1/3
NL

F/G 12/6

J ¥ FILHO JUN 87

III.T!-T“&PUTER SYSTEMCU) NAVAL POSTGRARDUATE SCHOOL

TEST AND EVALUATION OF THE TRANSPUTER IN A

-A184 969

*PEFEEER
o F E
o N Bo

g'ls
C

2 s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Rt '--.‘. w-q D o v:v's: T k;::;:-*.«::r.»*m e
S 80 ‘D’ ‘i 'I ' ““ 'I . 'l‘k '| .‘.A..‘ '>I .‘.I
:.n ::l.“l 1! 0'..5. I'\

AN NI X | l.
) "G l 0 L) l
0" ‘"' et ‘5‘. .'

: PR AR 4 .t".s
e . ‘,
UL ;6,.

‘ .. '..‘.."".‘l.

L
i ‘u

AD-A184 969

Monterey, California

THESIS

TEST AND EVALUATION OF
THE TRANSPUTER
IN A MULTI-TRANSPUTER SYSTEM
by

Jose Vanni Filho

June 1987

Thesis Advisor U.R. Kodres

IR DTIHLCO
NAVAL POSTGRADUATE SCHOOL

Approved for public release; distribution is unlimited.

DTIC

ZELECTEM

PR

e
{
URITY CLASSIFICATY Gl A ‘

'l

REPORT DOCUMENTATION PAGE] r;

Ta REPORT SECURITY CLASSIFICATION 1D RESTAICTIVE MARKINGS N
Unclassified

28 SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/ AVAILABILITY OF REPORT ¥

Aproved for public release; Lt

. ' FICATION / DOWNGRADING SCHEDULE &

b DECLASHECATION/DO distribution is unlimited o

i

3 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) ::e

Ly

62 NAME OF PERFORMING ORGANIZATION 60 OFFICE STMBOL | 72 NAME OF MONITORING ORGANIZATION At

Naval Postgraduate School u ‘g"g“""’ Naval Postgraduate School .::

(X

‘l

6« ADDRESS (City. State and 2iF Code) o ADORESS (City. State and 2iP Code) .:,

. L5

Monterey, California 93943-5000 Monterey, California 93943-5000 p

82 NAME OF FUNDING : SPONSORING 8b OFHICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER y:

ORGANIZATION (1 applicabie) .:,

¥

8c ADORESS (City State and 21P Code) 10 SOURCE OF FUNDING NUMBERS :0

PROGRAM PRO.ECT TASK WORK JNiT -

ELEMENT NO NO NO ACCESS:ON NO .

)

"“.

V1OTTUE (include Secunity Classification) :.:

Test and Evaluation of The Transputer in a Multi-Transputer System .::

‘e PERSONAL AUTHOR(S) . .
Jose Vanni Filho

"3 'v?i OF REPORT 110 T'ME COVERED 14 DATE OF REPORT (rear Month Day) |'s PAce"comr :1‘
. Master's Thesis saoMt0_ 1987, June 201 :
. "
6 SUPPLENENTARY NOTATION 1
o COSAT CODES 18 SUBIECT TERMAS (Continue On reverse «f necessery and dent:ify by diock number)
T g0 GROULP SuB GROUP Parallelism, Concurrency, Distributed Systems, '¢
-)

Performance Evaluation, Transputer, Occam

"9 [2BSTRACT (Continue on reverse if necessary and :dentify by block aumber) s
+
*

) The purpose of this thesis is to start the evaluation of the Transputer, a 32 bit
microprocessor on a chip, to verify its potentials and limitations for real time

applications, in distributed systems. :'.‘
N
The evaluation concentrates on the four physical communication links, and its :(
advertised capability to operate in parallel with the main processor (CPU), each one it
of them at rate of 10 mbit/sec in each direction. It also presents to the reader an o
introduction to the machine itself, to the Occam Pro%rammm Language, a description s
of the environment at the Naval Postgraduate School(NPS), and suggests to the novice a
learning sequence. N
° ' The evaluation gro%rams and other example programs presented in this thesis were h
implemented using the Occam Programmmg Language (Proto-Occam) in either the Occam Ny
Programmm? Sgstem (OPS) or the Transpufer Development SXstem (TDS), both resident on .
the VAX 11/780 computer under the VMS Operating System (VAR/VMS). «—
0 DS RIYUT.ON AVAILABILITY OF ABSTRA(CT 21 ABSTRACT SECURITY CLASSIFICATION
QX onceassireounumited [same as et Corc users Unclassified)
228 NAME QF RESPONSIBLE NWDIVIOUAL o)I(D ’%SPNON& (include Ares Code) | 22¢ OFb L SYMBOL VY
Uno R. Kodres 408) 646 2197 52Kr .::
00 FORM 1‘73, 84 MAR 8] APR edtion may be used untit eshausted SECURITY CLASSIFICATION OF Twi§ PAGE)
All other edit.ons are obsolete -
1
™
L%
n

e L T Y L ~ - i 0l By ! L ATSTR LU ACS L L
BOCACAN P I KO YN Mot PO Kn " .-\‘ {"”%\ -" } -l~|l00'| "". !'" N A A Bl i Ao ~ .

Approved for public relcase; distribution is unlimited.

Test and Evaluation of
) the Transputer
in a Multi-Transputer System

by

Jose Vanni Filho
Licutenant Commander, Brazilian Navy
B.S., Brazilian Naval Academy, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

[rom the

NAVAL POSTGRADUATE SCHOQL
June 1987

g

!‘ Jose Vanm Fitho
Approved by: ﬂ - k""e/u/’

U.R. Kodres, Thesis Advisor

D. L. Davis, Second Reader,

—t eV

Vincent Y.Aurm, Chairman,
Department 6f Computer Science

LA

'G. E. Schacher,
Dean of Scicnce and Engincering

2

™ " « -y .
AN T ety e byt g 9 T L S r T SERUT CTRRY At e SHREATRL LAY L UL R 6T
R A OO A A O UG TR R WA OO I O I A

ABSTRACT N

The purpose of this thesis is to start the evaluation of the Transputer, a 32 bit

) microprocessor on a chip, to verify its potentials and limitations for real time -
applications, in distributed systems.

-

The evaluation concentrates on the four physical communication links, and its
advertised capability to operate in parallel with the main processor (CPU), each one of
them at rate of 10 mbit/sec in each direction. It also presents to the reader an
introduction to the machine itself, to the Occam Programming Language, a description

-

e -,

of the environment at the Naval Postgraduate School(NPS), and suggests to the novice .
a learning sequence. !
The evaluation programs and other example programs presented in this thesis ;
were implemented using the Occam Programming Language (Proto-Occam) in either .
the Occam Programming System (OPS) or the Transputer Development System (TDS), ::
. . \
both resident on the VAX 11/780 computer under the VMS Operating System %
. (VAX/VMS). A
;
* 4
.‘
.‘
K
(]
\
vf 4 "¢
$- '
mo
N v
!
| Agoession For P ;"
NTIS GRARI e v
DTIC TAB a
Unannounced O
. Justificatio
l———‘—'*'—”"“" —TT 5
| BY cm e T "
- I Dratrivnl’ L1
Y DR TR
3 L)

AR AR LTSN IR EARST L -\.\r\-'
L'_A-“! F: ' 'y'-n')-.:['ptnr'-[r:&(‘ﬂb. 1 .-

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.

Many terms used in this thesis are registered trademarks of commercial products.
Rather than attempt to cite each individual occurrence of a trademark, all registered
trademarks appearing in this thesis are listed below the firm holding the trademark:

Digital Equipment Corporation, Maynard, Massachusetts

VAX 11/780Minicomputer.

VMS Operating System

VT-220 Terminal

VT-100 Terminal

Hewlett Packard Corporation .

Hewlett Packard

HP

INMOS Group of Companies, Bristol, UK

Transputer

Occam

INMOS

IMS

Intel Corporation, Santa Clara, California
86/12A Single Board Computer (SBC)
MULTIBUS Architecture
8086, 80286, 80386 microprocessors
International Business Machines Corporation, Boca Raton, Florida

IBM

IBM PC :
Tektronix Inc., Beverton, Oregon

Tektronix -

Hn
v{ﬁ <

M
1l

2

P

e Ay 0’y A
’“?n"‘,\"‘!\‘“:iﬂ.l:\“’a" 5 ‘\‘, N

.

P —— f.

United States Government
Ada Programming Language

Xerox Corporation, Stanford, Connecticut
Ethernet

Zenith Data Systems Corporation, St. Joseph, Michigan =
Z-248 Micro-con.puter

.,'.!" ,.‘: - _1.6;«"0,? [-

- -

» - T - -
Y, A0 gy, (] :
B R AN o"“:l?‘.‘,‘\'v'-‘.‘a'. RO ¥ G N0, N b AN,

RN AT SN S
SOt O

(RO
et ey

TABLE OF CONTENTS

I. INTROD U CTION ..o it et e et e et e et e e enens 14
A. BACKGROUND it i e i i e 14
l. Intended Audienceciiviiiinieiiriineennnnnn. 15
B. WHY THE TRANSPUTER ittt 15
C. THE OCCAM PROGRAMMING LANGUAGE 18
L PIImMItIVES ..ot it i e e et e e 19
2. CONSITUCES ..ottt ittt it e e e 20
3. Good Features of Proto-Occamcvvninnn.. 22
4. Proto-Occam Limitationscviiiiiiinnnnnn.. 23
D. THE ENVIRONMENTATTHENPS.......... ova... 23
1. Software Facilitiesc...oiitiiiininiiinnenenenn. 23
2. Hardware Facilitiescovitiiriniininenneannn 24
E. STRUCTUREOFTHETHESIS i, 27 -
I1. COMMUNICATION AND PERFORMANCE ISSUES 29
A. COMMUNICATIONISSUESottt iiiiieane 29
L Defimitions:ttt i e 29
2. Data Transmission Basicsiiiiiiiennn.n.. 2
B. THE TRANSPUTERLINKS i, 30
C. EXPECTED RESULTS .. .ottt it i e 31
1. One Channel Transmitting vuiuervnenn., 32
2. Both Channels Transmitting/Receiving 32
D. RESEARCH QUESTIONS ...ttt it iiennn 32
E. PERFORMANCE MEASUREMENTISSUES 33
1. Hardware Methodsiiiiiiiiiiiiiinnnnn 34
2. Software Methods i, 35
II1. THE EVALUATION STARTS . ..o ci e 37
A. INTRODUCTION ... i i i e e e e e 37
6

:
E 1. The Available Constructsciviivninennnn. 37
E 2. Considerations About Memory Management 38
i B. ACLOSELOOKONTHEBITRATEocvvvennnnnnnn.. 38
. 1. First Software Results iiiinn.. 39
2. Usingthe Oscilloscopeoovviiiiiiniininnnnennn, 40
3. Comparison Between the Constructs 46
) C. OBSERVING PARALLEL ACTIVITY ON THE LINKS 49
| I. UsingSoftwarecccoiiiiiiiniiiiniiiieiiinenenn. 49
2. Usingthe Oscilloscopecvvviiiiniin e 53
3. Usingthe Logic Analyzerccoiiiiiinininnnenn. 55
4. Comparison Between the Four Constructs 58
D. MESSAGE SIZE AND CHANNEL PARALLELISM
INFLUENCE. ... i i e i i e i e i e s 59
. HowtoReadthe Tables iivninnnn, 59
2. BYTESLICEProcedureoovviviiunvnnnnnnnnnnnn. 61
3. WORD SLICE Procedure e e 63
4. Input and Output Primitivescoviveuninninnnen.. 63
. Iv. THE MUTUAL EFFECTS BETWEEN PROCESSOR AND THE
FOUR LINKS .. i e i et et 67
A. EFFECT OF CONCURRENT PROCESSES OVER
. COMMUNICATIONS .. i e e e e e e 67
1. Initial Considerationsciovvunnennnennnennnnn. 67
2. Process Priority Considerationsovvvenvennnn.n. 68
3. BYTESLICEProcedurecoviiivninvinnnnonnennn, 69
4. WORDSLICEProcedurecoiiivnenvininnennnnnn 75
5. Input and Output Primitives, 78
B. THE EFFECT OF THE COMMUNICATIONS OVER
CONCURRENT PROCESSES ittt 80
1. Initial Considerations 80
2. ResultsObtainedciiuiiiiiiiininnnennnn. 82
C. DOES THE TRANSPUTER ACHIEVE LINEAR
PERFORMANCE IMPROVEMENTS?c..iviivenen 85
V. CONCLUSION . i e e e et e e ~...89
7

T RY e g LR

APPENDIX A: LEARNINGSEQUENCE ...t 92

a. HowtolLlogino, 92

b. LearningSequence il 92
APPENDIX B: OPSTUTORIAL ... oot i i cie s 95 :
APPENDIX C: TDSTUTORIALo i i 100 .
APPENDIX D: HINTS ABOUT OCCAM PROGRAMMING 104

a. ProgramStructure i 104

b. Problems and Suggestions 105

c¢. Comments About the Link Evaluation Program 107
APPENDIX E: THE LINK EVALUATION PROGRAM 109
APPENDIX F: PROGRAM TEST LINEARITYcoiiiiiin.... 186
APPENDIX G: TRANSPUTERPRODUCTS*ccoiiiiiivnn.. 194

A, Transputersiiiiiiiiii i i 194

b. EvaluationBoards i 194

c. Digital Signal Processingo, 194
LISTOF REFERENCES i i i e et c i 195
BIBLIOGRAPHY e e e 197
INITIAL DISTRIBUTION LIST ... i i 198

|
\
8

ey Cn

3 . " - W W e W
T, AR R T T o o N N e N P v e A A

‘l

B

Bl B AN

10.

1.

12.

13.

14.

15.

16.

LIST OF TABLES

TRANSPUTER T-414 TECHNICAL DATA AND

CHARACTERISTICS .. o e e 16
PROCESSOR CYCLE TIME/CLOCK EXAMPLES 17
CHARACTERISTICS OF BOARDS B00l, BOO3 AND B004 25
EXPECTED MAXIMUM TRANSFER RATES ON THE

TRANSPUTER LINKS ... i 32
THE DIFFERENT TICK VALUESo i, 36
MAXIMUM TRANSFER RATES OBTAINED (KBITS/SEC) 47
LINK MAPFORFIGURE 3.21 ... i e 58
EFFECT OF PARALLELISM ON TRANSFER RATES FOR 10000

BYTES BLOCK SIZE ** i et en e 58
TRANSPUTER LINK TRANSFER RATE BYTE SLICE (1) - NO
CONCURRENT PROCESS - 10 MBITS/SEC oo, 60
TRANSPUTER LINK TRANSFER RATE BYTE SLICE (2) - NO
CONCURRENT PROCESS - IO MBITS/SEC ... 61
TRANSPUTER LINK TRANSFER RATE - WORD SLICE - NO
CONCURRENT PROCESS - 10 MBITS/SECot 63

TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(BYTES1) - NO CONCURRENT PROCESS - (10
MBITS/SEC) ..ottt e e e 64

TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(BYTES 2) - NO CONCURRENT PROCESS - (10
MBITS/SEC) .o 65

TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(WORDS 1) - NO CONCURRENT PROCESS - (10
MBITS/SEC) . i e 66

TRANSPUTER LINK TRANSFER RATE - INPUT/OUTPUT
(WORDS 2) - NO CONCURRENT PROCESS - (10
MBITS/SEC) .« .ttt et e e e e e e e e 66

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003
- IOMBITS/SEC . 70

17.

18.

19.

20.

2L

22.

23.

DA VAT I TR TR T T B A R A A e

26.
25.

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYPROD CONCURRENT AT THE
BOO3 - 1OMBITS/SEC i e 70

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT ALL
CPUS - IOMBITS/SEC ... i e 72

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
- PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003
(HIGH) - 10 MBITS/SEC e 74

TRANSPUTER LINK TRANSFER RATE - BYTE
SLICE PROCEDURE CPUBUSYSUM CONCURRENT AT ALL

CPUS (HIGH) - IO MBITS/SEC i 75

NUMBER OF OPERATIONS EXECUTED CONCURRENTLY IN

EACH CPU*-BYTESLICEUSEDo 75

TRANSPUTER LINK TRANSFER RATE* - INPUT/OUTPLUT

(BYTES) PROC CPUBUSYSUM CONCURRENT - 10 MBITS/SEC 78

TRANSPUTER LINK TRANSFER RATE* - INPUT/OUTPUT

(WORDS) PROC CPUBUSY.SUM CONCURRENT - 10 MBITS/SEC 78

TIMMING OF PROCEDURE COUNTER oo 84

COMPARING COUNTER EXECUTION TIME IN 4 AND 16

TRANSPUTERS NETWORK i 88
10

HEPXX:

-~

FIFIIRRIV [EEAPIEL 2

-
o
»

O
S
..
.-“
Cah

-

WWT TS Y W SN Ko

gt

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
2.1
3.1
3.2
3.3
34
3.5
3.6
37
3.8
3.9
3.10
311
.12
313
3.14
3.15
3.16
.17
3.18
3.19

LIST OF FIGURES

Block Diagram of Transputer Architecturec.ccovver.... 18
Svstem Using a Transputer as Memory, 19
Example of a PAR Constructot 21
Example of an ALT Constructovvtnt i 21
Replicated PAR 22
Replicated ALT i e e e e e 23
The Four Transputers in the B003 Board - Fixed Links 24
System Interconnections VAX-Transputers-Terminal 26
The Data and Acknowledge Frames 31
The BYTE SLICE OUTPUT Procedure Call 37
Basic Code for Transmitter and Receivercooont. 39
Configuration for Initial Tests i e 40
Configuration for Measuring Links at 20 mbits/sec Bit Rate 40
Frame Transmitted for Oscilloscope Observations 41
Example Code for Oscilloscope Observations 41
Picture of One Frame at 10mbits/sec Rate 42
Three Data Frames at 10mbits/sec Rate 43
Five Frames Observed at 10 mbits/sec Rate 44
One Frame and the ACK at 20 mbits/sec Rate 45
Four Frames and ACK at 20 mbits/sec Rate 46
TRUES Transmitted Using the Input/Output Primitives 48
Maxint Transmitted Using the Input/Output Primitives 49
Configuration to Observe the Four Links Operating in Parallel 50
Code Used to Time Transmission Through the Four Links in Parallel 51
Code for the Receivers ...ttt 51
Configuration Code for the Link Evaluation Program 52
Two Channels of Different Links Transmitting at the Same Time 53
Two Channels of the Same Link Operating at the Same Time 54
11

3.20
3.21
3.22

4.1
4.2
43

44

4.5

4.6

4.7
4.8
4.9
4.10
4.11
Al
B.1
B.2
C.1
D.1
D.2
D3

ﬁnmmmmmmmmmﬁ;ﬁﬁﬁ w4

Output from the Logic Analyzer of 4 Channels in Parallel 56
8 Channels Monitored with the Logic Analizer 57
Transputer Link Transfer Rate Byte Slice - No Process in Parallel -

L0 MIbItS SEC « ottt e e 62
CPU modes Available in the Link Evaluation Program 67
How the Concurrent Processes Were Called 68
Transputer Link Transfer Rate - BYTE SLICE Procedure

Cpubusysum Concurrent at the BO03 - 10 mbits/sec 71
Transputer Link Transfer Rate - BYTE SLICE Procedure

Cpubusysum Concurrent at All CPUs - 10mbits/sec.................. 73
Transputer Link Transfer Rate - BYTE SLICE Procedure

Cpubusysum Concurrent at the B003(high) - 10 mbits/sec 76
Transputer Link Transfer Rate - BYTE SLICE Procedure

Cpubusysum Concurrent at All CPUs(high) - 10 mbits/sec 77
Procedure Counter. ..ottt i e e i 80
Configuration for Program Test Linearity (17) 81
Procedure Route i 83
Procedure RouteS i 86
Structure of Program Test Linearity (5)ooviivin i, 87
Keypad for Usingthe Fold Editor oo, 94
OPS UtIlItIES .ottt t ittt ittt it et e ie ettt et 97
First Programin OPS i e e e 99
The Utilities forthe TDS System o ittt i, 103
OPS Program Structure oottt it it e 104
TDS Program Structure Example, 10S
SKIP Usage ...ttt i i i it i i st e e e e 106

12

. e ——— N, B S il

DEDICATION

This thesis is dedicated to:

my wife Edwiges and
our children Viviane, Guilherme and Denise.

13

o a4t

ER N
-

P N 3
PP 4

o gy

]

I. INTRODUCTION

A. BACKGROUND

The NPS AEGIS project has in its primary goals the research and development
of alternative architectures for the AEGIS Combat Weapon System (CWS), focusing
on low cost, reliable and fault tolerant architectures. As the cost of micro-processors
has been decreasing incredibly and the capabilities are always increasing, it turns out to
be very attractive to think of using these cheap and powerful tools to accomplish the
functions of any system.

One branch of this research is based upon the Intel 86/12A Single Board
Computers that are working under the MCORTEX operating system [Ref. 1], fully
developed at the AEGIS lab. It exploits the 10mbits/second capacity of the Intel
MULTIBUS and uses the concept of shared memory to allow multiprocessors arranged
in clusters of up to eight single board computers, to increase the throughput of the
system. Each cluster has its own shared memory whose access is controlled by means
of eventcounts. The clusters intercommunicate through an Ethernet link [Ref. 2].

One alternative concept for distributed systems is the use of message passing
[Ref. 2,3]. The Transputer concept exploits this idea and produces a very interesting
and flexible way of designing multiprocessor systems. This second branch of research is
now in its third released work! and is increasing in importance and extent.

This thesis was developed in parallel and concurrently with the one from
Cordeiro, M. M. [Ref. 6]. Since these theses were in fact the first to really program
this new machine, at the NPS, a series of obstacles were encountered and overcome
one by one, up to the point we were able to divide the work, and on our own, search
for the answers we were individually seeking. This is the reason why we tried to point
out many of the pitfalls that one may encounter in future research in this area using
the system available at the NPS.

ISee B. Evin Implementation of A Serial Delay Insertion Type Loop
Communication for a Real Time Multi-Transputer System [Ref. 4] and Selcuk, Z.,
Implementation of a Serial Communication Process for a Fault Tolerant, Real Time,
Multi-Transputer Operating System [Ref. 5].

14

- 3
et -

o

.- -
e

1. Intended Audience

This will be a good first reading for the person beginning to work with
transputers or Occam. Appendix A presents a Learning Sequence; Appendix B presents
an OPS Tutorial; Appendix C presents a TDS Tutorial and Appendix D provides some
hints on how to program in Occam. It also will be a good reference for transputer
users and real-time system designers and implementors in the sense of what they can
expect in terms of performance from the INMOS links. They will be able use the
Tables, Graphics and the Evaluation Programs to check and confirm their expectations
in issues concerning what should be the right construct or the right message size to use,
in order to achieve the desired throughput or communication rate.

B. WHY THE TRANSPUTER

The TRANSPUTER is a member of a family of micro-processors, that have on
one chip, the processor, its own local memory and links for point to point connections
to other transputers.

Each transputer product contains special circuitry and interfaces adapting it to
each particular use. For example a peripheral control transputer, such as a graphics or
disk controller, has interfaces tailored to the requirements of a specific device [Ref. 7].

The transputers were designed in parallel with the Occam programming language
and were first released in 1985. Now, two years later, there is a growing variety of
transputers available on the market with different capabilities and for different
applications. Some of these are listed in Appendix G.

The T-414 is a 32 bit micro-processor with 2 kbvtes of on chip RAM, four
standard INMOS serial links, external memory interface and peripheral interfacing on a
single 1.5 micron CMOS chip. As an example, its characteristics and technical data are
summarized in Table 1, and its internal architecture is depicted in Figure 1.12.

For the sake of comparison, Table 2 lists the processor cycle time or internal
clock of other commercially available computers and also some processors used in
military applications for real-time.

The internal architecture of the transputer follows Von Newman principles and
permits the processor itself to run at the same time as the 4 links operate. This way a
high level of parallelism is achieved already on chip level.

2Reproduced by permission of INMOS Corporation.

15

»
- -

N

R e S

TABLE 1
TRANSPUTER T-414 TECHNICAL DATA AND CHARACTERISTICS

processor internal instruction
cycle time clock throughput
(T 414-20)...... 50 nsec 20 mhz 10 MIPS -
(T 414-15)...... 67 nsec 15 mhz 7.5 MIPS
(T 414-12)...... 80 nsec 12.5 mhz 6.0 MIPS
external clock cycle...... 5 mhz
time slicec00vu 1 msec (approximately)
internal bus speed 80 mega bytes/second

' internal (on chip) memory. 2 kilo bytes

internal memory cycle 50 nsec (for 50 nsec cpu)
external memory interface. 25 mega bytes/second bus
external memory cycle150 nsec

RS N

- e -

address capability 4 giga bytes(32 bit address)

links (serial)............ 4 (full duplex, DMA)

link bit rate 10 mbits/sec (20 mbits/sec)

link net bit rate (Obs. 1) 3.8 mbits/éec (6.1 mbits/s) i
power dissipation less than 500 milliwatts

physical dimensions 45 mm square chip (84 pins)

Obs. 1: These values refer to the immediately above
mentioned bit rates, respectively, ahd are
fully explained on chapter III.

A -

When reading transputer related material, one may find references to T-424. This
was a prototype that is not on the market anymore.

The systems architecture is simplified by using the transputer links for point to
point communications which allows the available transputers to be configured in any
desired topology matching the programmer needs [Ref. 4,8]. Point to point
communication links have many advantages over multiprocessor buses [Ref. 7):

¢ There is no contention for the communication mechanism, regardless of the
number of transputers in the system (that does not happen in shared memory
systems) [Ref. 9].

16

A v i m ew is P . . LA AN N
AT bttt DRI o A DUDSON O TN I A S e O CO S OB BN WO HoaN e i A S S DS A

WU aw at v A tab o g”

TABLE 2
PROCESSOR CYCLE TIME/CLOCK EXAMPLES

SBC 86/12Aiiiiiitnenennns 1l to 8 mhz)
80286 =iiiiciriiiaareaaas 6 to 12 mhz)
BO38BO = ...vvvseeessteoossoaanas 16 mhz)
Transputer T 414-20... 50 nsec (20mhz)
N 2§/UYE Za- zgg nsec
- i eeeaaae nsec
VA§U¥§ 780 = 200 nsec
IBM 3033 =c0v0uun 57 nsec
IBM 3081 (k) - 26 nsec

¢ There is no capacitive load penalty as transputers are added to a system.
(specially if they will work independently)

However as the number of transputers increase in the system, a message routing
system is needed in order to permit indirectly interconnected transputers to
communicate to each other. This will create some overhead for the system and
Cordeiro [Ref. 6], addresses this point presenting a deéign and implementation for such
a system.

It is up to the programmer to decide which process should be placed in which
processor. For efficiency purposes, it is recommended to place frequently
communicating processes in adjacent transputers (directly connected by a link).

It is still possible however, to adapt previously designed systems, to this new
architecture and develop a systems architecture where a central data base would be
managed by a central transputer, which would address a large memory that could be
read or written by the processors connected to the four links, as depicted in Figure 1.2 .
But this would involve further study and it is not in the scope of this thesis.

Another point worthy to mention is that although this work was developed using
OCCAM, there is already available a C? compiler, and coming soon a Pascal and a
Fortran compiler. The Ada compiler for this machine is under development and
according to INMOS representatives, it will be released before the end of 1987.

This way the final goal of the AEGIS project, that is to research alternative ways
of implementing the AEGIS system will have the DoD language available on the
present machine.

3The C programming language compiler generates code for the transputer

17

Reset—) System | 32 bit
Analyse services Processor
Error
BootFromROM
Clockin
vCC
GND
2K bvies 3 Link ‘ Linkin0
On-chip Inteface —> LinkOut0

RAM

55 Link Linkin1
5 Interface | LinkQut1
N
@ Link Linkin2
R Interface —> LinkOut2

Link t; Linkin3
@ Interface LinkOut3
notMemS0-4 ‘

notMemwWrB80-3 ®u Event Evemieq

notMemRd ventAck

notMemR(MemReq

Memwait —>»MemGranted

MemConfig <) MemAD0-31

Figure 1.1 Block Diagram of Transputer Architecture.

It is also pertinent to mention at this point that in the last Occam User Group
meeting, that took place in Santa Clara, CA, in March 10th, 1987 there were
representatives of IBM, Tektronix and other major corporations showing to the
participants, work in development and developed by them, using the Transputer.

C. THE OCCAM PROGRAMMING LANGUAGE

Occam is a programming language that since its first release in 1983 is known as
very suitable for description of multiple processor systems [Ref. 10}, due to the
simplicity with concurrency and parallelism can be addressed {Ref. 11].

In fact, since then, the language has been modilied and enhanced in its
capabilities, and one of the latest versions, known as Occam 2 is described in the book

18

ot ol N T, A o oA AR Y

2K

_—o

€03
2 olc33 0|, 2
K K
4GBYTES
£2)
)
2K

Figure 1.2 System Using a Transputer as Memory.

by Pountain [Ref. 12]. However, this thesis was developed using one of the primitive

versions of the language called Proto-Occam 4 that is best described in the Occam

Programming Manual [Ref. 13: section 3], with slight modifications introduced by the
OPS'TDS compilers implementations described in detail in the Occam Implementation
section in the OPS Manual {Ref. 13: section 4].

The goal of this section is to address briefly the primitive processes and
constructs used in Occam (Proto-Occam), calling attention to the limitations and
capabilitics this version of the language has. Appendix D presents some hints for
programming the transputer T-414 using Proto-Occam.

1. Primitives

a. The Channel
The channel (CHAN) is an identifier used for performing communications
between concurrent processes (if in the same processor) or processes executed in
parallel (if in diffcrent processors). We can think of the channels as a pipe that
connects horizontally two processes that arc being executed concurrently or in parallel.

*Proto-Occam is so called in the Occam Programming Manual, but sometimes it
is also referenced as being Occam | .

19

If the processes are in the same processor (same transputer), this is done through a
specified memory location determined at compile time, as if it were a global variable;
but if the communicating processes are in different transputers, the ch-nnel uses the
physical links connecting the transputers. Any type of variable may flow through the
channel, but the programmer must ensure that the type being transmitted is the same
that is being expected at the receiver, or the compiler will flag an error.

This is the basic for the primitives input and output:

* chanin ? char - This can be read as the variable “char” will receive a value that
is coming from elsewhere through the channel chanin.

e chanout ! § - This can be read as the constant “5” is being output to another
process through the channel chanout.

This implies that somewhere in our transputer network there will be a
process that is transmitting some value through the channel “chanin” and another (or
may be the same) process is receiving into some variable the value “5” through a
channel called chanout.

2. Constructs
Occam has six basic constructs:
the sequential (SEQ) construct
the parallel (PAR) construct
the alternative (ALT) construct
the conditional (IF) construct
the repetitive (WHILE) construct

m 0o A O O »

the replicators (FOR) construct.

The sequential, conditional and repetitive constructs have the same usage as in
many other structured languages.5 It is interesting to note the necessity of having a
SEQ construct, because normally in such languages this is the only way to execute a
program.

a. The PAR Construct
A parallel construct causes its component processes to be executed in
parallel, if the component processes reside on different transputers, or concurrently in a
time shared fashion, if they reside on the same processor [Ref. 13: section 3, item 3.4.2].
Note from Figure 1.3 that:
¢ Process one and process two are different processes.
® Occam is fixed format and indentations are always 2 spaces for nesting.

SLike Pascal, Ada or C programming languages.

20

%g%N comms, ¢cl, ¢c2 : =-- channel declarations
WHILE TRUE -=-= process one
VAR x :
SEQ
cl ? x
comms ! X --= end process one
WHILE TRUE === process two
. VAR y :
SEQ
comms ? y
. c2 ! vy -== end process two

Figure 1.3 Example of a PAR Construct.

® There are no begins or ends to delimit processes.

5 ¢ We can declare variables anywhere in the code as long as it is before the
K beginning of the process that will refer to it.

® Three dashes (---) are the indication for comments following them.

i (1) The PRI PAR Construct. The priority parallel construct, a variation

‘_; of the PAR construct, permits at most two processes under it. The first one will be
:' given priority 0 (high), and the second one will be given priority 1 (low). This maps
exactly to the two priority levels that the chip supports. As the Reference Manual
[Ref. 7: p. 3], says, the priority process is expected to be executing for a short period of

3 time because when it begins, it can not be preempted.
. b. The ALT Construct
R
An alternative construct is used to accept the first message available from a
4 number of input channels [Ref. 13: section3,item 3.4.3]. See Figure 1.4 .
o
2]
Ay
CHAN cl, c2 :
. WHILE TRUE
e VAR X :
2 ALT
! Cl ? x
o c3 ! x
- c2 ? x
: c3 ! x
;:f Figure 1.4 Example of an ALT Construct.
R
:- 21
A
™

g
%)

Oy 3 A £ W INCUMS A LSOOI LA P L AL A S AR P ¥ CONEN OO
ARG BGBOACIOACAC I LRI YO MUCHUM MO R X0 Rad M a4 Fi KRR Mo PPN 2SI M B e S S D S

S A N

LGRS LA TR

w

Note from Figure 1.4 that:

We could have any number of channels under the ALT and all of them
outputing to ¢3. This is a construct that provides mutual exclusion © in two lines
of code.

All variable declarations are separated by commas and terminated by a colon.
There is also a variation of the ALT construct named PRI ALT, that

enables the first option of the ALT be executed in precedence to the others.

¢. Replicators
A replicator may be used with a construct SEQ, PAR, ALT or IF to

replicate the process a number of times [Ref. 13: section 3, item 3.4.6]:

SEQ - When used with SEQ it provides a conventional loop.

PAR - When used with a PAR it makes an array of concurrent processes See
Figure 1.5

ALT - When used with ALT it enables to receive one unique input at a time
from an array of channels. See Figure 1.6 .

CHAN[+1] :

R1=&‘OFORn]

WHILE RUE
JEERY,
i+ 1] ' x

Figure 1.5 Replicated PAR.

3. Good Features of Proto-Occam
Proto-Occam has some nice features like:
the facility in handling time for performance evaluation (TIME ? var)
the use of time delay (TIME ? AFTER sometime) for real-time applications
the SKIP that has numerous applications and help to handle exceptions
we can access the byte in memory
there is no need to declare count variables used in replicators

6Mutual exclusion is one of the critical issues in Operating System design [Ref. 3}

and it is neatly handled by the ALT construct.

D e M e T B e W o

22

%ﬁ?ﬁsc&abé

ALT y i [1 FOR n]
c{é],? Y

Figure 1.6 Replicated ALT.

e we can have procedures with formal parameters being arrays of variable size;
this way the actual parameters may be of different sizes in different procedure
calls.

4. Proto-Occam Limitations
Many of the limitations of Proto-Occam have been fixed by Occam 2, but
they are stiil note worthy:
e there are only one dimensional arrays

e there are no types; the programmer has to establish a convention to use its
variable names and make sure to address them coherently.

¢ no floating point is available
® no recursion is permitted
® no pointers are available

D. THE ENVIRONMENT AT THE NPS
1. Software Facilities
The Naval Postgraduate School has several Software tools available in its
computer labs:

e QOccam Programming System (OPS), available in the VAX/VMS. It permits
editing, compiling, linking and running on the VAX, concurrent programs
written in Occam, simulating a network of transputers. It will be briefly
described in Appendix B, but the reader may refer to [Ref. 13].

e Transputer Development System (TDS D600), available for the VAX;VMS, 1t
edits, compiles and down loads the code into the transputer network. It will be

briefly described in Appendix C, but additional information may be obtained in
(Ref. 14].

e Transputer Development System (TDS D701), available for PC-AT type micro-
computers. It edits, compiles, links, and down loads to the transputer network
the code to be executed (that was generated on the PC). It is single user and
requires installation of the B004’ board in the PC. It uses the Occam 2

"Described in Table 3.
23

DGO OG IRV AN BRI N ¥ u L1 AW AN BN N e e it >

programming language. This system arrived at the lab at a point in time that
this thesis was already partially written and so it will not be addressed. For
more information refer to [Ref. 15].

2. Hardware Facilities
a. Transputer Boards
The transputer lab has a Transputer Evaluation Module with seventeen
(17) transputers in the following configuration:

® one board with one transputer (T414-12) called BOOl [Ref. 16], that is the
interface with the VAX/VMS.

e four boards with four transputers (T414-15) each called B003 [Ref. 17], that can
te used either with the VAX or with the PC.

It also has one board with one transputer (T414-15) called B0O04 [Ref. 18],
that is the interface with the PC, and is located in one of the slots of the Zenith Z-248.
This makes a total of 18 transputers to work with.

Table 3 lists its characteristics.

- O 0 -
0] 2 3 1

el 3 Tlacaea- 2 -

- 2 feemee- 3 -
1 3 2 o]

-- 0 leeeaz- 1 -

* Each number stands for a link.

Figure 1.7 The Four Transputers in the B003 Board - Fixed Links.

These transputers can be interconnected and configured in anv wav
designed by the programmer using the INMOS links as long as the hard wired board
connections between transputers (that already exits and are fixed in all BOG3 boards in
the LAB) are respected [Ref. 17]. See Figure 1.7 .

24

TABLE 3
CHARACTERISTICS OF BOARDS B0G1, B003 AND B004

a. BOOl Board

One IMS T 414 - 12 mhz transputer,
10 mbits/sec INMOS link transmission speed
64 kﬁgtes of static RAM %32 x IMS 1400-45)
128 gtes EPROM (4 x 27256) containing :
.bootstrap loader,
. memory test,
. terminal to_host transparent mode software
- 2 RS/232 serial input/output connectors for : |
. VAX connection '
.Terminal connection))
- 64 way DIN connector for external link connections

b. BO03 Board

4 IMS T 414-15 mhz transputers]

10 or 20 mbits/sec INMOS link transmission speed
256 kbytes dynamic RAM per transputer _

96 way DIN connector for external link connections

c. B0O0O4 IBM-PC Add-in-Board

one T 414-15 mhz transPuter L

10 mbits/sec INMOS lin! transmission speed
2 mbytes dynamic RAM with parity

62 pin I/0 channel connector

The BOO! board is the interface between the VAX and the transputer
network. The interconnection is done through standard RS 232.

The user can develop OCCAM programs on the VAX, debug and test
using the OPS, and when ready, down load them to be run on the transputers. See
Appendix D.

b. Host Computers and Terminals

(1) VAX. To use any of the systems (TDS or OPS) on the VAX, the user
must log in from any VT 100 or VT 220 terminal (this last one has to be in VT 100
mode, and VT 100 id). Appendix A presents a detailed sequence for this.

To be able to down load the executable code, the terminal must be also
connected to it. There are two ways cf doing it [Ref. 16,] and Figure 1.8 shows how
this is done at the NPS lab.

The following advantages should be pointed out:

¢ The VAX provides us with the VMS Operating System and all the facilities a
mini-computer can support, mainly a weekly svstem backup that we do not
have to torry about.

.| ¥

| ¥

o ¥ J Y e ¥ J ¥
1 Js ° Is 1 Je ° Is
el 3 {0 ™=
. 2’4-—7‘ 2 71"‘ n e 72"‘"‘-17 ” »1"-
e tv Ay
7 8 7
2 7 a 3 4 ——bl 2 -7—'2 3 ;‘—
3 e o P 3 o
8 1) 0 i . 1 _
o R
8003 (1) | 8 003(2)
AR
| . 2 7
" et N DS VAX
Rs-232 T~ .l , [Rs-232 |
J.Oo T 45005
8003(0) ! 6 003(3)
K IERE
1 a8 o 5 1 8 ° b5
s —.70 Pl s
2 [1 [2 [1 [
3 7 2 4 3 7 2
bty Ay by by
8] 7 8 7
1 2 —9»12 3 '.11 y '7'.3 =
o 3 el 1 ° 69O 3 6 1 of
SN R WE S ¥t

Figure 1.8 System Interconnections VAX-Transputers-Terminal.

6

[T MR

e [fa modem is available, much of the work can be done from home.

e Multi-user utilization as far as using the OPS and editing and compiling in the
TDS (Very handy for class projects).

e Occam 2 will be available soon in the VAX at the NPS, as an upgrade of the
3 . OPS and TDS systems.

The only disadvantage is that when the VAX is down for backup,
upgrades or repairs, there is nothing the user can do about it.

(2) Zenith Z-248. The TDS system for the PC is completely independent
from the VAX. It has a new version of OCCAM more powerful and flexible. It is
installed in a Zenith Z-248 micro-computer (PC-AT compatible), with 2.5 mbytes of
RAM and 8 MHz clock.

There are two advantages in having a PC
i first the user has the whole micro for him and no problems, except a TDS system
' failure, would delay any project. An assumption is made that to replace a PC is an easy
task. Secondly, the Occam version running on the PC is temporarily8 newer than the
one on the VAX, and new horizons are opened for research.

As mentioned before, this thesis was developed on the TDS and OPS
N installed on the VAX and it will not have any other information on the PC based
system.

c. Printing Facilities
There are two ways to print OCCAM programs developed on the VAX:

¢ Using the VAX / VMS online printer (only files with extensions “.Ist” and ".lis”
are printable).

e Using the printer at the lab and the print screen facility provided by the VT 220
. terminals. Anything that is on the screen can be printed this way, and this
. turned out to be one of the best debugging and analyzing tools for the research.

b E. STRUCTURE OF THE THESIS

This thesis is presented in 5 Chapters and 7 Appendixes.

5§ Chapter | was the introduction to Occam, the transputer and the NPS

environment. Chapter II describes the terminology, the INMOS Links, the methods

used for performance evaluation, and state the expected results and research questions.
Chapter IIl and Chapter VI address each one of the research questions,

N describing the experiments done and presenting the results obtained and conclusions

reached thereto. Chapter V summarizes the conclusions and suggests future res¢arch.

8The Occam 2 version for the VAX, VMS will be available at any moment.

“ 27

MR EASUNE A 3% WALV l‘l‘.t‘ﬁ N0 Y -ﬁm;ﬁﬁ:{;ﬁm%ﬁi.

As mentioned already, Appendix A presents a Learning Sequence for how to
work with the transputers and Occam, having the VAX/VMS System as a host.
Appendix B and Appendix C, are tutorials about the software tools available presently
for the VAX , the OPS and the TDS systems.

Appendix D presents some hints in how to program in Occam, and call attention
for some mistakes that most likely one will make when using this new language on a
new system, with a different and powerful fold editor.

Appendix E lists the Link Evaluation Program used, and Appendix F lists the
Test Linearity Program, both with all procedures and library routines that were used.
When reading the listing files take into account that :

¢ Occam is a fixed indentation language with two spaces between each nested
level.

¢ Two dashes (--) marks the begining of new folder with the title aside.
¢ Three dashes (---) means that comments follow on that line only.

28

AW NIRRT 8 W SRR VN AT G

II. COMMUNICATION AND PERFORMANCE ISSUES

A. COMMUNICATION ISSUES

The purpose of this section is to set the stage and define a series of
communication terms that will be used in the following discussion about the transputer
physical links performance.

1. Definitions:

¢ frame - it is a packet of bits containing 8 bits plus the frame protocol bits (e.g.
start bit, stop bit, and parity bit).

* bit rate - it is the number of bits that can be transmitted in a unit of time (e.g.
kbits,'sec or mbits/sec).

* baud rate - is the number of signal elements transmitted per second. If there are
only two signal elements (0 and 1) then the baud rate is equal to the bit rate.As
this is the case on the transputer we will mostly refer to bit rate.

e data rate - It is the number of data elements {(bytes) transmitted per unit of
time. Normally it is expressed in Bytes per Second. It is always smaller than the
bit rate divided by 8, due to the control bits needed in each frame.

® net bit rate - (or transfer rate) will be defined by the author as 8 times the data
rate. This was used to make comparisons to the values advertised.

. 2. Data Transmission Basics
a. Modes of Operation

e parallel transfer mode: when multiple wires are used between the two
equipments , each one of them carrying one bit of the frame.

® bit serial transmission: when only one wire is used to send the frame, one bit
after the other.

b. Communication Modes
e simplex : when data is being transmitted in one direction only.

¢ half duplex: when data is being transmitted in both directions but alternately
(switching between transmit and receive mode is necessary).

e duplex - (or full duplex) when data is being exchanged in both directions
simultaneously.

¢. Transmission Modes

¢ Asynchronous Transmission - when the receiver and transmitter clocks are
independent. Each frame received reinitializes the clock, as the start bit is
received. It is used when the rate at which characters are generated is
indetermined and hence the transmission line can be idle for long periods in
between each transmitted character.

29

Synchronous Transmission - When receiver and transmitter clock are dependent
and information is packed in long streams of characters instead of byte by bvte.
Use special synchronizing bytes before each block.

Most of the information contained in this section was taken from [Ref. 19],

and it is just included here to make the reading smoother.

B.

THE TRANSPUTER LINKS

“The transputer architecture simplifies system design by using point to point
communication links. Every member of the transputer family has one or more
standard links, each of which can be connected to a link of some other
component. This allows transputer networks of arbitrary size and topology to be

constructed.”

This quotation extracted from [Ref. 7: p.6)], gives us a macro sense of what the

link is and how it can be beneficial for the programmer. Following the terms described

in the previous section, we can say that the transputer links are serial, full duplex,

asynchronous communication devices that have a bit rate of 10 mbits/sec or 20

mbits/sec (when available). They provide synchronization between communicating

processes on a transputer network.

To provide the reader with a better understanding, the following includes some

details about the links, extracted from [Ref. 7: p.7]:

AR AN N LY LY SR Y IO T 0 L A OO BRI O 7 O

Each physical link provides two Occam channels, one in each direction(input
and output). The T-414 has four(4) links, so we have 8 physical channels for
programming purposes in each transputer.

Communication via any link may occur concurrently with communication on all
other links and with program execution.

Synchronization of processes at each end of a link is automatic and requires no
explicit programming. This is one of the important features one can use with
the transputer. The links are the concurrency tools and are very easy to
program by using the Occam channels.

The information is transmitted on the link in the format depicted by Figure 2.1,
where the two beginning “1” are start bits and the ending "0” is the stop bit.

After transmitting a data frame (one byte), the sending transputer waits for an
acknowledge (ACK) from the receiving transputer, signifying that the byte was
received and it the link is ready to receive another byte. If the ACK is not
received the communications on that link will stop.

It is still worth mentioning one of the questions we had about how they work:
“"How could a process waiting for communication waste no cpu cycles?

30

o

PRIV AL |~ Al w g

¢ . 0y , . e e . o
T A e L R TG L RTINS

e 0 L

1711 | I I | | I | | O

start bits | information bits |stop bit
a. The DATA frame

1]0 b. The Acknowledge frame

Figure 2.1 The Data and Acknowledge Frames.

The information we have got verbally from Mr. Neil Mitchell from INMOS

office in Santa Clara was that the links have a 1 byte buffer inside it. When a process

has to transmit, the first byte of the message is, in fact transmitted and it is received by

the link on the receiving transputer, and stored in this buffer. Two situations may

1

(28]

C.

occur then:

If that receiving link is already waiting for an input, the acknowledgement is
sent right away to the transmitter by the other channel, and this is all the
transmitter needs to follow on with the message.

If that receiving link is not waiting for any input vet, the acknowledgement is
not sent. What happens in the sending transputer is that, as the ACK does not
arrive, the process is placed on the wait queue, and a pointer to that process is
placed in the respective channel memory location (each channel has its own)
until the ACK arrives. When this happens, the process is awakened and the
message is then transmitted.

EXPECTED RESULTS

Assuming we have a bit rate of 10 mbits/sec and the frames have no delay

between them, two situations should be considered:

One Channel Transmitting - when only one of the channels is being used for
transmission (or reception) of messages at a time, and so the other channel is
free to bring the ACK frames.

Both Channels Transmitting' Receiving - when we have message passing in both
channels at the same time and so the ACK for a received frame is piggy-backed
(appended to the end of the frame) [Ref 19: p. 129], to the next transmitting
frame.

31

A A A R A Tt A L WL
v AT RENAG AR I

1. One Channel Transmitting
In this case, there is no ACK sharing time with the frame on the channel and
we will get the maximum rate possible as follows:

e Net bit rate = (8'11) * 10 (mbits;sec) = 7.27 mbits/'sec or 7,273 Kkbits, sec.
Where 8 is the number of information bits and 11 the total number of bits in a
frame.

¢ Datarate = 7.27; 8 = 0.91 mbytes, sec or 909 kbytes.sec.
2. Both Channels Transmitting/Receiving
In this case we will have:

e Net bit rate= (8/13) * 10 (mbits/sec)= 6.15 mbits, sec or 6,154 kbits,sec; where
13 stands for the 11 frame bits plus 2 ACK bits that are now sharing the link
also.

e Datarate = 6.15/8 = 0.77 mbytes, sec or 769 kbytes, sec.
The results are summarized for 10 and 20 mbits’sec rates in Table 4 .

—
TABLE 4 l

EXPECTED MAXIMUM TRANSFER RATES ON THE TRANSPUTER
LINKS ’
link bit rate 10 20 mbits/sec ‘
One channel 7,273 14,545 kbits/sec]
Both channels 6,154 12,308 Kbits/sec l
j

The reason for mentioning the values in kbits;sec is due to the non-availability
of floating point and this way, to get some precision, we needed to use this unit in all
performance measurements during the evaluation.

It is worth mentioning that these values were expected for either one single
channel, or the eight channels operating in parallel because the memory is multi-ported
and permits access to each one of the links and the processor in an interleaved mode.
[Ref. 7: section 2, p.1]. It was also expected that these rates should not be affected by
another process using the Central Process Unit (CPU) for calculations and memory
accesses at the same time, for the same reasons mentioned above.

D. RESEARCH QUESTIONS
From the above, some research questions could be devised as follows:
1 Does a link transmit at 10mbits/sec and 20 mbits'sec transfer rate?

32

A

4

18 LI

',

2 Is the ACK really transmitted as soon as the receiver channel receives the first
bit of the data packet?

3 Is the communication between the transputers really occurring in paraliel?
4 What is the effect of message lengths on the link transfer rates?
) 5 What is the mutual effect on the link transfer rates, of more links operating in
parallel in the same transputer?
. 6 Can the CPU work in parallel with all the links?

7 What is the effect of a communication independent process, running on the

CPLU, over the transfer rates obtained in a link by another process, in this
transputer?

\ 8 What is the effect of the communications, over the process that is being
. executed in the CPU?

9 Docs the Transputer achieve linear performance improvement?

10 What happens when a process is time sliced in the middle of a communication
by physical link? Does the link stay blocked?

Questions 1 through 6 will be discussed in Chapter III, questions 6 to 9 in
Chapter I'V. Question 10 is still pending and is left for further research.

- -
A
»

-

E. PERFORMANCE MEASUREMENT ISSUES

As mentioned in the paper by Ceilary [Ref. 20], there are five methods for
computer network measurements, depending on the approach used for data gathering.

N They are:

|}
:; ' ¢ Standard User Method,
'!.; o Reference Lser Method,

e Software Monitoring Method (Programs),
o e Hardware Monitoring Method (Probed Equipments), and
e Hybrid Monitoring Method (A mix of the two above).

In this thesis both Software and Hardware monitoring methods were used for the
following reasons:

¢ The hardware monitors are more reliable than the software monitors.

"

w“

e For statistics purposes and for large amount of data, some times it is impossible
to obtain, using hardware measurements, the same amount of information that
can be collected by software programs, in a same period of time.

B N
- T .

This way, we used hardware monitors to confirm preliminary results obtained by

- e

software and after validating them, a massive collection of data was gathered to permit

" and back up the conclusions reached.
)

¥ 33

w L N L

‘ - OURUCR A
ROBAT ML LT T TN WL A e o ¢

1. Hardware Methods
Two approaches were used:
¢ by using a Oscilloscope to monitor 1 or 2 channels of a link at the same time.

¢ by using a Logic Analyzer to monitor 4 and 8 channels (in 4 different links) of
the same transputer.

a. Using the Oscilloscope
The idea of using the Oscilloscope was to identify on the screen a known
pattern of bits in continuous transmission, and also to obtain an approximation of the
bit rate. Also by observing subsequent frames, try to estimate the data rate and the
interval between frames. Another observation that could be made, as seen in the
following Chapter and also documented by using Polaroid photographs, is the relative
position of the Acknowledge (ACK) frame, in reference to the transmitted frame, in the
second oscilloscope channel.
The equipment used was the Tektronix 364 Storage Oscilloscope and the
camera was the Hewlett Packard HP-24A.
b. Using the Logic State Analyzer
The idea of using the Logic Analvzer was to monitor several channels of a
same transputer and really see if there were bits been transmited at the same time, in
some or all of the channels. Our Logic Analyzer has the capability to monitor 32
channels and store 250 subsequent bits in each in each channel after triggered.
As all channels are asvnchronous, an external clock was necessary and so a
Pulse Generator was used to provide this clock. To help in getting a more precise clock
a Digital Counter was also used to sample it. The equipments used were:
e Logic State Analyzer Mod. 532 with Analyzer Probe Model 51A.
® 20 mhz Function/Pulse Generator Wavetek Model 145.
® Measuring System Hewlett Packard model HP-5300A.
One problem arose from this:

¢ The maximum external clock frequency acceptable by our logic analyzer was 12
mhz and as recommended by Nvquist relation, we should have a sampling
frequency at least the double of the sampled signal (Normally 16 times is used)
[Ref. 19: p. 1§].

In our case, the sampled signal was supposedly at 10 mhz and so a
minimum clock of 20 mhz should be used. As the Logic Analyzer did not pernut that,
we used a 10mhz pulse instead as clock, and, by trial and error varying the clock
frequency and pulse width, after numerous tentatives we obtained some representative

34

R N BN RN

AT LARAANIYY

-
I

(VIR : L MY Bl * yirferfesvw s v UsTes vy STE veEssw mw

results that are presented in the following chapter. It is good to mention that we did
not even try to monitor the links running at 20 Mhz for the same reason.
¢. Test Points
To monitor the links activity, a homemade monitoring bridge that was able
to connect up to eight channels was used and, with it, we had the abilitv to monitor
the four links of a transputer.
2. Software Methods

With this respect, several programs were made at first to compare the rates

. obtained in hardware with the ones in software, and for the final report on the links
':f performance, a complete Link Evaluation Program was designed, to handle all possible
cases of constructs to communicate, several kinds of channel parallelism and two
X different cases of CPU load, concurrently with the communications. The output of this
:‘ program was a table of values that was used to generate some graphics using the
:: EASYPLOT system at the IBM 3033. Appendix E presents a listing of the evaluation
. program with the Occam library used. The terminal driver is the one provided by
3 INMOS, with the Keyboard and Screen references made using the first letter in
” uppercase, and therefore is not included.

o0 The library.occ is a collection of previous existing procedures, some generated
g by the manufacturers and some made originally for the OPS System by previous
., workers, updated to be used on the TDS, plus additional procedures for i;0 and utilities

. written by Cordeiro and myself. They can be browsed on Appendix E, inside the
,§" program listing.
@)

To observe the effect of multiple transputer execution of the same program, a

-\ series of versions of Program TEST LINEARITY were made and the 17 transputer

e

N version is listed in Appendix F.

':: All programs above used basically the same three tools:

1

u ®* - The TIME channel provided by the compiler and Occam to read the internal
transputer clock in ticks. Table 5 summarize them.

‘. . . . - .

y e . the tick.to.time procedure used to convert time from ticks into hours,

o minutes,seconds and milliseconds. It receives as input parameters the “startime”

’:’; (in ticks), the “endtime” (in ticks) and the transputer type, and outputs to the

screen the elapsed time in hours, minutes, seconds and milliseconds, for the
specified transputer. This routine is listed in Appendix F.

) ® - the transfer.rate procedure similar to the previous one but which computes
‘:' the transfer rate measured in the channel observed. It receives as parameters
3 “startime”, “endtime”, “transputer type nr.”, and the “size of the message”
"

" 35

o WY 4
8, ,\. LYY

. g P LWL) > WA RN
OO R A T et e 0 o Bt Ot . Dt (RN O s D sl

TABLE §
THE DIFFERENT TICK VALUES

1.6 micro-seconds

T-414 12mhz =ecc==vc-- > 1 tick
T=414 15mhz (high) -=-=> 1 tick
T-414 15mhz (low) -=--> 1 tick

1}

micro=-second

64 micro-seconds

100 nano-seconds

E
n
]
t
]
]
]
]
)
]
!
]
]
[]
]
]
v
[
ct
1%
(g}
~
0

r—————

transmitted and outputs the transfer rate through the variable "rate”. This
routine is listed in Appendix E.

RO DAL D it AT C

B . . . B o f'm 8ta b . 4% % ¢'a t'a e 0" \ Blq t
T O R R R RO N TOORT TR PR KR W (TN O PO T 7<)) J)

J

$.|

d

b

N,

R

'g‘

I1I. THE EVALUATION STARTS -

A. INTRODUCTION
In this chapter we start to address the research questions related to the .:'
evaluation, as listed in Section D of Chapter 1. -
§

Section B describes how we verified that the bit rate is indeed, 10 mbits sec or 20 N
mbits, sec. It also shows the maximum values achieved for the net bit rate (transfer ",
rate), for the various construct types. %
Section C shows the configuration used and demonstrates that the transfers in .
different links occur in parallel, eventually in all 8 channels of the 4 links. .:
Section D describes the message size, and the channel parallelism effects on the :;

transfer rates for the various constructs. :
1. The Available Constructs ,

Occam permits us to use several different primitives and procedures for
communications between processes. The first to be mentioned are the input and output, Pt
already explained in Chapter 1. We used them in two modes: o

e transmitting bytes (characters), or

"? SR .

¢ transmitting words (integers).

BYTE.SLICE.OUTPUT (chanid, buffername, initbyte, blocksize)
where:

chanid - the channel name where the communication will occur

buffername - the name of the array of variables

- initbyte the array index of the first byte to be transferred

blocksize =~ the number of bytes to be transferred

Figure 3.1 The BYTE SLICE OUTPUT Procedure Call.

&
S

~‘~)B‘

-

The third mode is the BYTE SLICE INPUT and BYTE SLICE OUTPUT
procedure. These procedures are microcoded subroutines that provide a block transfer
of bytes. Figure 3.1 shows the procedure call and an explanation of the parameters

s

L3

ol A

g3

37

»
¥

.
P

L4
-

a8,

“p w
4

»
)

X

O L ADNOAL OUAM NA T A L M UM A £

AV Y VTYUPYVREUR VRN RAT S AR "F o 4

(Ref. 14: section 4]. These procedures cannot be used when doing programs for the
OPS. The advantage they bring us, is a better performance, but when using OPS we
are not concerned about it.

The last mode is the WORD SLICE INPUT and WORD SLICE OUTPUT .
procedure, also microcoded, that provide block transfer of words. As just mentioned
above, the procedures showed to be much faster than the input/output primitives, but
with similar performance to the BYTE SLICE procedures.

2. Considerations About Memory Management

As we have a machine with internal and external memorv with different
performances and address capabilities, this was a major concern, as far as performance
could, and in fact is, undoubtedly affected. The documentation is not clear enough to
permit us to assure how this is handled by the processor, in the b001 and b003 boards.

| We tried to check the addresses mentioned in [Ref. 7: section 2, pp. 5.7], but we were
not able to verify that.

What can be said, though, is that it looks like the memory (internal plus
external) on the BOO1 transputer board is divided into four memory banks, each one of
them beginning at addresses 0, 16k, 32k, and 48k , and the data and programs are
} mapped evenly over these four banks. We reached this conclusion after browsing -
several listings of the memory contents obtained from the transputer in the B0OI
board. through a “dump” routine designed and implemented by M. Cordeiro, also part
of the LIBRARY.OCC, included in Appendix F.

In our evaluation program outputs, we tried to observe any noticeable effects
that could be explained by a fast or slowest memory access, but the evidences were not
strong enough, as it will be mentioned further on. As a curiosity, we measured the time
to initialize four arrays of 15,000 bytes each in the BOO1 memory and we have got 133
msec! We assumed that programs smailer than 2k bytes long, will be loaded entirely
into internal memory, but we could not prove it and this is left and strongly
recommended for further research.

B. A CLOSE LOOK ON THE BIT RATE
The evaluation started trying to answer research question 1 that is transcribed

here:

* "Do the links transmit (and receive) data at 10 and 20 mbits, sec transfer rates?” .

38

1. First Software Results

To {ind that out, simple programs were made to transmit and receive long
messages (arravs) through the phvsical links. The transfer rate was obtained by dividing
the number of bits transmitted by the time spent on the transmission. A flag was used
isingle byte) from receiver to transmitter to assure the transmitter would only transmit
when the receiver was readv. This way, we would be timing the best possible case with
the best possible accuracy. The basic program code used for the transmitter and
receiver 1s in Figure 3.2 The BYTE SLICE was the construct used, because from the
very first tests it proved to be the fastest, even for one byte being transmitted.

The configuration used for that was as simple as it could be. Two transputers

connected by a link hosting one procedure transmitter (TR.1) and one procedure
receiver (TR.2). Figure 3.3 depicts that.

!

SEQ .

chanl ? flag' --- flag is received

TIME ? startime --- time is stored in var startime

-=- transfer beglns

BYTE.SLICE.OUTPUT (chan2, buffername, 1, block.size)

--- transfer ends

TIME ? endtime --- time is stored in var endtime

-=- call to procedure transfer rate outputs the rate.
transfer.rate (startime, endtime, transputer.type,
blocksize, rate)

a) Transmitter
ARARARKRAKRARAKRARKAAKRAARKRAAKRAAAKRARAAKAAKRAXAAAAAAARRRAXRARAKRAKX
SEQ

chanl ! char =--- flag is sent to transmitter
BYTE.SLICE.INPUT (chan2, buffername, 1, block.size)

b) Receiver

Figure 3.2 Basic Code for Transmitter and Receiver.

The block size used was 15,000 bytes, in order to avoid possible dragging
effects of small messages. The results obtained were around 3,800 kbits/sec with an
execution time of 31.5 msec, average. As we can notice from table 4, in Chapter I11, it
was almost half of the expected value of 7,273 kbits;sec. Why? The monitorirg of the
channels with the oscilloscope answered this question.

39
X V‘% fE fE C'n "t.' ..r.\:!l.» fﬂ '\) R

DA

-
'~

‘s

2

A %

JCEAARANS

P AP

s (Y ¢ 7"

Sy e W W T

Wt

e e T T

W“M-Mwmrmnm:u-w'w wn W s ' T

TR 1 TR 2

Figure 3.3 Configuration for Initial Tests.

a. Links at 20 mbits|sec
With the links switched to 20 mbits/sec, we could only have
communications between transputers located on B003 boards, so, although the code
was practically the same, the configuration had to be slightly different. Figure 3.4
shows us how it was.

chan3 chanl
Root Cmmmmmaa - TR 1 Cmmmwmmnwm= TR 2
(BO0l) |=wecvacea- > (BOQ3) |[=ewcmcncaa > (BO03)
chan4 chan2 -

Figure 3.4 Configuration for Measuring Links at 20 mbits/sec Bit Rate.

The results obtained for block sizes of 15,000 bytes using also the BYTE
SLICE construct, where of the order of 6,000 to 6,100 kbits,sec, again very small, if we
compare them with the expected of 14,545 kbits/sec.
2. Using the Oscilloscope
Another simple program that made a continuous transfer on the link, made it
possible to observe the frame transmitted and estimate the rate on the oscilloscope
screen. The message transmitted, using BYTE SLICE, was a sequence of TRULS. The
TRLUE, in Occam, is a sequence of 8 binary 1's and so the frame was as Figure 3.5
shows.

I W AEEE DT r e e e et e |

40

a % me R Tae a2 %€ 8 & °_

anmnm T S T T L TN A L R L N AP S O R,

start bits | information bits(TRUE) | stop bit

Figure 3.5 Frame Transmitted for Oscilloscope Observations.

The basic code used is depicted in Figure 3.6 . There is no time sampling or
flags to avoid any side effect on the oscilloscope screen. Figure 3.7 shows the picture of
a frame like the one on figure 3.5 followed by an acknowledge (both appear on the
same trace due to vertical mode ADD used on the oscilloscope. All the oscilloscope
settings are also mentioned below the picture.

WHILE TRUE)
BYTE.SLICE.OUTPUT (chan2, bufferl, 1, block.size)

a) code on the transmiter
hokk Ak R ke TR R A e A A A A A K K ok ok ok ok gk ok e e ek e e e e e A e e A sk g s sk e gk e e e e e e e

WHILE TRUE
BYTE.SLICE.INPUT (chan2, buffer2, 1, block.size)

b) code on the receiver

Figure 3.6 Example Code for Oscilloscope Observations.

Note from Figure 3.7 that the 10 “ones” of the frame occupy § divisions. This

sums up to 1 microsecond. So we have one bit per 0.1 microsecond and this implies a
bit rate of 10 mbits/sec (gross).

Conclusion 1
The bit rate is in fact 10 mbits/sec,

if we consider only one frame.

i

-

)
'~

- 2

LG e

P 3
-

M)

. -
o

; Oscilloscoge Settings: .

} channel 1 --> shows the transmitted frame
channel 2 --> shows the acknowledge
time scale -=> 0.2 microsec / division
voltage_ scale -> 2 volts / division

| vertical mode =-> ADD
trigger source-> channel 1

Figure 3.7 Picture of One Frame at 10mbits, sec Rate.

The Acknowledge appears enlarged due to the lack of svnchronization
between both channels and the trigger source to be oscilloscope channel |. We can't
take precise measurements, but we can estimate the best and worst cases:

e best case - The ACK pulse is beginning at the trailing edge (leftmost) of the
ACK frame. This will give us a distance of approximately 200 nsec between the
last bit of the data frame and the acknowledge frame (remember that there is a
“zero” bit after the last “one”).

e worst case - The ACK ends at the leading edge (rightmost) of the ACK pulse.
This will give us a distance of approximately 300 nsec instead.

Conclusion 2
The ACK frame leaves the receiver 200 to 300 nsec

after the transmitted frame arrived! i

42

s:
channe -——> sgows the transmitted frame
channe -=-> shows the acknowledge
time scale --> 0.5 microsec / division
voltage scale -> 2 volts / division
vertical mode =-> ADD
trigger source=> channel 1

OscilloscoEeISettin
1 2

- Figure 3.8 Three Data Frames at 10mbits, sec Rate.

Increasing the time scale of the oscilloscope to 0.5 microseconds, we could
observe more frames and acknowledges as shown in Figure 3.8, and from this picture,
using the same best and worst case approach, we could estimate that the distance
between the ACK and the following frame (center) is between 500 and 600 nsec. We
could also notice that the distance between consecutive data frames is between 900 and
1000 nanoseconds.

So, estimating the transfer rate from the picture, assuming all frames will keep

at least this space between them, we got:

® best case- for each 1100 nsec information we have 900 of line inactive. If we
multiply this ratio by the expected transfer rate of 7,273 kbits, sec, we get

(1100 / 2000} x 7273 = 4000 kbits,sec
e worst case - then 1000 nsec of line inactive would bring us
(1100 ; 2100) x 7273 = 3809 Kkbits/sec

43

. w ® Semem B S A _A e 2

As we can see the hardware results were confirming the previously obtained
software results.

Another fact to add is that, during our observations, the frames were not
alwavs equaily spaced as shown in Figure 3.8 In fact, this figure shows the most
equally spaced results we ever obtained. Figure 3.9, in which the time scale was once
more increased, to } microsec per division, we can note that the fifth frame in the
channel at the bottom is more spaced than the four previous ones. In this picture tie
ALT vertical mode was used to permit us to see the ACK on the upper trace. Note the
regularity which the acknowledge appears 200 to 300 nsec after the received {rame.

Oscmllosco e Settings:
channe -=-> shows the transmitted frame
channel 2 -=> shows the acknowledge (upper)
time scale =--> 1.0 microsec / division
voltage scale => 2 volts / division
vertical mode ~> ALT
trigger source-> channel 1l(kottom)

Figure 3.9 Five Frames Observed at 10 mbits’sec Rate.

44

o,
A AT A ST e o St Ty S Tl

L a "R & X A 2 A B A B el

a. Switching the Rate to 20 mbits|sec
Similar cbservations were made for the links operating at 20 mbit, sec rate
and Figure 3.10 that was taken with time scale 0.1 microsec per division shows the
same 10 “ones” of Figure 3.7 in approximately 0.5 microsecond, that is half of the time
that was cbtained there. The ACK now is in oscilloscope channel | and is the trigger
source (this is the reason it is now well defined).

Oscilloscoee Settings: .
channel 1 =--> shows the acknowledge prev1ous%
channel 2 =-=-> shows the transmitted frame(next)

time scale =-> 0.1 microsec / division
voltage scale =-> 2 volts / division
vertical mode =-> ALT

trigger source-> channel 1 (upper)

Figure 3.10 One Frame and the ACK at 20 mbits,sec Rate.

Note the time delay between the ACK (upper trace) and the following
frame (lower trace) that was measured as about 400 nsec.

Figure 3.11, taken with time scale 0.5 microseconds per division shows us a
series of “TRUE" frames at 20 mbits;sec rate and the ACKframes in the same trace.
We could estimate the percent of time the link is actively transmitting as around 40%

45

2 NN WY ST IOO T2 T I I w I L L IO s

S S S S SISO BT SRR AR T

of the total time approximately. If we take 40% of the predicted rate of 14,545 we get
5,818 kbits sec. Comparing this with the software obtained value of 6,100 kbits/sec, we
can conclude that the valuc is reasonable enough for an explanation of the software

results.

Oscillosco e Settin S:
channe -=-> gshows the acknowledge
channel -=-> shows the transmitted frame
time scale =~> 0.5 microsec / division
voltage scale -> 2 volts / division
vertical mode =-> ADD
trigger source=-> channel 2

Figure 3.11 Four Frames and ACK at 20 mbits/sec Rate.

3. Comparison Between the Constructs
In this subsection we would like to include the maximum values of the transfer
rate obtained, cver for the various constructs. They are summarized on Table 6 and
were obtained using diffcrent programs, with different message sizes and so they are
not mentioned. [t is interesting to note that the input operation has a slight tendency -
to be quicker than the output, which is not true. This occurs because of the flag
positioning, which will slightly affect the rate, but the rate should be considered as the

46

e A AT A A 3N IS OO SN

same. What can be mentioned, however, is that [Ref. 7: section 2, pp.26,27], shows us
an expected performance summary and there the input primitive is rated as using 26.5
processor cvcles while the output would take 26 cycles, and this is not much of a
diiference. This same reference still mentions that the values are not definitive and
may suffer changes as more information is collected.

TABLE 6
MAXIMUM TRANSFER RATES OBTAINED (KBITS/SEC)

input/output BYTE SLICE |WORD SLICE
rimitives procedure procedure
bytes words
output 59 2412 3880 3669
input 631 2855 3804 3786

Browsing the figures on Table 6, one question comes up at once:

" Why is the transmission using the input and output primitives, s¢ much
slower in comparison to the built-in procedures?”

For the byte transmission case, using the primitives, if we look at Figure 3.12,
we will see how an array of "TRUES” is transmitted through the link, at 10 mbits, sec
selected bit rate. The information seems to be stored one byte per word and this way,
for each "TRUE" byte, three empty frames follows. Note that the frames carry only the
start bits (two “ones”). The time between frames containing information, measured at
the lab was 13 microseconds.

For the word (integer) transmission case, if we browse Figure 3.13, we see a
similar pattern to Figure 3.12 but with the difference that all frames are effectively
carrying information bits. The information used to ease the observation was maxint,
which is, for our 32 bit machine 2,147,483,647 decimal or “ 7FFF ” hexadecimal.’ The
elapsed time measured at the lab between the acknowledge of the last byte of the first
word and the first byte of the second word was around § microseconds. By doing same
calculations done for the BYTE SLICE case one will conclude that the maximum
values obtained are in accordance with the observations on the oscilloscope.

9The transputer T 414 uses signed integers in the range - 2,147,483,648 to
2,147,483,647 decimal or 8000 to 7FFF hexadecimal, respectively [Ref. 7: section 2, p.
2].

47

Settings:

1 --> shows transmitted frame_ (upper)
- 2 -=-> shows the acknowledge (lower)
time scale --> 2.0 microsec / division
voltage scale =-> 2 volts / division

vertical mode ~> ALT

trigger source=-> channel 1

channe

|
i
i Oscilloscoge
‘ channel
!

Figure 3.12 TRUES Transmitted Using the Input/Output Primitives.

As a conclusion of this section, we could prove that the software
measurements and the procedures used to calculate the transfer rate were producing
reasonable values, that agreed with those observed on the oscilluscope. The reason we
had not obtained the expected transfer rates was because the link is not continuously
active as the literature led us to believe, and there is a considerable delay between the

receipt of a frame and the departure of the corresponding ACK. Also, after the ACK is
10

received by the transmitter, there is another delay to transmit the next frame.

015 fact during the Occam User Group meeting already mentioned, in Santa
Clara, CA, Mr. Martin Booth from INMOS officé at Santa Clara said that the data
rate we should really expect on the links was 430 kbytes/sec, what agrees with our
results (450 x 8§ = 3800).

48

A LAY S LY 10 D e D

Oscilloscope Setting
channel 1 --> shows transmitted frames (upper)
channel 2 =--> shows the acknowledge ower?

| time scale =--> 2.0 microsec / d:.v:.s:l.on

. voltage scale -> 2 volts / division

| vertical mode =-> ALT

! trigger source-> channel 1

Figure 3.13 Maxint Transmitted Using the Input/Output Primitives.

Although, it is expected, that the new transputer version, the T 800, will solve
this problem by permitting the acknowledge leave the receptor, as soon as the first bit
of the frame arrives, and this way the delay would not exist, or at least be smaller
{[Ref. 21].

C. OBSERVING PARALLEL ACTIVITY ON THE LINKS
1. Using Software
To observe the links working at the same time, we needed to build a different
configuration. As we have 4 links per transputer, we needed at least 5 transputers to
make all links work in parallel at the highest possible rate. The configuration used is
depicted in Figure 3.14 .

49

AT U A H.I.!\ .“ﬁ“&.' (» 0-"“. Jetls 'r 0'.""‘ "' LA s

WWW"""----J - =

CHAN (1]
CHAN £0)
s ® JcHan 3 o ! . 0
_ﬁ ROOT 1 ™ o
2 cHaN 232 2
2 3
—1]2
2 3
e | 3jle——
o 3 (] r——!
CHAN €81 T T I
CHAN [4)
CHAN C71
CHAN (6]

Figure 3.14 Configuration to Observe the Four Links Operating in Parallel.

In processor root we placed a procedure that was able to transmit and/or
receive in parallel to/from the four transputers 0,1,2 and 3. Figure 3.15 shows the
Occam code used to do that.

Using Figure 3.15 as a template, one can implement a similar code to transmit
in 2 or 3 channels in parallel just by removing the unwanted BYTE SLICE procedure
calls. Note that the channels mentioned on Figure 3.15 are in accordance with the oncs
on Figure 3.14 (1,3,5,7 are output channcls for transputer root). On the other hand one
may think of using the input channels at the same time, but this will be addressed in
next section.

The receivers in their turn have a simpler code than the transmitter, because
cach one of them is only communicating with transputer root. Figure 3.16 shows it.

If one tries to map the channels of Figure 3.16 to the configuration, one will
notice that there is no such a channel in or out on Figure 3.14 and to clarify that

o, AL AN S N o N PN
AL AGGOG S At A A D Ot I e Ot OO Tt N A SRS St A e it eidd

PROC transmitter (CHAN chan0O, chan2, chan4, chans,)

chanl, chan3, chanS, chan?)-
. declarations

SEQ e '
iR buffers initializations X
B ;
chan0 ? flagO --- fla s are received from each ;
chan2 ? flagl - he receiving_ trans uters i
chan4 ? flag2 -—-- and only after all of !
chant ? flag3 --- are ready the timer is started
gigE ? startime
BYTE.SLICE.OUTPUT (chanl, buffer0, 1, block.size
BYTE.SLICE.OUTPUT (chan3, bufferl, 1, block.size
BYTE.SLICE.QUTPUT (chan5, buffer2, 1, block.size
BYTE.SLICE.OUTPUT (chan?7, buffer3, 1, block.size

TIME ? endtime , .
--- transfer rate calculated will be in VAR rate
transfer.rate (startime, endtime, 1, blocksize, rate):

Figure 3.15 Code Used to Time Transmission Through the Four Links in Parallel.

PROC receiver (CHAN in, out)=
... declare variables
6 initialize buffer

%ut g
BYTE. SLIC INPUT (in, buffer, 1, block.size):

Figure 3.16 Code for the Receivers.

Figure 3.17 shows how the configuration would be actually coded for these processes
to be mapped and work properly.

As one may notice from Figure 3.17, the chan0 inside the procedure refers to
the chan{0] on the configuration, and so on. We could think of chan{0] being the actual
parameter and chan0 being the correspondent formal. This is not strictly true, because ;
on the configuration we are only placing the procedure on the processor, not calling it,
but the analogy is still valid and the names were chosen to make it easier to

understand. The users and programmers may use any name for channels, and in fact

we used some different ones in our implementations. The importance is to get the idea. f

--- configuration o
DEF root = 100:--- assigning a number to root
CHAN chan&S]:--- channel variables for physical channels
PLACED PA
PROCESSOR root .
--=- placing channel names on physical channels
i PLACE chan[0] AT linkQin :

PLACE chan[l] AT linkOout :
PLACE chan[2} AT linklin :
PLACE chan[3] AT linklout :
PLACE chan{4] AT link2in :
PLACE chan[5] AT link2out :
PLACE chan|6] AT link3in :
PLACE chan[7] AT link3out :

--- placing the procedure to_be executed on the processor
transmitter (chan{O], chan£2], chan£4], chan 61,
chan[l], chan[3], chan[5], chan{7]
PROCESSOR O
PLACE chan[O] AT linkOout :
PLACE chan[1] AT linkQOin

receiver (chan[l], chan{[0])

PROCESSOR 1
PLACE chan{z AT linkOout :
PLACE chan{3] AT linkOin

receiver (chan[3], chan[2])

PROCESSOR 2
PLACE chan[4] AT linkOout :
PLACE chan[5] AT linkOin

receiver (chan[S], chan[4])

PROCESSOR 3
PLACE chan[a] AT linkOout :
PLACE chan[7] AT linkOin

receiver (chan[7], chan{6])

Figure 3.17 Configuration Code for the Link Evaluation Program.

Using the program described above, the results obtained for a block size of
1,500 bvtes were :
e] channel......cccevrvennnnne 3670 kbits. sec
¢ 2 channels in parallel 3670 kbits/sec(in each channel)
e 3 channels in paralle! 3650 kbits/sec(in each channel)
¢ 4 channels in parallel 3630 kbits/sec(in each channel)

These results show a slight decreasing performance as more channels are in

parallel, but there is nearly linear improvement in communication performance due to
parallelism, because the overall data transmission jumped from 3670 to 14520 (4 x
3630)!

MEUWN JEFRS TR EFETETTE T 07

2. Using the Oscilloscope
As had happened with the initial observations related on the previous section,
the programs used for this observation where adaptations of the ones just presented
using the WHILE TRUE construct to permit continuous transmission. and taking off
all timing and flags, so we will not repeat them here. As we know, the maximum we
could monitor at one time, was two channels. Two observations were then made:
¢ two channels of different links transmitting in parallel (Figure 3.18),
¢ two channels of the same link transmitting in parailel (Figure 3.19).

Osc1llosco e Settin
channe -=> 5 ows transmitted frame (chanl
channel -=-> shows transmitted frame (chan3
time scale -=> Q.5 mlcrosec / division
voltage scale =-> 2 volts / division
vertical mode =-> ALT
trigger source=-> channel 2(lower)
storage mode used

Ay

Figure 3.18 Two Channels of Different Links Transmitting at the Same Time.

In the first case, Figure 3.18 shows the same frame used on the previous

EANL R AL S

section (TRLE) in two different channels and one may notice how they overlapped. It

'
=

33

-

ORI T LIS AW AT A P L

: AT T T e T e e e s e e
B o T T N T I LR L R R I S N I T AT AT FETEVIE IS VL T ST V- S W 06 JE N

1s worth emphasizing that the interval between frames is due to the acknowledge delay
] explained in last section (not shown here), and the different phase between the wave
forms is due only to the communication processes had begun at different absolute
times. This implies that, as the links have the same speed, and as the procedures are
the same. this difference of phase is kept constant as long as the processes are running.
This photograph was taken in storage mode due to the fact that in normal mode the

unsynchronism between the channels did not permit us to see both waveforms clearly. ;

Oscilloscoee Settings: .

channel 1 --> shows transmitted frame_ (chanl)
channel 2 --> shows received frame (chan0O)
time scale =--> 0.5 microsec / division
voltage scale =-> 2 volts / division l
vertical mode =-> ALT
trigger source=-> channel 2(lower)
storage mode used

Figure 3.19 Two Channels of the Same Link Operating at the Same Time.

In the second case, Figure 3.19 shows two channels of a same link operating
at the same time. This picture was also taken in storage mode for the same reasons just
mentioned. Note that at this time we can observe the acknowledges piggy-backed on

54

AU IO SONHBCNT DT ¢ D S W

S T P T ST o W e ey TR

C

-
-

)

P S g

the transmitted frames. The ACK on the upper trace are sent for the frame been shown

Y

on the lower trace, just a little before in time. The reverse is valid for the lower trace
ACK. Note that at the time the picture was taken, all eight channels were operating in
. the same way.
3. Using the Logic Analyzer

As mentioned in Chapter [I1, a snapshot of parallel operations is not easy to
get. Our Model 532 Logic State Analizer could store up to 230 words of 32 bits each
monitored by 2 Logic Probes of 16 bits eah. We used only one of the probes once
monitoring 4 channels, and another time 8 channels. In the first case, monitoring 4
channcls, three of them were carrying data frames transmitted by diflerent links (the
handy "TRUL"s), and the last one carrying the acknowlcdge of the fourth link. Figure
3.20 is a reduction of the printout obtained from a representative part of the 250
words. Remember that the links are serial communication devices and the probes are
more effective when monitoring parallel buses, specially if there is a clock available on
the bus (synchronous buses), and so the sequence of “ones” appear vertically on the
picture. The program being used was the EVALCONTTRUE.tds, using the same
configuration depicted on Figure 3.14, and the channels monitored were chanl, chan3,
chan3 and chan6. The program was transmitting continuously blocks of 15000 bytes of
trues by the four output channels (1,3,5,7) of transputer root. The first column 1s the
memory position of the logic state analyzer. In the second column bits 4 and 8 (from
left to right) carry respectively chanl and chan3. The third column bits 4 and 8 again
refer to chan6é and chan$, respectively.

Figure 3.21 as well shows us one representative section of the samples
collected by the logic analyzer from eight channels distributed as Table 7 shows.

The “one” bits that appear in the other columns are probably cross-talk due to
the probe being made of parallel wires, while the INMOS links are always in twisted
pairs. [t is also good to reinforce that when the links are transmitting and receiving in
parallel, the acknowledge appears piggy-backed, as Figure 3.19 shows, and in the
sequence of bits we can notice them very clearly in several spots.

Although, by the evidence from both the logic analizer and the oscilloscope,
we are sure that the channels indeed operate in parallel, it would be more satisfying to
obtain data which more closely coincides with the measurements taken by software
experiments. Our suggestion is that monitoring the channels with a logic state analyzer

which can handle a faster clock, would enable a more exact measurement of

55

w"‘""

GuYY
o
[CIVIVIN
[VNIYE 4
Huud
Oiny
Guue,
Ga7
VU
iy
[XIVRYT)
[{IVRR]
Gy
[STV R4
Cutd
(YRR
vuls
[{1 N v d
aG1yg
GG
Oulo
Gult

uRae
023
sy
LUy
Guye
[T
oQus
ouzo
[TURLY]
Gu i
e
[R5
Gty 4
ULy
e 26
v L2
(XN 33
(VR
Oudu
"IN
(VST
G043

?

Gl
(g
v
Ju7
OGa
OQGuy
Cu.u
[FIVR- 3]
ous2
ULl
(ST
anyy
[STVRTA
[Ors
(YRI5
vesy
uoaey
[19
[«10 PR
vual
OOay
uyas

oMUY
[T ¢
DIFIVTRIRINTOI)]
[FYUNIISTRE N)
Guvuugyg
1011000
DIV A RRTITHE
Guu i thty
Qu1ONIY
LuniIntou
[MINIVRRSIVIEIN}
LEIELER FRIVIAONY
VUL VY
(VIR NEIVIVE]
[VIVIVRROIRIR N)
IVIIVIO R |
PIVV DIVIVE]
[TV ONI/R]
GuulLIUL 1
PUBOLOD Y
QuNNYUUY Y
bouuhitn

gUuaguu
Ouuottatu
(VLI IVIDIR I} 1F)
(O STETLINTe}
[FIEN N RNV IVIV)
00011000
VIR R Y rIFIV)
(IO R RNV
[N TUR RVTVINTL)
(U RN
OHu 1YY
0eL LU
QuuiIduut
[UUTRRIIATY]
ROV R
[TRVIRIEI (R }
Quuiun Y
gulbuoout
quuguun i
ouOLoa t
vuuuYuy 1l
[FI«IEIVTaTN VR }

(VDN IETR [V P IVIR]
OOO0ULIl
[VINEVINIFIRIST>]
1ut 1000
gu 111U
[FTUTCR W RYIVI/
gun toduy
[EXVTTR FYTEYT:)
[SIPIVR RUIVINTY]
[TIVIVR N TRY 9T)
o IINVY
VOO 1001
00V 1YV
[{ICEONTRTVRI |
oudunUY I
Otunti
[T IR IR VDV |
[TV |
UYL}
DOOLUC0Y
VOV Y
GG 0uouso

VUL LBYUY
IO any]
[VIRTHPITIVINIY]
[TIe] 6
[CIRIRTIENTYIVID)
friauino
LN
Oupatiei
JuNUIYY
vunaLono
[PIVENTELNUIS R |
VBRLNHO0VY
DINYDDILVE]
NosOLGU0
[TV TVRNT [e R }
CuoLhuoy
[3IVISTRIVIvIVE]
QU B
oLvuVVOL
vOvOLUoI
couguayn
voauOubo

00 1 10Uun
[ITY ARSI (TP]
OuuuII0
OuapLauo
OuuuNLo
ouLpPUGUUo
UJuwYILY
[T Yol VI ks]
O 5300
QU AR
QLYY
Guaaguut
QuuYUYY
gunQoOud
DIV}
[USTUUVIICR]
VUYL
ouuodou
QuuULLVO Y
[UVIAISIVICIR N]
QuudolY
[SICRMRVIVIvI)

L IIVIFIVD 15 1V}
uaunuwd
OB INNNY
GuiruOuBa
0100
Gluanas
[TSIV IPM VDIV
Osuoueu0
GuuILY e
Ou0uano
DXITVIVININID N]
ouOeuL0
Ouuyauult
GuuinlDy
QUaIDUL
Uutiguen g
guQuuly
COvue 201
Gagugaedny
Quooutuo
(IO VI DTH]
vuuLuOLo

[VIVD DM SIS T
CONeunuLo
uUiuyulu
(SIS IV SRl eTeie]
QuuNLIDLY
vLUOLoUn
GuUUAGOL)
(ORI (AT PIRIV)
[sDDT DTN
QLLUOLOG
QUUNNONY
VLOOLGLOD
ouLYHIIVY
ouaLuoo0
oUoVBVLLO
cuuoLaoLo
0nYVINY
OuouuUuld
guoLouyd
wouooGuo
QNUYACVY
[FTOVIVIVITT0)

$3a0ucuay
oLuuuoLo
[eTSIVIA STRIoTH]
oouoLLoa
QUUINHNY
[FTel VIETFIVIV]
[0 IPTDIv T8]s]
CoLLoooo
o0LVONLN
[OV TVNIOTeL¢]
ouguuvVUD
(AN RaTVINT.)
0YUNUYO0Y
oGouvuu
quuovyYu
ouooLa00
vIVALUNY
GooLoouoo
voJVALGUVY
GUOGuLL0
o0uvNIYY
O000uoLn

B D DIVFID]
ubOuOuuo
0RONLvLY
ULt G uo
ogungon
LOOOHO00
02UYJIIVYY
ouooroou
GUIGOVYY
[JOIVI 411]
DODONTDD
GulouLUU
auuooyun
VLl oGl
OuYYOIY
[FRO ST STUReY e TV}
T TV IVEN 1313
Cuovouao
o0UQUVNUY
cotuaono
vuulvovy
wolivowuo

QuUHYLQY
GUOLOILY
QALY
vHoL0eOD
Gy
vOpLiuILU
QUMY
CLLOUOOU0
QuuuuINY
ouuuGuGo
QuuNIVN
uGuouLLY
unVYNYY
GOuubLUo
VULNGININY
GUOOGH00
ouNDUIG
Qaoounso
0NuuLHLY
0LouUuodo
QUUNUNYY
[OdNaed]

ONUYVLLa
ooohueio
Q0VILNNNN
S IeIRIeIENd] ()
BIYILY
[QVIe] QT
DRUNIING
vavovou
oVOVNLLO
[OV TYTeTs
[IVIDISTIRIN]S)
LI LI TER¢ 1]
guubovo
[a IV TTUPT] o
DI IR
[WXeTe [e1CINIV1/}
[FDDISTHIND
80CuuG00
goLuLoY
DLOOLBOD
IS TN IS TRINM]
[TV)

QuuILAY
duuOoeo
00140
[V N)
00uVVBLOY
vOOLLGLO
ouNVLYY
QU000
VUUIMOY
UL OGo0
[MSIVID IR TR IS 1))
uaauCLuo
Q0VUJYULL
(G Ay
Jnudvudl
wOoULLoo
ouuOMMIVY
ooGLGoo
QuUUVaUY
Qouauulo
QuuUoUOo
ooouuioo

Figure 3.20 Output from the

Logic Analyzer of 4 Channels in Parallel.

56

0000
0001
o002
0003
0004
0003
0006
0007
o008
0009
00 to
0011
0012
0013
0014
0013
0018
G017
0018
0019
0020
ova

002
ooz2e
o023
ooz4
oozs
oQzé
0027
o028
0029
0030
0031t
0032
0033
0034
0033
0036
0037
0038
0039
0040
004
o042

o042
0043
0044
00us
00Q4s
0047
QQua
Cou9
0030
003
o032
0033
0054
0053
00%6
0087
0038
00359
0060
0061
ooe?
0063

10110000
1011001 ¢
10110010
10110010
10110010
00100011
00100011
00100011
00000011
00000011
10100011
0001001t
00000001
00000001
00000001
10011000
10011001
10010000
11111010
101100140
10110000
10110010

10110010
10110110
10110010
10110010
00100011
00100011
00100011
0000001 ¢
0000004t
11106011
10010011
00000001
0000C00 1
00000001
00000000
00000001
10000000
11100010
10100010
11111000
11111000
101100060

10110000
10110000
10110000
10110001
1011001
0011011
00010014
00010011
00000011
10010011
00000011
000000t ¢
10000014
11100010
00000010
00000000
11100010
10100010
10100000
1913400
10110000
10110000

0000Q0 1
01110C1¢
00000001
00000000
Q0010000
000000090
00000001
00000010
00006000
11100000
01100000
01100001
00100010
00111010
0011001
0011001 ¢
00110011
Q0110011
00110011
00010011
00010014
Q0010011

0001001y
00010001
00000001
00010000
00000000
11100Q01
00000000
00000010
01100000
01100000
00100001
G010001¢C
00110010
00110010
001100114
00110011
00110011
00110041
C001601 4
00010011
00010011
00010001

00010001
00000001
00010001
00000000
11100001
00000000
00000000
00000010
00000000
00000000
00000010
00013010
11111010
00110010
00110011
00110011
00110011
00110011
00110011
1111001
0V 11000
00100001

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000060
00000000
0000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000600
00000000
00Q00000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000060

00000000
00000000
00000000
00600000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
03000000
00000000
00000000
00000200
00000000
00000000
00000000
00000000
00000000
00000000
000C0000

00000000
00000000
00000000
00000000
Q0000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
0000200
00000000
00000000
00000000
00000000
00600900
00000000
000600000
00000000
00600000

00000000
00000000
00000000
00000000
00000000
00000000
60000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00006000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000500
000CG000Q
000000C0O
Q000G000
00000000
000000060
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Figure 3.21

8 Channels Monitored with the Logic Analizer.

WWW—----- haditainad

TABLE 7
LINK MAP FOR FIGURE 3.21

channel column bit probe lid

, chanQ =--=--> second 3 D13

. chan]l =----> second 4 Dl2
chan2 =---=-> second 7 D9
chan3 =--=-> second 8 D8
chan4 --=--> third 3 DS
chand =--==> third 4 D4
chang6 ==---> third 7 Dl
chan7 =-~-<> third 8 Do

I

acknowledge delays and the delays between successive word, and byte transmissions, by

making timing diagrams of 4 and 8 channels in parallel. This, however, is left as a
suggestion for future research.

Conclusion 3
The Links really are able to operate in parallel!

4. Comparison Between the Four Constructs

TABLE 8

EFFECT OF PARALLELISM ON TRANSFER RATES FOR 10000 BYTES
BLOCK SIZE **

input/output BYTE SLICE |WORD SLICE
grlmltlves prceccedure procedure
bytes words
1 channel 370 1510 3670 3670
2 channels 190 770 3670 3670
3 channels 160 640 3650 3650
4 channels 160 640 3630 3620

** Values are in kbytes, sec rounded to tenths.

58

Table 8 shows the results obtained for 2, 3 and 4 links transmitting in parallel
for each of the constructs.

| These results where obtained using the Link Evaluation Program for all the
constructs, listed on Appendix E, with no special priority for communications, and
with no other processes being executed on the cpus, besides the transmitter and
receiver processes. The time measurements were made at the transputer root at the
BOOl board. It is clear for us that although the BYTE.SLICE and WORD.SLICE
procedures are not affected for more channels in parallel for this block size, the input
and output primitives indeed are, but this will be addressed in the next section. It is
still worthy of mention that several attempts were made to increase the transfer rate of
the primitives input and output by using different loop sizes, no loops at all, different
number of bytes, or words after each ? or ! separated by colons but in none of these

cases a significant improvement was noticed.

D. MESSAGE SIZE AND CHANNEL PARALLELISM INFLUENCE.
Once we overcame the first phase of the research, validating the software we were
using, we moved our attention towards the fourth and fifth research questions:
e What is the effect of message lengths on the link transfer rates?

¢ What is the mutual effect, on the link transfer rates, of more links operating in
parallel.

To address these topics, The Link Evaluation Program was designed and

implemented, using the programming concepts presented on previous sections of this
chapter. What it does basically is, after the user’s choice of type of construct and
existence or non of concurrent process running on the CPU of the communicating
transputers, named “cpumode”, it builds a Table showing the transfer rates for the 16
different message sizes and 9 different channel parallelism cases, for the chosen option,
and prompts the user for a new run. Appendix © presents the program, written in
Occam, but one doesn’t need to understand the program to grasp the results obtained,
that will be presented in the following subsections, and in the next chapter. The
configuration used for this program was the same of Figures 3.14 and 3.17 .
1. How to Read the Tables
The tables have ten (10) columns as follows:

¢ BYTES - Shows the number of bytes transmitted for the results obtained in that
row.

e | OUT - Results obtained measuring transmission through only one channel
from root to transputer 0.

39

P L O SO w po el A

wwuuwmum-u- ~— . —————— - — -

1 IN - The same as above for reception on the root from transputer 0

2 OUT - Results obtained measuring transmission in parallel through two
channels from root to transputer 0 and transputer 1.

2 IN - Same as above for reception in parallel.

3 OUT - Results obtained measuring transmission in paralle]l from root to
transputers 0, 1 and 2.

3 IN - Same as above for reception in parallel.

4 OUT - Results obtained measuring parallel transmission from root to
transputers 0, 1, 2 and 3.

4 IN - Same as above for reception in parallel.

4 IN;OUT - Results obtained measuring transmission and reception in parallel
to/from transputers 0, 1, 2 and 3, using all 8 channels from the four links that
exist in one transputer.

.

TABLE 9

TRANSPUTER LINK TRANSFER RATE
BYTE SLICE (1) - NO CONCURRENT PROCESS - 10 MBITS,SEC

BYTES 1 oUT 1 IN 2 0UT 2 IN 3 0UT 3 IN 4 OUT 4 IN 4INOUT
1 625 616 250 250 200 198 161 161 98
1217 1237 500 500 400 400 325 333 196
1531 2130 779 1000 648 788 650 646 384
2183 2811 1570 1582 1311 1301 1085 1096 690

16 2758 2924 2101 2222 1948 1919 1702 1694 1255
32 3224 3246 2589 2800 2482 2544 2330 2398 1835
64 3427 3646 3116 3226 2942 3048 2817 2954 2462
128 3543 3644 3332 3497 3265 3390 3187 3320 2945
256 3605 3741 3496 3656 3444 3596 3398 3558 3231
512 35635 3778 3578 3733 3555 3697 3509 3677 3401
1024 3650 3754 3627 3741 3604 3712 3575 3702 3512
1280 3654 3748 3640 3742 3611 3713 3587 3698 3529
2048 3658 3740 3652 3738 3621 3715 3604 3703 3549
4096 3662 3735 3663 3733 3634 3720 3618 3709 3573
8192 3665 3732 3668 3732 3645 3721 3627 3714 3585
10000 3867 3731 3669 3730 3647 3721 3623 3717 3591

* Values in kbits/sec

Some tables, though, have three different columns labeled:
I IN/OUT - instead of 1 IN
2 IN/OUT - instead of 2 IN
3 IN/OUT - instead of 3 IN

60

-
' e i mmmaa~ =W s

T S T T T R T N e e A e e e T T R

In this columns, as the reader may have guessed already, the results presented
refer to the transputer root transmitting and receiving at the same time through the
| number of links specified.

For each of the constructs the results are presented in table format and when
necessary a graphical representation of the table. Each individual number on the tables
is the average of 20 sequential runs. The results are in kbits’'sec due to non availability
of floating point for Proto-Occam and our need for precision.

2. BYTE SLICE Procedure

Table 9 and 10 show us the transfer rates obtained for this procedure with
communication being the only process being executed by the transputers involved.
Figure 3.22 is a graphical representation of Table 9 .

TABLE 10

TRANSPUTER LINK TRANSFER RATE
BYTE SLICE (2) - NO CONCURRENT PROCESS - 10 MBITS/SEC

EYTES 1 OUT 1INOUT 2 OUT 2INQUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 625 248 250 166 194 125 16l 166 98

2 1250 500 500 333 400 245 322 333 196
4 1518 793 779 651 645 487 645 648 384
8 2201 1585 1567 1099 1318 851 1101 1105 6§&9
16 2782 2155 2208 1711 1951 1458 1701 1714 1256
32 3227 2636 2702 2326 2503 2133 2314 2379 1837
64 3513 3067 3116 2850 2988 2667 2813 2975 2741

128 3578 3350 3368 3204 3305 3075 3186 3320 2926
256 3628 3491 3522 3417 3476 3333 3404 3538 3230
512 3663 3574 3601 3532 3578 3483 3516 3662 3404
1024 3684 3617 3651 3587 3632 3568 3581 3683 3487
1280 3687 3624 3657 3591 3640 3584 3595 3685 3510

8192 3698 3655 3690 3619 3678 3632 3632 3694 3596
10000 3699 3657 3692 3614 3679 3638 3629 3696 3597
* Values in kbits/sec

From Table 9 we can notice the overall tendency of input be quicker than
output, due to the way the timers are started and stopped by the flags. The flags used
in this and all following tabies were placed from the B0OO3 transputers to the root.

When we had the flags inverted the values had a tendency to be bigger for the output,

so one may disregard the difference. For this reason we tried to show most of times the
values for “in‘out” instead for “in”. Most important, however is the effect of message

6l

*n
>
«
“\
)
.
S
1
3
¥
Y
M
N

AR N

TN N TN RSN RE S e

(S3LXE) 3Z]S 396SS3W

()]
o
3
»
@
g
[
= 00Co1
|nlm \. b Ak L 00ﬁ>~. — OA
g T R S S D S A R o
a "__. b Voo) s HE ! -
- I oy , I B X 0
(o] vy ! oy Lty ' o)
O . " ! ! 1 [!
74 ._. [! 1 + TR]] [", .
> @ A T SR R v 2
) W.- SRR o , RN ! ;“ g 2
T O Rt bl e b deqecpmeqecmm o danpamdaabocdeaaan u i ® v
a) M] 1 i 1 ra + Z
' ! : ! ' [T ! ! g <
§ 8 SRR AR AR R &5
g 3 EEN IR (AR A 5 E
P ey ' [T ' = s E
v L Ve I ' st P ' . 5 b
g2 SRR I TR 2 €=
3] Q vty ! ' “ “ : I _\A & < -
g 8 fiir SRR SR SRS P A 3 =
e 0! v ! ') . M . =
5 o, P : ' T I B ! =
&L 8 Py I viaoa o ! x =
s 2 I I L I N L A s 3
c 7 B "" i ¢ P e Y ! Y, 58
&3 Vit] oy ! PR X_« , . 2 =&
- ' N ' t '
g g HEEE ol HIRRTa Ry _ = 5
oo Voav g [iy 1 h o M []
o S 1da-ra-d dea~-r LR R Rt b ol <4~ = 57
L 9 R Voo) ’ 1 SPTITTYTTTTTTS = 2 e
— o . [N g | [' S = Q. »n o
g IR] !) ! s} e 3
2 HERE Pl ¥ _ = S 3
g 5 SRR o N @ S &
T !
3 < SIRER L i i el P "
m (S .._L “r-- Smm=-r tad gl oA mPeecdfeacdag TNITYLIL AL e lm = o 2
B RN b ¥ NGy 3 FE &
i L}
g o ! o _. : po L J)/..IIQW a. ~ - p.v
m Mw " "" " ..\A"\\“\ “ .H.—):l_.‘.r:‘..hf.\m X H.O;D\M
s & R ; R ol
= . i ; 3 - L & b =
55 5 ImNRCe v [8 Z
B & — H NThoaal 76
5 2 " ¥ INONG=ST o
) i i 3
E g ! o _ CN3337
s m : o) ! »
3] Q
o 3 -
[o]
< -
7
Q [
N N
» @

3. WORD SLICE Procedure

TABLE 11

TRANSPUTER LINK TRANSFER RATE -
WORD SLICE - NO CONCURRENT PROCESS - 10 MBITS/SEC

BYTES 1 OUT 1 IN 2 OUT 2 IN 3 QUT 3 IN 4 OUT 4 IN 4INOUT
4 1287 1868 666 8l1 533 625 452 512 294

8 1910 2513 1333 1330 1063 1061 898 890 540
16 2580 3025 1985 1956 1667 1682 1454 1466 998
32 3083 3377 2541 2588 2284 2300 2077 2230 1632
64 3321 3559 2956 3091 2830 2875 2647 2790 2266

128 3491 3679 3294 3406 3156 3278 3068 3213 2783
256 3572 3738 3492 3598 3401 3521 3339 3485 3148
512 3617 3771 3571 3707 3530 3662 3479 3634 3373
1024 3644 3754 3624 3735 3589 3694 3557 3679 3486
1280 3048 3739 3638 3736 3594 3699 3570 2680 3516
2048 3655 3740 3648 3734 3613 3708 3595 3694 3546
4096 3662 3733 3659 3731 3638 3714 3609 3705 3566
8192 3664 3730 3669 3730 3642 3717 3621 3711 3586
10000 3666 3730 3669 3729 3645 3718 3622 3714 3588
* Values in kbits/sec

As seen in Table 11, the results obtained from WORD SLICE are very similar
to the ones we had got for the BYTE SLICE procedure, so if the reader wants, he or
she may use the same Figure 3.22 to have a better feeling of what these numbers

means. All comments made for the BYTE SLICE procedure are valid also for WORD
SLICE.

Conclusion 4
Message size has a major effect reducing the transfer
rate for block transfers (BYTE SLICE and WORD SLICE).

4. Input and Output Primitives
a. Transmitting and Receiving Bytes
Table 12 shows us the results using the primitives input and output to
transmit and receive bytes. As we can see, there is no variation as the number of bytes
increase. This is due to the fact that each byte is transmitted individually as can be
seen in Figure 3.12 . We can also notice that there is a significant decrease as more

63

i

RS N A A

WL
Gog

PP
(-

-
- - =

SR EUEY PREEEEBI} o i = e QAN

.

TABLE 12

TRANSPUTER LINK TRANSFER RATE -
INPUT'OUTPUT (BYTES 1) - NO CONCURRENT PROCESS -
(10 MBITS/SEC)

BYTES 1 QUT 1 IN 2.0UT 2 IN 3 0UT 3 IN 4 OUT 4 IN 4INOUT
1 370 547 192 227 156 179 156 147 89
2 370 436 188 229 153 181 156 149 89
4 377 492 192 232 156 183 157 149 89
8 373 480 190 231 155 183 156 148 89
16 375 510 191 231 155 133 157 148 39
32 374 511 191 231 155 1383 157 148 89
64 374 504 191 231 155 183 157 148 89
128 374 506 191 231 155 183 157 148 89
256 374 5G5S 191 231 155 183 157 148 &9
512 374 506 191 231 155 183 157 148 89
1024 374 506 191 231 155 183 157 148 89
1280 374 506 191 231 155 183 157 148 89
2043 374 505 191 231 155 183 157 148 89
4096 374 510 191 231 155 183 157 148 89
8192 374 510 191 231 155 183 157 148 89
10000 374 510 191 231 155 183 157 148 89

* Values in kbits/sec

channels are transmitting in parallel. We mention again that we tried several loop sizes
or even no loop at all, with bytes separated by semicolons, but the results we have got
where never significantly bigger than the ones presented. Table 13 stress the
comparison when both channels of a same link are operating at the same time,
transmitting and receiving messages. Note how the results on columns 3, 5, and 7 of
Table 12 are 50% to 100% bigger than the ones from Table 13 .

b. Transmitting and Receiving Words (Integers)

Table 14 shows us the results for transmitting integers and we can notice
again that message size does not affect the transfer rate, but more channels operating
in parallel do. As we should expect from the previous results presented, this rate is, on
the average, 4 times larger than the one for transmitting bytes.

Table 15 shows the comparison when both channels of a same link are
transmitting and receiving at the same time. Again we confirm that, in terms of link
performance, worse than having two different links transmitting at the same time, is to
have the same link transmitting and receiving.

VAP EPSF Grel WS WS WL Al WS

TR W e e

v g ak Val Oat Poh Va8 dga' nvb gt

in which that is applicable.

I N ISR BSNT S AT

65

Y
P

L A

X
\
-
TABLE 13 "]
TRANSPUTER LINK TRANSFER RATE -
INPUT/OUTPUT (BYTES 2) - XNO CONCURRENT PROCESS - ;
(10 MBITS/SEC) 4
>
BYTES 1 OUT 1INOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT o
1 370 236 189 151 156 112 156 147 76
2 370 232 188 149 153 112 156 149 89 :
4 370 235 192 150 157 112 157 149 89 :
3 373 235 190 150 155 113 156 148 89 N
16 373 235 190 150 155 113 156 148 89 ~
32 373 235 190 150 155 113 156 148 89 ~
64 374 235 191 151 155 113 156 148 8% %
32 374 235 191 151 155 113 156 148 89 W
64 374 235 191 151 155 113 157 148 89 ;
128 374 235 191 150 155 113 157 148 89 .
256 374 235 191 150 155 113 157 148 89]
512 374 235 191 151 155 113 15 148 89 o
1024 374 235 191 151 155 113 157 148 89 "
1280 374 235 191 151 155 113 157 148 89
2043 374 235 191 151 158 113 156 148 89]
4096 374 235 191 151 155 113 157 148 89
8192 374 235 191 150 155 113 157 148 89
10000 374 235 191 150 155 113 157 148 89 :
* Values in kbits/sec N
h)
.
»
Conclusion 5 h
More channels in parallel has a great reducing effect W
over the transfer rate for all constructs except block 'f
{J
transfers (BYTE and WORD SLICE), bigger than 256 bytes. -
\J
!
u o
This conclusion does not contradict Conclusion 3, but reduces the universe 3

o xarq

[T APl

“HA

N O T R et

TABLE 14
TRANSPUTER LINK TRANSFER RATE -

INPUT'OUTPUT (WORDS 1) -

NO CONCURRENT PROCESS
(10 MBITS/SEC)

¥ OO o g BN RN LE W N e e

BYTES 1 CUT 1 IN 2 OUT 2 IN 3 OUT 3 IN 4 OUT 4 IN 4INOUT
4 1526 2330 769 1000 643 785 628 640 377
8 1491 2369 763 1000 634 770 631 634 375
16 1484 2290 761 1000 635 769 629 640 375
32 1509 2326 765 1000 635 769 629 640 375
64 1504 2321 767 1003 640 772 635 642 376
128 1505 2367 7686 1003 640 772 635 642 377
256 1509 23686 767 1004 641 772 635 642 376
512 1508 2383 767 1004 641 773 635 642 377
1024 15C9 2382 767 1004 641 773 635 642 376
1280 1508 2384 767 1004 641 774 635 642 377
2048 1509 2384 767 1004 €41 774 635 642 377
4096 1511 2396 767 1004 641 774 635 642 377
8192 1510 2394 767 1005 641 774 638 643 377
10000 1509 2394 767 1005 641 774 636 643 377

* Values in kbits/sec

TABLE 15
TRANSPUTER LINK TRANSFER RATE -
INPUT'OUTPUT (WORDS 2) - NO CONCURRENT PROCESS -
(10 MBITS,SEC)

BYTES 1 OUT 1INOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OoUT 4 IN 4INOUT
4 1428 959 769 645 638 476 625 645 377
8 1481 959 769 634 634 470 621 €34 375
16 1495 963 761 637 636 470 620 634 376
32 1509 969 765 640 640 471 622 637 376
64 1506 969 767 640 640 472 623 637 376
128 1505 969 767 640 640 472 623 637 376
256 1509 969 767 640 641 473 624 638 376
512 1509 970 767 641 641 473 624 638 377
1024 1509 970 767 641 641 473 624 638 377
1280 1509 970 767 641 641 473 624 637 377
2048 1510 970 767 641 641 473 624 638 377
4096 151¢C 971 767 641 641 473 624 637 377
8192 1510 971 767 641 641 473 624 638 377
10000 1510 971 767 641 641 473 624 637 377

* Values in kbits/sec

66

SRAPRAL .

{8

".

-
\'('

P \ e a® % T " M af et ATA" e T T " AT e A el ("
R A P L T R N S e DAL 0 W W P S T

IV. THE MUTUAL EFFECTS BETWEEN PROCESSOR AND THE FOUR
LINKS

When using the transputer in a multi-transputer configuration, most likelv it will
be necessary in each transputer node, at least one process to route messages between
transputers, and another to execute some processing task. Our role in this chapter is to
examine how a process task oriented would affect a routing process. changing the
transfer rate on the links. Also, we are going to analyze how a routing process handling
large messages may affect the throughput of a computation bound process.

A. EFFECT OF CONCURRENT PROCESSES OVER COMMUNICATIONS
1. Initial Considerations
This section addresses the sixth and seventh research questions as follows:
¢ (Can the CPU execute a process in parallel with some or all the links operating?

e What is the effect of a communication independent process running on the

CPU, over the transfer rates obtained in a link by another process in this
transputer?

To observe this effect with the links working at 10 mbits,/sec rate, the same
Evaluation Program was used, but using different program defined cpu modes. Figure
4.1 shows the CPU modes made available by the program to the user’s choice.

No concurrent process in the cpus

B0O3 cpus with sum process concurrently (par)

all cpus with sum process concurrentl¥ (par)

BOO3 cpus with sum process concurrently (pripar)

all cpus with sum process concurrently (pripar)

B0O3 cpus with array product process concurrently (par)
all cpus with array product process concurrentl{ par)
B003 cpus with array product process concurrently pr;parg
all cpus with array product process concurrently (pripar

OOV WN+O
| I I Y IO N B R B |

Figure 4.1 CPU modes Available in the Link Evaluation Program.

Two procedures called “cpubusysum” or “cpubusyprod” would be running
concurrently with the transmitter and receiver procedures in one or both

communicating CPUs according to the CPU mode chosen and with the following
effects:

67

yaowr

PRI

R e~

Ca 872 A% 4% . A a f e JoA B AR A X be

¢ “cpubusysum” - This procedure would initiate at the start of communications
and execute sum operations continuously, until the communications were
finished, with few memory accesses involved.

e “cpubusyprod” - This procedure, equally, would initiate at the start of
communications and execute array products continuously until communications
were finished. Now 100 times more memory accesses was necessary.

Figure 4.2 shows the code to permit this (e. g. transmission), for a WORD

SLICE construct. Similar code exists for the other constructs, only changing the
procedure “wordtransfer” to the applicable one. See Appendix E for more details on

them.
SEQ --- main word.slice.transfer
-- word buffers initialization
SE%EE:= [1 FOR maxwordblock.size]
wbuffer0 [k] := 10000
wbufferl [k = 20000
wbuffer2 [k = 30000
wbuffer3 [k] := 40000
SKIP
IF
cpumode = '2!
PAR o
wordtransfer (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
cpumode = '4!
PRI PAR .
wordtransfer (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
cpumode = '6'
PAR .
wordtransfer érepetltlon, cpumode, flag, counter)
c ubus%prod (flag, counter)
cpumode = '8!
PRI PAR .
wordtransfer érepetltlon, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)
wordtransfer (repetition, cpumode, flag, counter):

Figure 4.2 How the Concurrent Processes Were Called.

2. Process Priority Considerations
The transputer supports two priority levels built in in hardware:

1 Priority O (High) - processes with this priority are executed always, without
being interrupted until they finish. They should work only for a short period of
time because if the sum of time spent by all priority processes is greater than a
time slice, the low priority processes will not be able to proceed [Ret. 7: section
2, p-3). The high priority processes preempt the low priority ones.

68

I YHIAY .2 2 L A AN Aty i

2 Priority 1 (Low) - These are executed when no more high priority processes are
able to proceed, in a time slice fashion of 1 msec for each process.

In our program, considering the two processes to be executed in the same
CPU, three situations were examined. Assuming the processes names are for example
“communication” and “cpubusy” we have:

a. both processes under a PAR construct - in this case processes will be time
sliced, because both are low priority, at every I msec. This case was observed
by using “cpumode” 1, 2, 5§ and 6 in the Link Evaluation Program.

b. both processes under a PRI PAR with communications in high priority - in this
case communication will always be executed at once. Remember that it took
31.5 msec for a 15,000 bytes block to be transmitted, and the time slice 1s 1
msec, and so the cpubusy will not have a chance to be executed if
communication is going on, unless the number of bytes transmitted is smaller
than 475 :

o (475x 8) /3,800,000 = 0.001 sec or I msec, if we considered a rate of 3.8
mbits,/'sec. This cases were observed by using “cpumode” 3,4,7 and 8 in the
Link Evaluation Program.

c. both processes under PRI PAR but with the cpubusy process in high - in this
case the communications never occurred because the “cpubusy” process
although started together with the communications, should be stopped by a flag
of that process (by design), that could never come, because the process was
never being granted CPU time. This is why no mention to this case is made on
the Link Evaluation Program.

Again, analvzes were made for the four constructs and the results are
presented in tables and graphics similar to the ones in the previous chapter.

Another point to mention is that when placing a concurrent process in only
one of the communicating CPUs, the B003 transputer was the chosen one, because of
its higher internal clock. When the B0OI transputer was with the “cpubusy” process
first, no changes were noticed in the transfer rates as we added a cpubusy process on
the B0O3 transputers. In the way we did, we could clearly see the two step change.

3. BYTE SLICE Procedure
a. Using the PAR Construct
(1) One Transputer Only (cpumode = 1 or 5).
In this case Table 16 for “cpumode = 1~ and Table 17 for "cpumode
= 5”, shows us the results, and Figure 4.3 is the graphical representation of Table 16 .
We can observe that when the CPU has a concurrent process running
with the same priority as the communications process, the transfer rate is reduced from

10% t0 99.5% less of the original values on Table 9 .

Banailianaaly

TABLE 16

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003 -
IOMBITS, SEC

3 3 3 3
2 7 3 7 3 7 3 7 7 3
4 15 7 15 7 15 7 15 15 7
8 31 15 31 15 31 15 31 30 15
16 61 30 61 30 61 30 61 61 30
32 128 61 121 61 120 61 120 120 61
64 253 121 235 120 234 120 234 234 121

128 597 234 441 234 442 234 442 445 234
2586 789 441 792 441 804 441 801 811 440
512 1311 818 1326 788 1348 788 1337 1320 786
1024 2010 1315 1954 1317 1969 1315 1957 1994 1313
1280 2204 1518 2181 1494 2123 1489 2121 2142 1489
20438 2546 1938 2561 1916 2552 1934 2550 2588 1929
4096 3013 2535 3030 2535 2999 2527 2979 3017 2517
8192 3324 3004 3316 2976 3312 2967 3280 3326 2955
10000 3386 3100 3380 3083 3370 3065 3332 3385 3051
* Values in kbits/sec.

TABLE 17

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYPROD CONCURRENT AT THE B003 -
1OMBITS;SEC

BYTES 1 OUT 1INOUT 2 OUT Z{NOUT 3 our 3{NOUT 4 OUT 4 IN 4I¥OUT

1 3 1 3 3 3 3

2 7 3 7 3 7 3 7 7 3

4 15 7 15 7 15 7 15 15 7

8 31 15 31 15 31 15 31 30 15
16 61 30 61 30 61 30 61 61 30
32 128 61 121 6l 120 6l 120 121 61

64 253 121 235 120 234 120 234 235 121

128 479 234 443 234 443 234 445 444 234
256 854 441 805 441 804 441 804 810 441
512 1402 818 1349 790 1338 789 1339 1327 788
1024 1975 1316 1973 1318 1971 1318 1924 1971 1295
1280 2151 1492 2132 1496 2123 1490 2110 2144 1490 b
2048 2568 1938 2573 1938 2526 1929 2515 2544 1923
4096 3036 2539 3006 2529 2999 2510 2982 3020 2498
8192 3332 2989 3320 2989 3311 2965 3281 3355 2964
10000 3396 3091 3382 3076 3374 3068 3343 3417 3060
* Values in kbits/sec.

70 |

LWM&\&WNQ&L&R'}}}}Q&}D}? ¥

[
+

172
L)

ket o

[ISR
S ey o PSR Sy

1

1

|

'

)

[e kY Y ONRD N IPULY SR

[aheinfeinteindaiinl Mttt 2ttt

4
’
B L

t
1

[S

L iy R,
L3

R . b L R ey REnp N
L LR TR RCApURpEDY UG | S

~

~
~
P A

B e Tt il
.
hJ
e -
~

LJ
B

-ba

Q- Ao e mme
~—=d

P U PRI
R R

g

S e R il st I

| PR
.

Y

-
B I R PR .

S

1
-a=-

]

1

i
|

)

B

)

]
e R
]

1

))
rramde e amad

'
-

B L ek T ey

B R

]
)
]
1
]
[]
]
)
t
B e i T rpnupsty ISy ey R VS U R Vg G T U U

R s hakeedtatets Rt

B e Lk T Jr FEUpOUONGPURPIIINIS NP PUGS DG SIS UG SIS DU R, Wt &

R R e i Bkt e T R
e e i el e e S it

R ety iy g G Uy

B i T R . AR [G

R I IR R T AP)

T i I TSRy SRR R e &

[

LO0/NT ¥

LNONSHSE

JOag/nt 2

LOgNzH2Z

TNONEHDT

ON5337

00¢
- BYTE SLICE

00% 1
LYY ¥3JSNUYL

0012
71

00ge
(035/7S1.18M)

00SE

ajo
Figure 4.3 Transputer Link Transfer Rate

Procedure Cpubusysum Concurrent at the B003 - 10 mbits/sec.

002¥

This is a great surprise for us because we are only timing the

communication itself and although we can not prove, it looks like the communication
process is alive and sharing CPU time with the cpubusy process, instead of being
inactive while the links communicate, as all the references led us and our predecessors
to believe [Ref. 5: p. 16].

(2) Both Transputers Busy (cpumode= 2 or 6).

TABLE 18

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRFNT AT ALL CPUS -
1OMBITS:SEC

BYTES 1 OUT 1INOUT 2 OUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 2 1 1 1 1 1 1 1 1

2 4 2 2 2 2 2 2 2 2

4 9 4 4 4 4 4 4 4 4

8 19 9 9 9 9 9 9 9 9

16 39 19 19 19 19 19 19 19 19
32 78 39 39 39 39 39 39 39 38
54 156 78 78 78 78 77 77 78 77

128 312 156 156 156 156 156 156 156 155
256 624 312 312 312 312 312 312 312 311
512 1249 624 624 624 624 624 624 624 623
1024 2498 1248 1249 1248 1248 1248 1249 1249 1247
1280 3120 1560 1560 1561 1561 1561 1561 1561 1559
2048 2498 1665 1665 1665 1666 1666 1665 1665 1664
4096 3332 2498 2499 2499 2499 2499 2499 2499 2497
8192 3332 2855 2856 2856 2856 2856 2856 2856 2855
10000 3487 3050 3050 3050 3050 3050 3050 3050 3049
* Values in kbits/sec.

Table 18 and Figure 4.4 need no explanation. The results for
“cpubusyprod” are not presented because they happen to give us exactly the same
results for “cpubusysum”, as we saw in the previous subsection.

One may notice in Table 18 column "1 OUT”, that the value for 2048
bytes (2498) is a lot smaller than the previous one (3120), and the effect is clearly seen
in Figure 4.4 . What may be happening is that as the buffer declared on the program
(buffer0) may have the initial bytes of it in the internal memory of the transputers (2
kbytes), and when external memory begins to be accessed, the transfer rate goes down,
or reduce the rate of increase, as we can see on the lower curve of figure 4.4, where all
the remaining curves coincide and have a brake on the rate of increase at the same
point. This is what the author thinks is happening but we were not able to prove it.

72

- e 7T

3
[
g
y
L
z
%
b
o
:-)
h
!
¢
N
N
|
)
.
I‘
[}
?
!

WWWW\;‘"---“ wia - wER TRER S TR A
,

MESSAGE SIZE (BYTES)

008 onuz 0912 00% 1 00
(005/S110%) 3158 ¥JUSNUYL

Figure 4.4 Transputer Link Transfer Rate - BYTE SLICE
Procedure Cpubusysum Concurrent at All CPUs - 10 mbits/sec.

W-\mmm-xwx

b. Using the PRI PAR Construct

’ TABLE 19

| TRANSPUTER LINK TRANSFER RATE - BYTE SLICE -
PROCEDURE CPUBUSYSUM CONCURRENT AT THE B003 (HIGH) -
10 MBITS/SEC

BYTES 1 OQUT 1INOUT 2 QUT 2INOUT 3 OUT 3INOUT 4 OUT 4 IN 4INOUT
1 623 248 250 166 194 125 161 98

166
2 1250 500 500 333 400 245 322 333 196
4 1518 793 779 651 645 487 645 648 384
8 2201 1585 1567 1099 1318 851 1101 1105 689
16 2782 2155 2208 1711 1951 1458 1701 1714 1256
32 3227 2636 2702 2326 2503 2133 2314 2379 1837
64 3513 3067 3116 2850 2988 2667 2813 2975 2471

128 3578 3350 3368 3204 3305 3075 3186 3320 2926
256 3628 3491 3522 3417 3476 3333 3404 3538 3230
512 3663 3574 3601 3532 3578 3483 3516 3662 3404
1024 3684 3617 3651 3587 3632 3568 3581 3683 3487
1280 3687 3624 3657 3591 3640 3584 3595 3685 3510
2048 3692 3636 3672 3597 3653 3603 3617 3689 3543
4096 3694 3648 3683 3616 3671 3623 3624 3692 3576
8l92 3698 3655 3690 3619 3678 3632 3632 3694 3596
10000 3699 3657 3692 3614 3679 3638 3629 3696 3597

* Values in kbits/sec.

Table 19 and and Figure 4.5 show the results for one concurrent process
running in the B0O3 transputers, and Table 20 and Figure 4.6 the same for all CPUs
with concurrent process but in all cases communication having the high priority.

As we see the figures are even better, on the average, than when no process
was running concurrently, as seen on Table 9 . This is why we believe and suggest that
processes that handle only communications, as the routers, should be given always high
priority.

For each of the possible cases, Table 21 shows us the number of processes
executed in parallel in each transputer. Although they do not have a valuable absolute
meaning, they give us a comparative value of the behavior of the CPU in the different

constructs. The reason for that is in the way the program was made. There are some
intervals between the several communication sessions and repetitions, were the cpubusy
process would be able to operate, time sliced with the calculations and output to

screen, done after each of these sessions.

74

TABLE 20

TRANSPUTER LINK TRANSFER RATE - BYTE SLICE
PROCEDURE CPUBUSYSUM CONCURRENT AT ALL CPUS (HIGH) -

BYTES 1 OUT
11

1INQUT 2 OUT
555 500

10 MBITS/SEC

2INOUT 3 OUT
263 359

3INOUT 4 OUT
172 263

4 IN 4INOUT
1 32 263 127
2 1728 931 948 526 690 353 520 526 256
4 2288 1540 1436 1036 1204 681 977 992 498
8 2684 2165 2115 1621 1831 1341 1565 1723 986
l6 3203 2740 2649 2245 2435 1933 2199 2352 1664
32 3459 3136 3102 2792 2939 2526 2730 2912 2265
64 3549 3376 3375 3156 3276 2996 3139 3295 2788
128 3615 3511 3533 3399 3468 3303 3384 3517 3150
256 3655 3579 3600 3525 3568 3475 3516 3651 3359
512 3676 3621 3631 3589 3623 3565 3577 3720 3491
1024 3683 3641 3665 3623 3644 3619 3613 3714 3542
280 3682 3646 3663 3630 3651 3626 3623 3707 3558
2048 3683 3651 3675 3641 3659 3641 3634 3702 3579
4096 3690 3657 3675 3650 3668 3649 3642 3701 3595
38192 3689 3661 3675 3655 3673 3653 3646 3698 3610
10000 3689 3663 3679 3655 3673 3654 3647 3698 3614
* Values in kbits/sec.
TABLE 21

NUMBER OF OPERATIONS EXECUTED CONCURRENTLY IN EACH
CPU*- BYTE SLICE USED

* Values are in millions.

Transputer b0O0O3
cpu. sum cpu. prod
TTT207 T T TelsT
“TTslo | ile
IV 3.1
BV 3.1

Transputer b001

cpu. sum

inactive

cpu. prod

4. WORD SLICE Procedure

For the WORD SLICE Procedure, it happens that the results are very similar
to the ones obtained for the BYTE SLICE Procedure and they will not be repeated

75

e
Al

.
R P S NC)

.
CIm

DT VSIS

-

s — T w w — e er— = —

RGN G W TSR e TS ST T T

1) .
(S3LA8) 3ZIS 39ESSIA . g
00Cal 0001 001 0i 1 v
. i . I T ST |) — ._J.‘._+. \w _. ._”.. + + -+ - IC(.
» []
[I R I I o
__"... ! ¢ tytr ey + '_ ' ' ty bty f 1 Cb
vty oy b ‘ [) A I ' BRI Voa — m
N) ' .__... H ' Py ! ' ' [BPL] x.\w\ -
R ' I : N ' I D A S =
O T ') Py by] ' [T S ' ! ty 4 -
PV gt [}] [L B ' H I J [} 1 1y a4 w
I | 1 Py b H , I]] Py < R
qdq=pq-dmebocdanoaa ddadebdaqecpnaqenana dadgepqedeabcmdn e g U f e qeema o _
Cr o t] L] [T) ¢! by ! 1 Syt f=3 —
el bt ' R - H T PYK >~ =
._"u.. i ' L R T 1 ._"... ! vyt [T
_.__,. t [} ..._.. N ' _..._.] s___ — =
g ' I T) I ‘! 2 V-
Pty ! v [} (IS L B ' ' _.-... ' [} [= O =
.._... I t ._._._ ' ' _...._ 1 , = - -
T A I ! bbb oy ' vty b 4 &5 8 =
SRR SRR TR R LA =2 N
R T s T S Ry I AR R 303 -
vty] [: el] 5 v
T ' ' [N H sty ! (St and
oy b ! [L T ' oy ey P [
I R H el b ' IR ¢ =Y S o
e ! ! Yt 1 vy ! D S o
vie o b b HE S B B hyaoa e — ™
[T L ! L 1 o m —
vy oy ! ' ! vy ' H NN | s o [O
U L S PR SO PR diqdalamao b doaaa s P SLURL . U i 7 Gy AR WL J T DL SN SO S N - ~ O
I] | vy e T X VAL e S mlr c = [
vhaa ! ! ' v by ' + _..._ L = =5
I B ! L T ' v) [ws] o >
Yy !]] [T N | ...-\. ’" (] — (]
thaa o b ! I ' e O ' — - =
P] 3 [B N N ..\‘.}\\,. ¢ v o O
S A R I ! “_“"___ ') __\.Q.\N\.. Y FoyoToo g mc
RN RS R RV 3 IR TAT O S T R 2.
I A i P N R PFIR O Eu: p Av=3 = S e NN = — o E
....... ._ " "_“._“] 1N ” Z»?TJLQ 2 mnlu. c S
1) p v
SRR SRR Yw\ !] To0NS9Cy e ~ g2
t v,] 1 R E T T -
SN HERE Pk _ Wl INC/NT T 776)
. ' Ny v -
SRR RN : _ | INONGHJE _ x B
' Y N BN 2 R A= L e
IR . . } L0G/NL 27747 | o 32
a3 R U U s I - - 2 cedecanad P RN —t g 4C
o & e : T (] INCNLHIE v IS)
||||||||||| . [} T L)
mm— el phhea b { LOO/NL [o S &
i vyt ' f ']] Pt ' v NT! T -
R SRR AR i LMONeHdT 3 =3
1)] Y
""“__"“ ! " ..“...“ “ .. “__.“_.“ ' ' _. n_/[muu)_ o
M| ' | Py b ' ' PV oy ! ! 1 H b (o]
A A dmdd " dod. w m
o
[#

w-‘mm—‘--w—.w._._.ﬁ_ I

TES)

Y

MESSAGT SIZE (B

':C‘ :"]i ':"J:I~'—“ | CRCRERREREEEARATL AT DANCERER) o R R T T
2ol 'O oop ey :
|- N O N,

') [} [

1]] H]
QOA]+1 X0 KX
)) 1] H '

0oZ¥ 005 0082 0012 00b [00 0
(33S/5L18M) AIHY HIJSNUYL

Figure 4.6 Transputer Link Transfer Rate - BYTE SLICE
Procedure Cpubusysum Concurrent at All CPUs(high) - 10 mbits/sec.

77

IR NN * ABRAFALEF LA A.E RS

here. The reader may refer to all Tables and Figures described in the last section, just

remembering that for word transfer the minimum number of bytes is 4, and so. the two
first rows might be disregarded.

5. Input and Output Primitives

£ a. Transmitting and Receiving Bytes

o TABLE 22

i TRANSPUTER LINK TRANSFER RATE* - INPUT/OUTPUT (BYTES)

i PROC CPUBUSYSUM CONCURRENT - 10 MBITS/SEC

%

cpumode 1 out lin/out 2 out 2in/out 3 out 3in/out 4 out 4in/out

. 1 PAR 3 1 3 1 3 1 3 1
W 2 PAR 2 1 1 1 1 1 1 1
4 1 PRIPAR 370 230 150 150 160 110 1585 90
: 2 PRIPAR 575 350 370 225 295 155 235 115
o * Values in kbits/sec

]

o

f

£
2:" Following a tendency observed before, there were no variations for transfer
X rates with respect to the message size. Table 22 shows us the figures obtained for the
R various priority schemes used.
,‘ These results were the same for the procedure “cpubusyprod”, and for this
j:; reason are not shown.

kN b. Transmitting and Receiving Integers

K TABLE 23
» TRANSPUTER LINK TRANSFER RATE* - INPUT,OUTPLUT (WORDS)

: PROC CPUBUSY.SUM CONCURRENT - 10 MBITS/SEC

Y

;: cpumode 1 out lin/out 2 out 2in/out 3 out 3in/out 4 out 4in/out
)

& 1 PAR 15 7 15 7 15 7 15 7

o 2 PAR 9 4 4 4 4 4 4 4

1 PRIPAR 1510 970 765 640 640 470 625 375

by 2 PRIPAR 2345 = 1560 1450 1040 1200 650 930 480
fy * Values in kbits/sec

_"n

a ‘78

) ¥

KA T A AT P B AN R RN MM R . By o Pt PN TRl

LN
RRPLTUN R

[y

X))

T WYY Y Y N N TN Y YW T Y DR DU UN UV TV T W I T W U AT ST\ e L

Table 23 shows us the results for transmitting and receiving integers with
input and output primitives.
Several conclusions may be drawn from the two tables mentioned above:
e results for integers are in general four times larger than for bytes.

® A process running concurrently does affect the communications if under a PAR
construct. Results are 50 to 100 times smaller than the ones obtained for no
concurrent process using the CPU. See Table 13 .

¢ When running communications under PRI PAR on the B0O03 transputers, same
results are obtained as with no other concurrent process. One shall compare

third row of Table 22 (1 in/out), with Table 13 for bytes and third row of Table
23 with Table 15 for integers.

¢ When running communications in PRI PAR in both transputers the best
transfer rates are obtained either for bytes or integers. So the concurrent CPU
process will not affect the communications.

It is always good to remember that the cpu load cases examined are
extreme cases that rarely or never will occur in any application program, but the results
obtained, undoubtedly, show us a relation between cpu load and performance obtained
on the links. So, referring back to research question 6, we are not able to affirm now if

the links can operate in parallel with the processor, but next section will address this
point again.

Conclusion 6
Under a PAR construct, a process working concurrently on
the CPU, will reduce the transfer rate on the links.

Under the PRI PAR, it looks like the communication process in high
priority does not suffer any dragging, but we have still a doubt of how much can a

process do when the communications are in PRI PAR and are lengthy. This will be
addressed in the next section.

79

AN e e N e N Y R K b e

Lk a8 S0 G Hah Tolh Talt Al 40 ¥ et

B. THE EFFECT OF THE COMMUNICATIONS OVER CONCURRENT
PROCESSES

This section addresses the eighth research question below:

® “What is the effect of the communications on the links, over a process that is
being executed concurrently on the main processor of the same transputer?”

1. Initial Considerations
To observe this we needed to time a fixed length process without any)
communications occurring in the processor in which it was being executed, and time it
later with communications in parallel through the links. As we mentioned before, in the
iatter case we needed to make sure that only the communications were happening
concurrently, hopefully in parallel, in order to guarantee that the process being timed
was not being dragged by other processes besides communication processes.

PROC counter (CHAN in,out, VALUE tnumber) =

-- description

@ RARKRARKARKAAARKARKRAARRARAKRKRRAKAAKRATAAAKRKTKRKRKRKAKRKRK KRRk KRRk kK
==~ sums up the first 100000 integers and add the transputer

--= number to the total
R R T T R T e o T T R o ok K Tk s e ok ok o e e v ke vk e ok ok ke e 7k e ok ok sk g e ok e ok ol Sk ok ok ok ok ok ok ek

DEF maxope = 100000: -~-= number of operations done
VAR ch,total : .
VAR startime3, endtime3:

|

SE
Q!;otal := tnumber
in ? ch]
TIME ? startime3
SEQ{ i = [0 FOR maxope]
otal := total + i
TIME ? endtime3)
out ! total;startimel;endtime3:

Figure 4.7 Procedure Counter.

What was done, then, was to make a simple procedure called “counter” listed
on Figure 4.7, and place it in a transputer with no other process. For this purpose, a
transputer in a B003 board would be more appropriate, because we now are going to
time the processor itself and performance could be affected in the BOOl board by the
terminal_driver, user interface and so forth. It is never repetitive to remember that with
the links measurements these effects were not so strong because the links have constant

speed of transmission, the 10 mbits’sec bit rate, independent of the processor internal
cvcle and load.

- A

80

- s & @ & A 8

T T D T A S Y I NN S TR N

W T N N T O O N TR R TR R R O OV OO ORT D SO o (o (¥)
1 0 1 0
- n " 12 % 2 22
—_ 2le e 2le—— 1
3 2 2
2 3 2 3
1 2 R | BN |
10 13 '20 23
3 0le— 3le—— 0 j¢—o
0 ! o] 1
[Y
T 1 11
JE3)
e ROUTERS :
00, 10, 20, 30
6
(23 : 2 |, (73
(31 ROOT sle —
LEAVES 3 S
6,02, 03 4
1,12,13
21,22,23 | 12 toJ
31,32, 33 cn
| 4 I | !
1 0 1 0
o |
—* 032—‘”00‘ —’°332_—’ 30
T 1 2 3 2 Ml
2 3 2 3
— I S L |
'o02 201 ' 32 23
3 0 le— 3 l¢—— 0 le—
1 T T 1T
Figure 4.8 Configuration for Program Test Linearity (17).

- -
-

26

PR,

e T LY
e - B TS

- s a e
s by

VELR,

B

P LN
-

£,
5

L
»

Ly
A X X

f'(

PESAF 1T

¥ g TS IR
WEE &S

r r
.,

N L C AR

[

. .
g3

b U

. -

ALY N N s e L L A N

The procedure “counter” sums up the first 100,000 integers plus the transputer
number were it is located after receiving a flag, and send the result, startime and
endume out through a channel “out”.

The harness where we placed this procedure was a program called "Test
Linearity” that will be described now briefly. This program is listed in Appendix F and
includes the main procedures, Host Proc, Route, and Counter, that are separate
compilation (SC) and are placed in different transputers. The configuration used for
this program is shown on Figure 4.8 . The procedure Host Proc is the user, keyboard
and screen interfaces, and it is placed in transputer root. The procedure Route is placed
in transputers 00, 10, 20 and 30, and executes in parallel the routing procedure and the
counter. The remaning transputers (12) are all executing only the counter procedure. If
we look close to the topology of the processors on Figure 4.8, we can see that we have
a tree structure were the leaves are only executing counters, the second level nodes are

the routers and the root is the host procedure (hostproc). Figure 4.9 lists Procedure
route.

2. Results Obtained

The first measurement done, was the time to execute “counter” and we
obtained 130 msec., using the tick.to.time routine to convert the tick values. This value
was obtained in all 16 counters either alone in a transputer leaf or inside the routers,
meaning that the present level of communications were not affecting the concurrent
process on the routers CPU!

Then, to enforce a continuous communication, we placed in each router,
besides the flags, and in parallel with the counter, three block transfers to the three
leaves of each router using the BYTE.SLICE procedure with blocks of 50,000 first, and
then varving from 70,000 to 256 bytes. If we recall from Chapter 3 this would assure us
at Jeast 105 and 147 msec, respectively for 50 000 and 70,000 bytes, of continuous
communication, considering the rate of 3.8 mbits/sec. In fact, we also measured in this
new configuration the time to execute the communica‘ion process alone, and it took
respectively 103 and 144 msec, so implying a transfer rate of 3.88 mbits 'sec for the
three channels transmitting in parallel. This result a little bit higher than the ones
observed in the last chapter is explained for two reasons:

1 The use of 15 Mhz transputers with shorter processes inside and so permitting
most use of internal memory.

2 The bigger external memory permitting use of bigger block transfers.

The transfers were then timed in two modes:

82

NEMUNENEANAWR™ 4arm

mEESARANBAWRT

e e - . A —— — A e

PROC route(CHAN messagein,messageout,routetol, routeto2,routeto3,
ec ofroml ect ofromz echofrom3 VALUE k)=

DEF i = ¢ : --- number of counter procedures

VAR msqg : --- flag

VAR results|

VAR startlme[l}f endtlme[l] --- tim

CHAN softin,softou --- soft channels declared for

--- communication with procedure counter.
== SC PROC counter

~-- This procedure counter is listed in Figure 4.7

SE%AR

counter (softout,softin, k)
-- routing process itself
SE

messagein ? msg
SE
AR
routetol ! msg
routeto2 ! msg
routeto3 ! msg
softout ! msg
PAR

echofroml ? results-C-;startime-0-;endtime-0-
echofrom2 ? results- 1-,start1me 1-;endtime-1-
echofrom3 ? results- 2-;startime=-2-;endtime-2-
softin ? results- 3-; startime- 3-,endt1me 3-
gEQsendlng to the root results and timing
l:.'
messageout ' results[l] startime(i] ;endtime[i]:

Figure 4.9 Procedure Route.

¢ 3 chanout, with three simultaneous BYTE.SLICE transmissions to the counters
in different transputers,

* 3 in/out, with six simultaneous transfers (3 input and 3 output) to from the
counters in different transputers.

Note from the procedure route code in Figure 4.9 that a flag was sent to each
transputer to make sure they were ready for the BYTE.SLICE transfer, and then
another flag was sent to the local counter procedure and so do the best possible for the
communications begin together with the local counter procedure.

As we can see from Table 26, for message blocks up to 520 bytes, no effect
was noticed on the procedure counter! At this point no further investigation has
occurred and two speculations could account for the observed data:

1 May be after 520 bytes long, the arrays being transmitted, begin to access
external memory of the transputers. If this was the reason, the increase of time
should be more proportional than the abrupt increase of 35% more in time

(46, 130) with an increase of 4.6%0 in the number of bytes transmutted (24 320)
as shown in Table 25 .

83

e e LT

s AL

-
o

WW"wwuuw--"m AR TR T T e

TABLE 26
TIMMING OF PROCEDURE COUNTER

a. Message size 50,000 bytes

- time to execute communications only : 103 msec
- time to execute procedure counter with:

. No communications 130 msec

2. With 3 chanout............... 186 msec

3. With 3 in/out 185 msec

b. Variable message size with 3 chanout

Timing of rocedure counter&msec)

in the rou in the leaves

bgtes ar prlgar both cases
70000 90 0] 191
50000 186 186 191
10000 178 178 175

1000 176 176 130

544 176 176 130

528 156 156 130

520 130 130 130
< 256 130 130 130

2 The counter is being timed out, when communication takes more than 1 msec
to finish - this looks more reasonable in the sense that if the time slice instead
of 1 msec, that corresponds to 485 bytes to be transmitted at a 3.88 mbits;sec
rate, is 1.07msec this would give us a transfer of 520 bytes in the period of a
time slice because :

* (520x8)! 3,880,000= 0.00107 sec or 1.07 msec

On the other hand, if we compare the total execution time of 195 msec for the
worst case observed (process being executed concurrently), with the sum of the
individual times necessary for counter or communications to accomplish its task , 233
msec, (See in Table 25 a.), we see a mismatch of 38 msec, when the two processes
might be overlapping in time.

The great surprise, although was the unpredictable effect on the transputer
leaves where we have the counter process executed sequentially after the
communications and the timing onlv begins after the communications are over (Table

25 b, last column). We have no reasonable explanation for that.

So. as we see, no definitive conclusion of how the scheduling of the routing R
process and the counter process is happening, but from the times obtained, there has 4

to exist some overlapping, but not total. between the counter and the routing processes
in the router transputers. The results were consistent on the four routers.

%
34 §
X

P SR T R 03 N TR LRI ST AT UL L IS L Y LU L 3y

Conclusion 7

N

The communication indeed affects the process being executed
in the CPU, for messages greater than a threshold size.
For our example this value was 520 bytes or bigger.
Bellow this message size, communications had no effect

over the process being executed on the CPU.

This first conclusion sure lead us to do a complete case study, on the subject
matter varying the counter size, the message size and using another typical process
instead of the simple counter, and observe the effects. It could be done, in a similar
way that was done for the links, but time did not permit this to be included in this
thesis, and is another suggestion for follow-on research.

C. DOES THE TRANSPUTER ACHIEVE LINEAR PERFORMANCE
IMPROVEMENTS?

We could see in Chapter 3 that the four links in one transputer, in some cases
gives us linear performance improvements, because the transfer rate per channel is kept
constant while we increase the number of channels in parallel. The reader may recall
Tables 9, 10 and 11 for 512 bytes or larger.

If we now look into the process performance, turning back to the Test Linearity
program, we can say that for this program, each counter took 130 mec to execute and
timing from the host process on transputer root we have got a total execution time of
133 msec since the first flag left channels hostout0 to 3, up to the last result was
received back.

A simple test was made mapping all processes assigned to a B003 board with four
transputers, to only one transputer. In this way, one route process plus 3 counters
would run in parallel in only one CPU, the former routers. See Figure 4.10 that shows
the new procedure route5 that accomplish that. The configuration now was the same
one depicted on Figure 3.14, with a different process placement shown on the program
structure on Figure 4.11 . The results obtained are listed on Table 25 .

As we see to have a rigorous linear increase of performance we should have:

1 on each counter time:
e 517.5 (average)/ 4 = 129.44, and what we had got was 130 msec each!
2 on the total execution time

e 5344 = 133.5, and what we had got was 133 msec!

85

.J‘Y-n -

Pl R

PROC route5 (CHAN messagein,messageout,VALUE i)=

PROC route(CHAN messagein,messageout,routetol,routeto2,routeto3,
) ,echofroml ,echofrom2,echofrom3,VALUE k)=
-=--This procedure is the same of Figure 4.9 and 1s not repeated.

PROC counter (CHAN in, out, VALUE tnumber)= _
---This procedure is the same of Figure 4.7 and is not repeated.

DEF totlinks = 32: -=--constant for soft channel definitions
CHAN pipe[totlinks]: -~-soft channel definitions
PAR

route (messagein,messageout,pipe 9+(6*i)],pipe[l1+(6*i)],
pipe[§.3+(6*?.)] ,pipe[sg(s*i ,gil[ae[10+(6l<i%]gpgpe[§.2+(6l<i)] ,1)

counter(pipe[9+(6*i)] ,pipe[8+(6*1i)], ((10*i)+1))
counter(pipe{11l+(6*i)],pipe[10+(6*i)], ((10*i)+2))
counter(pipe[13+(6*1i)],pipe[l12+(6*i)], ((10*i)+3))

Figure 4.10 Procedure Routes.

Another version of the Test Linearity Program was made and mapped to only

one transputer T414 in a BO03 board. The time for execution was then 2.3 seconds! A
last version made for the OPS system running on the VAX VMS run at best in 8.8

seconds!

Conclusion 8
With normal communication load, linear increase
of performance with more processors may be achieved!
The routing process does not drag the processor!

(Y
v
Fyt
-- PROGRAM testlinearit ‘
-- T AR Rk kKR ek e ek e Ak ke R kR ok ok ok ok ok ek Rk ok ke ke ok ok ok ok e e
-- * Title : Test Performance Linearity m
-- * Version : 3 b
-- * Mod : O L . e
-- * Author : Jose Vanni Filho, Lecdr., Brazilian Navy Iy
-- * Date : June, 5th,1987 S
-- * Programming Language : OCCAM 1 o
-- * Compiler : IMS D 600 - TDS) ‘ _ "
-- * Brief Description : This version of test linearity
-- I mapped into 5 transputers, shows us the increase 1
-- * in time to execute the same processes of version 2 b
-- * with the reduction of the number of processors, by .
-- * a factor of 4, S,
-- ek K e Kok R A ok ke ek ok ok R ok A ek ek ok ok ko ko sk Ak ¢
4
L)
¥
— SC PROC hostproc (CHAN A,B,C,D,E,F,G,H) , -
--- This procedure is the same included in version 2 of the Test g
--- Performance Linearity program in Appendix F and is not repeated. :
'
== SC PROC route5 (CHAN messagein,messageout,VALUE i) i
--=This procedure is the same of Figure 4.10 and is not repeated. Q
U
'!
-~ configuration "
== link definitions
DEF linkQin = 4 : .
DEF linkOout = 0 : "
DEF linklin = 5 : -
DEF linklout =1 : o
DEF link2in = 6 : Iy
DEF linkZout = 2 :)
DEF link3in = 7 : LN
DEF link3out = 3 :
DEF root = 100: .
DEF totlinks = 32: »
CHAN pipe[totlinks]: $_
PLACED PAR i
PROCESSOR root) (
-= link placements and process assignment L)
PLACE pipe[0] AT linkOin : .
PLACE pipe([l] AT linkOout : 3
PLACE pipe[2] AT linklin : i)
PLACE pipe[3] AT linklout : ,
PLACE pipe[4] AT linkZin N
PLACE pipe[5] AT link2out :)
PLACE pipe[6] AT link3in
PLACE pipe{7] AT link3out : s
hostproc (pipe[0],pi e[Z{ ipe[4 ipe[e{
P pipeli].pipel],pipel 4] pipeld])
L)
PLACED PAR j = [0 FOR 4] v
PROCESSOR 10*j _ o
-- link placements and process assignment N
PLACE pipe[2*j] AT linkOout :)
PLACE pipe[(2*J)+1] AT linkOin : !
route5 (pipe[(2*j)+1],pipe({2*j],J) e
o’

Figure 4.11

Structure of Program Test Linearity (5).

87

TABLE 25

COMPARING COUNTER EXECUTION TIME IN 4 AND 16
TRANSPUTERS NETWORK

16 transputers NR 4 transputers NR

counter 00 130 msec 00 520 msec 6]0]
counter 01 130 msec 01 518 msec 00
counter 02 130 msec 02 517 msec 00
counter 03 130 msec 03 515 msec 00
counter 10 130 msec 10 520 msec 10
counter 11 130 msec 11 519 msec 10
counter 12 130 msec . 12 517 msec 10
counter 13 130 msec 13 515 msec 10
counter 20 130 msec 20 520 msec 20
counter 21 130 msec 21 519 msec 20
counter 22 130 msec 22 517 msec 20
counter 23 130 msec 23 515 msec 20
counter 30 130 msec 30 520 msec 30
counter 31 "130 msec 31 519 msec 30
counter 32 130 msec 3z 517 msec 30

counter 33 130 msec 33 515 msec 30

Total Execu
(timed on b

Oct
o
0

V. CONCLUSION

When this research begun, in October 1986, we had a new machine, working with
a language that we did not know, and using a concept that still today is considered
hard to grasp and to work with : Concurrency and Parallelism. After working for eight
months with the transputer, the first conclusion that come up is :

¢ Concurrency and Parallelism are not difficult concepts to understand at all,
using the Transputer and the Occam Programming Language.

In this first phase of the research, the evaluation of the Transputer hardware,
several significant conclusions were reached and they are summarized in the following
paragraphs, that were obtained from the body of the thesis. They give us a good first
idea of the real potential and capabilities of the Transputer when programmed in
Proto-Occam.

The bit rate in the links is switchable between 10 mbits/sec and 20 mbits, sec.
When operating at 10 mbits/sec rate, the data rate was at best 3.8 mbits/sec or 450
kbyvtes:sec, per channel. So, the eight links will be able, in the best case, to exchange
3.8 mbytes of data in one second, between two adjacent transputers, because the links
are really able to operate in parallel. We shall remember that to obtain this results, we
need to use the BYTE SLICE or WORD SLICE constructs, with messages larger than
256 bytes. Equally, when switched to 20 mbits /sec rate the maximum data rate
obtained was 6.1 mbits/sec.

When a computation bound process is running in the cpu, with the same priority
as the routing process, it will reduce the transfer rate on the links for any construct, at
least 8% for one channel operating, and 21% for any other number of channels. These
results were observed for message size 10,000 bytes or smaller.

On the other hand, if we give high priority to the communications, the cpu
process will be executed in the same way, and the communications will keep the
previously obtained rate of 3.8 mbits/sec, so this is strongly recommended.

Communications in the links will reduce the performance of a process being
executed in the same CPU, when message sizes overcome a threshold size, depending
on the process type. For our observed case this value was 520 bytes. For larger
message sizes, the maximum reduction in performance for the computation bound
process was 50% in the worst case (Six channels operating in parallel).

89

i BRI TSIy Sy VLA W FRER T TR TR T T T

The transputer is able to increase throughput linearly with the increase of the
number of transputers in which the process is executed.

Although very promising, these conclusions are not complete and here follows
some suggestions for follow-on work in the evaluation:

1 To investigate the usage of the internal memory by the processor, specially if
priority is given for data or program execution code, to be placed in internal
memory.

2 To investigate how the scheduler handles long communication processes that
are consuming more than one time slice.

3 To use a Logic State Analizer capable to sample in a clock rate of 50 or 100
mhz, to more precisely measure the time delays involved in the receipt of a
frame and dispatch of respective acknowledge.

4 To time the amount of time needed for an array of variable size to be
transmitted through several transputers to a non adjacent destination.

S To use the Link Evaluation Program with greater message sizes. This would
imply in using B0OO3 boards that have 256 kbytes available, per transputer,
instead of the 64 kbytes available at the BOOl board, or a replacing the B0OO1
board by another board with larger external memory.

6 To make a thorough study of the effect of link operation over a computation
bound process.

7 To benchmark a network of transputers configured in a hypercube with the
commercially available hypercube computers, like the Intel IPCS-VX, using the
Operating System presented by Cordeiro [Ref. 6].

Another suggestion for research is the development of real-time application
programs to observe the behavior of the machine under normal work load situations.

[t is important to mention at this point that, as advertised, we could indeed use
transputers with different internal clock cycle, communicating with each other with no
problems at all.

Equally important is to remember that in all results obtained in this research, we
were using bytes or integers, with no floating point operations. So one other
recommended topic for investigation, is the link and processor perforimnance evaluation
for floating point data. This could be done in two way's:

1 By using software floating point available in Occam 2, or

2 By using the hardware floating point that will be available with the T-800
transputer.

If we could state, our impression about the transputer, the small size, the
simplicity and the speed are the things that really stood out.

90

As a final suggestion, to enlarge the research horizons at the NPS, we
recommend the replacement, when possible, of the the BOO1 board, interfacing with the
VAX, that turned out to be a bottleneck for our 160 MIPS capable Transputer System,
either in processing speed, or in memory availability.

Occam is a very easy language to use, the fold editor is very powerful and
friendly, and the channels are very good elements for synchronizing processes. But as
soon as the Ada compiler becomes available, the research should follow that way and
then, comparison with the previously obtained performances, will be helpful in judging
the applicability of the Transputer in military real-time systems.

- 14

S S S

APPENDIX A
LEARNING SEQUENCE

a. How to Log in

The first thing one will need is an account on the VAX-VMS to use
OCCAM.

There is a group account username "“OCCAM” , and through the C.S.
Department staff one can get a sub-account to it.

Once a person gets a sub-account, one shall have a password and a login
name (normally the last name). With this, one should go to a terminal VT 100 or VT
220 (no other terminal will work !), log in, and as soon as the “S$” prompt appears, the
VAX/VMS System is ready to begin.

If by any chance, the person already has one account in the VAX;VMS
system, what he/she may warnt to do is to work from his own account. That will be
possible, but as soon as the $ appears and before one tries to use any of the OPS
or’and TDS commands one should type either:

e opssetup --> to use the OPS system, or
e tdssetup --> to use the TDS system.

These commands are already included in the login.com file of the OCCAM
account and it is a good idea for one to include them in one’s login.com file too.
Another thing one may need to do is to move to the "dua0:{OCCAM]" directory to
copy files and libraries already created and that, certainly will be useful and save time
for anybody.

b. Learning Sequence
1. Step 1
The first thing one needs to know is how to use the VMS Operating
System. One good choice is to run the online tutorial VMSCAI and or get a VMS
tutorial from the C. S. Department [Ref. 22]. If the person is completely unexperienced
it will take two sessions of two hours each, to get a good feeling for it.

2. Step 2

When one feels comfortable using the VAX/VMS, the next step is to get
acquainted with the fold editor. This 1s a very powerful editor but most likely it will be
new for anybody, and if one needs more information on it, he 'she should refer to the
Occam Programming System Manual [Ref. 13: section 2].

92

Dl O]

To execute the tutorial :

e copy from the OCCAM account the file "OPSTUTOR.DOC” using the 0
following commands at the S prompt:

o “set default dua0:Occam ” (this will move vou to OCCAM directory) :
e “opscopy opstutor.doc [.your_directory]” v
e “set default [.vour directory] (to move back) '

e type: " ops opstutor.doc” at the S prompt in your directory |
This will open the opstutor.doc file and will appear on the screen on the
upper left

“Press -ENTER FOLD- to start session” 4
“...F OPSTUTOR.DOC”

At this point one should press the key “0” and while pressing it press also :
key “7” (both keys are on the numerical keypad on the right side of your keyboard.
This is the ENTER FOLD command. From here on just follow the on screen
instructions.

It is likely one will need about two hours for the first time, but as one 0
keeps using the editor he/she will find it most easy and powerful. It is a must to have
a card with a xerox copy off the keypad description codes. See Figure Al

3. Step 3

Learning the Occam language is the next thing to do.

One may even begin reading the Occam Programming Manual
[Ref. 13,: section 3] or Pountain’s book [Ref. 12] early in the learning process, if
desired. If the reader knows any other structured language such as PASCAL, ADA, or
C it will be most easy. [t is very important to get a good grasp of the channel concept!

4. Step 4

At this point it would be good one know some thing about the transputer A
hardware, and architecture. The Transputer Reference Manual is the reference, but the _
technical notes from INMOS or the existing theses will also help. :

5. Step 5)

At this point one have a choice of learning one of the three systems !
available at the NPS: OPS, TDS for the VAX, or TDS for the PC. They are a little bit _
different and a good choice for the beginner will be the OPS. This will enable the 3
person to use the Occam language for create concurrent programs, that will be |

1 Reproduced By Permission of INMOS Corporation

93

| s e R L O NP AT I WP SO AN ”
MO LA AL AN ACLAA BRI AR AT B0 AT S M DTN O Ny Dy Lo, AR r Lot St n DO

s

VT100 Kevboard lavout

r~ 4
\ unoclw (unms]
f DEL RT oﬂ IN FILE | -

4 4 Kg!
ENTER) (} (3408
This function is abtsined

P ’ | l CLOSE by pressing FUNC andg then
OPEN \

the koy
Y
ART MOVE copy END
l'“f o J M
r—“‘\ 's N (p This function 13 obtatned
A P PAGE N
PACEL -:ﬁ‘—;:? REMOVE by pressing tne ey
{INE UP ,
l FOLD
pu
REFRESH Y | create
FOLD
FINISH
FUNC L)

Figure A.1 Keypad for Using the Fold Editor.

compiled, linked, debugged and run on the VAX. The OPS Manual is the main
reference for it.

6. Step 6
After that then, depending on which system you will work you should learn
the TDS {or the VAX or for the PC. The reference manuals respectively are the main

reference, but the Theses by Cordeiro or Vanni present several hints and suggestions
that may help. With respect to Occam the only different skill one will need is how to
make configurations. Again both theses will help.

"

94

T T L A A S R Y, VP P e T T e S e e o R A

TS P A LW LN A VAN LA U U LA LN LM t ocaf "t gt g%t R OO R R T O O T NN UVl IR Uy v Uw U
- N 5

APPENDIX B
OPS TUTORIAL

1. Introduction
This appendix will describe briefly how to use the OPS system, resident on
the VAX VMS, to write a program, compile, link and execute it. It will not be a
complete description of the systemn and it assumes the reader already knows how to use
the Fold Editor and the VMS Operating System in the VAX, and had already been
exposed to the Occam Language. The main reference is the Occam Programming
Svstem Manual.
2. The Existing File Types:
In OPS there are several user file types identified by the file extension:

e “ops” - these are source files, folded, that may be edited, and once in the
program format, may be compiled. These can not be printed.

e “lis” - these are listing files that may be used as a VMS file for any purpose.
The copy. tvpe, print commands on this operating system work with no
problem.

e “.ob)” - these are object files that were already compiled. They may be linked to
make an .exe file. They are not printable.

e “exe” - these are executable files that were compiled and linked already. They
also can not be printed.

3. To Start the System
Once one is logged on the VAX,VMS on a terminal VT-100 or VT220, the
first command to type is:

e opssetup - this will enable all the following commands used in the OPS to be
recognized by the VMS Operating System, through the “ops kernel” (opskrnl)
resident on the Systems Directory.

4. To Open a File
Type:

e ops “filename” - this command may be applied to any ".ops” file and will make
the file available to be edited with the fold editor. Everv time one cxit "hc
outermost fold, a new version will be created on the VMS tile System. keep
track.

S
h)
~
~

,-K‘MJ‘ 969 ‘I’EST AND EVALURTION OF THE TRANSPUTER IN R
MULTI-TRANSPUTER SYSTEM(U) NAVAL POSTGRADURTE SCHOOL
MTEREV CA J ¥V FILHO JUN 87

e

y 'M»‘l‘»'.'.‘ .o'l.l‘\‘

‘\ LA i?!‘ .‘_.y “x N t" .. ‘|"::: . ' l. q
B N '\,‘ !:‘ u

" LAy

o

fl22

FREFEEEE

EEEE

FEEE

=
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B Ak il ‘l.”‘ﬂ..ﬁ ﬁl’ - W "' . 4 -~ e -

5. To Make a Procedure or a Program

The procedures and programs have a similar structure as in Pascal or Ada.
After the procedure name with parameters follows the constant, variables and channels
declarations and procedures defined only inside that procedure (subprocedures), and at
last the main program that may begin with an WHILE, IF, SEQ, ALT, PAR, PRI
PAR, a replicator, and so on and terminate with a colon(:). The best is to make all
procedures with separate compilation (SC) capability, and for that we should apply the
utility MAKE SC PROC to the procedure fold line.

The program has no parameters and no colon at the end, but the structure
is the same as described for the procedure. It is important to say that in Occam one is
not obliged to declare all constant, variables and channels at the beginning of the
procedure. It may be done before any process. A process begins with any of the above
mentioned constructs. The best way to learn is to look at ready programs so we will
stop this section here. When we use the utility MAKE PROGRAM the name program
will automatically appear in front of your program name.

The global_definitions and library are very useful to easily make programs,
and it is a good idea to put them in any program.

6. To Compile a Ready Program or Procedure
Any PROGRAM or SC PROC may be compiled separately, as long as the

utilities “"MAKE PROGRAM"” or “MAKE SC PROC” respectively, were applied to
them and no error message occurred. To execute the compilation, the cursor has to be
in a folded line, with a PROGRAM or and SC PROC inside, and then the user should
execute the utility COMPILE. The system will prompt for the object file name and it is
a good idea to use the same name of the source file.

7. Debugging a Program During Compilation
The compiler is quick and every time one gets a compilation error, the error
description appears on top of the screen and the cursor is placed on the line where the
error occurred, or one before. The System will be in edit mode and the error may be
corrected at once. After correcting and exiting the fold, one will be ready to compile
again, neatly and cleanly.
8. To Link a Program
After the object file was created with the compilation, one has to leave the
Fold Editor and at the VMS prompt (S) type:
¢ link/debug opskrnl, program_name

The debug is optional and we did not use it too much, but we can say it
f runs and permits one to trace a program execution. After the linking the .exe file will
; be created, and one is then able to run the program.
. 9. To Run a Program
After the link was done successfully, one should type after the § prompt:
¢ run/ debug program_name
Again the dcbug is optional and after this command the program will be
running on the VAX. If logical errors occur, the two options are either to use the VAX

on-line debugger or get back to the source code (the .ops file) and place some output
to screen (Screen ! var).

Special Eunctiona Utilities
FUNC h HELP FUNC 1 . CHECK
FUNC ¢ FOLD INFO FUNC 2 : COMPILE
FUNC s SETUP FUNC 3 * MAKE PROGRAM
Key FUNC 4 : MAKE SC PROC
- 1 function 13 chiatradd FUNC S . DESCRIPTOR INFO
""'- l:':’"“'“‘«‘“"" FUNC 6 : LOCATE ERROR

FUNC 7 ESTIMATE
FUNC 8 : SEARCH
FUNC 9 : REPLACE

FUNC O : LIST
This functin 13 obtatned

by pressing the key

Figure B.1 OPS Utilities.

10. To List a Program
There are two ways to do that:
1 The first one is under VMS, one shall use the OPS command:
¢ opslist filename.ops filename.lis
This will create a list file on filecname.lis to be printed on the VAX on-line
printer. Be careful here! If one forgets to put a “filename.lis” in the command,
the source file will be transformed in a list file with the wrong termination. And

97

worse, if by chance one purges the directory, all the fold structure the
programer created will be destroyed and will have to be redone, if one needs to
compile the program again.

2 The second one is under OPS; one shall use utility LIST. This may be applied
to any fold inside the program and the user will be prompted for a file name.lis .

It is important to mention that every time one lists a file, the folds will be
opened, and appear sequentially. It is not very easy for a begginer to follow a printout
of the file. The fold editor permits us a much better block view of what the program
looks like. So most likely if one has a verv hard bug to solve, debugging from the
screen will be easier.

11. Final Remmarks
There are other commands and utilities that after a while one may need to

use, but for the very beginning, the ones listed here will suffice. Figure B.1 show all
OPS Utilities and how to call them, on a VT-100 Terminal. The FUNC means that one
should press the 0 key at the numerical keypad and the number on the keyboard (NOT
PF KEYS). Figure &firstpro presents a simple program as an example.

-- gRggR?M hellol

——- g**g**
--- This is a the first program in OPS to be seen by a beginner.
-=-= This fold contains a simple occam program which says hello.
=== After the messa?e apgears on the screen you can type any
=== character. --- It will be echoed on the screen (no automatic
--- line feed or carriage --- return.

~-== When Xou txge "o" the grogram ends,
- AT T sk ke Fe T o sk ok s ek e s vk T ke Tk i ok 2k ok 2K T e T ok ok e s e e T 7k e ek ok e ok ok ke e e ek o ok e ek A
-- declarations

DEF hello = '"hello! press 0 to stop running":
DEF EndBuffer = -3: --- gystem's constan

CHAN Screen AT 1: --~- system's channel
CHAN Keyboard AT 2: --- system's channel
VAR ch}

VAR going: --= Boolean

-E main program

E% i = [1 FOR hello&?{TE 0]]
creen ! hello[BYTE i]) _
- Screen ! EndBuffer --- EndBuffer needed when outputting strings
agig ==iTRUE
going
SE
eyboard ? ch
?creen ! ch ;EndBuffer

F
ch = #30 --~ Hex value for ASCII O
l?Eccmg := FALSE

SKIP

Figure B.2 First Program in OPS.

99

PR il 1.2 i

o - - . -, - Rt s 0
' : : v’ A ORI ATA A 0 e s X I o L o T L o
:’"":‘»J. ?l“’h“"“i .“,3-“‘! .N’!'d ..h‘ 4 !‘! L e s‘!"h‘h“!' AN R P A, o“ PLIWA et el) o~ o bt 5 W "\. AT T AT 0TR a .“.‘

APPENDIX C
TDS TUTORIAL

1. Introduction

This appendix will describe briefly how to use the TDS system, resident on

the VAX/VMS at the N\PS, to edit, compile, down load and execute an Occam

program. It will not be a complete description of the system and it assumes the reader
already knows how to use the OPS System, the Fold Editor and the VMS Operating
System in the VAX. The main reference is the Transputer Development System
Manual, D-600.

2. The Existing File Types:
In TDS there are several user file types identified by the file extension:

".tds” - these are source files, folded, that may be edited, and once in the
program format, may be compiled. These can not be printed.

“Ist” - these are listing files that may be used as a VMS file for any purpose.
The copy, type, print commands on this operating system work with no
problem. Originally the extension ‘was “.lis”, but we suggest the programmer to
use other termination in order to identify the file.

“.tcd” - these are “transputer code” files originated from an extraction after a
compilation was successfully completed. They are not printable.

“.cde” - these are non- executable files that were compiled and extracted already.
They will exist when the programmer uses closed files inside his program, and
contain the code for a file. They are not printable.

“.dsc” - these are descriptor files and will exist only when the programmer used
closed files in his programs. They are not printable.

3. To Start the System
Once one is logged on the VAX/VMS on a terminal VT-100 or VT220, the

first command to type is:

tdssetup - this will enable all the following commands used in the TDS to be
recognized by the VMS Operating System, through the “ops kernel” (opskrnl)
resident on the Systems Directory.

4. To Open a File
Type:

tds “filename” - this command is to be applied to any “.tds” file and will make
the file available for editing with the fold editor. Every time you exit the
outermost fold, a new version will be created on the VMS file System. Kcep
track.

5. To Make a Procedure or a Program

The procedures and programs have a similar structure 4s in OPS, so they
will not be repeated here.

The global_definitions and library are very useful to make programs easily,
and it is a good idea to put them in any program.There are two global_definitions, one
for each of the systems identified by the extension. Be careful to imbed in vour
program the “global_def.tds.”

There are two different things from OPS in a program for the TDS:

The first is: to see any result on the screen, one must include inside the program
the terminal driver, provided by INMOS, for the board that one is using (B0OI,
B002 or B00O4).

The second is the need for a configuration. The configuration basically gives
names to the physical channels and places in each transputer the process to be
executed there. Rather than try to explain here, the best is to browse some of
the several configurations existing in the Theses by Vanni or Cordeiro, or in the
programs already existing in the Group account Occam.

6. To Compile a Ready Program or Procedure
Any PROGRAM or SC PROC may be compiled separately as long as the
utilities “"MAKE PROGRAM" or “"MAKE SC PROC" respectively, are applied to them
and generate no error message. To execute the compilation, the cursor has to be in a
folded line with a PROGRAM or and SC PROC inside, and apply the utility
COMPILE. There will be no prompt at this time, except for the compilation
parameters. If the program has complicated nesting of PAR and ALT constructs, use
CHECK = FALSE.
7. Debugging a Program During Compilation
The compiler 1s quick and every time one gets a compilation error, the error
description appears on top of the screen and the cursor will be placed on the line where
the error occurred, or one before, in edit mode and the error may be corrected at once.
After corrected, exit the fold and one will be ready to compile again. Neat and Clean.
8. To Extract the Code to Be Executed in the Transputer
The compilation will create several folds inside the .ops program containing
the descriptor and the code to be executed. To extract the code execute utility ”
EXTRACT TO FILE “. At this point one will be prompted for a filename to extract,
and we strongly suggest to use the same name of the source file.

- .Y v ¢ -
. *".b"‘l. él . "‘-"'.i".‘".}".\ N |'~A."st.’~.'n.e l.‘.l" ‘.,.\..'C' .t...|'~l'r~|‘~hl.v L Ualt AN N c'! LA e F

W

-

o

9. To Down Load and Run a Program o

Once the “.tcd” file was created, the user will be ready to run the program :E',

on the transputer network. Before you down load, check the wiring diagram (Utility 7), 4
and see if the links are properly connected. After this, exit from the fold editor and ‘ ,{'
execute at the VMS (S) prompt : "
TDSLOAD filename.tcd o8

What will happen is that the file will be opened by the VAX and the A
programmer will be prompted for the escape sequence (normally is ESC ESC ESC). ::‘:
After typing the escape sequence the transputer become active and the code is loaded. “:
Check the Manual if any Error message occurs. After the program is down loaded, it :::
will be executed at once, with no need of any other intervention of the user. To stop 4
W

the transputer press reset at the B0O1 board. ":
10. To List a Program .::‘;

There are two ways to do that: ".:

1 The first one is under VMS, one shall use the OPS command:

-

® opslist filename.ops filename.lst "

This will create a list file under filename.lst to be printed at the VAX on-line .

M
printer. Be careful here! If one forgets to put a “filename.lst” on the command, - e
the source file will be transformed in a list file with the wrong termination. And ‘"
worse if by chance one purges the directory, all the fold structure the \

.IA

programmer created will be destroyed and will have to be redone, if one needs 2
to compile the program again. :

2 The second one is under TDS; one shall use utility LIST. This may be applied
to any fold inside the program and the user will be prompted for a o
“filename.lis”. We suggest the termination to be changed to .Ist to differentiate e
from the OPS list files. o+
o

Q' i

N
33
o

102

—m— "
‘!
;
3
. t
11. Final Remarks ,:'
. . ‘ U
There are other commands and utilities that after a while one may need to o
use, but for the very beginning, the ones listed here will suflice. Figure C.1 shows the B
- egr o X
utilities for the TDS System. N
‘l
o
- by
Special f ULititi
FUNC b: BELP FUNC 1: TRANSPUTER CHECK g
FUNC £: FOLD INFO FUNC 2: TRANSPUTER COMPILE f
FUNC »: SETUP FUNC 8: MAKE PROGRAM b
Key FUNC 4: MAKE SC PROC 5.
This function ts obleined i
by o exsing FUNL 800 then FUNC 6: DESCRIPTOR INFO g
\he sey }
FUNC 8: EXTRACT TO FILE e
"
FUNC 7: WIRING DIAGRAM !

N \'

FUNC 8: SEARCH

This function 13 cotained FUNC 9: REPLACE

¥

by preasing the sey z
+

1

FUNC #: LIST

Figure C.1 The Utilities for the TDS System. R

L4

103 : :

TS TR LAY ST AL -
SN A l‘o' g"q Ml p X) ,'“

R W W W W Rt

- , 3 Y T] > 4 . O
OGO WS NS KN Wi K T i s e RN IO A O e m e S e st e e A A it e e e a1

hakeadintndeindataintenta

APPENDIX D
HINTS ABOUT OCCAM PROGRAMMING

The goal of this appendix is two fold. First to mention some different and
interesting facts that happened to us and may happen to anyone programming for the .
first time in Occam, and second to make some comments about the Link Evaluation
Program.

a. Program Structure

The program structure for OPS and TDS is quite similar, just differing in the
global definitions , configuration, and some predefined procedures. The difference in
the global definitions is a very critical one. While in the OPS we place the CHAN
Screen AT | and CHAN Keyboard AT 2, in TDS we just declare CHAN Screen: and
CHAN Keyboard:, because the Screen and Keyvboard handling is done throughout the
terminal_driver.

The configuration section of a program is the one were we map the physical
channels and the processes onto the processors, and it only exists for the TDS system.

The pre-defined run time procedures are described in detail in the TDS manual
and the OPS manual, but they only can be used with the TDS. Some examples are:
the BYTE.SLICE.INPUT, PUT.BYTE, READ.BYTE, WORD.SLICE.OUTPLT, etc..

1. A program in OPS

Figure D.1 describes the structure of an OPS program.

PROGRAM profgname) }
?]_.obal_de .ops (collection of system defined constants)
ibrary.occ (if wanted) .

=-- an&oprocedures used inside your program (optional)
SC PROC 1 =-- an¥ separate compilation procedure that one may
SC PROC 2 =--- refer

o and call from the main of the grogram

PROC 3 (parameters...,..) ---procedures called by the main.
--- local definitions for the main
--=- main
SEQ :;- it could be PAR, ALT, WHILE TRUE, IF or a replicator
code

Figure D.1 OPS Program Structure.

104

FlIlIlIIIlIlllIlIlIIlIlllllllllllllllllllllIlllllllllIllIlIl-Il---u-uuxunrnl—» v -

2. A Program in TDS
Figure D.2 describes the structure of a TDS program showing as an
example the structure of the LINK EVALUATION PROGRAM.

PROGRAM link.evaluation

- --- each one of the following procedures have the same structure as
-=-- depicted on figure D.1
SC PROC hostproc (garameters) --- code for transputer root
SC PROC transfer0.B003 (parameters) --- code for transputer0
SC PROC transferl.B003 (parameters) --- code for transputerl
SC PROC transfer2_B003 (parameters) --- code for transputer2

SC PROC transfer3_BO03 (parameters) --- code for transputer3

--- confiquration
link definitions _
... physical channels declaration
PLACED PAR
PROCESSOR ROOT =--- ROOT = 100 (one may use any process number)
...channel placements (physical placement of the channels
. (according the network topology)
hostproc (physical channel parameters)
--- the process hostproc is the outermost glaced on
--= transputer root and has to be an SC PROC
PROCESSCR 0 --- Like shown for transputer root, in each of
PRCCESSOR 1 --- the processors it is made a physical channel
PROCESSOR 2 --- placement and a process placement.
PROCESSOR 3

Figure D.2 TDS Program Structure Example.

The two Figures D.l1 and D.2 give to the reader an idea of the general
structure of an OPS and a TDS program. Normally, the terminal driver is one of the
SC PROCS, inside the process placed in the transputer root, to permit user and screen
interaction. Cordeiro [Ref. 6], describes in detail how to make a configuration and how
to map a program made for OPS into the TDS system, and therefore it will not be
addressed here. Again, the best way to begin programming in Occam is to look at
sample programs already made.

b. Problems and Suggestions
1. Setting up Some Standards

Early in the learning process we felt necessary to standardize some of our
procedures when programming. This may be not the best, but this is what we came out
after several changes through the research process, and is given as a suggestion only:

e Use all your procedure and variable names in lower case. The system has some
predefined variables like “EndBuffer”, and all reserved words are uppercase. So

105

doing this, one will not have problems of naming because both the OPS and
TDS are case sensitive. For example you may use a variable named “true” and
no problem with the system defined “TRUE” will occur.

When in the code one has a replicator with multiple statements under it use
always a SKIP as shown in Figure D.3 . That will make certain that the last
index value 1s executed.

In programs with repetitive interactions with the usecr, use a new.line after each
execution and before the new prompt to the user
(Kevboard ? var). This will prevent unwanted multiple executions.

Every time a comment is placed in the code, use at least 3 dashes. This will
enable one to recognize easily in the printout, what is comment, and what is the
beginning of a fold.

SKIP ~--- this is the SKIP we felt necessary

SEQ i = {0 5
%EB {0 FOR 5]

in ? varl
out ! varl + 1

Figure D.3 SKIP Usage.

2. When Making Any Procedure

In order to permit any procedure to run in parallel (always), with any other

process, use as much channels as possible as parameters, instead of VAR or VALUES.

The channels will enable the programmer to exchange data between two procedures

without a procedure call. This is the key for the parallelism. One good example were

this was used is the procedure cpubusysum, in Appendix E. Other examples can be

seen in the library routines defined inside the procedure getchoice, also in Appendix E.

Also make the procedures, SC PROCs, as much as possible. This is better

for the programmer because if an compilation error occurs, it will be detected earlier

and the recompilation time will be shorter. It is also better for the compiler because 1t

stays away from the compilation limit.

3. When Compiling
When compiling, several errors may be flagged. If an error message:

"... shared variable varname” , occurs, change the check compilation parameter
to false. When check is true even the output of the same variable to several
different channels in parallel, will make the compiler flag the error, when it does
not exist really.

106

If any errors occur, the compiler will position the cursor always before the
error exact position. Sometimes the error will be on the same line, and sometimes in
the next line of code.

4. When Making Large Programs

When making large programs, one should take care of the compiler code
{imit either for OPS or TDS. In the VAX this limit 1s around 100 blocks, or 50 kbyvtes
of code. To get around this problem, one should make some procedures inside the
program as Separate Compilation (SC) procedures and the compiler than will be able
to handle it.

5. When Down Loading the Code

When down loading the code, several times a message like the following

one will occur:

e “.. Illegal board function” - we had that a lot with no reasonable cause. The
action taken when this happened was to down load again, sometimes up to 4
times to have the code down loaded properly to the transputer network.

c. Comments About the Link Evaluation Program

The Link Evaluation Program takes about 340 blocks of the VAX, or
approximately 170k of code and comments.

Our approach in doing the Link Evaluation Program was Top down and we
think it this was the right one. First the general structure was made, with all
procedures but the user interface and the terminal driver replaced by stubs. When this
was running, then one by one the byteslice.transfer, the inout.transfer, the
word.slice.transfer and finally the int.transfer were added. Even though all these
procedures where pre-tested using dedicated harnesses, some times new bugs came out
as they were put together.

In general the structure of the program is based on the four procedures just
mentioned, that reside one of each, in each of the transputers. When executed,the the
user choice of construct make the respective procedure be executed in parallel in all 5
transputers.

1. Most Common Errors

® Bad definition of buffer limits and lack of initialization.

¢ mismatch of channel usage - a process outputting to a channel that no other
process was waiting for an input.

e compilation limit achieved - this happened in procedure hostproc and in order
not to affect the performance measurements, the SC procedure get.choice was

107

)

[¥}

- T AR TR ARt AT e . N T e TS R S S O T T P T R TR O 1
D OO MY o 7 o .)"_ .4 “L Y. .r,.p,r.,- .-.a-.r y\-...p‘;-_.-.-.r_.r,. LAY i T E M '?')

IS AN AN N

created using part of the user.interface code, and so procedure user.interface
passed to call getchoice.

The difficulty of finding the first two problems is due to the symptom to be
the program freezing in execution on the screen and no message coming. To find were
the error was occurring approximately, we placed some “Screen ! var” statements in the
middle of the code, and from then on only reading the code and guessing what it could

| be, worked. We tried, and succeeded, also to trace the execution, by looking at the
| listed code and following the flow of communications.

[As a final comment, the facility to reuse previously created software is
tremendous. Each configuration just need to be done once, and can be always reused
by just changing the name of the placed procedures. The procedures and programs can

be annexed to a new file or filed with one key stroke, the utility file/unfile of the fold
editor.

I¥¢‘_‘~’.F".."‘..-" ':.“ X

- ~ ~ L
T A e

APPENDIX E
THE LINK EVALUATION PROGRAM

-- header.occ
-—- % % A Rk ek T ok e e e A sk e e Ao vk ok s Tk e e e ok T Tk Ak sk A e e e ke ok ok e sk e sk e sk e ke A e ok e gk o gk ok sk ke sk e gk e ke ok e ok A ok ok ok ok

--- * Title : Link Evaluation Program *
- === * Version : *
-=-= * Mod : 0 . *
=== * Author : Jose Vanni Filho, Lcdr., Brazilian Navy *
=== * Date .+ June / 02 / 1987 *
--= * Programming Language : OCCAM 1 *
--= * Compiler : IMS D 600 - TDS *
--= * Purpose : To Evaluate the Transputer link transfer rate *
... % for several channel parallelism situations, *
--- % construct types, and different cpu loads *
== e e e sk ek e o e e e e ke e 7k e A e 3k 7 e sk 2 P 3k Fe 7 ek ok e A o ke e e e K 7 e 7k T e ok T I e ke 7 e e e ek e ok e ok

-= Brief descrigtion of program

- Tedkorkdedk sk ok sk ok ok e sk Fo ok gk A gk ke vk K ke ok A vk sk e ke gk A vk ok ok ok e ok ok e ok ok sk ok ke ok ke vk ok o ok vk ok ok ok ke 7 ok ke ok ok ok sk ok ok Tk
--- Interactive program that uses the INMOS links at 10 Mbits/sec and
--- evaluates the transfer rates from the b00l board to the b003 board
--- using one tc four channels in parallel for output and input.

--- The program calculates and di%play the transfer rate after a

== sgecxfled number of runs (20 for now) in a table format for

the following block.size and channel configurations:

== Block Sizes
-—- 1 - 2 - 4 - 8 - 16 - 32 - 64 - 128
-——- 256 - 512 - 1024 - 1280 - 2048 - 4096 - 8192 - 10000

== Channel configgrations

=== 1 out channel(output) in one link])
=== 1 in/out - 2 channels lngut and outputi in par in_one link
--= 2 out - 2 channels(output) in parallel in two links
=== 2 in/out - 4 channels(input and outputi in par in two links

. === 3 out - 3 channels(output) in parallel in three links
=== 3 in/out - 6 channels(input and output) in par in three links
=== 4 out - 4 channels(output) in parallel in four links
-== 4 in - 4 channels(input) in parallel in four links
--- 4 in/out - 8 channels(input and output) in par in four links

-- User options during program execution

==~ User Options:

-~-- CPUs MODEs OF OPERATION ,

- 0 - No concurrent process in the cpus

B003 cpus with sum process concurrently (par)
all cpus with sum process concurrentl¥ (par)
BO03 cpus with sum process concurrently (pripar)

all cpus with sum process concurrently (pripar)

BOO3 cpus with array product process concurrently (par)
all cpus with array product process concurrentli par)
BOO3 cpus with array product process concurrently pr;parg
all cpus with array product process concurrently (pripar

1
2
3
--- 4
5
6
7

[]
[]
[]
[o 4]

=== CONSTRUCTS AND DATA TYPES

--- A - lngut/ogtput channels CHARACTERS (BYTES
-=- B - byte slice input/output (CHARACTERS (BYTES
- I - input/output channels INTEGERS WORDS

--- W - word slice ingut/outgut INTEGERS WORDS
P e 5k v e 5k 7 7 K R A 7 e ke T gk Rk kKR T sk %k 7 ok A Rk ok e A gk vk %k Tk vk e ok gk vk e vk sk e A ok ok v vk ok v e 7k 7 e sk Je sk Fe Fe e e sk T vk

109

» - R RN A T DRy
A GO CACIIOAC MO NAIOAUCURM FOCUE MY n RN X AR) 2 A TR A AN R A)

'VVVf\\¢UVQ:Q
e, W

W

P . .

e TR e e g e sk ok s vk vk e v e e ok ok vk sk ok i sk e e e e vk ok ok sk sk i s i oo 7 e e v e ok ok sk s e o e ok ok ok ok ok o ke e o ek ek ke

-~ PROGRAM link.evaluation
——- e 7 7 7 7k e e e e T T e 7 Ik e vk vk vk e Ar Fe e e 7k K ok sk vk ke e e Ao she e A A Ak e T ok v ok ok e e e Ao e 3k ok Tk vk v vk e K e e ok ok ok 9k K ok vk ke

-- link.evaluation PROCESSES

-- TRANSPUTER_ROOTBOO1.TDS

-~ SC PROC hostproc

-- PROC hostproc (CHAN A,B,C,D,E,F,G,H

PROC hostproc (CHAN A,B,C,D,E,F,G,H) =

-- desgrlgtlon

——w KK R TIK KT e T T T e e e Tk ok e e e o e e e s e she e e o ok ke ok ok i e i sk e ok ok ok ok ok sk ok e e e e e ok ok ok vk o ke e e ke
--- This is the outer procedure placed on_transputer Root. It contains
-—- global variables and constants, and all procedures that run in this
ransputer. It executes in parallel the procedures :

--- terminal.driver and user.interface
o ek sk sk ok ek ke ke ok ok T ok ko e T ok sk ke ok ok ke kT 3 ok 7k ok ok e A 7k 7k e gk 7 ke ok e s ok o ok ok ok e ok o e ke

-- global_def.tds (partial)
-~ Constants Definitions

DEF EndBuffer = -3: .)

DEF port = 0:--- assign the i/o gort of the BOO1l to terminal
DEF baud = 1l:--- set the baud.rate to 9600 bps
--=- constantly used ASCII values

DEF tab = :

DEF 1f = 10:

DEF cr = 13:

DEF esc = 27:

DEF sp = 32:

-- Channels Definitions

CHAN Screen : === defined for output to the Screen

CHAN Keyboard : =--- defined for input from the Keyboard
== Link Definit

DEF linkOout
DEF linklout
DEF link2out
DEF link3out
DEF linkOin
DEF linklin
DEF link2in
DEF link3in

-- library.occ (partial)
-- io_routines.occ

== PROC new.line
PROC new.line =
ma | FTede e R T e e e e s ek e e e o e e o e e e 7 sk e sk e Tk s o e e o ok e e ok e ke ok ok ok sk e ok ok sk ok s ok ok ok e ok ok

--- ;umgs to a new line on the screen
. ek 5k e e e vk e s e e e e e e 7 7 e e e e e e ke e e 7k 7K e ek 7k T e e ke ok e e e K e e ok ok ok e ok ke e e ok e ok ok ok ke

"

i
0
1
2
3
4
5
6
7

4 oo ot oo oo

SE
%creen ! ¢er;1£f;EndBuffer :

-= PROC write.string (VALUE string[])
PROC write.strin i8ALUE strin Ll =
D R A R AT R d e R b e e e e e e e e e e e e ek ek e

%
=== Writes a given string to the screen, in a bxte bx bxte fashion *
- Tk gk A A K s Aok %k Kok K Kk ********************** o e T K T Ak e e A e ok A ok ok ok ok ke ok ke

n ! string[B
Screen | EndBuffer :

== PROC clear.screen

PROC clear.screen =
. ok e T 7 e sk T 7k v e v e e s 3k ke sk o vk s o ke e ok e 3k e e vk e e ok v K Tk o ok ke e ok ke e gk T ok ok ok ok ok ok ok e e ok ke e

the screen
7o e R v 3k 7k T T A e ok e sk ok 3 e e ok ok s T A e e e vk o vk e e e e oK vk ok ke ok ok e e ok ok e ok e o ok ok 7k ok ok ke e ek ok ok ok

SE - _
%E%clre_e [1 FOR strn;gr&:BYi’IiE 01]

* Jek
-=~ clears
cema KRERAKXRX

SE

%creen ! esc;'[';'2';'J';EndBuffer --- clear screen sequence
Screen ! esc;'[';'H' : --- home cursor

-= PROC write.number (VALUE number)

110

O N WV

- e O LN
p 2 % Cr 3,0 5 i L Y ™» " A
ol lv‘ l,‘ 9" (3 l.5 L) 7" 04l ". '. .,. “' .’.l.».t.-".‘a.l’i l.n 's ‘I\ D) 1R, 9,505 ~.‘ VRIS it

wma Tedk ok deok sk sk e sk e vk vk v vk sk e s e e e e s ok vl s e s s o e e e ok ok ok ok Tk e T i o e e e o ok ok ok ok ok ok ok e

-=-~ This PROC outguts a signed integer value to the screen *
e Fede Tk ek ok ok ek sk T e ke ok ek K 3k ok ok e e Tk ok K Rk ok ok ok e e ok o ¢ e ke ok 7k ek ok ok e e e ok

PROC write.number(VALUE number) =
ggg output[16], count, x:

X:= number

count:= 0

IF
--0 handle special cases
x"—‘

gcreen ! o

WHILE x>0
§E construct number

%utput[count] = (x 10) + '0!
count := count + 1
x:= x/10

WHILE count > 0
-= output number
SEQ

count := count-1
Screen ! outputcount]

SKIP:

== utilities.occ

== PROC transfer.rate (VALUE start,stop,board.type,nr.of.bytes...)

PROC transfer.rate (VALU%AgtarE,)stop, board.type, nr.of.bytes,
rate) =

——w Rkkokk ARk ok ki dok fok Tk kR ok g ook ok sk g s s e g sk e sk ok ok ok ok ok e e ok ok e ok ok ok ok ok gk o ok e ok ok ok ok ke A ok

--- receives two tick values "start" and "stop", number of bytes :

- --- and board type and outguts the transfer rate,
e KK AR A A K R e T Tk Tk K Tk K e T Tk o s o e s ok gk ok ke o ok o ke e ke e T ke e T e e e ok sk ke ok e ke ok ok

-- board number definitions

--- board.type = 0 =----> VAX VMS

--=- board.type = 1 ---=> B001

--- board.type = 2 ----> B002 , .

--= board.type = 31----> B003 (high priority)

--=- board.type = 32----> B003 (low priority)

--- board.type = ¢ ---=> B004

=== outputs to the screen the transfer rate in kbits per second

-=- constant definitions

DEF vax.sec =10000000 : =~-= hundreds of nsec/second

DEF bQOl.sec = 625000 : --- # of 1.6 microsec/second

DEF b003h.sec = 1000000 : --- # of microsec/second

DEF b003l.sec = 15625 : === # of 64 microsec/second

DEF max.number.of.ticks = 2147483648 : ~--- maximum integer (2**31)

-- variable declarations
VAR elapsed.tick : .
VAR factor : -~~ to convert ticks to seconds

SEQ _
géapsed.tlck := stop - start

elapsed.tick < 0 . .
TRJ%apsed.tick := elapsed.tick + max.number.of.ticks
- SKIP
i; selection of correct factor in accordance with the board

111

U
{

»
y MK \ IO 0) 5
ERGOALAMIDSOIONANDNDOO DA R TN DG R, n‘!'cﬁ"u'?‘.'!‘.'v'Q"‘s'ﬁ'&'r‘\' DODOIAIR Kt S X W S Ot UL

S e o

board.type = 0 -=-- VAX VMS

factor := vax.sec
board.type =1 -== BOO1

factor := b00l.sec
board.type = 2 --= B002

SKIP -=-= to be implemented in the future
board.type = 31 --- B003 in high priorit

factol;'p += b003h.sec P Y
board.type = 32 --- B003 in low priority

factor := b003l.sec
board.type = 4 --=- B004

SKIP --- to be implemented in the future

-- rate calculation

board. type =
rate := ((nr of .bytes*8)*factor)/(elapsed.tick*1000)
TRGE- operation is done this way to keep precision ok!
rate := ((nr.of. bétes*s)*(factor/IOOO))/elaesed tick
--- operation is done in this way in order *o don't exceed
-=-=- maxint on the numerator.

- multlplg bY 8 due to 8 bits per byte
--- divide by 1000 to have the transfer rate in kbits/sec

SKIP:

-=- PROC capitalize (VAR ch)

PROC cagltallze VAR ch
——e o Fe Fo K ok e ok ek e ok ok ***

- cagitallzes any lower case character into upper cas
—me KhkKikkhkkkkhkhkihxAhkkhhhkkhkkkikhkrkkhkhhhikkhkhkhkikk ********************

DEF delta =('a' -~ 'A') :

-~= A ~---> 65
e= g ===> 97 ASCII values
--- 2 -=-=> 122

SE F
(ch <= 'z) AND ch >= 'at)
ch := - delt (
TRUE
SKIP :

-= SC PROC IMS.BOO1l.terminal.driver()
-=- TERMINAL_DRIVER.TDS
-- PROC IMS.B0Ol.terminal.driver (CHAN R‘yboard Screen

ALUE port, baud. rate)

emw Tededdsk sk e sk de ok vk e sk ok s e vk sk s v e T e ok e sk e ok ok de v e ok e ok e ke e ok ek ek ke ke ek ek ok ok ke ko ok ok

=== The terminal driver used is the one provided by the
--- manufacturer for the board B0Ol, and for that reason

==~ 1is not included here.
-—-- x***

F||||||l|llllllllIlllllIllIlIlllllllllllllllllllllllllll"-"""'."""""""""""""""“" .

-= SC PROC ggubusysum (CHAN flagl,counterchan) --== sum 3
-~ CPUBUSYSUM.TDS
== PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=
-- descrxgtlon
mme Rk TRk Rk oAk ok ok R ok e sk ok e ok ok ok ok sk ke ko ke e sk ok ke sk sk e ek e ok ok e gk ke sk e ok
=== It kegps the cpu working in grallel§time sharing) with the link :
. --- transfers by doing sum operations . It stops when it receives '
-=- a flag by the channel flagl from the transfer procedure that is .
=== being executed concurrently. It outputs by channel counterchan :

the number o ogerations done, !
mma KK AR Tk e Tk ok ok Tk K e T ok e e ok 7k ok Tk o e gk ek gk vk e Tk e e e e e e e ke ek ke e ek ok ok e ok ok e e ok :

VAR a,b,e,
working,
counter,
ch :

SEQ

counter := 0

working := TRUE

TIME ? a |

WHILE working '
ALT

flagl ? ch
working := FALSE s
TIME ? b i
SEQ :
e :=a+b -
counter := counter + 1
counterchan ! counter:

CPUBUSYSUM.dsc descriptor !
CPUBUSYSUM.cde code)

-=- SC PROC c ubusgprod (CHAN flagl,counterchan) -==-=- product !
-=- CPUBUSYPROD.TD v
== PROC cpubusyprod (CHAN flagl,counterchan)

PROS cpubusyprod (CHAN flagl,counterchan)=
——- eiSiig&igﬁ***)

--- It keeps the c¢cpu working in ggraLlel(time sharing) with the link "
-=-=- transfers bg doing array multiplications. It stops when receives 3
=== a flag by the channel f agl from the transfer procedure, that is v
--- being executed concurrentdy. It outputs by channel counterchan '
)

-== the number of ogerations ne.
- e o T T e ok ok sk ok e o e ke e e ok ok e ok ok ok ke e ke o sk o e ok e ok e ok e ke ok ok ke e ok e ke e e e e ok e ok ok ke ok ok vk ok ok ok ok ok A ke ok ok

Tl e

-= constants and variable declarations
DEF number = 100: ---- size of array

VAR a[number + 1} ---- array of integers
b[number + 1], =--- array of intégers ;
e[number + 1], <---- array of integers . A
clock, ---- integer -variable to get time
working, -=-- boolean -to stop execution
cgunter, ---- integer -number of operations done .
cn

SE
Q_ initialize buffers and variables
i =11 FOR number]

EQ | ,
Sh =3
SKIP

counter := .
working := TRUE

v

WHILE working 3
ALT

flagl ? ch

e

o

113 3

» M AP - - W) o O
IS LA NI A O DS OO SR ML) W o g W oY o il e Oy T T AR N

w- Y Y N L SR S S R R A S e T T

working := FALSE
TIHSI;: ? clock

%EQ i = [1 FOR number]
e[i] := a[i] * b[i])
counter := counter + number ---updates nr. of operations
counterchan | counter:
-- global constant and variable declarations for transggteglroot

DEF "sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 2 .
1024, 1280, 2048, 4096, 8192, 10000]:

DEF nr.of.sizes = 16: ---"as counted from above table
DEF maxblock.size = 10000: =--- last from the above table
DEF repetition = 20: === LJOr averaging purposes

DEF maxwordblock.size = maxblock.size/4:

CHAN hostinQ AT linkOin:
CHAN hostinl AT linklin:
CHAN hostin2 AT link2in:
CHAN hostin3 AT link3in:
CHAN hostout0 AT linkOout:
CHAN hostoutl AT linklout:
CHAN hostout2 AT linkZout:
CHAN hostout3 AT link3out:

oy » - "L S A U ™ 'F, W
. v ;
et R I T G TR B e R NGRS CRE ST T KRS LAV i

-= PROC inout.transfer (VALUE reggtition,cpumode)
PROS 1noqt£§ransfer (VALUE repetition,cpumode)=
T R RRIAR AR Rt ke ek e ke e e ek ke e ke
-=-- It initializes the buffers and it executes the grocgdure
--- jotransfer, and, when applicable one of the following:
- cpubusx.prod or cpubusy.sum. (according to cpumode)

c

-=-~ Uses global constant maxblock.size,
—ma Teded st de e s ok o o ok e 7k ok ok T e ek e ok 3k e ok Tk 7k e e i e e e e e e e e e e e s e e e e sk i e v e ke s e ok e e A e

-- variable declarations
CHAN flag, --- flags the cpu to stog))
counter:; --- return the number of operations cpu did

VAR buffer0 [BYTE maxblock.size + 1}
bufferl [BYTE maxblock.size + 1],
buffer2 [BYTE maxblock.size + 1],
buffer3 [BYTE maxblock.size + 1

-- PROC iotransfer (VALUE repetition, cpumode, CHAN flag, ...)
PROC iotransfer (VALUE repetition,cpumode,CHAN flag, counter)=
::-Deigiig;%22**
--- Executes sequentiallg several parallel transfers of b{tes

--- to/from one to four transputers using the input/outpu

--- primitive and output to the screen the transfer rate

=== values of the output TABLE

-=-= Uses global constants : sizetable nr.of.sizes, repetition
cea= Je Je g ek *******************ir**********x************* % e e g e Kk o ok ok

-- variable declarations
VAR block.size,
actual.rate,
rate, .
ngTEer, --= the number of operations cpu did
c
dead ime, deadtime0, deadtimel, ---- to calculate deadtime
timeO[4],
timel[4]:

SE . .
%E%fb [0 FOR nr.of.sizes]

== making the table
block.size := sizetable[i]
write.number (block.size)
Screen ! tab

-- calculation of deadtime
TIME ? deadtime(

SEQsKi; [1 FOR block.size]

I
TIME ? deadtimel
deadtime := deadtimel - deadtimeO

~-= output to one channel
actual.rate := 0
SE%; = [1 FOR repetition]

ostin0 ? ch([0O
TIME ? time0[O
SE%ik = (1 FOR block.sizek
ostout0d ! buffer0 [BYTE k]
TIME ? t1me1£0])
t1me1£0] 1= imel[O&[- deadtime

transfer.rate (time Ol,timel 01‘1,block.size,;ate)
SKIP actual.rate := ((actual.rate j=1)) + rate)/j
write.number (actual.rate)

115

. ATLYTL)

Screen ! tab X
-~ output/input from one channel !
actual.rate := 0

SEQSE; = [1 FOR repetition]

ostin0 ? chl0 B
TIME ? time0[0 |
SEQPk = [1 FOR block.size]

AR

hostout0 ! buff r0 [BYTE k) :
hostin0 ? bufferl [BYTE k] A ¢
TIME ? tlmel[O]

timel[0] := tlmel[O{ - deadtime

transfer.rate(time(Q[0] t1me1[0] block.size rate) :
SKIP actual.rate := ((actual.rate -1)) + rateS/J
\J
write.number (actual.rate)

Screen ! tab i
-- output to two channels

hostinl ? ch|[1l
TIME ? timeQfO

SE%,k = {1 FéR]block.size]
AR

hostout0 ! buffer0 [BYTE k] y

hostoutl ! bufferl [BYTE k
TIME ? t1me1 0

actual.rate := 0 .
SEQSE; = [1 FOR repetition] h
R ‘
hostin0 ? ch(0 :

t1me1£ = t1me1[0 - deadtime \
transfer. rate(tlmeo 0] tlmel[O] 1,block.size rate) N
SKIP actual.rate := al.rate j-1)) + rate}/; “

write.number (actual.rate)
Screen ! tab

-- output/input from two channels
actual.rate := 0

SEQSEJ {1 FOR repetition]

IR R e

hostin0 ? ch|0
hostinl ? chfl
TIME ? ti

time0[0
SE%AI§= (1 ILOA block.size]
hostout0 ! buffer0 iBYTE k]

- -

hostoutl ! bufferl [BYTE kj
hostin0 ? buffer2 [BYTE k

hostinl ? buffer3 [BYTE k
TIME ? t1me [0

bady

»1

timel[0] := tlmel[o{ - deadtime %
trans er rate(time0{0],timel [0] block.size, rate) B
SKIP actual.rate := actuai rate)) + rateS/J <
write.number (actual.rate) 8
Screen ! tab Y

-- output to three channels
actual.rate := 0 N
SEQSE] {1 FOR repetition] .
o

hostino ? ch[0

hostinl ? chll W
hostin2 ? ch{2 #
TIME ? t1me0$0] 2
SEQ k = [1 FOR block.size] A
3.
116 .
3
\.

- A

o - - N "-F W
Rty T S W < ~ A

iy, !l‘l’l‘h‘ ‘1‘ a ”!"\ ‘lu\‘ “i“.t‘r.t"ﬂ"u“ o‘ . b, N x

e d
x A% WV BV

PAR
hostout0 ! buffero tBYTE ki

hostoutl ! buffer]l [BYTE k
hostout2 ! buffer2 [BYTE k
TIME ? timel[O
timel[0]) := timel[0] - deadtime
transter. rate(tlmeo O]itlmel[O] %gck .§ize rate)

actual.rate := rate + rateS/J
SKIP

write.number (actual.rate)
Screen ! tab

-- output/input from three channels
- actual.rate := 0
SEQSEJ [1 FOR repetition]

hostinl ? chl[l
hostin2 ? ch

TIME ? tlmeo 0;

SEQP k = block.size]
AR

hostout0 ! buffer0 lBYTE k]

hostino ? chto

hostoutl ! bufferl [BYTE k
hostout2 ! buffer2 [BYTE k
hostin0 ? buffer0 [BYTE k
hostinl ? bufferl [BYTE k
hostin2 ’ buffer2 [BYTE k
TIME ? timel
timel[0] := 1me1[0 - deadtime
transfer. rate(txmeo 0],timel([0], 1,
SKIP actual.rate := ({ac ual.rate * (3-

write.number (actual.rate)
Screen ! tab

-- output to four channels
actual.rate := 0

SEQSEj = {1 FOR repetition]

block.size rate)
1)) + rate}/3

R

hostin0 ? ch{0

hostinl ? chjl

hostin2 ? chf2

hostin3 ? ch[3
TIME ? t1me0£0])
SEQP k = [1 FOR block.size]

AR

hostout0 ! buffer0 [BYTE k
hostoutl ! bufferl [BYTE k
hostout2 ! buffer2 [BYTE k
hostout3 ! buffer3 [BYTE k
TIME ? tlmel 0
timel} := timel[0] - deadtime _
transfer.rate(time0{0] t1me1[0] block.size rate)
SKIP actual.rate := ((actuai rate -1)) + rates/J

write.number (actual.rate)
Screen ! tab

-=- input from four channels
actual.rate := 0

SEQsEj = [1 FOR repetition]

hostin0 ? ch{0
hostinl ? chf1l
hostin2 ? ch[2
hostin3 ? ch{3

TIME ? time0[0]

117

’) e W [s Wy O 0 | > \
-S':,n *4 a“nl‘.‘- Y "‘ ‘r "..*l'x"'. s U '00‘. o [} i.'l*' (N o} ..l-.."— 2 Ml S Mg Mo N !' * .‘." "‘.," \."!‘ &

ORI Co Cafp @y €07

Bl o 20 a0 M0 L e M)

2N

PTG
0\

w7

ey

o

"™

[~

SE

hostinQ ? buffer(
hostinl ? bufferl
hostin2 ? buffer2
hostin3 7 buffer3
TIME ? tlme (0]
timel := t1m°1[0}
trans er rate(t
actual.rate :=

((actuai
SKIP

write.number (actual.rate)
Screen ! tab

k = [1 FOR block.size]
AR

BYTE k
BYTE k
BYTE k
BYTE k

- deadtime
tlmel[O]
rate

1,block.size,rate)
341)) + ratef/j

-- all output and input in parallel

actual.rate := 0
SEQSE]% (1 FOR repetition]

hostino ? ch

hostinl ? ch

hostin2 ? ch

hostin3 ? ch
TIME ? timeO[0]
PAR

4

hostout0 ! buffer0
hostoutl ! bufferl
hostout2 ! buffer2
hostout3 ! buffer3

0
1
2
3

[1 FOR block.size]

BYTE k
BYTE k
BYTE k
BYTE k

E Ak = [1 FOR block.size]

R
hos*in0 ? buffer0
hostinl ? bufferl
hostin2 ? buffer2
host1n3 ? buffer3
TIME ? t1 mel[0]
timel[0] := tlmel[O}
trans er rate(t1me0 0]
actual.rate := actuai
SKIP
write.number (actual.rate)

new.line

SKIP
new.line

BYTE k
BYTE k

BYTE k
BYTE k

- deadtime
tlmel[O]
rate

,block.size rate)
1)) + ratej/j

EE send to screen operations done concurrently

cpumode = Q'
write.strin
(((cpumode='2

SE
%lag ! 'al
counter ? number

OR(cpumo?e

write.string

(" No other'frocess running concurrently ")
(cpumo e='6')OR(cpumode='8')))

"the b001 transputer ")

write.string %“Number of operations (in //) at ")

write.number (number)
new.line
hostin0 ? number

write.string

(b003) !

write.string §"Number of operations §1n //) at ")

"transguter

write.number (number

TRUE
SE?1 .
ostin0 ? number

write.string

write.string §“Number of operations (in //) ")

write.number (number

118

) . »
R .‘,Q.‘.O*) '\':. JOMSOAY OV AR OO WY l‘ l‘« Q\ oV I‘ ‘I‘v A AN AL AL

"transguter (b003)")

w - LR T LT T S "
Inl‘\v .v 4, “ ' X " 'H) :

»

'

-

new.line

new.line ¥
--- main inout.transfer
SEQ --- main i transf
-- initializing buffers ,
SEQSEk = [1 FOR maxblock.size] %
¢
%uffero BYTE k] := '0' ‘
bufferl [BYTE k] := 'l y
buffer2 [BYTE k] := '2' .
bufier3 [BYTE k] := '3 3
SKIP
IF K
cpumode = *2! 3
PAR o :
iotransfer érepetltlon, cpumode, flag, counter))
¢cpubusysum (flag, counterg y
cpumode = '4§' 4
PRI PAR .
iotransfer Erepetltlon, cpumode, flag, counter)
%Pubus%sum flag, counterg o
cpumode = '&! ;
PAR . 3
iotransfer (regetltlon, cpumode, flag, counter) Y
%Pubusgprod (flag, counter) N
cpumode = '8! ¢
PRI PAR !

iotransfer (regetition, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)

iotransfer (repetition, cpumode, flag, counter):

W0 e

-V:ﬂ.’a’.ﬁ-'n.‘v"

-

\
19 .

i - - - - -
: - 0 ", W e Y ™ SRR O TN O T
. !"\".‘n“‘i’ Yo '0‘.."’ ‘v'e»'v"‘a'“1'.‘n"-‘l".‘i’f‘l".“'t‘b’!‘i'- W l‘.‘l'{‘l‘u‘l’-‘l‘-“l.n'l‘- .“l'. WL YL T M NN '!\‘- Wty X J

-- PROC byte.slice.transfer (VALUE repetition, cpumode)

PROC byte.slice.transfer (VALUE repetition, cpumode)=

-- descr;gtlgn

- RR TR T KK T K A Tk e K Tk e K T o Tk e K 3 SR vk ok e ke ke sk ok e ok ok ok e ok Tk e sk ke ke ok ke ok ok ke ke o ke ok ok e ke kK kR ok
-=-- It initializes the buffers and it executes the procedure

--- transfer, and, when aggllcable one of the following:

--- cpubusx.prod or cpubusy.sum. (according to cpumdde)

--- Uses global constant maxblock,.,size,
- TR K T T T ok T R R SR T K K e e i ke e T o e ke A Ko e e ok ok 9k e e ok e K o ok ke e o o sk ok ok ok ok ke ok ok ok e ok ke ke

-=- variable declarations
CHAN flag, --- flags the cpu to stop i .
counter: =--- refurn the number of operations cpu did
VAR buffer0 [BYTE maxblock.size + 1
bufferl [BYTE maxblock.size + .
buffer2 [BYTE maxblock.size + 1},
buffer3 [BYTE maxblock.size + 1]:

-~ PROC transfer (VALUE repetition, cpumode, CHAN flag, counter)
PRog transfer (VALUE repetition,cpumode,CHAN flag, counter)=

. e§§£igﬁiiﬁ**
--- Executes sequentially several parallel transfers of bytes

--- to/from 1 t¢é four transputers u51n% the BYTE.SLICE Procedure
--- and output to the screen the transfer rate values of the

-=-- output TABLE.

--- Uses global constants : sizetable, nr.of.sizes,6 repetition
- *****x***k** % de Aok kA kok ok ok

-- variable declarations
VAR block.size,
actual.rate,

number, --- the number of operations cpu did

time 4],
timeli4

SEQ
SEQ i = [0 FOR nr.of.sizes
%EQ []

-- making the table after each io operation
block.size := sizetable[i]

write.number (block.size)

Screen ! tab

-=- output to one channel

actual.rate := 0 L

SEQSEj = [1 FOR repetition]

ostin0 ? ch[0
TIME ? time0[O _
BYTE.SLICE.OUTPUT (hostoutO,buffer0,1,block.size)
TIME ? timel{O . ,
transfer.rate timeO[Ol,tlmel Olﬁl,block.51ze,rate)
SKIP actual.rate := ((actual.rate j-1)) + rate)/j
write.number (actual.rate)
Screen ! tab

-- output/input to one channel
actual.rate := 0 o
SEQSEJ = [1 FOR repetition]

%ostino ? ch [0
gigE ? timeQ[O
BYTE.SLICE.OUTPUT(hostout0,buffer0,l,block.size)

120

Y N Y . C n'h a‘t 4t
AR R RN DRI R WA KWL LAS UM W LG L | SR RN KA RNK) b & v v)

4
U
BYTE.SLICE.INPUT(hostinO,bufferl,l,block.size) \
TIME ? timel[O "
transfer.rate t1me0[0 timel 01 .1,block.size, rate) 1\,
U

)

actual.rate := ((actual.rate j=1)) + rate)/j
SKIP

write.number (actual.rate)
Screen ! tab

>

3,
-- output to two channels .
actual.rate := 0 ,
SE%EJ = [1 FOR repetition] 3

R
hostinQ ? ch[o
hostinl ? ch|[1l
gigE ? time0[O0]
BYTE.SLICE.OUTPUTghostoutO,bufferO,l,block.sizeg
BYTE.SLICE.OUTPUT (hostoutl ,bufferl,l,block.size
TIME ? timel{C]
transfer.rate(time0[0] tlmel[O] 1,block.size, rate)
SKIP actual.rate := (actuai rate (3 1)) + rates/J

write.number (actual.rate)
Screen ! tab

-- output/input from two channels
actual.rate := 0

SE% j = {1 FOR repetition]

r o 2

NG

- -
o A

hostino ? ch[o 3
hostinl ? chfl 3
gigE ? time0[0] N
BYTE.SLICE.OUTPUTghostoutO ,buffer0,1,block. 51zeg)
BYTE.SLICE.OUTPUT (hostcut! .bufferl.l block.size
BYTE.SLICE. INPUTéhostan ,Erffer2,1 biock SIZeg
BYTE.SLICE.INPUT(hostinl,bufler3,1 ‘block.size
TIME ? tlmel[O
transfer.rate(1me0[0] tlmel[O] 1,block.size rate)
SKIP actual.rate := actuai rate (J 1)) + rate5/J
write.number (actual.rate)
Screen ! tab

-- output to three channels
actual.rate := 0

SE%EJ [1 FOR repetition]

v oo

hostinl ? chll
hostin2 ? ch{2
;IgE ? t1me0[0]

BYTE.SLICE. 0UTPUT§hcstout0 ,buffero,

AR
hostin0 ? cht

e e g P

1,block.size
BYTE.SLICE.OQUTPUT (hostoutl ,bufferl,l,block.size
BYTE.SLICE.OUTPUT 1,

hostout2,buffer2,1l,block.size
TIME ? tlmel[O]

transfer. rate(tlmeo 0j tlmel[O] 1,block.size rate)
SKIP actual.rate := ((actual.rate (J 1)) + rate5/3

write.number (actual.rate)
Screen ! tab

-- output/input from three channels
actual.rate := 0

SE%EJ [1 FOR repetition]

X T

o

W _€_* o~ Ty
A A .

o v,

AR
hostin0 ? ch{0]

\

121

_.;'7“: g

_ " i -
RO R O A D O I A I S M GG

DY S 4
. , I T N O O TR TR U U U P W R /O TR e :
L e g P .

hostinl ? ch[l]
hostin2 ? ch(2
giME ? time0{0]

BYTE.SLICE.OUTPUT(hostout0O,buffer0,1,block.size
BYTE.SLICE.OUTPUT(hostoutl, bufferl 1.block. size
BYTE.SLICE.OQUTPUT(hostout2, bufferz ‘block.size
BYTE.SLICE.INPUT (hostin0, buffer0,1 biock size

. BYTE.SLICE.INPUT(hostinl,bufferl,l,block.size

" BYTE.SLICE.INPUT (hostin2,buffer2,1.block.size

’ TIME ? tlmel[

transfer. rate(tlmeO[O] t1me1[0] 1 block.size rate) }
SKIP actual.rate := actuai rate * -1)) + rate$/J

write.number (actual.rate)
Screen ! tab

-=- output to four channels

: actual.rate := 0 .
e SEQSEJ = [1 FOR repetition]
’ AR
hostin0 ? ch[0
. hostinl ? ch 1
I hostin2 ? ch[2
“ hostin3 ? ch[3
z TIgE ? tlmeO[O]
o BYTE.SLICE.OUTPUT (hostout0,buffer0,1,block.size
% BYTE.SLICE.OQUTPUT (hostoutl, bufferl 1,block.size
BYTE.SLICE.OUTPUT(hostout2, buffer2,l,block.size
BYTE.SLICE. OUTPUT hostout3,buffer3, 1,block.size
" TIME ? timel
h transfer. rate(tlmeO[O] t1me1[0] 1,block.size rate)
3 SKIP actual.rate := actuai rate (3~ 1)) + rateS/J
[
‘? write.number (actual.rate)
?

] Screen ! tab

-~ input from four channels
o actual.rate := 0
4

SE%EJ [1 FOR repetition]

4 AR .
Ry hostinQ ? chf0
W\ hostinl ? chil
i hostin2 ? ch[2
hostin3 ? ch|3
N TIME ? timeO[0]
S PAR
b BYTE.SLICE.INPUT(hostinQ,buffer0,1,block.size
) BYTE.SLICE.INPUT(hostinl ,bufferl, 1 block. size
3 BYTE.SLICE.INPUT(hostin2,buffer2.1 block. size
4 BYTE.SLICE.INPUT (hostin3, buffer3, block size

TIME ? tlmel[O]
transfer. rate(tlmeO[O] tlmel[O] 1,block.size rate)
SKIP actual.rate := ((actual.rate (1)) + rateﬁ/J

write.number (actual.rate)
Screen ! tab

-- all output and input in parallel
actual.rate := 0

SE%EJ = {1 FOR repetition]

- Ty T e

s AR

. hostin0 ? ch[0
X hostinl ? chil
I hostin2 ? ch 2
) hostin3 ? ch[3
)

TIME ? tlmeO[O]

122

o

-

5 PR

; R ot T T A AT AT A TR T T ST
b KX | 'v‘:,“.."f (X \.ﬁ‘ Yy b\"‘.‘ "‘ " 0".. |.‘\. .:' t' ‘g.“l'kl.-k\.‘\’ A Al AL la i"“ SIS IA NS, t ST RS 5 S

. » ¥ T N
DML M S TR S FM TR TS S i e SO SOBAIN T v

PAR
BYTE.SLICE.QUTPUT (hostoutO,buffer0,1,block.
BYTE.SLICE.OUTPUT(hostoutl, bufferl 1,block.
BYTE.SLICE.OUTPUT (hostout2, bufferz 1, "block.
BYTE.SLICE.OUTPUT(hostout3,buffer3, 1 block.
BYTE.SLICE.INPUT(hostinO,buffero,1 biock size
BYTE.SLICE.INPUT(hostanl, bufferl block size
BYTE.SLICE.INPUT host;nz,bufferz 1.,block. size
BYTE.SLICE.INPUT(hostin3,buffer3,1l block size

TIME ? tlmel[Ol
transfer.rate(lmeO[O]
actual.rate := actuai
SKIP
write.number (actual.rate)

new.line

SKIP
new.line

tlmel[O] 1,block.size

rate * (j-1)) + rated/j

E; send to screen operations done concurrently

cpumode = 'Q!
wrlte.strln
({(cpumode='2

SE
%la ! 'a!
counter ? number

")OR(cpumode=

((cpumode '6')OR(cpumode='8')))

write. str:mg

write.number (number)
new.line

hostin0 ? number

write.string g”Number of operatlgns (in //) at the ")

write.string
write.number
TRUE

SE
%ostlno ? number

write.string §“Number of oge

"transputer
numberg

write. strlng "Number of oge
write.string ('transputer
write.number number§
nevw.line
new.line

SEQ =--- main byte.slice.transfer
-- 1n1t1a1121ng buffers
SE% k = [1 FOR maxblock.size]

%uffero BYTE k] := '0'
bufferl [BYTE k] := ‘1
buffer2 [BYTE k] := '2!
buffer3 [BYTE k] := '3
SKIP
IF
cpumode = 2!
PAR
transfer (re%etltlon cpumode,
c ubusysum (flag, counter)
cpumode = '4
PRI PAR
transfer (regetltlon cpumode,
c ubus%sum (flag, counter)
cpumode = ‘&'
transfer (repetition, cpumode,
c ubus%prod (flag, counter)
cpumode = !
PRI PAR
transfer (repetition, cpumode,
123

"b001 transputer

Eggéons (in //) at

flag,

flag,

flag,

flag,

AT NI g N

(" No other|£rocess running concurrently ')

{ggaons (in //) at ")

counter)

counter)

counter)

counter)

size
size
size
size

rate)

ll)

v ASSIR Y >
" .M.o'l.v X0 ChO M N 0

3
s

R S N A
o .v\oo .' VN,

cpubusyprod (flag, counter)
TRUE P P I

transfer (repetition, cpumode, flag, counter):

124

e T,

hﬁﬁ(&%\mﬁhﬂﬁ5353‘&1?7&31?&55};};%1_2& .

== PROC int.transfer (VALUE reggtition,cpumode)
PROC int.transfer (VALUE repetition,cpumode)=
-- descrzgtlon

e RRF KK TR A KRR F KK K KT e ke ek ks ek o e e ok ok e ok ok ke ke s ok ok ok ok ok ke ok ok
--- It initializes the buffers and it executes the Erocgdure

--- intransfer, and, when applicable one of the following:

--- cpubusy.prod or cpubusy.sum. (according to cpumode)

--- Uses global constant maxblock.size,
cem RARKARKAKRAKRRAKKKRAKKRAKRRKKRK KR AR KA KKK KKK KK KK KA KA KAk Rk

-- variable declarations
CHAN flag, --- flags the cpu to stop) '
counter: --- refurn the number of operations cpu did

VAR wbuffer0 [maxwordblock.size + lf
wbufferl [maxwordblock.size + 1],
wbuffer2 |maxwordblock.size + 1],
wbuffer3 [maxwordblock.size + 1

-- PROC intransfer (VALUE repetition, cpumode, CHAN flag, counter)
PROS intransfer (VALUE repetition,cpumode,CHAN flag, counter)=

- ei§£iggiggkk**
-=-- Executes sequentiallg several parallel transfers of integers
--=- to/from one to four ransguters using input/output primitives
--- and output to the screen the transfer rate values of the

=== output TABLE.

-=-= Uses global constants : sizetable, nr.of.sizes, repetition
- b3 2373 4 ** %K K %k kkkkk

-- variable declarations

VAR block.size,
actual.rate,
rate, .)

. ng?i?r, ~== the number of operations cpu did

c
dgadtime, deadtime0, deadtimel, ~-~--- to calculate deadtime
tlme0[4 ,
timel|4]:

SE
QS}:':Q5 i = [0 FOR nr.of.sizes]
EQ

-- making the table .
block.size := sizetable[i]
write.number (block.size)
Screen ! tab

block.size < 4 .. ,
write.string("minimum transfer for integers ")
write.string("is 4 bytes(word)")

TRUE
SEQ , .

== calculation of deadtime

TIME ? deadtime0 ,

SE% i = [1 FOR (block.size/4)]
KIP

TIME ? deadtimel
deadtime := deadtimel - deadtimeO

-- io handling

-- output to one channel
actual.rate := 0 L
SEQSEJ = [1 FOR repetition]

%ostino ? ch{0
TIME ? timeQ[0 .

- SE?!k = [1 FOR (block.size/4)]
ostout0 ! wbuffer0O(k]

125

p AN

. s e N T,
y s A% 1% 1% ¥ aw) P AT SRS RN OLY N e LTI NP, PN -,
RO DGOONBACHOI NN M LR b XN e o R A A A W

N ’

A

TIME ? t1me1£
timel := timel[0] - deadtime
trans er rate (time 0- timel-0-, 1

block.gize rate;
SKIP actual.rate := ((actual rate * (j-1)) + rate)/j

write.number (actual.rate)
Screen ! tab

-- output/xnput from one channel
actual rate := 0

SE% = [1 FOR repetition]

’

ostin0 ? chi
TIME ? tlmeo
SE%A1§= [1 FOR (block.size/4)]

hostout0 ! wbuffero ﬁk
hostin0 ? wbufferl [k]
TIME ? tlmel[
timel(0] := timel[0Q] - deadtime
trans er rate(tlmeo 0] t1me1[0] 1,block.size rate)
SKIP actual.rate := al.rate j=1)) + rates/j '

write.number (actual.rate)
Screen ! tab

-=- output to two channels
actual.rate := 0

SEQSEj = [1 FOR repetition] !

R
hostin0 ? ch[0
hostinl ? ch[1l)
TIME ? time0{0])
SE%A]§<= {1 FOR (block.size/4)]

hostout0 ! wbuffer0 [k
hostoutl ! wbufferl [k

TIME ? timel({0]

timel[0] := timel[0Q] - deadtime

transfer. rate(tlmeo O]itlmel{o] }§ck size, rate)

actual.rate := rate * + rates/J
SKIP

write.number (actual.rate) \
Screen ! tab

-- output/lnput from two channels
actual.rate :=

SE%EJ = [1 FOR repetltlon]

AR . 3
hostin0 ? ch[0 ~
hostinl ? ch[l

TIME ? t1me0£0& ,
SEQPA1§= [1 FOR (block.size/4)]

hostout0 ! wbufferC [k

hostoutl ! wbufferl

hostinQ ? wbuffer2]

hostinl ? wbuffer3 [k !
TIME ? timel(0] ,
timel[0] := timel[0] - deadtime
transfer. rate(tlmeo 0] ,timel[0], ,b% ck.size rate)

+

)
actual.rate := actuai rate * 1)) rateﬁ/;
SKIP

write.number (actual.rate)
Screen ! tab

-- output to three channels . :
actual.rate := 0 !
SEQ j = [1 FOR repetition]
(3
126

A N AT e A

AN
W88 R

OO LN
0 "o TNt

- - Ny . A . ol *‘
, o OO RGO PO ATATEE R AR R N TR
"‘x'.“i"‘“;!".lt'd."n. A‘.‘A...“\'E“.- M RN a\‘q" PO RN LM g X A J.~| o P N AR M N A A RN N M

SE

AR
hostin0 ? ch[0
hostinl ? chl1
hostin2 ? ch
TIME ? tlmeO
-= output hand g .
SE {1 FOR (b ock.size/4)]

R
hostout0 ! wbuffer0 [k
hostoutl ! wbufferl
hostout2 ! wbuffer2

TIME ? tlmel[]

timel := timel[0] - deadtime
trans er rate(t1me0 0] tlmel[O] block.size rate)
actual.rate := al.rate 1)) + rateS/J

*

; SKIP
write.number (actual.rate)
Screen ! tab

-=- output/input from three channels
actual.rate := 0

SEQSEJ = [1 FOR repetition]

. oa s
R

hostinl ? ch

X hostin2 ? ch(2

S TIME ? tlmeo 0

-- output/lngu handling

SEQPk OR (block.size/4)]

hostout0 ! wbuffer0 Lt}

o T

hostlno ? ch{ i

P s

hostoutl ! wbufferl
hostout2 ! wbuffer2 [k
hostin0 ? wbuffer0 Ekj

e .

hostinl ? wbufferl

hostin2 ? wbuffer2 [k
B TIME ? timel([0]
- timel([0] := 1me1[0{ = deadtime
) transfer, rate(t1me0 0] tlmel[] block.size rate)
W SKIP actual.rate := ((actuai rate -1)) + rate5
[
& write.number (actual.rate)
' Screen ! tab

-- output to four channels
actual rate := 0

R
o SE 1 FOR repetition
q %EJ [P]
A

hostino ? ch
hostinl ? ch
hostin2 ? ch
hostin3 ? ch[3
TIME ? time0[0]
-- input and outgut handllng
SEOPk = [1 FOR (block.size/4)]

hostout0 ! wbuffer0 [i

0
1
2

- -
PG

P
e)

hostoutl ! wbufferl
hostout2 ! wbuffer2
hostout3 ! wbuffer3

st TIME ? timel[

o timel{0] := tl%el[o - deadtime '

A transfer. rate(t1me0 0] tlmel[O] block.size rate)
o SKIP actual.rate := al.rate * -1)) + rateS/J

ui‘ .

write.number (actual.rate)

; 127

&

" 3 5 e T P = i > v % 7, -
O R S S S S S S Soiotra® o "t DA Wit S NP e NN, - "0‘- O Ea s o0, N,

Screen ! tab

-- input from four channels
actual.rate := 0

SEQSF.‘J = [1 FOR repetition]

AR _
hostin0 ? chl0
hostinl ? chfl
hostin2 ? chf2
hostin3 ? ch[3
TIME ? time0O[Q]

‘ -- input han lln? _
\ SE%A1§= [1 FOR {block.size/4)]

hostinQ ? wbuffer0Q [k
hostinl ? wbufferl [k
hostin2 ? wbuffer2 [k
hostin3 ? wbuffer3 [k

TIME ? timel(O0])

timel{0] := tlmgl[O} = deadtime _

transfer.rate(time0{0] timel([Q],1,block.size rate)
SKIP actual.rate := ((actuai.rate *(j-1)) + rate)/j

write.number (actual.rate)
Screen ! tab

-- all output and input in parallel
actual.rate := 0

SE%E;' = [1 FOR repetition]

R
hostin0 ? ch[0Q
hostinl ? ch[l
hostin2 ? ch(2
hostin3 ? ch{3
TIME ? timeQ[0] .
-- input and outgut hanqllng
SE%A%!: [1 FOR (block.size/d)]

hostout0 ! wbuffer0 [k
hostoutl ! wbufferl [k

hostout2 ! wbuffer2 [k
hostout3 ! wbuffer3 {k
hostin0 ? wbuffero0 [

hostinl ? wbufferl
hostin2 ? wbuffer2
hostin3 ? wbuffer3

TIME ? timel[0] ,

timel[0] := tlmql[O} - deadtime .
transfer.rate(time0[0], timel{0],1 ,block.size rate)
actual.rate := ((actual.rate * (j-1)) + rateS/J

k
k
k

SKIP
write.number (actual.rate)
new.line
SKIP
nevw.line '
E; send to screen operations done concurrently

cpumode = '0!

write.string (" No other‘frocess running concurrently ")
(((cpumode='2")0OR(cpumode='4'))OR

SE
%lag ! ta!
counter ? number

write.string g“Number of operations (in //) at the ")

((cpumode='6"')OR(cpumode='8')))

write.string ("b00l transputer ")
write.number (number)

128

b

R A

4'{1.‘

yra

P A oS

-y

-~
-

P P

e

IR RN M I I N | L LN, O

new.line
hostin0 ? number

write.string ("Number of ogerations (in //) at ')
write.string ("“transputer 0 (b003) ")
TRUE write.number numberg

SE
%ostino ? number

write.string ("Number of ogerations (in //) at ")
write.string ("transputer 0 (b003) ")
. write.number numberg
new.line
new.line

SEQ =--- main int.transfer
-- buffers initialization .
SE%Ek = [1 FOR maxwordblock.size]

Q
wbuffer0 [k] := 10000
wbufferl [k} := 20000
wbuffer2 {k] := 30000
wbuffer3 [k = 40000
SKIP
IF
cpumode = '2!

PAR
intransfer grepetition, cpumode, flag, counter)
cpubusysum (flag, counterg
cpumode = '4!'
PRI PAR .
intransfer grepetltlon, cpumode, f£lag, counter)
cpubusysum (flag, counter?
cpumode = 'b!
PAR

intransfer (repetition, cpumode, flag, counter)
c ubus%prod (flag, counter)
cpumode = '8!
PRI PAR o
intransfer (repetition, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)

intransfer (repetition, cpumode, flag, counter):

129

OGO X MR = R N V™ AT O et At

T SN PO AN P S -

23

.

g™

sy iy

B S o N N

r v 5 3

LIPS

W "

-- PROC word.slice.transfer (VALUE repetition, cpumode)
PROS word.slice.transfer (VALUE repetition, cpumode)=
-- descri

-~ variable declarations
CHAN flag, --- flags the cpu to stop

VAR wbuffer0 [maxwordblock.size + 1

-- PROC wordtransfer (VALUE repetition, cpumode, CHAN flag, ...)
PROS wordtransfer (VALUE repetition,cpumode,CHAN flag, counter)=
-=- descri

tion
T OO RRARRRAR R s ek e e e e e e ek e ok e e e sk ke e
--- Executes sequentiall{ several parallel transfers of integers
--- to/from one to four tr

--- and output to the screen the transfer rate values of the
--=- output TABLE.

-=-=- Uses global constants : sizetable, nr.of.sizes regetition
eme kKKK AR AR K Rk R ok 7 ok K ek KR A AR ke ek kR Kk ok ok ok ok kK ok ko ok ok
-- variable declarations)
VAR block.size, --- number of bytes to be transmited
actual.rate, --- updated rate and final rate
rate, --- auxiliary variable to hold temporary rate
nﬁ?ger, -=~ the number of operations cpu did
c
time$[4 ,
timel[4]:

-me KR dA R kA ek ek ek sk e ke sk ek ok ek sk ek ok e ok ke ek ok e ok sk e e gk ok ok ek ok ok gk ek ke ok
--~ ATTENTION ! The code is shifted left 12 spaces from here on,

due to
- R ATk ok Ak e e R K Tk Ak kK ok ek
SEQ

A SOOI 2 Y I e I A S ne L

tion
*****g***

It initializes the buffers and it executes the procedure
wordtransfer, and, when applicable one of the following:
cpubusy.prod or cpubusy.sum. (according to cpumode)

Uses global constant maxblock.size,
e 3 e e e 3 e 7k e ok ok 3 7 K 7k ok e R K ok ke e Kk ok ok sk ok e sk ok sk ke ok e ok sk ok ke e ke ok ok ok ok ok ke ok ok ke ok

counter: --- refurn the number of operations cpu did

1

wbuffer2 [maxwordblock.size + 1
wbuffer3 {maxwordblock.size + 1

’

wbufferl [maxwordblock.size + 1

ansputers using the WORD.SLICE Procedure

SE
QSE% i = [0 FOR nr.of.sizes]
EQ

-- making the table after each io operation
block.size := sizetable[i]

write.number (block.size)

Screen ! tab

block.size < 4
write.stringé“minimum transfer for integers ")
TR&gﬁte.string "is 4 bytes(word)")

rintlng requirements.
ek TRk Ko e K Tk Tk ok e gk ok e T e e e 7k ok o vk 7 ok ok ke gk ok gk ok ok Ak ke

-- output to one channel
actual.rate := 0 o
SE%EJ = [1 FOR repetition]

ostin0 ? chfo0
TIME ? time0{0 ,
WORD.SLICE.OUTPUT (hostoutO,wbuffer0,1,(block.size/4))
TIME ? timel[0]

130

:
é
h
i
"
"

. U, ,
ORI o e S X R M

P 5 R SR ‘. T TSR T W VRS T I TIRE LI L ALY (UY Wy

transfer.rate (t1me0[0 ,timel 0141,block .8ize,rate)

actual.rate := ((actua .rate -1)) + rate)/J
SKIP

write.number (actual.rate)
Screen ! tab

-- output/input in one link
actual rate := 0

SE% {1 FOR repetition]

%ostmo ? ch[]
;E ? timeO[O0

WORD.SLICE.QUTPUT (hostoutO, wbuffero block. 51ze§4))
WORD.SLICE. INPUT(hostan wbufferl, 1, (block.size/4))
TIME ? timel[O0
transfer. rate(*lmeO[O] tlmel[O] 1,block.size rate)
SKIP actual.rate := actuai rate (j=1)) + rateS/J

write.number (actual.rate)
Screen ! tab

-~ output to two channels
actual.rate := 0

SE%Ej = [1 FOR repetition]

AR
hostin0 ? ch{0
hostinl ? ch[1l
giME ? time0[0]
WORD.SLICE. OUTPUTghostoutO ,wbufferQ,1 2block 51ze/4gg
WORD.SLICE.OUTPUT (hostoutl,wbufferl, block.size/4
TIME ? tlmel[
transfer.rate(1me0[0] t1me1[0] 1,block.size rate)
SKIP actual.rate := actuai rate (j=1)) + rateﬁ/J

write.number (actual.rate)
Screen ! tab

-- output/input in two links
actual.rate := 0

SE%E] = [1 FOR repetition]

AR
hostin0 ? ch{0
hostinl ? ch[1l
TIME ? time0O[O]
PAR

WORD. SLICE.OUTPUTéhostoutO ,wbuffer0,1, (block. 51ze/4;;
WORD.SLICE.QUTPUT (hostoutl wbufferl block.size/4
WORD.SLICE. INPUTéhostan ,wbufferz,1 Eb ock.size/4 ;

block.size/4
TIME ? timel[O

transfer. rate(tlmeo[o] t1me1[0] 1, block.size,rate)
actual.rate := actuai rate 1)) + ratc)/J

WORD.SLICE.INPUT(hostinl,wbuffer3,1

SKIP
write.number (actual.rate)
Screen ! tab

-- output to three channels
actual.rate := 0

SEQSEJ {1 FOR repetition]

hostinl ? chl
hostin2 ? chl2
;igE ? time0{O0]
WORD.SLICE.OUTPUTghostoutO,wbuffero Eblock 51ze/43;
WORD.SLICE.QUTPUT(hostoutl ,wbufferl,l, (block.size/4

host1n0 ? cht 1

131

T A, PO R P C T, o L e
W o.o.t.-..u‘-n.« WM el s, '(‘ e L4 e XLl T

)

A Y A

Ao k)]

)

A s ~
x l,':’;’,,-

Vgt P T O PO TR AL AR TN SKTOSRTW - iabd
T DT Y ey .

WORD.SLICE.OUTPUT (hostout2,wbuffer2,1, (block.size/4))

TIME ? tlmel[O
transfer.rate(1me0[0] tlmel[O] 1,block.size rate)

actual.rate := actuai rate (j=1)) + rateﬁ/;
SKIP

write.number (actual.rate)
Screen ! tab

- e m -

I -

-~ output/input in three links y
actual.rate := 0 5
SEQS j = [1 FOR repetition] '
E)
AR i
hostin® ? ch{0
hostinl ? chll
hostin2 ? ch(2
gxus ? time0[0] y
WORD.SLICE.OUTPUT (hostoutO ,wbuffer0,1, (block.size/4 0
WORD.SLICE.OUTPUT (hostoutl,wbufferl,l,(block.size/4 J
WORD.SLICE.OUTPUT (hostout2, wbufferz 1,(block.size/4
WORD.SLICE.INPUT(hostinQ, wbuffer0,1, (block.size/4
WORD.SLICE.INPUT (hostinl, wbufferl, 1 block.size/4
WORD.SLICE.INPUT(hostin2,wbuffer2, 1. (block.size/4
TIME ? tlmel[
transfer.rate(1me0[0] tlmel[o] 1 block.51ze rate)
SKIP actual.rate := actuai rate =1)) + rateﬁ/]
(]
write,number (actual.rate) il
Screen ! tab
-- output to four channels .
actual.rate := 0 o ¥
SE% j = [1 FOR repetition] \
E
AR 1
hostin0 ? ch[0 4
hostinl ? chll i
hostin2 ? ch{2 .
hostin3 ? ch(3 3
TIME ? timeO{0O] A
WORD.SLICE.OUTPUT (hostout0,wbuffer0,1, (block.size/4 :
WORD.SLICE.OUTPUT (hostoutl wbufferl,1,(block.size/4 g
WORD.SLICE.OUTPUT (hostout2,wbuffer2, 1 block.51ze/4 x!
WORD.SLICE.OUTPUT (hostout3 wbuffer3,1, (block.size/4 4

TIME ? tlmel[

transfer.rate(1me0[01 tlmeI(O] 1,block.size rate) ’y
1P actual.rate := ((actual.rate * {j-1)) + rate$/j Y,
write.number (actual.rate)
Screen ! tab 3
-- 1n§ut from four channels L,
actual.rate :=
SEQsEJ = [1 FOR repet:.t:l.on] by,
AR v
hostin0 ? ch[0 ;
hostinl ? chfl s
hostin2 ? chi2 0
hostin3 ? ch(3 T

TIME ? time0[O]

R
WORD.SLICE.INPUT(hostinO,wbufferQ,l, (block.size/4
WORD.SLICE.INPUT(hostinl,wbufferl,l, (block.size/4
WORD.SLICE.INPUT(hostin2,wbuffer2, 1 block.size/4
WORD.SLICE.INPUT(hostin3,wbuffer3,1,(block.size/4
TIME ? tlmel[]
transfer. rate(tlme0£0] timel[0],1.block.size rate)
actual.rate := ((ac ual.rate * (J 1)) + rate$/;

.y 5 ¥ W

SN A
A

2, -

132

ORIl EAREANY

4'& [s

J'

S U T T S P IO T T T P TP T Y BBy 07 7L ST s s v =

SKIP
write.number (actual.rate)
Screen ! tab

-- all output and input in parallel
> actual.rate := 0
SEQSEJ = [1 FOR repetition]

AR
hostin0 ? ch[0
hostinl ? chfl
hostin2 ? chj2
- hostin3 ? ch}3

TIME ? timeO[0]
PAR

WORD.SLICE .OUTPUT (hostoutO ,wbufferQ,

WORD.SLICE.QUTPUT

WORD.SLICE.QUTPUT(hostout2,wbuffer2, block.size/4
!ORD.SLICE.OQUTPUT (hostout3,wbuffer3, block.size/4

block. 51ze/4§§
WORD.SLICE. INPUT§h05t1n0 ,wbuffero,1l gb ock.size/4 %

1,
hostoutl,wbufferl, %, block.size/4
1/

WORD.SLICE.INPUT(hostinl wbufferl, 1, block.size/4
WORD.SLICE.INPUT(hostinZ,wbuffer2,1l, (block.size/4
WORD.SLICE.INPUT(hostin3,wbuffer3,1,(block.size/4
TIME ? timel[O0]
transfer. rate(tlmeO[O] tlmel[O] 1,block.size rate)
actual.rate := actuai rate (J 1)) + rateS/J
SKIP
o Tk ok kA Ao e e e ek ok ke ok ok gk gk ok ok ok Kk ok sk ok ke e ok ok ok ok A A R R R Rk R ok ok e ko

-== ATTENTION ! End of code shifted 12 spaces to the left
mma KK TR o Rk ok ok R e ke K oK ok o R R R R K ok ke ek e ok ok ok e ok ok ok ko ok

write.number (actual.rate)
. new.line

SKIP_

new.line _

-; send to screen operations done concurrently
I

cpumode = 'Q!
write.string (" No other‘frocess running concurrently ")

(cpumode='2 "YOR(cpumode=
(((ep (ep OR((cpumode-'6 YJOR{cpumode='8"')))

SEQfla ! 'a!

counter ? number
write.string g“Number of operat}?ns (in //) at the ")

write.string ("b001 transputer '
write.number (number)
new.line
hostin0 ? number
write.string ("Number of oBeratlons (in //) at ")
write.string "trans§uter (b003) ")

TRUE write.number (number

SE
%ostlno ? number

write.string ('"Number of ogeratlons (in //) at ")
write.string “transguter (b003)
, Write.number (number
new.line
new,line

SEQ --- main word.slice.transfer
-~ word buffers initialization
SEQ k = [1 FOR maxwordblock.size]

Y

133

il FE e |

¥l

: . PP oy Y -’rr\(\wﬂ..‘."\-;-
IV RS VL) ' A, ‘l f P f\(LaLf '\(\()
SRR NIOUCL ."'\'Y B ', A '~ﬂ. ‘A ‘o‘b‘. v '1 9. [X g N N M P Y AN

SK
IF

SEQ

wbuffer0 [k] := 10000
wbufferl [k] := 20000
wbuffer2 [k] := 30000
wbuffer3 [k] := 40000
IP
cpumode = '2!

wordtransfer (repetition, cpumode, flag,

EFubusysum (flag, counter)
cpumode = '4!
PRI PAR

wordtransfer (repetition, cpumode, flag,

c ubus%sum (flag, counter)
cpumode = 'b6!

wordtransfer grepetition, cpumode, flag,

cpubusyprod (
cpumode = ‘%F')
PRI PAR

lag, counter)

wordtransfer érepetition, cpumode, flag,

cpubusyprod (

lag, counter)
TRUE

counter)

counter)

counter)

counter)

wordtransfer (repetition, cpumode, flag, counter):

Lt N AT AN Bl SRkt

« « ¢ * 2SR L ¥V

'l
'V
.l
7,
}
-- SC PROC get.choices (CHAN Keyboard, Screen, VAR ch, ..., run) N
-- PROC get.choices (CHAN Keyboard, Screen, VAR ch, cpumode, run) by
PROC get.choices (CHAN Keyboard, Screen, VAR ch cgumode run)=
mem | RARFRR T KRR R F R TR R T R K o R Rk ok ok ok ke ARk R o Kok e Ao ok ok ke A ok
--- presents menus and gets user's choices of cpumode and construct
e RekFeRRRRRR KR ok R ok e K R K ko ok e R K K e Ak 7k ok kR e R ok K ke ke ok A ok ok X
-- modlibrary.occ A
-- io_routines.occ (partial) f
-- SC PROC new.line (CHAN Screen) '
-- PROC new.line (CHAN Screen) !
PROC new.line iCHAN Screen)= t
mea kkkAKRRAKAKKARKIRKTRRFRKAIIIIAIKRRRKRK KKK I KRR AKFAAKRAAKAKRAK KK K&K K&
--- ;umps a line on the screen, Max be compiled separately '
cmm Fedkgerok kAR KRRk KK Rk ek ok ok e ok ek ok kK R KK K R e e ok ek 7k ok ok 7k o ok ok ok ok ok o
DEF EndBuffer = -3: %
DEF ¢r = 13 : b
DEF 1f = 10 : '
SE% o
creen ! cr;lf;EndBuffer ‘
-- descriptor "
-- code J
-- SC PROC write (CHAN Screen, VALUE string{]) v
-- PROC write (CHAN Screen, VALUE strin []?
PROC write iCHAN Screen, VALUE strlnngi = N
e RARKRRARKAKAKKK AR K ek ok kKA A kKA KA FedeR KA Kk ok ok ko ok ok ok ok ok ok ok ok ok ek .3
--- Writes a given string to_the screen, in a byte by byte fashion
--- May be compiled segaratel .
—me KRAKKKAKAARARKRK KR AKRA KK KA KKK A KK IR RARKR KK KK KA A KA KA KA A KKKk .
DEF EndBuffer = -3: "
ss% , , N
E% i=11 FOR_strln%&?zTE 0]] .
creen ! string[BYTE i] <
Screen ! EndBuffer : ~
-- descriptor
-=- code :
-- SC PROC clear (CHAN Screen) ")
-~ PROC clear (CHAN Screen)
PROC clear (CHAN Screen)=
oD e ek Ak Ak ok Kk sk e e e e g gk gk ok ok ok ok ok ok Ao ok ok ok ok ke ek sk ke ke ok ok ok gk ok ok ok ok ok ok ok ok ok
--- clears the screen, Maz be compiled segarately by,
mmm KR s ek ok ok ok ok e o R K ok ek e ok ok R K K K o R R ok R A Rk ok ok e ke e ok ke ko
DEF EndBuffer = -3:)
DEF esc = 27: O
SE%
creen ! esc; '~'; '2'; 'J'; EndBuffer --- clear sequence Y.
Screen ! esc; '['; 'H' : --- home cursor y
-- descriptor %
-- code &
-- SC PROC write.number (CHAN Screen, VALUE number) W)
-- PROC write.number (CHAN Screen, VALUE number) .
PROC write.number(CHAN Screen, VALUE number) = e
ma e e ek e K gk 3 e ok o ok ke Tk ke K o kK ok gk e 7k gk ok ok e o ok ok gk e gk ko ok e ok ok ok ok ok ok ok ok gk ke U
--- This PROC outputs a signed integer value to the screen ..
--- May be comglled segarately .
- k7K KRR R K TR R KKK Tk K R K TRk K ok gk ke ke 9 ok vk ks ke ke ok ok ke ok ok ok ke ok ke e ek ke ok ke ke ok ok ok ok ok ok >
VAR output{16], count, x: A
SEQ >
¥:= number »
count:= 0 -
IF . e
-- handle special cases -1
135 !
4
*d
vrr.»",-," IR LS R RN R SN Ry MR SRS PR -'."~ e '_:' '-.:l\v \-."\.'\-f'-‘?' " "‘."u ";"'\-'.'; . Y e

x=0
¢ Screen ! '0Q'
: x<0

SE
%creen ! et
X:=-X

TRUE
SKIP
WHILE x>0
5- construct number

o -

R
PG,

Q
¢ output[count] := (x
count := count + 1
y x:= xX/10
: WHILE count > 0

-= output number
SEQ
count := count-l
Screen ! output{count]
SKIP:

descriptor
! -- code

v -- utilities.occ (partial)

#t -- SC PROC capitalize (VAR ch)
-- PROC capitalize (VAR ch)

' PROC gigltallze

" - -

-—- cagitalizes an
_——— %

\
i DEF delta =('a' - 'A'")
X -
' ——
‘ SE
" F(ch <= '2') AND (ch >= 'a')
ch <= 'z ch >= 'a
f ch := ch - delta
: TRUE
SKIP
X -- descriptor

-=- code

-- global_def.tds (partial)
BE onstants Definitions

3
o

; F EndBuffer = -3:
0 DEF tab = 9
L DEF 1f = 10:
X DEF c¢r = 13:

DEF esc¢ = 27:
. DEF sp = 32:
t

-=- PROC write.header

10) + '0'

VAR ch) =
********i******l***************************************

lower case character into ugger case
Fo ok o e e 7 ek ek ok ke e e ok ok e ok ok e 7K ¢ g ok ok ke ok 7 ok ke ok ok ok

o e e ok ek 7k e ok 7k e ke e

A -~=> 65

a =--=> 97 ASCII values
2 ==-=> 122

3 PROC write. header =
'y e ook e ook ok o s K sk ok ok e ok o sk ok sk e o o ke ok ke e e e e sk ok e sk ke i ok e e gk ok ok e sk gk kK e o ok ok ok e e ok
k) -=-=- writes the header of the outgut table
. -—— KAKRKKAAKAKRAKRARARKAKRARAAKRKAARRAAKRARARKAARARRAARAkAkKARAAAkAAAAKK A
. SEQ
. run := run + 1
clear(Screen)
write(Screen, "RUN # ")
B write.number (Screen,run)
'y Screen !

Sg:SP;SP
. -- output the cpu mode to the screen
IF

136

PO T N LR)

)!
i)

\ ; A e A
et AR REON S SANS ﬁﬁ?".ﬁ(\&t YN Al

oG, ” WAL

.
¢
L
‘
cpumode = 'Q' '
write(Screen, 'cpu mode = 0 (no par proc) ") '
cpumode = '1' ¢
write(Screen, 'cpu mode = 1 (one sum par) ") :
cpumode = '2!
write(Screen, '"cpu mode = 2 (all sum par) ")
cpumode = '3! , |
) write(Screen, 'cpu mode = 3 (one sum pripar) ") .
cpumode = '4!] N
write(Screen, '"cpu mode = 4 (all sum pripar) ") .
cpumode = '5!
. write(Screen, "cpu mode = 5 (one prod par) ")
cpumode = '6'
write(Screen, "cpu mode = 6 (all prod par) ") .
cpumode = ‘7!) y
write(Screen, "cpu mode = 7 (one prod pripar)") N
cpumode = '8!)
‘;glte(Screen, "cpu mode = 8 (all prod pripar)") Y
t
SKIP N
Screen ! sg;sp
EE output the construct type to the screen \
ch = 'A! , bt
hwri&;KScreen, “"input/output channels (bytes) ") !
ch = ’
hwriﬁgKScreen, "BYTE.SLICE.input/output (bytes) ") M
ch = -
hwriﬁ:ﬁScreen, "input/output channels (integers)")
ch = Y
Tkagite(Screen, “"WORD.SLICE.input/output(integers)") ;
o)
SKIP o
new.line §Screen 9
new.line (Screen x|
write(Screen, "BYTES 1 OUT 1IN/OUT 2 OUT 2IN/OUT 3 outr") h
write(Screen, “3IN/OUT 4 OUT 4 IN 4IN/OUT") ;
new.line (Screen): 3
- VAR answer : o)
SE
F U
run = 0 s
SEQ . “
-- outgut to the screen presentation of program
clear(Screen) o _ 2
write(Screen, " This is an Evaluation Program for ")
write(Screen, "the Transputer") N
new.line (Screen) , ' _ iy
write(Screen, " It is fully interactive and you will ")
write(Screen, "be prompted in") \
new.line (Screen) -4
write(Screen, " each run to choose cpu mode and type ")
write(Screen, 'of construct ") 0
new.line (Screen . "
write(Screen, " The output table will present transfer ") ")
write(Screen, " rates in ")
new.line (Screen))
write(Screen, " Kbits/sec for the 16 different ")
write(Screen, "block.sizes and the 9"))
new.line (Screen) _ ,)
write(Screen, " channel configurations ") .
new.line 2Screen N,
new.line (Screen . N N,
write(Screen, " TYPE (Y)ES if you want to use it ") N
new.line (Screen)) ,
write(Screen, " (N)O if you want to quit "))
new.line (Screen) V]
answer := 'z'
i‘
137)
*
*
'-I‘
\
~
- P - LTI, [T U R A RS a WM™ LIS TS IS LT TSI
B A DA DM AL K P W SN M e X L Sy o WHRh, VTN 0 oy S P

-~ descriptor

-- validate answer
WHE}E ((answer <> 'Y') AND (answer <> 'N'))

%rlte(Screen, " Type your choice ")
Keyboard ? answer

~ap1tallze (answer)

Screen ! answer

new.line (Screen)

clear(Screen)
-=- choosin yge of construct
-- prompt yge of construct

wri e(Screen hoose type of construct to be used ")
new. llne(Screen

write(Screen, " A for input/output channels (bytes) ")
new. llne(Screen)]

write(Screen, " B for BYTE.SLICE input/output (bytes)")

new. llne(Screen) _

write(Screen, " I for input/output charnels (words) ")
new.line(Screen) .

write(Screen, " W for WORD.SLICE input/output (words)")

new. 11ne(Screen)
.- valzdate type of construct

WSIE% (((ch <> 'A')AND(ch <> 'B'))AND((ch <> 'W')AND(ch <> 'I')))

write(Screen, " Type your choice ")
Keyboard ? ch :
capitalize (ch)

Screen ! ch

new.line(Screen)

new.line(Screen)
-- ch0051n? cpumode durlng transfers
-- prompt for cpu mode

wri e{Screen, " Choose cpu mode during transfers")
new.line(Screen
write(Screen, " -> cpus executing no concurrent processes ")

new. llne(Screen)

write(Screen, "1 -> B003 cpus executing sum concurrently (par)")
new.line(Screen

write(Screen, " -> all cpus executing sum concurrently (par)")
new.line(Screen . .
write(Screen, "3 -> B003 cpus executing sum concurrently(pripar)")

new.line(Screen) .]
write(Screen, "4 -> all cpus executing sum concurrently (pripar)")
new. llne(Screen .

write(Screen, " -> B003 cpus executing array products (par)")
new. 11ne(Screen))

write(Screen, "6 -> all cpus executing array products (par)")
new. llne(Screen

write(Screen, "7 -> B0O03 cpus executing array products (pripar)")
new.line(Screen . .
write(Screen, "8 -> all cpus executing array products (pripar)")

new. 11ne(Screen)

-=- validate cpu mode
cpumode := 1
ILE ((cpumode > #38) OR (cpumode < #30)
SEQ === 0 < cpumode < 8 (IN ASCII)

wrxte(Screen " Type your choice ")
Keyboard ? cpumod

Screen ! cpumode

new, llne(Screen)

write.header:

prer)
T -

~= code

== PROC user.interface

PROC user.interface =
e 7k 5 7 K 7 Tk 7 Kk e e e e v Fe e e e o ok ok ok ke ok ok ok ke e sk sk v e e T ok ok e Tk ok e ok ok ok o ok e e gk ok ok e e ok ke R ok ok ok ok ok ke

--- Presents menus and calls right modules to be executed

--= in the transputer root.
[RAKAARKRARARKRRAAAARAARAKRAKRAAkRhAhkrkkhkhhhkArkikhhkhikkixrkhhrkirixkk

-- constant and variable declarations

VAR run : =-- number of runs made this time (RUN #)
VAR answer : === users choice in continue or quit
. VAR construct : --- users choice of construct .
VAR cpumode : == useif choice of cpu mode while transfering
== ata
SEQ
run := 0
answer := 'z!'
clear.screen

write,string (" Do you want to use the Link Evaluation Program?")
-- validate answer
WH%&% ((answer <> 'Y') AND (answer <> 'N‘'))

new,line)

write.string (" Type your choice (¥) or (N)")
Keyboard ? answer

capitalize (answer)

Screen ! answer

new.line

WHILE answer = 'Y!
SE

get.choices (Keyboard, Screen, construct, cpumode, run)
;ARsend choices to other transputers

hostout0 ! construct; cpumode; repetition

hostoutl ! construct; cpumode; repetition

hostout2 ! construct; cpumode; repetition

hostout3 ! construct; cpumode; repetition

) EE executing the right procedure and prompting for new run

construct = 'A’ L
inout.transfer (repetition, cpumode)
construct = 'B! o
byte.slice.transfer (repetition, cpumode)
construct = 'I' L.
int.transfer (repetition, cpumode)
construct = 'W! o
word.slice.transfer (repetition, cpumode)
TRUE
SKIP _
-- prompt for another run and validate_ answer
answer := 'Z! --- to make the next loop be executed

wuaﬁf ({answer <> 'Y') AND (answer <> 'N'

write.string("Do you want another run? Type (Y) or (N)")
Keyboard ? answer

capitalize (answer)

Screen ! answer

new.line

-;Rsend answer to other transputers
hostout0 ! answer
hostoutl ! answer

hostout2 ! answer
hostout3 ! answer

clear.screen) ' .
write.string (" Thank you for using the Link Evaluation Program")

139

) . . - - R T T T L Y LI P LN DL T oo
DO DO DU T OO O D O O O A O T D O O R M A R S WL el By Nty VR .\. W, N

-

new.line
write.string 2" Press reset on the b00l board to get back ")
write.string (" to VAX/VMs ") .

AR
IMS.BOOl.terminal.driver(Keyboard,Screen,port, baud)
user.interface:

- TR T KR K T Tk e e SR T R Y ok e o e T ok T e ok ke e ke e ok e ok vhe ok ke ok ok e ke e ok o ok o o e e ok ok ok ke ke ok ke e o ok ok ok e ok ok ke ok ok ok ok

--=- END OF CODE IN TRANSPUTER ROOT
moe REKARIKKAAKKRK AR A R ok A A K H A e ok e e e e e s e s 7 s e Ao sk ek e ke e ke ok 7 e ok ok

140

-- TRANSPUTERO_B003.TDS

== SC PROC transfer0.b003 ,

-- PROC transfer0.b003 (CHAN in,out)

PROC transfer0.b003 (CHAN in,out) =

-- descrlgtlon

mma RRRFATRAK AR TR A AR kA e Ak ek ok K e ok ok e sk ok ok e ko e ok ke ko ek ok ke ke e ok ok ok sk o
--- This is the outer procedure glaced on_transputer 0 . It contains
--- global variables and constants, and all procedures that run in this
--- transputer. It receives a construct type (ch), cpu mode (cpumode),
--- and number of times each communication sequence (repetition), and
--- calls accordingly one of the following procedures:

--- - lo.transfer0,
-——- - byte.slice.transfer0,
-—— - int.transfer0 or

- word.slice,transfer0
——— ook ook sk e ke ok e T e K T e T ek T 9K e 5 Tk ok ok sk ok ek ok e gk ok ek ke gk e e ek ok ok e s ke e ok ok e e ok ok

== Link Definition
DEF linkOin
DEF linkOout
DEF linklin
DEF linklout
DEF link2in
DEF link2out
DEF link3in
DEF link3out
-~ constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

. 1024, 1280, 2048, 4096, 8192, 10000]:
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size / 4:

6; variables declarations

.
H

WINOHNO D

R ch : === choice of the user in type of construct
- VAR answer ¢+ === choice of the user in continue
VAR cpumocde === choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run

-= SC PROC cpubusysum (CHAN flagl, counterchan)

-- PROC cpubusysum (CHAN flagl,counterchan)

PROC cpubusysum (CHAN flagl,counterchan)=

-- descrlgtlon .

—mm RRKFRRAKIK KA KA T ek ke K sk ok e sk ok ok ok ok ok ok ok e ek gk ok kg ok ok e ok ok e e A
=-- It keeps the cpu working in §§rallel (time sharing) with link
--- transfers bg doing sum Operations. It Stops when receives

--- a flag by the channel flagl from the procedure transfer that
--- 1is being executed concurrently.

-——— Outguts bz channel counterchan number of ogerations done.
- Fe e e ok Tk ok sk e ok ok e ke oA ke ok e ok ok T ok ok gk ok ok sk e sk ok e ok e ok o ok e ok Tk ok ok ke Tk e ok v ok ke o e o T g ok ok ok k ok ok ke

VAR a,b,e,
working,
counter,
¢h :

SEQ
counter := 0
working := TRUE
TIME ? a
WHILE working
ALT

flagl ? ch
working := FALSE
TIME ? b
SEQ
e :=a+b
counter := counter + 1
counterchan ! counter:

-=- descriptor

141

g SR

. - {
el Nyt V8, LHLRY, . l.u.‘!‘lo D

] " ' p o " P o Y K
AL R O U0 OO X O 00 NOA M "‘n’!’c"'d"o’. A 0'.~| M AM R AN 0y e M M W R

W —‘f-‘ P B B

[} . .c

== code

-= SC PROC cpubusyprod (CHAN flagl,counterchan)
-=- PROC cpubusyprod (CHAN flagl, counterchan)
PROC cpubusyprod (CHAN flagl, counterchan)=

-=- descri

tion
****g***

It keeps the cpu working in gqra}lel(time sharing) with the link
transfers bK doing arraX multiplications. It stops when receives
a flag by the channel flagl from the transfer procedure, that is

being executed concurrently. It outputs by channel counterchan
the number of operations done,
e e e e 7 Tk 3 7 ke ek e e e e ok o ok sk gk A oK o ok A e e e ok vk vk ok ok ok e gk ke vk e e ok ok ok ok ot ok ok Tk R ke ke sk ok ok A ek ek ke ok

-- constants and variable declarations

DEF number = 100

: =-=--- size of array
VAR a[number + 1} ---- array of integers
! b[number + I, ---- array of integers
; e{number + 1],

-~-~- array of integers
clock, --=-=- integer -variable to get time
working, --=-=- boclean -to stcp execution
cgunter, ---- integer -number of operations done
[:

SEQ
~=- initialize buffers and variables

; SE% i = [1 FOR number]
i EQ . .
a[+ =33
b 1] = 5*%j
X SKIP
' counter := 0
¢ working := TRUE

WHEfE working

LT
flagl ? ch
working := FALSE
TIMSEE ? clock

EQ i = [1 FOR number]
e[i] := a[i] * b[i]
counter := counter + number ---up
counterchan ! counter:

P R A

142

L

AT n ST TR AT RS oy - N Wl
..“A.?‘t‘.&.'.'Q".‘n‘."n..‘s ,\‘!‘l N 4‘!.'!) X .‘l\ RN ANNA) ~ A o 00 W3 e 0 B N " Wil

dates nr. of operations

TN LN "\\-.‘.\ -‘-.“ -~ .‘”‘.T“ S ‘
N () LN A i}

-
- -

-- PROC inout.transferQ (VALUE repetition,cpumode)

PROC inout.transferQ0 (VALUE repetition,cpumode)=

-- descrlgtxon

—-——— Tek ok e v T e e Tt ok T T 7k e ok e sk s e 7k ok e ok gk ok gk Ak e vk T e sk sk ok e ke ok ke vk A e ok ke e ok e ok ok e ke gk e ke ke ok sk e e ok ok kR
-~= Initializes the buffers and executes the procedures iotransfer,
--=- plus, when applicable according to cpumode, one of the following:
--- cpubusy.prod or cpubusy.sum.

-- Uses globa constant maxblock.size
- Te TR TP Tk TR v ok T 5k Tk T T e 5 S S T e e A e 2k ok sk ke K K vk e e e ke e ok e ke ke e e g ok ok ok ok vk ke vk e ok A e e ok e ok vk ok ok ke ok e ke R

el - o

CHAN flag, --- flags the cpu to stop _ i
counter : --- refurn the number of operations cpu did

-- PROC iotransfer0 (VALUE repetition, cpumode, CHAN flag, counter)
PROC iotransferQ (VALUE repetition,cpumode,CHAN done, opnumber)=

-~ description.io

- Tk gk gk TR K e e T Fe e Ao e e Tk ok vk 3k T ok g ok e e ke e e ok o e sk e e e o ok ok gk ok ok e sk ok ke ok e ok v ok e o ok sk e ot o ke ke

--- It executes sequentially several parallel transfers using the -
--- lnput/outﬁut grlmltlves to/from transputer root.)
e

~== It uses t g obal constants sizetable, nr.of.sizes, repetition
- ATk A K Tk Ak **********'k******************************* ARKAKKK

b

-

-- variable declarations
VAR block.size,

number, =--- the number of operations done by the cpu.

ch(4]: :
VAR buf%ero [BYTE maxblock.size + 1]: :
VAR bufferl [BYTE maxblock.size + 1]}:

-,

SE
%- initialize buffers .
SE%Ei = [1 FOR maxblock.size]

%ufferO-BYTE i- :=
bufferl-BYTE i- :=
SKIP

SE%Ei = [0 FOR nr.of.sizes]

lock.size := sizetableéi]
-~ input and output handling
-- input from one channel
SEQSEJQ= [1 FOR repetition]

out ! 'a'
SEQ k = [1 FOR block.size]
SKIP in ? bufferO[BYTE k]

-- input/output to/from one link
SEQsE]Q= [1 FOR repetition]

out ! ‘a’
SE% };z = [1 FOR block.size] 1

in ? bufferO{BYTE kl .
out ! bufferl[BYTE k] X
SKIP e

-- input from two channels W,
SEQSEjQ= [1 FOR repetition]
out ! 'a! , >
SEQ k = [1 FOR block.size]
in ? bufferQ[BYTE k] .
SKIP ;
-- input/outgut to two links \
SE%E% = [1 FOR repetition] .

out ! 'a’

o JC I W W

S~ e

143

R U6 R R IR

. v ™
" L
TASN" AR

-

" - . . - “a et R ‘e » » WLy ‘~‘-\.'. AN e .\'\,"‘!-_.
“’-.“l 'an‘!'. O LN y.. W% ,‘lnl.-l * f "* (-‘) - W W URY

u
) A WL

WH"W

SEQ k = [1 FOR block.size]

R
in ? bufferO{BYTE ki
SKIP out ! bufferl[BYTE k]

-- input from three channels
SEQSE];Q = [1 FOR repetition]

out ! 'a’
SEQ k = [1 FOR block.size]
SKIP in ? bufferO[BYTE k]

-- input/output to three links
SE%EJ = [1 FOR repetition]
Q

out ! 'a’
SE%>k = [1 FOR block.size]
AR

out ! bufferO[BYTE k]
in ? bufferl[BYTE k]
SKIP

-- input from four channels
SE%EJQ= [1 FOR repetition]

out ! 'a'
SEQ k = [1 FOR block.size]
SKIP in ? bufferO[BYTE K]

-~ output to four channels
55%55 = [1 FOR repetition]

out ! 'a’

SEQ k = [1 FOR block.size]
out ! buffer0[BYTE k]
SKIP

-=- all output and input in parallel
SEQSEJQ= {1 FOR repetition]

out ! 'a!' .
SEQ k = [1 FOR block.size]

in ? bufferO{BYTE k;]

out ! bufferl[BYTE
SKIP
SKIP »
IF h
~-= cpumode not = '0' then get the number of computations done
cpu%?de 2OV
S
%1ag ! ta! --- flag to stop procedure cpubusy
opnumber ? number --- receiving computations from cpubusg
out ! number --=- sending computations to transputer roo
TRUE
SKIP

~; main PROC inout.transfer0
((g&gﬁode = '1') OR (cpumode = '2'))
iotransfer0 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
((chumode = 131) OR (cpumode = 4'))
RI PAR ,
iotransfer0 (repetition, cpumode, flag, counter)

cpubusysum (flag, counter)
((cpumode = '5') OR %cpumode = '6'))

144

PAR
iotransfer0 Erepetition, cpumode, flag, counter)
cpubusyprod (flag, counterg
((gpumode = 17') OR (cpumode = '8'))
RI PAR o
lotransfer0 (repetition, cpumode, flag, counter)
RUE cpubusyprod (flag, counterg
T
iotransfer0 (repetition, cpumode, flag, counter):

145

e - -

A MY

-- PROC byte.slice.transferQ (VALUE repetition,cpumode)

PROS bytg.fllce.transfero (VALUE repetition,cpumode)=

L R RTRAREER Mk ke ke e e e e e e e ok s e
--- Initializes the buffers and executes the procedures transfer,
--= plus, when applicable according to cpumode, one of the following:
- cpubusX.prod or cpubusy.sum,

-~ Uses globa constant maxblock.size
- KRKKKR KKK KRR K I AR K R K K K Tk T e Tk ke K Kk 9k & gk gk R K 5k ke ek ok ke gk sk ok K ok gk ek kg ok ok o ke ok ok ok

CHAN flag, -=-- flags the cpu to stop _
counter : --- refturn the number of operations cpu did

-~ PROC transfer0 (VALUE repetition, cpumode, CHAN flag, counter)
PROS traqsggro (VALUE repetition,cpumode,CHAN done, opnumber)=

::- gigii *igg***
--- It executes sequentiall{ several parallel transfers using the
--- BYTE.SLICE procedures to/from transputer root.

--= It uses the global constants sizetable nr.of,sizes, repetiti
e KRRKKKKARKAKRAKRKKKKRKK KA K KKK KA KA RRKREHA KA KK KRR KRR RKAKTRFRAAK

on
* Kk
-- variable declarations
VAR block.size, .

ngmgir, -=-= the number of operations done by the cpu.

C H
VAR buffer0 [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1]:

SE
q- initialize buffers
SE%_i = [1 FOR maxblock.size]

c
%ufferO-BYTE i- =1
bufferl-BYTE i~ := i\8
SKIP

SE%Ei = [0 FOR nr.of.sizes]

lock.size := sizetablegi]
-~ input and output handling
-- input from one channel
SEQ_EJQ= {1 FOR repetition]

]

out ! 'a’ ,)
SKIP BYTE.SLICE.INPUT(in,buffer0,1,block.size)
-= input/outgut to one channel
SE%EJ = [1 FOR repetition]
Q
out ! 'a!
PAR _ _
BYTE.SLICE.INPUT(in,buffer0,1,block.size)
SKIP BYTE.SLICE.QUTPUT (out,bufferl,l,block.size)

-~ input from two channels
SEQsEj = [1 FOR repetition]
Q
out ! 'a!'

p BYTE:SLICE.INPUT(in,bufferO,1,block.size)

-- input/output to two channels
SE%EJQ= [1 FOR repetition]

AR L &
BYTE.SLICE.INPUT(in,buffer0,1,block.size)
BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

146

g

oo IR

.
y
N
L

n
-
-

-

»
-

-
v

-
-

-

-

SrIIS

o,

SKIP by
-~ input from three channels N
SE% j = [1 FOR repetition] .
EQ
out ! 'a!' .) "
BYTE.SLICE.INPUT(in,buffer0,1,block.size) '
SKIP o\
-- input/outgut to three channels :
SE% j = [1 FOR repetition] A
EQ ¢
. out ! 'a!' ol
PAR
BYTE.SLICE.INPUT(in,buffer0,1,block.size) ;
BYTE.SLICE.OUTPUT (out,bufferl,l,block.size) s
SKIP G
-- input from four channels ,
SEQSEJ = [1 FOR repetition] 4]
% t! 'al
SKIP BYTE.SLICE.INPUT(in,buffer0,1,block.size) g
,
-- output to four channels !
SE% j = [1 FOR repetition])
EQ :
out ! 'a! 1
SKIP BYTE.SLICE.OUTPUT (out,buffer0,1l,block.size)
-- all output and input in parallel Jﬁ
SEQ j = [1 FOR repetition] >~
SEQ by
out ! 'a' N
PAR =
BYTE.SLICE.INPUT(in,buffer0,l,block.size) ‘
BYTE.SLICE.OUTPUT (out ,bufferl,l,block.size) ,
SKIP
-- cpumode not = '0' then get the number of computations done. =
cpumode <> 'O 9
SE .
lag ! 'a’ 3
opnumber ? number
out ! number '
TRUE N
SKIP
-- main PROC byte.slice.transfer0 ;)
.
((ig&?ode = *1') OR (cpumode = '2')) L
K]
transferQ0 (repetition, cpumode, flag, counter) :}
cpubusysum (flag, counter) iy
((%pumode = '3') OR <%cpumocle = 14')) N
RI PAR - ot
transfer0 (repetition, cpumode, flag, counter) b,
cpubusysum (flag, counter) ‘
((%g&?ode ="15') OR (cpumode = '6')) "
transfer0 (repetition, cpumode, flag, counter) ;:
cpubusyprod (flag, counter) .)
((apumode =t7') OR (cpumode = '8')))
RI PAR o Y
transfer0 (repetition, cpumode, flag, counter) ﬂ
TRUE cpubusyprod (flag, counter) ‘
transfer0 (repetition, cpumode, flag, counter): =
147 N
-
(¥}
i

Y RN S Y
- N ™

PP DA S R T T SRR S T I TP TR Wil M W N STt
s . » - . -

.‘ -

D I M Ak e)

.‘...‘- _’-‘.. " "”‘.;"“ ERCRTRSERL RN « At e "

.)
S N S Al b e a SV

-- PROC int.transfer0 (VALUE repetition,cpumode)

PROS int,transfer0 (VALUE repetition,cpumode)=

- ;2giigiiggiﬁ***
--- Initializes the buffers and executes the procedures intransfer,
--- plus, when applicable according to cpumode, one of the following:
=== cpubusg.prod or cpubusy.sum.

-- Uses global constant maxwordblock.size
e RRFARKT AR R K A K R K e K e Fe e 7 ok e e 7k ok e T 7 ok e 7k ok ok ok ok ok e ok ok e ok ok ke ok ok e ok ok ok ok ok ok

CHAN flag, --- flags the cpu to stop))
counter : --- return the number of operations cpu did

-- PROC intransfer0 (VALUE repetition, cpumode, CHAN flag, counter)

PRog intransfer0 (VALUE repetition,cpumode,CHAN done, opnumber)=

- iiﬁiigﬁiii***

--- It executes sequentially several parallel transfers using the

——- 1nput/ougﬁut grlmltlves to/from transputer root,
e

--- It uses g obal constants sizetable, 6 nr.of.sizes, regetition
mmm RRKRF AR AR A R A K e Ak R ko Kk ok ok ke R Kok R R K R R

-~ variable declarations
VAR block.size,

nﬁmg?r, --- the number of operations done by the cpu.
c :

VAR wbuffer0 [maxwordblock.size + 1]:

VAR wbufferl [maxwordblock.size + 1]:

SE
2. initialize buffers .
SE% i = {1 FOR maxwordblock.size]

E
waufferO[i]
wbufferl|i

SKIP

SE%F; = {0 FOR nr.of.sizes]
sizetable[i] < 4

TRS?IP ---minimum number of bytes is 4 for integer transfer

SE
%logk.size 1= sizetableéi]
-~ input and output handling

i
i

-- input from one channel
SE%EJ = [1 FOR repetition]
%ut ! 'a!
SEQ k = [1 FOR ?&ock.size/4)]

in ? wbuffer?
SKIP

-- input/output to one link
SEQSEJQ= {1 FOR repetition]

out ! ‘a! .
SE%,k = [1 FOR (block.size/4)]
AR

in ? wbufferO{ki
out ! wbufferl(k]
SKIP

-- input from two channels
SE% j = [1 FOR repetition]
EQ
)

ut ! ‘'a!
SEQ k = [1 FOR &?lock.size/4)]
in ? whbufferoOfk]
SKIP

148

th a ¥ Ky C kg i - J « i aY £y gt > + 1 90 o W% Fal b . abhcal "' 2®a B

-- input/output to two links
SE%EJ = [1 FOR repetition]
Q

out ! ‘'a' .
SE%)k = [1 FOR (block.size/4)]
AR

in ? wbufferO{k&
out ! wbufferli(k]

SKIP
-- input from three channels
. SE% j = [1 FOR repetition]
EQ
out ! 'a!

SEQ k = [1 FOR (block.size/4)
SKIP %n ? wbuffero&k]]

-- input/output to three links
SEQSEJQ = [1 FOR repetition]

out ! 'a!
SEQ k = [1 FOR (block.size/4)]

in ? wbufferO{kL
out ! wbufferi[k]
SKIP

-- input from four channels
SE%Eb = {1 FOR repetition]

out ! ‘ta!
SEQ k = [1 FOR &block.size/4)]
in ? wbufferoO[k]
SKIP

-- output to four channels
SE%EB = [1 FOR repetition]

out ! 'a!)
SEQ k = [1 FOR (block.size/4)]
out ! wbufferO[k]

SKIP

-- all output and input in parallel
SE%EJQ= {1 FOR repetition]

out ! 'a! .
SE%)R = [1 FOR (block.size/4)})
AR

in ? wbuffero[kl
out ! wbufferl[k]
SKIP

SKIP
IF

-- cpumode not = '0' then get the number of computations done.

cpumode <> '0!'
SE
lag ! 'a‘

opnumber ? number
out ! number

TRUE
SKIP

== main PROC int.transfer0
((cpumode = '1') OR (cpumode = '2'))
PAR

intransfer0 érepetition, cpumode, flag, counter)
cpubusysum (flag, counter)

149

- RPN

Wt A
S T T

r o
I.“

Jor

77 /14

e,

K . . S b s, ol @ty €°% @'
. T T N TN T T Uy N U e) v gl [
» Ll o [N el

T

((CPPUMO%Q = '3') OR (cpumode = 14'))

1ntzansfer0 repetltlon, cpumode flag, counter)
cpubusysum counter)
((chumode = 15) OR ?cpumode = '6'))

Pl g

1ntransfer0 Srepetltlon cpumode, flag, counter)
cpubusyprod (flag, counterg
((%Pumode = '7') OR (cpumode = '8'))

intransfer0 grepetltlon, cpumode, flag, counter)
cpubusyprod (flag, counterg

T e

TRUE
intransfer0 (repetition, cpumode, flag, counter):

-

- 2

o« S

N o RS A,

o

150

o« £

e AL

. PR
LA e e et .M. N *

.'(_t‘n."x'.l .ut.. A lak .r.“l_t..-d&‘:.. ._.--‘.-.-f PP

F..lllllllll.lll.lllll.l.ll.l...l...lll-'l'.ll’llllll-.lIlllIlIlllII-lI'I"IlI'-l--n-ﬂ'-I-I-“-“-W-"-"

-- PROC word,slice.transfer0 (VALUE repetition,cpumode)

PROS word.:llce.transfero (VALUE repetition,cpumode)=

:- - iigg,{ *igg;k*** e vk vk kv Ao A ok
--- Initializes the buffers and executes the procedures wordtransfer,
--- plus, when applicable according to cpumode, one of the following:
--- cpubusy.prod or cpubusy.sum.

-~ Uses global constant maxwordblock.size
- KTF T IR KK T K R A KKK F K Fe Rk T T ek R A T e ke Ao ke A R R Tk ok ok ok ok e ok e ok Tk vk e sk e sk ke ok ok ok ok e ok ok Rk

CHAN flag, --- flags the cpu to stop) .
counter : --- refurn the number of operations cpu did

== PROC wordtransfer0 (VALUE repetition, cpumode, CHAN flag,...)
PROC wordtransfer0 (VALUE repetition,cpumode,CHAN done, opnumber)=
::-dietig-;{ig}é%gg***k*
--=- It executes sequentiall{ several parallel transfers using the
-=- WORD.SLICE procedures to/from transputer root.

-~= It uses the global constants sizetable, nr.of.sizes regetition
- e T T R o 5 K R e T K e Kk ok o ok e R K 7K ok e e 7k o ok K ek ok sk e ko ok 7k ke ek ok ok ok e ke ok e e ok ok ok e

-=- variable declarations
VAR block.size,
numb --=- the number of operations done by the cpu.

er
ch%‘l]: .
VAR wbuffer0 [maxwordblock.size + 1]:
VAR wbufferl maxwordblock.size + 1]:

SE
%- initialize buffers
SE% i = {1 FOR maxwordblock.size]

E
%bufferO[i] = 1
wbufferli] := i

SKIP

SEQIFi = [0 FOR nr.of.sizes])

sizetable[i] < 4
TR&?IP ---minimum number of bytes is 4 for integer transfer

SE
%logk.size = sizetableéi]
-=- input and output handling
-- input from one channel
SEQSE = [1 FOR repetition]
%

ut ! ‘'a‘'
SKIP WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))

-- input/outgut to one link
SEQSEJQ= [1 FOR repetition]

AR .
WORD.SLICE.INPUT(in,wbuffer0,1,(block.size/4))
SKIP WORD.SLICE.QUTPUT(out,wbufferl,l, (block.size/4))

-- input from two channels
SE%EJ = [1 FOR repetition]
Qu

out ! 'a’
SKIP WORD.SLICE.INPUT(in .wbuffer0Q,l,(block.size/4))

-- input/outgut to two links
SE%EJQ= [1 FOR repetition]

151

T YA JR N T % S
AN A LR L

N AT AR A

th =

- o
R O A M A A M N o s o e L e S

S
WORD.SLICE.INPUT(in,wbuffer0,l,(block.size/4))
SKIP WORD.SLICE.OQOUTPUT (out,wbufferl,1l, (block.size/4))

-- input from three channels
SE%EJQ= [1 FOR repetition]

out t 'a!
ékIP WORD.SLICE.INPUT(in,wbuffer0,1l, (block.size/4))

== input/outgut to three links
SE%EJ = [1 FOR repetition]

e
WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))
SKIP WORD.SLICE.OUTPUT (out,wbufferl,l, (block.size/4))

-- input from four channels
SE%EJ;)= [1 FOR repetition]

out ! 'a'
SKIP WORD.SLICE.INPUT(in,wbuffer0,1l, (block.size/4))

-- output to four channels
SEQSEJQ= [1 FOR repetition]

out ! 'a’
SKIP WORD.SLICE.OUTPUT (out,wbuffer0,1, (block.size/4))

-- all output and input in parallel
SEQSEJQ = [1 FOR repetition]

out ! 'a!

WORD.SLICE.INPUT(in,wbuffer0,1l, (block.size/4))
SKIP WORD.SLICE.QUTPUT (out,wbufferl,i, (block.size/4))

-- cpumode not = '0' then get the number of computations done.
cpumode <> '0'
SEQ
flag ! 'a!
opnumber ? number
out ! number

TRUE
SKIP

-=- main PROC word.slice.transfer0O
((cpumode = '1') OR (cpumode = '2'))
PAR P

wordtransferQ (repetition, cpumode, flag, counter)
(« cpg?usyﬁgﬂ)(gkéa, cou%Fer5'4l))
cpumode = cpumode =
3%1 PAR P
wordtransfer0 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter
((%g&?ode = 15') OR %cpumode = 18'))

wordtransfer0 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)
((%Pumode =17') OR (cpumode = '8'))
RI PAR

152

AT AT AT AT AL S

wordtransferQ (repetition, cpumode, flag, counter) '
cpubusyprod (flag, counter))

TRUE
wordtransfer0 (repetition, cpumode, flag, counter): o
gngrocedure body transfer0.b003 R
answer := 'Y! '
WHILE answer = 'Y! Fy
SE
in ? ch W
. in ? cpumode ’
1? ? repetition
ch = ‘A _
h1n0ﬁ5ftransfero (repetition,cpumode)
c = L)
hbytle:flslice.transfero (repetition,cpuinode) A
C =
hintl.wtlransfero (repetition,cpumode) ¢
c -
Tthf?rd.slice.transfero (repetition, cpumode)

, SKIP ;
in ? answer
——— T T Sk T o e e A K S o T T ok T e o K e K T o ok e e K T o ok ok o ok ok e Tk e R o o ok ok o ok ok ok ok ok ok ok ok ok ke ok ok

--- END OF CODE IN TRANSPUTER 0 BQO3
cmm RARKRKIIRKK TR Tk e e e K Aok ok e e Rk Ak ke ok o e o o o s sk ok ke ok ok e ok ok s ok sk sk ke e e e ok o ok o ok ok ok

P C

¢ A

- w

oL o

ol
t

W)
3

153 :

;

\J

)

'y

"

ARG SR AL AL A AN
R AT Rl N R R 4 ,

‘ . 0 . A S S LA, B
DN DN S T L T T b R e R N T e e N T

-- TRANSPUTER1_B003.TDS

-=- SC PROC transferl.b003 .

=- PROC transferl.b003 (CHAN in,out)

PROC transferl.b003 (CHAN in,out) =

-~ description

- RRRRARKAIKRRARARKAARAKRRAKRAR AR AR AKX IR K ARARAAIRARAAARAAAkAhkAhkhrrkrhhkihk
--- This is the outer procedure glaced on_transputer 1 . It contains |
~--- global variables and constants, and all procedures that run in this
--- transputer. It receives a construct type (ch), cpu mode (cpumode),
=== and number of times each communication sequence (repetition), and
-=- calls accordingly one of the following procedures:

——— - io.transferl,
-——- - byte.slice.transferl,
-— = int.transferl or

- word.slice,transferl
-- Tk ek gk R ke e e e ek A g ke ok e o e ok ok o R e e e e ke ke sk ok o ok ok ke ke o vk ke e e ok ke v ok ok ke ke ok e ok o o ok o ok ok ok ke ke ok

-~ Link Definition
DEF linkOin
DEF linkOout
DEF linklin
DEF linklout
DEF link2in
DEF link2out
DEF link3in
DEF link3out

-~ _constant_declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

_ 1024, 1280, 2048, 4096, 8192, 10000]:
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock.size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size/4:

-=- variable declarations

WO UN1O

VAR ch : === choice of the user in type of construct

VAR answer : --=- choice of the user in continue

VAR cpumode -=- choice of the user in cpu operation concurrently
VAR repetition: === choice of the user in number of times to run

-=- SC PROC cpubusysum (CHAN flagl, counterchan)

-- PROC cpubusysum (CHAN flagl,counterchan)

PROC cpubusysum (CHAN flagl,counterchan)=

-~ description

- Fe ke AR K A ke ook ke e e e e ke ok vk ke ok e sk ok s e ok ok ok Ak ok ok g v ok 3 o ok ok ok ok ke o ke ok ok ok o ok ok o ok ok o ok ok ok ok ok ok ke ke ke ke
=== It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations . It Stops when it receives
--- a flag by the channel flagl from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan

~=-- the number of ogerations done.
- ARAKRKAKKRAKRARKARAKRAKRARKRAKRARARAKRARAKRAAAKAAAKRARAKRAARARARKRAKRAKA AR kAKX

VAR a,b,e,
working,
counter,
ch :

SEQ
counter 0
working := TRUE
TIME ? a
WHILE working

ALT
flagl ? ch
working := FALSE
TIME ? b
SEQ
e :=a+b
counter := counter + 1
counterchan ! counter:

nn

154

LA W A 0 T T T AT L

P

-- descriptor y
~= code

-- SC PROC cpubusyprod (CHAN flagl,counterchan)
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)= W
-- description . o
- AAKARAKRkkkRAkRAAAAKAARARARAAkAAkAAkhkkhkhkhkhkhhkhhkkkhkhkhhhkhkhkhkhkkhkhhkkik

--- It keeps the cpu working in ggra}lel(time sharing) with the link !
-=-=- transfers bK doing arraz multiplications. It stops when receives "
--~ a flag by the channel flagl from the transfer procedure, that is !,
--- being executed concurrently. It outputs by channel counterchan

--= the number of ogerations done.
- AAAAKAKAREAKRAAKARKIAAAAKRKAARARAAAARAARAKAAKAARKARAAKRARAKRAAK KKKk RkxAkXkkAkKAkAX

-- constants and variable declarations
DEF number = 100: ---- size of array

H s
VAR a[number + 1 ---- array of integers 4
b[number + , ===-= array of integers)
e/number + 1], ---- array of integers .
clock, ---- integer -variable to get time .
working, ---- boolean -to stop execution Py
cgunter, ---- integer -number of operations done]

(o :
%
~
SEQ)]
-- initialize buffers and variables 3

SE% i = [1 FOR number]
EQ
a

Yy
{i 1= 3% v,
b[i} := 5*i t
SKIP }
counter := 0
working := TRUE Y
WHILE working .
aLT
flagl ? ch \
working := FALSE)
TIME ? clock <
SE Y
EQ i = {1 FOR number]
e[i] := a[i] * b[i .)
counter := counter + number ---updates nr. of operations Y
counterchan ! counter :
x
»
W
¥
»
Y
4
v
J
Y
155 bt
3
n
wi

’ 1 LT R L PR] LR [T R A G - 'f-f.q'-.-d-v"‘- O
! o, "y N Al o W ,
ittty MDY N DL IS WA M M O o DA R S ML ATy W, LA o AN RV,) \ ' »

~-= PROC inout.transferl (VALUE repetition,cpumode)

PRog 1nogt£§ransfer1 (VALUE repetition,cpumode)=

::- iigik *igﬁ*********************************k*********************
--- Initializes the buffers and executes the procedures iotransfer,
--- plus, when applicable according to cpumode, one of the following:
.- cpubusX.prod or cpubusy.sum,

-- Uses globa constant maxblock.size
-w TR TR K KR KA T R AT TR K K Tk TR T T e e R e KA R KR K TR ok sk ke e e e sk e e vk gk ke ok o o ke e ok ke e R ok ok e Ak ok ok ok

CHAN flag, --- flags the cpu to stop ' ,
counter : --- return the number of operations cpu did

-- PROC iotransferl (VALUE repetition,cpumode,CHAN done,opnumber)
PRog iotransferl (VALUE repetition,cpumcde, CHAN done, cpnumber)=
T R O A A Ak A e s koA A A A A e e e
--- It executes sequentially several parallel transfers using the
-~= input/output primitives to/from transputer root.

--~- It uses the global constants: sizetable, nr.,of,sizes repetition
- A K e T ok e T T K Tk T 5k 7 ok ok R K o ok Tk e e ok ok ok Rk e ok e e ok ok ok ok K ok oK AR K

-- variable declarations
VAR block.size, .
number, --- the number of operations done by the cpu.

ch(4]:
VAR buf%elo [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1

SE
. initialize buffers)
SE%E; = [1 FOR maxblock.size]

%ufferO-BYTE i- i\8
bufferl-BYTE i- i\8
SKIP

SE%E} = [0 FOR nr.of.sizes]

lock.size := sizetablegi]
-- input and output handling
-- input from two channels
SE%Ej = [1 FOR repetition]

Q

out ! ‘a!'
SEQ k = [1 FOR block.size]
in ? buffer0[BYTE k]
SKIP

-= input/outgut to two links
SEQSE‘J = [1 FOR repetition]
Q

out ! ‘'a!')
SEQP l§= [1 FOR block.size]

in ? bufferO{BYTE k&
out ! bufferl(BYTE k]

" e
[}

SKIP

-- input from three channels
SE%qu= [1 FOR repetition]

out ! 'a’

SEQ k = [1 FOR block.size]
SKIP in ? buffer0[BYTE k]

-- input/output to three links
SE%E%)-- [1 FOR repetition]

out ! 'a'

156

FATAE "

PN LSI R Y

X
|‘.
SE 1§= [1 FOR block.size] 5

in ? buffer0[SYIE k] 2

out ! bufferi[BYTE
SKIP -
SE input[frgngour Ebgpne%s ~
= repetition |
%éh (]

out ! 'a' .
SEQ k = [1 FOR block.size]

in ? buffer0[BYTE k] M)
SKIP N
-- output to four channels
SE = [1 FOR repetition] M

%Eb <)
out ! 'a' X
SEQ k = [1 FOR block.size] -
out ! buffer0[BYTE k] '
SKIP Q

-=- all output and input in parallel
SE% = [1 FOR repetition] .
éb ‘
out ! ‘'a! 'Y
SEQP k = [1 FOR block.size] 4
AR M
in ? bufferO{BYTE ki ™
out ! bufferl[BYTE k] t

SKIP

?gIP .
-=- cpumode NOT = '0' then get the number of computations done. ;
cpumode <> '0' ;

SEQ ~
done ! 'a! S
opnumber ? number O
TRUE
SKIP .
-- main PROC inout.transferl R
4
((iggyode = '1') OR (cpumode = '2')) 3
iotransferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter) N
((ipumode = 13') OR ?cpumode = 14'))

RI PAR . N
iotransferl érepetltlon, cpumode, flag, counter) N
cpubusysum (flag, counter) R

((%E&?ode = 15') OR {cpumode = '6')) ?
iotransferl §repetition, cpumode, flag, counter) [
cpubusyprod (flag, counter? '

((%Pumode = '7') OR (cpumode = "8'))

RI PAR o i
iotransferl Srepetltlon, cpumode, flag, counter) \

TRUE cpubusyprod (flag, counter v

iotransferl (repetition, cpumode, flag, counter):
n
-
‘L
'
A
157 N
N

P S 2 . S I TR T ST R PR S
A "] | 4 W AP - v..-\!. -.!-.’-..- .’— -_.l‘v.,-: .’-I"ﬁ" . L S N e e e
".’—’,':‘..-‘.: KA ..'0..‘ YA GT T A G, ~ K ¥ o) i) Wy oy 4 % 3 o Ko Kas

=~ PROC byte.slice.transferl (VALUE repetition,cpumode)
PROC byte.slice.transferl (VALUE repetition,cpumode)=

descri

tion
—— *****E**

--- Initializes the buffers and executes the procedures transfer,
-~- plus, when applicable according to cpumode, one of the following:

- cpubusg.prod or cpubusy.sum,

Uses global constant maxblock.size

o RAAARRAARAKKAARAKRARAKRKRARRAAKRARARAAKRARAARKRAARKARAARA AR KA AR K AR KA KA

CHAN flag, --- flags the cpu to stop .)
counter : --- refurn the number of operations cpu did

== PROC transferl(VALUE reggtition, cpumode, CHAN done, opnumber)
PROS transferl (VALUE repetition,cpumode,CHAN done, opn er)=

::- sigEigiigg***
--- It executes sequentially several parallel transfers using the
--=- BYTE.SLICE procedures to/from transputer root. .

--- It uses the global constants: sizetable, nr.of.sizes,

-~~ repetition
- RACR KR K K R T T T e S T e Tk T e T T e oA 2 ke e ok vk e e e ok oK ok ok ke ok ke ok R ok ok ok oA Tk v e ok ok ok vk ok e o ok ok ok ok ok

-- variable declarations
VAR block.size, ,
number, --- the number of operations done by the cpu.

ch[4]:
VAR buf%elo BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1

SE
g- initialize buffers)
SE%EI = [1 FOR maxblock.size]

ufferQ-BYTE i- i\8
bufferl-BYTE i- i\8
SKIP

SE%E} = [0 FOR nr.of.sizes]

lock.size := sizetableéi]
-- input and output handling
~- input from two channels
SE%EJ = [1 FOR repetition]

Q

out ! ‘a')
SKIP BYTE.SLICE.INPUT(in,buffern,l ,block.size)

-- ipput/outgut to two channels
SEQSEJQ= {1 FOR repetition]

S R
BYTE.SLICE.INPUT(in,buffer0,1,block.size)
SKIP BYTE.SLICE.OUTPUT (out ,bufferl,1,block.size)

~- input from three channels
SE%EJQ= [1 FOR repetition]

out ! 'a!

SKIP BYTE.SLICE.INPUT(in,buffer0,l,block.size)

-- input/outgut to three channels
SE%EJQ= [1 FOR repetition]

out ! 'a!

BYTE.SLICE.INPUT (in,buffer0,1,block.size)

158

e s atagl it ab Tk ¥ et a iala gl 9 Sad et ap R x aap $,0 o0 1,8 008 ¢

SKIP BYTE.SLICE.QUTPUT (out,bufferl,l,block.size)

== input from four channels
SE%E%)-- {1 FOR repetition]

out ! 'a!'

SKIP BYTE,.SLICE.INPUT(in,buffer0,1,block.size)

-- output to four channels
SE% jQ= [1 FOR repetition]
E

out ! 'a!

SKI BYTE.SLICE.OUTPUT (out,buffer0,l,block.size)
P

-- all output and input in parallel
SEQSEJ = [1 FOR repetition]

e
BYTE.SLICE.INPUT(in,buffer0,1,block.size)
BYTE.SLICE.OUTPUT (out,bufferl,l,block.size)

SKIP

SKIP
IF

-~ cpumode not = '0' then get the number of computations done.
cpgﬂ?de <> '0!

done ! ‘a!
opnumber ? number

TRUE
SKIP

;- main byte.slice.transferl
((%Pumode = '1') OR (cpumode = '2'))
AR

transferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
((?)urr.ade = 13') OR %cpumode = 14'))
RI PAR

transferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
((%uamode = 15') OR 3cpumode =16'))

transferl (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)
((%Pumode =17') OR (cpumode = '8'))
RI PAR
transferl &repetition, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)

transferl (repetition, cpumode, flag, counter):

159

4

-
-

o

-
-
2

RS o T e T p

o o

BN)
. - Cag - .- @ NS Y LA A
» AL - n ¥ 3 0 WOV e L R R '.\‘ n A Jee! "f f' AL AP AL, o o
O A e A e A S I I D L At WY ' L . P

AN

(AW,
W i““""‘l‘ﬂ “t l‘"l'a ()

g

hJ

oY

" TR bat 0 YOG Ag ag .8 V1Y D (M
‘.. T N I I Y YU IN VY U U LN DO

-- PROC int.transferl (VALUE repetition,cpumode)

PROC int.transferl (VALUE repetition,cpumode)=

-- description

mme Rt kT g ok ok o e ek ek ek ok e ok sk e ke ok ko ok ok ok ok sk ok ok e e sk ok ok ok o ok ok ok ok o ok ok ok ok ok
--- Initializes the buffers and executes the procedures intransfer,
--- plus, when applicable according to cpumode, one of the following:
--- cpubus{.prod or cpubusy.sum.

-- Uses global constant maxblock.size

mmm RRRK AR AR KR K Fok ok e KRk A K 7KK KRR KA e gk ok ok ok ok ek o ke kA gk ok e ok ok e ok e ok ok

CHAN flaq, --- fla%s the cpu to stop
counter : --- return the number of operations cpu did

-- PROC intransferl (VALUE repetition, cpumode, CHAN done,

PROC intransferl (VALUE repetition,cpumode,CHAN done, opnumﬁéfg=
-- descrlgtlon

mma RARKRRAKR KRR A K A K K e ek ok e Rk ke sk ok o ok R o ok ook ok ok R ok ok ok Rk ok ok ok e
--- It executes sequentially several parallel transfers of integers
-~- using the input/output primitives to/from transputer root.

--- It uses the global constants: sizetable, nr.of.sizes,
--- regetltlon
e FERREF IR KRR KRR AR KAk A ok ek ek s ek e ok ok ke Ak ok ok ok o e ek ek

-- variable declarations
VAR block.size,

nﬁmzfr, -=-- the number of operations done by the cpu.
(o H

VAR wbuffer0 [maxwordblock.size + 1]:
VAR wbufferl [maxwordblock.size + 1]:

SE
%_ initialize buffers
SE% i = [1 FOR maxwordblock.size]

E
%buffero[i] = i
wbufferl[i] := i

KIP

SE%E; = [0 FOR nr.of.sizes]

sizetable[i] < 4

TR&?IP ---minimum number of bytes is 4 for integer transfer

SE
%loqk.size 1= sizetableéi]
-- input and output handling
-- input from two channels
SE%Ej = [1 FOR repetition]
Q

{t 1q!

out !

SEQ k = [1 FOR (block.size/4)]
in ? wbufferO[k]

SKIP

-= input/outgut to two links
SEQSEJ = [1 FOR repetition]
%ut ! 'a!
SE% k = [1 FOR (block.size/4)]
AR
in ? wbuffero{ki
(k]

out ! wbuffer
SKIP

-- input from three channels
SEQ j = [1 FOR repetition]
5EQ

! Ial

0
SEQ k = [1 FOR (block.size/4)
%n ? W uffero&k]]

160

L - P LN R O T T T T TR St i
O i T R I A e N 2 N T A A AT AR AN A G A L TN R C AR ORI TG R AT
{ . 4) ' . " B B J

N) Dty v P th L bl - *

L5 0

- -
bt

By P

. = =

-

S LN
-

LA L

-

:

PR R Lg 17 A%y eTa $%a A'a §%2 £€ga¥aT 04, oY

SKIP

-= 1nput/output to three 1

E%Ej FOR repetitien]
out ! 'a!

inks

SE%>k = [1 FOR (block.size/4)]
AR

in ? wbufferO{ki
out ! wbufferl[k]
SKIP

-- 1nput from four channels

SE% j [1 FOR repetition]
out ! 'a!

SEQ k = [1 FOR &aﬁock.size/4)]

in ? wbuffer0
SKIP

-= output to four channels
SE QEJ [1 FOR repetition]

Out ! la!

SEQ k = [1 FOR (block.size/4)]

out ! wbufferO[k]

SKIP
-- all output and input in parallel
S % j = FOR repetition]

out ! ta!

SE%}k = [1 FOR (block.size/4)]
AR

in ? wbufferO{ki
out ! wbufferli[k]

SKIP
~= cpumode not = '0' then get the number of computations done.
cpumode < 'o
done ! 'a'
opnumber ? number
TRUE
SKIP

-- main PROC int.transferl
((%Pumode = '1') OR (cpumode = '2'))
AR

1ntransfer1 repetltlon cpumode,
cpubus sum counter)
((%Pumo e = '3) OR %cpumode = '4'))
1ntransfer1 repetltlon cpumode,
cpubusysum counter)
((ci;pumode = 15!) OR %cpumode = '6'))

intransferl grepetltlon cpumode,
cpubusyprod (flag, counter
((%Pumode = 17') OR (cpumode = '8'))

intransferl Srepetltlon cpumode,
TRUE cpubusyprod (flag, counter

flag,

flag,

flag,

flag,

counter)

counter)

counter)

counter)

intransferl (repetition, cpumode, flag, counter):

l61

- \ ‘ ,t A N R L R
S G e bt), lq‘la‘t"{n‘to‘\.‘o 4N tﬁ.fl o'l.o 1" N NN M N .0‘%!) Xy N)

- o Wt

LA DOOUN M
NN R

'\\.‘

e,

.
LA

A

Y- §

Py, T

.
-
e

Saeae)

«“'

AT O O

-=- PROC word.slice.transferl (VALUE repetition,cpumode)
PROC word.slice.transferl (VALUE repetition,cpumode)=
-- descrlgtlon

-—a FKFF T TR K T K T R T T sk T s e o e sk e g e e e T ke ok ok sk ok e ok e o ok ok ke A ke o ok ok ok ke ok ke o e ok ok ok ok ok ok o ok ke ok

--- Initializes the buffers and executes the procedures wordtransfer,
--- plus, when applicable according to cpumode, one of the following:
--- cpubusy.prod or cpubusy.sum.

-- Uses global constant maxblock.siz

SlzZe
maa RRARARRAKAKRKARARKAKRKRAKKARARAKRAR AR A AIRKARAAAARRA KA RAkhkArkhkkkkhkik

CHAN flag, --- flags the cpu to stop ,)
counter : --- return the number of operations cpu did

== PROC wordtransferl (VALUE repetition, cpumode, CHAN done, ...g
PROS wordtransferl (VALUE repetition,cpumode,CHAN done, opnumber)=
-=- des t
L R REAR R R S R stk ek e e o e kA ko
--- It executes sequentially several parallel transfers of integers
-=- using the WORD SLICE procedure to/from_ transputer root.
--- It uigs_the global constants: sizetable, nr.of.sizes,
--=- repetitio

FORR S e s ok ke e e e

-- variable declarations
VAR block.size,
ngmgfr, -== the number of operations done by the cpu.
C H
VAR wbuffer0 [maxwordblock.size + l}:
VAR wbufferl | maxwordblock.size + 1]:
SEQ |
=- initialize buffers
SE%EI = [1 FOR maxwordblock.size]

%buffero[i
wbufferl{i
SKIP

SE%F; = [0 FOR nr.of.sizes]

sizetable[i] < 4 .
TR&;IP--- minimum number of bytes is 4 for integer transfer

SE
%logk.size := sizetable(i]
-- input and output handling
-- input from two channels
SE%Eb = [1 FOR repetition]

i
i

out ! 'a!
SKIP WORD.SLICE.INPUT(in,wbuffer0,1,(block.size/4))

-- input/output to two links
SE%EJ = [1 FOR repetition]
Q

PAR
WORD.SLICE.INPUT(in,wbuffer0,l,(block.size/4))
SKIP WORD.SLICE.OUTPUT (out,wbufferl,l, (block.size/4))

-- input from three channels
SE%EJQ= [1 FOR repetition]

out ! 'a'
SKkIP WORD.SLICE.INPUT(in,wbuffer0,1l,(block.size/4))

-- input/output to three links
SEQ j = [1 FOR repetition]

162

DL SR St LAY

a . N I T U U R P UM PU UV P U LU PV oy

SE
But 1 val
PAR _
WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))
SKIP WORD.SLICE.QUTPUT (out,wbufferl,l, (block.size/4))
-- inpput from four channels
SEQsEJ = [1 FOR repetition]
Q

out ! 'a‘

SKIP WORD.SLICE.INPUT(in,wbuffer0,1l,(block.size/4))

-=- output to four channels

SEQSE]‘ = [1 FOR repetition]
Q

out ! 'a!

SKIP WORD.SLICE.OUTPUT (out,wbuffer0,1, (block.size/4))

-- all output and input in parallel
SE%EJQ= {1 FOR repetition]

o
WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))
WORD.SLICE.QUTPUT (out,wbufferl, 1, (block.size/4))

SKIP
?KIP
F
-- cpumode not = '0' then get the number of computations done.
cpumode <> '0'
SEQ
done ! 'a'
opnumber ? number
TRUE
SKIP

-=- main PROC word.slice.transferl
((cpumode = '1') OR (cpumode = '2!
P%R (ep))

wordtransferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter
((%Pumode = 13') OR %cpumode = '4'))
RI PAR

wordtransferl (repetition, cpumode, flag, counter)
cpubusysum (flag, counter$
((§§&?°de = '5') OR %cpumode = 16'))

wordtransferl (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)
((%Pumode ="17') OR (cpumode = '8'))
RI PAR
wordtransferl (repetition, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)
wordtransferl (repetition, cpumode, flag, counter):

géqprocedure body transferl.b003

answer := 'Y!
WHILE answer = 'Y!
SEQ
in ? ch

in ? cpumode
in ? repetition
IF

ch = 'a’

163

- g w g W W [I T VLV I g, Y » A TS NS N Tl e ""'q‘l\'I‘b"!I'\""*
A A L TN Y U N ,(';_a‘u‘._ N S0 %) U T e ‘V‘ oy PR 4‘

SuRah .l.o.nn- Cl i e g (Nl

™ ‘VJ.'! T pTW R

*-71 LR Y
LS

XS

N '}‘t"

2N N T I N 4
»

]

N y O R N A o e m
“"t.t'l...c‘.‘t‘-‘l'?'h‘q‘t‘-"‘c'l‘q R B e T

i a4) PPN I LN VYU LS L TR TR OO DT UIRT I UN I N tap Vol egd Sgb b
R I T PO YU YA S WU 2 bt 8 A

hino&;rtransferl (repetition, cpumode)
c -

bth.§lice.transferl (repetition, cpumode)

hintaffansferl (repetition, cpumode)
c =
word.slice.transferl (repetition,cpumode)
TRUE

SKIP
in ? answer :

ch

ame AARKAARAKRKAARARKAKRARRARKAAARAAKRRAAKRAAARAAKRARARARRARKRAAAAARARAAARARKKR

--- END OF CODE IN TRANSPUTER 1 BOO3
e KA FRARKARRRKA K ok 7Rk K ok KA A AR AR Ak Ak e ko ok ok AR Rk ok ke ok ek ok e ok ok ok ke

164

\ T ket R At R AT SN W
”“f\“”\ﬁ5§ﬁ&“},ﬁa Aty

o

2l Yab 7o tab

(N

e

R AARNRINE == I

F_e_ 2 1 8 & F

PP

-- TRANSPUTERZ2_BOO03.TDS

-« SC PROC transfer2.b003]

-=- PROC transferz.b003 (CHAN in,out)

PROC transfer2.b003 (CHAN in,out) =

-- description

cme RARKIRRKRKAAKRKKKAARARRKIRARRAAIAK KA KKK KRR R R AT A A K A A Ak K ok ok ok ok
--- This is the outer procedure placed on_transputer 2 . It contains
--- global variables and constants, and all procedures that run in this
--- transputer. It receives a construct type (ch), cpu mode (cpumode),
-=-- and_number of times each communication sequence (repetition), and
--- calls accordingly one of the following procedures:

. --- - jio.transferz,
--- - byte.slice.transfer2,
--- - int.transfer2 or

- word.slice.transfer2
mme KRR AR AR Kk ke R sk e vk ok e e ek ok ok e ek vk e ok ok ok ke sk ok ok sk ke ok ke ok sl ok ok ke gk ok ok ok ok ok ok ok ok o

-- Link Definitions
DEF linkOin = 4 :
DEF linkOout
DEF linklin
DEF linklout
DEF link2in
DEF linkZout
DEF link3in
DEF link3out

-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

_ 1024, 1280, 2048, 4096, 8192, 10000]:
DEF nr.of.sizes = 16: --- as counted from above table
DEF maxblock,size = 10000: --- last from the above table
DEF maxwordblock.size = maxblock.size/4:

-- variable declarations

VAR ch : === choice of the user in type of construct

VAR answer : === choice of the user in continue

VAR cpumode : --- choice of the user in cpu operation concurrently
VAR repetition: --- choice of the user in number of times to run

- -- SC PROC cpubusysum (CHAN flagl, counterchan)
-- PROC cpubusysum (CHAN flagl,counterchan)
PROC cpubusysum (CHAN flagl,counterchan)=
-- descrlgtlon
cme KKAKRRAKRARATIK KK F KA KA K o K AR Aok o e ok ok ok ok ok ok ok ok ok e ke ok ok ok ok ok ok
--- It keeps the cpu working in ggrallel (time sharing) with link
--- transfers by doing sum Operations . It Stops when it receives
--- a flag by the channel flagl from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan

-=-= the number of ogerations done.
-—— % e K kK ke ok gk gk sk gk ok ok 3K ok ok ok ok v v ok sk A gk vk ok ok ok Ak ok T s e ok ok oA ok gk vk o ok ke ok e ok vk v ok ok i ok vk ok ok ok ok Ak ok ek

H

WNANOHUOO BN

VAR a,b,e,
working,
counter,
ch :

SEQ
counter 0
working := TRUE
TIME ?7a
WHILE working

ALT

fleql ? ch
>rking := FALSE
TIME ? b
SEQ
e :=a+b
counter := counter + 1
counterchan ! counter:

165

A s o AR vl p-n«'vu'p*‘r‘"tt!l‘i't'\
R R . v ptb ; . ! :

¢
-=- descriptor Y
== code

-- SC PROC cpubusyprod (CHAN flagl,counterchan)
-- PROC cpubusyprod (CHAN flagl,counterchan)
PROC cpubusyprod (CHAN flagl,counterchan)=

-- deicrl tion

R o K e A ok e ke ok T ok ok ok e ok ok 7k g ok ok R ke e ok ok o ok ke ok ok ok o ok ok ok ok ok ok e ok ok ke ok e e e sk ok ok ke ke ok ok ko ke ki ki kok ok

]
¢
(]
L
--- It keeps the cpu working in ggrallel(time sharing) with the link N
-=- transfers bK doing arr%{ multiplications. It stops when receives ¢

e a ¢

--- a flag by the channel 1 from the transfer procedure, that is

--- being executed concurrent?y. It outputs by channel counterchan

=== the number of ogerations done.
- ARKARKKARAKAKKKKAKAKRKRAARRKAKRAKRARKARRAAKRRAAKRARAKRAAARAAKRAARAAAAKRAKRAKRAKRAXK

-- constants and variable declarations

counter := 0
working := TRUE

WHILE working
ALT

\
DEF number = 100: =---- size of array \
VAR a[number + 1 ---- array of integers o
b[number + I, ---- array of integers v
e(number + 1], =---- array of integers .
clock, ---~ integer -variable to get time
working, ---=- boolean -to stop execution '
cgunter, ---- integer -number of operations done '
(o :
$
SEQ , , . "
-- initialize buffers and variables .
SEQ i = [1 FOR number]
EQ | . 3
afi] := 3*1 S
b[i] := 5*i {
SKIP "
[

flagl ? ch ¥

working := FALSE N g

TIME ? clock x

SE% ¥

EQ i = [1 FOR number] "

e[i] := a[i] * b[i] , X

counter := counter + number ---updates nr. of operations 4
counterchan ! counter:

-- PROC inout.transfer2 (VALUE repetition,cpumode)

PROS inout.transfer2 (VALUE repetition,cpumode)=

I 444 Eigg***
--- Initializes the buffers and executes the procedures iotransfer,

--- plus, when applicable according to cpumode, one of the following:
) --- cpubusy.prod or cpubusy.sum,

-- Uses global constant maxblock.size
mem KARKARAKARAKRRKRKRRKAKKKRARK KKK ARKRARAKK KKK Kk &K I KKKk hrhkhkhrhrkhkkrkrkk

CHAN flag, --- flags the cpu to stop . .
. counter : --- return the number of operations cpu did
- -- PROC iotransfer2 (VALUE repetition, cpumode, CHAN done, counter)
PROC iotransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=
~-- variable declarations
VAR block.size,)
number, =--- the number of cperations done by the cpu.

ch4}:
VAR buf%eio [BYTE maxblock.size + 1]:
VAR bufferl [BYTE maxblock.size + 1]:

SE
2. initialize buffers
SE%El = [1 FOR maxblock.size]

ufferQ-BYTE i~ i\8
bufferl-BYTE i- i\8

SKIP
SEQ i = [0 FOR nr.of.sizes
QsE []

block.size := sizetableéi]
-~ input and output handling
. =~ input from three channels
SE%E] = [1 FOR repetition]
Q

out ! 'a! .
SEQ k = [1 FOR block.size]
SKIP in ? buffer0[BYTE K]

-- output to three channels
SE%EJQ= [1 FOR repetition]

out ! 'a'
SEQ k = (1 FOR block.size]

in ? bufferO{BYTE kl
out ! bufferl[BYTE k]
SKIP

-- input from four channels
SEQSEj = [1 FOR repetition]
Q

out ! 'a! .
SEQ k = [1 FOR block.size]
SKIP in ? buffer0[BYTE k]

== output to four channels
SEQSEJ = [1 FOR repetition]
Q

out ! 'a!)
SEQ k = g} FOR block.size]

out ! buffer0{BYTE k]
SKIP

-- all output and input in parallel
SE%E% = [1 FOR repetition]

167

- “ At e " T T IS L
" - » n u >

QO OO e (oGt T e Oy O Carls Ao Khols B ARAEILALY iy

- . - 1y
LA I T 9 S A LU A

TR ~ N s 549 ¥
o S TN L ARE

LR G

. IR IO N T WU Y R EREY SN AFOUAN WARAA N NN VTV RUT-ARN
.. i o v AN 2 . E3 .

out ! ‘'a! .
SE% k = [1 FOR block.size]

R
in ? bufferO{BYTE k

out ! bufferl[BYTE k]
SKIP -
-- cpumode NOT = 'Q0' then get the number of computations done.
cpumode <> 'Q'
SEQ
done ! 'a'
opnumber ? number
TRUE
SKIP

-- main inout.transfer2
((gpumode = '1%') OR (cpumode = '2'))
AR

1otransfer2 repetltlon cpumode, flag, counter)
cpubusysum counter)

((%Pumode = '3') OR ?cpumode = 1'4'))

1otransfer2 repetltlon cpumode, flag, counter)
cpubusysum counter)

((%Pumode = 15!) OR cpumode = '6'))

1otransfer2 ?repetltlon cpumode, flag, counter)
cpubusyprod (flag, counterg
((%Pumode = 17') OR (cpumode = '8'))

iotransfer2 2repet1tlon, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter?

iotransfer2 (repetition, cpumode, flag, counter):

168

”"-.—w"’ll‘

. .y NP I AT PG 080 A
0 o W%] LN LR) - - A " - 2 n P o . o N
TR N W0 "‘.'A‘.“.gll 0'5‘}.".0“" ‘l’ .’ "n!“l"‘a.!“ﬂ!\‘. '?'\G"!‘?‘I‘!""‘Q‘- .50 ,\h * 8% e 8 ’ ’

3

mmm

-= PROC byte.slice.transfer2 (VALUE repetition,cpumode)

Pnog bytg.illce.transferz (VALUE repetition,cpumode)=

——— giggig*igﬁ***
--- Initializes the buffers and executes the procedures iotransfer,
--- plus, when applicable according to cpumode, one of the following:
.- cpubusx.prod or cpubusy.sum.

. -- Uses global constant maxblock.size
ama REARKRKAKAKKFKK A AR ARRRAR AR KA KR IR KA K Aok ok ok ok e ek ok s o ok e e e ke e e sk o o o ok ok ok
CHAN flag, --- flags the cpu to stop) i
- counter : --- refturn the number of operations cpu did

-- PROC transfer2 (VALUE repetition, cpumode, CHAN done, counter)
PROC transfer2 (VALUE repetition,cpumode,CHAN done, opnumber)s=

-- variable declarations

VAR block.size, .
ngmzfr, === the number of operations done by the cpu.
C :

VAR buffer0 [BYTE maxblock.size + 1]}:

VAR bufferl [BYTE maxblock.size + 1]:

SE
%- initialize buffers
SEQSEL = [1 FOR maxblock.size]

%ufferO-BYTE i- := 1\8
bufferl-BYTE i~ := 1i\8
SKIP

SEQSEi = [0 FOR nr.of.sizes]
lock.size := sizetable(i]

== input from three channels
) SEQSEJ = [1 FOR repetition]
Q

out ! ‘a!))
SKIP BYTE.SLICE.INPUT(in,buffer0,i,block.size)

-- input/output to three channels

SE% 3 [1 FOR repetition]
EQ

out ! 'at

PAR

BYTE.SLICE.INPUT(in,buffer0,l,block.size)
SKIP BYTE.SLICE.OUTPUT(out,bufferl,l,block.size)

-= input from four channels
SEQSEJ = [1 FOR repetition]
Q

out ! 'a! , ,
SKIP BYTE.SLICE.INPUT(in,buffer0,1,block.size)

-= output to four channels

SE% j = [1 FOR repetition]
EQt
u

lal

0
SKIP BYTE.SLICE.OUTPUT (out,buffer0,1,block.size)

== all output and input in parallel
. SEQSEJQ = [1 FOR repetition]

out ! 'a!

PAR
BYTE.SLICE.INPUT in,buffero,l,block.sizg)
SKIP BYTE.SLICE.OUTPUT (out,bufferl,l,block.size)

169

e .

. Py L) [“y Wy Ca SRR "v
{\..ﬂ"l"‘l‘.,'s’.ll.g A * o8, AN l..‘.l.l-,. y Pt A AN P g “an

T R e
- sty .

€
S

¢ v, TS T I Ny
W, A Jo‘t‘o. ‘- » ~ Tl

A MRS "L L

-- cpumode NOT = 'Q' then get the number of computations done.
cpumode <> 'O
SEQ
done ! 'a!'
opnumber ? number

TRUE
SKIP

== main byte.slice.transfer2
((%Pumode = '1') OR (cpumode = '2'))

transfer2 (regetltlon cpumode, flag, counter)
cpubusysum (f counter)
((%Pumode = 3') OR cpumode = '4'))

transfer2 (repetition, cpumode flag, counter)
cpubusysum (f ag, counter)
((cp%?ode = 15") ?cpumode = 16')) ‘

transfer2 érepetltlon cpumode, flag, counter)
cpubusyp (flag, counter)
((%Pumode = '7) OR (cpumode = '8'))
RI PAR
transfer2 érepetltlon, cpumode, flag, counter)
cpubusyprod (flag, counter)

TRUE
transfer2 (repetition, cpumode, flag, counter): b

- - A]

R I J“-'f'n KR NEAFAC AN

> A R ATl M SATIN S g S £ ARA A e

LS LA s"-ﬁ;ﬂi ATALNTAC AT A b A A LR U R

-- PROC int.transfer2 (VALUE repetition,cpumode)
PRog int.transfer2 (VALUE repetition,cpumode)=
.- iigiigﬁiggk**

--- Initializes the buffers and executes the procedures intransfer,
--- plus, when applicable according to cpumode, one of the following:
--- cpubusX.prod or cpubusy.sum,

~-- Uses global constant maxblock.size
mmm KRR R KK AT A KR ek e ok ok ok ok ok e ok ok 7 ok ok ok ok ok 7k ok e e e sk ok e e gk ok ok ok ok ke sk ke ok 7k ok gk ok o g ok ok

CHAN flag, --- flags the cpu to stop , ,
counter : --- return the number of operations cpu did

-= PROC intransfer2 (VALUE repetition, cpumode, CHAN done,...)

PROC intransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

-= description,io

oma KRKAXRRAKKKIKAKAKKFAKKIFIIRKIAKKAKRAAFRRKK KK KRR AR I KA KK R AK R KK

=== It executes sequentially several parallel transfers of integers

--- using the input/output grlmltlves to/from transputer root.

--- It uses the global constants: sizetable, nr.of.sizes,

--- repetition
SRR R R RS ek ke ke ke ek ek ke ok ke ek ke

-~ variable declarations
VAR block.size,

number, =--- the number of operations done by the cpu.

chi4]:
VAR wbufferQ [maxwordblock.size + 1}:
VAR wbufferl [maxwordblock.size + 1}:

SE
%- initialize buffers
SE% i = [1 FOR maxwordblock.size]

E
%bufferO[iJ
» wbufferl}i

1
i

SE%F; = [0 FOR nr.of.sizes]
siéftable[i] < 4

TRUE

-- input and output han
== input from three channels
SEQSEJ = [1 FOR repetition]

Q

out ! 'a‘

SEQ k = [1 FOR (block.size/4)]
in ? wbufferO[k]

SE
%lock.size = sizetableéi]
ing

SKIP
-- input/outgut to three links
SE% j = [1 FOR repetition]
EQ
out ! ‘'a!'

SE%)k = [1 FOR (block.size/4)]
AR

in ? wbufferO{ki
out ! wbufferli[k]
SKIP

== input from four channels
SEQSE]Q = [1 FOR repetition]

ggt i |al1 R (block /4)]
= FO ock.size
%n ? W uffero&k]

171

A A AT N W o

- - »1‘0 I‘ -

e MY » &

KIP ---minimum number of bytes is 4 for integer transfer

W

T

-,.._.-._" CAX: 32N %

.I

"R FL| AT EE LS

Ay

A

» AP P IS T N
o, W,

1'"1" ’

SKIP

-- output to four channels
SE%EJ [1 FOR repetition]

-- all output and input in parallel
SE% j = [1 FOR repetition]

out ! tal)
SE% k = [1 FOR (block.size/4)]
AR

in ? wbufferO{ki
out ! wbufferl[k)
SKIP

SKIP
IF

-~ cpumode NOT = '0' then get the number of computations done.

cpumode <> '0!'
SEQ
done ! 'a!'
opnumber ? number
TRUE
SKIP

-- main int.transfer2
((cpumode = '1') OR (cpumode = '2'
pur p))

1ntransfer2 repetltlon, cpumode flag, counter)
cpubusysum counter)

((%Pumode = '3') OR %cpumode = '4'))

1ntransfer2 repetltlon cpumode flag, counter)
cpubusysum counter)

((cppumode = '5') OR ?cpumode = '6'))

intransfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flaq, counter?
((%pumode = 1'7') OR (cpumode = '8'))

intransfer2 ?repetltlon, umode, “lag, counter)
TRUE cpubusyprod (flag, counterg

intransfer2 (repetition, cpumode, flag, counter):

172

. ; - . - P it W L) -\-' 3 VAT R R,
..;‘ ‘0“&‘.\‘ I'.Q‘.\‘l’g 3 ..‘_) ,Ig, (LR .' N A S l")

290

F -5

4

Ay

oW
KIS

N J
o

£

o,
'li'::"

3 FFUPER T W AN)

\
{

’

J

0.'

== PROC word,slice.transfer2 (VALUE repetition,cpumode) %

PROS word.illce.transferz (VALUE repetition,cpumode)= 4

L ORRTRRRERR R ek ek ke ke ke s:

--- Initializes the buffers and executes the procedures wordtransfer, .

--- plus, when applicable according to cpumode, one of the following: .

--- cpubusy.prod or cpubusy.sum, ¢

- -- Uses global constant maxblock.size A
mme RRRIIRRK AR KRR AR KKK KRR K R KK KKK R A T ok ke ok e o ok ok e ok ok ok ok o e \

l'

CHAN flag, --- flags the cpu to stop ' ’ ;

counter : --- return the number of operations cpu did Y

-- PROC wordtransfer2 (VALUE repetition, cpumode, CHAN done, ...;
PROC wordtransfer2 (VALUE repetition,cpumode,CHAN done, opnumber)=

-- variable declarations 4
VAR block.size,

ngmgﬁr, -=-- the number of operations done by the cpu. f;

c : ,

VAR wbuffer0 [maxwordblock.size + 1}: @

VAR wbufferl | maxwordblock.size + 1]: p

M)

SEQ g
-=- initialize buffers

SE% i = [1 FOR maxwordblock.size]

EQ
wbuffero[i
wbufferl|i

SKIP

SE%Fi = [0 FOR nr.of.sizes]

i W,
i °

sizetable[i] < 4

IR
TRS?IP ---minimum number of bytes is 4 for integer transfer {
SE N
%logk.size 1= sizetableéi] hd
-=- input and output handling =
-- input from three channels -
SE% = [1 FOR repetition] h
EJQ h
out ! 'a' oy
SKIP WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4)) q
d
== input/outgut to three links
SEQSEJ'Q= [1 FOR repetition]
out ! 'a’ 3,
Pa .) S‘
WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))
SKIP WORD.SLICE.OUTPUT (out,wbufferl,l, (block.size/4)) oS
== input from four channels .
SE%Ej = [1 FOR repetition] =3
Q *]
out ! 'a! <
SKIP WORD.SLICE.INPUT(in,wbuffer0,1l,(block.size/4)) f-
== output to four channels]
SE% j = {1 FOR repetition] ;
EQout! ‘a' A
SKIP WORD.SLICE.OUTPUT(out,wbuffer0,1l, (block.size/4)) iy
Y
-- all output and input in parallel Y
SE%EJQ= [1 FOR repetition] b
"‘
173 N
\
;;
UGN A S N NN S, T N G N GNEN le R4 N LN TN IS T TN AL R VOIS (RN

wav‘u‘ﬂ-wu

ox; ! ra!
P

WORD.SLICE.INPUT(in,wbuffer0,l, (block.size/4))
SKIP WORD.SLICE.OUTPUT (out,wbufferl,l, (block.size/4))

-- cpumode NOT = '0' then get the number of computations done.
cpumode <> '0'
SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main word.slice.transfer2
({cpumode = '1') OR (cpumode = '2'))
PAR

wordtransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flaq, counterS
((cpumode = '3') OR %cpumode = 1'4'))
ERI PAR ,
wordtransfer2 (repetition, cpumode, flag, counter)
cpubusysum (flagqg, counter$
((35&?°de = '5') OR %cpumode = 16'))
wordtransfer2 (repetition, cpumode, flag, counter)
cpubusyprod (flag, counter)
((%Pumode = '7') OR (cpumode = '8'))
RI PAR ,
wordtransfer2 (repetition, cpumode, flag, counter)
TRUE cpubusyprod (flag, counter)
wordtransfer2 (repetition, cpumode, flag, counter):

;EQprocedure body transfer2.b003

answer := 'Y!
WHILE answer = 'Y
SEQ
in ? ch

in ? cpumode

in ? repetition

IF
ch = 'A! L
hlnoggrtransferz (repetition, cpumode)
[of =
hbytsfﬁlice.transferz (repetition, cpumode)
c -

hint‘.wtlransferz (repetition,cpumode)

(o} -

word.slice,transfer2 (repetition,cpumode)
TRUE

SKIP
in ? answer

- F e sk e ook s sk e v e e e ke sl sk sk e ok ke ok e e ok ok sk ok ok gk ok A ok ke ok e ok ke sk ke ok Ak ke ok ok e ek ok ko ek A ok ek ko kok ok

-~-=- END OF CODE IN TRANSPUTER 2
mma ok Rk kR K A Aok ke ok ok ok ok ek R e e ek e ek e e gk ok ok ok gk sk e R ok ek ok e ke ok ke k ok

~

&

174 §§

%

2

~

o

\-‘

- i, . N .y " - T e R ¥ P ™ VAT ,.*.
Y LWL R W) L%] LI 0 Y 50 * _0. R T A A S N . Gl Al
BOSUOUR IO AKX A KRN Bt B to“ t“‘n’ﬁ P ot 0 X A e gt L TARET S N il

s N e G g egvan bt 0y dg (g 2tk 3 e d att.a VA1 a8 g% 278 a5 a¥h " g " i a'h gt o A2t ‘4 a'h 2'h A 3.atd '

¢

o

X

]

-- TRANSPUTER3_B003.TDS "
== SC PROC transfer3.b003 (
-- PROC transfer3.b003 (CHAN in,out) ot

PROC transfer3.b003 (CHAN in,out) =

-~ description

caw KARAAKRAKAAKRAAARKKRAKAARKAAKRAAKRARAAARARAARKAARARkAkhkhhkhhkhhrhkhkhkhAAAkAkkhkhkik F
--- This is the outer procedure placed on transputer 3 . It contains)
--- global variables and constants, and all procedures that run in this

--- transputer. It receives a construct type (ch), cpu mode (cpumode), N

--- and number of times each communication sequence (repetition), and s

--- calls accordingly one of the following procedures: o

- - lo.transfer3,

--- - byte.slice.transfer3,

- - int.transfer3 or .

--- - word,slice,transfer3 4

mme Rkkeodko Rk KA R Rk K A KR ok T R e R A gk ok ok ok ok ok ok sk ok ke ek Ak ok ok ke ok ek ok ok .
-- Link Definitions ™
DEF linkOin = :

DEF linkOout
DEF linklin
DEF linklout
DEF link2in
DEF link2out
DEF link3in
DEF link3out

-- constant declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, <
1024, 1280, 2048, 4096, 8192, 10000]:

nia
WNNOHONO D

DEF nr.of.sizes = 16: --- as counted from above table]
DEF maxblock.size = 10000: --- last from the above table N
DEF maxwordblock.size = maxblock.size/4: J
-- variable declarations . "y
VAR ch : === choice of the user in type of construct 5
VAR answer : ==-- choice of the user in continue ,
VAR cpumode : ==-=- choice of the user in cpu operation concurrently 3

VAR repetition: --= choice of the user in number of times to run J

-- SC PROC cpubusysum (CHAN flagl, counterchan) |
-- PROC cpubusysum (CHAN flagl,counterchan) }
PROC cpubusysum (CHAN flagl,counterchan)= N
-- descrlgthn.gpu

mmm REARTARR K KRR e Aok ok s ek sk ok ok ok e sk ok ok e ek ok ke ek ok ok ok ok ok ok ek ke

--- It keeps the cpu working in parallel (time sharing) with link
--- transfers by doing sum operations . It Stops when it receives
--- a flag by the channel flagl from the transfer procedure that is
--- being executed concurrently. It Outputs by channel counterchan

I'd
-=-=- the number of ogerations done. -,
--- ARKAKRKAAKARKRKAKAKRAARKRAKKRARAKRAARKAAAAKRARKRARKRAAAKRKRARAARA KA KKK K ARk A AAKK -

W

—— Tk e ek e ke ek Ak kK ek ke kA kR ok R Rk A R R AR AR RK ARk kA KRhKkkhkkRRkkkkkkkxkkk

VAR a,b.e,
working, *
counter, .
ch : H
SEQ -
counter := 0 .
working := TRUE A

TIME ? a
WHILE working .
ALT »
flagl ? ch . r
working := FALSE ¢
TIME ? b g-
SEQ -
e :=a+b f’

counter := counter + 1

counterchan ! counter: ;
[t
175 Wy
i
L)

P A) P P o OO P O T N W O e A
.\‘.l..l..uu.o ""‘ { A Y K N WY, ‘~"'\"\ .I.‘\ .(‘ . 3% X \‘o'

a 8a 8° 'a 4° R, 1€, a'_ a¢ \
. ve e n . iain ibr L0t Me gy ata aleTate et U ar bt ettt rg et DGO O TR YO FOMOULTA
PR] O« .8 s 3 T

-- descriptor
-- code

-~ SC PROC cpubusyprod (CHAN flagl,counterchan)

-- PROC cpubusyprod (CHAN flagl,counterchan)

PRog cpubusyprod (CHAN flagl,counterchan)=

- eig£iB£i22***

--- It keeps the cpu working in garallel(time sharing) with the link
-=-=- transfers bg doing array multiplications. It stops when receives
--- a flag by the channel flagl from the transfer procedure, that is
--- being executed concurrently. It outputs by channel counterchan

==~ the number of ogerations done.
- ARKKAAKKAAKAIAAAKRAKRAKAKAAAKRAKAAAAKRRAEKXARKRARAARRKRAAR AR A AAARKR KRR AKRR KK

-~ constants and variable declarations

DEF number = 100: ---- size of array

VAR a[number + 1% ---- array of integers
b[number + 1}, =---- array of integers
e{number + 1 ---=- array of integers

clock, ---- integer -variable to get time
working, ---- boolean -to stop execution
cgunter, --=-- integer ~-number of operations done
c H

SE
2. initialize buffers and variables
SEQSE1Q= [1 FOR number]

a[l 1= 3%]
b[i] := 5*1i
SKIP
counter := 0
working := TRUE
WHILE working

ALT

flagl ? ch

working := FALSE
TIME ? clock
SEQ

SEQ i = [1 FOR number]
e[i] := a[i] * b[i] ‘
counter := counter + number ---updates nr. of operations
counterchan ! counter:

SO0

a2 B s ay-

+

. = - 2T

RARNSS.

s W NI

LR W T i D]

h T)

R T PR P T R /L \‘v.l\'lgﬁ»-l'\‘\!II"\“'!‘!"\'!!'\‘v‘l
3 PSRRI LK Fii - o 4

bt S

-=- PROC inout.transfer3 (VALUE repetition,cpumode)

PROC inout.transfer3 (VALUE repetition,cpumode)=

- description e

o RRFARRAKRRAKKKIKARKAARRAK AR IR AR KKK AR KKK KA KA A KK KA KRR KKK ”
--- Initializes the buffers and executes the procedures iotransfer,
--- plus, when applicable according to cpumode, one of the following:
--- cpubusy.prod or cpubusy.sum,

-- Uses global constant maxblock.size
oo ARKRKARKARRAKRKARTRRKK AR KKK KRR KRR AR KA KA Aok ok ok K e ok ok e ke ko ok ok

-
--- -

PP

CHAN flag, --- flags the cpu to stop _ . s
counter : --- return the number of operations cpu did

-- PROC iotransfer3 (VALUE repetition, cpumode, CHAN done,...)

PROS iotransfer3 (VALUE repetition,cpumode,CHAN done, opnumber)= P
- - tio 3
-——- 7ek~r$:giiltg*i7’(2*** w4
--- It executes sequentially several parallel transfers of b{tes b
--- using the input/output primitives to/from transputer root. o
-~-- It uses the global constants: sizetable, nr.of.sizes,

-=-=- repetition
- T ok o T ok R 7 e Tk T Kk ok ok i Tk gk e ok e T ok ok ok ke e ke ok e gk o 3k ok ok ok ok ok e gk K ok ke e ok ok o o ok ok ok ok ke

-- variable declarations

VAR block.size, ']
ngmgfr, --- the number of operations done by the cpu. -
C :

VAR bufferl [BYTE maxblock.size + 1

VAR buffero {BYTE maxblock.size + 1]:
SEQ ‘
-- initialize buffers ' o
SE%Ei = [1 FOR maxblock.size]

%ufferO-BYTE i- := i\8
bufferi-BYTE i- := i\8
SKIP

SEQSEi = [0 FOR nr.of.sizes]

lock.size := sizetable[il
-- input from four channels
SE%EJQ= (1 FOR repetition]

out ! 'a‘

SEQ k = [1 FOR block.size]
in ? bufferO[BYTE k]

EAARAARS

SKIP

-- output to four channels
SE% j = [1 FOR repetition]
EQ

out ! 'a!'
SEQ k = L} FOR block.size]
out ! bufferO[BYTE k]

[AR I e LYy

SKIP

-- all output and input in parallel
SE%E% = {1 FOR repetition]

out ! ‘a'
SE% k = [1 FOR block.size]
AR

in ? bufferO{BYTE ki
SKIp out ! bufferl[BYTE k] s

SKIP
IF

-- cpumode not='0' then get the number of computations done.
cpumode <> 'Q’

v el S

RV

177

LN

s

- ~ S T T T R A G LRI A PRI
RO " ‘l,.l, ’ “‘ “- \’I ‘-.-_’ 'J".' L N ,r',._, -, .-_\. ',.\ S o RN

- e RO R R D R RO R,
. e . . AR OO R ZUN PORTUE R RO PO R IRUNUNY &
P YT E XN XN LR T : L

SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-- main inout.transfer3
IF
((coumode = '1') OR (cpumode = '2');
PAR

iotransfer3 grepetition, cpumode, flag, counter)
cpubusysum (f£lag, counter)
((%Pumode = 13') OR (cpumode = '4'))
RI PAR

iotransfer3 (repetition, cpumode, flag, counter)
cpubusysum (flag, counter)
((iggyode = '5') OR {cpumode = '6'))

iotransfer3 ?repetition, cpumode, flag, counter)
cpubusyprod (flag, counterg
({cpumode = "7') OR (cpumode = '8'))
PRI PAR
iotransfer3 grepetition, cpumode, flag, counter))
cpubusyprod (flag, counterg

TRUE)
iotransfer3 (repetition, cpumode, flag, counter):

"
4

(3

) OO 9,7 NOMLSER TS P P
Fata SR N T O TGt s ATl D N SARAIOY

-= PROC byte.slice.transfer3 (VALUE repetition, cpumode)

PROC byte.slice,transfer3 (VALUE repetition, cpumode)=

.- descrzgtxon

ace RARARRAAARAhihhRAAARRARAACRRRARRAR AR A AR w AR r bbb b bbb o bdy
--- Initializes the buffers and executes the procedures transfer,

--- plus, when applicable according ts cpumode, one cf the follcwing:
~-- cpubus¥.prod or cpubusy.sum.

~-- Uses glcba constant maxblock.size

- RETXRARRRN A s b RRARAR A ARAANAR A AR RN I AT AR RN DA AA I rrbnh bbb

CHAN flag, --~ flags the cpu to stop
counter : --- refurn the number cf operations cpu d1d

-= PROC transfer3 (VALUE repetition. cpumode. ZHAN done .. .1

PROZ transfer3d (VALUE repetition,cpumode THAN done cpnumter =

- descripticn

P et A s R 2 2 TSP AR XA R R PR P R E R R R R R R R R R R R R R R AR R R R RE R AR X
=== 1t executes sequentia.ly several paraliei transfers of BUTES
-==- using the BYTE.SLICE procedures tc/from transputer rcot.

-== It uses the global constants: sizetab.e, nr.of.sizes

- regetxtxon
L2 EX S RAZ R 2R R PR R R RS R R R R RS R R R R RS R R R R R R R R RE R R R RN

-- variable declarations
VAR bisck.size
number, --- the numbar of operations done £y %he :pu.

Ch'4]:
VAR buffer0 [BYTE maxblock.size + 1]:
VAR Euffer] [BYTE maxtlock.size + . :

SEQ
-=- 1ni1tialize buffers
SE%EL = '] FOR maxbiock.s:ize'

%ufferO-BYZE 1- := 1.8
kufferl~-BY7E 1- :2 . 8
SKIP

SE%EL = !0 FOR nr.cf.sizey]

lOCK.s1Ze := s .zetakle[1]
-- input from fcur channels
SE% 3 = (. FOR repe*.ticn;
EQ

out ! 'a’
SKIP BYTE.SLICE.INPUT(in buffer0 | block.size!

-- output "0 four channels
SE%E] = [l FOR rege~ tion,
Q

[] i

out ! 'a’
SK=p BYTE.SLICE.OUTPUT (out bufferl, 1 block.s:ze)

-- all output and input 1n parallel
SEQSE] = [1 FOR repetition]
Q

out ! 'a'
PAR ‘
BYTE.SLICE.INPUT(in . buffer?.1 block.size)
SKIP BYTE.SLICE.QUTPUT(out bufferl.l block.size)

e
-- cpumode not='0' then get the number of computations done.
cpumode <> ‘0
SEQ
done ! 'a!'
opnumber ? number

179

1
i

LA
&y,

N *

S

I'l'. ".'
Il alals oA

» ‘*

» Pe

.l g Nt e a T A
'f y ¢.‘.fl,./~’ ’~f~.- 3,

P y e e ks A% 2'a A'a ita R TR TOT AR RS A ORY % 3O AL

TRUE
SK1P

-; main byte.slice.transfer3
((ipumode = '1') OR (cpumode = '2'))
AR

transfer3 (repetition, cpumode, flag, counter)
cpubusysum (flag. counter)
((%Punode = '3') CP ?cpamode = '4'))

transfer3 (re etition, cpumode flag, counter)
cpubusysum a counter)
{{c Lix{ﬂode = ") OR ?cpumode ='6'))

LY

\]
transfer3 (repetlt‘on cpumode, flag, counter) 9
CPUbuUSYPro (flag, coun‘er) o

((%Pumode =2 '7') OR (cpumode = '8'))

transfer3 %etltlon cpumode, flag, counter)

-

cpubusypro
TRUE P

transferl (repetition, cpumode, flag, counter): \

lag, counter)

SaPart

-

o S LA

TP

PR R Ay

180

Pt i Ly

T

\]

-

P s

« PR AR, At A RATA e e et
R R TR AR F e T NN T TR A L e g
AR .\“,a“‘l‘_‘a',‘ L‘\"‘l"‘l“.‘\“}l‘?‘l‘a '!.l Wl ...‘-'l.- Wr Tl Y b Ve Ve o M

0

L)
3
)
¥
¥
¥
’

]

R

-- PROC int.transfer3 (VALUE repetition,cpumode)

PROC int,transfer3 (VALUE repetition,cpumode)=
Z:-diii£iRiiiE***
--- Initializes the buffers and executes the procedures intransfer,

--- plus, when applicable according to cpumode, one of the following:
- cpubusy.prod or cpubusy.sum.
g

-- Uses global constant maxblock.size
e RRRARRR R KA AR Kok AR K KKK KK e ek ok o e ok o ok e e ok ke e ok o o ok o ok ok ok e ok ok e ok

CHAN flag, --- flags the cpu to stog) _
counter : ~-- return the number of operations cpu did

-- PROC intransfer3 (VALUE repetition, cpumode, CHAN done, ...g
PRO% intransfer3 (VALUE repetition,cpumode,CHAN done, opnumber)=

-- description

LR R ERREER Rk sk e ek ke ke ke ke e e ke e ke ek
--- It executes sequentially several parallel transfers of integers
--- using the input/output primitives to/from transputer root.

--- It uses the global constants: sizetable, nr.of.sizes,

-=-- repetition

mee RERAKRKKARKIRRIAK KRR AR KA KKK A KK ek ek e ek ok ok Kok s Kk ook &k

-- variable declarations
VAR block.size,

nh 4?r, ~--- the number of operations done by the cpu.
o :

VAR wbuffer0 [maxwordblock.size + 1}]:

VAR wbufferl [maxwordblock.size + 1]:

SEQ) .
-- initjialize buffers

SEQ i = [1 FOR maxwordblock.size]

%buffero BYTE i] = i
wbufferl[BYTE 1] := i
SKIP

SE%E; = [0 FOR nr.of.sizes]

sizetable[i] < 4

TRS?IP ---minimum number of bytes is 4 for integer transfer

SE
%lo;k.size 1= sizetable[il
-- input from four channels
SE%EJ = [1 FOR repetition]
Q
out ! 'a!
SEQ k = [1 FOR (block.size/4)]
in ? wbufferOlk]
SKIP

-= output to four channels
SEQSEJ = [1 FOR repetition]
Q

out ! 'a!
SEQ k = [1 FOR (block.size/4)]
SKIP out ! wbufferO{k]

-- all output and input in parallel
SEQSEJQ= {1 FOR repetition]

in ? wbufferO{?i]

out ! wbuffer
SKIP

181

: ' y / - A CUPR A O MG PO
SRR 00O OISO ORGOCC I I OGN OCE OO NN O ORI W e X R MO M X M M M O Lty X OO A O AN

N
W

. nogp k¢ 7 2 Pt ey ¢ OADAE
N P N N N T X PO RO VAT VEYEUN AN Lt Sald'
2 a RIS P . g

\J
SKIP)
IF

-~ cpumode not='0' then get the number of computations done.
cpumode <> '0’'

SEQ)
done ! ‘a' . '
opnumber ? number f

TRUE !

SKIP :

== main int.transfer3 ’ '
((%Pumode = '1') OR (cpumode = '2'))
AR

1ntransfer3 repetltlon, cpumode, flag, counter) 7y
cpubusysum (counter)
| (chumode = '3') OR %cpumode = '4'))

1ntransfer3 repetltlon cpumode, flag, counter)
cpubusysum la counter)
((cpumode = '5') OR ?Cpumode = '6'))

1ntransfer3 repetltlon, cpumode, flag, counter) .
cpubusysum counter))
((cippumode = '7‘) OR pumode = '8"))

intransfer3 érepetltlon, cpumode, flag, counter)
TRUE cpubusysum (flag, counter)

intransfer3 (repetition, cpumode, flag, counter)

- v

e

‘o

AL S

PP LA,

-= PROC word,slice.transfer3 (VALUE repetition,cpumode)

PROS word.slice.transfer3 (VALUE repetition,cpumode)=

.- gigiigiigg***
--- Initializes the buffers and executes the procedures wordtransfer,
--- plus, when applicable according to cpumode, one of the following:
- cpubusy.prod or cpubusy.sum,

-- Uses global constant maxblock.size
- F0 e de ok e e e e ok e e T ¢ A e o 3K e o ol sk ok sk Tk ok e A oK K 9k e i e ok ok ok ok e ke ke gk ok e e ok vk ok ok o ok ke ok vk ok ok ok vk ok ok ok e Tk ke ok

CHAN flag, --- flags the cpu to stop) '
counter : --- refurn the number of operations cpu did

-- PROC wordtransfer3 (VALUE repetition, cpumode, CHAN done,...)
PROS wordtransfer3 (VALUE repetition,cpumode,CHAN done, opnumber)=
-:- gigiiggigg***
-~- It executes sequentially several parallel transfers of integers
-~- using the WORD.SLICE procedures to/from transputer root.

--=- It uses the global constants: sizetable, nr.of.sizes,

--- repetition
——e FeFF oAk ok T Tk e gk e e ki Tk e ok sk o ok e e T e ok ko Tk ok e e e ok ok e T e ok ok Tk ke ek ke ke ek ok ok

-- variable declarations

VAR block.size, '
ngmgfr, -== the number of operations done by the cpu.
[:

VAR wbu&fero { maxwordblock.size + 1]:

VAR wbufferl maxwordblock.size + 1}

SE
q- initialize buffers .
SE :; = {1 FOR maxwordblock.size]

"wauffero {BYTE i]
p wbufferl [BYTE i

3
i

W N

SE%Fi = [0 FOR nr.of.sizes]

sizetable[i] < 4 _ ,
TRggIP---mlnlmum number of bytes is 4 for integer transfer

SE
%logk.size = sizetableéi]
-- input and output handling
-- input from four channels
SEQSEj = [1 FOR repetition]
ut

! lal

u
P WORD.SLICE.INPUT(in,wbuffer0,1,(block.size/4))

-=- output to four channels
SEOSEJ = (1 FOR repetition]
Q

out ! ‘'a!'
SKIP WORD.SLICE.OUTPUT (out,wbuffer0,l,(block.size/4))

-- all output and input in parallel
SE%EJQ = [1 FOR repetition]

out ! ‘a’

WORD.SLICE.INPUT(in,wbuffer0,1, (block.size/4))
WORD.SLICE.OUTPUT (out,wbufferl,l,(block.size/4))

SKIP

-~ cpumode not='0' then get the number of computations done.
cpumode <> 'Q’
SEQ
done ! 'a'
opnumber ? number

TRUE
SKIP

-~ main word.slice.transfer3
((%Pumode = '1') OR (cpumode = '2'))
wordtransferB (repetltxon

cpubusysum counter
((ci)pumode a 13) OR ?cpumode = '4'))

cpumode, flag, counter)

wordtransfer3 (repetition
cpubusysum (flag, counter)
((gPumode = ‘5') OR ?cpumode = '6'))

cpumode, flag, counter)

wordtransfer3 irepetxtlon cpumode, flag, counter)
cpubusyprod (flag, counter)
((%Pﬁwgsf = «7¢) OR (cpumode = '8'))
wordtransfer3 irepetxtxon cpumode, flag, counter)
TRUE cpubusyptrod (f counter)
wordtransfer3 (repetition, cpumode, flag, counter):

-- main transfer3.b003
SEQ
answer := ‘'Y
WHILE answer = 'Y’
SEQ
in ? ch
in ? cpumode
in ? repetition

IFch = ‘A
inout.transfer3 {repetition, cpumode)
é}t;.ﬁlice.transferB (repetition,cpumode)
:ii;t}}ransfer3 (repetition, cpumode)
TRG?rd .slice.transfer3 (repetition,cpumode)

SKIP
in ? answer

184

LN

ELLLS P 72y

s’

sﬂ.iﬁifi

AL

'
i:
s
‘]
ey

£ 3 A I N LT W MLURUATACAOUY MO e e T T SN

~at_
. B TS VY L L ORI L -y ¢ s "' " "l‘ "0 o b gy "','.."
B TR s 3y ‘,u'*,o“.o"‘v",l".0:".0"_.Q".O"."';O“c' u'. ""’o'l'.'l l"'ﬁ".' 'l' ':" 1> o X ' !

w e TR Ttk vk s s v e e ke ok sk e e e e b ke vk g e e e s sk d ok T e e vk gk gk gk Ik e ke ok vk ok e A e ok sk ok e e e TR vk ok e gk ok sk ok gk ok ok ok

-=- configuration
[****9&

-- Link Defainitions
DEF linkQ:in t
DEF l:inkCout :
CEF Linklin
DEF ilinkliout
DEF linklin
DEF linklcut
OEF lirk3in
DEF link3out

DEF root = 10
CHAN pipein{4

PLACED PAR
-- PROCESSCR ROOT
FROCESSOR root

W~ =~

-——0 HNU i

,Pipeout{4]:

PLACE p;peln[O& AT linkOin
FLACE Eipeout]0) AL Hinioou
PLACE p1peou££.] AT linklout
P}AEE pipein; l ?Z 1ink21in
SEH LN
PLACE pxpeoué[§1 AT link3out

hostproc (pipein[0] gxpexn (1], ein(2], gexn[B]
pipeout (D] pxpeout plpeou

-- PROCESSOR 0

PROCESSCR O
PLACE pip exn[O& AT linkOout
PLACE pipeout (0] AT linkOain

transfer(Q.b003 (pipeout{0],pipein{0]})

-- PROCESSCR |

FRUCESSOR 1
PLACE pxpexn[li AT linkOout
PLACE pipeout{l] AT linkOin

transferl.b003 (pipeout(l],pipein{1i})

-- PROCESSOR 2
PROCESSOR 2

PLACE p1pe1n[2£ AT linkOout :
PLACE pipeout[Z] AT linkOin :

transfer2.b003 (pipeout(2],pipein{2])

-- PROCESSOR 3
PROCESSOR 3

LACE pipeln[3£ AT linkOQout :
PLACE pipeout(3] AT linkOin

transfer3.b003 (pipeout(3],pipein([3])

185

T 7 e e e e vk ke she s sk ok e e sk ok s gk e A ok e ok A e e Yk ok ok sk sk e Ar ok vk gk Tk ok e ke ok vk e IR R ok ok ok ok e e sk ok ok o ok ok

{2]) .pipeout[3]) -

O T T A TR PR

el % "

SEEADS

A

l?)‘il

i

APPENDIX F
PROGRAM TEST LINEARITY

-- header.occ

* ARk
*

b2 2P b b I I B R B2

s Je % ke

7 s e sk sk ok sk vk sk sk e e e o ok sk ke ok gk ok ok vk ke vk vk ok i sk e e ok vk sk kg ok ok ok ok ok ok o e ok ek A Rk ke

Title : Test Performance Linearity

Version : 2

Mod : O _ o

Author : Jose Vanni Filho, Lcdr., Brazilian Navy

Date : June, 5th, 1987

Programming Language : OCCAM 1

Compiler : IMS D 600 - TDS }

Brief Description : This program mapped in 17
transputers shows us the capability of the
transputer in linear increase of performance
with the increase of the number of processors.

e e e e e K e e sk ok e g ok sk ke ok ok A e ok ok ok e ke A e A ok ok ok e e ke ok ke ok ke ok e ke ke ke ok ke ke kA ok ok

-- Brief Description

=== This

program runs in 17 transputers:

transputer Root - prompts the user and triggers the other

transputers . i
- times the whole process execution
- receives the results and send to the screen

transputers 00,10,20,30 - execute two processes in parallel:

- routes the trigger and the results,
- executes the procedure counter

--- transputers 01,02,03,11,12,13,21,22,23,31,32,33 (12

- executes the procedure counter only

-- PROGRAM testlinearityl?

-- testlinearity

-- SC PROC hostproc

-- PROC hostproc

PROC hostproc (CHAN A,B,C,D,E,F,G,H) =

DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF

globa
Lonst
ort
aud

null
bell
tab
1f
cr
esc

sp

1l definitions (partial)
ants Definitions

0: --- assi the i/o port of the B0Jl to the terminal
11:--- set the baud.rate to 9600 bps

: === constantly used ASCII values

WO

10:
13:
27:
32:

-=- Channels Definitions
CHAN Parameters AT 0 :

CHAN Screen : --- AT l: |[This placements cannot be done in TDS. The
CHAN Keyboard: --- AT 2: [terminal.driver already takes care of that

-- Link Definitions

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

linkOout
linklout
link2out
link3out
1ink0Oin
linklin
link2in
link3in

.
:

~NoOnPh WO

.
.

-- File Handler Control Values

186

. ‘ » v . N ¥ LN LS A M
. T T R T R B AR R KM R AU IO PO TQOUAMIUE A MR SR
.o S I N IR RPO M X S IO Y Py A A DO W) it X

: RN O TR TR A GO Ty oty Al 4 RN AR ! LR R0 A | W LY
o e e e RO e ONEAR Gt gty T ST L Ve M gt

v
%h
-l

y:
(N

2

-

- R = o
e -

2
>

g

. 32

DEF ClosedOK = -1
DEF CloseFile = =2
DEF EndBuffer = -3 :
DEF EndFile = -4 .
DEF EndName . = =5
DEF EndParameterString = -6
DEF EndRecord = =7
DEF NextRecord = =9
DEF OpenedOK = =10
DEF OpenForRead = -11
DEF OpenForWrite = =12

« -- library.occ (partial)
-- io_routines.,occ_ (partial)
-- Summary of i/o PROCs
=== PROC new.line generates a CR and a LF
=== PROC write.string outputs a string to the screen, byte by byte
=== PROC clear.screen clears the screén and home the cursor
--- PROC write.number displays an integer value in the screen

== PROC new.line
e TRk Ak e ok Tk e e gk ke ek gk e e ok o o ok ok 2 K e ok ok ok e ok ok ek sk e ok gk gk ok e e ok ok ok e ek ok ok ke g gk ok

--- Jumps to a new line on the screen
mme KARTARRK KA R R K K e Tk e Tk e o e ok e Tk ok T ok T gk e ok Tk s o ok e ok ok ok sk ok ok ok ok g ok 7k ok ok sk ok ok ok ok ok ok ok

PROSCE new.line =
creen ! cr;lf:EndBuffer

-=- PROC write.strin VALUE strin
- ***************g*i***R*******2Lll*******************************

--- Writes a given string to the screen, in a byte bx byte fashion
RAFKAKKE XK * KA R R

_—-me KX *hkkk b3 8.8, 3. 3.3 3.3 *k*******************x*k** b3 3.3.2 3.3 3.3 8 3.3 3.3
PROC write.string iVALUE stringill =
oo KARRKAAAAKRAKRRKAAAAKRAKRAXK KR s e 7k % ok K A R ok Fe gk ok T A vk ok ke Ak Tk vk kT ok ok e ok Aok ke ke

SE
QSE% i = [1 FOR _strir‘xﬁ_&BS{TE 0]]
creen ! string(B i]
Screen ! EndBuffer :

=--PROC clear.screen
- TRk e 7k e e R ok e ke ok ok ek vk ok e vk ok gk e v ok ok e ok ok ok vk e ok ok R ok ke ok ok ok o ke Tk 3k ok ok vk ke ke ok vk ok 7k ok sk vk ok K

-=-=- Clears the screen,.
- Rk ok kT T ok ok A ke T ke e A T ok o ok ok ok e e ok e ke e ok ok vk e T R ok e o ok ok e ke oK ok ke ok e ok ok A A ok ok vk ok ok ok e ok ok ok ke ok

PROC clear.screen =
SE

creen ! esc; '-'; '2'; 'J'; EpndBuffer --- clear screen sequence
Screen ! esc; '-'; 'H' : -=-=- home cursor

-= PROC write.number (VALUE number

e Rk ko ok Ak ok ok ok ek R ok K R Kk Tk ek ok sk ke e e sk ok sk ok K e ok e ok e e ok ok ke ok ok ok o ok ok

--- This PROC outguts a signed integer value to the screen *
mme Rk Tk Aok ek ok 5 ok ok Tk Ak R ok ok e ke e ok ko 6 gk gk ok ke ok ok 7k e ok ok ok 7k ok ok ek ok 7k ok 7k o ok

PROC write.number (VALUE number) =
ggg output{l6], count, x:

¥X:= number
count:= 0
IF

--0 handle special cases
x=
Screen ! '0’

WHILE x>0
-- construct number
SEQ
output[count] := (x 10) + '0'

187

ww“ WP VRV RMAMFEE LA e
| !

count := count + 1
X:= X/10

WHILE count > 0
-- output number
SEQ

count := count-1
Screen ! output[count]

SKIP:
ema KAkA KA K KA KKK KKK A KK IR kK Kk A A ek gk kA kA ek ok gk e ko ok ok ok ek ok ok A

-- utilities.occ .
e RAKRAKRARAAKRAKAARKAKAKRAAKAARAAARAAKAA KRR AARRRAARA ARk AAAhkAxhkhkkhkhhkk

-- PROC tick.to.time iVALUE start, stop board.tygel
e RRRAKARAK KR AR R R IR R kA R e e ok o ko ok ok o e ok ok ok K 6k ok ok ok ko ke
--- Receives start and stop time and board type and outputs
=== the elagsed time in hours, minutes, seconds and milliseconds
PR Rakat.2 2.1 0 ek e e e Ko e e e 3k e ke Tk sk 7k 7 T sk 7k ok e e ke 7k T e sk K e e 70 e ok e 7k ¢ A kK ok T ok K ok ek ok e ok ek
PROC tick.to.time (VALUE start, st%?, board.type) =
--- board.type -~=<> VAX VM
-=-- board.type 1 =----> B001
~-- board.type = 2 ----> B00Q2) o
--=- board.type B0O3 2 high priority)
--- board.type 32----> BO003 low priority)
--- board.type = ¢ ----> BO04

(LI O T]
W o
—
]
]
]
]
\%

-- constant definitions
DEF vax.sec =10000000 -=-- hundreds of nsec/second
DEF vax.mili 10000 : -==- hundreds of nsec/millisecond

DEF b00l.sec = 625000 : --- # of 1.6 microsec/second

DEF b00l.mili = 625 : --- # of 1.6 microsec/millisecond
DEF bQ0O3h.sec = 1000000 : --- # of microsec/second

DEF bQO3h.mili = 1000 : =--- # of microsec/millisecond

DEF b003l.sec = 15625 : --- # of 64 microsec/second

DEF b0031.mili = 16 --- # of 64 microsec/millisecond

DEF max.number.of.ticks = 2147483648 : --- maximum integer (2**31)

VAR elapsed.tick :
VAR factorl, factor2 :)
VAR msec, tot.sec, sec, min, hr :

SE%F

boiéﬁ.type =0 --~ VAX VMS
actorl := vax.sec,
factor2 := vax.mili
board.type =1 --- BOOlL
SEQE_Yp
actorl := b00l.sec
factor2 := b00l.mili
board.type = 2) --- B00Z)
SKIP -=-- will be implemented in the future
bo%éé.type = 31 -=-- B003 in high priority
%actorl := b003h.sec
factor2 := bOO3h.mili
bo%és.type = 32 -=-- B003 in low priority
actorl := b003l.sec
factor2 := b0031l.mili
board.type = ¢ . === BO04 .
SKIP --~ will be implemented in the future

§%apsed.tick := stop - start

elapsed.tick < O

elapsed.tick := elapsed.tick + max.number.of.ticks

TRUE -]

SKIP A

tot.sec := elapsed.tick/factoril -

hr := tot.sec/3600 »

) min := (tot.sec\3600)/60 ¢
sec 1= tot.secéeo,

msec := (elapsed.tick factorl)/factor2 e

-- output time to screen
write.number (hr

. write.string (" hr ")
write.number (min)
write.string (" min ")

write.number(sec)
write.string (" sec ")
write.number(msec)
write.string (" msec")

-- PROC capitalize (VAR ch
- 7% A kA ok ok kR K AR KA A K K % sk K A v 3K vk ok 3k e e ok ok ke e sk sk ok sk ok vk gk ok sk A ok sk sk ke ok &k e e ok sk I gk sk ok e sk

--- cagitalizes any lower case character into upper case
o ww FATR A g e ok ok e ok ok R g ok ok Tk ek s ok sk ke A e ok 7 ok sk ok gk Bk T ok ok ok e sk Ak ok ok gk ok sk sk ok e gk R

PROC capitalize (VAR ch) =
DEF delta =('a' - 'a')

“ g v m_s_8&

== A -==> g5
== a =-==> 97 ASCII values '

=== 2 =--> 122 ey
SE

(ch <= 'z') AND (ch >= 'a')
ch := ch - delta
TRUE

SKIP

== link placements ,
CHAN hostin0 AT linkOin:
CHAN hostinl AT linklin:
CHAN hostin2 AT link2in:
CHAN hostin3 AT link3in:
CHAN hostoutO AT linkOout:
CHAN hostoutl AT linklout:
CHAN hostout2 AT linkZout:
CHAN hostout3 AT link3out:

-=- PROC terminal driver
*****x*****k***

The terminal uriver is the one provided by the manufacturer

for the b00l board and therefore is not included.
k****x*x****************k*k********k************ﬁ************

AT

. 8 v 6 2 s =

189

RS

%Y

(N i " L WA, LAY 2N 2 N PP P I T P e o Ca W P e Tl 5.4 P AL N PN o LA
'\ W) a’t.-'u‘a‘.huuﬁu..m VA ‘\.,0 X A AN AN A AL N 4 Aloaln n N B BaY. ""' g Y 0."'. 0,

WP B

o T T T L e T e e e

-=- PROC user.interface
- o %R Yok R TR K TR A R T A K R K ek ok gk ol ok gk T T o gk sk Tk Ak gk T ok T vk ok T 3k e v T vk e T ok W o e sk e e e e
--- Receive flag from the user and trlggers the network
-=-- Receilve results from the netweork an outgut to the screen
wmm AR TR T R R AT AR A RARRKS RAK KT RARAKRT AR AR AR KT R Rk v mor wmdew woww
PROC user.inte:face = .

-- local constant and variable declaration

OEF tot = 18 : --- number of transputers

VAR c¢h: --- flag from the user
VAR resulttot):
| VAR startiimeroot, endtimeroot: --- timers for the root
| VAR s:tartime tot), endtimejtot!: --- timers for the 16 transputers
SEQ
write.string(" Type any character to start ")
Keybcard * ch

Screen ! ch
new..iine
TIME 7 startimeroot

PAR
-- send flags
hostout0 ' ch
hostoutl ! ch
heostoutd ! ch
hostoutl ' ch

-- receive results
SE% 1 = [J FCR §)

hostin0 ? result[i];startlme[l ;endtime(1]

nostinl ? resultii+q]:startime(1+4] . endtime1+4’
hostin2 ? result{x*al-startzme i+8] :endtime[1+8]
hostin3 2 result{i1+12]:startime[1+12] :endtime{1+12]

SKIP

TIME ° endtimeroot
-- send results tc the screen

SE%gq= {0 FOR tot]

write.string é?Transputer ")
write.number (3)
Screen ! sp: sD ‘
write.number (result{j])
Screen ! sp: sp ‘)
tick.to.time (startime[j],endtime[j],h 32)
new.line
SKIP)
-~ send total execution time to the screen
new.line
write.string
write.string
tick.to.time

" Time to execute in parallel ")
" with 17 transputers => “;
startimeroot, endtimeroot,l):

PAR
IMS.BOOl.terminal.driver(Keyboard,Screen,port, baud)
user.interface :

- Aok ARk ek kKA ek Tk gk ok ok v ok ok ok kK gk Rk ok ok R ok ok sk ok gk ok ok ok vk ok ok ok i ok ok Tk e gk e ke ok ok ok ok o ek ok ok e e

-=-- End of code for transputer Root,
—mw RAKAAKXKAKAKRARARAAKRAKRARARKAAAKRAKRRAARARARAAAKRAAAKRAA AR Ak kAkhkhkhkrhkhhkhkhkkirk

190

Wl

TIPS T R RN R WP) 6 ete g ‘9 g TR AR R A A T I I T I T T I UMY Y DWW LN

-= SC PROC Route 1,
-- PRCC Rcute (CHAN messagein, messageout, routetol,..., VALUE k))
PROC route(CHAN messagein,messageout,routetol, routeto2,routeto3,

echofroml,ec ofromz echofrom3 VALUE' k)=

TEF 1 = 4 : --- number of counter procedures A
VaR msg : --- flag)
VAR results(i] ;
VaR startime|1 Endtlm°[1] === tim)
THAN softin,softout: --- soft channels declared for communication .

--- with procedure counter. g

-- 5T PROC counter
-- PROC counter

PRCC counter (CHAN in,out, VALUE tnumber) = .
-~ desc rlgtlon X
e m XRAA XA RRAARIAAAKRRARKAAKARAKRAKRAKRAKRARRRARARAAARARARKRAARRARAAKRAAARAAKAAAAKKAR
--- Sumshup thelflrst 100000 integers and add the transputer number K
=== to the tota v
---t**tx*wk*gﬁ*****k**R************************x*****k*************
DEF maxope = 100000: --- number of operations done ’
VAR ch,total : .
VAR startime3, endtime3: o]
SEQ .
total := tnumber
in ? ¢h

TIME ? startime3
QE% 1= O FOR maxope]
otal := total + i
TIME ? endt1me3) .
out ! total;startime3;endtime3:

-- descripter
-- code
SE

%AR

counter (softout,softin, k)
;E routing procedure

messagein ? msg X
SE
AR :
routetol ! msg
routeto2 ! msg
routeto3 ! msg
softout ! msg
PAR
echofroml ? results-0-;startime-0-;endtime-0-
echofrom?2 ? results-l-;startime-1-; rendtime-1-
echofrom3 ? results- 2- jstartime-2-;endtime-2-
softin ? results- -3-; startime- ~3-; ;endtime- 3-

-- sending to the root results and timing
SEQ i = [0 FOR 4]

messageout ! rnsults[ll startime[i] ;endtime{i]:
- ********************x*x*x********xx***x%*ﬁ*tw*#w'tﬁ--'aaoo--n-----

--- End of ccde for transguters Routerr 10,220,335,
ek sk ok Aok ok Kk ok Rk x*&,uﬁxqg.«a............

RS Bkt 2 E T2 2 83 2 3 2 2 3 2.3 3.8.31

. ﬁb-ﬁi“ 969

UNCLASSIFIED

TEST AND

AND EVALUATION OF THE TRANSPUTER IN A
II.L l rmsrurzn S\'STEH(U) MWIL POSTGRADUATE SCHOOL

Jv FILNO
F/G 12/6

3/3

Iz

B s
JlL2 = 2 M
™3
T

ll.8

g
-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

oy .'.;.j;». AN ol ':.".::,.;v",:
R
el ' "" Wik " :'m‘_",.f'.a.)

== SC PROC counter
-- PROC counter (CHAN in,out, VALUE tnumber)

PROC counter (CHAN in, out, VALUE tnumber) =
-- description

- = ek T s Tk T T T e T T e T ok ok e e ok e e ok Sk e ok ok e e vk K 7 ok ok e ok ok o A vk ok e ok o e e ok e ok sk e ok ok ok ok ok ok ok ok ek ok ok ke e

-=-- Sums up the first 100000 1ntegers and add the transputer number

--- to the total, Sends the resul throu h channel out.
---****************************x******** **************************

DEF maxope = 100000;:
VAR ch,total :
VAR startxme endtime:

E

%otal := tnumber

in ? ch

TIME ? startime

SE% is= 0 FOR maxope]

otal := total +

TIME ? endtlme .
out ! total;startime;endtime:

- Tk s e v o e sk e e sl ok e e Sk e e ok o vk ek ok sk A ok ok ok ok ok ok e e ok e ok gk ok ok ke e ke e ke ok e ok ok o ke e ok ke ok ke ke ok ok ke ok ok ek ok

-=-« End of code for transguters Leaves i01 02,03,11,12,13,21,22,... l
emm FOR Rk T e R ok ok K sk e T o 7 ok ok o e K e e o e ek ok o e Tk ke ke ok ok o ok e ok ek ke e ok ke ke ke

192

RN

k) ‘VT»‘ N

e T -

- -

S e ET

o - -
PN PEloal ot]

Ao

cma Rtk o ook e g de T e e s e e T A e ok ok ok vk sk e e e e gk ok ok ok ok ok gk e e A e o e ok vk sk ok e e e ok ok ke ok ke ok ok °

1] 13 o ‘
-- conflguratlon f
—— ek K T e e v K T T Tk T e T T e v T e 7K K i v ok e e T T e e e vk sk e ok Tk e she T ke sk gk e gk Tk e T ok e ok ok e ok ok ok ok ok ok ke ok ’

-- link definitions
DEF linkQin = 4 :

- DEF linkQout = 0 :
DEF linklin =5 :
DEF linklout =1 :
DEF link2in = 6 :
DEF link2out = 2 :

~ o w W e

L8
< DEF link3in = 7 : -
DEF link3out = 3 : 2
DEF root = 100: e
DEF totlinks = 32: o
CHAN pipe[totlinks]: W
PLACED PAR 4
PROCESSOR root . e
-- link placements and process assignment y
PLACE pipe[0] AT 1linkOin : : <
PLACE pipe{l] AT linkOout : X
PLACE pipe{2] AT linklin : te
PLACE pipe[3] AT linklout : o
PLACE pipe[4] AT link2in : "
PLACE pipe[5] AT link2out : W
PLACE pipe[6] AT link3in : W%
PLACE pipe[7] AT link3out : o
hostproc (pipe[0],pipe[2],pipe[4],pipe(6 i
pelelitBstal pintlet et ipsietsn) y
PLACED PAR j = [0 FOR 4] by
PROCESSOR 10%j . X

-- link placements and process assignment W

- PLACE pipe 2*;] AT linkQout : O
PLACE pipe((2*j)+1] AT linkOin : 2
PLACE pipe 8+é6*j§ AT link2in : -

PLACE pipe([9+ 6*;. AT linkZout : «
PLACE pipe[10+(6%j)] AT linklin : =
PLACE pipe[ll+(6*])] AT linklout : .
PLACE pipe[12+(6*3)] AT link3in : &
PLACE pipe(13+(6*3)] AT link3out : ig
route (pipe[(2*j)+1],pipe[2*j],pipe[9+(6*j)] . pipe[ll+(6*j)],
SR USRI RIS A A LSRR S LR LS DPTRY -

PLACED PAR i = [0 FOR 4] :
PROCESSOR (10%i)+1

-- link placements and process assignment :;
PLACE pipe 8+§6*;g] AT link3out : ;
PLACE pipe[9+(6*i)] AT link3in : "
counter(pipe[9+(6*i)] ,pipe[8+(6*i)], ((10*i)+1))
PLACED PAR i = [0 FOR 4]

PROCESSOR (10%1)+2 , o
-~ link placements and process assignment @
PLACE pipe 10+26*;;] AT linklout : o
PLACE pipe[11+(6*i)] AT linklin : W
counter(pipe[11+(6*i)],pipe[10+(6*1i)], ((10*i)+2)) %

PLACED PAR i = [0 FOR 4]

PROCESSOR (10%*i)+3) o
-- link placements and process assignment o
PLACE pipe 12+§6*;g] AT link2out : 2
PLACE pipe{13+(6*i)] AT link2in : "
counter(pipe[13+(6*i)] ,pipe[12+(6*i)], ((10*1)+3)) 0

APPENDIX G
TRANSPUTER PRODUCTS*

a. Transputers
o IMS T414B-G1S5S - 32 bit transputer - 15Smhz
e IMS T414B-G20S - 32 bit transputer - 20mhz
e [MS T800B-G20S - 32 bit floating point transputer - 20mhz
e [MS T212A-G17S - 16 bit transputer - 17mhz
e IMS T212A-G20S - 16 bit transputer - 20mhz
e IMS M212B-G15S - Winchester and Floppy disk controller
b. Evaluation Boards
e IMS B002-2 - T 414 with 2MBytes DRAM with 2 x RS232
¢ IMS B003-1 - Described in Chapter 1
e IMS B003-2 - 4x T 414 - 20mhz each with 256KB DRAM
e IMS B004-4 - Described in Chapter |
e IMS B00S5-1 - M212 with 64kbytes SRAM, 20MB WINI, 640K Floppy
e [MS B006-1 - T212 with 6dkbytes SRAM, and 2 x RS 232
e IMS B006-2 - T212 with 64kbytes SRAM, and 8 x T212 (8k SRAM)
e IMS B007-1 - Graphics Evaluation Board with 1 T414, 512k DRAM
c. Digital Signal Processing
e. IMS A100-G20S - 32 Stage cascadeable signal processor

* All trademarks on this page are registered trademarks from
INMOS Group of Companies, Bristol, UK.

e N ae v e gy s b g b g b g4 ¢ 0,0,

LIST OF REFERENCES ,.,
. i
!
L. Garret, D. R., 4 Software System Implementation Guide and System Prototyping ::_f-f
: Facility for the MCORTEX Executive on the Real Time Cluster, M. S. Thesis,
Naval Postgraduate School, Monterey, California, December 1986. i:;
X
]
2. Weitzman, C., Distributed Micro;Mini-computer Systems, Prentice-Hall, New :::
Jersey, 1980. '::*
2Ty
3. Peterson, J. & Silberchatz, A., Operating Systems Concepts, Second Edition, ..
Addison-Wesley Publishing Co., Reading, Massachusetts, 1986. \
U
~
4. Evin, B. , Implementation of a Serial Delay Insertion Type Loop Communication “
Sfor a Real Time Multitransputer System, M. S. Thesis, Naval Postgraduate o
School, Monterey, California, June 198S. "
o
)
Y
S. Selcuk, Z., Implementation of a Serial Communication Process for a Fault \.‘\'
Tolerant, Real Time, Multitransputer Operating System M. S. Thesis, Naval :c'.
- Postgraduate School, Monterey, California, December 1984. ::t
6. Cordeiro, M. M., Design, Implementation and Evaluation of an Operating System .'
. Sfor a Transputer Network, M. S. Thesis, Naval Postgraduate School, Monterey, 0
California, June 1987. .:
\
¢
7. INMOS Limited, Transputer Reference Manual, October 1986. :5:
R
8. Miller, Neil Exploring Multiple Transputer Arrays, INMOS Technical note 24, o
January 1987. h
)
9. Kodres, U. R.,"Processing Efficiency of a Class of Multi-computer Systems”, NN
International Journal of Mini and Micro-computers, Volume 5, No.2, pp 28-33, e
1983. N
b
10. Wilson, P., “Occam Architecture Eases System Design - Part 17, Compuiter "
Design, Volume 22, No. 13, pp 107-110, November 1983. :.fn
11. Wilson, P., "Occam Architecture Eases System Design - Part 2", Computer “‘\‘
Design, Volume 22, No. 14, pp 109-114, December 1983.) b
o
12, Pountain, D., 4 Tutorial Introduction to Occam Programming, 1985.)
v,
Y
%
195 kS
24
~
| IN
BRI RSARARAAIA NN AN A I XA O M AR s W T AL A A A O S

13.

14.

18.

16.

17.

18.

19.

20.

21

22.

INMOS Limited, Occam Programming System, 1985.

INMOS Limited, IMS D600 Transputer Development System, 1985.
INMOS Limited, IMS D701 Trensputer Development System, 1985.
INMOS Limited, IMS B00! Evaluation Board User Manual, 1985.
INMOS Limited, /S B003 Evaluation Board User Manual, 1985.
INMOS Limited, IMS B004 Evaluation Board User Manual, 19835.

Halsall, F., Introduction to Data Communications and Computer Nerworks
Addison-Wesley, Workingham, United Kingdom, 1985.

Cellary, W. and Stroinski, M., “Analyvsis of Methods of Computer Network
Performance Measurement”, Performance of Computer Communication Systems,
Werner Bax and Harry Rudin Editors, North-Holland, 1984,

INMOS Limited, IMS T800 Architecture INMOS Technical note 6, Bristol,
United Kingdom, 1986.

Naval Postgraduate School, Computer Science Department, VAX/VMS
Introduction, by Bruce R. Montague, January 1983, revised June 1986.

i
BIBLIOGRAPHY ‘;.
» ‘X
INMOS Corporation, Compiler Writers Guide, Draft, 1986. X
INMOS Corporation, Transputer America, 1986. :::
‘ INMOS Limited, Product Information - The Transputer Family, June 1986. ~
MacClennan, B. ., Principles of Programming Languages: Design, Evaluation and _
Implementarion, CBS College Publishing, New York, 1983.
Stallings, W, Computer Organization and Architecture, Macmillan Publishing Company,
New York, 1987 ¥

Mattos, P., The Transputer Based Navigation System - An Example of Testing
Embedded Systems, INMOS Technical note 2, November 1986.

Mattos, P., Program Design for Concurrent Systems INMOS Technical note 3§,
December 1986.

e
-

)

Y

IS S ;'.} Y

P4 t‘ b B

a
*,
a2

- = W
A R

o

Fa

197

o
2 » » o MMy %Y T PN S SR G SO CUSLCRCTRNN ¢
AR RO O A NN B KR AR OO K KR \0‘0‘1 ,u".l_) .t't.c'h NN K .o\c‘\.o My R ¥ 0y WSS Y0) 0 Sadl

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Uno R. Kodres, Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Daniel L. Davis, Code 52Dv
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Daniel Green, Code 20F
Naval Surface Weapons Center
Dabhlgren, VA 22449

Jerry Gaston, Code N24
Naval Surface Weapons Center
Dabhlgren, VA 22449

CAPT. J. Hood, USN

PMS 400BS

Naval Sea Systems Command
Washington D.C. 20362

RCA AEGIS Repository
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, NJ 08057

Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

No. Copies
2

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Dr. M. J. Gralia

Applied Physics Laboratory
John Hopkins Road
Laurel, MD 20702

Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

Estado Maior da Armada
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Diretoria de Ensino da Marinha
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington, DC 20016

Diretoria de Armamento e Comunicacoes da Marinha
Brazilian Naval Commission

4706 Wisconsin Ave., N\.W,

Washington, DC 20016

Instituto de Pesquisas da Marinha
Brazilian Naval Commission

4706 Wisconsin Ave., N.W.
Washington, DC 20016

Instituto Militar de Engenharia
Praia Vermelha, Urca

Rio de Janeiro, RJ

CEP 20000 , BRAZIL

Instituto Tecnologico da Aeronautica
Sao Jose dos Campos, SP
CEP 11000 , BRAZIL

Pontificia Universidade Catolica

R. Marques de Sao Vicente 225, Gavea
Rio de Janeiro, RJ

CEP 20000 , BRAZIL

Pete Wilson

INMOS CORPORATION

P.O. Box 16000

Colorado Springs, CO 80935-16000

David May

INMOS LTD.

1000 Aztec

West Almondsbury, Bristol, BS12 4SQ, UK

199

.

-~
Yy

. e .
LG

PRt

l."‘l B n.:! a X .;EMI;,'

22

23.

24.

25.

MAIJ/USAF R. A. Adams, Code 52Ad
Department of Computer Science
Naval Postgraduate School

Monterey, CA 93943

LCDR. J. Vanni Filho, Br. Navy
Brazilian Naval Commission (DACM)
4706 Wisconsin Ave., N.W,
Washington, DC 20016

LCDR. Gilberto F. Mota, Br. Navy
Brazilian Naval Commission (DACM)
4706 Wisconsin Ave., N.W.
Washington, DC 20016

LT. M. M. Cordeiro, Br. Navy
Brazilian Naval Commission { DACM)
4706 Wisconsin Ave., N.W.
Washington, DC 20016

200

PR

DO O A NN AT AR e, AT

N b M)

T g g % gl alt

A R O N N TN D S D U W O L A G

