with movement

involved. Along with the results, some conclusions about these results are

presented.

B. SIMULATION RESULTS

1. Stationary Walker Results

The first test of this thesis was to run the simulation using a stationary

ASV. In this case, the walker is in a permanent position and it scans the same

terrain over and over while performing Kalman filtering on the altitude

information. Figure 9 shows the simulated terrain with the area being scanned

indicated on it. In this figure, the optical scanner is represented by a small square

and there is a line drawn from the scanner down to the terrain to give the viewer
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an idea of the scanner's relative position over the terrain. Also, the INS origin is

set to be the lower left hand corner of the terrain. Due to the assumptions made

in Chapter III, Section C, the x coordinate increases positive to the right from the

INS origin along the horizontal axis, and the y coordinate increases negative along

the other (diagonal) axis.

To evaluate the effectiveness of the Kalman filtering presented in this

thesis, three terrain cells are looked at to see how the optimal altitude value

changes as the terrain is scanned in a stationary position. To get a representation

of how the filtering is working at different ranges, the three terrain cells are

selected at scanner elevations of -26, -41, and -61 degrees. Figure 10 is a plot of

the three terrain cells altitudes stored after each scan after Kalman filtering has

been applied. To check that the filtering works no matter what the noisy range

values returned by the optical scanner are, a second simulation was run on the

same terrain in the same position. Figure 11 shows the results obtained for the

same three terrain cells.

The next test made on the stationary walker was done with the scanner

in a different position on the terrain and pointing in a different direction. Figure

12 shows the scanned terrain for this case. Figure 13 shows the results of the

Kalman filtering on three terrain cells at the same elevation angles used in the

first case. Figure 14 shows the same three terrain cells with different noisy optical

scanner range values.
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The last simulation conducted for the stationary walker case was to scan

the same terrain shown in Figure 12 and let the scanner scan it for 40 scans.

Figure 15 shows the results of the 40 scans for the same terrain cells looked at in

Figure 13.

2. Moving Walker Case

The next case to look at was the walker with motion involved. To get

the optimal altitude value for each terrain cell, errors in the INS values of the x

and y coordinates must be corrected for so the altitude value can be stored in the

correct cell. For the purposes of this thesis, the net effects of walker motion are

represented by an INS initialization error or offset.

The first method used to correct for the INS errors was the gradient

descent method. The scanner was placed in the same position as represented in

Figure 9 and given an initialization error of Az = 5 inches and Ay - -4 inches. After

the first scan, gradient descent was applied using Eq. (3.20), and the optimum

values for Az and AV were 10 and 5 respectively. A second run was conducted

with different INS errors and the results were again not close to the value they

should have been. The reasons for this failure are not known, but appear to be

associated with the inadequacy of a quadratic approximation to the squared error

function, 0. This problem might be solved by a more elaborate gradient descent

method as discussed in Ref. 8, but this approach was not investigated in this

thesis.
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After the apparent failure of the gradient descent method, the grid search

method was applied to the moving walker case. The first simulation run using

the grid search method was with the scanner in the position indicated in Figure 9

and with the standard deviation of the INS offset given by, a = 6 inches. This o

was an assumption and is used in the terrain cell mask described in Chapter III,

Section D. To test the effectiveness of the grid search method, a run was

conducted with the INS error less than a, another run with the error between o, .d.

and 2a, and a third run with the error greater than 2a. Figure 16a shows the

results of the regression analysis with the INS error less than a. The plot shows

the actual x and y values, the starting point of the INS x and y coordinates and

the numbers indicate the steps of the grid search. The final value is the value

returned to be used in the Kalman filtering by the grid search at the end of the

first actual terrain scan. As Figure 4 shows, the regression analysis is repeated

each time a new frame of noisy range values is obtained from the simulation.

Figure 16b shows the results of the grid search after the first scan with the INS

error between a and 2a. After the second scan, the data showed that the grid

search method locked in on the actual x and y coordinates and stayed there for

subsequent scans. Figure 17 shows the results of the grid search after the first

scan with the INS error greater than 2a. The data collected also shows that the

grid search method would not lock in on the actual x and y values on the

succeeding scans when the error was greater than 2o.
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Upon completion of each grid search, Kalman filtering was applied to

obtain the optimal altitude value for each terrain cell. Figure 18 are the results of

the Kalman filtering after 8 scans with the INS error less than a. The data also

shows that the results of the Kalman filtering when the INS error is between u

and 2a are almost exactly the same as those shown in Figure 18. Figure 19

presents the results of the Kalman filtering when the INS error is greater than 2o.

The next test of the grid search method was to set the value of

a = 12 inches. With this value of a, the same type of runs were conducted as when

o,6 inches. Figure 20 shows the results when the INS error is less than 2a. Figure

20a shows the grid search locks in on the actual x and y values with zero error

after the first scan. Figure 20b indicates that the grid search did not lock in on

the actual values after the first scan. To further test the grid search with the INS

error between a and 2a, another run was conducted with different errors in that

range and the results are shown in Figure 21. The data showed that the grid

search locked in with zero error on the actual position on the first scan and stayed

locked in on all succeeding scans. The final run was conducted with the INS error

greater than 2a and those results are shown in Figure 22. As with the results

when a = 6 inches, the grid search would not lock in on the actual position when

the INS error was greater than 2a. When the Kalman filtering data was reviewed,

the results were very much like that received when a = 6 inches.

So far all of the results for the moving walker case involved using a pre-

stored terrain altitude map. One final simulation conducted was to see if the grid
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search method would work without a pre-stored map. In this case, the scanner

was placed in the position represented in Figure 9 and the terrain was scanned 20

times to obtain an altitude map. From previous results, it is known that the map

stored for the area scanned was very close to the actual map and the data for this

case also showed that to be true. Upon completion of the 20 scans, the scanner

was given an offset and then regression analysis and Kalman filtering was applied

for the next 8 scans. Figure 23 shows the results of the grid search after the first

scan. As can be seen, the grid search went farther away from the actual position.

Actually, the grid search only conducted 3 steps because of the safety factor built

into the program so it would not look forever if it was not converging. Also, the

data indicated that on the succeeding scans, the grid search actually got worse.

This run was conducted with an or = 6 inches and the offset between a and 20. It

was run again with the offsets less than a and the results were the same.

C. CONCLUSIONS

The first general conclusion to be made from the results presented in this

chapter is that the Kalman filtering is working. As can be seen from the results of

the stationary walker case, the stored altitude values were very close to the actual

values. For the terrain cells where the scanner was at -26 and -61 degrees, the

stored values were within .25 inch of the actual values while the one at -41

degrees was within about 1.1 inches. To evaluate the significance of these results,

data was obtained concerning the standard deviation of the raw terrain elevation
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values obtained from the noisy range values. The observed standard deviation

had a value of 2.95 inches when averaged over all cases, much greater than the

filtered values. One possible reason why the stored values at -41 degrees had a

greater error was the arbitrary range adjustment from Eq. (4.6) and the sin2 effect

of Eq. (4.15). In any case, these results would probably be good enough for some

route planning program to use.

Referring to Figure 15, an apparent bias in terrain altitude estimates is

revealed. From the magnitude and general behavior of this bias, it is believed

that it results from the quantization of range into increments of one inch. This

quantization is modulated by the sin2 term of Eq. (4.15), leading to the differences

between the three curves of Figure 15.

The next conclusion is that the gradient descent method of regression analysis %

was not effective with this simulated terrain. The reason for this failure is not

known except it may have something to due with the terrain and the resulting

"lumpy" error criterion function, 0.

The overall conclusion about the grid search method is that it is effective.

How well it works depends on the a selected and the amount of INS error relative

to that a. As Figure 20b showed, with a INS error of Ax = 21 inches and

Ay = 19 inches, the grid search would not lock in on the actual position but as seen

in Figure 21, with an error of Az = 18 inches and Ay = -17 inches, the grid search

locked in on the actual position. This would indicate that there might be a limit

to the amount of INS error involved before the grid search can correct for the
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error which is independent of the value of v. With this method though, the INS

initialization errors or offset can be corrected for, within limits, and thus allowing

the Kalman filtering to provide an accurate terrain altitude map when a pre-

stored altitude map is available.

Finally, using the grid search method without a pre-stored altitude map did

not work. In analyzing the results, a possible reason for its failure was because

the altitudes in all of the surrounding terrain cells was initialized to zero so when

the terrain mask was applied and the stored map scanned, the altitude values

stored in the resulting Cartesian coordinate map would probably be less than they

should have been, thus giving a minimum criterion function in a false cell during

regression analysis. With this false minimum, the grid search would chase after

the wrong cell.
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VI. SUMMARY AND CONCLUSIONS

A. RESEARCH CONTRIBUTIONS

In this thesis, a first approach was presented in providing an optimal terrain

altitude map that could be used for route planning for an autonomous walking

machine. Toward that end, an effective Kalman filtering scheme was developed

and tested. The results of those tests show that the altitude values stored in the

terrain map are good enough for a walking machine to walk across.

Another important part of providing an optimal altitude map is to ensure

that the altitude values are stored in the right terrain cell locations associated

with the proper x and y coordinates of the terrain area being traversed. If the x

and y coordinates are in error because of errors in the inertial navigation system,

then it is necessary to correct for those errors before storing the output of the

Kalman filter. To solve this problem, a regression analysis approached called the

grid search method was presented. This search method proved to be effective in

correcting for these land navigation errors on the simulated terrain within limits.

These limits appear to be within about 18 inches of the actual x and y coordinate

values with the terrain used in this thesis. For a first approach, this type of

accuracy is good and provides for a satisfactory starting point for refining this

method.
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Another contribution of this thesis was to provide a simulation for terrain and

an optical terrain scanner scanning that terrain. This simulation was developed

for the ISI graphics workstations and could be helpful for any further work that is

conducted on these or similar workstations.

B. RESEARCH EXTENSIONS

Since the topics presented in this thesis represent a first attempt at optical

radar data filtering with the ASV in mind, there are many areas that can be

expanded upon.

First, further research is needed into why the gradient descent method did not

work. It is very possible that the reason has something to due with the simulated

terrain used. Another extension that could be pursued would be with the grid

search method. Along with having a decreasing mask in the grid search, an

expanding mask could be developed if the minimum criterion function cannot be

brought into the center of the grid. Also, further research is needed to determine

the optimal value for the grid size to use in the mask and what lim ts there are on

the errors that can be corrected. Along with this, the grid search method should

be applied to completely different terrain and the optimal value of grid size

determined and then compared to the one for this terrain to see if there is a

relationship. Next, investigation into ways to use the grid search method to

correct for errors introduced by the accelerometers while walking would allow the

vehicle to continuously walk while the grid search method corrects its position.
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Currently, under the scheme presented in this thesis, the vehicle would have to

take a few steps, stop and correct its position, and then take a few more steps.

Another important area that needs to be studied is the one of applying these

techniques to the moving walker case where no pre-stored altitude map is

available. As seen in Chapter V, the first attempt involving this situation did not

work. Research into why it did not work and how to make it work will be

invaluable to making the walking machine autonomous.

The last area that should be studied is to apply the techniques that have

proven successful in simulation to actual terrain with actual optical scanner data.
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APPENDD

PROGRAM LISTING

This is a computer simulation of an optical
scanner scanning simulated terrain using
regression anaylsis and Kalman filtering.
This program is written in C for the ISI
graphics workstations.
This program is compiled by

cc scan.c -ltools -Ibm -lvt -Im

by Mark D. Rickenbach
I August 1987

#include <math.h>
#include <vt.h>
#include <stdio.h>
#include <bitmap.h>
#include <tools.h>
struct BMD *bmd;
int seedi;
float seed,seed2,a0_9[4j[41,seed3;
main()
{

static ant u,v,u2,v2,scan,iijj,v21,u21,rr,f,init,x,y,:,k;
static ant rand l,rand2,rand3,rand4,xint,yint,safe,counter;
static ant bmyl,bmxl,bmx,bmy,fd,ij,kk,xx,yy,s,rang,l;
static float sigscan,sig02,sig12,array[ 12811128],d9,r[4561;
static float n.sigsold2128111281,noise(),sigscan2,elev,dx[91,dy[9];
static float xxl,yyl,zzl,dmin,gmin,zhat[128]1281,s[112811128];
static float w,tl,celev,melev,sigoid2[128][128],sigz2 1281[1281;
static float th4,th5,th6,dl,d2,d3,th7,th8,g8],rhat456],d2min;

Open window, allocate bit map and set line discipline to graphics
for graphics simulation ASV scanning terrain.

fd =OpenWindow( 15,63,1220,664, "Terrain Map"):
SetLineDisc (fd,T WSDISC);
if ((bmd=BM_Allocate(1220,664))==0)
{ printf(" unable to allocate bit map"),

- }
BMSet Addressing(bmd, 1);
BM _SetColor(bmd,1);
BMSetBColor(bmd,O);
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Initialize various arrays to zero.

for(i=0;i< 128;++i)
{forUj=Oj< 128;++j)

{sigold2jijjJ=O;

mapz~i) D)=O;
sigs2lij=;

Compute array of altitude values for terrain map.

counter=0;
do (
seed =0.0;
seed 1=0;
seed 2 =0 .0;

randi ;ran (21);
rand2=ran(21);
randSl=ran(i);
rand4=ran( 121);
for(i=0;i< 128;+ -*i)
( forUj=0j<128;---j)
{x=randl-i;
y=rand2-j;-
t1=(xx) - (y *Y);
w= (sqrt(t 1) /30 )*6.2832*rand3;
arrayj i1=rand4*cos(w);

couflter=counter + 1
while (counter < 0).

Draw the base or the terrain map.

xiflt -30,

BM Set Pn.ti n (bmd.xint vint).
H%1 SetThickncst(bmd.3L.
B%I Paint Linr(bmd.792.542).
BM PaintLianribmrd II7f if61).

H%I PaintiLine(limd 414.161).
HM1 PaintLine(hmd xint sint)
H%1 'sotThirkne-.t-(brd I I

s0

N N9



Draw terrain to bit map using scheme developed by

Poulus in his thesis. Each terrain cell will be
represented by a 6 in. x 6 in. square.

i=O;
j=O; '

loop:

y=j*8;
.=arrayul Iih
bmx=xtrfunc(&xint,&x,&y);?
bmy=ytrfunc(&yint,&y,&z);

loopi:
if(i== 127 && j== 127)

{BMSetThickness(bmd,2);
bmyl=bmy+z;
BM PaintLine(bmd,brnx,bmyl);
BM-SetPosition(bmd,bmx,bmy);
BM-SetThickness(bmd, I);
BMDisplayBitmap(fd,PAINTRASTER,bmd,0,O,0,O, 1220,884,0);
goto Joop2;

ifUj==127)
{if(i==O)

y=j 6-
bmx=xtrfunc (&xint,&x,&y);,
bmy=ytrfunc (&yint,&y ,&z);
BMSetPosition(brnd,bmx,bmy);

BMSetThickness(bmd,2);
bmyl=bmy+x;
BMPaintLine(bmd,bmx,bmyl);
BM SetPosition(bmd,bmx,bmy);
BM SetThickness(bmd,l);

x=i*6;
Y=j8e;
S= array i1!

bmx = xtrfunc(&xint,&x,&y);
bmy =ytrfunc(&yint,&y,&z);
BM _PainLLine(bmd,bmx,bmy); S

goto loop I

J( 127)
BI SetThickness(bmd,2);
bmyl z=bMY +Z,
HM Paint Line(bmd,bmx,bmy 1);
BM Set Position (bmd,bmx, bmy);
H%4 SotThickness(bmd,1);
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j=j4. ;

x-i*6;

buizl=xtrfuc(&xint,&x,&y);
bmyl=ytrfuc(&yimt,&y,&a);
BM -PaintLie(bmdbsxl ,bmy 1);
i=O;
Soto loop;

I if(a==O kk j==O)
(BM Se&Thikahuvs(bmd,2),
BMPsintLime(bmd,bmx,bmy);
gogb loo$;

x=iS6;
Y=j*6;
S=Aamyjjj ii;
bmx=xtrfnac(&xint,&x,&y)-;
bmy=ytrfviac(&yin ,&y ,&s),
BM SetPcoiiom(bmd,bmx,bmy),
BM -SvtThikkaew(bmd.2).
bmyl=bmy+s;
BM -Pain tLin(bmdbmx, bmy 1),

BM -SetPosition (bmd, bmx, bmy);
BM -SeThkkDU(bmd. I).

y=U, 1)*6;

bmxlI=xtrfunc(&xini,&x.&y);
biny i=ytrfvmc(&yimt,&y.&a);,
BM -Pain& Line(bmd, bmx 1, bmny1)
BM StPonition( bnd ,bmx,bmy);
x=i;6;
y=j6a;

bmx=xtrfunc (&xint,&x,&y);
bmy=ytrunc(&yint,&y,&s),
BM PaintLiat(bmd,bmx,bmy);
g010 loopI;

bmxl1=xtrfunc ( xint ,&x,& y);
binylI=ytrfunc(kyint,&y,&z);
BM -PaiatLine~bmd,bniid,bmy1);-
BM-SetPoition(bmd,bmx,bmy);
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y zi*6;

bmx=xudnnc(&xinA,&x,&y),
bmy -ytrfisnc (&yint,ky,ks);
BMPaai Lnelbnid,bmx. bmy);
lgo loop I

loopll:

see.*** .***0 ~**4** * ***a 0ieeae*0e..eO**O*40*000 6**4

Lawe the starting LANS information from keyboard.

prsntf(" enter s-cooed. o( ASV 0);

pcatf(" ete yco&d2 o AV )-

pnatf(" enter y-coord. of ASV 0);

pnatf(" enter s-cooner boy asVut 0) le

pnntf(" enter scanner body elevaioh angle 0);
scaf("%r9 .&ts);
pnntf(" enter scanner body rolvatnale 0),
scanf("%f".&t6);

Kcan =0-.
xxI =d2;
yy I d3;
ss =d 1,
d2~d2-29; /* Introduce LANS initialisation errors if any
dZ =d3-30;

Start scanning terrain.

do
Kcan= scan~1
printf(" scan %d ",scan);

v2= (xl -.. Syyl +542);

Draw a rectangle to indicate position of the ASV scanner.

BM Set Position (bmnd,u2,v2);
BM Sot Addressing (bmd,0);I
BM Paint Rectan glelnterior(bmd, 8,8);
BM Displayffitmap(Id, PAJNTR ASTER, brnd,0,0,O,O, 1220,684,0);
BM Set Addressing( bid, 1);
BM_-SetThicknesa(bmd,2);
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u21=xxl-.Syyl+O;
v2l=.5yy1+542;
BM -PaintLine(bmd,u21,v21);
BM-SetPoitioa(bmd,u2,v2);
BM SetThickness(bmd,1);

Scan terrain with one full asmuith scan for each elevation
increment starting at elevation representd by elev and
scanning down. For init=I, this simulates scanner operation
returning a noisy range value, r[rr]. For init=2, this
simulates the ASV's computer internally scanning its
pre-stored terrain map and returning noiseless range values,
rhatirri. For the purposes of this thesis, the scanner
scans in three elevation segments of 12 degrees each at
-20, -35, and -55 degrees.

for(init~l;init<3;init++)
{rr=O;

do{
if(i==1)
{elev=(-I)*20.;

else if (i==13)
{elev=(-l)*22.;

else if (i==25)
{elev (1) 30;

th7=elev-i;
tt=l;
j=1,
do{

th8=6-j;
if(tt==1)
{rang=O;
do {
rang=rang$- ;
dg=rang;
computematrix(&xxl,&yyl,&zzl,&th4,&th5,&th8,&th7,&tb8,&dg);
1=(&O_9111U41/6);
k =(- 1)* aO '9121141/6;

melev=arraylkl 1;
}while (celev >melev);

else
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do (
rang=rang-1;
dgz~rang;
computematrix(&xxl,&yyl,&ssl ,&th4,&th5,&th8,&th7,&th8,&d9);
l=(aO 911][41/6);
k= (.1)'a0 9121141 /8;
celev=(.1)i (aO 9131141);
melev=arraylkflJ;
) while(celev<=melev);

do {
rang=rang+l;
dg=raag;
cornputematrix(&xxl,&yyl,zl ,&th4,&th5,&th8&th7,&thg,&dg);
1=(a0 911141/6);
k=(.I)*a0 91]1 41/8;
celev=(-1)7 (&0_913J141);
melev= array [k] 11;
}while(celev>melev);

d9=d9-.5; /* back up range by .5 inch .
u=(aO_9[l] I41-.5*aOL912]14l+3O);
v=(0.5a0O 912]14]+&aO 913] 141+542);
BM SetPosition(bmd,u2,v2);
BM-PintLine(bmd,u,v);
BM-DisplayBitmap(fd,PANRASTER,bmd,0,0,0,0, 1220,644,0);

Compute the noisy range value for init=1.

sigO2=0.02;
sig 12=0.000 1;
n=noiweO;
sigscan2=sigO2 + sigl2*d9*d9;
sigscan-aqrt(sigscan2),
if(init ==1)
{n=noiseo;
d9==dg+n~sigscan
rlrrj =d9;
I

else
{rhatjrr] =d9;
I

tt=tt+1;

}whileUj<12);

)while(i<36);
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Start regression a.nalysis. Set value of sigma (s) to
be used in the cell masks.

s=12;
g101=0;
f= 1;
for(ii=1;ii<43S;ii++) /* compute initial criterion function value,gOI *

d2min=d2;
dimin=d3;
gmin=gI0I;
safe= 1;
kk= 1;

Change x and y coordinate values and simulate terrain
scanning to obtain rhatjrrj to be able to compute
criterion function values for each grid position.

do{
d2=d2min;
d3=dlmin;
g[J0=gmin;
for(ii=l;ii<g;ii--+)
{ if(ii= =1)
(d2=d2-s/f;
0S=0-9/f;
I

else if (ii==2)
(dS=d3-s/f;

else if (ii==S)
{d2=d2±s/f;
d3=d 3-s/f;,

I%
else if (ii==4)

{ d2=d2-s/f;

else if (ii==5)
{d2=d2+s/f;

else if (ii==6)
{d2==d2-9/f;
d3=d3+s/f;

else if (ii==7)
{d3=d34-s/f;
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{d2-d2 + /f;
dlu-dS~s/f;

do4

el if(-1).

Ane if (i-=25)

do 4

ran = rag)

{9rang;

do4
reaag=rang- 1,
d9=raag;
cam psi~sm atnx(&d 1 ,&d2,&d3,& t4.&I5,&t6,ih 7, &th 8, d9).

k-f-I )0O9121141/6;

celev=(-i) (&09131141);
molev UTray 1kll];
} while(ceiev< melev);

do 4
ranzg=ranc- 1,
d9= rang;
computematrix(&edI,&ed2,&dS,&t4,&tS,&iG,&th7 ,&Lh8,&d9).

k=(.1)aA91141/6;
celev=(.1)* (&0 9131141);

niole = arayf k i81

I M M Nhile-cele, I mele-);



AAA i nr d9;

)whdole- 3S).

******se **Gt* aa*0 0* @OOO dO*06404Oii@****

Compete erflenon fuctio for the appropriat.

forWj= IW JAS3Wj-, 4

dx~u =d3.
dyii=dS.

4d2 -d2 -'/f;
dS-d3+*/f.

(dS~dSI+s/(.

ehe if (ui 4)
(d2=d2-/f,

felm if (ii' = S)

(d2=d2-s/t;

clue if (ii:==6)
{d2=d2 -s/f;
dS~dS-s/f;

else if (ii==7)
{ d3=d3-@/f;

else if (ii==8)
{d2=d2-9/f;
d3=d3-@/f;



Determine the minimum value of criterion function
sad its asociated x,y coodinetes.

fOrw-luj<0w++)
{(gnsimz <. Wl/
Id2min-d2min;
dlmia=dSmin;
gmin=gmin;)
else

(d2mi=dxUij;
dSmin=dyWj;

)
I

If minimum velue of criterion function is not
in center cell, keep f=1 .nd increment safe by 1.
If minimum is in center cell or safe=4, start
increasing f by 2 times until its is > .

if(gmin != [01 && kk== && safe !=4)
(f=1;
kk=I;
sde=aafe+ 1;
I

else if (gmin == .101)
{f=f'2;
kk=kk+l;
safe=4;
)

else if (safe == 4)
(f=f' 2;
kk=kk+i;
)

) while(f<sj
d2=d2min;
dS=d3min;

Start computation of x,y, and z values for each
asimuth and elevation value.

rr=O;
i=1;
do (
if(i==1)
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{elev=(-1)*20.;

else if (i== 13)
{elev=(-1)*22.;

else if (i==25)

th7=elev -i;
j=1;
do I
thg=G-j;
rr-rrw+1;
d9=rjrrj;
computematrix(&xxl,&yy 1,&usl,&th4,&th5,&thC,&th7,&th8,&dg),
xx=aO_911](4]/6;
yy=(.1)a&0 9121141/6;
sslxx]Ilyy] (1)* &09131141;

Perform Kalman filtering for each terrain
cell scanned.

sigs2[xxl[yyl=(sigo2 +* sig2d9'dg)sin(th7*3. 14159/180)
*sin (th7*S. 14159/180) +.232;

if(sigsold2jxxj [yy]==0)
{sigsold2frxjjyy)=144000.;

shatixl yyI =shatlxxl [yy1+ (sigsold2ixxiyyJ /(sigsold2[xx]Iyyl+sigz2(xx][1y]))
* (szfxij yy]-shatlxxllyy]);

sigsold2lxxl yy1=sigz2lxx~IyyJ sigzold2lxx] Iy1/ (sigs2lxxj yyl+sigsold2Ixxj lyyl);
j~j+ 1;

)whileUj<12);
i-i-i-i

)while(i<36);
)while(scan<8);

printf("I program complete 1f);
while (1)

End of the main program

Subroutine to perform the coordinate transformation
using the D-H transformation. Only the values of the
matrices needed are computed.
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computematrix(xl,yl .1 ,tth4,tth5,ttho,tth7,tths,dd9)
nlo&& *x1,y1, zl,*tth4,*tthS,*tth6,*tth7,*tth,*ddg;

float c4,c5,c6,c7,c8,thact4,tbact5,thact6,th7,th8,d9;
float s4,sS,s6,s7,s8,xxl,yyl,ss1;

xxl=(*xl);
yyl=(*Y1);

th ctl=(*t);
thact4=(Otths);
thact5=(*tths);

th7= (*tth7);
th8=(*tthg);
d9=(*dd9);
c4=cos(thact4*3. 1416/180 +3.1416);
c5=cos(the~ct5*3.1416/180 -1.5708);
c6= cos(thact6S .1416/ 180 +3.1416);
c7=cos(th7*3.1416/180 -1.5708);
c8=cos(th8*3. 1416/180 -. 5708);
s4=sia(thact4S.1416/180 + 3.1416);
s5=ain(thact5*S. 1416/180 -1.5708);
96=sin(thaCt6S3.1416/180 + 3.1416);
s7=sin(th7S3.1416/180.- 1.5708);
s8=sin(th8S.1416/180 - 1.5708);

.0-911 41=xxl+(c4c5*c6+u4*96)*(dg*c75g+a7*c7) +(c4*s5)(d*97*sB+a7s97)
-e(c4*c5'sOs4*cO)*(cS 4 d9);

.0_9121 141=yyl+(s4c5*c6-c4u96) (dgc7s8+c7)+(4*95)* (dg98*7+a7*s7)

._ +(s4*c5s6+c6c4)*(c8*d:); (5
+(s~S*6)*(c8*dg);

Subroutines to do x and y transformations used in the
terrain drawing portion of the program.

xtrfunc(xint,x,y)
long int *x,*y
int *xint;

int xx;
xx=(*xint)+(*x)+ (y)*.5;
return xx;

ytrfunc(yint,y,z)
long int *y, *z
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mnt *yint;

int yy;

return yy;

Random number generator used in creating terrain.

imt r;

int ran;
seed =(seed 2-3. 1) * (seed 2 +S.1);
seed 1 = seed;
seed 2=seed-seed 1;
raa=(r )*(seed2) + 1;
return (ran);

Subroutine used to create a random gaussian number
with mean=O.

Bloat
noise()

Bloat b,n,seed,x,xx;
int i,seedl1;
b=0.5;

(seed= (seed3 +S.141634) (seed3+3. 141634);
seed I =seed;
seed3=seed - seed 1;
x=2*seedS - 1;
xx=xx + X;

n = bxx;
return(n);
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