
TS NU YLUTI OUO H EiPTRII-T5fNPTER SYSTEM() NAVRL POSTGRRDUATE SCHOOL
MNUTEREY CR J V FILNO JUN 87

UNCLMSS I FXEF/ 126 L

smmhhhmmhhl

l1.2.2

11111=16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-_1963-A

O1iC FILE COPY

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
TEST AND EVALUATION OF

THE TRANSPUTER
IN A MULTI-TRANSPUTER SYSTEM

by

Jose Vanni Filho

June 1987

Thesis Advisor U.R. Kodres

Approved for public release; distribution is unlimited.

DTIC
E LECTE'Af
OCT 1 4 1987

87 H4

SEC RI Y LA SIIC TI N f N~ rAREPO RT D O CU M EN TA TIO N PA G E
I& REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS

Unclassified _______________________

24 SECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION /AVAILAILITY OF REPORT
________________________________ Aproved for public release;

lb Ott LASSFiCATiON iDOWNGRADING SCHEDULE distribution is unl imited
4 PEFRMING ORGANIZATION REPORT NuMII(SI S MONITORING ORGANIZATION RtPORT NuVSERM

6a NAME OF PERFORMING ORGANIZATION T6b OFF~ICE SYMBOL Ya NAME OF MONITORiNG ORGANIZA tiON
Naval Postgraduate School (1 appicable) Naval Postgraduate School

___ __ ___ __ ___ __ ___ __ _1 52 _

6C ADDRE SS CitJ. Stafe and ZIP Code) ?b ADORESS(Cory, State and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

So NAME Of FuNDiNGuSPONSORiNG r6b OFFICE SYMBOL 9 PROCUREMENT iNSTRuMiNT IDENTiFICAfiON NUMBER
ORGANIZATION j(Iappicable)

SC ADDRESS (C~t'g Stott, and ZIP Code) '0 SOURCE OF FuNDING NuMBERS

PROGRAM IPROECT TASK(W ORK jNiT
ELEMENT NO INO NO jACCESSON NO

11 T.L (~5Incl(ude Secu'try Ctaugica ton)

Test and Evaluation of The Transputer in a Multi-Transputer System

* PERSONA, AUTHOR(S)

Jose Vanni Filho
.1 jv~ oS REPORT Ib TVME COvERED Od AT(OF REPORT (Year Month Oay) S5 PAGE cONr

Master's Thesis $QOM 7 0 1987, June 201
6 SLP-)LTN(ARY NOTAT!ON

COSAT' CODES IS SuojECt TERMAS (Contiue on 'CyvlIC of flCCCjoy and edetly by block numnber)
E,) GROUP SuIG OUP Parallelism, Concurrency, Distributed Systems,

I I Performance Evaluation, Transputer, Occam
1 !ABSTRACT (Continue on 'eve'ie o0 nocouarV and idenftft by block nlum'ber)

~>The purpose of this thesis is to start the evaluation of the Transputer, a 32 bit
microprocessor on a chip, to verify its potentials and limitations for real time
applications, in distributed systems.

The evaluation concentrates on the four physical communication links, and its
advertised capability to operate in parallel with the main processor (CPU) , each one
of them at rate of [0 mbit/sec in each direction. It also presents to the reader an
introduction to the machine itself, to the Occam Programming Language, a description
of the environment at the Naval Postgraduate School(NP-S), and suggests to the novice a
learning sequence.

I The evaluation pro rams and other example programs presented in this thesis were
implemented using theO ccam Programming Language (Proto-Occam) in either the Occam
Programmin7 Sysem (OPS) or the Transpute r Development SystemS(TDS), both resident on
the VAX 11/70 computer under the VMS Operating System (V A/VMS.

i0 0 5 RIuT-ON AVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CL.ASSIFICATION
QCASSF1(OUNL1MITED 0 SAME AS RPT QOTIC USERS Unclassified

11o %AE OF RESPONSISLE it.DiVIDUA. I2TEAEP"ONE (lncludf Area Code) 22c O~ffi(A SYMBOL
Uno R. Kodres f409)4 2197 152 Kr

00 FORM 1473,684 MAR 03 APR ed~t~n rmay be used unt.I eshuF'*ull SECURITY CLASSIFICATION OF TwS. PACE[
All Other edE-ons at* obsoletO

Approved for public release; distribution is unlimited.

Test and Evaluation of
the Transputer

in a Multi-Transputer System

by

Jose Vanni Filho
Lieutenant Commander, Brazilian Navy

B.S., Brazilian Naval Academy, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: Jose V'annm Filho

Approved by:___________________________________
U.R. Kodres, Tfiesis Advisor

D.L. Davis, Second Rea cr

Vincent Y,/tu l, Chairman,
Department bf Computer Science

G. E, Schacher,
Dean of Science and Engineering

2

f_.- '

ABSTRACT

The purpose of this thesis is to start the evaluation of the Transputer, a 32 bit

microprocessor on a chip, to verify its potentials and limitations for real time

applications, in distributed systems.

The evaluation concentrates on the four physical communication links, and its

advertised capability to operate in parallel with the main processor (CPU), each one of

them at rate of 10 mbit/sec in each direction. It also presents to the reader an

introduction to the machine itself, to the Occam Programming Language, a description

of the environment at the Naval Postgraduate School(NPS), and suggests to the novice

a learning sequence.

The evaluation programs and other example programs presented in this thesis
were implemented using the Occam Programming Language (Proto-Occam) in either

the Occam Programming System (OPS) or the Transputer Development System (TDS),

both resident on the VAX 11/780 computer under the VMS Operating System

(VAX/VMS).

Acoession ?or

NTIS GRA&I
DTIC TAB 0
Unannounced J
justificatio

B y - - -

Av I'3

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.

Many terms used in this thesis are registered trademarks of commercial products.

Rather than attempt to cite each individual occurrence of a trademark, all registered

trademarks appearing in this thesis are listed below the firm holding the trademark:

Digital Equipment Corporation, Maynard, Massachusetts
VAX 11/780Minicomputer.

VMS Operating System

VT-220 Terminal

VT-100 Terminal

Hewlett Packard Corporation

Hewlett Packard

HP

INMOS Group of Companies, Bristol, UK

Transputer

Occam

INMOS

IMS

Intel Corporation, Santa Clara, California

8612A Single Board Computer (SBC)

M ULTIBUS Architecture

8086, 80286, 80386 microprocessors

International Business Machines Corporation, Boca Raton, Florida

IBM

IBM PC

Tektronix Inc., Beverton, Oregon

Tektronix

4

film

United States Government

Ada Programming Language

Xerox Corporation, Stanford, Connecticut

Ethernet

* Zenith Data Systems Corporation, St. Joseph, Michigan

Z-248 Micro'-conmputer

5

Ell.

TABLE OF CONTENTS

INTRODUCTION ... 14

A. BACKGROUND...................................... 14

1. Intended Audience.................................. 15
B. WHY THE TRANSPUTER 15
C, THE OCCAM PROGRAMMING LANGUAGE 18

1. Primitives... 19
2. Constructs.. 20

3. Good Features of Proto-Occam........................ 22

4. Proto-Occam Limitations 23
D. THE ENVIRONMENT AT THE NPS...................... 23

1. Software Facilities.................................. 23
2. Hardware Facilities 24

E. STRUCTURE OF THE THESIS.......................... 27

I. COMMUNICATION AND PERFORMANCE ISSUES 29

A. COMMUNICATION ISSUES............................ 29

1. Definitions: 29
2. Data Transmidssion Basics 2

B. THE TRANSPUTER LINKS 30

C. EXPECTED RESULTS................................. 31

1. One Channel Transmitting............................ 32
2. Both Channels Transmitting/ Receiving 32

D. RESEARCH QUESTIONS 32
E. PERFORMANCE MEASUREMENT ISSUES 33

1. Hardware Methods 34

2. Software Methods 35

II. THE EVALUATION STARTS................................ 37

A. INTRODUCTION..................................... 37

6

J VP -- S -

1. The Available Constructs 37

2. Considerations About Memory Management 38

B. A CLOSE LOOK ON THE BIT RATE 38

1. First Software Results 39

2. Using the Oscilloscope 40

3. Comparison Between the Constructs 46

C. OBSERVING PARALLEL ACTIVITY ON THE LINKS 49

1. U sing Softw are .. 49

2. Using the Oscilloscope 53

3. Using the Logic Analyzer 55
4. Comparison Between the Four Constructs 58

D. MESSAGE SIZE AND CHANNEL PARALLELISM
IN FLU EN CE ... 59

I. How to Read the Tables 59
2. BYTE SLICE Procedure 61

3. W ORD SLICE Procedure 63

4. Input and Output Primitives 63

IV. THE MUTUAL EFFECTS BETWEEN PROCESSOR AND THE
FO U R LIN K S .. 67

A. EFFECT OF CONCURRENT PROCESSES OVER
COM M UNICATIONS 67

1. Initial Considerations 67

2. Process Priority Considerations 68
3. BYTE SLICE Procedure 69

4. W ORD SLICE Procedure 75

5. Input and Output Primitives 78

B. THE EFFECT OF THE COMMUNICATIONS OVER
CONCURRENT PROCESSES 80
1. Initial Considerations 80

2. Results O btained 82

C. DOES THE TRANSPUTER ACHIEVE LINEAR
PERFORMANCE IMPROVEMENTS? ... 85

V. CO N C LU SIO N ... 89

7,1

VfU

APPENDIX A: LEARNING SEQUENCE 92

a. H ow to Log in .. 92
b. Learning Sequence 92

APPENDIX B: OPS TUTORIAL 95

APPENDIX C: TDS TUTORIAL 100

APPENDIX D: HINTS ABOUT OCCAM PROGRAMMING 104

a. Program Structure 104

b. Problems and Suggestions 105

c. Comments About the Link Evaluation Program 107

APPENDIX E: THE LINK EVALUATION PROGRAM 109

APPENDIX F: PROGRAM TEST LINEARITY 186

APPENDIX G: TRANSPUTER PRODUCTS* 194

a. Transputers ... 194

b. Evaluation Boards 194

c. Digital Signal Processing 194

LIST OF REFERENCES ... 195

BIBLIO G RA PH Y .. 197

INITIAL DISTRIBUTION LIST .. 198

IS

.2*- ~ ~ ~WW~ t

LIST OF TABLES

1. TRANSPUTER T-414 TECHNICAL DATA AND
CHA RA CTERISTICS .. 16

2. PROCESSOR CYCLE TIME/CLOCK EXAMPLES 17
3. CHARACTERISTICS OF BOARDS B001, B003 AND B004 25

4. EXPECTED MAXIMUM TRANSFER RATES ON THE
TRANSPUTER LINKS ... 32

5. THE DIFFERENT TICK VALUES 36

6. MAXIMUM TRANSFER RATES OBTAINED (KBITS/SEC) 47

7. LINK MAP FOR FIGURE 3.21 58

8. EFFECT OF PARALLELISM ON TRANSFER RATES FOR 10000
BYTES BLOCK SIZE ** 58

9. TRANSPUTER LINK TRANSFER RATE BYTE SLICE (1) - NO
CONCURRENT PROCESS - 10 MBITS/SEC 60

10. TRANSPUTER LINK TRANSFER RATE BYTE SLICE (2) - NO
CONCURRENT PROCESS - 10 MBITS/SEC 61

11. TRANSPUTER LINK TRANSFER RATE - WORD SLICE - NO
CONCURRENT PROCESS - 10 MBITS/SEC 63

12. TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(BYTES 1) - NO CONCURRENT PROCESS - (10
M BIT S/SEC) 64

13. TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(BYTES 2) - NO CONCURRENT PROCESS - (10
M B IT S/SEC) .. 65

14. TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(WORDS 1) - NO CONCURRENT PROCESS - (10
M B IT S/SEC) .. 66

15. TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(WORDS 2) - NO CONCURRENT PROCESS - (10
M B IT S/SE C) .. 66

16. TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003
- 10M BIT SSEC ... 70

9

17. TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYPROD CONCURRENT AT THE
B003 - 10M BITS/SEC .. 70

18. TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT ALL
CPU S - 10M BITS/SEC .. 72

19. TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003
(H IG H) - 10 M BITSSEC .. 74

20. TRANSPUTER LINK TRANSFER RATE - BYTE
SLICE PROCEDURE CPUBUSYSUM CONCURRENT AT ALL
CPUS (HIGH) - 10 M BITS/SEC 75

21. NUMBER OF OPERATIONS EXECUTED CONCURRENTLY IN
EACH CPU*- BYTE SLICE USED 75

22. TRANSPUTER LINK TRANSFER RATE* - INPUT/OUTPUT
(BYTES) PROC CPUBUSYSUM CONCURRENT - 10 MBITS/SEC 78

23. TRANSPUTER LINK TRANSFER RATE* - INPUT/OUTPUT
(WORDS) PROC CPUBUSY.SUM CONCURRENT - 10 MBITS/SEC 78

26. TIMMING OF PROCEDURE COUNTER 84

25. COMPARING COUNTER EXECUTION TIME IN 4 AND 16
TRANSPUTERS NETWORK 88

,-0

10

LIST OF FIGURES

1.1 Block Diagram of Transputer Architecture 18

1.2 System Using a Transputer as M emory 19

1.3 Example of a PA R Construct 21

1.4 Example of an ALT Construct 21

1.5 R eplicated PA R .. 22

1.6 R eplicated A LT 23

1.7 The Four Transputers in the B003 Board - Fixed Links 24

1.8 System Interconnections VAX-Transputers-Terminal 26

2.1 The Data and Acknowledge Frames 31

3.1 The BYTE SLICE OUTPUT Procedure Call 37

3.2 Basic Code for Transmitter and Receiver 39

3.3 Configuration for Initial Tests 40

3.4 Configuration for Measuring Links at 20 mbits/sec Bit Rate 40

3.5 Frame Transmitted for Oscilloscope Observations 41

3.6 Example Code for Oscilloscope Observations 41

3.7 Picture of One Frame at 10mbits/sec Rate 42

3.8 Three Data Frames at 10mbitsisec Rate 43

3.9 Five Frames Observed at 10 mbits'sec Rate 44

3.10 One Frame and the ACK at 20 mbits/sec Rate 45

3.11 Four Frames and ACK at 20 mbits'sec Rate 46

3.12 TRUES Transmitted Using the Input,'Output Primitives 48

3.13 Maxint Transmitted Using the Input/Output Primitives 49

3.14 Configuration to Observe the Four Links Operating in Parallel 50

3.15 Code Used to Time Transmission Through the Four Links in Parallel 51

3.16 C ode for the R eceivers .. 51

3.17 Configuration Code for the Link Evaluation Program 52

3.18 Two Channels of Different Links Transmitting at the Same Time 53

3.19 Two Channels of the Same Link Operating at the Same Time 54

11

3.20 Output from the Logic Analyzer of 4 Channels in Parallel 56

3.21 8 Channels Monitored with the Logic Analizer 57
3.22 Transputer Link Transfer Rate Byte Slice - No Process in Parallel -

10 m bitssec ... 62
4.1 CPU modes Available in the Link Evaluation Program 67
4.2 How the Concurrent Processes Were Called 68

4.3 Transputer Link Transfer Rate - BYTE SLICE Procedure
Cpubusysum Concurrent at the B003 - 10 mbits/sec 71

44 Transputer Link Transfer Rate - BYTE SLICE Procedure
Cpubusysum Concurrent at All CPUs - 10 mbits/sec 73

4.5 Transputer Link Transfer Rate - BYTE SLICE Procedure
Cpubusysum Concurrent at the B003(high) - 10 mbits/sec 76

4.6 Transputer Link Transfer Rate - BYTE SLICE Procedure
Cpubusysum Concurrent at All CPUs(high) - 10 mbits/sec 77

4.7 Procedure Counter .. 80
4.8 Configuration for Program Test Linearity (17) 81
4.9 Procedure R oute ... 83
4.10 Procedure R oute5 .. 86
4.11 Structure of Program Test Linearity (5) 87

A. 1 Keypad for Using the Fold Editor 94

B .I O PS U tilities .. 97
B.2 First Program in O PS ... 99
C. 1 The Utilities for the TDS System 103
D. I OPS Program Structure 104

D.2 TDS Program Structure Example 105
D .3 SK IP U sage .. 106

12

DEDICATION

This thesis is dedicated to:

my wife Edwiges and

our children Viviane, Guiherme and Denise.

13

I. INTRODUCTION

A. BACKGROUND
The NPS AEGIS project has in its primary goals the research and development

of alternative architectures for the AEGIS Combat Weapon System (CWS), focusing
on low cost, reliable and fault tolerant architectures. As the cost of micro-processors
has been decreasing incredibly and the capabilities are always increasing, it turns out to
be very attractive to think of using these cheap and powerful tools to accomplish the

functions of any system.
One branch of this research is based upon the Intel 86/12A Single Board

Computers that are working under the MCORTEX operating system [Ref. 1], fully
developed at the AEGIS lab. It exploits the 10mbits/second capacity of the Intel
MULTIBUS and uses the concept of shared memory to allow multiprocessors arranged
in clusters of up to eight single board computers, to increase the throughput of the
system. Each cluster has its own shared memory whose access is controlled by means
of eventcounts. The clusters intercommunicate through an Ethernet link [Ref 2].

One alternative concept for distributed systems is the use of message passing
[Ref. 2,3]. The Transputer concept exploits this idea and produces a very interesting
and flexible way of designing multiprocessor systems. This second branch of research is
now in its third released work' and is increasing in importance and extent.

This thesis was developed in parallel and concurrently with the one from
Cordeiro, M. M. [Ref. 6]. Since these theses were in fact the first to really program
this new machine, at the NPS, a series of obstacles were encountered and overcome
one by one, up to the point we were able to divide the work, and on our own, search
for the answers we were individually seeking. This is the reason why we tried to point
out many of the pitfalls that one may encounter in future research in this area using

the system available at the NPS.

'See B. Evin Implementation of A Serial Delay Insertion Type Loop
Communication for a Real Time Multi-Transputer System [Ref. 4] and Selcuk, Z.,
Implementation of a Serial Communication Process for a Fault Tolerant, Real Time,
Multi-Transputer Operating System [Ref. 5].

14

1. Intended Audience

This will be a good first reading for the person beginning to work with

transputers or Occam. Appendix A presents a Learning Sequence; Appendix B presents

an OPS Tutorial; Appendix C presents a TDS Tutorial and Appendix D provides some

hints on how to program in Occam. It also will be a good reference for transputer

users and real-time system designers and implementors in the sense of what they can

expect in terms of performance from the INMOS links. They will be able use the

Tables, Graphics and the Evaluation Programs to check and confirm their expectations

in issues concerning what should be the right construct or the right message size to use,

in order to achieve the desired throughput or communication rate.

B. WHY THE TRANSPUTER

The TRANSPUTER is a member of a family of micro-processors, that have on

one chip, the processor, its own local memory and links for point to point connections

to other transputers.

Each transputer product contains special circuitry and interfaces adapting it to
each particular use. For example a peripheral control transputer, such as a graphics or

disk controller, has interfaces tailored to the requirements of a specific device [Ref. 7].

The transputers were designed in parallel with the Occam programming language

and were first released in 1985. Now, two years later, there is a growing variety of

transputers available on the market with different capabilities and for different

applications. Some of these are listed in Appendix G.

The T-414 is a 32 bit micro-processor with 2 kbytes of on chip RAM, four
standard INMOS serial links, external memory interface and peripheral interfacing on a

single 1.5 micron CMOS chip. As an example, its characteristics and technical data are

summarized in Table 1, and its internal architecture is depicted in Figure 1.12.

For the sake of comparison, Table 2 lists the processor cycle time or internal

clock of other commercially available computers and also some processors used in

military applications for real-time.

The internal architecture of the transputer follows Von Newman principles and

permits the processor itself to run at the same time as the 4 links operate. This way a

high level of parallelism is achieved already on chip level.

2 Reproduced by permission of INMOS Corporation.

15

TABLE 1

TRANSPUTER T-414 TECHNICAL DATA AND CHARACTERISTICS

processor internal instruction

cycle time clock throughput

(T 414-20) 50 nsec 20 mhz 10 MIPS

(T 414-15) 67 nsec 15 mhz 7.5 MIPS

(T 414-12) 80 nsec 12.5 mhz 6.0 MIPS

external clock cycle 5 mhz

time slice 1 msec (approximately)

internal bus speed 80 mega bytes/second

internal (on chip) memory. 2 kilo bytes

internal memory cycle 50 nsec (for 50 nsec cpu)

external memory interface. 25 mega bytes/second bus

external memory cycle 150 nsec

address capability 4 giga bytes(32 bit address)

links (serial) 4 (full duplex, DMA)

link bit rate 10 mbits/sec (20 mbits/sec)

link net bit rate (Obs. 1) 3.8 mbits/sec (6.1 mbits/s)

power dissipation less than 500 milliwatts

physical dimensions 45 mm square chip (84 pins)

Obs. 1: These values refer to the immediately above
mentioned bit rates, respectively, and are
fully explained on chapter III.

When reading transputer related material, one may find references to T-424. This

was a prototype that is not on the market anymore.

The systems architecture is simplified by using the transputer links for point to
point communications which allows the available transputers to be configured in any

desired topology matching the programmer needs [Ref 4,8]. Point to point

communication links have many advantages over multiprocessor buses [Ref. 7]:

* There is no contention for the communication mechanism, regardless of the
number of transputers in the system (that does not happen in shared memory
systems) [Ref. 9].

16

TABLE 2

PROCESSOR CYCLE TIME/CLOCK EXAMPLES

SBC 86/12A (I to 8 mhz)
80286 -. 6 to 12 mhz)
80386 - 16 mhz)
Transputer T 414-20 50nsec (20mhz)
A/UY 7 750 nsec
AN/UYK 43 150 nsec
VAX 11/780 - 200 nsec
IBM 3033 57 nsec
IBM 3081 (k) - 26 nsec

* There is no capacitive load penalty as transputers are added to a system.

(specially if they will work independently)

However as the number of transputers increase in the system, a message routing
system is needed in order to permit indirectly interconnected transputers to

communicate to each other. This will create some overhead for the system and

Cordeiro [Ref. 61, addresses this point presenting a design and implementation for such

a system.

It is up to the programmer to decide which process should be placed in which

processor. For efficiency purposes, it is recommended to place frequently

communicating processes in adjacent transputers (directly connected by a link).

It is still possible however, to adapt previously designed systems, to this new

architecture and develop a systems architecture where a central data base would be

managed by a central transputer, which would address a large memory that could be

read or written by the processors connected to the four links, as depicted in Figure 1.2

But this would involve further study and it is not in the scope of this thesis.

Another point worthy to mention is that although this work was developed using

OCCAM, there is already available a C3 compiler, and coming soon a Pascal and a

Fortran compiler. The Ada compiler for this machine is under development and

according to INMOS representatives, it will be released before the end of 1987.

This way the final goal of the AEGIS project, that is to research alternative ways

of implementing the AEGIS system will have the DoD language available on the

present machine.

3The C programming language compiler generates code for the transputer

17

~,

Reset- System 32 bit
Analyse --)services Processor

Error -:
BootFromrROM 3 22.

Clock In
vCC
GND-III

2K bvies LikLinkIflO
On-chip nerae LinkOutO
RAM

Link Linkln I
32 J32 interface U;LnkOutl

32 nterface LinkOut2

It~nnterface t LinkOut3

notMeMSO-4 32 EetEventReq
notMemWrB0-3t

notMemRd ;Eetc
notMemRt < MemReq
Mem Wait)MemG ranted

MemConfig A _ E MemADO-3 I

Figure 1.1 Block Diagram of Transputer Architecture.

It is also pertinent to mention at this point that in the last Occam. User Group

meeting, that took place in Santa Clara, CA, in March 10th, 1987 there were
representatives of IBM, Tektronix and other major corporations showing to the
participants, work in development and developed by them, using the Transputer.

C. THE OCCANI PROGRAMMING LANGUAGE
Occamn is a programming language that since its First release in 1983 is known as

very suitable for description of multiple processor systems [Ref. 10], due to the
simplicity with concurrency and parallelism can be addressed J Rer. I I

In fact, since thcn, the language has been modified and enhanced in its
capabilities, and one of the latest versions, known as Occam 2 is described in the book

18

-0I

2 K

0

Ito]

Fiu12 Syte Usin a l Trnpt2a oy

K K

zx~ ~ 0 B40YTES]

2 K

Figure 1.2 System Using a Transputer as Memory.

by Pountain [Ref. 12). However, this thesis was developed using one of the primitive
versions of the language called Proto-Occam 4 that is best described in the Occam
Programming Manual [Ref 13: section 31, with slight modifications introduced by the
OPSiADS compilers implementations described in detail in the Occam Implementation

section in the OPS Manual [Ref. 13: section 4].

The goal of this section is to address briefly the primitive processes and
constructs used in Occam (Proto-Occam), calling attention to the limitations and
capabilities this version of the language has. Appendix D presents some hints for
programming the transputer T-414 using Proto-Occam.

1. Primitives

a. The Channel
The channel (CHAN) is an identifier used for performing communications

between concurrent processes (if in the same processor) or processes executed in

parallel (if in diffierent processors). We can think of the channels as a pipe that
connects horizontally two processes that arc being executed concurrently or in parallel.

4 Proto-Occam is so called in the Occam Programming Manual, but sometimes it
is also referenced as being Occam I .

19

A
I.

If the processes are in the same processor (same transputer), this is done through a

specified memory location determined at compile time, as if it were a global variable;

but if the communicating processes are in different transputers, the chnnel uses the

physical links connecting the transputers. Any type of variable may flow through the
channel, but the programmer must ensure that the type being transmitted is the same

that is being expected at the receiver, or the compiler will flag an error.
This is the basic for the primitives input and output:

* chanin ? char - This can be read as the variable "char" will receive a value that
is coming from elsewhere through the channel chanin.

* chanout ! 5 - This can be read as the constant "5" is being output to another
process through the channel chanout.

This implies that somewhere in our transputer network there will be a

process that is transmitting some value through the channel "chanin" and another (or
may be the same) process is receiving into some variable the value "5" through a

channel called chanout.
2. Constructs

Occam has six basic constructs:

a the sequential (SEQ) construct
b the parallel (PAR) construct

c the alternative (ALT) construct

d the conditional (IF) construct
e the repetitive (WHILE) construct

f the replicators (FOR) construct.

The sequential, conditional and repetitive constructs have the same usage as in

many other structured languages.5 It is interesting to note the necessity of having a
SEQ construct, because normally in such languages this is the only way to execute a

program.

a. The PAR Construct

A parallel construct causes its component processes to be executed in

parallel, if the component processes reside on different transputers, or concurrently in a
time shared fashion, if they reside on the same processor [Ref. 13: section 3, item 3.4.2].

Note from Figure 1.3 that:

* Process one and process two are different processes.

* Occam is fixed format and indentations are always 2 spaces for nesting.

5Like Pascal, Ada or C programming languages.

20

CHAN comms, cl, c2 --- channel declarations
PAR

WHILE TRUE --- process one
VAR x
SEQ

ci ? X
comms x --- end process one

WHILE TRUE --- process two
VAR y
SEQ

comms ? y
c2 ! y end process two

Figure 1.3 Example of a PAR Construct.

* There are no begins or ends to delimit processes.
- We can declare variables anywhere in the code as long as it is before the

beginning of the process that will refer to it.

* Three dashes (---) are the indication for comments following them.

(1) The PRI PAR Construct. The priority parallel construct, a variation
of the PAR construct, permits at most two processes under it. The first one will be

given priority 0 (high), and the second one will be given priority I (low). This maps

exactly to the two priority levels that the chip supports. As the Reference Manual

[Ref. 7: p. 3], says, the priority process is expected to be executing for a short period of

time because when it begins, it can not be preempted.

b. The ALT Construct

An alternative construct is used to accept the first message available from a
number of input channels [Ref. 13: section3,item 3.4.3]. See Figure 1.4.

CHAN cl c2
WHILE TRUE

VAR x
ALT

Cl ? x
c3 ! x

c2 ? x
c3 ! x

Figure 1.4 Example of an ALT Construct.

21

Note from Figure 1.4 that:
* We could have any number of channels under the ALT and all of them

outputing to c3. This is a construct that provides mutual exclusion 6 in two lines
of code.

" All variable declarations are separated by commas and terminated by a colon.

There is also a variation of the ALT construct named PRI ALT, that
enables the first option of the ALT be executed in precedence to the others.

c. Replicators

A replicator may be used with a construct SEQ, PAR, ALT or IF to
replicate the process a number of times [Ref 13: section 3, item 3.4.6:

* SEQ - When used with SEQ it provides a conventional loop.

* PAR - When used with a PAR it makes an array of concurrent processes See
Figure 1.5 ,9

* ALT - When used with ALT it enables to receive one unique input at a time
from an array of channels. See Figure 1.6 .

CHAN c[n+1]
PAR i = U0OR n]WHILE TRE

VAR x
SEQ

Ct + I] ! X

Figure 1.5 Replicated PAR.

3. Good Features of Proto-Occam

Proto-Occam has some nice features like:
* the facility in handling time for performance evaluation (TIME ? var)

* the use of time delay (TIME ? AFTER sometime) for real-time applications

* the SKIP that has numerous applications and help to handle exceptions
* we can access the byte in memory

* there is no need to declare count variables used in replicators

6Mutual exclusion is one of the critical issues in Operating System design [Ref. 31
and it is neatly handled by the ALT construct.

22

,q-

CHAN c~n], d

WHILE TRU
VAR y
ALT : [1 FOR n

c~i] ? y
d! x

Figure 1.6 Replicated ALT.

* we can have procedures with formal parameters being arrays of variable size;
this way the actual parameters may be of different sizes in different procedure
calls.

4. Proto-Occam Limitations

Many of the limitations of Proto-Occam have been fixed by Occam 2, but

they are still note worthy:

* there are only one dimensional arrays

* there are no types; the programmer has to establish a convention to use its
variable names and make sure to address them coherently.

* no floating point is available

* no recursion is permitted

0 no pointers are available

D. THE ENVIRONMENT AT THE NPS

1. Software Facilities

The Naval Postgraduate School has several Software tools available in its

computer labs:

* Occam Programming System (OPS), available in the VAX/VMS. It permits
editing, compiling, linking and running on the VAX, concurrent programs
written in Occam, simulating a network of transputers. It will be briefly
described in Appendix B, but the reader may refer to [Ref. 13].

" Transputer Development System (TDS D600), available for the VAX,:VMS, it
edits, compiles and down loads the code into the transputer network. It will be
briefly described in Appendix C, but additional information may be obtained in
[Ref. 141.

* Transputer Development System (TDS D701), available for PC-AT type micro-
computers. It edits, compiles, links, and down loads to the transputer network
the code to be executed (that was generated on the PC). It is single user and
requires installation of the B0047 board in the PC. It uses the Occam 2

'Described in Table 3.

23 ,.

programming language. This system arrived at the lab at a point in time that
this thesis was already partially written and so it will not be addressed. For
more information refer to [Ref 15].

2. Hardware Facilities

a. Transputer Boards

The transputer lab has a Transputer Evaluation Module with seventeen

(17) transputers in the following configuration:

" one board with one transputer (T414-12) called BOO [Ref, 16], that is the
interface with the VAX'VMS.

* four boards with four transputers (T414-15) each called B003 [Ref 171, that can
be used either with the VAX or with the PC.

It also has one board with one transputer (T414-15) called B004 [Ref. 18],

that is the interface with the PC, and is located in one of the slots of the Zenith Z-248.

This makes a total of 18 transputers to work with.

Table 3 lists its characteristics.

-- 1 ------ --

3~ 2-- ------ I--- 2 1----

-- 2 3 --
-0 --1 --

I I I I
* Each number stands for a link.

Figure 1.7 The Four Transputers in the B003 Board - Fixed Links.

These transputers can be interconnected and configured in any way

designed by the programmer using the INMOS links as long as the hard wired boa:d

connections between transputers (that already exits and are fixed in all B003 boards in

the LAB) are respected [Ref. 17]. See Figure 1.7

24

~ ~.

TABLE 3

CHARACTERISTICS OF BOARDS B001, B003 AND B004

a. B001 Board
- One IMS T 414 - 12 mhz transputer
- 10 mbits/sec INMOS link transmission speed
- 64 kbytes of static RAM (32 x IMS 1400-45)

128 kbtes EPROM (x 272 5 6) containing
.bootstrap loader,.memory test,
.terminal to host transparent mode software

- 2 RS/232 serial input/output connectors for
.VAX connection
6 Terminal connection

- 64 way DIN connector for external link connections

b. B003 Board
- 4 IMS T 414-15 mhz transputers
- 10 or 20 mbits/sec INMOS link transmission speed
- 256 kbytes dynamic RAM per transputer
- 96 way DIN connector for external link connections

c. B004 IBM-PC Add-in-Board
- one T 414-15 mhz transputer
- 10 mbits/sec INMOS lin. transmission speed
- 2 mbytes dynamic RAM with parity
-62 pin I/O channel connector

The B001 board is the interface between the VAX and the transputer

network. The interconnection is done through standard RS 232.

The user can develop OCCAM programs on the VAX, debug and test

using the OPS, and when ready, down load them to be run on the transputers. See

Appendix D.

b. Host Computers and Terminals

(1) VAX. To use any of the systems (TDS or OPS) on the VAX, the user

must log in from any VT 100 or VT 220 terminal (this last one has to be in VT 100

mode, and VT 100 id). Appendix A presents a detailed sequence for this.

To be able to down load the executable code, the terminal must be also

connected to it. There are two ways cf doing it [Ref. 16.] and Figure 1.8 shows how

this is done at the NPS lab.

The following advantages should be pointed out:

The VAX provides us with the VMS Operating System and all the facilities a

mini-computer can support, mainly a weekly system backup that we do not
have to , orry about.

25

0'

6 4 4

o 6 3 0 a 0 1 3 0

4 2 7 2 2 wm*- 4 3 2 2

7 6 7

7 7

2 7 2 3 4 2 7 2 3 4

5 0 3 o -00- 3

4 4

6003(s) 6005(1)

VT 3 KS-23Z VAX
4,55 0

100

6003(o)
5 4 44

-am o 3 0 0 1 3 0 r3

744 2 7 2 4 2 7 27 2 a
40

6
7

77 7 6
,5 7 a 7

7 7

2 3 4 2 7 3
I Am- i Z--V- 2 ---- OWN 2 4

3 o oE, 0 0

4

Figure 1.8 System Interconnections VAX-Transputers-Tcrminal.

'.2 6

* If a modem is available, much of the work can be done from home.

* Multi-user utilization as far as using the OPS and editing and compiling in the
TDS (Very handy for class projects).

* Occam 2 will be available soon in the VAX at the NPS, as an upgrade of the
OPS and TDS systems.

The only disadvantage is that when the VAX is down for backup,

upgrades or repairs, there is nothing the user can do about it.

(2) Zenith Z-248. The TDS system for the PC is completely independent

from the VAX. It has a new version of OCCAM more powerful and flexible. It is

installed in a Zenith Z-248 micro-computer (PC-AT compatible), with 2.5 mbytes of

RAM and 8 MHz clock.

There are two advantages in having a PC

first the user has the whole micro for him and no problems, except a TDS system

failure, would delay any project. An assumption is made that to replace a PC is an easy

task. Secondly, the Occam version running on the PC is temporarily8 newer than the

one on the VAX, and new horizons are opened for research.

As mentioned before, this thesis was developed on the TDS and OPS

installed on the VAX and it will not have any other information on the PC based

system.

c. Printing Facilities

There are two ways to print OCCAM programs developed on the VAX:

* Using the VAX / VMS online printer (only files with extensions ".1st" and ".lis"
are printable).

* Using the printer at the lab and the print screen facility provided by the VT 220
terminals. Anything that is on the screen can be printed this way, and this
turned out to be one of the best debugging and analyzing tools for the research.

E. STRUCTURE OF THE THESIS
This thesis is presented in 5 Chapters and 7 Appendixes.

Chapter I was the introduction to Occam, the transputer and the NPS

environment. Chapter II describes the terminology, the INMOS Links, the methods

used for performance evaluation, and state the expected results and research questions.

Chapter III and Chapter VI address each one of the research questions,

describing the experiments done and presenting the results obtained and conclusions

reached thereto. Chapter V summarizes the conclusions and suggests future research.

8The Occam 2 version for the VAX, VMS will be available at any moment.

27

As mentioned already, Appendix A presents a Learning Sequence for how to

work with the transputers and Occam, having the VAX/VMS System as a host.

Appendix B and Appendix C, are tutorials about the software tools available presently

for the VAX , the OPS and the TDS systems.

Appendix D presents some hints in how to program in Occam, and call attention
for some mistakes that most likely one will make when using this new language on a

new system, with a different and powerful fold editor.

Appendix E lists the Link Evaluation Program used, and Appendix F lists the

Test Linearity Program, both with all procedures and library routines that were used.
When reading the listing files take into account that

* Occam is a fixed indentation language with two spaces between each nested
level.

* Two dashes (--) marks the begining of new folder with the title aside.
0 Three dashes (---) means that comments follow on that line only.

2

28

I. COMMUNICATION AND PERFORMANCE ISSUES

A. COMMUNICATION ISSUES

The purpose of this section is to set the stage and define a series of
communication terms that will be used in the following discussion about the transputer

physical links performance.

I. Definitions:

* frame - it is a packet of bits containing 8 bits plus the frame protocol bits (e.g.
start bit, stop bit, and parity bit).

* bit rate - it is the number of bits that can be transmitted in a unit of time (e.g.
kbits,'sec or mbits/sec).

* baud rate - is the number of signal elements transmitted per second. If there are
only two signal elements (0 and 1) then the baud rate is equal to the bit rate.As
this is the case on the transputer we will mostly refer to bit rate.

* data rate - It is the number of data elements (bytes) transmitted per unit of
time. Normally it is expressed in Bytes per Second. It is always smaller than the
bit rate divided by 8, due to the control bits needed in each frame.

* net bit rate - (or transfer rate) will be defined by the author as 8 times the data
rate. This was used to make comparisons to the values advertised.

2. Data Transmission Basics

a. Modes of Operation

* parallel transfer mode: when multiple wires are used between the two
equipments , each one of them carrying one bit of the frame.

* bit serial transmission: when only one wire is used to send the frame, one bit
after the other.

b. Communication Modes

* simplex : when data is being transmitted in one direction only.

* half duplex: when data is being transmitted in both directions but alternately
(switching between transmit and receive mode is necessary).

* duplex . (or full duplex) when data is being exchanged in both directions
simultaneously.

c. Transmission Modes

Asynchronous Transmission - when the receiver and transmitter clocks are
independent. Each frame received reinitializes the clock, as the start bit is
received. It is used when the rate at which characters are generated is
indeterined and hence the transmission line can be idle for long periods in
between each transmitted character.

29

* Synchronous Transmission - When receiver and transmitter clock are dependent
and information is packed in long streams of characters instead of byte by byte.
Use special synchronizing bytes before each block.

Most of the information contained in this section was taken from [Ref. 19],
and it is just included here to make the reading smoother.

B. THE TRANSPUTER LINKS

"The transputer architecture simplifies system design by using point to point
communication links. Every member of the transputer family has one or more
standard links, each of which can be connected to a link of some other
component. This allows transputer networks of arbitrary size and topology to be
constructed."

This quotation extracted from [Ref. 7: p.6], gives us a macro sense of what the
link is and how it can be beneficial for the programmer. Following the terms described
in the previous section, we can say that the transputer links are serial, full duplex,
asynchronous communication devices that have a bit rate of 10 mbits/sec or 20

mbits!sec (when available). They provide synchronization between communicating
processes on a transputer network.

To provide the reader with a better understanding, the following includes some
details about the links, extracted from [Ref. 7: p.71:
• Each physical link provides two Occam channels, one in each direction(input

and output). The T-414 has four(4) links, so we have 8 physical channels for
programming purposes in each transputer.

* Communication via any link may occur concurrently with communication on all
other links and with program execution.

" Synchronization of processes at each end of a link is automatic and requires no
explicit programming. This is one of the important features one can use with
the transputer. The links are the concurrency tools and are very easy to
program by using the Occam channels.

• The information is transmitted on the link in the format depicted by Figure 2.1,
where the two beginning "1" are start bits and the ending "0" is the stop bit.

• After transmitting a data frame (one byte), the sending transputer waits for an
acknowledge (ACK) from the receiving transputer, signifying that the byte was
received and it the link is ready to receive another byte. If the ACK is not
received the communications on that link will stop.

It is still worth mentioning one of the questions we had about how they work:
• "How could a process waiting for communication waste no cpu cycles?

30

4U

start bits I information bits Istop bit

a. The DATA frame

I 1 0 b. The Acknowledge frame

Figure 2.1 The Data and Acknowledge Frames.

The information we have got verbally from Mr. Neil Mitchell from INMOS

office in Santa Clara was that the links have a 1 byte buffer inside it. When a process

has to transmit, the first byte of the message is, in fact transmitted and it is received by

the link on the receiving transputer, and stored in this buffer. Two situations may

occur then:

I If that receiving link is already waiting for an input, the acknowledgement is
sent right away to the transmitter by the other channel, and this is all the
transmitter needs to follow on with the message.

If that receiving link is not waiting for any input yet, the acknowledgement is
not sent. What happens in the sending transputer is that, as the ACK does not
arrive, the process is placed on the wait queue, and a pointer to that process is
placed in the respective channel memory location (each channel has its own)
until the ACK arrives. When this happens, the process is awakened and the
message is then transmitted.

C. EXPECTED RESULTS

Assuming we have a bit rate of 10 mbits/sec and the frames have no delay

between them, two situations should be considered:

* One Channel Transmitting - when only one of the channels is being used for
transmission (or reception) of messages at a time, and so the other channel is
free to bring the ACK frames.

0 Both Channels Transmitting, Receiving - when we have message passing in both
channels at the same time and so the ACK for a received frame is piggy-backed
(appended to the end of the frame) [Ref. 19: p. 1291, to the next transmitting
frame.

31

1. One Channel Transmitting
In this case, there is no ACK sharing time with the frame on the channel and

we will get the maximum rate possible as follows:
* Net bit rate = (8,11) * 10 (mbits,,sec) = 7.27 mbits,'sec or 7,273 kbits,'sec.

Where 8 is the number of information bits and 11 the total number of bits in a
frame.

* Data rate = 7.27; 8 = 0.91 mbytes,'sec or 909 kbytes,'sec.

2. Both Channels Transmitting/Receiving

In this case we will have:
* Net bit rate= (8,113) * 10 (mbitsisec)= 6.15 mbits,sec or 6,154 kbits,'sec; where

13 stands for the 11 frame bits plus 2 ACK bits that are now sharing the link
also.

* Data rate = 6.15 / 8 = 0.77 mbytes, sec or 769 kbytes,'sec.

The results are summarized for 10 and 20 mbits'sec rates in Table 4.

TABLE 4

EXPECTED MAXIMUM TRANSFER RATES ON THE TRANSPUTER
LINKS

link bit rate 10 20 mbits/sec
One channel 7,273 14,545 kbits/sec
Both channels 6,154 12,308 kbits/sec

The reason for mentioning the values in kbits,sec is due to the non-availability

of floating point and this way, to get some precision, we needed to use this unit in all

performance measurements during the evaluation.

It is worth mentioning that these values were expected for either one single

channel, or the eight channels operating in parallel because the memory is multi-ported

and permits access to each one of the links and the processor in an interleaved mode.

[Ref. 7: section 2, p.1]. It was also expected that these rates should not be affected by

another process using the Central Process Unit (CPU) for calculations and memory

accesses at the same time, for the same reasons mentioned above.

D. RESEARCH QUESTIONS

From the above, some research questions could be devised as follows:

I Does a link transmit at 10mbitsisec and 20 mbits'sec transfer rate?

32

2 Is the ACK really transmitted as soon as the receiver channel receives the first
bit of the data packet?

3 Is the communication between the transputers really occurring in parallel?

4 What is the effect of message lengths on the link transfer rates?

5 What is the mutual effect on the link transfer rates, of more links operating in
parallel in the same transputer?

6 Can the CPU work in parallel with all the links?

7 What is the effect of a communication independent process, running on the
CPU, over the transfer rates obtained in a link by another process, in this
transputer?

8 What is the effect of the communications, over the process that is being
executed in the CPU?

9 Does the Transputer achieve linear performance improvement?

10 What happens when a process is time sliced in the middle of a communication
by physical link? Does the link stay blocked?

Questions 1 through 6 will be discussed in Chapter III, questions 6 to 9 in

Chapter IV. Question 10 is still pending and is left for further research.

E. PERFORMANCE MEASUREMENT ISSUES

As mentioned in the paper by Ceilary [Ref. 20], there are five methods for
computer network measurements, depending on the approach used for data gathering.

They are:

* Standard User Method,

* Reference User Method,

" Software Monitoring Method (Programs),

* Hardware Monitoring Method (Probed Equipments), and

* Hybrid Monitoring Method (A mix of the two above).

In this thesis both Software and Hardware monitoring methods were used for the

following reasons:

• The hardware monitors are more reliable than the software monitors.

" For statistics purposes and for large amount of data, some times it is impossible
to obtain, using hardware measurements, the same amount of information that
can be collected by software programs, in a same period of time.

This way, we used hardware monitors to confirm preliminary results obtained by

software and after validating them, a massive collection of data was gathered to permit

and back up the conclusions reached.

33

III- . , ! . W. - - , ..m - w u.

1. Hardware Methods

Two approaches were used:

* by using a Oscilloscope to monitor I or 2 channels of a link at the same time.

* by using a Logic Analyzer to monitor 4 and 8 channels (in 4 different links) of
the same transputer.

a. Using the Oscilloscope

The idea of using the Oscilloscope was to identify on the screen a known

pattern of bits in continuous transmission, and also to obtain an approximation of the

bit rate. Also by observing subsequent frames, try to estimate the data rate and the

interval between frames. Another observation that could be made, as seen in the

following Chapter and also documented by using Polaroid photographs, is the relative

position of the Acknowledge (ACK) frame, in reference to the transmitted frame, in the

second oscilloscope channel.

The equipment used was the Tektronix 364 Storage Oscilloscope and the

camera was the Hewlett Packard HP-24A.

b. Using the Logic State Analyzer

The idea of using the Logic Analyzer was to monitor several channels of a

same transputer and really see if there were bits been transmited at the same time, in

some or all of the channels. Our Logic Analyzer has the capability to monitor 32

channels and store 250 subsequent bits in each in each channel after triggered.

As all channels are asynchronous, an external clock was necessary and so a

Pulse Generator was used to provide this clock. To help in getting a more precise clock

a Digital Counter was also used to sample it. The equipments used were:

* Logic State Analyzer Mod. 532 with Analyzer Probe Model 51A.

* 20 mhz Function/Pulse Generator Wavetek Model 145.

* Measuring System Hewlett Packard model HP-5300A.

One problem arose from this:

* The maximum external clock frequency acceptable by our logic analyzer was 12
mhz and as recommended by Nyquist relation, we should have a sampling
frequency at least the double of the sampled signal (Normally 16 times is used)
[Ref. 19: p. 151.

In our case, the sampled signal was supposedly at 10 mhz and so a

minimum clock of 20 mhz should be used. As the Logic Analyzer did not permit that,

we used a 10mhz pulse instead as clock, and, by trial and error varying the clock

frequency and pulse width, after numerous tentatives we obtained some representative

34

I

results that are presented in the following chapter. It is good to mention that we did

not even try to monitor the links running at 20 Mhz for the same reason.

c. Test Points

To monitor the links activity, a homemade monitoring bridge that was able

to connect up to eight channels was used and, with it, we had the ability to monitor

the four links of a transputer.

2. Software Methods
With this respect, several programs were made at first to compare the rates

obtained in hardware with the ones in software, and for the final report on the links
performance, a complete Link Evaluation Program was designed, to handle all possible

cases of constructs to communicate, several kinds of channel parallelism and two

different cases of CPU load, concurrently with the communications. The output of this

program was a table of values that was used to generate some graphics using the
EASYPLOT system at the IBM 3033. Appendix E presents a listing of the evaluation

program with the Occam library used. The terminal driver is the one provided by
INMOS, with the Keyboard and Screen references made using the first letter in

uppercase, and therefore is not included.

The library.occ is a collection of previous existing procedures, some generated
by the manufacturers and some made originally for the OPS System by previous

workers, updated to be used on the TDS, plus additional procedures for i/o and utilities

written by Cordeiro and myself They can be browsed on Appendix E, inside the

program listing.

To observe the effect of multiple transputer execution of the same program, a
series of versions of Program TEST LINEARITY were made and the 17 transputer

version is listed in Appendix F.

All programs above used basically the same three tools:

* - The TIME channel provided by the compiler and Occam to read the internal
transputer clock in ticks. Table 5 summarize them.
- the tick.to.time procedure used to convert time from ticks into hours,
minutes,seconds and milliseconds. It receives as input parameters the "startime"
(in ticks), the "endtime" (in ticks) and the transputer type, and outputs to the
screen the elapsed time in hours, minutes, seconds and milliseconds, for the
specified transputer. This routine is listed in Appendix F.

• - the transfer.rate procedure similar to the previous one but which computes
the transfer rate measured in the channel observed. It receives as parameters
"startime", "endtime", "transputer type nr.", and the "size of the message"

35

TABLE 5

THE DIFFERENT TICK VALUES

T-414 12mhz -----------> 1 tick = 1.6 micro-seconds I

T-414 15mhz (high) --- > 1 tick = 1 micro-second

T-414 15mhz (low) --- > 1 tick = 64 micro-seconds

VAX/VMS ---------------> 1 tick = 100 nano-seconds

transmtitted and outputs the transfer rate through the variable "rate". This
routine is listed in Appendix E.

36

III. THE EVALUATION STARTS

A. INTRODUCTION
In this chapter we start to address the research questions related to the

evaluation, as listed in Section D of Chapter II.

Section B describes how we verified that the bit rate is indeed, 10 mbits; sec or 20

mbits, sec. It also shows the maximum values achieved for the net bit rate (transfer

rate), for the various construct types.
Section C shows the configuration used and demonstrates that the transfers in

different links occur in parallel, eventually in all 8 channels of the 4 links.

Section D describes the message size, and the channel parallelism effects on the

transfer rates for the various constructs.

1. The Available Constructs

Occam permits us to use several different primitives and procedures for

communications between processes. The first to be mentioned are the input and output,

already explained in Chapter 1. We used them in two modes:

* transmitting bytes (characters), or

* transmitting words (integers).

4

BYTE.SLICE.OUTPUT (chanid, buffername, initbyte, blocksize)

where:

- chanid - the channel name where the communication will occur

- buffername - the name of the array of variables

- initbyte - the array index of the first byte to be transferred

- blocksize - the number of bytes to be transferred

Figure 3.1 The BYTE SLICE OUTPUT Procedure Call.

The third mode is the BYTE SLICE INPUT and BYTE SLICE OUTPUT

procedure. These procedures are microcoded subroutines that provide a block transfer

of bytes. Figure 3.1 shows the procedure call and an explanation of the parameters

37

l! , , - - ,, u -,r .-,- ,,r_ ,,:,z.,.:e,, ,-e, ¢.¢, ',c r.-' -x,,-' r - ,; .'2,';,'€ ' '-r'¢¢';€,;'€ '¢' ¢,"''€ 4?

[Ref. 14: section 41. These procedures cannot be used when doing programs for the

OPS. The advantage they bring us, is a better performance, but when using OPS we

are not concerned about it.

The last mode is the WORD SLICE INPUT and WORD SLICE OUTPUT

procedure, also microcoded, that provide block transfer of words. As just mentioned

above, the procedures showed to be much faster than the input/output primitives, but

with similar performance to the BYTE SLICE procedures.

2. Considerations About Memory Management

As we have a machine with internal and external memory with different
performances and address capabilities, this was a major concern, as far as performance

could, and in fact is, undoubtedly affected. The documentation is not clear enough to
permit us to assure how this is handled by the processor, in the b001 and b003 boards.

We tried to check the addresses mentioned in [Ref 7: section 2, pp. 5,7], but we were

not able to verify that.

What can be said, though, is that it looks like the memory (internal plus

external) on the B001 transputer board is divided into four memory banks, each one of

them beginning at addresses 0, 16k, 32k, and 48k , and the data and programs are

mapped evenly over these four banks. We reached this conclusion after browsing

several listings of the memory contents obtained from the transputer in the 8001

board. through a "dump" routine designed and implemented by M. Cordeiro, also part

of the LIBRARY.OCC, included in Appendix F.

In our evaluation program outputs, we tried to observe any noticeable effects
that could be explained by a fast or slowest memory access, but the evidences were not

strong enough, as it will be mentioned further on. As a curiosity, we measured the time

to initialize four arrays of 15,000 bytes each in the B001 memory and we have got 133

msec! We assumed that programs smailer than 2k bytes long, will be loaded entirely
into internal memory, but we could not prove it and this is left and strongly

recommended for further research.

B. A CLOSE LOOK ON THE BIT RATE

The evaluation started trying to answer research question I that is transcribed

here:

" Do the links transmit (and receive) data at 10 and 20 mbits, sec transfer rates?"

38

SIL

1. rirst SoftA are Results

To find that out, simple programs were made to transmit and receive long

messages Iarrays) through the physical links. The transfer rate was obtained by divil ng

the number of bits transmitted by the time spent on the transmission. A flag was used

(single byte) from receiver to transmitter to assure the transmitter would only transmit

when the receiver was ready. This way, we would be timing the best possible case with

the best possible accuracy. The basic program code used for the transmitter and

receiver is in Figure 3.2 The BYTE SLICE was the construct used, because from the

very first tests it proved to be the fastest, even for one byte being transrmtted.

The configuration used for that was as simple as it could be. Two transputers

connected by a link hosting one procedure transmitter (TR.1) and one procedure

receiver (TR.2). Figure 3.3 depicts that.

SEQ
TEhanl ? flag --- flag is received
TIME ? startime --- time is stored in var startime
--- transfer begins
BYTE.SLICE.OUTPUT (chan2, buffername, 1, block.size)
--- transfer ends
TIME ? endtime --- time is stored in var endtime
--- call to procedure transfer rate outputs the rate.
transfer.rate (startime, endtime, transputer.type,

blocksize, rate)
a) Transmitter

SEQ
chanl ! char --- flag is sent to transmitter
BYTE.SLICE.INPUT (chan2, buffername, 1, block.size)
b) Receiver

Figure 3.2 Basic Code for Transmitter and Receiver.

The block size used was 15,000 bytes, in order to avoid possible dragging

effects of small messages. The results obtained were around 3,800 kbitsisec with an

execution time of 31.5 msec, average. As we can notice from table 4, in Chapter III, it

was almost half of the expected value of 7,273 kbits,'sec. Why? The monitorirg of the

channels with the oscilloscope answered this question.

39

%4

:, .-¢-,, ,,.,,,' - -v.. -.... - " . " "-"-- - "- - -- " -

chanil

TR I TR 2

chan2

Figure 3.3 Configuration for Initial Tests.

a. Links at 20 mbits/sec

With the links switched to 20 mbits,'sec, we could only have

communications between transputers located on B003 boards, so, although the code
was practically the same, the configuration had to be slightly different. Figure 3.4

shows us how it was.

Chan3 chanl
Root < -------- TR 1 < ---------- TR 2

(BO01) chan4 (B003) chan2 (B003)

Figure 3.4 Configuration for Measuring Links at 20 mbitssec Bit Rate.

The results obtained for block sizes of 15,000 bytes using also the BYTE
SLICE construct, where of the order of 6,000 to 6,100 kbits,'sec, again very small, if we
compare them with the expected of 14,545 kbits/sec.

2. Using the Oscilloscope

Another simple program that made a continuous transfer on the link, made it
possible to observe the frame transmitted and estimate the rate on the oscilloscope
screen. The message transmitted, using BYTE SLICE, was a sequence of TRUES. The
TRUE, in Occam, is a sequence of 8 binary I's and so the frame was as Figure 3.5

shows.

40

start bits I information bits(TRUE) Istop bit

Figure 3.5 Frame Transmitted for Oscilloscope Observations.

The basic code used is depicted in Figure 3.6 . There is no time sampling or
flags to avoid any side effect on the oscilloscope screen. Figure 3.7 shows the picture of

a frame like the one on figure 3.5 followed by an acknowledge (both appear on the

same trace due to vertical mode ADD used on the oscilloscope. All the oscilloscope

settings are also mentioned below the picture.

WHILE TRUE
BYTE.SLICE.OUTPUT (chan2, bufferi, 1, block.size)

a) code on the transmiter

WHILE TRUE
BYTE.SLICE.INPUT (chan2, buffer2, 1, block.size)

b) code on the receiver

Figure 3.6 Example Code for Oscilloscope Observations.

Note from Figure 3.7 that the 10 "ones" of the frame occupy 5 divisions. This
sums up to I microsecond. So we have one bit per 0.1 microsecond and this implies a

bit rate of 10 mbits/sec (gross).

Conclusion 1

The bit rate is in fact 10 mbits/sec,

if ie consider only one frame.

41

Oscilloscope Settings:
channel 1 -- > shows the transmitted frame
channel 2 -- > shows the acknowledge
time scale -- > 0.2 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ADD
trigger source-> channel 1

Figure 3.7 Picture of One Frame at 10mbitsisec Rate.

The Acknowledge appears enlarged due to the lack of synchronization

between both channels and the trigger source to be oscilloscope channel I. We can't

take precise measurements, but we can estimate the best and worst cases:

* best case - The ACK pulse is beginning at the trailing edge (leftmost) of the
ACK frame. This will give us a distance of approximately 200 nsec between the
last bit of the data frame and the acknowledge frame (remember that there is a
"zero" bit after the last "one").

a worst case - The ACK ends at the leading edge (rightmost) of the ACK pulse.
This will give us a distance of approximately 300 nsec instead.

Conclusion 2

The ACK frame leaves the receiver 200 to 300 nsec

after the transmitted frame arrived!

42

- '..I

OscA'iloscop Settings:
channeTl1-> shows the transmitted frame
channel 2 ->shows the acknowledge
time scal.e ->0.5 microsec / division
voltage scale ->2 volts / division
vertical mode ->ADD

trigger source-> channel 1

Figure 3.8 Three Data Frames at l0mbits'isec Rate.

Increasing the time scale of the oscilloscope to 0.5 microseconds, we could
observe more frames and acknowledges as shown in Figure 3.8, and from this picture.

using the same best and worst case approach, we could estimate that the distance

betwveen the ACK and the following frame (center) is between 500 and 600 nsec. We

could also notice that the distance between consecutive data frames is between 900 and
l000 nanoseconds.

So, estimating the transfer rate from the picture, assuming all frames will keep

at least this space between them, we got:
* best case- for each 1100 nsec information we have 900 of line inactive. If we

multipl-y this ratio by the expected transfer rate of 7,273 kbits, sec, we get

(1100 ;' 2000) X 7273 = 4000 kbits,'sec
* worst case - then 1000 nsec of line inactive would bring us

(1100:, 2100) x 7273 = 3809 kbits/sec

43

I

I
As we can see the hardware results were confirming the previously obtained

software resu':s.
.\:'her fact to add is that, during our observations, the frames were not

always equaly spaced as shown in Figure 3.8 In fact, this figure shows the most
eq uail; spa:ed results we ever obtained. Figure 3.9, in which the time scale was once

more increasei. to I microsec per division, we can note that the fifth frame in the
channel at the bottom is more spaced than the four previous ones. In this picture the
ALT vertical mode was used to permit us to see the ACK on the upper trace. Note the
re ularity which the acknowledge appears 200 to 300 nsec after the received frame.

Oscilloscoe Settings:channe l 1 - sinows the transmitted frame

channel 2 -- > shows the acknowledge (upper)
time scale -- > 1.0 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ALT
trigger source-> channel 1(bottom)

Figure 3.9 Five Frames Observed at 10 mbits,'sec Rate.

44

I

a. Switching the Rate to 20 mbits/sec

Similar observations were made for the links operating at 20 mbit/sec rate
and Figure 3.10 that was taken with time scale 0.1 microsec per division shows the

same 10 "ones" of Figure 3.7 in approximately 0.5 microsecond, that is half of the time
that was obtained there. The ACK now is in oscilloscope channel I and is the trigger
source (this is the reason it is now well defined).

4

Oscilloscope Settings:
channel 1 - sows the acknowledge (previous)

channel 2--> shows the transmitted frame(next)
time scale -- > 0.1 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ALT
trigger source-> channel 1 (upper)

Figure 3.10 One Frame and the ACK at 20 mbits'sec Rate.

Note the time delay between the ACK (upper trace) and the following

frame (lower trace) that was measured as about 400 nsec.

Figure 3.11, taken with time scale 0.5 microseconds per division shows us a
series of "TRUE" frames at 20 mbits,,sec rate and the ACKframes in the same trace.
We could estimate the percent of time the link is actively transmitting as around 40%

45

'JI

of the total time approximately. If we take 400% of the predicted rate of 14,545 we get

5,818 kbits sec. Comparing this with the software obtained value of 6,100 kbits,'sec, we

can conclude that the value is reasonable enough for an explanation of the software

results.

Oscilloscope Settings:
channel 1 -- > shows the acknowledge
channel 2 -- > shows the transmitted frame
time scale -- > 0.5 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ADD
trigger source-> channel 2

Figure 3.11 Four Frames and ACK at 20 mbitsisec Rate.

3. Comparison Between the Constructs
In this subsection we would like to include the maximum values of the transfer

rate obtained, ever for the various constructs. They are summarized on Table 6 and

were obtained using different programs, with different message sizes and so they are

not mentioned. It is interesting to note that the input operation has a slight tendency

to be quicker than the output, which is not true. This occurs because of the flag

positioning, which will slightly affect the rate, but the rate should be considered as the

46

%S
V -,V ~ ~ . ~ 1

same. What can be mentioned, however, is that [Ref. 7: section 2, pp.26,271, shows us

an expected performance summary and there the input primitive is rated as using 26.5

processor cycles while the output would take 26 cycles, and this is not much of a

difference. This same reference still mentions that the values are not definitive and

may suffer changes as more information is collected.

TABLE 6

MAXIMUM TRANSFER RATES OBTAINED (KBITS/SEC)

input/output BYTE SLICE WORD SLICE

byg mitives procedure procedurebyes word s

output 595 2412 3880 3669

input 631 2855 3804 3786

Browsing the figures on Table 6, one question comes up at once:
" Why is the transmission using the input and output primitives, so much

slower in comparison to the built-in procedures?"

For the byte transmission case, using the primitives, if we look at Figure 3.12,
we will see how an array of "TRUES" is transmitted through the link, at 10 mbits; sec

selected bit rate. The information seems to be stored one byte per word and this way,

for each "TRUE" byte, three empty frames follows. Note that the frames carry only the

start bits (two "ones"). The time between frames containing information, measured at

the lab was 13 microseconds.

For the word (integer) transmission case, if we browse Figure 3.13, we see a

similar pattern to Figure 3.12 but with the difference that all frames are effectively

carrying information bits. The information used to ease the observation was maxint,

which is, for our 32 bit machine 2,147,483,647 decimal or " 7FFF " hexadecimal. 9 The

elapsed time measured at the lab between the acknowledge of the last byte of the first

word and the first byte of the second word was around 5 microseconds. By doing same

calculations done for the BYTE SLICE case one will conclude that the maximum

values obtained are in accordance with the observations on the oscilloscope.

9The transputer T 414 uses signed integers in the range - 2,147,483,648 to
2,147,483,6417 decimal or 8000 to 7FFF hexadecimal, respectively [Ref. 7: section 2. p.
21.

47

I

Oscilloscope Settin s:channel 1-> sows transmitted frame (upper)

channel 2 -- > shows the acknowledge*(lower)
time scale -- > 2.0 microsec / division
voltage scale -> 2 volts / divisionvertical mode -> ALT
trigger source-> channel 1

Figure 3.12 TRUES Transmitted Using the Input/Output Primitives.

As a conclusion of this section, we could prove that the software

measurements and the procedures used to calculate the transfer rate were producing

reasonable values, that agreed with those observed on the oscilluscope. The reason we

had not obtained the expected transfer rates was because the link is not continuously

active as the literature led us to believe, and there is a considerable delay between the

receipt of a frame and the departure of the corresponding ACK. Also, after the ACK is

received by the transmitter, there is another delay to transmit the next frame.10

loin fact during the Occam User Group meeting already mentioned, in Santa
Clara, CA, Mr. Martin Booth from INMOS office at Santa Clara said that the data
rate we should really expect on the links was 450 kbytes'sec, what agrees with our
results (450 x 8 = 3800).

48

0scillosco~e ettings:channel 1 --> shows transmitted frames (upper)

channel 2 -- > shows the acknowledge (lower'
time scale -- > 2.0 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ALT
trigger source-> channel 1

Figure 3.13 Maxint Transmitted Using the Input;Output Primitives.

Although, it is expected, that the new transputer version, the T 800, will solve

this problem by permitting the acknowledge leave the receptor, as soon as the first bit

of the frame arrives, and this way the delay would not exist, or at least be smaller

[Ref. 211.

C. OBSERVING PARALLEL ACTIVITY ON THE LINKS

I. Using Software

To observe the links working at the same time, we needed to build a different

configuration. As we have 4 links per transputer, we needed at least 5 transputers to

make all links work in parallel at the highest possible rate. The configuration used is

depicted in Figure 3.14 .

1.
49

C CHAN1 C11CHANE3

0 CHAN O 0

ROOT 0

2 ICHAN (21 2

1 2 2
3 3

CHAN C53] I

CHAN r4l

CHAN CT' I

CHAN C63

Figure 3.14 Configuration to Observe the Four Links Operating in Parallel.

In processor root we placed a procedure that was able to transmit and/or

receive in parallel to,'from the four transputers 0,1,2 and 3. Figure 3.15 shows the

Occam code used to do that.
Using Figure 3.15 as a template, one can implement a similar code to transmit

in 2 or 3 channels in parallel just by removing the unwanted BYTE SLICE procedure

calls. Note that the channels mentioned on Figure 3.15 are in accordance with the oncs

on Figure 3.14 (1,3,5,7 are output channels -or transputer root). On the other hand one

may think of using the input channels at the same time, but this will be addressed in

next section.
Trhe receivers in their turn have a simpler code than the transmitter, because

each one of them is only communicating with transputer root. Figure 3.16 shows it.

If one tries to map the channels of Figure 3.16 to the configuration, one will

notice that there is no such a channel in or out on Figure 3.14 and to clarify that

50

'1

PROC transmitter (CHAN chanO, chan2, chan4, chan6,
chanl, chan3, chan5, chan7)=

... declarations
SEQ

.. buffers initializations
PAR

chanO ? flagO --- flags are received from each
chan2 ? flagl of the receiving transputers
chan4 ? flag2 and only after all of them
chan6 ? flag3 are ready the timer is started

TIME ? startime
PAR

BYTE.SLICE.OUTPUT (chanl, buffero, 1, block.size)
BYTE.SLICE.OUTPUT (chan3, bufferi, 1, block.size)
BYTE.SLICE.OUTPUT (chan5, buffer2, 1, block.size)
BYTE.SLICE.OUTPUT (chan7, buffer3, 1, block.size)

TIME ? endtime
--- transfer rate calculated will be in VAR rate
transfer.rate (startime, endtime, 1, blocksize, rate):

Figure 3.15 Code Used to Time Transmission Through the Four Links in Parallel.

PROC receiver (CHAN in, out)=
... declare variables
... initialize buffer
SEQ

out I flag
BYTE.SLICE.INPUT (in, buffer, 1, block.size):

Figure 3.16 Code for the Receivers.

Figure 3.17 shows how the configuration would be actually coded for these processes

to be mapped and work properly.

As one may notice from Figure 3.17, the chanO inside the procedure refers to

the chan[O] on the configuration, and so on. We could think of chan[O] being the actual

parameter and chanO being the correspondent formal. This is not strictly true, because

on the configuration we are only placing the procedure on the processor, not calling it,

but the analogy is still valid and the names were chosen to make it easier to

understand. The users and programmers may use any name for channels, and in fact

we used some different ones in our implementations. The importance is to get the idea.

51

Z~'I

S| .0Mw RFn ZW .W U i N ,i . ' . .

--- configuration
DEF root = 100:--- assigning a number to root
CHAN chan[8]:--- channel variables for physical channels

PROCESSOR rootPRCESSO roo

--- placing channel names on physical channels
PLACE chan[0 AT link0in
PLACE chan 1' AT link0out
PLACE chan 2' AT linklin
PLACE chan[3] AT linklout
PLACE chan[4] AT link2in
PLACE chan [5 AT link2out
PLACE chan[6] AT link3in
PLACE chan [7 AT link3out
--- placing the procedure to be executed on the processor
transmitter (chanJ], cchan2], chan[4 1chan[6],chan[], chan[3] chan[5], cha[]

PROCESSOR 0
PLACE chan[0] AT link0out
PLACE chan[l] AT link0in :
receiver (chan[l], chan[0])

PROCESSOR 1
PLACE chan[2] AT link0out :
PLACE chan[3] AT link0in :
receiver (chan[3], chan[2])

PROCESSOR 2
PLACE chan[41 AT link0out :
PLACE chan 5] AT link0in :
receiver (chan[5], chan[4))

PROCESSOR 3
PLACE chan[6] AT link0out
PLACE chanL7] AT link0in
receiver (chan[7], chan[6])

Figure 3.17 Configuration Code for the Link Evaluation Program.

Using the program described above, the results obtained for a block size of

1,500 bytes were

1 channel 3670 kbits'sec

* 2 channels in parallel 3670 kbits/sec(in each channel)

* 3 channels in parallel 3650 kbitssec(in each channel)

* 4 channels in parallel 3630 kbits'sec(in each channel)

These results show a slight decreasing performance as more channels are in

parallel, but there is nearly linear improvement in communication performance due to

parallelism, because the overall data transmission jumped from 3670 to 14520 (4 x

3630)!

52

2. Using the Oscilloscope

As had happened with the initial observations related on the previous section,
the programs used for this observation where adaptations of the ones just presented

using :hc WHILE TRUE construct to permit continuous transmission, and taking off

all timi:ng and flags, so we will not repeat them here. As we know, the maximum we

could monitor at one time, was two channels. Two observations were then made:

* two channels of different links transmitting in parallel (Figure 3.18),

* two channels of the same link transmitting in parallel (Figure 3.19).

Oscilloscop Settings:
channeyl1-- shows transmitted frame (chani)
channel 2 ->shows transmitted frame (chan3)
time scale ->0.5 microsec / division
voltage scale -2 volts!/ division
vertical mode ->ALT

trigger source-> channel 2(lower)
storage mode used

Figure 3.18 Two Channels of Different Links Transmitting at the Same Time.

In the first case, Figure 3.18 shows the same frame used on the previous
section (TRUE) in two different channels and one may notice how they overlapped. It

53

I

q~a kA~~1i~ ' 9~~ J' I L .:v .I.: V L. I~ N % j. ; .. - . N' - ~ ~ . * . ,. N.. *** .' - -i

is worth emphasizing that the interval between frames is due to the acknowledge delay
explained in last section (not shown here), and the different phase between the wave

forms is due only to the communication processes had begun at different absolute

times. This implies that, as the links have the same speed, and as the procedures are

the same. this difference of phase is kept constant as long as the processes are running.

This photograph was taken in storage mode due to the fact that in normal mode the

unsynchronism between the channels did not permit us to see both waveforms clearly.

F'S

aI

Oscilloscoe Settin S:
channell--> shows transmitted frame (chanl)
channel 2 -- > shows received frame (chanO)
time scale -- ' 0.5 microsec / division
voltage scale -> 2 volts / division
vertical mode -> ALT
trigger source-> channel 2(lower)
storage mode used

Figure 3.19 Two Channels of the Same Link Operating at the Same Time.

In the second case, Figure 3.19 shows two channels of a same link operating

at the same time. This picture was also taken in storage mode for the same reasons just

mentioned. Note that at this time we can observe the acknowledges piggy-backed on

54
.5

I

.,, ,, wut

the transmitted frames. The ACK on the upper trace are sent for the frame been shown

on the lower trace, just a little before in time. The reverse is valid for the lower trace'

ACK. Note that at the time the picture was taken, all eight channels were operating in

the same way.
3. Using the Logic Analyzer

As mentioned in Chapter 111, a snapshot of parallel operations is not easy to

get. Our Model 532 Logic State Analizer could store up to 250 words of 32 bits each

monitored by 2 Logic Probes of 16 bits ea'h. We used only one of the probes once

monitoring 4 channels, and another time 8 channels. In the first case, monitoring 4
channels, three of them were carrying data frames transmitted by diflIerent links (the

handy "TRLE"s), and the last one carrying the acknowledge of the fourth link. Figure
3.20 is a reduction of the printout obtained from a representative part of the 250

words. Remember that the links are serial communication devices and the probes are

more effective when monitoring parallel buses, specially if there is a clock available on

the bus (synchronous buses), and so the sequence of "ones" appear vertically on the
picture. The program being used was the EVALCONTTRUE.tds, using the same

configuration depicted on Figure 3.14, and the channels monitored were chanl, chan3,

chan5 and chan6. The program was transmitting continuously blocks of 15000 bytes of

trues by the four output channels (1,3,5,7) of transputer root. The first column is the

memory position of the logic state analyzer. In the second column bits 4 and 8 (from

left to right) carry respectively chanI and chan3. The third column bits 4 and 8 again

refer to chan6 and chan5, respectively.
Figure 3.21 as well shows us one representative section of the samples

collected by the logic analyzer from eight channels distributed as TFable 7 shows.

The "one" bits that appear in the other columns are probably cross-talk due to
the probe being made of parallel vires, while the INMOS links are always in twisted

pairs. It is also good to reinforce that when the links arc transmitting and receiving in

parallel, the acknowledge appears piggy-backed, as Figure 3.19 shows, and in the

sequence of bits we can notice them very clearly in several spots.

Although, by the evidence from both the logic analizer and the oscilloscope,

we are sure that the channels indeed operate in parallel, it would be more satisfying to
obtain data which more closely coincides with the measurements taken by software

experiments. Our suggestion is that monitoring the channels with a logic state analyzer

which can handle a faster clock, would enable a more exact measurement of

55 NI

S=

U%
, * " d" . . .€ "' "' " ",, "d"",," "" " %"%" , p" , %" €' ,t'".-"€'"."".#",# U-'

('000 0 0000)I00 0d-Js. I i)Ilk 00-100tl.) 0I3L(OU03LI

CoO ,A I (tWi.O Itu's(s(Cs,s. L, 0ssIC0 0Csi.V-0u~(OcIC((0r
(.0.1 6. 1ssI..I'(U. 1';52s)0uU OOIJt..UoOs,5r.sl
00,1 1 UU(II j C)J (.i. U'LCE0 I -(.ss',00(, O(.It. Cl

00.1' (U CI I I ho(c-CI~,'1('.((socUl,00U U000OU('D
1LI-'.,- Ou00100.il) 00111.'(J0000 Oo10051Os 130' (05.0(

'11.1i 7, (U.., ((.5,0 CsW10000 0U5.ClOU1.'O (ULACILI(IO
('05,I:U Out1) I U60 0131J 100 00100000 0113 JU0sl((0
Ott(t (til) 0%)O., .),r.(j00 I~ 00oCI.'ril.s, t(OUUI'.'(5
Ol 12 UU do,, O00J 0i.W3000 1 0000~10001 00uJus31)
Ocsi 13 I (uo I (15I0001Uo(,00 I ((Do1U 000 00 0 ('~u00
I')U I. it001(0000 1 ,UQ.3sA1l 1 0000000013S 10003Q130
C,()(15~ 0oi L'O I Of'.00iI O00000000 Oou~cs',cO

00t' 130 7 Sd 1 L-0000001 000013000 0000I1s00
0 CA IS k3 .QU1,'C I DUU00'csoC I OOOOOOC,0 Or,0c;.c~k~o
(s15 11 01O~Us0s.1 i (UOU.io I 0I)'JL1.100 0000.100CI
(OU2 007 OC'(sL10 I .,sO('(UO I- 0.JOUCJO,,.C) CIOC.O000

OU.:oI 0i)'),u,3 Ottooo Iui0000 001ItG3ui00.2
0U I 2 C., U 1 C t I t--C00iO 00U130000 U0'CP,('(sOi

U0 00 "" -00001) l001000 00000010 0000000)

0.t,. " 'I) I I I ('05') 135,5)j-JI1W 000h30(OlU O0',s Q I).) -),
0',:: 1' 1 1 1000 o.o OOU U0.:i..'C'1bU0IUCOL'O O
001:16. Os) I I I Jt iju.2'.JIIO 0d1300000 01310,J'.3
Oo.C (O 1),11 uAUU ML55CU ((0001(00 CSC~oI011O
(IL6 sin,' 1100 I uU(s)130 0100000 0000)as
Ut.j ((it 00 ou..0 (sulCO(JE COIUOsC.C OuIOW05 0
Okis. '2 0101131 0s 100) 012u.)uUO 00) 01M00013
GJ"5? (.CI IIOU(J UUtsI0(~J I (IOws:'u~LA 000(5C00
001 . t J 01311 1.5 053s,,2sd I 01JOU001350 C315U00003
('W3 000, I sCPCJ 1 0000000U1 (JCJCUCo SCJ) OO
I t, 1101dUO (00., I Cuug11)d I 1300001i 0000000k1)3
(loSS7 005.1 0(M I 0 .01.00(J I 000000~uC. 00000j100
(55' *., 13sss~iI I 00013)I 0010WO255100 11151,500
0)l !? QUOU.0100(I (s1IC((J I 0(JUCA1.0jC 0000"IO1)

01413, (000s I 005.1035) I Os)(5.300Vo dd00tivsid
00"11 '7 U0L sU5fuCI 10000s.IU 00000-100 00O1uLCJ)

CsjJ U130UO521 0.10.0,0130I 0001000w3 O0I3005T13

0)'45! 10000153 00 I 05 01(0 U 01)) (Ud LIn 0553 510CIL1

U', I (3 3(I.5u ' 13 00'i lt)53) 0001011j00 00-30n3o 00

0 LC-'., Oki '1II'555 LI.'100,U'L 0U00C)0s 00jL(.s1(0
00 .5' U i4 150 0 U'' (J0(5l15..35 603 0IM5I U 55))) .3
C..sU Wil Uto 155.0C.,.0'd C0uC(00.30 0-i-u)' '0
0lwd..01 1 dud o~ri DJs3OI00 U000r.st0 OoOWs1.00
(i'.)' (((5.I .5.150 GC IC I)G.(.(O I 0 's5O' (I I0 1 0 U' V,).),11)

tO l, "1 LU I tit -00s 041ss0130 (nuO1sO.nlou 000clis(.
005.Z, 1 U(0 1 t) 1),0 Oduuslbn. I 1U.ds10. 01M.',11101)

V 0 51 , 006 UI5501 (55(100550I (',sOtsU(jIs LWUCis(00

U(151-1 ('00 100)1 O0('(,O(.) I 0lu00(50 oulC.00,'(.

0C 0000. 13U0J)UI00010IJ 1 010u000111 dOU4)IAudd1

U ll.50 00010~J13 W I -0 U0 I 00000105353IIE~ tOslU~L10JI)

03130 0130OU0 I 001300(I 000,.)3. 0005000
0061 0ssj'I-(,,U 1 0001--, *0 1 (,Ls('.500,s0 0000uC(.00
00-) ., 0 00000) 0.1(., 1' 0130130(300j 0((111.50
045413 (J(Qk-(, (1 I 0000uOo C,(q..oOOO acsOOCS(SoC
Uot,4 00000.Lu 1 00(1 515 I 005)001 3 I)OL 0,13000530
c('sjj. 6C.Lciuio uUtoucluO (clc'CSouct 000ouc'CS

Figure 3.20 Output from the Logic Analyzer of 4 Channels in Parallel.

56

0000 10110000 00000011 00000000 00000000

0001 10110011 01110011 00000000 00000000

0002 10110010 00000001 00000000 00000000

0003 10110010 00000000 00000000 00000000

0004 10110010 00010000 00000000 00000000

0005 00100011 00000000 00000000 00000000

0006 00100011 00000001 00000000 00000000

0007 00100011 00000010 00000000 00000000

0008 00000011 00000000 00000000 00000000

0009 00000011 11100000 00000000 00000000

0010 10100011 01100000 00000000 00000000

0011 00010011 01100001 00000000 00000000

0012 00000001 00100010 00000000 000000

0013 00000001 00111010 00000000 00000000

0014 00000001 00110011 00000000 00000000

0015 10011000 00110011 00000000 00000000

0016 10011001 00110011 00000000 00000000

0017 10010000 00110011 00000000 00000000

0019 11111010 00110011 00000000 00000000

0019 10110010 00010011 00000000 00000000
00Z0 10110000 00010011 00000000 00000000

0021 10110010 00010011 00000000 00000000

0021 10110010 00010011 00000000 00000000

0022 10110110 00010001 00000000 00000000

0023 10110010 00000001 00000000 00000000

0024 10110010 00010000 00000000 00000000

0025 00100011 00000000 00000000 00000000

0026 00100011 11100001 00000000 00000000

0027 00100011 00000000 00000000 00000000

0028 00000011 00000010 00000000 00000000
0029 00000011 01100000 00000000 00000000

0030 11100011 01100000 00000000 00000000
0031 10010011 00100001 00000000 00000000

003a 00000001 00100010 00000000 00000000

0033 00000001 00110010 00000000 00000000

0034 00000001 00110010 00000000 00000000
0035 00000000 00110011 00000000 00000000

0036 00000001 00110011 00000000 00000000

00.7 10000000 00110011 00000000 00000000

0038 11100010 00110011 00000000 00000000

00 39 10100010 00010011 00000000 0000000

0060 11111000 00010011 00000000 00000000
0041 11111000 00010011 00000000 00000000

0042 10110000 00010001 00000000 00000000

7

0042 10110000 00010001 00000000 00000000

0043 10110000 00000001 00000000 00000000

0044 10110000 00010001 00000000 00000000

0045 10110001 00000000 00000000 00000000
0046 10110011 01100001 00000000 00000000
0047 00110011 00000000 00000000 00000000

0048 00010011 00000000 00000000 00000000
0049 00010011 00000010 00000000 00000000

0050 00000011 00000000 00000000 00000000
0051 10010011 00000000 00000000 00000000

0052 00000011 00000010 00000000 00000000

0053 00000011 000010 00000000 00000000
0054 10000011 11111010 00000000 00000000

0055 11100010 00110010 00000000 00000000

0056 00000010 00110011 00000)00 00000000

0057 00000000 00110011 00000000 00000000
0058 11100010 00110011 00000000 00000000

0059 10100010 00110011 00000000 00000000
0060 10100000 00110011 00000000 00000000

0061 10110000 1111001t 00000000 00000000
0062 10110000 00110001 00000000 00000000
0063 10110000 00100001 00000000 00000000

Figure 3.21 8 Channels Monitored with the Logic Analizer.

57

TABLE 7

LINK MAP FOR FIGURE 3.21

channel column bit probe lid
chanO ---- > second 3 D13
chanl ---- > second 4 D12
chan2 ---- > second 7 D9
chan3 ---- > second 8 D8
chan4 ---- > third 3 D5
chanS ---- > third 4 D4
chan6 ---- > third 7 Dl
chan7 ---- > third 8 DO

acknowledge delays and the delays between successive word, and byte transmissions, by

making timing diagrams of 4 and 8 channels in parallel. This, however, is left as a

suggestion for future research.

Conclusion 3
The Links really are able to operate in parallel!

4. Comparison Between the Four Constructs

TABIE 8
EFFECT OF PARALLELISM ON TRANSFER RATES FOR 10000 BYTES

BLOCK SIZE **

input/output BYTE SLICE WORD SLICE
bYrimitoves procedure procedurebytes words

1 channel 370 1510 3670 3670

2 channels 190 770 3670 3670

3 channels 160 640 3650 3650

4 channels 160 640 3630 3620

** Values are in kbytesisec rounded to tenths.

58

Table 8 shows the results obtained for 2, 3 and 4 links transmitting in parallel

for each of the constructs.

These results where obtained using the Link Evaluation Program for all the

constructs, listed on Appendix E, with no special priority for communications, and

with no other processes being executed on the cpus, besides the transmitter and

receiver processes. The time measurements were made at the transputer root at the

B001 board. It is clear for us that although the BYTE.SLICE and WORD.SLICE

procedures are not affected for more channels in parallel for this block size, the input

and output primitives indeed are, but this will be addressed in the next section. It is

still worthy of mention that several attempts were made to increase the transfer rate of

the primitives input and output by using different loop sizes, no loops at all, different

number of bytes, or words after each ? or ! separated by colons but in none of these

cases a significant improvement was noticed.

D. MESSAGE SIZE AND CHANNEL PARALLELISM INFLUENCE.

Once we overcame the first phase of the research, validating the software we were
using, we moved our attention towards the fourth and fifth research questions:

* What is the effect of message lengths on the link transfer rates?
* What is the mutual effect, on the link transfer rates, of more links operating in

parallel.

To address these topics, The Link Evaluation Program was designed and

implemented, using the programming concepts presented on previous sections of this

chapter. What it does basically is, after the user's choice of type of construct and

existence or non of concurrent process running on the CPU of the communicating

transputers, named "cpumode", it builds a Table showing the transfer rates for the 16

different message sizes and 9 different channel parallelism cases, for the chosen option,

and prompts the user for a new run. Appendix F presents the program, written in

Occam, but one doesn't need to understand the program to grasp the results obtained,

that will be presented in the following subsections, and in the next chapter. The

configuration used for this program was the same of Figures 3.14 and 3.17.

1. How to Read the Tables

The tables have ten (10) columns as follows:

* BYTES - Shows the number of bytes transmitted for the results obtained in that
row.

0 1 OUT - Results obtained measuring transmission through only one channel
from root to transputer 0.

59

I

I iMI l
-l I l l - -i a

* 1 IN - The same as above for reception on the root from transputer 0

* 2 OUT - Results obtained measuring transmission in parallel through two
channels from root to transputer 0 and transputer 1.

* 2 IN - Same as above for reception in parallel.

* 3 OUT - Results obtained measuring transmission in parallel from root to
transputers 0, 1 and 2.

* 3 IN - Same as above for reception in parallel.

* 4 OUT - Results obtained measuring parallel transmission from root to
transputers 0, 1, 2 and 3.

* 4 IN - Same as above for reception in parallel.

* 4 IN;OUT - Results obtained measuring transmission and reception in parallel
to/firom transputers 0, 1, 2 and 3, using all 8 channels from the four links that
exist in one transputer.

TABLE 9

TRANSPUTER LINK TRANSFER RATE
BYTE SLICE (1) - NO CONCURRENT PROCESS - 10 MBITS,'SEC

BYTES 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3 IN 4 OUT 4 IN 41NOUT
1 625 616 250 250 200 198 161 161 98
2 1217 1237 500 500 400 400 325 333 196
4 1531 2130 779 1000 648 788 650 646 384
8 2183 2811 1570 1582 1311 1301 1085 1096 690
16 2758 2924 2101 2222 1948 1919 1702 1694 1255
32 3224 3246 2589 2800 2482 2544 2330 2398 1835
64 3427 3646 3116 3226 2942 3048 2817 2954 2462
128 3543 3644 3332 3497 3265 3390 3187 3320 2945
256 3605 3741 3496 3656 3444 3596 3398 3558 3231
512 3635 3778 3578 3733 3555 3697 3509 3677 3401
1024 3650 3754 3627 3741 3604 3712 3575 3702 3512
1280 3654 3748 3640 3742 3611 3713 3587 3698 3529
2048 3658 3740 3652 3738 3621 3715 3604 3703 3549
4096 3662 3735 3663 3733 3634 3720 3618 3709 3573
8192 3665 3732 3668 3732 3645 3721 3627 3714 3585
10000 3667 3731 3669 3730 3647 3721 3623 3717 3591

* Values in kbits/sec

Some tables, though, have three different columns labeled:

* 1 IN/OUT - instead of I IN

* 2 IN,'OUT - instead of 2 IN

• 3 IN:OUT - instead of 3 IN

60

In this columns, as the reader may have guessed already, the results presented

refer to the transputer root transmitting and receiving at the same time through the

number of links specified.

For each of the constructs the results are presented in table format and when

necessary a graphical representation of the table. Each individual number on the tables

is the average of 20 sequential runs. The results are in kbits,'sec due to non availability

of floating point for Proto-Occam and our need for precision.

2. BYTE SLICE Procedure

Table 9 and 10 show us the transfer rates obtained for this procedure with

communication being the only process being executed by the transputers involved.

Figure 3.22 is a graphical representation of Table 9.

TABLE 10
TRANSPUTER LINK TRANSFER RATE

BYTE SLICE (2) - NO CONCURRENT PROCESS - 10 MBITS/SEC

EYTES 1 OUT IINOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 625 248 250 166 194 125 161 166 98
2 1250 500 500 333 400 245 322 333 196
4 1518 793 779 651 645 487 645 648 384
8 2201 1585 1567 1099 1318 851 1101 1105 689
16 2782 2155 2208 1711 1951 1458 1701 1714 1256
32 3227 2636 2702 2326 2503 2133 2314 2379 1837
64 3513 3067 3116 2850 2988 2667 2813 2975 2741
128 3578 3350 3368 3204 3305 3075 3186 3320 2926
256 3628 3491 3522 3417 3476 3333 3404 3538 3230
512 3663 3574 3601 3532 3578 3483 3516 3662 3404
1024 3684 3617 3651 3587 3632 3568 3581 3683 3487
1280 3687 3624 3657 3591 3640 3584 3595 3685 3510
2048 3692 3636 3672 3597 3653 3603 3617 3689 3543
4096 3694 3648 3683 3616 3671 3623 3624 3692 3576
8192 3698 3655 3690 3619 3678 3632 3632 3694 3596
10000 3699 3657 3692 3614 3679 3638 3629 3696 3597

* Values in kbits/sec

From Table 9 we can notice the overall tendency of input be quicker than

output, due to the way the timers are started and stopped by the flags. The flags used

in this and all following tables were placed from the B003 transputers to the root.

When we had the flags inverted the values had a tendency to be bigger for the output,

so one may disregard the difference. For this reason we tried to show most of times the

values for "in'out" instead for "in". Most important, however is the effect of message

61

size and channel parallelism reducing the transfer rates sensibly for smaller message

sizes, but with insignificant effect for message sizes above 256 bytes.

4----.6---------~- - - - L - - - ------ -- --

J ------6.-----6----- --------. 6 -------- ---

------ ---- ------- ---------- --------

L ----------- - ----------- - --- - - - -

L- - - -6.- - - ---- - -L- - - --

II I I

-- - - - ----- L------- L------ -

----- ------ --.--- L ------------

6.---- j.--------------- ---- 6 ------

6.6.- - - L - ------------- L . . .

J----------L - - ----- JI------

----- -- .- ----- .6--- - .6- - - ------ ---

.6-FA:- :r -r-J- - - ---- - ----- . . .

U 6) C);- aj:C)r-

Od"'i' DOGE iOl Of fll. O014 1i~ 001 0
(33S/SIIO) JIMJ JJSNUKI

Figure 3.22 Transputer Link Transfcr Rate
Byte Slice - No Process in Parallel - 10 mrbits, Sec.

62

3. WORD SLICE Procedure

TABLE 11

TRANSPUTER LINK TRANSFER RATE -
WORD SLICE - NO CONCURRENT PROCESS - 10 MBITSiSEC

BYTES 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3 IN 4 OUT 4 IN 4INOUT
4 1287 1868 666 811 533 625 452 512 294
8 1910 2513 1333 1330 1063 1061 898 890 540
16 2580 3025 1985 1956 1667 1682 1454 1466 998
32 3083 3377 2541 2588 2284 2300 2077 2230 1632
64 3321 3559 2956 3091 2830 2875 2647 2790 2266
128 3491 3679 3294 3406 3156 3278 3068 3213 2783
256 3572 3738 3492 3598 3401 3521 3339 3485 3148
512 3617 3771 3571 3707 3530 3662 3479 3634 3373
1024 3644 3754 3624 3735 3589 3694 3557 3679 3486
1280 3648 3739 3638 3736 3594 3699 3570 3680 3516
2048 3655 3740 3648 3734 3613 3708 3595 3694 3546
4096 3662 3733 3659 3731 3638 3714 3609 3705 3566
8192 3664 3730 3669 3730 3642 3717 3621 3711 3586
10000 3666 3730 3669 3729 3645 3718 3622 3714 3588

* Values in kbits/sec

As seen in Table 11, the results obtained from WORD SLICE are very similar
to the ones we had got for the BYTE SLICE procedure, so if the reader wants, he or

she may use the same Figure 3.22 to have a better feeling of what these numbers
means. All comments made for the BYTE SLICE procedure are valid also for WORD

SLICE.

Conclusion 4

Message size has a major effect reducing the transfer

rate for block transfers (BYTE SLICE and WORD SLICE).

4. Input and Output Primitives

a. Transmitting and Receiving Bytes

Table 12 shows us the results using the primitives input and output to

transmit and receive bytes. As we can see, there is no variation as the number of bytes

increase. This is due to the fact that each byte is transmitted individually as can be

seen in Figure 3.12 We can also notice that there is a significant decrease as more

63

....... ...

TABLE 12

TRANSPUTER LINK TRANSFER RATE -
INPUTLOUTPUT (BYTES 1) - NO CONCURRENT PROCESS

(10 MBITS, SEC)

BYTES 1 OUT 1 IN 2.OUT 2 IN 3 OUT 3 IN 4 OUT 4 IN 41NOUT
1 370 547 192 227 156 179 156 147 89
2 370 436 188 229 153 181 156 149 89
4 377 492 192 232 156 183 157 149 89
8 373 480 190 231 155 183 156 148 89
16 375 510 191 231 155 183 157 148 89
32 374 511 191 231 155 183 157 148 89
64 374 504 191 231 155 183 157 148 89
128 374 506 191 231 155 183 157 148 89
256 374 505 191 231 155 183 157 148 89
512 374 506 191 231 155 183 157 148 89
1024 374 506 191 231 155 183 157 148 89
1280 374 506 191 231 155 183 157 148 89
2048 374 505 191 231 155 183 157 148 89
4096 374 510 191 231 155 183 157 148 89
8192 374 510 191 231 155 183 157 148 89
10000 374 510 191 231 155 183 157 148 89
• Values in kbits/sec

channels are transmitting in parallel. We mention again that we tried several loop sizes

or even no loop at all, with bytes separated by semicolons, but the results we have got

where never significantly bigger than the ones presented. Table 13 stress the

comparison when both channels of a same link are operating at the same time.

transmitting and receiving messages. Note how the results on columns 3, 5, and 7 of

Table 12 are 50°% to 100% bigger than the ones from Table 13

b. Transmitting and Receiving Words (Integers)

Table 14 shows us the results for transmitting integers and we can notice

again that message size does not affect the transfer rate, but more channels operating

in parallel do. As we should expect from the previous results presented, this rate is, on

the average, 4 times larger than the one for transmitting bytes.

Table 15 shows the comparison when both channels of a same link are

transmitting and receiving at the same time. Again we confirm that, in terms of link

performance, worse than having two different links transmitting at the same time, is to

have the same link transmitting and receiving.

64

-:. . . .i% %.

TABLE 13

TRANSPUTER LINK TRANSFER RATE -

INPUTOUTPUT (BYTES 2) - NO CONCURRENT PROCESS
(10 MBITS!SEC)

BYTES 1 OUT lINOUT 2 OUT 21NOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 370 236 189 151 156 112 156 147 76
2 370 232 188 149 153 112 156 149 89
4 370 235 192 150 157 112 157 149 89
8 373 235 190 150 155 113 156 148 89
16 373 235 190 150 155 113 156 148 89
32 373 235 190 150 155 113 156 148 89
64 374 235 191 151 155 113 156 148 89
32 374 235 191 151 155 113 156 148 89
64 374 235 191 151 155 113 157 148 89
128 374 235 191 150 155 113 157 148 89
256 374 235 191 150 155 113 157 148 89
512 374 235 191 151 155 113 156 148 89
1024 374 235 191 151 155 113 157 148 89
1280 374 235 191 151 155 113 157 148 89
2043 374 235 191 151 155 113 156 148 89
4096 374 235 191 151 155 113 157 148 89
8192 374 235 191 150 155 113 157 148 89
10000 374 235 191 150 155 113 157 148 89

* Values in kbits/sec

Conclusion 5

More channels in parallel has a great reducing effect

over the transfer rate for all constructs except block

transfers (BYTE and WORD SLICE), bigger than 256 bytes.

This conclusion does not contradict Conclusion 3, but reduces the universe

in which that is applicable.

65

. '0 ' 1 .! '7 2.,'.,, "..>", '".-, ':'"'", ',".t ;c,.t~.'";7.'v', 'r"r w '_ , e

TABLE 14

TRANSPUTER LINK TRANSFER RATE - 4.

INPUTOUTPUT (WORDS 1) - NO CONCURRENT PROCESS
(10 MBITSSEC)

BYTES 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3 IN 4 OUT 4 IN 4INOUT
4 1526 2330 769 1000 643 785 628 640 377
8 1491 2369 763 1000 634 770 631 634 375
16 1484 2290 761 1000 635 769 629 640 375
32 1509 2326 765 1000 635 769 629 640 375
64 1504 2321 767 1003 640 772 635 642 376
128 1505 2367 766 1003 640 772 635 642 377
256 1509 2366 767 1004 641 772 635 642 376
512 1508 2383 767 1004 641 773 635 642 377
1024 1509 2382 767 1004 641 773 635 642 376
1280 1508 2384 767 1004 641 774 635 642 377
2048 1509 2384 767 1004 641 774 635 642 377
4096 1511 2396 767 1004 641 774 635 642 377
8192 1510 2394 767 1005 641 774 636 643 377
10000 1509 2394 767 1005 641 774 636 643 377

* Values in kbits/sec

TABLE 15

TRANSPUTER LINK TRANSFER RATE -
INPUT'OUTPUT (WORDS 2) - NO CONCURRENT PROCESS

(10 MBITSjSEC)

BYTES 1 OUT 1INOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 41IOUT
4 1428 959 769 645 638 476 625 645 377
8 1481 959 769 634 634 470 621 634 375
16 1495 963 761 637 636 470 620 634 376
32 1509 969 765 640 640 471 622 637 376
64 1506 969 767 640 640 472 623 637 376
128 1505 969 767 640 640 472 623 637 376
256 1509 969 767 640 641 473 624 638 376
512 1509 970 767 641 641 473 624 638 377
1024 1509 970 767 641 641 473 624 638 377
1280 1509 970 767 641 641 473 624 637 377
2048 1510 970 767 641 641 473 624 638 377
4096 1510 971 767 641 641 473 624 637 377
8192 1510 971 767 641 641 473 624 638 377
10000 1510 971 767 641 641 473 624 637 377

* Values in kbits/sec

66

IV. THE MUTUAL EFFECTS BETWEEN PROCESSOR AND THE FOUR
LINKS

When using the transputer in a multi-transputer configuration, most likely it will

be necessary in each transputer node, at least one process to route messages between
transputers, and another to execute some processing task. Our role in this chapter is to

examine how a process task oriented would affect a routing process. changing the

transfer rate on the links. Also, we are going to analyze how a routing process handling
large messages may affect the throughput of a computation bound process. a

A. EFFECT OF CONCURRENT PROCESSES OVER COMMUNICATIONS
1. Initial Considerations

This section addresses the sixth and seventh research questions as follows:

• Can the CPU execute a process in parallel with some or all the links operating?
* What is the effect of a communication independent process running on the

CPU, over the transfer rates obtained in a link by another process in this
transputer?

To observe this effect with the links working at 10 mbitssec rate, the same

Evaluation Program was used, but using different program defined cpu modes. Figure

4.1 shows the CPU modes made available by the program to the user's choice.

0 - No concurrent process in the cpus
1 - B003 cpus with sum process concurrently (par)
2 all cpus with sum process concurrently (par1
3 - B003 cpus with sum process concurrently (pripar)
4 - all cpus with sum process concurrently (pripar)
5 - B003 cpus with array product process concurrently (par)
6 - all cpus with array product process concurrently (par)
7 - B003 cpus with array product process concurrently pripar)
8 - all cpus with array product process concurrently (pripar)

Figure 4.1 CPU modes Available in the Link Evaluation Program.

Two procedures called "cpubusysum" or "cpubusyprod" would be running
concurrently with the transmitter and receiver procedures in one or both
communicating CPUs according to the CPU mode chosen and with the following

effects:

67

U

"cpubusysum" - This procedure would initiate at the start of communications
and execute sum operations continuously, until the communications were
finished, with few memory accesses involved.

0 cpubusyprod" - This procedure, equally, would initiate at the start of
communications and execute array products continuously until communications
were finished. Now 100 times more memory accesses was necessary.

Figure 4.2 shows the code to permit this (e. g. transmission), for a WORD

SLICE construct. Similar code exists for the other constructs, only changing the

procedure "wordtransfer" to the applicable one. See Appendix E for more details on

them.

SEQ --- main word.slice.transfer
-- word buffers initializationSEQ k = [1 FOR maxwordblock.size]

wbufferO [ki :10000
wbufferl [k 20000
wbuffer2 [k 30000
wbuffer3 := 40000

SKIP
IF

cpumode = '2'
PAR

wordtransfer (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)cpumcoade''

PRI PAR
wordtransfer (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

cpumode = '6'
PAR

wordtransfer (repetition, cpumode, flag, counter)
cpubusprod (flag, counter)cpumode = IV,

PRI PAR
wordtransfer (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)TRUE

wordtransfer (repetition, cpumode, flag, counter):

Figure 4.2 How the Concurrent Processes Were Called.

2. Process Priority Considerations

The transputer supports two priority levels built in in hardware:

Priority 0 (High) - processes with this priority are executed always, without
being interrupted until they finish. They should work only for a short period of
time because if the sum of time spent by all priority processes is greater than a
time slice, the low priority processes will not be able to proceed [Ref 7: section
2, p.3]. The high priority processes preempt the low priority ones.

68

2 Priority 1 (Low) - These are executed when no more high priority processes are
able to proceed, in a time slice fashion of I msec for each process.

In our program, considering the two processes to be executed in the same

CPU, three situations were examined. Assuming the processes names are for example

"communication" and "cpubusy" we have:

a. both processes under a PAR construct - in this case processes will be time
sliced, because both are low priority, at every I msec. This case was observed
by using "cpumode" 1, 2, 5 and 6 in the Link Evaluation Program.

b. both processes under a PRI PAR with communications in high priority - in this
case communication will always be executed at once. Remember that it took
31.5 msec for a 15,000 bytes block to be transmitted, and the time slice is 1
msec, and so the cpubusy will not have a chance to be executed if
communication is going on, unless the number of bytes transmitted is smaller
than 475 :

* (475 x 8) ' 3,800,000 = 0.001 sec or 1 msec, if we considered a rate of 3.8
mbits,'sec. This cases were observed by using "cpumode" 3,4,7 and 8 in the
Link Evaluation Program.

c. both processes under PRI PAR but with the cpubusy process in high - in this
case the communications never occurred because the "cpubusy" process
although started together with the communications, should be stopped by a flag
of that process (by design), that could never come, because the process was
never being granted CPU time. This is why no mention to this case is made on
the Link Evaluation Program.

Again, analyzes were made for the four constructs and the results are

presented in tables and graphics similar to the ones in the previous chapter.

Another point to mention is that when placing a concurrent process in only

one of the communicating CPUs, the B003 transputer was the chosen one, because of

its higher internal clock. When the B001 transputer was with the "cpubusy" process

first, no changes were noticed in the transfer rates as we added a cpubusy process on

the B003 transputers. In the way we did, we could clearly see the two step change.

3. BYTE SLICE Procedure

a. Using the PAR Construct

(1) One Transputer Only (cpumode = 1 or 5).

In this case Table 16 for "cpumode = I" and Table 17 for "cpumode

= 5", shows us the results, and Figure 4.3 is the graphical representation of Table 16.

We can observe that when the CPU has a concurrent process running

with the same priority as the communications process, the transfer rate is reduced from

10% to 99.50 less of the original values on Table 9

69

r 0 -of ,

TABLE 16

TRANSPUTER LINK TRA-NSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003 -

IOMBITS, SEC

BYTES 1 OUT 1INOUT 2 OUT 21NOUT 3 OUT 31NOUT 4 OUT 4 IN 41NOUT
1 3 1 3 1 3 1 3 3 1
2 7 3 7 3 7 3 7 7 3
4 15 7 15 7 15 7 15 15 7
8 31 15 31 15 31 15 31 30 15
16 61 30 61 30 61 30 61 61 30
32 128 61 121 61 120 61 120 120 61
64 253 121 235 120 234 120 234 234 121
128 597 234 441 234 442 234 442 445 234
256 789 441 792 441 804 441 801 811 440
512 1311 818 1326 788 1348 788 1337 1320 786
1024 2010 1315 1954 1317 1969 1315 1957 1994 1313
1280 2204 1518 2181 1494 2123 1489 2121 2142 1489
2048 2546 1938 2561 1916 2552 1934 2550 2588 1929
4096 3013 2535 3030 2535 2999 2527 2979 3017 2517
8192 3324 3004 3316 2976 3312 2967 3280 3326 2955
10000 3386 3100 3380 3083 3370 3065 3332 3385 3051

* Values in kbits/sec.

TABLE 17

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYPROD CONCURRENT AT THE B003

OMBITS, SEC

BYTES 1 OUT lINOUT 2 OUT 21NOUT 3 OUT 3INOUT 4 OUT 4 IN 41NOUT
1 3 1 3 1 3 1 3 3 1
2 7 3 7 3 7 3 7 7 3
4 15 7 15 7 15 7 15 15 7
8 31 15 31 15 31 15 31 30 15
16 61 30 61 30 61 30 61 61 30
32 128 61 121 61 120 61 120 121 61
64 253 121 235 120 234 120 234 235 121
128 479 234 443 234 443 234 445 444 234
256 854 441 805 441 804 441 804 810 441
512 1402 818 1349 790 1338 789 1339 1327 788
1024 1975 1316 1973 1318 1971 1318 1924 1971 1295
1280 2151 1492 2132 1496 2123 1490 2110 2144 1490
2048 2568 1938 2573 1938 2526 1929 2515 2544 1923
4096 3036 2539 3006 2529 2999 2510 2982 3020 2498
8192 3332 2989 3320 2989 3311 2965 3281 3355 2964
10000 3396 3091 3382 3076 3374 3068 3343 3417 3060

* Values in kbits/sec.

70

~-~-----------

N& --- -- --

-- -- ---- r: i --- -- -- F - - --r -------

- - -I

-t -C - L C - - ---------- I ------ -- ---- -

- - - -- - - ---------------------

* W

I I I I3

-~~~~~~ ~ ~ ~ ~ - - - - L - - - - - - - - -L - - - - - - - - -L

Prcdr C-bssr Cocrrn at -h -B003---- ---- - 10 rnssc

--------- ---- ---- --- ---L --- ---7 1 - -

This is a great surprise for us because we are only timing the

communication itself and although we can not prove, it looks like the communication

process is alive and sharing CPU time with the cpubusy process, instead of being

inactive while the links communicate, as all the references led us and our predecessors

to believe [Ref. 5: p. 16].

(2) Both Transputers Busy (cpumode= 2 or 6).

TABLE 18

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRFNT AT ALL CPUS

lOMBITS:SEC

BYTES 1 OUT 1INOUT 2 OUT 2INOUT 3 OUT 31NOUT 4 OUT 4 IN 4INOUT
1 2 1 1 1 1 1 1 1 1
2 4 2 2 2 2 2 2 2 2
4 9 4 4 4 4 4 4 4 4
8 19 9 9 9 9 9 9 9 9
16 39 19 19 19 19 19 19 19 19
32 78 39 39 39 39 39 39 39 38
64 156 78 78 78 78 77 77 78 77
128 312 156 156 156 156 156 156 156 155
256 624 312 312 312 312 312 312 312 311
512 1249 624 624 624 624 624 624 624 623
1024 2498 1248 1249 1248 1248 1248 1249 1249 1247
1280 3120 1560 1560 1561 1561 1561 1561 1561 1559
2048 2498 1665 1665 1665 1666 1666 1665 1665 1664
4096 3332 2498 2499 2499 2499 2499 2499 2499 2497
8192 3332 2855 2856 2856 2856 2856 2856 2856 2855
10000 3487 3050 3050 3050 3050 3050 3050 3050 3049

* Values in kbits/sec.

Table 18 and Figure 4.4 need no explanation. The results for

"cpubusyprod" are not presented because they happen to give us exactly the same

results for "cpubusysum", as we saw in the previous subsection.

One may notice in Table 18 column "1 OUT", that the value for 2048

bytes (2498) is a lot smaller than the previous one (3120), and the effect is clearly seen

in Figure 4.4 . What may be happening is that as the buffer declared on the program

(bufferO) may have the initial bytes of it in the internal memory of the transputers (2

kbytes), and when external memory begins to be accessed, the transfer rate goes down,

or reduce the rate of increase, as we can see on the lower curve of figure 4.4, where all

the remaining curves coincide and have a brake on the rate of increase at the same

point. This is what the author thinks is happening but we were not able to prove it.

72

~-. ~ V.k~ ~.K ~R~A~L"~*.A A A ..E'A - '

C3
-C)

*.............

.

.~~ ~ .-
:,

..
..

.Of .O' . 0U .3J .~l .0 0

Figure 4...4. Tra.sput. Lin Tras.e Rate.. BYTE.......SLICE.....

Procedure.. C........ Concurren at......... Al Css.c.

.................... ... ;7 3

....................................

L.1P

b. Using the PRI PAR Construct

TABLE 19

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003 (HIGH) -

10 MBITSj:SEC

BYTES 1 OUT IINOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 625 248 250 166 194 125 161 166 98
2 1250 500 500 333 400 245 322 333 196
4 1518 793 779 651 645 487 645 648 384
8 2201 1585 1567 1099 1318 851 1101 1105 689
16 2782 2155 2208 1711 1951 1458 1701 1714 1256
32 3227 2636 2702 2326 2503 2133 2314 2379 1837
64 3513 3067 3116 2850 2988 2667 2813 2975 2471
128 3578 3350 3368 3204 3305 3075 3186 3320 2926
256 3628 3491 3522 3417 3476 3333 3404 3538 3230
512 3663 3574 3601 3532 3578 3483 3516 3662 3404
1024 3684 3617 3651 3587 3632 3568 3581 3683 3487
1280 3687 3624 3657 3591 3640 3584 3595 3685 3510
2048 3692 3636 3672 3597 3653 3603 3617 3689 3543
4096 3694 3648 3683 3616 3671 3623 3624 3692 3576
8192 3698 3655 3690 3619 3678 3632 3632 3694 3596
10000 3699 3657 3692 3614 3679 3638 3629 3696 3597

* Values in kbits/sec.

Table 19 and and Figure 4.5 show the results for one concurrent process

running in the B003 transputers, and Table 20 and Figure 4.6 the same for all CPUs

xNith concurrent process but in all cases communication having the high priority.

As we see the figures are even better, on the average, than when no process

was running concurrently, as seen on Table 9 . This is why we believe and suggest that

processes that handle only communications, as the routers, should be given always high

priority.

For each of the possible cases, Table 21 shows us the number of processes
executed in parallel in each transputer. Although they do not have a valuable absolute

meaning, they give us a comparative value of the behavior of the CPU in the different

constructs. The reason for that is in the way the program was made. There are some

intervals between the several communication sessions and repetitions, were the cpubusy

process would be able to operate, time sliced with the calculations and output to

screen, done after each of these sessions.

74

TABLE 20

TRANSPUTER LINK TRANSFER RATE .- BYTE SLICE
PROCEDURE CPUBUSYSUM CONCURRENT AT ALL CPUS (HIGH) -

10 MBITS/'SEC

BYTES 1 OUT lINOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 1132 555 500 263 359 172 263 263 127
2 1728 981 948 526 690 353 520 526 256
4 2288 1540 1436 1036 1204 681 977 992 498
8 2684 2165 2115 1621 1831 1341 1565 1723 986
16 3203 2740 2649 2245 2435 1933 2199 2352 1664
32 3459 3136 3102 2792 2939 2526 2730 2912 2265
64 3549 3376 3375 3156 3276 2996 3139 3295 2788
128 3615 3511 3533 3399 3468 3303 3384 3517 3150
256 3655 3579 3600 3525 3568 3475 3516 3651 3359
512 3676 3621 3631 3589 3623 3565 3577 3720 3491
1024 3683 3641 3665 3623 3644 3619 3613 3714 3542
1280 3682 3646 3663 3630 3651 3626 3623 3707 3558
2048 3683 3651 3675 3641 3659 3641 3634 3702 3579
4096 3690 3657 3675 3650 3668 3649 3642 3701 3595
8192 3689 3661 3675 3655 3673 3653 3646 3698 3610
10000 3689 3663 3679 3655 3673 3654 3647 3698 3614

* Values in kbits/sec.

TABLE 21

NUMBER OF OPERATIONS EXECUTED CONCURRENTLY IN EACH
CPU*- BYTE SLICE USED

Transputer b003 Transputer bOO1
cpu. sum cpu. prod cpu. sum cpu. prod

1 PAR 2.7 6.5 inactive inactive

2 PAR 5.0 11.9 3.9 7.8

1 PRI PAR 1.3 3.1 inactive inactive

2 PRI PAR 1.3 3.-1 0.9 1.8

* Values are in millions.

4. WORD SLICE Procedure

For the WORD SLICE Procedure, it happens that the results are very similar

to the ones obtained for the BYTE SLICE Procedure and they will not be repeated

75

.-.- - -.- --.- - -.- - - ------- C). _ _~~-- -- -- -,. ,- - -
-t---------------- ------------- ------

- -I J - I

-. ~ .J - -4 - - -----

------I t,-- ---------. L A ----------L ---------L ----------
I I I -
I - - I

i
I

I I I I
* I S I

.. .. t LLLL - - - - - - -- - -
- - - - - - - - - - - - r - - - - - - - - -r - - -- - - - --.. r - -- - - - - - - -

----------- ---------------- .-- -- .- .- - - --------. .

Si • lII I

i
•

fII i

-~,4 ------- .-

--- -------L, -- -- -----L -- - - - L ----------.. or)------------ -- - -------- - - - - - -- U

---------- ----..- -- --.-----------..

- I---*- - - - - - -. 3 - - -----
z I .: " I

: ---a-" - - .. -. -r- • I

Eli M -= :-Lj:-:-------------- - -

LiII --- L

i| I i 0I 0 I
Fig 4.- 6. Transfre'--- -YE SI......

Prcdr pbSSIM ocreta h 30i - 10 mbts

6 , , * \\\,,

I I I II I I I I I S

I I IS. _ _ _

I. 6.
T! .-- -. ...-- -. ..-- - - -. .-

.: :..- .: 0
..- .;: - 0.

...

.. 0

......... _._ _ _

.......0..

1'

.......II

..

........... ~ ~ ~ ~ ~ ~ ~*.
._ _ _ _ .. .

.............. ~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~

*, Li

...
....

% (n
...

............ 0

.. ' '

..........

Figure ~ ~ ~ ~ ~ .4.6........ Tr..trLn rnfe ae-BT LC
Procedure ~ ~ ~ ~ ~ ~bsyu Cocr.tatAl...hg)-1 missc

77.

ZVD I* ' ~ ~ # ~ : * .

here. The reader may refer to all Tables and Figures described in the last section, just

remembering that for word transfer the minimum number of bytes is 4, and so. the two

first rows might be disregarded.

5. Input and Output Primitives

a. Transmitting and Receiving Bytes

TABLE 22

TRANSPUTER LINK TRANSFER RATE* - INPUT,'OUTPUT (BYTES)
PROC CPUBUSYSUM CONCURRENT - 10 MBITS/SEC

cpumode I out fin/out 2 out 2in/out 3 out 3in/out 4 out 4in/out
1 PAR 3 1 3 1 3 1 3 1
2 PAR 2 1 1 1 1 1 1 1
1 PRIPAR 370 230 190 150 160 110 155 90
2 PRIPAR 575 350 370 225 295 155 235 115
* Values in kbits/sec

Following a tendency observed before, there were no variations for transfer

rates with respect to the message size. Table 22 shows us the figures obtained for the

various priority schemes used.

These results were the same for the procedure "cpubusyprod", and for this

reason are not shown.

b. Transmitting and Receiving Integers

TABLE 23

TRANSPUTER LINK TRANSFER RATE* - INPUT,/OUTPUT (WORDS)
PROC CPUBUSY.SUM CONCURRENT - 10 MBITS,'SEC

cpumode 1 out lin/out 2 out 2in/out 3 out 3in/out 4 out 4in/out
1 PAR 15 7 15 7 15 7 15 7
2 PAR 9 4 4 4 4 4 4 4
1 PRIPAR 1510 970 765 640 640 470 625 375
2 PRIPAR 2345 1560 1450 1040 1200 650 930 480
* Values in kbits/sec

78

Table 23 shows us the results for transmitting and receiving integers with

input and output primitives.

Several conclusions may be drawn from the two tables mentioned above:

0 results for integers are in general four times larger than for bytes.

• A process running concurrently does affect the communications if under a PAR
construct. Results are 50 to 100 times smaller than the ones obtained for no
concurrent process using the CPU. See Table 13.

* When running communications under PRI PAR on the B003 transputers, same
results are obtained as with no other concurrent process. One shall compare
third row of Table 22 (1 in/out), with Table 13 for bytes and third row of Table
23 with Table 15 for integers.

* When running communications in PRI PAR in both transputers the best
transfer rates are obtained either for bytes or integers. So the concurrent CPU
process will not affect the communications.

It is always good to remember that the cpu load cases examined are

extreme cases that rarely or never will occur in any application program, but the results

obtained, undoubtedly, show us a relation between cpu load and performance obtained

on the links. So, referring back to research question 6, we are not able to affirm now if

the links can operate in parallel with the processor, but next section will address this

point again.

Conclusion 6
Under a PAR construct, a process working concurrently on

the CPU, will reduce the transfer rate on the links.

Under the PRI PAR, it looks like the communication process in high

priority does not suffer any dragging, but we have still a doubt of how much can a

process do when the communications are in PRI PAR and are lengthy. This will be

addressed in the next section.

79

B. THE EFFECT OF THE COMMUNICATIONS OVER CONCURRENT
PROCESSES

This section addresses the eighth research question below:

* "What is the effect of the communications on the links, over a process that is
being executed concurrently on the main processor of the same transputer?"

1. Initial Considerations

To observe this we needed to time a fixed length process without any

communications occurring in the processor in which it was being executed, and time it

later with communications in parallel through the links. As we mentioned before, in the

latter case we needed to make sure that only the communications were happening

concurrently, hopefully in parallel, in order to guarantee that the process being timed

was not being dragged by other processes besides communication processes.

PROC counter (CHAN in,out, VALUE tnumber) =-description
--- sums up the first 100000 integers and add the transputer

number to the total

DEF maxope = 100000: --- number of operations done
VAR ch, total :
VAR startime3, endtime3:
SEQotal := tnumber

in ? ch
TIME ? startime3
SEQ i = [0 FOR maxope]

total := total + 1
TIME ? endtime3
out ! total;startime3;endtime3:

Figure 4.7 Procedure Counter.

What was done, then, was to make a simple procedure called "counter" listed

on Figure 4.7, and place it in a transputer with no other process. For this purpose, a

transputer in a B003 board would be more appropriate, because we now are going to

time the processor itself and performance could be affected in the BO01 board by the

terminaldriver, user interface and so forth. It is never repetitive to remember that with

the links measurements these effects were not so strong because the links have constant

speed of transmission, the 10 mbits'sec bit rate, independent of the processor internal

cycle and load.

80

1 0 10

0 3011 2 212
2 12 0 1 * --

2 2 2 2

0000 20, 2002

151-

E41 ROUTERS

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 4.8 Cofiu0to fo3rga0et iert 1)

6 p

The procedure "counter" sums up the first 100,000 integers plus the transputer

number were it is located after receiving a flag, and send the result, startime and

endtime out through a channel "out".

The harness where we placed this procedure was a program called "Test

Linearity" that will be described now briefly. This program is listed in Appendix F and

includes the main procedures, Host Proc. Route, and Counter, that are separate

compilation (SC) and are placed in different transputers. The configuration used for

this program is shown on Figure 4.8 . The procedure Host Proc is the user, keyboard

and screen interfaces, and it is placed in transputer root. The procedure Route is placed

in transputers 00, 10, 20 and 30, and executes in parallel the routing procedure and the

counter. The remaning transputers (12) are all executing only the counter procedure. If

we look close to the topology of the processors on Figure 4.8, we can see that we have

a tree structure were the leaves are only executing counters, the second level nodes are

the routers and the root is the host procedure (hostproc). Figure 4.9 lists Procedure

route.
2. Results Obtained

The first measurement done, was the time to execute "counter" and we

obtained 130 msec., using the tick.to.time routine to convert the tick values. This value

was obtained in all 16 counters either alone in a transputer leaf or inside the routers,

meaning that the present level of communications were not affecting the concurrent

process on the routers CPU!

Then, to enforce a continuous communication, we placed in each router,

besides the flags, and in parallel with the counter, three block transfers to the three

leaves of each router using the BYTE.SLICE procedure with blocks of 50,000 first, and

then varying from 70,000 to 256 bytes. If we recall from Chapter 3 this would assure us

at least 105 and 147 msec, respectively for 50 000 and 70,000 bytes, of continuous

communication, considering the rate of 3.8 mbits,,sec. In fact, we also measured in this

new configuration the time to execute the communication process alone, and it took

respectively 103 and 144 msec, so implying a transfer rate of 3.88 mbits,'sec for the

three channels transmitting in parallel. This result a little bit higher than the ones

observed in the last chapter is explained for two reasons:

1 The use of 15 Mhz transputers with shorter processes inside and so permitting
most use of internal memory.

2 The bigger external memory permitting use of bigger block transfers.

The transfers were then timed in two modes:

82

PROC route(CHAN messagein,messa eout,routetol,routeto2,routeto3,
echofroml,ecofrom2,echofrom3,VALUE k)=

DEF i = 4 --- number of counter procedures
VAR msg : --- flag
VAR resultsji] :
VAR startime[il,endtime[i]: --- timers
CHAN softin,softout: --- soft channels declared for

--- communication with procedure counter.
-- SC PROC counter
--- This procedure counter is listed in Figure 4.7
SEQA

counter (softout,softin k)
-- routing process itseif
SEQ

messagein ? msg
SE$A R

routetol ! msg
routeto2 I msg
routeto3 ! msg

softout ! msg
PAR

echofromi ? results-O-;startime-O-;endtime-0-
echofrom2 ? results-1-;startime-l-;endtime-l-
echofrom3 ? results-2-;startime-2-;endtime-2-
softin ? results-3-; startime-3-;endtime-3-

-- sendinq to the root results and timing
SEQ i = [0 FOR 4]

messageout ! results[i];startime[i];endtime(i]:

Figure 4.9 Procedure Route.

* 3 chanout, with three simultaneous BYTE.SLICE transmissions to the counters
in different transputers,

* 3 in: out, with six simultaneous transfers (3 input and 3 output) to, from the
counters in different transputers.

Note from the procedure route code in Figure 4.9 that a flag was sent to each

transputer to make sure they were ready for the BYTE.SLICE transfer, and then
another flag was sent to the local counter procedure and so do the best possible for the

communications begin together with the local counter procedure.

As we can see from Table 26, for message blocks up to 520 bytes, no effect

was noticed on the procedure counter! At this point no further investigation has

occurred and two speculations could account for the observed data:

I May be after 520 bytes long, the arrays being transmitted, begin to access
external memory of the transputers. If this was the reason, the increase. of time
should be more proportional than the abrupt increase of 35% more in time
(46, 130) with an increase of 4.6,o in the number of bytes transmitted (24 520)
as shown in Table 25.

83

TABLE 26

TIMMING OF PROCEDURE COUNTER

a. Message size 50,000 bytes
- time to execute communications only : 103 msec
- time to execute procedure counter with:

1. No communications 130 msec
2. With 3 chanout 186 msec
3. With 3 in/out 195 msec

b. Variable message size with 3 chanout

Timing of procedure counter(msec)
in the router in the leaves

bytes par pripar both cases
70000 190 190 191
50000 186 186 191
10000 178 178 175
1000 176 176 130
544 176 176 130
528 156 156 130
520 130 130 130

< 256 130 130 130

2 The counter is being timed out, when communication takes more than I msec
to finish - this looks more reasonable in the sense that if the time slice instead
of I msec, that corresponds to 485 bytes to be transmitted at a 3.88 mbits; sec
rate, is l.O7msec this would give us a transfer of 520 bytes in the period of a
time slice because :

* (520 x 8) , 3,880,000= 0.00107 sec or 1.07 msec

On the other hand, if we compare the total execution time of 195 msec for the

worst case observed (process being executed concurrently), with the sum of the

individual times necessary for counter or communications to accomplish its task , 233

msec, (See in Table 25 a.), we see a mismatch of 38 msec, when the two processes

might be overlapping in time.

The great surprise, although was the unpredictable effect on the transputer

leaves where we have the counter process executed sequentially after the

communications and the timing only begins after the communications are over (Table

25 b. last column). We have no reasonable explanation for that.

So. as we see, no definitive conclusion of how the scheduling of the routing

process and the counter process is happening, but from the times obtained, there has

to exist some overlapping, but not total, between the counter and the routing processes

in the router transputers. The results were consistent on the four routers.

84

M U ,j"k

Conclusion 7

The communication indeed affects the process being executed

in the CPU, for messages greater than a threshold size.

For our example this value was 520 bytes or bigger.

Bellow this message size, communications had no effect

over the process being executed on the CPU.

This first conclusion sure lead us to do a complete case study, on the subject

matter varying the counter size, the message size and using another typical process

instead of the simple counter, and observe the effects. It could be done, in a similar

way that was done for the links, but time did not permit this to be included in this

thesis, and is another suggestion for follow-on research.

C. DOES THE TRANSPUTER ACHIEVE LINEAR PERFORMANCE
IMPROVEMENTS?

We could see in Chapter 3 that the four links in one transputer, in some cases

gives us linear performance improvements, because the transfer rate per channel is kept

constant while we increase the number of channels in parallel. The reader may recall

Tables 9, 10 and 11 for 512 bytes or larger.

If we now look into the process performance, turning back to the Test Linearity

program, we can say that for this program, each counter took 130 mec to execute and

timing from the host process on transputer root we have got a total execution time of

133 msec since the first flag left channels hostoutO to 3, up to the last result was

received back.

A simple test was made mapping all processes assigned to a B003 board with four

transputers, to only one transputer. In this way, one route process plus 3 counters

would run in parallel in only one CPU, the former routers. See Figure 4.10 that shows

the new procedure route5 that accomplish that. The configuration now was the same

one depicted on Figure 3.14, with a different process placement shown on the program

structure on Figure 4.11 . The results obtained are listed on Table 25.

As we see to have a rigorous linear increase of performance we should have:

1 on each counter time:

* 517.5 (average)/ 4 = 129.44 , and what we had got was 130 msec each!

2 on the total execution time

* 534,1 4 = 133.5, and what we had got was 133 msec!

85

PROC routeS (CHAN messagein,messageout,VALUE i)=
PROC route(CHAN messagein,messaqeout,routetol,routeto2,routeto3,

echofroml,echofrom2,echofrom3, VALUE k)=
---This procedure is the same of Figure 4.9 and i's not repeated.
PROC counter (CHAN in, out, VALUE tnumber)=
---This procedure is the same of Figure 4.7 and is not repeated.

DEF totlinks = 32: ---constant for soft channel definitions
CHAN pipe[totlinks]: ---soft channel definitions
PAR

route (messagein,messageout ,pipe[9+(6*i)],pipe [Ii+ (6*i) L,pipe [13+ (6"i)],pipe [8+ (6"i) ,pipe [10+(6i] ,pipe [i2+ (6 i)], i)
counter(pipe [9+ (6"i)] ,pipe [8+ (6"i)] , ((10*i)+el))
counter(pipe[ll+(6*i)],pipe[l0+(6*i)],((0*i)+2))

counter(pipe[13+(6*i)],pipe[12+(6*i)],((i0*i)+3))

Figure 4.10 Procedure RouteS.

Another version of the Test Linearity Program was made and mapped to only

one transputer T414 in a B003 board. The time for execution was then 2.3 seconds! A
last version made for the OPS system running on the VAX VMS run at best in 8.8

seconds!

Conclusion 8
With normal communication load, linear increase

of performance with more processors may be achieved!

The routing process does not drag the processor!

86

PROGRAM testlinearity
-- * Title Test Performance Linearity
-- * Version - 3
-- * Mod : 0
-- * Author i Jose Vanni Filho, Lcdr., Brazilian Navy
-- * Date : June, Sth,1987

* Programming Language : OCCAM 1
-- * Compiler : IMS D 600 TDS
-- * Brief Description : This version of test linearity

* mapped into 5 transputers, shows us the increase
-- * in time to execute the same processes of version 2
-- * with the reduction of the number of processors, by
-- * a factor of 4.

SC PROC hostproc (CHAN AB,C D ,E ,F ,G,H)
--- This procedure is the same included in version 2 of the Test
--- Performance Linearity program in Appendix F and is not repeated.

-- SC PROC route5 (CHAN messagein,messageout,VALUE i)
---This procedure is the same of Figure 4.10 and is not repeated.

-- configuration
link definitions

DEF link0in = 4 :
DEF link0out = 0 :
DEF linklin = 5 :
DEF linklout = 1 :
DEF link2in = 6 :
DEF link2out = 2 :
DEF link3in = 7 :
DEF link3out = 3 :
DEF root = 100:
DEF totlinks = 32:
CHAN pipe totlinks]:
PLACED PAR

PROCESSOR root
-- link placements and process assignment
PLACE pipeO AT link0in
PLACE pipel AT link0out
PLACE pipe[2' AT linklin
PLACE pipe[3] AT linklout
PLACE pipe[4] AT link2in I
PLACE pipe 5 AT link2out :
PLACE pipe[6] AT link3in :
PLACE pipe[7 AT link3out :
hostproc (pipe[0 ,ipe[21.pipe[4t ipe[61ie]pipe[3]pipe[Sie]

PLACED PAR j = [0 FOR 4]
PROCESSOR 10*j

-- link placements and process assignment
PLACE pipe 2*1] AT link out :
PLACE pipe[(2 j)+l] AT link0in
route5 (pipe[(2*j)+l],pipe[2*j],j)

Figure 4.11 Structure of Program Test Linearity (5).

87

1*1

TABLE 25
COMPARING COUNTER EXECUTION TIME IN 4 AND 16

TRANSPUTERS NETWORK

16 transputers NR 4 transputers NR

counter 00 130 msec 00 520 msec 00
counter 01 130 msec 01 518 msec 00

counter 02 130 msec 02 517 msec 00

counter 03 130 msec 03 515 msec 00

counter 10 130 msec 10 520 msec i0

counter 11 130 msec I1 519 msec 10

counter 12 130 msec . 12 517 msec 10

counter 13 130 msec 13 515 msec 10

counter 20 130 msec 20 520 msec 20
counter-21 - 30--- ec-21519----c-2

counter 22 130 msec 22 517 msec 20

co-nter 23 130--se --23counter 13 130 msec 13 51 msec 30

counter 23 130 msec 23 519 msec 30

counter 320 130 msec 320 520 msec 30
counter 21 130 msec 21 519 msec 20

counter 32 130 msec 32 517 msec 30counter 31 130 msec 31 519 msec 30

Total Execution 133 msec 534 msec
(timed on b001)

88

V. CONCLUSION

When this research begun, in October 1986, we had a new machine, working with

a language that we did not know, and using a concept that still today is considered

hard to grasp and to work with : Concurrency and Parallelism. After working for eight

months with the transputer, the first conclusion that come up is :

* Concurrency and Parallelism are not difficult concepts to understand at all,
using the Transputer and the Occam Programming Language.

In this first phase of the research, the evaluation of the Transputer hardware,

several significant conclusions were reached and they are summarized in the following

paragraphs, that were obtained from the body of the thesis. They give us a good first

idea of the real potential and capabilities of the Transputer when programmed in

Proto-Occam.

The bit rate in the links is switchable between 10 mbits/sec and 20 mbits/sec.

When operating at 10 mbits/sec rate, the data rate was at best 3.8 mbits/sec or 450

kbytesr sec, per channel. So, the eight links will be able, in the best case, to exchange

3.8 mbytes of data in one second, between two adjacent transputers, because the links

are really able to operate in parallel. We shall remember that to obtain this results, we

need to use the BYTE SLICE or WORD SLICE constructs, with messages larger than

256 bytes. Equally, when switched to 20 mbits /sec rate the maximum data rate

obtained was 6.1 mbits/sec.

When a computation bound process is running in the cpu, with the same priority

as the routing process, it will reduce the transfer rate on the links for any construct, at

least 8% for one channel operating, and 21% for any other number of channels. These

results were observed for message size 10,000 bytes or smaller.

On the other hand, if we give high priority to the communications, the cpu

process will be executed in the same way, and the communications will keep the

previously obtained rate of 3.8 mbits,'sec, so this is strongly recommended.

Communications in the links will reduce the performance of a process being

executcd in the same CPU, when message sizes overcome a threshold size, depending

on the process type. For our observed case this value was 520 bytes. For larger

message sizes, the maximum reduction in performance for the computation bound

process was 500 in the worst case (Six channels operating in parallel).

89

UL

The transputer is able to increase throughput linearly with the increase of the

number of transputers in which the process is executed.

Although very promising, these conclusions are not complete and here follows

some suggestions for follow-on work in the evaluation:

I To investigate the usage of the internal memory by the processor, specially if
priority is given for data or program execution code, to be placed in internal
memory.

2 To investigate how the scheduler handles long communication processes that
are consuming more than one time slice.

3 To use a Logic State Analizer capable to sample in a clock rate of 50 or 100
mhz, to more precisely measure the time delays involved in the receipt of a
frame and dispatch of respective acknowledge.

4 To time the amount of time needed for an array of variable size to be
transmitted through several transputers to a non adjacent destination.

5 To use the Link Evaluation Program with greater message sizes. This would
imply in using B003 boards that have 256 kbytes available, per transputer,
instead of the 64 kbytes available at the BOO board, or a replacing the BOO]
board by another board with larger external memory.

6 To make a thorough study of the effect of link operation over a computation
bound process.

7 To benchmark a network of transputers configured in a hypercube with the
commercially available hypercube computers, like the Intel IPCS-VX, using the
Operating System presented by Cordeiro [Ref. 6].

Another suggestion for research is the development of real-time application
programs to observe the behavior of the machine under normal work load situations.

It is important to mention at this point that, as advertised, we could indeed use
transputers with different internal clock cycle, communicating with each other with no

problems at all.

Equally important is to remember that in all results obtained in this research, we
were using bytes or integers, with no floating point operations. So one other

recommended topic for investigation, is the link and processor performance evaluation

for floating point data. This could be done in two ways:

I By using software floating point available in Occam 2, or
2 By using the hardware floating point that will be available with the T-800

transputer.

If we could state, our impression about the transputer, the small size, the
simplicity and the speed are the things that really stood out.

90

------ -& J.-.~

As a final suggestion, to enlarge the research horizons at the NPS. we

recommend the replacement, when possible, of the the BOO1 board, interfacing with the

VAX, that turned out to be a bottleneck for our 160 MIPS capable Transputer System,

either in processing speed, or in memory availability.

Occam is a very easy language to use, the fold editor is very powerful and

friendly, and the channels are very good elements for synchronizing processes. But as

soon as the Ada compiler becomes available, the research should follow that way and

then, comparison with the previously obtained performances, will be helpful in judging

the applicability of the Transputer in military real-time systems.

91

APPENDIX A
LEARNING SEQUENCE

a. How to Log in
The first thing one will need is an account on the VAX-VMS to use

OCCAM.

There is a group account username "OCCAM" , and through the C.S.
Department staff one can get a sub-account to it.

Once a person gets a sub-account, one shall have a password and a login
name (normally the last name). With this, one should go to a terminal VT 100 or VT

220 (no other terminal will work !), log in, and as soon as the "S" prompt appears, the
VAX/VMS System is ready to begin.

If by any chance, the person already has one account in the VAX,,VMS
system, what he/she may want to do is to work from his own account. That will be

possible, but as soon as the S appears and before one tries to use any of the OPS

or/and TDS commands one should type either:

* opssetup -- > to use the OPS system, or

* tdssetup -- > to use the TDS system.

These commands are already included in the login.com file of the OCCAM
account and it is a good idea for one to include them in one's login.com file too.

Another thing one may need to do is to move to the "dua0:[OCCAM]" directory to

copy files and libraries already created and that, certainly will be useful and save time
for anybody.

b. Learning Sequence

1. Step I

The first thing one needs to know is how to use the VMS Operating
System. One good choice is to run the online tutorial VMSCAI andor get a VMS

tutorial from the C. S. Department [Ref 22]. If the person is completely unexperienced
it will take two sessions of two hours each, to get a good feeling for it.

2. Step 2

When one feels comfortable using the VAX,'VMS, the next step is to get
acquainted with the fold editor. This is a very powerful editor but most likely it will be

new for anybody, and if one needs more information on it, he,she should refer to the
Occam Programming System Manual [Ref 13: section 21.

92

N-I

I -S

To execute the tutorial :

* copy from the OCCAM account the file "OPSTUTOR.DOC" using the
following commands at the S prompt:

* "set default dua0:Occam" (this will move you to OCCAM directory)

* "opscopy opstutor.doc [.your-directory]"

* "set default [.your directory] (to move back)

* type: " ops opstutor.doc" at the S prompt in your directory

This will open the opstutor.doc file and will appear on the screen on the

upper left

"Press -ENTER FOLD- to start session"

"...F OPSTUTOR.DOC"

At this point one should press the key "0" and while pressing it press also

key "7" (both keys are on the numerical keypad on the right side of your keyboard.

This is the ENTER FOLD command. From here on just follow the on screen

instructions.

It is likely one will need about two hours for the first time, but as one

keeps using the editor he/she will find it most easy and powerful. It is a must to have

a card with a xerox copy off the keypad description codes. See Figure A. 111.

3. Step 3

Learning the Occam language is the next thing to do.

One may even begin reading the Occam Programming Manual

[Ref 13,: section 3] or Pountain's book [Ref. 12] early in the learning process, if

desired. If the reader knows any other structured language such as PASCAL, ADA, or

C it will be most easy. It is very important to get a good grasp of the channel concept!

4. Step 4

At this point it would be good one know some thing about the transputer

hardware, and architecture. The Transputer Reference Manual is the reference, but the

technical notes from INMOS or the existing theses will also help.

5. Step 5

At this point one have a choice of learning one of the three systems

available at the NPS: OPS, TDS for the VAX, or TDS for the PC. They" are a little bit

different and a good choice for the beginner will be the OPS. This will enable the

person to use the Occam language for create concurrent programs, that will be

"Reproduced By Permission of INMOS Corporation

93

tlIt

ENTER hsmlo ixiaw

MOPEN tWprsngF N fIrUT

nIu I

--- ---- This fund Ion Is oCmitImI

REMOVE by .proing thenv

PEFRESHCRE ATE
FOI 0

FuNC FINISH

Figure AI Keypad [or Using the Fold Editor.

compiled, linked, debugged and run on the VAX. The OPS Manual is the main

reference for it.

6. Step 6

After that then, depending on which system you will work you should learn

the TDS for the VAX or for the PC. The reference manuals respectively are the main

reference, but the Theses by Cordeiro or Vanni present several hints and suggestions

that may help. With respect to Occam the only different skill one will need is how to

make configurations. Again both theses will help.

94

APPENDIX B

OPS TUTORIAL

1. Introduction

This appendix will describe briefly how to use the OPS system, resident on

the VAX VMS, to write a program, compile, link and execute it. It will not be a

complete description of the system and it assumes the reader already knows how to use

the Fold Editor and the VMS Operating System in the VAX, and had already been

exposed to the Occam Language. The main reference is the Occam Programning

System Manual.

2. The Existing File Types:

In OPS there are several user file types identified by the file extension:

* "'.ops" - these are source files, folded, that may be edited, and once in the
program format, may be compiled. These can not be printed.

* ".lis" - these are listing files that may be used as a VMS file for any purpose.
The copy. type, print commands on this operating system work with no
problem.

* ".obj" - these are object files that were already compiled. They may be linked to
make an .exe file. They are not printable.

• .exe" - these are executable files that were compiled and linked already. They
also can not be printed.

3. To Start the System

Once one is logged on the VAX,'VMS on a terminal VT-100 or VT220, the

first command to type is:

* opssetup - this will enable all the following commands used in the OPS to be
recognized by the VMS Operating System, through the "ops kernel" (opskrnl)
resident on the Systems Directory.

4. To Open a File

Type:

• ops "filename" - this command may be applied to any ".ops" file and will make
the file available to be edited with the fold editor. Every time one cx:1,c
outermost fold, a new version will be created on the V.MS tile Sk-ter.. KeCe
track.

95

.W, , - *,- -. :%.'. v,-, -. -,','.; .. •.

-4 9 TEST AMO EVALUATION OF THE TRANSPUTER IN R 2/32
NULTI-TRASPUTER SYSTEM() NAVAL POSTORRDUATE SCHOOL
MONTEREY CA J V FILNO JUN 9?

UNCLASSIFIEV F/O 12/6 ML

liii,~ I~2.2

-2
.2fl

1111.25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

L~q~w~w~- W1 W W-'11W. low-~-w ~ ~ '

5. To Mlake a Procedure or a Program

The procedures and programs have a similar structure as in Pascal or Ada.

After the procedure name with parameters follows the constant, variables and channels

declarations and procedures defined only inside that procedure (subprocedures), and at
last the main program that may begin with an WHILE, IF, SEQ, ALT, PAR, PRI

PAR, a replicator, and so on and terminate with a colon(:). The best is to make all

procedures with separate compilation (SC) capability, and for that we should apply the
utility MAKE SC PROC to the procedure fold line.

The program has no parameters and no colon at the end, but the structure

is the same as described for the procedure. It is important to say that in Occam one is

not obliged to declare all constant, variables and channels at the beginning of the

procedure. It may be done before any process. A process begins with any of the above

mentioned constructs. The best way to learn is to look at ready programs so we will

stop this section here. When we use the utility MAKE PROGRAM the name program

will automatically appear in front of your program name.

The global definitions and library are very useful to easily make programs,
and it is a good idea to put them in any program.

6. To Compile a Ready Program or Procedure
Any PROGRAM or SC PROC may be compiled separately, as long as the

utilities "MAKE PROGRAM" or "MAKE SC PROC" respectively, were applied to

them and no error message occurred. To execute the compilation, the cursor has to be

in a folded line, with a PROGRAM or and SC PROC inside, and then the user should

execute the utility COMPILE. The system will prompt for the object file name and it is
a good idea to use the same name of the source file.

7. Debugging a Program During Compilation
The compiler is quick and every time one gets a compilation error, the error

description appears on top of the screen and the cursor is placed on the line where the

error occurred, or one before. The System will be in edit mode and the error may be

corrected at once. After correcting and exiting the fold, one will be ready to compile

again, neatly and cleanly.

8. To Link a Program

After the object file was created with the compilation, one has to leave the
Fold Editor and at the VMS prompt (S) type:

* link/debug opskrnl, program-name

96

The debug is optional and we did not use it too much, but we can say it

runs and permits one to trace a program execution. After the linking the .exe file wilf

be created, and one is then able to run the program.

9. To Run a Program

After the link was done successfully, one should type after the S prompt:
0 run / debug program-name

Again the debug is optional and after this command the program will be

running on the VAX. If logical errors occur, the two options are either to use the VAX

on-line debugger or get back to the source code (the .ops file) and place some output

to screen (Screen ! var).

FUiNC h HELP FtNC I CHECK

FUNC I FOLD INFO FUNC 2 COMPILE

FUNC s SETUP F(NC 3 MAKE PROGRAM
Kcx FUNC 4 MAKE SC PROC

I h 1 fumnc W" s a,,,, FUNC 5 DESCRIPTOR INFO
V prv .i t ,a ., ,a FUNC 6 LOCATE ERROR

FUNC 7 ESTIMATE

FUNC 8 SEARCH

FUNC 9 REPLACE

FUNC 0 LISTI his fl mln ims obnmeltl

by IW oi th iev

Figure B. I OPS Utilities.

10. To List a Program

There are two ways to do that:

The first one is under VMS, one shall use the OPS command:

* opslist filename.ops filename.lis

This will create a list file on filename.lis to be printed on the VAX on-line

printer. Be careful here! If one forgets to put a "filename.lis" in the command,

the source file will be transformed in a list file with the wrong termination. And

97

- -- W r

worse, if by chance one purges the directory, all the fold structure the

programer created will be destroyed and will have to be redone, if one needs to

compile the program again.

2 The second one is under OPS; one shall use utility LIST. This may be applied
to any fold inside the program and the user will be prompted for a file name.lis.

It is important to mention that every time one lists a file, the folds will be

opened, and appear sequentially. It is not very easy for a begginer to follow a printout

of the file. The fold editor permits us a much better block view of what the program

looks like. So most likely if one has a very hard bug to solve, debugging from the

screen will be easier.

11. Final Remmarks

There are other commands and utilities that after a while one may need to

use, but for the very beginning, the ones listed here will suffice. Figure B.I show all

OPS Utilities and how to call them, on a VT-1O0 Terminal. The FUNC means that one

should press the 0 key at the numerical keypad and the number on the keyboard (NOT

PF KEYS). Figure &firstpro presents a simple program as an example.

98

-- PROGRAM hellol
-- hellol

This is a the first program in OPS to be seen by a beginner.
This fold contains a simple occam program which says hello.
After the message appears on the screen you can type any
character. --- It wll be echoed on the screen (no automatic
line feed or carriage --- return.
When you tye "0" t ends

- - - *t~n ronramens

-- declarations
DEF hello = "hellol press 0 to stop runnin?":
DEF EndBuffer = -3: --- system's constan
CHAN Screen AT 1: --- system's channel
CHAN Keyboard AT 2: system's channel
VAR ch:
VAR going: --- Boolean
-- main program
SEQ i = [1 FOR hello[BYTE 0]]

Screen ! hello[BYTE i]
Screen ! EndBuffer --- EndBuffer needed when outputting strings

oing := TRUE
WHILE going

SEQeyboard ? ch

Screen ! ch ;EndBuffer
IF

ch = #30 --- Hex value for ASCII 0

TRNing := FALSE
SKIP

Figure B.2 First Program in OPS.

99

r

APPENDIX C

TDS TUTORIAL

1. Introduction

This appendix will describe briefly how to use the TDS system, resident on

the VAX/VMS at the NPS, to edit, compile, down load and execute an Occam

program. It will not be a complete description of the system and it assumes the reader

already knows how to use the OPS System, the Fold Editor and the VMS Operating
System in the VAX. The main reference is the Transputer Development System

Manual, D-600.
2. The Existing File Types:

In TDS there are several user file types identified by the file extension:
" .tds" - these are source files, folded, that may be edited, and once in the

program format, may be compiled. These can not be printed.
* ".1st" - these are listing files that may be used as a VMS file for any purpose.

The copy, type, print commands on this operating system work with no
problem. Originally the extension was ".lis", but we suggest the programmer to
use other termination in order to identify the file.

* .tcd" - these are "transputer code" files originated from an extraction after a
compilation was successfully completed. They are not printable.
.cde" - these are non- executable files that were compiled and extracted already.

They will exist when the programmer uses closed files inside his program, and
contain the code for a file. They are not printable.

S".dsc" - these are descriptor files and will exist only when the programmer used
closed files in his programs. They are not printable.

3. To Start the System

Once one is logged on the VAX/VMS on a terminal VT-100 or VT220, the

first command to type is:
• tdssetup - this will enable all the following commands used in the TDS to be

recognized by the VMS Operating System, through the "ops kernel" (opskrnl)
resident on the Systems Directory.

4. To Open a File
Type:

* tds "filename" - this command is to be applied to any ".tds" file and will make
the file available for editing with the fold editor. Every time you exit the
outermost fold, a new version will be created on the VMS file System. Keep
track.

100

r " ' r .

5. To Make a Procedure or a Program

The procedures and programs have a similar structure As in OPS, so they

will not be repeated here.

The global -definitions and library are very useful to make programs easily,

and it is a good idea to put them in any program.There are two globaldefinitions, one

for each of the systems identified by the extension. Be careful to imbed in your

program the "global def.tds."

There are two different things from OPS in a program for the TDS:

1 The first is: to see any result on the screen, one must include inside the program
the terminal driver, provided by INMOS, for the board that one is using (B001,
B002 or B004).

2 The second iF the need for a configuration. The configuration basically gives
names to the physical channels and places in each transputer the process to be
executed there. Rather than try to explain here, the best is to browse some of
the several configurations existing in the Theses by Vanni or Cordeiro, or in the
programs already existing in the Group account Occam.

6. To Compile a Ready Program or Procedure

Any PROGRAM or SC PROC may be compiled separately as long as the

utilities "MAKE PROGRAM" or -MAKE SC PROC" respectively, are applied to them

and generate no error message. To execute the compilation, the cursor has to be in a

folded line with a PROGRAM or and SC PROC inside, and apply the utility

COMPILE. There will be no prompt at this time, except for the compilation

parameters. If the program has complicated nesting of PAR and ALT constructs, use

CHECK = FALSE.

7. Debugging a Program During Compilation

The compiler is quick and every time one gets a compilation error, the error

description appears on top of the screen and the cursor will be placed on the line where

the error occurred, or one before, in edit mode and the error may be corrected at once.

After corrected, exit the fold and one will be ready to compile again. Neat and Clean.

8. To Extract the Code to Be Executed in the Transputer

The compilation will create several folds inside the .ops program containing
the descriptor and the code to be executed. To extract the code execute utility "

EXTRACT TO FILE ". At this point one will be prompted for a filename to extract,

and we strongly suggest to use the same name of the source file.

101

9. To Down Load and Run a Program

Once the ".tcd" file was created, the user will be ready to run the program

on the transputer network. Before you down load, check the wiring diagram (Utility 7),

and see if the links are properly connected. After this, exit from the fold editor and

execute at the VMS (S) prompt :

TDS LOAD filename.tcd

What will happen is that the file will be opened by the VAX and the

programmer will be prompted for the escape sequence (normally is ESC ESC ESC).

After typing the escape sequence the transputer become active and the code is loaded.

Check the Manual if any Error message occurs. After the program is down loaded, it

will be executed at once, with no need of any other intervention of the user. To stop

the transputer press reset at the B001 board.

10. To List a Program

There are two ways to do that:

I The first one is under VMS, one shall use the OPS command:

0 opslist filename.ops filename.lst

This will create a list file under filename.lst to be printed at the VAX on-line

printer. Be careful here! If one forgets to put a "filename.lst" on the command,

the source file will be transformed in a list file with the wrong termination. And

worse if by chance one purges the directory, all the fold structure the

programmer created will be destroyed and will have to be redone, if one needs

to compile the program again.

2 The second one is under TDS; one shall use utility LIST. This may be applied
to any fold inside the program and the user will be prompted for a
"filename.lis". We suggest the termination to be changed to .1st to differentiate
from the OPS list files.

102

,,, .,- -. ,,,' p ,e ,,

II. Final Remarks

Thcre are other commands and utilities that after a while one may need to

use, but for the vcry beginning, the ones listed here will suffice. Figure C.A shows the

utilities for the TDS System.

S~ec pI Functions Uhihtfie
FUNC b" HELP FUNC 1: TIANSPUTER CHEC0

FUNC ft FOLD InrFO FUNC 2: TRL.NSPUTER COMPILE

FUNC s: SETUP FUNC S: MALE PROCRLAM

Kex FUNC 4: MALE SC PROC
Ii s fIrtio Is obtmw
t,,,pr Mng UW&Wti,.mon~ FUNC 5: DESCRIPTOR IKFO
Irelit

FUNC 6: EXTRACT TO FILE

FLUC 7: WIRING DIAGRAM
FUNC 81: S.ECH

IhiI I is FLNC 9: REPLACE

FUNC 0: LIST

Figure C. I The Utilities for the TDS System.

103 '

APPENDIX D

HINTS ABOUT OCCAM PROGRAMMING

The goal of this appendix is two fold. First to mention some different and
interesting facts that happened to us and may happen to anyone programming for the
first time in Occam, and second to make some comments about the Link Evaluation
Program.

a. Program Structure

The program structure for OPS and TDS is quite similar, just differing in the
global definitions , configuration, and some predefined procedures. The difference in
the global definitions is a very critical one. While in the OPS we place the CHAN
Screen AT I and CHAN Keyboard AT 2, in TDS we just declare CHAN Screen: and
CHAN Keyboard:, because the Screen and Keyboard handling is done throughout the
terminal driver.

The configuration section of a program is the one were we map the physical
channels and the processes onto the processors, and it only exists for the TDS system,

The pre-defined run time procedures are described in detail in the TDS manual
and the OPS manual, but they only can be used with the TDS. Some examples are:
the BYTE.SLICE.INPUT, PUT.BYTE, READ.BYTE, WORD.SLICE.OUTPUT, etc.,

1. A program in OPS

Figure D. I describes the structure of an OPS program.

PROGRAM pro gn ame
global def.ops (collection of system defined constants)
library.occ (if wanted)

--- anyp rocedures used inside your program (optional)
SC PRC -- any separate compilation procedure that one may
SC PROC 2--- reier to and call from the main of the program
PROC 3 (parameters......) ---procedures called by the main.

- - local definitions for the main
--- main

SEQ --- it could be PAR, ALT, WHILE TRUE, IF or a replicator
code

Figure D.1 OPS Program Structure.

104

2. 4 Program in TDS

Figure D.2 describes the structure of a TDS program showing as an

example the structure of the LINK EVALUATION PROGRAM.

PROGRAM link. evaluation
--- each one of the following procedures have the same structure as

depicted on figure D.1
SC PROC hostproc (parameters) --- code for transputer root
SC PROC transferO.B003 (parameters) --- code for transputerO
SC PROC transferl.B003 (parameters code for transputerl
SC PROC transfer2_B003 (parameters) code for transputer2
SC PROC transfer3_B003 (parameters) code for transputer3
--- confi uration
... link definitions
. physical channels declaration
PLACED PAR

PROCESSOR ROOT --- ROOT = 100 (one may use any process number)
... channel placements (physical placement of the channels

(according the network topology)
hostproc (physical channel parameters)

the process hostproc is the outermost placed on
transputer root and has to be an SC PROC

PROCESSOR 0 --- Like shown for transputer root, in each of
PROCESSOR 1 --- the processors it is made a physical channel
PROCESSOR 2 --- placement and a process placement.
PROCESSOR 3 ---

Figure D.2 TDS Program Structure Example.

The two Figures D.I and D.2 give to the reader an idea of the general

structure of an OPS and a TDS program. Normally, the terminal driver is one of the

SC PROCS, inside the process placed in the transputer root, to permit user and screen

interaction. Cordeiro [Ref. 6], describes in detail how to make a configuration and how

to map a program made for OPS into the TDS system, and therefore it will not be

addressed here. Again, the best way to begin programming in Occam is to look at

sample programs already made.

b. Problems and Suggestions

1. Setting up Some Standards

Early in the learning process we felt necessary to standardize some of our

procedures when programming. This may be not the best, but this is what we came out

after several changes through the research process, and is given as a suggestion only:

* Use all your procedure and variable names in lower case. The system has some
predefined variables like "EndBuffer", and all reserved words are uppercase. So

105

" ..* . . - i!.~*

doing this, one will not have problems of naming because both the OPS and
TDS are case sensitive. For example you may use a variable named "true" and
no problem with the system defined "TRUE" will occur.

When in the code one has a replicator with multiple statements under it use
always a SKIP as shown in Figure D.3 . That will make certain that the last
index value is executed.

* In programs with repetitive interactions with the user, use a new.line after each
execution and before the new prompt to the user

(Keyboard ? var). This will prevent unwanted multiple executions.

* Every time a comment is placed in the code, use at least 3 dashes. This will
enable one to recognize easily in the printout, what is comment, and what is the
beginning of a fold.

SEQ i = [0 FOR 5]sEQ
in ? varl
out ! varl + 1SKIP --- this is the SKIP we felt necessary

Figure D.3 SKIP Usage.

2. When Making Any Procedure

In order to permit any procedure to run in parallel (always), with any other

process, use as much channels as possible as parameters, instead of VAR or VALUES.

The channels will enable the programmer to exchange data between two procedures

without a procedure call. This is the key for the parallelism. One good example were

this was used is the procedure cpubusysum, in Appendix E. Other examples can be

seen in the library routines defined inside the procedure getchoice, also in Appendix E.

Also make the procedures, SC PROCs, as much as possible. This is better

for the programmer because if an compilation error occurs, it will be detected earlier

and the recompilation time will be shorter, It is also better for the compiler because it

stays away from the compilation limit.

3. When Compiling

When compiling, several errors may be flagged. If an error message:

* ... shared variable varname" , occurs, change the check compilation parameter
to false. When check is true even the output of the same variable to several
different channels in parallel, will make the compiler flag the error, when it does
not exist really.

106

, / '.. ' %.- m%
" ' "

'. " " .' ',,.''. '," ' e.. W g ,~o ,p , ... r,€,€ . ' , ,_ ; ... ,.. __ , , _ '; " : 4t ; ; ' ' ' ' '10 'V N . -, -- ;

,I

If any errors occur, the compiler will position the cursor always before the

error exact position. Sometimes the error will be on the same line, and sometimes in

the next line of code.

4. When Making Large Programs

When making large programs, one should take care of the compiler code

limit either for OPS or TDS. In the VAX this limit is around 100 blocks, or 50 kbytes

of code. To get around this problem, one should make some procedures inside the

program as Separate Compilation (SC) procedures and the compiler than will be able

to handle it.

5. Wh'en Down Loading the Code

When down loading the code. several times a message like the following

one will occur:

... Illegal board function" - we had that a lot with no reasonable cause. The
action taken when this happened was to down load again, sometimes up to 4
times to have the code down loaded properly to the transputer network.

c. Comments About the Link Evaluation Program

The Link Evaluation Program takes about 340 blocks of the VAX, or

approximately 170k of code and comments.

Our approach in doing the Link Evaluation Program was Top down and we

think it this was the right one. First the general structure was made, with all

procedures but the user interface and the terminal driver replaced by stubs. When this

was running, then one by one the byte.slice.transfer, the inout.transfer, the

word.slice.transfer and finally the int.transfer were added. Even though all these

procedures where pre-tested using dedicated harnesses, some times new bugs came out

as they were put together.

In general the structure of the program is based on the four procedures just

mentioned, that reside one of each, in each of the transputers. When executed,the the

user choice of construct make the respective procedure be executed in parallel in all 5

transputers.

1. Most Common Errors

* Bad definition of buffer limits and lack of initialization.

* mismatch of channel usage - a process outputting to a channel that no other
process was waiting for an input.

* compilation limit achieved - this happened in procedure hostproc and in order
not to affect the performance measurements, the SC procedure get.choice was

107

T1. IA 1. r-%.A J

created using part of the user.interface code, and so procedure user.interface
passed to call getchoice.

The difficulty of finding the first two problems is due to the symptom to be
the program freezing in execution on the screen and no message coming. To find were

the error was occurring approximately, we placed some "Screen ! var" statements in the
middle of the code, and from then on only reading the code and guessing what it could
be, worked. We tried, and succeeded, also to trace the execution, by looking at the

listed code and following the flow of communications.
As a final comment, the facility to reuse previously created software is

tremendous. Each configuration just need to be done once, and can be always reused

by just changing the name of the placed procedures. The procedures and programs can
be annexed to a new file or filed with one key stroke, the utility file/unfile of the fold

editor.

108

APPENDIX E

THE LINK EVALUATION PROGRAM

-- header.occ

* Title : Link Evaluation Program *
* Version : 7
* od :0 *
* Author : Jose Vanni Filho, Lcdr., Brazilian Navy *
* Date : June / 02 /1987 *

--- * Programming Language OCCAM 1 ** Compiler : IMS D 600- TDS
-- - * Purpose : To Evaluate the Transputer link transfer rate *

--* for several channel parallelism situations, *
-* construct types, and different cpu loads *

Brief description of *roiram

Interactive program that uses the INMOS links at 10 Mbits/sec and
evaluates the transfer rates from the bO01 board to the b003 board
using one to four channels in parallel for output and input.
The program calculates and display the transfer rate after a
specified number of runs (20 for now) in a table format for
the following block.size and channel configurations:

-- Block Sizes
1 - 2 - 4 8 - 16 - 32 - 64 - 128

256 - 512 - 1024 - 1280 - 2048 - 4096 - 8192 - 10000
-- Channel configurations

1 out - 1 channel(output) in one link
1 in/out - 2 channels input and output) in par in one link
2 out - 2 channels ouput) in parallel in two links
2 in/out - 4 channels input and output) in par in two links
3 out - 3 channels output) in parallel in three links
3 in/out - 6 channels input and output) in par in three links
4 out - 4 channels output) in parallel in four links
4 in - 4 channels Iinput) in parallel in four links
4 in/out - 8 channelslinput and output) in par in four links

-- User options during program execution
User Options:
CPUs MODEs OF OPERATION

--- 0 - No concurrent process in the cpus
1 - B003 cpus with sum process concurrently (par)
2 - all cpus with sum process concurrently (par)
3 - B003 cpus with sum process concurrently (pripar)
4 - all cpus with sum process concurrently (pripar)
5 - B003 cpus with array product process concurrently (par)

--- 6 - all cpus with array product process concurrently (par) .
--- 7 - B003 cpus with array product process concurrently pripar)

8 - all cpus with array product process concurrently (pripar)

--- CONSTRUCTS AND DATA TYPES
--- A - input/output channels (CHARACTERS (BYTES))

B - byte slice input/output (CHARACTERS (BYTES))
I - input/output channels INTEGERS (WORDS))
W - word slice in t INTEGERS WORDSI*

9*********************************

109

71

-- PROGRAM link.evaluation

-- link.evaluation PROCESSES

-- TRANSPUTER ROOTB001.TDS
SC PROC hostproc

-- PROC hostproc (CHAN A,B,C,D,E,F,G,H)
PROC hostproc (CHAN A,BC,D,E,F,G,H) =

This is the outer procedure laced on transputer Root. It contains
global variables and constants, and all procedures that run in this
transputer. It executes in parallel the procedures

terminal.driver and user.interface

-lobal def.tds (partial)-Constants Definitions
DEF EndBuffer = -3:
DEF port = 0:--- assign the i/o port of the B001 to terminal
DEF baud = 11:--- set (he baud.rate to 9600 bps

constantly used ASCII values
DEF tab = 9:
DEF If = 10:
DEF cr = 13:
DEF esc = 27:
DEF sp = 32:
-- Channels Definitions
CHAN Screen : --- defined for output to the Screen
CHAN Keyboard : --- defined for input from the Keyboard

-- Link Definitions
DEF link0out = 0 :
DEF linklout = 1 :
DEF link2out = 2
DEF link3out = 3
DEF link0in = 4
DEF linklin = 5
DEF link2in = 6
DEF link3in = 7
-- library.occ (partial)

ioroutines.occ
-- PROC new.line
PROC new.line =

- - M- to a new line on the screen_. *********** *** ****** *********** ****** ***** ********* ******** *

SE% creen I cr;lf;EndBuffer

-- PROC write.string (VALUE string[])
PROC write.string (VALUE strin =
--- Writes a Given string to the screen,*ina bxte bXybyte fashion *

SE%EQ i= [1 FOR string[BYTE 0]]
Screen I string[BYTE i]

Screen I EndBuffer
-- PROC clear.screen
PROC clear.screen =

--- clears the screen

SE% creen I esc;'r';'2';'J';EndBuffer --- clear screen sequence

Screen ! esc;' ';'H' : --- home cursor
-- PROC write.number (VALUE number)

110

This PROC outputs a signed integer value to the screen*

PROC write.number(VALUE number)=
VAR output[16], count, x:
SEQ

x:= number
count:= 0
IF

__handle special cases
Screen 1 '0'

x<0
SE% creen1 -

TRUE
SKIP

WHILE x>0
-- construct number
SEQ

output[count] := (x 10) + '0'
count :=count + 1

X: /10
WHILE count > 0

- - output number
SEQ

count :count-i
Screen !output[countl

SKIP:
-utilities.occ

-PROC transfer.rate (VALUE start stop,board.type,nr.of.bytes ...)
PROC transfer.rate (VALUE start, stop, board.type, nr.of.bytes,

VAR rate)=

--receives two tick values "start" and "stop", number of bytes*
--and board type and out~uts the transfer rate.

-board number definitions
board.type = 0 ---- > VAX VMS

-- board.type = 1 ---- > B001
--board.type = 2 ---- > B002
--board.type = 31 ---- > B003 (high priority))
--board.type = 32 ---- > B003 (low priority)
--board.type =4 ---- > B004
--outputs-to the screen the transfer rate in kbits per second

- - constant definitions
DEF vax.sec =10000000 : --- hundreds of nsec/second
DEF b001.sec = 625000 : -- # of 1.6 microsec/second
DEE bOO3h.sec =1000000 : #- of microsec/second
DEF b0031.sec = 15625 : #- of 64 microsec/second
DEE max.number.of.ticks = 2147483648 : --- maximum integer (2**31)
-- variable declarations
VAR elapsed. tick:
VAR fact or - -- to convert ticks to seconds

SEQ
elapsed.tick := stop - start
IF

elapsed.tick < 0
elapsed.tick := elapsed.tick + max.number.of.ticks

TRUE
SKIP

-selection of correct factor in accordance with the board
IF

board.type = 0 --- VAX VMS
factor := vax.sec

board.type = 1 --- B001
factor := bOO1.sec

board.type = 2 --- B002
SKIP --- to be implemented in the future

board.type = 31 --- B003 in high priority
factor := b003h.sec

board.type = 32 --- B003 in low priority
factor := b0031.sec

board.type = 4 --- B004
SKIP --- to be implemented in the future

-- rate calculation
IF

board.type = 32
rate := ((nr.of.bytes*8)*factor)/(elapsed.tick*1000)

--- operation is done this way to keep
precision ok!TRUE

rate := ((nr.of.bytes*8)*(factor/1000))/elapsed.tick
operation is done in this way in order to don't exceed
maxint on the numerator.

--- mu ltiply by 8 due to 8 bits per byte
--- divide by 1000 to have the transfer rate in kbits/sec

SKIP:
-- PROC capitalize (VAR ch)
PROC capitalize (VAR ch) =__********* *** ******* ** **

-caitalizesany lower case character into uRer case

DEF delta =('a' - 'A') A--A ---> 65
a ---> 97 ASCII values
z ---> 122

SEQF

(ch <= 1z') AND (ch >='a')
ch :=ch - delta

TRUE
SKIP

-- SC PROC IMS.BOO1.terminal.driver()
-- TERMINAL -DRIVER.TDS

PROC IMS.BO01.terminal.driver(CHAN Keyboard,Screen,VALUE port,baud.rate)

The terminal driver used is the one provided by the
manufacturer for the board B001, and for that reason
is not included here.

112

-- SC PROC cpubusysum (CHAN flagl,counterchan) sum
-- CPUBUSYSUM.TDS
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=

description
It ********** ** ***************************** ** ************ ****
It keeps the cpu working in parallel(time sharing) with the link
transfers by doing sum operations . It stops when it receives
a flag by the channel flagl from the transfer procedure that is
being executed concurrently. It outputs by channel counterchan
the number of oerations done.

VAR a,b,e
working,
counter,
ch

SEQ
counter : 0
working TRUE
TIME ? a
WHILE working

ALT
flagi ? ch

working := FALSE
TIME ? b

SEQ
e := a + b
counter := counter + 1

counterchan ! counter:
-- CPUBUSYSUM.dsc descriptor
-- CPUBUSYSUM.cde code
-- SC PROC cpubusprod (CHAN flagl,counterchan) product

CPUBUSYPROD.TDS
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)=
-- descri tion

It keeps the cpu working in parallel(time sharing) with the link
transfers by doing array multiplications. It stops when receives
a flag by the channel flagl from the transfer procedure, that is

--- being executed concurrently. It outputs b; channel counterchan
--- the number of operations done.

-- constants and variable declarations
DEF number = 100: size of array
VAR a[number +11 ---- array of integers

b[number + 1 , array of integers
e[number + 1], array of integers
clock, integer -variable to get time
working, ---- boolean -to stop execution
counter, ---- integer -number of operations done
ch

SEQ
-- initialize buffers and variables
SE% i 1 FOR number]SEQi

SFIP
counter := 0
working := TRUE
WHILE working

ALT
flagl ? ch

113

working := FALSE
TIME ? cIock

SE EQ i = (1 FOR number]

e[iJ := afi] * b[i]
counter counter + number ---updates nr. of operations

counterchan I counter:
-- global constant and variable declarations for transputer root
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096, 8192 10000]
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF repetition = 20: --- 1or averaging purposes
DEF maxwordblock.size = maxblock.size/4:
CHAN hostinO AT link0in:
CHAN hostinl AT linklin:
CHAN hostin2 AT link2in:
CHAN hostin3 AT link3in:
CHAN hostoutO AT link0outi
CHAN hostoutl AT linklout:
CHAN hostout2 AT link2out:
CHAN hostout3 AT link3out:

114

~114

I

-PROC inout.transfer (VALUE re~etition,cpumode)
PROC inout-transfer (VALUE repe ition,cpumode)=

description
It initializes the buffers and it executes the procedure
iotransfer, and, when applicable one of the following:

cpubusy.prod or cpubusy, sum, (according to cpumode)

-- variable declarations
CHAN flg -- l~ the cpu to sto~couter -- reurn the number o operations cpu did
VAR bufferO [BYTE maxblock.size + 1

bufferi [BYTE maxblock.size+ I,
buffer2 11BYTE maxblock.siz e + 1]
buffer3 [BYTE maxblock.size + 11:

-PROC iotransfer (VALUE repetition, cpumode, CHAN flag,t..PROC iotransfer (VALUE repetition,cpumode,CHAN flag. counte)
:Descrip tion
--Executesosequentially several1 parallel transfers of bytes

to/from one to four transputers uing the input/outpU
primitive and output to the screen the transfer rate
values of the output TABLE.

Useu obalconstants : sizetable *nr~ofsizes,*repetition

-variable declarations
VAR block size,

actual.rate,
rate,
number, --- the number of operations cpu did
ch 4me

delliedeadtimeO, deadtimel, --- to calculate deadtime
timeO[1
timel4:

SE %% = [0 FOR nr.of.sizes]

EQ making the table
block.size := sizetable[i]
write.number (block.size)
Screen ! tab
-- calculation of deadtime
TIME ?deadtimeO
SEIJ 1 (1 FOR block.size]

KIP
TIME ? deadtimel
deadtime := deadtimel - deadtime0

-toutput to one channelaual.rate :=0
SE% (1l FOR repetition]

TIME ? timeO [0
SEQ k = (1 FOR block.size I

bostoutO ! bufferO (BYTE kc]
TIME ? timeltO]
timelL11] := time 1(0] - deadtime
transfer.rate (time [0],timel [0jl ,block sizerate)

SKPactual.rate := ((actual .rate ~ J-1)) + rate)/

write.number (actual.rate)

115

Screen ! tab

-- output/input from one channelactual.rate :=0
SES (1[FOR repetition]

Aostin0 ? ch[0
TIME ? timeO ~0
SE k = [1 FOR block.size]

AR
hostoutO ! buff-rO BYTE k
hostinO ? bufferi [BYE k]

TIME ? timel[0]
timel[11] :=timel[0 I - deadtime
transfer rate(timeO 11] time1[0L1;,block size rate)
actual.rate :=((actuai.rate 6 (-1)) + rate /j

SKIP
write.nuiber (actual.rate)
Screen I tab

-- output to two channelsactual.rate :=0
SES iAR[l FOR repetition]

hostinO ? ch(03
hostini ? ch~lJ

TIME ? time0 101
SE$ k = [1 FOR block.size]

hotuARbffr BT c
hostouti ! bufferi BYTE k]

TIME ? timelfO]
timeli [0] timel[0 - deadtime
transfer rate(timeO [0] timel[0],l,block size rate)
actual.r te :=((actuai.rate *(j-1)) + rate~/j

SKIP
write.number (actual.rate)
Screen I tab
-; output/input from two channels
actual.rate :=0
SEQiAj[1(FOR repetition]

hostinO ? chlOl
hostini ? ch[1]

TIME ? time0 110
SE$ k [1 FOR block.size

AR,

hostoutO ! bufferO [BYTE k
hostouti ! bufferi [BYTE IC1
hostinO ? buffer2 [BYTE ki]hostini ? buffer3 [BYTE k

TIME ? timel[0]
timel [0] :=timel[0 1 - deadtime
transfer rate(time0l0] timel[0],l,block.size rate)
actual.rate :=((actuai.rate *(j-1)) + rate~ij

SKIP
write.number (actualrate)
Screen I tab

-- ou tput to three channelsactual.rate :=0
SEQ4A[l(FOR repetition]

hostinO ? ch[0o
hostin2 ? ch[2]

TIME ? time0 [0]
SEQ k = [1 FOR block.size]

116

PAR
hostoutO 1 bufferO BYTE k
hostouti ! bufferi [BYTE kihostout2 ! buffer2 [BYTE k

TIME ?timel[0J
timelo [0] timelfO 1 - deadtime
transter.rate(tileOtol timel[O],l,blocc size rae

actal~ate:= (acuai rate * (6-1)) + rate5/j
SKIP
write.number (actual.rate)
Screen I tab
- - output/input from three channels
actual.rate := 0
SE%4A=R[1 FOR repetition]

hostino ? ch[O]
hostini ? chili
hostin2 ? ch[21

TIME ? time0 (01
SE$ k = C 1 FOR block.size]

hotuARbffr BT
hostouti ! bufferi [BYTE k]
hostout2 ! buffer2 [BYTE k I
hostiout ! buffer [BYTE k
hostini ? bufferi [BYTE k
hostin2 ? buffer2 [BYTE k

TIM otimel [0]fe2 BTE
TIMEl [0 timel[O I-datm
tranero)atetimeO[O] -dtime]1boksz ae

SKPactual.rate :=((actual.rate 6 (-1)) + rate /j

write number (actual. rate)
Screen ! tab

-- output to four chan~nelsactual.rate := 0
9 2 .= [IFOR repetition]

hostino? ch[0j
hostini ?ch 1]
hostin2 ? ch[2]
hostin3 ? ch13l

TIME ? timeO [0)
SE$ k = [1 FOR block.size]

hotuAR ufr [YEk
hostouti I bufferi [BYTE k]
hostout2 I buffer2 [BYTE k]
hostout3 ! buffer3 BYTE k]

TIME ? timel [0)
timel [0] := timel[O 1 - deadtime
transfer rate(timeO[0] timelfol ;,block size rate)

SKPactual .r te :=((actuai.rate * (-i)) + rateM/

write.number (actual.rate)
Screen I tab
-- input from four channels
actual .rate :=0
S E % j-- l FOR repetition]

hostino ? ch [0
hostini ? chill
hostin2 ? c h[2]
hostin3 ? chL3]

TIME ? timeo[0]

117

SEQ k =[1 FOR block.size
PAR
hostino ? buffero (BYTE ki
hostini ? bufferi [BYTE k
hostin2 ? buffer2 [BYTE kJ
hostin3 ? buffer3 [BYTE k i

TIME ? timel[0]
timel[] 0= tim'1[0 I - deadtime
transfer rate(t (0]0 timel[O],1,block.size rate)

SKPactual.rate :=(actuali.rate * (6-1)) + ratejS/j

write.number (actual.rate)
Screen I tab
-- all output and input in parallel
actual.rate :=0
SEQ4A R[l FOR repetition]

hostinO ? ch [1hostini
? ch [1hostin2 ? ch 2l

hostin3 ? ch 3J
TIME ? timeO[O]
PAR

SE$ k = [1 FOR block.size]
hotuAR ufr [YEk
hostouti bufferi [BYTE k
hostout2 buffer2 [BYTE k
hostout3 buffer3 [BYTE k]

SE sout [1fr FORE blcksie
SE AR 1FR lc~i

AoR n ?bfei YEk
hostinO ? bufferO BYTE khostin2 ? buffer2 BYTE k]hostin3 ? buffer3 BYTE k

TIMEin ? timeltOBTE]
TIMEl [0? timel(0 ea]m
traner. r:te timeOl -0 dtime] boksz ae

SKPactual.rate :=((actualt.rate * 6-1)) +i-rate5/j

write.number (actual.rate)
new. line

SKIP
new. line
-- send to screen operations done concurrently

cpuznode = '0' rrcs unn1ocrety"
write.strinq (" No therpoesunigccretl

(((cpumode'12')OR (cpumode'14')) OR
((cpumode='6')OR(cpumode='8')))

SEQ~1ag I'a'

counter ? number
write.string ("Number of operations (in //) at "1)
write.string ("the bO01 transputer "
write.number (nmber)
new. line
hostinO ? number
write.string (":Number of ogerations,,(in f)at "
write.string ("tran spute r (b003) "
write.number (number)

TRUE
SE~Os

otinO ? number
write.string (":Number of operations (in /)"
write.string ("transpute r (b003)11)
write.nunber (number)

118 -

14

%A%-

new. line
new. line

SEQ -- main inout.transfer
-- initializing buffers
SEQ k =[1 FOR maxblock.size]

EtufferO [BYTE kI '0'
bufferi [BYTE k] Ill
buffer2 [BYTE kJ 12'

SKPbuffrer3 [BTE i 13'

IF
cpunmode= 2

PAR
iotransfer (repetition, cumode, flag, counter)
-pubuoysm (flag, counter

PRI PAR
iotransfer repetition, c uxnode, flag, counter)
cpbsyu Mfag, counters
ipuotrase (= ettoc61oe lgcutr

iotransfer (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

TRUE pbspo (facutr
iotransfer (repetition, cpumode, flag, counter):

119

p1 1111101S ~ 55 s ~ '

-OnrVAUE - piio pude)

PROC byte.slice.transfer (VALUE repetition, cpumode)
PROC byte.slice.transfer (VALUE repeti.tion, cpumode)=

- descri tion

--- It initializes the buffers and it executes the procedure
transfer, and, when applicable one of the following:

cpubusy.prod or cpubusy.sum. (according to cpumode)
Uses global constant maxblock.size.

-- variable declarations
CHAN flag, --- flags the cpu to stop

counter: --- return the number of operations cpu did
VAR bufferO [BYTE maxblock.size + 1]

bufferl BYTE maxblock.size +I ,
buffer2 BYTE maxblock.size + 1],
buffer3 BYTE maxblock.size + 1]:

-- PROC transfer (VALUE repetition, cpumode, CHAN flag, counter)
PROC transfer (VALUE repetition,cpumode,CHAN flag, counter)=
-- Descri c r pin
--- Executes sequentially several parallel transfers of bytes

to/from I to four transputers using the BYTE.SLICE Procedure
and output to the screen the transfer rate values of the
output TABLE.

--- Uses global constants : sizetable, nr.of.sizes repetition

-- variable declarations
VAR block.size,

actual.rate,
rate,
number, --- the number of operations cpu did
ch[4]timeO6 [41 ,

timel 4

SEQ
SE i= [0 FOR nr.of.sizes]

-- making the table after each io operation
block.size := sizetable[i]
write.number (block.size)
Screen ! tab
-- output to one channel
actual.rate := 0
SE% = [I FOR repetition]

EiostinO ? ch[0]
TIME ? timeO0[
BYTE.SLICE.OUTPUT(hostoutO,buffer0,1,block.size)
TIME ? timel[O]
transfer.rate (time0[0],timel[O1 ,1block.size,rate)
actual.rate : ((actual.rate * (j-1))+ rate)/j

SKIP
write.number (actual.rate)
Screen ! tab
-- output/input to one channel
actual.rate := 0
SES = [1 FOR repetition]

o-stinO ? ch[0]
TIME ? timeO 0
PAR

BYTE.SLICE.OUTPUT(hostout0,bufferO,l,block.size)

120

I.5

WassnaWW in ARWjw

BYTE.SLICE.INPUT(hostin0,bufferl,l,block.size)
TIM4E 1? timel[O I
transfer.rate (timeO[10 timel fOI,l ,block size~rate)

SKPactual.rate :=((actual .rate j (-1)) + rate)/

write.number (actual.rate)
Screen ! tab

-output to two channels
actual.rate :=0
SEQ j = 2. FOR repetition]

SE$A

hostinO ? ch(0]
hostini ? ch[11

TIME ? timeO[0]
PAR

BYTE.SLICE.OUTPUT (hostoutO,buffer-O,l,block.size)
BYTE.SLICE.OUTPUT (hostoutl,bufferl,l,block.size)

TIME ? timel(OJ
tranferrat~tineo[] tmelO, ,block.size rate)

SKPactual.rate : (acua.rat *1 6-1)) + rate /j

write.number (actual.rate)
Screen ! tab
-- output/input from two channels
actual.rate :=0
SES Ej= [1 FOR repetition]

hostinO ? ch[0]
hostini ? chill

TIME ? timeOfO]
PAR

BYTE.SLIlCE.OUTPUT (hostoutS,buffer0,l,block.size)
BYTE.SLICE.OUTPUT (hostcutjhuffer ,l1 block size)
BYTE.SLICE.INPUT (hostinO ,b..ffer2,l,biock.size)
BYTE.SLICE.INPUT (hostinl,buf.er3,l,block.size)

TIME ? timel[O 1
transfer.rate(tirneO[O] timel[O]l ,block.size rate)
actual.rate :=((actual.rate*(6-1)) + rate /j

SKIP
write.number (actual.rate)
Screen ! tab
-- output to three channels
actual.rate :=0
SE [1 FOR repetition]

hotiO? h 0
hostini ? chil
hostin2 ? ch I2

TIME ? timeO[01
PAR

BYTE.SLICE.OUTPUT(hcstout0,bufferO,l,block size)
BYTE.SLICE.ouTrPUT (hostoutl,bufferl,l,block~size)
BYTE.SLICE.OU'TPUT (hostout2,buffer2,l,block.size)

TIME ? timel[(O] 0
transfer.rate(timeo [0 timel[O],l,block.size rate)

SKPactual.rate :=((actual .rate * (6-i)) + rate /j

write.number (actual.rate)
Screen I tab

-output/input from three channels
actual.rate 0= 0
SEQ [1 FOR repetition]

hostinO ? ch[O]

121

hostini ? ch[1
hostin2 ? ch 1211

TIME ? timeO[O]
PAR

BYTE.SLICE.OUTPUT (hostoutO,bufferO,l,block.size)
BYTE.SLICE.OUITPUT (hostoutl,bufferl,l,block.size)
BYTE.SLICE.OUTPUT (hostout2,buffer2 1. block size
BYTE.SLICE.INIPUT (hostinO ,bufferO 1iblock.size)
BYTE.SLICE.INPUT (hostinllbufferl,1,block.size)
BYTE.SLICE.INPUT (hostin2,buffer2,l,block.size)

TIME ? timel[O]at

SKIP
write.number (actual.rate)
Screen ! tab

- - output to four channelsactual.rate :=0
SE [1 FOR repetition]

OstnR h0
hostini ? chil
hostin2 ? ch 1.
hostin3 ? ch 23

TIME ? timeOljO]
PAR

BYTE.SLICE.OUTPUT (hostout0,buffer0,l,blocksie
BYTE.SLICE.OJTPUT (hostouti ,bufferl ,l,block::size)
BYTE.SLICE.OUTPUT (hostout2 ,buffer2 ,1, block.size)
BYTE.SLICE.OUTPUT (hostout3,buffer3,l ,block.size)

TIMnsEr ? [0]me[* timel[0] ,l,block size rate)

SKPactual.rate :=((actuai.rate 6 (-1)) + ratej

write.number (actual.rate)
Screen ! tab

-- in put from four channelsactua..rate :=0
.4SE j =R (1 FOR repetition]

hostinO
? ch [0]hostini ? ch l2

hostin2 ? ch [2
TIME ? time0[0]
PAR

BYTE.SLICE.INPUT (hostin , buffer0 ,1, block.size)
BYTE.SLICE.INPUT (hostinllbufferl,llblock.size)
BYTE.SLICE.INPUT (hostin2,buffer2 ,1, block.size)
BYTE.SLICE.INPUT (hostin3,buffer3,llblock.size)

TIMnsEr ? etime] timel [0],l,block size rate)

SKPactual.rate := ((actuai..rate * (j-1)) + rateS/j

write.number (actual.rate)
Screen ! tab
- - all output and input in parallel
actual.rate :=0
SES4E= [1 FOR repetition]

AR tnOch0
hostinO ? ch[0
hostini ? chil2
hostin2 ? ch 32

TIME ? timeO[0]

122

PAR
BYTE.SLICE.OUTPUT (hostoutO,buffero,1,block.size)
BYTE.SLICE.OUTPUT (hostoutl,bufferl,1,block.size)
BYTE.SLICE.OUTPUT (hostout2,buffer2,1,block.size)
BYTE.SLICE.OUTPUT (hostout3,buffer3,1,block size)
BYTE.SLICE.INPUT (otinO,bufferO,1,biock.size)
BYTE.SLICE.INPUT (hostlnl,bufferl,1,block size)
BYTE.SLICE.INPUT (hostin2,'buffer2,'1,'block:size)
BYTE.SLICE.INPUT (hostin3,buff r3,lblock.size)

TIME ? timel(O]
transfer rate(timeO [0] timel[O],1,block.size rate)

SKPactual.rate :=((actuai.rate * (6-1)) + rateS/j

write.number (actual.rate)
new. line

SKIP
new. line
-- send to screen operations done concurrently
IF

cpumode = '0'
write.string ("1 No other process running concurrently "1)

(((cpumode'l2-) OR(cpumode= I 4'))OR
SE ag 1-a-((cpumode=16')OR(cpumode='8I)))

counter ? number
write.string ("umber of operations (in I)at the "1)
write.string (bO01 transputer "
write.number (number)
new. line
hostinO ? number
write.string (":Number of operations, (in I)at "
write.string ("transputer 8 (b003) "
write.number (number)'

TRUE
SEhos tinO ? number

write.string (":Number of ogerations,,(in /)at "
write.string ("transpute r (b003) "
write.number (number

new. line
new. line

SEQ -- main byte.slice.transfer
-initializing buffers

SEQSk =[1 FOR maxblock.size]
EtufferO [BYTE kI '0'
bufferi [BYTE kc '1'
buffer2 [BYTE k] 2'
buffer3 IBYTE i] 13'

SKIP
IF

cpumode = '2'
PAR

transfer (repetition, cpumode, flag, counter)I
.pubeusysum (flag, counter)

PRI PAR
transfer (repetition, cpumode, flag, counter)

ub(flag, counter)
PAR

transfer (repetition, cpumode, flag, counter)

cpumobusyrod (flag, counter)
PRI PAR

transfer (repetition, cpumode, flag, counter)

123

TRUE cpubusyprod (flag,
counter)

transfer (repetition, cpumode, flag, counter):

124

PRO in~tanser VAUE epeiton~pumd-

-- PROC int.transfer (VALUE repetition,cpumode)
-descri~tion

It initializes the buffers and it executes the procedure
intransfer, and, when applicable one of the following:

cpubusy.prodtortcpubusy.sum. (according to cpumode)
Uses global constant maxblock.size.

-variable declarations
CHAN flag, --- flags the cpu to stop

counter: -- return the number of operations cpu did
VAR wbufferO [maxwordblock.size + 1]

wbufferl [maxwordblock.size I '
wbuffer2 [maxwordblock.size + 1]
wbuffer3 Imaxwordblock.size + 1]

-- PROC intransfer (VALUE repetition, cpumode, CHAN flag, counter)
PROC intransfer (VALUE repetition,cpurnode,CHAN flag, counter)=
:_ description

--Executes sequentially several parallel transfers of integers
to/from one to four t ranspluters using in put/output primitives
and output to the screen the transfer rate values of the

- -- output TABLE.
---Use glbalconstants : sizetable nr.of sizes re~etition

-variable, declarations
VAR block.size,

actual.rate,
rate,
number, -- the number of operations cpu did
chI4],
deadtime, deadtimeO, deadtimel, --- to calculate deadtime

timel

SESSi = [0 FOR nr.of.sizes]

- - making the table
block.size := sizetable[ij
write, number (block, size)
Screen ! tab
IF

block.size < 4J
write.string("'minimum transfer for integers "
write.string(I"is 4 bytes(word)")

TRUE
SEQ

__- calculation of deadtime
TIME ? deadtimeO
SEQS i = [1 FOR (block.size/4)]

KIP
TIME ? deadtimel
deadtime := deadtimel - deadtime0
- - io handling

-output to one channel
actual.rate := 0
SEQSi (1 FOR repetition]

SostinO ? ch[0
TIME ? timeG 00
SEQ k = [1 FOR (block.size/4)]

hostoutO wbufferO(k]

125

ZxZ 4 A

TIME ? timel(O]
timel [0]- timel(O1 - deadtiie
transfer-rate (timeO-O- timel-0-, 1,

b:lock size rate)
actual.rate :=((actual.rate A (j-l)) + rate)Ij

SKIP
write.nunber (actual.rate)
Screen I tab

-- output/input from one channelactual.rate :=0
SESj [1 FOR repetition]

"iosti.nO ? ch[0
TIME ? time 01
SE$ k = [1 FOR (block.sizel4)]

hostoutO ! wbufferO jk]
hostinO ? wbufferl k

TIME ? timel[0]
timelO [0] timel(O I- deadtime
transfer.rate(tineO[0] timel[0]l ,block size rate)
actual.rate :=((actuai.rate * 6-1)) + rate /j

SKIP
write number (actual.rate)
Screen ! tab

- - output to two channels
actual.rate :=0
SES j :- [1 FOR repetition]

E$ AR
hostinO ? ch [01
hostini ? chill

TIME ? timeO[0]
SE$ k [1 FOR (block.size/4)]

hotAORwbfeOk
hostouti ! wbufferl [k]I

TIME ? timel(0]
timelj]: timel[Ol - deadtime
trans er rate(timeOJ0]itimel[0],1,block.size rate)
actual.rate := ((actuai rate * 6-1)) + ratejS/j

SKIP
write.number (actual.rate)
Screen I tab

-- output/input from two channelsactual.rate :=0
SEQiA-[l(FOR repetition]

hostinO ? ch [0]
hostini ? ch li]

TIME ? timeOfl
SE$ k [lFOR20 (block.size/4)

hostoutO I wbuffer0 [k]
hostouti wbufferl [k]
hostinO ?wbuffer2 [k]
hostini ? wbuffer3 [k]

TIME ? timeltO]
timel [0] :=timel[O 1 - deadtime
transfer.rate(time0 [0] timelljO] l,block size rate)
actual.rate :=((actuai.rate 6 (-l)) + rate /j

SKIP
write.number (actual.rate)
Screen ! tab
- - output to three channels
actual.rate :=0
SEQ j = [1 FOR repetition]

126

*~** *~~ - - *~ '.

SE $A
hostino ? h[0
hostini ; chi1
hostizi2 ? ch 2]

TIME ? timeOf 0]
-- output handling

SE$ k= [1 FOR (block.size/4)]

hostoutO I wbuffer0 [kj
hostouti ! wbuffel [k]
hostout2 I wbuffer2 [k

TIME ? timel[O]
timelLO [0= imelfO I - deadtime
transfer.rate(timeO[Ol timel[O],1,block size rate)
actual.rate :=((actual .rate + (-) rate /j

SKIP
write-number (actual.rate)
Screen ! tab

-- output/input from three channels
actual.rate :=0
SE% j = 1 FOR repetition]

liostino? ch 10
hostini ; ch[i
hostin2 ? chi 2

TIME ? time0[O]
-outpt*nut handling

SE$ k =[1 OR (block.size/4)I

hostoutO I wbuffer0 Ek
liostouti ! wbufferl [Wi
hostout2 1 wbuffer2 [k
hostinO ? wbuffer0 [I
hostini ? wbufferl ik]
hostin2 ? wbuffer2 tk

TIME ? timel[0]
timelj]: timel[0l - deadtime
trans er rate(time0 0] timel[0] ;,block.size rate)
actual.rate :=((actual .rate 6 (-1)) + rate ij

SKIP
write.number (actual.rate)
Screen ! tab
-- output to four channels
actual.rate :=0
SEQii=R[1 FOR repetition]

hostinO ?, ch [0]
hostini ci [1
hostin2 ? cli 2
hostin3 ? ch [3

TIME ? timeO[0]
kput and output kandien)--E = [1FO boksz/l

liostoutl I wbufferl k]
hostout2 I wbuffer2 [k
liostout3 I wbuffer3 k]

TIME ? timel[0]
time 1101, timel[0 I - deadtime
transfer rate(time01 timel[0] 1,block size rate)
actual.r te := ((actual .rate * 6i-1)) + rate ij

SKIP
write.number (actual.rate)

127

112 111,-u ~

rarNn -- - -vwvr

Screen I tab
-- in ut from four channels
actual .rate :=0
SES = [1 FOR repetition]

%AR
hostinO ? h [0]
hostini ; ch [1'
hostin2 ? ch [2]
hostin3 ? ch 131

TIME ?timejOl
- npu -a lingb

SEQ~ AR= 1 FOR (lock.size/4)

hostinO ? wbufferO kihostini ? wbuffero
ihostin2 ? wbuffer2 1k

hostin3 ? wbuffer3 k]
TIME ? timel[O]
timeli [0] timel[O 1 - deadtime
trans er rate(timeO 10] timelIIO],l,block.size rate)

SKPactual.r te :=((actuai.rate * (j-1)) + rate)/j

write numiber (actual.rate)
Screen I tab
- - all output and input in parallel
actual.rate :=0
SEQ =[1 FOR repetition]

hotiO? h 0
hostini ? chil]
hostin2 ? ch121
hostin3 ? ch 131

TIME ? time00
- iput andO ot ut handlinSEQAR -[1 FR (lock.size/9)]

hostoutO I wbuffero rk] 1
hostouti I wbufferl tic
hostout2 Iwbuffer2 iI
hostout3 Iwbuffer3 1k]
hostinO ? wbuffer tI
hostini ? wbufferl kic
hostin2 ? wbuffer2 k]
hostin3 ? wbuffer3 [i]

TIME ? timel[O]
timeL1 :0] timel(O I - deadtime
transfer.rate(timeO [0] timel[O],1,block.size rate)
actual.rate :=((actuai.rate * (6-1)) + rate~lj

SKIP
write.riumber (actual. rate)

new.line
SKIP
new, line
IF send to screen operations done concurrently
IF moe= 0

cpuide~s n (1 '0'hrpocs unn cnurnl
writumoe=trinq (No oter pr)oesrungcourety)

((cpumode'16')OR(cpumode'18,)))
SEO

liag 1 'a'
counter ? number
write.string ("Number of operations (in I)at the "
write.string (11b00l transputer 11)
write.nunber (number)

128

N2C Up V.

new. line
hostinO ? number
write.string ("Number of operations (in //) at ")
write.string ("transputer O(b003) '
write.number (number)

TRUE
SEostinO ? number

write.string ("Number of operations (in //) at ")
write.string ("transputer 0(b003) ")
write.number (number)

new. line
new. line

SEQ --- main int.transfer
-- buffers initialization
SEQ k = [1 FOR maxwordblock.size]

wbufferO [k] 10000
wbufferl k = 20000
wbuffer2 k: 30000
wbuffer3 .k- 40000

SKIP
IF

cpumode = '2'
PAR

intransfer (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)cpumode = 141

PRI PAR
intransfer (repetition, cpumode, flag, counter)

cpumobussum Mflag,
counter)

PAR
intransfer (repetition, cpumode, flag, counter)
cpubusyrod (flag, counter)cpumode = '-

PRI PAR
intransfer (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)TRUE

intransfer (repetition, cpumode, flag, counter):

129

-- PROC word.slice.transfer (VALUE repetition, cpumode)
PROC word.slice.transfer (VALUE repetition, cpumode)=

- descri tion

It initializes the buffers and it executes the procedure
wordtransfer, and, when applicable one of the following:

cpubusy.prod or cpubusy.sum. (according to cpumode)
Uses global constant maxblock.size.

-- variable declarations
CHAN flag, --- flags the cpu to stop

counter: --- return the number of operations cpu did
VAR wbuffer0 [maxwordblock.size + 1]

wbufferl [maxwordblock.size + 11,
wbuffer2 [maxwordblock.size + 11,
wbuffer3 [maxwordblock.size + 1]:

-- PROC wordtransfer (VALUE repetition, cpumode, CHAN flag, ...)
PROC wordtransfer (VALUE repetition,cpumode,CHAN flag, counter)=

descrition

--- Executes sequentially several parallel transfers of integers
--- to/from one to four transputers using the WORD.SLICE Procedure
--- and output to the screen the transfer rate values of the
--- output TABLE.

Uses 2lobal constants : sizetable nr.of.sizes repetition... ********************************** *** ** ** ****

-- variable declarations
VAR block.size, --- number of bytes to be transmited

actual.rate, --- updated rate and final rate
rate, --- auxiliary variable to hold temporary rate
number, --- the nufmber of operations cpu did
ch[4
timeo [4,
timel 4

SE%E% =o[0 FOR nr.of.sizes]

-- making the table after each io operation
block.size := sizetablei]
write.number (block.size)
Screen ! tab
IF

block.size < 4
write.string ("minimum transfer for integers ")
write.string("is 4 bytes(word)")

TRUE

--- ATTENTION ! The code is shifted left 12 spaces from here on,due to printinq requirements.

SEQ
-- output to one channel
actual.rate := 0
SEj= [1 FOR repetition]

siostin0 ? ch[01

TIME ? timel[0]

130

I

transfer.rate (time0[] ,time1. 01 ,l,block size,rate)
actual.rate :=((actual .rate * (-1)) + rate)/

SKIP
write.number (actual.rate)
Screen ! tab
-- output/input in one link
actual.rate :=0
SES [FOR repetition]

C~stinO ? ch [01
TIME ? timeO 101
PAR

WIORD.SLICE.OUTPUT(hostout0,wbuffer0,1, (block.size/4))
W4ORD.SLICE.INPUT(hostinO,wbufferl,l, (block.size/4)

TIME ? timel[Ol
transfer.rate(timeO[0] timel[0] ,1,block size rate)

SKPactual.rate :=((actuai.rate * 6j-1)) + ratej/j

write.number (actual. rate)
Screen ! tab
-- output to two channels
actual.rate :=0
SES i =[1 FOR repetition]

hostinG ? ch [0]
hostini ? chlil

TIME ? timeO[O]
PAR

WORD.SLICE.OUTPUT (hostoutO wbuffer0,1, (block size/4))
WORD.SLICE.OUTPUT (hostoutl~wbufferl ,l1,(block~size/4))

TIME ? timel [01
transfer.rate(time0[0] timel[0]1 ,block size rate)
actual.rate :=((actuai.rate * 6j-1)) + rate5/j

SKIP
write.nunber (actual.rate)
Screen ! tab
-- output/input in two links
actual.rate :=0
SEQiAM [1 FOR repetition]

hostinO ? ch [0]
hostini ? chill

TIME ? time0(O]
PAR

WORD.SLICE.OUTPUT (hostout0,wbuffer0,1,(boksz/)
W0RD.SLICE.OUTPUT (hostoutl,wbufferl,1, block.size/4))

transfer.rate(time0[0] tirelOl1,block.size rate)
actual.rate :=((actuai.rate * j1)+ rat--)/j

SKIP
write.numrber (actual.rate)
Screen !tab

;-output to three channels
actual.rate :=0
SESi [1 FOR repetition]

AR
hostinO ? ch[0
hostini ? c hillo
hostin2 ? chL2l

TIME ? time0[0]
PAR

WORD.SLICE.OUTPUT (hostout0,wbuffer0,(block.size/4))
WORD.SLILCE.OUTPUT (hostoutl~wbufferl ,1, (block.size/4))

131

WORD.SLICE.OUTPUT(hostout2,wbuffer2,1, (block.size/4))
trasfe~rae~tmeO[O]timel[O] ,1,block.size rate)

actual.rate :=((actuai-rate 6 (-1)) + rate~/J
SKIP
write.nunmber (actual.rate)
Screen ! tab

-output/input in three links
actual.rate :=0
SE%4' [1 FOR repetition]

hostinO ? c h[0
hostini ? ch [1hostin2 ? ch 121

TIME ? time0[0)]
PAR

WORD.SLICE.OUTPUT (hostoutO,wbuffer0,1, (block.size/4)
WORD.SLICE.OUTPUT (hostoutl,wbufferl, (block.size/4)
WORD.SLICE.OUTPUT (hostout2,wbuffer2,11 block.size/4)
WORD.SLICE.INPJT hostin , wbufferO,1 , (block size/4)
WORD.SLICE.INPUT (hostinlwbufferl , (block~size/4)
WORD.SLICE.INPUT~hostin2,wbuffer2,1 , (block.size/4))

TIME ? timel[10
transfer.rate(time0[0] timel[0],1,block size rate)

SKPactual.rate :=((actuai.rate 6 (-1)) + ratej/j

write.nuznber (actual.rate)
Screen ! tab
-- output to four channels
actual.rate :=0
SEQ4AR[1 FOR repetition]

hostinO ? ch10
hostini ? c V11
hostin2 ? ch [21
hostin3 ? c 131

TIME ? timeOflo
PAR

WORD.SLICE.OUTPUT (hostoutO ,wbufferO ,1, (block.size/4))WORD.SLICE.OUTPUT (hostoutllwbufferl11 (block.size/4)
WORD.SLICE.OUTPUT (hostout2 ,wbuffer2,1, (block.size/4)
WORD.sLICE.OUTPUT (hostout3 ,wbuffer3, 1 (block.size/4)

TIME ? timel [0
transfer.rate(limeOlOl timell l,,block size rate)
actual.rate ;-((actuai.rate *6(-1)) + rateS/j

SKIP
write.number (actual.rate)
Screen ! tab
- - inp ut from four channels
actual .rate :=0
SES4AR l FOR repetition]

hostinO ? ch 0
hostini ? c h 1
hostin2 ? ch 2
hostin3 ? ch 31

TIME ? timeO [0]
PARI

W0RD.SLICE.I PThostin0,wbuffer0 ,1 block.size4.
WORD.SLICE INPUT (hostinl ,wbufferl11 (block.size/ 4)
WORD.SLICE.INPUT (hostin2,wbuffer2 1, block size/4)
WORD.SLICE.INPUT hosti3btfr31 (ocsie4)

TIME ? timeil(O]
transfer.rate(time0 [01 timeil[O] ,1,block.size rate)
actual.rate ((actual rate 6 (-1)) + rateM/

132

SKIP
write.number (actual.rate)
Screen ! tab

-all output and input in parallel
actual.rate :=0
SEQ j =R [1 FOR repetition]

SEQ iO c
hostinO ? ch [0
hostini ? ch [1
hostin2 ? ch [2]

TIME ? timeO[j
PAR

WORD.SLICE.OUTPUT (hostoutO,wbufferO1(bckse/)
WOR.SLCEOUTUT(hotoul~bufer,,, bl.size/4)
WORD SLI E.O' TPU (ho tou 2.wb ffe 2.. , (blo ck s z /

W4ORD.SLICE.OUTPUT hostout3,wbuffr31 blck.size 4
WORD.SLICE.INPUT (hostn0wbuffer,1, (bock.size/4
W'ORD.SLICE.INPUT (hostn,wbuffer,1, (block.size/4)

WORD.SLICE.INPUT I(hostin2,wbuffer2 ,1, (block.size/4)
WORD.SLICE.INPUT (hostin3,wbuffer3,1, (block.size/4)

TIME ? timel[0],
transfer.rate(timeO[O] timel[O],l,block size rate)
actual.rate :=((actuai.rate * (j-1)) + rate5/j

SKIP

ATTNTIN !End of code shifted*12,s~aces to the left.

write.number (actual.rate)
new.line

SKIP
new.line
-- send to screen operations done concurrently

cpumode = '0'
write.string ("1 No other process running concurrently "1)%

(((cpumode=12')OR (cpumode=141))

SE"agII OR((cpumode'16')OR(cpumode='8')))

counter ? number
write.string ("Number of operations (in //) at the "1)
write.string (11b001 transputer "1)

write.number (number)
new. line
hostinO ? number
write.string (":Number of operations ,(in I)at "
write.string ("transputer 0(b003) "
write.nurnber (number)

TRUE
SE'hostinO ? number

write.string (":Number of operations, (in I)at "
write.string ("transputer u (b003) "
write.number (number)

new. line

new.line

SEQ -- main word.slice.transferI
-word buffers initialization

SEQ k =[1 FOR maxwordblock.size]

133

SEQ
wbuffer0 i 10000
wbufferl rk 20000
wbuffer2 ik] 30000
wbuffer3 [k 40000

SKIP
IF

cpumode ='2'
PAR

wordtransferf(repetition, cpuniode, flag, counter)
cpubusysun (flag, counter)

cpumode = '4'
PRI PAR

wordtransferf(repetition, cpuxnode, flag, counter)
cpubusysun (flag, counter)

cpumode = '6'
PAR

wordtransferjrepetition, cpurnode, flag, counter)
c~ubu~r (dla g, counter)

PRI PAR
wordtransfer (repetition, cpumode, flag, counter)

TREcpubusyprod (flag, counter)

wordtransfer (repetition, cpumode, flag, counter):

134

-- SC PROC get.choices (CHAN Keyboard, Screen, VAR ch, ..., run)
-- PROC get.choices (CHAN Keyboard, Screen, VAR ch, cpumode, run)
PROC get.choices (CHAN Keyboard Screen VAR ch, cRumode, run) =

--- presents menus and ets user's choices of cpumode and construct

-- modlibrary.occ
-- io-routines.occ (partial)

-- SC PROC new.line (CHAN Screen)
-- PROC new.line (CHAN Screen)
PROC new.line (CHAN Screen)=

jumps a line on the screen. May be compiled separately

DEF EndBuffer = -3:
DEF cr = 13:
DEF lf = 10
SE creen ! cr;lf;EndBuffer

-- descriptor
-- code

-- SC PROC write (CHAN Screen, VALUE string[])
-- PROC write (CHAN Screen, VALUE string[])
PROC write (CHAN Screen, VALUE strin[=

--- Writes a given string to the screen, in a byte by byte fashion
May be compiled separately

DEF EndBuffer = -3:

SEQ EQi = [1 FOR string[BYTE 0]]

Screen ! string[BYTE i]
Screen ! EndBuffer

-- descriptor

-- code
-- SC PROC clear (CHAN Screen)
-- PROC clear (CHAN Screen)
PROC clear (CHAN Screen =

--- clears the screen. Ma be compiled separately

DEF EndBuffer = -3:
DEF esc = 27:

SEQ creen ! esc; '-'; '2'; 'J'; EndBuffer --- clear sequence

Screen ! esc; '['; 'H' : --- home cursor
-- descriptor

-- code
-- SC PROC write.number (CHAN Screen, VALUE number)
-- PROC write.number (CHAN Screen, VALUE number)
PROC write.number(CHAN Screen VALUE number)=__. *********** * ****** * ,**** ***************

--- This PROC outputs a signed integer value to the screen
Ma be comiled searately

VAR output[16], count, x:
SEQ

x:= number
count:= 0
IF

-- handle special cases

135

x0O
Screen ! '0'

x<0
SEQ creen!

X: -- X
TRUE

SKIP
WHILE x>O

-- construct number
SEQ

output[count] := (x 10) + '0'
count := count + 1
x:= X/10

WHILE count > 0
- - output number
SEQ

count count-i
Screen !output[counit]

SKIP:
-- descriptor
-- code

-utilities.occ (partial)
-SC PROC capitalize (VAR ch)
-PROC capitalize (VAR ch)

PROC capitalize iVAR ch)

--ca~italizesanxlwrcschate into upper case

DEF delta =('a' - 'A') A-->6

a --- > 97 ASCII values
z --- >122

SEF
(ch <= 1z') AND (ch >= 'a')

ch :ch - delta
TRUE

SKIP
-- descriptor
-- code

-- lobal..def.tds (partial)
-Constants Definitions

DEF EndBuffer =-3
DEF tab = 9:
DEF lf = 10:
DEF cr = 13:
DEF esc = 27:
DEF sp = 32:

-- PROC write.header
PROC write.header

--writes the header of the out~ut table

SEQ
run :=run + 1
clear (Screen)
write (creen, "1RUN # "1)
write .number (Screen,run)
Screen I sp ;sp;sp md otesre-- Outpu the cpu md otesre
IF

136

cpumode = '0'
write(Screen, "cpu mode = 0 (no par proc) ")

cpumode = '1'
write(Screen, "cpu mode = 1 (one sum par) ")

cpumode = '2'
write(Screen, "cpu mode = 2 (all sum par) ")

cpumode = 13
write(Screen, "cpu mode = 3 (one sum pripar) ")

cpumode = '4'
write(Screen, "cpu mode = 4 (all sum pripar) ")

cpumode = '5'
write(Screen, "cpu mode = 5 (one prod par) ")

cpumode = '6'
write(Screen, "cpu mode = 6 (all prod par)")

cpumode = '7'
write(Screen, "cpu mode = 7 (one prod pripar)")

cpumode = '8'
write(Screen, "1Cpu mode = 8 (all prod pripar)")

TRUE
SKIP

Screen ! sp ;sp
-- output the construct type to the screenIF otuth

ch = 'A'
write(Screen, "input/output channels (bytes) ")

ch = 'B'
write,(Screen, "BYTE.SLICE.input/output (bytes) ")

write(Screen, "input/output channels (integers)")ch ='W
write(Screen, "WORD.SLICE.input/output(integers)")

TRUE
SKIP

new.line (Screen)
new.line (Screen)
write(Screen, "BYTES 1 OUT 1IN/OUT 2 OUT 21N/OUT 3 OUT")
write(Screen, "31N/OUT 4 OUT 4 IN 4IN/OUT")
new.ilne (Screen):

VAR answer:
SE QF

run = 0SEQ
- - output to the screen presentation of program
clear(Screen) I
write(Screen, " This is an Evaluation Program for ")
write(Screen, "the Transputer")
new.line (Screen)
write(Screen, " It is fully interactive and you will ")
write(Screen, "be prompted in")
new.line (Screen) b
write(Screen, " each run to choose cpu mode and type ")
write(Screen, "of construct ")
new.line (Screen)
write(Screen, " The output table will present transfer ")
write(Screen, " rates in ")
new.line (Screen)
write(Screen, " Kbits/sec for the 16 different ")
write(Screen, "block.sizes and the 9")
new.line (Screen)
write(Screen, " channel configurations ")
new.line (Screen)
new.line (Screen)
write(Screen, " TYPE (Y)ES if you want to use it)
new.line (Screen)
write(Screen, " (N)O if you want to quit ")
new.line (Screen)
answer :=z

137

-validate answer
WHILE ((answer <> 'Y') AND (answer <> IN'))

SEQ
write(Screen, "1 Type your choice "
Keyboard ? answer
capitalize (answer)
Screen ! answer
new.line (Screen)

TRUE
SKIP

clear (Screen)
-choosing type of construct
prompt Zor type of construct

write(Screen, "-Choose type of construct to be used "
new. line(Screen)
write(Screen, ' A for input/output channels (bytes) "
new. line(Screen)
write(Screan, " B for BYTE.SLICE input/output (bytes)"l)
new. line(Screen)
write(Screen, " I for input/output channels (words) "
new. line(Screen)
write(Screen It W for WORD.SLICE input/output (words)")
new.line(Screen)
-- validate type of construct
ch : Z
WHILE (((ch <> 'A')AND(ch <> 'B'))AND((ch <> 'W')AND(ch <> 'If)))

SEQ eSren "1 Type your choice I

Keyboard ? ch
capitalize (ch)
Screen ! ch
new. line(Screen)

new. line(Screen)
- hoosing cpumode during transfers

-- prompt for cpu mode
write(Sc-een, "1 Choose cpu mode during transfers")
new. line (Screen)
write(Screen "10 ->cpus executing no concurrent processes "

new. line (Screen)
write(Screen, "1ll B003 cpus executing sum concurrently (par)")
new.line(Screen
write(Screen, "2 - all cpus executing sum concurrently (par)")
new.line(Screen)
write(Screen, "3 B003 cpus executing sum concurrently(pripar)")
new.line(screen)
write(Screen, "14 -> all cpus executing sum concurrently (pripar)")
new. line (Screen)
write(Screen, "5 -> B003 cpus executing array products (par)")
new.line(Screen)
write(Screen, "16 ->all cpus executing array products (par)")
new. line (Screen)
write(Screen, "7 B> 003 cpus executing array products (pripar)")
new.line(Screen)
write(Sc een, It all cpus executing array products (pripar)")
new. line (Screen)
-- validate cpu mode
cpumode := 10
WHILE ((cpumode > #38)_OR (cpumode <~ #30)

---0 < cpumode < 8 (IN ASCI I)
SEQ eSren 11 Type your choice 11)
Keyboard ? cpumode
S creen ! cpumode
new. line(Screen)

write .header:
-- descriptor

138

-- code
-- PROC user.interface
PROC user.interface=

--- Presents menus and calls right modules to be executed
--- in the transputer root.

-- constant and variable declarations
VAR run : --- number of runs made this time (RUN #)
VAR answer : --- users choice in continue or quit
VAR construct : --- users choice of construct
VAR cpumode : --- users choice of cpu mode while transfering

- data

SEQ
run := 0
answer := Iz'
clear.screen
write.string (" Do you want to use the Link Evaluation Program?")
-- validate answer
WHILE ((answer <> 'Y') AND (answer <> 'N'))

SEQ
new. line
write.string (" Type your choice (Y) or (N)")
Keyboard ? answer
capitalize (answer)
Screen ! answer
new.line

WHILE answer =IY
SEQ

get.choices (Keyboard, Screen, construct, cpumode, run)
-- send choices to other transputers
PAR

hostoutO I construct; cpumode; repetition
hostoutl I construct; cpumode; repetition
hostout2 ! construct; cpumode; repetition
hostout3 I construct; cpumode; repetition

-- executing the right procedure and prompting for new run
IF

construct = 'A'
inout.transfer (repetition, cpumode)

construct = 'B'
byte.slice.transfer (repetition, cpumode)

construct = 'I'
int.transfer (repetition, cpumode)

construct = 'WI
word.slice.transfer (repetition, cpumode)

TRUE
SKIP

-- prompt for another run and validate answer
answer := 'Z' --- to make the next loop be executed
WHILE ((answer <> 'Y') AND (answer <> 'N'))

SEQwrite.string(EDo you want another run? Type (Y) or (N)")

Keyboard ? answer
capitalize (answer)
Screen I answer
new.line

-- send answer to other transputers
PAR

hostoutO ! answer
hostoutl I answer
hostout2 I answer
hostout3 I answer

clear.screen
write.string (" Thank you for using the Link Evaluation Program")

139

new. line
write-string ("Press reset on the bO01 board to get back "
write.string(to VAX/VMS "

PAR
IMS.BOO1.terminal.driver(Keyboard,Screen,port,baud)
user. interface:

- -- END OF CODE IN TRANSPUTER ROOT

140

-- TRANSPUTEROB003.TDS

-- SC PROC transferO.b003
-- PROC transfer0.b003 (CHAN in,out)
PROC transferO.b003 (CHAN in,out) =

description

--- This is the outer procedure placed on transputer 0 . It contains
global variables and constants, and all procedures that run in this
transputer. It receives a construct type (ch), cpu mode (cpumode),
and number of times each communication sequence (repetition), and
calls accordingly one of the following procedures:

- io.transferO,
- byte.slice.transferO,
- int.transferO or
- word.slice.transferO

-- Link Definitions
DEF link0in = 4 :
DEF link0out = 0 :
DEF linklin = 5 :
DEF linklout = 1 :
DEF link2in = 6 :
DEF link2out = 2 :
DEF link3in = 7 :
DEF link3out = 3 :
-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096, 8192 10000]:
DEF nr.of.sizes = 16: -- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size / 4:
-- variables declarations
VAR ch : --- choice of the user in type of construct
VAR answer : --- choice of the user in continue
VAR cpumode --- choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run
-- SC PROC cpubusysum (CHAN flagl, counterchan)
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=

- descri tion

It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations. It Stops when receives
--- a flag by the channel flagl from the procedure transfer that
--- is being executed concurrently.

-Oututs b channel counterchan number of operations done.

VAR a,b,e,
working,
counter,
ch

SEQ
counter : 0
working : TRUE
TIME ? a
WHILE working

ALT
flagl ? ch

working %= FALSE
TIME ? b

SEQ
e := a + b
counter := counter + 1

counterchan ! counter:
-- descriptor

141

.5

-- code
-- SC PROC cpubusyprod (CHAN flagl,counterchan)
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)=-- description

--- It keeps the cpu working in parallel(time sharing) with the link
--- transfers by doing array multiplications. It stops when receives
--- a flag by the channel flagl from the transfer procedure, that is
--- being executed concurrently. It outputs by channel counterchan
--- the number of operations done.

-- constants and variable declarations
DEF number = 100: size of array
VAR abnumber + 1 ---- array of integers

b[number + 1,- array of integers
e(number + 1], array of integers
clock, ---- integer -variable to get time
working, ---- boolean -to stcp execution
counter, ---- integer -number of operations done
ch :

SEQ- initialize buffers and variables

SEQ i 1 1 FOR numberSEQ i
a[i] 3*ibl:= 5"i

SKIP
counter : 0
working TRUE
WHILE working

ALT
flagi ? ch

working := FALSE
TIME ? clock
SEQ i,= [1 FOR number]

e[i: a[i] * b[i]
counter counter + number ---updates nr. of operations

counterchan ! counter:

142

-! .' 9 'V . - . '. - V-" i'

-- PROC inout.transferO (VALUE repetition,cpumode)
PROC inout.transferO (VALUE repetition,cpumode)
-- description

Initializes the buffers and executes the procedures iotransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC iotransferO (VALUE repetition, cpumode, CHAN flag, counter)
PROC iotransferO (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description.io

--- It executes sequentially several parallel transfers using the
input/output primitives to/from transputer root.
It uses the global constants sizetable nr.of.sizes, repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch[4]:

VAR bufferO [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1:

SEQ- initialize buffers

SESi = [1 FOR maxblock.size]
s~ufferO-BYTE i- i\8
bufferl-BYTE i- i\8

SKIP
SESi = [0 FOR nr.of.sizes]

Elock.size := sizetable~i]
-- input and output han ling
-- input from one channel
SEQ j [1 FOR repetition]

SEQ
out ! 'a'
SEQ k = [1 FOR block.size]

in ? bufferO[BYTE k]
SKIP

-- input/output to/from one link
SE Q = [1 FOR repetition]

out ! 'a'
SE$ k= [1 FOR block.size]

in ? bufferO [BYTE k]
out ! bufferl[BYTE k]SKIP

-- input from two channels
SEQ Q= [1 FOR repetition]

Out ! 'a'
SEq k = [1 FOR block.size]

in ? bufferO[BYTE k]
SKIP
-- input/output to two links
SE% j= [I FOR repetition)

out I 'a'

143

SEk = [1 FOR block.size]
in ? bufferR[BYTE k]

out ! bufferl[BYTE k]
SKIP
-- input from three channels
SES4 = [I FOR repetition]

out ! 'a'
SEQ k = [I FOR block.size]

in ? buffer0[BYTE k]SKIP

-- input/output to three links
SE Q [I FOR repetition]

out ! 'a'
SEQ k = [I FOR block.sizel

PAR
out ! bufferO [BYTE k]
in ? bufferl[BYTE k]SKIP

-- input from four channels
SE Q = [1 FOR repetition]

out ! 'a'
SEQ k = (1 FOR block.size]

In ? bufferO[BYTE k]
SKIP

-- output to four channels
SEQ j = [1 FOR repetition]

out ! 'a'
SEQ k [iFOR block.size]

S out bufferO[BYTE k]SKIP

-- all output and input in parallel
SEQ4 = [1 FOR repetition]

out ! 'a'
SE$k = [1 FOR block.size]

in ? bufferO [BYTE k]
out I bufferl[BYTE k]

SKIP
SKIP
IF

-- cpumode not = '0' then get the number of computations done
cpumode <> '0'SEQIn !aflag I 'a, --- flag to stop procedure cpubusy

opnumber ? number --- receiving computations from cpubusy
out ! number --- sending computations to transputer root

TRUE
SKIP

-- main PROC inout.transferO
IF

((cpumode = '1') OR (cpumode = '2'))

iotransferO (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

((cpumode = '3') OR (cpumode = '4'))
PRI PAR

iotransferO (repetition, cpumode, flag, counter)
cpubusysum (flaq, counter)

((cpumode '5') OR (cpumode = '6'))

144

PAR
iotransferO (repetition, cpumode, flag, counter)
cpubusyprod (fag, counter)

(c umode = '7') OR (cpumode ='8'))

iotransferO (repetition, cpumode, flag, counter)
TREcpubusyprod (fag, counter)

iotransferO (repetition, cpumode, flag, counter):

145

Low, , I

rAVWWWWWWWWW4~W -- FNWKNWW

-- PROC byte.slice.transferO (VALUE repetition,cpumode)
PROC byte.slice.transferO (VALUE repetition,cpumode)=description.

Initializes the buffers and executes the procedures transfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses Qioba constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-PROC transferO (VALUE repetition, cpumode, CHAN flag, counter)
PROC transferO (VALUE repetition,cpumode,CHAN done, opnumber)

description._**,***R******************************

--- It executes sequentially several parallel transfers using the
BYTE.SLICE procedures to/from transputer root.
It uses the global constants sizetable nr.of.sizes repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.

VAR bufeIrO [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1]

SEQ-- initialize buffers

SESi = [1 FOR maxblock.size]

EufferO-BYTE i- : i\8
bufferl-BYTE i- i\8

SKIP
SEQi = C0 FOR nr.of.sizes]

Elock.size := sizetable[i]
-- input and output handling
-- input from one channel
SE Ej (1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP .c
-- input/output to one channel

SEQ~ [1 FOR repetition]
out ! 'a'
PAR

BYTE.SLICE.INPUT(inbufferO,l,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

SKIP
-- input from two channels
SEQi= [I FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP
-- input/output to two channels
SEQj = [1 FOR repetition]

out I 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,l,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

146

1A

9

SKIP

-- input from three channels
SE = [1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP
-- input/output to three channels
SE i= [1 FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,l,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)SKIP

-- input from four channels
SESj = [1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP
-- output to four channels
SE j [1 FOR repetition]

out ! 'a'
BYTE.SLICE.OUTPUT(out,bufferO,l,block.size)

SKIP
-- all output and input in parallel
SEQ = [1 FOR repetition]

SEQ
out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,l,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,1,block.size)

SKIP
SKIP
IF

-- cpumode not = '0' then get the number of computations done.
cpumode <> '0'

SEQ
E1lag I 'a'
opnumber ? number
out ! number

TRUE
SKIP

-- main PROC byte.slice.transfero M
IF ((cpumode = '1') OR (cpumode = '2'))

transfero (repetition, cpumode, flag, counter)
cpubusysum (f a, counter)

((cpumode '3') OR (cpumode = '4'))FRI PAR
transfero (repetition, cpumode, flag, counter)
cpubusysum (f a, counter)

((cpumode = '5') OR (cpumode = '6'))

transferO (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpumode = '7') OR (cpumode = '8'))
PRI PAR

transferO (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)TRUE

transferO (repetition, cpumode, flag, counter):

147

• . o S. .•

11R1nta r(ALt c

PROC int.transfer (VALUE repetition,cpumode)PROC int.transfer0 (VALUE repetition,cpumode) =

-- description.

--- Initializes the buffers and executes the procedures intransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses qlobal constant maxwordblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC intransferO (VALUE repetition, cpumode, CHAN flag, counter)
PROC intransferO (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description._ ****** ** **** ** *** ** **** ******* *********** *** ** **** *** *******

--- It executes sequentially several parallel transfers using the
input/output primitives to/from transputer root.
It uses the lobal constants sizetable nr.of.sizes, repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch 4]:

VAR wbu ferO [mamxordblock.size + 11:
VAR wbufferl [maxwordblock.size + 1]:

SEQ-- initialize buffers
SEQ i = [1 FOR maxwordblock.size]

wbufferO [il :=
wbufferl i] :=

SKIP
SEi = [0 FOR nr.of.sizes]

sizetable[i] < 4
SKIP --- minimum number of bytes is 4 for integer transfer

TRUE
SElock.size := sizetableLil

-- input and output handling
-- input from one channel
SEQ = [1 FOR repetition]

out ! 'a'
SEq k = [FOR (block.size/4)]

in ? wbufferO[k]
SKIP
-- nput/output to one link
SE%j =[(FOR repetition]

out ! 'a'
SE$ k [1 FOR (block.size/4)]

in ? wbufferO[k]
out ! wbufferl[k]

SKIP
-- input from two channels
SE j = [1 FOR repetition]

out ! 'a'
SEq k = f FOR (block.size/4)]

in ? wbufferO[k]
SKIP

148

input/output to two links
SE = [1 FOR repetition]

out ! 'a'
SEQ k= [I FOR (block.size/4)]

in ? wbufferO[k]
out ! wbuffer1[k]SKIP

-- inout from three channels
SESj = [1 FOR repetition]

out ! 'a'
SEQ k = fl FOR Cblock.size/4)]

in ? wbufferO k]
SKIP

-- input/output to three links
SEJ = [1 FOR repetition]

out ! 'a'
SEek= [1 FOR (block.size/4)]PAR

in ? wbufferO[k]
out ! wbufferi[k]SKIP

-- input from four channels
SEj = [1 FOR repetition]

out ! 'a'
SEQ k =[FOR (block.size/4)]

in ? wbufferO [k]
SKIP
-- output to four channels
SEj =[1 FOR repetition]

out ! 'a'
SEQ k = [I FOR (block.size/4)]

out I wbufferO[k]
SKIP
-- all output and input in parallel
SES = [I FOR repetition]

out I 'a'
SE$k= [1 FOR (block.size/4)]

~AR
in ? wbufferO[k]
out I wbufferl[k]

SKIP

SKIP
IF

-- cpumode not = '0' then get the number of computations done.
cpumode <> '0'

SEO
S lag ! 'a'
opnumber ? number
out I number

TRUE
SKIP

-- main PROC int.transferO
IF

((cpumode = '1') OR (cpumode = '2'))
PAR

intransferO (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

149

l ,. , . - • € - -,- ," "z "* ,' . ;~ :: w " ' - ' "- " . d' "- ",.'-' ".'-"-" .' : a" .J

(c umode = '3') OR (cpuniode = 14'))

inttansferO (repetition, cpumode, flag, counter)
(ccpubusysum (flagj, counter),6)
((cuxode = '5') OR (cpumode='')

intransfero (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpurnode ' 7') OR (cpuniode = '8'))
PRI;L P AR

intransfero (repetition, cpumode, flag, counter)
TREcpubusyprod (flag, counter)

intransferO (repetition, cpumode, flag, counter):

150

W, F CIII r r..r 0' rd','e-k -

____ w-ww(U

-- PROC word.slice.transferO (VALUE repetition,cpuode)PROC word.slice.transferO (VALUE repetxtion,cpumode)=
-- description.

Initializes the buffers and executes the procedures wordtransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses qloba 1constant maxwordblock.size***********************************

CHAN flag, --- flags the cpu to stop
counter : --- rf.urn the number of operations cpu did

-- PROC wordtransferO (VALUE repetition, cpumode, CHAN flag....)
PROC wordtransferO (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description

--- It executes sequentially several parallel transfers using the
WORD.SLICE procedures to/from transputer root.
It uses the qlobal constants sizetable nr.of.sizes repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.ch[4]:
VAR wbu ferO[maxwordblock size + 1:
VAR wbufferl maxwordblock.size +

SEQ
-- initialize buffers
SEQ i = [1 FOR maxwordblock.size]

SErbufferO[i] i
wbufferl[i] i

SKIP
SEmi = [0 FOR nr.of.sizes]

sizetable[i] < 4
SKIP ---minimum number of bytes is 4 for integer transfer

TRUE
SE% lock.size := sizetable[i]

-- input and output handling
-- input from one channel
SEj i: [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP

-- input/output to one link
SEQ 9 = [1 FOR repetition]

out ! 'a'
PAR

WORD.SLICE.INPUT(in,wbufferO,l,(block.size/4))
WORD.SLICE.OUTPUT(out,wbufferl,1,(block.size/4))

SKIP

-- input from two channels
SESQ = [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in wbufferO,1,(block.size/4))

SKIP
-- input/output to two links
SES j = [I FOR repetition]

151

#5

out I 'a'
PAR

WORD.SLIC:E.INPUT(in,wbufferO,1, (block.size/4))
WORD.SLICE.OUTPUT(out,wbufferl,1, (block.size/4))

SKIP
-- input from three channels
SES4 = [1 FOR repetition]

out 1 'a'
-WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
-- input/outp ut to three links
SES j [1 FOR repetition]

cut I 'a'
PAR

WORD.SLICE.INPUT(in,wbuffero,1, (block size/4))
WORD.SLICE.OUTPUT(out,wbufferl,,(block.size/4))

SKIP
-- input from four channels
SES j = (1 FOR rpin

out I 'a'
WORD.SLICE.INPUT(in,wbufferO,1, (block.size/4))

SKIP
--outut to four channels
SE j =[1 FOR repetition]

out ! 'a'
WORD.SLICE.OUTPUT(out,wbufferO,1, (block.size/4))

SKIP
-- all output and input in parallel
SES4 [1 FOR repetition]

out ' a'
PAR

WORD.SLICE INPUT (in,wbuffero,l, (block.size/4))
WORD.SLICE.OUTPUT (out,wbufferl,1, (block.size/4))

SKIP
SKIP
IF

__ cpumode not = '0' then get the number of computations done.
cpumode <> '0'

SEQ
flag 1 'a'
opnumber ? number
out I number

TRUE
SKIP

-main PROC word.slice.transferO
IF

I(cumode = 1') OR (cpumode = 12'))
AR
wordtransfero (repetition cpumode, flag, counter)
cpuibusysum (flag, counteri

((copumode ' 3') OR kcpumode ' 4'))

wordtransfero (repetition cpumode, flag, counter)
(ccpubusysum (flag, counterS,,)

((cumode ' 5') OR (cpumode='6)

wordtransfer0 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpumode ' 7') OR (cpumode = '8')

152

,, J- . ., *

wordtransferO (repetition, cpumode, flag, counter)

TRUE cpubusyprod (flag, counter)
wordtransferO (repetition, cpuxnode, flag, counter):

-procedure body transferO.b003
SEQ

answer := Y
WHILE answer ='Y

in? ch
in ? cpumode
in ? repetition
IF

ch = 'A'
inout. transferO (repetition, cpumode)

ch = 'B'
byte.slice.transferO (repetition,cpuinode)

ch = III
int. transferO (repetition,cpumode)

ch= W
word. slice. transferO (repetition, cpuniode)

TRUE
inSKIP
inanswer

--- END OF CODE IN TRANSPUTER 0 B003

153

-- TRANSPUTERl-B003.TDS
-- SC PROC transferl.b003
-- PROC transferl.b003 (CHAN in,out)
PROC transferl.b003 (CHAN in,out) =
-- description
_. ***** *** * ******************************

--- This is the outer procedure placed on transputer 1 . It contains
global variables and constants, and all procedures that run in this
transputer. It receives a construct type (ch), cpu mode (cpumode),
and number of times each communication sequence (repetition), and
calls accordingly one of the following procedures:

- io.transferl,
- byte.slice.transferl,
- int.transferl or
. word.slice.transferl

-- Link Definitions
DEF link0in = 4 ;
DEF link0out = 0 :
DEF linklin = 5 :
DEF linklout = 1 :
DEF link2in = 6 :
DEF link2out = 2 :
DEF link3in = 7 :
DEF link3out = 3 :
-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096, 8192 10000]:
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size/4:
-- variable declarationsVAR ch . - choice of the user in type of construct
VAR answer : --- choice of the user in continue
VAR cpumode : --- choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run
-- SC PROC cpubusysum (CHAN flagl, counterchan)
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=

- description

--- It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations . It Stops when it receives
--- a flag by the channel flaql from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan

the number of operations done.
...************** **** *** * ******** ***** ****** ****** ***** ****

VAR a,b,e,
working,
counter,
ch

SEQ
counter : 0
working := TRUE
TIME ? a
WHILE working

ALT
flagi ? ch

working := FALSE
TIME ? b

SEQ
e := a + b
counter := counter + 1

counterchan I counter:

154

-- descriptor

-- code

-- SC PROC cpubusyprod (CHAN flagl,counterchan)
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)=
-- description
--- It keeps the cpu working in parallel(time sharing) with the link
--- transfers by doing array multiplications. It stops when receives

a flag by the channel flagl from the transfer procedure, that is
--- being executed concurrently. It outputs by channel counterchan
--- the number of o~erations done.

-- constants and variable declarations
DEF number = 100: size of array
VAR a[number + 1] - array of integers

b[number + 11 ---- array of integers
eInumber + . , array of integers

clock, - integer -variable to get time
working, ---- boolean -to stop execution
counter, ---- integer -number of operations done
ch :

SEQ
- - initialize buffers and variables
SEai= [1 FOR number]

a[iJ 3*i
b i 5*i

SKIP
counter : 0
working TRUE
WHILE working

ALT
flagi ? ch

working := FALSE
TIME ? clock

SE Q~ i = [1 FOR number]

e[i] :alli] * b[i]
counter counter + number ---updates nr. of operations

counterchan I counter:

155

w

PROC inout.transferl (VALUE repetition,cpumode)
PROC inout.transferl (VALUE repetitiori,cpumode)=

- description

--- Initializes the buffers and executes the procedures iotransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- reurn the number of operations cpu did

-- PROC iotransferl (VALUE repetition,cpumode,CHAN done,opnumber)
PROC iotransferl (VALUE repetition,cpumode, CHAN done, opnumber)-
-- descri tion__***** ** ***** **

--- It executes sequentially several parallel transfers using the
input/output primitives to/from transputer root.
it uses the bal constants: sizetable, nr.of.sizes, repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch[4]:

VAR buf[erO BYTE maxblock.size + 1:
VAR bufferl [BYTE maxblock.size +

SEQ initialize buffers

SES i = [1 FOR maxblock.size]
EY
bufferl-BYTE i- : i\8

SKIP
SESi = [0 FOR nr.of.sizes]

Elock.size := sizetableli]
-- input and output handling
-- input from two channels
SES4 = [1 FOR repetition]

out I 'a'
SEQ k = [1 FOR block.size]

in ? bufferO[BYTE k]
SKIP
-- input/output to two links
SE 4i= [1 FOR repetition]

out I 'a'
SE$ k = [1 FOR block.size]

in ? bufferO [BYTE ki"
out ! bufferl(BYTE k]

SKIP
-- input from three channels
SEQ [1 FOR repetition)

out ! 'a'
SEQ k = [I FOR block.size]

in ? bufferO[BYTE k]
SKIP
--input/output to three links
SE49 (I FOR repetition]

out I 'a'

156

Al~i- S

SE$ k= [1 FOR block.size]

in ? bufferO BYTE kjI
SKIPout ! bufferi [BYTE k

-- npt from four channels
E Q= [1 FOR repetition]

out ! 'a'
SEq k = [1 FOR block.sizeJ

SKP in ? bufferO[BYTE kIl

-output to four channels
SES4 = [1 FOR repetition]

out ! 'a'
SEQ k 11 FOR block.size]

SKP out I bufferO [BYTE ki

-- all output and input in parallel
SEQ4 = [1 FOR repetition]

out !'a'
SE$ k =[1 FOR block.size]

in ? bufferO [BYTE k%
SKP out !bufferlI[BYTE k

KIP
IF

-- cpumode NOT 1 0' then get the number of computations done.
cpumode <> '0'

SEQ
done I 'a'
opnumber ? number

TRUE
SKIP

-main PROC inout.transferl
IF

((c umode 1') OR (cpumode 1 2'))

iotransferl (repetition, cpumode, flag, counter)
cpubusysum (fla, counter)

(c pumode ' 3') OR cpumode '4'))

iotransferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

((c , ode ' 5') OR %cumode = '6'))

iotransferl (repetition, cpuniode, flag, counter)
cpubusyprod (fag, counter)

((c umode ' 7') OR (cpumode = '8'))

iotransferl (rpetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

TRUE
iotransferl (repetition, cpumode, flag, counter):

157

,11MEMORKW ,.-W
I- J

KUWAMM%1r M - h
Y* rtWr WMAXR

-- PROC byte.slice.transferl (VALUE repetition,cpumode)
PROC byte.slice.transferl (VALUE repetition,cpumode)=-descri tion.. descri***
--- Initializes the buffers and executes the procedures transfer,

plus, when applicable according to cpumode, one of the following:
cpubusv.prod or cpubusy.sum.

Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC transferl(VALUE repetition, cpumode, CHAN done, opnumber)
PROC transferl (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description

--- It executes sequentially several parallel transfers using the
BYTE.SLICE procedures to/from transputer root.
It uses the global constants: sizetable, nr.of.sizes,
repetition

-- variable declarations
VAR block.size,

number, the number of operations done by the cpu.oh[4]:
VAR buferO (BYTE maxblock.size + 11:
VAR bufferl [BYTE maxblock.size + 1]:

SEQ- initialize buffers

SE E i [1 FOR maxblock.size]

%fferO-BYTE i: i\8
bufferl-BYTE i- : i\8

SKIP
SESi = [0 FOR nr.of.sizes]

Elock.size := sizetable i]
-- input and output handling
-- input from two channels
SES4 = [1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,buffer,l,block.size)

SKIP
-- input/output to two channels
SEQ4 [1 FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,1,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

SKIP
-- input from three channels
SEQ' = [1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP
-- input/output to three channels
SESQ =[i FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,1,block.size)

158

SKP BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

-- input from four channels
SEQ j = [1 FOR repetition]

out I 'a'
BYTE.SLICE.INPUT(in,bufferO,l,block.size)

SKIP
-- cotput to four channels
SE j= [1 FOR repetition]

out ! 'a'
BYTE.SLICE.OUTPUT(out,bufferO,l,block.size)

SKIP
- - all output and input in parallel
SEQ j = [1 FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.I1NPUT(in,bufferO,l ,block size)
BYTE.SLICE.OUTPUT(out,bufferl,1,block.size)

SKIP
SKIP
IF

-- cpumode not = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done 1 'a'
opnumber ? number

TRUE
SKIP

-main byte.slice.transferl
IF

((cpumode = 1') OR (cpumode 1 2'))

transfer. (repeiion, cpumodefacutr
cpubusysum (flag counter)

((cpur. Dde ' 3') OR (cumode = '4'))

transfer. (repetition, cpumode, flag, counter)
cpubusysum (facounter)

((cunode = '5') OR 1cpumode '6)

transfer. (repetition, cpumode, flag, counter)
cpubus (flct ag, counter)

((cpumode = 171) OR (cpumode = '8'))
FRI PAR

transfer. (repetition, cpumode, flag, counter)

TRUE cpubusyprod (flag, counter)
transfer. (repetition, cpumode, flag, counter):

V'

159

int (VALU reptition -

-- PROC int.transferl (VALUE repetition,cpumode)PROC int.transferl (VALUE repetition,cpumode)=

-- description

--- Initializes the buffers and executes the procedures intransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC intransferl (VALUE repetition, cpumode, CHAN done ...)
PROC intransferl (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description

--- It executes sequentially several parallel transfers of integers
using the input/output primitives to/from transputer root.
It uses the global constants: sizetable, nr.of.sizes,

--- repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch 4]:

VAR wbufferO [maxwordblock.size + 1]:
VAR wbufferl [maxwordblock.size + 1]:

5EQ-- initialize buffers

SEQ i = [1 FOR maxwordblock.size]

wbufferO [i] 3.
wbuffer. i] =i

SKIP
SEJi = [0 FOR nr.of.sizes]

sizetable[i]. < 4
SKIP ---minimum number of bytes is 4 for integer transfer

TRUE
SE% lock.size := sizetableji]

-- input and output handling
-- input from two channels
SE) = [1 FOR repetition]

out ! 'a'
SEQ k = 1 FOR (block.size/4)]

in?wbufferO[k]SKIP

--input/output to two links
SEQ Q =[1 FOR repetition]

out ! 'a'
SEQ k = Li FOR (block.size/4)]

AR
in ? wbuffer0[k]
out ! wbufferl [k]SKIP

put from three channels

SES = [1 FOR repetition]

out ! 'a'
SEQ k = 1 FOR (block.size/4)]

in ? wbufferoLk]

160

4.q

SKIP
-- input/output to three links
SEOI = [1 FOR repetition]

out ! 'a'
SE$ k= [1 FOR (block.size/4)]

in ? wbufferO k]
SKIP out ! wbufferl [k]

--iput from four channelsSE QJ [1 FOR repetition]

out ! 'a'
S k= 1FOR (block.size/4)]
i? wbuferONk

SKIP
- - output to four channels
S4~ = [1 FOR repetition]

out ! 'a'
SEQ k = 1 FOR (block.size/4)]

SKP out !wbufferO[k]

- - all output and input in parallel
SES4 [1 FOR repetition]

out ! 'a'
SE$ k= [1 FOR (block.size/4)]

PAR
in ? wbuffer 0Jl
out ! wbufferl[k3

SKIP
SKIP
IF

.cpuxnode not = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-main PROC int.transferl
IF puod = 1') OR (cpumode = '2'))

intransferi (rptton, cpumode, flag, counter)
cpubusysum (flaq, counter)

((cpumode ' 3') OR (cpumode = '4'))

intransferl (repetition, cpumode, flag, counter)
(c pubusysum (flag, counter)16)
((cumode = '5') OR cpuniode='')

intransferi (repetition, cpuniode, flag, counter)
cpubusyprod (flag, counter)

((cpumode ='7') OR (cpumode = '81))

intransferi (repetition, cpuznode, flag, counter)
cpubusyprod (flag, counter)

Tintransferi (repetition, cpumode, flag, counter):

161

-- PROC word.slice.transferl (VALUE repetition,cpumode)
PROC word.slice.transferl (VALUE repetition,cpumode) =

description

--- Initializes the buffers and executes the procedures wordtransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.

Uses l1obal constant maxblock.size

CHAN flag, --- flags the Cpu to stop
counter : --- return the number of operations cpu did

-- PROC wordtransferl (VALUE repetition, cpumode, CHAN done, ...)
PROC wordtransferl (VALUE repetition,cpumode,CHAN done, opnumber)=

- description

--- It executes sequentially several parallel transfers of integers
using the WORD SLICE procedure to/from transputer root.

--- It uses the global constants: sizetable, nr.of.sizes,
--- re etition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch [4 :

VAR wbuferO maxwordblock.size + I1:
VAR wbufferl maxwordblock.size + 11:

SEQ.-- initialize buffers
SEQ i = [1 FOR maxwordblock.size]

wbuffero[i] :
wbufferl[i := i

SKIP
SE Fi = [0 FOR nr.of.sizes]

sizetablei]. < 4
SKIP--- minimum number of bytes is 4 for integer transfer

TRUE
SE% lock.size := sizetable i]

-- input and output handling
-- input from two channels
SEe] = [1 FOR repetition]

out 1 'a'
WORD.SLICE.INPUT(in,wbuffer,1,(block.size/4))SKIP

-- input/output to two links
SE% = [1 FOR repetition]

out I 'a'
PAR

WORD.SLICE.INPUT(in,wbuffer0,1,(block.size/4))
WORD.SLICE.OUTPUT(out,wbufferll,(block.size/4))SKIP

-- in put from three channels
SEQ7 = [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
-- input/output to three links
SEQ j[1 FOR repetition]

162

SEQ
out ! 'a'
PAR

WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))
WORD.SLICE.OUTPUT(outwbufferll,(block.size/4))

SKIP

--input from four channels
SES = [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
-- output to four channels
SES4 = [1 FOR repetition]

out I 'a'
WORD.SLICE.OUTPUT(out,wbufferO,l,(block.size/4))

SKIP
-- all output and input in parallel

SSKIP

IF -- cpumode not = '0' then get the number of computations done.
cpumode <> '0' '

SEQ

uone ! 'a'

opnumber ? number [
TRUE

SKIP
-- main PROC word.slice.transferl

IF
((cPoUmnde t = '1') OR (cpumode = '2')) ns

wordtransferl (repetition, cpumnode, flag, counter)
cpubusysum (flag, counter)((cpumode= '3') OR cpumode = '41))

wordtransferl (repetition, cpuxnode, flag, counter) ,
cpubusysum (flag, counters((cP~uoden = '5') OR cpumode = '6'))

wordtransferl (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)((cpumode = '7') OR (cpumode = '8'))

15I AR

wordtransferl (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

wordtransferl (repetition, cpumode, flag, counter):

-- procedure body transferl.b003SEQ
answer := 'Y'
WHILE answer = '

SEQ,in ? ch
in ? cpumode
in ? repetition
IFch = 'A'

163,

WHILEanswe = 'Y

SE

inout. transferi (repetition,cpuiode)
ch = IB'

byte.slice.transferl (repetitiori,cpumode)
ch = III

int.transferl (repetition,cpumode)
ch = 'WI

word.slice. transferi (repetition,cpumode)
TRUE

SKI?
in ? answer

END OF CODE IN TRANSPUTER 1 B003

164

-- TRANSPUTER2_B003.TDS
-- SC PROC transfer2.b003
-- PROC transfer2.b003 (CHAN in,out)
PROC transfer2.b003 (CHAN in,out) =

-- description

--- This is the outer procedure placed on transputer 2 It contains
global variables and constants, and all procedures that run in this
transputer. It receives a construct type (ch), cpu mode (cpumode),
and number of times each communication sequence (repetition), and
calls accordingly one of the following procedures:

- io.transfer2,
- byte.slice.transfer2,
- int.transfer2 or
- word.slice.transfer2

-- Link Definitions
DEF link0in = 4 :
DEF link0out = 0 :
DEF linklin = 5 :
DEF linklout = 1 :
DEF link2in = 6 :
DEF link2out = 2 :
DEF link3in = 7 :
DEF link3out = 3 :
-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096, 8192, 10000]
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size/4:
-- variable declarations
VAR ch --- choice of the user in type of construct
VAR answer :--- choice of the user in continue
VAR cpumode --- choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run
-- SC PROC cpubusysum (CHAN flagl, counterchan)
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=

- escription

--- It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations . It Stops when it receives
--- a flag by the channel flagl from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan
--- the number of operations done.

VAR a,b,e,
working,
counter,
ch

SEQ
counter : 0
working : TRUE
TIME ? a
WHILE working

ALT
fle,1 ? ch

)rking := FALSE
TIME ? b

SEQ
e := a + b
counter := counter + 1

counterchan ! counter:

165

-- descriptor

-- code
-- SC PROC cpubusyprod (CHAN flagl,counterchan)-- PROC cpubusyp rod (CHAN flagl,counterchan)PROC cpubusyprod (CHAN flagl,countercan)

--descrition

It keeps the cpu working in parallel(time sharing) with the link
transfers by doing array multiplications. It stops when receives
a flag by the channel flagl from the transfer procedure, that is
being executed concurrently. It outputs by channel counterchan
the number of operations done.

-- constants and variable declarations
DEF number = 100: ---- size of array
VAR a[number + 1 -- array of integers

brnumber + i , ---- array of integers
e [number + 1f, array of integers

cock, integer -variable to get time
working, boolean -to stop execution
counter, ---- integer -number of operations done
ch :

SEQ
- - initialize buffers and variables
SESi = [1 FOR number]

a[il : 3*i
b[i] = 5*i

SKIP
counter : 0
working : TRUE
WHILE working

ALT
flagl ? ch

working := FALSE
TIME ? clock

SE Q~ i = [1 FOR number]
e i] : a[i] * b[i]

counter counter + number ---updates nr. of operations
counterchan ! counter:

166

71

POi o t r(L retto

-- PROC inout.transfer2 (VALUE repetition,cpumode)PROC inout.transfer2 (VALUE repettion,cpumode)=
descriDtion

--- Initializes the buffers and executes the procedures iotransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC iotransfer2 (VALUE repetition, cpumode, CHAN done, counter)
PROC iotransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

-- variable declarations
VAR block.size,

number, the number of operations done by the Cpu.
ch BE o e

VAR buffer0 [BYTE maxblock.size + 1]:VAR bufferl [BYTE maxblock size + i

SEQ - initialize buffers

SES i= [1 FOR maxblock.size]
%ufferO-BYTE i-: i\8
bufferi-BYTE i- i\

SKIP
SEQ i = [0 FOR nr.of.sizes]

SEq
Elock.size := sizetableji]
-- input and output handling
-- input from three channels
SE Q [1 FOR repetition]

out ! 'a'
SEQ k = (1 FOR block.size]

in ? bufferO[BYTE k]SKIP

-- output to three channels
SEQ j= [1 FOR repetition]

out I 'a'
SE$k= (1 FOR block.size]

?AR
in ? bufferO[BYTE ki
out I bufferl[BYTE k]SKIP

-- input from four channels
SES4 = [1 FOR repetition]

out ! 'a'
SEQ k = i1 FOR block.size]

in ? bufferO[BYTE k]
SKIP
-- output to four channels
SEQ = [1 FOR repetition]

out ! 'a'
SEQ k = 1 FOR block.size]

out I bufferO[BYTE k]SKIP

-- all output and input in parallel
SESQ4= [1 FOR repetition]

167

_-.M _-. -, WWWVVW ' iw x

out I 'a'
SE$ k- [1 FOR block.size]

in ? bufferO[BYTE k]
out I bufferl[BYTE k]

SKIP
SKIP
IF

-- cpumode NOT = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main inout.transfer2
IF

((cpuode = '1) OR (cpumode ' '))
iotransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

((cpumode = '3') OR (cpumode = '4'))FRI PAR
iotransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

((umode -5') OR (cpumode =' 6'))

iotransfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpumode = '7') OR (cpumode = '8'))PRI PAR
iotransfer2 (repetition, cpumode, flag, counter)

TRUE cpubusyprod (flag, counter)

iotransfer2 (repetition, cpumode, flag, counter):

168

PROC byte.slice.transfer2 (VALUE repetitioncpumode)
PROC byte.slice.transfer2 (VALUE repetition,cpumode)=
PO descri eetion- - *ecr ***n'

Initializes the buffers and executes the procedures iotransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC transfer2 (VALUE repetition, cpumode, CHAN done, counter)
PROC transfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch BE o1

VAR buffer0 [BYTE maxblock.size + iVAR bufferl [BYTE maxblock.size +i]1

SEQ.-- initialize buffers
SEE i= [1 FOR maxblock.size]

ufferO-BYTE i-: i\8
bufferl-BYTE i- i\8

SKIP
SEOS i= [0 FOR nr.of.sizes]

%lock.size := sizetable(i]
-- input from three channels
SE = [1 FOR repetition]

out ! 'a'
BYTE.SLICE.INPUT(in,buffer0,l,block.size)SKIP

-- input/output to three channels
SECQ [1 FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferol,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)SKIP

-- input from four channels
SEq= [1 FOR repetition]

out ! 'a'

SKIP BYTE.SLICE.INPUT(in,bufferO,l,block.size)
-- output to four channels
SEj = [1 FOR repetition]

out I 'a'
BYTE.SLICE.OUTPUT(out,bufferO,l,block.size)SKIP

-- all output and input in parallel
SEQ2 = [1 FOR repetition]

out ! 'a'
PAR

BYTE.SLICE.INPUT(in,bufferO,l,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

SKIP

169

or~

SKIP
IF

__ cpumode NOT = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main byte.slice.transfer2
IF

((c umode = '1') OR (cpumode = '2'))

transfer2 (repetition, cpumode, flag, counter)
cpubusysum (f ag, counter)

((cpumode = '3') OR (cpumode = '4'))
PRI PAR

transfer2 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)

((cpumode = '5') OR (cpumode = '6'))
PAR

transfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpumode '7') OR (cpumode = '8'))
FRI PAR

transfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)TRUE 4

transfer2 (repetition, cpumode, flag, counter):

1,
170"

!9

,.

m . ,) I, 3 . i . , ,,, .,. .ll... "." '."ll . 4-ll
.

PROC int.transfer2 (VALUE repetition,cpumode)

PROC int.transfer2 (VALUE repettion,cpumode)=

- description

--- Initializes the buffers and executes the procedures intransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses lobal constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC intransfer2 (VALUE repetition, cpumode, CHAN done,...)
PROC intransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

- description.io--- *****R*********************************o
--- It executes sequentially several parallel transfers of integers

using the input/output primitives to/from trans uter root.It uses the global constants: sizetable, nr.or~sizes,
repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
chVf :

VAR wbuffer0 [maxwordblock.size + 1VAR wbufferl [maxwordblock.size +i]1

SEQ
-- initialize buffers
SES i = [1 FOR maxwordblock.size]

wbufferO[i] := i
wbufferl[ij : iSKIPSEI = [0 FOR nr.of.sizes]

sizetable[i] < 4
SKIP --- minimum number of bytes is 4 for integer transfer

TRUE
SEblock.size := sizetable[i]

-- input and output handling
-- input from three channels
SE Q= [1 FOR repetition]

out ! 'a'
SEQk =1 FOR Cblock.size/4)]

inwbufferO jk]
SKIP
-- input/output to three links
SE Q =[I FOR repetition]

out ! 'a'
SE$ k= [1 FOR (block.size/4)]

in ? wbufferO[k]
out I wbufferl[k]

SKIP

-- input from four channels
SE Q = [I FOR repetition]

out ! 'a'
SE k = I FOR (block.size/4)]

in ? wbufferOk]

171

-..

SKIP
-- output to four channels
SESA = [1 FOR repetition]

out ! 'a'
SEQ k =[I FOR (block.size/4)]

out , wbuffer0[k]
SKIP
-- all output and input in parallel
SE j = [1 FOR repetition]

out ! 'a'
SE$.k= [1 FOR (block.size/4)]

rAR
in ? wbufferO[k]
out ! wbufferl[I] '

SKIP
SKIP

-- cpumode NOT = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main int.transfer2
IF

((cpumode = 1') OR (cpumode = '2'))

intransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flaq, counter)

((cpumode = '3') OR (cpumode
= '4'))

PRI PAR
cpubussum (repetition, cpumode, flag, counter)cpubusysum (flag counter)

((W umode = '5() OR cpumode = '6))

intransfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)
umode = '7') OR (cpumode = 8'))PRII PAR
intransfer2 (repetition, cpumode, "lag, counter)
cpubusyp rod (flag, counter~

TRUE
intransfer2 (repetition, cpumode, flag, counter):

172

-- PROC word.slice.transfer2 (VALUE repetition,cpumode)
PROC word.slice.transfer2 (VALUE repetition,cpumode)=

description

--- Initializes the buffers and executes the procedures wordtransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC wordtransfer2 (VALUE repetition, cpumode, CHAN done, ...)
PROC wordtransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch [4]:

VAR wbufferO [maxwordblock.size + 1]:
VAR wbufferl maxwordblock.size + 1:

SEQ -S initialize buffers
SE i = (1 FOR maxwordblock.size]

wbufferofi] :

SKPwbufferl tiJ iSKIP

SE i = [0 FOR nr.of.sizes]

sizetable[i] < 4
SKIP --- minimum number of bytes is 4 for integer transfer

TRUE
SElock.size := sizetable[i]

-- input and output handling
-- input from three channels
SE Z = [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
-- input/output to three links
SEC Q [1 FOR repetition]

out ! 'a'
PAR

WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))
WORD.SLICE.OUTPUT(out,wbufferl,l,(block.size/4))

SKIP
-- input from four channels
SEQ7 [1 FOR repetition]

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
--output to four channels
SEj = [1 FOR repetition]

out ! 'a'
WORD.SLICE.OUTPUT(out,wbuffero,1,(block.size/4))

SKIP
-- all output and input in parallel
SES4 = [1 FOR repetition]

173

out I 'a'
PAR

WORD.SLICE.INPUT(in,wbufferO,1, (block.size/4))
WORD.SLICE.OUTPUT(out,wbufferl1,,(block.size/4))

SKIP
SKIP
IF

__ cpumode NOT = '0' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main word.slice.transfer2
IF

((cpumode = '1') OR (cpumode = '2'))
PAR

wordtransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flag, counterS

((cpumode = '3') OR (cpumode = '4'))
PRI PAR

wordtransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter,

((cpumode = '5') OR cpumode = '6'))
PAR

wordtransfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)

((cpumode = '7') OR (cpumode = '8'))FRI PAR
wordtransfer2 (repetition, cpumode, flag, counter)

TRUE cpubusyprod (flag, counter)
wordtransfer2 (repetition, cpumode, flag, counter):

-- procedure body transfer2.b003
SEQ

answer := 'Y'
WHILE answer = 'Y'

SEQ
in ? ch
in ? cpumode
in ? repetition
IF

ch = 'A'
inout.transfer2 (repetition,cpumode)

ch = 'B'
byte.slice.transfer2 (repetition,cpumode)

ch = 'I'
int.transfer2 (repetition,cpumode)

ch = 'W '
word.slice.transfer2 (repetition,cpumode)

TRUE
SKIP

in ? answer

--- END OF CODE IN TRANSPUTER 2

174

-- TRANSPUTER3_B003.TDS

-- SC PROC transfer3.b003
-- PROC transfer3.b003 (CHAN in,out)
PROC transfer3.b003 (CHAN inout)

- description

--- This is the outer procedure placed on transputer 3 It contains
--- global variables and constants, and all procedures that run in this
--- transputer. It receives a construct type (ch), cpu mode (cpumode),

and number of times each communication sequence (repetition), and
calls accordingly one of the following procedures:

- io.transfer3,
- byte.slice.transfer3,
- int.transfer3 or
- word.slice.transfer3

-- Link Definitions
DEF link0in = 4 :
DEF link0out = 0 :
DEF linklin = 5 :
DEF linklout = 1 :
DEF link2in = 6 :
DEF link2out = 2 :
DEF link3in = 7 :
DEF link3out = 3 :
-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096, 8192, 10000]:
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size/4:
-- variable declarations
VAR ch --- choice of the user in type of construct
VAR answer : --- choice of the user in continue
VAR cpumode : --- choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run
-- SC PROC cpubusysum (CHAN flagl, counterchan)
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=
-- descri tion.cpu

It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations . It Stops when it receives
--- a flag by the channel flagl from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan
--- the number of operations done.___*********** ***** ******* ***** ** **** *** ********* ****** ** **

VAR a,b,e,
working,
counter,
ch :

SEQ
counter : 0
working : TRUE
TIME ? a
WHILE working

ALT
flagl ? ch

working := FALSE
TIME ? b

SEQ
e := a + b
counter := counter + 1

counterchan ! counter:

175

v~ ~~- e~.%b%. ~ ~ f%{!

-- descriptor

-- code
-- SC PROC cpubusyprod (CHAN flagl,counterchan)
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)=
-- descri tion

It keeps the cpu working in parallel(time sharing) with the link
--- transfers by doing array multiplications. It stops when receives

a flag by the channel flagl from the transfer procedure, that is
being executed concurrently. It outputs by channel counterchan

--- the number of operations done._._ ******** * * ***** ***** ***** ******** ***************** ** *** *

-- constants and variable declarations
DEF number = 100: size of array
VAR abnumber + 1] - array of integers

b[number + :' array of integers
e[number + , array of integers
clock, ---- integer -variable to get time
working, ---- boolean -to stop execution
counter, ---- integer -number of operations done
ch

SEQ
-- initialize buffers and variables
SE i = [1 FOR number

a[i 3*i
bi] := 5*i

SKIP
counter 0
working : TRUE
WHILE working

ALT
flagi ? ch

working := FALSE
TIME ? clock

SEQ i = [1 FOR number]
e[i] := a[i] * b[i]

counter := counter + number ---updates nr. of operations
counterchan ! counter:

'1a.

1761

I _ '- ' 6, _ % 1 "..... " """.". """"" " . . •

-- PROC inout.transfer3 (VALUE repetition,cpumode)
PROC inout.transfer3 (VALUE repettion,cpumode)=

-- description

--- Initializes the buffers and executes the procedures iotransfer,
plus, when applicable according to cpumode, one of the following:

cpubusy.prod or cpubusy.sum.
Uses global constant maxblock.size

CHAN flag, --- flags the cpu to stop
counter : --- return the number of operations cpu did

-- PROC iotransfer3 (VALUE repetition, cpumode, CHAN done,...)
PROC iotransfer3 (VALUE repetition,cpumode,CHAN done, opnumber)=
-- description

--- It executes sequentially several parallel transfers of bytes
using the input output primitives to/from transputer root.
It uses the global constants: sizetable, nr.of.sizes,
repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch[4]:

VAR bufferO [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + ij:

SEQ.-- initialize buffers

SE i = [L FOR maxblock.size]
E ufferO-BYTE i- : i\8
bufferi-BYTE i- i\8

SKIP
SE i= [0 FOR nr.of.sizes)

lock.size := sizetable[i]
-- input from four channels
SE%4 = [I FOR repetition]

out ! 'a'
SEQ k = [1 FOR block.size]

in ? bufferO[BYTE k]
SKIP

-- output to four channels
SE% j= [I FOR repetition]

out I 'a'
SEQ k = [iFOR block.size]

out 'bufferO[BYTE k]
SKIP
-- all output and input in parallel
SEOj= [I FOR repetition]

out ! 'a'
SEQ k = [I FOR block.sizel

PAR
in ? bufferO [BYTE k]
out ! bufferi[BYTEk]

SKIP
SKIP
IF

-- cpumode not='O' then get the number of computations done.
cpumode <> '0'

177

p

SEQ
done a'
opnumber ? number

TRUE
SKIP

-- main inout.transfer3
IF

((coumode = 1') OR (cpumode = '21'/
P;AR

iotransfer3 repetit ion, cpuxnode, flag, counter)
cpubusysum (.lag, counter)

((cpudode = '3') OR (cpumode = '4'))

iotransfer3 (repetition, cpumode, flag, counter)
cpubusysum (fla ,counter),(cTumode = '5') OR (cpumode ='6)

iotrnsfe3 (rpetition, cpumode, flag, counter)
cpubusyrod (fag, counter)

((cpumode = '7') OR (cpumode = '8'))
PRI PAR

iotransfer3 (repetition, cpumode, flag, counter)
TREcpubusyprod (flag, counter)

iotransfer3 (repetition, cpumode, flag, counter):

178

V*

L'

-PROC byte.slice.transfer3 (VALUE repetitioncpumode)
PROC byte.slice.transfer3 (VALUE repetition,cpumode)z

descration

--Initializes the buffers and executes the procedures transfer,
plus, when applicable according to cpwnode, one of th-e follcw~.ng.

UsscpubusyI prod or cpubusy.suw.
Use jlbalconstant maxblock.s.ize

CHAN flag, flag tepuostop
counter : - return tehepnumber of operations cpuj did

-- PROC transfer3 (VALUE repetition, cpumode, CHAU dono!..
PROC trinsfer3 i'7ALTJE repet~tion:pumode-HAN done, cpnumber

descrij tion

--It executes sequentially several parallel transfers of B'Y:-E3
u sing the BYTE.SLICE procedures to;/from transputer rcot.

--it uses the g~lobal constants: sizetab~e. nr.of.sizes
repetition

-var-able declarations
VAR b:;ck.size

num.ber, -- the number of operations done cy *he :pu.
chr4):

VAR buf~erO [877E maxblock.size * I]:
VAR bufferi IBYTE maxblock.size+

SEQ initialize buffers
SE i = :1 FOR raxblock.size'

EufferO-BYTrE i- i a
if. fferl-BYiE i- i 8

SKI p

SEJ 1 = rO F3R nr.cf.sizes]
EJock.size := sizetab:ei
- - inputl from four :rhannes
SEQ i: = !. FOR repet~tion

out a'
BYTE .SL CE. INPU4(in. bufferO,' .block. size)

SKIP
-- output 'o four channels
SES4E = 41 FOR repetition'

out 8'a
BYTE .SLICE .OUTPT out bufferO, >b'ock. sue)

SKIP
-- all output and input in parallel
SEJ 4 = [I FOR repetition]

out ! 'a'
PAR

BYTE. SLICE. IN PUT(in .bufferO 1 block, size)
BYTE.SLICE.OUTPUT(outbufferl,",block.size)

SKIP
SKIP
IF

-cpumode not='O' then get the number of computations done.
cpumode <>) '0'

SEQ
done ! 'a'
opnumber ? number

179

TRUE
SKIP

-main byte.slice.transfer3
IF

((cpuznode 1') OR (cpuznode a'21))

tranfer3(reptition, cpwnode, flag, counter)
(ccpubusysui (E q, counter)(punode x'3') OR (cpumode = '4')
FRI PAR

transfer3 (repttion, cpuniode, flag, counter)
cpubusysun(lm counter)

(pumod 5)O cpuniode = '6'))
F AR

transfer3 (repeitition, cpuznode, flag, counter)
cpubusyprod (fag, counter)

((cpuniode 2 7') OR (cpumode = 8'))
FRI PAR

transfer3 (re~etition, cpuinode, flag, counter)
TREcpuibusyprod (flag, counter)

transfer3 (repetition, cpuznode, flag, counter):

180S

-- PROC it~transfe3 (VALUE epetitioncpuxnode

PROC int.transfer3 (VALUE repetition,cpuode)
descri~ ton

--Initializes the buffers and executes the procedures intransfer,
-plus, when applicable according to cpumode, one of the following:
-- cpubusy.prod or cpubusy-sun.

-Uses global constant maxblock.size

CHAN flag, -- fla s the Cpu to stop
counter : --- return the number of operations cpu did

-PROC intransfer3 (VALUE repetition, cpumode, CHAN done, ...)
PROC intransfer3 (VALUE repetition,cpumode,C{AN done, opnurnber)=

-descri~ tion

--It executes sequentially several parallel transfers of integers
usin th inut!outputsprimitives to/from transputer root.

--It uses the global constants: sizetable, nr.of.sizes,

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
VAR 4b~r : awrboksz 1

VAR wbufferl [maxwordblock size + 1:

-E initialize buffers
SES i =[1 FOR maxwordblock.size]

wbufferO [BYTE i] i
wbufferl BYTE i] i

SKIP
SE i = [0 FOR nr.of.sizes]

sizetable[i], < 4
SKIP --- minimum number of bytes is 4 for integer transfer

TRUE
SE% loksz =sizetable[ij

-input from four channels
SEQ4' [1(FOR repetition]

out ! 'a'
SEq k = 1FOR (block.size/4)]

SKP in ? wbuffe rO jk

--output to four channels
SE Q [1 FOR repetition]

out I 'a'
SEQ k = 1 FOR (block.size/4)]

SKP out !wbufferOj

-- all output and input in parallel
SEQ%9 [1 FOR repetition)

out ! 'a'
SEI$ k [1 FOR (block.size/4)]

in ? wbufferOc

SKIP out ! wbufferl-ilk]

181

CI -M I

SKIP
IF

__ cpumode not='O' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main int.transfer3
IF

AR umd = 1') OR (cpumode 1 21))
intransfer3 (repetition, cpumode, flag, counter)
cpubusysun (flag, counter)

((cpumode = '3') OR (cpumode = '4'))

intransfer3 (repetition, cpumode, flag, counter)
cpubu svsum (flagj, counter)

((cpuxnode =15') OR kcpumode ='61))
PAR

intransfer3 (repetition, cpumode, flag, counter)
(ccpub~usy (flag, counter), 9
((cumode =Y17 1) OR (cpumode '8)

intransfer3 (repetition, cpumode, flag, counter)
TREcpubusysum (flag, counter)

intransfer3 (repetition, cpumode, flag, counter)

182

-PROC word.slice.transfer3 (VALUE repetition,cpumode)
PROC word.slice.transfer3 (VALUE repetition,cpumode)=

-descrip tion

Initializes the buffers and executes the procedures wordtransfer,
plus, when applicable according to cpumode, one of the following:

cubusy .prodtortcpubusy.sum.
--ses global constant maxblock.size

CHAN flag, -- flags the Cpu to stop
counter : -- return the number of operations Cpu did

-- PROC wordtransfer3 (VALUE repetition, cpumode, CHAN done,...)
PROC wordtransfer3 (VALUE repetition,cpumode,CHAN done, opnumber)=
:-descri~ tion

--It execute s sequentially several parallel transfers of integers
using the WORD.SLICE procedures to/from transputer root.
It uses the global constants: sizetable, nr.of.sizes,
repetition

-- variable declarations
VAR block.size,

number, --- the number of operations done by the cpu.
ch [4]

VAR wbufferO [maxwordblock.size + 1:
VAR wbufferl [maxwordblock.size + 11:

SEQ -initialize buffers
SES 2i =(1 FOR maxwordblock.size]

wbufferO [BYTE i : i
SKPwbuff rl BYTE ii :-

SEJ i =[0 FOR nr.of.sizesj

sizetable~i] < 4
SKIP --- minimum number of bytes is 4 for integer transfer

TRUE
SE% oksz := sizetableLlil

-input and output handling
--iput from four channels

SE17E = [I FOR repetition)

out ! 'a'
WORD.SLICE.INPUT(in,wbufferO,1,(block.size/4))

SKIP
-- output to four channels
SEQSj = (I FOR repetition]

out I 'a'
WORD.SLICE.OUTPUT(out,wbufferO,1,(block.size/4))

SKIP
- - all output and input in parallel
SESQ = [1 FOR repetition]

out!'a
PAR

WORD.SLICE.INPUT (in,wbufferO,1 '(block size/4))
WORD.SLICE.OUTPUT (out,wbufferl,l, (block.size/4))

SKIP
SKIP
IF

183

-cpumode not='O' then get the number of computations done.
cpumode <> '0'

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIAP

-main word.slice.transfer3
IF

(c ,unode x 1') OR (cpumode = '21))

wordtransfer3 (repetition cpumode, flag, counter)
cpubusysum, (flag, counterS
PARuod '31) OR (cpumode ='4'))

wordtransfer3 (repetition cpumode, flag, counter)
(ccpubusysum (flag, counterS((Pumode ' 5') OR Icpumode = '6'))

wordtransfer3 (repetition, cpumode, flag, counter)
cpubusyprod (flag counter)
PARuod = '7') OR (cpumode = 8'))

wordtransfer3f(repetition, cpusnode, flag, counter)
TREcpubusyprod (flag, counter)

wordtransfer3 (repetition, cpuznode, flag, counter):
m-.rain transfer3.b003

SEQ
answer tz IV'
WHILE answer - '''

SEQ
in I ch
in ? cpumode
in ? repetition
IF

ch A 'A'
inout.transfer3 (repetition,cpumode)

ch ' 8'
byte.slice.transfer3 (repetition,cpumode)

ch = 'I'
int.transfer3 (repetition,cpunode)

ch ='W'
word.slice-transfer3 (repetition,cpumode)

TRUE
SKIP

in ? answer

IS4I

1847

U of ration

-- Lin~k Definitions
DEF link~in u 4
DEF 14nkCout =
CFF iinklin =5
ZDEF linklout 1
DEF lnk'in = 6
DEF link~cout = 21
DEF lir..3in =7
DEF link3out z 3
DEF root = 100:
CHAN4 p2ipeirI4) ,pipeout [4]:
PLACED PAR

-- PROCESSOR ROOT
PROCESSOR root

PLACE pipeirilOi AT link~in
PLACE pipeout [01 AT linkoout
PLACE piptin[AT lirkin
PLACE pipeout [.1 AT linklout
PLACE pipein:2 AT linrk21n
PLACE pipeout 21 A7 link2out
PL-ACE pipeinl 3 AT link3in
PLACE pi.peout [3] AT link3out
hostproc (pipein[Oj pipein[lj 1,i ein[2]jipein[31,

pipeoutt].pi.peout1Ir]pipeou2),pipeout[31)

-PROCESSOR 0
PROCESSOR 0

PLACE pipein[01 AT link~out
PLACE pipeout[0] AT link~in

transferG.b003 (pipeout[Oj ,pipeintj)

- - PROCESSOR I
F~uCESSOR I

PLACE pipein[I AT lirkoout
PLACE pipeout [1] AT link~in

transferl.b003 (pipeout[LI],pipeinr1)

- - PROCESSOR 2
PROCESSOR 2

PLACE p~pein[21 AT link~out
PLACE pipeout [2] AT link~in

transfer2.b003 (pipeoutljz],pipeinI21)

- - PROCESSOR 3
PROCESSOR 3

PLACE pipein(3l AT link~out:
PLACE pipeout[3] AT link~in :
transfer3.b003 (pipeout(3] ,pipeinll3])

185

a l

ell

APPENDIX F

PROGRAM TEST LINEARITY

-- header.occ

-- * Title Test Performance Linearity
-- * Version : 2
-- * Mod : 0
-- * Author : Jose Vanni Filho, Lcdr., Brazilian Navy
-- * Date : June, 5th,1987
-- * Programming Language OCCAM 1
-- * Compiler : IMS D600 TDS
-- * Brief Description : This program mapped in 17
-- * transputers shows us the capability of the
-- * transputer in linear increase of performance
-- * with the increase of the number of processors.
-. *

-- Brief Description
This program runs in 17 transputers:

--- transputer Root - prompts the user and triggers the other
--- transputers .

- times the whole process execution
- receives the results and send to the screen

--- transputers 00,10,20,30 - execute two processes in parallel:
- routes the trigger and the results,
- executes the procedure counter

--- transputers 01,02,03,11,12,13 21,22,23,31,32,33 (12)
. trs s executes the procedure counter only

-- PROGRAM testlinearityl7
-- testlinearity
-- SC PROC hostproc
-- PROC hostproc
PROC hostproc (CHAN A,B,C,D,E,F,G,H) =

-- global definitions (partial)
-- Constants Definitions
DEF port = 0: --- assign the i/o port of the B001 to the terminalDEF baud = 11:--- set the baud.rate to 9600 bps

DEF null = 0: --- constantly used ASCII values
DEF bell = 7:
DEF tab = 9:
DEF If = 10:
DEF cr = 13:
DEF esc = 27:
DEF sp = 32:

-- Channels Definitions
CHAN Parameters AT 0 :
CHAN Screen : --- AT 1: IThis placements cannot be done in TDS. The
CHAN Keyboard: --- AT 2: terminal.driver already takes care of that
-- Link Definitions
DEF link0out = 0 :
DEE linklout = 1 :
DEF link2out = 2 :
DEF link3out = 3 :
DEF link0in = 4 :
DEF linklin = 5 :
DEF link2in = 6 :
DEF link3in = 7 :
-- File Handler Control Values

186

N

DEF ClosedOK = -1
DEF CloseFile = -2:
DEF EndBuffer =-
DEF EndFile =-4-
DEF EndName = -5
DEF ErzdParameterString = -6
DEF EndRecord = -
DEF NextRecord = -'9
DEF OpenedOK = -10
DEF OpenForRead = -11
DEF OpenForWrite = -12

-library .occ (partial)
-- joroutines.occ (partial)
-Summary of i/o PROCs
--PROC new.line generates a CR and a LF
PROC write.string outputs a string to the screen, byte by byte
PROC clear.screen clears the screen and home the cursor
PROC write.number displays an integer value in the screen

-PROC new.line

Jum~st nwln on the screen

PROC new.line=
SE% creen I cr;lf;EndBuffer

-- PROC write.s trinq (VALUE strini
--Writes a given strinj*to the screen,*in a byte by byte fashion

PROC write.string (VALUE strin~h-.

SEO
%E i=[1 FOR string[BYTE 01]]

Screen ! string[BYTE i]
Screen I End~uffer

--PROC clear.screen

--Clears the screen.

PROC clear.screen=
SEQcreen esc; 1-1; '21; 'J'; Er~dBuffer --- clear screen sequence

Screen Iesc; '-'; 'H' --- home cursor

-- TisPROC out uts a si ed inteier value to the screen *

PROC write.nurnber(VALUE number)=
VAR output(j16], count, x:
SEQ

x:z number
count:= 0
IF

-- handle special cases
x=0

Screen ! '0'
x<0 S

SEQ creen

TRUE :-
SKIP

WHILE x>O
-- construct number
SEQ

output~count] := (x 10) + '0'

187

DM VI~m 151115

MWVY WWWMrMM7I

count := count +1
X:- x/10

WHILE count > 0

- - output number

count :% count-i
Screen I output~count]

SKIP:

-utilities.occ

~PROC tick..to.time*MVLUE start,*sto board tye

--Receives start and stop time and board type and outputs
-the elapsed time in hours minutes seconds and milli2sec onds

PROC tick.to.time (VALUE start, stop, board.type)=
-board.type = 0 ---- > VAX VMS
--board. type = 1 ---- > B001
board.type = 2 ---- > B002

--board. type =31 ---- > B003 (high priority)
--board.type = 32 ---- > B003 (low priority

board.type = 4 ---- > B004

-constant definitions
DEF vax.sec =10000000 : --- hundreds of nsec/second
DEF vax.mili = 10000 : --- hundreds of nsec/millisecond
DEF bOOl..sec =625000 : - # of 1.6 microsec/second
DEF b001.mili = 625 : - # of 1.6 microsec/millisecond
DEF bOO3h.sec = 1000000 : - # of microsec/second
DEF bOO3h.mili = 1000 : #- of microsec/millisecond
DEF b0031.sec = 15625 : -- # of 64 mic rosec/second
DEF b0031.mili = 16 : - # of 64 microsec/millisecond
DEF max.number.of.ticks =2147483648 :--- maximum integer (2**31)

VAR elapsed.tick:
VAR factori, factor2
VAR msec, tot.sec, sec, min, hr
SEQ F

board.type = 0 --- VAX VMS
SE actorl vax.sec

factor2 :vax.mili
board.type = 1 --- B001

SE ctorl bOOl.sec
factor2 bOO1.mili

board.type = 2 --- B002
SKIP - -- will be implemented in the future

board.type = 31 --- B003 in high priority
SEQ

factori bOO3h.sec
factor2 :bOO3h.mili

board.type = 32 --- B003 in low priority

SE Lcor b0031.sec
factor2 :b0031.milia

board-type = 4 -- 3004
SKIP --- will be implemented in the future

elapsed.tick := stop -start
IF

elapsed.tick < 0

I s8

188.

N:

W"MPAWL '1§pMWA - = mum W%1W~jrWMp"

elapsed.tick :=elapsed-tick + max.number.of.ticks
TRUE

SKIP
tot.sec elapsed tick/factorl
hr tot.sec/3600
min (tot.sec\3600)/60
sec tot.se c\60
rnsec (elapsed .tick factorl)/factor2
-- output time to screen
wri.te.nurnbe(r

* write.srn (" hr 11)
write.number (min)
write.string I" min"
write, numnber (sec)
write.string ("1 sec "
write .number(msec)
write.string ("1 msec")

:PRCCca~ italize*JVARchl*
---ca~talzesany lower case character into u~per case

PROC capitalize (VAR ch)
DEF delta =('a' - 'A') A-->6

a --- > 97 ASCII values
z --- > 122

SEQ F

(ch <= 'Z') AND (ch >= 'a')
ch :=ch - delta

TRUE
SKIP

-- link placements
CHAN host irO AT link~in:
CHAN host~.nl AT linklin:
CHAN hostin2 AT link2in:
CHAN hostin3 AT link3in:
CH.A!T hostoutO AT link~out:
MMA hostoutl AT linklout:
CHAN hostout2 AT link2out:
CHAN hostout3 AT link3out:

-PROC terminal driver

The terminal u.river is the one provided by the manufacturer
for the bO01 board and therefore is not included.

189

-PROC user.interface

Receive flag from the user and triggers the network
Reciveresltsfrom the network and outi ut to the screen

PROC user.i4nte:-face
-- local constant and variable declaration
-EF tot =16 :--- number of transputers
"AR ch: -- flag from the user
':AR -esult~totj:
VAR szartieroot erndtimeroot: --- timers for the root
VAR startime'toti endtime~tot] --- timers for the 10 transputers

SEQ
write.string(" Type any character to start "
Keybcar4 ch
Sc:reen ! ch

1--E7startimeroot
PAR

-- sendfls
hostoutO ch
hostouti cb.
hosto-it2 ch
hostout3 ch
-- receive results
SEQ i =[D FOIR 4)

hostiriO ? i-esultfli] startime [ii ;endtimei]
hostin! 7 result 1-4 ;startime 1 +417endtimeii4
hostin2 'result 1+8 *startime i+B ;endtirie 1+81
hostin3 'result [i+12i ~starti.me[i+ 2] :endtime[:+12,'

SKIP
7 .EIendtimeroot

- - send results to the screen
SEQ = [0 FOP, tat]

write string ~,Transputer)
write :number (j
Screen ! sp; sp
writ.nuirber (result[j])
Screen ! sp; sp
tickito.tine startime[j],endtime[jI,32)
new. l ine

SKI P
-send total execution time to the screen

new. line
write.string (11 Time to execute in parallel "
write.string ('1 with 17 transputers =>.5,tick.to.time (startirneroot,endtimer otl) I.,

PAR
IMS.BO01.terminal-driver(Keyboard,Screen,port,baud)
user.interface

--End of code for transputer Root.

190

-SC PROC Route
-PROC Route (CHAN messagein, messageout, routetol,...,VALUE k)

PROC r oute(CHAN messagein ,messageout,routetol ,routeto2, routeto3,
echofroml,ec hofrom2,echofrom3,VALUE k)=

I EF i = 4 number of counter procedures
VAR rnsg :flag
VAR results[i]:
VAR startirne[il ,endtime[i]: -- timers
H:-AN sofuisoftout: -- soft channels declared for communication

SC POC cunte ---with procedure counter.

-PROC counter
PRCC counter (CHAN in,out, VALUE tnumber)

- -- Sums up the first 100000 integers arnd add the transputer number
- -- to the total

DEF maxope = 100000: -- number of operations done
VAR ch,total:
VAR startine3, endtime3:

total := tnumber
in ? ch
TIME ? startime3
SE i =[0 FOR maxope]

total = total + 1
TIME ? endtime3
out ! total;startime3;endtime3:

-- descriptor
-- code

counter (softout,softin,k)
-- routing procedure
SEQ

messagein ? msg
SEQ?

routetol !msg
routeto2 msg
routeto3 Imsg

softout ! msg
PAR

echofromi ? results-0-;startime-0-;endtime-0-
echofrom2 ? results-l-;startime-l-;endtime-1-
echofrom3 ? results-2-;startime-2-;endtime-2-
softin ? results-3-; startime-3-;endtime-3-

--~~ senntothe root results and timing

messageout ! results[i] ;startime[il ;endtime[i]:

--End of code for trans~uters Routerr' 010 4 2, :

IF,****** W............

~-AIs4 969 TEST RND EYRLURTION OF THE TRRNSPUTER IN A 3
KULTI-TRRNSPUTER SYSTEM() MRYRL POSTORROURTE SCHOOL
MONTEREY CR J V FILNO JUN 87

UNLSSIFIED F/0 12/6 NL

11111.10 W.5

IJLu 5 11I1.4 2

-IRCP RSLUTO TES _CAR

NATON LBU TNAD %

ma -W

U~lo20lii!1111.50

-SC PROC counter
-PROC counter (CHAN in,out, VALUE tnumber)

PROC counter (CHAN in,out, VALUE tnumber)
-descrip tion

SumsSup the first 100000 integers and add the transputer number
to theptotal. Sends the result throuvh channel out.

DEF maxope = 100000:
VAR ch,total:
VAR startime, endtime:
S% ~tal : tnumb1er

in ? ch
TIME ? startime
SEQ i = (0 FOR maxope]

total :=total + i
TIME ? endtime
out ! total;startime;endtime:

--End of code for transputers Leaves 01 02 03 11 12 13 21 22

192

-- conf iguration

-link definitions
DEF link~in = 4:
DEF link~out = 0:
DEF linklin = 5%
DEF linklout = 1:
DEF link2in = 6:
DEF link2out = 2:
DEF link3in = 7:
DEF link3out = 3:
DEF root = 100:
DEF totlinks = 32:
CHAN pipe[totlinks]:
PLACED PAR

PROCESSOR root
-- link placements and process assignment
PLACE pipe'.0 AT link~in
PCE aip11 AT l4nk0out
PLACE ie 2' AT linklin
PLACE pipe 3 AT linklout
PLACE pipe'4. AT link2in
PLACE pipe,5 AT link2out
PLACE pipe 6 AT link3in
PLACE pipe 7 AT link3out
hostproc (pipe[Oliipe2 1,ie[41 ie

PLACED PAR j = [0 FOR 4]
PROCESSOR 1O*j

-link placements and Drocess assignment
PLACE pipe [2*11I AT link~out:
PLACE p2.pe L(2~ J)+1] AT link~in:
PLACE pip <8+(6*:) AT link2in:
PLACE pipe 19+(6* 1) AT link2out:
PLACE pipe [10+ (6 1)1 AT linklin:
PLACE pipe [11+ (6*1) AT linklout:
PLACE pipe [12+ (6*1] AT link3in:
PLACE pipe [13+ (6* j AT link3out:
route (pipe[(2*j)+1I ,pipe[2*j] ,pipe 9+ 6*j) pi[12+ 6*j ..KO
pipe-13(6 j)-,pipe-8+(6 j)-,pipe-i 0+6*),pipe12. 6J]1,0

PLACED PAR i = ro FOR 4]
PROCESSOR (10-*i)+1

-link placements and process assignment
PLACE pipe [8+ (6*i) AT link3out
PLACE pipe 19+R(*i) AT link3in
counter(pipe[9+(6*i)],pipe[8+(6*i)] ,((1O*i)+1))

PLACED PAR i = [O FOR 4]
PROCESSOR (10 *i)+2

-link placements and process assignment
PLACE pipe [10+ (6*i) AT linklout
PLACE pipe 111+R(*i)] AT linklin

PLACED PAR i = [0 FOR 4]
PROCESSOR (10 i)+3

-link placements and process assignment
PLACE pipe [12+ (6*i)l AT link2out
PLACE pipe 13 (*i)] AT link2in

counter(pipetl3+(6*i)I ,pipe(12+(6*i)],(lO0*i)+3))

193

APPENDIX G

TRANSPUTER PRODUCTS*

a. Transputers

* IMS T414B-GI5S - 32 bit transputer - 15mhz

* IMS T414B-G20S - 32 bit transputer - 20mhz

* IMS T80OB-G20S - 32 bit floating point transputer - 20mhz

* IMS T212A-GI7S - 16 bit transputer - 17mnhz

* IMS T212A-G20S - 16 bit transputer - 20mhz
* IMS M212B-G15S - Winchester and Floppy disk controller

b. Evaluation Boards

* IMS B002-2 - T 414 with 2MBytes DRAM with 2 x RS232

• IMS B003-1 - Described in Chapter I

• IMS B003-2 - 4 x T 414 - 20mhz each with 256KB DRAM

• IMS B004-4 - Described in Chapter I

• IMS B005-1 - M212 with 64kbytes SRAM, 20MB WINI, 640K Floppy

• IMS B006-1 - T212 with 64kbytes SRAM, and 2 x RS 232

• IMS B006-2 - T212 with 64kbytes SRLAM, and 8 x T212 (8k SRAM)

* IMS B007-1 - Graphics Evaluation Board with I T414, 512k DRAM

c. Digital Signal Processing

*. IMS A100-G20S - 32 Stage cascadeable signal processor

* All trademarks on this page are registered trademarks from

INMOS Group of Companies, Bristol, UK.

194

ml

LIST OF REFERENCES

1. Garret, D. R., A Software System Implementation Guide and System Prototyping
Facility for the MCORTEX Executive on the Real Time Cluster, M. S. Thesis,
Naval Postgraduate School, Monterey, California, December 1986.

2. Weitzman, C., Distributed Micro; Mini-computer Systems, Prentice-Hall, New
Jersey, 1980.

3. Peterson, J. & Silberchatz, A., Operating Systems Concepts, Second Edition,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1986.

4. Evin, B. , Implementation of a Serial Delay Insertion Type Loop Communication
for a Real Time Multitransputer System, M. S. Thesis, Naval Postgraduate
School, Monterey, California, June 1985.

5. Selcuk, Z., Implementation of a Serial Communication Process for a Fault
Tolerant, Real Time, Multitransputer Operating System M. S. Thesis, Naval
Postgraduate School, Monterey, California, December 1984.

6. Cordeiro, M. M., Design, Implementation and Evaluation of an Operating System
for a Transputer Network, M. S. Thesis, Naval Postgraduate School, Monterey,
California, June 1987.

7. INMOS Limited, Transputer Reference Manual, October 1986.

8. Miller, Neil Exploring Multiple Transputer Arrays, INMOS Technical note 24,
January 1987.

9. Kodres, U. R.,"Processing Efficiency of a Class of Multi-computer Systems",
International Journal of Mini and Micro-computers, Volume 5, No.2, pp 28-33,
1983.

10. Wilson, P., "Occam Architecture Eases System Design - Part I", Computer
Design, Volume 22, No. 13, pp 107-110, November 1983.

11. Wilson, P., "Occam Architecture Eases System Design - Part 2", Computer
Design, Volume 22, No. 14, pp 109-114, December 1983.

12. Pountain, D., A Tutorial Introduction to Occam Programming, 1985.

195

eel

13. INMOS Limited, Occam Programming System, 1985.

14. INMOS Limited, IMS D600 Transputer Development System, 1985.

15. INMOS Limited, IMS D701 Transputer Development System, 1985.

16. INMOS Limited, IMS BOOJ Evaluation Board User Manual, 1985.

17. INMOS Limited, I.VS B003 Evaluation Board User Manual, 1985.

18. INMOS Limited, IMS B004 Evaluation Board User Manual, 1985.

19. Halsall, F., Introduction to Data Communications and Computer Networks
Addison-Wesley, Workingham, United Kingdom, 1985.

20. Cellary, W. and Stroinski, M., "Analysis of Methods of Computer Network
Performance Measurement", Performance of Computer Communication Systems,
Werner Bax and Harry Rudin Editors, North-Holland, 1984.

21. INMOS Limited, IMS T800 Architecture INMOS Technical note 6, Bristol,
United Kingdom, 1986.

22. Naval Postgraduate School, Computer Science Department, VAX VMS
Introduction, by Bruce R. Montague, January 1983, revised June 1986.

,196

BIBLIOGRAPHY

INMOS Corporation, Compiler Writers Guide, Draft, 1986.

INMOS Corporation, Transputer America, 1986.

INMOS Limited, Product Information - The Transputer Family, June 1986.

MacClennan, B. J., Principles of Programming Languages: Design, Evaluation and
Implementation, CBS College Publishing, New York, 1983.

Stallings, W, Computer Organization and Architecture, Macmillan Publishing Company,
New York, 1987

Mattos, P., The Transputer Based Navigation System - An Example of Testing
Embedded Systems, INMOS Technical note 2, November 1986.

Mattos, P., Program Design for Concurrent Systems INMOS Technical note 5,
December 1986.

197

,AAv I e + . , V V -- . t' v .% !.

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

5. Dr. Daniel L. Davis, Code 52Dv
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Daniel Green, Code 20F
Naval Surface Weapons Center
Dahlgren, VA 22449

7. Jerry Gaston, Code N24
Naval Surface Weapons Center
Dahlgren, VA 22449

8. CAPT. J. Hood, USN
PMS 400B5
Naval Sea Systems Command
Washington D.C. 20362

9. RCA AEGIS RepositoryI
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

10. Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

198

-N

11. Dr. M. J. Gralia
Applied Physics Laboratory
John Hopkins Road
Laurel, MD 20702

12. Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

13. Estado Maior da Armada
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

14. Diretoria de Ensino da Marinha
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

15. Diretoria de Armamento e Comunicacoes da Marinha
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

16. Instituto de Pesquisas da Marinha
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

17. Instituto Militar de Engenharia
Praia Vermelha, Urca
Rio de Janeiro, RI
CEP 20000, BRAZIL

18. Instituto Tecnologico da Aeronautica
Sao Jose dos Campos, SP
CEP 11000, BRAZIL

19. Pontificia Universidade Catolica
R. Marques de Sao Vicente 225, Gavea
Rio de Janeiro, RJ
CEP 20000, BRAZIL

20. Pete Wilson
INMOS CORPORATION
P.O. Box 16000
Colorado Springs, CO 80935-16000

21. David May
INMOS LTD.
1000 Aztec
West Almondsbury, Bristol, BS12 4SQ, UK

199

22. MAJ: USAF R. A. Adams, Code 52Ad
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

23. LCDR. J. Vanni Filho, Br. Navy 2
Brazilian Naval Conmmission (DACM)
4706 Wisconsin Ave., N.W.
Washington, DC 20016

24. LCDR. Gilberto F. Mota, Br. Navy
Brazilian Naval Commission (DACM
4706 Wisconsin Ave., N.W.
Washington, DC 20016

25. LT. M. M. Cordeiro, Br. Navy
Brazilian Naval Commission (DACM)
4706 Wisconsin Ave., N.W.
Washington, DC 20016

200

I __ 7

~ ~q

A.

2

