
1r" 499 PROCEEDINGS OF THE WORKSHOP ON FUTURE DIRECTIONS IN /COMPUTER ARCHITECTURE.. (U) BATTELLE COLUMBUS LAOSRESEARCH TRIANGLE PARK NC D P ARAMRAL ET AL. 33 AUG 96NCRSFIED ARO-96394-EL DAA2-OL-D-S1SS FIG 12/5 ML

U.0.01
USN Lim' 1 j.

mivi

FL.-

11L 11 .61

11.6

RIC ILE-OEYProceedings

Il. Workshopo

Future Directions in Computer
Architecture ahd Software

May 5-7, 1986
Seabrook Issland D
charlston, SC DL IC

Workshop Chairman: SEP 1 7 L 19 7f
Prof. Dharma P. Agrawal

Electrical & Computer Engineering D
Box 7911

North Carolina State University
Raleigh, NC 27695-7911

Contract No. DAAG29-8 I-D-0100
Delivery Order 1974

Scientific Services Program

.

ARO Representative:

Dr. C. Ronald Green
Army Research Office

P.O. Box 12211

Research Triangle Park
North Carolina 27709-2211

The views, opiniom, and/or findings contained in this report are those of the
author(s) and should not be constructed 4s an official Department of the Army

position, policy, or decision, unless so designated by other documentation.

87 9 16 .1 1
V

UNCLASSIFIED MASTER COPY -FOR REPRODUCTION PURPOSES
SOCITY CLASSIFICATION OF; ?MIS AGE

REPORT DOCUMENTATION PAGE
I&a REPORETSECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASIFICATiON AUTHORITY 3. DISTRIBUTIONI/AVAILAGIUITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

86304-EL

6a. NAME OF PERFORMING ORANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Performed by Authorks): 1 (if applicable)
under subcontract to:j___

Battelle Columbus Laboratories U. S. Army Research Office

6C. ADDRESS (09ty. Stat a&d ZIP Code) 7b. ADDRESS (City. State, and ZIP Code)
200 Park Drive, P.O. Box 12297 .0Bo121

Research Triangle Park, NC 27709 Research Triangle Park, NC 27709-2211

$a. NAME OF FUNDING / SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if Dappli-1caDbl10e.

U. S. Army Research Of fice DA2-1D00
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS .

P. 0. Box 12211 PROGRAM ~PROJECT jTASK WOK UNIT
RsacTragePrN 270221ELEMENT NO. NO. NO. ACCESSION NO -

Reseach Tiangl Par, NC 770922111974 II
11. TITLE (include Security Classification)

Future Directions in Computer Architecture and Software

12 *1-Editor
Dharmpr P. Agrawal

13a. TYPE OF REPORT 1l3b. TIME COVERED 11.DT FREPORT (Year,MAoont%, Day) (S. PAGE COUNT
WORKSHOP FROM TO_114.DATETOF86/8/30 I 421

16. SUPPLEMENTARY NOTATION

This Scientific Services Program task was requested and funded by the Monitoring Agency.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by b/ock number)
FIELD GROUP SUB-GROUP Parallel Architectures, Granularity, Off-the-shelf versus

new chips, mapping algorithms to architectures, distributed
databases, distriguted operating systems, reusable and

'9 ABSTRACT (Continue on reverse if necessary and identiyby block number)

Topics covered (19) were discussed and comments regarding future d1irections were

accumulated.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIEDIUNUIMITED C3 SAME AS RPT. 0 TIC USERS %.

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOLJ

DD FORM 1473, &4 mAR 83 APR edition may be used untlehutd SECURITY CLASSIFICATION OF THIS PAGE k
All other editons are obsolete. -

UNCLASSIFIED

Proceedings
of the

Workshop

Future Directions in Computer
Architecture and Software

may 5-7, 1986
Seabrook Island
CharIston, SC

Workshop Chairman:

Prof. Dharma P. Agrawal
Electrical & Computer Engineering

Box 7911
North Carolina State University

Raleigh, NC 27695-7911

Contract No. DAAG29-8 I-D-0100
Delivery Order 1974

Scientific Services Program -)

I)LC TABI jU 12r~r;otI 'd

Li.z1....
...

ARO Representative: -7......
I .-,,2I . ,, - or

Dr. C. Ronald Greer
Army Research Office

P.O. Box 12211 % l"
Research Triangle Park L i J ,.

North Carolina 27709-2211

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be constructed as an official Department of the Army

position, policy, or decision, unless so designated by other documentation.

,

PREFACE aS

The U.S. Army Research Office (ARO) spgnsored Workshop on "Future Directions
in Computer Architecture AND software" convened on Mondays 5 May 1986.at the
Seabrook Conference Resort mn-Charleston, SC.-, LtC. Frank Ward, O-fftce of
Under Secretary of Defense, delivered the keynote address which contained
thought provoking examples and a challenge on the technological issues facing
the computer hardware and software technical community. A distinguished
speaker lecture was presented by Dr. Stephen F. Lundstrom, Vice-President and
Program Director of Parallel Processing at M4icroelectronics and Computer
Technology Corporation (MCC). ----

The workshop wa tt-ended by 95 professionals: five from government agencies,
22 from proe industry, and the remainer from various academic institutions.
Ov xty formal position papers were organized in 19 serial sessions for the
i ree day workshop. The final afternoon of the workshop was utilized to
establish definitive insights into the perceived future research thrusts in
computer hardware and software.

-- Topics presented in the position papers varied from VLSI design to retargetable
software and from database to graphics. A list of the topics discussed at the
workshop includes:

rLftstuction Set Considerations ,

Memory Hierrchy and Parallel Architecture
- Interconnection_ -- trtte9*.s-_, _"

5- 4 ReconfigurA1ttQn _trategies' -laiy issues. -____... ,..'

LMapping AlgOrithms and Task Assignment;
cReusable and Retargetable Software,''

IMIstributed Operating Systems
Concurrency Control, -

Distributed Computing Systm-ei

Architecture and Software s "es"

Logic and Functional ProgrammingT
VLSI Related Issues -. M
Applicative Language and Data Flow Techniaues

The objectives for this workshop were to inform the research community of the
research opportunities offered by the Army Research office (ARO) and to set
general directions and priorities for suture research sponsored by ARO. These
recommended research thrusts are included as part of these proceedings and
should prove helpful in focusing future researchers on research topics of
special interest to the Army.

..

C. Ronald Green
Workshop Sponsor
Army Research Office
Electronics Division

j:o %

Contents
Preface - C. Rciad Green

1. Keynote Address - Frank Ward 1

2. Instruction Set Considerations
I. Some Further Observatio about Reduced Instruction Set

Computers - DougasJensen 17
II. An Empirical Analysis of the Ulith Instruction Set - Robert Cook 21

III. High-Performance CPU Implementation of the Nebula Instruction

Set Architecture - Raymond Cheng 29

3. Custon Chips
I. The Arithmetic Cube and Its Associated Algorithm - Mary IrwinRobert Owens 38

Ii. The Design of Ultra High-Speed Numeric Intensive Systems
(having Fault Tolerant and Load Balancing Capabilities) - F. Taylor 48

III. Hardware Implementation of Special Functions: An Application

for Combat Simulation - John Gilmer, Jr. 55

4. Memory Hierarchy and Parallel Architecture

I. Research and Development Trends for Memory Hierarchies
- Alan J. Smith 62 ', ,'

Ii. Signal and Data Processing for IR Sensors - Doyce Satterfield, R.C. Styles 72
Ill. On Parallelism in Software/Hardware Design Tools - P.A. 6. N

S&a11mW)Qm 78
5. Interconnection Strategies

I. Role of Broadcasting in Multiprocessor Systems - Binay Sugla, Sudhir Ahuja 86

II. Image Texture Classification with an Optical Crossbar Interconnected

Processor - AlastairMcAulay 90

Ill. Multiple-Bus Interconnection for Future Multiprocessor

Systems - LN. Bhuyan 98

6. Reconfiguration Strategies

I. Automatically Reconfigurable Computer Architecture - F. Gail Gray 103

II. Implementation of a Buddy Failure Recovery Concept in the '-
NOVAC System - S.C. Des&i 114 %"".:.

Ill. Clouds: A Support Architecture for Fault Tolerant, Distributed

Systems - Partha Dasgupta, R.J. LeB/anc, Jr. 122

ii U !

7. Grainularity Issues
I. A Large-Grain Dataflow Architecture - Ian Kaplan 131

U1. SISAL Initial MIMD Performance Results - R.R. Oldehoeft, D.C. Cann,

S.J. A/an 139

8. Mapping Algort and Task Assignment
I. The Mapping of Parallel Algorithms to Reconfigurable Parallel

Architecture - Leah H. Jamieson, Howard J. Siegel, Edward Delp,

Ardrew I, fisthn 147

!1. A Distributed System Architecture Based on Macro Dataflow
Model - Jane W.S. Uu, Andrew Grimshaw 155

III. A Comparative Study of Heuristic Algorithms for Task Assignment
in Distributed Computing Systems - Kemal Efe 163

9. Reusable and Retargetable Software
I. Why Reusable Software rsnt - Wi/liam J. Tracz 171

II. Towards Reusale Software Designs and Implementations -
R30h E ..bhtWn SmTofl Kpkv 17

Ill. Archetyping -A Knowledge-Base Reuse Paradigm - S.M. Przybylinski 186

10. Distributed Operating Systems
1.* Distributed Control of Large Parallel Computers - Larry Wittie 195

II. The Design of Load Balancing Strategies for Distributed
Systems - Rafael Alonso 202

IlII. Experiments with Parallel Program Execution on a Network of
Workstations - Willy Zwaenepoel 208

11. Distinguished Lecture
I. Future Directions in Computer Architecture and Software -

The Year 2000 - Stephen Lundstrom 214

12. Concurrency Control
I. Distributed Query Processing - Present Status and Future

Direction - Clement Yu, KIC. Guh 220

I1. A Paradigm for Concurrency Control Performance Evaluation - A.A. Helal,
Ahmed Eknagarmid, A.R. Hurson 228

Ill. Concurrency Control and Reliability in Replicated Database

Systems - Mukesh Singhal 236

iii~9*~*- . - 'C 9

13. MIMD Parallelism and Support
1. Predicate Analysis for Parallel Program Generation - S. Szymanski 245

If. An Investigation of Parallelism in Rule Based Systems
Steven Ramej, DavidA Marsha# 253

III. Software Support for Heterogeneous Machines - Mario Salbacci 261
14. A. 1,nter connecon Stratgies/Distributed Computing Systems

1. The Case for a Shared Address Space - Edward Gehdfnger 270
11. The Next Generation of Hypercbe Computers - Trevor Mudge 273

Ill. A Paraflel Computer Based on Cube Connected Cycles - Moon J Chung,

E.J. Toy, A.A. Lobo 276
lv. An Analysis of the Reliability of Tree-Structured Interconnection

Networks - Ravi Mehrotra, Edward Gehringer 279
v. Performance Evaluation of a Loop Interconnection Structure - Edward Page 284

AI. On the Number of Task Assignments in Distributed Computing
Systems - Rang G. Shin 287

B. Architecture and Software Issues
1. Reuse: A Reliable Unified Service Environment for Distributed

Systems - Lionel M. Ni. Thomas Gendreau 290
11. Aspects of a Multiprocessor Architecture - R. Pose, M.S. Anderson,

C.S Waface 293
Ill. Directions in Computer Graphics Architecture - John Staudhammer 296
lv. Developing a Standard Taxonomy of Software Engineering

Standards - John W Fendath 299
v. SAGE: The Clemson University Systolic Array Generator - Roy Pargas,

Keith R. Allen 301

AI. Strategies for Concurrent Processing of Complex Algorithm-
John Sjohlon, Roland R. Meke 304

A~l. Portable (and Disposable) interpreters - F. Testard-Vaillant 307

C. Logic and Functional Programming
1. A Ruled-Based Lisp Dialect Translator Using Paranmodulation

Michael Dowell, Yoshiyasu Take fui 316
II. Semi-Appllcative Programming - N.S. Sridharan 319

Ill. Experimenting with Parallel Programming in Logic - Abraham Waksman 323
Iv. Parallel Architecture for Logic Programming -Vipin Kumar, Vow-Jian Lmn 326

i V

v. Real Time Artificial Intelligence Architecture - Peter Green,

Ronald J. Juels, William Michalson 328

15. A. Miscellaneous

I. A Strategy for Failure Prediction - D. Andrews 332

I1. Programming Language Translation for Multicomputers - Jon Mauney 334

Ill. Resilient Procedure: A Structured Replication Approach - Kwei-Jay Lin,

Mark E. Witte 336

B. VLSI Related Issues

I. Paralleism at the Microlevel: Cooperative Microcontroller Design

with Real Time Considerations - CA. Papachistou 340

II. Wafer Scale Implementation of a GaAs Systolic Signal Processor

Cell - John F. McDonald, et al. 343

Ill. Design for a TPL Compiler System - A System for Retargeting High Level

Language Programs - S. Leong, 0. Jiang, S. Jodld, P.A.D. de Maine 346

lv. A VLSI Implementable Block Oriented Data Driven Multiprocessor -

Behrooz Shirazi, A.R. Hurson 149

v. On Systolic Architectures for Interpolation and Integration - S./. Omar, e

G.H. Masea f 353

vi. An Applicative Programmers' Approach to Matrix Algebra,

Lessons for Hardw are and Software - David S. Wise 357 ',

C. Applicative Language and Data Flow Techniques

I. Implementing Logical Variables on a Graph Reduction Architecture -

Gary Lindstrom 361

II. Multi-Processor Reduction Machine Minimization - Jack L. Meador,

M.L. Manwaring 364

Ill. Massive Fine-Grain Parallelism in Array Computation - A

Data Flow Solution - Guang R. Gao 367

Iv. Automated Data Flow Diagram Verification - Reva Friedman, Waldo Kabat, " -

W Kozaczynski 370

v. Finely Grained Parallelism in an Applicative Architecture -

John T. OVonnell 372

16. Recommendations 375

17. Ust of Attendees 406 ,

18. Author Index 413

V,.,"

I

Session 1 Keynote Address

by

Frank Ward

Office of the Secretary of

Defense

Chalirperson: C. Ronald Green

Army Research Office

-v

,. ,."

"I

THANK YOU VERY MUCH FOR THE INVITATION TO SPEAK HERE TODAY. U

IT IS AN HONOR TO ADDRESS A SELECT GROUP SUCH AS THIS ONE. I AM

ESPECIALLY PLEASED SINCE I CAN APPROACH THE TOPIC OF THIS

CONFERENCE, FUTURE DIRECTIONS IN COMPUTER SOFTWARE AND

ARCHITECTURE FROM TWO PERSPECTIVES. FIRST, I CAN SEE THE

IMPORTANCE OF THE CONFERENCE FROM THE VIEWPOINT OF THE DEPARTMENT

OF DEFENSE, SINCE MY BOSS IS THE DIRECTOR OF COMPUTER SOFTWARE

AND SYSTEMS FOR THE DEPARTMENT. SECONDLY, AND MOST IMPORTANT, I

CAN TAKE THE VIEW OF AN ARMY OFFICER, KNOWING THAT THE ARMY AND

THE OTHER MILITARY SERVICES ARE TOTALLY DEPENDENT ON COMPUTERS TO

ACCOMPLISH OUR COMBAT MISSION. THERE ARE TWO VERY IMPORTANT

OUTPUTS EXPECTED FROM THIS CONFERENCE. THE FIRST IS INTANGIBLE.

IT IS THE SHARING OF KNOWLEDGE BETWEEN THE PARTICIPANTS WHICH

WILL ADVANCE THE GROUP'S LEARNING AND ABILITY. THE SECOND IS A

SET OF GROUP RECOMMENDATIONS ON RESEARCH TO BE PURSUED IN THE

AREAS WE'VE TALKED ABOUT IN THE CONFERENCE.

THE SCHEDULE FOR THE WORKSHOP IS AN AMBITIOUS ONE. WE HAVE

ELEVEN SESSIONS ADDRESSING IMPORTANT TOPICS SUCH AS DISTRIBUTED

AND PARALLEL HARDWARE AND SOFTWARE, REUSABLE SOFTWARE,

INTERCONNECTION STRATEGIES, CUSTOM HARDWARE, AND AN ISSUE NEAR

AND DEAR TO MY HEART, INSTRUCTION SET ARCHITECTURES.

-

. % , ' , ;,"., ..'% " "I -. € * - . ,'. ..'.', ',,',p' '. '.. ..'' . #" '., *'€ * ,r . , - -.- % .W- -.-.-. ,%-.-. .- 'p
"

.

WE ARE FORTUNATE TO HAVE AS OUR DISTINGUISHED SPEAKER DR.

STEVE LUNDSTROM, VICE PRESIDENT OF THE MICROELECTRONICS AND

COMPUTING CONSORTIUM. HE AND HIS COLLEAGUES ARE CONDUCTING FIRST

RATE RESEARCH IN AREAS IMPORTANT TO THIS CONFERENCE.

I AM HERE ON BEHALF OF MY BOSS, DR. EDWARD LIEBLEIN, WHO

FULLY INTENDED TO ACCEPT YOUR INVITATION, BUT WAS PREEMPTED BY A

SHORT FUSED COMMITMENT AT THE LAST MOMENT. HE SENDS HIS

REGRETS. HE AND THE DEPUTY UNDER SECRETARY OF DEFENSE FOR

RESEARCH AND ADVANCED TECHNOLOGY, APPRECIATE THE OPPORTUNITY TO

SHARE OSD'S VIEWPOINTS WITH YOU, AND THEY UNDERSTAND THE

IMPORTANCE OF COMPUTERS TO OUR MISSION TO PROTECT THE SECURITY OF

THE UNITED STATES.

THIS IS A VERY IMPORTANT CONFERENCE BECAUSE IT ADDRESSES THE

FUTURE OF OUR MILITARY USE OF COMPUTERS. YOU PROBABLY KNOW THAT

VIRTUALLY EVERY SYSTEM WE PLAN TO FIELD IN THE NEXT FEW YEARS IS

CRITICALLY DEPENDENT ON ONE OR MORE COMPUTERS TO GET THE JOB

DONE. WE WERE WORKING ON SOME REMARKS FOR THE UNDER SECRETARY OF

DEFENSE FOR RESEARCH AND ENGINEERING, DR. DON HICKS, AND WE CAST

ABOUT FOR A SYSTEM THAT DID NOT USE A COMPUTER. WE FOUND ONE,

AND IT WAS THE M-16 RIFLE. OF COURSE, THAT RIFLE WAS PROBABLY

DESIGNED WITH THE HELP OF A COMPUTER, SO IT MAY NOT BE A VALID

EXAMPLE. AS A MEASURE OF JUST HOW DEPENDENT WE ARE ON COMPUTERS

IN OUR MILITARY SYSTEMS, WE ESTIMATE THAT THE THREE SERVICES HAVE

185000 COMPUTERS IN SERVICE RIGHT NOW, AND THAT THE NUMBER WILL

3

° o ° ..

'Im

DOUBLE IN THE NEXT FOUR YEARS. BY THE WAY, THAT NUMBER DOES NOT

INCLUDE MICROPROCESSORS. THE AIR FORCE'S F-15 EAGLE FIGHTER

AIRCRAFT HAS OVER 60 MICROPROCESSORS ON BOARD.

IT'S OBVIOUS THAT SINCE VIRTUALLY EVERY DEFENSE SYSTEM

DEPENDS ON COMPUTERS TO GET THE JOB DONE, THEY ALSO DEPEND ON

SOFTWARE. THERE HAVE BEEN GREAT ADVANCES IN COMPUTER HARDWARE,

BUT THE SOFTWARE JUST HAS NOT KEPT UP. OUR SYSTEMS ARE PLAGUED N.

WITH PROBLEMS THAT ARE ATTRIBUTED TO SOFTWARE. a'

MUCH OF OUR SOFTWARE HAS DEFECTS THAT ARE NOT FOUND UNTIL

THE SOFTWARE IS FIELDED, WHEN THE COST OF CORRECTING THE ERROR

CAN BE 100 TIMES THAT TO CORRECT AN ERROR FOUND IN THE DESIGN OR

CODING PHASE. ONE REASON FOR THIS SITUATION IS THE VERY

COMPLEXITY OF THE SOFTWARE IN OUR MISSION-CRITICAL SYSTEMS. DoD

SYSTEMS USE SOME OF THE MOST COMPLEX SOFTWARE EVER ATTEMPTED. IT

IS VIRTUALLY IMPOSSIBLE TO RIGOROUSLY TEST EVERY SECTION OF CODE

BEFORE THE SYSTEM GETS FIELDED. MOST DOD SOFTWARE SYSTEMS ARE

OVER A MILLION LINES OF SOURCE CODE. THAT MAKES IT VIRTUALLY

IMPOSSIBLE FOR ANY ONE OR EVEN A SMALL GROUP OF PEOPLE TO

UNDERSTAND WHAT THE SYSTEM IS DOING. OTHER PROBLEMS ARE CAUSED

BY THE PREVALENCE OF ASSEMBLY LANGUAGE IN MILITARY SYSTEMS. a'

UNTIL WE CAN GET THE BULK OF OUR SOFTWARE DONE IN A MODERN HIGH

ORDER LANGUAGE THAT PROVIDES STRUCTURE AND EASE OF UNDERSTANDING,

WE WILL CONTINUE TO HAVE HUGE, POORLY DOCUMENTED PROGRAMS THAT

ARE FILLED WITH BUGS. MILITARY SOFTWARE IS STILL DONE IN A

HIGHLY LABOR INTENSIVE WAY. UNTIL WE CAN BRING A DEGREE OF

14/

, .q..-.- . ~~ a a

AUTOMATION TO THE SOFTWARE DESIGN, CODING, MAINTENANCE AND

MANAGEMENT PROCESSES, WE WILL CONTINUE TO LAG BEHIND IN OUR

EFFORTS TO PROVIDE RELIABLE SOFTWARE TO OUR FORCES IN THE FIELD.

THE PROBLEM WITH SOFTWARE PEOPLE WILL ONLY GET WORSE. THE UNITED

STATES AS A WHOLE IS CURRENTLY SHORT 50-100,000 SOFTWARE

PROFESSIONALS. BY 1990, THE SHORTAGE WILL GROW TO OVER 1

MILLiON. WE MUST INCREASE THE PRODUCTIVITY OF THESE SCARCE

lowPROFESSIONALS. WE HAVE ANOTHER SERIOUS PROBLEM WITH OUR

SOFTWARE. IT COSTS TOO MUCH. THIS YEAR, DOD WILL SPEND ABOUT

$10 BILLION ON TACTICAL SOFTWARE ALONE. THIS DOES NOT INCLUDE

THE SOFTWARE FOR OUR BUSINESS ADP SYSTEMS. WE ESTIMATE THAT BY

1990, WE WILL SPEND $30 BILLION A YEAR ON THE SOFTWARE FOR THESE

SYSTEMS. THAT'S OVER 10% OF THE ENTIRE DEFENSE BUDGET, AND WE

CAN'T AFFORD IT. ANOTHER CONTRIBUTOR TO THE SOFTWARE CRISIS IS

THE OLD TECHNOLOGY WE USE IN DEVELOPING AND MAINTAINING MISSION

SOFTWARE. THIS OLD TECHNOLOGY IS NOT LIMITED TO THE HIGH USE OF

ASSEMBLY LANGUAGE, BUT SPANS THE WHOLE SOFTWARE LIFE CYCLE.

NOW THAT I'VE GOTTEN THE GLOOM AND DOOM OFF MY CHEST, WHAT

DO WE PLAN TO DO ABOUT IT? OUR RESPONSE TO THE SOFTWARE CRISIS

IS THE DOD SOFTWARE INITIATIVE. THE INITIATIVE IS ORGANIZED AT

THE DOD LEVEL BECAUSE THE PROBLEM COVERS ALL OF DOD. WHEN YOU

CONSIDER DOD AS A WHOLE, WE ARE THE LARGEST SINGLE BUYER OF

SOFTWARE IN THE WORLD, HENCE WE CAN INFLUENCE THE MARKET AND THE '4S T
STATE OF PRACTICE IF WE ACT TOGETHER. WE ALSO FEEL THAT AN

INITIATIVE MANAGED AT DOD WILL PROVIDE THE CRITICAL MASS OF

PEOPLE AND FUNDING THAT THE PROBLEM DEMANDS. THE GOAL OF OUR

5

INITIATIVE IS TO DEVELOP ADVANCED METHODS, TECHNIQUES AND TOOLS

TO REDUCE COSTS, SHORTEN SCHEDULES, AND IMPROVE THE RELIABILITY

AND ADAPTABILITY OF FUTURE MISSION-CRITICAL SOFTWARE.

IT IS CRITICAL TO THE SUCCESS OF THE DOD SOFTWARE INITIATIVE

THAT WE INVOLVE ALL OF THE SERVICES AND AGENCIES. WE WILL FAIL

IF WE ALLOW THE INTERESTS OF ONE COMPONENT TO PREDOMIN'ATE AT THE

EXPENSE OF THE OTHERS. WE MUST MOTIVATE INDUSTRY TO INVEST ITS

SKILLS AND FUNDS IN THE SOFTWARE INITIATIVE IF WE ARE TO HAVE A

SIGNIFICANT EFFECT ON THE PROBLEMS FACING US. WE MUST ALSO

COORDINATE THE SOFTWARE INITIATIVE WITH OTHER HIGH LEVEL NATIONAL

INITIATIVES SUCH AS THE STRATEGIC COMPUTING PROGRAM, AND THE

VHSIC PROGRAM.

THE SOFTWARE INITIATIVE HAS THREE COMPONENTS. THEY ARE THE

ADA COMMON HIGH ORDER LANGUAGE EFFORT, THE SOFTWARE TECHNOLOGY

FOR ADAPTABLE, RELIABLE SYSTEMS OR STARS PROGRAM AND THE DOD

SOFTWARE ENGINEERING INSTITUTE. I'LL NOW GIVE A BRIEF OVERVIEW

OF EACH.

THE ADA PROGRAM IS DOD'S EFFORT TO PROVIDE A SINGLE,

POWERFUL HIGH ORDER PROGRAMMING LANGUAGE FOR ALL MISSION-CRITICAL

SYSTEMS. THE NEED FOR A STANDARD LANGUAGE WAS MOTIVATED BY THE

PROLIFERATION OF OVER 400 LANGUAGES AND INCOMPATIBLE DIALECTS IN

USE IN OUR SYSTEMS. THIS PROLIFERATION LED A POOR SUPPORT BASE

FOR FIELDED SOFTWARE DUE TO THE EXPENSE OF SUPPORT TOOLS

ADDITIONALLY, THE HIGH ORDER LANGUAGES IN USE BEFORE ADA WERE

6 .

GENERALLY UNSATISFACTORY FOR REAL TIME SYSTEMS. THE RESULT WAS

HIGH COSTS, EXTENDED SCHEDULES (ONE SYSTEM HAD A 48 MONTH

SCHEDULE EXTENSION DUE TO SOFTWARE), FAILURES IN FIELDED SYSTEMS,

AND VERY LIMITED FLEXIBILITY. THE DEPARTMENT THEN UNDERTOOK A

JOINT EFFORT TO DEVELOP REQUIREMENTS FOR A STANDARD LANGUAGE,

DETERMINED THAT A NEW LANGUAGE WOULD BE NEEDED AND EMBARKED ON

LANGUAGE DEVELOPMENT EFFORT. IN AN EXCEPTIONALLY OPEN

DEVELOPMENT PROCESS, FOUR COMPETITIVE DESIGNS WERE NARROWED TO

TWO AND THEN TO ONE BETWEEN 1977 AND 1980. IN THE PROCESS, OVER

7000 COMMENTS AND RECOMMENDATIONS WERE RECEIVED FROM SOFTWARE

EXPERTS IN 15 NATIONS. THE RESULTING LANGUAGE DESIGN WAS ADOPTED

AS MILITARY STANDARD 1815 AND AN AMERICAN NATIONAL STANDARDS

INSTITUTE STANDARD IN JANUARY 1983. ADA HAS SOME INTERESTING

SOFTWARE ENGINEERING FEATURES THAT MAKE IT ESPECIALLY USEFUL FOR

LARGE SCALE, LONG LIVED, COMPLEX SYSTEMS. (REMEMBER THE AVERAGE

LENGTH OF OVER A MILLION LINES OF SOURCE CODE PER SYSTEM.) IT IS

ORIENTED TOWARD SPECIFICATION AND DESIGN, AND IS THEREFORE IN USE

IN MANY SYSTEMS AS A PROGRAM DESIGN LANGUAGE. IT IS STRONGLY

MODULAR IN NATURE AND USES STRUCTURES CALLED PACKAGES AS SOFTWARE

BUILDING BLOCKS AND TASKS TO SPECIFICALLY PROMOTE CONCURRENT

EXECUTION. IT HAS SPECIFIC FEATURES FOR HANDLING HARDWARE OR -.... ,

SOFTWARE FAILURES, AND THUS CAN BE USED TO PERMIT GRACEFUL

DEGRADATION IN THE PRESENCE OF COMPONENT FAILURES, RATHER THAN

TOTAL SYSTEM FAILURE. IT IS A STRONGLY TYPED LANGUAGE AND HAS

EXTENSIVE FEATURES FOR COMPILE TIME CHECKING. ITS MODULES CAN BE

SEPARATELY COMPILED, FACILITATING THE SOFTWARE MAINTENANCE

PROCESS. IT ALSO HAS SPECIFIC FEATURES FOR INTERACTING WITH THE

jo:..
"h " ..m ' % m ' , " % '" ' " " w ..' " % ' .., ,g ' "i . , , 4 , W . W 4'w - "% " " ' " .L " ' g " " " , 4 ,""7'

TARGET COMPUTER'S HARDWARE, THUS MOVING AWAY FROM THE NEED FOR

ASSEMBLY LANGUAGE.

THE UNDER SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING

HAS DIRECTED THAT ADA WILL BE USED AS THE PROGRAMMING LANGUAGE

FOR ALL MISSION-CRITICAL SYSTEMS. WE CONTROL THE LANGUAGE BY

SEVERAL MEANS. FIRST WE HAVE A REGISTERED TRADEMARK FOR THE

NAME, AND WE ONLY ALLOW USE OF THE NAME ADA ON SOFTWARE SYSTEMS %

THAT HAVE PASSED THE ADA VALIDATION TESTS. THESE TESTS CONSIST

OF OVER 2500 PROGRAMS, AND DETERMINE THAT A COMPILER HAS FULLY

IMPLEMENTED THE STANDARD DEFINITION OF THE LANGUAGE. WE WILL

PERMIT NO SUBSETS OR SUPERSETS OF THE LANGUAGE, SINCE EITHER

WOULD PUT US RIGHT BACK WHERE WE WERE WITH A HOST OF INCOMPATIBLE

DIALECTS.

THE ADA PROGRAM HAS BEEN A TREMENDOUS SUCCESS AND WE ARE

VERY PROUD OF ITS ACCOMPLISHMENTS. IT HAS BEEN SELECTED FOR USE

IN OVER 130 DEFENSE SYSTEMS. IT HAS BEEN ADOPTED FOR USE IN THE

DEFENSE SYSTEMS OF THE UNITED KINGDOM, CANADA, THE FEDERAL

REPUBLIC OF GERMANY, SWEDEN, AND FOR COMMAND AND CONTROL SYSTEMS ,Jm

ILINA
IN THE NATO ALLIANCE. IT WILL BE USED IN THE NASA SPACE STATION

FLIGHT SOFTWARE, IN FAA UPGRADES, AND IN SIMILAR EFFORTS IN THE

CANADIAN AVIATION ADMINISTRATION. IT WILL BE USED IN BOEING'S NEW

AIRPLANE, THE 7J7. THIRTEEN DIFFERENT COMPANIES HAVE DEVELOPED

29 VALIDATED COMPILERS. SOME OF THESE COMPILERS ARE COMPETITIVE

8-.

IN TERMS OF SPEED AND CODE EXPANSION RATIOS TO COMPILERS FOR

MATURE LANGUAGES. THERE ARE FIVE COMPILER VALIDATION FACILITIES,

TWO IN THIS COUNTRY AND THREE IN EUROPE.

EXPERIMENTAL RESULTS FROM USE OF THE LANGUAGE TO RECODE

EXISTING PROGRAMS HAVE BEEN VERY ENCOURAGING. THE FLIGHT CONTROL

PROGRAMS FOR THE F-15 EAGLE AND F-20 TIGERSHARK FIGHTER AIRCRAFT

WERE RECODED IN ADA, WITH DRAMATIC REDUCTIONS IN SOURCE CODE

SIZE, AND TEST MISSIONS SUCCESSFULLY FLOWN. THE UNITREP PROGRAM

FROM THE WORLD WIDE MILITARY COMMAND AND CONTROL SYSTEM WAS

RECODED FROM THE ORIGINAL COBOL INTO ADA. THE ORIGINAL 60000

LINES OF COBOL CODE WERE REDUCED TOO 5000 LINES OF ADA. THE ,.

STRATEGIC AIR COMMAND'S MOBILE INFORMATION MANAGEMENT SYSTEM WAS

RECODED FROM JOVIAL INTO ADA WITH A REDUCTION FROM 130,000 LINES

TO 8100 LINES OF CODE. AN INTERESTING OBSERVATION IS THAT OVER

HALF OF THE COBOL STATEMENTS IN THE WWMCCS PROGRAM WERE DATA

CHECKING STATEMENTS THAT ADA'S STRONG TYPING ELIMINATES WITH

COMPILE TIME CHECKING.
A*

THE SECOND COMPONENT OF THE DOD SOFTWARE INITIATIVE IS

THE SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS, OR STARS

PROGRAM. IT SEEKS TO IMPROVE DOD'S ABILITY TO PROVIDE RELIABLE,

COST EFFECTIVE MISSION-CRITICAL SOFTWARE BY AN ORDER OF

MAGNITUDE. THE STARS EFFORT WILL BRING A HIGH DEGREE OF

AUTOMATION TO THE SOFTWARE DEVELOPMENT, MANAGEMENT AND

MAINTENANCE PROCESSES. IT WILL PROMOTE THE REUSE OF PROVEN • , "

PIECES OF CODE, IMPROVE THE PRODUCTIVITY OF THE SOFTWARE

PROFESSIONAL WORK FORCE BY AUTOMATION AND IMPROVED TRAINING. IT

WILL IMPROVE THE WAY WE ACQUIRE SOFTWARE. IT WILL ALSO PROMOTE %,

RAPID PROTOTYPING OF SOFTWARE SYSTEMS TO BRING THE USER,

DESIGNER AND PROGRAMMER TOGETHER EARLY IN THE SOFTWARE LIFE

CYCLE.

A KEY TO AUTOMATING THE SOFTWARE PROCESS IS THE USE OF

SOFTWARE ENGINEERING ENVIRONMENTS, CALLED SOFTWARE FACTORIES BY -

SOME. THESE ENVIRONMENTS ARE INTEGRATED COLLECTIONS OF SOFTWARE

TOOLS THAT DO MUCH OF THE WORK PREVIOUSLY DONE IN A MANUAL AND

TIME CONSUMING WAY BY THE PROGRAMMER. THE ENVIRONMENTS TO BE

USED FOR DEFENSE SOFTWARE MUST FACILITATE THE PORTABILITY OF

SOFTWARE BETWEEN THE ENVIRONMENT USED BY THE CONTRACTOR, AND THE

ENVIRONMENTS USED IN GOVERNMENT POST DEPLOYMENT SUPPORT CENTERS.

WE MUST BE ABLE TO TRANSPORT MISSION SOFTWARE, SUPPORT TOOLS, AND

PROGRAMMERS, OR WE WILL BE UNABLE TO MEET THE REQUIREMENTS OF THE

90'S.

ONE WAY TO ENSURE THE TRANSPORTABILITY OF SOFTWARE BETWEEN

ENVIRONMENTS IS TO INSIST ON THE USE OF STANDARD ENVIRONMENTS.

THE USE OF A STANDARD ENVIRONMENT HAS THE ADVANTAGE OF PROVIDING

THE PORTABILITY DESIRED, BUT TENDS TO STAGNATE THE TECHNOLOGY,

LOCKING YOU IN TO THE STANDARD. IT ALSO CARRIES RISKS OF HIGH

COSTS, DELAYS AND POOR QUALITY. IT WILL TEND TO DISCOURAGE

INDUSTRY FROM INVESTING IN THE TECHNOLOGY, SINCE THEY FAR PREFER

TO USE THEIR OWN PRODUCTS. THE OTHER EXTREME, THE LAISSEZ-FAIRE

OR NO STANDARDS APPROACH HAS THE ADVANTAGE OF A LARGE NUMBER OF

10

QUALITY ENVIRONMENTS DEVELOPED BY INDUSTRY, BUT PROVIDES LIMITED

TRANSPORTABILITY BETWEEN ENVIRONMENTS. PERHAPS THE BEST APPROACH

IS TO STANDARDIZE ON THE INTERFACES OF THE TOOLS TO THE

ENVIRONMENT, AND ON ADA AS THE BASELINE FOR THE ENVIRONMENTS.

THIS PROVIDES THE TRANSPORTABILITY (THROUGH STANDARD INTERFACES),

CREATES A ROBUST MARKETPLACE FOR COMPONENTS OF THE ENVIRONMENTS,

FACILITATES HIGHER QUALITY PRODUCTS, REDUCES COST, PROVIDES FOR 4
CONTINUAL UPGRADE OF THE ENVIRONMENT AND ITS COMPONENTS AND GETS

"n .v

THE PRODUCTS TO THE FIELD FASTER. m:

THE STARS PROGRAM HAS HAD SOME SUCCESS IN THE AREAS OF

REUSABILITY AND SOFTWARE ACQUISITION. IN SOFTWARE REUSABILITY,

WE SUPPORTED A PROGRAM CALLED COMMON ADA MISSILE PACKAGES OR
CAMP. THE CAMP PEOPLE FOUND THAT THERE ARE CERTAIN PRIMITIVE

FUNCTIONS PERFORMED BY ALL MISSILES. THEY THEN CODED THESE

PRIMITIVES IN ADA USING STANDARD INTERFACE DEFINITIONS AND STORED

THEM IN A REPOSITORY OF REUSABLE PARTS. IN SOFTWARE ACQUISITION

WE HAVE PROTOTYPED AND DEMONSTRATED A SOFTWARE ACQUISITION

MANAGERS WORKSTATION.

THE THIRD COMPONENT OF THE SOFTWARE INITIATIVE IS THE

SOFTWARE ENGINEERING IASTITUTE. IT TAKES, ON THE AVERAGE FROM

15-20 YEARS TO GET A NEW SOFTWARE ENGINEERING CONCEPT FROM THE

LABORATORY INTO USE. REASONS FOR THIS LONG PERIOD OF TRANSITION -.,

FOCUS ON RELUCTANCE TO USE NEW IDEAS, AND A DIFFICULTY IN SCALING

UP THE CONCEPT FROM USE ON SMALL LABORATORY PROJECTS TO USE IN F.CU

LARGE SCALE SYSTEMS. THE SOFTWARE ENGINEERING INSTITUTE WAS .-

'A

CREATED TO BRING THE ABLEST PROFESSIONAL MINDS AND THE MOST

EFFECTIVE TECHNOLOGY TO BEAR ON THE RAPID IMPROVEMENT OF THEW

QUALITY OF SOFTWARE. IT WILL ACCELERATE THE TRANSITION OF NEW

TECHNOLOGY INTO USE IN DEFENSE SOFTWARE, PROMOTE THE USE OF

MODERN TECHNIQUES AND METHODS, AND ESTABLISH STANDARDS OF

EXCELLENCE FOR SOFTWARE ENGINEERING PRACTICE. IT IS A NEW

FEDERAL CONTRACT RESEARCH CENTER, ESTABLISHED IN DECEMBER 1985 AT

CARNEGIE-MELLON UNIVERSITY. IN ITS FIRST YEAR, IT HAS STAFFED UP

TO 100 PROFESSIONAL STAFF MEMBERS, AND COMPLETED SIGNIFICANT

PROGRAM PLANNING. IT HAS EVALUATED SEVERAL EXISTING ADA

ENVIRONMENTS, COMPLETED A RIGOROUS STUDY OF RIGHTS IN DATA

ISSUES, DEVELOPED A MASTER OF SOFTWARE ENGINEERING CURRICULUM,

ESTABLISHED AN AFFILIATES PROGRAM WITH INDUSTRY AND HAS STARTED a

ON A SHOWCASE SOFTWARE ENGINEERING ENVIRONMENT.

THE DOD SOFTWARE INITIATIVE HAS A VISION OF THE FUTURE,

WHICH HAS DOD MEETING ITS MISSION-CRITICAL REQUIREMENTS WITH THE

NEEDED QUALITY, ON TIME, AT REASONABLE COST AND DOING SO

ROUTINELY AND PREDICTABILITY. WE SEE MARKET PLACES EXISTING IN

SOFTWARE TOOLS, METHODS AND ENVIRONMENTS, AND IN REUSABLE

SOFTWARE COMPONENTS. DOD WILL BE AN INTELLIGENT SOFTWARE BUYER.

INDUSTRY AND THE DEPARTMENT WILL HAVE THE ABILITY TO RAPIDLY

ESTABLISH UP TO DATE, POWERFUL, INTEGRATED SOFTWARE ENGINEERING

ENVIRONMENTS AS THEY ARE REQUIRED, AND THE COST OF

MISSION-CRITICAL SOFTWARE WILL BE REDUCED BY A FACTOR OF 100.

12
? ~ .* -I

WE ALSO FACE EQUALLY CHALLENGING PROBLEMS FOR THE FUTURE IN

COMPUTER HARDWARE. WE HAVE VALID REQUIREMENTS FOR COMPUTERS THAT

CAN RUN AT SPEEDS OF BILLIONS OF OPERATIONS PER SECOND, BUT FIT
d'

IN THE SAME OR SMALLER SPACES THAN TODAY'S SYSTEMS. THERE HAVE

BEEN TREMENDOUS ADVANCES IN CIRCUITRY RESULTING IN ORDERS OF .h-

MAGNITUDE SPEED IN COMPUTER PERFORMANCE, BU.Y WE ARE APPROACHING

THE BARRIER IMPOSED BY THE SPEED OF LIGHT IN SIGNAL PROPAGATION

WITHOUT ACHIEVING THE SPEEDS WE'LL NEED IN THE 1990'S. THE

ANSWER APPEARS TO BE PARALLEL PROCESSING, ONE OF THE IMPORTANT

ISSUES ADDRESSED BY THIS CONFERENCE. HOWEVER, THERE ARE SERIOUS,

OPEN ISSUES FACING US BEFORE WE CAN GET PARALLEL PROCESSING INTO

WIDE USE.

ONE OF THE MOST IMPORTANT QUESTIONS IS HOW DOES ONE PROGRAM

A PARALLEL MACHINE TO GET THE MOST OUT OF IT? ARE EXISTING

LANGUAGES ADEQUATE? ADA HAS SPECIFIC FEATURES TO SUPPORT

CONCURRENT EXECUTION BY THE USE OF TASKS AND RENDEZVOUS

STATEMENTS. WILL THESE BE ADEQUATE? LISP HAS BEEN EXTENDED TO

PROGRAM THE CONNECTION MACHINE, A HIGHLY PROMISING MACHINE

DEVELOPED FOR DARPA THAT FEATURES 64000 PROCESSORS CONNECTED BY A

DYNAMIC COMMUNICATIONS NETWORK. OTHER QUESTIONS ARE HOW DO YOU

DETECT THE OPPORTUNITY FOR PARALLELISM IN AN ALGORITHM AND

PARTITION IT CORRECTLY? HOW DO YOU CONNECT THE PROCESSING

ELEMENTS TO PROVIDE THE NEEDED COORDINATION WITHOUT TYING DOWN

THE MACHINE WITH THE COMMUNICATIONS OVERHEAD? WILL WE BE ABLE TO

RETARGET EXISTING SOFTWARE TO PARALLEL MACHINES? ,.

13

BEFORE WE GET TO THE TIME WHEN WE HAVE PARALLEL

ARCHITECTURES IN PLACE IN OUR SYSTEMS, WE MUST BE CONCERNED WITH PIP

WHAT WE DO WITH THE ARCHITECTURES AVAILABLE TO US TODAY. WE KNOW

THAT INSTRUCTION-SET ARCHITECTURE STANDARDIZATION PROVIDES FOR

COMMONALITY AND EASE OF REPAIR IN THE FIELD, BUT IT IS

POLITICALLY UNPOPULAR BECAUSE IT IS PERCEIVED AS DISCOURAGING

COM"ETITION. IS THEA A WAY TO GET THE BENEFITS OF

INSTRUCTION-SET STANDARDIZATION WITHOUT PAYING THE PENALTIES? ON

THE TECHNICAL SIDE, WHAT DO WE DO ABOUT OUR ARCHITECTURES? IS THE

REDUCED INSTRUCTION-SET COMPUTER OR RISC THE WAY TO GO? I

REMEMBER RECEIVING A NASTY SHOCK WHEN THE ADA COMPILER WE WERE

FOOLING AROUND WITH ON THE NEBULA ARCHITECTURE WE USED ON THE

MILITARY COMPUTER FAMILY PROJECT ABSOLUTELY REFUSED TO GENERATE

THE BEAUTIFUL INSTRUCTIONS I HAD INSISTED ON INCLUDING, BUT CHOSE

THE PLAIN OLD SIMPLE ONES INSTEAD. WE HAVE A SESSION ON

INSTRUCTION SETS IN THE CONFERENCE, AND I LOOK FORWARD TO

PARTICIPATING.

THIS CONFERENCE HAS AN OPPORTUNITY TO ADDRESS THE GREATEST

CHALLENGES WE FACE IN PROVIDING OUR MILITARY FORCES THE

CAPABILITY TO OVERCOME AN ENEMY WHO OUTNUMBERS US AT LEAST 10 TO

ONE IN ALL THE AREAS THAT MATTER. I CAN TELL YOU AS AN ARMY

OFFICER THAT WE WILL ONLY PREVAIL IF WE CAN DO MORE THAN TALK

ABOUT COMBAT MULTIPLIERS. OUR NATIONAL SECURITY DEPENDS ON

PEOPLE LIKE YOU WHO CAN BRING OUR GREAT RESOURCES IN TECHNOLOGY -

TO BEAR ON THE PROBLEMS WE FACE.

14

PIP

4/

THANK YOU AGAIN FOR THE OPPORTUNITY TO SPEAK TO YOU. I'M

LOOKING FORWARD TO SHARING A SUCCESSFUL ONFERENCE WITH YOU.

THANK YOU VERY MUCH. ARE THERE ANY QUESTIONS?

% vp

15i

I -

%',

'.-

'P P

'V
15V

Session 2: Instruction Set Considerations

Chairperson: C. A. Papachristou

Case Western Reserve University

16

Some Further Observations about
Reduced Instruction Set Computers

A Position Paper for the Army Research Office Workshop on
Future Directions in Computer Architecture,

April 1986

E. Douglas Jensen

COMPUTER SCIENCE DEPARTMENT

ELECTRICAL AND COMPUTER ENGINEERING 1EPARTMENT pg

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PA 15213

41 2-268-2574

In previous publications (e.g., Colwell et al.), we have attempted to present a relatively impartial ,/

view of the "Reduced Instruction Set Computer (RISC)/Complex Instruction Set Computer (CISC)" "OF

debate. This abstract summarizes a few additional observations about the RISC/CISC controversy, .
with the objective of stimulating some thought in an area where more would clearly help.

The RISC design philosophy includes some significant and potentially valuable challenges to many

of the implicit assumptions which have guided computer design for many years. Examples of these

assumptions and challenges include:

*'!f some of the instructions are best implemented in microcode, then all of them are or at

least can reasonably be.' Hard-core RISC people argue that all instructions should ex-
ecute in a single cycle and thus there should be no microcode (un!ess you want to think .
of the machine language as being elementary microcode stored in main memory). A
non-dogmatic view would be that vertical microcode is frequently no longer cost-effective
for simple instructions, but that in many cases multicycle instructions are appropriate,
perhaps some microcoded and some hardwired, and that complex instructions (whether
microcoded or hardwired) need not slow down the execution of simple ones.

'The dichotomy between instruction set architecture and its implementation (which was
one of the important contributions of the IBM System/360 family) is invariably the correct ,".-

design style.' RISC designs deliberately discard this distinction - for example, making
implementation mechanisms such as caches and pipelines explicitly visible and con-
trolled at the instruction set architecture level. It is probably clear to everyone that there .

are certain performance advantages to he gained by this, but it is not obvious that these
always outweigh the disadvantages. In a world where compatibility of system and up.
plication software is a mainstay, and a family of compatible machinc is the primary
vehicle for accomodating a wide range of cost/performance requirements, and any par.

.5%,

1Colwell. Robert P., Charies Y. Hitchcock III, E Dmti'qlas Jensen, Charles Kollar. and ii. Brinkley Spruitl. cumputers.
Comptexity, and Controversy, Comouvr., September 198i5, IEEE.

17

-Ii

ticular machine is expected to perform well on a wide variety of commercial and scientific
applications, the RISC approach of creating every computer architecture and implemen-
tation anew has problems. It is worth noting that the DoD effort to have several contrac-
tors competitively develop military computers based on the MIPS design includes the
definition of a new level of standardization: an intermediate language as the target for ahf
compilation, which is then translated into machine code performing low level resource
management (e.g., pipeline scheduling, register allocation, cache control) optimally for
each different MIPS implementation.

Such self-examination brought on in the computer systems design community by the RISC school of

thought is refreshing and welcome. However, scientific objectivity and rationality have been all but

swept away in the deluge of public relations fanfare generated lately by marketing, media, and even

engineering advocates of RISC's (for various electro-political reasons). The CISC camp has allowed .

this to be a rather one-sided debate by largely maintaining its unfortunate historic low visibility of

rationale, and by having a less coherent position not readily articulated in slogans. Some activists in

the RISC movement apparantly are deliberately attempting to polarize the situation, but we believe

that there is a silent majority of computer systems designers who are wisely and impartially awaiting ,

sufficient credible evidence before adopting positions appropriate for their circumstances inbetween %

tihc cndpointc of this art!ficia! r!S,_C/C!SC dichotomy.

The theologically purist RISC researchers have put forth not only some stimulating departures from

orthodoxy, but also some misleading assertions about both their approaches and their results. Many .-,

RISC study publications have left much to be desired in scientific and engineering credibility, perhaps

constituting a local minimum in the area of computer architecture; even if all their assertions were -

eventually to be proven totally correct, that would not excuse the poor quality of investigation and

reporting. It is peculiar that high quality products like the Encyclopedia Britannica and Kirby vacuum

cleaners are marketed using questionable tactics; the most skeptical observers no doubt believe that -1

the RISC viewpoint deserves better treatment from its proponents and the media.

A few computer corporations are employing a small subset of carefully selected RISC perspectives

in what, for a variety of technical and nontcchnical reasons, may eventually prove to be technically -,

and economically viable products. Then both the researchers and the companies make exagerated

claims that the work of each validates that of the other. ',-'
"'

It is revealing to compare: the Stanford MIPS with its MIPS Computer Corp. and DoD contractor

(Honeywell, RCA, Rockwell) counterparts; the IBM 801 with the RT PC and ROMP chip inside; the V.7.

Rerkeley RISC I and II with any commercially available RISC products such as the HP Spectrum, and -'*.-.,-,

lh,. marketingj hype-"RISC" sytems from Ridee, Pyramid, Convex, Sperry, Harris, and others with any

,f the threu ri..eoring RI'G" rusoarch nzihines. 5

18

_..

Some of the central ic. , ,! or the RISC dogma are being reflected in few if any products '-

(unsurprisingly, since little conclusive evidence for their efficacy has yet appeared, at least in public).

One of the positive contributions of RISC work is renewed attention to the performance of the most

frequently executed instructions, which tend to be simple register-to-register operations; but it is an

unjustified extremist position that only those instructions should be included. It is not intrinsically or

even obviously true that single-cycle execution or frequency of use are necessarily the (much less the

only) propar criteria for inclusion in an instruction set. Frequency of use alone does not determine

throughput - an infrequently used but very lengthy instruction can become the performance bot-

tleneck (cf the DEC VAX MOVC). Nor does frequency of use alone determine response time - it may

be critical that an infrequently used instruction execute quickly when needed (e.g., in the event of a

reactor overtemperature alarm). Instruction importance should determine what is optimized in the

instruction set architecture, even though it is harder to measure and context-dependent (not to men-

tion more difficult to make simplistic generalizations about). Instructions should be included as

justified by cost-effectiveness tradeoffs to meet current system requirements - for example: perfor-

mance (e.g., algorithmic specialization, not only for the intended application2 but also for the system,

such as object invocation, interprocess communication, real-time scheduling); fault tolerance (e.g.,

suppofi for atomic transactions, repication); ;oftwaro compatibilTit.

Most, if not all, of the new commercial computer products claimed to be "RISC's" incorporate a -,

U* (sometimes considerable) number of less frequently used instructions - directly, or indirectly (ci the ,'

Fairchild Clipper "macroinstruction unit"), or via "extended function unit" and co-processor inter- -a

faces (cf the HP Spectrum machines). Such interfaces lead in the direction of the tail wagging the

dog, where the best approach is for there to be a RISC co-processor in a CISC.

Some of the most important design features in the alleged RISC products have little or nothing to do

with RISC's and obviously apply just as well to, and have already been used in, CISC's. Examples of

these from the RISC literature include: register organization (e.g., overlapped register windows);
careful assignment of complexity across different system levels; re-use of information; use of storage

hierarchies; re-targetable operating systems (e.g., UNIX); simple instructions execute quickly; operat-

ing system involvement in pipeline and cache management: a' priori (i.e., compiler) pipeline schedul-

1ing. However, as mentioned above, the RISC philosophy has indeed revitalized some of these topics.

iThe RISC school of thought has interesting dependencies on semiconductor technology. For ex-

ample, it would appear to be ideal for the current low density available in GaAs; but RISC single-cycle

}%7*o 2of the SOlO Eastport Group f((!port recoinntndation for highr level. alnqorithmiclnly st,'cialhzed. non numeric functions

r 19

'.=A,= ,= u = I 1 1 ," " " " " \,"." ,. - ,,.',t-, . . .,'

instructions (although the published, and expected, averages are in the several cycle range due to

branches, cache misses, etc.) place excessive demands on the scarce processor/memory

bandwidth, exacerbated in microprocessors by pin limitations at that interface. Since the RISC

operators and operands are so trivial, keeping the processor busy becomes more difficult as it in.

creases in speed. The number of devices possible and sufficient for a RISC processor chip are only

adequate to implement a RAM chip which is so small that many of them are required in a cache large

enough to keep up with the processor. While a system may be able to afford one expensive GaAs

processor chip, it may not be able to afford many expensive GaAs cache RAM chips. As density rises,

more cache car, be migrated on.chip, but probably never enough - consider what would be needed

to support a 500 MHz RISC processor.

Many of the fans and media publicists on the RISC bandwagon tend to take a sadly binary view of

this controversy: you are either for RISC's or against them, there's no room for thoughtful skepticism

and a rational middle ground. This attitude was expressed by overzealous political activists in the

1970's as "Either you are part of the solution or you are part of the problem". Religions, especially

the most fundamentalist ones, have always insisted that you are either at peace or at war with their

deity. Aii ihre (A iiee groups eroneously believe that ihib auLiut l ui i i wio,,y wi v; ;iwi

causes. I agree with H.L. Mencken on the following (among other things):

"For every complex problem

there is a simple solution...

and it doesn't work."

20

An Empirical Analysis of The Lilith Instruction Set
Robert P. Cook

Depurtme-t of Computer Science
University of Virginia

Cb2zlottesvWle, VA 22903

ABSTRACT: We describe a static analysis of the instrctions used to implement all the system software on the
Lilith cornput r. The results are compared with a similar analysis performed on the Mesa instnction set ..
architecture. The Ulith.mmp project is also described together with some of the experiments to be performed as .
part of the design effort.

KEY WORDS AND PHRASES: BISC Architecture, Tightly-coupled Multiprocessor, Instruction Set Design, -

Lllith, Modula-2. Stack Machine, Empirical Analysis.

1. Introduction

The Lilith.mmp(multiple modula-2 processors) project is centered around extensions to the
Lilith computer[l,2], designed and implemented by Professor Niklaus Wirth[2l at the Swiss .'."
Federal Institute of Technology-Zurich ('EH). Wirth has refined the Lilith into a powerful ,'
single-user workstation. A network of over eighty Liliths is now in use at the ETH for research Zv_
and teaching purposes.

As a prerequisite to the design of a second version of the Lilith architecture, we have ,
undertaken an analysis of the effectiveness of the current instruction set. This paper describes '2the results of the firt phase of that effort, which is a static analysis of the current Litb software

environment. This work is part of a continuing set of experiments[3-5] with problem-oriented ..

languages and language-oriented architectures. The data serves as an independent corroboration'
of the experiments conducted at Xerox PARC for the Mesa instruction se*[6]. In addition, .. '

information is provided to guide architects of future high-level langauge mactnes. -inaly, some .,r
f the experirnents proposed for the Lilith.mmp project are discussed.

The code analyzed consisted of the Medcs-2 operating system, the Modui,,-2 compier,
and all other system software, which included text editors, document processors, window
packages, the I/O library, and numerous other modules. The software was composed from 180
modules with 2,236 procedures, comprised of 146,293 instructions.

We point out that a static analysis has the most impact on reducing the size of a program's .,
object code, while dynamic statistics help most in the area of execution speed. For example, the
BitBlockTransfer(BBLT) instruction that manipulates bit maps was only used 14 times; however, "Y
one has only to use the Lilith's windowing package to appreciate the advantages of including "" ,
BBLT in the instruction set. f,

2. The Lith Architecture

The Lilith was designed[2] to support the Modula-2 programming language: in fac, ..
programming on the Lilith is in Modula-2. As a result, the hardware organization is optimized *c
support frequently occurring operations in the language. The Lilith is a 16-bit architecture; '-I.

physical memory can be of an arbitrary size but each process' address space is restricted to 64K
words. A 16-word stack is used for expression evaluation and argument passing. The evaluation ",.
stack is not checked for overflow as the compiler is expected to generate code in such a way that
overflow is avoided. Figure 1 illustrates the format of the hardware state vector as weU as the _
layout of modules, module-global data, code, and the activation record(frame) stack.INS

The address of the currently executing Lilith process is contained in the P register. A
process is usually stored as a sequential image. The first record in a process' image is used as
save area (when the process is not executing) for the base register portion of the hardware state
vector. The "in use" registers in the evaluation stack are saved on the top of the activation .
record(procedure frame) stack together with a count of their number. The activation record stack

21

Hardware State Information
G CIT-a 01*a~
L ISac" Fra ie .'r.
S T, cf Stack ,-e.
H. Stack Limit AdCr.

F Cone Frame Addr.
PCI Instruction Offset

P Process' Address

Zero

Evaluation to
Stack 15 elements

Module Frame Table Glob.1 DatL Frame Code Fr.me

I G fer ?cui, 8) 2 eouazs F rec. F--) Off et to Froc e
f G-fr M.oule I I itialization Fli.tr Of'set to Proc.

G ! o l 2 1________ Offset 1o P-oc

G for K,o.we i G-'" a Data I_
77 fr for

I , Module i
Co~e Fcr

Procedure i

Czt;e Fcr
PC--> Procedure B

G for Nodule h

A Process in Physica.l Memory
P--) I Saved GL.S.H.PC71

Act Ivation

Records I cf *2-.e

L 4 Vords Cf C F r

Cc'ntrml 4nfo
An Activation Control

Record Local
Variables Top cf Stack Adress

H--)
Unusedl Space

H--) Stack Limit Address

Process' Meap "

I Address OFFFFH

Figre 1

follows the save area in a process' image.

When a process is executing, the L register cont.ins the address of the activation record for
the current procedure, the S register points to the stack top for that execution, and tbe H register
determines the stack limit address. The L register is also used as a base register for e..sses to te
local variables of a procedure.

A procedure variable on the Lilith is represented as an 8-bit module number and az 8-bit
procedure number within the selected module. On a procedure invocation, the mod"_le number i-
used as an index into the module frame table, wb.ich is a vector of relocation bases for odules.

The module frame table is typically shared among all processes. The address in the :od,-'-.
frame table entry points to the global data frame of the selected module and is used to i-iU'e
the O register. The 0 register is used as a base register for accesses to the global variables of a
module.

The flirt word of the global data frame contains the address of the code frame(istr:-tio-s)
for a module. In order to maximize the use of the data memory(the lower 64K words), the value

is multiplied by two to yield a 17-bit address. thus, code frames can be relocated anywhere in the
•~~J J .. ,

first 128K words of memory. The resulting address is then loaded into the F register, which -

serves as the base register to the instructions for a module.

On a procedure call, the 8-bit module number is used to select the global data and code
frames; next, the 8-bit procedure number is used to index an offset vector that is stored at the J.
beginning of the code frame. The offset corresponding to the procedure number is then used to
initialize the program counter register(PC). By convention, procedure zero holds the instruction s
for the initialization code of a module. Also by convention, procedure zero is expected to set the
second word of the global data frame to TRUE to indicate that module initialization is in
progress.

In summary, there are three important base registers on the Lilith--O, L, and F. G locates
a module's global variables, L locates a procedure's local variables, and F locates a module's
instructions. c.. o..

21 The Lilith imsnction set

The Liflth uses the 16-word evaluation stack to compute expressions. The data types tha:
are supported include BOOLEAN, BITSET, CARDINAL, INTEGER., CHAR, and REAL Figure .
2 illustrates the instruction formats and addressing modes for the Lilith. Only 50 instuctions out
of the 256 possible opcodes occupy more than a single byte. Of the 206 "short" instructions, 115.
ae of the second format; that is, a 4-bit opcode and a 4-bit selection value. The format-two
instructions were allocated to what was assumed to be the most frequently occurring operations;
e.g. immediate(-1..15), load/store local(0..11), load/store global(2..1S), load/store evaluation P*.'?
stack indirect(0..15), and local procedure calls(1..15).

LitL ~itItructio LCO'.2tLS

Bbits

OPCODE B

OPCDDE C

OPCODE MN

OPCO.E

ADDRESSING MODES

Stack: 0perands are on the evaluation stack

Im.fediale: Short(-1 to 15). Byte, leord, Double(32 bits)
Pr3cedure Local: L- or L4B-
Moc ,e Clobal- G+A or G-5

I Modul~e Ext.ernal: Moou IeF raeTab Ie rm: -N
Increct. "Ztack Top", "S'ack Top"'-, "Stack Tcp"5

String: (C-2)+5, ao-ress of a string constant -A'J'ne Inlex: "Stack lop"-S ie * "Stzck Top'.

ReaeF-PC'B5. F"DC4C P*-ft

Figure 2

23
Lt

If the instructions were reasonably matched to Modula-2's needs, one would expect
compact program representations. This expectation certainly seems to be realized given the smiall
size of the system's software. Also, Wirth[8] retargeted the code generator of the Modula-2
compiler for both the National Semiconductor 32000 and the Motorola 68000.

"The compiler prr is 14% longer for NS and 56% longer for MC than for Llith. If we cooder .he
code generator parts only, the respective figures are 37% and 154W. But most disaoinUngy, the rewar.d for all .
these efforts and expenses appeas as negative: for the same progams, the compile code is about 50% longer fcr
NS and 130% longer for MC than for Lilith. The cumulative effect of having a more comnpi.-led =mpiling V-'
algorithm applied to a less effective architecture results in the compiler for the NS being L8 times more
voluminous than that for Ulith, whereas the compiler for the MC is 3.3 times as long."

3. A Comparison With The Mesa Architecture

The Lilith architecture was inspired by the Mesa instruction set architecrure for the "

XEROX PARC Alto, which was later refined in designing the Dorado, and is current!,; bei"g ,..'
refined again as part of the Dragon project[7). The comparisons, described later in the pa'.-er, a "re
with the analysis by Sweet and Sandman[6] of all the software running under Pilo, te Mesa L.
operating system. They converted the existing object code into a canonical form. This i=clude d
breaking the code into straight line sequences, and undoing most peephole optnmizatio=. T he -..
intent was to remove any biases introduced by the compiler's code generation strategies The .r

sampling resulted in 2.5 million bytes of normalized instructions.

The instruction sets for the Lilith and Mesa architectures are very similar. For example, >'
both use the 0, L and F registers in an identical fashion and both maintain a module frame table. -
There are a few differences, however. Mesa stores constants in a procedure's code frame: this is '

not posible on the Lilith. Another difference arises in references to symbols i.znorted frcz
anothcr modul%..Z

To refer to external variables or procedures on the L.th, an Mt'-uctic: - c:. "
symbol's module number and an offset. The address is then generated by i5z the -'ode ,
frame table. In the Mesa architecture, each module has a link area, which is initiaLized With the .-
module number and offset of external symbols. As a result, external procedure calls require one
more level of indirection than on the Lilith. However, an external reference on the Lilith is 1
encoded as a three-byte instruction; whereas on the Alto, it would normally occupy only a single
byte. %

Figure 3 compares the opcode distribution on the Lilith with that of the Mesa arctue2.cre.
The categories are derived from the normalized data presented by Sweet and San,.,an[J - ..
data provides a good illustration of how code generation strategies and language asage c- affe" %
opcode statistics. With respect to the Mesa statistics, we omitted JNE/JE(3.94%) becaas, the.e
was no direct comparison with the Lilith's JPFC/BC(4.52%). There were also so-e
frequently-occurring Ulith instrucionS(CHKZci~s± Ze'm-Onvn anmy bound), 1NTRif_= pomumE, OR

GB1(get L froin nesie, proelure)) that did not have Mesa counterparts. Even though the :a,'-- i .c
exact, the sets of instructions are quite comparable. Next, we discuss some cf the ca,,,,uSe V

attributing to the differences.

Frt the Lilith statistics indicated a greater frequency of loads on local va.iables than fcc :.:-:

Mesa. A contributing factor is the use of peephole optimization by the Mesa cc-ile.7 th-as, "
"SLWi LLWi" sequences are converted to the equivalent of "COPT SLWi" to save a -ec.-
reference. As Figure 3 illustrates, the COPT(coPY top of Slc) instruction is heavily used by _ \..

compiler. The Mesa software also made much greater use of doubleword variables than the L_'U-
software(the Modula-2 compiler did not support the LONGINT type). Other diffe-ren-z .
occurred in the number of procedure calls(more on the I_11ith) and in the frequency of use of *e ,,,
"Load Local Address" instruction(more by Mesa). Again, code generation s-ratezies have a 1 '10
effect. The Lillth generates an address cell for every local array or record. As a result, it is t;.-c-
to determine whether a "Load Local" is loading an address or a value. The use of a. add.-ess ct?._

24 ... I

Opcode Distribution for The Lilith and Alto

Lllith Lilith % of All % of All
Mnemonic nstructlonDescripUon Count Instructlons For the Alto

LI Load immediate 25534 18.13 15.98
LLW Load Local Vord 2239" 15.21 12.5!
SLY Store local variable 5752 4.e2 5.57
COPT Duplicate top of stack Ie23 e.7e !..e
LLD Load Local Doublsuord 412 e.27 5.6;
CX Call external procedure 8318 5.59 4.52
3P, EXC Unconditional 3ump 4852 3.32 4.18
L/SSW8 Dereference pointer on TOS 3551 2.42 3.42
SLD Store Local Doublejord 3.59 0.24 3.e5
LLA Load Local variable's Addr 149g 9.95 2.35
U4.DD CARDINL add 35s 2.53 2.34
RET Procedure return 2589 1.97 1.;!

LGW Load module global variable 9388 5.41 1.74
CL Call local procedure 4584 3.13 "1 '3
04D Double add 2 8 Be 1.5" '

65.7e'.

Figure 3

increases the usage of the "short" opcodes while requiring more frame stack space at runtime.
Another significant difference arises in the use of global variables by the Lilith's programmers.

3.1 Module and procedure statistics

Figure 4 summarizes the module and procedure statistic that were co~lected. Most a e,
self explanatory. The "minimum path length" measurements represent our" a:tempt to ct zzfv.: .,
'-o,;, long a procedure tends to execute, when it is f"Irs: invoked, before u .. erig to aoLte.- .
procedure. The idea was to form an estimate of how much time was availabie to overla7 fra_-e
initialization and execution. For example, the saving of the return address need not occur before
a procedure begins execution as long is it has completed before the procedure exits. The pa ,t..-'
length is measured in instructions and takes into account all possible execution paths from a >-
procedure's entry point.

Module and Procedure Statistics
For %

The Lilith
S La.nf e.& d

Description Averae Deriatlon

Minimum path length to ext. call 19.91 54.18

Minimum path to any proc. call 15.31 75.81

Procedure calls per module 74.83 185,48

Procedure calls per procedure 5.13 35.58

Local calls per module 29.95 57.58

Local calls per procedure 2.45 18 46

Procedures per module 12 21 13 53 %

imported modules per nodule 5 :9 3.53 ,

Instructions per mc:c-e e.! 44 971. 54

InstruCtions per procedure 55 Z5 3!.5-

Data size per mocule (words) 35.72 49 52

Words re~erved by EK"/o-C~Crdur4 20 1 -5

Figure 4

The data sizes listed include the number of words per module and the number of wora . .-

25
,*~~~n j&f ~-*%%* % -. A_.# - 1

allocated on thbe stack frame on procedure entry. The stack frame word count includes only one or
two ccr.s per variable; thus for arrays and records, the address cell was counted butnot the speo,
for the data structure. The count does include parameters, however. On the Lilith, argument .=.

are passed by pushing their address or value on the evaluation stack. In Lhe body of a called "
procedure, then, the arguments are copied into local parameter cells. As a result, bcth J'-
parameters and local variables are addressed by using a positive offset from toe L register.

4. Llith. rmp, Directions For The Fature

The Lilith.mmp project involves a set of experiments that are intended to guide the design -
of a tightly-coupled, multiple-processor, high-level language workstation. In this paper, we are
concerned only with instruction set design. The goals of Lilith.mmp are as follows: -

Goals of il'hrmpt..

. Integrated support for lightweight rrocP-ze~s. 4. High-speed context switch.

2. Graphics performance as good as the Lilith. 5. Multiple in struction set processors.

3. Construction of a Balanced Instruction Set Computer.

Lilith.mmp is intended for applications that have a requLement for both large numbers of
processes and a fast context switch time. As a result, we must find a feasible alternative to the
register window schemes that are currently in vogue. The reason is that saving hundreds of
winoow registers on a context switch is slow. A lightweight process is characterized by a sma ..
context block and is typically created using Modula-2's InitCoroutine primitive. A heavyweight
proce= would be created using the equivalent of the UN7X "fork" or "exe," System ca0s.

Also, while we ascribe to the belief that it is advantageous to use pipeli-g in an a:ez:" ,
-o execute an i.str-ation nearly ever-, machine cycle, we are niui.. "c lump on the F,.c-:
:=Sa.ction bandwagcn. The Lltb is just]y famous for t,.s code den, a van-tage that we - ",
loath to discard. The final th.ree sectiuns of the paper present some of our prelijmnar ideas, ,
which must still be tested, with regard to code density, balanced instruction processing, and fas" ."
procedure calls.

4.1 Code density

A modem processor must be capable of supporting not only a variety of dat
t,-pes(C"HAR, CARDINAL, REAL), but also a number of different widttts416, 32. 64 t) f "-
each type. Typically, it is mos: advantageous to orient the AL" and data t-pes toward *te i " -
frequent width, say 32 bits, and then to implement loads and stores for the other widthls t,-
perform either extension or repetition, as appropriate. That is, a 16-bit load would sign-extend to
32 bits and a 64-bit load would be implemented as two 32-bit loads.

The problem with respect to code density is how to encode all of the different ". es an
widths efficiently. Even though our static analysis indicated a low usage for the REAL "ype, it
cannot be disregarded when allocating opcode space. When a program is executing routines Ln
the Math.1Lb module, it should benefit from the same code denL.sity as would be found L- a ...

CARDINAL sort procedure. The instruc"Jon set designer, then, is faced with a choice between ""
giving both ty'pes equal opcode space and playig favorites.

Our solution to this dilem.ma is to overload opcodes: that is, each "ype is charac.e,'4-e. t% a
certain number of widths, immediate constantz, and operators. The a.sitnzent of these opcoe- -.
values is static and is shared by all types. In our fu'st exper'ments[S]. the type associated wit the vtt
opcode set was selected by means of a MODE inst."ction. ThiLm inst"uction can be envisicned as
setting a base register that identifies the associated microcode or that selec*z a fPac'Jonal unt. ,"
such as a floating-point coprocessor. 26

l'," ,4..+ ..+. w ',,+ °,p',p .-',. =+.. ', + . +.+ .+.• .,, • . ° ., ,. , .% ,,°,, 7 '-%-.'

The advantage of the MODE approach is that it allows a static set of opcodes to be reused
for arbitrarily many types. As a result, all types share equally in the code destiy dvantages of
the opcode assignment. Furthermore, the MODE approach avoids retrofitting the i=sruc.ion set
over a machine's lifetime as new types are added.

Chong[5], in an extensive analysis, used a Modula(not Modula-2) compiler to generate a
modified MCODE that included a MODE instruction. The static analysis showed tha: 8.5% of al: ; ,-

instructions were MODE settings, while the dynamic analysis demonstrated that MODES made '-

up 13% of all instructions executed.

4.2 Balanced instruction set procesing

One of the most cogent principles of the RISC design philosophy is the so-called N + 1
principle; that is, beware of adding an additional instruction if its implementaticn slows the .
execution of the N existing instructions. Adherence to the N+1 principle leads one to <e' "
conclusion that Reduced instruction Set Computers are an appropriate design goa. Mo r7e '

complex instructions are then coded as subroutines. This results in a space penalty as well as a
speed penalty. The graphics on the Lilith provide a good example of the difference between ,
BBLT(Bit BLock Transfer) in microcode and as a subroutine.

Subroutines require frame space and concentrate memory references in accesses local ,,
variables and parameters. We propose a middle ground between a subroutine and a RISC ,
instruction: e.g. a subroutine that can use the evaluation stack for storage of its local va.-.ables.
The RISC unit would then be considered as a primitive erecution engine, or E-Uni*- It is
conceivable that there might be one EU per type: thus, EUs could be mixed and matched fcr

applied" to the evaluation stack.

A Balanced Ln:stru:'ton Set Computer would then be cozposed from RISC e': .: ..z
and firmware subroutines stored in ROM. The reason that we propose multiple FISC execution
units is due to the N+1 rule. As we said, there could be a RISC EU per type. Most
manufacturers are currently using this approach for floating point, for example. The other.
advantage of multiple EUs is the ability' to have them operating in paralleL It would b e
advantageous, for instance, to be able to overlap the execution of a graphics opeator with the
execution of a floating point instruction.

The use of multiple EUs also leads to the notion of on demand context :n"-'. -. ':,
s'-ategy, an EU is switched when a process that is different from its owner reues i= use...:

this point, the EU must complete its current instruction, save its sate in its ower's ccntex- bioc ,
and then give control to the new process. The alternative to on demand context s'-itchizg is to
wait until all EUs can be halted before making a context switch. With this strategy, the context
switch time is bounded by the execution time of the longest instruction in any of the FUs.

If BBLT, polynomial evaluation, bit map searching and all the other low-static co.= ,
instructions are really necessary and useful (that is, they have a high dynamic-count/execution -
time product), how do we go about implementing ROM-based subroutines that can allocate
frame space on the evaluation stack? Basically, we need an instruction that accesses a s'ack:,'
register using an index that is relative to the top of the evaluation stack. The index has to te .
relative because a firmware subroutine has no .lay of knowi.ng wich registers ar- availatie ;.'ten
it starts execution.

Each firmware subroutine allocates its local variables on the evaluation st --k o ent.-.
Expression evaluation then uses the top of the register stack as before. The only df c ut- '" that,
each subroutine's local variables may be referenced with a number of different cffset as *te ,,
stack space used for an expression can vary from one statement to another. The ccmpi'er can
easily keep track of this bookkeeping detail
- " -27

nb' AM

Being able to refer to registers in the evaluation stack also has advantages in other areas. ,
First, it is no longer necessary to copy the arguments to local parameter ceLls for fr-mware
subroutines; they are already in the corret location. As another example, the Modula-2 compiler .
implements WITH references by storing the generated address in a local variable, which must be
reloaded on each reference to the WITH record. With the proposed architecture, the address
could be saved on the evaluation stack and then be "brought up" by indexing. The index optic:: ,,

can also be used to retrieve common subexpression values that were saved on the stack.

Rather than using a top of stack indexing scheme, another alternative would be to require .-.
that the evaluation stack be empty, except for arguments, when a firmware subroutine was
invoked; then the standard register numbering scheme could be used. However, this alternative A

does not support nested subroutine calls. Furthermore, with true random access, all registers
must be saved on a context switch because there is no way of knowing which ones are "live". In
the first design, the value of the evaluation stack pointer indicates the number of active cells.

4-3 FEst procedure calls"

According to our data, the average number of instructions per procedure was 66 and the
average number of procedure calls per procedure was 6. We suspect that the dynamic frequency
of procedure calls is even higher. In addition, procedure calls are relatively expensive. Thus, it is
important to minimize their cost. There have been a number of good ideas that we would like to .

explore. However, the Lilith architecture does suggest at least one approach that has not been
tried before.

On the Lilith, the arguments to a procedure are passed on the evaluation stack. ':
Furthermore, the stack space used by a procedure's frame can be determined a: compile Lie."2
As a result, all procedure calls within a particular procedure generate the frame des---s for ".

"e c'led procedures at exactly the same address. Since a frame descriptor is four wor.S, :.,
space could remain allocated for the duration of a procedure's evecution. Of the fou- ce',2s, o_, ..
the return address word would need to be written. This design could help to reduce memo ry" ..rN
traffic, an important consideration. in a multiprocessor.

5. Sammary and Acknowledgements

Obviously, there are many design decisions to consider. Our plan is to implement a :.'
hardware simulator first and then bring up the Lilith's operating system on the simulator. Thu, 'us'
the effects of design decisions on system performance can be measured in a more realistic 'ay -
than by testing with only user-level programs.

The Lilith.mmp project is a joint research effort with Modula Corporation and is funced -
by the Virginia Center for Innovative Technology(CIT-INF-027) and the Office of Naval
Research and is supported by grants of equipment and software from Burroughs Corporation andi
Modula Corporation. Mark Wallitsch, now at Bell Labs, collected the Lilith statisvic. Profesz-r
Wirth and his group at ETH have also provided invaluable assistance and inspiration.

REFF YCES 4-

[1) ON.an. R.S.. Lilah: A Worts,Auon Computer for Modula2. Ph.D. Du& ETH No. 7646. (1984).
SW'-,h. N.. "From Prvr-a rng Luage D4n to Computer Cofru,,ion," Co.mun < ,.ors of ',he ,Cv. 28.2(Fe. oQaF) 159- 16

[;lCool. R.P. and N. Donde. 'An Erxpt-ment to Improve ODerand Addrein." S.rm-x.,".-n on Arr..rtJva SuoDo-. for -'- ,
La.ztu.e and Opz*-at'. S, te-,s. (March 19E2) S7.91.

JAI Cooi. R.P. and 1. Lee. 'A ContextuaJ AnaJy=i of Pscal Prcr-amrs. Softwrar--P-3c,.Yce a&d Erpeence I'. (1982). 195-20D.
[] Cbo. C.. The D nd Imple.nenuauo, Of A StarModi Vl-t r M-irue. P D.Thes. Uruve-' ty of Wnsm, (Auus- IQ3)..
[6 S*,, t, R.E. and I.G. Sand.an Jr., "E.pLkrCi AraJy- of the Mea InS L-con SeL." Svyl, 2 o n:= an Ar te<_.uraJ S..:,Dor, for

Prtr-ranmin Lanrualte and Operauns S.ste.ens. (Maitmh 1992) 15- 166.
7 McCreah.. lNM.. -Te Drazon Computer System. An Early Overne." P"oceedLap of the NATO Advncd Study ."stuie on

MaioArc atecure of VLSI Cornpute , Urbmo, (July 1984).
it] WL' N.. "A Comparson of Micros- Ar-,utec.t in View of Code Gent-auon by a Co"..puer'. ETH Te-tauci Repor 6t.

(Det- 1985).

28
S*5..%

FLTM 5 rWA S I% U N WKWM VWU TW IN~~ VW UW'1Ji . V.IIAM~ KRA. UJ1LWX Jr1VnL w1NV rip, ~ ~v.w~w .. ~.-.- J

HIGH-PERFORMANCE CPU IMPLEMENTATION OF THE NEBULA INSTRUCTION SET
ARCHITECTURE

R. S. Cheng
RCA Missile and Surface Radar Division

Moorestown, NJ 08057

INTRODUCTION

Limitations of 16-bit architectures such as the MIL-STD-1750 ISA initiated the development of Nebula, a 32-
bit ISA standard to provide better support for military applications. Since it was proposed as a military
standard, it was optimized for Ada programming language support. Nebula's efficient instruction repertoire.
variable length data types, powerful task and procedure control, and extensive error checking interrupt and
trapping mechanisms allow efficient implementation of a multi-tasking environment with a high degree of
control and data security.

A high-performanee CPU subsystem works in conjunction with a two-level hierarchical memory subsystem
and operates in parallel with an autonomous LO subsystem that executes concurrent I 0 channel programs A
microprogrammable CPU architecture was adopted for design flexibility and ease of modification. High
throughput performance was realized through the use of extensive parallelism and special hardware through-
out the architecture.

Designed for implementation using 1.25-um CMOS/SOS technology and a target 3-MIP execution rate. the
architecture was extensively verified using Register Transfer Level (RTL) simulation. It was then demon-
strated via breadboard implementations in which the design was implemented using MSI.LSI technology to
provide a cycle-by-cycle, functional equivalent of the projected VLSI implementation.

The VLSI compatibility of this architecture was demonstrated by replacing core CPU functions in thc bread
board with VLSI circuit prototypes impiemented with 3-um CMOSSOS technoiogy. Thye e -LLI it I-C

delivered to the Army for evaluation in 1983, serving as functional representations of the final VLSI impe-t
mentation.

NEBULA REQUIREMENTS

Nebula is an efficient 32-bit ISA, incorporating numerous features that directly support Ada implementation.
A 32-bit, byte addressable, virtual address space facilitates multi-tasking and multi-processor configurations.
Variable operand sizes (1,2,4, and 8 bytes) and data types allow efficient support of Ada data types Indepen-
dent specification of opcode and operand types in a variable-length instruction format allows flexible and
efficient operand addressing, and minimizes instruction code space. %

Efficient arithmetic, logic, and bit-manipulation instructions are provided for data processin. aln ki.th
special instructions that support task loading and execution, exception handling, and program control IEEE
standard floating point arithmetic and error-handling are also supported.

The independent context-stack and procedure-based control structures allow efficient implementation of Ada-
level procedure calls and parameter passing. Special task-control instructions, the context stack structure ,
and the memory management scheme together provide efficient support for Ada tasking. Numerous interrupt.
exception, and trap-handling mechanisms are defined in the ISA to specifically support the exception and
trap-handling mechanisms defined in Ada.

DESIGN GOALS AND STRATEGY.,;:

High system throughput, design flexibility, high testability and reliability, and compactness low power -mafl .V
size light weight) were the major design goals. The complex requirements of the Nebula ISA and the \L l f

design constraints further complicated the design task.

These numerous design goals and objectives had to be prioritized and quantified so that senihi, tradt,,,-
could be made. In addition to establishing a minimum performance requirement level for each desin ,,t,
tive. a higher-level performance goal was also set for attainment. The malor design strategies emplhved ar,

discussed below.
29

Optimization Based on Instruction Mix

The design was optimized based on the Instruction Mix, which identifies the relative frequency of occurrence
of all instructions, addressing modes, data types, and various modes of operation. For example, register and
literal operands are used most frequently; typically, 7 or less parameters will be passed in procedure calls:
data elements are typically 4 bytes or less in size, and so on. These assumptions were used to optimize the
design by focusing on the more frequent operations and needs.

Cost-Efficient Parallelism for Speed

Extensive parallelism was introduced at all design levels to achieve the 3-MIP throughput goal. Instruction
prefetching and parallel decoding were overlapped with execution. Data processing and address computations
were paralleled by separate ALU facilities. Two banks of register cache were used to expedite context stack
switching. All hardware operates in parallel under the control of the highly horizontal microprogram struc-
ture. Cost-effective hardware features were used throughout the CPU to increase parallelism. NAN

Hardware Redundancy for Reliability/Maintainability

With high reliability and maintainability as a key design objective, extensive redundant hardware and Built-
In-Test features were used to support efficient fault detection and isolation in the CPU design. Chip-level
master-slave redundancy, level-sensitive scanning techniques, and a Built-In-Test (BIT) processor were em-
ployed to provide (1) on-line fault detection without throughput degradation, and (2) off-line fault isolation
down to a replaceable VLSI component.

Programmability for Design Flexibility and Ease of Modification

The programmability of the Nebula ISA design was emphasized to provide the flexibility needed to accommo-
date future enhancements. A microprogrammable architecture was selected primarily for this reason. How-
ever, throughput pertormance was not sacrificed by providing a highly horizontal control structure with 4,
minimum decoding overhead. Although a simple, fixed-cycle synchronous interface was used with the high- -

speed cache to boost system throughput, design provisions allow wait states to be inserted when slower
memories need to be employed. By the same token, variable length CPU cycles are supported; microprogram-
mable cycle lengths accomodate the different critical paths encountered. This also provides design flexiblitv
for future enhancement and technology insertion.

Careful Consideration for VLSI Implementation

Functional and VLSI partitioning played a major role in the design process, enabling a given architecture to
be implemented in a given VLSI circuit and packaging technology. The objectives were to minimize the
number of unique chip types and the number of chips in the system, thereby minimizing development and .. -

production costs while providing the desired system performance. In general, minimizing the required trans:-
tor and pin counts when implementing a particular function penalizes performance. Consequently. careful
tradeoff decisions were required. Tight encoding in all non-critical paths minimized the I 0 pins required at
the expense of more encoding/decoding hardware and time. Redundant hardware was sometimes used for
"look-ahead" processing to alleviate critical paths. In some cases, redundant hardware was distributed in
multiple chips to enhance throughput or reduce 1/0 pin requirements. Bit-slicing was also used to reduce 1 0
pin requirements and maximize common chip types.

To allow optimum use of silicon at reasonable development time and cost, a mixture of custom i handcrafted,
design and standard cell techniques were employed in developing the chip set. Standard cell technology.
supported by a well-defined set of CAD (Computer Aided Design) tools and layout techniques, was selected for
design efficiency. Handcrafted design was employed for regular structures to improve speed and density %
performance. RCA's 1.25-um CMOSiSOS technology was chosen for performance-critical areas, while bulk
CMOS technology was selected for other areas to reduce system cost. The packaging scheme consisted of 132-
pin. leadless chip carriers on ceramic substrates, mounted on glass epoxy boards.

Global Optimization to Balance Conflicting Goals

Performance goals and requirements, NRE (Non-Recurring Engineering) development cost. and system life-
cycle cost were all significant concerns that affected our Nebula design decisions Additional hardware gener-
ally enhances throughput performance; however, it also increases system complexitv, cost, size. weight. and

"2

power, and reduces reliability and testability. Built-In-Test circuitry enhances testability and reliability:
however, it may reduce system throughput and add hardware cost and system complexity. The various design
goals and performance concerns need to be examined simultaneously in tradeoff studies.

NEBULA PROCESSOR SYSTEM ARCHITECTURE %

The complete computer system can be divided into 5 subsystems, as shown in Figure 1: namely the CPU.
memory, I/O, Built-In-Test (BIT)/Maintenance Interface, and support subsystems. Each subsystem is briefly
described, and the CPU subsystem is discussed in greater detail.

CPU/MEM

MN A INTERFACE ETEC
S IA IT LPT 1"

IAL DIGITAL Bu .

ISERIAL DIGITAL BUS =1

NASTE
I

SUBSYSTEM r tSERIAL DIGITAL Pt-TO -P • 1
||a.RhoT ? lus - SERIAL DIGITAL BUS =2 I0

1/I0 SERIAL DIGITAL Pu.TO-Pt - 2 P,_ArW
PINE R SUBSYSTE.M '

INTERRUPTS; PARALLEL DIGITAL Pi-TO-Pt - I ,

PARALLEL DIGITAL PTO-Pt - 2

PARALLEL DIGITAL Pi4-TO-Pi -

,ATTrERIES PARALLEL DIGITAL BUS

Figure 1. General Block Diagram of AN/UYK-41 Super Minicomputer

N

The CPU subsystem is a microprogrammable architecture designed to execute the Nebula ISA at a projected :3
MIP execution rate. It contains a highly pipelined control path for instruction prefetching, decoding. and
microprogram sequencing functions; 8K x 128-bit microprogram control store for ISA execution and diagnos-
tics; a 32-bit ALU data path augmented with special function units for high-speed data processing; and special ,
interface logic to the other subsystems.

The memory subsystem was implemented as a 2-level hierarchy: a primary storage composed of a high-speed
4K-word set associative cache, and 4 megabytes of bulk memory as secondary storage. Virtual cache was .

selected to eliminate the address translation from the critical path in order to support fast CPU access The 4
megabytes of bulk memory were implemented as 2 pairs of 1-megabyte modules interleaved to support
efficient cache update. With this configuration, a cache hit will return a 32-bit word in 40 ns from cache on ,
cache miss, four 32-bit words are read from bulk memory on two consecutive cycles to update the cache. and
the required word is available to CPU in 240 ns.

The I/O subsystem contains independent 1/0 Processors 0',OP) that execute the Nebula instruction set. This
subsystem supports high-speed data transfers between bulk memory, and up to seven independent [0 inter- "- -

faces concurrent to CPU operation. In addition, the LO subsystem supports data transfers between the bulk
memory and the BIT/Maintenance subsystem to support the test and maintenance function.

The BIT.'Maintenance Interface subsystem provides the central control for fault isolation and maintenance
support. It (1) accepts errors detected by the various BIT circuits distributed throughout the CPU: 2, main-
tains the fault log, and (3) interrupts the CPU to invoke appropriate diagnostic operations. CPU internal er
states can be loaded and accessed by a built-in scanning path controlled by the BIT processor. and results can
be analyzed for fault isolation.

Finally, the support subsystem is composed of the power supply and the necessary mechanical and thermal
support for the complete minicomputer system.

31

NEBULA PROCESSOR CPU ARCHITECTURE

A highly horizontal, microprogrammable CPU with a microword width of 128 bits was designed to control
autonomous hardware units in parallel for high system throughput. Extensive pipelining allows macro-level
instruction fetch and decode, as well as microprogram sequencing functions, to be overlapped with instruction -a
execution. The parallelism involved in a typical instruction execution is shown in Fig. 2. Numerous special
hardware features efficiently support Nebula-specific operations to enhance system performance. A hierarchi-
cal Built-In-Test approach provides concurrent fault detection with no system performance degradation on
non-error conditions, and off-line fault isolation down to a specific VLSI component after errors are detected.
The CPU operates at a 25-MHz clock rate. allowing a typical register-based instruction to be executed in a
single 40-ns microcycle.

. *m. :0" 66
.2 -

56,atmaa 62."' 0L ----"o' -- T ii~~~if Y li!
______-."'

IECODE . rn , ., .. / ,"a,*6 .4
"

LeVeL .o , ,oo -. I oft NSA* Woo

CLC IIII Wi IU0400m1o

ocoot* LlAO NO LIl . OLRiEt 1*01601,

LEo,,EL
f:lI , 4 ,,, 4, , e.°h 006 56 0o-l*64

OPERAND %

..::;..::;:-..;.1 6 2 9I*06,"

,*001W ,0 .Ci " :-S0 A;: ::::: ; .e ,.

xaCuTrlOF
.,....,,F .

INSTRUCTION
FR1FETCH E 11IITCHc IFITC4

*
iFETCH WT IFETCH

IfissI° I I 0c ftltl A-

Figure 2. Execution of Typical Nebula Instruction Stream

The complete CPU subsystem is functionally and logically divided into 4 sections. implemented on four
ceramic substrates as shown in Fig. 3. These include the Control Pipeline Substrate, the Arithmetic Substrate.
the Address Substrate, and the Special Function Substrate. With a total hardware redundancy at the chip
level, the CPU subsystem can be implemented with a total of 24 VLSI chips (9 unique chip typest and SK x
128-bit ROM.

Control Pipeline Substrate (IPU, IDU, MSU)

Three VLSI chip types, the Instruction Prefetch Unit (IPU), the Instruction Decode Unit ,IDU,. and the
Microprogram Sequencer Unit (MSU) are used to implement the CPU control function. A total of 6 VLSI.-
components. 2 of each type, provide a fully redundant control unit, performing Nebula instruction prefetching. 6'-

decoding, and microprogram sequencing functions. These chips range from 20.000 to 35.000 transistors in size %

One major difficulty posed by the Nebula ISA is the independence between opcode and operand specification in
a variable-length instruction format. An instruction typically ranges from 1 byte to over 30 bytes long and. in
the special case of a Procedure call instruction, it may be well over 1000 bytes long, supporting up to 25.
parameters. A 16-byte instruction queue controlled by a parallel hardware decoding scheme allows effective
overlap of instruction fetching and decoding with instruction execution. The selected size of the queue pr v d e. V''

the storage needed to support al cases of the prefetching function, yet minimizes the queue refill ,,verhid.

during branch conditions.

q

p'

Whenever the queue can accept 4 or more bytes, and the data bus is available, four nstructon bte.-.. l ht.

fetched. Instruction data are continually fetched into the queue and subsequently p ipeh ined into the. d e',d no ;

p a th . T w o h a rd w a re p o in te r s g e n e r a te d b th e d e c o d in lo g ic e x tra c t v a r able n u m b e r . o f te- rom th e- . "

3 2
, - -

rr

-k

l S IBST -A PUS

4

i;...lk .. "

. I,

. , *4I. , (~ '

I @' {, ,O r *E,S f4U'. ." " I /a.m, -'. *oI '.

1 '*4 cLU1

L" M_ TEM of os, c...

Figur MAGEAM CPUBlcDiga

r %

OIC"I _j WAR S

"S

'S-'%

OUTPT o sdAG
L sh"

I~~AD PUSl* 'tS4

isc on qPUeuecitto Revselues ofrelneriters One pontoe poit y to thanxtwpaoe inor operand- ,.
secet beecodedihle te the pontrcetiis the saaa xctarntimn by to the in-lnsuie ade yordtea are -

resultR oftelsaeoigpae

andday deitead ars ulctd o4btsimultaneously, regista an a wooernumtober ans ot itralsel enodt

faiitatey data manipulaonandhr address calculatio n susqtoeand accftc rrqiessd, xecrdautio phases..

Thre thcoeoperand specifiers are eno heuedingrathnd eoed lokng withmo thet curen opcde and- -'-.

moroutinesnc the iser and iniethrt liteaimmoe ar uead-amos frquetlye, basedoon thernsterucdtion

%

mNSTRUxION taomi
curre.t- C executO. Register ..nm r. so Iterals are ecd directly by hardware i operand-

4-, 33 - - - -- -lkALjW10 ADD G-. ~ S'jS.SjSS'T

an opcode-specific execution routine, where operand data are indirectly addressable by the encoded informa-
tion in operand-select registers. With this approach, all complex addressing modes can be supported, while the
simple but frequent register-to-register instruction can still be executed in a single 40-ns cycle. Data size
information is also encoded in these operand-select registers, allowing variable data operands to be processed
without additional overhead and delay.

A 16-level, Last-In-First-Out (LIFO) stack is included to support micro-level interrupts and subroutine calls.
and a 14-bit-wide microprogram address space supports the addressing of up to 16K words of microprogram
store. A 16-bit counter and various support logic support multi-way branching, micro-level looping, and
flexible coiditional case-branches based on externally supplied condition codes. For example, when a short
parameter mode is encountered, a 3-bit parameter number and an illegal parameter indicator can be fed from
the decoding logic to allow a multi-way branch into unique parameter access or exception routines.

Arithmetic Substrate (RALU)

One VLSI chip type, the Register Arithmetic Logic Unit (RALU), is used to implement the required data
processing function. RALU is configured as a 16-bit, bit-slice VLSI device; two RALU devices provide the
desired 32-bit internal data path. This substrate is responsible for all the arithmetic ard logic operatnon-
required to support the instruction set. The RALU is implemented as a 132-pin package containing approxi-
mately 45,000 transistors.

To support the frequently used register-addressing mode and a typical 3-operand instruction format. a 36- J-
word by 16-bit customized 3-port register stack was used in the design. Three operand-select registers. direct) '
encoded by the instruction decoding logic (one dedicated for each operand), provide indirect access to the
register stack. A fourth operand-select register, loaded via a micro literal, allows efficient indirect access to
the stack under microprogram control. The register stack is also directly addressable by microcode in a
conventional way, without using any operand-select registers. To expedite switching between the task and
kernel context stacks, two register stacks were used. This allows supervisory or interrupt handling functions
to be invoked readily on the kernel context stack, without having to save and restore the registers of the
interrupted task.

A 32-bit ALU provides the normal arithmetic and logic operations. Special hardware logic is provided to
support various Nebula-specific operations. These include sign extension: byte and bit-manipulation: trunca-
tion and rounding operations as controlled by a combination of external condition codes: various machine
states; and microprogram control.

Address Substrate (MAU)

One VLSI chip type, the Memory Address Unit (MAU), supports all the auxiliary functions such as data
operand address computation, parameter decoding/encoding, program counter update, etc.. in parallel with ,,
data processing on the arithmetic substrate. The MAU is structually very similar to the RALU. and wa.
implemented as a 16-bit, bit-slice device: two MAUs are used for implementing a 32-bit address computation e
unit. It contains various special logic to support the auxiliary functions, and operates autonomously' in parallel
with the arithmetic substrate. The MAU can be implemented as a 132-pin package with approximately 45.000
transistors.

A 32-word by 16-bit register stack caches context-stack information for fast access. The information include.
up to seven parameter descriptors and other information associated with the procedure context. Similarly. a
dual-register cache approach is employed to expedite kernel-task context-stack switching. Three dedicated
address registers specify the memory address for up to 3 operands in an instruction, and such registers are
directly accessible under microprogram control.

Special logic is included to encode and decode parameter descriptors to expedite procedure calling 1 encodiniv
and parameter access Idecoding). The update of the Program Counter (PC). which points to the operand hvve-
fetched. is performed in the MAU based on the control passed from the instruction decoding logic. In addition
to the normal update of the PC. the PC is also pipelined into a backup register at the Nebula instructiion
boundary. This PC backup register and special logic support program tracing and exception and trap han. Ie-
dling. as well as break points.

34
. " ...

Special Function Substrate (ICU, FPU, MULT)

The Interrupt Control Unit (ICU), Floating Point Unit (FPU), and a Multiplier (MULT) provide the other CPU I',

auxiliary functions on the special-function substrate. The ICU contains about 45,000 transistors, while FPU
and MULT are projected to have 35,000 transistors each.

The ICU provides all the necessary hardware required to support the interrupt and trap mechanism. These
include counters to support the four interrupt timers and time-of-day clock; logic to support the maskable
software interrupt requests; and a bus interface to accept 1/0 interrupts from the 1/0 subsystem. To enhance
the interrupt response, a special I/O-interrupt bus and protocol were devised to allow pending interrupts to be
polled and prioritized in parallel with CPU execution. The results are then sampled at macro-instruction
boundaries, where all interrupts are examined and acknowledged.

In addition to the three preceding classes of interrupts, various run-time exceptions and traps are also handled
simultaneouly in the ICU, based on a pre-defined priority scheme as specified in the ISA. The Processor Status
Word (PSW), which resides in the context-stack memory, is cached in the ICU to facilitate interrupt. excep-
tion, and trap checking and handling. Similarly, two PSWs are cached for the Kernel and Task context stacks.

The FPU and MULT were built as hardware-assist units, enhancing the RALU performance on multiplication
and floating point instructions. The FPU supports the IEEE standard floating point format as required by
Nebula. It was designed to operate in conjunction with the RALU to support the execution of floating-point
instructions. The FPU contains barrel shifters, exponent adders, normalization logic, and the extensive error- h

checking and exception-handling capability required to support the floating point operations. The MULT was
designed to accept a pair of 32-bit operands from the RALU and return a 64-bit product, and this provides a 7:1
performance enhancement over the iterative approach supported by the basic RALU capability.

Bus Interface

The various sections communicate over two 32-bit, bi-directional data buses, the Local Data Bus (LBUS, and
the CPU Data Bus (DBUS). LBUS supports inter-chip communication within the CPU, and part of the bus can
be sourced by microprogram ROM to provide a micro literal for masking and case branching operations. DBUS
supports communication between the CPU and the memory subsystem, and also provides additional
bandwidth for local inter-chip data transfer.

In-line instruction data are sent from IPU to the various processing units over the LBUS, where they are
properly encoded into pipeline registers. Part of the LBUS can be multiple-sourced with hardware condition
codes and status by different hardware units in the system. This part of the LBUS and a micro-literal are used
to form specific starting addresses in MSU that allow multi-way branches based on hardware status condi-
tions. To preserve microprogram space, a simple alignment and adder logic are included in the MSU. to control
the contiguous address space of such micro-subroutines. Special bits in the ICU-based PSW are also routed
over LBUS to different parts of the system as they are required for various processing and error-checking
operations.

Memory access is accomplished over the DBUS, where memory reads are supported by a 4K-word cache. and a
memory write is queued and subsequently written to both cache and bulk memory. The memory is byte
addressable as defined by the ISA, while a 32-bit word-aligned memory is physically implemented. One. two.
four, or eight bytes of data may be fetched over 1 to 3 memory cycles, depending on the address of the starting
byte. Special logic is included in the RALU to efficiently align all memory data during read and write . -

operations. This logic, used in conjuction with the conditional branching capability in MSU, guarantees that
all data is accessed in a minimum number of cycles. A memory protection check is performed by a specific
memory management unit in the memory subsystem, while exceptions detected will be received by the CPU as
a condition code to initiate a memory trap.

Built-In-Test Support (EDC)

Hardware redundancy at the chip level, level-sensitive scanning of internal machine states, and a BIT,
microprocessor provide on-line concurrent fault detection and off-line fault isolation down to a single chip to(r
replacement. One Error Detection and Correction iEDC) chip is employed on every substrate to collect and
report errors to the BIT subsystem, and to interface the CPU with the BIT, allowing CPU diagnostics to run
under the control of the BIT processor.

35

Every VLSI chip in the system is configured as a master-slave redundant pair; both members receive the same
system inputs and produce the same outputs. Only the outputs produced by the master chip are used to drive
the system. These outputs are also sent to the slave counterpart, where all the redundant outputs are com-
pared. A single chip-fault signal is generated by combining all possible faults. All chip faults are collected by
the EDC chip resident on that substrate and communicated to the BIT processor. Having received the error
reports, the BIT processor can gain control of the complete system by loading specific BIT commands into the
EDC to interrupt and halt the CPU. CPU internal states can then be loaded with a specific test pattern using a
pre-defined scan path, and specific diagnostic routines can be invoked. Resulting states can then be accessed
and analyzed for fault isolation purposes.

To minimize pin outs and the basic CPU cycle time, the microprogram ROMs are distributed onto the
individual substrates to provide the necessary control. One level of microinstruction prefetching is supported.
allowing the fetch of the microinstruction to be overlapped with its execution. Recognizing that the micropro-
gram ROM is one of the most error-prone and functionally critical areas in the CPU, single-bit error detection
and double-bit error correction is concurrently provided with microinstruction execution. Error detection is
performed on the microcode as it is executed. If no error is detected, there is no performance penalty. If an error
is detected, the execution will be cancelled by inhibiting the result clock, so that no machine states are
changed. The CPU will then be suspended for a cycle in order for the microcode to be corrected (if correctable.
or re-fetched and re-checked (if not correctable), and execution resumes in the following cycle. If the error in
the microcode repeats after refetch, the CPU is halted, and control is turned over to the BIT processor.

CONCLUSION

A sophisticated ISA like Nebula provides a software programmer with numerous flexible features that are
convenient and powerful to use. However, the complexity, reliability, and cost of such implementations are of
primary concern.

The system architecture described in this paper provides a 3 MIP implementation of the Nebula ISA usinz

generally applicable for high-speed processor designs.

'. P~%36

-, --p

-I"
air 4-

Session 3: Custom Chips

Chairperson: Allen J. Smith -.

University of California at Berkeley --

I %

37

le.

The Arithmetic Cube

and

It's Associated Algorithms 'o

Mary Jane Irwin
Supercomputing Research Center

4380 Forbes Blvd.%
Lanham, MD 20706

Robert Michael Owens
Department of Computer Science

Pennsylvania State University
University Park, PA 16802

March 1986

This work has been supported in part by the Army Research Office undler Conitract
DAAG29-83-K-o1 26. -

38

Introduction

Digit serial data transmission can be used to an advantage in the design of spe-
cial purpose processors where communication issues dominate and where digit pipelining
can be used to maintain high data rates [DeR]. VLSI signal processing applications are
one such problem domain. We have developed a family of VLSI components which haveA
digit serial transmission and which can be pipelined at the digit level. These corn-
ponents can be used to construct VLSI processors which are especially suited to signal
processing applications. One particularly attractive such processor is a structure we call
the arithmetic cube [OwI]. The arithmetic cube can be programmed to solve linear .
transformations such as convolutions and DFTs, has nearest neighbor interconnects.
regular layout, simple control, and a limited number of interconnections. Regular lay- '_

out and simple control derive naturally from the algorithms on which the processor is
based. Long wires are eliminated by the nearest neighbor interconnect. High
throughput can be achieved by pipelining the processor at the digit level. The arithmet-
ic cube is programmable in the problem size n; once implemented for a certain size N, Jh
smaller problems can be solved on the same implementation without a loss in perfor-
mance. In addition, the architecture extends to larger N in a regular and automatic
fashion.

Table 1 lists the system conventions to which our VLSI components conform
[DeR]. The arithmetic cube contains an arithmetic processor, which is built out of
adder and multiplier components, fed by a memory.

Table 1. System Conventions
Convention 1: communication is base 4 digit serial
Convention 2: digit pipelined, msd first
Convention 3: high signal - logical 1 _,

low signal = logical 0
Convention 4: on-chip data stable during phi-2

off-chip data stable during phi-i
Convention 5: numerical format is fixed point fraction
Convention 6: operand word length is fixed and constant
Convention 7: multiple precision values are not allowed
Convention 8: components have fixed and bounded latency
Conventlon 9: inputs to components are time aligned ,st %
Convention 10: two broadcast control signals are allowed
Convention 11: one control signal may accompany the data
Convention 12: primitive components are fine grain in size
Convention 13: intercomponent signal wires abut or river route

The data communication format is digit serial, where a digit is represented ill
base 4 signed-digit format [Atk]. The operand digit set is the maximally redundait
symmetric signed-digit set for base 4 ({-3, -2, -1, 0, 1, 2, 3}) requiring three wires to
transmit one operand digit in a. two's complement. encoded format. All components are

39

*PW,1~ *L %

digit pipelined with up to three digit operands input and three digit results output. The
data communication flow proceeds in a right directed fashion (from most significant digit
(msd) to least significant digit (Isd)). Operand digits are input one set per clock cycle.
The first result digit is generated and output some number of clock cycles after the in-
put of the first set of operand digits. After the first result digit is output, a result digit
is output for each subsequent cycle. This latency between the when the first digit of'
data is input and when the first digit of the output is generated is measured as an in-
teger number of digits. We require that all components have a fixed, known latency.
Ideally, this latency should be one although this may not always be possible. Our primi-
tive components can be classified as fine grain ; that is. each component is limited in
size so that the many components making up a processor can fit on a single (or a very
few) chip(s). Each component can contain no more logic (or area) than that required for
a one digit product cell, two digit adder cells, a shift register, some small local control,
and local interconnect.

Ideally for VLSI, processors should be meshes or linear arrays of primitive corn-
ponents, interconnected in a nearest neighbor fashion so that the intercomponent inter-
connects automatically abut. The arithmetic cube, shown in Figure 1, maintains the A.
nearest neighbor interconnect while retaining flexibility. The cube contains an adder ar-
ray with N adder components (A,j 's) and a multiplier vector with /V§ multipliers
(Pi 's) which feeds a memory array with vfNW memories (M, 's) containing V words

each. Figure 1 shows only the digit wide data paths interconnecting the arithlmetic
components and the memories. ""

After discussing the two primitive arithmetic components used in the cube, we ..e%
will illustrate how the cube can be used to compute Y when "programmed" with H, B.
and X where Y is defined by either %',,

or
Y= (H®B X) T

where B is a predefined n0Xnj matrix whose elements are either -1, 0, or 1. H is a
predefined n 0 Xn 2 matrix whose elements are fixed point numbers. X is the n I X ., ill-
put matrix, and Y is the n0Xn2 result matrix. We will then show how these opera-,.
tions can be combined in various ways to compute the DFT.

40

• o

A9

A1A

A0. 1 #AA.t

AAAN.OA 1

9.%

1/00 1/0,
1
/

0
N-2 "

0
ON-1

Figure 1. The Arithmetic Cube

Cube Architecture

The arithmetic cube contains an adder array with N programmable adder com-

ponents (A1 , 's), shown in Figure 2, which has been "folded" along the diagonial to

maintain nearest neighbor interconnect between the first column of adders and the miul- O
tipliers. The Load signal loads the p digit circular shift register r 0 , r 1, - i p-. At

the end of the Load operation rp -1 holds the most significant digit of the loaded

operand.

-pn A1 j XO-*

LoadZO
Mode

where

Load Cycle (Load =1):

=~ -Tin

41

- S5 ~9'~ 4 .. ' ~ N~s%,J % ~ ~

r 0 Xin

rj = rj_ for i =1,2, p-1

Add Cycle (Load = 0):
Xout =- zin

r 0= rp -1

ri = ri1 for i % 1,2, p-I

Mode 0 (Mode = 0): c 1•
x,n -4 c i if rp -1> 0"..'" -

(1) 8i = zi. + 0 if rpl = O0-

-xi,, -4 c j if rp- < 0 ,

where-1 < e. < land-2 <s < 2

(2) Zot = 8j-1 + c1

Mode 1 (Mode = 1):
rp-4 cj ifxin >0

(1) S, = z, + 0o if x,. =0

-rp_--4 c. if xin < 0

where-1 < j < 1 and-2 < sj < 2
(2) zot = sj + cj

Figure 2. Cube Adder

In the adder, the present sum digit sj, which is determined by the first digit ad- 0I
dition operation (1), is latched for use in the next cycle. Then a second digit addition
operation (2) adds the present carry to the previous sum and this result is output. Most
importantly this second addition is guaranteed to be carry free because of the restricted
digit sets allowed for the carry, c1 , and the sum, sj . The latency of this adder is one
digit. The addition component requires two digit adder cells, a one digit storage cell for
the present sum digit, and a shift register for R. Only one component is needed regard-
less of the operand precision. The number of digits of storage provided in the shift re-
gister will be the upper limit on the precision of the operands.

Using jusc the adder array and the memory, the arithmetic cube can be used to
compute Z = B X. A set of memories is said to contain B (BT) if the i 'th niemorv * .

contains the i 'th row (column) of B. With the memories M i . 0 < i < n ,, initially
containing the i'th column of B, the shift registers in each adder can be loaded by
shifting the digits of the elements of B along the data paths connecting the memory and

42 %

SL~

adder array. Then with the Mode line held at 0, the digits of the elements of X are cy-
cled through the adder array with the digits of the elements of Z being collected back
into the memories. The time needed is O(no+n 1+n) independent of N. In a similar
fashion, the cube can be used to compute Z = (b X) T. If the memories initially con-
tain BT and X, Z T can be computed by transferring the digits of the elements of X
from the memories to the adder array during the Load cycle to load the shift registers of
each adder, and then transferring, while the Mode line is held at 1, the digits of the ele-
ments of B from the memories to the adder array and at the same time transferring the
digits of the elements of Z from the adder array to the memories. The time needed is V
O(no+n 1+n 2). Which of the two operations is performed by the adder array is deter-
mined by the order in which the operands are supplied and the Mode control line.

The cube also contains a multiplier vector with 1N multipliers (P, 's). Our
semi-systolic, programmable multiplier is built out of S components each of which con-
tains a digit product cell and two digit adder cells. To multiply two p digit values,
p + 3 S components are interconnected as illustrated in Figure 3 where p = 4. The S
components are loaded during the Load operation with the multiplier,
Y -- (.y ly2Y 3Y 4)4, which has been recoded [Atk] so that y; e {-2, -1, 0, 1, 2}. During
processing the digits of the multiplicand, msd first, are broadcast on the x,, line to the
S components in the multiplier. All other data is passed from component to neighbor-
ing component in a systolic fashion. The latency of the multiplier is two.

S - S S
C. Y~ Y~ Y2 Yi 0 - 0 -~0 ~Ct

Load __ _ _ _ _ _ _ _ _ _ _

where for each S

Load Cycle (Load = 1):
Zou t = Zin

1/i = Zin

Multiply Cycle (Load = 0):

(1)Si s Y - Xin + Zin 4 cout -v

(2) .ut = Si + ci"

Figure 3. Cube Multiplier

Using just the multiplier vect-or and the memory, the arithmetic cube can be used

43

- *- *.~ '~"-.:':-.

to compute Y = H 0Z. If the memories M. , 0 < i < n0 , initially contain the i'th
rows of Z and H, then Y can be computed by cycling the data values through the mul-
tiplier vector. The time needed is O(n 0 + n 2)"

If the memories initially contain H, BT, and X, then()Y = (H BX)}
can be computed by transferring the elements of B from the memories to the cube to
load the adders and then transferring the elements of H and X from the memories to %
the cube and at the same time transferring the elements of Z from the cube to the
memories. In a similar fashion, if the memories initially contain HT. BT, and X then

(2) H T X)T) =(HGB X) Tcan e cmpued.If -

can be computed. If Hi i = D],., 0 < i, j < n, where D is a diagonal ma- %
trix, then L 'S:

(3) Y= (H BX)= (DBX) Z

is a special case of (1). If [H] - 1, 0 < i < n , and 0 otherwise, then

(4) Y= (HT®BX) (BX)T

is a special case of (2). The time needed to compute any of these four operations is .
O(n o+n ,+n 2) independent of N, the size of the arithmetic cube. Hence, there is no - -

penalty in solving a small problem on a large arithmetic cube.

Cube Algorithms

We will now describe how these four operations can be usedrT to compute the
DFT. The discrete Fourier transform y = [Y0, Y 1, ' Yn-i of n points

x= X0, X D 'X_ DFT(n), is given by y=Wx, where W is a n X n

matrix whose elements are defined by [W , = w i , 0< i, j K n, and is the : .
n 'th root of unity. The discrete Fourier transform can be computed using small n al- .%

gorithms and their formulations by Good and Winograd [AgC, CoT, EIR, Coo, I\oP.
Wil, Wi2]. The original motivation behind the small n algorithms was to develop algo-
rithms to compute either the Fourier transform or cyclic convolution which use as few
multiplications as possible. This reduction in the number of required multiplications is
at the expense of apparently unstructured sets of additions and subtractions. Since
multipliers are usually much larger than adders, it is desirable to minimize the number lb,-

of multipliers even at the expense of possibty increasing the number of adders. For-
tunately, the apparently unstructured sets of additions and subtractions (to (lnv1 :
structure which maps in a straightforward manner onto the cube [Owl]. These al"o-
rithms are based on the Chinese Remainder Theorem for polynomials and. when ,lati is
real, do not use sines, cosines, or complex arithmetic.

%~ % |

f"J""

4h rI

The small n algorithms consist of three steps: a set of input
additions/subtractions; a set of scalings; and a set of output additions/subtractions
represented by three matrices S, C, and T such that y = S C T x where T is a
predefined 6 X n matrix whose elements are either 0, 1, or -1 representing the input %
additions/subtractions, C is a predefined 6 X 6 diagonal matrix representing the 5 mul-
tiplications, and S is an predefined n X 6 matrix whose elements are either 0, 1, or -1
representing the output additions/subtractions. Optimal small n algorithms have been
derived for n = 2, 3, 4, 5, 7, 8, 9, 16.

Small n algorithms become impractical for large values of n . For larger n tile
DFT(n) can be computed by combining an appropriate set of small n algorithms.
Three reductions for computing the DFT(n) will be considered. In the following discus-
sion (Sn', C n , T') represent the small n algorithm for DFT (ni), 0 < i < I where
n = no n I n -1 such that (usually) the ni 's are relatively prime.

A) The Good's (prime factor) algorithm [Goo]:

y~ =(0 bTOSNc'T') T %Y =- (Sn o C n° T n o S n , C n ' T n , X _s,

where X and Y are n oXn 1 matrices holding the input and the output vectors. Both
n 0 and n must be relatively prime. Good's algorithm can be reformulated as

T. T

Y B l 2 B 2 B D 4 B 4 X)...
Y ==(B1 (D B (B3 (D BX)) T

where

B 1 . Sn°, D 2 = C no, B 2 = T no, B3 = Sn', D 4 = 1nl, B4 T n I.

In this form, Good's algorithm uses the series of four cube operations: 3 -- 4 -- 3 -- 4. e-

B) The Winograd algorithm [Wil, Wi2l:
Y = Sn(SnoC Tno(TNIX)T

where ®is element-wise multiplication and C is the constant no X n matrix

, [Gio. [cI' b,0 < i < no 0 < j < n

Both no and n I must be relatively prime. Winograd's algorithm can be reformulated a.

Y (B (B2 (H3B3(B4X)T))T)

where

B 2:- S n , B 3 = Tn , H 3 = C, B'- S a', B 4 = T n'. n'

In this form, Winograd's algorithm uses the series of for c'l- oiobcns:
4 1 4 3.

'p

45 %N

%- % %

C) The mixed radix (FFT-like) algorithm. [OwJ]

Y = (S0 no Co T no (W@Sn ni T' 1 T T

where W is the constant n 0 X n 1 matrix

wi~j -- WijO_<i < n,0 j <n 1 .

In this case n o and n need not be relatively prime. The mixed radix algorithm can be
reformulated as

Y=(B1(D2B (3B(4B X))

where

B1- S1, D 2 = C, B 2 - T, B 3 = S 2 , D 4 = C2 , B 4 T 2 H 3 W.

In this form, the mixed radix algorithm uses the series of four cube operations:
3 -, 2 -. 3 -- 4.
Conclusions

The decomposition of interest for the DFT(n) is that where a (n 0 , n 1) for n ex-
ists such that n o , n = 0(vn) referred to as an optimal decomposition. In this case.
the time needed to compute each of the four cube operations reduces to O(fT), \\'ien
an optimal decomposition is used, the time needed to compute DFT (n) is O(v-) For
example the time needed to compute DFT (210) using the decomposition (14, 15) is
0(29) while the time needed using the decomposition (3, 70) is 0(73).

For a given precision, each adder and multiplier have constant area. Hence. -
VLSI implementation of the arithmetic cube will have area O(.V). For an optim:il
decomposition, the area actually used is O(n) giving an A T2 bounds for the arithniit-
ic cube of O(n2). For the VLSI models where is the time needed to move a give n atom-
ic piece of data distance d is bounded by 1Q(d) or where the amount of' data which may
cross a boundary of length 1 is bounded by 0(l), the A T bounds to compute
DFT(n) is fQ(n2). Within the framework of this model, the arithmetic cube is optimi.

At present the S component was designed in CMOS as part of the NI(,IS 19S5-)
summer VLSI course. The cells of the adder are a generalization of a earlier NNIOS pro-
ject. Preliminary results indicate that the arithmetic cube for a reasonably large X (6.1)
will occupy a reasonably small number of chips (16). Such a cube will he :Ihle to(,-
form DFT(n) for n < N 2 . The arithmetic cube can also be programnn,, to oMjitc,-1"
the cyclic convolution and other linear transformations. 4

"9.

r

46 7
, *********9 p ~ ./.. r% O~4 .. y ,, . *, ~.~. . .' ~ - . -. .. °- . .

References 4
.

AgC Agarwal, R and J Cooley, "New Algorithms for Digital Convolution," IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-25, pp
392-410, 1977

Atk Atkins, D, "An Introduction to the Role of Redundancy in Computer Arith-
metic," Computer, 8, No 6, pp 74-76, June 1975

CoT Cooley, J and J Tukey, "An Algorithm for the Machine Calculation of Com-
plex Fourier Series," Math Computing, 19, pp 297-301, 1965

DeR Denyer, P and D Renshaw, VLSI Signal Processing: A Bit-Serial Approach,
Addison-Wesley, 1985

EIR Elliot, D and K Rao, Fast Transforms Algorithms, Analyses, Applications,
Academic Press, 1982

Goo Good, I, "The Interaction Algorithm and Practical Fourier Analysis," Jour-
nal of the Royal Stat Society, B-20, pp 361-372, 1958, Addendum, B-22, pp
372-375, 1960

KoP Kolba, D and I Parks, "A Prime Factor FFT Algorithm using High Speed
Convolution," IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, ASSP-25, pp 281-294, 1977

Owl Owens, RM and MJ Irwin, "The Arithmetic Cube," Department of Comput-
er Science Technical Report CS-85-20, Penn State University, September
1985

OwJ Owens, RM and J JaJa, "A VLSI Chip for the Winograd/Prime Factor Algo-
rithm to Compute the DFT," to appear in IEEE Transactions on Acoustics, I.
Speech, and Signal Processing

Wil Winograd, S, "On Computing the Discrete Fourier Transform," Math Corn-
puting, 32, pp 175-195, 1978

Wi2 Winograd, S, "On the Multiplicative Complexity of the Discrete Fourier
Transform," Advances in Math, 32, pp 83-117, 1979

47

THE DESIGN OF ULTRA HIGH-SPEED NUMERIC INTENSIVE SYSTEMS
(having fault tolerant and load balancing capabilities)

Fred J. Taylor
Dept. of Electrical Engineering

University of Florida
Gainesville, Flc.-ida 32611

1. INTRODUCTION

It is axiomatic that to support the design of current and future defense
systems, ultra high-speed digital computing machines will be needed.
Technologically, there are essentially two ways to build faster digital
systems. One way is to use faster electronics and the second is architecture
(the art of integrating together functional subsystems). In either case, one
normally begins the "top down" design process with a knowledge of whether a
general purpose or dedicated machine best satisfies the design goals.
University of Florida scholars have a long history of researching these issues
through the vehicle of advanced arithmetic unit design, fast algorithm
development and integrating these elements together into highly parallel
systems in an optimal manner. These individual discoveries have been
converging to the integrated design of high-performance, high-speed
information and digital signal processing systems for use in satellite
communications, emitter identification, radar systems, plus many others.
These applications are characterized by single unit (ALU) with a real-time '#
multiply/accumulate rates ranging upwards from 100 M operations per second.
In this paper two new architectures for arithmetic intensive applicatins are
proposed. They are theoretically based on

* modular arithmetic (viz: residue)
* homomorphic arithmetic (viz: logarithmic)

We also realize that speed can not be purchased at the expense of cost, power
requirements, or reliability. This is especially true in high-volume
applications and/or those cases where limited space/power and field
maintenance can be expected. As a result, Florida research has been paying
much closer attention to these companion issues and, it is felt, made steady
progress in this direction during the past year.

2. TECHNICAL BACKGROUND (RNS) -

Recently, in major tutorial paper on the subject of the residue number
stem or (RNS) [Tay84], it was established that this ancient branch of
heatics has enjoyed a renaissance over the last half-decade motivated by

the promise of speed. The RNS is specified by a moduli set of L relatively
prime integers, say P = 1p_, p } GCD (pi,p) = 1 if i * j . A
number in this system is expressed s a L-tuple ofintegers where the ith
element satisfies X. = X mod pi. In the RNS, the sum-difference and product
of two long wordleng1ch integers can be computed as a set of L-concurrent fast
short wordlength carry-free tasks.

The RNS has often been suggested as a promising media in which to design
very high-performance real-time (100 MHz) special purpose signal and image
processing systems. The scenario would read as follows-

4.

48

0 Convert a real signal into low wordlength (typ 6-12 b~t) datI
sets using a "flash A/D converter" running at a 10' to 10
sample rate.

* Map the A/D converted n-bit samples into a RNS L-tuple using
direct table lookup conversions. That is, if log (p i) < m, m
sufficiently small (m 4 6 bits), use a 2m x m-bit ROM tc -iap a %
single X into X. B Xmodpi as a table lookup task.
Perform arithmetic, restricted to add, subtract, or multiply, rre

using direct table lookups. That is, send the two m bit
operands X and Yi to a 2zm x m bit table which contains the
precomputed value of Zi (XioYi)modpi , € = +, -, or x.

* Convert an RNS database back into an integer in order to
service division related operations or to output results.

Historically, two routines have been used to convert a RNS L-tuple into
an integer. One is known as the Chinese Remainder Theorem (CRT) and the other r-
is the mixed radix conversion (MC) algorithm. They map a residue L-tuple
into an integer by using a nested sum of modular partial products. However,
the bane of the RNS has traditionally been the inability to support efficient
high-speed residue to decimal conversion or (RDCL' Unfortunately, it is
undamentally important operation and is found in magnitude compare, sign

detection, and overflow management operations and must be dealt with.

2.0 THEORY OF COMPLEX RNS ARITHMETIC

To a small segment fo the RNS community, a new wave has been gaining
momentum in the area of the complex RN1. Within the framework of a finite
ring, one can consider the roots ofx = -1 mod p . If x 4 Z , then x is
said to be a non-quedratic root or imaginary [Her75]. Until recently, complex
arithmfetic was based on these numbers and emulated the classic rules for
complex arithmetic which required 2 real adds per add and 4 real multiplies
plus 2 real adds per multiply. This is called the Complex RNS or CRNS. Now
consider the use of Gauss1in primes as moduli which are of the form pi = 4n +
1. When the congruence x= -1 mod p has an integer solution (a quadratic
root) such that j - -I mod p and j e Z then j is a real number. It has
been shown that there is an isomorphic mapPing of a complex number z = a + ib
into two new integers * (a, b) and + (a, -b) under 0(a ± ib) + (a ± jb)
mod p such that

i. (a, b) + (c, d) = ((a + c)modM, (b + d)modM) (I)
ii. (a, b) * (c, d) = ((ac)modM, (bd)modM)

The importance of the result is that only two real multiplications and no adds
are required to do complex multiply! We have also proven that tpe power
operation, such as the pervasive magnitude squared mapping zz* = Izi , can be
completed in one real multiply versus two multiplies plus an add as is
currently required in this system which is called t e quadratic RNS-5-r-QRNS.

Researchers at the University of Florida have achieved several milestones
in this area and they are

* Extensions of the theory of the complex residue number system
based on rings of Gaussian integers which include:

49 .4

i. that the reported QRNS isomorphism does achieve
Winograd's lower bound for multiplication complexity
'Tay86i].

ii. the mathematical machinery to synthesize (i.e., derive
other than divine) the QRNS isomorphism as well as Ygher
order iso Torphisms (ike., mappings w.r.t. p(x) = x + 1
(QRNS), x + 1, ... , x + 1) [Tay86i].

S Implementation of practical complex RNS units based on "off-
the-shelf" hardware [Tay85i]. This is suggested by the
implementation breakthrough called the single modulus QRNS
[Tay85i]. Based on the primitive quadratic roots of 2n + 1,
for n = 2, 4, 8, 16, 32, we can now design complex arithmetic
units which we have theoretically shown (based on a gate level i
analysis) to be potentially 100% faster than conventional
(non-residue) units in essentially the same amount of hardware
(Figure 1).

To test this hypothesis, the gate array design of a SM
unit was undertaken using the GE C20000 CMOS technology
[Tay86vi]. The design consisted of the following on-chip
modules:

NEG: Negates modulo p MUTT: Product modulo p
SUM: Carry lookahead adder JX: Scale by I
MDL: Sum modulo p ITWO: Scale by 2-

MUL: Carry-save unsigned multiplier ITWOJ: Scale by (2j) -1

where JX, ITWO, and ITWOJ tasks are essentially radix-2 binary
shift operations. For n = 4, 8, and 16, execution latencies
were simulated using TEGAS which demonstrated a speed
advantage for the CRNS. In particular, QRNS(min)/CRNS(min) =
2.08, QRNS(max)/CRNS(max) = 1.32 which was found to be in
support of the theoretical predictions.
Study of the DFT using recently developed RNS theory
[Tay85ii]. Based on a gate-level design study, a conventional
16-bit radix-4 FFT using fast multipliers and CLAs was found
to essentially require the same amount of hardware at the
butterfly level. If two multipliers are committed to a
design, the latency became 35u (u = gate level delay) for the
conventional unit versus 21u for the SM-QRNS!

3. TECHNICAL BACKGROUND (LNS)

The logarithmic number system has been only recently studied seriously
ESwa75,Lee77,Swa83,Tay85ii]. A number in this system is approximated by

x r ; ex = [I bits: F bits] (2)

where arithmetic is performed by manipulating exponents, in particular

i. MULT/DIV C =AB or A/B e =ea eb (3) - -

c. a b

50

.C - - .a.

ii. ADD/SUB C = A ± B ec = ea + (v)

0(v) = logr (1 ± rv)

iii. SQR/SQRT C = A1/2 or 2 ec = e a/2 or 2ea

It can readily be seen that multiplicative mapping (i & iii) are trivially
implemented. The ADD/SUB operation, denoted 0(v), is not derived but
mechanized as a "fast" table lookup mapping. As a result, the precision of
the LNS is historically limited to the address space spanned by v. For a
high-speed (7-30 ns) lookup latency, this translated to typically a 12-bit
range. Recently, Florida researchers have used various data coi)parison
schemes to extend this to 20 bits using a ISL technology. The 62 Kmil 390 mW
6-function processor chip, with 6-word stack (PUSH/POP, TOP and NEXT TO TOP),
possessed the following attributes (Figure 2): 19

MULT/DIV 40 ns Range max (1.84 x 101-
ADD/SUB 92 ns min (5.42 x 10-2)
SQR/SQRT 20 ns

Precision 212.52

4. INTEGRATION

The processors detailed in the previous section are fast and possess a .
regular dataflow. As a result, they are likely candidates for use as
"systolic primitives." The technical approach to integration to be taken is
based on some recent published work of Kung, Moldovan, and Fortps [KunR?,
Mol86,For85]. This work describes a method by which an algorithm, described
by a difference equation, can be maped onto the physical rectangular array.
These techniques can be used to map algorithms into systolic or wavefront
arrays. The algorithm to array mapping is given in terms of an epTiorphism
(we do not believe it is an isomorphism) matrix T which operates on a matrix
of switching prmitives. Fortes, for example, has used this concept to develop
a gracefully degraded architecture [For85]. Here, if in an nxn array the
(ij) processor fails, the ith row or jth column (or both) would be taken "off
line." This meant that to achieve continuous array processing, at least (n-1)
perfectly functional units were removed to protect the system from an isolated
fault. Even though this may appear to be "radical surgery," we feel that the
mathematical machinery and the refreshing conceptualization of the problem
offered by Fortes and others, points us in a very promising direction.

We have developed a method, using incremental difference equations, of
predicting the "slope" of these wavefronts. We also feel that we can change
the direction of a wavefront through a dynamic (during real-time) redefinition
of T. We call this wavefront steering. We submit that through the proper
application of this concept we can simultaneousIy achieve both fault tolerance
and load balancing. This is a bold statement when it is recalled that it was
previously stated that these are generally orthogonal concepts. However, with o.
the steerable wavefront concept can achieve the following:

Wavefront fault containment: (Figure 3)
Static load balancing: (Figure 4)
Dynamic load balancing: (Figure 5)

51
Ill" A 11, I li' 1, 1

'l

1. Move the existing tasks aside.
2. Install the interrupting task.
3. Restore the original tasks.

Load balancing can be achieve using one of the following procedures.
i. After initiating the interrupting task, use the remaining

array space to restart some of the interrupted tasks, or
ii. Do not drive all of the interrupted task to the boundary.

Exist only those required to open up sufficient space to begin
execution of the interrupted program.

5. SUNHARY

Our residue and logarithmic arithmetic research at the University of
Florida has recently overcome several of the problems which has limited its
prior use and acceptance. These new findings are now being extended into new
areas of complex arithmetic, VHSIC/VLSI and, integration into a viable,
highly-parallel numeric intensive processor designs and applications. We will
also plan to develop the mathetmatical machinery which will allow the
developed computational primitives to be interconnected into a rectangular
array. This study will provide a common framework in which both fault
tolerant and load balanced arrays can be designed and studied. The proposed
research in this area will be a synergism of theory, design, architecture, and
integration. The end product of this research will be the capability of
designing high-performance communications, control, and image processing
systems which are necessary to meet many future mission objectives.

University of Florida
1986

6. REFERENCES

Mo186 P.I. Moldovan and J.A.B. Fortes, "Partitioning and Mapping Algorithms
into Fixed Sized Systolic Arrays," IEEE Trans. Comput., Jan. 1986.

Tay86i F.J. Taylor, "On the Complex Residue Number System," (submitted to
IEEE Trans. ASSP and reported at the 7th Symposium for Computer
Arithmetic).

For85 J.A.B. Fortes and C.S. Raghavendra, "Gracefully Degradable Processor
Arrays," IEEE Trans. Comput., Nov. 1985.

Tay85i F.J. Taylor, "A Single Modulus Comples ALU for Signal Processing,"
IEEE Trans. ASSP, Oct. 1985. V

Tay851i F.J. Taylor, "A Hybrid Floating-Point Logarithmic Number System
Processor," IEEE Trans. on C&S, Jan. 1985.

Tay84 F.J. Taylor, "Residue Arithmetic: A Tutorial with Examples," IEEE
Computer, pp. 50-62, May 1984.

52

Swa83 E.E. Swartzlander et al ., "Sign/Logarithm Arithmetic for FFT
Imolementation," IEEE Trans. on Comput., June 1983.

Kun82 S-Y Kung et al ., "Wavefront Array Processor: Language, Architecture
and Applications," IEEE Trans. Comput., C-31, Nov. 1982. ,-,-

,%,

Lee77 S.C. Lee and A.D. Edgar, "The Focus Number System," IEEE Trans. on
Comput., Nov. 1977.

Swa75 E.E. Swartzlander and A.G. Alexpoulous, "The Signed Logarithm Number
System," IEEE Trans. on Comput., Dec. 1975. -'.

Acknowledgements: The RNS research was sponsored by the ARO and the LSI by W-'-

the ONR/SDI office. ,

INPUT X(CRNS) or X(ORNS] Y[CRNSJ or Y[QRNS-

OPERANDS

CRNS to CRNS to%
QRNS Code ORNS Code
Conversion Conversion

X(ORNS] Y(QRNS]

Carry Lookahead BINARY ADDER I n

$!C/ Sobt.] SumLILI? M(! Odul 0 2 .II
f r

FIGURE 1: BASIC QRNS UNIT

LNS DISP ARCHITECTURE InputlOutput format
Input * 20-bit LNS word

Functions NULT • XtTOS,TOD'NOS 40ns Oupt*Z-btLSwr -6 '..

DIV A/XTS,TOSNOS
4O nis Area • 64 300 nil

2
; Power • 384 mW LW

ADD Z +rOSTDSNOS 9Zns

SUB * i:-TOS!,TS-NOS 9ns

PUSHSui I hitstcvdw

PO P 5 * $ ~ f t stack p 20 - [E G N S ULS OV

S •external 1
TOS =to of Stack PL

NO0 * next of Stack ,-n

STACKFIGURE 2: IX FUNCTION LNS/DSP UNIT 2n

53 --

"S. :):-.o -cnv< -_r
' " 7 " "' ' .-%'% % " %" .." -Se -. t O-tp=t .'. -%-% -. -. r , .- -% .NS-Oq . .. 4S.;

UNFAULTEO ARRAY FAUL', ARRAY FAULT LOCATIOfN

- - -

-- . .I---------;---

. .. ,, ,

.. :FIGURE 3: WAVEFRONT CONTAINMENT
* , 3 3 3 3 3* " ' : ,,

- ----------------- ------ ----------------- GR 3: %AERN OTIMN

OI~timally FasL Systolic Wave- Steered Wavefront
"

front 3 3

X - RNS PRIMITIVE PROCESSING ELEMENT

Zunused Processor,7
%

FIGURE 4: STATIC LOADING o 0o0 o * x 0 0 ; i' _ i..N
00o 'p%, 0 .AND DATA MANAGEMENT 0 °1~o 0 0 * oe "r$' b, ' P,

0 C0ox 0 x % x o.*% * s

---- ---- ---- ---- ----

WAVEFRON MT SLOPE P= R1 ESSNG ELEM5NT

0 000000 000 0000000000C000000

0 ,' 0 0 , 'I 0

< 0 0 0 ,,,,
0 0 0 0

0 0 0 i nterruot 0 "

0uue 0 rocessord

F0 : rAST. T FIGURE 5: LOAD

0 *0 ', *

00 0 0 0

0o BALANCING ,

'0 ol11) /- 0 00
0 0

PRIOR 7,9 INRR" UPTS 7:T7 [NTPPRIJPT PE(.uESTED T=T.,

o0 ~0 0

0 0 0 0

o1 0 0 0--

o TASK 2 0 0 0/"c"'

-0 --- -- ossible 00 -.T~m I r-ud 0)D reinstalled 0"# ,W.

o 0AS 91 TS UI N

0 0 o ul 0 0

0 0

0 0 0
0 ,SK+ 0 0 BALANCIN

0000 0000000000000000

INT L ' O B f T =TS RESTORE UNFINSHE TASK T=T

0 NTA NEW 0 0=T 0

54 'e

' - .' Doss, - le 0 0 0, " - , ' , - " . " ' . " . " " w " , w '- - " " . , - . . . -. " "

HARDWARE IMPLEMENTATION OF SPECIAL FUNCTIONS
AN APPLICATION FOR COMBAT SIMULATION

by
John B. Gilmer, Jr., Ph.D.

The BDM Corporation
7915 Jones Branch Drive
McLean, Virginia 22102

ABSTRACT

This paper outlines an approach to improving computer performance based
on reducing key algorithms to hardware. This takes advantage of very fine
grain parallelism which would require either complex control or unacceptable
resource management overhead to handle otherwise. As computer aided design
and fabrication become more convenient and faster, such reduction to hardware
should become as much a programming option as is current use of firmware.

The effort outlined is to explore the means of doing this by reducing a
well defined algorithm to a hardware unit that can be plugged into the
existing system used to execute the program. The algorithm chosen, hexagonal
coordinate system addition, is an important calculation in the CORBAN
simulation and similar software of importance to AirLand Battle Management.
This algorithm's speedup of two orders of magnitude will allow speedup of the
simulation limited only by the fact that its use comprises a fraction of
simulation computation. Widespread use of this approach should result in
significant speedup when applied to many component algorithms.

A. BACKGROUND

Combat Simulation is currently computationally limited on existing machines.
For example, the CORBAN (Corps Battle Analysis) Simulation runs only about as fast as
real time on a Sun microcomputer. Orders of magnitude better performance are needed
to meet the analytic applications requirements for Battle Management.

There are several approaches to improving performance. One is the improvement
of the compiler and other system tools. This may yield a factor of two performance
improvement. Another approach is to take advantage of advances in the state of the
art. The new 68020 should allow a factor of two or three improvements in run time,
albeit at a significant increase in cost. Software structure changes, particularly
unpacking of records, can trade space for time to gain perhaps another factor of two.
Better algorithms for functions can give speedup as well. For example, a range
calculation that currently involves several coordinate transformations can be
approximated with acceptable accuracy with arithmetic no more complicated than
addition, negation, shifts, and one multiplication.

Parallelism may be profitably applied to make dramatic improvements in run time ,
but at a high cost in hardware. As the inherent large grain parallelism available is
reached, the efficiency of parallelism declines, to the point where marginal costs
are not worthwhile. This point is illustrated by previous work that showed, for the
Butterfly parallel processor, a decline from 86 percent efficiency to 77 percent
efficiency when the number of processors rises from 64 to 124 for a simple simulation
with a typical scenario size of 800 units. (1)

55

-'S -~S -~S **~ ~ ,.~. I .

Another way of achieving speedup is to migrate algorithms from software to
hardware. The effect of using hardware algorithms is to capture fine grain O
parallelism that can be expressed in a logic diagram but not in serial instructions.
This parallelism is unlikely to be captured in any other way, as its fine grain would
impose unacceptable management costs or require a very complex machine. Use of a
floating point processor in conventional computers is an example of this. But once a
fairly limited number of arithmetic and perhaps transcendental functions are so
supported with hardware, there remains quite a bit of processing which is not helped
by these fairly universal operations. It is on these algorithms that this paper
focuses.

The power of special purpose hardware is illustrated by the recent US computer
chess championship, where the top two programs, HITECH and BEBE, utilized special
hardware which was designed for chess algorithms and were able to beat the previous
champion, CRAY BLITZ, which uses a CRAY XMP48. (2)

B. THE CANDIDATE PROBLEM.

In the combat simulation CORBAN, there are several utility algorithms that
consume a significant portion of the processing. If many of these can be converted
into hardware, significant speedups may be achieved in parts of the processing that
will not yield much to other approaches described above. One such algorithm has been
selected to illustrate this approach and as a candidate for a demonstration.

The CORBAN simulation uses a coordinate system based on a hierarchy of hexagons.
(3) (Hexagons are preferred over squares, since in an area so subdivided any two
adjacent regions must share a side. This eliminates the corner problem found in
square grids. Also, ranges calculated in hexes are accurate enough for most modeling
purposes, while this is not true for squares.) Arithmetic performed in the hexagonal
coordinate system consumes a significant amount of computation time. As the CPU does
not have facilities for such calculations, this must be performed in software.

A utility often called in CORBAN is the Hex addition function, HXADD. On the
Butterfly in C, calls to HXADD averaged about four milliseconds each. An assembly
language version on a machine faster by a factor of two required about 400
microseconds per call on a 12 MHz 68000 with no wait states. This improvement is
still much slower than the two microseconds or less that would be required to perform
the calculation in hardware. If similar speedups can be achieved for a variety of
model algorithms, overall performance can be greatly improved, in a manner that can
be used in conjunction with other improvements such as parallelism.

C. THE ALGORITHM

The logic of a hardware hex addition algorithm is illustrated in Figure 1. It
is of a complexity of about 1000 gates, and requires about one microsecond for gates
with 4 ns delay. Table 1 summarizes timing calculations. This is sufficiently quick
to make this calculation no longer a factor in the simulation run time. This
complexity and performance is well within the capability of what can be fabricated
using DARPA's MOSIS facilities. A chip fabricated in this manner can be readily
integrated into the system as a memory mapped device, perhaps even inserted as a
substitute for memory in one or two RAM sockets.

This particular algorithm is one which is especially suitable for this type of
approach for three reasons. First, it has already been put in the fastest form

56

possible with software, so it is unlikely to benefit from other speedup attempts
short of parallelism. Second, it requires no memory references, and thus does not

BINW ADDS HEXAGON RALF ADDSI

C.
C EXAGO:N FLL ADD:ER HEX ADDR ESS ADDW:ER

SW A aC,
St ai C P

SB 11 S C SAC -

A C1 A=_s

S Onk A
c~~

A=>S A
V " 01

B AA S C E Z

13 GATES TOTAL 3 GATES O.AY 39 GATES TOTAL S GATES DELAY

. ® o

Figure 1. Hex Adder Logic

need to take control of the bus in the manner that a coprocessor would, simplifying
the logic. Finally, design and test of such a chip is straightforward because the
algorithm is combinational rather than sequential.

TABLE 1. HEX ADDER LOGIC DELAY . ,

GATES DELAY

Binary Full Adder 13 Gates 3
Hexagon Half Adder (x3) 39 Gates 9
Hexagon Full Adder (x3) 117 Gates 27

10 Digit Hex Address Adder 1053 Gates 243 - lps at 4 ns gate delay

Notes: % %

1. A more optimal design could reduce the delay by adding more gates,
reducing the hexagon full or half adders to logic, thus eliminating

the intermediate steps. %

2. The first adder in the 10 digit hex adder is only a half adder; the
last adder does not utilize the carry, so it does not need one of its
half adders. Therefore, the total complexity (and delay) is 9 times
that of a full adder.

57

The algorithm is described more fully in Reference 4.

0. EXTENSIONS

Table 2 lists various algorithms in CORBAN which consume significant computation
time, about three quarters of the simulation run time, which would benefit from
hardware algorithm approach. The several hexagon arithmetic and related functions
alone comprize about a quarter of the simulation computation. Other algorithms in
the simulation may also have potential for speedup with this approach, but have not
yet been investigated. Individually, each one might only give a marginal speedup,
but collectively the speedup may be very significant. The hex invert (or negation)
operation has a complexity of only about 100 gates, and could be included on the same
chip as the hex add. Hex rotation (or multiplication) would also be straightforward-
although somewhat more complex than negation. Conversion from hexagonal to (x, y)
orthogonal coordinates has a complexity of about 4000 gates, and is quite inefficient
in software.

TABLE 2. ALGORITHM COMPUTATION TIME IN CORBAN

Entire simulation, per time step 347.87 sec

HXADD (Hex addition) 24.16 sec 6.9%
HXINV (Hex negation) .10 sec ---

HXROT (Hex rotation) 13.62 sec 3.9%

GETHX2 (Hex tree traversal) 66.70 sec 19.2%

PERCEV (Perception, including most calls 137.83 sec 39.2%
to HXAOD, HXROT, GETHX2, and
HXINV)

HA2XYL (Hex to X,Y coordinates) 4.91 sec 1.4%

HXDIST (Hex distances) 10.75 sec 3.1%
AZIMTH (Azimuth angle between hexes) 39.26 sec 11.3%
KILTGT (Target attrition calculation including 64.85 sec 18.6%

most calls to HAZXYL, AZIMTH)
MOVSEL (Movement selection, by tree search) 43.55 sec 12.5.

EVALU8 (Evaluate decision rules) 7.18 sec 2.1%

Total time of those algorithms listed above 266.93 spc 76.7%

Total time of hex utilities listed above, 92.8 sec 26.6%
excluding traversals

NOTE: Totals reflect impact of nested cells.

Another class of algorithms for which a hardware approach would give speed up
concerns searching. There are several tree or list data structures which must be
searched based on a variety of criteria. For example, one such search traverses a
list of units occupying a.given hexagon, makes random draws to determine what is
perceived, and indicates which are detected. A hardware approach can give about an
order of magnitude speedup because all memory references are data accesses necessary
for the traversal; none are needed for the overhead of instructions. This type of

58

...

device is more complex than the hex addition unit, as it must include addressing
logic. It must also be designed to meet coprocessor specifications for the host
processor. But this type of algorithm makes up a large proportion of the logic not
covered in the previous case, so use of this approach would have a significant
benefit. How general in purpose a particular device should be, a matter of cost and
risk traded off against utility, will require study.

With some modification to the representation of the searched space, the most
often executed portions of the search algorithm could be moved onto a peripheral chip
using a small memory array to represent occupancy status for various regions in the
model. This would build on the logic of the hex adder. Figure 2 illustrates the
logic. This approach captures most of a major model algorithm, currently coded in
the "Percev" subroutine, without requiring use of the coprocessor approach.

B _ _ _ _ _ _ _ _ _ _ L
A ______________ E OBLIQUE

F] OR X.Y Y

o _F T

M B
U

0 E

T E PZ ROTATE:* ADD D

.?

0A MI TA/E D

E S R R.

T XS.

Figure 2. Percev Algorithm Chip

59

V V '. -w :.y, >-..,
t -" -.

lq
- -

REFERENCES 5

1. John B. Gilmer, Jr., "Report on the BBN Butterfly Multiprocessor Workshop ,.
(August 12-16, 1985): A Battle Simulation Application," The BDM Corporation,
September 13, 1985, BDM Technical Report BDM/R-85-0980-TR, page C6.

2. Leon J. Kamin, "Computer Recreations," Scientific American, March 1986, pp. 13-
21.

3. John B. Gilmer, Jr., "Dynamic Variable Resolution in the Quickscreen Combat
Model ," Proceedings of the Winter Simulation Conference, IEEE, December 1984, .-

pp. 597-602.

4. Donald K. Krecker and Peter J. Lattimore, "An Integrated Coordinated System for
Combat Modeling," The BDM Corporation, BDM Technical Report BDM/W-78-297-TR, May .

19, 1978.

60 ..1*

. ..

'1w

*., .?W'.

N "w
• , .,= , d , , . ' ', . - -Z -" -0

.) .

Session 4: Memory Hierarchy and Parallel

Architecture

Chairperson: C. Forrest Summer

Naval Training System Center

6.1

/4

61 .41

- ~ 4) -, 4~ ~~ ~j~*/V~2 ~ ~ *.4C ~ *~ * *V

Research and Development Trends for

Memory Hierarchies"

Alan Jay Smith F

Computer Science Division, EECS Department
University of California

Berkeley, California 94720, USA

Abstract 1. Introduction

The effective and efficient use of the The memory hierarchy of a computer
memory hierarchy of the computer system is system includes almost all aspects of a com-
one of the, if not the single most important puter system's storage, including cache
aspect of computer system design and use. memory, main memory, disk, tape, and mass

Cache memory performance is often the limit- storage. The effective and efficient use of the
ing factor in CPU performance and cache memory hierarchy is one of the, if not the
memories also serve to cut the memory traffic most important aspect of computer system
in multiprocessor systems. Multiprocessor design and use This point is illustrated by
systems are also requiring advances in cache comments in two recent papers see also o

architecture with respect to cache consistency. [Matig4l):
Similarly, the study of the best means to From [Hopk83'
share main memory is an important research %b efrac fth trg irr
topic. Disk cache is becoming important l~ chy may be more important than any
performance in high end computer systemsdtilofheomuaonlnrcin
and is now widely available commercially; detais sugghe tspuatppoalich fruton Ie

there are many related research problems. mtT ssget napoc o h-

The development of man stoage. especially Ehopent o exlot on the demory
optical disk, will promote research in efexpvheardy yoro eoti insttmon y
algorithms hr fl~e management and migra-herch.ntoexicnsuton
tion. In this paper, we look at each com- From 'Mate841
pilnent of the memory hierarchy and address -The high performance 16bit micropro-
two issues: what are likely directions for ceseors introduced over the last five
development, and what are the interesting years have broken ground in a new
resarh problems5. market hir microprocess high perfor

mane systems siuch as .ngineennic and
*The malari p insid bae - based G an d CAD workstations and even igeneru I

supported in pant by the Nsuasal sciiinct vaunds pups enraelvl 'mputerit
lacgin undr Wnt DCR-82f285 by the Sisi. 4 aiproe manrmfee

(orm, and th MICR prcogram by ~ the 4 M The 16 bit mscroprrucvqsor% iceterslINh
pormatis the Sapetice 4,orporsbrn an~d bv the r.. have plentv computing powe-r ha? .
f~r Aivance IRageaam Pmp.cta 44o.y Nf suffer in 1heoo spplwicalnm fy',rr in
uinder Arpe Ordjer No 4A71 rnniad iv Ns' inefficient .e of mr The pr-'f,- p,
electronic syslassa CoaminWtode Cotrc N purpose 4 the !- hit in%.m..ar

N00:116-81-C00110now reaching the market r ;ver-otvi.
'1Ii palpor ia a revised l womn a pae rwio this difficulty and toi pri~ ide e~.a.
*t the IN5th Aso H.... tnt C(m Sunys lrivrws

Januas 1M. Hoolulu Ha... enigine., (or high porformnn % voiem'

N-

'

b.

"Designing high-performance paper can be considered to be an update of
microprocesaor-based systems requires two previous surveys of this topic by the
viewing the memory and its buses as the author [Smit78e, 85 a]. There will be a section
citical elements. DMA, graphics, and each on cache memories, main memory, gap
multiple CPUs must all contend for this filler memory, disk, and tapes and mass
resource, and the key design criterion for storage. Some discussion will also be pro- 1h
CPUs intended for this environment is vided on the topic of the "logical" view of
that they provide high levels of comput- memory, as opposed to its performance and
ing power without hogging the bus." physical configuration

Each component of the memory hierar- 2. Cache Memories
chy is important for a different reason The Cache memories are used in modern
access time to the cache is often the critical medium and high speed CPUs and new high -
path in the CPU The size and ease of access end microprocessors to temporarily hold those .-
to main memory affects both performance. portions of the contents of main memory
through memory access time, paging, swap- which are currently (believed to be) in use. A
ping and frequency of other 110, and the ease thorough survey of cache memories appears in %
of programming, in the ability to trade space [Smit82] and has been updated in [Smit841; %

for running time and programming time The we assume that the reader is familiar with
efficient use of disk affects performance, the cache memories. An extensive bibliography
sis of the disk address space affects the ease appears in (Smit86].
of programming, the cost of the disk system is
a major component of the cost of the overall 2.1. Basic Issues
computer system, and finally, the physical The two basic performance issues in
size of the disks is often a problem in the com- cache memories are access time and hit ratio.
puter installation Efficient use of tapes and Access time is the time to read or write
mawe storage impacts system performance, cache memory, when the desired information
and overall coat by its effect on the number of is cache resident, and hit ratio is the proba-
disks required, operations cost and operations bility of finding the target of the reference in

rrWs. the cache Access time is crucial because in

There are some changes common to all many. most or almost all computers. the cache
components of the memory hierarchy First. access time is the critical path in the machine
all memories are becoming logically bigger and is the factor most tightly limiting the
This is due to two related trends. memories cycle tame and overall machine performance
are becoming denser and are also becoming The hit ratio is important not only for the
cheaper, thus it is both physically and traditional reason, that it affects the average
economically possible to increase the memory access time. but also for a relatively new rea-

ses Second the increasing performance of son memory or bus handA'idth is a critical
the processor is also necessitating additional ind limiting re.-murce in multiprceis,,r Iv,-
memory rhe performance of cache and main terns, and the hit rat, ,irvctb. affects mem, r""
memorese are acreasing steadily, as are the traffic.
capacities *f disks

Among the most important trends in 2.2. Multiple CPU Systems
general computer system design is one toward Recent trends in computer system tech
multiple 'PU% and distributed syste.ns This nology are encouraging the development of
1 having dnci *ill continue to have an impor multiple ('P1" systems V'here are two reasons.
,ant offe-t in memov hierarchy deian and for this tendency a rhe performance of ".
as explained below accounts for -mv f the high end ('P['s is not keeping pace with the .'.

most pr lng problems in memory hierar demands for ('P' power in certain applica .'

,hie tion, %uch as modeling simuiati,,n and

tn the remainder ,f this paper we, numerical computation b The cost

present an op to date view 4f problem% dirre perfirmance ratio is now 4ignificantly better

tions and souP in memory hierar'hie. th,, for small mat-hines than large ones which

mean% that it is cheaper to get a given

"amount" of computation by combining many suggested to avoid unnecessary cache purges.
small machines than having one (or few) (5) A special type of directory method, most
large ones. suitable for multiple microprocessors sharing

The basic and critical architecture and the same bus, has recently been developed
hardware issue in multiple CPU systems is and is the preferred method for this type of
that of resource sharing. Such systems, in system. (See [Good83], [Swea86].) In it, all . ".CXN
particular, may share many of the parts of the microprocessors have logic to watch the bus
memory hierarchy, such as main memory, and ensure that the I writer "many readers
disk and mass storage. There are two result- condition holds at all times. The principal
ing problems: (a) maintaining consistency of limitation of this method is that the bus must
shared and modifyable information, and (b) be shared; the method does not extend to an
avoiding or minimizing queueing and arbitra- arbitrary number of processors. It also needs -.

tion delays in accessing the shared resources, to be extended to work across bus repeaters.
Cache memories are directly concerned in Each of the above methods has been or
both problems. is being implemented in one or more systems,

but as noted, none effectively and efficiently -i
2.2.1. Cache Consistency solves the general problem of maintaining

In the case that processors have cache consistency among N processors sharing
memories and also share main memory, the memory, where N is reasonably large (e.g.
problem is to ensure that the many processors > 16). Finding such a solution to the cache
see consistent values of the shared data. consistency problem is a difficult, significant
There are a number of ways to do that, none and important research problem.
of them entirely satisfactory; a more detailed
discussion of these appears in (Smit82, 84a, 2.2.2. Cache and Memory Bandwidth
85e, Swea86]; we summarize here. (1) The The second major problem with shared
cache can be shared; this solution is usually memory is that of memory bandwidth, and
poor, since the cache doesn't have sufficient this problem is most apparent in the case of
bandwidth, and the shared design increases multiple microprocessors sharing a single
the access time. (2) All writes by each CPU memory bus. (See [Bask76] for an analysis of
can be broadcast to all other CPUs, and the interleaved memory.) One would like to con-
relevant lines either updated or purged; this nect several microprocessors to one memory
solution fails for more than 2 or 4 processors, bus. Using a high performance microproces-
as write traffic begins to interfere with access sor, and a moderate performance bus, it is
to each cache. (3) Directory methods (see, e.g. possible to saturate the bus with from I to 5
lArch84] for a recent study) maintain distri- microprocessors; the addition of more
buted (in each CPU) or centralized (in main microprocessors brings no increase in overall ,':

memory) directories, that ensure that for each performance, as the processors spend their
line there is only one CPU able to access a time waiting for memory access.
line that has been or is about to be modified. Cache memories are one of the primary
(.e. many readers or one writer.) Directory mechanisms to solve the memory bandwidth
methods are expensive to implement and can problem. A cache memory can be associated ..-
slow down the caches and memory system due with each processor, either on the micropro-
to the need to synchronize use of writable cessor chip or off-chip. If such a cache has a
data. (4) In the event that an architecture is 16 byte line, a 5% miss ratio per instruction, ".
new, requirements may be placed on the reads 6 bytes per instruction and writes 2
software, causing it to issue certain hardware bytes per instruction, and uses write through,
commands (e.g. cache purge) that will main- then the memory traffic has dropped from 8tam consistency. This solution is only feasi- bytes per instruction to 2.8 bytes per instruc-
ble if the architecture is new, so that old tion. With copy back, and half of the replaced
software need not be supported, and if the lines being dirty, the memory traffic drops to
appropriate synchronizing commands have 1.2 bytes per instruction, an 85- decrease.
been implemented. A new way to maintain Thus, cache memories will be necessary for
consistency via software is discussed in high performance multi-micrprocessor corn-
(Smit85e], in which "one time identifiers" are puter systems. The trend, then, will be for

64-I

~~ %~

future high performance microprocessors to and multicache consistency. Some of these
have on-chip or outboard cache memories, are further discussed below.
(However, it is possible to design a cache
memory in such a way that memory traffic 2.5. Multilevel Cache
actually increases; we are presuming good There are trends in computer architec- I.
design.) ture suggesting the further development and

2.3. On Chip Cache use of multilevel cache. On-chip or on-board
caches may be too small to be fully effective,

With increases in circuit density and but are much faster than more remote caches.
chip area, it is becoming possible to place use- Similatly, it may be cost effective to use
ful cache memories on the microprocessor different consistency methods for each cache
chip. These caches serve two purposes: they level, with different cost and performance
significantly decrease memory access times on tradeoffs. Fujitsu, in its Facom 382 [Fuji82,
hits, and they also reduce the bus traffic. Hatt831 uses a two level cache and reports
There are a number of design issues regard- that such a design has advantages. We
ing on-chip caches; these issues have been believe that multilevel caches will become .p
addressed primarily in the context of large, more common.
mainframe sized caches and need to be recon- 4,

sidered for small caches. Further, the 2.6. Virtual Address Caches
tradeoffs are somewhat different for on-chip Most cache memories are addressed
caches, since transfer times dominate latency using real addresses; see (Smit821 for a dis-
times for misses, in contrast to larger cussion. There are performance advantages,
machines, and main memory traffic is also hon. The are sserfor n g vital
important. These differences affect optimal however, for caches addressed using virtual
choices for parameters such as line size and addresses, as is done in the Amdahl 580
cache organization; in [Hi11841 some of these [Amda82%. We predict greater use of this
parameter choices are considered and the design, especially in new designs and archi- 71
sub-block cache organization (sector cache) is tectures where the synonym problem can be
analyzed and evaluated. Also, VLSI permits eliminated or avoided. (The synonym problem 1

"cheap and easy" associativity, which affects occurs when two different virtual addresses

the design (fully associative vs. set associa- map into the so me real address.)

tive) of caches and TLBs. 2.7. Data and Instruction Caches

The research issues are ones of evaluat- Most current cache designs use a single
ing and selecting cache design parameters in cache o instus and ,
the context of small size and limited off chip dathe advantge o stingthc ache
bandwidth, and the availability of "easy" dataalves is tha theassociativity, into instruction and data halves is that the ".e ..

bandwidth is doubled; the disadvantage is "..

2.4. Off Chip Cache that if instructions can be modified, then new
consistency and correctness problems arise.

Of no less interest are off-chip caches. For newer machine designs, in which compati-
Microprocessors recently announced and/or bility with old, self-modifying software is not
under development are sufficiently powerful a problem, we predict that split caches will
that they can benefit from, and in fact need, become increasingly frequent.
more cache than current technology permits
to be on-chip. A single cache chip could be 2.8. Microcode Caches
expected to hold 4Kbytes or more of cache, as In one special case, that of a cache for
with the Fairchild CLIPPER [Cho86], and a .lo
cache board could easily contain upwards of microcode, the workload is predictable andca h oa d c ul a il o ta n u wa d f static. In that case, the cache can be optim - " '
32Kbytes of cache. Research issues here are sic. fn tha ca, eac cnvbelyptn
the same as apply to cache memories in gen- ized for the workload, and conversely, the
eral, including virtual vs. real address caches, workload (microcode words can be specially
data/instruction caches, multilevel caches, modified to instruct the cache with respect to
line size, cache size, cache organization and fetching, replacement and branching. The
associativity, main memory update algorithm, identification and parameterization of such

65

................ m m m

optimizations is an open and useful research yet are still an active area of research and are
problem. an important aspect of computer design; the

extensive bibliography in [Smit86] testifies to
2.9. Vector Processors and Caches this. The author also consults widely on the

Vector processors rely on a steady subject of cache memories and with every new

stream of data to drive the vector unit. Cache design and system, there are special twists

memories can be a problem in such a system. that raise new issues. We expect that the

since cache misses cause the vector unit to activity in cache memory studies will con-

wait until the main memory fetch completes. tinue for several more years.

This can affect performance and can also
cause increases in complexity in the vector 3. Main Memory

and cache control logic. (Page faults are an The use and management of main
even worse problem.i The proper design of a memory has been an active area of research
cache in the context of a vector processor has since the early to mid 1960s; see Smit7Sd] for
not, to the author's knowledge, been a large bibliography of the relevant literature
addressed in the research literature and is an and [Denn80] for an overview of the research.
interesting problem. Traditionally, the research issues have

stemmed from the fact that up until the late

2.10. Workload and Performance Evalua- 1970's, memory was expensive and thus was a
tion critical resource; the efficient use of memory

The primary technique used for the per- was very important. Problems relating to

formance evaluation of cache memory designs paging, such as replacement algorithms and

is trace driven simulation. There has been a control of the degree of multiprogramming

tendency, however, to use small applications were stressed. These problems were exacer-

programs for these traces, and then to find bated by the many computer architectures
that actual cache performance is significantly with too few bits of addressing, e.g. 16, whichthats aimited cach perfountc is significatntoul
worse than predicted, since large programs also limited the amount of memory that could

and systems programs tend to dominate. The be usefully used.

problem of selecting an appropriate workload Within the last few years, main memory
is very important to any cache memory has become both plentiful and cheap. Thus,
evaluation or research effort and is being except for rare cases, memory is no longer a
addressed in [Smit85b]. scarce resource, and the traditional research

problems are of much less interest
2.11. Cache Parameter Evaluation There are still some research and

Despite the large number of papers pub- development problems relating to main
lished about cache memories, there is a shor- memory. Probably the most important ques-
tage of hard data in the public literature that tion is how to design a cost and performance
the cache designer can use. For example, effective shared main memory For example, a
what is the quantitative effect of varying the crossbar, such as was used in C mmp 'Wulf72'
line size? What is the quantitative effect of is expensive, somewhat slow, has some queue- " -

changing the degree of associativity in a set ing delays [Bask76], and poses reliability
associative memory? The former has been problems. For a project at the University of
addressed in [Smit85c]. The author is Texas, [Oppe83), a banyan network is
engaged in studies on the latter with a gradu- planned Many of the various multiprocessor ",
ate student. The relationship of miss ratio to research and development projects have as
cache size is considered in [Smit85b, ci their central issue the procesor and memory
Further quantification of cache design param- interconnection strategy and its impact t,n
eters and tradeoffs is needed, especially for access time, cost. reliability and queueing
caches in a multiprocessor environment delays This is and is likely to continue to be

an important and difficult research pro hlei
2.12. And So What Else is New? Another important question, which has

Cache memories have existed since the thus far been left almost entirelv to the
late 1960's and the IBM .3608?5 Liptf68> and memory manufacturers. is ii hbit rho ' ,#,(

% 'or

functional design for a high density memory over the next decade, page sizes of 8K or 16K
chip? Should the data come out 1 bit wide, 4 will become desirable.
bits wide, 8 bits, or more? If it is desired to
read a word at a time, and a word is 32 bits, 4. Gap Filler and Disk Cache
then 32 chips one bit wide are required; if The management of main memory has
these are 256Kbit chips, then 32 chips yield a in the past been an interesting research prob- ,- ,
megabyte, which is too much for some appli- lem because the large gap in access times
cations. It has been remarked to this author between main memory t< 1 microsecond, and
that current chip designs are very poor for disk storage (10-100ms) meant that transfers.
computer designers; memory chips should be especially due to page faults, often caused
designed to latch the inputs and outputs substantial CPU idle time. This large access
(Koto84]. Now the external logic to perform gap still exists, and is likely to get worse.
this function is expensive and it has a nega- since CPUs and main memory continue to get
tive impact on performance. Another ques- faster- disk performance has improved very
tion is whether "nibble mode" (by which addi- little recently and is not likely to improve
tional sequential bits can be obtained in much overall by a significant amount (Hoag79]. The
less time than the first bit referenced) is use- impact of the access gap still exists, but its
ful and represents a good design choice. focus has shifted more towards explicit 1O.

The function of replacement in extremely Essentially, the problem is that with the %

large main memories has also been described increasing density of disks, their nonincreas-
to the author as a problem. The clock ing performance and the slowly or nonincreas-
replacement algorithm tSmit78c] is easy to ing number of data paths to disk, the disk sys-
implement given only a reference bit, but the tern will be unable to provide sufficient 1/0
number of page frames that have to be exam- bandwidth to serve high performance CPL's
ined becomes unreasonably large in very and multiprocessor systems. This problem is
large memories. The use of set associative not yet major, but is expected to become worse
replacement for main memories has been pre- in the next few years.
viously suggested and inalyzed [Smit78a] and The existence of a "gap filler technol-
was found to be quite effective: the use of set ogy". i.e. one intermediate in performance and
associative clock replacement should provide cost between main memory and disk, would e% %
an effective replacement algorithm yielding possibly provide a solution to the performance
adequate performance at low overhead and bottleneck projected above There is. how
needing no additional hardware ever, no such technology available Although '1

Another aspect of the replacement prob- a few years ago CCDs, magnetic bubbles and
lom is to find a way to have a consistent refer- EBAM 'electron beam accessed memory) were
ence bit, when there are multiple cache cnsidered promising, none is viable for a gap
memories in the system, and the reference bit filler role at this time nor is likely to be soon
is maintained locally ISee e g 'Spec84.

A number of factors suggest that optimal It is possible to make the useful observa
page sws will increase over the next decade tion that there is significant locality in I)
Large pges Wed and transfer information reference patterns: data is both referenced
with fewer page faults, if memory is plentiful sequentially and for some data sets. there i%
TLB. 'of a constant number of entries, can significant reuse. we Smit5d. Smit7 5
addrs more memory as page size increases Smt'6, Smit7Sh for data supporting thi..
The number of sets can be increased in real observation Thus it would make -en-e to)
adoirema caches as page size increases. since cache portion, of the di-k aiddreo.% %pmce in
additional bits are available for addressing main memorv or outtoard in in Ni()." R\M
without translation As transmission %peeds based disk cache. lhe etTe net-..... if it -hi;
to and from 1 0 devices increase the delay idea is shown in Smit4d Fher. , ,ire , A"rpo".
due to large transfers will decrease relative to %everal dik cathe prut't in.,liidirig th. ,
latency and will become less significant Syhercac - hv ;Il" intr', ard the [14\1
Right now 4K page. are a resvonable choice I44) model r I and 21 ooirag&, controller.
512 byte. an is use on some smaller comput for bth o pmpA, prixlu, he k he i m
ere is clearly much too small We. heie. that hoard at the -,,rag. ontrler \F1 hi- i

-..J
.5l

disk cache which is associated with although rate. These trends should continue at corn-
outboard to the CPU [Toku80]. parable rates over much of the next decade.

The design of disk caches has been It can be expected, however, that disk
neglected in the research literature (except for I/O transfer rates will increase significantly.
(Smit85d]) and is a fruitful area for study. Currently, they reflect the linear density of
Questions to be answered include: what is the bits on the disk surface and also the data
best location in the system for a cache? How transmission technology between disk and the
large should the cache be for good perfor- CPU. There are three reasons to expect this
mance? What algorithms should be used for rate to increase: (a, Increasing physical bit
fetch and replacement? How large should the density on the disk surface will increase the
blocks be? Should the design be write- rate of reading and writing ib) Technologies
through or copy-back, and what are the per- such as optical fibers are becoming available
formance implications of each? The answers and cost effective as a way to achieve high 1 0
to these questions are quite sensitive to the rates. 1c) Performance considerations suggest
workload and additional workload data needs that higher transfer rates will help alleviate
to be gathered. the bottleneck discussed in the section above

The disk caching problem also extends to on gap fillers.

distributed systems. A recent trend in corn- There is a very rapid rate of change and
puter systems is toward a number of proces- improvement at the "low end" for hard disks. ',.
sors, including personal computers, worksta- High density small disks are rapidly being
tions, and mainframes linked together with a incorporated into high end personal comput-
local area network, and backed by a file ers, workstations and small shared computers.
server. In such a system, the file server and Performance and density will continue to ,.
the network are limited resources, both sub- increase and cost will continue drop. Local
ject to congestion, and the overheads of disks are becoming an important part of the Ave
remote I/O are substantial. Thus, there are memory hierarchy in a distributed system and
benefits to be gained in caching at the proces- will become more so.
sors, either on local disk or in RAM, and also Another likely change in disk system
perhaps to caching in RAM as well at the file design is to associate more electronics with
server itself, to avoid unnecessary physical each disk. These electronics will act to correct
disk 110.. The research problems of caching in errors, buffer tracks, cache information and/or
a distributed system include not only those buffer I/O data streams so as to mask physical V
mentioned above, but the following: should latency and decouple transmission from physi-
caching occur at the processor, at the file cal disk position and rotation speed. This -. ,
server or both? What policies and parameters change is long overdue and should begin to"%
are appropriate at each, and are the same or occur at any time.
different choices appropriate" How can one "
maintain consistency in such a system when There are a few areas of research in disk

multiple copies of the same data can exist? systems. The most promising is the general
area of 1/O optimization, which is surveyed in

We behove that the use of disk cache [Smit8lb]; see also [Smit8ld]. With changes
will be both more important and more corn- in technology, optimal solutions to issues such
mon in the future The number of interesting as block size, angular placement of blocks,
research problems in disk cache will also disk loading, etc. change. For a recent imple- Ir
stimulate related research activi.1y mentation of many disk optimizations, see

.Mcku84]. Another research problem is to
5. Disks determine the most promising uses of elec-

Disk technology is evolving slowly and tronics in the disk system. ",.
has been for some time [Hoag791 Disk den-
sity is increasing at about 201 per year. ie it 6. Mass Storage and Tape
doubles every 3-4 years Conversely. disk We define mass storage to be any
arcris t mvs fire 4mprocing (E'P'V little if (it all, storage system with significantly larger capa- .

with rotation time% remaining essentially con- city than disk, and it is usually cheaper per
4tant and arm -,eek times dropping at a slow byte stored and slower than disk. Included in

.. ~t.ds:.*#..*..*.- ..- ,.~~ ~. S.'S*'' ~ P :.-jIA*'-

this category are tape and tape subsystems 1990 or 1995 for a single processor system,
(such as the IBM 3850, the Ampex Terabit but one can expect to need more addressable
memory and the Calcomp automated tape memory for a uniprocessor sometime in the
library) and optical disk. The technology 1990's, and earlier for a shared memory mul- Iwo
currently undergoing the most rapid develop- tiprocessor system. We expect, therefore, to
ment is optical disk. We believe that over the see architectural changes and extensions to
near term, optical storage technology will permit this over the next ten years. lAnyone
advance the most rapidly, and within 5 or 10 designing a computer at this time would be
years, very large optical archival stores will wise to keep this in mind. S/he should also
become common in large computer systems. avoid partitioning the address space via high
No other technology seems to be competitive, order bits.)

Mass storage can be and is used for The idea of object based architectures
explicit 1/0, whereby one issues read and and capability based addressing was a popular
write commands to specific devices and data one in the 1970s, and machines such as the
volumes. The most promising use for mass Intel 432, the Cambridge CAP machine and
storage, however, is as an automatic backing the IBM System/38 all embody and use such
store for disk. In that circumstance, the disk concepts. Despite the advantages in program-
address space would be expanded, much like ming productivity and data security achieved
virtual memory is used to expand main by that approach, the current belief is that
memory addressing, and automatic migration there are inherent performance penalties to
algorithms would be used to move data such architectures, which suggests instead the -
between mass storage and disk as needed. use of simple load/store (reduced instruction

There are numerous research problems set -like) architectures with simple address-
relating to the efficient and effective use of ing. This issue is still an appropriate one for
mass store as an automatic backing store for research and it may yet be possible to use a
disk. Questions such as when to fetch data, sophisticated logical addressing scheme and
how much to fetch, when to remove data on yet have good performance.
disk and migrate it back to mass store, when Protection in most computer systems is
to compact mass storage volumes and which primarily associated with memory and the
volume to transfer it to are all interesting and memory hierarchy. Protection bits are usu- N.

significant research problems. Some relevant ally associated with pages, segments and!or
work on file replacement algorithms and file files. Existing protection systems tend to be
reference patterns appears in [Smit8la] and unable to stand up under sophisticated pene-
(Smit81c]; see also (Lawr82] for more work in tration efforts, and further research in this
the same area. direction may be warranted.

It has long been a goal of computer
7. Logical View of Memory Hierarchies designers and users to have a one level store,

In addition to the problems discussed in which all stored information would be .
above, which are primarily concerned with addressable within the same address space.
the physical design and algorithmic use of Virtual memory is a step in that direction,
memory hierarchies, there are some interest- but does not usually include the file system.
ing issues having to do with the logical view We expect some additional research and possi-
of the memory system. bly minor commercial moves in the direction

The most important issue is one of how of a one level store, but over the near term,
large an address space is needed. It has only results are not likely to be substantial.
been recently that there has been a general
realization that 16 bits of addressing are not 8. Conclusions
enough, and the newest generation of In this paper, we have reviewed memory,-
microprocessors use 32 bits of address. Like- hierarchies, and have addressed two particu-
wise, the IBM System 370 architecture has lar points: (a) what are the likely directions
been extended in the 308x series machines for the development of memory hierarchies,
[IBM82] to use 31 bits of addressing. 31 or 32 and ib) what are the interesting research
bits (4 gigabytes) should be sufficient through problems. As was explained in the introduc- V

69

tion, the memory hierarchy is one of the or [Mate84] Richard Mateosian, "System Considerations in

perhaps the most important part of the com- the NS32032 Design", Proc. NCC, 1984, pp. 77-81.

puter system with respect to both performance [Mati84] R. E. Matick and D. T. Ling, "Architecture

and utility. We therefore believe that with Implications in the Design of Microprocessors", IBM Sys-
respect to both research and development, tems J., 23, 3, 1984, pp. 264-280.memory hierarchies will be a central area of [Mcku84l Marshall K. Mckusick, William Joy, Samuelfeos overah e s t d ea cLeffler, and Robert Fabry. "A Fast File System for
focus over the next decade. UNIX", ACM TOCS. 2. 3, August, 1984 pp. 181.197.

[Oppe831 Eli Opper, Miroslaw Malek and C. Jack %

Lipovski, "Resource Allocation in Rectangular CC-
Banyans", Proc. 10'th International Symposium on Com-
puter Architecture, June, 1983, Stockholm, Sweden, (also
Sigarch News, 11, 3), pp. 178-184.

[Amda821 Amdahl Corp., "580 Technical Introduction", [Smit75] Alan Jay Smith, "A Locality Model for Disk

1982. Reference Patterns", Proc. IEEE Computer Society
Conference, February, 1975, San Francisco, Ca., pp. 109-

[Arch84] James Archibald and Jean-Loup Baer, "An 112.
Economical Solution to the Cache Coherence Problem",
Proc. 11'th Annual Symposium on Computer Architec- [Smit76] Alan Jay Smith, "Analysis of a Locality Model

tun, June 5-7, 1964, Ann Arbor, Mi., and in SIGARCH for Disk Reference Patterns", Proc. Second Conference on

Newsletter, 12, 3, June, 1984, pp. 355-362. Information Sciences and Systems, The John Hopkins

Bask76] Forest Baskett and Alan Jay Smith, "Interfer- University, Baltimore, Md., April, 1976, pp. 593-601.

ence in Multiprocessor Computer Systems with Inter- [Smit78a] Alan Jay Smith, "A Comparative Study of Set
leaved Memory", CACM, 19, 6, June, 1976, pp. 327-334. Associative Memory Mapping Algorithms and Their Use

for Cache and Main Memory", IEEETSE, SE-4, 2, March,
[Cho86] James Cho, Alan Jay Smith and Howard Sachs, 1978, pp. 121-130.
"The Memory Architecture and Cache and Memory
Management Unit for the Fairchild CLIPPER Processor", [Smit78b] Alan Jay Smith, "On the Effectiveness of

February, 1986, submitted for publication. Also available Buffered and Multiple Arm Disks", Proc Fifth Computer %
as UC Berkeley CS Report UCB/CSD84/289. Architecture Symposium, April, 1978, Palo Alto, Ca., pp

242-248. .
[DennS0) Peter Denning, "Working Sets Past and
Present", IEEETSE, SE-6, 1, 1980, p. 64-84. [Smit78cl Alan Jay Smith, "Sequentiaity and Prefetch-

ing in Data Base Systems", IBM Research Report RJ
(Fuji82] Fujitsu Corp., "FACOM M-382", third edition, 1743, March 19, 1976, and ACM Transactions on Data
September, 1962, Tokyo, Japan. Base Systems, 3, 3, September, 1978, pp. 223-247.

[Good83] James Goodman, "Using Cache Memory to [Smit78d] Alan Jay Smith, "Bibliography on Paging and r
Reduce Procemor-Memory Traffic", Proc. 10'th Ann. Related Topics", Operating Systems Review, 12, 4, P
Symp. on Computer Arch., June, 1983, pp. 124-131. October, 1978, pp. 39-56.

(Hatt83] Akira Hattori, Minoru Koshino and Shigemi [Smit78ge Alan Jay Smith, "Directions for Memory
Kamimoto, "Three Level Hierarchical Storage System for Hierarchies and Their Components: Research and
Facom M-380382', Development", Proc. COMPSAC Conference, Chicago, Ill.,

[Hill4l Mark Hill and Alan Jay Smith, "Experimental November, 1978, pp. 704-709. %
Evaluation of On-Chip Microprocessor Cache Memories", [Smitslal Alan Jay Smith, "Analysis of Long Term File
Proc. 11'th Annual Symposium on Computer Architec- Reference Patterns for Application to File Migration
ture, June, 1984, Ann Arbor, Michigan, pp. 158-166. Algorithms", IEEETSE, SE-7, 4, July, 1981, pp 403-417.

[Hoeg79] A. S. Hoagland, "Storage Technology: Capabili. [Smit81b Alan Jay Smith, "Input/Output Optimization
ties and Limitations", Computer, 12, 5, May, 1979, pp. and Disk Architecture: A Survey", Performance Evalua-
12-1& tion, 1, 2, 1981, pp. 104-117.

[Hopk83], M. E. Hopkins, "Compiling High Level Func- [Smitlc] Alan Jay Smith, "Long Term File Migration:
tion on Low Level Machines", Proc. IEEE International Development and Evaluation of Algorithms", CACM, 24,
Conference on Computer Design: VLSI In Computers, 8, August, 1981, pp. 521-532. -V
November, IP83, Port Chester, New York, pp. 617-619. A"p[1BM21 BM orp, "BM 081Funtioal harcteis- [Smit81dl Alan Jay Smith, "Bibliography on Pile System
[IBM821 IBM Corp., "IBM 3081 Functional Characteris. and Input/Output Optimization and Related Topics".
tics", GA22-7076, Poughkeepsie, New York, 1982. Operating Systems Review, 15. 4. October. 1981, pp 39-

lKoto841 Alan Kotok, private communication. 54

{Lawr2l D. H. Lawrie, J. M. Randal and R. R. Barton, {Smt82I Alan Jay Smith. "Cache Memories", Computing
"Experiments With Automatic File Migration", IEEE Surveys, 14, 3, September. 1982, pp 473-530
Computer, July, 1962, pp. 45-55. (Shut84I Alan Jay Smith, "CPU Cache Memories". to

[Lipt8l] J S. Liptay, "Structural Aspects of the Sys. appear in Handbook for Computer Designers. ed. Flynn %
tem/360 Model 85, 11 The Cache". IBM Systems J., 7, 1, and Rossman
1968, pp. 15-21 .

.70'-

70 ,.

% ilL16_

[Smitffial Alan Jay Smith, "Problems, Directions and
[mus in Memory Hierarchies", Proc. 18th Ann. Hawaii
Int. Conf. on Sys. Sci., Jan. 2.4, 1985, Honolulu, Hawaii,
pp. 468-476.

[Smit85b] Alan Jay Smith, "Cache Evajuation and the
Impact of Workload Choice". Report UCB/CSD85I229,
Mar., 1985, Proc. 12th nt. Symp. on Comp Arch, June
17.19, 1985, Boston, MA pp. 64-75.

[Smit85c] Alan Jay Smith, "Line (Block) Size Choice for
CPU Cache Memories", June, 1985, to appear, IEEETC.
(Also UC Berkeley CS Report UCB/CSD85/239, June,
1985.)

[Smit85d] Alan Jay Smith, "Disk Cache - Miss Ratio
Analysis and Design Considerations", ACM Transactions
on Computer Systems, 3, 3, August, 1985, pp 161-203

[Smit85el Alan Jay Smith, "CPU Cache Consistency with
Software Support and Using 'One Time Identifiers"', Proc.
Pacific Computer Communications Symposium, Seoul,
Republic of Korea, October, 1985, pp. 142-150. Also
available as uC Berkeley CS Report UCB/CSD84/290.
[Smit86] Alan Jay Smith, "Bibliography and Readings on
CPU Cache Memories", February, 1986. Computer Archi-
tecture News, 14, 1, January, 1986, pp. 22-42.

(Spec841 "Whatever Happened to Magnetic Bubble
Memories", IEEE Spectrum, September, 1984, p. 22.

(Stor82] Storage Technology Corporation, "Sybercache
8890 Intelligent Disk Controller", Louisville, Colo. 1982.
Proc. IFIP 1983, pp. 693-697.

[SweaS6] Paul Sweazey and Alan Jay Smith, "A Class of
Compatible Cache Consistency Protocols and Their Sup-
port by the IEEE Futurebus", to appear, Proceedings of
13th Int. Symp. on Computer Architecture, Tokyo, Japan,
June, 1966. Also available as UC Berkeley CS Report
UCB/CSD4/220.

(Toku801 T. Tokunaga, Y. Hirai and S. Yamamoto,
"Integrated Disk Cache System With File Adaptive Con-
trol, Proc. IEEE Computer Society Conference, Sep-
tember, 1980, pp. 412-416.

[Wulf72] W. Wulff and C. G. Bell, "C.mmp, a Multi-Mini
Processor", Proc. FJCC 1972, pp. 766-777.

-

71

ZI

SIGNAL AND DATA PROCESSING FOR IR SENSORS

D. E. Satterfield
U.S. Army Strategic Defense Command

P.O. Box 1500
Huntsville, Alabama 35807-3801

R. C. Styles
Teledyne Brown Engineering

Cummings Research Park
Huntsville, Alabama 35807

Introduction These simulations were researched and established
by Nichols Research Corporation in Huntsville,

Alabama.
Over the past 3 years, the U.S. Army Stra-

tegic Defense Command has investigated advanced The Mosaic Sensor Emulator Unit (MSEU) emu-
signal and data processing technology for obtain- lates a sensor module containing 1,920 detectors
ing information with complex infrared (IR) sen- and outputs real-time waveforms from each detector
sors. The results of these investigations have for 1,000 targets for 20 scans (20,000 targets for
culminated in the development of a very sophisti- 1 scan). The Auxiliary Sensor Signal Processing
cated hardware-in-the-loop (HWIL) signal and data Unit (ASSPU) performs time-dependent processing
processing testbed. This testbed, shown in Figure (1,700 Million Instructions Per Second (MIPS)],
1 below, is located at the Army's Advanced data partitioning processing (556 MIPS), and
Research Center in Huntsville, Alabama. This object-dependent processing (64 MIPS) before
testbed facility is now being used to conduct presenting three-color information to the data
research in distributed data processing architec- processor. These systems were designed and built
tures, algorithms, and real-time applications by Boeing Aerospace Company in Seattle, Wash-
software for a wide range of missions. ington. The Advanced Distributed Onboard Pro-

cessor (ADOP), a 15-MIPS system, then does the

The signal and data processing testbed con- measurement processing, color-to-color correla-
sists of a System, Environment, and Threat Simu La- tion, scan-to-scan correlation, precision track,
tion (SETS) and an Algorithm Teetbed Simulation, discrimination, and threat reporting. This system '

both of which run on an array of ten VAX 11/780 was designed and built by Honeywell, Inc., in % %
computers. This nonreal-time code encompasses all Clearvater, Florida. The real-time application
algorithm performance enhancements without regard code and part of the operating system were
to real-time constraints and serves as a standard designed and implemented by TRW in Huntsville,
by which the real-time algorithms are compared. Alabama.

%

72 -:

-'%

E' l t iI ii ! ! il I I) I • •. - - .I . . '1 % I, . I I. I I "i . " " % il e I- i ." i" ." ,I i I I. .5 .,

N

Hardware Architecture Descriptions function generator option of MIL-STD-1750A, ..

special macro instructions can be coded to perform

special operations for signal processing opera-

The MSEU and ASSPU systems are expertly tions. The FPP contains a hardware multiplier and

described in the Wednesday, November 6, evening an ALU, which essentially "shadows" the CPU

classified session paper entitled "Electronic arithmetic logic unit.

Emulator and Signal Processor for BMD Mosaic IR

Sensor" by Norsworthy and Franzel and will not be (3) A four-port local memory organized as

repeated here. 256K words by 17 bits (I parity bit). A read-

modify-write function facilitates semaphore

The ADOP comprises five processing elements operations required by the operating system. The

(nodes) that communicate on three, l-Mword/sec system of node-local buses provides access to all

independent global buses. Each node contains of memory by each CPU.

three Central Processing Units (CPUs), three

Floating Point Processors (FPPs), one million (IM) (4) A SIC, when coupled with the real-time

words of 17-bit memory, and a global Bus Interface operating system, efficiently handles al g ooal "

Controller (BIC). communications. The BIC accesses message queies

in node-local memory and moves messages on the ,

The ADOP node architecture, shown in Figure system of Global buses. A logical addressing

2, comprises four basic functions: scheme allows the routing to be configured by the
operating system without affecting application

(1) A fixed point, MIL-STD-1750A, CPU software.
capable of executing the fixed point Digital

Avionics Instrumentation System (DAIS) instruction The ADOP node structure allows virtualiy .. %
mix at I MIPS. The CPU implements a pipelined contention-free processing of an application

instrucr', n queue and embedded memory management program when data sets are partitioned

unit function to achieve this throughput while nonoverlapping. To this end, a complete set of
addressing up to 11 words of memory. The basic software tools has been developed, including a

CPU microcycle time is 350 nsec. PASCAL compiler and a distributed operating

system. The use of these tools provides a str~ct %

(2) A FPP serves as an adjunct to the CPU to adherence to programming standards ind cont ,ri-

facilitate achievement of 1 MIPS full DAIS tion controls that make testing on the -- .

floating point operation. Using the built-in multi-node architecture an achievable tasK.

UP TO 1 M WORD

256K LM 0.. 256K LM ge 256KLM g. 256KLM e,

l • L -!BUS 2

l, , t 8~~L US 4 , . ' i '

1 MIPS
FLOATING POINT

CP PP CPUFPCpuF

TO, FROM
CONTROL.. .

PROESSO S -

TO FROM 6, BUS 2 -- '-__.
OTHER (BUS 3 .

Ile.
%

Testbed Utilization SETS; however, before it can be used to drive the

MSEU, it must be converted into instructions that
The testbed, in whole and in part, provides a the emulator can use for generation of the

facility for several SOt research endeavors, appropriate sensors signals.
including the Airborne Optical Adjunct (AOA), the
Airborne Optical Sensor (AOS), nonnuclear inter- A series of sophisticated software programs
captor avionics, and red-blue situations. One of are used to transform the basic threat data into
the first research efforts on the testbed was specific optical image data for each detector in
conducted by Teledyne Brown Engineering (TBE), the sensor focal plane array. These data form the
Huntsville, Alabama, using the currently imple- basis for creation of the MSEU instruction set.
mented algorithm set based on an optical probe. The SEU, in turn, generates the signals that are
The TBE research team studied the sensitivity of used as input to the ASSPU. These signals include
the software/hardware performance to varying detector, background, and gamma noise to further
thrEat characteristics such as the number of stress the ASSPU. In both the SETS and the MSEU-
reentry vehicles, angular rates, object spacing, ASSPU, the threat data is processed so that the
and "clumped" objects. These researchers are now output from each is in a common format and forms
stjoving 3ther proposed algorithms, as -el as new the input data for either the data processing
ref ormu.ations of the existing ones. for improved algorithm simulation, the reformulated algorithms, .-% t
performance. or the ADOP.

Development of threat scenario data is the The algorithm simulation contains a full
first step in the utilization of the testbed. At complement of maximum performance algorithms that
the present time, all of the threat data utilized run in nonreal time on the VAX 11/780 network.
was developed by TBE as part of the Forward The output from this simulation is then compared
Acq A s ion System Integrated Ground Test (FAS to the "truth" data to establish a new standard to
:CT) Program. These data characterize the threat compare with the real-time algorithms or actual A

n~ terms 3f the number of reentry vehicles, performance. The output of the SETS or signal
Jecvs, fragments, and other objects; the processor is next used to drive the reformulated
ipAc 1 gs; ang".ar rates; irradiance parameters; algorithm set, again in nonreal time. This
etc. The scenario must. be designed in such a way reformulated algorithm set is the set of %

ia l it accomp.ishes twe purposes. First, it must algorithms that have been designed (reformulated)
te :red,be in terms)t Lts representation if a trom the maximum performance algorithms to run in
po'en;t.a balIstic vis i e attack based on real time when mapped onto the ADOP hardware. The %
avsilab~e intei igence data. Second, it must be results derived from the reformulated runs are
les red z prov;de the stressing crier',a used to predict the performance of these
required 'o e-.a,ace the hardware, soflware under algorithms when implemented on the ADOP.
ana.vsis. A ceneral scenario as it appears in the

i t -ew (FOV) of a typical scanning mosaic The final step is to use the output from the
ie~sor sh'wy 4n Figure 3. with the focal plane SETS and/or the signal processor to exercise the

-- e nr , he FOV for cLari v. The real-time algorithms on the ADOP to determine the
S IVA e, mes "e "r," .pon which actal performance. This testbed configuration,
-A"'." -wases I r *he hardware and so! tware when used in the manner just described, can
1- * #-' -1 :-c ce. a subset)t 'he FAS support several important research projects for

"e *' lie previo s%- detined the Strategic Defense Initiative (SDI) Program. A
", * • a Th ssubset is 'hen sed as typical output from the system is depicted in

- a rV ,a -r, t 1"in the 3ETS and the Figure 4, which shows the "truth" performance, the '."
"
*

algorithm simulazion performance, and the ADOP

performance.

r- "
r ,pSr lie Goe- SCAN TOSCAN PERFORMANCE -

i-FPA a

489 U

420

A. I"- k

AI A

5 21 43 so S0 100 120 140 160 180 200
TIME (e) - - - TOTAL TARGETS

OF OPPORTUNITY
RANG# , ADOP TRACK FILES

' 17 TESTBEO TRACK FILES

gure 4. Scan-To-Scan Performance. %

%

of LWIR sensor signal and data processing
The Data Processing Directorate, within the algorithms has been developed for a probe-type

U.S. Army Strategic Defense Comnmand, working in sensor and many experimental results have been
concert with Teledyne Brown Engineering, obtained. In addition, a complete complement of
Honeywell, Boeing, TRW, and NRC has developed an support software has been developed for this HWL P
advanced long wave infrared (LWIR) signal and data facility. Analysts are currently conducting
processing testbed for studying and characterizing research studies on several key technology issues
performance for various BMD missions. A full set for the SDI Program.

Jp

.1

%

$M

-.

-

a.%

a'.
a..

ifvIVaiflid

0 . 6"

a /

z olug

o h--

M-1

LU.

O60mU

00

CD 0zcIdc
Yci

76~

vivo inui% .%10

0 kw

A M 340

OCU 4Owlno

I-j

U

Laia

ImsI

x a-

af

77

'"'

On Parallelism in Software/Hardware Design Tools

P.A.Subrahmanyam
AT&T Bell Laboratories

Abstract. This paper explores opportunities for parallelism in some classes of computer aided
design tools, and attempts to convey a few insights about how one might go about exploiting
this parallelism. More specifically, perspectives that bear on the design of hardware accelerators
for some important classes of design tools are provided; however, the actual details of such
architectures are not specified.

Keywords: Parallel architectures, Design aids, integrated system design, reusable software.

1. Introduction

It is widely acknowledged that the design of software/hardware is complex, error prone, and
therefore costly. Two broad classes of attempts to address this problem include various flavors 4.

of design methodologies and computer aided design tools. In this context, a "design
environment" usually consists of some collection of tools supporting some combination of %.r -

methodologies for the tasks concerned. While significant progress in design environments has
clearly been made in the last few years, there is still an urgent need to make such design
environments conceptually cleaner and faster. A naive way to improve existing execution speeds
is to build special purpose hardware for each tool. This seems impractical; a major problem lies
in fact that there are diverse concepts, terminology, and tools involved in a sophisticated design
environment, and there is a tremendous cost overhead associated with designing special purpose
hardware.

An alternative suggested here is that based on some notions of what is conceptually cleaner, and
that are in consonance with emerging trends in formally based approaches to specification,
programming languages and design paradigms, we can partition a design environment in a
manner that potentially

enables a better ammortization of development costs for (a class of) specialized HW tools,
and -,

supports parallelism.

The rest of this paper elaborates mainly on these issues. In the next section, we summarize
some of the major activities involved in the design process, suggest paradigms for carrying out
these activities, and then focus on the tools needed to support these paradigms. The objective
here is to highlight the fact a surprisingly large number of activities, although not all, can
benefit from a common set of tools (provided that adequate attention is paid to the global
architecture of such design aids). The importance of this observation is that it suggests a
partitioning of the tools in a design environment that enables a much better ammortization of
hardware development costs for special purpose engines. The structure of the resulting design
environment is then examined, with a view to exploring the potential for parallelism in its
execution. We classify the various forms of parallelism possible, and indicate what flavors of
hardware architectures may be suited to support the execution of advanced design tools of this
nature.

A subliminal assumption made here is that formally based approaches to design - both
methodologies and tools - have the advantage of enabling provably correct designs, and
encourage the use of rigorous specifications at a high level of abstraction. In turn, this enables
rapid prototyping of the specifications, and tends to reduce overall design and maintenance .,%

costs. Furthermore, the software tools used in such contexts are arguably conceptually clearer ti,

78

": *. ;;*;

%

and more robust: They are typically based on a standard infrastructure, i.e., one where the
domain has been well studied (such as formal syntax and semantics of languages, algebra or
logic); and tools (such as grammar-driven editors and symbol manipulation systems) have
evolved that support typical operations in these domains. W a I

The overall cost-effectiveness and robustness of design environments that employ such tools can 1.

be greatly improved if components of a design aid that are aimed at different activities can use
a common pool of tools. Additionally, the potential advantages are further enhanced if there is
some parallelism intrinsic to such systems that is amenable to intelligent exploitation,
particularly via hardware accelerators. The main motivation for the research discussed in this
paper is to explore design tools that possess such characteristics.

ACTIVITY PARADIGM TOOLS
...

Functional/ Language Interface
Problem Equational/ +

specific n Logical Support Environm'-nt .Specifiction Specifications
Grammar Driven %

Rapid Prototyping Specifications Interpreters

Debugging Specs Code Generators .sou ree- SourceProgram/Hardware.................
Generation 4 ,

Compilation] Symbolic Manipulation

(apsteriri)n Automated Reasoning(a poterioris T nstrm tin?,
S~................*.... -e

I t I Special Purpose
CicutoiultinSolversCircuit Simu[Utin i<S m oln

l(Symbolc)
Parameterized

A Asmttic I :w ..

Symbolic IC Design Completes
(e.g., SLAs, PPLs,.... Compactio Com

Layout Optimizatio
Graphical/Symbolic

• Layout Tools

STest Generation Design for I
Testability

tenance Hardware Testers

Figure 1. Design Activities, Paradigms, and Tools

2. Design: Activities, Paradigms, and Tools

Figure 1 indicates some of the major activities involved in the design process, suggest paradigms
for carrying out these activities, and then focus on the tools needed to support these paradigms.
This figure is designed not to be exhaustive, but merely to convey a flavor of some of the major
activities involved in integrated system design. Our main intent here is to establish a context %

79 "%.

for what follows, rather than to discuss involved in great depth

The activities indicated in Figure I include problem specification. rapid prototyping of %
specifications, program or hardware generation, and maintenance Problem specification %J1
involves an explicit statement of the problem in a programming language While this can in ZIP

principle be any programming language, there are cogent arguments as to why this should be a
high level language with a declarative flavor, and more specifically one that minimi s the
amount of representation dependent information that must be specified.(31 In view of this, the
mode of specification depicted suggests the use of functional, equational or logic based
techniques.[41. Good data structuring and knowledge representation capabilities are also
needed. These are being supported in the context of evolving systems in the context of logic
and relational systems[2].

To help "debug" the specifications, facilities for rapid prototyping are needed. This implies the,
need for support tools like syntax and semantics based editors, interpreters and symbolic
execution facilities Such tools are increasingly driven by the syntax and semantics of the
language grammar as opposed to being custom coded.

The next phase usually involves the generation of either software or hardware that consistently
implements these specifications. This may be done using traditional compiler techniques. or a
somewhat generalized form of compilation that may be conceptualized as transformation based
techniques. The actual generation of hardware designs involves other lower lower level activities
such as symbolic IC design, cell layout, simulation at various levels, a posteriori verifitation.
testing etc. In both cases, the tools needed include term (or tree) manipulation systems.
semantics driven tools. Source-to-source transformations additionally need various forms of
formal manipulation or term rewriting systems, along with limited kinds of theorem proving
abilities. Strategy guidance aspects of such systems need the ability to deal with performance
or complexity measures, and this in turn relies on symbol manipulation tools like those found in
Macsyma, for instance. Other activities such as verification, simulation, layout optimization,
and maintenance, also benefit from tools of this flavor.

Our main intent here is to emphasize the somewhat central role of this class of tools, should
they exi&t, rather than to suggest an exclusive set of tools and paradigms. A consequence of this
observation is that while there are diverse tasks involved in the overall system design process,
there seems to be a set of tools that is frequently used by a fairly broad spectrum of these
activities.i Of course, this observation is not entirely new, but given the emerging programming
paradigms that merge object based and logic programming,[21 as well as the interest in using
similar techniques in the hardware domain,17] we believe that the existing commonalities are
much broader than was perhaps originally recognized.

In view of this observation, we will next comment on the potential for parallelism in such a
context, and attempt to provide a basis for discussing the design of hardware accelerators for
such tools. %

3. Parallelism In the Implementation

The overall parallelism in a design environment can stem from essentially three main sources,
since we can consider N.

1. The specific tools in this kernel is expandable, and will depend upon the paradigm adopted for addressing each of
these activities.

80

" Paalllismin he %~te I -- 4mt -i-. r~mmnt i, it

" Paalleismin te kndpilyig t~ol tr.ltur

* Parallelism in the language lesig r t n' rinineur i P i l imlllI1t.'1 li i,.

tools are written in

In discussing hardware support for -iuch parallelierr%% *ill f,.r 'liinphit% t-ir h

clases. of such parallelism that are, achievable via

tightly coupled~ proce-tsem 1 sared mrmorN a1rcllitrler- A) %il, I'%

* looseely coupled pror4.s.%5et (inies Age- 1.)At 5Ini igF'il A Ii' :Ii t lilt . I

W.e firstt comment on the potential paralleirn it i . It, 1,%-- Jf 0i. ri pi 11 it 11' 1,-

the problem -%tructure %%p ileii Itmik ait the atttibitie' ,f lilt- al-i rti. iti ! it, 1Ti-

posisible imnplernentation' using1 (fie tw'i 4oriilrit p.tir-ilKIgiti frl hitldifil litirlit ri i io, i

shared memory and message-basled architecturese

3.1 Parallelism in the Systenm Structure

We frs~t consider the parallelism in the st ructlire -f a 'lesig n tiviron ilirl ~it iac 4 tilie

activities tin th, "activity- diagram may he executed "concurrentl il a IINo."lv rouiire' '.y 'I ii

In fact, this ran be done lin several riscs in a pippliiled ior "'st ohw t.''. ie, ;ilice fI th-

input output dependencies invotlvedl Some of the act i% it ircc t hirmSPIN -~ iit;%Nb I'A par1 111-1/*

simulation of large networks Since a large n umiber of art iv%,it iccS al~rc- a COMrrt 111)(if t -Xii'.

additional proce5sing power is exploitable via duiphic at ion iif t it k Tilie l,.ust i li1li'. iii 1

available at this level is that exploitable by multipli- users t imesh ar ing hiardlw rtear . sr-iloir,

that support a common kernel of tools

3.2 Parallelism in the underlying tool structure

To investigate parallelism in the underlying tool structure, it is obiouislNv neces'.arv to eoinsilerN

each tool inudividually .V; an example. we c-onsider hiere ;in iirtlitti lbill Twiti u-
standard tool: clause based automated reasoning systenms. andl I-AngKU39e 01L1i il logil'.
functions, and equations.

The rationale for this choice is the following

*"Rule based-Expert Sses ar bcoigapulrprogrammintg paradigm, logic

programming provides a cohesive formal basis for such systems.

*A number of research efforts are attempting to enrich the logic programming framiework
with the abilities to do knowledge based reasoning. Except for theological differences, such
systems show signs of soon becoming competitive with Lisp-based environments.

" An orthogonal set of research efforts is aimied at integrating the ntIi ons of logic. functionial,
equational, and object-based programming. '2,4i

" Common sens- reasoning" techniques need1 to be supported by such tools. .

" Clause based systems have been receiving special attention b~ecauseT of thle success of Prolog

* A number of the tools e.g. rewrite systemis. simplifiers, complexity calculation,. etc.ca

potentially be expressed relatively easily using such systemns.

Of course, there are a number of technical issues to be resolved in mlany of these areas. The
intent here is not to suggest that everything is either simple or has been solved, but merely to
establish a conceptual framework for discussing exploitable parallelism in such systemis.

81

~ **.* .*. .. - *.s..~. *. ,~. .~..-.-~. -2. .5

3 2 1 C'lase-based eytems Most clause based systems incorporate a central component similar
to that shown in Figure 2.1' The basic function of each of the components in the diagram is as
follows:

I Choose a single clause from the knowledge database. This clause is used, along with other
clause*, to infer new clauses. The choice of this clause is usually governed by some
criterion that determines how relevant or "promising" this piece of information is.

2 Generale mw classes using the given clause, a variety of inference rules, and (optionally)
other clauses in the knowledge base.

3 Simpli/v In/erred Classes involves the reduction of the inferred clauses to a normal form.
This process often requires a fair amount of computation, with a minimal amount of
communication involved.

4. A Generahlty Check is made to check whether the newly inferred clauses already exist in
the knowledge base.

5. One the new clause is deemed useful, it needs to be integrated into the knowledge base
data structures.

10%

an Item Now[ItemsNSwi m."mr for into ..
(Gives l'' (cls use$) - nr.,rd Generalit~y knowledgeCluse) Item B asebp 1

I-.

.I~ a ...
KNOWLEDGE DATABASE "%

"

Figure 2. Subprocesses in a clause-based theorem proving system ".

In such a system, the simplification process can usefully be run on a separate processor (it is
compute bound, and requires a low bandwidth of communication with the knowledge base). All ,.
of the other processes typically interact heavily with the knowledge base. The basic requests
that arise are of the form that require the set of formulas that satisfy a boolean conjunct, and
that can be unified with a specified formula. The degree of useful parallelism (loosely coupled)
is determined by how expeditiously the data base accesses can be resolved.

An efficient access technique, indicated in Figure 3, is to partition the clausal knowledge base
into roughly two parts:

1. The raw data is represented as a very compact list structure, in which each formula occurs
just once, with "pointers" relating it to each occurrence in some superstructure.

2. A second structure is constructed to offer rapid access to raw data. It is a set of inversions
based on distinct properties of the formulas, allowing rapid isolation of the desired
formulas.

An important characteristic of this representation is that the access structures can be easily
partitioned into an arbitrarily large set of substructures. The set of formulas can be partitioned .5,

into an arbitrarily large number of subgroups, with each group accessed through a different
access structure. Unfortunately, the core data does not seem amenable to partitioning as easily. % %

82

'~'p 'p5 5.. *SI

rh

The clause-based component of a design environment may therefore be viewed as a number of 4
such pipes running in parallel, all interacting with the shared knowledge base and coordinated
by a single resource manager. The possible response time is then restricted by the response
time of the knowledge base. The hardware support appropriate for the process level
partitioning described above would consist of a loosely coupled hardware engine for performing
the simplifications, together with a tightly coupled shared-memory system that supports the
execution of the remaining processes.

Request RAW DATA MANAGER(MAN AT

for Data Items :

KNOWLEDGE BASE ----

ACCESS INTERFACE],,e'

ACCESS STRUTCTURE.,"

ACCESS STRUCTURE

Figure: Partitioning access structures to the knowledge base.

3.3 Other sources of Parallelism

As indicated above, many of the tools in the design environment may be amenable to
parallellization; however, each must be examined or an individual basis. Currently, research
along such lines is in its very early stages, with the greatest emphasis being placed on hardware
accelerators for circuit simulation[6]. There are several ongoing research efforts that attempt to
exploit parallelism in circuit simulation at various levels of detail, for example, by partitioning
circuits across multiprocessor clusters.In addition, there are an increasing number of commercial
products that are now available that address the simulation task. Additionally, hardware
accelerators for routing are also being studied as a means of improving the performance of VLSI
design tools, e.g., [51

3.4 Parallelism in the Underlying Language Implementation.

A further source of parallelism in the design environment is parallel support for the languages
that are used to implement the tools. This particular task clearly has a very broader appeal,
and consequently there are a number of efforts aimed at providing multiprocessor . '
implementations for functional and logic languages, as well as for Algol- and Lisp-like languages.
In this context, functional languages, in expressing computations as the evaluation of

83

A

expressions such as f (ti tn) allow for a very natural expression of the concurrency

that is possible in an execution: ti ... tn can all be executed in parallel. This observation
extends to many of the symbolic manipulation operations involved in logic and algebra based
systems. Consequently, this is an area where any progress will have significant impact.

4. Summary

This paper has highlighted the fact that a surprisingly large number of software and hardware
design activities can, given appropriate paradigms, benefit from a common kernel of tools. The "-

nature of these tools was identified, and different sources of parallelism in the implementation ..
of design environments for software/hardware systems were examined. We envision that future *'e
generation design environments will have increasing degrees of hardware support for such a e.
kernel of design tools, as well as the underlying implementation I nguages. The identification of
the components in such commonly used tool sets will help bett ammortize the development
costa involved in building special purpose hardware accelerators for such tools. The existence of
such advanced design environments will, in turn, serve to improve the cost-effectiveness and
robustness of systems designed using these tools .% %

References

[i]. Lusk, E.L and Ross A. Overbeek, The Automated Reasoning System ITP. Argonne ..r
National Laboratory, Argonne, IL (1984).

[21. F. Mizoguchi, K. Furukawa (Guest Editors), "Special Issue on Knowledge J. .
Representation," New Generation Computing 3(4)(1985).

(3[. J. A. Goguen, "Parameterized Programming," IEEE Trans. on Software Engg. SE-10 pp.
528-552 (September 1984).

[4]. D. DeGroot, G. Lindstrom (Eds.), Logic Programming: Relations, Functions, and
Equations, Prentice-Hall (1986).

[5]. S.J.Hong and R.Nair, "Wire Routing Machines - New Tools for VLSI Design," Proc IEEE
71(1) pp. 57-65 (Jan 1983).

[6]. R. Smith, "Fundamentals of Parallel Logic Simulation," Proc. 23rd Design Automation
Conference, pp. 2-12 (June 1986). '0.

[7]. G. Milne and P. A. Subrahmanyam (Eds.), Formal Aspects of VLSI Design, North Holland, %
Amsterdam (1986).

A

"%,.

84

% % A*_ 'r. e-

nx mm MM WW W vwv U - LV

Session 5: Interconnection Strategies

Chairperson: J. Richard Burke
Research Triangle Park

85

Role of Broadcasting in Multiprocessor Systems

Binay Sugla 14
Sudhir Ahuja

AT&T Bell Laboratories
Computer & Robotics Research Laboratory

Holmdel, New Jersey 07733

I.Itroduction

Broadcasting presents a powerful technique for parallel/distributed computing. As of now it
remains a largely unexplored territory especially in terms of the impact it may have in all areas
of parallel processing. In this context we summarise our experiences with broadcasting in the "
several multiprocessors built over the last few years at our research laboratory. It has been
found that broadcasting can play an important role not only in terms of improving algorithmic
efficiency but also with respect to making the parallel programming environment more
powerful. In order to substantiate this conclusion we present the role of broadcasting in the A %
design and implementation of parallel algorithms (e.g. prefix computation) and in the .

implementation of the concurrent programming language Linda. %
".P

II. The Model of Broadcasting 8 Previous Research .

In the weakest form of broadcasting one processor transmits one message on the bus per unit %
time. During this time all the other processors listen to the broadcast. Translating this concept
into that of a shared memory model this implies a capability on the part of processors to read
any one memory cell simultaneously.lI In the parallel circuit model this would permit processing
nodes to have unbounded fan-out - a capability which results in reduced complexity of parallel
computation for some problems like prefix computation.121 Even though capabilities of
broadcasting have relatively been ignored a literature some efficient algorithms (e.g. finding an
extremum, sorting, selection, merging) based on the mechanism of broadcasting have been
proposed.111sI Here we present our experience with broadcasting as a useful mediuln for
implementing a wider class of algorithms (e.g. prefix computation) and the concurrent
programming language Linda. The multiprocessor considered here is the S/NET.1 ""

The discussion will also attempt to bring out the different variations of broadcasting that
are possible. For our purposes let the channel be slotted into slots of time T. Each of these
slots any one of these processors may execute a broadcast. Thus if the bus connecting N
processors is N times as fast as the processor cycle time T it has the potentiality of letting .C.
each processor broadcast one message during one processor cycle time T - NT,. This infact
describes the S/NET bus. In the ensuing discussion the questions of synchronization are dealt
with at the algorithmic level - that is, the algorithms considered are synchronous in nature. The
issue of bus contention is presumed to be decided at the hardware level as in S/NET. %

III. Applications

As mentioned before the impact of the broadcasting mechanism are fairly wide spread - from
specific computational problems to implementation of parallel programming languages like x'.

Linda. In this section some of these applications are summarized while the others are
mentioned.

A. Prefix Computation

Given N inputs xlz 2 . ZN I,ZN and an arbitrary associative operation o the problem of
prefix computation is to produce the N outputs z i o..oZ, where 1 < i < N This problem %
appears in bidden forms in many commonly occuring computations, for example, evaluation of

86

.,.-..%

linear recurrences, carr computation in binary adder etc If we have .\ processors with one
input in each processor it may be deduced that time of computation is (T ', Th) 's " which a'
of the same order of complexity as that for a sequential processor If however we have onl% h-
processors the tame taken can be reduced to T '(N/K + A) + T ' The algorithin n a."
follows Each processor computes the the prefix problem on its NK input!, The last prefix
from processor i is broadcast which is used by processor i+ I to compute immediateli its la.-
prefix which is then broadcast While the values of the last prefix are being communicated
between processors t and i+ I the processors I o- I are busy calculating the lower order
prefixes. The algorithm assumes that the inputs are distributed in a prescribed manner -processor ;contunss n K the nputs z" '/ : ' z /, Thus the bet tamle for the case 7' <1T*" f. ..

Interestingly, however, a simple variant of this algorithm works on any distribution of data
To see how this algorithm works assume any data distribution of z,. .z, among the A'
processors available. Also for convenience describe z o...oz aL o.jt In this notation then, given
[i,i], 1< i< N we are asked to compute all [i,ij By max ji~j we mean z.o.. ox , such that k
maximum j for which zo.o is available or can be formed from the locally available values of
data. The sketch of the algorithm which runs on each processor is as follows. .

{(If processor i contains i,i1,jji,[k,kj., then
it is also responsible for calculating [l,i],ilj],1., All..
processors execute the same algorithm).

while there exists a unused data value do
pick an unused [i,i with least index i
compute max (i,jl

end of while ".

Broadcast max [l,,.

while an [I,i} remains to be computed do
receive [Il,j']
compute max 1i,k),k>j r
broadcast max [l,k]
compute all computable [l,mlj<m <k

end while .

Infact stronger properties about the performance of the algorithm can be shown. If we define
the parallel time of computation such that it includes the time taken to redistribute the data as
well as the actual computation time then it may be proved that the algorithm acheives optimal
speedup for a large class of data distribution. Thus the gains from having a desirable data
distribution may be offset by the time taken to achieve that distribution. It may also be noted ...
that feature of broadcasting is instrumental in making this algorithm work for all data
distribution.

B. Landa Implementation

The concurrent programming language Linda was designed at Yale University and
implemented on the S/NET by Carriero et. al.16 Linda differs from other parallel languages by
adopting the generative communication model. A shared tuple space (TS) is accessible to all the
processes in the distributed program and two processes may communicate only by reading from
or writing into this shared tuple space (Figure 1). The broadcast capability provides a
convenient underlying communication mechanism to implement the language. There are four
operations defined over TS: out(),inO,readOandeval(). out(s) adds a tuple t to the TS' in(s)
withdraws a matching tuple t from TS, read(s) assigns actuals to the formals as in in(s) except

87

that the tuple is not removed from TS. eval(s) adds an unevaluated tuple to TS. This design
feature of the language offers enhanced efficiency in a parallel programming environment where
data objectLs may have to be shared. Using the facility of broadcasting this TS is implemented in
a simple manner as follows. The tuple space is duplicated on all processors. Whenever an
in(), out()etc. is executed the corresponding template is broadcast and a similar action is taken
by all the nodes. In this way the synchronization (and thus the consistency of TS in all
processors) is effectively realized. A second implementation in which the the tuples remain on
the originating nodes until they are explicitly asked for is currently being implemented s]. The
functions in(),out() etc. are then realized by broadcasting the templates - the corresponding
action of insertion or deletion from the TS is taken by the processor which contains the
matching tuple.

IV Conclueion b Research Issues

It should be clear that broadcasting has many innovative uses which should be further "',-.i
explored. These uses can be classified into fundamental (that is, algorithmic) and
implementational. For example, the use of broadcasting in implementation of multiprocessor
operating systems offers some advantages.

Another issue of significant interest the relative advantages and disadvantages which
multiprocessors with different T 87 have to offer. For example, broadcasting on a
hypercube la of N nodes takes time logN. This may be contrasted with the fast speed of the
S/NET bus in which the time taken per broadcast is 1/N times the processor speed. But again
if we conceive of multiple broadcasts taking place simultaneously - as in the hypercube,
interesting applications arise. Another related issue is the use of broadcasting in absence of
synchronization among the messages belonging to a single broadcast.

In summary, broadcasting offers interesting possibilities not only in the execution of specific
algorithms but also ;n the implmentation of general parallel programming software and as such
will play an important role in future multiprocessing systems.

• % i

REFERENCES

1. Dechter, Rina and Kleinrock, Leonard , "Broadcast Communications and Distributd .
Algorithms," IEEE Transactions on Computers, Vol. C-35, No 3, March 1986, pp 210-.19

2. Sugla, Binay, "Parallel Computation Using Limited Resour.es," Ph D [ssertat,
Department of Electrical and Computer Engineering, University of Ma-sahus a"
Amherst, July 1985.

3. Levitan, S., "Algorithms for broadcast protocol multiprocessor." Pros .qrd in:
Distributed Comput. Spat., 1982, pp. 666-671.

4. Ahuja, S. R., "S/NET: A High Speed Interconnect for %Multipir ('kn'--
Selected Areas On Communications, SAC-I, 5, November 193

5 Carriero, N and Gelernter, D_ 'The S Net's Linda kernr . : '.
Principles, December 1985

DeBenedictis, E., Multiprocessor Programming iit .I-i ' a'
of the Conference oft H[perrobe Aflleproresso,'s 1w%

-104 949 PROCEEDINGS OF THE WORKSHOP ON FUTURE DIRECTIONS IN 2/5
COMPUTER ARRCHITECTURE..(U) BATTELLE COLUMBUS LABS

RESEARCH TRIANGLE PARK MC D P AGRAWAL ET AL. 30 AUG 6

UNCLASSIFIED ARO-96304-EL DRR029-91-D-9199 F/G 12/5 Mmhhhh-mhh

1111~1- M162__AWII IIU11111 IIt -.'

11111.25 Hl1.4 1.6

_ -,-,p -•-q -. l . w W " ,'g - " .AWq ,.. W " .'4WP ,wp

S/NET BUS

BUS --

NT

Network

KERNE Tuple
Space - .

USER USER_

PROCESSOR a)

d4 - S/NET BUS

Tuple Space Tuple pce

User Process User Process

b)

'A

'.A

89
LI 1

Image texture classification with an optical crossbar
interconnected processor.

Alastair D. 'McAulay

Texas Instruments, Central Research Laboratories. P.O Box 226015, MS 238.
Dallas. TX 75266.

INTRODUCTION

Efficient use of extensive parallelism with a wide range of algorithms is required
to meet future computation demands. The problems are discussed of providing:
high performance, flexibility. extendability. reliability and ease of programming.
An optical crossbar interconnected processor is described, including the associated
optics. and programming methodology. The Levinson-Durbin algorithm for solving ,
Toeplitz matrix equations is considered as an illustration of how 2-D autoregressive
models could be computed for image texture classification. An executable flow
graph is generated for the Levinson-Durbin algorithm with unrolled iterations. The
flow graph is implemented on a simulator and the resulting activity chart shows a
100(efficiency once the pipeline is filled. The advantages and limitations of the
proposed architecture are summarized in the conclusions.

DIFFICULTY OF ACHIEVING DESIRED FEATURES.

Extendability implies that more processors may be added to the multiprocessor
together with corresponling interconnect ions without requiring new software and
with performance approaching linear improvements with number of processors. The
number of parallel processors that may be used efficiently is limited in today's
prototype and proposed systems by the communication delay and interconnection
complexity. These systems are not generally very extendable.

Flexibility to efficiently run a wide range of algorithms may be achieved by recon-
figurability. Reconfigurability also enables software to readily adjust, to an extended
system. However. reconfigurability introduces large delays and high control over-
head in most proposed systems. This severely restricts the number of processors
that may operate efficiently.

Nearest neighbor interconnected configurations are easy to construct and provide
high speed communications. The iniumer of ccinents in an array miay be incrased
without altering the bandwidth at aii iripw1 or out put c01mliecT iol. Thi.- prmit%

large numbers of processors to b,(, (,fficilntly und iM parallel for uitabl(' algorithii.
However. the nearest neighbor conniection liniit tle flexibility or rang(, of algo-
rithu.s that ulav be implemented ,,fficienly. For exanhile. many fast algorithms use

90

recursive doubling which results in complex non nearest neighbor communicationi-.
e.g. FFT. Systolic systems prearrange dataflow so that input and output occur,

at the edges of the processor array at each cycle 2. Latency is increased rela-

tive to serial niachine, and this causes difficulties for general purpose or adaptive

computing.

Reliability is often accomplished by means of redundancy in software, hardware.

time and'or space. This is detrimental to satisfying performance for a given cost.

Extended systems are likely to be less reliable because of the greater possibility of

interference.

Ease of programming is important. Mapping a complicated algorithm flow graph

to a complicated machine flow graph is difficult. The ability to perform the mapping

automatically is enhanced if the machine flow graph is less constrained, as for a

crossbar interconnected system.

PROPOSED OPTICAL CROSSBAR INTERCONNECTED

PROCESSOR

.JSystem

Figure 1 shows a preliminary organizational structure for an optical crossbar

signal processor 4. 3 . The inputs and outputs of hundreds of processing elements

are connected to an optical switch by means of commercially available fiber optic :0

links of bandwidth 160 MHz or more. The processors perform elementary oper- /

ations such as multiply or add and therefore have two input connections for the

two operands. This fine granularity permits the maximum amount of parallelism

to be extracted from algorithms. The processing element output is converted from

parallel to serial in a shift register for driving the fiber optic link. A second fiberoil
optic loop between processors and main memory banks provides input output. ,

Optical switch and interconnections

Optics is used for interconnections because. relative to electronic.", it provildes

high levels of parallelism, high bandwidth. large fan-in and fan-out. and high ir- '.

munity to interference. These features enable the use of fine granularity and recon-

figurabilitv. Each intersection in a crossba, witch. Fig. 2a. ha, a switch permitting

a horizontal input line to be coupled with ertical output one. Figure 2b shows a

diagrammatic crossbar switch implement, vith a spatial light modulator (SLM)
and (lot, indicate transparent regions coi ,tent with the closed switch settino-

marked bv dots in Figure 2a. An optical iens systeii, is used to spr(,ad the light
fron the input sources horizontally without spreading the light vertically. Light

passing through the spatial light modulator is collapsed on to receiving diodes by
means ofa lens system which focusses vertically without sprea(ing horizontally.

91

A reflecting membrane covers the surfac, of an array of transistors on a sili-
con chip, Fig. 3. to form a deformable mirror device (DNDI. The right side of the .
modulator is folded back and a beam splitter used because DMD's are reflective
SL.M's. Activation of a transistor causes the membrane to dip above the transistor.
A Schlieren system accounts for the reflections from the regions between mirror de-
flection pixels. Imaging and performing spectral analysis with a Texas Instrument's
DMD of size 128 by 128 has been published !5. It takes one microsecond per row.
to set the DMD up and a few microseconds to switch to the new settings.

Software and programming approach

The flow of data is prearranged so as to minimize run time overhead. A compiler
maps an algorithm graph into the processor: assigning the nodes in the graph to
processing elements and the edges or links to crossbar settings. Data flowing into
the switch is routed to the appropriate processor. A processor will perform the
operation for which it is programmed on the next clock cycle after receiving its
operands. The output is routed via the switch to the next processor.

EXAMPLE OF PROGRAMMING AND PERFORMANCE
EVALUATION

Image texture classification example

The idea is to compute. for each segment of an image. a 2-D AR model or filter
that when applied to the 2-D image segment will remove all the information leaving

only white noise. The 2-D filter may then be considered an estimator of texture.
It may be used to correlate against templates for the problem domain. e.g. trees,
and roads. 2-D dynamic programming may be appropriate to allow for stretch or
compression. Wiener or least square filter theory -1: may be used to derive a set of '

block Toeplitz matrix equations whose solution are the required filter.

Yule-Walker equations and Levinson-Durbin algorithm

In order to simplify the discussion the 1-D case is considered. The implementa-
tion of the 2-D case on the proposed processor is thought to be a straight forward
extension. The Yule- Walker equations may be solved for I-D AR parameters a fromi,

r0 r . r, 1 rm 1 TT,

I.l
r r, , r r I

r., r, r, r1, a,, (

92

r- is an estimate of the autocorrelation function at lag 7 and the mean is p.

r, =-. .. (X, - p) 7 -, 7 - 0 to ,n. (2)
" I ,

The Levinson-Durbin algorithm follows. At the nth iteration a reflection coeffi-
cient is computed as the inner product

= v(0 1) "

The power of the white noise associated with the AR process is computed from
v(n) v(n - 1)(1 - C(n2). (4)

Minimum delay is maintained by updating the AR parameters from

ak(n) -ak(n -])- c(n)a.-k(n -- 1) k = 0to n. (5)

The autocorrelation function may be computed by reconfiguring the crossbar
and processors to represent a tree 4

Flow graph for unrolled Levinson-Durbin algorithm

The processing of many segments of an image provides continous sets of data , 4
for which the algorithms must be performed. therefore pipelining is advantageous.
The Levinson-Durbin iterations are unrolled into a long section of code. Only four
loops are unrolled to simplify the explanation.

In the flow graph. Figure 4. each operation is assigned to a nod(, of the graph
and the flow of data between operations is identified by links between nodes. Nodes
marked with subtraction imply the subtraction of the right hand input from the left
hand input. The triangular arrows indicate negation or unary minus which may be
accomplished at the input to the appropriate node rather than with an extra node.
Identity instructions marked -Ident" support the fanout of operands so that an
input connects to a processing element before going through the crossbar. Delays
are inserted as numbers on tie graph edges.

Performance of Levinson-Durbin's algorithm

Figure 5 shows an activity chart resulting from running a otataflow simulator
for the flow graph of figure 4. Processors I and 2 operate in parallel in the firt
Levinson-Durbin computation. In clock 2 tlt. processor io(le 3 now operates oni
til, computation. Meanwhile processor, 1 and 2 are free to start on th niext
Levinson-Durbin computation. After 11 clock cycles the pipeline i full. and tl(

93
0"

,jjjpg

result for the first Levinson-Durbin computation is obtained. Once the pipeline is
filled, the efficiency of computation is 100('. It is reasonable to unroll up to 10
iterations of Levinson-Durbin for operation with the 500 processor system and still
have sufficient processors for the other computation. necessary.

Conclusion

Advantages of proposed processor. Fine granularity processing elements permit the
efficient use of high levels of parallelism. Flexibility to run a wide range of algo-
rithms with ease is achieved by reconfigurability. The number of wires connecting to
an electronic crossbar switch of equal throughput to the proposed optical crossbar
would be tremendous because parallel connections would be required. Optics has
the bandwidth to permit serial connections. The processor may be doubled in size
by adjoining a similar system and adding exchange switches. Programming may be
accomplished simply by writing flow graphs and using a compiler to map the flow
graphs to the machine. An image texture classification example was discussed to il-
lustrate the programming procedure. Reconfigurability and optical interconnections _
improve reliability.

Limitations of proposed processor. The desirable features listed above are achieved 4
by having a more costly interconnection system than. for example. a nearest neigh-
bor scheme. Consequently. the proposed system is limited to high performance
systems where flexibility. extendability and reliability are required. The large fan-
out possible with optics by means of lenses is accompanied by an energy loss which
increases the cost of the amplifiers required. The times to load and switch the cross-
bar switch constrain the rate at which algorithms may be changed in a dataflow
mode.

Acknowledgments

Office of Naval Research and DARPA support under contract N00014-85-C -0755
is gratefully acknowledged. I wish to thank Jeff Sampsell and Don Oxley of Texas
Instruments for valuable discussions.

References

1. .Justice J.H.. 'A Levin.on-Tvp algorith in for two dinriiona1 \V ider fil-
tering using livariate Szego polynorials." Proc IEEE. Vol. 65. (1977.)

2. Kung H.T.. "'Why systolic architect ires'. (niomputer. Vol. 15. pp. 37-46.
1982.94

94:...

.' '5 - - a --

3. McAulay A.D.. -Optical Interconnect ionn for Real Time Symbolic and Nu-
meric Processing.- Chapter in Book "Optical Computing: Digital and Symbolic-.
Marcel Dekker. 1987.

4. -"Optical Crossbar Interconnected Signal Processor with Basic Algorithms.-
Opt. Eng.. Vol. 25. pp. 82-90. 1986.

5. Pape D.R.. and Hornbeck L.J.. "Characteristics of the deformable mirror
device for optical information processing." Opt. Eng.. Vol. 22. pp. 675-681. 198.

PROCESSING

HIGH PEEDD==: OPTICAL
MEMOY PDIRECTED
RANKS CROSSB1AR

SWITCH

INPUT

OUTPUT .. *

1N N

Figure 1: Organizational structure for optical crossbar signal processor

95

0.

00
Ch

P4 3k 4b 7

CL

'araw

96S

MGo
N% N -4

i-b b
Ow w

co bo

to-

C4 5

bo
No N.

zL

S..%

97-

MULTIPLE-BUS INTERCONNECTION FOR

FUTURE MULTIPROCESSOR SYSTEMS

L. N. Bhuyan
The Center for Advanced Computer Studies

University of Southwestern Louisiana
P. 0. Box 44330

Lafayette, LA 70504 J%

SUMMARY
"p

The performance of multiprocessor systems depends largely on the performance of

the interconnection network (IN) that connects processors to memories or processors to N,

processors. In addition to providing full connectivity at low cost, the IN must be fault

tolerant and be suitable for a varied class of algorithms that the system may execute.

Although a lot of emphasis has been placed lately on a class of networks called multistage %

interconnection networks (MIN's) [1), they do not satisfy the later conditions. Recently

there has been an upsurge of interests in multiple-bus systems. This system provides in-

herent simplicity of the single-bus architecture while providing a large bandwidth (BW)

for-data transfer. Also, it is suitable for any kind of algorithms and has an added advan-

tage of fault-tolerance. This paper will present the performance of both centralized and

decentralized multiple-bus interconnections.

A multiprocessor organization can be broadly divided into two catagories, namely

tightly coupled and loosely coupled. The tightly coupled multiprocessors are characterized %

by a close interaction between the processors that is effected through a bunch of global

memories. In loosely coupled systems, the interactions are less frequent and there may not

be any global memories for direct access at all. In a multiple-bus multiprocessor, there

are B buses that connect N processors to N memories in a tightly coupled system or con-

nect N processors in a loosely coupled system for B < N. The structure provides B alter-

nate paths for communication and is therefore highly fault-tolerant. The value of B can 5/

98

be fixed depending on the communication requirement of the system. Based on operation,

the multiprocessor network can be divided into four catagories, namely '

Centralized synchronous,

Centralized asynchronous, a%%

Decentralized asynchronous and

Hybrid.

Centralized means that there is a central controller to oversee the operation of the IN

and synchronous means the IN operates based on a clock cycle so that all the processors

submit their requests at the begining of the clock. The data transfer is also completed by

the end of the cycle. A hybrid network may consist of a combination of the above three

types. In this paper we will point out some of the previous work done in the performance -- :

analysis of various multiple-bus INs and mention the future scope of study.

A lot of research has gone into the performance analysis of centralized tightly cou-

pled multiple-bus INs [2-41, assuming that a processor sends a request to any memory

module with equal probability. Analysis has also been reported when a processor has a

favorite memory [5]. As reported in the above papers, the BW linearly increases with the ,

V.
increase in number of buses until it is saturated by the memory access conflicts. In cen-

tralized asynchronous tightly coupled operation, the processors send the memory request - '-

packets to the central controller. The central controller builds a queue for each memory

and allocates buses to these memories in a cyclic fashion. Analysis of this system has been

reported in [6,7]. In a decentralized asynchronous operation, we need to follow some local

area network protocols to capture the bus. Decentralized protocols adopted in token, slot-

ted or Ethernet [8] buses can be applicable. As can be seen from the current university -

and industry supercomputer projects, the trend is to employ packet switching in the INs .

instead of circuit switching. We are in the process of analysis and design of suitable

multiple-bus protocols for tightly coupled multiprocessors. No work has been reported yet

99

%
*

1

on hybrid networks suitable for processor - memory interconnection.

Analyses have been reported for all the networks in a loosely coupled environment. A

loosely coupled system is similar in operation to a local area network except that the in-

teraction in the former is at a much lower level and has very fine granularity. Analysis of r.

a loosely coupled system is much simpler because there is no memory access conflict and

the processor does not have to wait until the current request is satisfied. Because the in- -r

teraction is less frequent, techniques such as context switching can be applied in a loosely

coupled multiprocessor. It is usually assumed that a processor generates requests as per

Poisson process and the network efficiency is measured in terms of delay-throughput

characteristic. Analysis of a synchronous/asynchronous multiple-bus network is equivalent .1

to M/G/m queueing analysis that can be obtained from any standard book [9]. A decen-

tralized asynchronous operation is similar to the operation of multichannel local area net-

works whose performance have started appearing recently. Multichannel protocols and

analyses for carrier sense multiple access / collision detection (CSMA-CD) have been re-

ported [10,11]. In our opinion, these protocols are also well suited for multiprocessor

operations. We have also evaluated the performance of some hybrid networks that con-

sists of a few CSMA/CD buses, centralized and token buses [12,13]. The idea is to divert

the traffic from the contention buses when the level of contention is high. As a result we

obtain much better performance.

Finally we have thoroughly evaluated the reliability and availability and our results

indicating that the multiple-bus performs the best [5,14]. In conclusion, we believe that

multiple-bus offers a simple, flexible, fault-tolerant and easily expandable interconnection

scheme. Industries always prefer a shared-bus connection [151. If communication is a prob-

lem, let us put another bus in parallel and see what happens!

100
U*~

References

[1] T. Y. Feng, "A Survey of Interconnection Networks", IEEE Computer, Dec. 1981,
pp. 12-27.

[2] L. N. Bhuyan, "A Combinatorial Analysis of Multibus Multiprocessors," Proc. Int.
Conf. on Parallel Processing, Aug. 1984, pp. 225-227.

[3] T. Mudge et. al., "Analysis of Multiple-bus Interconnection Networks,' Proc. Int.
Conf. on Parallel Processing, Aug. 1984, pp. 228-232.

[4] T. Lang et. al., "Bandwidth of Crossbar and Multibus connections for Multiproces-
sors," IEEE Tran. on Computers, Dec. 1982, pp. 12 2 7- 12 3 4 .

[5) C. R. Das and L. N. Bhuyan, "Bandwidth Availability of Multiple-bus Multiproces-
sors," IEEE Tran. on Computers. Special Issue on Parallel Processing, Oct. 1985, , A

pp. 918-926.

[6] Q. Yang, "Communication Performance in Multiple-bus Systems", M.A.Sc. Thesis,
Dept. of Ele. Eng. University of Toronto, 1985.

[7] D. Towsley, "Approximate Models of Multiple Bus Multiprocessor Systems", IEEE
Tran. on Comp., Vol. C-35, No. 3, March 1986.

[8] A. S. Tanenbaum, Computer Network8 Prentice-Hall, New York,1981.

[91 S. S. Lavenberg and C. H. Sauer, "Analytical Results for Queueing Models," Corn-
puter Performance Modelling Handbook, S. S. Levenberg, Ed. New York: Academic,
1983, pp.5 5- 172.

[10] M. A. Marsan and D. Roflinela, "Multichannel Local Area Network Protocols",
IEEE Sel. Areas Comm., pp. 885-897, Nov. 1983.

[11] H. Okada, et. al., "Multichannel CSMA/CD Method in Broadband-Bus Local area
Networks", IEEE CH2064-4, pp. 19.1.1-19.1.6, 1984.

[12] G. S. Selvam, "Multiple Bus Local Area Networks", M. S. Thesis, The Center for
Advanced Computer Studies, Univ. of Southwestern Louisiana, 1986.

[13] R. H. Sy, "Performance Analysis of Hybrid Local Area Network Architecture", M.S.
Thesis in Preparation, The Center for Advanced Computer Studies, University of
Southwestern Louisiana.

[14] C. R. Das and L. N. Bhuyan, "Reliability Simulation of Multiprocessor Systems",
Proc. Int. Conf. on Parallel Processing, pp. 591-598,1985.

[151 Multimax Technical Summary, Encore Computer Corporation, 1986. ..**

%

• . "-, ,

101

Session 6: Reconfiguration Strategies

Chairperson: Sudhir Ahuja -. ;

AT&T Bell Lab.-'-

102

'I

AUTOMATICALLY
RECONFIGURABLE COMPUTER

ARCHITECTURE

-.

Dr. F. Gail Gray

Department of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Va. 24061
This work was supported in part by

Army Research Office Grant DAAG29-82-F-0102.

t4 ..l_

AUTOMATICALLY RECONFIGURABLE COMPUTFR ARCIII ITECIURE

1 3 . %, .

1.0 Automatically Reconfigurable Computer
Architecture

This paper describes a proposed automatically reconfigurable cellular architecture. The unique
feature of this architecture is that the reconfiguration control is distributed within the system. There
is no need for global broadcasting of switch settings. This reduces the interconnection complexity
and the length of data paths. The system can reconfigure at the request of the applications software
or in response to detected faults. This architecture supports fault tolerant applications since the
reconfiguration can be self- triggered from within. The complete reconfiguration process can pro-
ceed without external interference.

1.1 Introduction
Recent advances in VLSI technology has made it possible to interconnect many small com-

puters together to achieve high parallelism. There are many topologies for interconnecting
processors. The optimum choice for interconnection strategy is frequently application dependent;
therefore, most of these architectures can be used only for a small number of applications. In order
to support a wide range of applications, it is highly desirable to design and build a general purpose
reconfigurable multiprocessor system.

The demand for very high performance computing systems has forced researchers to consider
non-traditional architectures, notably distributed/parallel systems[10-141. This is because the ex-
ponential execution time required by many algorithms can be significantly reduced by exploiting
inherent parallelism. Most of these new architectures attempt to match the underlying hardware to
specific problems(algorithms) for fast, efficient execution.

Kung Il has proposed such a class of architectures known as systolic arrays that can be used
to perform a variety of highly parallel computations such as matrix multiplication, fast Fourier
transformation, etc. Each processor in these arrays performs a simple and short computation and %
regularly pumps data in and out. But only a limited number of functions can be performed with
each type of interconnection network. What is needed is a general purpose reconfigurable archi-
tecture that allows many of the special purpose architectures to be embedded in a single structure.

Considerable attention is being given to such a general purpose reconfigurable architecture in
recent literature. Snyder [21 demonstrated the feasibility of such an architecture with the CHlIP
computer (Configurable, Ilighly Parallel computer), which provides a programmable intercon-
ncction structure integrated with processing elements. It is designed to provide the flexibility needed
to compose general solutions while retaining the benefits of uniformity and locality that the algo-
rithmically specialized processors exploit. It consists of a switch lattice, in which the switches are
set to create the best interconnection network for the function to be executed. An external con-
troller broadcasts a command to all the switches to invoke the appropriate architecture.

This approach has two major disadvantages. First, the setting of the switches is controlled
by an external processor. Tis necessitates some type of global connection to all switches. Sec-
ondly, the master control circuitry becomes a single point failure site, since it would be necessary
for the master control to work correctly in order for the appropriate switch setting to be invoked.
Thus the failure of the master control will significantly degrade the system reliability. This is highly
undesirable for failure critical applications such as automatic landing of commercial aircraft, control

Automatically Reconfligurable Computer Architecture .r

104

systems for nuclear reactors, life suuport systems for medical applications, etc. Even in less critical
applications, system downtime is often very expensive.

In this paper, we propose a reconfigurable cellular architecture in which the reconfiguration
mechanism is distributed throughout the array instead of being a single-point failure problem. In
addition, reconfiguration does not require an external processor to compute the new intercon-
nection pattern.

1.2 Proposed Structure
Our desire is to be able to implement a set of specific architectures designed to solve a specified

set of parallel computations in a single reconfigurable system. Cellular arrays are a viable compu-
tational architecture for such an implementation. A cellular (iterative) array is a collection of iden-
tical cels that are interconnected in a uniform, or regular, fashion. A cellular array is proposed for
the following reasons. First, they are of highly parallel nature. Secondly, since all the cells in the
array are identical the architecture becomes easily expandable without changing the current hard-
ware in any significant way. Lastly, each processor is connected to other processors according to a
regular interconnection pattern. By using regular local interconnection patterns we can avoid the
use of global connections, so that the interconnection complexity will not increase with the size of
the system. By making the control distributed throughout the array, the "hard core" component
will be minimal. Being a planar, regular structure, such a parallel processor is well suited for VLSI
implementation.

The proposed cellular structure is composed of two cellular arrays that are interconnected as
shown in Figure I on page 3. The cellular structure consists of a "control hyperplane" and a
"computation hyperplane", where for each cell in the computation hyperplane there is an associated
cell in the control hyperplane. Each cell in the computation hyperplane can be either a switch or
a processing element, as shown in Figure 2 on page 4. If it is a processing element it must be
complex enough to realize the functions required by each of the algorithms, i.e., each processing
element is some type of universal logic module, or microprocessor, that can perform a list of func-
tions. .'-

Each cell in the computation plane is controlled by the state of the corresponding cll in the
control plane. If the cell in the computation plane is a processing element, then the control cell
specifies a particular algorithm from a set of possible algorithms that the processing element can .. ,
implement. If the cell in the computation plane is a switching element, then the control cell will
specify a particular local interconnection of the switching element to its neighbors. The overall
function to be performed by the cellular structure is defined by the global pattern of control states.

To create the desired configuration for a particular computation, one cell in the array is ini-
tialized to a "seed" state which defines the global computational task to be performed by the array.
The cellular array will then utilize that information to "grow" the required pattern of states in the
control hyperplane. The pattern of states in the control hyperplane invokes the desired intercon-
nection structure in the computation plane.

1.3 Theory of Cellular Reconfiguration
The control hyperplane is responsible for assigning proper functions to the cells in the com-

putational hyperplane. Any arbitrary cell in the control hyperplane will eentually receive infor-
mation about the global function to be implemented from the 'seed" state initially planted at an
arbitrary location. The way in which the given information is distributed throughout the control
plane to produce a desired final pattern is explained in this section. This process will be referred
to as 'growth'.

The control hyperplane is an array of identical cells interconnected in a uniform fashion, where -

each such cell can receive state information only from its neighbors. The cell which initially receives
information about the global function will communicate with its neighbors and gradually spread the
information through the array to create the final desired pattern. This section explains the "growth"

Automatically Reconfigurable Computer Architecture

105 • .jj:

COMPUTATIONAL
HYPERPLANE

Figure 1. Cellular ArchitectureNId

Automatically Reconflgurable Computer Architecture

106

w p . * * *"* * *

SS S s s s

s s P s s c-c s S

S s

.

s UI P P

5I s s

s s * s

Figue 2.ComutatonalPlae *5~ q

s s s %

A utoatcal 2. olual ComputartArchltPctur

107

OR
NA Ole*I'

U *' ' ' ',*% I

process, the way in which the given information is transmitted throughout the control plane to
produce a desired final pattern. Since the control hyperplane is an array of identical cells inter-
connected in a uniform fashion, each cell can receive state information only from its neighbors.

Coll -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 time
0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 AAA 0 0 0 0 0 0 ... 1
0 0 0 0 0 B B C B B 0 0 0 0 0 ... 2
0 0 0 0 E E I I E E E 0 0 0 0 ... 3
0 0 0 C 0 M P U TE R S 0 0 0 ... 4

This process is illustrated in the following example.

Each row describes the state of the one-dimensional array at a particular time. At t = 0, the
"seed" state 'S' is planted at an appropriate place in the array with all othcr cells in the "quiscent"
state 0. At each time step, each cell observes the state of each of 'ts immediate neighbors and its
own state, then decides what its next state will be.

For example, at time t - 0, cti1 0 observes that the cell to its immediate left is in the "0' state,
cell 0 is in the 'S" state and the cell to its immediate right is in the "0' state. The local pattern for
cell 0 at time 0 is said to be OSO. When any cell in the array is in a local pattern of OSO at time t,
it will change its own state to state A at time t + 1. Similarly, if a cell is in a local pattern of 00S
or SOO at time t it will also change its own state to state A at time t + 1. Any cell in local pattern
000 at time t will stay in local state 0 at time t + 1. Therefore, the result of each cell at time t = 0
observing its local pattern and changing to the appropriate next state will transform the global
pattern

0 0 0 0 0 0 0 S 0 0 0 0 0 0 0

at time t = 0, into the global pattern

... 0 0 0 0 0 0 A A A 0 0 0 0 0 0...

at time t = I. In like manner, the global pattern at t = I will be transformed into the global pattern

... 0 0 0 0 0 B B C B B 0 0 0 0 0...

at t - 2 by each cell applying the following local transformation .',-

local next
pattern state

0 0 0 0
o 0 A B
0 A A B '-.'
A A A C,''
A A 0 B
A 0 0 B

Eventually, the desired global pattern 'COMPUTERS" will be reached and will remain stable if
each cell applies the following local transformation.

%''

Automatically Reconfigurable Computer Architecture

108

0 0 C 0
0 C 0 C
C 0 M 0
0 M P M
M P U P
P U T U
U T E T
T E R E

In general, any such control hyperplane can be characterized as a tessellation automaton [3].
The tessellation automaton (TA) is a four tuple

TA=(A,Ed,X,o)

where,

1. A is a finite non-empty set called the state alphabet. For our previous example, A =
(0,S,A,B,C,IE,O,M,P,U,T,R)

2. Ed is the set of all d-tuples of integers called the tessellation space. Here the tessellation space
is said to be d dimensional. In our example, Ed is simply the set of all integers

-3, -2, -1, 0, 1, 2, 3,

Ed defines the spatial location of each cell in the array.

3. X is an n-tuple of distinct d-tuples of integers called the neighborhood index Each cell is said
to have n neighbors and n is callcd the neighborhood scope. In the example, n = 3, and X =
(-1, 0, 1). X defines the relative coordinates of a cells ncighbors. For, example, cell 5 hasneighbors (4,5,6) obtained by adding each coordinate of the neighborhood index to the cell

location (5).

4. o is a mapping from An into A called the local transformation.

Each cell will decide its next state by observing the present state of its neighbors. In the example,
r(BCB) = I, o(MPU) = P, etc. It is desirable from the stability point of view that each cell be
its own neighbor 141.

For our work we can conveniently characterize the control hyperplanc as a two dimensional
tessellation automaton, since the computation hyperplane is a two dimensional array of switches
and processing elements. To completely describe the control hyperplane, we need to specify the
neighborhood index and the local transformation Y. The only difference from the example is that
the neighborhood index and the local transformation will be two dimensional in nature.

1.4 Summary of Results
This presentation describes the results of research into the topic. No attempt will be made to de-
scribe the results in great detail.

1.4.1 Design Example

A complete design example that incorporates four representative architectures has been developed
1171. These were chosen to achieve a variety of research architectures. Included were banyan net-
works (Gork761, a fault tolerant architecture I lirad821, the hypertrce [GoodSl, and the lens strategy
IFinkSlI. The results show that the complexity of the design is practical for present VLSI tech-
nology.

Automatically Reconfigurable Computer Architecture

109

1.4.2 1/0 Algorithm

Since the structure of the array changes from architecture to architecture, and since the location of
the active cells may change dynamically due to faults, it is necessary to provide a dynamic con-
nection from the 1/O ports of the array to the active region. This dynamic path allocation must
utilize only good cells. A complete specification for an 1/0 algorithm has been developed.

1.4.3 Determination of Fault Free Spaces

A distributed algorithm has been developed to determine the sizes of maximal regions of fault-free
cells in the array. Faulty cells are surrounded by a quarantine wall. Each cell in the array passes
a continually updated version of a parameter called the s-value to each of its neighbors. When the
s-value distribution becomes stable, each cell in the fault-free region will know exactly how many
fault-free cells are available in all four directions from its location. This distributed space finding
algorithm plays a crucial role in the development of distributed fault-tolerant reconfiguration algo-
rithms for the proposed structure.

1.4.4 Fault Tolerant One-Dimensional Architecture

A complete set of algorithms, including the required transformations, has been developed for both
fault-diagnosis and reconfiguration in a one-dimensional architecture 1161. Both single and multiple
faults are covered. Distributed control is maintained for all procedures. Results regarding the rate
of growth of patterns and the number of time steps needed for reconfiguration have been derived.

1.4.5 Multi-Dimensional Architecture

A complete set of algorithms for fault diagnosis and reconfiguration in multi-dimensional architec-
tures has been developed. Although applicable to architectures of any dimension, two dimensional
examples are emphasized. ,A

1.5 Future Directions
This section identifies problems that need to be solved to make the proposed architecture more

efficient and to increase the range of applications.

Previous work has focused on the use of the array for non-real time applications. I ligh
availability was the goal. There are no provisions for recovery during a computation. The system
can reconfigure but then the computation in progress must be restarted from the beginning. For
real time applications, there must be some means for saving data during reconfiguration. Such
applications require no gaps in data collection. A possible solution is to utilize a data checkpointing
system, with queues to hold data while reconfguration is in progress. The problem of transferring
the state of the failed processor to its replacement is also a difficult problem. One possible solution "'.
is to utilize shadow processors, so that there are always extra processors running each task in lock
step. In this way, it might be possible to quickly switch from the faulty processor to a good one.
Although these problems have been studied in other environments, applying them to an array A
processor with embedded control will require considerable effort.

Although the problem for reconfiguration in the presence of faults has been extensively in-
vestigated, no method for fault detection has been formalized. Several possibilities exist. If a
processor could execute a self test, or if neighboring processors could test a processor, then no ad-
ditional hardware would be required. I lowever, this approach would require extensive software,
and would require considerable time. Faults could be present for some time before detection.
Some real time applications could not tolerate this amount of fault latency. Another possible sol-
ution is to use redundant processors, each performing the same computation in lock step. The
outputs could be compared, data errors would be detected with no delay, and system reconfigura-

Automatically Reconrigurabit Computer Architecture

110

V % %. % V, %

a
r ,

tion could immediately be invoked. The advantages of this approach are less software overhead for
testing, and low fault latency. The disadvantage is considerable hardware overhead. Since harcware
costs are going down while software costs are going up, perhaps this last alternative might turn out
to best in the long run.

Time for reconfiguration is also a potential problem in real time systems. The current recon-
figuration algorithms proceed by clearing out the entire array when a fault is detected. Regrowth
of the desired control pattern then proceeds with faulty cells quarantined. Although this process
is acceptable for non-real time applications where the computation can be restarted from the be-
ginning once the reconfiguration is complete, real time appLications require fast efficient processing.
For this reason, partial clearing and partial reconfiguration will probably be necessary. This will
require considerable modification of the reconfiguration algorithms.

A final concern is efficient use of available resources. The present algorithms do not allow
faulty cells within the active processing array. Modification of the control algorithms to allow this
condition would allow more efficient use of facilities.

1.6 References
1. Kung, H.T., "Why Systolic Architectures?" Computer, January 1982, pp 37-46.

2. Snyder, L., 'Introduction to the Configurable, Highly Parallel Computer", Computer, January
1982 pp 47-56.

3. Yamada, II., and Amoroso, S., "Tesselation Automata", Information and Control, 1969.

4. Walters, S.M., Pattern Synthesis and Perturbation in Tesselation Automata, Ph.D. Dissertation,
Virginia Tech., Jan 1980.

5. Von Neumann, J., Theory of Self-Reproducing Automata University of Illinois Press, Urbana,
Illinois, 1966.

6. Good, IJ., "Normal Recurring Decimals" J. London Math. Soc., Vol.21 PP 167-169, 1946.

7. Goke,L.R., Banyan Networks for Partitioning Multiprocessor Systems, Ph.D. Dissertation,
University of Florida, 1976.

8. Goodman, J.R., and Sequin, C.H., "1lypertree: A Multiprocessor Interconnection Topology",
IEEE Transactions on Computers, Vol c-30, December 1981.

9. Finkel, R.A., and Solomon, M.AI., "The Lens Interconnection Strategy', IEEE Transactions .
on Computers, December 1981.

10. F.G. Gray and R.A. Thompson, "Reconfiguration for Repair in a Class of Universal Logic
Modules', IEEE Transactions on Computers, Vol. C-23, November 1974, pp. 1185-1194.

11. B.A. Prasad and F.G. Gray, "Multiple Fault Detection in Arrays of Combinational Cells",
IEEE Transactions on Computers, Vol. C-24, August 1975, pp. 794-802.

12. F.G. Gray and R.A. Thompson, "Fault Detection in Bilateral Arrays of Combinational Cells',
IEEE Transactions on Computers, Vol. C-27, December 1978, pp. 1206-1213.

13. J.R. Armstrong and 7.G. Gray, "Fault Diagnosis in a Boolean n-Cube Array of Micro-
processors", IEEE Transactions on Computers, Vol. C-30, August 1981, pp. 587-590.

14. S.M. Walters, F.G. Gray, and R.A. Thompson, "Sclf-l)iagnosing ?cllular Implemcntations
of Finite-State Machines", IEEE Transactions on Computers, Vol. C-30, December 19S1, pp.
953-959.

15. F.G. Gray, "General Purpose Reconfigurable Architecture", Proceedings of the 19,2 Interna- %
tional Conference on Circuits and Computers, New York, NY, Scptcmbcr 28-October 1, 1982, %
pp. 122-125. "_:%

Automatically Reconfigurablc Computer Architecture 4.,
'.4

1 11..,",

16. R. Kumar and F.G. Gray, "A Fault Tolerant One-Dimensional Cellular Structure'1, The 4th
International Conference on Distributed Computing Systems , May 14-18, 1984, San Francisco,
CA, pp. 472-483.

17. N. Goilakota and F.G. Gray, 'Reconfigurable Cellular Architecture", 1984 International Con-
ference on Parallel Processing August 2 1-24, 1984, Bellaire, Ml, pp. 377-379.

112'

154
1054

HASP JOB NO. * 104 SYSTEM ENTRY TIME *23.04.41 DATE *MAY 2, 1986
PURGE 23.05.03 KAY 2, 1986

A445F96 31744 VTIM4 FGGRAY

This page mods output group was scheduled to print 10 pages

JOB ACCOUNTING SUMIARY START TIME ON MAIN 23.04.44
EXECUTION TIME ON NONE 00.00.00 .00

DISK EXCPS 0 .00
TAPE EXCPS 0 .00
KILOBYTE SECONDS 0 .00

CARD INPUT ON L3S.JR1 509 .15

LINES PRINTED

PLOTTER CHARGES

SETUPS
TOTAL RUN CHARGES (excluding page mode output) .15 W.

IMPORTANT!! The total run charges xe DO NOT include charges for output e
printed on the 3800 in page mode. Printed output will be charged
at a rate of S.04 per foot of paper. This is equivalent to

$.0367 par portrait page or $.0283 per page of landscape outpv'.

CURRENT BALANCE 68.12

A6

1:
'::.:.:.

.. ;::

113 %'

t Tip L ,i-cr - t on c:. Fit d .i ,' F i [t c - i:' -':- -v ,.

C Onc ept i n t lie WfiTV C>'s*. e T;

D.C. Dea

Department of Comp.ter Sc:iernce N

Concordia University
Montreal , Quebec. H49 1R6. Canada

ABSTRACTTel

Itc e' :ct ccm t ti t ion.1, t t o-.11 h r., ..

"o u.t.n on to Cihich demards a ,- .r2: h--At-.1.2 'u 'ear.:h -r C- ,%

deal 0- COiTpIttirig time. [he a]. cori. tlimI uc:.: c a r.._di m, i

comput at i on i nvol ved 1 so r.- at tlha .t I: - n n,:t i-t:, - 1d'v:,.

economically on a large scale time-shared gener-al purpose

computer. The NOVAC project at Concordia cons'i sts of C"

dynamically variable tree structured =ytem for :ol Iv:
of combinatorial problems. The proposed mult ipornc&-- . .r' _

con .j t' of oosely coupled proce-snr._= wi tho h. h -I mtr,, r.. % -I'U

each proceasorr in the -'/ :.tem e f an be ma/i.t e or , r , '. ..:,i,_! 0r ! ,
Th i s ,/ em I S to be bu i I t w i t h I o f --t Ie .. h- 1. ii n .n f !I.*

c-puter - • an i nter r t.2 o Ic i. r A i _ i c -
bus.. The I ogi C al st ruc t Ure C Lr-n i t ,i , : a h t r
,._c.-ticr , h ' - I1h af number U A7-. .. '- n.-t r -' -- -. t,-

Ft oblk em c. wh1 ch can be Ept j it -up i nto a Iunihu ! a -i- .
pr- ob I ems. The time requi, red to iole. ccu- a prbcA1t-=m It - _-

ti p or d i n q .on 1 t . z:l '. a-,d 1-it orc- hrirc tc, cr ,,r i-ef -. ;!,,it

:os-s 1 nvoI ved i r hv .i ny an ab,-.ol ci teJ rel i ab .1 e s-r,... m r - ,

duration necessiated a recovery system usino t he buddy f-nr -r F
Herein .+ fail ure of one of the pr-oce:ci,'" rF a ofc t .r P:-7 hi I
prc,ceE? c: Ir: could be tolerated. The t as , E- -ici q -r d t r ,c. , -.. .

orocessor con u1d be pic ked iup fr-om the 1 a-t c h.-r r pci n c-t.:
- e. d" . J r anI cr- _i- I rIn 'c a .: i I 1a - I. F "/ r ciC 1+2t ,: ii£ lic"'7 j 2:?.

I. • -t. r odic t i on

I- h ,- r ArE. (cin / P rCt) 1. eTC,_ i. n i7,.. oCt C Til,. k . - I 1. r . . I;C

great amount of computi n t me t(:) soI ie them. ch .,c,. iut. .. ; .

involved are simple but the amount of computation is so great:
that i t cannot b.? done economi al F..v ,n c care m c-al e:- .:. L, I-.AIIt "

purpose computer. A numbr r cf svstem [2I have b7F, F rcki .,,

to e:: p oi t the paral eI i si i , U -,_,h prob. c-..ms. %_- ,C

structure in the -form of a tree has been propos-ed iF f7 1 t n (-],
71r- tb] eros that in-. - _ e'- ro, r ,-, ., t h r'- r - J ,] . h , - , b

I ,- -. . r - . -
,

i !-, ,- e ,c [. - , - ,.

"%°t

114
%"%

1%

possible to produ.Vce ine>xpensive mf cro and SLA[p)Erml crC priocSSr
with a + ai r y . i ir- c ant amount c+ comput nnt o,--,e'-. Di+ c-tr .butc,- i r'
syv:tems. V.h I .C t e V oI V ved R T a r~~u e t C, 4 t is t 3 i tW;E : 1. L r C- c:: 1:T +

multiple comouters and devices inter.connec:te, using a networl -,
form a coordinated system. Such a distributed system offer a
novel approach to implement fault-tolerant and highly available
computinq [8-11]. The NOVAC project [6] at. Concordia cc."-,r1-c
of a loosely coupled, NOn-tree structured Sultiprocessor H !TeE
which can be dynamically structured into a V_4riable tree to %.< Ivc

a class of Combinatorial problems. The structure, consistinq o -

a hierarchy of master, each with a number of slave_ s natu,.raI
for the set of tasks which can be split--up into a number of
identical s.ub-tas:ks . In a mi lti--leel s%./steM A .ave c-rl f4,' th,-.r
part i t i on i t5 subtask ar",d pas- the -,b-- :' it i-- -. 'ont, -- ,
sal ve: s r prototype c+ this £ H$: te m i b u ii L .i ti t h!- i .

mini --computer , FDP1 1 /4 and miI/o--comi jit- (["" -

interconnected using inepensi ye asynchronou- bu.

Our design (f i gure 1)proposes a set of processor,=
logically connected as a "tree" and satisfying the of lowin(
conditions.

(i) Each processor is- either a ms-.t-F a sIa VE F cr both.

i i) No memnory i s shared betweren prnc -r::c..CjrE .

' ii A master can instruct itS: own "-. a,7,'- iC.r-7-1r .: -., rd
5ub'-.equLnt, 1 y obt E i reLa-ul t. -rm I b r. 1. iC? iU1r-t

communicat, ion is poss hible.

Th e c: Pr:,C t.PA c I the -: Ommuni cati . ,, Ci r .F '- . ch a. r >,
Fcr- this pr-oject., Wt.e an i.icipa th- ,.t .n a 1:Ipi ,:. I I - , , fr h I Fr
mater W:t 1 I nt .r uct a l I ave:' by t. r a,-.t n c, r L Fci, t r:.a- t I I
b Ytes of c-ode and data tr, i t * and th e s.i ve a I I then ri r-, r -
least several minutes before returning a -ol,..tinr,. Thi is
actual y the most pess i mi st i c scenear i o., because i. f t he pr ol: Iem-
, er ,/ 1 ar ge th arloun - (o.. d ata tr F5 . t.t. Ed 1' t h i, .ave L. I

about the same, but the slave ma e"e,- for hodir, r ,- vS

n Y-- r e F: i ncg.

2.. R e]. i a b i Li iy,.

Fe I. a h i L i t.,' . a] w ,;,s an I mI C tF E I -,-t : i d . . !- i di r i
des . gn of a s s iem wh i ch h as to per .f or- i c or- r t i A c:. r- 1 c :, L
environment. Physical devices have an inherent failure rate ard
as such components o cf omput er ste.tems wi I f a i I . The c:mn-, i 7]
i n the : k krrent conputer sLI .stem ar bui J t .t i n t e.c:hno Lc:i es t h-,-
ar-c mor e rel i abi e :h an ear .i er t c- i.::,hn c ogI . Ho w,,.o _,r t h -
probabi litv of component and subsys-em fail c.re , e i.r f Cxn, .-,

1 C

• . r '-.t, :.i . .i '.. , , t- , , . .k.,<, ' r--r-'cr.

.1, L I D I r -" I : . - 1. * I I. ,' . .

i hi, I.I:a c' i. iF I. f] -t. ri<f.(]'rl , J i I, I . - .[o
"

115 %

avoidance (fault-intolerance) and the fauit torer~nc. In tr,-
faAl t avoidance method, the reliabil itv is ncre-A-d h ., t Iv

use of conservative desi gn guidelines, uszi ng 1I-.h I r. Q hi II

components that have beern subjected to an 1,i ti at burn-I i V., hS'

etc. However, in spite of these techniques, filUres -.. i
Occur.

In fault tolerance, on the other hand, the cobjecti,.r.o i'_- lcI: t "

the system to perform to the desired spec-i fication even in h,

presence of fali ts. The use of redundancy is the usual approIch.
Redundancy in a computing system could be considered to be if, t,-,

dimensions, namely components or time. Component redurdan(cy i- In
the form of e-xtra components, subsytems ard y St em.I : t T'-

redundancyw i- SAsSI 1y provi ded b,, o f twPrc e TtfIk.L, r - -*'-rj '

recovery met:hod f all s i n the artzea of + ta. Il t oler --ir. -'. ...

redundancy.

Most. of the commercially available svstve',rnns L1i sir &: -"1

fault tolerant by providing redundant or spare processors and/or
redundant communication links. When an active system component
fails, its tasks are dynamically transferred to spare component--,
thereby al lowing system operation to cont nue. In rnT, o tt-.c ?
systems it has been assumed that reconfi * turatioin and recover*.. -i i-
directed by a central or global Superi-.-n-r wh ,I-, si .. 4 t

most vulnerable part of the .iiystem.

. B.uddy Reco,/ery Concept

In this section, we Propose A +IF (I Lire r CC Ovv ~t r~ r'z 1,
for- a task: or-i ented distri buted c:omputincg -. '.., -i- .
may spawn subtas[s whi ch e, ecu.te .CL ot P her nu teI-, . 7 ..i .
assumed to be capable of detecting failures oi thpre p r -s (-rB t
other nodes. The only symptom of maiJ. +nc I j.l ri-i o-nv

pr.ocessors, is compl ete tai.Lure or Ide i th. I Q're fm' A .' "

a multiprocessor system fault tolerant, i. i+ n "-:. i I,
di C--v;e I o-p. s t r- -,t P.q i c- wh i c h 1 1: i-r tb le occu " us s -i W'

death will permi t. the, rema-.inmnq :r ci rr, ',z , , , .

agree or-, a reconfiguration of Lhe s/s -m. i'iWt tJ ,,V.,h t ,,

ii terconnection net work will not tc,1 1t. Lcit 6 (,Ci L,
tests i r-id pendent I y accor d ing to C-- lt,? i (IliC. r f.i< ei II 9 _

schedul e.-

One of the recover,/ strat Fgies., of t erI u + C w, I Vi-,- I

place scheme in which the sys _em mUSt SaV, -2 suI+i,-ent nrotn

t o Undc t h E ef 4ec t uf+ an tc ti on i + i L i k1 L s . L 3 0'~,iI

recove:y i .e. resetting an erroneous state ot- t- A 3.i c-t nl:

Pt tVi OUc' I. cr r or f rc e A t et 1.7 "k Fn I I I l- r I>i~.. ~

V .. ~C. c:n b n c~m pl~. .rtli u]\i. I .

L U;1 i. f (mU I t I Iii' v'(J' .

116

In a conventional multiprocessor, a t ask is re-e',Tcuted
after re--i ni t i a. Ii - at i or- of the mLA. t i proCe'. .r (.jh C- a -i c- -Tc- r-, n t
hardware fault i ' detected. This iml).3oses A -i I i f-ic anrt (r h .d
si nce the computation between the start cd the task and the. tim,-
of the fault is lost. If the task is distributed on different
proeessi no units in the multiprocessor then a failure ir a sub-
task would imply restartinq the entire task, resulti ng in hi qh
initialization overhead.

The proposed system takes advantage of the muL. t i pFe 1.
processing units to allow recovery from hardware fail ure=.
Brriefly, the detection of a pr oc es. sor fai lure by another -
processor, prompts the replacement of the faulty pr-oces:c"r- y
th i processor; and resumpt.i on of i ts- ta *k frc, m a nor.I: .,. i. .

state of c:omputati i on prior to th.., f ail ur-,--..,

The concept of the buddy system involves pai ri q :,f two
processors. A processor F' , which is gi vcnr a t-skV i s-. pai red w:t- Fr--i
another processor FP (=F±). F may also be assigned another
task and paired with processor F'k(Pb). The buddy processor PF,, ,
is responsible for testing the state of the processor F-'. If F't ,. %
finds the processor P in a failed state then it i ti. ates the
recovery procedure. The task which was beino performed by te
fai led processor ,F') is taken over by it.s burd,/ :roce(ssor F'

ub-tasks initiated bv fai led pre(:essor . , car pro.;i"
n:,rmall v without beinp re--i 1t, 1al i .ed f]. for 1-he. ,-rI oad.t I
of the tasks ard the s.tate save poi.nts are desgiqne'd at.h that th. ,

t. d dV pr (.:: s r a r- .cover the task f r-om an a.dn.1 /a c-t -. .

C oDiput at . or.

-1 he ty p e r- f +4 a 3 .1 LAr w C w h W e ar C C i d r L .t n . r -n e tr. I tr t:.

of a processor- w-i i e i t i e't ecut ing a task . ihe b-sic i dea i:,

the buddy failure recovery concept is the -following. For each
task t1 that iC?: asc..igned to a parti. cul. ar proce-..,-r F', a b udd.
prvcessor F'.. Ls selected. lhe buddy pro(.c-= ssor F',, is c-ocqril z ar)t
of the status of the processor P, and the tas: t, inc] udni oj n r;./-
,iF i h-s i,_ b t as.ks t-, i . Ir add 1 ti i or- Ihe p rc _''cr Fr- . - ' .- t,, _

-t te of t e h(2 ta ,I t at IE-.g. liar i. rtr1l in t 1 1- , ,-
au-, i liary storage device. h i =,devi ce i. , ,a c ,].-- e.- r:hn , . , .

process.or F',. In the ca: r i f a a . kurt:, of F 1 hi .I I 1 t 16%

buddy processor IF, to recover from the I rkst run n-t -ul t .tAte
s or ed b-/ t he tal r -, i -(:.e ur r .it' h (r thr, r- -.. t t :1 t-I- n c , t

which was being execuvted by the processor thet i A I ed. Vl , t-e
system design all ows normal continuation of an sub-ta u b -.
cre t-,ted b/ the pro(::e.-or- F' before ts rai Ira, :tr:d r'-,.i: rIc_..:r t -,. -...
of its result.s are forwarded to P,.

Selec tion of the buddy proce-ssor is left. to the pr,'-c-ssors
K', ,<.'r . <I t-'.':*

' Kri D ,tF c. r , / c !]. ,. i ;(t ,' I .o r ,-' ,- t-,E1 c .- ",, 7
fr, .- ,.- - v ,t ,-7. ,:- L':", , 4 c ,-, a-£ - ; i , ij I:-- . _ _ .r" ; : i 't ..J' - ..

117

.. .. ' . 0 ,:,: ,:'! ;, r ." a -

4. ARCHITECTURE 1-, COMMUNICATION REQUIREMFNTS

A reliable and survivabi e i nter c:onnecti or .v te m.n-t.
feature good operational security at three .evel s" t h
architectural or structural level , the physical i. mpl efen1ati c:,
level and the communication control level.

In the proposed system tasks are e'.ecuted by a set. of
physically distributed computing elements. These computing
elements must communicate with each other in order to co-ordinate
their actions so as to achieve the global system objectives.
Each processor has its own private main memory, and on-j. ire
secondary storage. The latter is not only connec -.ed to - c I
processor hut also to the gl obal bt.s by its devi c .- -.clr . I -
processor-, as long as it is 'alive' has exclusiv e a-csc. : tn-,,
on-line storage. On the failure of the processor the control c,
a I Iod other processors to access the on--I i. n. storaq, -in r,7 r-

only mode.

The global bus structure (Fi gure 1) a. 1. ows d i rect
communi c ati on between processors and maps the 1 og i ,:cal.
master/sl ave structure. Connecting the nn-lin e stnracc', to th.
bus allows the buddy processor (F,±) to read t1he .ast. Lat:e zaver1
by the processor (F'.) bef ore i ts + a.a I.ur e. Using t/hi .s mnet. hedo , o,

reduces the I oad on communi cati on net w -or V- si nrce it d-- 0 ct.
require every state save -to be sent to the buddy procesc'r.

i) Di rect commn i c ation i s p osi be h b.-I. t. . (--r' A , F .
p r o ce ss-:r z- .

(ii) Failure of any one or more of the processors, Lo;.?ec n ch
interfere in any way with -the communication among th-e
remaini ng proce.sors.

(i i i) In the case of a processor faRi IUre, t h e on-- i nE..
ao -i. 1 i ar-v stor-aq, of the f ai I ed pr oces-iso ..r i. r cr:: -' ' i -.
to other proc e-.sor +cr read Oe ,. ?

C~~~~ ~~~ ~ M .MEN .
5. [rIPLItENT~vr j ON "

The user program is loaded onto the root processor, which
assuLkmes the r o I c-oa+ t hP ov er a I Im as t ir . Tfhe mat or- pr f:.
Sub-di .'i dePs the li yen task into sub--taIs and b--srl-,-taa-
according to the users directives as specifi ed in lh s,-.r-.
program. The master processor also generates the machi ne code o

c.: h i n d i 1d 1k Ai t. azki I i .e. Cr" ea:Ich suh ---a:j i r , 1:-h, ' - ,-, % . , %
Ci u .. C". : *' : - ; d -rt, i tn I (r d-,. t1h . . :.-

-I t-. hi rn r I w r..id :Icr I o , h aI

(i b -od -. . . t r' I T. I Ej l -- I-- riiu. , ,Ir It: I C ..1 t
1Ifi t t i ';-- hv thr.-, mac:to.r prccesuu.cr" . h his rc,;; , u 14 : t V . , 'ii,

... .ocr ag e ob f -:-t a L s. L o -I r. s t i . i nt am r"d-,' C r r 1 r ci ' r, -

118 Wr

S r '"' " .. * ., " "' , -% % r ,r • q . - . -- ,-,%

thi communli cat i On network durngnc th. e,-..-. n C-.

wQu ld not be necessary -for a proceE.or to p the. ccdte, ,,j -.

sub-task toa a slave processor. During the e- eC:U t 1 o, per i ji'l ,
whenever a processor needs, another processor to act a- it- sl,,,'e
processor and execute a sub--task, it broadcasts a request for -

slave over the bus, and an i dl e processor reF,,pnncc b/
transmitting its id. The master then passes ont(the . -

processor the following information: the processorE , Fra. ter
ID. the ID of its buddy, the task ID and -the -:4k i a e-_

parameters.

The slave processor chooses a buddy processor and sends the
buddy processor's ID to the master proc:essor., which I] ,- -

receives-d by the master prncesor 's. buddy. ,- "

a result of the above -peci.fied sequerC.e ,the :1.,

processor knows the identifications of its buddy proces.or, o
it.s master processor- and of the buddy process.or . i -I I-
processor.

Whenever any processor creates a slave to eecut.. a SUb-- r
task, it informs its buddy. This will keep the 1:uddv pr-ohce,.7r
cognizant of all the tasks down loaded by the procr-...or t: I
of the slave and the slave's buddy. Inri case ot a Pr 1 0:CEi--, C-u.
f ai 1 ur e thi i Is needed by the buildy prc, iesc r -i r ce 1 . -ior ! ! r .-
recei ving the results from tihe t asl.s beinq pe:r- r f-:,red b,, - .h
processors of the failed processor.

On c:omp leti on of the task the si Iav- pr- c .ir- r-' I I

rep r- t the results back t.o i master proces.c:r (' ,. 11i
r eCCel V e an a c know1 & dcge mern t b ac: V: + ror t.h - -

prespecified time it sends the resultn to the master P r-ces:C r
buddy.

Recovery in case oi: the fai LIure ot a process or .' it l d I-
by its buddy processor. When a processor detects t-,.? i ur-? of
1 t-: buddy i t may be i n e (-. lher c,. two, state . d I r ..
L t . S 1 r, an i dile st ate th(:,rn .I.. st.arts pro-., sSI nq t.I-e t,. .c:! r.:- ,,

otherwise it first finishets the task it i,: per cr min- ar id t htar,
takes up the failed processors task.

6. Concl usi on

In the buddy recover'.' scheme, a pro-es.or 1si lnc-d .", t.:.
depends on its buddy processor for the completion of t-- t.sl- ?t
hand in c ase of a f 4 J lure. T'he processor C. il C l Mr (il !tl,:
periodically wit h the buddy processor to J. I- cad e -t hc : i: t et

J 1. e F-i I I A ro o i th . C M I - cnl..J r ,.-I -.,

(k V_ r n

" "r" " " :" -- ' u o- " I "r " I" ". I I "I " v - i r he I"" ,

,3 nd noti In) the ':rmn ~ln f-.<: I 1 1i or U;- - cr-~d' .

%jw

119

devi ce. Schemes used i n commer-cl al + AUI t toI er-nt sr', - r-r is
dual -bus dual port device control1. ler and juci.. -prr-t-..,-(..
are too expensi ve for a compt.tat in O i rri-t~n -•I. ,v. Eri i' v--rq.: r-

requiring hundreds of processors.

The implementation of the recovery scheme is in proqr--= oF)a prototype•

References

[I] B.C. Desai, "A Parallel Processing System to Solve - IProgramming Problem", FPh.D. Thesis, McGtl I i i ers, Ky, .

January 1.977.

[2] W.A. Wul f and C.G. Bel , "Com: - A mul . 11 3i r"1i-- 0 r-c ... ',.

Proceedings AFIFS 1972 FJCC (4) , AFI F'S Press, 7(5--77.

C33 B. Bchberger, J. Fergel and F. Lichtenberger, "Computer %

Trees: A MulticompLuter Concept for Special Purpose Parallel
Processing", Microprocessors and Microsystems., -.16) 179.

[41 S. Sacharen, B.C. Desai, E. Cerny., "MuI n-ipl., 8u'C: -nt'erfac "."
DECUS Canada, Sprinq 1978, Ontario, iar~ad>• -.

] S ~ 3. I Kartash-iv and S.F'. Ia ar- h i.-:-v , "Mul t I,-'mnt t - :.:1 *,r- ,

with Dynamic Architecture", IEEE Tran sactions co-, omrre-o,
28 (1I(' 1979, 704-'21. • %

C.I B.C. Desa I . Opatrny, C. Lam. F'. Gr o nc., J.i '. :t 1VJVO1 , .•

C.bi.lo, "NOVAC - A Non.-1're ..e Var-iab i e Iree iceor 'Job i, -,:..:.
Computi ng", Proc. of the 1982 Internatior-al Lon.crencc. or,:.
Parallel Processing. IEEE, pp.193-199.

[7] D.P. Siewiorek , "Ar ch i t ec tur e of F Fitt. t - j 1 er-Ar t Cc::rf:, t er:v:",
Computer, August 1984, pp. 9 - 1 8 .

[A . Avi.,zi Erni . Et al , "rhe Star (:,..I. - e ti r ,) rid i. Ir , .i

Computer: An Investigation of the Theory and F'rA:cL::i of: fj.
Fao.I t-Tol erant Computer Delhi gn , I FEE L --2' 1 I I ' ' ..

[9] D. '. Si ewi or ek et al • , "' Case t uy ,t . ,ip, L, fn ndI..
C. vmp: Part 1 - Experiences with Fault Tol er i nce in E- .?'
Mut ti processors Sy/tems" , Froc. IEEE. ',- -1. :' 0!7". 1 1 t..

£101 .A. Rennel 'Di " stri buteid Fat]. t-- ol erant C)mpLLer '.v-tem. ',

Computers, March 8.o, pp.5-5-65.

jr: f~'p Fl t, I k. Jo

% '- -P

120

%',,...

004 oc

LOCAL OC. AL oLA ~ k

Me nI

GLO8~%

121u

&=:{OZ %:?A .A -

Cloudma A SuPport Archltecture
for

Fault Tolerant, Distributed Systemt.

P. Dasgupta and R. J. LeBlanc Jr. h

School of Information and Computer Science
Georgia Tech, Atlanta GA 30332

1. Introduction

The Clouds project at Georgia Tech was initiated to conduct research into failure resistant, efficient distri-
buted architectures and operating systems. The project used stateof the art techniques to design a distributed
operating system kernel that can be supported on conventional, unreliable hardware, and be more reliable than
the underlying electronics. Several approaches to the problem were considered, and after substantial research
and construction effort, the current design emerged.

This paper presents an overview of the Clouds operating system. Clouds is a distributed operating system
providing support for fault tolerance, location Independence, reconfiguration and transactions. The Implementation
paradigm uses objects and nested actions as building blocks. The paper also discusses subsystems and appli-
cations that can be supported by Clouds to further enhance the performance and utility of the system.

2. Tbe Clouds Project
Ni -,.-

In recent years there has been considerable interest in developing distributed computing systems. Distribu- %
tion of computing resources suggests many possible benefits including greater flexibility, enhanced computing
power through greater parallelism and application of more resources, and increased reliability. But the promise
of distributed systems have been tarnished by a large set of problems that accompany such systems. The Clouds
project was initiated with a determination to overcome these problems through clear, simple, elegant design, that

N.
would lead to a integrated, useful distributed system. ,..

2.1. Toward Object Oriented Systems Design

The approach currently advocated by the research community is an object based architecture (see section
2.3 and 2.4). Every system (and user) function on an object based system is encapsulated in objects. The data %

these operations access are also encapsulated in the same object as the operation. These objects form units of '.

synchronlzable shared data structures and units of recoverable data in case of crashes.

The conceptual mechanism to access objects are procedure calls. However, most conventional systems do

not have the support to allow remote procedure call (RPC) mechanisms needed to support object invocations.

Thus a solution to implementing objects on conventional operating systems is to use the active object paradigm. "

In this technique, a process is associated with every object, and receives requests (via messages) from other

process wishing to access the object. The object handling process is complex, with abilities of interleaved execu- .4 .

tion, non-blocking receives and some parallelism (as it has to handle several clients at the same time).

This is the approach adopted in the the Eden system at Washington (Alme83], the CRONUS system at S.

BBN (Schn85] Argus at M.I.T. (Lisk83a] and several other systems. Although it is better at failure tolerance than a
message based system, this approach still has its pitfalls, such as the way the object manager has to be imple- -'

merted. It also uses a large number of processes (one per object), and has complex process handling code.

Support for distributed object based systems is built into the Argus language that is supported on the

Argus system. Argus uses guardians and objects to create corceptual nodes. However, most of the object calls

in Argus are handled through messages and slaves [WeLi83].

122
4,..% .

"#" .e ." e J" ." . . ""#" ,* . " r ". "" " ". " "".r".*" %" " ". ". ". ".*". ": " ./""."" ""; : " " ' " ". " . .' " " . "." " ""." ". " "

Clouds uses the object based approach with passive objects. The invoking process carries its thread of

execution into the object. Further, Clouds does not stop at objects being the sole units of recovery. Object are

units of recoverable data, actions are units of recoverable active components. The Clouds paradigm of using %

actions and objects for a reliable distributed system has a potential for large payoffs due to its simplicity, ease of

implementation and efficiency.

2.2. The Clouds Architecture

The architecture of a distributed system can be partitioned into two main areas: The hardware configuration

and the operating system structure. Clouds is designed to run on a set of processors, loosely coupled over a

medium-to-high-speed network. The prototype configuration is shown In Fig. 1.

The prototype consists of three VAX/750 computers with 3 Meg memory connected through a high speed

Cluster Interconnect (CI). The front end network consists of an Ethernet. This is the Clouds gateway to the

external world. (Currently, both the back end network and the front end network are on the same Ethernet.)

Users access the Clouds system through desktop computers (IBM-PC/XT computers in our prototype) through
the Ethernet. The disk drives used for secondary permanent storage are dual ported. This allows reassignment

of disk drives In case of processor failure and helps in reconfiguration. The front end Ethernet also serves as a

vehicle for easy transfer of user-processor assignments. In case of failures, users can be virtually transparently

floated to another serviceable processor.

2.3. objects

The operating system structure of Clouds is based on the action/object paradigm. All permanent system

components In Clouds are objects. Objects form a clean conceptual encapsulation of data and programs. They

are useful in providing synchronization and recovery as will be described later. The objects are accessed by
processes on behalf of actions.

In a simplistic view, an object is an Instance of an abstract data type (cosmetically similar to modules in
Modula-2 or classes in SImula). The object encapsulates permanent data and a set of routines that can access

(read or update) the data. The only access path to the data contained in the object is through the routines (or

operations) defined in the object. To the external world, the object is thus an entity providing a set of entry points.

[Jo79, Wulf74J

Clouds object are more powerful than just a black box containing some procedures and static data. It also
contains a stack (temporary data), heap (permanent dynamically allocated data), and powerful support for con-

currency control and recovery. An outline of a Clouds object is shown in Fig. 2.

2.4. Aotli.

Actions are partially ordered sequences of operations on objects that transform the state of the objects from

one consistent state to another Actions are used to specify units of synchronization and recovery.

A user on the Clouds system can start up a transaction. A user transaction is a top-level action. A top level F.

action is an atomic unit of work, that either effectively terminates and causes permanent updates to recoverable .,,,

objects, or does not leave a trace.

A top level action can spawn more actions or subactions. These are nested actions. They can run con-

currently with other subactions and the top level action, or they can be spawned sequentially. The subactions
inherit the locks, and the views of the parent action, but execute independently. The subactions may abort or

commit (conditional commit), and the termination status is returned to the parent. A top level action may decide to

t This resurch Is funded In pert by NASA grant NAG-1-430 and by NSF grant DCR-8316590.

123

S ,",.- .,.-

abort or to commit after all the nested actions have terminated.

2.5. Symilnsenhwte amul Reevmy V

Clouds uses locks as a basic mechanism for synchronization amongst actions. (The locking mechanisms

we not Ingrained Into the Clouds design; some other forms of synchronization such as timestamps can easily be
be substituted.) The object designer can classify an object as synchronized or non-synchronized. Synchronized
objects e automatically synchronized using the 2-phase locking paradigm. The synchronization in non-
synchronized objects is left to the programmer. Synchronization primitives such as locks and semaphores are
provided for do-it-yourselfers. This allows semantic based synchronizations.

When an object is defined as synchronized, the object compiler includes default code in the object entry

and exit points to adhere to the 2-phase locking protocol. Each operation is classified as read or update opera-

tion depending upon the semantics of the operation. Invoking a read operation causes the invoking action to

acquire a reed lock on the object (if possible, or the process waits until the lock is obtained.) Similarly invoking a
write operation causes the acquisition of a write lock, or the upgrade of a pre-existing read lock to a write lock.

Locks are not released when the operation returns or terminates, but are released by the commit phase,
which is also handled by the object as described below.

Objects can also be defined to be recoverable or non-recoverable. That is any modification to the object
is not made permanent until the action that caused the modification successfully terminates. Recoverable objects

have default operations "Commit" and "Abort" defined in them. One of these operations is invoked automatically

depending upon the success or the failure of the action. Commit causes the updates to be made permanent and
abort obliterates changes.

2A.. The Sallent Feutuee of Clouds

Distributed system architecture has been a research topic for some time now. The basic choice for a distri-

buted environment gaining popularity is the object based approach. Coupled with actions, objects are a powerful
and yet simple concept, that is well suited to handle distributed computing environments. However, not many pro-
totypes have emerged, although some are under construction. Some of the notable ones are the TABS project at

CMU [Spec84J, Argus at MIT [Weih83, Lisk83a, Lisk83b], Zeus at Austin and Bloomington [Brwn83], CRONUS
at BBN [Alme83], Archons at C.M.U. [Jens82] and Eden at Washington [Alme83J. The current state of the art in

constructing distributed operating systems and environments is definitely in this direction.

What all these projects have in common with Clouds Is the usage of objects and actions. The object is a
powerful construct that can effectively used to handle some of the problems of distributed environments. An
object not only encapsulates data, but also the operations that can be invoked on the data. The data contained in
the object can only be accessed by the operations or functions defined in the object. Thus the object can control

access to the data in a fashion the programmer designed it to. Note that even though the object itself may be
passive, the object can control access and enforce synchronization though semaphores or equivalent mechan-

Actions are used to preserve consistency and avoid partial executions. Actions also take care of the failure

recovery problem inherently. Since a failed action never leaves a mark on the system, and an action can success-, -- :
fully commit only If all its components executed successfully, the state of the permanent storage is always con-
sistent.

Clouds Is different from the mentioned object based systems in several respects. First it implements passive

objects. In the pure object based system the object is In fact a passive segment of code and data, that has no
thread of execution in it unless invoked by a process. The object can support as many threads of execution inside

124

it as there are concurrently Invocating processes (if the synchronizations rules allow.)

The basic primitive supported by an object based system is object Invocation. This is the most frequent

activity done by the system. Some systems overlay the object invocation mechanisms on top of a conventional
operating system. In this case each object invocation has to trickle down though several layers of software in

order to work. The Clouds approach is to build object Invocation as a primitive supported at the lowest level of

the operating system, namely the subkernel.

The action management Is also supported at a low level in the kernel. Thus the basic function of the Clouds
kernel are object invocation, action handling, synchronization, recovery and commit.

In Clouds both hardware and software failures are modeled by the same paradigm. All failures lead to

basically one or more aborted actions. The fault tolerance is achieved by reconfiguring the system and restaring
failed actions after the failure is detected.

Reconfiguration capabilities are another Clouds novelty. This comes in two flavors. Upward reconfiguration

takes place when hardware entities (processors, disks, network connections) are added to the system. Downward
reconfiguration is the opposite. Downward reconfiguration can be automatic in case of detected failures or forced
In cas of premeditated shutdowns. The ability of the system to reconfigure itself gives rise to two significant

advantages. In case of crashes it allows normal system functions to continue. Also system components can be

selectively disconnected from the live system for hardware maintenance or software maintenance (replacement of

kernel level code) without affecting any activity on the system.

3. Subsystems and Appllcations

Clouds provides a generalized support layer for many applications and subsystems that effectively utilize
the power of the object based, action oriented environment. In this section we briefly discuss the implementation

of a probe-based monitoring subsystem that enhances the fault tolerance of Clouds and a relational database that
utilizes Clouds support for a reliable distributed data management system.

3.1. Probe based System Monitoring .'.

The key to Improved fault tolerance lies in the implementation of a mechanism for the system to monitor

itself. The monitoring can be at several levels, discussed later, but the basic components of the monitoring system

are probes.

Probes In Clouds are a form of emergency status enquiries, that can be sent from a process to an object or
to another process. When a probe is sent to an object, the probe causes the invocation of a probe-procedure
defined by default in the object. The probe procedure returns to the caller a status report of the object. This

includes the status of the synchronization mechanisms, the actions currently executing in the object and other
relevant Information (Fig. 3). Probes can also be sent to processes or actions. A process does not have to expli-

citly receive a probe. The probe causes a process thread of control to jump to the probe handler, irrespective of
the current status of the process.

The probe handler/procedures are scheduled and execu'ed at higher priorities than the regular process

scheduling priorities. Since the probes cause an immediate, asynchronous reply, and the probes are not
suspended by synchronization mechanisms, the time taken by the probe to return to the sender is not dependent

on unpredictable conditions, or heavy processing loads. Thus timeouts can be quite effectively used for receiving
replies from probes. Thus using this scheme we can detect the dfference between a dead machine and a

slow one, with a high degree of accuracy. A primary/backup paradigm using probes can be implemented to form
the basis for implementing fault tolerant actions.

125

.% A %,A % .. - . *% -,

&ZL System Health Monitoring using Probes

The probe system can be effectively used to Implement a primary/backup paradigm that achieve fault

tolerant actions and a system monitoring subsystem that keeps a health status of the system. The monitoring sys-
tern integrates with the reconfiguration system in a manner that enhances the failure tolerance of the system.
Details we omitted for the sake of brevity. The interested reader is referred to [DaB61. The monitoring system Is

depicted in Fig. 4.

3.3. An Objeot Based Database System

One of the notable differences In structure between conventional database systems and a system supported

by Clouds Is the storage mechanism. Instead of files, we have a more powerful construct namely objects. In the N.

following sections we describe how to implement a database system, using the object paradigm. Subsequently

we discuss approaches to implement concurrency control and transaction commit for the database objects and
transactions under the Clouds environment. We also provide Insights into the effective management of the distri-

buted database and how to provide support for data replication (Clouds does not support replication).

Virtually any kind of database system can be supported in the object based architecture. However to avoid
getting Into all the design approaches for various data modeling paradigms, we choose to discuss the most
popular database model, the relational database model. The approaches for Implementing other models would
be different, but can be derived from the basic Ideas in our discussions.

3.3.1. Objects and Relations

The basic building blocks in a relational database are relations and the relational operators that access the

relations. At a slightly lower level are the access mechanisms used for fast access to individual or groups of

tuples In the relational tables using key searching, indexing or hashing techniques.

The straightforward way to implement an object-based relational database system is to use a relation per

object scheme. An object holds all the data of the relation and contains the access mechanisms to access the
data. Thus the object defines operators that do key lookups, projections, tuple Insertions, tuple deletions range

queries and other such operations on the objects. A good feature of this approach is that the object can be
encapsulated and be independent of any systemwide definition of structure or storage mechanisms. The internal

structure of the object, that is the data organization (binary tree, B-tree, table unsorted), is not visible to the data-

base system from outside and thus different relations can be organized in different ways and yet look functionally
identical. The organization of each object could be tailored to the method that suites the data contained and the

size of the object. Organization of an object using this scheme is shown in Fig. 5.

There are some disadvantages to organizing the relations in this manner. we have designs that solve most

of the problems. Concurrency control and recovery methods integrate well with the automatic support provided
by Clouds. Our approach yielded some surprisingly clean interfaces to between various types of objects and the
database manipulation routines. Most of the details of the design and structuring of the database system is omit- *' ,

ted for brevity.

Using the object based approach we can determine locking granularities local to the object and use frag-
mentation schemes if necessary In a manner transparent to the relational access routines and database applica-

tion programs. Also replication can be effectively handled. An overview of a scheme that achieves good locking

granularities through fragmentation is shown in Fig. 6. For further information about the techniques, the reader is

referred to [DaMo86]

126

..

3.4. Potential Reearch Issues

Most of the potential research areas that will lead to successful designs of distributed operating systems Y
have been discussed above, along with suggestions of some solutions involving Clouds philosophies. To
reiterate, the important aspects that need further research and could benefit from innovative techniques are the vN

following.

1] Development of an innovative architecture for a distributed system using the Clouds approach. A hierarchy
of clusters seem to be the best approach. Each cluster should be a distributed system which is object
based and supports atomic actions. Intracluster machine independence and fault tolerance is necessary.

21 In case of detected faults or emergency faults, corrective measures include recovery and reconfiguration.
Recovery (or short term reconfiguration) ensures that vital functions of the systems keep ticking, no matter
what happened. Also long term reconfiguration techniques would help In fault Isolation, repair and recom-
mission of faulty components.

31 Redundancy or replication is a time honored method of achieving reliability. In some systems, reliability is of
high concern and this traditional scheme, coupled with state of the art techniques will give rise to the best
rellabilty/performance figures. How to Integrate the two is not a trivial problem, and need investigation.

41 The primary/backup paradigm is a powerful technique for fault tolerance. This needs extension to handle
more situations than just one failure at a time. Also the probes needed to implement this scheme can be
used for a variety of other purposes. There seems to be some good research directions here that need to

be explored.

51 The Clouds protection mechanisms will be used to support multilevel security. The prototype does not
currently support broadcast medium encryption and digital signatures. These schemes will be designed,
built and tested, along with testing of their effect of general system performance. The tradeoff issues have
to be identified, and the critical messages that need digital signatures have to be formally defined.

This scheme can then be extended to public broadcast channels using data encryption and digital signa-
tures for guards against unauthorized eavesdropping, message forging and penetration of the systems.

6] Implementation of applications subsystems, like the database system outlined above that effectively uses
Clouds support for enhancing system utility.

4. Refe..nces
[Allc83a] AlIchin, J. E., An Architecture for Reliable Decentralized Systems, Ph.D. Thesis, School of Information

and Computer Science, Georgia Institute of Technology, 1983 (also released as technical report GIT-
ICS-83/23)

[Allc83bJ Allchin, J. E., and M. S. McKendry, Synchronization and Recovery of Actions, Proceedings of the 2nd
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), Montreal,

August 1983
(Alime83] Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, The Eden System: A Technical Review,

University of Washington Department of Computer Science, Technical Report 83-10-05, October 1983
[Brwn83] Browne J. C., t. al., Zeus: An Object-Oriented High Integrity Distributed Operating System. Technical "

Repost, U of Texas Austin.

[DaLeSp85J Dasgupta P., LeBlanc R. and Spafford E. The Clouds Project: Designing and Implementing a
Fault Tolerant, Distributed Operating System. Georgia Tech Tecnical Report #GIT-ICS-85/29 ,_

[Da86] Dasgupta P., A Probe-Based Fault Tolerant Scheme for the Clouds Operating System Georgia Tech
Technical Report #GIT-ICS-86/05 (to appear in the Proceedings of the ACM Conference on Object-

Oriented Programming Systems, Languages and Applications.)

127

A. IL J*

[DaMo861 Dasgupta P. and Morel M., An Ob/ect-Based Distributed Database System Supported on the Clouds %
Operating System Georgia Tech Technical Report #GlT-ICS-86/07. % %

(Jens82J Jensen E. D. Decentralized Executtve Control of Computers Proc. 3rd Intl. Conf. on Distributed Corn-
puting Systems, Oct 1982, pp 31-35.

(JonelgI Jones, A. K., The Object Model.- A Conceptual Tool for Structuring Software, Operating Systems: An
Advarced Course, Sprlnger-Verlag, NY, 1979, pp. 7-16 0. I

[Uisk83a] Liskov, B., and M. Herlihy, Issues In Process and Communications Structure for Distributed Pro-
grams, Proceedings of the Third Symposium on Reliability in Distributed Software and Database Sys-
temns, Clearwater Beach, Florida, October 1983

[LiskS3bJ Llskov, B., and R. Scheifler, Guardians and Actions: Linguistic Support for Robust, Distributed Pro-
gram, ACM TOPLAS, Vol. 5, No. 3, July 1983

[McKe821 McKeridry M. S. and Allchin J. E. Object-Based Synchronization and Recovery Technical Report
GIT-ICS-82115, Georgia lnstt. of Tech.

[McK984b] McKendry, M. S., Ordering Actions for Visibility, Proceedings of the Fourth Symposium on Reliability
in Distributed Software and Database Systems, Silver Spring, Maryland, October 1984

[Schn85I Schantz R.E. and Thomas R. H. CRONUJS, A Distributed Operating System:- Functional Definition and
System Concept. 88N Technical Report 5879.

[Spec8AJ Spector A. Z., et. al. Support for Distributed Transactions In the TABS Prototype, Technical Report,
CMU-CS-84-132.

[WeLi831 Weihi, W. and B. Liskov, Specification and Implementation of Resilient, Atomidc Data Types, Sympo-
sium on Programming Language Issues in Software Systems, June 1983V

(Wulf741 Wulf, W., et. al., H'YDRA- The Ke:-nel of a Multiprocessor Operating System, Communications of the
ACM, Vol. 17, No. 6, June 1974.

Vax 456 Mb Vai
.

i1 /750 11/750

U 477,

j. I, -) oc
r_1 dlasegn~St

4"fatb M__I___l"n- Tif Mt
i heapn

Vand

I 1 750 "! 2 M sb (pe pr -

R~Parfl 5.'c

F~ 1. he C~z Hmd~e~whLatuge.Fne 2 Cbje -PC Sprue W-)

Heaps

Oblect

Probe EntryProbe HarderJ

PitOperation -J %

Entry .$$code/
Points

i..

Processekey led p r -m

Vadatabobct 4
Prob Hanler va- consistent)

Fig. 3: Probe Handlers in objects and Processes.

Ftg4., The structure of the monitoring system,

.4 lorage.-
points- aw.

F' [NT I rC opetions : fjU
telationi tables *r**. -

,,ni Fragmentton'

__s ha~jtndlers LJ
he~h -level - routines)yTEIronization ~iiI i b I

I relational
oerations *and

recoery

low level low levl I O levlel -
daetaacss routi dta accerssrouti Alta iVes"L'(I2

Fg.5 A Relational Oblect. with Ii -treee dila Stage. ~L
tragnr~1 dta oects

Fig 6: The Fragmentalton Handling Scheme

129

r 1A

..

Session 7: Grainularity Issues

,.

Chairperson: Jane Liu

University of Illinois at Urbana

_3

130

A Large-Grain Dataflow Architecture

Ian Kaplan, Loral Instrumentation

8401 Aero Dr. San Diego, CA 92123
USENET: {ucbvaz,decvaz, ihnp4}!sdcsvaz!sdcc6!loral!ian

ARPA: sdcc6!loral!ianG UCSD

April 2, 1986

Introduction

This paper provides an overview of the Loral LDF 100 (tin) dataflow parallel pro-

cessor. In this section we will describe the major design goals of the LDF 100. In sec-

tion 1 we will discuss the LDF 100 dataflow programming model and in section 2 we will 4

discuss the LDF 100 hardware architecture.

Biographers usually cover the childhood of their subject since an understanding of

the person's beginnings are important in understanding what they became. Just as it is

important to understand the childhood of a historical figure, the examination of a com-

puter architecture requires an understanding of what the designers of a computer system

attempted to achieve.

The LDF 100 was designed for applications in high speed real time processing (e.g.,

telemetry and signal processing) and numeric simulation. Listed below are some of the (%

major design goal- of the LDF 100:

Software - '

- The parallel processor must use a large grain dataflow programming model.

- It must he easy to program the parallel processor. This includes a good

software development environment (i.e., a UNIX development environment).

- It must be possible to use standard "off the shelf" compilers for standard

languages like C and Fortran.

Hardware

- The system must use 'bff the shelf" hardware (i.e., no custom VLSI) e

- The parallel processor must provide a clean interface to the existing Loral

Instrumentation telemetry system (the ADS 100).

- The parallel processor must be expandable from a few processors to more than

one hundred processors.

Although these design goals are divided into software and hardware categories.

these categories are not necessarily exclusive. The construction of an incrementally

expandable parallel processor effects both hardware and software. The hardware must

provide support for the incremental addition of processors and the software must allow a

program to run efficiently on a large processors arrays.-7W

131

program

1. The LDF 100 Software

The Dataflow Programming Model

Most parallel processors can be divided into one of two categories: those systems
that use the dataflow programming model and those systems that are based on the
Communicating Sequential Process (CSP) model of computation.

The dataflow model views a program as a dataflow graph. The nodes of the graph
consist of the parts of the program the can be executed in parallel. These nodes are con-
nected by arcs. Data is communicated between the graph nodes on these arcs. A node
in the dataflow graph can execute as soon as it receives the necessary data.

In both a formal and a practical sense dataflow is a subset of the CSP model. A
network of communicating processes can be structured like an asynchronous dataflow
graph. Despite the overlap between the two models, CSP based systems are usually not
structured like dataflow systems. The CSP model was originally developed to describe
processes in uni-processor operating systems and most CSP based systems use a von
Neumann programming model.

Compared with classically structured CSP based systems, the dataflow program-
ming model has a number of advantages. In a dataflow program control is contained in
the dataflow graph. This graph is distributed throughout the parallel processor, so con-
trol is also distributed. Dataflow graphs are asynchronous, so pipelining is easily sup-
ported. In contrast, CSP based systems are synchronous, which makes pipelining diffi-
cult.

Since the dataflow programming model is a 'non-von Neumann" programming
model, memory can be distributed throughout the parallel processor. The nodes of a
dataflow graph process the data that they receive on their input arcs. In most dataflow
systems this data arrives via a communication network or bus.

Small Grain vs. Large Grain Dataflow

Most University research has concentrated on small grain dataflow. In sriall grain
dataflow, the nodes of the dataflow graph consist of the atomic instructions of the
dataflow machine. The LDF 100 uses large grain dataflow. In this section we will dis-
cuss why the large grain model was chosen for the LDF 100. %

Small Grain Dataflow

Although small grain dataflow holds out the promise of processing power that
exceeds the fastest super-computers available today, no sizable small grain dataflow com-
puter has ever been built. The problems that must be dealt with in constructing a small
grain dataflow computer include:

1. The massive parallelism present in small grain dataflow demands a very high
bandwidth communication media for the parallel processing elements. All of the
practical small grain dataflow machines proposed so far use communication net-
works to support high bandwidth interprocessor communication. Networks are
expensive to implement since they require custom VLSI components. %

2. Small grain dataflow systems must be programmed in dataflow languages like Val. %
ID and Lucid. Although these are elegant languages, most prospective customers
for a parallel processor prefer Fortran.

3. In many applications a number of processors will process a single large data struc-
ture. The organization of structure memory for the storage of large data structures
(e.g., arrays) in dataflow systems is still a topic of research.

13. -2
132

Large Grain Dataflow

In large grain dataflow, the dataflow graph nodes are implemented by blocks of
code approximately the size of procedures. The larger granularity means that the com-
munication bandwidth that must be supported is considerably less than that of a small
grain dataflow system. Since the communication bandwidth is smaller, a segmented bus
architecture can be used on the LDF 100.

A program for the LDF 100 has two components: a data graph description and a
set of node implementations. The data graph is described in a custom language
developed by Loral. The nodes of the graph can be implemented in standard C or FOR-
TRAN. Although an existing application must be restructured, existing code can be
used to implement the graph nodes.

The Loral Data Graph Language

A dataflow graph consists of a collection of interconnected nodes. The Loral Data
Graph language describes the graph interconnections. It also gives a code file implemen-
tation for each node and provides some simple type information for the arcs of the %
graph.

Lymph = "hydro.code"
import{ word[4 J volume, diameter }
export{ wordi 2 pressure }

Monitor = "alarm"
import{ wordi 2] pressure }
export{ word signal },0%

A graph language node is composed of four parts:

1. A node header

2. An import section

3. An export section

4. An optional firing rule

The node header contains the node name and the name of code file that implements
the node. This name is a UNIX file name and is contained in double quotes.

In dataflow all nodes must have an import section or they will never be scheduled
for execution. Nodes do not necessarily have to have an export sections (for example, a
node that feeds an output device would have an invisible set of exports).

The import and export sections can contain multiple groups of arcs. Each group of
arcs starts with a type, followed by the name of the arcs. The groups are terminated by
a semicolon or the brace that ends the section.

The firing rule section is optional and is used only for dataflow nodes that imple-
ment control structures like IF-THEN-ELSE and loops.

Processors in the LDF 100 are divided between chassis. A chassis - processor com-
bination uniquely defines a processor in the LIDF l(10. A program referred to as the
Graph Balancer assigns a processor and a chassis to each node in the dataflow graph.

133 .- -

N N N

The graph from the example above, is shown here, after it has been processed by the
Graph Balancer.

Lymph = ' ydro.code" < CO> < P2>
import{ word] 4 volume, diameter } U "
export{ word[2] pressure}

Monitor = "alarm" < CO> < P7>
import{ word[2 1 pressure }
export{ word signal }

Like most dataflow systems the LDF 100 uses a tagged token architecture. The
tokens that are broadcast on the dataflow bus are 32 bits wide. The token is divided
into a 16 bit data field and a 16 bit tag field. A program referred to as the Tag Assigner
assigns tags to the arcs of the dataflow graph and to the code files that implement the
nodes. The code files must be tagged because they are down loaded into the dataflow
engine across the dataflow bus. The graph above is shown below, after it has been pro- Ile%

cessed by the tag assigner.

Lymph = "ydro.code" < CO> < P2> < T64479>
import{ word] 4) volume < T64383> , diameter < T64382>.
export{ word] 2] pressure < T64381> }

Monitor = "alarm" < CO- < P7> , T64399
import{ word[2] pressure < T64381
export{ word signal < T64380> }(

Data Graph Nodes

The Loral dataflow programming enviroriment is a highly modular one. Each node
interacts with other nodes only through input and output arcs. This modular design
allows code to be easily reused in new graphs. Nodes written in different languages can
be intermixed without difficulty since all communication between nodes takes place via e
tokens broadcast on the dataflow bus.

In the dataflow environment a node will no(be scheduled for execution until it has
all the data it needs to execute. A node reads the data that arrived on its input arcs
with a floread system call. Unlike reads in a CSP based system. floread is not a waiting
read, since the data is already present when the floread is executed (otherwise the node
would not have been scheduled). The C version of the floread call is shown below.

nurn tokens - floread(ARC, &ptr);

The floread call returns the number of 16 bit data values read. It is passed the arc
to read and a pointer to a pointer. The dataflow kernel that runs on the local dataflow
processing element will initialize this pointer with the address of the data that arrived on
the input arc.

134
". .-.

t W\E ~ ~ -W~\..- %.A r...~...........

Nodes output data using flowrite calls. An example of the C version of flowrite is
shown below.

flowrite(ARC, ptr, size);

This flowrite call will write size 16 bit words from the data structure pointed to by
ptr to the output arc ARC.

Firing Rules

This paper provides only a brief overview of the Loral Data Graph Language. The
Data Graph Language also includes firing rules, which will not be described in this
paper.

Firing rules allow the program to alter the normal conjunctive semantics of the
data graphs described so far. A node that uses a conjunctive firing rule will only fire
when it has all its inputs. To implement conditional flow of data (a dataflow control %
structure similar to the IF statement) and loops, more complex firing rules are needed.

2. The LDF 100 Hardware

The LDF 100 logically consists of three sub-systems:

I. The UNIX system

2. The dataflow engine

3. The real time I/O sub-system

Although these components are logically separate, they are physicallh packaged in
one or more standard instrument rack chassis.

The UNIX System

The compilers for C and Fortran, and the dataflow graph processing tools needed
to creat a dataflow program are supported under UNIX. The LDF 100 uses the National
Semiconductor GENIX port of UNIX for the National 32000 microprocessor. This UNIX
system runs on a single board, with IM byte of RAM, hardware floating point and
demand paged virtual memory.

The DataflowEngine ,,

To the programmer on the UNIX system the dataflow engine appears to be a dev-
ice. This device can be written to and read from, like any other device. I/O services to
support reading and writing of tagged data streams are supported.".h.

The connection between UNIX and the dataflow engine is managed by a board %
referred to as the FLObus (tm) Interface Processor, or FIP. The FiP is an intelligent '-
board that has its own NS32000 processor, local RAM and a mail box ram that is used
to communicate with UNIX. ...

The Dataflow Processor

The dataflow processor is divided into two sections:

135

The Token Processing Section (TPS)

The Node Processing Section (NPS)

The Token Processing Section (TPS) is connected to the dataflow bus. Hardware
on the TPS fetches selected dataflow tokens from the dataflow bus and places them in
an input FIFO. The NS32000 microprocessor in the TPS gathers the tokens from the
FIFO and collects them into data sets referred to as packets. A packet consists of one or
more tokens and is the amount of data needed to 'omplete" a node's input arc. When
all of a node's input arcs are complete, the node can be scheduled for execution.

When all of the data that is needed to execute a node has been collected, the node
is scheduled for execution on the Node Processing Section (NPS). Like the TPS, the
NPS uses a NS32000 microprocessor. The NPS also includes a floating point unit. an %
interrupt control unit and a memory management unit. The NPS and TPS sections of
the node processor are shown in the block diagram in figure 1.

A separate data fetch section (the NPS) and a separate application execution sec-
tion (the TPS) allows pipelining within the node processor. While the NPS is executing
a node the TPS can continue to collect data for the remaining nodes. Since data fetch is
a bottleneck in parallel processors, this optimizes the performance of the LDF 100.

Building Large Dataflow Systems

All LDF 100 systems consist of a master chassis that contains the UNIX develop-
ment environment and optional expansion chassis. These chassis are packaged in an
attractive unit based on a standard instrument rack. The master chassis can hold 11p to
eleven dataflow processors (i.e.. node processors). The expansion chassis can hold tip to
fifteen processors each. Expansion chassis can be added to the system until it consists of
more than one hundred processors. .4.

The chassis are connected via a board referred to as the FLObus Network Interface.
This board supports the fast transfer of dataflow tokens between chassis. This transfer
takes place via combinatoric logic. so a delay of only three bus cycles is introduced. The
FLObus Network Interface (FNI) is programmed to allows selected tokens to flow
between chassis. Only those tokens that cross between chassis on interchassis graph arcs
are programmed into the FNI. so the loading on the dataflow bus is minimized. A
multi-chassis LDF configuration is shown in figure 2.

Acknowledgements
The LDF 100 has been developed by a small group of dedicated computer professionals.
These include Jim Mees, who developed the dataflow kernel, Greg Hutchins, who did the
UNIX port and who also worked on the kernel. The LDF 100 hardware was designed
and developed by Lorraine M..Thompson, Gil Urcheck and Gale Williamson. John Van
Zandt provided project leadership. Space does not allow us to list the many other peo- e
pie at Loral who have helped to make the LDF 100 a reality. ,. ,.

136

V'

NODE PROCESSOR ...

FLObus

TKNPROCESSING SECTION

TOKNPLOGI NS32016 32 K bytes 16K BYTE N

FIFO CPU RAM ROM

NODEN PROCESSING SECTIONRBU

POLOATINGTE IOKNTERP

RAM RMPOINT CONTROL
UNIT UNIT

NODE PROCESSING SECTION MICRO BUS

MULTI-MASTER R

INTERFACE UNITCPLII ;Fbus

PRINTER
SERIAL DEVICES

WINCHESTER 1/2" 9-TRACK MAG TAPE*
LOCAL AREA FLOPPY DISKS WINCHESTER DRIVE*

NETWORK DISPLAY/PRINTER CARTRIDGE TAPE*

FIRST
CHASSIS

UNIX PROCESSOR I/O CONTROLLER
ETHERNET * MASS MEMORY * SCSI Bus.

CONTROLLER CONTROLLER 0 5 SERIAL PORTS
* PRINTER PORTS

PROCESSORAPROCESSO

LFbus

NTOEXPANSIONINEFC
PRHASSSO

LDFbus

00 00 000 se

FLObus MMRNOEFLObus
NETWORK NEWOKll.

INTERFACEXPANSION PROCESSORNEWR
INERAC INTERFACE

FLObus

EXPANSIONCHSI

Jfre 2
1 38d

~W.

SISAL: Initial MIMD Performance Results

R R. Oldehoeft, D. C. Cann and S. J. Allan
Computer Science Department

Colorado State University

1 Introduction

SISAL (Streams and Iteration in a Single-Assignment Language) [MSA*85] is a language for ex-
pressing algorithms to execute on highly concurrent computers. Like other functional languages, *-

SISAL displays characteristics allowing compilers to detect and easily exploit the underlying archi-
tectural parallelism and the potential for parallelism in the program.

Four groups associated with different organizations and with different original target architec-
tures cooperated to define SISAL. The organizations (and architectures) are: Lawrence Livermore
National Laboratory (Cray vector processors), Digital Equipment Corporation (VAX' processor
clusters), the University of Manchester (Manchester data flow machine), and Colorado State Uni-
versity (Denelcor HEP multiprocessor). SISAL descends from VAL [AD79,McG82] and retains its
functional, single assignment character. SISAL differs from VAL in possessing simpler error types,
general recursion, a stream data type, and improved iteration forms. The SISAL project has also
benefited from earlier work described in [GP79] and [KLP79I.

SISAL offers several advantages for use on a multiprocessor system. The user need not (and
cannot) manage or express parallelism in a program. The compiler detects parallelism, decides how
much to exploit, and generates code to take advantage of the parallelism and manage it. Users
express algorithms without expressing or implementing parallelism. Language syntax is Pascal-like.
A familiar syntax decreases the time it takes to learn the language and aids in program readability.
For a SISAL language overview see [AO85).

The SISAL groups have formed a pool of benchmark programs typical of those that programmers
would actually write using SISAL. Many are short, but there are some over 1,500 lines long. Thus
they often represent actual codes run in the "real world."

At CSU we implemented SISAL on the Denelcor HEP and evaluated the performance of the
initial implementation. Work proceeds to port the software to other MIMD systems. The sections
below briefly discuss the compiler implementation with emphasis on portability considerations,
describe the run time support system, and survey performance results. See [A086] for a more
complete description of the SISAL implementation at CSU.

'VAX is a trademark of Digital Equipment Corporation

.- .

139

: , "" ",. • ,' ,"'-, -.".. . ,,"-,",," ," , ,:..".,"..- , .- .- ." -" --,.,,\ .' ." -" -" -"-." .' ." ." ,." -"M z: '.

Input Translator Output
(1) SISAL program -- SISAL parser -* IFI
(2) IF1 -- IF optimizer -. IF1 (optional) 1 .V
(3) IF1 -- IFPCC generator - IFPCC
(4) IFPCC-- C code generator -- Native code -,.,

Figure 1: SISAL Programming System at CSU

2 Compiler

The SISAL compiler, designed for flexibility and portability, consists of several phases. We use a
parser that produces a machine-independent intermediate form, "IF1" [SG85], along with optimiz-
ers that improve this intermediate form [SG85J; both were developed at LLNL. The next phase
[CAO84a] translates to another intermediate form acceptable to the second pass (code generation
and optimization) of the portable C compiler [Joh78], used almost universally in UNIX 2 systems.
This approach has saved a great deal of effort and promises to ease the porting of the translator
system to other parallel processors that support C, or facilitate its use as a cross-compiler. A
diagram of the CSU SISAL compiler appears in Figure 1.

3 Run Time System

Most SISAL run time software is written in C, with a few assembly language routines. This aids
in system portability to other machines running UNIX. The major responsibilities of the run time
routines are managing processes, arrays, streams, and dynamic storage.

Parallel execution units in MIMD SISAL are function bodies, parallel loop "stripes," and multi-
expression components. Execution of parallel loops and multi-expression components is performed
by daemon processes that interact closely with SISAL process management in low-overhead ways.
(For these tests, this had to be emulated by packaging loop slices as explicit functions; the automatic
capability is now fully implemerted.) So mapping SISAL processes onto the hardware resources
is the major concern. If each function reference occupied a processor, then either the number of
available processors would be overrun or deadlock would result as parent processes held processors
waiting for completion of child functions who cannot execute. We prevent deadlock by requiring that

a parent process waiting for value(s) from children relinquish its processor and suspend execution.
See (BAO84] and [VA0851 for more complete discussions of process management.

Multi-dimensional arrays in SISAL are "arrays of arrays" and are dynamic. At compile time
we know only the dimensionality and element type; bounds are in general determined only at run
time. Necessary resulting run time tasks include adding an element to an array, fetching a value
from an array, etc. ICAO84b has a complete discussion on array implementation.

2 UNIX is a trademark of AT&T Bell Laboratories.

%

14

J%

Streams are an important data structure because they provide pipelined parallelism among
stream producer and consumer functions. Both the stream producer and consumers execute si- #P%
multaneously so the program processes can form generalized parallel pipelines. Only a contiguous d,
substream of the stream needs to be extant at any time because values that the slowest stream
consumer no longer will reference need not remain. In this way programs can execute that produce
and consume (finite prefixes of) infinite streams; these programs terminate normally. For a further
discussion see [AO83].

SISAL run time support relies on dynamic storage allocation for process descriptors, streams,
and arrays. An adapted boundary tag method is in place that allows multiple concurrent allocations
and deallocations [BAO85]. Also, we include a "front end" caching scheme that can greatly speed up
dynamic storage management under the conditions that obtain during SISAL execution [OA85al.
For a complete discussion of dynamic storage management in SISAL, as well as other run time
support details, see [OA85b].

Note that in these tests array storage is not properly recycled, adversely affecting performance.
We anticipate that a new intermediate form under development at LLNL will help all SISAL
implementations to optimize storage management.

4 Performance

We briefly describe the performance of a few benchmark programs as measured on a single-PEM
Denelcor HEP processor; unfortunately this machine is no longer available. Because of the im-
plementation restrictions mentioned in the previous section, we believe these results represent a
baseline for enhanced performance on other shared-memory systems. Overall, the speedup curves
display performance similar to those of HEP programs written in imperative languages with ex-
plicit, low-level process synchronization mechanisms. Further, these curves follow the general form
predicted for this architecture in [Jor85].

The performance of a simple lnumeric integration program is seen in Figure 2. The speedup
curve is typical of programs that operate on scalars. Process management among SISAL functions
that exchange simple values is being tested here.

Figure 3 shows the speed up curve for a matrix multiplication program. The sawtooth effect
seen in the speedup curve comes from varying the number of hardware resources against a fixed
size for the data. The periodic degradations are due to the lack of array space recycling.

A noise filtering program was coded in SISAL; results are displayed in Figure 4. The sawtooth
effect of the previous benchmark is not as pronounced because storage interference is not a factor.

Finally, the performance of a sieve method for prime number generation is given in Figure
5. This graph shows the best speedup among the four for small numbers of hardware processes.
Beyond 13 hardware processes there is not enough work to keep SISAL functions running and offset
the cost of frequently idling hardware processes; performance actually degrades. The smoothness
of the curve shows that stream run time support operates in a predictable fashion.

141
~. -.--. -

S
P 7-
e
e

p

3-

Processes

Figure 2: Numerical Integration Performance Results J

S
P 7-
e
e

p
3-

1 3 5 7 9 11 13 15 17 19 21 23 25 27 r.

Processes

Figure 3: Matrix Multiplication Performance Results

142

S
P 7-

p
3-

Processes

Figure 4: Noise Removal Performance Results

S
P 7-
e
e

p
3-

4 -. .* i i

1 3 5 7 9 11 13 15 17 19

Processes

Figure 5: Sieve of Eratosthneses Performance Results m~

143

References

[AD79] William B. Ackerman and Jack B. Dennis. VAL - A Value-Oriented Algorithmic Lan-
guage. Technical Report LCS/TR-218, MIT, June 1979.

[A083] Stephen J. Allan and R. R. Oldehoeft. A stream definition for von Neumann multi-
processors. In Proceedings of the 1983 International Conference on Parallel Processing,
pages 303-306, August 1983.

[A085] Stephen J. Allan and R. R. Oldehoeft. HEP SISAL: parallel functional programming.
In J. Kowalik, editor, Parallel MIMD Computation: The HEP Supercomputer and Its

Applications, pages 123-150, MIT Press, Cambridge, MA, 1985.

[A0861 Stephen J. Allan and R. R. Oldehoeft. Parallelism in SISAL: Exploiting the HEP
architecture. In 19th Hawaii International Conference on System Sciences, pages 538-
548, 1986.

[BA084] Larry W. Booker, Stephen J. Allan, and R. R. Oldehoeft. Process management for
HEP SISAL. Technical Report CS-84-05, Colorado State University Computer Science
Department, Fort Collins, CO, June 1984.

[BA085] Bruce Bigler, Stephen J. Allan, and R. R. Oldehoeft. Parallel dynamic storage al-
location. In Proceedings of the 1985 International Conference on Parallel Processing,
pages 276-279, August 1985.

[CAO84a] David C. Cann, Stephen J. Allan, and R. R. Oldehoeft. An IF1 Driven Portable Code
Generator. Technical Report CS-84-15, Colorado State University Computer Science
Department, Fort Collins, CO, December 1984.

[CAO84b] Steven Cobb, Stephen J. Allan, and R. R. Oldehoeft. Arrays in SISAL. Technical Re-
port CS-84-04, Colorado State University Computer Science Department, Fort Collins,
CO, June 1984.

[GP791 D. Grit and R. Page. A multiprocessor model for parallel evaluation of applicative pro-
grams. Technical Report, Colorado State University, Fort Collins, CO, September 1979.

[Joh78] S.C. Johnson. A portable compiler: theory and practice. In Conference Record of the
5th A CM Symposium on the Principles of Programming Languages, pages 97-104, ACM,
New York, January 1978.

[Jor85] Harry F. Jordan. HEP architecture, programming and performance. In J. Kowalik,
editor, Parallel MIMD Computation: The HEP Supercomputer and Its Applications,
pages 1-40, MIT Press, Cambridge, MA, 1985.

[KLP791 R. Keller, G. Lindstrom, and S. Patil. A loosely-coupled applicative multi-processing
system. In Proceedings of the 1979 AFIPS National Computer Conference, pages 613-
622, 1979.

[McG821 James R. McGraw. The VAL language: description and analysis, ACM Transactions
on Programming Languages and Systems, 4(1):44-82, 1982.

14.

144 €'

[MSA*85] James McGraw, Stephen Skedzielewski, Stephen Allan, Rod Oldehoeft, John Glauert,

Chris Kirkham, Bill Noyce, and Robert Thomas. SISAL: Streams and Iteration in
a Single Assignment Language Language Reference Manual, Version 1.2. Lawrence
Livermore National Laboratory, Livermore, CA, M-146, rev. 1 edition, March 1985.

[OA85a] R. R. Oldehoeft and S. J. Allan. Adaptive exact-fit storage management. Communica-
tions of the ACM, 28(5):506-511, 1985.

[OA85b] R. R. Oldehoeft and Stephen J. Allan. Execution support for HEP SISAL. In J. Kowalik,
editor, Parallel MIMD Computation: The HEP Supercomputer and Its Applications,
pages 151-180, MIT Press, Cambridge, MA, 1985.

[SG851 Stephen Skedzielewski and John Glauert. IF1 - An intermediate form for applicative "
languages. Lawrence Livermore National Laboratory, Livermore, CA, M-170 edition,
July 1985.

[VA085] Bruce Votipka, Stephen J. Allan, and R. R. Oldehoeft. HEP SISAL Process Manage-
ment. Technical Report CS-85-08, Colorado State University Computer Science Depart-
ment, Fort Collins, CO, May 1985. '4-

145

.4.x~

Session 8: Mapping Algorithm and Task
Assignment

Chairperson: Doyce Satterfield

U.S. Army Strategic Defense Command

146

THE MAPPING OF PARALLEL ALGORITHMS TO
RECONFIGURABLE PARALLEL ARCHITECTURES

Leah H. Jamieson *
Howard Jay Siegel *

Edward J. Delp *
Andrew Whinston **

• School of Electrical Engineering
** Krannert Graduate School of Management

** Department of Computer Sciences
Purdue University

West Lafayette, Indiana 47907

Abstract

One of the significant problems which must be addressed if we are to realize the comput-
ing potential offered by parallel architectures has to do with developing a better understanding
of the relationship between parallel algorithms and parallel architectures. In this paper,
research on the mapping of algorithms to reconfigurable parallel architectures is presented.
The thrust of this work is in identifying those characteristics of parallel algorithms which have
the greatest effect on their execution, and in identifying a correspondence between those
characteristics and the characteristics of parallel architectures. The context of this work is in
the design of an Intelligent Operating System for the PASM reconfigurable multimicroprocessor
system. The task of the Intelligent Operating System will be to direct the selection and
scheduling of algorithms and the configuring of the architecture for the execution of an image
understanding system.

1. Introduction

In both parallel architectures and parallel algorithms, there exist many design choices for
which there are no direct counterparts in conventional serial processing. In architectures,
examples of such choices include number of processors, local versus global memory organiza-
tion, mode of processing (synchronous or asynchronous), and interconnection topology In
parallel algorithms, issues which do not arise in serial programming include determination of
the number of processors needed/useful for a task, data allocation across memories, synchroni-
zation necessary/beneficial, and interprocessor communication requirements. The move to
parallelism has introduced new degrees of freedom to both the architecture and algorithm
design process. For effective use of parallel systems, it is essential to obtain a good match
between algorithm requirements and architecture capabilities.

The question of mapping parallel algorithms to parallel architectures has importance at
three levels. First, it bears directly o the algorithm design process. General knowledge about
what constitutes an effective match between a parallel algorithm and a parallel architecture
can accelerate the process of developing new parallel algorithms for a given machine. Second,
an understanding of the relation between algorithms and architectures is a prerequisite for the

This research was supported by the Rome Air Development Center under Contract F30602-83-K-
0119, by the Naval Research Laboratory under Grant N00014-85-C-2182, by the Air Force Office of
Scientific Research under Grant F49620-86-K-0006, and by the Institute for Defense Analyses Super-
computing Research Center under Contract MDA04-85-5027.

147

'I-s

-.- I JreptViJuti~ ~~'%

fast, efficient design of algorithmically-specialized systems [SnJ85]. Given a fixed set of algo-
rithms, architectures tailored for the execution of those algorithms can be developed if the
architectural requirements of the algorithms are understood. Third, a general method of relat-
ing algorithms and architectures will allow efficient use of flexible parallel systems such as
PASM [SiS84]. Many problems in image understanding require execution of a large number of
algorithms, with the exact choice and execution sequence of the algorithms varying depending
on the input data. Critical timing requirements may accompany such scenarios.
Reconfigurable parallel systems can provide an environment which can be used to test the
ability of various architectures -- either sequences of simulated special-purpose parallel systems
or successive configurations of the reconfigurable system itself -- to meet these computing
needs. Integral to the effective use of these flexible parallel systems, however, will be the abil-
ity to select machine configurations based on knowledge about the algorithms to be executed.
In order to accomplish this automatically, the operating system will need to use information
about the characteristics of the algorithms to select successive configurations of the parallel
architecture.

In IDeS85], we have presented a model for an Intelligent Operating System for the execu-
tion of image understanding tasks on PASM (see Fig. 1). In this model, the Algorithm Data-
base contains the algorithms which can be used in performing the image understanding task,
plus two types of information: properties of the algorithm which describe its image analysis
capabilities (e.g., "edge finding in noisy images") and properties which describe the execution
characteristics of the algorithm on different architecture configurations. The Algorithm Data-
base may contain multiple algorithms to perform the same basic task (e.g., edge finding), with
different versions providing different image processing capabilities (e.g., good performance in
the presence of noise) and/or having different parallel implementations (e.g., based on raster .
versus square subimage allocation of the image to the parallel memories). The Intelligent
Image Understanding System determines what types of symbolic and iconic operations should
be performed, selects the algorithms to be executed, and uses the results from these operations
to determine what needs to be done next. The Reconfigurable Parallel Processing System in
our study is PASM, which can be dynamically reconfigured under software control to operate
as one or more independent partitions ("virtual machines") of various sizes. Each partition
can operate in either SIMD or MIMD mode, and can dynamically switch modes under software
control. The Low-Level Operating System Routines accomplish the actual reconfiguration.
The Intelligent Operating System uses information from the Intelligent Image Understanding
System, Algorithm Database, and knowledge about the current system state to select a specific
algorithm implementation and machine configuration for accomplishing the next step of the
image understanding task. The Intelligent Image Understanding System and the Intelligent
Operating System are to be implemented as expert systems.

Various researchers have examined the problem of characterizing parallel architectures
(e.g., see [Kun8O, EtN83]), characterizing parallel algorithms (e.g., see [DaL81, HoJ81, SMS85),
and relating algorithms to architectures (e.g., see [CaL82, ChF83I). In this paper, we consider
the problem of identifying the characteristics of parallel algorithms which have the greatest
effect on their execution, and of identifying a correspondence between those characteristics and
the characteristics of parallel architectures. This information is to be used in constructing the
Algorithm Database in the above model.

148

Intelligent
Image Understanding

System

Low-level

Algorithm Database Intelligent ip LO egS e m

(Symbolic and Operating SystemSIconic Algorithms) RoutiinessteRoutines

P

Reconfigurable
Parallel Processing

System

Fig. 1. System model.

2. Architecture Model

We assume a target parallel architecture with the general attributes listed below. The
purpose of the assumptions is to define a very general architecture framework, so that no
undesirable restrictions are imposed on the architecture by the assumptions. Rather, by exam-
ination of the algorithm attributes, the subset of capabilities required in the architecture can
be selected. Thus the framework is more general than most existing parallel systems, but
many architectures, including PASM [SiS841, Ultracomputer [GotSl,, RP3 [Pfi85], the Cosmic
Cube [Sei85J, the Butterfly [Cro851, the Connection Machine [Hi185 l , MvWP [BatS0], Clip 4 .

[Duf821, and pyramid architectures [TaK80, Uhr83], can be characterized in terms of subsets of
these design attributes.

Assumptions for the target architecture are as follows:

* The system consists of a large number of homogeneous processors. In mapping the algo-
rithm to an ideal parallel architecture, the number of processors available is considered
to be unlimited.

" The system can be organized with processors accessing a shared global memory or with
each processor having an associated local memory, or a hybrid of the two approaches.

" The system is partitionable into independent submachines of various sizes. This implies
that (1) a number of algorithms can be executing simultaneously, on different partitions
of the system, and (2) for each algorithm, the partition size can be selected to meet the
needs of the algorithm. The partitioning can be changed dynamically at execution time.

* Each partition of the system (and the entire system itself) is capable of both SIID and
MIMD operation, and can dynamically switch between modes during execution.

" The system has a flexible interconnection network which can provide a wide variety of
communications patterns within each partition.

Given the above assumptions, the problem becomes one of selecting the architecture

configuration - memory organization, partition size, mode of operation, network configuration

149

"v; €
'

" * " , ," - ...- -,,r • .* - ._.- . t - . , ,%

- which best matches the attributes of the algorithm.
'16

3. Algorithm Characteristics
Candidate algorithm characteristics are listed below. Table 1 summarizes the relationship

between algorithm and architecture characteristics. A "1" entry in the table indicates a prob-
able primary dependence between the algorithm and architecture characteristics, an entry of
"2" indicates a likely secondary dependence and "3" denotes a less strong dependence.

1. Nature of the parallelism. Under this category come a number of attributes having to do
with the "kind" of parallelism which is used and the the way in which the algorithm
and/or data can be decomposed. %WA
a. Data parallelism versus functional parallelism. Parallelism can be achieved by dividing

the data among the processors, by decomposing the algorithm into segments which
can be assigned to different processors, or by macropipelining (which is a special case
of decomposition of the algorithm into functional segments). The type of parallelism
will affect the allocation of data, the assignment of processes to processors, and the
basic decision as to what mode of parallelism (SIMD/MIMD/macropipeline) to use.

b. Data granularity. Data granularity deals with the "size" of the data items processed
as a fundamental unit, and will have a bearing on the data allocation, communica-
tions requirements, processor capability, and memory requirements.

c. Module granularity. Module granularity [Kun8O] quantifies the amount of processing
which can be done independently, either of other processes or of operations being per- %JSO.
formed in other processors. It is essentially a measure of the frequency of synchroni-
zation, and will affect the choice of SIMID versus M]MD operation, the assignment of
processes to processors, the communications requirements, and the likelihood of equal-
izing the execution times of component parts of the algorithm.

2. Degree of parallelism. This will be related to both the data granularity and the module
granularity. Its most direct impact will be on the choice of machine size and on the max-
imum speedup attainabla.

3. Uniformity of the operations. If the operations to be performed are uniform (e.g., across
the data or feature set), then SIMD (or pipeline) processing may be feasible. If the opera-
tions are not uniform, then MIMD processing will be chosen and strategies to equalize the
computational load across the processors may come into play. These strategies may be
applied statically at compile time or dynamically at execution time.

4. Synchronization requirements. In addition to the synchronization requirements implied by
the process granularity, consideration of precedence constraints is implicit in characteriz-
ing the synchronization requirements. This will affect the assignment of processes to pro- $1
cessors and the scheduling of various components of the algorithm.

5. Static/dynamic character of the algorithm. The pattern of process generation and termina-
tion will affect the processor utilization, the scheduling of sub-processes, the memory
organization, and the communications requirements.

6. Data dependencies. The data dependencies in an algorithm will play the largest role in
dictating data allocation patterns and communications characteristics. They will also have
a major part in the decision to use a global versus local memory organization.

7. Fundamental operations. The basic operations performed in the algorithm will dictate the
processor capabilities needed.

150 t~o "

Table 1. Relationship Between Algorithm and Architecture Characteristics

Architecture Characteristics

Meoy2 2 1L

0 d 0

bO Q ~ bO -

0r t 0 z 0 .

Fundaenta Ops I 4

Tyes 32 3 1 3

C.0 Meor 2 2O

Dat Unfrnaity 2 1 32

SSynchronization 2 1 2 1

va Static/Dynamic 11 2 3

to Data Dependencies 2 3 1

Fundamental Ops. - -

Data Types 3 1 2 1

Data Structures 2 3 2 3 1

151

8. Data types and precision. The atomic data types and data precision will bear most
directly on the individual processor capability and on the memory requirements, but may
also imply requirements for communications bandwidth.

9. Data structures. Many algorithms can be characterized as having a "natural" data struc-
ture (or structures) on which operations are performed. The ability of an architecture to
support the needed access patterns, to exploit possible regularity in the structures, and to
allow the needed interactions between parts of the structures will affect algorithm perfor- %

mance. K

4. A Model for Verifying the Algorithm Characteristics Set
Using the model from [DeS85] as a basis (Fig. 1), we present a model for verifying the

usefulness of the algorithm characteristics set for mapping algorithms to architectures. The
system will include five components, as shown in Fig. 2: an Algorithm Characteristics Data-
base, an Architecture Configurations Database, a Reconfigurable Parallel Processing System --

(i.e., the actual architecture), a set of Low-level Operating System Routines, and the
Configuration Selector itself.
* The Algorithm Characteristics Database will contain a compendium of information about

the characteristics of parallel algorithms and their relations to the various aspects of paral-
lel architectures.

* The Architecture Configurations Database will contain the parameters which describe the
underlying Reconfigurable Parallel Processing System. This will include information about
the number of processors in the system, possible memory organizations which can be
selected, modes of operation which are available, and a description of the interconnection -

network. In the most general case, this will correspond to the architecture assumptions
outlined in Section 2. When running the operating system on a particular architecture, it "'"
will contain detailed information about that architecture.

* Our Reconfigurable Parallel Processing System will be PASM. PASM satisfies the architec-
ture assumptions outlined in Section 2 above, and is therefore a suitable target architecture.
The availability of the PASM simulator and prototype will allow us to test our
architecture-dependent algorithms on the machine configurations selected by the operating
system.

" The Low-level Operating System Routines will be used to do the actual system
configuration, and are currently under development for PASM.

* The Configuration Selector will select the machine configuration given the characteristics of
the parallel algorithm and the parameters of the Reconfigurable Parallel Processing System.
The function of the Configuration Selector will be to relate the characteristics of a parallel
algorithm to possible architecture configurations, and to combine the demands of the vari-
ous characteristics into a single decision about the machine configuration. Furthermore, the
Configuration Selector will have to determine the assignment of resources to multiple algo-
rithms which can be executed simultaneously. T - Configuration Selector will employ the
information in the Algorithm Characteristics Database and the Architecture Configurations
Database. Possible tools for implementation of this component include expert systems and
rule sets. (An obvious question arises as to how the characteristics of a new algorithm are
obtained. A long term facet of this research will involve studying to what extent the
characteristics can be extracted automatically from a high-level-language representation of
the algorithm (e.g, by a compiler). For the purposes of demonstrating the algorithm-to-
architecture mapping, the more immediate goal is the development of a user interface

152

Algorithm
Characteristics

Database

Architecture Configuration Low-level
Configurations Selector Operating System

Database Routines

Reconfigurable
Parallel Processing

System

Fig. 2. Organization of the Operating System Component
for Mapping Algorithms to Architectures.

which can help the user frame the algorithm in terms of the characteristics needed to allow
the operating system to select an architecture configuration.)

The combination of the Algorithm Characteristics Database, the Architecture
Configurations Database, and the Configuration Selector will perform the automatic selection
of a machine configuration suitable for execution of the given algorithm. The Reconfigurable A
Parallel Processing System, the Low-level Operating System, and the Architecture
Configurations Database are machine-dependent components of the system. The Algorithm
Characteristics Database and the Configuration Selector components, however, are machine- ,,
independent. Thus, although we are using a specific system as a vehicle for demonstrating our
work, the knowledge about the mapping of parallel algorithms to parallel architectures will be
general in nature, and will be applicable to a broad class of systems.

References '_, '

[Bat8O] K. Batcher, "Design of a Massively Parallel Processor," IEEE Trans. Comp., Vol.
C-29, Sept. 1880, pp. 836-840.

[CaL82] V. Cantoni and S. Levialdi, "Matching the Task to an Image Processing Architec-
ture," 6th Int. Conf. Pattern Recognition, Oct. 1982, pp. 254-257.

[ChF83] Y. P. Chiang and K. S. Fu, "Matching Parallel Algorithm and Architecture," 1983 -v
Int. Conf. Parallel Processing, Aug. 1083, pp. 374-380.

[Cro85l W. Crowther et al., "Performance Measurements on a 128-Node Butterfly Parallel A
Processor," 1985 Int. Conf. Parallel Processing, Aug. 1085, pp. 531-540.

[DaL81] P. E. Danielsson aud S. Levialdi, "Computer Architectures for Pictorial Information
Systems," Computer, Nov. 1981, pp. 53-67.

[DeS851 E. J. Delp, H. J. Siegel, A. Whinston, and L. H. Jamieson, "An Intelligent Operating %
System for Executing Image Understanding Tasks on a Reconfigurable Parallel
Architecture," 1985 IEEE Computer Society Workshop on Computer Architectures for

153

46

Pattern Analysis and Image Database Management, Nov. 1085, pp. 217-224.

[Duf82] M. J. B. Duff, "Parallel Algorithms and their Influence on the Specification of Appli-
cation Problems," in Multicomputers and Image Processing, K. Preston and L. Uhr,
eds., Academic Press, New York, 1982, pp. 281-274.

[EtN83] R. D. Etchells and G. R. Nudd, "Software Metrics for Performance Analysis of
Parallel Hardware," DARPA Image Understanding Workshop, June 1983, pp. 137-
147.

[Got83] A. Gottlieb, et al., "The NYU Ultracomputer - Designing an MIMD Shared Memory
Parallel Computer," IEEE Trans. Comp., Vol. C-32, Feb. 1983, pp. 175-189.

[Hil85] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, MA, 1985.

[HoJ81] R. W. Hockney and C. R. Jesshope, Parallel Computers: Architecture, Programming y'..
and Algorithms, Adam Hilger Ltd., Bristol, 1981.

[Kun8O] H. T. Kung, "The Structure of Parallel Algorithms," in Advances in Computers, Vol.
19, Academic Press, New York, 1980, pp. 65-112.

[Pfi85] G. F. Pfister, et al., "The IBM Research Parallel Processor Prototype (RP3): Intro-
duction and Architecture," 1985 A'nt. Conf. Parallel Processing, Aug. 1985, pp. 764-
771.

[Sei85] C. Seitz, "The Cosmic Cube," CACM, Vol. 28, Jan. 1985, pp. 22-33.

[SiS841 H. J. Siegel, T. Schwederski, N. J. Davis IV, and J. T. Kuehn, "PASM: A
Reconfigurable Parallel Processing System for Image Analysis," Workshop on
Algorithm-guided Parallel Architectures for Automatic Target Recognition, July 1984,
pp. 263-291. (Reprinted in ACM SIGARCH Computer Architecture News, Vol. 12,

Sept. 1084, pp. 7-19.)
[SmS85] B. W. Smith and H. J. Siegel, "Models for Use in the Design of Macropipelined

Parallel Processors," 12th An. Symp. Computer Architecture, June 1985, pp. 116-123.

jSnJ85] L. Snyder, L. H. Jamieson, D. B. Gannon, and H. J. Siegel, Algorithmically Special-
ized Parallel Computers, Academic Press, Orlando, FL, 1985.

[TaK80] S. L. Tanimoto and A. Klinger, eds., Structured Computer Vision: Machine Percep-
tion through Hierarchical Computation Structures, Academic Press, New York, 1980.

[Uhr83] L. Uhr, "Pyramid Multi-computer Structures, and Augmented Pyramids," in Com-
puting Structures for Image Processing, M. J. B. Duff, ed., Academic Press, London,
1983, pp. 95-112.

154

. -. .- _- ,, b " ", ",
°."

","% ", %'," b"v -" .

.

%

A Distributed System Architecture Based on Macro Dataflow Model

by

Jane W. S. Liu and Andrew Grimshaw

I. Introduction

Increasingly in recent years, distributed systems containing interconnected workstations and
host computers are used to provide a wide range of services in word processing and text formating, ."-''"

computing, and information management and distribution. A user on such a system typically .J- ..r
executes his jobs on his own workstations or local host. As a result, many workstations are ". "a
frequently idle and host computers are under utilized. Redundant resources naturally available in
such a system are often not effectively used to improve the reliability and availability of services
provided by the system. (Since it is not necessary to distinguish between them, we refer to both
workstations and host computers as hosts.)

There are two approaches to capture and use the capability of idle or under-utilized hosts in
a distributed system. In one approach, heavily loaded hosts send new jobs and migrate executing
jobs to lightly loaded hosts for execution, i.e., hosts do load balancing. Many load balancing
schemes have been proposed to improve response time and resource utilization [1-91. LOCUS,
Accent, V-System, and DEMOS/MP are examples of recent distributed systems that support some
forms of of load balancing [10-13]. When inter-host communication cost is sufficiently low,
response time and resource utilization of a distributed system can be improved further by
partitioning jobs into tasks and assigning tasks to different hosts to be executed concurrently -
whenever possible. This approach is the same as the multitasking approach taken to increase -*
parallelism in tightly-coupled multiprocessor systems. It is made feasible recently by the advent
of extremely high-speed, local-area networks. Several optimal and suboptimal task assignment
algorithms have been designed to find assignments of tasks to hosts in distributed systems [14,151.
These algorithms take into account inter-task communication times, which are often large
compared with task execution times when tasks belonging to the same job are assigned to different
hosts.

..,

Load balancing and distributed task assignment schemes essentially extend the scheduling
and resource management methods used in single host systems to support job sequencing in
distributed environments. Typically, these schemes require the programmer to break up jobs into
tasks and explicitly handle inter-task communication. Complexities of load balancing and task
assignment algorithms grow with the number of tasks. These factors make it difficult to achieve a
high degree of parallelism. When the applications supported by the distributed system require
high reliability and availability, the need for fault tolerance and robustness makes load balancing J,
and task assignment even more complex.

The problem of providing efficient, reliable services in distributed environments on highly
available basis is made difficult partially by the fact that distributed systems are typically "Von
Neumann machines." In such a system, executions of user processes are carried out under the

This research was supported in part by the U. S. Army under the contract No. DAAB07-84-K-K526 and bv
NASA under the contract No. NAG 1-613. . A

Authors' address: 1304 West Spring Avenue, Department of Computer Science, University of Illinois, Urba-
na, Illinois 61801

Liu and Grimshaw 155

,~A .4 %

supervision of a system-wide controller that sequences user processes. To ensure that the
controller is reliable and highly available, it is often necessary to distribute and/or replicate its
functional modules on more than one host. The need to coordinate the operations of a distributed
controller on different hosts and to reconfigure its structure in the presence of load fluctuations and
failures is one of the causes of inefficiency. The large amount of state information that must be
gathered and maintained by the controller to support its decisions is another cause.

One approach used to increase parallelism in a natural and robust manner in tightly-coupled
multiprocessor environments is to use the dataflow architecture [16,17]. This paper proposes the

use of this approach to increase parallelism, and to improve fault tolerance and availability in
loosely-coupled distributed environments. A macro dataflow model is developed to model
distributed computation. The macro dataflow model is based on the dataflow model, with features -

added to model interprocess communication and synchronization. A high-level, macro-dataflow,
distributed system architecture based on this model is proposed. As in a dataflow machine,
granules of computation in a macro-dataflow system are performed as soon as all necessary input
are available. A high degree of parallelism can be achieved naturally without the need of a
complex, distributed controller. Many fault tolerance techniques can be used in an integrated .r
manner to ensure fault tolerance and to improve system availability. An object-oriented approach
to software design and implementation can be used to support the development of macro dataflow
programs.,%

The rest of the paper is organized as follows. Section 1I describes briefly the well-known
dataflow model and motivates the macro dataflow model. The elements of macro dataflow model
are presented in Section III. Section IV proposes an architecture of distributed, macro-dataflow %

systems for executing macro-dataflow programs. The advantages of macro-dataflow distributed
system are also discussed. Section V is a summary.

II. Background and Motivation

In the well-known dataflow model, there are two types of objects: tokens and actors. Tokens
carry data or control information. Each actor performs a function based on the information
contained in the tokens it consumes. Actors are computation primitives, corresponding to granules
of computation. In most cases, granules of computation are machine instructions [16,171. Actors
do not have any internal state preserved from one computation to the next.

A computation can be described by a dataflow graph in which nodes are actors. Actors are
connected by directed arcs along which tokens flow. Arcs model data dependencies between
granules of computation. Specifically, the execution of any granule cannot begin until all granules
of computation on which it depends have completed. Correspondingly, in the model, an actor is
enabled and may "fire" (execute) only when there are tokens on all of its incoming arcs.
Parallelism is gained in dataflow architectures by allowing any actor to execute on any processor,
and by allowing as many enabled actors to fire as there are processors to execute them. When .

there is a sufficiently large number of processors, only actors that depend on uncompleted granules
of computation are not enabled.

One disadvantage of the dataflow approach is that the amount of inter --processor
communication can be quite high, since each computation can require many tokens to be sent. In
most distributed systems where inter-host communication is costly, the advantage in the high -' -'

degree of parallelism gained by using this approach is lost unless lower resolution is used 17]. In
other words, instead of individual machine instructions, more complex, high-level functions should
be chosen as computation primitives. To illustrate this point, let us consider the datallow graph

Liu and Grimshaw 156

% %'
I~5 r %_

_U

shown in Figure 1. The program represented by this graph generates the sum 12+2'+ + n'.

The dataflow graph consists of three subgraphs. The first subgraph, consisting of actors D, E, and
F, is a counter. This subgraph generates a token for each integer from 1 to n and sends the tokenr
to the second subgraph, consisting of the actor C. For each integer less than n, the first subgraph
also generates a control token with the value of true. A false token is generated when the value n
has been reached. The control tokens are sent to the third subgraph, consisting of actors A and B.
The second subgraph receives inputs tokens containing integers from 1 to n and computes the
squares of these integers. It passes the results on to the third subgraph that computes the sum of
the squares. The sequential imrlementation of the algorithm implemented by this dataflow
program is shown below.

LOAD X,0 Load 0 in register X
LOAD Z,0 Load 0 in register Z

LOOP: INC X Increment X
MOV YX Move contents of X to Y
MULPY YY Multiple Y to Y
ADD ZY Add the content of Y to content of Z
CMP Xn Compare the content of X with n
JNE LOOP Jump to LOOP if X is less than n

DONE:

Suppose that each instruction takes one time unit. When communication time is negligible, the
sum of n squares is obtained in 2n+3 time units for the dataflow implementation, and 6n+2 time
units for the sequential implementation. 10n tokens are passed between actors for the dataflow
implementation while only two messages are required, one to send the input n and one to output % %
the result, for the sequential implementation. Let t be the amount of time required to send a
message or a token. Let Cd be and C, be the completion time for the generation of the sum using
the dataflow implementation and the sequential implementation, respectively. Assuming that any
enabled actor fires immediately, and that all communication can be performed in parallel, we have .,.
that Cd is equal to n(2t+2)+2t+3 and C, is equal to 6n+2t. For n=10, Cd becomes larger than
C, when t becomes larger than 2 time units. In distributed systems, t being larger than 2 is almost
always true.

0

1 yn

0 C .+ D < F

A + E true
T U

BTF

Figure 1. An Example of Dataflow Implemen .-ion

Liu and Grimshaw 157 t

4.

We refer to the average number of messages or tokens sent per computation primitive
executed in a computation as the communication ratio of the computation. The larger the
communication ratio of a computation is, the faster its completion time grows with the time
required to send a message or token. Hence, to adapt the dataflow approach to a loosely-coupled
system, where the time required to send a message or token is typically in the order of tens or
hundreds of machines instruction time, it is necessary to reduce the communication ratio of
computations. This can be done by increasing the power and complexity of the computation
primitives, i.e., by increasing the size of the granules of computation.

I. Macro Data Flow Model

In the macro dataflow model of distributed computations, macro actors perform complex, .--

high-level functions instead of individual machine instructions. For example, in a distributed
relational database system, one may choose to let computation primitives be operations such as
database-read, database-write, project, select, join, etc., required to process a transaction.
Similarly, in a electronic message system, jobs are requests to send and receive messages. Macro
actors may be edit-file, encrypt-file, send-file, write-mailbox, etc..

1M.1. Regular Actors, Tokens, and Program Graphs

Some of the macro actors are regular actors. They are the same as actors in the dataflow
model. (Unless stated otherwise, we use the term actors to mean macro actors in subsequent . -.

discussion.) (Regular macro) actors have the following characteristics:

(1) All actors of a given type are equivalent.

(2) Each type of actors requires a fixed number of input tokens, each of which must be of a
specific type. When all required tokens are available, the actor is enabled.

(3) An actor may execute only when enabled.

(4) An actor performs some computation, generating output tokens that depend only on the
input tokens.

(5) An actor need not send the same output tokens to all its recipients.

(6) A actor may have internal state during the course of a single execution but no state
information is preserved from one execution to another.

Similar to a dataflow graph, a macro-dataflow graph is a high-level view of a program.
Nodes in this graph are actors. There is an arc from the actor v to the actor u when there is data
dependency between v and u. Tokens flow along the arcs between actors carrying both data and
control information. Parallel execution of a macro dataflow program can be realized by firing each
actor as it becomes enabled. It is not necessary to be concerned with synchronizing the execution of
individual actors within a program because all allowed orders of execution of actors vis a vis each
other are specified by the arcs in the macro dataflow graph.

M1.2. Persistent Actors

The macro dataflow model described so far is a straight forward extension of the datallow
model. It makes no provision for the sharing of information between programs, or side effects of
any program on other programs. All information transfers occur through the use of token fhow. e,'.r
Hence, there is no transfer of information between dataflow programs unless there are arcs
connecting actors in the corresponding dataflow graphs. These connecting arcs effectively make the
programs into a larger program. In general, it is difficult to model interprocess communication
and global serialization required by many applications using this scheme. This scheme presumes

Llu and Grimshaw 158

,"% %

the knowledge of other programs, their relationship to each other, and the order of their
executions. This knowledge is often not possible. For example, suppose that the programs are
transactions to a database. Information is transferred between transactions since they access the
same database. It is necessary to serialize the executions of transactions that read and write the
same data items in order to maintain database consistency. But it is not possible to construct a
composite dataflow graph modeling interleaved executions of all possible transactions to the
database allowed by the database manager.

To model communication between programs and side effects of programs, we introduce the
notions of persistent data and persistent actors. Persistent actors have the same characteristics as %
regular actors except (1), (4), and (6) discussed above. A persistent actor maintains state
information that is preserved from one firing to the next. Hence, the output tokens generated by a
persistent actor for different firings are not necessarily the same for the same input tokens. Since
each instance of a particular persistent actor type can have a different internal state, different
instances are not identical. We note that the notion of persistent actors is very similar to the
concept of monitors in Concurrent Pascal and objects in object-oriented systems. By adding
persistent actors to the macro dataflow model, the arcs between actors in a program graph no long 5'.

completely specify all data dependencies between all granules of computation carried out by the
system. In particular, persistent actors provide us with a way to model information transfer
between actors in different programs as well as within a program. We propose to use the dataflow
graph of each program to completely specify data dependency relationship between actors within
each program and limit the use of persistent actors to model synchronization and serialization
between different programs.

To illustrate the use of persistent actors, we consider a database systen as an example.
Suppose that every transaction (i.e., a program) in this system is represented by a macro dataflow
graph containing four actors: database-read, select, project, and database-write. Suppose that in
the macro dataflow graph, these actors are connected as a directed path; select and project are
enabled when database-read is completed and database-write is enabled when select and project
are both completed. This graph models the dependency between operations within each
transaction. However, it does not model the interference between operations of different
transactions. To model this type of interaction between programs, we let select and project be
regular actors and database-read and database-write be persistent actors. To be specific, suppose
that a server module called database manager is provided by the system to execute the actors
database-read and database-write. The database manager enforces some form of concurrency
control policy. As a result, the value returned by the database manager after serving a database-
read request may be data retrieved on the behalf of the transaction or a "database-read denied"
message. Similarly, a database-write operation may be successively carried out or failed depending
on the operations of other transactions. This type of interactions can be modeled by having the
internal state of persistent actors preserved from one firing to another. The output produced by
persistent actors database-read and database-write depend not only on their input tokens, but
also on the sequence of read and write operations already carried out by the database manager, t

that is, the previous firing of these actors.

When a database-red request is denied, subsequent operations (i.e., select, project. and
dataliase-write in our example) are aborted and some appropriate recovery action is then taken in
typically database systems. One way to model aborted operations is to let each firing of a
persistent actor have at least two possible outcomes. The first outcome is "success". In this case,
the output tokens generated by the persistent actor are sent to enable actors connected to it in the
subgraph representing the program for the transaction. We call the portion of the computation %

Liu and Grimnhaw 159

%5

following the persistent actor its success continuation. The second outcome is "failure" (e.g., due
to a synchronization error, or a data out of bounds.) In this case, output tokens are directed to
actors which perform whatever operations are necessary, (e.g., rollback, re-try, notify user, etc..)
For example, these actors may be in the subgraph representing the program for rollback and
recovery functions. We call this the failure continuation of the persistent actor. In general, other
continuations are also possible. There is no need to specify what they are here.

11.3. Macro Data Flow Program Composition

A macro data-flow program specifies the actors performing the desired computation
primitives and the graph describing the dependency between the actors. To produce such a
program, a programmer may take the traditional approach to let a compiler determine the
parallelism inherent in his source code (such as calls to predefined procedures or code segments
without data dependencies) and generate the actors and the program graph. Alternatively, -

programmer may use any existing types of actors (i.e., program modules capable of carrying out
the corresponding computation primitives,) or write new types of actors to provide functionalities
not supported by any existing type. The new types, once written and defined, become existing
types and can be used later in other macro dataflow programs. The entire macro dataflow program
would be represented as a hierarchical graph constructed from actors and predefined subgraphs.
Thus, actor types are reusable program segments and the macro dataflow model may be used to
support software reuse.

We note that an object-oriented approach to software design and implementation provides
the ideal support to the design and development of macro dataflow programs. Indeed, macro actor
types are functional objects. These objects can be instantiated to provide the required
functionalities. The arcs carrying tokens in the macro dataflow graphs are also objects. These
objects are instantiated to provide a communication facility between the functional objects.
Objects can be easily implemented in programming languages such as Ada which provide packages
to encapsulate objects, hide implementation details, and allow parametrized interfaces.

In general, the process of choosing the functionality and complexity of the computation
primitives, and hence actor types or functional objects, is a software system design process. The
ideal choices of computation primitives are application dependent. For applications where good
response and high throughput are essential, the computation primitives should be chosen to
achieve near optimal trade-off between low communication overhead and a high degree of
parallelism. For applications where fault tolerance and availability are essential, computation
primitives should be chosen so that they correspond to atomic actions that can be carried out
reliably and supported on a highly available basis.

IV. Macro Dataflow Distributed Architecture 'A

We propose to support the macro dataflow model on a distributed system in which entities
capable of executing computation primitives are server modules. Each host may choose to provide
a set of server modules to support frequently required, well defined functionalities on the behalf of
user. Examples of server modules include those which perfo' n sort, merge, Ada-compile, etc.
when supplied with input data. These modules have attribut .s of library routines; they perform
functions based on inputs arguments or manipulate data structures. Other examples of server
modules include database managers and file servers. These server modules have attributes of
processes and may maintain persistent data. In general, hosts may provide server modules such as
terminal handlers, message handlers, voice and video image mailers, image processors, printer
servers, text processors, language compilers, communication servers, computation servers, file ."

Liu and Grimshaw 160

servers, etc.. Jointly, these server modules support a comprehensive set of communication and
computation primitives, isolating the user from the boundaries of host systems and networks, as
well as from differences in operating systems.

Even though the macro dataflow programs are very similar to dataflow programs except for
the size and complexity of computation primitives, the architectural support required by the
macro dataflow computation is very different from that of the dataflow machines. In a macro
dataflow system, the execution of each computation primitive, corresponding to a client process to
some server module, is carried out whenever all the necessary input data and control information
are available to the module, i.e., in parallel whenever possible. The need to have a system-wide
controller for scheduling and synchronizing task execution purposes is eliminated. Thus, the overall
system control structure can be simplified and its robustness improved. Server modules that can . .

be instantiated and activated to execute computation primitives on each host are computational
resources on the host. These server modules play the same role in a macro dataflow system as the
roll played by hardware resources capable of carrying out machine instructions in dataflow
machines. However, unlike hardware resources, server modules can be dynamically instantiated on
any host, and once instantiated, can be destroyed or migrated to different hosts. For this reason, "
resource management in a macro dataflow system is more complex than in dataflow machines,
where hardware resources are often allocated to computations statically. When a computation
primitive in a program is to be carried out, the resource manager in a macro dataflow system must
identify the type of server modules capable of carrying out the primitive, locate or instantiate one,
and assign it to the program. A distributed name server should be used to provide naming and
directory services to the resource manager, in this case. (This name server should not be more
complex than the name servers required to support location-transparent, interprocess
communication in traditional distributed systems, since much of the same functionalities are
required in both cases.) To support naming and directory services will need precise functional
specifications and interfaces specifications of server module types

A concept that may provide a general framework for the specifications of server module types ,
is the concept of virtual services and virtual service protocols. A virtual service protocol is a
presentation-layer protocol compatible with the ISO Open System Interconnection (OSI) reference
model. It provides a structured approach for characterizing and defining a (virtual) service
provided by a type of server modules, as well as for specifying the interactions between a server
module providing the service and a client using the service. In other words, a virtual service
protocol defines a generic service and presents a standardized interface to server modules providing A

the service. This interface can be parametrized using the concept of option negotiation first
introduced in virtual terminal protocols. (Stated in terms used in software specification, a virtual
service protocol is equivalent to the functional and interfaces specifications of server module type.)
Virtual service protocols generalize the well known notions of virtual terminal protocol, file
transfer protocol, and virtual graphics protocol, which are used to support terminal handling, file
transfer, and graphics, respectively, to provide a coherent set of utilities in a distributed system.

V. Summary .

The macro dataflow model for distributed computation is presented. Many different, models
of distributed arid concurrent computations such as remote procedure calls, parbegin-end ,
constructs, monitors, and objects can be easily represented in this model. It is patterned after the
dataflow model, but with two important differences. First, the granularity of the computation
primitives in the macro dataflow model is arbitrarily complex. Using more computationally %
complex actors reduces the communication ratio of macro dataflow programs, and makes the

Liu and Grimshaw 161

•. .\" ,%

i,. --
I ' -

. -- I
t

- -- .-i-i --' --
"

i _-- " _' . ' -' I,.' ." .,. -" '.,'% N" '. %',,, ' I I , ', , .

underlying network less of a bottleneck. Second, the notion of the persistent actors is introduced to
model inter-program communication and side effects of programs. Persistent actors also provide a
convenient way to model abstract data objects, servers, and other constructs that are awkward to
model in the dataflow model. Many questions remain open. One open question is how to model
fault-tolerant computation in the macro dataflow model. Another question is whether secure
access control and information flow control mechanisms can be more easily designed in in a macro
dataflow system.

This paper proposes a distributed system architecture based on the macro dataflow model of
computation. This architecture appears to provide a framework within which high degrees of
parallelism, fault tolerance, and availability can be achieved naturally in a distributed
environment. An important problem to be solved concerns with the provision of necessary
underlying support to the resource management function. Naming, location, and selection of
server modules to perform computation primitives invocated in programs, and the use of
techniques such as atomic remote procedure calls and resilient procedures to ensure fault tolerance
and improve availability are some of the issues to be addressed.

References

[1] Chow, Y. C. and W. H. Kohler, "Models of dynamic load balancing in heterogeneous multiple processor systems,"
IEEE Transactions on Computers, Vol. C-28, No. 5, pp.354-361, 1979.

[21 Stankovic, J. A., "The analysis of a decentralized control algorithm for job scheduling utilizing Bayesian decision .

theory," Proceedings of the 1981 International Conference on Parallel Processing, 1981.
131 Kwang, K. et.al, "A Unix-ba ed local computer network with load balancing," Computer, April, 1982.
[41 Chou, T. C. K. and J. A. Abraham, "Load balancing in distributed systems," IEEE Transaction.; on Software

Engineering, Vol.SE-8, No. 4, July, 1982.
[5[Gao, C, J. W. S. Liu, and M. R. Railey, "Load balancing algorithms in homogeneous distributed systems,"

Proceedings of 1984 International Conference on Parallel Processing, August, 1984.
[61 Wang, Y. T. and R. J. T. Morris, "Load sharing in distributed systems," IEEE Transactions on Computers, Vol

C-34, No. 3, March, 1985. .'1.

[71 Tantawi, A. N. and D. Towsley, "Optimal static load balancing in distributed computer systems," Journal of the
ACM, Vol. 32, No.2, April, 1985.

[81 Eager, D. L., E. D. Lazowska, and J. Zahorjan, "Adaptive load sharing in homogeneous distributed systems,"
IEEE Transactions on Software Engineering, Vol. SE-12, No. 5, May, 1986.

[91 Hsu, C. Y. H. and J. W. S. Liu, "Dynamic load balancing algorithms in homogeneous distributed systems,"
Proceedings of the 6th International Conference on Distributed Computing Systems, May, 1986.

[10 Powell, M. L. and B. P. Miller, "Process migration in DEMOS/MP," Proceedings of the 9th A CM Symposium on
Operating Systems Principles, 1983.

1111 Popek, G. et al., "LOCUS: A network transparent, high reliability distributed system," Proceedings of the 8th
Symposium on Operating System Principles, pp. 169-177, December 1981.

[121 Rashid, R. F, and G. G. Robertson, "Accent: a communication oriented network operating system kernel",
Proceedings of the 8th Symposium on Operating System Principles, pp. 64-75, December 1981.

(131 Theimer, M. M., K. A. Lantz, and D. R. Cheriton, "Preemptable remote execution facilities for the V-System,"
ACM Operating Systems Review, Vol. 19, No.5 and Proceedings of the Tenth ACM Symposium on Operating
System Principles, December 198

[141 Stone, H. S., "Multiprocessor scheduling with the aid of network flow algorithms," IEEE Transactions on
Software Engineering, Vol SE-3, No. 1, 1977.

1151 Lo, V., "Task assignment in distributed multiprocessor systems," Technical Report No. UIUCDCS-R-83-1144,
Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, in a distributed computer
system, ""V.

1161 Srini, V. P., "An architectural comparison of dataflow systems," Computer, March, 1986.
1171 Gaudiot, J L. and M. D Ercegovac, "Performance Analysis of a Data-Flow Computer with Variable Resolution

Actors," Proceeding of 1984 IEEE Conference on Distributed Systems, 1984

Liu and Grimshaw 162
"A ~ w .~ ~ ~ A S 5 ~ .~.- .r

.- , - A".. ,,(, , " ,, . % • , 'I ," # ' € W . v" -," . " J , '- €.J..' ,r ' € '. .e""". . ,r". '.$., 5 - ., ., ,% :,_'t ',T, ." "'":." '" '.."-","" 2, .-' ,. ,' ,,w,.A• ,,,,."..'J....,..-,.-,. .- ,'.% ".-..,,:..... . '..,._- . t

A COIIPARATIVE STUDY OF HEURISTIC ALGORITHMS FOR TASK ASSIGNMENT IN DISTRIBUTED COMPUTING SYSTEMS

Kemal Efe

Computer Science Department
University of Missouri-Columbia

ABSTRACT rivals to individual sites to be variable. There-
fore, dynamic algorithms are needed for real-time

There are many heuristic algorithms in the litera- assignment of jobs to processors. is
ture for task assignment in Distributed Computing
Systems. A common goal in el of these algorithms In the literature both deterministic and prob-
is to minimize the communication cost of an as- abilistic modals have been successfully used in ,
signment. Each of the researchers who develop the area of multiprocessor scheduling, where com-
heuristic algorithms claim that their algorithms munication delays between processors are ncgligi-
perform very well. The purpose of this paper is to ble (either due to shared memory or high bandwidth -

compare the performance of four algorithms in the communication medium). However these modals can
literature in terms of both accuracy and algorith- not be extended to distributed processing where
sic efficiency. it is conluded that the trade-off communication delays are high. Recently, load
between optimal but slow algorithms v.s. sub- balancing algorithms were proposed for distributed
optimal but efficient ones heavily favors the computing systems based on some form of "bidding"
heuristic approach. A heuristic algorithm is de- or "drafting" protocol [9,10], but these alga- %
rived to combine the mos$ successful parts of the rithms are only applicable for the assignment of
reviewed papers, and some remaining important independent tasks, or when a task has been parti-
problems are identified, tioned into its constituent processes before allo-

cation starts.

We are particularly interested in the problem -

of task partitioning which minimizes the communi-
ZNTRODUCTION cation costs subject to constraints such as real-

time, resource availability, or any other
We loosely define a distributed computing sys- constraints that may be dasirable for a particular

tem as a combination of two or more computers, application. Such a problem has been formulated
each with private memory and which works under the as an integer programming problem by a nur-er of
control of a two-layer operating system: The lower researchers. However, since the problcm is
layer consists of the collection of local operat- NP-complete, good heuristic algorithms have re-
ing systems that control the local activities of ceived due attention in the literature. The pur-
individual corputers, and the higher layer is a pose of this paper is to compare the performance %
network-wide operating system which coordinates of a number of heuristic algorithms proposed by %"%
the activities involved in resource and load shar- different authors. For this comparison we give a
ing. Each of these layers may contain several sub- mathematical programming model of the problem
layers as suggested in the 7-layer ISO model (11], first. We then describe the heuristic algorithms
but for the purposes of this paper these sub- proposed for the approximate solution of this
layers are transparent. What is iportant, how- problem. Since no two models are ex-ctly the
ever, is that, the communication between computers same, a direct comparison is not possible. There- 4
occurs over some communication medium with a band- fore we had to make small adaptations so that a 04
width several times lower than that between a uniform common ground may be derived, and a single
processor and its local memory. set of terminology may be used without changing

the basic algorithm.
An important research area in the design of the

higher level operating system is development of .'

efficient algorithms for load sharing. The impor- Problem Formulation

tance of load sharing can be attributed to the ex- " 1
pected level of power improvement that would be We assume that the processors in a distributed
attained. A measure of power of any computer sys- system are fully interconnected. A task consists *
tea can be defined as the ratio T/R, where T is of a number of modules that may communicate with '.

the throughput and R is the average response time each other, and is characterized by two matrices:
of the system. To maximize power wa need to maxi- (a) A cost matrix t(i,)] which indicates the ex-
mize throughput while minimizing average response ecution cost of module i on processor j, and, 1b)
time. Without load sharing, the total throughput A communication matrix [c(i,k)] which represents
of a system of P processors will heavily depend on the cost of communication between modules i and k.
the distribution of service requests arriving at If two modules i and k do not cormmunicale with

individual processors. In this sense, the purpose each other then c(i,k)=0, and c(i.k)>O otherwise.
of load sharing is to re-distribute service re- A decision matrix [x(i,j)] is defined ti.hich re-
quests uniformly over the set of available presents an assignment such that x(i,j):1 if mod-
processors, so that the sensitivity of the power ule i is assigned to processor j, and x(i,j):O %

of a system to distribution of service request ar- otherwise. The total execution cost of an assign- %

rivals at different sites may be minimized. In ment is expressed as:
general, we expect the distribution of job ar- %

163

, :: .,',',: ,;, . A.. r¢ , , v ... -," .. , - .5 % . , . .

Ise;

t(i,J) x(ij) communication cost of an assignment equals to the
J total communication between these clusters since

we assume that the communication cost between the
If the computers are homogeneous this term is nodes within a cluster is zero. In the rest of
eliminated from the problem formulation. The total this paper we refer to each algorithm by the ini-
communication cost of an assignment incurred be- tials of its. author.
tween modules not assigned to the same processor
is%

Alaorilthm ig

i j k>J One of the earlier algorithms developed for
minimizing the communication cost of an assignment

Hence the total cost of an assignment is the sum is due to K. Haessig and C.J. Jenny (5]. Zn this
of communication and processing costs: model it is assumed that some of the nodes, called

"distinguished nodes," have some unique resource
COSTU [(t(i~j~i,j) c€(ik)(l-x(ivj))x(k,j)) requirements and that there is a one-to-one corre-

i j k>i spondence between distinguished nodas and
processor locations. Therefore the assignment of

The optimal assignment is one which minimizes distinguished nodes are fixed. The rest of nodcs
this cost function subject to various constraints are subject to assignment for minimization of com-
that may be specified. Table I shows the con- munication costs. A partitioning is said to be
straints included in the models which we consider "feasible" if there is exactly one distinguished --

in this paper. In all of these models, minimiza- node in each of the clusters obtained by the as-
tion of the communication cost between communicat- signment.
ing processes is considered to be the primary goal
of task assignment. All of these models (but one) The algorithm consists of two phases: In the
assume that processors are homogeneous, and the first phase a feasible solution is obtained which
cost of communication depends solely on the volume is then improved in the second phase. For the de-
of data (distance factor is ignored). Other con- termination of a feasible solution the process
siderations between various models include: dif- graph is first extended as follows: Assume in the
ferent processor speeds 13], processors with process graph of figure l.a the nodes VI and V2 , %
unique resources [2,S]. real-time constraints are distinguished nodes. We introduce an addi-

]2,4,6], and load balancing (2]. tional node, V7 in this case, and connect this
node to the distinguished nodes Vi and V2 with arc .0,

MODEL MINIIZE PROC DIST'N REAL-TIME LOAD weights larger than any other in the process f. e

(ALG) COIII SPEED NODES CONSTRAINT BAL graph. After this extension, we find the maxir rv.
spanning tree of this graph as shown in figure

NJ O(V
4) same yes no no 1.b. Now if we drop the node V7 and its outgoing _-

GE O(VE) same no yes no arcs we obtain a disconnected graph which contains
E O(VF) some yes yes yes all of the nodes of the original process gr.ph.

L O(V) different yes no no This partitioning of nodes forms a feasible sol-
ttion and a first approximation to the optimum %

Table I cut-set.

As we see in table 1, no two models are exactly V4 10 V6 3V
some. Therefore a direct comparison is not possi- V6 -

ble. In the rest of this paper we first describe V4
how these algorithms try to minimize the communi-)
cation costs in an assignment and compare them in 0 10 301
terms of running time complexity. We then describe 5 %
how various algorithms are extended to handle the V3 5V5 3
real-time constraints, and compare their rate of V3 V5
success in handling the real-time constraint as 10

described by each model. We close this discussion 30 20 20
by giving the results of this research and dis- 30

cussing further problems for future research.

31vi V2

U[ALGORITHMS FOR MINIMIZATION OF COtMUNICATION .,31 31
COSTS:, ,

A task to be partitioned is represented by an V7 V7
undirected graph in which nodes represent the pro- V7
gram modules and arcs represent the communication (a) (b)

between them. Nodes and arcs are labeled by num-
bers that represent the cost of module execution

and communicatibn, respectively. Also character
labels are associated with nodes for convenience
in referring to a node in discussions below. A
partitioning of the graph that represents a task Figure 1: Phase 1 of Algorithm FG.
designates the allocation of modules represented (a) Process graph, (b) Maximum spanning
by the nodes in the graph, as each subgraph ob- tree.
tained after partitioning represents a cluster of tree.

nodes to be assigned to the same processor. The %

164

5 *~ *..~. .~'~.*~.,-*%*

In the second phase some nodes are relocated 1. Repeat steps l.* and l.b until number of nodes

from one subgraph to another if it "pays" to do is reduced to P se

so. To describe the proposed algorithm for the re- l.a Find the cluster pair with maximum communi-

location of nodes, assume a graph is Rartitionod cation

into two subgraphs as shown in figure 2. Here l.b Fuse them

CUT-i represents the partitioning found at the end -q

of the first phase and A represents the cost of The process of fusion in step l.b involves mod-

this partitioning. We now take the sub-graphs one ifying the process graph so that the two clusters .

at a time and check if a cut with lower communi- are now represented by a single node (see

cation exists between the distinguished node and figure.3), the arcs from the new node to others

another node in that cluster. If a new cut, say represent the combined communication of nodes in

CUT-I.a is found with cost B such that B<A then the cluster.

this cut is preferred over CUT-i. This process is

repeated for every cluster, reassigning some nodes

more than once if necessary (e.g. if a cut is (a) (b) (c)

found with cost C such that C<B). A A (AB

25 25 2
CT1aCT1-b15 D 25

B 10 B 35

10 5 10+10

C {C,D (C,'

Figure 3: (a) Process graph, (b) aftar

fusing C and D. (c) After fusing A and B.

Figur 2 This algorithm necessitates finding the arc
with minimum weight at each iteration. if there
are E arcs in the process graph, O(E) will be the

To determine whether such a cut exists, the au- search complexity by using a linear search algo-

thors propose to use a min-cut max-flow algorithm rithm. Since this process will be repeated (V-P) %

between the distinguished node and other nodes in times, the algorithmic complexity will be

the same cluster. Although the authors propose O((V-P)E), or if P<<V we have O(VE).

ways to minimize the number of attempts to find
such reassignments, in the worst case we attempt The authors also report the results from other

as many times as there are nodes in the cluster, clustering techniques based on some measure of as-
sociation between modules. TF-y experimented with

The most time consuming part of this algorithm many different measures in the literature, and

is the second phase where a min-cut max-flow algo- found that the success of these algorithms heavily W

rithm is used. In the worst case, for a graph with depends on the "right" choice of initial cluster

V nodes P of which are distinguished, the first centroids. Due to the lack of good algorithms to e%

phase may assign just the distinguished nodes in determine the "right" choice in a process graph,

the first (p-1) clusters and the remaining (V-P+I) we are unable to pursue this option further at

nodes to the Pth cluster. For an reassignment to this stage.
be made, we may need to repeat the min-cut max-.-'--
flow algorithm (V-P) times on a graph with (V-P+1) Algorithm E
nodes. Since the running time complexity of the e
min-cut max-flow algorithm is a third order func- In another algorithm proposed by K. Efe [21,

tion of the number of nodes [1], for the above al- instead of searching for the maximum of all arc

gorithm we h ve a worst case estimvtion of weights, we search for a node pair which communi-

O((V-P)(V-P+I)N), or if P<V, we have O(V'h). cote with each other more than they communicate I,

with the rest of the nodes in the process graph. -0

Algorithm GE Here formally, we search for a node pair k and 1
such that

GYlys and Edwards [E proposed a much simpler

algorithm than the one above. The basic idea is c(k,l) > c(ki); i=l..V, i=/.

again to form clusters of nodes in such a way that c(k,l) > c(l,i); i=l..V, i=/=k
the total inter-cluster communication is minimum.
Initially we start with V clusters such that there To find such a pair, the algorithm first subdi-

is a cluster for each node and that no node is vides the set of all arcs S(E) into V sets of

contained in more than one cluster. Each cluster 5(i), where S(i) is the set of arcs emanating from %

is represented by a node in the process graph. For node i. The algorithm rroceec ! as follows: (The

a partitioning between P processors the algorithm reader should easily follow the steps of this al-

can be simply described as: gorithm by considering the figure-) P

165

, ,-,-,, , - -.-.. , .-... . .-'j_ :... ...,.% .C,, .-., .:. .-..:.-,,'X'.-,.,v ,.. .,...,.... .;

S (j Execution Costs Communication Costs
C () P1 P2 P3 t tZ t3 tS

t1 3 11 Z3 t1 0 15 2 0 0
t2 1 100 9 tz2i5 0 0 0 0
t3 14 10 2l t3 2 0 0 12 17
t4 15 6 8 t4 0 0 12 0 23
*(5 k) t5 100 2 7 tS 0 0 17 23 0

Figure 4

1. Pick a node i at random
2. Find j such that %

c(i ,j)MAx{s(Ii)I
3. Find k such that

c(j~k)=lAX{S(j)}
4. If i:k then execute 4.a, else execute 4.b. P3

4.* Fuse i and j and assign label i to the new
node obtained after this fusion. Set V <-- V-i; if
V=P then stop, else go to step-2. Figure 5
4.b Set i <-- j; j <-- k; go to step-3. %/

The more general version of this algorithm de- I t' P-2 t
scribed in 2 also considers the notion of dis- c(iq) = . . t(i,r) --- t(i,q)
tinguished nodns. The modification required for P-I r &q P-I
partitioning with distinguished nodes in the graph
is rather simple: khen a pair of nodes are found where t(i,r) is the cost of executing module i on
that satisfies the inequality above, we check if processor r. If the processors are homogeneous, %,,

they are both distinguished. If at least one of that is, if t(i,r)=t(i) for r=l..P, then this
the nodes is a non-distinguished node then we fuse equation reduces to o(i,q)at(i)/(P-1). In a con- 'A
them, otherwise the arc between them is deleted parison with the algorithms above it is more ap-
and search continues from the node i. propriate to use this reduced form of c(i,q) to

make the modelling assumptions similar.
In steps (2) or (3) of this algorithm a search

is made among S' arcs, where S* : { S(i) A As in the algorithm HJ, a feasible partitioning
lal..V). In the worst case we may walk through V contains exactly one distinguished node in each
nodes, searching among the 2E arcs contained in cluster. If there are only two distinguinhed nedes
all sets of S(1); i~l..V. Hence the total number a min-cut max-flew algorithm guarantees the opti- / ,
of elements will be 2E for each fusion, and mum result. For more than two processors, the au-
0((V-PIZE) for the entire algorithm. Comparing to thor suggests a three phase heuristic algorithm as
the algorithm GE this order of complexity seems to follows: %
be slower by a factor of two However, simulation -'.L

results show that algorithm E is indeed marginally 1. Repeat phase I (below) until assignment is com- -. ,

faster thn algorithm GE because of the way the plate or no assignment is made in the lost iter-'

search is made. Notice that the running time com- ation.
plexity of algorithm GE is exact, while in algo- 2. If there are nodes remaining unassigned then
rithm E the search stops without necessarily try to make a "lump" assignment as described below
searching all possibilities. (phase 2). . ,

3. If a "lump" assignment can not be made then use .
Aloorithm L a greedy assignment algorithm as described in

phase 3 below. ../.'q.

Another model that is based on min-cut max-flow
algorithm is proposed by V.M. Lo [8]. In this Pha'e I To force a cut between a processor node k
model processor specds are assumed to be differ- and the rest of the graph, let P be the set of

ent. A system of V modules and P processors is processor nodes, and let k1=P-{k}.
modeled as a graph in which each processor is a A-
distinguished node (see figure-5). An arc is drawn 1. For k~l..P repeat steps I.a and l.b.
from each process node i to each distinguished l.a Fuse all nodes in k' into a single node
node q with the weight 1.b Run min-cut max-flow algorithm between k and '

1-66

2. If there are no nodes remaining unassigned, or l.a For any processor with load level within a
If no assignment has been made in step I then stop tolerance range L.T delete the modules assigned toIf n asignentthat processor.

else execute step 3thtpoesr
I.b If a Orocessor has a load less than L-T then

3. Recalculate the arc weight increments for represent all of the modules in that processor by

processor nodes (to be added on the communications a single node.

of nodes already assigned) on the reduced graph of i.e If a processor has a load level that is

remaining nodes and go to step 1. greater than L+T thcn retain all of the nodes re-
presenting modules assigned to it.

Phone Zn this phase a lower bound L is calcu-
lated on P-way assignment by running the min-cut 2. Modify the arc weight for the nodes in category
max-flow algorithm between any arbitrarily chosen (l.b) so that arc weights are incremented proper-
pair of processor nodes. If L is greater than the tional to the difference between processors with

eOst of assigning all remaining nodes to one of light load and processors with heavy load.

the processors then all remaining nodes are as-
signed to one processor. Otherwise phase 3 is ac- 3. Using the algorithm E reassign some nodes to
tivated. processors with light load until the total proc-

essing time in these processors reach the rang

Phase I In this phase the average communication L.T.

cost C between all remaining nodes is calculated. Trs te
Then the arcs with a weight less than or equal to This algorithis spersistent in the sense that P
C are dropped. After this step we locate clusters it is designed to satisfy the real-time constraint
of nodes between which communication costs are at any cost. A slightly different version reporied

"large". Each cluster is then assigned to the in 2 will loosen the real-time constraint if the %
processor where it will incur minimum communi- cost is going to be too high.

cation cost. Algorithm

The most important determinant of the running The algorithm L described above does not pro-
time of this algorithm is the phase 1, where a T
min-cut max-flow algorithm is used. In a graph vide any facilities to nmeet a real-tims con-
with V nodes, a partitioning between P processors straint. Instead. for the real-tim3 constraint the
will require running this algorithm for a graph of author describes another algorithm based on a ccM-
V42 nodes. Thus, for each iteration of the min-cut bination of phase (3) of algorithm L and a grati .
lax-floi algorithm we have the running time matching algorithm. However, in this moall t:-e

0((V+2)). In the worst case the algorithm may as- real-time constraint is spccified in tcrma of cn
sign exactly one node to a processor at each iter- upper bound on the rv,.-1-'r of mculcs at a
ation, completing an optimum assignment in V processor. Due to this diffcrcnce in tha spccifi-
iterations. The worst case running time will then cation of real-time constraint we are unable to
be which is roughly O(V4. make a direct conparison. However, what is worth

noting here is that, according to the author the
MOOELS FOR REAL-TIME COfISTRAINTS algorithm found the optimum result in 82.9Z of the

tested cases.
Three of the four algorithms we described above

provide mechanisms for observing a real-time con- IV COMP RISON OF ALGOPITHMS

straint. Below we describe these algorithms. We have seen that algorithms HJ and L have run-

Algorithm GE ning time complexities of roughly O(V). BZt!:cn
these two, algorithm L seams to perform bcttor,

The real-time constraint in algorithm GE is in- because the author is able to prove that if the
corporated by a small modification of the one de- assignment is cc-plate at the end of ph.oe I or 2
scribed above. Before the algorithm starts we then it is optimum. This is a noteworthy point
define a preset upper bound L on the total running since it imposes a certain deorce of confid:nc in
time of modules assigned to each processor. In the the performance of the algorithm. On the othar
algorithm, before a fusion is made it is checked hard, one important fact remains: since the prob-
if a single processor can handle the two clusters. lem being solved does not exactly represent the
If the total running time of nodes in the two real world, it is probably just as appropriate to
clusters is less than or equal to L then they are consider a less accurata solution if it .2,ns a
fused into a single cluster. Otherwise the arc be- substantial saving in the running time cac-plexity. -
tween these two nodes is deleted and a new search The algorithms GE and E have a ler ordcr of cor-
is • Te gi tr as eplexity in running time, and thus constitute rea-is beguJn. The algorithm terminates wen no more s~be atraie o loih . The

fusonsca bemad. onale alternatives for algorithm 1. The
fusions can be made. following t.,o theorems provide additional support

for this argument in terms of accuracy undar cer-
Algorithm E tamn assumptions.

In this algorithm we first run the heuristics Theorrm 1: If the process graph is a tree then

for minimization of communication cost as the algorithm GE minimizes the communication cost.
first phase. If the result does not satiufy the
real-tie constraint then we activate the second Prnof: The proof directly follows from the con-
phase which is described below. sideration of the fact that a tree becomes disco:-

nected by rerioving any of its arcs. For an optimum
1. Calculate the average load level L for the P-way partiticning we just need to remove those
processors. Then modify the original process graph P-i arcs that have the minimum weight. Algorithm ff
aS follows: GE essentially produces this effect by fusing the A %

167

%5

%S

node pair with maximum communication at each produced a successful assignment. Figure 6 shows
lteration.QED. a typical case when this algorithm fails.

Theorem t- If the process graph is a tree with P Algorithm E produced successful assignments in
distinguished nodes in it, then algorithm E finds 72X of the tested cases. When it did not succeed, _
the minimum communication partitioning that sepa- it was because the process graph was disconnected
rates the distinguished nodes. The proof is given after step-i of the modificaticn algorithnm. Also .-
in [3J . for successful assignments a certain cost increase %.has been observed due to reassignments. This cost

As a corollary result of theorem-2 it is easy increase was generally less than 507 for V<40,
to see that algorithm GE also finds the minimum while up to 100% increases wera observJ for
communication partitioning for a tree with distin- larger problems.
guished nodes in it. The significance of these
theorems becomes apparent when we consider the 1 1
fact that, to detect whether a process graph is a
tree, all we need is to check if E=V-1. In such a (a) a
case much simpler algorithms can be derived as im-
plied by the theorem-I. Below we describe the sim- 2"4
ulation results obtained from comparing algorithms 4

GE and E. h

Simulation

For simulation, we implemented algorithms GE 2 1 "-
and E in Pascal and tested their performance using e%1
randomly generated graphs in which the number of e
nodes, V, varied between 10 and 100. The number 1 -
of processors were between 2 and 20 (or V/3, 2
whichever is smaller). Altogether we used 250 ran-
dom graphs. Concerning the accuracy of results,
without the real-time constraints, we observed no (b) {a
significant difference between the two algorithms.1 b,c
For 767 of the cases the results were either opti- 2
mum or within less than 20% difference of the op- ',,
timum. More details of these simulations are given {h,
in (3]. " 2

The running times are measured on Amdahl 580.
Table-2 gives a typical running time measurement
for the two algorithms. Each entry in this table
shows the running time for a total of 25 problems
with a given number of nodes. Algorithm E is mar- d,e}
ginally faster than GE due to the fact that a node 3
obtained after fusion is very likely to have an
arc with "large" weight. In such a case, the Figure 6: (a) Process graph, (b) After
search time for the next iteration is minimized, four fusions failure occurs if P = 3

RUN-TIhE (ILLISECONDS / 25 PROBLEMS) and L = 4.
0 OF NODES Algorithm GE Algorithm E ".

10 152 144
0 483 397 V CONCLUSIONS AND FUTURE DIRECTIONS
30 995 880
40 1470 1125 This research shows that the trade-off between
60 4763 3960 Using optimum but slow algorithms as opposed to
80 6402 5621 sub-optimum but efficient ones heavily favors the
100 9175 7475 heuristics when one considers on-line assignment

of tasks to distributed processors. This argu-ent
Table 2 is strengthened partly due to the success of

heuristic algorithms in finding near optimal sol-
utions, and partly by the fact that an optimal -|Me also compared the success of the two algo- model is nothing more than an approximation of the

rithms in meeting a real-time constraint. We set real world.
an upper bound L on the completion of execution as

As we have seen in this paper, different algo-
L = L(ave) + T rithms have their strengths and wezknesses. Taking 4' -

algorithmic efficiency as the paramount goal, the % %where L(ave) is the average running time over P aloitm efriiey a e ara ont deialn the
following strategy can be ada~pted in dcesigninq anprocessors and T is the tolerance calculated as algorithm to conbine the best ideas in the papers

20Z of L(ava). With this upper bound, an assign- we consioered:
went is "successful" if all of the modules are as- 1. Use algorithm GE or E for minimizing ccnmuni-
signed to the given P processors. Algorithm GE cation costs --Enm g m
performed much worse thr.n we expected. For large 2. Use algorithm E for real-time constraint

graphs (i.e. V>20) it failed almost always. In a 3. Use algorithm L if processor speeds are dif-
set of 25 graphs each with 10 nodes, only 7 cases ferent.

168

N #

Nevertheless, this algorithm will only provide
a sub-eptimal solution to a rather small propor-
tion of the problems in task assignment. Ona im-
portant problem that remains is the considcration
of precedence constraints between modules. Also
on-line calculation of the cost of module exe-
cution and commnunication are open problems, al-
though some limited success has been reported
[6,7].

ACKNOWLEDGEMENTS,

This research was supported by the Science and En-
gineering Research Ccuncil of United Kingdom. The
author wishes to thank A.P. McCann and S. Fangohr
for their comments and assistance in the prepara- ,
tion of this manuscript.

REFERENCES

2. K. Efe, "Heuristic Models of Task Assignment
Scheduling in Distributed Systems", Computer, June
1982, pp. 50-56. ,

3. K. Efe, "User Friendly response Generation and
Transparent Task Allocation in a Networked Ab-
stract Machine Environment," PhD Thesis, Computer
Science Dept. Leeds University, 1985. ./

4. V.8. Gylys and J.A. Edwards, "Optimal Parti-
tioning of Workload for Distributed Systems," .5-.'.

Proc. Compcon Fall 76, pp. 353-3S7. '

5. K. Haessig and C.J. Jenny, "Partitioning and

Allocating Computational Objects in Distributed

Computing Systems," Proc. IFIP Congress 80,

Melbourne, pp. 593-598

6. S.P. Kartashev and S.1. Kartashev, "Distrib- '
ution of Programs for a System with Dynamic Archi- .- ,
tectures" IEEE Trans. on Computers, Vol. C-31,
No.6, June 1982, pp. 1-10.

7. 1. Lan, "Characterization of Intermodule Commu-
nications and Heuristic Task Allocation for Dis-
tributed Processibg Systems," PhD Thesis, UCLA,
March 1985.

8. V.1I. Lo, "Heuristic Algorithms for Task Assign- 'e
ment in Distributed Systems," Proc. 4th Intn'l
conf. Distributed Computing Systems, San
Francisco, May 14-18, 1934, pp. 14-18.

9. L.M. Hi, C. Xu, and T.B. Gendreau, "A Distrib-
uted Drafting Algorithm for Load Balancing," IEEE .
Trans. Software Engineering, Vol. SE-IL, No.10,
Oct. 1985, pp. 1153-1161. "N

10. J.A. Stankovic and I.S. Sidhu, "An Adaptive
Bidding Algorithm for Processes, Clusters and Dis-
tributed Groups," Proc. 4th Intn'l. conf. Dis-
tributed Corputing Systems, San Francisco, May
14-18, 1984, pp. 49-59.

11. H. Zimmermann, "OSI Reference Model-The ISO
Model of Architecture for Open Systems Intercon-
nection," IEEE Trans. Commun., Vol. COM-28, April
1980., pp. 425-432.

169

SOF -e I% -

'1.. rZ'W

Session 9: Reusable and Retargetable
Software

Chairpersoni: Phil Hwang
CNR

1701

Iff I.
*A.W W

Why Reusable Software

Isn't

William J. Tracz e

Program Analysis and Verification Group I

Computer Systems Laboratory
Department of Electrical Engineering

Stanford University
Stanford, California 94305

(415) 497-1089
TRACZ@SU-SIERRA.ARPA

Abstract
Is reusable software a myth, magic or a messiah? This paper examines the issue of why the ,
paradigm of reusable software engineering has not had the broad sweeping effects envisioned by .

the programming prophets. Parenthetically, the proverbial question "What makes reusing _e
software artifacts difficult?" is raised and answered from the points of view of a programmer, ,
software manager, computer scientist, and cognitive psychologist. Technical, organizational,
political, and psychological bottlenecks are identified.

1. Introduction
There is nothing new under the sun. - Ecclesiastes 1:9

The concept cf reusable software has been part of our programming heritage since the origins of !.
the stored program computer EDSAC at the University of Cambridge in 1949. Maurice Wilkes1

first recognized the need for avoiding the redundant effort in writing scientific subroutines and .
recommended that a library of routines be kept for general use. Until recently, little had been
done to embellish this c,-ncept of program reusability over the 35 years that have passed. The
formidable Osoftware crisis" coupled with impressive improvements in the price to processing .'."\

power ratio, advances in programming language design, compiler construction and interactive
graphies has forced developers to reevaluate the tradeoffs made in establishing the traditional ad
hoc development methodologies and environments used in the past. New and better ways are
being explored to harness these recent technological advances and to develop an integrated . .p

4)ft ware/hardware system optimized for programmer productivity. Again2 and again. the role
fj Reusable Softuiare has been identified and discussed4 '5'6 '7'8 .

Th. author is an employee of the IBM Federal Systems Division, Owego, NY, participating in 0: IIM Phi) PhD
I -,rnt "'tudy Program as a ful time graduate student in the Electrical Engineering Department at Stanford

171

This paper examines the issue of why, to date, the paradigm of reusable software engineering has
not had the broad sweeping effects envisioned by the programming prophets. Parenthetically,
the proverbial question 'What makes reusing software artifacts difficult?', is raised, and
answered from the perspective of a

" Programmer,
" Software Manager,
" Computer Scientist, and
" Cognitive Psychologist.

The goal of this paper is to identify the technical, organizational, political, and psychological
impediments that have inhibited reusable software from being more prevalent in the state of the
practice. Further discussion of these issues and their solutions, both implemented and proposed,

may be found in a companion paper

The remaining portion of this paper is organized into two sections. The first contains a %

discussion of the various viewpoints regarding reusability. The second section contains the %
summary and conclusion. %

2. Different Perspectives e
If you are not part of the solution, then iou may be part of the problem. - Anon.

- v,
'What makes reusing software artifacts difficult?' The answer to this question manifests itself
in many technic.l, organizational, political and psychological issues. This section contains a
discussion of the inhibitors and facilitators identified with reusable software presented from four
points of view:

* A Programmer: someone who designs, implements and tests a portion of a software '4,

system.

* Software Manager: someone who manages a software development project.

" Computer Scientist: someone on the leading edge of technology, exploring and
developing new techniques for expanding the reusable software engineering paradigm.

* Cognitive Psychologist: someone who understands the human thought process, its
limitations and implications on programming.-r

2.1. A Programmer's Viewpoint
What are some of the reasons a programmer doesn't use someone else's code or design?

A

* It is more fun to write it oneself.

* The Not Invented Here syndrome of making oneself indispensable, or fear that in
reusing someone vses code, it would be showing signs of weakness in not being able to

do it oneself.

* It is easier to write it oneself, then to try and find it, figure out vN hat it d(es, an(l if it
172

~ .~%'V.VV ' .,.~i~41 * '~'9:~''~~** *1 ~ %

I

works. Furthermore, what are its attributes (performance) and dependencies
(restrictions)? If it has to be modified, then it also might be easier to rewrite it.

" There are no tools to help find components, or compose a system from the reusable
pieces.

" There are no know software development methodologies that stress reusing code, let
alone reusing a design, or a specification?

" Little emphasis in reusing components is taught in academia10 , in fact, most students
don't have any mechanism or motivation to save programs from assignment to
assignment, let alone, from course to course.

The technical issues raised here focus on the lack of well described, useful, and reliable reusable
component libraries and an integrated programming environment available to take advantage of
them. On a more philosophical note, the reluctance of a programmer to re-tool and place a
dependence on someone else's work generally inhibits initial acceptance of this approach.

2.2. A Manager's Viewpoint
Managers often make decisions that are not based on technical issues alone. Some reasons for
not adopting a Reusable Software Engineering approach for a software project might be as
follows:

* If no tools or components exists, then it will take time and manpower to create the
tools and the expertise. Such cost are generally not within the budget of a single
project.

" If the tools truly do exists for making programmers more productive, then that will
make the project more dependent on fewer personnel, consequently increasing the
risk, and decreasing the number of people on the project (or reducing the empire a
manager commands) 8.

" Are the reusable tools deliverable items? Does the customer expect to need them to do
maintenance?

" How does one set and maintain standards to control what is entered into the

components library1 1

Technical issues faced by management are sometimes tainted by political considerations, or
personal aspirations. Nevertheless, budgeting, scheduling and managing a software project based
on a reusable components library requires a certain amount of confidence and experience in the
methodology. .,

2.3. A Computer Scientist's Viewpoint
A :omptiter scientist might take a more far reaching perspective when facing the issue of

reusability. Balzer 7 has stated that 0('ode is not reusable', suggesting instead of the black bor. -,',
plug compatible approach focused on programming products, the answer to reusable software lies

173

'.

in analyzing the programming proce.• From this perspective, the following alternative

approaches to reusability have been suggested:"

* Very High Level Languages (VHLL's) that allow specification of problem domain
entities and operations directly in the syntax of the language. Also, Problem
Oriented Languages (POL's) are a form of VHLL's that are specifically tailored for a
particular problem domain. Reusability is accomplished by reusing the compiler.

" Application generators are software tools that create programs given a parameterized
or programmed specification. Reusability is again accomplished by reusing the
application generator for each new problem.

" Transformation Systems require high level specifications be written describing what
the software system should do. The specifications are then transformed by a series of

12pattern matching expansions into a program

The key concept in each of these three examples focuses on the automated application of
reusable components. Each tool recognizes some type of high level pattern in the problem
domain which can be implemented by substituting some (parameterized) code fragments.
Certain theoretical limits of the transformational techniques have been investigated. Another

approach uses formal specifications for describing each component 13'14

2.4. A Cognitive Psychologist's Viewpoint
Computer programming is one form of problem solving. Much insight has been gained in

understanding the merits of several programming paradigms from the perspective of cognitive

psychology15. Reusable software has been the focus of studies by Soloway1 6 and Curtis17 . A
summary of the empirical evidence gathered as it applies to reusable software engineering is as
follows:

" The human thought process is limited, by the size of Short Term Memory, to the

number of pieces of information it can manipulate consciously at one moment in time
(7+/-2)18. This complexity limit can be overcome by proper chunking or
modularization of components, that is, collecting units of information together into
one semantically meaningful piece (or package) (an argument that maps nicely into

information hiding and object oriented design' 9).
%..'. W

" Expert (experienced) programmers develop applications through a recursive mental
process of matching pieces of the problem with solution segments which they are

familiar with (plans 21).

*Internal conceptualization of the knowledge base in which program/design segments

reside tends to evolve with experience, into having a uniform content for all NO
programmers 22 . In other words, experienced programmers tend to think alike, and
express their solutions in similar forms.

e Programmers cannot reuse something they don't understand. Furthermore, expert

programmers follow certain explicit rules of discourse'6 regarding naming

174

.........................

• , 'r, . - , .° , ° - °. , - -°°. . -. •.° ,. . . , %- - . .° - . ° I

W .

conventions ad programming style23 which enhance program readability and
comprehension.

These results support the need for a proper programming environment to facilitate the reusable '

software engineering paradigm. Tools must be available to handle the complexity, and assist the
programmer in finding and understanding what software components exist. These results also :.
demonstrate the intuitive validity of such an approach. 0"

3. Conclusion
Those who cannot remember the past are condemned to repeat it - George Santayana

This paper has described the difficulties that arise when attempting to reuse software artifacts.
The major issues may be summarized as:

" Most programmers tend to view reusability from the perspective of simply reusing
code when reusing other programming artifacts (designs, specifications, and tests)
leads to a more productive environment. Furthermore, other reusability paradigms Sb

(Application Generators, Translation systems, VHLLs, and POLs) have proven
successful 5.

* Useful, properly documented, tested, verified and classified reusable components need
to be developed before they can be reused.24 '7 (9

" rxpert (experienced) programmers, with an understanding of the problem domain,
and component library are best suited for fully exploiting the reusable software

engineering paradigm. 6

* Tools and methodologies need to be developed to support the development and
cataloging of reusable components and the composition of software systems from
them.1 1

" There are staffing risks associated with a component based approach due to increased

dependence on a single individual to do the work of many.8

* Reusable software development systems cost money, time, and manpower to develop
and become proficient at using.

The results should in no way be interpretted as being insurmountable as various successful "

production quality systems 25 ,26 ,27 ,28 and prototypes2 9 ,12 '30 ,14 , have been implemented, or

proposed. In particular work2 4'31 in Ada 2 is very promising. Further discussion of these systems '
is not within the scope of this paper and may be found in9 .

2Ada is a registered trademark of the U.S. Government-Ada Joint Program Otfice
175

%'v'
V

References

1. Office of Eames, editors, A Computer Perspective, Harvard Press, 1973.

2. Druffel, L.E. Redwine, S.T. Riddle, W.E., "The STARS Program: Overview and
Rationale," Computer, Vol. 16, No. 11, November 1983, pp. 21-29.

3. Alexandridis, N.A., "Adaptable Software and Hardware: Problems and Solutions,"
Computer, Vol. 19, No. 2, February 1986, pp. 29-39. • P1

4. Freeman, P., "Reusable Software Engineering: Concepts and Research Directions," Proc.
ITT Workshop on Reusability in Programming, September 7-9 1983.

5. Horowitz, E. and Munson, J.B., "An Expansive View of Reusable Software," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 477-487. %V

6. Jones, T.C., "Reusability in Programming: A Survey of the State of the Art," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 488-493.

7. Standish, T.A., "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp. 494-497.

8. Rauch-Hindin, W.B., "Reusable Software," Electronic Design, Vol. 31, No. 3, February, 3
1983, pp. 176-193.

9. Tracz, W. J., "Reusable Software Engineering: Issues and Answers", In progress

10. Denning, P.J., "Thowaway Programs," Communications of the ACM, Vol. 24, No. 2, 7.".'

February 1981, pp. 259-260.

11. Chandersekaran, C.S., and Perriens, M.P., "Towards an Assessment of Software
Reusability," Proc. IT RWorkshop on Reusability in Programming, September 7-9 1983. We-

12. Cheatham, T.E. Jr., "Reusability Through Program Transformations," IEE'
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 589-59-1.

13. Luckham, D.C., and von lenke, F. W., "ANNA: A Language for Annotating Ada
Programs," IEEE Computer Society Conference on Ada Applications and
Environments, October 15-18 1984.

It. Goguen, J.A., "Reusing and Interconnecting Software Components," Computer, Vol. 19,
No. 2, February 1986, pp. 1-28.

15. Tracz, W.J., "Computer Programming and the Human Thought Process," Software-
Practice and Experience, Vol. 9, 1079, pp. 127-137.

16. Soloway, E. and Ehrlich, K., "Empirical Studies of Programming Knowledge," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 198.1, pp. 595-609.

17. Curtis, B., "Cognitive Issues in Reusability," Proc. I7T Workshop on Reusability in
Programming, September 7-9 1983.

18. Miller, G.A., "The magical number seven plus or minus two: some limits on our capacity
to process information," Psychological Review, Vol. 63, 1956, pp. 81-97, not yet received

19. Parnas, D.L., Clements, P.C., and Weiss, D.M., "Enhancing Reusability with Information

176

Hiding," Proc. 177" Workshop on Reusability in Programming, September 7-9 1983.

20. Jefferies, R., Turner, A.A, Poison, P.G., and Atwood, M.E., "The Processes Involved in
Designing Software," in Cognitive Skills and Their Acquisition, Anderson, J.R., ed., ;X

Hillsdale, N.J.: Erlbaum, 1981, not yet received

21. Soloway, E. and Ehrlich, K., "What Do Programers Reuse? Theory and Experiment,"
Proc. IT Workshop on Reusability in Programming, September 7-9 1983.

22. McKeihen, K.B., Reiman, J.S., Rueer, H.H., and Hirle, S.C., "Knowledge organization and
skill differences in computer programmers," Psychological Review, Vol. 13, 1981, pp.
307-325, not yet received

23. Kernighan, B. and Plauger, P., The Elements of Style, New York: McGraw-Hill, 1978.

24. St. Dennis, R. Stachour, P., Frankowski, E., Onuegbe, E., "Measurable Characteristics of
Reusable Ada Software," Ada Letters, Vol. 5, No. 2, March-April 1986, pp. 41-49.

25. Lanergan,R.G. and Grasso, C.A., "Software Engineering with Reusable Design and Code," I-'
IEEE Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984, pp. .
498-501.

26. Matsumoto, Y., "Some Experience in Promoting Reusable Software: Presentation in
Higher Abstract Levels," IEEE Transactions on Software Engineering, Vol. SE-10, No.
5, September 1984, pp. 502-512.

27. Kernighan, G. W., "The Unix System and Software Reusability," IEEE Transactions on
Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 513-518.

28. Cavaliere, M.J., and Archambeault, P.J., "Reusable Code at The Hartford Insurance P.1
Group," Proc. ITT Workshop on Reusability in Programming, September 7-9 1983.

29. Neighbors, J.M., "The Draco Approach to Constructing Software from Reusable
Components," IEEE Transactions on Software Engineering, Vol. SE-10, No. 5,
September 1984, pp. 564-573. -

30. Goguen, J.A., "Parameterized Programming," IEEE Transactions on Software .. ,'

Engineering, Vol. SE-10, No. 5, September 1984, pp. 528-543. .- %

31. Mendal, G.O., "Designing For Ada Reuse: A Case Study," Proc. of IEEE Computer
Society Second International Conference on Ada Applications and Environments, April
1986.

.77

Towards Reusable Software Designs &
Implementations

Ralph E. Johnson
Simon M. Kaplan

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 West Springfield Avenue
Urbana, I1 61801

May 3, 1986

Abstract
One of the best ways to reduce the cost of producing software is to reuse old

software instead of writing it anew. Although reusing small pieces of programs

has long been practiced and software packages are also reused in their entirety,
other products of the softwaxe design process, such as the general structure of
a program or the design itself, are not formally reused. This paper discusses
a new approach to the design and implementation of software systems. In this
approach, a design is a formal mathematical object which can be instantiated
as an object-oriented implementation. This allows reuse of both designs and
implenientations. '

1 Introduction

The skyrocketing costs of software production are not helped by the fact that new

software development often seems to require implementation "from the ground up"

despite the fact that there are usually many parts of other systems that are similar
to (but not the same as) portions of the new system under development. Also there
seems to be a logical and philosophical divergence between the design of most systems

and their implementations; designs are used to map out a system but frequently there
is little correlation between the design and the finished product. Certainly there is
no way to measure this correlation and no way to find out what decisions were made
in going from the design to an implementation.

We need to gain a better understanding of the design phase, and also a better

understanding of the implementation phase. We propose two orthagonal approaches
to this: first, a formal model of design; and second an incremental approach to
the implementation of designs, where a hierarchy that contains history information

concerning the program development is encoded. The advantage of formally under- %
standing design is that we reduce the chance of design errors and the chance of design

178
,1.%4

'===U

alterations that have severe impact on software. The advantage of hierarchy in the
implementation process is that we can determine the correlation between design and
implementation and also identify the minimum work required to reuse and retarget U"

software.
The body of this paper consists of two sections. In the first we discuss our notion P

of formal support for software design and in the second we discuss our hierarchical
model of software development. This model is closely akin to the class hierarchy of
object-oriented systems with class inheritence.

2 Formal Support for Software Design

Engineering any system has two components; a creative component, and a formal
component. The creative component is the intuition, insight and ideas that go into
the design. The formal component is the checking of the design for robustness,
completeness and soundness. These two components are inextricably intertwined;
as the designer is working creatively, so he is bearing in mind the formal analyses
which are to come, and trying to anticipate and prevent any flaws from entering the
design which would be detected by the formal analysis. A better understanding of the
formal aspects of software design, based on discrete mathematics, will allow a similar
approach to the engineering of software systems - a creative process backed up by
the ability to construct formal models of designs and reason about their correctness. .' .;,

The major design activity is decomposing a problem (i.e. a specification for a
system) into a set of smaller problems and interconnecting the solutions to these
smaller problems to form a solution to the original problem. A designer recursively
decomposes a high-level design into specifications for smaller and smaller components
until the remaining components can be ea3ily implemented or can be reused from
some other system. Thus, a design describes the decomposition of a system. 'I

Since the final implementation is described by a programming language, it is
attractive to use the same language to describe the design, e.g. using Adal as a
design language. However, this artificially makes designs language-specific, uses a
notation that is difficult to analyze formally, and uses the programming language for
purposes for which it is usually ill-suited. Other, more intuitive, design techniques[i 1.
lack a basis for formal rigor, as do most of the module interconnection languages[10. -

We consider the components of a software system to be algebras (sets of functions on
specific data types), and describe them with the language of discret(. mathematics,
in the style of (1].

Consider the system pictured in figure 1. In the algebraic view, the circles repre-
sent algebras. Each algebra supplies a specific part of the functionality of the total
system, by supplying a set of operations on a specific set of data types. In Ada, these -V
algebras would be implemented as packages. The operations would be procedures
or functions and the data types will be Ada types or more complex types supplied
by other packages. The Ada package sprcification corresponds to the definition of

'Ada is a trademark of the United Stal,- (..vernmient, Ada Joint Prugramim Office.

179
9re 2

" .
compiler '

_ ' -

database

Figure 1: Schematic Representation of Component Interconnection :

the signature of an algebra, and the package body corresponds to an implementation
of the algebra. Ada does not provide the ability to describe the semantics of the.,- -

algebra as part of the package specification. Languages such as Anna [71 would be ... "

employed to do this. The arrows between algebras represent potential communica- """
tions between the algebras. For example, the compiler could be able to read source -.
files from the database and write object files to it.; 5"" "

Having constructed this model of a design, we can ask questions of it, such as:

Are all the software objects well defined? Is it possible for the components of the,,

system that are supposed to communicate to do so? An algebra is well defined we -,
can give a meaning to any sentance constructable from the signature [1J. The data" -%X

values produced by one algebra can be used by another if there is a function that
maps elements from selected carriers of the first algebra to carriers of the second.
Thus, we can answer a number of questions about designs by translating them to '

questions about the equivalent algebras. .:'

There are some questions about designs that can be answered by considering,
the general model of design representation that we have cons ,-ucted without any

reference to specific designs. For example, most software development environments
use some universal language for communication between tools in the environment,

such as DIANA. Investigation into the formal structure underlying our design model

has suggested that universal languages should not be used for this purpose as they
needlessly limit the flexibility and reusability of tools which rely on them. (DIANA,

el

180l
k',

,k ,4

prettyrinte

for example, used an attribute-grammar based paradigm. Attribute-grammars have
not yet been shown to be efficient enough for future software development tools).
Instead of a universal language there should be a (small) number of communica-
tions mechanisms which allow communication between tools and support conversion
between the types used by the various tools in the environment.

Because the design objects are algebras, they are often themselves executable4].
This means that we can test designs by executing them. We can also test their correct
interaction by using systems that test module interconnection such as Polylith [8J.
This is obviously advantageous to the software engineer, since the costs of rectifying
design errors once a system has been constructed are high.

Once we are satisfied with a design, an implementation can be constructed. An
approach based on category theory[6][5] allows us to reason formally about the in-
stantiation of an implementation from a design. The design is viewed as a blueprint
for the implementation. Coupling the design and implementation closely in this way
has several advantages from the software engineering viewpoint. First, some aspects
of the implementation process can be automated, such as automatic choice of control
structures by analysis of the specifications. Second we can record implementation
decisions as they are made when instantiating the implementation from the design
(such as choice of data representations).

We believe that "software reuse" and "design reuse" are inherently inextricable. :'

In our model of program development, design and implementation are very closely
bound. The fundamental focus for reuse should be design reuse. Each component of
a design has an implementation (or possibly several implementations) closely bound .

to it, together with a history of how those implementations were derived from the
design. Each component may also have a design, which will be part of the derivation
history of the component. By reusing design components, one automatically gets the
implementations. These implementations can be reused if the design is unaltered,
or rapidly modified if the design is changed. I,

3 Object-Oriented Realizations of a Formal Design

An object-oriented implementation is natural for our design blueprints. The circles
and arrows in the design are objects in the implementation, where the objects which
represent the circles provide the required functionality of the system and the objects
which represent the arrows are messages between the functional objects.

One method of object-oriented programming is that used in Ada. Here, packages
are used to encapsulate objects, providing information hiding, abstraction and the

functionality of an object in a design. Because communication between objects is
limited to procedures described in interface specifications, clean interfaces between

program components are more likely to arise than if the program were designed as '4
a set of subroutines. Much of the design of a system is expressed in the interface

'/

specifications of its packages, since the interface specifications indicate which pack-
age implements each function that the system is required to implement. This is
why designs and implementations can be tightly bound; the package specification.

181

describes the signature of the design object (i.e. algebra) which it implements, while
the package body describes the algebra itself by means of a concrete implementation.
This style of programming is supported not only by object-oriented programming
languages, but by many other modern programming languages.

Many object-oriented programming languages provide polymorphic functions (pro-
vided to a limited extent in Ada by the overloading and generic facilities of that lan-
guage) which greatly increase the potential for code reuse. Because objects in these
languages interact only by sunding messages to each other, objects depend only on
each other's signatures, i.e. he set of operations that they have defined. The im-
plementation of the operations for any object is defined by that object's class. For
example, a printer object can print any object whose class has defined an operation
which returns a printable representation of the object. %

Polymorphism is most useful when there are families of classes with similar signa-
tures. Programmers tend to implement those operations necessary to let new classes :. :.
be used with existing polymorphic functions, resulting in these families of classes. 1.

This not only makes implementation easier but makes the resulting code easier to
reuse. Thus, polymorphism increases the reuse of both code and design.

Many object-oriented languages encourage the creation of families of classes that
support similar operations by allowing one class to inherit the operations and data-
structures defined by another. Families of classes form a hierarchy, each with a class'-;%
that defines the operations common to the family. Often the top-most class defines
operations so abstractly that they are unreasonably inefficient or even not executable,
but the subclasses that make up the family redefine operations and pick specialized
representations for data in order to reach an acceptable level of efficiency. The class
inheritance hierarchy records the choices in data representation that were niade and

the algorithmic improvements that resulted. These are important design decisions
that are usually never explicitly recorded in most other programming styles. This
is vital for software reuse. If one takes a design and associated implementation, and
makes a change to the design, then changes to key points in the inheritance hierarchy
can retarget the implementation for the new design.

The top-most class of a family sometimes acts as a code template, further er-
couraging code reuse. It may leave a few crucial operations undefined, but define
a great many more operations in terms of the few undefined ones. Subclasses will
define the missing operations and so be able to use the many operations defined by
the top-most class. Thus, by defining a few operations for a new class, a program-
mer can make use of many other operations. If a new operation is defined for the
top-most class then its subclasses immediately inherit that operation. This contrasts
with the ad-hoc way in which code templates are usually implemented.

Another way in which code templates are useful is to perform the refinements of
an object (the creation of lower levels in the hierarchy) using an abstract programming
language. This means that a development can be retargeted to different programming .- ,,€
languages by instantiating the abstract program into different concrete programming
languages (such as Ada, Modula-2 or CLU).

Object-oriented programming languages have a reputation for encouraging c"de

182

N N N % %

reuse[9]. This is in part because they encourage data abstraction, partly because the

class hierarchy allows designs to be recorded, and partly because of the programming
environments of which they are usually a part. However, these languages are usually _,
designed for the unconstrained style of artificial intelligence programming rather

than the more rigid demands of software engineering. X. r.

Some work has been done on improving the object-oriented languages[3], but it is
also possible to add class hierarchies to languages designed for software engineering.
A database that stores multiple versions of a program can be used to let a language
like Ada mimic the class hierarchy of an object-oriented language. The superclass-
subclass relationship can be represented by the old version-new version relationship.
A subclass inherites all the operations of its superclass, but adds new operations and
changes some of the old operations. In the same way, the new version of a package

can add new operations and change old operations. This technique is likely to use
multiple versions of a package at the same time, but few version control systems
permit several versions of an object to be used simultaneously. This suggests that a 0.

specialized version control system might be needed to fully support class hierarchies
in languages of which they are not normally a part.

4 Future Research

Most research into algebraic abstract data-types has been primarily theoretical, with P
a few notable exections[4121. We are investigating how that theory can be used to
solve the important design problems in software engineering, such as those discussed
above. By gaining an insight into the formal relationships between components of a

design we get a better idea of just how to perform the decomposition process. By
understanding design decomposition we understand better how to specify and use

modularity, for improved program development productivity, reliability and reusibil-
ity and retargetability. All of these are intricately coupled issues.

Most work with object-oriented programming has been by programming lan-
guage designers or by those interested in applying object-oriented progranling to

particular areas such as artificial intelligence, office automation, or computer aided
design. We are investigating object-oriented programming from the software erigi-
neering viewpoint and expect to use it to record design decisions and enhance code
reuse.

In particular, we are investigating the following problems:

1. Which design problems can be solved using techniques borrowed from discrete

math? h

2. Which of the many methods for describing algebras form the best basis for
specification of programs?

3. IHow does our design technique influence the design of a tnodulh iterconnect loll

language.

N

'. '. % 1

183 '2 ''

'! " ' . .. ,W " ",'" ", ,/ .'., "" .'.',..," -. '%.-, - €-.- -,r .. - . € .-.-. - - - - . , ,"A-, '

4. How can our design technique be used with modern programming languages
developed for software engineering?

5. How can we best use the ability of a class hierarchy to record design decisions
and provide code templates?

6. What are design principles for class hierarchies that maximize code reuse?

7. How should programming environments be changed to support and take ad-
vantage of object-oriented programming?

We believe that our hybrid approach to these problems - combining research into
formal and informal issues - will allow us to gain insight into solutions to pressing
software design and implementation issues and apply this insight to the development
of practical solutions to these problems.

References

[1 J. A. Goguen and R. M. Burstall.

Introducing institutions.
In E. M. Clarke and D. Kozen, editors, Logics of Programs, Lecture Notes in
Computer Science 164, Springer-Verlag, New York, 1984.

[21 .1. V. Guttag. .1. 1-lorning, and J. M. Wing.
Larch in Five Easy Pieces.
Technical Report 5, Digital Equipment Corporation Systems Research Center,
July 1985. %

131 R. E. Johnson.
Type-checking smalltalk.
In To appear in proceedings of Conference on Object-Oriented Programming
Systems, Languages and Applications, 1986.

[4 S. N. Kamin, S. Jefferson, and M. Archer.
The role of executable specifications: the fase system.
In Proceedigns of the IEEE Symposium on Application and A ssessment of A u-
tomated Tools for Software Development, November 1983.

[5] S. M. Kaplan.
The isep open systems architecture: a categorical perspective.
In Preparation.

161 S. M. Kaplan, R. H. Campbell, M. T. Harandi, R. E. Johnson, S. N. Kaini.
J. W-S. Liu, and J. M. Purtilo.
An architecture for too) integration.
In Proceedings of the International Workshop on Ad,',ancd I'rogrInn:ri / , .
ronments, Trondheim, Norway, Jlune 1986.
To Appear as Springer-Verlag Lecture Note in Coniputtr i,(.WtU C

184

.4, -7M _ -a d% 10 -A ,*** -. ~..
S ~'~p~P .* .p . ~~~m'* ..-. -

-*4949 PROCEEDINGS OF THE WORKSHOP ON FUTURE DIRECTIONS IN 3d!
COMPUTER ARCITECTURE..(U) BATTELLE COLUMBUS LABS
RESEARCH TRIANGLE PARK NC 0 P RAMR~AL ET AL. 30 AUGN

UNCLASSIFIED RO-634-EL D AG29-0S1-D-IISF/ 12 U

mosommhhhhhhl

I&I'- I
Lo

L.25 61

W 4o w 3 w .. A le Aw w -W

(71 D. Luckham and F. von Henke.
An overview of anna, a specification language for ada.
IEEE Software, 2(2), March 1985.

[8] J. M. Purtilo.
Polylith: an environment to support management of tool interfaces.
In Proceedings of the ACM SIGPLAN Symposium on Language Iasues in Pro-
gramming Environments, Seattle, WA, December 1985.

[9) M. Stefik and D. G. Bobrow.
Object-oriented programming: themes and variations.
The A.!. Magazine, VI(3):40-62, Winter 1986.

1101 W. F. Tichy.
Software Development Control Based on System Structure Description.
Technical Report CMU-CS-80-120, Department of Computer Science, Carnegie-
Mellon University, 1980.

1111 E. Yourdon and L. L. Constantine.
Structured Design.
Prentice-Hall, Englewood Cliffs, 1079.

16.

185

Archetyping - A Knowledge-Based Reuse Paradigm

Stanley M. Przybylinski
General Dynamics Data Systems Division

P. O. Box 85808
V2 - 5530

San Diego, California 92138

ABSTRACT

The "software crisis" has made firms who depend on hardware and software systems for
their livelihood (read "everybody") keenly aware of the need to improve programmer
productivity and successfully capture the knowledge gained on previous software development
projects. Several government and industry initiatives (Software Technology for Adaptable,
Reliable Systems (STARS) and the Software Productivity Consortium (SPC), respectively) have
focused on software reusability as one solution to this problem.

DARTSTM , a proprietary software engineering environment developed by General Dynamics'
Data Systems Division, provides a unique answer to the reuse question: archetyping, the use of
"embedded" high-order language statements and an advanced macro-processing capability to
automatically generate new versions of complex software systems. This paper will provide an
overview of the technology and archetyping, including some examples of archetyped code. It will
also discuss other knowledge-based applications of DARTS TM .

BACKGROUND r4

The Development Arts for Real-Time Systems (DARTSTM) Technology began development in
mid-1979 as a General Dynamics Data Systems Division software initiative to try to solve the
software/programmer productivity problem. DARTS TM is a knowledge-based software
engineering technology conceived and developed to implement a Software Manufacturing System
(SMS). This system allows domain experts (e.g., missile designers, C3 1 system designers, etc.)
to generate new versions of complex software systems without programmer intervention using
specification languages.

The implementation of this software manufacturing concept required a new, very
high-order language incorporating many high-technology software approaches (e.g., pattern
matching, dynamic knowledge representation, list processing, set processing, embedded
languages, dynamic code construction, compilation and execution) into one self-defining,
extensible language. The embodiment of these needs became the Archetype Xenoclause Embedding
(AXETM) Language.

THE CONCEPT OF "ARCHETYPING"

The basic premise of the SMS, shown in Figure 1, is to capture existing, fully tested and
delivered software soon after its completion. The same set of software engineers who developed
the original system then "archetype" it. Archetype comes from the Latin archetypum for
"first molded as a pattern, exemplary." In this case it refers to a process where the software
specialists work along with users of the system (and potential users of similar systems) to

186

--------- ..

SOFTWARE MANUFACTURING SYSTEM USER REQUEST

IN SPECIFICATION
LANGUAGE

CODING 1 CRCOICES

ORIGINAL 4TLIBRARY

PROGRAMP

SPE IPECIFICATIO ORTSULANGUAG LANGUAGE

SPECIFICATION LANGUAGE INCLUDES
KNOWLEDGE-BASE OF POSSIBLE T

CODING CHOICES ILO

FIGURE I - DARTS IMPROVES PRODUCTIVITY THROUGH .

CAPTURE OF DOMAIN AND PROGRAMMER KNOWLEDGE

sketch out possible future requirements for systems of this type. Thus, this team of experts
develops a "pattern" from which future systems can be generated, hence the use of the term
"archetype."

Archetyping is achieved through the use of "xenoclauses" (xeno- , from the Greek xenos
for "stranger"), foreign clauses (or statements) "embedded" within the native code which
represent areas of possible change. Xenoclauses can be embedded in any native language. The code
sections that replace the xenoclauses to effect these changes are stored in a knowledge-base, a
very flexible storage system that is an inherent part of the DARTS TM Technology. This explains
the reason for the acronym "AXETm."

The last step is identifying these changes and implementing them without programmer
intervention. Software engineers, working with domain experts, develop a "specification
language," a set of terms and parameters which have special meaning within a particular
problem domain. This implies that a different specification language must be built for each
domain. This is different from the normal software engineering concept of a single specification
language for all domains. The replacement code sections are stored in the system
knowledge-bases under access criteria referenced by the specification language.

187
*. , ,

As new systems are required, users specify their requirements, which causes archetypes
(and their corresponding knowledge-bases) to be accessed from the SMS libraries. These
library entries and the user's specification form the inputs to DARTS TM . The archetyped files are
interpreted by the BOLT"M Processor, the interpreter of DARTS TM', with the embedded AXE".,
Language statements replaced by code sections from the knowledgr bases.

The end result of this process is a fully functional program ready for compilation. This
newly generated code meets all stated specifications. Since this new version is based, for the
most part, on a fully tested original, debugging time is minimized. If a coding error recurs
because an archetyped code section is in error, it can be repaired by changing the knowledge base
and regenerating the program.

To understand how the technology works, it is necessary to provide a brief outline of AXE T'4
language syntax and usage.

AXETM LANGUAGE CONCEPTS

AXE", language statements are demarcated by a less-than ("-<") character on the left and a
greater-than (":") symbol on the right:

- (AXETM statement} P

All AXE,,' statement processing either replaces a statement with some symbol or leaves no ,
symbol behind (replaces a statement with a "null"). The BOLTT Processor also ignores any
characters in the input file that are outside the boundaries of an AXETM statement and passes them
unchanged to the transformed input. For example, suppose the C{AXE M statement for a
greeting). represented the word "HELLO" and a <{Statement giving a person}> represented
"READER." Then the BOLT'm Processor would convert:

SAY <{AXE'"statement for a greeting}>.TO THE<{Statement giving a person}>

into: SAY HELLO TO THE READER

AXETM statements can be continued across multiple lines using the "<$>" and "<$$>s
statements. "<$>" means "ignore all characters to the right of me." "<$$;," means "ignore all
characters to the left of me." These are useful for enhancing readability and inserting comments
and other information into AXETM code. For example, the sample statement used above could also
be written:

SAY c(AXE T statement for a greeting} TOc$>.
<a> THE<{Statement giving a person}".

SYMBOLIC REFERENCING

AXE' M is an object-oriented language, i.e., all pieces of information can be accessed as
"metasymbols," symbolic references to data, lists, sets, procedures or just about anything.
Unlike variables or symbols in other programming languages, metasymbols can have more than
one value, depending on the value of user-specified access conditions. These conditions, called
"CONTEXT" and "CRITERIA" expressions, must be satisfied for a particular metasymbol value to

188

1h

be accessed. The use of these expressions is similar to the concept of frames in Artificial
Intelligence (Al).

As a simple example, suppose that a FORTRAN program called for the computation of
*distance equals 1/2 times gra.i.J times the square of Jime:

1000 DIST - 0.5 * GRAVITY * TIME**2

This statement can be generalized using DARTS TM . Assuming the contexts "EARTH" and "MOON"
have already been created, the DEFINE blocks:

<DEFINE :GRAVITY>o <IN-CONTEXT ":EARTH">
cSTART-VALUE>32.2cEN D-VALUE>
<cEND-DEFINE> '

.<DEFINE .-GRAVITY. <IN-CONTEXT ":MOON' ,
<START-VALUE>5.6cEND-VALUE>
<cEND-DEFINE>.

create a knowledge-base of gravity values. The FORTRAN statement is now written as:

1000 DIST = 0.5*<{AXE TM syntax for "Replace"} GRAVITY>*TIME **2

(Not: Since many languages include "<" and ">" in their character set, translation map routines
have been built using AXE M . Source code must be preprocessed using these routines to remove
the "c's" and ":'s" and postprocessed to return them where required.)

Using an AXE M statement or a specification language, the context "EARTH" is established. The
BOLTTM Processor would then interpret the above statement and result in the FORTRAN line: "".

1000 DIST = 0.5*32.2*TIME**2

With this technique software engineers can code to specification, with variations on the theme
implemented using the knowledge-base.

This simple example shows only a small sample of the power of this technique. The
metasymbol state may be a complex boolean expression of CRITERIA, with an upper limit of
4096 different conditions. The "value" between cSTART-VALUE> and cEND-VALUE> can be an
AXE' M statement itself, resolved into a numerical constant prior to substitution into the
FORTRAN expression. Thus, in the previous example, TIME could be changed to an AXETI
statement representing the value obtained by a call to a real-time clock or some other routine.

Metasymbols can also be entire code sections, replacing symbol references according to the
indicated context. This capability was used during a recent rehost of DARTS TM from the DEC VAX
to an IBM 3081. The sections of DARTS TM that were VAX architecture-dependent were identified
and archetyped, with replacement code sections written that were targeted for the IBM
architecture. This method can be very beneficial when many slightly different versions of
substantially "the same" software must be maintained.

LIST EXPANSION

List-driven expansion is another powerful AXE M technique useful for generating multiple

189

t,*'."

copies of similar (.,3racter strings. AXET lists have the following syntax:

<cLIST (Delimiter definition} COMPONENT1 (delimiter... I.

where {Delimiter definition! is the first non-blank character after LIST. Most special ..

characters can be used as delimiters. Individual LIST components can be data structures of any "V
kind. For example:

<LIST/1/2/This is a LIST/3/> ,

is a legitimate AXETM list. N

In list-driven expansion, special AXETM functions define a "model" copy of some AXE, ,
program fragment. The model tells AXE TM how many copies of itself to repeat. Each new copy is
generated by inserting different text at predetermined points within the model and concatenating
the resulting new copy to the previous one. The final concatenated block of generated statements
replaces the model itself in the program in question. ,k%

A "model" is any section of an AXETNM program headed by a special function called the
"expansion" function (<[>'). The model terminates with a "model termination" function
("<]>'). Actual code might look like:

<[, I am a base model used for the expansion.<]:,,

Each part of the model that changes from copy to copy is built from within the model by an
"inner expansion" function, which is an "expansion" function ("<[>") supplying a list of
strings:

<{AXETM execution information}[{strings}]>

Continuing with the model above, an expansion list could be:

<c[,first,second,third,] ,2-- '
.4.., .

The word LIST is not necessary here because the use of "<" implies that a list follows. In this bq'R,.

case a "," delimits the LIST components. An "inner expansion" function placed within a model
directs AXETM to generate multiple copies of the model. For example, the statement:

c[> I am a base model used for the [,first,second,third,]> expansion.]>.P.-.

would result in

I am a base model used for the first expansion. I am a base model used for the second expansion. I
am a base model used for the third expansion.

As an example of this, consider the following skeletal Pascal program with embedded AXE" ' ,
statements: %

PROGRAM COLORDEMO(INPUT,OUTPUT)

190

CONST NUMCOLORS - 3;

TYPE NAME - CHAR;
COLORTYPE - ARRAY[1 ..NUMCOLORS] OF NAME;

VAR:COLON AMCOLORTYPE,

PROCEDURE ,Nn';
VAR I,J: INTEGER;
BEGIN

COLORNAM[cLl... ,J] :. '<EXPAND \:COLORLIST>';cEOL>

END

with the following information stored in the knowledge-base: Vu-

<DEFINE :COLORUST> .
<IN-CONTEXT ":PRIMARY"'>
<cSTART-VALUE><LISTIRED IYELLOWIBLU EI<EXIT-VALUE>
<END-DEFINE>

The ellipsis ("...") is a default in AXE"m that tells the BOLT- Processor to expand the list,
starting at "1" in this case, to the length provided by the next list, COLORL!ST here. (Note that
the "I" was selected as the list delimiter for this example.) <EXPAND \:COLORLIST> means just
that: expand COLORLIST and replace this expression as many times as is indicated by the list
length. In this case 3 copies are produced. Thus, with the context set to "PRIMARY", processing
this list expansion results in the following Pascal code:

COLORNAM[1] :- 'RED';
COLORNAM[2] := 'YELLOW';
COLORNAM[3] :- 'BLUE';

List expansion can be combined with symbolic referencing to further generalize the
archetype. Instead of simply declaring its value as a constant at the start of the program,
NUMCOLORS can be determined by obtaining the dimension (or number of elements) of
COLORLIST in the proper context, i.e.,

CONST NUMCOLORS = <_;DIMENSION. \:COLORLIST>;.

DIMENSION is just one of the many useful metasymbol attributes readily available to AXEr '

programmers.

191

%N

Other values of COLORLIST can be added to the knowledge-base under different contexts, e.g.,

<DEFINE -COLORUST)--
-41N-CONTEXT *:SECONDARY",,o
<START-VALUE>.USTIORANGEIGREENIPURPLE13'.$3m'
-4$$3cEXT-VALUE~m'
-cEND-DEFINE)-.

-cDEFINE .COLORUST:h'
-clN-CONTEXT "-.ALL"3.'
'cSTART-VALUE),"cLISTIBLACKI>"cEXIT-VALUE>"
<END-DEFINE)- -

-cDEFINE .COLORUST3-
4IN-CONTEXT NONE",v

-cEND-DEFlNE3,-

Now, expansion under the context "PRIMARY* would result in the same Pascal code as above. If
the context was changed to "SECONDARY", however, the expanded code would be:

COLORNAM11I]:.'ORANGE;
COLORNAM[2J :- 'GREEN;
COLORNAM[31 :. 'PURPLE';

Finally, setting the contexts "ALL" or "NONE" would result in:

COLORNAM(J):.'BLACK'; and COLORNAM[11 I:.*WHITE';

respectively.
As stated previously, these techniques can be applied to any source language. AXE-N

statements can be nested, with multiple CONTEXT's and CRITERIA's, resulting in an almost
limitless number of archetyping combinations.N4%

OTHER DARTS~w APPLICATIONS

The DARTS~m Technology has also been successfully used in a number of other application
areas:

*Lanouaoe Translators - the pattern-matching and knowledge-base capabilities of DARTST\",
originally included to allow the parsing and comprehension of specification languages, make
DARTS"N the ideal vehicle for language translation. This has been the most successful application
area to date. Translators providing over 80%/ conversion rates have been brought up in periods
ranging from 2 man-weeks to 2 man-months, depending on the languages involved. DARTS",'
engineers work closely with customers to determine the most cost-effective translation%

192

- N

percentage, identifying the level and nature of the manual effort required to complete the
conversion. Documentation, at least in a rudimentary form, can also be produced as a by-product
of the translation process.

The list of completed translators includes CDC Assembly Language to Cray Assembly
Language, Franz Usp to Common Usp, COBOL to FORTRAN, and Pascal to C. DARTS TM has been
particularly useful in converting fourth generation languages good for prototyping (e.g., Mark
IV, Model 204 User Language) into production quality systems (COBOL for these examples).

• Knowledae-Based System Development - The list/set processing and knowledge-base
capabilities of DARTSm also make it a useful tool for expert system development. However,
DARTS", is = an expert systems shell, like ART or KEE. Building an expert system using
DARTS Tm is just like building one from scratch using Lisp. Both require the same types of
resources and development efforts. Knowledge engineers are a vital commodity. An inference
engine must be constructed. The user interface must be defined and built.

On the other hand, DARTS"" does provide some advantages. Knowledge-bases and knowledge
representation methods are built into the technology. While custom inference engines are
necessary for each DARTS"-based expert system, experience on Lisp-based systems has shown
that inferencing is most effective when tied directly to the knowledge-base structure. DARTS,%
also provides a screen definition and processing capability that greatly simplifies user interface
development.

A number of expert systems have been completed for General Dynamics internal projects,
including a Design Analysis Expert System. This system was designed to analyze engineering
drawing notes for completeness and internal consistency with required company and government
specifications. The menu-driven system highlights errors and provides specification numbers
and suggested corrections for each entry.

PRODUCT INFORMATION

DARTST is currently available under license from General Dynamics. DARTS T includes the
BOLT' Processor, the AXE Tm Language (AXEL) knowledge-base, and system documentation. The
BOLT Tm Processor consists of approximately 50,000 lines of PASCAL, FORTRAN and assembly
language code and executes in a 8 MB virtual image on Digital Equipment Corporation VAX series
computers under VMS. The IBM version, written all in Pascal, runs on the 308X series under
MVS/XA. BOLT Jr., an OEM BOLTTm Processor , is an execution-only version to support
secondary sales of programs/systems written in the AXE T language.

SUMMARY

DARTS Tm provides a knowledge-based solution to software reuse. The examples and AXE-.r
language information within were intended to provide insight into the power of archetyping,
without getting bogged down in technical details. If this message came through, it is hoped that
DARTS"", or at least these concepts, can form the basis for an innovative solution to the
"software crisis."

193

i , r :a' ,' ,' .. ,' ,. .,',; ,- -.. i " "J ., . . ". : .. . "",:.,__.. :. .-..-.... ; :..-%- :.,

A
/

Session 10: Distributed Operating

Systems 4 r

'2

194*

Distributed Control of Large Parallel Computers

Larry D. Wittie
Associate Professor of Computer Science

State University of New York at Stony Brook
Stony Brook New York 11794-4400

(516) 246-8215/7146

Over the last three years there has been a resurgence of interest in the design of
large parallel computer systems. Several new classes of highly parallel computers have
recently been introduced. These include:
(1) massively parallel hypercubes, such as the 64,000 1-bit computer SIMD network

Connection Machine 1

(2) large multiprocessors with a few hundred processors sharing a global memory via a .-.
log(N)-stage interconnection network, such as the IBM RP32 and University of Illi-
nois Cedar3 , each with about 512 processors;

(3) large multiprocessor/multicomputers with clusters of a few hundred computers shar-
ing a common memory and linked to other clusters, such as Cedar3 and the planned
Vitesse VNP 4' 5 tree network of up to 1089 computers, linked within each cluster by
a crosspoint switch to shared memory and between clusters as a tree of fanout 8 to
16.

(4) small multiprocessors with a few dozen processors sharing memory via a fast global
bus, such as the Encore Multimax6 and Alliant FX/8 7;

(5) large multicomputers of a few hundred computing nodes linked by hypercube inter-
connections, such as Ncube and the Intel/Caltech Cosmic Cube8 ;

(6) massive SIMD array processors, such as the 11 Gflop IBM GFii 9 , built specifically
for physics quark modelling; and

(7) one to sixteen processor, shared memory versions of the ultrafast vector processors
that are the current commercial supercomputers, such as Cray X/MP-4' 0 . Cray2 11,
Fujitsu 12, Hitachi 12, NEC5 , CDC Cyber-Plus 5, and the planned ETA-10 13

1. Operating Systems for New Parallel Machines

The operating systems of all these machines differ significantly. SIMD machines -
have only one instruction stream common to all processors. Resource management is a
significant part of the algorithm programmer's task. Each algorithm must deal directly
with allocation of data to memories and the movement of data to the processors when
needed. The operating system for an SIMD machine usually runs on the general purpose
host to which it is attached. It aids development of new algorithms, loads new jobs, and
accepts the torrent of data produced during execution.

195

The new shared memory multiprocessor systems are a significant interim step in
solving the programming problems posed by massively parallel multicomputers with
separate memories for each processor. By having special hardware support for access to
globally shared memory, they allow concurrent programs to have many processors pass-
ing common data rapidly via the shared memory. Programmers need worry only about
how to subdivide their algorithms into separate processes. They need not worry about
delays in exchanging data among processes. Communication delays are a major addi-
tional concern for distributed programs running on multicomputers without shared
memory.

Multiprocessor programmers still must worry about decomposition of problems into
processes, synchronization between processes, and partial failures by individual proces-
sors. Multiprocessors are only an interim step because rapid, frequent, simultar .ous
access to a globally shared shared random access memory by millions of processors is
almost certainly an impossible task. With more than ten processors sharing memory,
there are severe problems with memory bandwidth. More insidiously, when there are
many processors, most may be waiting on locks to access shared data that another pro- %
cessor is changing.

The small multiprocessors (Encore, Alliant) use high-speed global busses and
hardware support of synchronization and locking operations such as test-and-set for
shared memory access by up to 20 processors. Further expansion of these systems will be
very difficult, especially because of locking delays. The large multiprocessors (RP3,
Cedar, Vitesse) all have permanent memory and recent access caches local to each pro-
cessor to greatly reduce reading of shared memory. In many wayg, they are multicom-
puters. They also have efficient interconnection networks to allow all processors to access
different parts of shared memory simultaneously and very special hardware to minimize
blocking during writes to common memory locations.

In particular, both the IBM RP3 and the Cedar multiprocessors use log(N)-stage
Omega 14 networks for N simultaneous processor-to-memory accesses. As justified by -

simulations for the NYU Ultracomputer' 5 , several million dollars of the costs ($20M) of
the 512 processor, 800 Mflop RP3 is special network logic that combines simultaneous
fetch-and-add (F&A) operations to the same memory location. The combining logic
returns a consistent set of fetched values to the various processors and adds the sum of
their increments to the memory location. The effect is exactly the same as if the simul-
taneous operations executed one after each other in some unspecified order. In particu-
lar, this F&A operation can be used to manage queues for operating systems such as
Unix so that many processors can simultaneously add and delete entries without locks.

Almost all of the shared memory multiprocessors, including the Cray2 and Alliant
vector processing systems, support the popular Unix operating system because it offers a 7:"-
flexible interface to users. With shared memory, it is easy to support parallel execution
at the coarse-grained Unix process level. If there are enough processes, all processor can
work simultaneously, except during synchronization waits. The vector processors also
offer tools for extracting fine-grained concurrency from manipulations of matrices and
vectors. For example, different Cray processors may be simultaneously executing the
same Fortran DO-loop for different ranges of index values.

196

e; .Z q
" .,.

2. Operating Systems for Future Massively Parallel Machines

The current hypercube multicomputers (Cosmic Cube and Ncube) and the planned
MIMD version of the Connection Machine are precursors of future massively parallel
multicomputers ("megacomputers"). Frequent access to globally shared memory will be P10
impossible in megacomputers. In the near-future, designs like the Vitesse system, which
is a multicomputer tree of multiprocessors, are very likely to be the most efficient way to
build machines with many thousands of processors. Clusters of processors can access a
hierarchy of shared memories, with the most distant, globally shared memories accessed
very infrequently.

There appear to be at least three avenues of study for algorithms to manage
resources and to perform application calculations on megacomputers, where system size
will lead to delays and other inaccuracies in data from distant computing elements:
(1) distributed algorithms, in which separate processors use mainly local data aug-

mented by infrequent accesses ("messages") to data in memories of distant proces-
sors; N

(2) probablistic algorithms1 6 , in which good approximations to exact results can be cal-
culated rapidly from volumes of input data, even if a few items are incorrect.

(3) asynchronous algorithms, in which correct results do not depend on locked step
operations by different processors, avoiding wasteful waits to achieve synchrony.
Work at SUNY/Stony Brook on control algorithms for megacomputers has already

started exploring two of these avenues, tree-based distributed control algorithms17 19 for
networks of computers and asynchronous communication and data replication
mechanisms20 23 for networks. Even computers built from processors clustered around
locally shared memories have data sharing restrictions consistent with a model of (mul-
tiprocessor) computers embedded in a communication network.

, ' r

2.1.1. Dynamic Group Organization and Use for Distributed Systems

An extensive study has been made of ways to implement and use multicast com-
munication within groups of components in large netcomputers, especially ones linked by ,V
grids of ethernets. Techniques for organizing dynamic groups have been studied for use
in supporting multicast communication, in maintaining consistent replicated data, and .4..
in providing network services. Early results have been published in three papers 2 22 and

a dissertation 2 3
2.1.2. Tree-based Distributed Control Algorithms

Work has begun in exploring the efficiency of several newly created distributed algo-
rithms for resource management in large networks. Most of these algorithms use
hierarchical patterns of communication to allow efficient centralized control of high-level .
performance. However, they are being analyzed both in terms of tree-branch distances
and in terms of physical distances for the common cases where they are imbedded in reg- V.
ular physical topologies such as 2- or 3-dimensional nearest-neighbor meshes.

Because most of their data paths traverse an O(logN) number of tree branches,
tree-based control algorithms seem suitable to a large number of different underlying net-
work topologies. In other words, they hold promise of being nearly universally applicable

197

w.•
.'w

wor

t 0

to a large class of network computers. Of course, raw state data from the lower levels of
the tree must be compressed or filtered at each higher management level to avoid over-
loading nodes near the root.

The one completed study19 evaluates an algorithm for very locally reconfiguring a
spanning tree of processors assigned network management duties after a failure has
incapacitated one of them. The analysis techniques are able to give closed form expres-
sions for the expected values of several measures of the algorithm, including:

(1) the maximum extent of network disruption during the recovery after one failure,

(2) the increase in total spanning tree branch lengths per local reconfiguration,

(3) total message traffic generated to reconfigure after one failure, and

(4) the total delay until the control tree is completely recovered from each failure.

There are a number of other distributed control algorithms for which some initial
results are known. Each is based upon spanning trees of control processors. Each drasti-
cally restricts the flow of management data up the tree to avoid traffic bottlenecks near
the root. They include:

(1) two other algorithms (Promotion and Chaining) for local repair of spanning
trees of processors used to control massive networks,

(2) algorithms for finding near-optimal routes in large networks without using either
global models of the topology or global broadcasts to find the shortest path from a
source to a new destination,

(3) algorithms for managing limited-size distributed caches mapping names to network
identifiers for recently accessed resources so that requests for specific resources can
usually be satisfied without expensive global searches,

(4) algorithms for finding a nearby instance of a large pool of identical resources, such
as an idle processor that can immediately execute a single task, and

(5) an algorithm for finding a physically close group of idle processors for co-scheduling
of several tasks that must be executed simultaneously since they interact closely.

2.1.3. A Comparison of Two Failure Recovery Algorithms for Trees

As a sample of the results that can be obtained from these analyses of specific algo-
rithms, here is a summary of the characteristics of two algorithms. Each locally replaces
a failed member of a tree of computers. The computers are embedded in a 2-dimensional
sheet and each has connections to a few neighbors. The first algorithm
(Promotion) locates a leaf node physically near the failed node and links it into the
tree as an in-place substitute. The second algorithm (Chaining) substitutes one of the
tree-children of the failed node for its missing parent, then recursively substitutes at each
lower level until a descendant which is a leaf and has no children is substituted for its
immediate parent.

For both these algorithms, it is assumed that there are: f immediate children under
each management node in the tree; h levels of nodes in each tree with the root at level 0:
an expected standard physical distance d from each lowest level h-2 manager to its leaf
children at level h-1; a time unit t needed for a message to travel a physical distance d;

198

J i .' *.'J ," ',' "'#,". -'-' eM - ", = #.'-" ." - - " 'W, " ' '""i"" " "" " "" "" "'" "'% " *x" " ,"t

and a packing ratio r for the expected value of grandparent-to-parent
versus parent-to-child physical distances at each level. For the purposes of this analysis,

2groups are assumed to be clustered in a plane, yielding r =f.

The general mode of analysis for each of the evaluated attributes of the algorithms
is to determine the effect of a failure at an arbitrary - level k, then multiply by the
number of nodes at level k (f), and sum over all levels (0<k,<h-1). Dividing by the

1 -1
total number of nodes (-) determines the expected value for failures uniformly dis-

f1-
tributed thoughout the network. For realistic tree fanout values near f = 9, each value
is dominated by the results of leaf failures. The measures of each algorithm include:

(1) Impact, the number of nodes directly affected by reconfiguration after one failure;

(2) Growth, the increase in total tree branch physical lengths per reconfiguration;

(3) Traffic, the product of the total number of messages times the physical distance
each travels for all messages generated for one reconfiguration; and

(4) Delay, the time for all reconfiguration messages to travel with the maximum paral-
lelism allowed, during the recovery from each failure.

For d the short internode physical distance at leaf level, for t the unit time to send
a message a distance d in the underlying physical network, and ignoring terms that are
insignificant for large values of N;f h- , the simplified values are:

Algorithm Comparison Equations

Measure Promotion Chaining

2 1
Impact P 2 + = 2+-

f -1

Growth d d
3r 3 [3r r:

Traffic d 2r+l-' 2 d 2r+2+
3r z (fJ)

Delay 2r 3 +3r2 +r+2 t 2(r+1)]
4

1*4

199

Assuming that fanout f =9, the values of the simplified expressions are:

Algorithm Comparison Values
(for Large Networks)

Measure Promotion Chaining

Impact 2.03 2.13
Growth 0.05d 0.40d

Traffic 6.8d 8.2d

Delay 1.06t 0.90t

The very simple Promotion algorithm is better both in terms of lessening expected
branch growth and in terms of the total message traffic impact on the communications
system. If all computing nodes in the network have equivalent computing and communi-
cation capabilities, the Promotion algorithm is preferred. If the network is non-
homogeneous because nodes at the higher levels generally have better access to commun-
ications or other resources needed for effective management of the network, then the
Chaining algorithm is preferred.

3. Conclusions

These studies are determining which distributed control algorithms can run
efficiently on many large computing systems. The emphasis throughout is on evaluations
for computing systems with thousands or millions of interconnected processing nodes.
Massive parallel systems are becoming economically feasible and justifiable. An under-
standing of how to structure parallel algorithms for them is urgently needed.

4. References

1. W. D. Hillis, The Connection Machine, MIT Press, Cambridge, MA, 1985.

2. G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton and J. Weiss, "The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architecture", Proceedings IEEE
1985 Intl. Conference on Parallel Processing, August 1985, 764-771.

3. D. Gajski, D. Kuck, D. Lawrie and A. Sameh, "CEDAR - A Large Scale
Multiprocessor", Proceedings IEEE 1983 Intl. Conference on Parallel Processing,
August 1983, 524-529.

4. C. Maples and et al, "Performance of a Modular Interactive Data Analysis System
(MIDAS)", Proc. 1983 Intl. Conf. on Parallel Processing, August 1983.

5. Tom Manuel, "Parallel Designs are Making Inroads", Electronics, 59, 10 (10
March 1986), 45-48.

6. Paul Walich and Glenn Zorpette, "Technology 86 - Minis and Mainframes", IEEE
Spectrum, 23, 1 (January 1986), 36-39.

7. Alexander Wolfe, "Full Speed Ahead For Software", Electronics, 59, 10 (10 'March
1986), 50-52.

200

8. Charles L. Seitz, "The Cosmic Cube", Communications of the A CM, 28, 1

(January 1985), 22-33.

9. John Beetem, Monty Denneau and Don Weingarten, "The GF11 Supercomputer",

IEEE Proceedings of 12th Annual International Symposium on Computer

Architecture, June 1985, 108-113.

10. Kai Hwang, "Multiprocessor Supercomputers for Scientific/Engineering

Applications", IEEE Computer, June 1985, 57-73.

11. Jaap Hollenberg, "The Cray-2 Computer System", Supercomputer, July September

1985, 17-22.

12. Olaf Lubeck and James Moore, "A Benchmark Comparison of Three

Supercomputers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2", IEEE

Computer, 18, 12 (December 1985), 10-24.

13. Jerry Lyman, "Supercooling Comes to the Forefront", Electronics, 59, 10 (10
March 1986), 48-50.

14. D. H. Lawrie, "Access and Alignment of Data in an Array Processor", IEEE
Transactions on Computers, C-24, 12 (December 1975), 1145-1155.

15. A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolf and M. Snir,
"The NYU Ultracomputer - Designing an MIMD Parallel Machine", IEEE
Transactions on Computers, C-32, 2 (February 1983), 175-189.

16. M. 0. Rabin, "Probabilistic Algorithms", in Algorithms and Complexity - New
Directions and Recent Results, J. F. Traub, (ed.), Academic Press, New York,
1976, 21-39.

17. L. D. Wittie and A. van Tilborg, "MICROS, A Distributed Operating System for
MICRONET, .A Reconfigurable Network Computer", IEEE Transactions on
Computers, C-29, 12 (December 1980), 1133-1144.

18. L. D. Wittie and A. J. Frank, "A Portable Modula-2 Operating System: SAM2S",
Proceedings AFIPS National Computer Conference, 53, (July 1984), 283-292.

19. C. Mohan and L. D. Wittie, "Local Reconfiguration of Management Trees in Large
Networks", Proceedings 5th Intl Conference on Distributed Computing Systems,
May 1985, 386-393.

20. A. J. Frank, L. D. Wittie and A. J. Bernstein, "Group Communication on

Netcomputers", Proceedings 4th Intl. Conference on Distributed Computing
Systems, May 1984, 326-335.

21. A. J. Frank, L. D. Wittie and A. J. Bernstein, "Multicast Communication on
Network Computers", IEEE Software, 2, 3 (May 1985), 49-61.

22. A. J. Frank, L. D. Wittie and A. J. Bernstein, "Maintaining Weakly-Consistent
Replicated Data on Dynamic Groups of Computers", Proceedings 5th Intl.
Conference on Distributed Computing Systems, August 1985, 155-162.

23. A. J. Frank, "Distributed Dynamic Groups on Network Computers", PhD Thesis,
Department of Computer Science, SUNY at Stony Brook, NY, August 1985.

201

THE DESIGN OF LOAD BALANCING STRATEGIES

FOR DISTRIBUTED SYSTEMS

Rafael Alonso

Department of Computer Science
Princeton University

Princeton, N.J. 08544
(609) 452-3869

ABSTRACT

In this paper we consider the problem of designing and selecting load balancing
mechanisms for distributed systems based on local area networks. In particular, we
will focus on the type of information needed to make balancing decisions and on the
desirable properties of the decision algorithms. We also describe our current approach
to this problem, which essentially consists of carrying out a series of experiments on a
prototype load balancing implementation. Finally, we present the insights we have
derived from our experimental results.

1. Introduction
Many of the currently existing computing environments consist of a heterogeneous

collection of of workstations and mainframes connected by a high bandwidth local
area network (LAN). One of the main benefits of working in a distributed system
created for such an environment is being able to share scarce resources with other
users of the network; but one resource that is often not shared is the processing capa-
city of the network nodes. In many systems, the scheduling of user jobs is individually
carried out by each processor, and the computations of the users logged on at any one
machine are performed locally. The decentralization of CPU management, coupled
with large differences in the numbers (and types) of users connected to each of the
nodes in the network, often can lead to situations where there are great disparities in
load among the machines on the network. For example, at our local computer center,
as the due date for a class assignment approaches, the processor assigned to the stu-
dents in that class becomes heavily loaded, while other machines are underutilized. ".
Although users can determine by themselves that an imbalance exists, and remotely
log onto another computer, we feel that, in order to prevent a chaotic situation and to
aid naive users, it is best to develop strategies that can solve the load balancing prob-
lem in an automatic way, much in the way that users now depend on virtual memory
techniques to manage their memory space.

We are currently exploring the design of load balancing strategies for LAN-hased

distributed systems. In this paiper, we describe some of the strategies that we are con-
si('ering for implementation, as well as the criteria we are using to deternin, bich
schemes are appropriate for a given environment.

202

In the next section we provide some details concerning our approach to the prob-
lem. Sections 3 and 4 deal with load metrics and decision policies respectively (these
terms are defined in Section 2). The last section of the paper discusses the current
state of our work and presents some preliminary conclusions.

2. Our Approach

Although load strategies have been studied in the past, most of this work has
been carried out within a theoretical framework (see [Chu1980] for a survey of some of
these approaches); moreover, some of the researchers carrying out those studies have
made simplifying assumptions that may not hold in practice. Also, there have been a
small number of load balancing implementations (for example, see[Hwang 182]), but.
as far as we know, the strategies employed were chosen without extensive study. Our
work differs from most of the previous research in that, while we are interested in
actually implementing a load balancing mechanism, we will not chose a strategy in an
ad hoc fashion, but rather, we plan to devote extensive study to the choice of strategy
to be programmed.

Before we describe our approach further, a few remarks are needed. A load
balancing strategy is composed of two parts, a load information aspect (i.e., what

information will be used to determine the load in the machines of the network), and a
decision policy (i.e., given the load information, how will it be used to decide where to
run a job). In order to speak meaningfully of a machine being "more loaded" than
another, we define a load metric as a real-valued function of the load information. For
example, the load information could be composed of the number of processes in the
CPU ready queue for a given interval; a possible load metric would then be the aver-
age number of ready jobs during the last minute. This metric is essentially the "load
average" metric provided by the UNIX 4.2 BSD [Leffier1984] uptime command. In
the next two sections we consider load metrics and decision policies in greater depth.

Our current study of the load balancing problem comprises three phases. First, to
consider what are suitable load metrics for our environment. Then, to list a number of
possible decision policies that make use of the load metrics being studied. Finally.
implementing various combinations of policies and metrics, in order to study their per-
formance for a number of synthetic workloads.

We have already developed a prototype implementation of a load balancing
mechanism, which can be used with different load strategies. It consists essentially of
a shell that can make scheduling decisions based on load information broadcast by
cooperating daemons (see [Alonsol986a] for more details). Our prototype now runs in
a laboratory consisting of a variety of SUN workstations, connected by an Ethernet %
[Metcalfe1976]. Althou-h experiments are still being carried out, we will brietly con-
ment on our current results in the concluding section of the paper.

3. Load Metrics ".".

The selection of a load metric requires a careful definition of" what is meait by
the load of a processor. It seems clear that load should be defined. nt ieast partlially.
in terms of a set or performance indices (such as CPU utilization or meani n niher of
I/0 rvquests). but it is less' clear that two different provesses shou ldt ,s the a in.e
deli ittion of load: for example. :il I/O intensive job will proha ly roi-, h I in .

203

......... e

--',

different way than a CPU-bound job. Whether the benefits, if any, of using different
load metrics for different tasks are sizable is not immediately obvious; at any rate, at
present we are considering only global load metrics. Our rationale for this decision is
twofold. In the first place, in our computational environment we typically do not
know the characteristics of the jobs being executed, and thus, cannot compute job-
specific load metrics. Secondly, we feel that a simpler technique has a better chance
of working well in an implementation than a more complex approach.

A compromise between global and job-specific load metrics is to compute a
different load metrics for each job class. The simplest such scheme would involve
categorizing processes as either CPU or I/0 bound. Although promising, this
approach would not be of interest in our system, since most user jobs obtain their data
(more precisely, all their pages) from a network file server. Thus, there is little one
can do (in terms of migrating the task) for I/O bound jobs, except to exclude them
from the load balancing algorithm. (Actually, this is equivalent to a load metric that
has the same value for all machines under all conditions.) More will be said about the
types of jobs that should not be migrated in the next section.

Another important issue is that, since load metric information cannot be con-
stantly broadcast (because it would be too costly), the rate at which such broadcasts
are made needs to be studied. The problem that arises is that machines are making
their job scheduling decisions based on possibly stale data. This could lead to -
unstable behavior; for example, an idle node could start receiving migrated jobs from
many other machines, and by the time it broadcast that it was overloaded, perhaps %
too many jobs would have been sent to it. We have already seen such behavior in our
previous study of the possible improvements of introducing load balancing strategies in
distributed database query optimizers [Alonso1986b].

Actually, the cost of frequent load information broadcasts involves two factors:
the cost of computing the load metric, and the overhead of sending and receiving the
messages over the network. One possible compromise would be to gather the load
information more frequently, but broadcast it at less frequent intervals. The rationale
for this is that, with this approach, each machine has a better idea of its local load,
and can start migrating all of its jobs when it is overloaded. One of the results
described in [Alonsol988b] suggests that, at least in the context of database jobs. this
strategy can be quite successful. We plan to determine if that result holds for general
purpose jobs.

A possible candidate for a load metric is the load average described above.
Another is the effective load average, defined as the load average divided by the pro-
cessor MIPS rate. A third is CPU utilization. The number of ready jobs plus the
number of disks requests per unit of time seems a more comprehensive measure of load
than a metric that involves solely the demand on the CPU. Another possibility is to
compute the utilization of the bottleneck resource at every machine (since the
throughput of a system is dominated by the scarcest resource, the tilization of this
critical resource is a good indication of the node load). Lastly. a binary metric ("idle'"
or "not_idle") would be an appropriate choice if we were interested in migrating jobs
primarily to unused machines on the network. 0urrently, we are planning to study
most of the metrics just described.

204

5, 'V'V P. %'V' % ~%V t_ " %

The are a number of issues involved in evaluating a load metric:
[1] The stability of a metric is important, because if it responds too quickly to minor

changes in system parameters it may lead to unstability in our load balancing
strategies. The measurement technique used to compute the metric is relevant
here (for example, exponentially smoothing a sample metric can improve the sta-
bility of the metric). k

[2] We are also interested in the generalizability of the metric, since we desire our
schemes to be useful for non-UNIX systems as well as being valid for a hetero-
geneous set of hardwar(configurations.

[3] Clearly, the implementability of the metric is of primary concern. Since we
intend to carry out experiments using the various metrics, the ones that are either
too difficult or too expensive to implement or to compute must be discarded.

[4] Finally, there must be empirical evidence that the metric to be implemented
actually reflects our intuitive notion of "load". This can be determined by experi-
mental study.
Before we leave this topic it should be pointed out that, clearly, a load metric is

only as good as the operating system statistics on which it is based. In the case of
UNIX 4.2 BSD, it is not clear that the statistics provided by the kernel can be trusted
completely. Thus, we also plan to carry out a study of the statistics gathering
software of BSD UNIX.

4. Decision Policies
Before we describe some of the decision policies that seem attractive, we will

touch upon some of the salient features of such policies. Policies can be categorized as
more static or more dynamic; for example, always using the same computational server
to ofload a machine would be a very static policy, while choosing the server at run-
time is more dynamic. Some policies require knowing varying amounts of information
about a process in order to schedule it (e.g., a strategy may require that we know if a
process is CPU or I/O bound). The scheduling decision may be made at a central site
or in a distributed fashion (we are only interested in the latter); also, the location of
the decision mechanism may impact the number of messages that have to be sent to
communicate load information. A key feature of any policy is whether it allows
preemption or not (i.e., whether we are allowed to keep migrating jobs after they start
executing); we will not consider such policies since we cannot currently implement
them in a UNIX environment. Some policies may limit the processors that may be
chosen; a possible strategy may be to let only idle nodes compete for tasks, or to con-
sider only machines with a certain MIPS rate for task allocation. The choice of
sender-initiated versus receiver-initiated balancing must be settled (i.e., whether to
allow busy nodes to look for an idle node, or to have idle nodes advertise their ability
to work). Finally. it is clear that some jobs should never be migrated; this may be so
for a variety of reasons: perhaps the jobs should only be run locally for security rea-
sons. or maybe tie computationatl lernants of the task are so slight that the overhead
of iioving it overshadmvs any possil)le performance gain. There are still many other
issu,,s to be coidiiler,,l: ilo we ,pt iniize for the current task or (10 ,we look at sets of,
task,. do we ,'xiriine (onlY Jo, lia have arrived at our l)ocl ,leisoin maker

.1-'
205

%'

mechanism or at all the incoming jobs in the network? do we remember previous task
assignments when we make a decision? which performance index do we focus on?

There are many policies that could be of practical use. Perhaps the most natural
policy is to send jobs to the "least loaded" machine. A variation that may prove more
stable consists of migrating jobs to any machine whose load is less than the local load
by a specified amount. In order to decrease the chance that all busy machines select
the same host to which they will migrate their tasks, each machine could choose the
destination randomly from the n least loaded processors (for some n). Another alter-
native is to only move jobs to idle processors. Finally, always sending the jobs of over-
loaded processors to a powerful computational server may be reasonable for some
environments.

In judging a decision policy we may consider a number of factors:
[11 As we mentioned above, the stability of the policy under imperfect information is

important, since we expect that imperfect information will be the rule rather than
the exception.

[2] We would prefer that the cost of the load balancing scheme be negligible com-
pared to its benefits (note that there are two types of costs, the costs to users of
using the system, and the cost to non-users of the added overhead of running the
decision mechanism).

[3] Also, the load balancing scheme must not force all the processors in the network
to guarantee a given level of service; in particular, some processors may refuse %i,
service or allow only certain classes of tasks to be assigned to them. Thus, the
amount of autonomy that machines have under a given policy is important.
(Note that the receiver-initiated policies mentioned above seem to simplify achiev-
ing this goal.)

[41 Finally, the amount of transparency in the load balancing scheme is also of crit-

ical importance, since it would be desirable to maintain users unaware of the fact
that their jobs may be running remotely.

5. Conclusions

In this paper we have presented our ideas concerning the implementation of load
balancing mechanisms. We have pointed out possible load metrics as well as sample
decision policies, and have detailed some of the relevant issues involved in making a
choice from the many possible strategies. It seems clear to us that the selection of a
load balancing strategy involves many complex choices which require careful study.
and it is certainly not clear a priori which strategy to pursue.

At the present time, we are actively involved in a series of experiments that
explore some of the ideas presented in this paper. Our previous work ([AlonsolS6a]
and (AlonsolO86b]) suggests that the gains due to load balancing can be quite sizable,
and our current results continue to be promising. Moreover, we feel that this area of
research contains many problems of both practical and research interest and merit
further study. A

206 A1
'XL,1.6:

References

Alonsolg86a.
Alonso, Rafael, Goldman, Phillip, and Potrebic, Peter, "A Load Balancing Imple-
mentation for a Local Area Network of Workstations," Proceedings of the IEEE
Workstation Technology and Systems Co "f-rence, March 18-20, 1986.

Alonsol986b.
Alonso, Rafael, "Query Optimization in Distributed Database Systems Through
Load Balancing," Ph.D. Dissertation, U.C. Berkeley, 1986.

Chul980.
Chu, W. W., Holloway, L. J., Lan, M., and Efe, K., "Task Allocation in Distri-
buted Data Processing," IEEE Computer, November 1980.

Hwangl982.
Hwang, K., Croft, W. J., Goble, G. H., Wah, B. W., Briggs, F. A., Simmons, W.
R., and Coates, C. L., "Unix Networking and Load Balancing on Multi-
Minicomputers for Distr. Proc.," IEEE Computer, April 1982.

Leffler1984.
Leffier, S., Joy, W., and McKusick, K., 4.2 BSD System Manual, Computer Sys-
tems Research Group, University of California, Berkeley, 1984.

Metcalfe1976.
Metcalfe, R. M. and Boggs, D. R., "Ethernet: Distributed Packet Switching for
Local Computer Networks," CACM, vol. 19,7, pp. 395-404, July 1976. a AMR

" ''

\\.,

207

ZIP

Experiments with Parallel Program Execution on a
Network of Workstations

Willy Zwaenepoel ° ,7
Department of Computer Science

Rice University " d

Houston, TX 77001

March 14, 1986

Abstract %

In this project we study the parallel execution of programs on a collection of
workstations connected by a local area network. So far, our work has focused on
developing a number of pilot applications, including a distributed Pascal compiler ,
and a distributed make facility. We intend to use these applications as an experi-
mental testbed for studying issues in problem partitioning, fault tolerance, machine
allocation, and monitoring and debugging of distributed programs.

1 Introduction

In recent years there has been an evolution away from centralized timesharing systems towards
systems consisting of workstations connected by a high-speed local area network to specialized

server machines. The main advantage of workstation-based systems is that each user has the
full power of a dedicated machine at his disposal. Therefore, performance depends less on the
overall number of users of the system.

Unfortunately, this advantage does not come for free. In particular, most workstation-
based systems do not allow convenient access to the computing power of other machines in the
system, even if those machines are idle. Centralized systems, in contrast, can typically make Z

all of their idle resources available to a single user. This weakness of most workstation-based
systems is particularly serious when one realizes that demand for computing power is highly
bursty making strict preallocation of resources highly inefficient. For instance, when compiling 0
a large collection of programs with the UNIX make facility, one could easily use the power of
many workstations if the compilations can be run in parallel. Nevertheless, one is essentially
restricted to the computing power of one's own workstation, regardless of the fact that a large
amount of computing power on other machines may be available.

This argument is not to be interpreted as one against workstation-based systems. Due
to the economics of VLSI and local network technology, it is currently more cost effective to %

build ten 2-MIPS machines and connect them by a suitable high-speed network than to build

*This research is supported in part by NSF Grant No. DCR-8511436 and by an IBM Faculty Development
Award.

208

- - ' -., ,,,-, , .. , - ,- , ,.,- . . .- .- ..- ,-., .-.. ., ,-... .,-,. - ..'%,

a single 20-MIPS machine. Also, sharing a single machine entails a substantial amount of
overhead for providing protection and fair sharing among users: a 20-MIPS machine shared by
ten users often appears less powerful than ten dedicated 2-MIPS machines. Nevertheless, we
see potential in using a collection of workstations in a more multiprocessor-oriented manner.
Such an arrangement is especially attractive if the workstations are diskless, thereby avoiding
the need to worry about the owner's local private storage.

We are using the V-System developed at Stanford University as the base tool for our re-

search [5, 4, 2]. The V-System is a relatively complete distributed operating system for a collec-
tion of SUN workstations connected by a 10-megabit Ethernet. It consists of a kernel resident
on each machine in the system and a collection of server processes. The kernels cooperate
to provide transparent (location independent) communication between processes. The server
processes provide the other services typically thought of as part of the operating system, such
as file access and network access. Additionally, a large number of application programs have
been written for the system, including a window system, text editors, a graphics editor, and
compilers for C and Pascal. Much emphasis in the design of the V-System has been placed on
high-speed interprocess communication. We believe highly efficient (network) interprocess com-
munication is essential if we are to investigate the limits of the granularity of the decomposition
that we can afford in a network environment.

The project described here was started in January 1986 with funding from the National
Science Foundation [1]. So far, we have concentrated on developing a small set of prototype
parallel programs. In particular, we have developed several approaches to parallel compila-
tion [3, 7] as well as a parallel implementation of the make program. These applications are

described in Section 2. While we continue to refine these applicationr we also intend to use
them as a testbed for investigating issues such as fault tolerance, machine allocation, and de-
bugging and monitoring of distributed programs. Our initial approaches to these problems are
described in Section 3.

2 Pilot Applications

2.1 An Experimental Parallel Compiler

A compilation task is composed of a number of phases including scanning, parsing, semantic
analysis, code generation, optimization and possibly assembly. Our approach to speeding up
compilation is based on the observation that scanning and parsing should take relatively little
time compared to the other phases of the compilation process. As a result, scanning and parsing

are done sequentially, while the other phases are executed in parallel. Given this observation, we
nued to find a framework for expressing semantic analysis and code generation that is amenable
to parallel execution. We use attribute grammars for this purpose. In an attribute grammar
specification, each nonterminal is annotated by a set of attributes. Semantic functions specify
the values of the attributes of nonterminals in a given production in terms of the values of other
attributes of nonterminils in the same production. From a language viewpoint, the strength of .

attribute grammars result from the fact that they provide a high-level, non-procedural definition . .-

of the semantics of a programming language. Efficient implementation of an attribute grammar ,

evaluator on a sequential machine is non-trivial, though. When considering a parallel machine, -

however, the applicative nature of an attribute grammar specification lends itself particularly
well to efficient parallel implementation. This applicative nature leaves the order in which

attributes are evaluated relatively unconstrained, and as a result, synchronization overhead is
kept to a minimum.

209

% N.

We have built a prototype implementation of this system for a sizable Pascal subset. A 0%
sequential parser builds the syntax tree and sends out subtrees for evaluation to a set of par-
allel evaluator processes. Each of those processes evaluates the attributes of its subtree and
communicates the attribute values with other evaluator processes. Finally, the root evaluator
sends back the 'code" attribute to the parser. Preliminary experiments with this prototype
show a speedup factor of 3 to 4 for 8 processors (the maximum currently available for our
experiments), with sequential execution speeds comparable to conventional compilers [3].

Much work remains to be done on this specific problem. First, we need to get a better
idea of the behavior of the parallel compiler in terms of computation, communication and
synchronization. Second, the algorithm used in the evaluator is a straightforward dynamic
algorithm. State-of-the-art sequential evaluators use a static evaluation algorithm whereby
dependency analysis is done at generation time and not at execution time. We wish to explore
the combination of static and parallel evaluation. Finally, a full implementation of a language
relevant to our research is desirable so that we can use the parallel compiler in our daily work.

2.2 A Parallel Make Facility

The standard UNIX make facility automates the compilation of source code files (and other types
of processing) by allowing the programmer to specify the dependencies among the various files
that make up a program and record instructions about iiow the results are to be built. In the
traditional, sequential version of make, the system buildq one target at a time. As a result,
complex targets that require the execution of many commands require a large amount of time.
Since a large number of these commands tend to be independent (for instance, compilations of
unrelated modules), many of these commands can be executed in parallel. Parallel execution
is accomplished by sorting the task dependency graph in topological order and starting up as
many cormnands in parallel as possible within the constraints of the dependency graph. The
main "controller" process awaits completion of the subtasks, updates the dependency graph
accordingly, and starts up new commands that have become ready.

The speedup resulting from parallel execution is very dependent on the actual dependency
graph. A single large compilation combined with a number of small ones tends to produce
only moderate speedups, even with large numbers of machines available. On the other hand,
if a large number of compilations of approximately equal length are required, nearly linear
speedup can be achieved with a large number of processors. Early experiments have also shown
very significant loads on the file server as a result of a parallel make (all of our workstations
are diskless). This suggests the need for improved caching strategies on the workstations and,
perhaps, the need for parallel program loading if a broadcast network is used.

3 Research Issues

3.1 Fault Tolerance

In recent years, a number of fault-tolerance mechanisms for distributed systems have been
developed. However, most of these mechanisms either restrict the types of applications that
can b,. run (for example, requiring them to be structured as a series of atomic transactions)
or require specialized hardware to support the communication between machines needed for
the fault tolerance. Also, these mechanisms tend to place a large amount of overhead on the I'
system in both increased computation and communication costs. What we would like is a simple,

.. %,

210O

~ K?2j,.>j<., - .1A

low-overhead technique to achieve fault tolerance that can be used with existing distributed
applications programs and standard workstation and local network hardware.

A popular method of achieving fault tolerance is to periodically checkpoint each process
(individually) and to log all message traffic which a process receives either on disk or with some %
special logging process on a separate machine. Then, if a process fails, it can be restarted from
its most recent checkpoint, and the messages which have been logged since that checkpoint can
be replayed to it, thus restoring its internal state to the point at which the fault occurred. The
frequency of checkpointing can be tuned to balance the expense of the checkpoint operations
against the time needed for recovery, but the logging must be done for each message that each
process receives, placing a continuous overhead on the operation of the system even in the case
where no faults ever occur.

The solution we are exploring is based on an analysis of the minimum-cost method of
accomplishing this logging [6]. Since the sender and receiver processes get a copy of each
message exchanged between them, it would be convenient if one of them could serve as the
log by saving a copy of the message in its own local memory. Unfortunately, the receiver can ..
not log the message in this way since the purpose of the logging is to be able to recover if the A
receiver fails. The sender, though, could log the message, except that it is also necessary to %
log the order in which messages were received which the sender does not normally know. We
believe that by having the receiver reply back to the sender with a message ordinal number, we
can have the necessary recovery information available at very little cost in performance.

3.2 Machine Allocation

Allocation of computational tasks to processors in a multi-machine environment has received
a great deal of attention, especially in theoretical work. However, relatively little experience
exists with real implementations. We hope to provide some experimental evidence on the
relative merits of different techniques that have been studied in a theoretical framework.

Given our environment, the problems of machine- allocation are compounded by a number
of extra complications. First, the machines are not dedicated to compute-intensive work. In %
first order, these machines should provide highly responsive interaction to their owners. These
"guest" computations should not be allowed to degrade interactive response, but at the same
time the execution time of the compute-bound jobs should be minimized. Second, due to the
relative abundance of CPU power when all machines are combined and the fact that compute-
bound tasks are generated rather sporadically, many of the common assumptions made in
previous studies do not seem to hold. For instance, CPU run queue length might not necessarily
be a very valuable indicator of load on a workstation, since it usually will be either 0 or 1. There
also seems to be little correlation between present and future load, unlike on timesharing systems
where the large number of users smooths out load fluctuations.

3.3 Monitoring and Debugging

Most of the measurements on our current distributed programs are done by ad hoc techniques.
Counters are inserted in selected places in the program, and network-wide monitors are occa-
sionally useful in getting system-wide measurements. More sophisticated tools for debugging
and performance monitoring are essential, however. We are interested in getting two kinds of
measurements. First, we would like to get a better characterization of local network traffic in an
environment of diskless workstations, especially when those workstations are heavily used for 77
parallel program execution. Older studies done in a less integrated environment indicate that

211

-4 N i '-.-, s

the load on a local network tends to be very low. In an environment of diskless workstations
where all secondary storage is accessed over the network and where programs execute on dif-
ferent machines, this evaluation needs to be reassessed. Second, we are interested in exploring w..

whether there is a way to combine communication traces with more traditional techniques for
debugging distributed programs.

4 Acknowledgements

The research group involved in this project consists of two faculty members (Guy Almes and ".
the author) and four graduate students (Rick Bubenik, Jerry Fowler, David Johnson and Allan
Porterfield). Hans-Juergen Boehm has been a key contributor to the parallel compiler effort.

References

[11 G. T. Almes and W. Zwaenepoel. Understanding and Exploiting Distribution. Technical
Report Rice COMP TR85-12, Department of Computer Science, Rice University, February
1985.

[2] E. J. Berglund et al. V-System reference manual. Computer Systems Laboratory, Stanford
University.

[31 H. J. Boehm and W. Zwaenepoel. An automatically generated parallel attribute grammar
evaluator for a loosely coupled multiprocessor. Department of Computer Science, Rice
University.

[4] D. R. Cheriton. The V kernel: a software base for distributed systems. IEEE Software, %
1(2):19-42, April 1984.

[5] D. R. Cheriton and W. Zwaenepoel. The distributed V kernel and its performance for disk-
less workstations. In Proceedings of the Ninth Symposium on Operating System Principles,
pages 129-140, ACM, October 1983.

[6] D. B. Johnson. Low-overhead fault tolerance mechanisms for distributed systems. Thesis
Proposal (in preparation), Department of Computer Science, Rice University.

[7] D. B. Johnson and W. Zwaenepoel. Macropipelines on a network of personal workstations.
Department of Computer Science, Rice University.

"o ..

212

I ' 0-%S JS' '.%.0%%~~%~ % ~ .

Session 11 Distinguished Lecture
by

Stephen Lundstrom

Microelectronics and Computer
Technology Corporation

Austin, Texas

Chal~persne Dharma P. Agrawal
North Carolina State University 5

213

Future Directions in Computer Architecture and Software -
The Year 2000

Dr. Stephen F. Lundstrom
Vice President and Program Director

Parallel Processing Program
Microelectronics and Computer Technology Corporation

Austin, Texas 78759

Preface
At the request of the National Aeronautics and Space Administration, the

National Research Council's Aeronautics and Space Engineering Board conducted
a workshop in January 1984 to project what the state of knowledge in aeronauti-
cal technology could be in the year 2000, if necessary supporting resources were
made available. Some 80 experts participated in the study. They were organized
into eight panels in the areas of aerodynamics; propulsion; structures; materials; j,
guidance, navigation, and control; computer and information technology; human
factors; and systems integration.

This author chaired the panel on computer and information technology. ,, 4

This paper provides a brief summary of the major findings of this panel together
with some more recent observations. The full report of the panel can be found in
the report Aeronautics Technology Possibilities for 2000: Report of a
Workshop (available from the Aeronautics and Space Engineering Board, Com-
mission on Engineering and Technical Systems, National Research Council, 2101
Constitution Avenue, N.W. Washington, D.C. 20418). A copy of the report of
the computer and information technology panel is included with this paper as an
Appendix. A paper based on this report, Computer and Information Tech-
nology in the Year 2000 - A Projection, by Lundstrom and Larsen is avail-
able in IEEE Computer Magazine, September 1985, Vol. 18, No. 9, pp. 68-79.

, ..,.g

August 14, 1986

214

Future Directions in Computer Architecture and Software -
The Year 2000

Dr. Stephen F. Lundstrom
Vice President and Program Director

Parallel Processing Program
Microelectronics and Computer Technology Corporation

Austin, Texas 78759

Computers are playing significantly larger roles in many application domains today. This
growth is expected to continue since information processing technology has advanced by a factor
of 10 every 5 years for the past 35 years and is expected to continue to do so. Breakthroughs in
device technology, from vacuum tubes through transistors to integrated circuits, contribute to this
rapid pace. This progress is nearly matched by similar, though not as dramatic, advances in
numerical software and algorithms. Progress has not been easy. Many technical and non-
technical challenges were surmounted. The outlook is for continued growth in capability, but will
require surmounting new challenges.

The technology forecast presented in this paper was developed by extrapolating current
trends and assessing the possibilities of several high-risk research topics. In the process, critical ,
problem areas that require resarch and development emphasis have been identified. The outlook
assumes a positive perspective; the projected capabilities are possible by the year 2000, and ade-
quate resources will be made available to achieve them.

The following summary of the outlook to the year 2000 is taken from the Computer Magazine
article cited above.

The capabilities, on the hardware side, will be based on components that are 100 to 1000
times more cost-effective, and size-effective than those available today, as well as on com-
ponents with major new capabilities such as arrays of solid-state sensors. Airborne systems
will be synthesized from heterogeneous collections of processors, some of which will execute
at rates up to 1,000 MIPS and will contain 50 Mword -f random access memory. Product
designers will have the use of workstations (with local processing rates of 100 to 1000 MIPS
on 32-bit operands, with 50 Mword RAM, and rotating storage of 10 to 100 Gwords) and
supercomputers (composed of 100 to 100,000 processing elements, with cumulative process-
ing power of up to 1000 Gflops and containing up to 10 Gwords of RAM). These various
systems will take advantage of software that will support distributed, heterogeneous data-
bases, real-time flight management and crew assistance, as well as multidisciplinary design
and manufacturing support tools.

Computer and information technology is supporting and enabling technology to the
aeronautics industry as well as many others of course, both directly and indirectly. The
technologies considered by the panel were those related to application within aeronautics
products directly, to research leading to the development of technologies needed for future
aeronautics products, to the design, development, and manufacturing of the aeronautics pro-
ducts, to the support of these products including maintenance, diagnostics, and provisioning,,.-
and to the use of the products, including support of the impact on the flight crew. The,"'"
benefits of computing are realized (indirectly, usually) through disciplines such as aero-
dynamics, and guidance, navigation and control. Therefore, the impact of computing on
aerospace technology or technology in other areas will be in direct proportion to the extent
to which these supporting disciplines exploit computing.

215

-i. L * I *

Assimilation of the technology into engineering practice will continue to be a major chal-
lenge. The critical technical impediments will be trustworthiness, size/performance, and
management of complexity. The major challenges are likely to come from the areas of
software development, system verification and validation, communication and control, and
programs used to augment human intelligence, such as expert systems, theorem proving, and
symbolic mathematics.

Possible Impact of Advancing Technology

The following paragraphs are based on information obtained since the report summarized
above was prepared.

Engineering/Manufacturing Infrastructure

A major problem in many industries is the shortening product life cycle combined with
future products which are more complex and seem to require more time and resources for their 'A

development. A dramatic reduction in development costs is critically needed. Major reductions
in development costs would include significantly reduced development time, allowing first delivery
of a product to be much earlier in the product life cycle. Future computer and information tech-
nology is expected to play a major role in accomplishing such a reduction. Some of the specific
areas where major contributions can be expected are:

1. Rapid Turn-Around Design,

2. Flexible Manufacturing,

3. Integrated Vendors, and

4. Micro Manufacturing.

All of the above factors relate to reducing product cost, either by reducing product develop-
ment costs, or by reducing the cost of manufacturing. In addition, all of these factors will be
enabled by advancing computer and information technology. Consider each of these briefly:

Rapid Turn-Around Design Computer and Information Technology will significantly change
the way in which complex designs are approached. New means for groups of people to efficiently

interact during the design process will be developed. The computer-based tools will significantly
enhance the individual's capacity to manage complexity. As a result, product design will require y
significantly less manpower for a given level of complexity, leading to reductions in the product
design cost and to reductions in the time needed to complete a design. Computer tools will
enable the implementation of special purpose hardware as easily as software can be developed.
These advances should reduce the time to introduction of a product, thus reducing the cost com-
mittments to the development of the product before cash return can be realized.

Flexible Manufacturing The advent of general purpose manufacturing handlers and tooling A

will allow the same manufacturing facilities to be utilized in the production of many different pro-
ducts, simultaneously. An example of this is how compiler technology is being used to develop
such a capability in the laboratories at the Center for Integrated Systems at Stanford University.
Dr. Brian Reid has been directing the development of a new language, called FABLE. FABLE is
an integrated circuit manufacturing process specification language. When a designer has com-
pleted the design of an integrated circuit, both the mask set (or mask set definition), and the -0
specification of the manufacturing process are released to the semiconductor "foundry". The
mask set controls the patterning on the integrated circuit device being produced. The FABLE
process specification is compiled into modules which control the various production facilities in
order to exactly duplicate the desired manufacturing conditions. The concept of silicon foundries.
where one vendor provides a manufacturing service to a designer, can be expected to be utilized
well in other manufacturing areas as well.

Integrated Vendors Both the design and manufacturing process of large, complex system,
often require the use of vendors (both during design and manufacturing). If the computer tools (in

216

%l

design, manufacturing, and accounting) of both the manufacturer and the vendors are appropri-
ately interfaced, the information flow between companies (now handled with slow manual pro-
cedures) could be streamlined with a resulting reduction in the overall time for product develop-
ment. If the manufacturer and vendor computer systems are integrated appropriately,
significantly fewer errors would be expected since all parties involved would have exactly the same
information, with much less chance for human error in the dissemination and coordination of the
information.

Micro Manufacturing Once manufacturing facilities are automated and generalized
sufficiently that a broad range of manufacturing duties can be accomplished on the same equip-
ment, small flexible factories can be expected to be created near the major centers of demand.
These small, flexible factories would receive specifications of what to manufacture through an
electronic ordering process. Finished goods would already be near the customer, with a significant
reduction in shipping costs.

Impact of Non-Technical Decisions

One of the challenges of any long-range forecast is to second guess what the actual motivat- A"a
ing conditions will be to actually drive the development of technology. These conditions were P
studiously avoided in the report summarized earlier. Following is a brief discussion of three possi-
ble motivating conditions and their impact on the advance of computer and information technol-
ogy.

1. Oil Crisis

2 Accounting/Office Management %

3 Factory Automation

A sustained oil crisis would probably result in neighborhood centers containing offices of
nearby residents, micro factories, child care centers, post office, neighborhood shops, etc. Locally
centered life would not only reduce the consumption of oil, the requirements for interconnected
offices and businesses would grow substantially. Community center workplaces and micro fac-
tories require significant advances in distributed computing as well as security so that the many
companies represented in such a heterogeneous workplace could feel confident that their portion
of the workplace is free from spying eyes.

As the cost of computing plummets even faster, the traditional tradeoffs between the cost of
employees and the tools which they use changes rapidly. The productivity of people in the work- ..

place, even in many office management and administrative roles, will become ever more impor-
tant. Computer and information technology will be used to significantly improve the productivity
of these workers.

The factory automation necessary to implement the flexible factories and the micro factories
will likely cause displacement of workers. This rapid change can be expected to encourage the
development of a new, computer-based education industry to serve the needs to rapidly retrain
displaced workers.

The Future - 2000 and Beyond

A new computer organization, inductive machines, may be available in the future. This
term, coined by Lipovski and Malek at the University'of Texas, refers to a system which can %
begin with a functionally complete system containing at least one of each subsystem. The system N,.
can then be expanded by adding a copy of the initial system with the resulting system acting the
same as the basis system, but faster. As more and more speed is needed, additional copies of the
initial basis system are added. At present, such an inductive organization seems feasible. %
although the system's speed may not increase as fast as the costs when the size is increased.
However, the existence of inductive applications is not yet clear.

217

In today's terminology, we say that a computer "solves" our problem. However, to be more ,
precise, we start with a problem, we determine how to solve the problem, we prepare a set of pre- 4,% a

cise instructions to a computer which, when executed, will implement the solution which we%
invented. With the advent of complex expert systems in the future, users should be able to
approach a computer with a description of their problem and expect the computer to determine
how to solve it. We might say that such a computer is "problemmed" rather than "pro- %
grammed".

When trying to determine what markets will motivate developments in the future, one can
identify many new, potential uses of computers and systems which they will be a part of. We
should not forget, however, that businesses will still be doing accounting, with this possibly being
the most prevelent application of all since each business, and possibly each worker would need to
be using such services.

A last mention about an area often overlooked in discussions of future directions in comput-
ing, that of real-time processing. Real-time applications historically have not attracted the atten-
tion of researchers interested in the development of tools and architectures suited to such systems.
Applications are predominately developed using assembly language because the time cost of each -

instruction in a program is easily identified. However, once highly concurrent systems are avail- *
able, even the use of assembly language will not be sufficient to determine, a priori, the actual .. :.e
flow of execution across time. New tools, trom language constructs to define time orders, con-
straints and dependencies in applications to time constraint enforcers in future systems, are badly
needed. Enough research is now beginning that these needs may alo be addressed reasonably' P. -

well by the start of the twenty-first century.

218

-,.%

,%-...

J:,'..

2 18 '" #' ', C

Session-12: Concurrency Control

Chairperson: John Zavada
U.S. Army Research Off ice

Z

219

~~~ -------



DISTRIBUTED QUERY PROCESSING-

PRESENT STATUS AND FUTURE DIRECTION

C. T. Yu and K. C. Guh

Department. of Electrical Engineering and Canputer Science
University of Illinois at Chicago

Chicago, Illinois 60680

1. Summary

The aim is to construct a powerful distributed query processing system,
which is suitable for local area networks, long-haul networks and mixed
networks where local area networks are interconnected by long distance lines.
The system will be capable of processing logical queries (e.g., Prolog) as
well as ordinary relational queries (e.g., Ingres types of queries), be able
to learn to process queries more efficiently through being use and be able to
adapt itself to varying envirortnents (e.g., partial system crash
surviability).

2. Present status: Semi-join algorithm and replicate algorithm

Distributed query optimization is an important factor for the performance "
of a system with databases distributed in a network. Many distributed query
processing algorithms [ApHY, BeCh, BeGo, CDFG, ChHo, BlLu, ChBH, Chanl, Chan2,
ChLil, ChLi2, ChLi3, EpSW, GoSH, HeYa, Luk2, SDDIV1, SDD2V2, WoKa, Wong, WOHL,
Yaos, YCTB, YLCC, YuOz] have been proposed. Most of them can be classified i
into two categories. The first category, semi-join algorithms [ApHY, BeCh,
BeGo, CDFG, ChHo, BlLu, ChBH, Chanl, Chan2, ChLil, ChLi2, ChLi3, GoSH, HeYa,
Luk2, SDD1V1, SDD2V2, WoKa, Wong, WOHL, Yaos, YCTB, YLCC, YuOz], emphasizes on
the reduction of the amount of data transferred across sites in networks.
These algorithms are suitable for databases distributed in long-haul networks.
The other type of algorithms, replicate algorithms [EpSW, YGCC, YGZT, TBCDI,
emphasizes on the reduction of local processing cost by promoting parallel
processing in different sites, though canmunication cost is taken into
consideration. These algorithms are suitable for databases distributed in
local area networks. We will briefly describe what we have accomplished in
these two categories. Our algorithms [YCTB, YGCC, YGZT] are intended for ad
hoc queries, unlike enumerative algorithms ([ChHu, LMHL, WOHL]) which are more
suitable for repetitive queries. Standard relational terminology can be found
in [Date, Ullm].

p..

2.1. Semi-Join algorithm

A semi-join from relation R to relation R on attribute A [BeC,
denoted by R1 -A-> R1 , is defin9d to be the join af Ri with Rj on A projected
back onto the attributes of R . If Ri and Rj are in different sites, the
semi-join operation can be performed by projecting Ri on A, sending the
resulting unary relation to the site containing Rj and then joining with the
relation R on A. In this way, the amount of data transfer will be smaller
than that o" sending the entire relation R. Furthermore, the semi-join

220

-A- , A -A . .',.'



operation eliminates tuples of Rj that do not have a common value with R."
projected on A. Thus, the operation always reduces the right-hand operand, s.
that if it is to be transferred to another site, less data transfer will be
required.

The algorithm has been reported in [YCTB, YCTBL]. It is similar to many
existing distributed query processing algorithms [ApHY, BlLu, Chanl, Chan2,
ChHo, ChLil, ChLi2, ChLi3, HeYa, SDD1, etc.] in executing a sequence of semi-
joins [BeCh] to reduce the sizes of relations referenced by the query, before
assembling them in a site to obtain the answer. However, it has the following
additional desirable features: (i) The algorithm determines the relations .1
that need not participate in later operations after the execution of sane
semi-joins; as a result, communication and local processing costs due to the
processing of those relations are saved. (ii) All semi-joins involving
relations identified in (i) can either be discarded or replaced by better
semi-joins; as a consequence of (i) and (ii), the algorithm can be shown to
yield better performance than the SDDf- algorithm [YCTB1, YCTBL]. (iii) For
each semi-join involving horizontally fragmented relations, it determines a
strategy with least communication cost to execute the semi-join. (iv) It
makes use of redundant copies of relations to reduce communication cost and
promote parallelism. (v) Semi-joins are executed dynamically (i.e. as soon as
a semi-join is planned, it is executed and the number of tuples of the reduced
relation is returned) so that the errors in estimating the cost and the
benefit of executing the next semi-join are reduced. Furthermore, if
execution errors or site failures are encountered, alternate strategies may be
invoked.

2.2. Replicate algorithm

The replicate algorithm [YGCC, YGZT] makes use of semanatic information
so that certain distributed queries can be processed locally without data
transfer with respect to the join clauses of the query. A simple algorithm is
given to recognize the "locally processable queries". For non-local
processable queries, a simple "fragment and replicate" approach [EpSW] is
used. The approach chooses a relation to remain fragmented while replicating
the other relations referenced by the query at the sites of the fragmented
relations. However, unlike [EpSW], our algorithm takes into considerations
not only the amount of data processed and transferred but also the presence or
absence of fast access paths (e.g. indices), which have a very significant
effect on local processing cost, and different processing speed at different
sites. If the fragments of the chosen relation are not moved, then a linear
time algorithm that minimizes the response time can be found; otherwise, the
problem can be shown to be NP-hard [YGCC]. In the latter situation, heuristics
are suggested. Experimental results given in [YGZT] show that the heuristics
give good approximation. Details can be found in [YGCC, YGZT].

When all the relations referenced by a query are unfragmented, it may be
desirable to partition a relation into fragments before the replicate strategy
is applied. An optimal algorithm to choose the partitioned relation and a set

of processing sites is given in [YGBC].

3. Future directions

We believe that the semi-join algorithm and the replicate algorithm

should be modified to allow (a) integration, (b) adaptation and (c) be capable ,.

221 ' '



of processing logical queries.

(a). Integration

Both replicate algorithm and semi-join algorithm suffer from being too
restrictive in the sense that they are suitable for only a particular networkZ
envirorinent (i.e., local area networks or long-haul networks) and do not take
advantage of the features of one another. It is believed that a semi-join ,
operation is useful in reducing not only communicaiton costs but also local '.,
processing costs [VaGa]. Furthermore, if a relation can be eliminated after
executing sane semi-joins [YCTB], the chance of lowering further local
processing costs and canmunication costs is greatly enhanced. We are
developing an integrated algorithm (integrate semi-join and replicate
algorithms) [YuGC]. The feature of the algorithm is briefly described as
follows.

The concepts of cost, benefit and profit (benefit - cost) of executing a
semi-join is also used as in other semi-join algorithms for long-haul networks
(e.g., [SDD1, YCTB], except they are generalized in two ways. First, local
processing cost as well as data canmunication cost are incorporated. Second,
benefits and profits are defined at each processing site (as determined by the
replicate algorithm). We also introduced the concept of the relative profit.
Let Res be the response time and Total be the total cost (communication costs
and local processing costs) at a site before performing a semi-join. The
relative profit at this site due to performing a semi-join is defined to be
Res - Total + profit. The smallest relative profit among those of a semi-join
at all processing sites is defined to be the minimum relative profit of the
semi-,join. If the minimum relative profit of a semi-join is greater than
zero, then the response time can be reduced by executing the semi-join. In
other woras, for those sites which have total costs close to Res before
executing the semijoin, we need profits > 0 to find the semijoin worthwhile
executing. But for those sites which have total costs much less than Res,
though the profits may be less than 0, the semijoin is still worth executing
as long as its final response time < Res. The extension of the concept of the
minimum relative profit of a semi-join provides a vehicle to select semi-
joins. The semi-join having the largest minimum relative profit among all
possible semi-joins is chosen first, then the process is repeated to choose
the next semi-join having the largest minimum relative profit and so on. In
this way, semi-joins are incorporated into the replicate algorithm.

The integrated algorithm is to be used not only in local area networks or
long-haul networks but also in mixed networks. If a query can be processed
within a single local network, then the integrated approach given above is
likely to yield a good strategy. Suppose that a query has different fragments
spanning a number of local networks. Each query fragment may be processed
using the integrated replicate algorithm. Then the query unifying the
different query fragments may be processed using the semi-join algorithm.
Whether this is a reasonable approach has yet to be investigated.

(b). Adaptation
..-

A powerful query optimizer should be able to yield not only a good
strategy for processing a query but also adapt itself to varying environments
by acquiring knowledge from executing previous queries.

222

% % %



There are a number of situations in which tne experience or tainec in
execution of queries will be useful in speeding up the execution of future
queries. Some of these are given as follows.

(I) After executing a semi-join of the form R i -A-Rj, if we find that R I is
not reduced, then R.(A) is known to be a subset of Ri(A). This a:lows
us to save in the pro~essing of certain queries containing join clauses
of the form R A - R. A. More information can be found in [yL.G,].

(ii) The cost of executing a step in each of our two algorithms (the
replicate and the semi-join algorithms) is estimated. When the step is
executed, the actual cost is returned due to the dynamic nature of our
algorithms. If there is a significant difference between the estimated
cost and the actual cost, the estimated cost is increased or decreased
by a fraction of the difference between the two costs. As an example, -
suppose the step is to execute a data transfer in a long-haul point-to-
point network and the actual cost is a lot higher than the estimated
cost. Then the phenomenon may indicate that the traffic between the two
sites is congested. The estimated cost will be increased and as a
result, data transfer between the two sites in the near future may be
replaced by data transfer involving different sites if the alternative
is acceptable and cheaper. Similarly, if the step is the execution of
some local operations at a site and is found to be a lot more expensive
than estimated, then the site may be overloaded. With the estimated
cost increased, equivalent operations will automatically be transferred
to other sites so as to achieve load balancing [CaLL,Ston]. More
details can be found in [YLGT].

(iii) It is possible that there are some situations in which the algorithms
may perform poorly, especially in a mixed network environment. Some
users, having certain local knowledge may be able to provide strategies

for some queries with better performance than our algorithm. We have
designed a graphical interface [YLGW] in which users can specify their
strategies by stating the sequence of semi-joins to be executed, or the
relation that is to remain fragmented and their processing sites, or
some combination of the two. The user strategy is executed. If the
actual cost of the user's strategy is significantly less than the

estimated cost of the system's strategy, then the user will be asked to
explain the basis of his/her strategy. The user's strategy will also be
saved by the system for later examination. In some situations, an
automatic analysis is performed and the user is not required to provide
the reasons for his/her strategy. It is hoped that knowledge which is
not exploited by our igorithms will be unveiled by either experienced
or lucky users anc then the knowledge will be acquired by our
algorithms.

In addition, query optimization algorithms in highly available systems
(e.g. [Kim, BhLi]) must be able to adapt to the current status of the sites ,.
and communication lines. In particular, they must respond to system failures(
when primary location contents are lost), media failures ( when volumes of
secondary storage are lost), and network partitionings ( when two or more

subsets of system sites lose the ability to communicate with each other).
(Communication line failures that do not partition the network can be masked
by message re-routing). When any of these failures is announced by the

223

N .71 N V

• V" "



database operating system, a query optimization aigoritr. must acjuts :t -Z

execution strategies by excluding failed sites, or sites in foreign partitions
from its list of available resources. Depending on the partitioning policy

enforced by a given database management system, it may also be necessary to
cease accessing certain data ( sometimes all data ) in a certain partition (
sometimes in all but one partition )[BhLi]. After recovery from a failure,
announced by the database operating system, the query optimization algorithm
should adjust its execution strategies again.

(c). Logic queries

There are a number of proposals to optimize logical queries, i.e.,

queries are expressed in first-order logic as a collection of Horn clauses
(see, for example, [HaLu, loan, JaCV, BMSu, SaZa, Nang, Ullma, Warr]). Our
feeling is that while the ideas presented are reasonable, they have to be
evaluated with realistic database systems. For example, the strategy in

[Warr] suggests the rearrangement of subgoals so that the subgoal to be V
executed next is the one with least expected number of alternatives. It is
assumed that all attributes are indexed and therefore all tuple accesses are
equally costly. In realistic database environment, sane attributes of certain
relations have fast access paths, while others do not, as explained in the
cost model of the replicate algoritm [YGCC, YGZT]. Thus, different tuples may
be accessed with different costs.

Evaluation of a relation at a time [Ullma] instead of a tuple at a time

is realistic in database environment. However, cost equations are not
provided, which may prevent the construction of optimal or near-optimal

strategies. [HaLu] introduced 3 rather general algorithms to process linear
recursive queries. However, the bounding of variables are not considered. The
analyses provided by [loan, .Nang] are extremely useful but have applied to
very restrictive class of queries. We believe that their analyses when

applied to more general queries will yield very useful results.

Our approach is to modify existing proposals (for example[GaMN, HaLu,
loan, NaHe, Nang, Warr, Ullma]), extend the research to distributed
environments and test the performance in actual networks. Algorithms will be
refined based on experimental observations.

4. Aim

The aim is to develop an algorithm that is capable of processing

efficiently relational and logical queries in a general and dynamic
environment. In order to accomplish this, it is essential that realistic
experiments be performed on actual networks to gain understanding of the
effect of different steps on performance. ,-

REFERENCES

[ApHY] Apers P., Hevner A. and Yao S. B. OPTIMIZATION ALGORITHM FOR
DISTRIBUTED QUERIES. IEEE Transactions on Software Engineering, 1983.

[BeCh] Bernstein P. A. and Chiu D-M. W. USING SEMIr-JOINS TO SOLVE RELATIONAL
QUERIES. JACM, 1981 , pp. 25-40.

[BeGo] Bernstein P. A. and Goodman N. THE THEORY OF SEMI-JOIN. Technical
Report, CCA, Nov. 1979.

[BhLi] Bhargava, B. and Lilien, L., RELIABILITY ISSUES IN DISTRIBUTED

224 '

a -- •"-•" ]



DATABASE SYSTEMS. Technical Report 82-I , Dept. of Computer Scienc, uni,.
of Pittsburgh, Pittsburgh, PA, Sept. 1982; to appear in Concurrency
Control and Reliability in Distributed Systems, B. Bhargava, New York, Van

Nostrand Reinhold.
[BiDT] Bitton, D., DeWitt, D. and Turbyfil, C., "Benchmarking DataDase

Systems: A Systematic Approach", VLDB, 1983. %
[BlLu] Black P. A. and Luk W. S. A NEW HEURISTEC FOR GENERATING SEMI'-JCIN

PROGRAMS FOR DISTRIBUTED QUERY PROCESSING. IEEE COMPSAC, 1982.
[BrTY] Brill, D., Templeton, M. and Yu, C. "Distributed Query Processing

Strategies in Mermaid : A Frontend to Data Management Systems", IEEE Data
Engineering, 1985, pp. 211-218.

[Brit] Britton Lee Inc. "1IDM 500 Software Reference Manual", version 1.3,
September 1981.

[Call] Carey, M., Livny, M. and Lu, H., "Dynamic Task Allocation in V
Distributed Database Systems", IEEE Distributed Computing Systems, 1985.

[CDFG] Chan A., Dayal U., Fox S., Goodman N., Ries D. and Skeen D. OVERVIEW
OF AN ADA COMPATIBLE DISTRIBUTED DATABASE MANAGER. ACM SIGMOD 83, PP.
228-242.

[CePe] Ceri, Stefano and Pelagatti, Giuseppe, "Distributed Databases
Principles and Systems", McGraw-Hill Book Company, 1984.

[Chanl] Chang J. M. A HEURISTIC APPROACH TO DISTRIBUTED QUERY PROCESSING.
VLDB, 1982.

[Chan2] Chang J. M. QUERY PROCESSING IN A FRAGMENTED DATA BASE ENVIRONMENT.
Bell Lab., Technical report, 1982.

[ChBH] Chiu, D. M., Bernstein, p., and Ho, Y. C., "Optimizing Chain Queries is
a Distributed Database System", SIAM J. Comput., February 1984.

[ChHo] Chiu D-M. W. and Ho Y. C. A METHOD FOR INTERPRETING TREE QUERIES INTO
OPTIMAL SEMI-JOIN EXPRESSIONS. ACM SIGMOD, 1980, pp. 169-178.

* [ChHu] Chu, Wesley W. and Hurley, P., "Optimal Query Processing for
Distributed Database Systems", IEEE Transactions on Computers, Vol c-31 ,
No. 9, Sept. 1982, pp. 835-850.

[ChLil] Chen, A. L. P. and Li, V. 0. K. "Deriving optimal semi-join programs
for distributed query processing", Proc. IEEE INFOCOM, San Francisco,
California, April 1984.

[ChLi2l Chen, A. L. P. and Li, V. 0. K. "Optimizing star queries in a
distributed database system", VLDB, Singapore, August 1984. A".

[ChLi3] Chen, A. L. P. and Li, V. 0. K. "Improvement algorithms for semi-join
query processing programs in distributed database systems", IEEE
Transactions on Computers, Nov. 1984.

[Date] Date, C. J. "An Introduction to Database Systems", Addison-Wesley,
Reading, Mass., 1977.

[Daya] Dayal, U., "Evaluating queries with quantifiers. A horticultular
approach", ACM Symposium on Principle of Database Systems, 1983, pp. 125-
136.

[EpSW] Epstein R., Stonebreaker M. and Wong E. DISTRIBUTED QUERY PROCESSING
IN RELATIONAL DATABASES SYSTEM. ACM SIGMOD 1978, pp. 169-180.

[GaMN] Gallaire, H., Minker, J. and Nicolas J. M., "Logic and Databases: A
Deductive Approach", ACM Computing Survey, 1984.

[GoSh] Goodman N. and Shmueli 0. TRANSFORMING CYCLIC SCHEMES INTO TREES. ACM
SIGACT-SIGMOD Conference on Principles of Databases, 1982.

[HaLu] Han, Jiawei and Lu, Hongjun, "Some Performance Results and Recursive

Processing in Relational Database Systems", IEEE Data Engineering, 1986,
App. 533-539.

[HeYa] Hevrer A. and Yao S. B. QUERY PROCESSING IN DISTRIBUTED DATABASE
SYSTEMS. IEEE Transaction on Software Engineering, Vol. 5, No. 3, 1979,

225

•- 'A o ,I % . " • . - . o . . .~ -. • . .. - - . - . - - . . . . o . - o . . . - . . - . . - . . '. - . .- . - .



pp. 1776187.

[loan] Ioannides, Y., "A Time Bound on the Materialization of Some recursively

Defined Items", VLDB, 1985, pp. 219-226.
[JaCV] Jarke, M., Clifford, J. and Vassilion, Y. "An Optimizing Prolog

Front-end to a Relational Query", ACM SIGMOD, 1984.
[JaKo] Jarke, M. and Koch, J., "Query Optimization in Dataoase Syste ", in

ACM Computing Surveys, June 19814.
[KaYo] Kambayashi, Y. and Yoshikawa, M., "Query processing utilizing

dependencies and horizontal decomposition", ACM-SIGMDD International
Conference on Management of Data, San Jose, CA., May 1983. pp. 55-67.

[KaYY] Kambayashi, Y., Yoshikawa, M. and Yagima, S., "Query processing for
distributed databases using generalized semijoins", A M-5I2.. Y* .. D
International Conference on Management of Data, Orlando, Fla., June 1982.
pp.151-160. ,

[KeYa] Kerschberg L. and Yao S. B. OPTIMAL DISTRIBUTED QUERY PROCESSING.

Bell Lab., Holmdel, 1980.
[Kim] Kim, W., "Highly Available Systems for Database Applications", ACM P%

Computing Survey, March 1984, pp. 71-98. '%

[LMHL] Lohman, G., Mohan, C., Hass, L., Lindsay, B., Selinger, P. and Wilms,
P., "QUERY PROCESSING IN R*"1 IBM Research Report RJ4272, April, 1984.

[Luk2] Luk W. C. and Luk L. OPTIMIZING QUERY PROCESSING STRATEGIES IN A
DISTRIBUTED DATABASE SYSTEM. Simon Fraser University, Burnaby, B. C.
Canada.

[NaHe] Naqvi, S. A. and Henschen, L. T. "On compiling queries in recursive

first-order databases", JACM 1984, pp.47-85.
[Nang] Nanghton, J., "Data Independence Recursion in Deductive Databases", ACM

SIGACT-SIGMOD, 1986, pp. 267-279.
[Rein] Reiner D. (guest editor) IEEE Database Engineering, Special Issue

Onuery Processing, Sep., 1982.
[SDDIV1] Goodman N., Bernstein P. A., Wong E., Reeve .C. and Rothnie J. B.

QUERY PROCESSING IN A SYSTEM FOR DISTRIBUTED DATABASES (SDD-1). Technical
Report, CCA 1979.

[SDD1V2] Bernstein P. A., Goodman N., Wong E., Reeve C. and Rothnie J. B.

QUERY PROCESSING IN SDD-1: A SYSTEM FOR DISTRIBUTED DATABASES. TODS, Vol.
6, No. 4, Dec. 1981, pp. 602-625.

[SaZa] Sacca, D. and Zaniolo, C., "On the Implementation of a Simple Class of
Logic Queries for Databases", ACM SIGACT-SIGMDD, 1986, pp. 16-23.

[SeAd] Selinger, P., and Adiba, M. "Access Path Selection in Distributed
Database Systems", Proceedings of The First International Conference on
Distributed Data Bases, Aberdeen, 1980.

[TBHK] Templeton, M., Brill, D., Hwang, A., Kameny, I., and Lund, E. "An

overview of the Mermaid system - A frontend to heterogeneous databases",
IEEE Eascon83, Washington, Sept. 1983.

[TBCD] Templeton, M., Brill, D., Chen, A., Dao, S. and Lund, E. "Mermaid

Experences with Network Operations", IEEE International Conference on Data
Engineering, Feb. 1986.

[Ullm] Ullman J. D. PRINCIPLES OF DATABASE SYSTEM. Computer Science Press,

2nd edition, 1982.
[Ulima] Ullman, J. D. "Implementation of Logic Query Languages for

Databases", ACM SIGMCD, 1985 reprinted in ACM TODS Sept. 1985, pp. 259-
321.

[VaGa] Valduriez, Patrick and Gardarin, Georges, "Join and Semijoin Algorithms
for a Multiprocessor Database Machine", ACM Transactions on Database
Systems, March 1984. pp. 133-161.

[Warr] Warren, D. "Efficient Processing of Interactive Relational Database

226

b ~ ~ !' ~ . ~ ~ ~ % ~ . \,~IJm%~% ~ '~***-

.. .



Queries Expressed in Logic", VLDB, 1981, pp. 272-281.
[WOHL] Williams et. al. R*: AN OVERVIEW OF THE ARCHITECTURE. Proc. 2nd

International Conference on Databases, 1982.
[WoKa] Wong, E. and Katz, R. H. "Distributing a database for parallelism",

ACM SIGMOD, 1983, pp.23-29.
[Wong] Wong E. RETRIEVING DISPERSED DATA FROM SDD-1: A SYSTEM FOR DISTRIBUTED

DATABASES. Berkeley Workshop on Distributed Data Management and Computer
Networks, Berkeley, 1977.

[Yaos] Yao, S. B. "Optimization of Query Evaluation Algorithms", ACM TODS, Vol
4, No. 2, June 1979, pp. 133-155.

[YCTB] Yu C. T., Chang C. C., Templeton M., Brill D. and Lund E. ON THE
DESIGN OF A DISTRIBUTED QUERY PROCESSING STRATEGY. ACM SIGMOD, 1983, pp.
30-39.

[YCTBL] Yu, C. T., Chang, C. C., Templeton, M., Brill, D., and Lund, E.
"Mermaid: An algorithm to process queries in a fragmented database
envirorment", IEEE Transactions on Software Engineering, August, 1985, pp.
795-810.

[YGBC] Yu, C. T., Guh, K. C., Brill, D., and Chen, A.L.P., "Partitioning V
Relation for Parallel Processing in Fast Local Networks", Dept. of EECS,
Univ. of Illinois at Chicago, 1986.

[YGCC] Yu C. T., Guh K. C., Chang C. C., Chen C. H., Templeton M. and Brill D.
AN ALGORITHM TO PROCESS QUERIES IN A FAST DISTRIBUTED NETWORK. IEEE
Real-Time Systems Symposium 1984, pp. 115-122.

[YGZT] Yu, C. T., Guh, K. C., Zhang, W., Templeton, M., Brill, D., and Chen, .
A., "Algorithms to process Distributed Queries in Fast Local Networks", "we
University of Illinois at Chicago, August 1985.

[YLCC] Yu C. T., Lam K., Chang C. C. and Chang S. K. A PROMISING APPROACH TO
DISTRIBUTED QUERY PROCESSING. Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, Feb. 1982, pp. 363-390.

[YLGT] Yu, C. T., Lilien, L., Guh, K. C., Templeton, M., Brill, D. and Chen,
A., "Adaptive Techniques for Distributed Query Optimization",
International Conference on Data Engineering, Los Angeles, Feb. 1986. a

LYLGW] Yu, C. T., Lilien, L., Guh, K.C. and Wu, E. "A Graphical Interface for
Learing in Distributed Query Processing", Dept. of EECS, Univ. of Illinois a.
at Chicago, 1986.

[YSLCa] Yu, C. T., Siu, M. K., Lain, K., and Chen, C. H. "Adaptive File
Allocation in a Star-Network", IEEE COMPSAC 1983, pp.537-546. reprinted in
IEEE TRANSACTIONS on Software Engineering, Sept. 1985.

[YSLCb] Yu, C. T., Siu, M. K., Lam, K., and Chen, C. H. "File Allocation in
Distributed Databases with Interaction Between Files" VLDB, Oct. 1983,
pp.2 4 8-259.

[YSLSJ Yu, C. T., 3uen, C., Lam, K., and Siu, M. K. "Adaptive Record
Clustering", ACM Transaction on Data Base Systems, June 1985.

[YuGC] Yu, C. T., Guh, K. C., and Chen, A.L.P., "An Integration for Two
Distributed Query Processing Algorithms", Dept. of EECS, Univ. of Illinois
at Chicago, 1985.

[YuOz] Yu C. T. and Ozsoyoglu M. Z. AN ALGORITHM FOR TREE-QUERY MEMBERSHIP OF
A DISTRIBUTED QUERY. IEEE COMPSAC, 1979, pp. 306,-312.

227

X''



A PARADIGM FOR CONCURRENCY CONTROL

PERFORMANCE EVALUATION

A. A. Helal, A. K. Elmagarmid, and A. R. Hurson
Computer Engineering Program

Department of Electrical Engineering
The Pennsylvania State University ,

University Park, PA 16802
(814) 863-1047

ABSTRACT

Research in the area of concurrency control performance
evaluation has extensively been addressed in the past few years.
Unfortunately, conclusions arrived to by many researchers were
inconsistent and at times contradictory. This inconsistency has
arisen due to the different assumptions and performance models used.
In order to eliminate this situation, a unified performance model is
needed. In this paper, we propose a framework for concurrency control
performance evaluation in single site databases. Areas of performance
studies are classified, and a suggested performance model is 4
specified.

1-INTRODUCTION

Despite the very large number of concurrency control algorithms
in both single site and distributed databases, there does not exist
any formal quantitative method for analyzing and comparing their
performance. However, a number of performance studies were conducted
in the last few years. Different assumptions and performance models
were used in each of these studies, thereby leading to incomparable
and in many cases contradictory results. Therefore, future
performance studies should be based on a unified framework. In this
paper, a framework for concurrency control performance evaluation in
single site da.abases is proposed.

In section 2, an overview of database systems and performance
studies is given, followed by the proposed performance evaluation
model in section 3. Finally some concluding remarks are discussed in
section 4.

228



2.0-OVERVIEW

2.1-DATABASES AND CONCURRENCY CONTROL

Figure I Multiuser Oatsbose System ,

A single site database system (Figure 1) consists of three
components : the transaction component, the database management
system (DBMS) component, and the database component. Each component
has a set of logical and/or physical parameters which constitute the
overall system characteristics. User transactions interact with the
DBMS by issuing read and write requests for database items stored in
the database. The concurrent execution of transactions can result in
data misuse (lost updates and dirty reads [Bern8l]). Therefore,
database systems include a subsystem called the concurrency controller
to control concurrent accesses to the shared database.

A concurrency control algorithm (CCA), can be designed using one 4
of three approaches : Locking [Mena78,Rose78], Timestamping
[Reed78,Thom79,Bern81], or the Optimistic approach [Baye80,Kung8l].
All previous approaches can be implemented to allow for multiple
versions of a database [Reed78,Baye8O,Care86].

2.2-OVERVIEW OF PERFORMANCE STUDIES

There are five areas to which performance studies should be
directed. In the remainder of this section, each area is explained
briefly.

System Throughput and Transaction Response Time

These are two indices of special importance. Minimizing the
whereas maximizing the system throughput is of special interest, to the

system manager. Most researchers have directed their efforts to this
area.

229



I%

Algorithm Efficiency and Asymptotic Behavior

These studies investigate the useless percentile of storage, CPU,
I/O, and for the distributed case, intersite communications. This is
called algorithm overhead, and it can be viewed as cost factors which
affect the system throughput and the transaction response time. Many
researchers directed their researcn to this area [Ries77,Ries79].

The Effect of Varying Transaction Component Parameters

The transaction component parameters affecting system throughput,
transaction response time, and algorithm efficiency are listed below

I- The number of transactions in the system (load or degree of
multiprogramming).

2- Transaction size in terms of the number of read and write
operations.

3- CPU resource requirements.

4- Read/Write mix (ratio of query to update).

5- Locality of requests.

6- Read/Write operation sequence (either interleaved or clustered
into a read step followed by a write step).

7- The time between requests.

8- Transaction semantics (for formal definition of transaction
semantics, see [Bhar84]).

Each of the above listed parameters has an impact on the overall
system performance. Most researchers investigated 1, 2, and 3 above.
In these studies, the degree of multiprogramming ranged from 5 to 500
transactions; small and large transaction classes were used to
represent different transaction sizes. The effect of the fourth
parameter (Read/Write mix) was studied by [Hela8S,Care86 and there is
no reported study addressing the effect of 5, 6, 7 and 8 above. It
should be noted that transaction semantics do not directly affect the
performance; however, CCAs can be designed to utilize transactionsemantics to improve the performance.

The Effect of Varying the DBMS Component Parameters

The DBMS component parameters affecting system throughput,
transaction response time, and algorithm efficiency are listed below

230



1- The concurrency control algorithm.

2- The recovery technique.

3- Other modules such as : data access method, security module,
and query optimization module.

The CCA has a great impact on performance and most of the
research in this area has been focused on : two-phase locking, basic
timestamp ordering, serial validation and multiversion algorithms.
Recovery techniques affect the way CCAs are designed and consequently
the overall system performance. Two-phase commit is the most widely
used technique in single site databases. Although the effect of the
various recovery techniques can be studied separately, the effect of
each technique on the CCA should be investigated. The effect of the
two-phase commit on the dynamic two-phase locking and the serial
validation algorithm was studied by tHela85] %

The Effect of Varying the Database Component Parameters

The database component parameters affecting system throughput,
transaction response time, and algorithm efficiency are listed below : .

1- The data model (relational, hierarchical, network, etc ...

2- The physical database size (given in terms of physical units
called items)

3- The granularity (a granule may contain more than one item)

Like transaction semantics, the data model has no direct effect -.
on the performance, but a CCA can be designed to utilize a specific
data model for better performance. Granularity is a critical
parameter which dramatically affects the overall system performance,
especially when the system is loaded. Ries and Stonebraker [Ries77,
Ries79] have investigated the effect of "locking" granularity on the
performance of DBMS. However, granularity should also be studied for
non-locking algorithms.

3-THE PROPOSED PERFORMANCE' EVALUATION MODEL

In this section, a performance model to be used in evaluating the
performance of concurrency control algorithms is given. The model
consists of four components : the transaction workload description,
the system structure and parameters, the concurrency control
algorithm, and the performance indices. In the remainder of this
section, these components are explained first and then a set of model
assumptions are stated.

231

ol



(a) Transaction Workload Description

Transaction workload can be specified using the following
parameters :

1- The number of transactions in the system (degree of
multiprogramming) or in case of open system modeling, the average
arrival rate and the distribution of the arrival process (usually
assumed to be poisson).

2- Transaction size which is the number of the read and write
operations in a transaction. This can either be deterministic
(fixed size with the possibility of multiple transaction classes)
or probabilistic (usually uniformly distributed over
[minsize... max-size]).

lip

3- The amount of CPU time required by a transaction. This can",%
either be neglected or assumed to be exponentially distributed with
some mean.

4- The Read/Write mix which can either be deterministic
(e.g. 80% read and 20% write) or probabilistic (e.g. prob
{next request is read} > 0.2). It is possible to have different
transaction classes that range from pure query to heavy update.

5- The Read/Write operations sequence. It can be either
interleaved or clustered.

i.

6- The distribution of the time between access requests. This
is not known to have a certain distribution and can be assumed
uniform.

7- Transaction semantics. They can be described by redefining
the read and write operations as pairs ( P,Operation ) where P is
some predicate that when evaluated True, the R/W operation would be
performed. We give no specification for the predicate P.

(b) The System Structure

The system structure is depicted in Figure 2. This structure can
be used in modeling both open and closed systems. When a new .%
transaction arrives, its workspace is initialized and it is put on the
concurrency controller queue ,CCQ. The concurrency controller, CC
then serves the transaction by (i) allowing it to the database,
(ii) blocking it in the block queue, BQ, (iii) aborting it, or
(iv) committing it. In the case of a non-blocking CCA, the BQ is not
used. If the transaction must wait for an unavailable resource, it is
put on the BQ. When the resource is available, it is dequeued and is
put back on the CCQ. Once allowed into the system, a transaction with
a read request is placed on the query queue, QQ. However, in case of
a write request, no disk write operation takes place and the new value
is updated only in its workspace. When a transaction finishes, the CC
puts it on the update queue, UJQ so that all its updates may be

232



%'

Not yet complete

blnfne " 
% "

Fgigue 2:Sse ~u~r

TI Pt

- C. M111 1

lijillijio 119 Fiieit

Moloer
should he R
b]-eked ?

IlP~yClosed4 System I

Figure 2 System Structure 4

committed. The UQ has higher priority than the.QQ. If a transaction
is aborted, the CC resets or modifies its workspace, possibly delays
it, and then resubmits it to the system through the transaction
initiator, TI. When a new transaction arrives at the TI, the later
submits a small setup transaction with zero or one read operation.
This setup transaction is guaranteed to commit with no restarts and it
represents a setup cost for newly arriving or restarted transactions.
When the setup transaction commits, the original transaction is
considered by the CC.

(c) The Concurrency Control Algorithm

The concurrency control algorithm is specified by a piece of
actual code. Since this code is sharable by different transactions,
it is considered as a critical section and is modeled by a single
server queuing model with FIFO discipline and with service time found
by one of two methods. First, a counter can be used to count the
number of actually executed statements while calling this code. This
exact count gives an exact service time for the transaction being
served. This exact service time can then be used as a predicted
service time for the next transaction to be served. Second, using the
first method, simulation can be conducted to compute the average
service rate which can then be used in subsequent experiments. N

(d) The Performance Indices

Following are some general indices that should be measured in any
performance study.

1- Average transaction response time.
2- System throughput.
3- Average degree of concurrency (DC)
4- Conflict rate.
5- Maximum number of times a transaction was restarted.

233



._f

6- Useless I/O and CPU percentile. '

There are also certain indices applicable only to specific CCAs.
An example is the deadlock rate in the two-phase locking algorithm.
To define the degree of concurrency, DC, let Tn be the duration of
time through which the number of active transactions in the system is
n. The degree of concurrency is then given by

N

DC = 1/(NTs) * 'nTn

Where Ts is the system time at which the DC is measured and N is the--N
number of transactions in the system. Clearly, O<DC<I.

MODEL ASSUMPTIONS

1- Two-phase commit is incorporated with the CCA used. Thus a
write operation is treated as a non-disk operation and is committed on
transaction completion. Two-phase commit begins at transaction
completion by issuing 1 + Iwritesetl disk operations (one in the first
phase and Iwritesetl in the second phase).

2- Resources are finite : the physical database is stored in one
disk unit with some service rate. The case of more than one disk unit
can equivalently be studied by one disk unit with a higher service
rate. Also, there is only one CPU with some speed in the system.

3- Elements of the readset and the writeset of a transaction are
distinct.

4- A transaction workspace consists of two parts : the
transaction definition and the transaction data section. When a
transaction is restarted, only its data section is reset.

4-CONCLUSION

In this paper, we have classified the research studies of
concurrency control performance evaluation into five major areas,
three of which reflect the effect of the database environment on the
performance. Also, we proposed a framework for performing these
studies using a unified performance model.

%

234



p..* %

REFERENCES

[Baye80] Bayer, R., Heller, H., and Reiser, A., Parallelsim
and recovery in database systems, ACM trans. on DBS
5(2), June, 1980, 139-156.

[Bern8l] Bernstein, P., and Goodman, N., Concurrency control
in distributed database systems. ACM computing Sur-
vey, 13(2), June 1981, 185-221.

[Bhar84] Bhargava, B., Concurrency control and reliabilty in
distributed database management systems, Handbook
of software engineering, North Holland,84, 331-358.

[Care86] Carey, M., and Muhana, W., The performance of multi-
version concurrency control algorithms.(To appear in
ACM TOCS)...

[Hela85] Helal, A., Performance analysis of concurrency cont-
rol algorithms in database systems. M.Sc. thesis,
Computer Science Department, Alexandria University,
Egypt, July, 1985.

[Kung8l] Kung, H., and Robinson, J., On optimistic methods
for concurrency control. ACM trans. on DBS, 6(2)
June,81, 213-226.

[Mena78] Menasce, D., and Muntz. R., Locking and deadlock
detection in distributed databases. Proc. of the 3rd
Berkeley workshop on distributed data management and
computer networks. August 1978.

[Reed78] Reed, D., Naming and synchronization in a decentral-
ized computer system, Ph.D. thesis, Dept. of EE and
Computer Science, MIT, 1978.

[Ries77] Ries, D., and Stonebraker, M., Effects of locking gr-
anularity in a database management system. ACM trans.
on DBS, 2(3), Sep. 1977, 233-246.

[Ries79] Ries, D., and Stonebraker, M., Locking granularity
revisited, ACM trans. on DBS, 4(2),June 1979,210-227. *A'

[Rose78] Rosenkrantz, D., Stearns, R., and Lewis, P., System
level concurrency control for distributed database
systems. ACM trans. on DBS, 3(2), June 1978,178-198.

(Thom79] Thomas, R., A majority consensus Approach to concurr- ,.
ency control for multiple copy databases. ACM trans.
on DBS, 4(2), June, 1979, 180-209.

235

\* ,-



Concurrency Control and Reliability
in' Replicated Database Systems

Mukesh Singhal
Dept. of Computer and Information Science

The Ohio State University
2036 Neil Avenue Mall
Columbus. OH 43210

Abstract
Distributed database systems are of utmost importance to military exercises

because such applications are inherently distributed and require severe performance %
constraints such as fast response time and continued operation in face of catastrophic
failures. In this talk, we examine several issues in the design of a high performance
distributed database system. In particular, we discuss the problem of concurrency
control which deals with controlling the concurrent access of a database by simultane-
ously running transactions such that the correctness of the database is maintained.
and the problem of reliability which deals with the resiliency to different kin(.
failures. We examine the state of the art of these design issues and discuss titure
directions for distributed database systems.

1. Introduction
A database is a collection of related data objects, which is shared by several users with

potentially diverse interests. The data objects of a database must usually satisfy certain
semantic relationships, referred to as the consistency assertions of the database [221. A data-
base is consistent if values of its data objects satisfy all of its consistency assertions.

The falling cost of hardware and advances in communication technology over the last
decade have made distributed computing viable and have triggered interest in di.stribted
database systems (e.g.,[7, 45, 481). In such systems, data objects are spread over a collection
of computers which are connected via some communication network. A distributed data- .7. " w

base system offers several advantages over a single-site database system [11, such as data and
program sharing, higher system throughput, higher system availability, load sharing. md V.

easy expandability.

In a replicated database sy.stem. all the data objects of a database are duplicated at

every site. Replication of data objects offers several attractive features: enhanced reliability.
improved resp6nsiveness, no directory management, and easier load balancing. Enha ced
reliability results because a site crash or network partitioning does not prevent access to
some data objects and, in general. (toes not stop transaction processing under these failures.
Because of the enhanced reliability, replicated database systems are highly desirable in hos- e,

tile environment where site crashes or network partitionings are inevitable and contine 1d

236



WU WUWW NYNrwv U Iv IWWW V VJVIIMIV U UV-: WN MVV-6 IM

operation under these failures is very crucial. These features have led to several corinitrcial
efforts in the direction of replicated database systems. e.g.. SDD-1 [b]j arid distributed

[NORES (4t51.
However, a replicated database system must guarantee that all the copies of' a datai

object agree with each other. This add itional constraint is reflected as a C'onsi. tenc iv a.-ser-
tion. As a consequence, in a replicated database systemn. the concept of' c' iseiv has tV ()

parts [161. internal consistency and mutual consistency. Internal consistency deals with ihe
relationship-, of data objects within a database copy. Mtutuazl ronvs-sto nc i reciiinre tt all
database copies inist, be identical.

A user interacts with at database by performing read and write act ions onl thle cIttra
objects. The actions of' a user are normally grouped together (as at programu) to lorn o 'ifrigle1
logical unit of interaction which is referred to as a transacti'on. To enhance the eth('iielnCV.
the actions from several transactions may be executed in an interleaved manner: however.
for correctness, the system must behave as if each transaction is processed atomically. i.e.. ;is
an indivisible uinit. There are two kinds of transac'tion atornicities: c'onciirrericv atorniiit v.
and f'ailure atomicity. Concurrency atornici'ty enforces that concurrent eXecution' of t rafinac-
tions must behave as if transactiong are exec'utecl seriall. Failure atotricily enforces all or
none property of the execution of a transaction in presence of' failures.

There are several issues in distiibiited database ;ystems which must be effijienitlv
resolved[371. For examples, conecirrencv c'ontrol .5.221. deadloc kj 19. 31]: di rectorv riimirige-
ment( 16j: optimal program and data allocationt341; distributed transaction proct'ss-
ing[117, 301; atomic commit[28, 321: and crash recovery[28. 171. i this talk, we limitt mur
cussion to concurrency control and reliability aspec~ts of' a distributed dat abase.

2. Concurrency Control

Typically, in a database system, several users concurrentl'y access the database by t-xe-
cuting transactions. For efficiency reason, the system exectutes the actions fromf Iecr~ ran-%
sactions in an interleaved manner. Since the actions of concurrenttl , running t ransaction,
may access the same data objects. if interleaving of the actions is niot C'ottrolled in somne ord- d

erly way, several anomalous situations may arise. For examples, lost updates. incorrect
retrieval, and inconsistent update. As a result, some transactions may see an inconsistent
state of a database, and a database may terminate in an inconsistent state. This fiundcanien-
tal problem is referred to as concurrency control. In a database system,. this problerin is han-
died by a concurrency control algorithin which controls the relative ordher (or interleavinga' of

conflicting' actions, so that the consistency of a database is preserved.
Most concuirrency control al1gorithris are based on locklig or t InnuestkcniPs. lIII/r111

based algorithms. a transac tion inucst lock a diata obt)Jec be tore v i it '2-) .\ tI-..cIc-

tion can lock a data object If' it Is riot already locked by sortie olfit'r I rati~act ion. In luro's-
tamp based algorithms. every site maintains a logical c'loc'k w hich 1, increnicinv teh b one
when a traniaction arrives at that site amnd updated whicn cvc'r tfle ic rIII- c ;I ai In',-) e
with higher uclock value (every mnessag~e contains current cloc)(k v~cluvc of li- '-cricr l*-wh
transaction is assigned a unique timne, famnp arid c'oriffic!'t ai~ it tle~ cii'II-Itd'lc;I~d Mi niuci (0,

Two ac'tions conflict ir they operate on the same dada ohj*'cu. ucci at le:dc 'one ol' t hemic i wri! .'irli on. 1
237

orirI I r r .. ... .7
hi.~~~~~ ~~~ % *u*'~~ r~~~>:*



42".

the timestamp of their transactions.

2.1. Current Status 'I!1

Several concurrency control algorithms have been proposed for replicated database .v -
terns. Depending upon whether synchronization is performed before, or after an update
makes an access to the data objects, these algorithms can be divided into two la.-es: pe-
simistic, and optimistic /18/. Algorithms that perform synchronization before accessing data
objects are referred to as pessimistic algorithms. Algorithms that perform sytichroti i tor
after accessing data objects are referred to a. optir.stc algorith Ii i

Pessimistic Algorithms

In pessimistic algorithms, a site executes an update after carrying out some ifier-r(-
communication for synchronization. Depending upon the way intersite communication and
synchronization are performed, several pessimistic algorithms have been proposed in th.-
literature, e.g.,[2, 6, 8. 21. 25, 33.35.39. 1.51.

Optimistic Algorithms

In optimistic algorithms, an update is executed concurrently with other updates
without performing any synchronization. Iiowever. before its computed values are written.
into the database. some intersite comnunication is carried out to determine il' the uipdare

has conflicted with any concurrently executing updates. In case of conflicts. the Ioloer prior-
ity update is aborted, else its computed values are written into the dat a hte. De'pendi l..

upon the way intersite communication and check for conllict are carried oit 'c%, .r.1 "

optimistic algorithms have been proposed in the literature. e.g..[15. 1. '27 35. 161.

Performance .
The performance of concurrency control algorithms for replicated datal)a-e i't, no h,--

been studied using simulation techniques (e.g.. [27. 15, 25. 120. av well t an, l \ ,t 1 ti, h-i'
(e.g., [26.421). The performance of a concurrency control algorith , itiualk ,,a-,ird h, "
update response time which is defined as the time interval between the intanr hen ,%h -i r 'i"

submitted an update at a site and the instant when the update is completely xecudlet it
that site, and system throughput which is the number of transatin-, ,omphet(.,l per 111i1 1)1
time in a system.

In pessimistic algorithms, a transaction locks out (i.e.. blo(cks) all the conci rreri ,,-
conflicting transactions. If conflicts among transactions are frequent, then the performiance
of these algorithms is limited due to large blocking delays. In optitiic ,l_,orilhrnm . ;a
conlict causes a abort and restart of :i rans;'tion. Etch ahort and ret;art iilree' , the

response time of the Ip(late and was tes CotIpI rig and Con TMIIIIicat '1tI r.-0 oIr,.. I'lic pe.r-

forman--e of optimistic algorithms is limited because frequent conflicts anliollg lipldate, induce
repeated aborts and restarts.

... .'p,

.. .**"

238

'4 f .ft
""%qg, ;', d ," i,



2.2. Future Directions

High Performance Algorithms

Since concurrency control is a fundamental problem in database systems. a high perfor-
mance database system calls for a high performance (i.e.. short response tirrie and/or higher
throughput) concurrency control algorithms. The performance of the most of the current
concurrency control algorithms is limited by the blocking delays due to conflicts. Therefore.
development of high performance concurrency control algorithms require- reducing the
blocking delays due to conflicts. Since conflicts among transactions are inherent to a ,v~teru.
we require radically different techniques for concurrency control (where the performance is
not limited by blocking delays due to conflicts).

We have developed a new technique for concurrency control in replicated database sys-
tems 141], where the blocking delays due to conflict depend upon the speeds of disk (1/O dev-
ice) and cpu rather than the speed of communication network (as in existing algorithms).
Since disk and cpu are usually much faster than the communication medium. the new
approach exhibits a substantial improvement in the performance. We conducted a perfor-
mance study [421, which shows that the new technique has much better update response time
and throughput characteristics as compared to existing algorithms (unless disk is very slow
and/or message propagation delay is small).

An interesting finding of the study is that the maximum throughput of the centralized
locking algorithm [2.51. and \4ilenkovicIs pessimistic algorithm [35] (for that matter of all
existing algorithms) is limited because updates inflict large blocking delays due to contlicts.
On the contrary, the maximum throughput of the new technique is limited by the disk
throughput. Since disk speed can be readily controlled by using a disk of higher speed or by
using more disks, the performance of this technique can be easily controlled. Whereas. the
performance of the existing algorithms is limited by large blocking delays due to conttlicts
among updates. Since conflicts among updates are inherent to a system and are ditlicilt to
control, the performance of these algorithms is difficult to control.

'h'
Performance Analysis

Although many concurrency control algorithms have been proposed, little progre has
been made in the direction of their performance analysis. Queueing models of conclirrei cv
control algorithms for database systems have two distinct features, viz. ,muliple resource
possession and blocking [141, which are absent in the queueing models of conventional svs-
tems. Because of these features, queueing models of concurrency control algorithms are not
amenable to the product form solutions [11, and which makes the task of the performai c
analysis of 'oncurrencv control algorithms very difficult. Since performance ofn lv(is of ,on-
currency control algorithms for distributed database systems is very important. thre, i aI
desperate need to develop new tools and techniques to cope with the complexitie, of con-
currency control algorithms. Past methods for performance analysis of (on',urretl(\ (mlroi

algorithms [26, 10) have delt with this complexity by relying tupon the -o called apprortma-
tion techniques /10/.

239

,. ; ..
-,t ,'',"



3. Reliability Issues

Reliability is highly desirable in military exercises where continued operation under .e
catastrophic failures is very crucial. Reliability management enlcom~passes several issues lich J%

as atomic commit [32,.441, site recovery [3, 47]. network partitioning 1 1. 201. and fault toler-
ance []

Atomic Commit

In a distributed database system, a transaction is c'ommitted atomicallY if it I, pro-
cessed at all sites or at none. Designing an atomic-commnit protocol which ', resieii to t~h-
trary site failures and network partitioningS is an extremely difficult task. The t~-h-

commit protocol [28. 32] achieves the atomic commit in the environment where sites (,;n linli
laterally abort a transaction. However, it is vulnerable to site failures as a site failure. 1,ti%
block a transaction. [n [29]. the two-phase protocol is extended to four-phase protocol %ht-rf
in case of a site failure. a backuip site takes over. In Al. 43]. nonblocking protocols ha~ e been
examined where a site never blocks a transaction because of some failures.

Crash Recovery

Whein a site recovers from a failure, the state of its database must, be restored to a con-
sistent state. The techniques used to restore the state of a database to a consistent state are 'e.*

(ailled recovery techniques. Miost recovery techniques retain some reduiindant In format ion e.

about the database or history of transaction execution, and recover a site by restorliig it ..O
database to a previous consistent state. 'Some examples of redundant information art, ,iiidpl

trail or log /10, 2?8/, checkpoint 1211, differential files [?Hl. The recoverY in ~lI Iis ba- d on

the notion of spoolers 129/, where when a site fails, all messages dlirectedl to it are buttered .it

Its spooler sites. When a site recovers, it unspools all messages butfered for It trorn it., -poolvr
sites. In DDNI [12, 1:31. data availability is improved by using incremental recouery [.1/. andX
intersite data transfer in case of failures is reduced bY using log-based recover%- mlechanism.

Network Partitioning

If transcition processing continues in presence of a network partitioning. the state of' the
database of each partition may diverge with time and the consistency of the database miay
be violated. Therefore. when a database system recovers from a partitioning . tkii I'lle ot the

database in each partition muist be reconciled to a common value. Every site keep,~ lo-, or
audit trail, and when a database recovers a partitioning, databases in different partition, irc,

recnciedby merging the jorasof different partitions to get a common journial and

applying it to all the sites of the parlttons. being mergeil. Technrique-, lor t~-~ ill 1
integrating part it ions of' a repl icajted database sYvii ei re described i I I '1 .201

Fault Tolerance
.\ .,vstetn is faullt tolerant it' in presence ot' certailn fauilts. it auitorntH it(:l(\ dt t(

ates. a nd( reco ve rs t ro ir t h em t o a Lvoid( a fai I IIre. ')EFQ 1) ' 1. ()Is a ti hr o, i t I e .d

tolerant mniilti-proces'~or transaction processing svstett1 %hich li-t, Iiirdk%.ire ifpr.n-i 'It

faullt-tolerance. It empillos three kid t nihaisu , I rror 10,b chru oil' -,01 bib i' .i

is itorvd in .r rmnenorN or %1ile being. framnncrred her keetI littlerenit iodiiit. i;1 i 0

240

00 0 F e l '



protected by error-detecting codes; (2) duplication and comparison - some functions such as
address generation and cache management are duplicated in hardware. These components
perform operations independently and cross check their results with those produced by their
duplicates; and (3) protocol monitoring - prevents starvation due to rnalfunctioiiing of a
components by detecting violations in the sequence and timing of inter-element conmmunia-
t ion.

Future Directions
Most existing reliability mechanisms block transaction processing or perform major

reconfiguration in case of a failure which may degrade the performance in the presence of .. ' .

failures. This may be unacceptable in hostile environments because high performance (avai-
lability) is most desired when some attack is underway. One approach to handle this prob-
lem is to sacrifice correctness (consistency) of a system to obtain high availability and fast
response. Some work in this direction is reported in [24,36]. More work still need be done in
the direction of formalization of the tradeoffs between the correctness and the performance,

and new techniques need be developed to achieve these tradeoffs.

References

1. A. LYNCH, "Distributed Processing Solves Main-frame Problems," Data
Communications, pp. 17-22 (December 1976).

2. ALSBERG, P. A. AND DAY, J. D., "A Principle for Resilient Sharing of Distributed
Resources," Proc. 2nd International Conf. on software Engineering, pp. 562-570 (Oct.
1976).

3. ATTAR, R., BERNSTEIN, P. A., AND GOODMAN, N., "Site Initialization, Recovery, and
Backup in a Distributed Database System," IEEE Trans. on Software Engineering, pp.
645-650 (Nov. 1984).

4. BASKET, F., CHANDY, K. M., MUNTZ, R. R., AND PALACIOS, F. G., "Open, Closed, and
Mixed Networks of Queues with Different Classes of Customers," Journal of ACM, pp.
248-260 (April 1975).

5. BERNSTEIN. P. AND GOODMAN, N., "Concurrency Control in Distributed Database A.

Systems," ACM Computing Surveys, pp. 185-222 (June 1981).

6. BERNSTEIN, P. A., ROTHANIE,JR., J. B., GOODMAN, N., AND PAPADIMITRIOU, C. A.,"The Concurrency Control Mechanism of SDD-1: A System for Distributed Databases %
The Fully Redundant Case)," IEEE Trans. on Software Engineering, pp. 154-168

(May 1978).
7. BERNSTEIN, P. A., SHIPMAN, D. W., AND ROTHANIE, J. B. JR., "Concurrency Control

in a System for Distributed Databases (SDD-1)," ACM Trans. on Database Systems,
pp. 18-51 (March 1980).

8. BERNSTEIN, P. A. AND GOODMAN, N., "An Algorithm for Concurrency Control and
Recovery in Replicated Distributed Databases," .4CM Trans. on Database Systeins, pp.
596-615 (Dec. 1984).

9. IE'RNSTEIN, P. A., "SEQUOIA: A Fault-Tolerant Tightly-Coupled ('oc r t'(,r
Transaction Processing," Technical Report TI"-85-0.1. lang Institute of (raduate
Studies, (May 1985).

241

/ - ...I~- .' ~ ~



10. BJORK, L. A., "Generalized Audit Trail Requirements and Concepts for I)atabase
Applications," IB.MI Systems Journal, pp. 229-215 (March 1975).

11. BLAUSTEIN, B.T.. GARCIA-MOLINA. H.. RIES. D.R.. CHILENSKAS. R.M., AND
KAUFMAN, C.W., "Maintaining Replicated Databases Even in Presense of Network
Partitipns," EASCON, pp. 353-360 (1983).

12. CHAN. A. AND SKEEN, D., "The Reliability Subsystem of a Distributed )atabase
Manager," Technical Report (CA-85-02, Computer Corporation of Inerica.

Cambridge, MA 021.12,
13. CHIAN, A., DAYAL, U., FOX, S., GOODMAN, N., SKEEN, D., ANt) RIES, D., "DD.I: An

Ada Compatible Distributed Database Manager," IEEE COMPCON Digests of Papers,
(1983).

14. CIIANDY, K. M. AND SAUER, C. H., "Approximate Methods for Anal'sis of Queueing
Network Models of Computer Systems," Computing Surveys, pp. 263-280 (Sept. 1978).

15. CHENG, W. K. AND BELFORD, G. G., "Update Synchronization in Distributed
Databases," Proc. of 6th Int. Conf. on Very Large Databases, , pp. 301-308 (Oct.
1980).

16. CHU, W. W. AND NAHOURAH, E. E., "File Directory Design Considerations for ._

Distributed Databases," Intl. Conf. on Very Large Databases, pp. 543-5.15 (1975).
17. CHU, W. W. AND HURLEY, P., "A Model for Optimal Processing for Distributed -.-

Databases," Proc. of 18th IEEE COMPCON, pp. 116-122 (Spring 1979).
18. CHU, W. W. AND HELLERSTEIN, J., "The Exclusive-Writer Approach to Updating

Replicated Files in Distributed Processing Systems," IEEE Trans. on Computers, pp.
489-500 (June 1985). -

19. COFFMAN, E. G.. ELPHICK, M. J., AND SHOSHANI, A.. "System Deadlocks." AC.I
Computing Surveys, pp. 66-78 (June 1971).

20. DAVIDSON, S.B., "Optimism and Concurrency in Partitioned Distributed Database
Systems," ACM Trans. on Database Systems, pp. 456-481 (Sept. 1984).

21. ELLIS, C. A., "Consistency and Correctness of Duplicate Database Systems." 6th
Symposium on Operating Systems Principles, pp. 67-84 (1977).

22. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, 1. L., "The Notion of
Consistency and Predicate Locks in a Database System," Communications of ACM,
pp. 624-633 (Nov. 1976).

23. FISCHER, M. J., GRIFFETH, N. D., AND LYNCH, N. A., "Global States of a Distributed
System," IEEE Trans. on Software Engieering, pp. 198-202 (May 1982).

24. FISCHER, M. J. AND MICHAEL, A., "Sacrificing Serializability to Attain High
Availability in an Unreliable Network," Proc. of the First ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, (1982).

25. GARCIA-MOLINA, H., "Performance Comparison of Two Update Algorithms For
Distributed Databases," Proc. of 3rd Berkeley Workshop on Distributed Data
Management and Computer Networks, pp. 108-119-(Aug. 1978). .

26. GARCIA-MOLINA, H., "Performance of the Update Algorithms for Replicated Data in a
Distributed Database," Ph.D. Dissertation, Computer Science Dept., Stanford
University (June 1979). %

27. GARDARIN, G. AND CHU, W. W., "A Distributed Control Algorithm for Reliably an I.
Consistently Updating Replicated Databases," (hEE Trans. on (Compaer.s. pp . I( .0-

1068 (Dec. 1980).
28. GRAY, J. N., "Notes on Database Operating Systems," pp. 393-181 in Operating

Systems: An Advance Course, Springer-Verlag, N.Y. (1978). ,','.,
29. HAMMER, M. AND SHIPMAN, D., "Reliability Mechanism for SI)I)-I: A System for

Distributed Databases," ACM Trans. on database Systems, pp. 131-166 (Deceber
1980).

242 -

, 4-l .,%, ,



30. HEVNER, A. R., "The Optimization of Query Processing on Distributed Database
Systems," Ph.D. Dissertation, Dept. of Computer Science, Purdue University, West
Lafayette, IN, (Dec. 1979).

31. ISLOOR, S. S. AND MARSLAND, T. A., "The Deadlock Problem : An Overview,"
Computer Magazine, pp. 58-77 (Sept. 1980).

32. LAMPSON, B. AND STURGIS, H., Crash Recovery in a Distributed Data Storage System,
Tech. Report, Computer Science Lab., XEROX PARC, Palo Alto, CA (1976).

33. LELANN, G., "Algorithms for Distributed Data Sharing Systems Which Use Tickets."
Proc. of 3rd Berkeley Workshop on Distributed Data Management and Computer
Networks, pp. 259-272 (Aug. 1978).

34. MAHMOUD, S. AND RIORDON, J. S., "Optimal Allocation of Resources in Distributed
Information Networks," ACM Trans. on Database Systems, pp. 66-78 (March 1976).

35. MILENKOVIC, M., "Synchronization of Concurrent Updates in Redundant Distributed
Databases," Distributed Data Bases, pp. 49-65 North-Holland Publishing Co., (1980).

36. PARKER, D. S. AND RAMAS, R. A., "A Distributed File System Architecture Supporting
High Availability," Proc. of the Intl. Conference on VLDB, (1982).

37. ROTHANIE, J., "A Survey of Research and Development in Distributed Database
Management," Proc. of the 3rd Conference on Very Large Databases, Tokyo, (1977).

38. SEVERANCE, D. G. AND LOHMAN, G., "Differential Files: Their Application to the
Maintenance of Large Databases," ACM Trans. on Database Systems, pp. 256-267
(Sept. 1976).

39. SINGHAL, MUKESH AND AGRAWALA, A. K., "A Concurrency Control Algorithm and its
Performance for Replicated Database Systems," To appear in Proc. of the 6th
International Conference on Distributed Computing Systems, Cambridge, Massachusetts,
(May 19-23, 1986).

40. SINGHAL, MUKESH AND AGRAWALA, A. K., "Performance Analysis of an Algorithm for
Concurrency Control in Replicated Database Systems," To appear in Proc. of the
Performance 86 and ACM-SIGMETRICS 86, Joint Conference on Computer
Performance Modeling, Measurement, and Evaluation, Raleigh, North Carolina, (May
28-30, 1986).

41. SINGHAL, M., "Update Transport: A New Approach to Update Synchronization in
Replicated Database Systems," Submitted to IEEE Trans. on Software Engineering, 0.

42. SINGHAL, M., "Concurrency Control Algorithms and Their Performance in Replicated-%

Database Systems," Ph.D. dissertation, Dept. of Computer Science, University of
Maryland, College Park, (February, 1986). 0.

43. SKEEN, D., "Nonblocking Commit Protocols," SIGMOD Intl. Conference on
Management of Data, (1981).

44. SKEEN, D. AND STONEBRAKER, M., "A Formal Model of Crash Recovery in a *s ,.
Distributed System," IEEE Trans. on Software Engineering, pp. 219-228 (May 1983). -,

45. STONEBRAKER, M., "Concurrency Control and Consistency of Multiple Copies in At
Distributed [NGRES," IEEE Trans. on Software Engineering, pp. 188-194 (May 1979).

46. THOMAS, R. H., "A Majority Consensus Approach to Concurrency Control for
Multiple Copy Databases," ACM Trans. of Database Systems, pp '80-209 (.June 1979).

47. VERHOFSTAD, J.S.M., "Recovery Techniques for Database Syste ." A4CM Computing
Surveys, pp. 167-195 (June 1978).

.18. WILLIAIS. R.. DANIELS, D., HiAA\S, L., LOPIS, G., LINDSAY, 13.. N(;, P., (i .RM 'K,
R., SELINGER, P., WALKER, A., WILMS, P., AND YOST, R., "R': An Overview of the
Architect tire," IBM Research Report R.J 3325, San Jose, CA ()eceniier 1981).

243

Or a.-:':r- %. ,-.:..., : . 4



Session 13: MIMD Parallelism and Support -

Chaicirersns R. R. Oldehoeft
Colorado State University

244



Predicate Analysis for Parallel Program Generation

by

Boleslaw K. Szymianski
Computer Science Department
Renselaer Polytechnic Institute

Troy, NY 12180

ABSTRACT

New software development tools proposed for supercomputers are based on assertive programming.
where a program Is- expressed as a set of assertions about its properties and not as a sequence of steps
leading to the solution. Solving procedures are automatically generated from assertive description.

wihAssertive programming for scientific parallel processing is supported by equational languages in
wihassertions are restricted to conditional equations. such languages are naturally suit ed for

mathematically oriented computations. Equational language., also proved to be an effective tool for
describing genera) computational tasks. Descriptions of mtany parallel algorithms are greatly ;1niplified
when written tn that fortit

The MODEL equational language translator and its three cooperating components: compiler. confi-
gurator. and timer are discussed in this paper. The focus is on the application of predicate analhsis and
automatic t heorem proving in area of arithmetic inequalities to checking equational programs and opt intl
zat Ion (If generated parallel code.

L. Intro(JtictioI)

Software development for parallel and vector computers is intrinsically miore diff-

cult than for sequential machines. In addition to the usual challenges, one must con-
sider communications overhead and synichronization p~rob~lemis. Often performance
evaluation is necessary to balance the computational load assigned to processors of a
parallel computer. However. time performance can be( evaluated only after the softwareJ-

has been developed and. therefore. leads to costly post-developmlent tuning. Specialized
parallel computing hardware often requires software to he developed in dialects of stari-
dard languages. In particular. varyN*~ conimunicationl primitives of different parallel
computers lead to major software incomlpatib~ility problems. A focus oil software effi-
clency additionally contribute-, to the hihcosts of software development. Distributed
environments today and massive parallel computers of the future force the research corn-
riunitv to seek novel app~roaches to parallel prograxunlile

Many rtew approali'% arc 1based oii a-sert ive pr igra iitiing. In tin- pa ra digiii . a
rollpiiltatimill~ prolel(ii is, c'xirt'-.'at a. ai -vt of' a-.-.rt loli-, ;i)11 it-. proper! ic- ;iMl 1iw

a,. ;I V.qlIrC1* Of Steps leadling" to thec ollitioll. s~oIIITIM p~~jrtweiirc- arc ;mltoiiat~ci11%l

gvelit ratedl froiui tite assertivc ile-cripitioii. User, aire nott ivolved iM thev itiiplieiitatioii.

wlnist' ettic iencv amid correct lie-. are a--.ii bil flie inlerlv ilig Ianuiuage procc s'(i.

245 .



Depending on the type of assertions used as a basis for notation, different languages
for assertive programming have been proposed. Perhaps the best known is Prolog, in
which assertions are expressed as Horn clauses. Automatic inference of new facts from
the given rules and known facts makes it an ideal programming tool for artificial intelli-
gence and expert systems. However, in an important area of scientific computing. par-
ticularly amenable to parallel processing due to regularity of problems and vast requiredI r,1.

computations. its usefulness is limited because of difficulty of expressing numerical algo-
rithms in Prolog.

Another important paradigm of assertive programming is based on equational
languages. where assertions are expressed as mathematical equations (cf. Ashcroft and
Wadge (1977). Hoffman and O'Donnell (1982). and Prywes and Szymanski (1985)).
Such languages are naturally suited for mathematically oriented computations. They
are especially convenient for solving systems of linear equations that may arise directly
(as. e.g.. in econometric modeling) or as a result of a discrete approximation of a system.
of differential equations. Equational languages have also been proven to be an effective
tool for describing general computational tasks (cf. Baron et al. (1985)).

An equational language can simplify programming. but it puts additional burden
on a compiler. For example. flow of control has to be entirely defined by the compiler.
Each variable can assume only a single value yielded by the defining equation. Redefini-
tions of a variable value. in the seuse of procedural programming. have to be do.
represented by a vector of values. i.e.. a new variable with one dimension more than
redefined one. Such additional dimension, if not recognized autoniatically. leads to
unnecessary copying, of redefined structures and low efficiency of generated object code
(cf. Szymanski and Prywes (1986)). Therefore compiler of an equational language has to
perform global and comprehensive analysis of specifications. Such overhead can be 7

avoided if user is allowed to define flow of control. like in procedural languages for "".,- : q
sequential processing. For parallel processing however, user's defined control is rearly
optimal because of the complexity of the task. Therefore. a comprehensive analysis has
to be performed anyway. A procedural program in this case is overspecified, increasing
the chances of the user to introduce errors and limiting compiler in optimization because
of unnecessary dependencies imposed by the flow of control (particularly nesting and .%,% N
scope of loops in iterative, numerical computations). Clearly. a nonprocedural, defini-
tional specification is more convenient for parallel processing than procedural orie.

Compilers for equational languages have to include tools for static analysis and
optimization of generaied code. Required analytic power is beyond the scope of tradi-
tioiial Coli)iiler ol)tinization ail flow :d" control analyi-.. Moreover the, owbci codi, i-
,,reiratteI iII a liil-lvei laigilag-c i ] thereforc it i- c p(,-,d to hiee I ('tliod, any ;,a\

Therefore in deigning (iquational laniguagc( 'colpiler-. thr, i; ; need to concentrte o)n_

p)r(,dIei, , )p,'(ifi," to nonT)rocedural qpecifi'atiori,. A.- ,io, rhe ilo-t irmiportant arc: finid-
S ing th opt illal e'equelnce of" object progritll eveni . re(Iinlu , IfII ( lil'llsiolialit of (I; 8

i trutires. recognizing circular depend(neie. To b1 olved Ia iliiiltaii( ell., ioi . aml
a-,.e,.sixig coliIstei1cy of s1wcif iction'.. Maiy of t ii', ,r ohei,- were alrea dv adlr.-( Il i

246



the MODEL compiler (cf. Szymanski and Prywes (1986)). A new approach to predicate I
analysis is discussed in this paper.

The paper focuses on practical application of theorem proving techniques in design-
ing compilers for future software systems. It also describes how the use of an equational
language and translator can simplify parallel progranuning. The fundamental notion

underlying this approach is that prospective users have the knowledge and expertise in
the application domain and not in computer programming. Users specify a problem_

progressively, by providing its mathematical model with little regard for how to imple-
ment its solution. This is done through composing equations that express the underlv- '-'
ing rules, relations and concepts of the problei environment and not the solution. The

user composes the specification cooperatively with an automatic system which performs
two tasks. First, it verifies completeness, non-ambiguity and consistency of the user's 'W
input and solicits corrections and amplifications until it is satisfied with the comprehen-
siveness of the specification. Second. it automatically designs, programs, and schedules
the corresponding parallel computation. The automatic system also provides timing
information and reports its design decisions.

2. Description of the MODEL Equational Language and System

The discussion in the paper is based on our experience with the MODEL equational
language and its translator (Tseng et a). (1986)). The MODEL language provides th,
user with a static view of computations. It shields users from concerns about flow of
control or schedule of program execution events. I'sers specifications are free from

implementation details. Thus they are much shorter (about 3 to 5 times) and easier to
comprehend than the corresponding procedural prograns. The MODEL translator gen-
erates efficient, machine independent object programs. It can be easily adapted for
cross generation of code for specialized hardware. It provides global checking and error
recovery procedures. Owing to that software development with the MODEL language
proved to be much faster then with procedural languages (cf. Szymanski et al. (1984)).
In recent years, the research on MODEL focused on efficiency of the generated prograns
(cf. Szymanski et al. (1986)) and on creating programming tools for parallel/distributed
environments (cf. Prywes and Szymanski 11985) and Szylmanski et al. (1985)).

The MODEL system consists of three components: (i) the compiler. which
translates individual specifications into procedural programis: (ii) the configurator. which
creates distributed and/or parallel computation from a set of specifications: and (iii) the

recently developed timer. which evaluates processing tine (delays) in a specification. It.
therefore. provides th( basic ,lat; for ; coniWI) 1TI )) iaI loa d I)alhi ce analysis. The a uivai)-

ta, of using MODEL for bloa hdi n i- ru that a flow 1f (t ro in th(' iObject )r(gram i-
g('nrrat(,ul liv the MODEL compilcr and thli- ilow otf control can he, rcidily ui ,d by th,

timer for performance evadmiation. Anorher abvanitrage P, tt, li t'a-c with whicIi I()DEL
specifications can bir moddifiedl. Th;uik o tilt u(proe'irai aind ' t atic view of couI a t; -

tions. redesignincg a system require, i(rly MOVi1 in(liVidlial (,quIMTi01P from ow,

module to another. As j)re(. 'nt('b ii) Let ('I al. t19il.i- , 1 - to a li(,w meIth i f'

247



software development in the presence of time constraints.

Software development with the MODEL system consists of the cooperative use of
the three above mentioned automatic components. as illustrated in Figure 1.

IP"

-, mp , ee.g m

application. 4'.'? . '

araCvralsan e feution, thtrlt hs rastoec te.Sc U

othe .Llna caled a. i
oranie n a5M tr"aftA

no Umn

Cain.L, Sea.l.
r~ Urn rm U"a

Figure 1. The cooperation of the MODEL system components in developing an
application.

Programming in MIODEL starts with partitioning an overall computation into modules
and files. Initially, no consideration i-, given to efficienc%. A mnodules area is del-
ineated. along what appears to the user a, the natural functional boundaries. Modules
are also candidates for concurrent procc' iig A module consists of a declaration of
array variables and a .et of vqiiationi that relate these arrays to each other. Such
niodu~le definition in the MODEL la11rjuaae i~called a -;perifie .ation. Array variables are
organized in a tree qtr11cture which .ilt dletotedI a. a file. A ile defined (or produred/ by
one module may be referenced (or eoristolle(j) bv another module. Files may be stored
on external memory de~vice-; (i.e. di',k,. tape-o or can hec directly communicated between

248

10



modules. A computation is viewed on a global level as a graph or a network whose
nodes represent modules and files and edges connect modules to files that are consumed
or produced by those modules. V

The configurator performs the global level design and programming. It accepts a
graph of the overall network of modules and files (including assignment of nodes to local
or distributed hardware), called a configuration, as input. In addition to checking com-
pleteness and consistency and producing documentation, it generates command language
programs which schedule the execution of modules. maximize parallelism, and set up
communication among modules. The compiler performs the detailed level design and
programming. It accepts as input a module specification. In addition to checking. it
generates a respective optimized program (in object. high-level language). The graph
form is convenient for a configuration while the equation and array form is preferable
for a module. These two forms can be translated to each other and a configuration is
viewed as an extension of module specifications. Finally, the timer evaluates worst case
delays in a module between any successive communicating messages. While little, if ".
any. computer skills are needed for using the configurator and compiler. some expertise
is necessary to use the timing information to tune a system and. thereby. improve %ts
performance. These reported delays are considered the scrtric tirnes of each module.

The MODEL system automatically implements communications between modules
by using queues (invisible to the less-expert user). Knowledge of the worst case queue 
length and service times allows a more-experienced user to evaluate delays and ;V -
throughput in critical paths of the configuration. Balancing the load on processors may
be attained by migration of equations from one module to another or by splitting or
fusing modules. Timing information can also be used as a basis for assigning modules to
processors.

3. Predicate Analysis in MODEL Specifications

In the MODEL system. a specification is represented by an array graph. where a
node represents accessing. storing or evaluation of an entire array and the edges
represent dependencies among array variables. The underlying graph of elements of the
arrays may be derived from the array graph based on the attributes of dimensionality. ...

range. and forms of sul)script expressions, which are given for each node and edge in an %:
array graph. A node A corresponding to a in dimensional data or equation array
represents the elements froin A(I.1..1) to A(NI.N2 ..... Ni) where NI... N denote the

ranges o dimneiisions I to III. r,pective'ly. Similarlv. a directed edge represents ;l t lie

inttanrc,, of de I)( hn'i,, e illng tlie arr; y 'e( icnt oft tlie iodh, at th ' i(nds of t1li

edg. The dlpee(n('i(' imply iprt('('(h('( ' reliithioi t.-1 p1 iII t lie execution of the respec-

t ive implied actions. There, are, everal tIpe, of" ,lep,,eideicie,. For example. a u'crar,,-
d I)r('(('(l(,l('(' refers to t ie, need to) acc( ,, a -; )ri w r cc trlcTlire 1)(e'f()r( it, COlii)()l'nt,, cai

bl, accesse(d. or vice-vera. the, need to) '\-;e iiat the 'Hi ii;)()lieiilt , fore a ,-trll'tlr i-

troretd away. Dat( depci'uhtir/y pr(ccd(lelc, ref',r, I( ti 4 ,il to ev haia t e T lie

249

-%i

4-%



UWVrW M15 RAIM ILI% KJ JUf IRWWV W V WV -JWL %- WIW4 W1 W.V i

., a..--

independent variables of an equation before the dependent variable can be evaluated.
Similarly, data parameters of a structure (e.g.. defining a range of a dimension in struc-
ture) must be evaluated before accessing the respective structure. Therefore. the array
graphs represents not only explicit data dependencies resulting from defining a variable
in term of others. but also implicit ones implied by the semantics of the language. like
hierarchical or data parameter ones. Labeling dependencies by the corresponding sub-
script expressions (that define mappings between dependent structure elements) enables
compact representation of the specification. Array graph compactness and uniformity of
representation of different dependencies simplified greatly analysis and optimization
procedures of the MODEL system. It is worthwhile to note that flow of control is absent
from an array graph. since it is generated later. Therefore. often superficial. dependen-
cies imposed by the way the algorithm is written by the user do not inhabit optimiza-
tion in the MODEL system.

Data flow analysis usually ignores predicates associated with equations. As the
result the following specification poses a problem:

A = IFX > 0 THEN 0 ELSE B + 1-,
B = IF X > 0 THEN A + 1 ELSE 0,

Since here A depends on B and B depends on A. the compiler would issue a circular
logic message and would create a procedure for solving what appears to it a set of simul- %

taneous equations. defining A and B. A slightly deeper analysis shows that the specifi-
cation is well formed, yielding directly A=0. B31 when X>0 and A=1. B=0 otherwise.

There are other instances where checking of conditions may flag errors that are nor-
rnally undetected. Those include checking that initial values in recurrent relations and
exit conditions in recursive functions are well defined. Similarily. the timer evaluates
time delays on every possible path independently of conditions under which any given
path can be selected. Therefore, finding, for example. that predicates of two equations
are exclusive allows the timer to set max(TI,T2), not T1+T2 as the total time delay.
where TI and T2 denote time delays of the first and second equation respectively.

This sugge-t; introducing condition information into the array graph. A labeling of
edge, by the respective predicate, and recognition of equivalence or exclusiveness of
predicates that label edges would make the system accept or reject some specifications.
This is an open-ended investigation since no algorithmic procedure could solve the prob- ,.a.
lem in its full generality. The main problem is of course to recognize equivalent but not
necessarily identical predicates as well as exclusive ones. We believe that, partial
,cliei,,, which we pro)ose below iiay solve a high 1)roportion o f th, , ca-v,, and.
, ,7 n h ; , m 'c e t h , , -o > 4 e l l r a p a b ~i l i t y' ." .

Procedural verificati11 technique, are ii-ially 1 ival oil propagation along coitrl

flow edge' (cf. dc Bakker 1198() )..lo, 1J9one . laiina (1974). or Reyiiohl- (19S /

Thi . tle tandard technique, of coiipwiit ig t he wv'akct precon(lit ion and 'troni-g.t

po-t-co(ndtition rely oi the pro)agation of 1ogical iiformial 1011 backward and forward iI.

250



the control flow graph. In an analogous way. it is possible to develop a "proof theory"
corresponding to logical information propagation across an array graph. By propagating
logical information backward and forward, we are able to check consistency between
separately specified constraints on disjoint variables. We are also able to relate different
variables used in predicates to source data elements. Therefore. we can rewrite all the

predicates of a specification in terms of a uniform set of source variables: i.e. we are able .,

to normalize them. This very important property of normalization results from nonpro-
cedurality of equational specifications. Namely. each variable is uniquely defined and
cannot be redefined in a specification. so it is not dependent on the stage of program"
execution.

Predicates in specifications consist of Boolean terms connected by Boolean opera-
tors. Almost exclusively, those Boolean terms are formed from arithmetic inequalities. e
typically involving subscript expressions. Thus, to assert the relations of different nor-
malized predicates to themselves, we need a theorem proving subsystem in the domain.
of arithmetic inequalities (cf. Bundy (1983)). We decided to use the Sup-Inf decision
procedure for an area of real number arithmetic. It was originally developed for natural
numbers by Bledsoe (cf. Bledsoe (1974)). although it does not constitute a decision pro-
cedure for the corresponding area of natural number arithmetic. The whole of real
number arithmetic is known to be undecidable. We are going to carve out a decidable
subpart by allowing only the additive functions. i.e. by excluding trigonometry.
exponentiation. etc. Our experience with the MODEL language shows that predicate- III

equations are almost exclusively limited to additive function-.

The idea of the iSu)-Iif method is to show that a negation of a conijeeture i, unsa-
tisfiable because one of its constants cannot be assigne(d a type. The negated conjecture
is put through a series of normal forms. the last of which assigns a type to each Skolemn
constant. The Sup-Inf method works with the negation of the conjecture in disjunctive %
normal forim and proves the conjecture if it is unable to assign a type to one Skolei-"
constant in each disjunct. The method can be extended to formulae with free variable.
by adding a technique for eliminating such variable(,. Th' techniq uje elilinates varl-
ables from the conjecture using interpolation and reduces the conjecture to a variable
free formula. which is then hand(thd 1)y Suip-hif (o-f. Bledso, (198())). Extension allowing'-
proper Skoleii function. is, also l)ossible and leads to a decisioni procedure for formu-:a'
allowing both universal and exist(ntial (Ituantifiers at any level. I nfortiunattely. all
known decision procedures for such extension (called Prelmhrger Natural Arithmetic) are . -

very inefficient (cf. Cooper (1972). Shostak (1979)). Therefore we will investigate what ,
types of inequalities are the iost ,'xiiiiinly used in N()DEL coiditions and how t("
m~lil ill' , -ll-h m'i(lIOT ld to iiichilh ' t proper -Ji-)ldo mi ()I ' it ;irli li ,. 1C

4. (oytilusions

Defiit ioial laxii;og'., offcr a n,, x ar c To tin, -,tt war, l iie t )r(hii "l.
Th(\ reliev' , u.('r- fri, cm(I e cerno r i- a t -1 ,f i'ii n i Hll ili )l l(,le t ion lt, ;tiI-. illd r,-
,ld( htte(r checkin-o f",•ilitic ,-  th~an p~roc,',hir~i 1;m ,- Til,,\ C;Il T) 'r,'f*()ru' hc l To) ,,.I .

251

e.................



WIWI ifLW'in A KAN13111A FE K PnAr 1111WMv AIA. WRW-1VV PtMMK

dramatic improvement in software productivity. These promises are however contingent
upon developing a language processor capable of generating high quality code from
definitional specifications.

In this paper a novel technique of conditional equation analysis is proposed. It ise..
based on application of theorem proving technique for global predicate analysis in equa-

tional specifications. It leads to more accurate estimates of time delays. deeper specifi-%

cation verification, and finer identification of simultaneous equations. An initial imple-
mentation of predicate analysis in stack structure definitions has resulted in significant
optimization of object programs generated by the MODEL translator (cf. Szymanski
and Prywes (1986)).%

5. References%

1 E.A. Ashcroft and W.W. Wadge. "Lucid, A Nonprocedural Language With Iteration." Comm.
ACM. Vol. 20, No. 7, July 1977. pp. 519.526.

2. J. Baron, B. Szymanski, E. Lock and N. Prvwes. "An Argument for Nonprocedural Languages." In
"The Role of Language in Problem Solving 1." R. Jernigan. B."'. Hamil and D.M. Weintraub (Edi-
tors). Elsevier Science Publishers (North- Holland). 1983. pp. 127-145.

3. W.W. Bledsoe, "The Sup-Tnf method In Presburger Arithmetic.' Memo ATP-18. Math. Dept.. U. of
Texas. 1974.

4. W. W. Bledsoe and L.M. Hines. "Variable Elimination and Chaining in a Resol ution- Based Prover
for !nequalities," Memo ATP-56a. Math. Dept.. U. of Texas. 1980.

Si A. Bundy. "The Computer Modelling o)f Mathematical Reasoning." Academic Press. 198".

6 D.C. Cooper. "Theorem Proving in Arithmetic without Multiplication." Machine Intelligence. WIl.

7. pp 91-99, Elsevier. New York. 1972.

7, iW. de Bakker. "Mathematical Theory of Program Correctniess." Prentice Hall. New York. 1980.

S C M. Hoffman and M.J. O'Donnell, "Programming with Equations." ACM Trans. on Programming
Languages and Systems. Vol. 4. No. 1, January 1982, pp. 83-112.

9 C.H. Jones. "Software Development, A Rigorous Approach." Prentice Hall. 1980.

SZ. Manna. "Mathematical Theory of Computation." Mlc(raw-Hill New York 1974

Ii N Pr.e and] B. Styriiani.ki. "Programiinig Superc)itipuit't' III nnqairLuiotial Lativuave" F:r,
International (Conference on Supercompit ing I tms EEF. \e" )t'rk. -,t IPetershbrv. Flrida
lDeremlr. 1985. pp 37-45

12 J1 C Reynolds. "The (raft )f f'roi'raninttnrz. 'Pr~ntr c Hall \,'.% \ .,r 191t

13 J. A. Robinson. "Logic Programming - Past. Present and Fitunre." Nem, Generation Comnputing.
Vol. I. No.2. 1984. pp 10)7- 121

14 R .E. Shostak. "A Practical Dpc sio~i Proc nrc ft. Artt flrtt r %% ii i Frinct Ion S.% tn h,,s " .1 A ( M\V-)I
2. V '2 pp'; :;n17

V H -';vrtan'.ki. \ Pr%%%- 1-. I.-k \ Prnii "(rl !..f % I. kn' i )ttrrn
ILanqu ag-" ' r, of . Iho \( '1A rI \nurn'. "-an Iran. .,h H Ir t -1(1 1I' \(At NO

\"'w NYrk. 1()x-. pp 197-2H~7

H' l 'z,,rtan'ki aid \ Ll ~ '~fitettt Windriing, ,f l);i r Siriv-ir- iri Ib(friitwial L l~a Igua'o-."

17 J Tseng. B Sz~rnan'.ki. ) 'Shi anid N ' Su~persst eni I 'r(,rarntin iii ,%'it h the Model F.( ha-

tional Language." IEEE ( U,iivr. \,I 2ui. N- 2. h'bruar\

252



AN INVESTIGATION OF PARALLELISM
IN RULE BASED SYSTEMS

Steven D. raney
David A. Marshall

Martin Marietta Aerospace
P.O. Box 179, Denver, CO 80201

ABSTRACT

For many applications rule-based programming languages are too slow. We are
studying the use of parallel architectures to increase overall performance of a logic
programming interpreter. Using a tightly-coupled multiprocessor, we have found that
substantial performance increases can be obtaned, and the parallelism inherent in -e
lcgic programs can be easily exploited.

1.0 INTRODUCTION

Rule based programming languages are popular for Al, cognitive modelling, expert
systems, and databases. Production systems. for example, have been used for medical
diagnosis [1), computer configuration 121, and spacecraft payload scheduling [31. 'Logic
programming languages have been used for planning [41, natural language [5) and
prototyping database systems [61. DARPA's strategic computing initiative predicts the
existence in the very near future of expert systems containing 30,000 rules requiring
the execution of about 12,000 rules per second as opposed to 50 per second for
current systems. Performance increases can be obtained through the use of compiler
and optimization techniques[7,8,91, faster device technology , special purpose
hardware [10,111 and parallelism[12,13,14). These techniques are by themselves
unlikely to produce the necessary performance increases , therefore, parallel
execution of expert systems [15,16,171 must be in combined with these other
techniques.

Parallelism in rule-oased systems is easily identified. These systems consist of a set
of facts or assertions, and a set of ni-es; new information is derived through the
repeated application of rules to facts. At any moment, more than one rule may be
applicable and these often define alternative solutions. Conventional systems choose
one of these rules according to some fixed strategy and apply the rule resulting in
new information. The construction of the set of alternatives can be performed by
concurrently matching rules with facts; this is called production-level parallelism , or
rule-level parallelism . The parallel application of this set of rules is called search level
parallelism .

For the remainder of the paper we focus on a specific type of rule-based system,
logic programming. Section 2 briefly describes logic programs and the parallelism in
them. Section 3 gives a high level description of the architecture we are studying
the BBN Butteifly . Section 4 describes some preliminary stud:es in rule and search
level parallelism, and section 5 conclusions.

2.0 LOGIC PROGRAMS

A logic prog-ram consists of -a set of assertions or facts d a set of rule:; or axiom -
in horn clause lorm 118,191 F- re I shows a simple program desc ribing the
relationships between scholarships and s:'identsI Rule I may' be informally read as
"X is entitled to a scholarship if X is a stlident. X's a is Y, Y is 1reatcr than 3.4,
and X is a senior."

253



:t1v- sCholoeshipD(7.) studen 4 e(7.?) 4 9qe~te,(7-3.
4

) L - .o,(7.)

t lnt (J - )9t0.( to-0)
9o.( to-. 3.6)
5e..l( o"3") Ad
J unq ,,(J*, ) 

'"

QMr: %l¢lh~r~l(?)t ~i
i

4

%

Logic programs can be executed using a particular form of resolution called
SLD-resolution [19], which we illustrate with the following example. A program is
driven by a query, or goal, such as: "find an object Z such that Z is entitled to a
scholarship." The solution to this query can be viewed aF search of a proof tree.
Figure 2 shows a proof tree for this program and goal. The goal matches with rule 1
producing the new goal find a student such that the student's gpa is Y, Y is greater
than 3.4, and the student is a senior." For the original goal to be satisfied, this
conjunction of new goals must be satisfied. The new goal matches with two facts
producing two new goals, one of which results in a solution fX = tom). .

give-chol ,ship(?) 9g -scftol4rsh1VC?.) U -student(?,) V -go*(?^. y 1 V

9eete-(y.3.4) V -Se., (o?.)

t u d e . W( ? ) V " 9 o ( ? , ? ) V/

st .dent(to) .)eter(?y,3.
4
) V "senior(7.) stIde.t(Jen)

I Janel

"900( o .?V 9o( J.e. y)

V -re.te(?y.3.4) U -g..te.(?.3.4)
go&( to., 3.6) V -se.ntor(to) -e.nIoc(J.ne) SV.( J.ne. 3.6)

Ser( 3./.3.4) - eeter (3.6.3.4 3

V ws0(t- Usenqo.(J*n.)

seno"ton) senl(to.) .- nlo.(J..e)

.1 % ,p

S% .

Inspection of the proof tree reveals that parallelism can be exploitad in several places,
most notably in the match of a goal to rules and facts (rule-level) and the search of
resulting new goals (search-level).

2.1 Subrule parallelism

Subrule level parallelism, or intra-rule parallelism [161, refers to parallel urification of
a goal and rule. A task is created for each pair of arguments that must be matched.
This level is characterized by a high amount of communication and synchronization
between tasks. Analysis [101 indicates that, on the average, there are three '

arguments to be unified, and that two of them share variables making software
implementation of unification unprofitable. Further studies 110,11,201 indicate more
efficacy from special purpose hardware for unification than implementation on
general purpose multiprocessors.

2.1 Rule parallelism

Rule level parallelism, or production level parallelism, refers to parallel match of a
goal with multiple facts or ries. If a task is created for each match. this levi ".

254

.,M~



VlWVVV~ WE~ UW WVW

characterized by no communication between tasks, no synchronization, and
contention between tasks for goals. This task independence makes rule-level
parallelism a good candidate for parallel implementation. The amount of parallelism
varies from program to program from little in some such as append to very much in
database applications where queries are satisfied by many records.

A study of six OPS5 expert systems [15], showed an average of about 35 rules that
could be matched in parallel. Other research [101, showed this to be about 10 for
several Prolog programs. It is questionable, however, whether th'se results
extrapolate to other expert systems because the amount of parallelism depends on
the application. In large databases, for example, particular records can occur in the
thousands, and one might observe flurries of massive parallelism for some queries, to
very little in others. It may be the case that new semantics for parallel rule-based
systems will result in programs with more parallelism than existing programs written
for uniprocessors.

An important issue is that of task size. At this level, we define task size as the '0
number of goal-to-rule matches each task performs. The amount of work in a
particular match varies as in, for example, p(X) with p(cons(l,nil)) and p(X,Y,f(X))
with p(a,f(a),f(a)). Decomposing a task into less than one match results in subrule
parallelism. Optimal task size depends on features of the particular architecture such
as task creation overhead, frequency and cost of task communication.

2.2 Search Parallelism ,.

Search level parallelism refers to parallel search of the proof tree. Search level
para!elism consists of AND and OR-parallelism [141, and many different
implementations have been proposed and studied [12,21,22,231.

2.2.1 OR-parallel search

Since alternate branches represent alternate solutions, they can be searched with .-

little or no communication between paths. Variable bindings and modifications to the
knowledge base produced by separate search paths must be kept separate. '1 4

Combinatorial explosion of the proof tree necessitates schedu!ing heuristics in order
to focus on promising paths.

Similar to rule level parallelism the amount of OR-parallelism varies from application
to application. If a program contains many rules with the same head, parallelism will
be high. Even if only a single solution exists, speedup can be obtained from
OR-parallel search since this takes the place of the depth-first search with
backtracking used by most systems.

2.2.2 AND-parallel Search

In AND-parallel search conjuncts in a goal (nodes on a path) are solved in parallel.
Synchronization and communication is necessary if vanables are shared between
conjuncts. In figure 2, for example, GPA(jane,Yj and Y>3 4 must agree on a vaue
for Y. Furthermore, GPA(jane,Y) should be solved first since the seL of values it
could return for Y is much smaller than the set of values greater than 3.4. Solving-
GPA(jane.Y) first would thus constrain the search for Y>3 4. Class(senjane),
however, can be solved in parallel v~ith the other two conjuncts w-thout any extra
overhead

ANI)-parallehm is not, in genera, detcctah!e ut comp;:m e, because it cannot

255 ._

'r~ W< W

.5, &k=.,



occur when two conjuncts contain the same unbound variable or when they contain
different variables which have been set to the same unbound variable. These
bindings occur at run-time therefore AND-parallelism is only profitable if the amount
is large enough to overcome run-time checks [241 A different, but less flexible
approach, is to provide a syntax to make AND-parallelism explicit in the program
(251.

3.0 BBN Butterfly ..

The Butterfly is a shared memory tightly coupled multiprocessor consisting of n
nodes connected by a butterfly (FFT) switch. Our machine has 16 nodes each
consisting of 1 Mbyte of memory as well as a M68000 microprocessor (PE) and a
bit-slice co-processor called the process node controller (PNC). The PNC handles -Jl
memory references for the node.

Each node's memory is partitioned into a globally addressable and locally addressable ",'
memory. When a processor allocates memory, it can allocate to its private memory,
global memory, or globally mapped local memory. In the absence of contention,
accesses to local memory take 2 usec verses 4 usec for a remote memory access.

4.0 Approach

We are interested primarily in rule and search level parallelism because we believe
these to be the most promising for performance increases. This is due to the lack of
communication and synchronization required between tasks executing at these levels.
It is our goal to understand how task granularity and memory allocation affect the
performance of an interpreter which exploits these levels.

4.1 Performance of Rule Level Parallelism

Our first approach to parallel unification combines uniform distribution of patterns
over shared memory with coarse granularity (few tasks performing many matches). ,.'

The set of patterns is evenly divided into disjoint subsets, one for each processor.
Tasks consist of matching a goal stored in a processor's local memory with each
pattern in the processor's assigned subset (stored in shared, possibly remote,
memory). The patterns we use are average in size and complexity based on the
previously mentioned studies of Prolog programs [101.

In a rule-based system, pattern size varies widely which may cause end-effects for ,.-.

this coarse-grain approach; this arises if a number of tasks match more complex
patterns than other tasks. It is therefore important that tsks are created in such a
manner that work is evenly balanced across them.

In spite of equal task sizes, the results in figure 3 illustrate that coarse granularity
sufferG from an end effect due to memory and switch contention.

256

Z'..



124 a
S2~

•I W9S

3

End-effects can be mitigated by using finer granularity ( more tasks performing
fewer matches). At the extreme, each task consists of matching the goal to exactly
one rule or fact. In a system where patterns vary greatly in size, this fine grained
approach allows for load Furthermore, the lack of communication between tasks
suggests a very fine grain approach, 1 match per task. Reducing task size further
results in subrule-level parallelism.

As expected the very fine grain approach achieves faster runtimes than the coarse
grain approach (figure 3). There is a cutoff, however, at which decreasing task size _
does not appear to improve performance. Decreasing the number of matches pcr task
past 1 introduces too much overhead.

Another way of increasing the throughput of the unification operation is to alter the
allocation of rules to processors' local memories. This reduces the time to access
memory since no contention can occur, and the operating system does not need to %
make the reference with exclusive access. The granularity of this approach is _,%j,
dictated by the number of p:ocessors. As indicated in the graph in figure 4 the local,%

allocation scheme is no faster than the best shared memory fine-grained approach.

2 32

66
, ,ee

logo -------

r 4 --

4.2 Performance of Search !-evel Parallelism I-,-

AF i rreface to addres-mng c irch level parallhsm we first mt,: fit the re:!ts f the

257 ,

"* me -*,, t



unification study into the context in which it will be used. In the previous
experiment the goal was already present in private memory at the time the
unification procedure began. For search level parallelism, new goals (paths) are
constantly created and must be accessed by all tasks. The goal can be shared or
copied into each task's local memory.

We performed a test to assess the affects of copying versus sharing. The results are
shown in figure 5. The most noticeable result is that local allocation performed
significantly better than global allocation which was not the case in the previous
experiments. This is due to the added contention on the goal in addition to
contention on rules; local allocation involves only goal contention.

I 0, o,. Ft.• *f o .€n~ *f Pocn...'. '.. .

-* CoI hI ntI.. .

16, d %

16 * ¢..f

I 1 Gee• Icd e 04|l jI, ,

1t. - ' i . -

CO,4. 5tgno

Oiurnerproeit cure at epotsa ORralelsm fgandla rrictd alf:or shof n %,_

.'.. '

AND-parallelism called STREAM-parallelism. STREAM-parallelism refers to pipelining %,
the bindings between conjuncts so that the execution of conjuncts can be overlapped. ,-,

A problem occurs when the number of goals (leaves in the tree) grows much larger C'_.
than the number of PEs. Breadth first search can be performed by creating tasks ..
for every leaf thereby expanding one level at a time. This would be valuable if few-''
solutions were ultimately derivable and the tree quickly thinned out due to failed .
sol,:*.ion paths. A more complex scheme is to use A* search based on a programmer ,'" :'
supplied evaluation function. Another promising strategy is to allow the prog,ammrers
to weight structures and choose the nodes v.-ith the highest values according to _:'
these weights. The wveights may be assigned to clauses. literals, or symbols, but _..
incorrect weighting can result in infinite failure. ."

Another problem is the adaption of extra-lo~rcald control features such as asscrf and-. "

258



A

cut. The assert operator allows the program to modify the database and cut controls

backtracking. These extra-logical features often improve the performance of a
sequential interpreters, however their non-logical scmantics affects parallel
interpretation. For example, something asserted by a clause can later be retracted by
the clause. In the meantime, it must not affect other search paths. The cut
operator is often used to restrict the interpreter to returning a single solution. It .
prunes the search tree by removing predicates whose heads are similar. This feature
is often abused resulting in "if-then" execution of similar rules. These rules then
cannot be executed in parallel (unless eager evaluation is used, and the results "

ordered).

New constructs such as a oneof meta-predicate are needed. This predicate would
take as an argument another predicate and non-deterministically return a single
solution. Furthermore, techniques from concurrent databases such as only updating
after an explicit commit will be useful.

5.0 Conclusions

For a 16 node butterfly we were able to show near linear speedup for rule-level %
parallelism on fine grained global allocation of rules as well as local allocation of rules.
The less than linear speedup near the maximum number of PEs was the result of
memory and goal contention. This was less of a factor with local allocation resulting
in better overall performance with local allocation. This local allocation scheme is
similar to the message-passing paradigm.

Using linear speedup as a measure of program performance is not, in general, a good
performance measure[26]. This occurs when inefficiencies in the program dwarf the
amount of internal communication. If the program is optimized, the internal
communications may become a bigger factor and preclude linear speedup. In P
rule-level parallelism, the program in question is unifying all possible matching rules
with a goal. If a more efficient unification procedure were implemented, the result
would be a slightly different optimal task size than we observed, but we would still
expect the same results due to the independence of tasks.

The less than linear speedup near the maximum number of PEs was the result of
memory and goal contention for global allocation and goal contention for local
allocation. The upper bound on the number of PEs that can be used (inefficiently
much of the time) is essentially dependent upon the number of similarly headed
rules and facts which we expect varies widely. Additionally, this involves tradeoffs
such as throughput versus efficient use of processors. To achieve maximum benefit
from a large number of PEs, however, goal contention must be minimizcd.

Combinatorial explosion of the search space can be more of a problem for parallel
interpreters than their sequential counterparts. This necessitates techniques for

allowing programmers to control the search process rather than relinquishing control Wev

to an exhaustive search mechanism.

Finally, many of the extra-lofcal features which are useful for s.quential
interpreters create problems for parallel interpreters. Control constructs, however, 1r,-
sti, desirable and neces s'v for parallel mterpretation. An important area of furt!".r
work is the development of control constructs which have to-gcal semantics anl
theref. re do not, create prblems for parallel interpreters.

259

.. .. . . . . -- -, . . - . ::. . ,-, :',- , , .. ,. .. ,-'.,'-. .'"- "- - , "- "-.:-" --



References

(I] Shortliffe. E.H.. 1976. Computer-Based Medical Consultations: NYCIN. New York. Ancrlcan t1.evier

(2] icoer ioll. j. R9: The Formalive Years.' Al M.gizine. Summer 1981.pp 21-29.

(3] Gohring. J.. Le-y. 0.. Sauers. R. 'EiCS: An Expert for Spacecraft Energy mnA' enenL
1964 Conference on intelligent Systems and Machines. Rochester. MI

4] Warren. 0.14.0. "WARPLAN: A System for Generating Plans." University of Edinburgh

Department of Artificial Intelligence tech Report. 1977.

[5] Colieraue.. A. *An Interesting Subset of Natural Language., In Clark and Tarnlund

(Eds.) Logic Programing. Academic Press. London. 1962.

(6] Cohen. 0. and Hester,T. 8A Database Design Analysts Assistant in Prolog.* Proc. .

of the 7th Annual Mlnnowaorook Conference on Database Machines. 1985.

(7] Kahn. K.M. & Carlsson. M. *The Comilatlon of Prolog Programs without the Use of a CoMoiler l
Proceedings of the International Conference on Fifth Generation Computer Systems. 1984. po 348-355

(6] Warren. 0. M. 0. *Imlementing Prolog-comollng Predicate Logic Programs". Dept of AT Research

Reports No. 39 & 40. University of Edinburgh. May 1977.

[9] forgy. C. 'On the Efficient Implementation of Production Systems." Ph.D. Thesis Carnegle-Mell3n

Unlversity. 1979.

(10] ikrakami. K. Kakuta. T.. and OAI. R. *ArChitecture and Hardware Systems: Parallel Inference

Machine and Kno mledge Base Machine.' Proc. Intil Conf. Fifth Generation Computer Systems..
Tokyo. 19864.0 18-36. %

(11] Robinson. P. The aU.4: An Al Coprocessor.
° 

Byte. June 1985, pp 169-178. i.

(12] Conery. J... *The AND/OR Process Model for Parallel Interpretation of Logic Programs.

Ph.D. Thesis. University of California at irvine Technical Report 204. June 1983.

(l] Stolfo.S. -ii e Parallel Algorithms for Production System Execution on the DAD0 Nacnine. ,,.

AAA! August 1984. PP. 300-307.

(14] Conery. J.. Kibler. 0. OParallel Interpretation of logic Programm.ing. Proc. Cone. functional

Programming Languages and Como&uer Archltecture. AC1. October 1961, pp 163-170.

(15] Forgy. C.L.. Gupta. A . Ne ell. A .Wedg, R.. 'Initial Assessment of Architectures ro,
Production Systems.",AAAl. Proceedings of the National Conference on Artificial Intelligern:-. 1984 A.,:

in. TK

(16) Douglass. .J. *A Cualitative Assessment of Parallelism in Expert Systems.* lEE Soft.are. [
May 1965 .

17] Kibler. 0., Conery. J1. Parallelism In Al Programs * Proc Int'l JOint Conference on

Al. 1965. pp 53-56,

(16] Clocksin. W.F.. Mellish. C.S. "Programing In PR 0G. Springer-Verlag. Berlin. 1981. %

C19] Lloyd. J. "Foundations of Logic Programming.* Springe.--Verlag. 1985.

(O] Tick. E.. and Warren. 0. *Towards a Pipellned Prolog Processor.* Proc. 1984 Int*l Conference

on Logic Programing. March :1 4. op 29-4. % P.

(21] Cteplele-ski. A.. and Harldl. S. oControl of Activities in the OR-Parallel Token Machine.*
ProC. 1984 Int'l Conference on Logic Programming, March 1984. pp 49-57.

(22] Borgardt. P. *Parallel Prolog Using Stack Segments on Shared-Me mory Multiprocessors.* . -

Proc. 1904 Int'l Conference On Logic Programling. March i984. pp 2-10 L'

(Z3] Warren. 0. H. 0. *Executing Distributed ProOg Programs on a Broadcast Network.* Proc. 1984
Int'l Conference on Logic Programming. March 1984.

(Z4] DeGroot. D. *RestrlCted AND-parallelisme. Proc. Int'l Conf. Fifth Generation Computer Sysl~es. -

Tokyo. 194.pp 18-36.

(25] Shapiro. E. -A Subset of Concurrent Prolog and its Interproter.6 lCOT Technical Report. ui-

TR-003. 1963

(Z6] LteBlanc. T.J. Shareo-mcmory versus essage Passing in a Tightly Coupled Multiprocessor:
A Case Study.' Butterfly Project Report 03. Computer Science Department. University of Rochester.
Rochester. N.Y.

,6 0

:%

260

I .. ... ... ... . ...-..-.... .. . , • . ,- .-- v-, i .%I



Software Support for Heterogeneous Machines

Mario R. Barbacci
Software Engineering Institute

Carnegie Mellon University
2 May 1986

Abstract ' ;

We describe a new research effort carried out jointly between the Software Engineering
Institute and the Department of Computer Science at Carnegie Mellon University. The
objective of the project is to investigate languages, methodologies, and tools for
programming computer systems consisting of networks of heterogeneous processors.

Typical users of these notations (and associated support software) will be the
developers of real-time, computation-intensive applications such as those contemplated
under the Strategic Computing Initiative. In particular, this research is being conducted
in the context of the Autonomous Land Vehicle application, running on the
Heterogeneous Machine being developed in the CS Department.

This paper provides some background on the nature of the problem posed by these
applications, the opportunities presented by the emergence of heterogeneous
machines, and the goals of this project.

261 '.4

L '62 q%%v r - -?V . A ... . ,



Introduction
We are all familiar with traditional numerical computation applications, concerned with
the accuracy and performance of complex algorithms, operating on simple data
structures (e.g. scalars and arrays) implemented in some imperative language (e.g.
FORTRAN). The appearance of list-manipulation languages in the late 50's gave rise to
symbolic computation applications, concerned with the manipulation of complex data
structures (lists and plexes of different kinds) implemented in relatives of Lisp and
derivatives of Algol 60. The hardware architectures remained however, relatively
constant for a couple of decades and a great deal of progress was achieved in the
development of useful programming languages and environments.

We are now beginning to build networks of heterogeneous processors whose users are
concerned with allocation of specialized resources to tasks of medium to large size,
executing concurrently1 Heterogeneous machines (e.g. Figure 1) will have general
purpose processors, special purpose processors, memory buffers, and switches which .-.
can be configured in more or less arbitrary logical networks. In addition, these networks
are not necessarily static, configured once and for all for a given application; the ,V
networks could alter their configuration depending on the needs of the application at any
given time.

The Department of Computer Science at Carnegie Mellon University is building a
heterogeneous machine as a vehicle for research on high-performance computing.
Research is also being conducted in vision processing (e.g. landmark recognition) and
machine reasoning (e.g. path planning). These applications depend on the large
amounts of computing power that can be delivered by the proposed heterogeneous
machine. The research described in this paper is being carried at the Software
Engineering Institute and addresses the missing link, namely, the development of
languages and methodologies for programming the heterogeneous machine, to exploit
the coarse-grain, task-level concurrency available in the applications. Exploring this
task-level parallelism is a new direction in parallel processing.

The Nature of the Problem
It is expected that users of a heterogeneous machine will rely on libraries of
painstakingly developed procedures to accomplish the common operations in their
domain of application. On a high performance engine, with multiple functional units,
pipelines, and register sets, these procedures can be very difficult to write but, basically
this is within the reach of current compiler technology and programming these engines
is not the showstopper.

The major source of complexity in the applications for which the new heterogeneous

For our purposes, let's assume that a medium size task granule takes in the order of 100 times a
basic synchronization operation. That is, we are not dealing with the minute level of concurrency provided
by array processors (e.g. ILLIAC IV) or pipelined functional units (e.g. CRAY), but rather with the
scheduling and management of larger chunks of computation, with commensurably larger resource
allocation requirements.

262

.4". '



machines are being built (e.g. Autonomous Land Vehicle [DARPA83]) does not come
from the basic data operations (these are hidden in the node procedures) or the data
structures (usually limited to arrays and records). The complexity comes from the
communication patterns between the computing elements required' to make effective
use of the available resources.

The writers of the application programs (e.g top of Figure 2) must be familiar with the
nature of the tasks performed by the processors (nodes in the graph) and the contents
of the data queues (links in the graph) in order to program the applications. In general,
the tasks will take different amounts of time to complete and the programmer must
schedule the arrival of sufficient data at the right time to prevent starvation of nodes, but
not so much that queues overflow. Thus, an expert's knowledge of the application is
required to select and connect the right resources to achieve some optimal
performance. Applications might have additional requirements that might not be directly
expressible in terms of nodes, queues, and links. For instance, a requirement might
exist that some operation be performed twice as often as some other operation
elsewhere in the graph in order to obtain some balanced flow of data. These
requirements and constraints are part of the program and must be explicitly indicated.

The efficient utilization of a heterogeneous machine requires therefore support for
developing application programs organized as multiple, concurrent, cooperating coarse-
grain tasks. The tasks in turn could be more tightly-coupled parallel programs executing
on specialized processors such as, for example, systolic arrays. These two
programming levels can be separated from each other. The writer of a library procedure
that performs some basic computation [e.g. convolution, histograms, etc.] does not
necessarily know the context in which the procedure will be used. The procedure
executes on a processor that consumes data from input queues and delivers results to
output queues. By the same token, the developer of the application does not Y" '
necessarily know the details of the procedures running on the nodes. The procedures
are treated like black boxes or primitive building blocks, with predetermined, perhaps
nominal, performance characteristics.

The Nature of the Solution
Suppose that the application programs are represented as graphs, with nodes
representing the tasks, and links representing data communication. Programming the
task associated with a node involves intra-node concurrency, while making the nodes of
the graph to work in parallel is inter-node concurrency. The intra-node concurrency
problem has been thoroughly studied, and there are reasonably mature techniques for
writing useful concurrent programs for intra-node computations on special purpose
systems. However, the higher level, inter-node concurrency is not as mature or
understood; this is the area of interest to us.

As illustrated in Figure 2, a compiler for a task-level programming language will
translate the application program into code for a virtual machine. The target "machine
language" will consist of commands to be interpreted by a scheduler node. Typical
commands include requests for data movements, data transformations, down-loading

263 rd



code to the computation nodes, invoking task, etc. It is the job of the scheduler to
generate the appropriate low level control messages and route them to the processors
in the system.

Ideally, neither the language nor the compiler should make assjmptions about the
structure of the heterogeneous machine, leaving this knowledge to the scrieduler. In
practice, the programmers may need to know something about the hardware, to perform
application dependent optimizations when they choose to do so. We are dealing
therefore with (potentially) multiple virtual machine layers, organized in a hierarchy, and
implemented by networks of message-passing "smart" resources such as processors,
queues, switches, etc. The programmer will develop an application by specifying the
operations (i.e., messages) to be carried out by the virtual machine level(s) deemed
optimal for the application on hand. The range of abstractions provided by the virtual
machines has to be available to the programmer and this has obvious implications in
the language design.

In this project we will address the following questions: How much information about the
computing engines (nodes) and the tasks running on these engines should be visible?
How much information about the machine structure (in contrast to the program
structure) should be visible? How much information about the data and control
communication infrastructure should be visible?2.

Project Goals
The main objective is to develop a specialized programming language for writing
distributed programs with coarse-grain concurrency. Suitable constructs will be
included in the language for specifying individual tasks, their attributes, relationships
between them, and preferred host processors for task execution. In general, language . .,

features will be designed in concert with the intended users and the hardware
designers. The users will drive the design of the features needed to express task level
programs. The designers will provide information about the hardware capabilities.
Since the hardware design is taking place concurrently with the design of the language,
the former is likely to be affected by the latter (i.e., language features needed to support
the applications might require the implementation of appropriate hardware features.)

The task-level, data-flow notation described above appears to be a promising start in
this direction, especially for signal processing computations where data continuously i*
flow from input nodes to output ones. There is a reasonably large body of literature on -' .-
this subject and we are studying a number of existing language models. Given the
nature of the problem, dataflow languages such as ID [Arvind78a; Arvind78b] and VAL
[Ackerman79; Dennis79] come immediately to mind. However, the applications are

2We distinguish between the control communication and the data communication networks. The
control communication is used by the processors and other resources of the heterogeneous machine to
exchange messages of various kinds, as they schedule (or reschedule) the computation tasks. The data
communication network, on the other hand, is used to implement the data flow through the machine, and
is likely to have higher bandwidth requirements.

264

%



_/

likely to require more flexibility than a pure dataflow model: we need to specify
computations on streams of data as provided in Lucid [Ashcroft77; Wadge85]. In
addition to the data flow operations, the applications require the specification of task
synchronization, task control, and graph reconfiguration under a variety of conditions.
To satisfy these requirements notations such as path-expressions [Campbel174a;
Campbell 74b] might be more appropriate.

Programs in the task-level programming language will be compiled into sequences of
task invocation and data communication operations. The first part of the problem to be -p

tackled is the definition of the basic language concepts: the operators and operands
used to program the machines at the task level, ignoring the languages and support
tools needed to program the basic tasks executing in the computation nodes. The
design and implementation of the language and associated tools will be an iterative
process, developing virtual machines to execute the task level programs. The first
version of the system will provide a simple language, allowing for direct control of the
physical resources (the lowest level "virtual machine"). The emphasis will be in
obtaining early feedback from the users. Later versions of the system will incorporate
additional application requirements (e.g., perhaps better user interfaces.) and multiple
virtual machine layers. The abstractions provided by these machines will allow
optimizations at the appropriate levels by both the users and the compiler.

By Way of Conclusions
This effort started in January 1986. In the interim, we have been studying existing
language models that could be suitable as starting points for the development of a task-
level concurrent programming language. At the same time, we have started the design
and implementation of a prototype heterogeneous machine (to be operational by the
Fall of 1987) and are building a simulator to debug both the language and the hardware .
design.

Bibliography
[Ackerman79]

W.B. Ackerman, VAL - A Value-oriented Algorithmic Language Preliminary
Reference Manual, MIT Laboratory for Computer Science, '" "
MIT/LCS/TR-218, June 1979.

[Arvind78a] Arvind and K.P. Gostelow, Dataflow Computer Architecture: Research and
Goals, Department of Computer Science, University of California, Irvine,
TR 113, February 1978.

[Arvind78b] Arvind, K.P. Gostelow, and W. Plouffe, An Asynchronous Programming -,
Language and Computing Machine, Department of Computer Science,
University of California, Irvine, TR 114A, December 1978.

[Ashcroft77] E.A. Ashcroft and W.W. Wadge, Lucid, a Nonprocedural Language with
Iteration, CACM Vol. 20 No. 7, July 1977, pp 519-526.

(Campbel174a]
R.H. Campbell and A.N. Habermann, The Specification of Process
Synchrorization by Path Expressions, University of Newcastle upon Tyne,

265



~KLWLW1R~W w~U~~1Fa W WVW~r~NW~WLW M'~ V~iJ W~ ~ '..V'jW~ '.j ~i -'j~ w W~j -~ *% .o

Computing Laboratory, Technical Report 55, January 1974.
[Campbe1l74b]

R.H. Campbell and P.E. Lauer, A Spectrum of solutions to the Cigarrete
Smokers Problem, University of Newcastle upon Tyne, Computing
Laboratory, Technical Report 63, May 1974.

[DARPA83] Strategic Computing, Defense Advanced Research Projects Agency,
October 1983.

[Dennis79] J.B. Dennis and K.K.S. Weng, An Abstract Implementation for Concurrent
Computation with Streams, Proceedings of the 1979 International
Conference on Parallel Processing, Detroit, Michigan, August 21-24, 1979,
pp 35-45.

[Wadge85] W.W. Wadge and E.A. Ashcroft, Lucid, the Dataflow Programming
Language,APIC Studies in Data Processing No. 22, Academic Press, 1985.

V-A.

266-



Sensors

Data
Queues

Nodes

Switch a

Scheduler

......Control Paths

Data Paths N

Figure 1 -- A Heterogeneous Machine

5%%



dI.

PMoes datrms nationtio

BoadfSelecticn londSchedules

Vehicle Ve il

P si rton Pnositioni
AoaloIat n ofi IIeI S
Deldcty Pe il Py o sdoe

Road~~'i -an'ar

Deal1

Figure 2 -Compilatin and Exection of aoasklvdCnurn rga

268r admr



Session 1 4A: Interconnection Strategies

& Distributed Computing
Systems

Chairperson: L. N. Bhuyan
University of SW Louisiana

269v

111,111,!1, e-



V .. . , -t . . , 'VA

The Case for a Shared Address Space

Edward F. Gehringer
Department of Electrical and Computer Engineering

Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7911

Abstract 0 A server process at the receiving end notices the mes-
sage and responds to it by preparing and sending a

Multiprocessor systems that allow processors to access return message.
individual words in each others' local memories can effi- 0 The return message traverses the interconnection net-
ciently execute a large class of parallel algorithms. Global work and is stored he integ process's message
search, interprocess synchronization, and some forms of w n s i e s p s s
transaction processing execute several times more efficiently
in a shared address-space environment than in a system 0 The requesting processor performs a receive operation

that provides only message-passing. Though provided by and reads the desired word.

relatively few multiprocessors, shared address spaces can be There are many sources of inefficiency in this interaction.
implemented quite easily on systems that provide separate To begin with, two messages have to be explicitly sent,
communication and application processors at each node. requiring queue manipulation of the message buffers at

both ends. On Cm*, sends and receives cost at least 110
isec. each, or approximately 14 times as much as the aver-

1. Introduction age instruction. Sending and receiving two messages thus .%.N

Multiprocessors are usually classified as either tightly consumes 56 instruction times. In addition, several
coupled, with main storage shared via a common bus or more instructions must be executed to write the parameters %. w\,

multiported memory, or loosely coupled, communicating for the messages and interpret their contents. However,
via message-passing3 In fact, there exists a middle ground: this assumes that the server process is running at the desti- r..

shared-address space implemented over the interprocessor nation end when the message arrives. If not, the running

communication network. Shared address-space systems process must be pre-empted and the server resumed. Con-
have existed at least since the inception of Cm " 2 in the text swaps are notoriously expensive, costing more than 100
middle 1970's. The Shared Memory Hypercube4 is a instruction times on Cm's SrAROS operating system. Not
recent example. However, relatively few multiprocessors only is the requesting process delayed, but the process run-
have taken advantage of a shared address space. ning at the destination node is suspended for slightly more

than two context-swap times.

2. A Cm* Comparison One can conclude, then, that on Cm" remote-memory .. ,
references are about two orders of magnitude more effi- '-'-'

The chief advantage of a shared address space lies in cient than accomplishing the same purpose by exchanging '.'' ,
its ability to speed up references to scattered words in messages. This suggests that global search algorithms that I- .- ,
remote memory. The interconnection structure treats a reference a large distributed database would run much
remote memory reference as, in effect, a special-purpose more quickly on a shared address-space multiprocessor.
message to be transmitted to a destination node where a But there are other examples of algorithms that benefit
switching processor retrieves or stores a designated word of from a shared address space. r,: ,
memory. However, the message is triggered by an ordi-
nary read or write to a mapped region of memory, so
explicit invocation of a send operation is not required. On 3. Experimental Evidence
Cme, remote memory references require from 9 to 35 Jones and Ard6 5,2 compared severAl different imple-
i.sec., vs. an average instruction time of 8 iAsec. By con- mentations of synchronization primitives for Ada rendez- .

trast, a message-passing implementation would require vous. Their benchmark made use of the -server" para-
these steps to read a single word: digm. with a single master process assigning "tasks" to a set ".

* The requesting processor prepares a message and of identical server processes. Each server process ran on a

invokes a send operation. dedicated processor. Each time a server process finished a

" The message is sent over the communication network task, it was assigned a new task by the master, until there a'"

and stored in a buffer at the receiving end. -,T.., as s aw ,no. i am o the g .on C , w I'-i," =2 4% j%'
T IS~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~16 t l U i 11 I " E IlIO I N a ~ m he cof idifg fid Ow 11VICII Ho- er. ihe ..oactus"n ro11 htl h exi.l

"nots researc ho how 1uppe In re"' y the rX-lEAE p"W~im ct di hitina %wui %fw h r~mIg'wdcws*e ,'~r e2,d'. bIhd~

.wunly Agen r under CnnfrjC numbef MVA9N 6-H (I103 nnagetsakl 1 IO-ptXl nierxtlol ,lmC LA ai kct1 1 .'O x -4 nstn vvei

270

. ... .: ,,',:,.. SeLY:¢,:,Y - ' -;" ,.- "r' .,":''' :,.-,' " " *"- """" €;



were no more tasks to do. This paradigm is typical of a some differences. An ordinary two-phase commit protocol
number of parallel algorithms, including partial differential is too inefficient because several data structures need to be 4L

equations, molecular-motion calculations, and a variety of locked in the course of a nested utility call. The locks may
matrix algorithms. not be released one by one as their data structures are suc-

In the message-passing implementation, the master cessfully updated; instead they must be held until the entire
sends a message to the workers describing each task, and utility call completes successfully. Otherwise an abortthe workers respond by sending a message beck each time could cause partial changes from a utility operation tothey finish a task. In the bus -waiting implementation, a become visible to other operations. A full description ofworker waits on a shared variable until the master assigns it the solution is beyond the scope of this paper, but itwork, and the master pols the shared variables until it involves making write references to remote memory in the

finds a worker that needs more work. A third version, in- course of a commit. The of sending messages instead

line embedded code, has the workers performing procedure would increase the overhead of restartability-already
calls to indivisibly increment a counter that indexes into a estimated at 30%7to an unacceptable amount.
table of task descriptions that are stored in a shared table. %
No master process is needed in this implementation. The 4. Implementation
latter two implementations require a shared address space.

Whenproessng imepertaskwasnegigiletheThe implementation of a shared address space is not
bWaiting pproachn m proe tbeaskou wsnevien time a particularly difficult, assuming that the distributed switch- • .

busy-waitinging structure is sufficiently intelligent. For example, Cm
efficient as the message-pasng version. The in-line code used mapping processors known as Kmaps to map refer- %
implementation has efficiency comparable to the busy- ences by one processor to the local memory of another. %
waiting approach for 2 processors, but contention causes it Cm* had one mapping processor per "cluster" of 10-14 pro-
to degrade as the number of processors is increased. cessors. Several newer multiprocessors such as the Ametek
Another experiment measured performance when process- System 14 and Norh Carolina States B-HIVE system 1 have
ing time per task varied randomly between 0 and 100 msec. a separate communication processor (Intel 80186) associ-
(or 0 to 80 message-interaction times). In this case, in-line a witeachmin ication processor . Theated with each main, or "application" processor. The..,.
embedded code was twice as fast as the other two memory-management unit of the application processor can
approaches for small numbers of processors, but its advan- be set to map a certain portion of the virtual address space
tage nearly vanished when more than 12 processors were to the communication-processor "device (Figure 1). This
used. One can conclude that a shared address space was virtual address consists of three fields, one which specifies
beneficial when interprocess interactions were frequent, or the destination processor, another which specifies an object
when the number of processors was small. number at the destination, and a third which gives an "

Sindhu6 investigated the problem of reliability in mul- offset into the object. A directory at the destination node's
tiprocessor operating systems. One requirement was is that communication processor supplies the base address of the
the actions of operating-system utilities be restartable so object in remote memory. The communication processor
that an abort in the middle of a utility operation does not then references memory at the remote node and passes
damage system integrity. The problem is similar to that of back the data (in case of a read) or an acknowledgment (in
nested atomic transactions in a database, but there are case of a write). The entire sequence is carried our

Device Space

Processor Interconnection
Network

Appliatio LO devic Application "

Processor Processor $ -

Figure 1: Mapping an Address to Remote Memory

271 ",,

._ . . . .a- .- . . .



~J.

without any explicit system calls (such as sends) invoked by 2. Edward F. Gehringer, Zary Z. Segall, and Daniel P.
either processor. Siewiorek, Parallel Processing: the Cm* Experience, 04%

Digital Press, Bedford, MA (1986). 0%

5. Conclusion 3. Kai Hwang and Fay6 A. Briggs, Computer OM.
For multiprocessors built from nodes that each have Architecture and Parallel Processing, McGraw-Hill, p

their own private memories, the ability for one node to New York (1984).
address another's memory can speed up interprocessor 4. Eugene D. Brooks Il, "The shared memory
interactions by up to two orders of magnitude. Several hypercube," UCRL-92479 preprint (1985).
algorithms which require fine-grained interprocess corn- 5"%
munication can profit from this feature. The implementa- 5. Anita K. Jones and Anders Ard8, "Comparative "
tion of a shared address space is easy enough to warrant efficiency of different implementations of the Ada -
serious consideration for any multiprocessor with an intelli- Rendezvous," Proceedings of the AdaTEC Conference 19'8
gent communication network, on Ada, pp. 212-223 (October 1982).

6. Pradeep S. Sindhu, "Distribution and reliability in a ,
multiprocessor operating system," Ph.D. thesis,

6. References Carnegie-Mellon University, CMU-CS-84-125
1. Dharma P. Agrawal, Winser E. Alexander, Edward '4

F. Gehringer, Ravi Mehrotra, and Jon Mauney, "B- -

HrVE project: present and future," Proc. Austin
Conference on Algorithms, Architecture, and Future
Scientific Computing, (Mar. 17-20, 1985).

i "i-

0

A

272

?.' .' . q'-J , ',.



The Next Generation of Hypercube Computers
Trevor Mudge

Dept. Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109

1 Introduction

Massively parallel computers based on hypercube architectures offer an alternative to traditional
supercomputers at much less cost. Hypercubes have been discussed in the literature for several
decades. As early as the mid-1970's a 256 processor machine was announced by IMS Associates. % o

The processors were Intel 8080's. In 1983 a working hypercube, the 64-node Cosmic Cube, was
demonstrated at Caltech [1]. A hypercube of degree n has N = 2" nodes. The attractiveness of
the hypercube over other geometries can be attributed to: 1) the slow (logarithmic) growth in Wvr.
the worst-case internode distance with N; 2) the slow (also logarithmic) growth in the number .

of connections to adjacent nodes with N; 3) the recursive structure of hypercubes- allows
multiple users to have disjoint subcubes; 4) the similarity of nodes-there are no special edge
nodes as with arrays, for example; and 5) the ease with which trees and meshes of all dimensions
can be embedded.

This paper will summerize the developments that one can expect given the expected course
of technology in the near future and make the point that software is the major obstacle to the
widespread use of hypercube machines.

2 The Present

A number of other machines have been, or are being, developed at Caltech [2,3). Influenced by
this, Intel developed the 128-node iPSC (personal supercomputer) based on 80286/287 nodes.
It was the first production machine and was introduced in July 1985. A similar machine, the
Ametek System/14 followed.

Currently there are commercial hypercube machines with thousands of processors. The
Connection Machine from Thinking Machines has 64K processors arranged in a degree 12 .NA
hypercube with each node containing 16 processors [4]. The processors are fairly simple and
operate in SIMD mode. The NCUBE/ten has 1024 32 bit processors that operate in MIMD
mode. They have a combined potential performance of 500 MFLOPS (million floating point
operations per second), although this potential is rarely approached except on special problems.
A few thousand processors as complex as state-of-the-art microprocessors is the limit that %.

current technology can support for modest cost air-cooled systems. .

273



The University of Michigan has been a beta site for an NCUBE/ten for the past 6 months
and we have had an opportunity to reconstruct the decisions thag went into its creation and to
perform a preliminary evaluation of the resulting machine [5]. The design process was begun in
early '83, and reflects the state-of-the-art at that time. Dominant considerations were packaging
constraints, memory integration levels, and custom vlsi integration levels. The result was a node
made of only seven components: a custom chip containing the memory interface, interode and
I/O channels, and the cpu; and 6 memory chips. The node has a footprint no larger than a
playing card. There are 128K bytes of memory per node, and a 10M Hz node can run 1153
Fortran Dhrystones per second (v. 519 for a VAX 11/780) and 445 kilo-Whetstones per second
(v. 395 for a VAX 11/780). The chip supports full IEEE 754 floating-point standard arithmetic.

3 The Future

3.1 Hardware

The ability to build reliable inexpensive massively parallel machines has been demonstrated.
As a matter of course we can expect faster processors and larger memories. The recent an- 6-

nouncement of Intel's iPSC-VX, which includes a high performance vector processing capability
at each node, underscores this view. Furthermore, improvements (more speed and higher den-
sities) in designs such as the NCUBE/ten can be expected to keep pace with those in memory
chips since each node is dominated by memory.

3.2 Software

Software is a major obstacle. The recent report on the Supercomputer Research Center con-
cludes that the absence of appropriate parallel programming languages and software tools is the
single biggest impediment to the successful use of parallel machines [6]. Parallel languages are . _*
still in their infancy, and critical development tools such as parallel debuggers are non-existent.
This poor support coupled with little understanding of how to express problems as parallel
algorithms may limit hypercube machines to special applications. Overcoming this obstacle -
will be a major challenge. 'Z D-*

Aknowledgment This work was supported in part by ARO grant DAAG29-84-K-0070. ..

4 References

References

[1] C.L. Seitz, "The cosmic cube," Comm. ACM, vol. 28, pp. 22-33, Jan. 1985.

274

.. D. J
.*~. - . .. .. . .. ..



r

[2] G. Fox, The performance of the Caltech hypercube in scientific calculations, Caltech Report
CALT-68-1298, April 1985.

[3] J.C. Peterson et al., "The Mark 1I1 hypercube-ensemble concurrent processor," Proc. Int '

Conf. on Parallel Proceeing, pp. 71-73, Aug. 1985.

[4] W.D. Hillis, The Connection Machine, MIT Press, Cambridge, MA, 1985.

[51 J.P. Hayes et al., "Architecture of a hypercube supercomputer," Proc. Int'l Conf. on
Parallel Procesing, Aug. 1986. %

[61 Anon, Report of the Summer Workshop on Parallel Algorithms and Architectures for the
Supercomputing Reearch Center, Aug. 1985.

2. .

,,. ..

275



A Parallel Computer Based on Cube Connected Cycles

M.J. Chung, E.J. Toy, A.A. Lobo
Department of Computer Science & Center for Integrated Electronics,

Rensselaer Polytechnic Institute, Troy, New York

Keywords: Cube Connected Cycles, Network Emulation, Parallel Computing OA

1. Introduction

Currently, there are many issues facing designers of parallel computing sys-
tems. The development of an architecture independent programming environment and
selection of an appropriate implementation vehicle are considered. The main objec-
tives of the programming environment should include maximal exploitation of con-
currency, freedom from implementation const-aints, transportability/reusability of '

programs and natural interfacing of the user with the programming language. The
concerns of implementing highly parallel systems include the selection of an inter-
connection network and processing element (PE) to be used in such a network,
development of the PE's instruction set and fault tolerance in both the interconnec-
tion network and PE. While programs should remain disjoint from the implementation -
issues, proper selection of implementation details will greatly affect the efficiency of
the execution of such programs.

The basis of this work can be found in [1] which outlines a feasible implemen-
tation of a general-purpose SIMD parallel computer of 512 PEs, capable of operations
on problem sizes of up to 32768 data points. The processors are connected with the 1.,.
Cube Connected Cycles (CCC) network [6]. The salient features of the CCC net-
work are: 1) interprocessor connections are strictly limited to three; 2) highly reg-
ular network control; 3) identical PEs; 4) a high degree of pipelining can be
achieved; 5) efficient emulation of other networks. The computer is intended for
general-purpose, scientific calculations and it is estimated that the computing power
falls within the range of 500 to 1000 MIPs. The reader is referred to [6] for the
CCC network's details and to [1] for the implementation details.

2. Programming by Logical Networks

We propose a parallel programming environment for SIMD computers based on
the specification of an arbitrary, or logical, network of processors. Specification
includes a topological description of the network, description of the network's PE,
assigning I/O to a set of PEs and defining an algorithm for the PE. A finite set of
inter-node and intra-node instructions similar in syntax to Concurrent Pascal -

defines the algorithm [1]. Translation to an instruction sequence executable on the " '
physical machine is performed automatically by a compiler, which determines the .
parallelism inherent in the problem. The underlying network should be a general-
purpose SIMD computer, capable of emulating any other network with a reasonable
time penalty. The Cube Connected Cycles network has been shown to be such a
network [3]. Emulation of logical networks whose size differs from the underlying .
network will also be possible. Programs will be portable between machines since the 7.s
writing and debugging of such programs is independent of the machine executing .
the program. Well known structures suitable for a particular computation (e.g.,
mesh for matrix multiplication) can also be used. By allowing the definition of an N>
arbitrary network, details of the physical network remain hidden, eliminating the
need for low-level information. To further aid the user friendliness, a graphical -
interface will be provided for entering the networks connection pattern and pro-
gram. Such networks include the tree, mesh, mesh of trees, hypercube and cube
connected cycles networks. -

276



(

3. The Processing Element (PE) for the CCC

A normal data path cycle on a conventional processor consists of the following Il
phases: 1) Operand Fetch; 2) ALU Operation; 3) Result Store. We denote the
aggregate of these phases as a major cycle and each phase as a minor cycle. It is 1--

our intention to have a processor that is as simple as possible. We claim that pro-
viding instructions as major cycles is not consistent with this goal and propose pro-
viding instructions as minor cycles. Such instructions will require little decoding or
control circuitry while at the same time yielding great flexibility in controlling the
network. This approach extends the RISC concept presented in [4]. The pro-
posed instruction set is shown in figure 1 and its associated architecture is shown
in figure 2. The PE consists of a register file (RF), an arithmetic logic unit (ALU),
an address register, a mask register, instruction queue (IQ), I/O Buffers, a simple
instruction decoder and has a data path bandwidth of 16 bits.

In our implementation, 512 PEs will be connected in a CCC network using
wafer scale integration (WSI) technology. A floor plan of the PE die is shown in JU
figure 3. Table 1 gives the initial area estimates for each section of the PE's cir-
cuits for a scalable CMOS technology with a X=1.Oum (i.e., 21im drawn gate
length). The PE die size will be approximately 2.42mm X 1.53mm. Assuming that a 6
inch diameter (15 cm) wafer is used, there will be only 10cm X 10cm of usable area.
Given that-the inter-PE and global routing consumes 50M of the area, there will be
1346 possible functioning die sites. With a yield of 50%, approximately 670 function-
ing dice (more than the minimum requirement of 512) will be available after fabri-
cation. , -

4. Implementation of Highly Parallel Computers

When implementing a large parallel computer, the designer must remain cog-
nizant of how constraints such as physical size (i.e., layout area), PE node
degree, instructio broadcasting, interprocessor communications delay and I/O con-
straints behave as a function of the number of PEs. The CCC network performs
well in all of these areas. In [1] it is shown that instruction distribution can be
pipelined such that only O(log n) PEs need to be provided with an instruction at
each execution step, while the I/O latency is shown in [6] to also be O(log n).

The physical size and communication delays can be minimized through the use
of Wafer Scale Integration (WSI). Large digital circuits can be fabricated through
WSI technology to yield a complete component encompassing an entire silicon wafer.
The silicon wafer is packaged intact and can be used as a component in conven-
tional (i.e., board level) design methods. In WSI, the PEs form the die sites on the
wafer. The fabrication of these die sites is identical to that of current VLSI fabri-
cation techn ology. After fabrication, the devices are tested and functioning dice are
zonnected in place. The physical size of the complete system is therefore reduced to
the size of the wafer. Communication delays are reduced since the longest path
between processors is at most the wafer's diameter. The delays associated with -I

driving signals off-chip as in board level design are reduced to the order of the
wire delay within a chip. An effective method must exist to interconnect the func-
tioning devices on the wafer if WSI is to be considered a viable technology [5]. A
discretionary wiring technique [2] and a laser link technology [7] are being
evaluated for this project.

277

%,



REFERENCES

[1] Chung, M.J.; Toy, E.J.; Lobo, A.A., "A Parallel Computer Based on Cube

Connected Cycles", RPI-CIE Technical Report, March 1986, Rensselaer Polytech- l

nic Institute's Center for Integrated Electronics, Troy, New York.

[2] Donlan, Lt. BJ et. al. , "Computer Aided Design and Fabrication for Wafer Scale
Integration", VLSI Design, Vol. VI, No.4, April 1985.

[3] Gailil, Z.; Paul, W.J., "An Efficient General-Purpose Parallel Computer", JACM,
Vol. 30, No. 2, April 1983, pp. 360-387.

[4] Katevenis, M., "Reduced Instruction Set Computers for VLSI", Doctoral Disser-
tation, U.C. Berkeley, October 1983.

(5 Mangir, T.E., "Interconnect Technology Issues for Testing and Reconfiguration
of Wafer Scale Integration", Proc. IEEE ICCD, 1984, pp. 127-131.

[6] Preperata, FP; Vuillemin, J, "The Cube Connected Cycles: A Versatile Network

For Parallel Computation", Comm. of the ACM, Vol. 24, No. 5, May 1981.
[7] Raffel, J.1. et. al., "A Wafer-Scale Digital Integrator", Proceedings of the IEEE

ICCD, 1984.

Circuit Dim. AxA % A r ea Instruction oprtoceng lm Instruction Se

Reg File 480x2400 1.183 31.8 D Oerton I Operation
_____ ______ ____ XLU.inA .- Rs. PSA IALuctjonU I

ALU 480x500 0.240 8.40 LDB Rs ALU.in.B - s S3 ALUout - ALU.in

1-0 reg 480x210 0.101 2.72 STA ALU-inA - ALUout ADD ALotAinA-AU,.

#,p reg 200020 0.004 0.11 STB ALU-inB - ALUout SUB ALU-out ALU.in.A -ALU.,nB

IQ 480x270 0.1L30 35 STR Rd RF(Itd) -ALUout AND ALTIout ALI'.inA ALU~iznD

IDc 12000100 .8NO0P none SHR IALU-out -(ALUinAISh by I

Mas De 300x300 0.04 10 LDMSK MASK -IQ(i) COMP ALUout -ALUinA

1a.k eg 303 0.09 0.4ISTCCxt CCx - I FWDTR BRini*.p!- Fkouti*.(p-i imodi2

Routing & - 12 323 RSCCxt CCx .- 0 RW1YTR FiAn 1 .p*-BRonV--P-1)mod2'

1-0 pads _________RSACCt cc - 0 LATTR LRn*-2*.p;-LRout*.p.

Di sze 2420x1540 1 3.715 10 -____ _________ LRini.pi-LRout.-20.p

Table I - Area estimations for PE tConldition codes are C(>arry. V:overflow. Z~zero. S~sugn

Itcnbe any of C.V.Z or S

____________________________Figure I Processing Element Instruction Set

'0 NODE'

.5~ ~~~ - 2 MM-.--

I.- REGISTER FILE IARITHMETIC

54RF[6 361 LOIU%

__~5 
1 NJ*- T!ii ~~i

M t

II 

%-

---------- 
'

----- --------- - - MIK

F; ure 3. PE Floor PIArM
%~

Fi~ue 2.278 r %d i



An Analysis of the Reliability
of Tree-Structured Interconnection Networks

Ravi Mehrotra and Edward F. Gehringer

Department of Electrical and Computer Engineering
North Carolina State University

Raleigh, NC 27695-7911

chosen node. We will study how this average is affected by the pro-

Abstract babilities of node and link failures and the number of nodes in the

This paper presents a mathematical model of reliability for original tree. We will demonstrate that the size of the connected

tree-structured networks of processors. It assumes that processing subtrees is not very sensitive to the probability of failure. as long as -

elements have an equal probability of failure, and that interconnec- the probability of failure is small. We will also show that failure of
tion links also have a fixed failure probability. From these two pro- nodes and links affect a tree more severely as the tree gro s larger:

babilities and the number of nodes in the network, a general formula for example, for any given probability of failure, a progran is more

is derived for the average number of nodes remaining connected. It likely to be able to use 20c of the nodes in a small tree than 20'( of
is shown that if an operational tree of a certain sise is desired, it is the nodes in a large tree. Finally, we will show that it is desirable to

usually more efficacious to improve the reliability of individual pro- structure a tree network as a regular n-ary tree, because its relihabi- '
cesing elements and links than to add more nodes to the network. ity is much higher than that of the "average" tree structure. .4.

Indeed, to take best advantage of a large network, the reliability of
the individual links must be higher than in smaller networks. Thi
reliability of a randomly structured network is then compared with 2. Conneetedness after Failures
that of an nt-ary tree network. The n-ary tree is shown to be Assume that the processing elements of a mult;pr.ress.r r.

significantly more reliable than the average tree. computer network are represented by the nodes of a graph, ani ra :-
the edges correspond to interprocessor links. Then the failir- .. ( a

processor or link is equivalent to the removal of the associated r.*
I. Introduction or edge from the graph.

Interest in distributed processing has grown in step with the Nesille 7 has shown that labeled trees with , nodes ar"
declining cost of processing elements and advances in netw ,orking one-to-one :orresp sondence ith a , -tuples t h or b , -- r ,'

techniques. These developments hase lent added importance to the the set ;1. 1, . n . In other words, the structure of an) pat uci.<t
issue of reliability, because when processing is distributed among labeled tree of n nodes can be encoded by a particular In - :i-n-r.-
many nodes, a failure in any processor or communication link can If a tree T, is chosen from this set. and some nodes and edge . -
impede the progress of the entire system. For example. a process at removed (b. failure, for example I, the resulting graph is, in rsl-.r.

one node may remotely call a procedure at another node to perform a forest of disjoint subtrees. Let 4,. (SI represent the nuror"e-
some service. The called procedure may. in turn, make use of files or
peripherals to which it haa exclusive access, or it may call further i,des in a particular subtree S. If we include the null subtrees , r.

procedures remotely. Distributed program reliability I is a measure sisting of removed nodes, then k,.(Si may take on values 0, 1.

of the dependability of such a system. Several other reliability mes- . 1. As a first step in the analysis. we will find the average number

ures have also been developed I -. . of nodes in such a subtree under the following three assumpti,)ns

In this paper we define a very simple measure of reliability for Ill Each tree 7., in the set of labeled trees with n node% is equa

tree-structured networks in terms of the failure probabilities of nodes probable. Every tree has. therefore. probabilit. n "f

and links. By studying the entire class of tree structures and deri- being chosen.

ing statistical averages for their reliability, we gain a quantitative (2) A particular node c is chosen from the tree r. in such a wa.
insight into a wide variet of interconnection schemes, and discover that any node is equally likel% to be chosen. Esvr. nod- ha, -oa~
how the reliability is affected by changes in network sise. Since other therefore, probability n of being chosen. After edges ir
networks are simply trees with added communication links. this nodes are removed by failure, we let S, denote the partiua
study also provides a lower bound for the connectedness of general subtree (in the resulting forest) that contains nide - Is dr 5Ld

networks. itself has been removed, then S, is defined to be the null tree

Consider a distributed system, Its processing elements are !3) Nodes and edges are removed from T. such that anN node lor.
prone to failure or malfunctioning. The communication links may vertex) has probability P. of being removed and rirobablt '-s
also break down. either because of hardware faults or software (I - P.I of not being remov.J Similarly. any edge has pr(iha-
errors. When processors or links fail, the network may split into bility P, of being removed and probbilitI '- P, i e f n i be. ne , ,

more than one subnetwork, with nodes in different subnetworks removed. Removal of a node or edge is independent of the -

unable to communicat. removal of other nodes and edges from T., and of the choice of

If we select a node in the network, the more nodes that remain node c. We will use the term "failure as a %v n,, . r r

connected to it. the more nodes is can communicate with. and. hence, "removal."

the more reliable is the network topology, Assume that we chooe a Ae will use these assumptions to derive, first .f all. an ,r . r
node randomly from the nodes in a tree-structured network such that L wr (S, i , the average number of nides in the subtree

each node is equally likely to be selected. Then we can calculate the
average number of nodes in the still-connected subtree containing the Deline a rand.m va,-iable sr 'S eiluaJ to the nur;, ,r f Ia

-.5

279

1 I 7 .i,( 9. I



edges in the original tree T. that connectea nodes of 5, to nodes not Pr~a particular edge or node or both is removed P.. P, - P.P,

in S,. Let a,', i, ', .. , ' IS,) ' represent the nodes not in 5, that Therefore, the probability that there is a subtree of size . whose con-

were adjacent to some node in S, before the removal of nodes and, or nection to the rest of the tree has been removed by the failure of j

edges from 1T.. edges or attached nodes can be calculated from

Let us form a -new tree T. (S,1 by taking the original tree T 0 0 the number of n -I - -node trees containing a particular giant

and collapsing all of the nodes in S. into a single "giant" nude. node, f

More formally, T.,'S.) consists of the n -,br IS, ) nodes not in S, and * divided by the number of n-node trees,

another mode (the giant node) of degree OTIS.). T, '(5} is formed 0 times the probability that none of the nodes or edges within .,

by the giant node have failed, but that all I connections between , ,

i removing from T. the nodes and edges of S._ together with the the giant node and the rest of the tree have been removed due

or (S,) edges between nodes P,', = 1,2, "T (S, ) and some to the failure of nodes or edges.

node in .. and then Thus, for I= 1, 2. , n-1,

0 reinserting these V- (S) edges between nodes a, * and the giant Pr(ST $.) : IP =

node. 
%54

Using the abose definitions we will show that

£ .sl = 'P'lh7  IS,) = r I, (I-P,)' l-P,"' IP. ( P. - P.P.' when I,
0 otherwise

where

P'{*r (S.) If Since the giant node may have been connected to the rest of the tree
by up to n -I edges, Or (S,) can take values 1, 2.. a n-I. Hence.

p. when 0 PrN,.r (S,) i= VPrar (S,) 
= 

It,. (S,) =i

,-,.1 1P..P' ..'I' P" -"

I- P.) I-P.1' ' "P" -P'P' I(2) and by substituting for Pr{,r. (S,) = lier(S,) =} we obtain

! - P. I([ P, I when =1. 2. a Prib. (S,) = 1l = %1

0 otherwise

P. when 1= 0 %

The total number of trees T. IS,) such that -b(S,) = I and %

n$,) (i.e., whose giant node was formed by collapsing I nodes 0P') (I- ' -
and has I edges to the rest of the tree) is equal to the total number... -...

of trees s ith n- I nodes when the degree of a node is specified to "

be . In Neville' codification, the node corresponding to the giant V'

node of * r.,I5, ) must occur I- times in the n- I - -tuple that -) (P. P,-P.P, I,

represents T. S, )]These - entries in the n - I - l-tuple can be when . .

chosen in w- asay%. Each or the remaining n-I-1 entries in
the a- -lI-upe may be chosen in a-I ways, as there are a-I other By substituting . mi I and using the binomial theorem r-r the surm

on 1, we obtain equation (2) after some rearrangement. Tn, ccm-

nodes Thus there are I (n-I) '-"' distinct labeled trees pletes the derivation of rqaaJun (2).

Now consider some special cases that can be derised frr:r eq a-
r". (S. ) such that ik($,} I I and Ri S,) =i. Since the I edges that %in()

join the giant node to nodes n,', n'. , a,' may be connected to '"on (2).

any of the I nodes in S, (any of the I nodes that "make up the 0 If only processing elements (nodes) fail. not lnl, . ."c-

giant node). the number of trees T. which contain a tree T.'I,) P, =0 and equation (2) simplifies to

such that b(S,) - I and OS,) =I is equal to Pr{s.,- (5,) I P, = 0:
Pra-I- III I , 0li-i J-I )'"' I

The nodes in S, can be chosen in l- p-Pways, because when P.) I JP. - I' Pt."

one node Inode r) is specified to be in , the remaining I-i nodes in 0 Similarly, I nh links not pro essin& eemes 'a

S, may be chosen from the remaining a -I nodes in T. Since S, and equat",n '21 tecorrCs

itself can be formed in ways. there are
Pr,., (S.l = F, 0

0

trees F. such that &(S I and VI(.) = l. This is the number of

trees that contain a particular giant node. " I F,

We are looking for the probability that tho - n-,l-'

remain connected, independent of any failures in th- r-t o th- tre- * If prtr'-'sne .,vm.s .

Since we assume that nodes and edges are r-m-d nd--'-id-'.t!, f th.

each other and of other nodes and edges in the tree, t i,r.,tab,,tv

that the I nodes and I - I edgr% did not fail o' eL'-P b, - ' I.

I - P.)' (I - P.I . Now.



-A194 949 PROCEEDINGS OF THE WORKSHOP ON FTURE DIRECTIONS IN 4 45
COMPUTER ARCHITECTURE..(U) DATTELLE COLUMBUS LAOS
RESEARCH TRIANGLE PARK NC D P AGRAWAL ET AL. 30 AUG 96

UCASSIFIED RO-86304-EL DAAG29-81-D-0111 F/G 12/5 ML

mmmhhhhhhmhhl
IIIIIIIIIIIIII
lllllhlllllllu
IIIIIIIIIIIIII
IIIIIIIIII|III
llllllllllll



1111ll I.I __ "'6 1-20

11111

11111I 2 111.4____ilII i.25 IIIll4 (li.6
-I-.III-- IIII- nf

'-'D -- ID W'l6 Wqlr l " W .'W" W .q 'V w°



P when 1-0 I-I remaining live nodes may be selected in l-I I way. A node

i' n remains alive if it neither it nor the link connecting it to the root

(t-P) ' 1 P(2-);n-(-P)I ' - ' 
when ... fails; the probability of this is .oP.-P.-P.P.. If c is the root

node, the probability density function is given by

These special caes are discussed in greater detail in 81. Prbr. ($.) = lidetree() = 1) =

I. Connectednera of a Large Network P. when 1 0

As the umber of processing elements in a network grows large, i-) we I - ()

bow is the connectedness affected? Do the still-connected subtrees he' ,

(giant nodes) grow larger with the size of the network, or is there
some threshold beyond which their size levels or To investigate this Iet is a leaf node, - if node e does not f ai but either the edge con-quesion wewillderve cloed-ormexprssin fr UmI T($,' +. necting it to the rest of the tree or the root node f"l. If neither one
questio, we will derive a closed-form expression for of these cases occurs, then all of the other 1-2 live nodes an be

We first note that reached from c; these 1-2 nodes are selected from n-2 possibilities.

ul(--l)' .. . .(3) Thus,

By substituting equation (3) into equation (2). we can verify by a lit- Prili-.(Se) lidegree() n) f (7)
tIe algebra that P. when I = 0

when =- P,)(P, P.) when I = t
P. Vhe fO(-P,)|_ 1 - - "V- when I - 2, 3. .,
14IP)(-P)-(,P -P.Po " r1 -P.P')' when I- 1.2... Since

Since Pr(sb r (S,) = I) must equal 1, we obtain Pr(degree()= nI - I j and Pr(degree(c)ffi = n-I (',o n -IS-- , (

l i -i-P (4)P = l we can calculateT- -. (P. -P._P.P.) ()

Note that P..P.-P.P. (i-P.}(i-P.) and then differentiate £ILT" = ' lPr(i..(S.) = 1) (9)

both sides of (4) with respect to (i - P)(i - P.). The derivative of the By substituting equations (6), (7). and (8) in equation (9) and using

left-hand side is the binomial theorem we obtain

._ ( _ )l,_p ),. _p~l_., ,, r ,-l. -r i = - -- P.)-" -(P.- P.)

V -(1-P3( -P., n - .-P -P .. )
, -, -, U,

After some algebra, we derive + (I - P.) Ii-2} (I- P - P. - P.P)

I'ijO -P 0 _ J -'P P P P l-( . - .P. n .t
17. From this equation we derive

Thus, our final expression is Um(E 40. 7"11 = (I-P.)(t-P.-P. P.} (10)

lim E'i'.$ ) = p..p . ,).. (5) Note that the last term of this expression tends to infinity as n grows
- (P. -P .P)-

large. Compare the result for -ary trees with the connectedness of .
the average tree derived in Section 2, which tends to a constant for

large a. This indicates that bushy il-ary trees provide much better "'
4. Connectednes of' a Specific Regular Tn, than average reliability.

A common way of structuring an interconnection network is as
a balanced I-ary tree. We will analyse this structure because it is
iateresting in its own right, and also because it can serve as an exam-

ple of how specific tree structures can be studied. We w'U - nsider 6. Discussion
of arbitrary height by 'collapsing" nodes, as explained in Section 2. Plotting some values of equations () and i) gives an insight
an .Iary tree of height one. The results can be generalized to trees Potnsmevlsof eutos(2) ad (5) gie* nnihA -ari tree of height one has olap in nodes, all but one of which into the impact of variations in values for P. and P.. Figure I plots

are leaf nodes. We will denote such a tree by T*.; then several curves for the case where only links rail. It shows how the

Pri.-. (S) = I) is the probability that I nodes remain connected in average connected subtree site varies with changing P.. Three .
curves are shown, one for 10L0-node trees, another for 1000-node

the subtree S, containing node c after the failure of nodes and edges trees, and the third for infinite-sine trees. Figure I(&) shos that

in T.. A.s before, we assume that every node has an equal chance of there is a sharp dropoff in average subtree site for P, ' 0... However. %
being selected as node c. We need analyse only two cases: where the most practical networks have P, .- O.1, and the behavior or th, vurve

node c is the root, or where it is a leaf node. These cases are illus- in this region is not es.N to discern from a linear-scale graph. Fi,,r-
tra(ed below. lib), a log-log plot, reveals that most of the decline in averarr- .-

If c is the root nod. then eithe, it fails or it does not fail. It tree site occurs (for 100- and 1000-node trees) when P.10 thr

fails with probability P.: in this case, is 0. Otherwise, I >0 and the trees remain almost wholly connected at link reliabilities higher than

this.

281

• ~A



It is also clear from Figure I that for higher values of n. h hYPercubes, and generalized hypercubes (the ALPHA Structure)-

average subtree site begins to decline at lower values of P. (higher References
reliabilities). Therefore, to take beet advantage of large networks.
the reliability of the individual links must be higher than in smaller [1) V. K. Prasanna Kumar, Salim Hariri. and C. S.
networks. Raghavendra. "Distributed program reliability analysis."

Figure 2 shows that the phenomenon of node failure has effects IEEE Transactions on Software Engineering, vol. SE-12. no.
similar to those shown in Figure 1(a) for the case or link failure. 1, pp. 42-50, January 1986.
Figure S shows the effect of simultaneous processor and link failures
on an infinite-node tree. When both nodes and edges fail in an [2[ S. Rai and K. K. Aggarwal, "An effcient method for reliabil-
infinite-ise tree, its average subtree size is very nearly equal to the ity evaluation of a general network," IEEE Transction: on
average subtree size of a lOG-node tree where only nodes or edges Reiability, vol. R-27, no. 3, pp. 206-211, August 1978.
fail. This reslt can be seen by comparing Figure 3 with Figures I

sabtree 131 K. K. Aggarwal and S. Rai. "Reliability evaluation of
The analysis also implies that, when a certain average copteuomuiaio ewok. IE rcacioeo

ese is seeded, it may be more elfective to improve processor or ltoptrcmuiatonkwrs"IEETascino
reliability than to increase the site of the network, even by a huge Relia bil ity, vol. R-30, pp. 32-35, April 1981.

amount. For example. Figure 4 reveals that when P. is 0.1, an aver-
age subtree site of 25 can be obtained from a 100-node tree with p. !4 A. Granarov and M. Gerle, "Multiterminal reliability

of 0.04 but if the probability of edge failure is increased to P~. =0.10, analysis of distributed processing systems,- Proceeding: of
an infinite tree is required. the 1951 Conference on Parallel Proeesei':g,, pp. 79-96.

Section 4 studied n-ary trees and established (equation (10)) August 1981.

that as a-, the average subtree size increases without bound. Fig.
ure 5 plots curves for "average"' trees superimposed on curves for Tj- [5I R. E. Merwin and M. Mirhakak, "Derivation and use of a
ary trees. For in.ary trees, eleven curves are shown, while for "aver, survivability criterion for DDP systems," Proceedings of the

age" trees, only three curves are shown (because the others would .1980 National Computer Conference, pp. 139-146, May 1980.
nearly coincide). It can be seen that more nodes remain connected to
an arbitrary node in an ft-ary tree than in an "average" tree; indeed, (6; A. Satyanarayana and J. N. Hagstrom, "A new algorithm
for P.>~0.1, an I-ary tree of modest size (150 nodes) has a higher for reliability analysis of multitermtnal networks." IEEE
connectedness than even an infinite-size "av~erage" tree. Transactions on Reliability, vol. R-30. pp. 328.333, October

We have analysed tree-structured networks and demonstrated 1981.
that the average size of connected subtrees depends more heavily on
the failure probabilities of nodes and links than on the size of the [7l Neville, E. H., "The codifying of tree-structures," Proceed- S

network. We have also shown that a specific tree structure, the n~- ings of the Cambridge Philosophical Society, vol. 49. pp.
ary tree, has a much better connectedness than an arbitrary tree 381-385, 1953.
with the same failure probabilities. Our analysis suggests a method S

of evaluating the reliability of any specific tree structure. Work is ' aiMbor.Aa' i fmnml~cnetdntok

underway to extend it to more general networks, such as X'trees, fRav invesrtigai"ngtradeofs ministriut conne pu nters

5'' 6 (sI * -Master's thesis, U.niversity of Hawaii. August 1980.

W n.. 100 (t I tcc:1M

L~u' (a): Avett ,juendee of Noda Remnatsnen Connected Figure z(blt f.~~e ub'o oe euse(n~ii

(b) %-101 IIh) P'.al10-1ue \d

T (b n- 20

(b 1 ()~I) P,-0.2 (d) ri 6C

(C) ) P v. P 0, (d) P5 0. Is * C

p10 -10' P'.0

M t If

9. 61 at! 6.1 SO 0.1

log..:e iso soP
Figue iosg* of ra \ jmor Node Rtmsuzog Cosorsec Figure 4; Avenge, Numb., of Nod"s Re..j Co--lj ".w rN~,R'srtont.

stunr Fa~ors oI Node, acnd Us" Funm~oo .1 P after Fa.ire' of Noons add Edge,; assa Funrton o! P, Fgu_ S AZg,6 %ub r(0 Ran

for DlEtreni aiua of P, for 
6

ifferent Vaiue of P. after (.,ore of \W.e -. ', Uft. 4 :. r N-

~,Ilia
e~.Ii



(This page has been left blank intentionally)

16

283



Performance Evaluation of a Loop Interconnection Structure

Edward W. Page
Department of Computer Science

Clemson University
Clemson, SC 29634

Introduction

Highly parallel architectures require efficient. high-bandwidth networks
interconnecting a number of processing elements. Loop interconnection structures are of
interest because of their advantages of simplicity, modularity, and expandability. As
VLSI technology permits the implementation of an ensemble of processors on a single
chip, loops becomes increasingly attractive because they are inherently planar and can
be implemented with a high degree of regularity. This paper reports the results of a
simulation study of the potential performance of loop-connected multiprocessor systems.

Loop Operation

While a variety of loop configurations have been proposed as interconnection
structures [11, this paper focuses upon a packet loop as illustrated in Fig. 1. The packet
loop moves parallel word packets from the ith position to the ith- I position on each
clock cycle. Packets typically consist of a control field. a source field, a destination field
and a data field. A processor sends a packet to another processor by writing the packet
to an empty slot. Each processor monitors the loop continuously and removes any
packet containing its destination address. This type of loop was initially proposed by
Pierce2J and has been incorporated into actual multiprocessor systems 3.4 . Previous
studies of loop performance have focused upon the loop mainly in computer network
applicationsI5,61 and not as an interconnection structure to support parallel
computations.

COITROL SOURCE DEST, DATA

PACKET FORMAT

.55

Fig. I Packet Loop Concept

284

le 0



Overview of the Simulation

The simulation assesses the potential processing power provided by an ensemble of
processors under the communication constraints imposed by a particular interconnection
network. Processors are considered to be computers with their own private memories
that support multiple processes. Processes communicate with each other through
messages that use the interconnection structure. The model assumes that each processor
is linked to the interconnection network through an input and an output queue. When
data arrives from the network, it remains in the input queue until required by the
processor. When a processor produces a data item to send to another processor, it is
placed in the output queue until the network can accept it.

A task is modeled as a period of time during which five types of activity might
occur as illustrated below:

W j i E I,, W . ""

The symbols are defined as:

W i -time spent waiting on arrival of needed input
Ij -time spent accepting input from the input queue
E -actual processing time
I, -time spent writing results to the output queue
W, -time spent waiting for access to the interconnection network

To model interdependent processes. the simulation sends the output of a producer
process to the next consumer process that is awaiting data. Should no process need data.
a recipient is chosen at random.
Simulation Results

The measure of the efficacy of the interconnection structure produced by the 'V4

simulation is processing power. Processing power is simply the average number of
processors that are in the E state. To establish a baseline for comparative study, exactly
the same processing tasks were simulated for both a demand multiplexed bus and a
packet loop. The average of the simulation output for several sets of task data is shown
in Fig. 2. Here the execution time is uniformly distributed with a mean of 20 bus cycles
and the input and output times are 25% of execution time. The loop performance in this
case is slightly inferior to the bus until 12 processors are employed and is only marginally
better than the bus when 12 or more processors are employed.

On the surface, the results shown in Fig. 2 would seem to indicate that a loop
interconnection structure offers little advantage over a conventional demand multiplexed
bus. The performance of a multiprocessor ensemble using the bus depends upon the
number of processors. the fraction of time the bus is needed and the bus bandwidth.
\\i1h a l, i mit erconnection structure, hoever, the physical arrang ieri I ,l 11,f.
pr ()Ii- t, lie loop relati\e to the communication needs of the individual pr, )cec, ,
becoily- it p)rlant. A loop connuted \sten will exhibit its best perforMa icC \\l(' -

each proces or et(nds its results to its immediate down stream neighbor. The \\orst cLav
for the loop results when each processor is required to send its results completeix around
the )oop to its immediate up stream neighbor. Figure 3 shows the results of the .'. .
,i mulatior for b,i h the best and worst cases, of the loop a!, compared Wit h t i u). .' .,,:

285 gt
. ,..

• 4 .4

.4 *' V"'.%



'°: /

9 .0 
LOC

5.0

:4

to o -

Fi 2 Typical Bus and Loop Perforn "ssW ,, , man

(1/0 Time=25% of Execution Tin V1 " , , r,xecuto Ime

Conclusion

One cannot state categorically that a loop interconnection structure performs

better than a demand multiplexed bus. With a judicious choice in binding of processes

to processors, the performance of the loop-connected system can grow almost linearly

without bound. However, a poor choice in the assignment of processes to processors in a

loop connected system can result in performance that is even worse than the bus in

saturation. This study indicates that the loop is most attractive in applications in which

traffic patterns are known and can be synchronized.

References

I1. Penney, B.K. and A.A. Baghdadi, "Survey of Communication Loop Networks.:

Parts I and 2" Computer Communications vol. 2, pp. 165-180, 224-241I. 1979.

2. Pierce, J.R., "Network for Block Switches of Data." Bell Syst. Tech. J.. vol .51. no. .t

6, July/August 1972, pp. 1133-1145.

3. McDonald, W.C. and R.W. Smith, "A Flexible Distributed Testbed for Real-Time

Applications," Computer, vol. 15, no. 10, October 1982, pp. 25-39.

4. Kushner, T., A.Y. Wu and A. Rosenfeld, "Image Processing on ZMOB" IEEE

Trans. Comput. Vol. C-31, no. 10, October 1982, pp. 943-951. r,'

5. Raghavendra, C.S., M. Gerla and A. Avizienis, "Reliable Loop Topologies for Large -Ae%

Local Computer Networks," IEEE Trans. Comput. Vol C-34, no. 1. Jan 1985. pp. @74

46 -55., 
l -

6. Loucks, W.M., V.C. Hamacher, B.R. Preiss and L. Wong, "Sho, t Packet Transfer -,€ -

Performance in Local Area Ring Networks. IEEE Trans. Com put. Vol C 3 .no. r _. dip.

11 'Nov. 1985. pp. 00 6i 1014 . %, -

0 , N,,,€. -

% P,

286 
.

"7

." 

s.% 0



ON THE NUMBER OF TASK ASSIGNMENTS
IN DISTRIBUTED COMPUTING SYSTEMS

Kang G. Shin

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109

EXTENDED SUMMARY

In a distributed computing system, a job is usually decomposed into several
cooperating tasks and then assigned to processors in order to exploit the inherent paral-
lelism in job execution. The distributed computing system and cooperating tasks can
usually be represented by a processor graph, Gp = (Vp, Ep), and a task graph , GT =

(VT, ET), respectively. Here VT is the set of nodes, each representing a task of the job,
and ET C VT X VT is the set of edges, each representing intertask communications
between the two nodes adjacent to this edge, and Vp is the set of processors in the sys-
tem and Ep C Vp X VP the set of edges representing communication links between pro-
cessors. Any two adjacent nodes in the task graph indicate the existence of direct com-
munications between them. (Such tasks are said to be related to each other.)

Any two related tasks are required to be assigned to the same processor or two
adjacent processors. Henceforth this will be termed the adjacency requirement. Using
some sort of criterion (e.g., load balancing), the problem of deriving an optimal task
assignment is usually formulated as a nonlinear integer programming problem. There
are three common approaches to the problem. 0-1 integer programming, use of graph
theory, and heuristics [1, 21.

The task assignment problem is known to be NP-complete [3, 4]. In [1], the task
assignment problem is formulated as a state-space search problem and then solved by
the heuristic algorithm A*. However, without the knowledge of the size of the state-
space, one cannot tell the maximum number of expanded nodes in the A' algorithm; its
complexity is difficult to analyze. Moreover, the knowledge of the number of acceptable
assignments can be applied in the state-space search. A search method with this
knowledge - although it may reach a suboptimal goal node instead of the optimal one --
requires much less computation cost in the state-space search and, thus, provides a use-
ful insight into the state-space search problem.

In addition. the knowledge of the number of acceptable assignments and its relation
with the processor and task graphs can play an important role in the design of a distri-
buted computing system. when the system's admissibility of incoming tasks a major
consideration. In other words, one needs to determine the system's structure which

'The work reported in this paper was partlaIly spported by Ofrlce of Naval Research, Contract %c.
N0001 4-85-K-012

287



allows as many acceptable assignments as possible for a given set of cooperating tasks.
This will in turn increase the probability that more number of incoming tasks can be
assigned to the system while satisfying the adjacency requirement. This knowledge can
also be used as a measure of importance of each edge in Gp, i.e., importance of interpro-
cessor communication links.

This work is concerned with the determination of the number of acceptable task
assignments, deuoted by N(Gp, GT), rather than task assignments themselves. Specifi-
cally, the bounds of N(Gp, GT) are derived when the task and processor graphs are arbi-
trary, and then a recursive formula for the N(Gp, GT) when the task graph is restricted
to a tree. If Gp = R. or Gp = Q3 in addition to the assumption of GT = a tree, one :< "
can derive a non-recursive closed form for N(Gp, GT). These special cases hold practical
importance, since, for example, hypercube multiprocessors are becoming wide-spread in
the supercoming arena.

The knowledge of N(Gp, GT) is applied to (i) the problem of determining the inter-
processor communication link which is of the utmost importance to the system admissi-
bility of incoming tasks, and (ii) the state-space search of the task assignment problem
where the search is guided toward an ampler state-space (i.e. with a larger N(Gp, GT))
without computing the associated heuristic function for every possible case. The appli-
cation approach (ii) is based on the observation that a larger number of assignments
implies that unassigned tasks have a better chance to be spread out in the system.
When the goal of load balancing is more important than that of reducing interprocessor
communications, the likelihood of making a successful guess with the approach (ii) will
certainly increase.

REFERENCES

[1] C. C. Shen and W. H. Tsai, "A Graph Matching Approach to Optimal Task
Assignment in Distributed Computing Systems Using a Minimax Criterion,"
IEEE Trans. on Comput., vol. C-34, no. 3, pp. 197-203, Mar. 1085.

121 W. W. Chu, L. J. Holloway, M. T. Lan, and K. Efe, "Task Allocation in Distri-
buted Data Processing," Computer, vol. 13, pp. 57-69, Nov. 1980.

(31 R. C. Read and D. G. Corneil, "The Graph Isomorphism Disease," J. Graph
Theor. pp. 339-383 , 1977.

[4] 1M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the % e
Theory of NP-Completenes. San Francisco Freeman, 1979. '-

288 77\%"

e 8 :%



Session 1 4B: Architecture and Software
Issues

QbhaiwperaQn: L. Wittie

SUNY at Stony Brook -

289



REUSE: A RELIABLE UNIFIED SERVICE ENVIRONMENT

FOR DISTRIBUTED SYSTEMS

Lionel M. Ni and Thomas B. Gendreau

Department of Computer Science
Michigan State University

East Lansing, MI 48824-1027

1. INTRODUCTION 
X

A distributed system is a combination of a distributed architecture and distributed control algorithms Distribut ci
architectures cover a wide range of architectures ranging from loosely coupled multiprocessors to long haul networks
In this paper we consider distributed architectures as heterogeneous local area networks (LAN). Such an environment
consists of a variety of computing resources, such as diskless workstations, workstations, mainframes, vector proces-
sors, and multiprocessors, connected by a high speed (relatively) reliable communication medium Distributed control-6'0
algorithms manage the distributed architecture in order to realize the potential advantages of the distributed archi-
tectures: availability, reliability, extensibility, and flexibility .

We are currently investigating distributed control algorithms that provide a reliable unified service environment
(REUSE). Such an environment presents the distributed system as a unified computing resource which can provide
services in a location independent manner. In this paper we discuss some of the concepts that we are using in design- ,*

ing the REUSE system 0
2. CLIENT/SERVER GROUP MODEL

The primary form of interaction in the REUSE system is for clients to request that a well-known service he per- V

formed The requested service will be performed by a particular server process In order to provide reliabie service we
will encapsulate all server processes that provide a particular service into a server group 'ChZw85 . Each server group
will consist of a set of cooperating servers that manage a set of resources In general each server in the group will
manage a subset of the server group's resources that are similar to the resources managed by the other servers in the
group The redundancy of resources enables the server group to provide more reliable service

Users will request services through predefined service names Service names will be mapped into group lDs Client
processes will interact with a server group by communicating with a local agent (using the process ID) of the group ,:,r
by communicating with the group as a whole (using the group ID) Some possible types of server groups include
scheduling agent group, file management group, mail/communication server group, and printer server group \
scheduling agent group controls the scheduling of processes at different hosts in the system A file management group
will interpret file names and manage files storage devices A mail/communication server g- up will do mailing
address interpretation, routing, mailbox management, and manage any gateways connected to the system The
printer server group will manage the different printing devices on the system

As a further illustration of server groups consider the scheduling agent group Each host in the system will have a
local scheduling agent which allocates the processors at that, host to the readyv processes Tile local scheduling, aigvnts

form the scheduling agent group These scheduling agents cooperate in order to implement soine scheduling p.en v

Some possible features-of the policy could include, load balancing considerations. fairness criteria, and appropriate
matching of jobs and host architectures Scheduling policies may require job migration NiXG85 In -,rder t,-, i npe-
ment some polices, client processes will have to provide the scheduling wgent with ,:me chir~i ter1stic - -,f lI h i
As a smiplp example ccnsilder the ise ., the server processes .4 .1 file "Iriuz, . r,,up 1 iii )11'[, ll, it I,"'

pr,. ,.sses is that thev should not be migrated be(ause their resp,.onsibilitv is eith, .i I. al hi,-i V i .- i i_- i .

erver managing local devices ,r both agent aid serverl is location ,peiilent Ilthr lhi, ,, ',- ,

expected run time and the type of lo-bs Ive(u torized ,or paralIelized)

290

'_ 14

% %



3. RELIABLE INTERPROCESS COMMUNICATION

The foundation of a distributed programming environment is a set of flexible and reliable mnterprocess communication
(IPC) primitives. The general function of IPC is to create a set of mechanisms that allow location-independent
exchange of information between processes in the distributed system. An IPC mechanism consists of various types of
send and receive operations. Various send and receive operations should be provided so that the programmer may
exploit potential concurrency in an algorithm and synchronize the communicating processes when it is necessary The %
following table lists ten IPC commands that we propose. Detailed definitions and usage of these IPC commands can
be found in [NiGe86] and will not be elaborated here. /. .

IPC Primitive Type IPC Command
asynchronous one-to-one send Send -s.

synchronous one-to-one send Send andWait

asynchronous one-to-many send Multicast

synchronous one-to-many send .lulticastandWait

blocking selective receive Receive
blocking non-selective receive Receive Any
non-blocking selective receive CondReceive
non-blocking non selective receive Cond.Receive.-
non-blocking reply Reply
blocking reply Reply andWait"

Most of the existing distributed programming languages or known IPC mechanisms support one-to-one interpr,:.ess
communication However, in many distributed applications a group of processes are coordinated to solve a singl.
task These coordinated processes form a process group jChZw85, GeNi85c and may reside in various physical proces-
sors A process in a process group may frequently wish to broadcast a message to those processes in the same group %
Thus, a one-to-many send primitive is necessary to allow the message to be sent to a group of processes rather than a-
single process The following group primitives are proposed to manipulate groups NiGe86!

CreateGroup(group id, processid, grouptype, group-structure, joinmethod, status)
DestroyGroup(groupid, process-id, kill_processes, status)
Jin(groupid, process-id, timeout status)
lnvite(group id host,_id, guest-id, timeout, status)
Leave(group-id, process_!d, status) .-/
Remove(groupid, process_id, victimid. status)

4. DISTRIBUTED ALGORITHM DEVELOPMENT

A distrib uted algorithm involves a number of processes coordinated to soIve a sig,, task The 9,feiat i _4 s,,rvors -
in a server group is a special case of distributed algorithms Distributed algorithms have three important features
negotiation, remote state maintenance, and synchronization !GeNi8S A negotiation is a set of acticns throciih which
two or more processes attempt to reach an agreement The agreement may be an agreement o-n a shared vaiie ,-i it -,
may be an agreement to perform some actions A negotiation can take two general forms coordinated and pDer In
the case of a coordinated negotiation, one of the negotiators is called a coordinator and the other negotiators ire
called respondants During the negotiation phase the coordinator provides a central pint :.f (,,ntrIl In p-er :1g .-
tiation all negotiators (processes) are equal There is not a (entralized point f nr:,l . 1nI 1 ,. i h. t I,- -

plete view of the negotiation This is a more distributed form of negotiation and a form whi( h is iniipi, anit in
buted algorithms An example of a peer negotiation is an election algoritmi..

.- her ip portart featur .,f ininv dist iilited i r1 ii is: ,.:, .i
!"i it in i ll ' h ns li% sn ie kii w l. . f -.1, h - - I!, I!, : r ' :: , %* %I

Thiir tirr,,rit st,' , t,:- sotni ,-f the ,-,tier in'ses ! 'Ii l i i It h .i m i m i . :I' ,.

1peIt I Y jrif,>rn ation is exchanged hetw Iheii : ee.,s ,.i il pr.' as wx ll h 1,,, i -!' !1', "
Ti priiarV pr,? ems ,isso ited with III, sto t,, " .ilitti , ii ' :., i , " - .' " . .1 1

I ii fr l.tti:ii lhi h ll he rf,,rth .\ 1t I ' leA ,'Nite i t" III,. - ' ... .. .. .. , ,'
&i ' .f ire U i rte iifcriiiaii-i T. 11, lti'hili. . .

291

... .f%'l. % --. " '., ., "%. -'. "



changes to that information that are significant to the remote processes

Synchronization issues arise in the areas of initiation of distributed programs, termination of distributed programs
ordering of processes, and controlling access to shared values. In initiating a distributed algorithm, all processes in ,.
the algorithm must have identified themselves as ready to begin Problems arise in deciding how the processes should
inform the others that they are ready and how to decide that all processes in the algorithm are ready. In distributed
termination, the primary problem is to determine whether all processes have completed a specific phase of the algo-
rithm Ordering of processes is concerned with identifying that the actions w#hich must be completed before a process
can start actually have been completed. Access to shared values must be controlled so that updates to those values
are completed in an atomic manner. This problem is further complicated in a distributed system because the shared
values may be replicated,

Users may also wish to create distributed algorithms to take advantage of the distributed system In order to do this
the user will create a program which will consist of many processes that will form a application prore.s group The S.

application process group has to negotiate with the scheduling agent group in order to get some processor rps,-iirces
The application process group could specify the type and number of processor resources that it requires (exactv .r a
range of minimum to maximum requirements) The scheduling agent group would take into account the curront load
of the system, the number of pending requests, and the priority of the user and respond with the actual resources it is
willing to give to the user. The application process group could then configure itself according to the available 7-
resources it was granted. A more dynamic system might allow the application process group to negotiate with the ., _-
scheduling agent group throughout the execution of the application program.

5. RELIABLE SERVER GROUPS

An important consideration in the construction of server groups is the investigation of the tools needed to provide
reliable service By reliable service we mean that the server groups can gracefully handle the loss of resurc-s and % F

servers This requires coordinated replication of information that is essential to continued (and accurate) performance
of service by the server group. The servers in the server group must cooperate in order to identify the loss of servers
and to do any reconfiguration required for continued service

Different types of reliability are required depending on the sophistication of the clients For example the fle servers -f
a file management group do not expect the scheduling agent group to provide reliable execution of the server
processes It is the responsibility of the file mangement group to handle the loss of servers due to proc essor failures
The file management server is considered a sophisticated client whose reliability requirements are beyond the scope ,,f
the scheduling agent group On the other hand the scheduling agent group should take some responsibility for the
reliable execution of a user's job For example if local scheduling agent migrates a job to a remote processor, it should
periodically communicate with that processor to make sure that the user process is still being serviced If the remote
processor fails, the local scheduling agent should try to restart the process at another processor In order to
differentiate different classes of clients, the client will have to make their characteristics and requirements known to
the scheduling agent group.

REFERENCES

ChZw85l Cheriton, D R and Zwaenepoel, W, "Distributed Process Groups in the V Kernal." AC.%f Trans. on
Computer Systems, pp 77-107, May 1985-%

[GeNi851 Gendreau, T B. and Ni, L M., "A Distributed Game Playing Model for a Distributed Programming
Environment," Tech. Report, Department of Computer Science, Michigan State University 1985 I.N

'NiXG85] Ni, L M r XU. C and Gendreau, T B , "A Distributed Drafting Algorithim for Load Balancing. [EE %

Trans. on Software Eng., pp 1153-1161, Oct 1985

:NiGe86] Ni, L NI and Gendreau, T B ,A Universal Interprocess Communi(ati-n Svstem for Distributed Cm-
pitingr Tech Report Department ,-,f C'n-,mpiiter Scien Michig.w St I'niv,,r-otv 11 .-.

292
'U

.~a f;...A. >.-...* .- = -°°. -. a .....



ASPECTS OF A MULTIPROCESSOR ARCHITECTURE

R. Pose, M.S. Anderson, C.S. Wallace

Monash University

A Virtual Memory

We are interested in the potential of tightly-coupled multiprocessors to provide

general-purpose computing services in an economical and readily expanded fashion.
The computer system is viewed as a pool of processors each able to access any of

a pool of memory units. The load is seen as a changing population of processes,
normally more numerous than the pool of processors (P.U.'s). Some processes may

cooperate, sharing subsets of their data, others are completely independant of
one another. No explicit committment of P.U.'s to processes should be visible
to users, any more than the committment of physical memory to data is visible in

a virtual memory system.

To allow arbitrary cooperation among processes and indefinite expansion of the

system, a uniform, very large virtual memory is defined. To allow secure

protection of data and processes from unauthorized interference, access within
the virtual memory is controlled by a capability system. The virtual memory
contains uniquely-named objects, each being either a data set or a process, and
knowledge of a valid capability permits some defined type of access to some

(subset of an) object. Because we aim to design a system which can transparently
be expanded to encompass networks of similar multiprocessor systems, the naming of -
objects is universally unique. Each name includes a volume serial number normally
identifying a disc volume and an object serial number large enough not to require
reuse within the life of the volume. Objects cannot be moved from volume to

volume, but volumes may be physically moved from system to system without loss of
the identity of their objects.

Basic protection against forgery of capabilities cannot easily be arranged by
tagging or segregation of capabilities from other data, since we see it as desirable
that data objects containing capabilities be accessible via communication links

not necessarily guaranteed to observe the system's protection protocols, and by
any agent, human or computer, which can exhibit a valid capability. Capabilities
are therefore protected by including in them randomly-chosen 64-bit "passwords".
Before any capability is honoured, it is checked against a catalogue of valid :
capabilities held in or associated with the volume concerned. Since such a check
is always required, there seemed little point in attempting to encrypt access
rights within the capability itself. Instead, these are held in the catalogue.-_
There may exist many capabilities for an object conferring different combinations A

of access rights. However, since capabilities are just binary values which may be
freely copied and/or transmitted to trusted associates, in practice the number of
distinct capabilities simultaneously extant for an object is expected to be small.

It may be thought that the need to consult a catalogue before honouring any
capability would impose a heavy overhead. However, in any virtual memory system,
system tables must be consulted before honouring any virtual address if only to
find the current physical location of the addressed information. As we hold
catalogue entries of current interest in a memory cache area associated with page
table information, no great additional overhead is imposed.

Window Tables

Clearly, one cannot require rechecking of a capability every time a process wishes
to read, write or execute some word of an object. Processes are therefore allowed--

to validate, and thereafter hold in a "window table", a number of capabilities.
With each such window table entry is held location information allowing direct
access to the data addressed by the capability. Processor hardware support for

293

e d qe



the window table then allows access to the addressed data to be made without

further reference to catalogue or physical location tables. Processor

instructions typically specify a window table entry number and a byte offset

within the (part of the) object defined by the loaded capability. To allow revocation
of capabilities, all window table entries are periodically revalidated.

The Intermediate Address Space

Ideally, when a capability is loaded into a window table, the process should be
given the information required physically to locate and access any datum within
the range of the capability. More realistically, a few page locations might be
cached within the processor. While feasible, it would be difficult to maintain
the currency of all the page location information held in all the processors,
especially information relating to pages in other multiprocessor systems. Instead,
every object of current interest in a multiprocessor is mapped into a contiguous

block of a single, large intermediate address space, and processors retain in
their window tables the intermediate base and limit addresses defined by loaded
capabilities. A logical address specified by a window table entry number and
offset is translated to an intermediate address which is sent to the memory
modules. The memory modules themselves map intermediate addresses into physical
page locations.

As the intermediate address space is large (2**34 bytes in the present ptototype)
objects can retain their intermediate addresses for long periods, of the order of

hours. Physical page locations, which are much more volatile, are held only in
the hash-addressed maps within each memory module, and are not duplicated in many

caches.

Each multiprocessor has its own intermediate space. References by a process in
one system to objects in another are mapped from one intermediate space to the
other. To allow physically neighbouring systems to communicate quickly, we have
designed an intersystem communication unit which performs this mapping at high P

speed. It also provides a protection boundary between communicating multiprocessor

systems, because one system may establish a mapping of part of its intermediate 4
space into an object in the other system's space only by presenting a valid
capability for the object to the other system. For accesses from system A to
objects in system B, the unit appears to A as a memory module accepting certain %
intermediate addresses. Within the unit, these addresses are remapped using a
window table containing capabilities for objects in B. Thus the unit appears to

B as a processor. Physically, intersystem units are constructed as modules, one of
which is connected to each multiprocessor system. Each module can appear as a
memory, to accept outgoing access requests, and as a P.U., to effect accesses on
behalf of other systems. -.

Communication among physically distant systems would require use of a conventional
network. As such communications are necessarily slow relative to memory speeds,
we plan to specify the required accesses by explicit capability/offset pairs rather

than try to maintain any intermediate space-to-intermediate space mapping. .-* .

The existence, size and values of intermediate addresses are invisible to
processes.

Interprocess Communication

The capability-addressed vertical memory allows sharing of data land of course *

code) objects among many processes. In addition, a simple message scheme is
provided. Every process contains a mailbox into which other processes may place
messages, provided they have an appropriate capability. Message sending is defined

as a primitive operation on the virtual memory, and direct modification or
inspection of mailboxes is not allowed. Each mailbox is of finite size, so 1

processes are expected to inspect and remove incoming messages periodically.

294



For synchronization purposes, processes may voluntarily suspend until a message
is received or a timeout expires. Arrival of a message normally does not
interrupt a process. Indeed, we provide no equivalent of conventional interrupts.
If a process anticipates the need to take prompt unscheduled action on receipt of

a message, it may create another process to wait for such a message. However, a

process with appropriate capability can forcibly suspend another process, at least

at the expiry of the latter's current time slice.

Since interprocess communication is oriented to processes rather than P.U.'s, and
is not defined to cause interruption, no physical communication path among P.U.'s
is required for this purpose.

Processor/Memory Communication

Every P.U. must be able to access every memory module. A time-shared bus is a
convenient, if limited-bandwidth, means. To minimise traffic on the bus, this
design like most similar multiprocessors relies on caches for instructions and data
within each P.U. If shared, mutable data is held in these caches, rather elaborate
schemes must be used to maintain consistency. Physically, such schemes require
either inter-PU communication paths or broadcast signal paths to all P.U.'s or both, %
and may require every PU to monitor the memory traffic from other P.U.'s. While
all these requirements can be met in a bus-coupled system, they result in a rather
complex bus protocol, and may limit the bus cycle time to the cycle time of the
P.U. cache memory.

We are skeptical of the need to support a large PU access rate to shared mutable
data, and do not require inter-PU communication for interrupt purposes. We have
therefore chosen to allow shared mutable data to be excluded from PU caches, and
by so simplifying the bus protocol, allow a higher bus bandwidth. The present
prototype uses a 34-port 32-bit 25 ns synchronous bus, but larger systems of this
architecture could use dual unidirectional buses, since traffic is always PU-to-
memory or memory-to-PU. The bus technique used has been shown capable of
unidirectional operation at 12 ns cycle speed. Further, since no PU or memory
requires access to traffic of other P.U.'s or memories, multiple disjoint buses
or Omega networks could be used.

I/O Processes

Disc storage for objects is provided via disc controllers which access memory

modules in the same way as P.U.'s. Since the demand paging scheme covers all .
objects, including the analogues of conventional files, no explicit disc access
action is defined at the kernel level. Other peripherals are controlled by
dedicated processes running permanently on dedicated P.U.'s, and user-level processes
effect I/O by communication with these I/O processes. The dedicated P.U.'s are

physically attached to a lower-speed bus connected to the main bus by an adaptor,
but share the same virtual and intermediate spaces seen by other P.U.'s. They also
have private local memory, and can offer services such as editing and command line
interpretation.

Status

A prototype using NS32032-based P.U.'s has been operating since January 1986. Most
features of the virtual memory are implemented. As the P.U.'s are too slow to use
erfectively the available bus and memory bandwidth, bit-slice RISC P.U.'s are being
designed. A Vax 11/750 is at present used as an I/0 processor. Fuller details of
the virtual memory interface have appeared in Anderson, Pose and Wallace, 'A
Password Capability System', Computer Journal, Vol. 29, No. 1, pp 1-8, 1986. The
bus design is described in Wallace and Koch, 'ATTL Compatible Multiport Bus',
Computer System Science & Engineering, 1, 1, Oct. 1985. %1

295



DIRECTIONS IN COMPUTER GRAPHICS ARCHITECTURE

John Staudhammer
College of Engineering
University of Florida
Gainesville, FL 32611

In the last ten years Computer Graphics has become a large part of
every major computer application package. Today's graphics are predomi-
nantly high resolution raster display oriented [.) The relatively
common high resolution 1k x 1k 60 Hz refresh display needs a pixel
access time of about 15 ns. The High Definition TV systems now being
tested in Japan have a 1500 line resolution; thus we may expect that 2k
color raster displays will become commonplace in the near future. The
size of the displays has also increased: currently 35 inch tubes are
available. Much progress has been made in understanding display
algorithms and the generation of finely detailed 'realistic' images.
One can expect further development in these areas. Computer graphics
is used for visualization of designs, of spatial relationships, of .
feature dependencies, of understanding multi-valued abstract inter-
actions. However, most of the work on image rendering has been directed
towards the making of visually pleasing, publishable static images.
These are usually made up in large image buffer memories. Two problems
are associated with this scheme: the image display rate and the image
update rate.

The image display rate is largely fixed for directly viewed pictures.
Depending on the ambient light and image brightness, the image needs to
be repeated once every 30 to 15 milliseconds [2]; the 60/second update
rate now used is likely to remain an acceptable 'standard'. The image
update rate will be a compromise between affordable computer costs and
needs for visualization. The beauty and clarity of a display image is v
not the final arbiter for the usefulness of that image (although so
judged now from published still images.) When a person needs to know
the nature of an object, a great many views are required to form an
understanding. These views must be done in a short time; a task not
possible with static image generators. Typically the image is computed Kx..
using a memory in a general-purpose machine and is then transferred to
the display generator. In addition to the computational requirements, a
data transfer problem must be faced.

In visualizing three-dimensional designs, such as mechanical assemblies,
architectural entities, naval and aerospace vehicles, a simple, uniform
colored background, a simple light reflection algorithm and relatively
crude surface approximations are usually adequate. Studies of the image -w
data structure of a raster scan representations of such scenes show
three main features [6):

1. Long strings of uniform colors, mainly the background;
2. Shorter strings of colors which represent the main features of the

design object;
3. Many very short strings, most only a single dot, which give the

details of the surface, the minor features.

296



Directions in Computer Graphics Architecture
John Staudhammer
Page 2 of 3

Taking advantage of these image characteristics one can build relatively
inexpensive encoding and decoding machines which will reduce the amount 6"

of data required for the description of acceptable images by large
factors; a data-compression of 10 to 15 is achievable. Not only is the
image buffer reduction significant, but more importantly it is possible
to maintain an image flicker - free without recourse to prodigious
computer I/O rates. Thus robot manipulator actions can be viewed using
only normal input/output channel speeds on machines such as VAX
computers. Further reductions in image storage volumes and consequent
amelioration in data transfer rates can be achieved by considering the
scan-line to scan-line coherence, but more processing will be involved.

Various simple data compaction schemes exist which are particularly
useful for managing images arising in mechanical design. Some of the
image generation problems are now being addressed by special display
management chips [3]. When the image is moving, as in a movie sequence,
there is 'motion blur', which may drastically decrease aliasing problems a..
in single images. Special display pipelines will handle specific types
of display tasks. Examples are clippers (for object collision detection),
element generators (for molecular models) and texture generators (for
terrain models and architectural tasks). All of these are 'naturals' for
VLSI implementations. However, before any of these can be constructed,
the algorithms must be fully understood and thoroughly tested. The
optimization for 'acceptable' image quality can be made; this step
usually involves an assessment on how much one can 'get away with' in
trading motion for clarity of static images.

Finally the computations required for detailed image presentation seem
to mandate supercomputer usage [4]. Currently-used algorithms are poorly
suited to supercomputers' vectorization requirements. A critical view
needs to be taken at re-casting the display calculations into forms more
adaptable to vector machines. One of the most compute-intensive tasks
in computer - graphics today is the rendering of good-looking curved
surfaces by means of detailed calculations of the color-shade of the -.
surface [8], most often by the technique of ray-tracing. A brute-force
application of the commonly-used techniques of ray-tracing shows a very
high degree of non-uniform calculation steps. Basically each ray will
interact with the scene differently: after all, this is the essence of
rendering the image in interesting detail. However, a re-thinking of
the procedure in terms of a particular supercomputer structure has
yielded great savings in computational times and cost, albeit at an
expense of significant increases in the number of calculations required
and the amount of storage employed [5].-

The need to generate good graphic outputs from application programs has
spurred the development of specialty display processors and display
pipelines. Virtually every major IC vendor has made significant efforts
to provide devices with much increased performance. Noteworthy amcng
these is AMD, National Semiconductor, Weitek and NEC. Specialty
display systems based on novel architectures are Silicon Grarhics's
IRIS and tiling engines now becoming available. Gouraud shading can be
included in tiling devices which can keep up with real-time 6C Hz
displays, usually updated through a double buffering scheme at 30 Hz or

297



John Staudhammer
Directions in Computer Graphics Architecture
Page 3 of 3

less. Another significant development is the emergence of graphics
controllers directed towards video RAMs. Here the familiar BitBlt pixel
operations are extended to blocks of pixels, usually referred to as
PixBlt operations. As yet, almost all these engines operate on 2-D data,
reflecting, perhaps the current graphics standards thinking in CORE and
Graphics Kernel Systems (GKS). With the current efforts in PHIGS, much
more three-dimensional graphics will become commonplace. Modeling and
rendering curved surfaces with dedicated hardware often run into numeric
round-off problems and require inordinate numeric accuracy. For a worst-
case study of 8k by 8k images of quadratic surfaces the control of
accuracy can lead to 8 more than 80 bits in the internal registers [7.]
Of course further work will lead to a re-thinking of this process also
and to simpler hardware. Even with the worst-case it is possible today
to put a few of the quadratic-rendering engines on a single VLSI chip.

With the general trend of decreasing hardware costs the currently- 0
touted devices will spawn standardized architectures for the display
task. In turn the display process will have to be re-visited to
ascertain how it can be best mapped to high-performance cheap hardware.
Moving image sequences can demonstrate that the most beautiful images
are not necessarily the most useful ones. We can expect progress in
devices just for such images. .

REFERENCES:

1. J. Staudhammer, Ed., Special Issue on Computer Graphics Hardware,
IEEE COMPUTER GRAPHICS AND APPLICATIONS, January 1986

2. H.R. Luxenberg and Kuehn, Display Systems Engineering, McGraw-Hill, -

1972; also J. Staudhammer, Computer Graphics Hardware, Short Course
Notes, IEEE Tutorial Week - East, 1985

3. Special Report on Application Specific ICs, in COMPUTER DESIGN,
February 1, 1986 issue ,..,

4. D.P. Greenberg and J. Staudhammer, Eds., Special Issue on Super-
computer Graphics, IEEE COMPUTER GRAPHICS AND APPLICATIONS, July
1987 (scheduled)

5. D.J. Plunkett and M.J. Bailey, The Vectorization of a Ray-Tracing
Algorithm for Improved Execution Speed , IEEE COMPUTER GRPHICS
AND APPLICATIONS, August 1985

6. L.R. Schneider, Characteristics of Computer-Generated Raster Images,
MS Thesis, Department of Electrical Engineering, University of
Florida, December 1985 %

7. S.T. Kaufmann, Real - Time Interactive Visibility Computation for
Quadratic Surfaces, MS Thesis, Department of Electrical Engineering,
University of Florida, August 1986

8. T. Whitted, A Processor for Display of Computer Generated Images,
PhD Dissertation, North Carolina State University, June 1978

298 1

-' .4



DEVELOPING A STANDARD TAXONOMY OF

SOFTWARE ENGINEERING STANDARDS POP

JOHN FENDRICH

COMPUTER SCIENCE DEPARTMENT
BRADLEY UNIVERSITY
PEORIA, IL 61625

This paper presents a view of a possible future direction and environment for
the development and use of computer software. The paper presents a view of this
software engineering discipline and activity within a future environment which is
guided and influenced by consensus standards. In particular, a view of a draft
standard taxonomy of software engineering standards is presented together with a
view of the utility of that taxonomy in classifying standardization efforts in
software engineering environments.

A taxonomy can be described as a scheme which divides a body of knowledge and
explains the relationships among the pieces and is used for classifying and under-
standing the body of knowledge. In this case an IEEE Computer Society (IEEE-CS)
project, P1002, was authorized by the Subcommittee on Software Engineering Standards
(SESS) of the Technical Committee on Software Engineering (TCSE). A key goal among
the goals of this project, was to apply this taxonomy concept in order to develop
a standard taxonomy of software engineering standards. More specifically the goals
of the P1002 project included:

To provide a comprehensive scheme for classifying software engineering stan-
dards, recotmended practices, and guides.

To provide a framework for identifying the need for new software engineering
standards, recommended practices, and guides.

To present a comprehensive scheme for analyzing a set of software engineering
standards, recommended practices, and guides appropriate for a given industry, com-
pany, project, or particular work assignment.

To present a framework for comparing sets of software engineering standards,
recommended practices and guides to support the selection of the most useful set %

for a particular software product.

Particularly the goals were relative to SESS standardization projects within IEEE-
CS, but the goals were seen to have potential application more generally.

The P1002 project produced a Draft Standard Taxonomy for Software Engineering

Standards which is currently being ballotted within IEEE. This software engineering
standards taxonomy is organized into three parts (1) a partition of standards,
(2) a partition of software engineering, and (3) a framework which relates to the

two partitions to achieve a partition of software engineering stpndards. The par-
tition of standards is organized by type of standards, namely profession, product,
and process standards. The partition of software engineering is organized by func-
tion and lifecycle. The taxonomy framework, as it is applied to achieve the coals
of the project, is simply a matrix view in which the two partitions are brought
face-to-face.

The thesis of this paper is that we can have an optimistic view of the fut'ire
of computer software. This optimistic view is based on ideas that,

299

.1.



1. Standards will be viewed as important and will be a successful "way of do-

ing software."

2. The requirements of society and profession will be met.

3. Consensus standards will be looked upon more positively in the market

place.

4. Standards will be perceived as an aid rather than an impediment to .
software development.

Additionally it is based on the idea that the work of project P1002 meets its goals
in that it provides a framework within which software engineering standards can be
developed and used in order to guide the construction of software that will satisfy
the increasingly complicated and complex use of computers in present and future
society.

In order to show the utility of the work of the P1002 project the presentation
of this paper shows the application of the draft standard taxonomy in classifying
already existing standards and potential standards. A collection of public stan-
dards available through trade associations, government agencies, national societies
other than IEEE is classified by means of tie taxonomy framework. In a separate
application the IEEE software engineering standards which have been already de-
veloped and have passed consensus approval as well as those potential standards
under development as IEEE-CS SESS projects are classified by means of the draft
taxonomy. With this classification the software engineering standards activity
within IEEE is evaluated using the taxonomy framework.

Appreciation is expressed to the P1002 working group and it.; product without
which this paper could not be written or presented. In particular appreciation
is expressed to P1002 working group chairman, Leonard Tripp, for his work in the
classification e..amples shown. The Draft Standard Taxonomy for Software Engineer-
ing Standards is currently in ballot. Copies of the draft taxonomy are available
from John W. Horch

M.S. 178
Cummings Research Park
Teledyne Brown Engineering
Huntsville, AL 35807

Members and Affiliate Members of IEEE are encouraged to evaluate and vote on the
draft standard that is the work of the P1002 project.

300



SAGE
THE CLEMSON UNIVERSITY SYSTOLIC ARRAY GENERATING ENGINE

Roy P. Pargas and Keith R. Allen
Department of Computer Science

Clemson University, Clemson, SC 29634-1906

ABSTRACT

This paper describes the Clemson University Systolic Array Generating Engine
(SAGE). SAGE allows a user to key in a nested loop algorithm in a high-leve1 lan-
guage and, for certain types of algorithms, such as convolution, matrix-vector multi-
plication, matrix-matrix multiplication, polynomial evaluation, and linear recur-
rences, automatically generates systolic array solutions. The paper concludes by
listing future plans for SAGE, and some thoughts on possible directions in the auto-
matic generation of systolic arrays.

INTRODUCTION

Designing systolic arrays to implement algorithms has traditionally been a time-
consuming process. The problem does not lie in algorithm development- the algorithm
being implemented at the time a systolic array is designed is typically well-
understood. Rather, the major portion of systolic array development time is devoted
to the often-tedious process of mapping data flow in the algorithm onto a regularly-
interconnected array of computational cells. To be successful, the designer must
accomplish this mapping in such a way that the data values associated with the compu-
tation enter and move through array cells in a very orderly (i.e. "systolic") fash-
ion.

Until recently, designing systolic arrays has been approached in an ad hoc, seat-
of-the-pants manner. Research in the past four years has shown, however, that it is
possible to substantially automate the process of designing systolic arrays, for cer-
ain classes of loop algorithms [1,2,3,4,5,6,7,8]. Lam and Mostow[2] describe an
experimental prototype program, dubbed Sys, which generates systolic designs by
aplying a series o transformations to a source algorithm which has been annotated *
wlth advice as to how to allocate operations to hardware cells. The authors argue
that their transformational method has advantages for handling complex algorithms,
and for verifying correctness of designs obtained.

In a paper by Li and Wah[31, the problem of designing a one- or two-dimensional
systolic array for computing certain recurrences is formulated as a linear program-
ming problem. Characteristics of systolic arrays are parametarized by data flow
velocities, spatial distribution, and periods of computation. Constraint equations
are then functions of these parameters, and linear programming is employed to derive
optimal designs for various objective functions of computation period and number of
processing cells.

A technique for generating systolic designs from a "space-time representation"
for a recurrence algorithm is described by Steiglitz and Capello[7]. First the algo-
rithm is imbedded in N-dimensional space in a graph which embodies dataflow dependen-
cies of the algorithm, and it is imagined that the entire algorithm is computed in
parallel, at many points in space, at a single instant of time. To generate various
systolic designs for the algorithm, the space-time representation is typically oper-
a.ted upon by an affine transformation, and a spatial dimension of the image is
"traded" for the time dimension.

Hornick[8] describes a class of transformations on systolic networks which alter
network topology while preserving timing of its computations. Such transformations
are used to demonstrate the equivalence of existing designs, or to obtain new designs
from an existing design.

The basic method underlying SAGE is based on work first done by Moldovan[4,5].
Allen and Pargas~l] undertook a case study of this method and showed how to use the
method to generate various designs for convolution and matrix multiplication. The
same method was extended by Moldovan and Fortes[6] to deal with the problem of parti- %
tioning a large nested loop algorithm and mapping it onto a small systolic array, in
such a Way that accuracy of results is not compromised, and communication overhead
between subproblems is minimized. They developed a software package called ADVIS to
aid in implementing their partitioning/mapping process.

BRIEF OVERVIEW OF SAGE

SAGE (Version 1.0) is written in Pascal and runs on an IBM-PC. The program elf
allows the user to key in a nested loop algorithm in a high-level language, and first A-
analyzes the source loop algorithm to show dependences among its variables. If analy-
sis of these de endences shows that a systolic solution is feasible, the user may
proceed to ask for one or more solutions to be generated.

301 -.



The solution space of systolic designs for a given loop algorithm is usually
infinite, so SAGE provides the user with various means for guiding the solution
search so as to produce only those solutions which are "reasonable", or "interest-
ing". A typical criterion governing the user's interest may be, for example, the way b.J

in which the systolic computation interfaces with the larger computation in which it
is imbedded. Once a solution of interest is generated, SAGE allows the user to see
finer details of the systolic design by single-stepping through the computation and
displaying cell locations of variables at each time step.

The loop algorithms must satisfy certain requirements:

1. They must be nested loops, two or three deep.
2. Only the innermost loop may contain an assignment statement.
3. Only one assignment statement is allowed.

Although the requirements appear to be somewhat restrictive, we have found that %ge
several different types of loop algorithms satisfy these requirements. These include
loop algorithms for convolution, matrix-matrix multiplication, matrix-vector multi-
plication, polynomial evaluation, and the solution of recurrences. For each algo-
rithm, multiple solutions have been generated.

Briefly, SAGE searches for a systolic array solution by performing three steps.

1. Determine the dependence vector, X, for each of the variables used in the loop
algorithm.

2. If the dependence vector X is constant, find a transformation matrix T such '
that TX=V and the first component of the image vector V (i.e., V[1]) is pos-
itive. The reason for this is that the first component of V is interpreted as
the "time" component of the systolic array. The restriction, in effect,
requires that time only go forward.

3. Build the systolic array from information gained by analyzing the vectors V,
and by applying T to the loop indices of the source algorithm.

SAGE is entirely menu-driven. Its main menu includes the following user options.

1. Collect loop information. The user enters information such as loop limits and -
array variable names and indices, as given by the source loop algorithm. As .%

soon as the information is complete, SAGE determines whether dependences among %
the variables are constant, assuring a systolic array solution. If a non- ,
constant dependence is found, the user may still be able to develop a solu- ''
tion, although one is not guaranteed.

2. Display loop information. Dependence vectors may be inspected by the user.

3. Matrix selection. After the user specifies upper and lower limits on the val-
ues of the transformation matrices, SAGE conducts a search. Each suitable "'.
matrix found is displayed together with information on the systolic array that
it generates. The information includes the number of systolic cells used and
the number of time steps required by the systolic array to execute the algo-
rithm. The user has the option of continuing the search, forward or backward,
or of selecting a specific matrix for tracing.

4. Tracing systolic array execution. The user may single-step through the sys-
tolic array solution, either forward or backward. The variables are displayed
moving from cell to cell. The user may select which variables to display, and
which to temporaril mask out, allowing the user to focus on the movement of
only selected variles.

The interested reader is referred to reports by Allen and Pargas[l,9] in which
SAGE is described in greater detail.

CONCLUSION AND FUTURE WORK

Initial experience with SAGE indicates that, for appropriate source aluorithms,
the search for a systolic array solution becomes almost trivial. The user no longer .%
faces the task of tracing the movement of the data through the cells. All of the .j I
tedious work is done by the program. We continue to experiment with SAGE. In par-
ticular, we continue to search ?or other problems whose algorithms satisfy, or may be
modified to satisfy, the requirements described above.

Work also continues on SAGE itself. Future versions will incorporate at least
the following features.

1. Multiple assignment statements in the innermost loop. '"
302

NN.



FMWV1 V~ UUUU U WWWUN "W WWW - , . '" N RX I'. PU n.m'1.M7'.N FUR WQK Y1K ~w~J~Ivjvvu ~ WMi UFX19 u-ur5~

2. Greater user control over characteristics of the transformation matrices
returned by SAGE. The user will be able to specify, for example, that SAGE
return only systolic solutions in which a specific variable remains fixed in
the cells, or that a variable moves right to left, or that a variable moves at "'A,
a specified speed.

3. Equivalence classes of solutions. Hornick[4 describes a method for determin-
ing a family of systolic solutions to a problem given one solution. Future
versions of SAGE will provide the user with the option of searching for (or
ignoring) members of the equivalence class of a known and specified solution.

Finally, research in the general area of automatic generation of systolic arrays
continues at Clemson University. As experience with the program grows, we plan to
develop a design methodology for the construction of systolic arrays. The goal will e
be a general and systematic method for the generation of systolic arrays for a wide
variety of loop algorithms.

REFERENCES

1. K.R. ALLEN and R.P. PARGAS. On compiling loop algorithms onto svstofic
arrays. Second SIAM Conference on Parallel Processing for Scientific Comnut-
ing, (November i-21, 198b), NorroiR, VA.

2. M.S. LAM and J. MOSTOW. A transformational model of VLSI systolic design. %
Computer, (February 1985), 42-52.

3. G. LI and B. WAH. The design of optimal systolic arrays. IEEE Transactions
on Computers C-34, (January 1985), 66-77. %

4. D.I. MOLDOVAN. On the analysis and synthesis of VLSI algorithms. IEEE Tran-
sactions on Computers C-31, (November 1982), 1121-1126.

5. D.I. MOLDOVAN. On the design of algorithms for VLSI systolic arrays. Proceed-
ings of the IEEE 71, (January 1983), 113-120.

6. D.I. MOLDOVAN and J.A.B. FORTES. Partitioning and mapping algorithms into
fixed-size systolic arrays. IEEE Transactions on Computers C-35, (January
1986), 1-12.

7. K. STEIGLITZ and P.R. CAPELLO. Unifying VLSI Array Design with Linear Trans-
formations of Space-Time. Advances in Computing Research, vol. 2, VLSI
Theory, (F.P. Preparata, Ed.), 1974, 23-5b.

8. S.W.HORNICK. A unified approach to the analysis and synthesis of systolic
arrays. Masters thesis, Department of Electrical Engineering, University of
Illinois at Urbana-cnampaign, 1985.

9. R.P. PARGAS. SAGE: Clemson University Systolic Array Generating Engine. User
Guide, Version 1.0. Technical Report #86-4-9, Department of Computer Science,
Clemson University, CIemson, SC 29t b4-19Ub. April, 1986.

303

--k % P I



Old Dominion Universitv
Norfolk. VA 23508

r'troduct ion
i-rie data f tow mociel of: comoutdtion na5 suawnec! uivet e 7,o~r~ %~t

strateg~ies associated with concurrent processirtu. oa-iua.tne
ui -truoutead computer- systein (DCS) is an imoortarit -1a-s ot arc tte,-'-ur a --
strate.gy for concurrent corocessina. Problemns a500latect witr toe D conceD-
include the decentralized control and tasK-to-resource assiangient. Toe

oro~ernssteml form thie :orwrdc Fl'-w of Ooth daa ! orr -! r:r
.nf-'~ onor tDo.en-s. ~c~d oot- the di'i, r iel . .

d oor th:r i nrr fc ons Qonoe Jo n1~ Jr -r2:-ir
stra1:e'.'. H-ence. tri-. imerfect frnat~fn uo: U!LcWeen -f) ~ ~ j~§rvC~

des! reiab Idt aI or ithn data FlIow Ileads to J iFjLu,!L'. in ---:e jr -!,.- 1a
execution behavior of- the decomposed alaorithm in the concurrent orocessina
environment.

To TS Doer proposes a mode i i nq striteav whi ich addr s 5: trie ci,-Aa ''ow

oonMS istencv uet:ween al olori tlin cind arc.hirecture in -j -on,-u-n* -r
re.v i ronmntt. A -rItis,t: intHerest ,:re cecn*p.tsow t~.

dre consijereri to Oe comoutWatona-l lv invtensiv'e. s% -IC' ~
Petr i net je----r i~tiorn ,-t tne the dlata rndraQt!pen trc., ,3r Ca:-2cu
g r dotI. Te rioce Petr i netfide ud VuF7e
INlfJ 1. c-unseuuent i nterconect iOn of ttteCZ-t NMG-s c,-,r r t p.;ud -e
data flow araon leads to the cornnutation mnar k e -irdr-h (LCih' t t r

tn- *>iMu. i. j . or imi iv I- V uL01var-n (:)- the --M(-3. ,j. ~
Moode iS tthat daLa FlOW is oreserveu. dnu csto n: F ~~C.

~~J,.

e-.rio'te wetru~e~aliH 'how '... 'JCCInu':e J!,_I hM

c Lr u inter :reted-- ir: j Qr3uli cont e~.....

Nocle MarKed kara tl Model
The c~eveleoinent of the mi:,rked rqraron fnoDCe ! Of t!!e J-CDr t I.r:J.j:7

Muj.:Vi .C0 Lv VtetO o 1cwirl no oueratos flJ Suf!t i orz
1. Functional unit5 are l:rocessors -w-ith !(oC3l Tiernorv. Frr por ruim *

teinProrar'/ i nLut dric output data conitu inei 5. .'
-. Te diata memoyv i s la I to~ I i I rnct ionali un it s. Fe ict j~~ r~''

with each computational arapth nooe (process) corre!5oo)(no to- fixed lati
ccntainers in v~e Qloua! cdati mem'..rv.

t i tona i unit) unleSS a tUflc7ionldl unit. i t dv! VJ l -10 .:..W

comoutation are availaule.

304

-. ~~~ -%.~



rWfe rWl Wata avffWFAirW affoe-

ii-e 1nout-i buffer empty (status)
1 2-f InDut-2 buffer fullI (cata a'.a aole)
12-e inout-2 buff-er emptv (status)
0 R Data reaoiv in functional unit

Prcetss not Ousy
PR Process: or computa3tion is complete

NMG edae la eis (cont'd)
Ul-e (Jutout-I buffer emp~ty (status)
111-F U1 OUt - 1 out)UfF-f'! tI ('d"-33 vi 1L)blI

'~uzut- ou'eremrot. (.tatU<si

J_- r L~tIDut-L. bu:teL ___:a j~

NM _ ncdes.
A. rransition A fires when 11.12-f .and NB tokens are available.

Impl icit in the Firina rule is priority ass iunment annavl!z :'-

a functional resource to assiqn to the Darticular taslk.
B. Trans ition 8 fires when DR token is avai laule. 1hit irsjo

corresvc'nus5 to the actual computjt~on event.
C. Transition C fire,6 when O10-e ndi jkt~ e

jvai ladle.

Erie comoutatioria! marKed araon A-.U)3 or a ~riua lo 'r
of the interconnection of NM~s LDv ioinin'n the various inrout tc os tr e
Lorresoonalina outout arcs orordeeso NMs. u.). _- o 1_3 Cr -

Lunaitioris are representeu LDv dec-d rcs corr esroonUinr_ 1-.. 11*,
1,:,w (D t e or i aii na icorrlclutdt iluna~ I t ow a r at1r. HfWeveiTa %

) sr td t u aind Con rt i e Je'3 C r'i ndf
t' h at j~ .:I L),,e:cr a ~ -c- r' .* ej..c-

i,-a rw _mu ru Ie5 to-- juc Fc, loweu uv, jnv! 'j.t jr --n .i.-z: -

the orocesb. The dlIqorithrm ari anoc':nuatoa mr!-O :j 3r,
rn more dIetali I jnu are i I I ustraced i fIn iqUr e--5S dfiJ d. rVtj5L~eCt 1-

cuta Driven Architecture
Thie architecture must allow the execution of the CM(- whose nodles ar-e

enabled bv data and Fired byl the availabili:v of a fu- toa anr.-~
resource architecture is shown in Ficiure 4. Thze jr _n i te,_- r e -: ,3
structure which is a natural consecluence of meetina tiereurnet
Petr i-net model.

The candidate architecture consists Of Four uifteien urit5 jncit'
interconnectinn buses. The hardware units consist of: k-functionai units Fti).
one hiah speed data memory (DM1. onie (or morel 1/0 urit arnd -i ThIen *y'~:

M.- _,nti t,, : flc. 6tjtus nrc'rrnait i uri Jr-~ L-.:: ' ''> r ~ ': r- .'w~

thie token bus. Dita Packets are oasosed to arid from tte v.'ai -,j L'utIt r t -U
by way of the data bus. The 1/0 units obey all Protocol rules of the TM and

IV

%1~*I

305



4.J.

4JB

Li

N.0

-~% %

306

-j-J



Portable (and disposable) Interpreters

Francois-Xavier TESTARD-VAJULANTI

Ecole Normale Sup~rieure

Avenue de la grille d'honneur 92211 Saint Cloud

Laboratoire d'Informatique Thtorique et Programmation
4, Place Jussieu 75252 Paris Cedex 05

FRANCE

Surnmar

'T'his paper proposes a methodology for quick and not dirty interpreter imnple-
mentations in high level languages. It is based upon a formal and operational
description of stack manipulations using the mechanism of exceptions. This formal-
ism provides a powerful tool to write or extend an interpreter from its meta-circular

definition - e.g. Lisp or Prolog.

Keywords: Portable software, Exceptions, Interpreter, Lisp, Prolog.

GO.



1. Introduction

The exception mechanism is present in many programming languages. The

conditions of PL/I [PL/178] has been the first but not the least. Clu [Liskov79] and

Ada [Ansi83] own less powerful statements of that type. Recently the problem of its

implementation and use in Modula-2 [Hopkin86] and Pascal has raised. Common-

LISP [Steele 84] does not (presently) include this feature. Note that the three last

languages are powerfull enough to allow simulation [Testard-Vaillant86l.

1.1. Exceptional situations ']1

We call exceptional those situations in which the interpreter has to walk down-"

the recursion stack - i.e. those cases when the interpretive process follows no longer

a strict stack discipline.

There are basically three of them: N'

1) The Garbage Collector, which has to take into account not only past bind-

ings (shallow) but also past values in the recursion stack.

2) The non-local exit mechanism, which is clearly exceptional. Note that the

whole of error handling can be brought under this heading.

3) The tail-recursive situations checking [Greussay77,Saint-James84], in

dynamically-scoped LISP interpreters which requires a very precise examina-

don of the stack to a depth unknown in advance.

Now, these three points cannot be easily treated in isolation. Actually, in

current practice of interpreter writing, they pervade virtually the whole code : every-'

single module has to beware of some aspects of "the gang of three".

Our gang of three is not absolutely necessary but A.I. applications often spend %

lavishly both run-time and memory-space. The salient point of the third part is that ,

it ensures the user that the memory-space devoted to the recursion stack will be as -

small as possible. This encourages the use of recursion which becomes an efficient ..-.

tool for programming (from a run-time point of view) and allows extension of LISP

toward multi-processing.

308

,%

t !
4 ,'. ,



1.2. Connections between exceptions and exceptional situations

Generally speaking, one could say that a LISP system is made up of two parts:

The normal one, which is usually specified by some metacircular model

[Rivibres84] and the exceptional one, for which no formal description is given.

Unfortunately, the normal and exceptional parts of every module are treated

together, in an all but clearly organized way. As a consequence of this state of

things, some unpleasant features are commonly accepted such as the destruction of

the stack when a thrown value doesn't find its catch [Chailloux84]. A

All the sequencing functions (progn, or, and ...) have to take precautions i.e. to

free the top of the stack to allow the tail-recursion checking [Saint-James84]. This .I

tangled way of writing practically prevents the verification that the normal part is

indeed faithful to the metacircular definition - not to mention inquiries regarding the .

exceptional part.

We argue that the present situation is largely due to the illusion that excep-

tional features can be treated in an off-hand way, by immoderate use of the facili-

ties permitted by assembly language programming, which does not encourage a sys-

tematic point of view. On the contrary, we adopt the attitude that interpreter writ-

ing, as the rest of systems programming, should be performed in high level

languages. Furthermore we claim that high level languages must be really used as

high level language i.e. we will entrust them the management of the recursion stack.

This clearly necessitates the formalization of stack manipulations.

We propose the notion of an exception as the adequate tool for our stack-

perusing tasks.

I- The Garbage Collector deals with the gc exception raised by cons.

2- The dynamic non local exits deal with the escape exception raised by

throw.

3- The tail-recursive situations checking deals with the tail exception raise by %

apply.

309
q



1.3. Overview of the interpreter

A LISP interpreter is a set of procedures. These procedures are twofold: the

body directly translated from the metacircular model and the handlers which have

to handle the exceptional situations. Though the specification of each exceptional

situation will afford:

1- the name of the specialized exception,

2- the name of the procedure which initially raise the exception and

3- the kinds of handlers the set of procedures needs to handle this peculiar

exceptional situations. V,

2. Exceptions behavior

Let us draw a parallel between exception raisn and message passing in

actor-based languages: the procedure which needs to modify the stack or only to

get information from it will send a message to the closest (calling) procedure pre-

cisely by raising an exception. This mechanism does not have to destroy the stack

except if it is explicitly asked. If the receiving procedure is not able to understand

(handle) the message it will be forwarded downto the closest one in the recursion

stack which will act as the proxy in ACT1 terminology. On the contrary if the

receiving procedure owns a method for this message (a handler for this exception) it

can either kill the current message (exception), propagate it i.e. transmit it to its

own calling procedure or return it to the sender.

3. Fixing the stack problem

3.1. The Garbage Collector

Let's take a widely used Garbage Collection algorithm - e.g. the Mark and

Sweep one.

310



The Garbage Collector is called by cons. It raises the exception called gc. There
are two kinds of handlers: those which belong to a procedure which used cons cells ,,

for its owns and others. The first kind have to mark the said cons cells. Both of

them have to propagate the gc exception.

3.2. Non-local exit

The non-local exit is the work of throw. It raises the exception called escape.

There are three kinds of handlers: thoses which only propagate the exception, the
one which unbind what needs to be before to propagate the exception and the one

which kill the exception.

Apply or more precisely the specialized part of it which deals with X-

expressions owns a second kind of handler and catch-all clearly owns a third kind

of handler.

3.3. Iterative interpretation of tail-recursive calls

This is a well-known problem both in lexical binding context [Steele76a, :

Steele76b, Steele77] and in dynamic binding context [Saint-James84].

The tail-recursive situation checking is the work of apply. It raises the exception

called tail. There are three kinds of handlers: those which return the exception

meaning the current situation is not tail-recursive, those which propagate the excep-

don meaning the current situation may be tail-recursive and that which can kill the

exception.

The handler of cons belongs to the first kind whereas the progn's one checks

if the expression that it is evaluating, is the last one to decide to return or to pro-

pagate. The part of apply specialized in X-expressions (apply expr) kills the excep-

tion after the updating of the environment if the current call is identical to its.

3\ 51:



Improvements 0

We will show that the crossed tail-recursive call is nothing but the addition of
a new exception with the description of the raising function and the kinds of

handlers needed.

The tail-recursive situation checking is the work of the applyexpr. It raises the

exception called crossed. There are three kinds of handlers which are basically the

same as the tail exception except for the third kind. Rather than kill the exception
when a crossed tail-recursion has been discovered the handler has to update the ".
environment and then to return it. Coming back to applyexpr the exception will

be killed after the updating of the current X-expression's body.

More complex cases such as left associative envelope - e.g. + and * are
decribed in the same way.

4. General view of portable (and disposable) interpreters

The exception mechanism allows the formal and operational description of
stack manipulations. This ends up to quick and not dirty implementations of LISP
interpreters in high level languages. Following P. Greussay [Greussay77], we can
now assert that the quicker way to implement an efficient Prolog interpreter (for .-r
example) is not to write it in LISP but to deduce it.from a LISP interpreter clearly .,

specified..

Acknowledgments ,V.

The author wishes to thank Jean-Francois Perrot and E. Neidl for their
encouragements during this work.

,:': .--

31 
""e

312



References

[Ansi83] 1985.
Reference Manual for the [Saint-James84]
Ada Programming Langage Saint-James, E., Recursion is
(ANSIIMIL-STD 1815 A), more efficien than iteration,
Alcyc,La Celle-Saint- Fifth ACM Conference on
Cloud,January 1983. Lisp and Functional Pro-

[Burke85] gramming, Austin Texas,
Burke,G.S.,Catching,Common August 1984.
Lisp Forum - MId <[MIT- [Saint-James86]
MC.ARPA].724785.851119.GSB>, Saint-James, E., Echappe-
November 1985. ments et pas Z pas, LITP

[Chailloux84] (rapport interne 4 paraitre),
Chailloux, J., Devin, M. and Paris, 1986.
Hullot, J.M.,LeLisp, a Port- [Smith84I
able and Efficient Lisp Smith, B.C. and des
SystemFifth ACM Confer- Rivires, J., The dmplementa-
ence on Lisp and Functional i Jon of Procedurally"
Programming,Austin Texas, Reflexive Languages, Fifth
August 1984. ACM Conference on Lisp

[Greussay77] and Functional Programming,
Greussay, P.,Contribution Z Austin Texas, August 1984.
ia dkfinition interprtative et [Steele76a]
Z l'implimentation des Steele, G.L., Lambda: The
lambda-langages,Thtse ultimate declarative, Al
d'etat, Universite PARIS memo 379 MIT, Cambridge
VII, PARIS, Novembre Mass., 1976.
1977.

[Hofkin86] [Steele76b] %..adSsraHofkin .,Excepions inSteele, G.L. and Sussman 1.1
Hofkin B.,Exceptions in G.J., Lambda: The ultimate eModula-2,UUCP News MId imperative, Al memo 353
<8602032056.AA26 124 MIT, Cambridge Mass, 1976.
@calmasd.CALMA.UUCP>, .,
February 1986. [Steele77]

[Liskov79] Steele, G.L., Debunking the
expensive procedure callLiskov, B.,CLU Reference myth, Proc. of the ACM

Manual, M.I.T., Cambridge, conference, 1977.
October 1979.[ M oo n 7 5] [S te e le 8 4 ] ..:[Moon75] Steele, G.L., COMMON

Moon, D.A., MacLISP refer- LISP (The language),Digitalence Manual, M.I.T., Cam- Press (DEC), 1984. 
'. ,

bridge, 1975. [Testard-Vaillant85]
Moon, D . UvTestard-Vaillant, F.-X., V
Moon, D.A., Universal lnterpritation, en langage
Catch, Common Lisp Forum evoluZ, de langages trs
-- MId <851120172629.1. vous, These de troisieme
MOON@EUPHRATES.SRC. cycle, U.P.M.C., Pans,
Symbolics.COM>, November December 1985.

313
Ik e',



[Testard-Vaillant86]
Testard-Vaillant, F.-X.,
Implementing Exceptions, h
paraitre, 1986.

[White79]
A White, J., NIL: A
perspective,Proc. of the
Macsyma Users Conference,
Washington D.C., June 1979.

[Wirth8O]
Wirth, N., Modula-2, Rap-
port numero 36, ETH Zurich,
March 80.

LI.

314..,

"S

..:



Or..

Session 14C: Logic and Functional

Programming

.

Chairperson: Jon Mauney

North Carolina State University

.-

315

zw.



A RULE-BASED LISP DIALECT TRANSLATOR USING
PARAMODULAT ION

Michael Dowell
Yoshiyasu Takefuji

Center for Machine Intelligence
Department of Electrical and Computer Engineering

University of South Carolina
Columbia, SC 29208

Phone: (803) '7-5D99

ABSTRACT N

In this paper a rule-based Lisp dialect translator (LDT) is
presented. The advantage of using a rule-based system is to allow the
user to supply his own rules for translation and thus the translator
can be considered a general purpose dialect converter. The
translation being used for development is Franz to Common Lisp.

1 INTRODUCTION

I FRANZ LISP I equality literals[
I PROGRAM I(facts)
II ___ __ (rules) I _ _

\ /
\ /

(control)T TRANSLATOR -

I I -I

COMMON LISP I
PROGRAM I

The LDT takes advanta;e : - e fa t " a e s: : u - r.
)f the seman-:cs . :--e'en- Ia e, s _ -S

-.. e.refcre 4o 2 . ,a -0 .x - -'-c--
oJ.e-t 3- an'i anqi ia '-',.,', " 1r,2s. ::.i};s. ,-i: [ ,":.',, -

.:ifferen: types o --. , .)-, -s 71-..... . . .. - 1
C : nr ~ [s ' ': . 7b, ! " - . . . . . .. :- ....6

316

", -. %



2 RULE FORM

The rules are in a paramodulation fo-rm, as an example of the

one-to-one substitution:

The relationship: EQUAL (add : +) ,6

The Franz function: (defun example_l () (add.2 3))

The Common function: (defun example_l () (+ 2 3))

Paramodulation occured from the "add" term into the "+" term. The LD- .
shall restrict the form of the equality literal such -_ha- -he fr- <1,
term is always to be the left-hand side of the equality literal and
the into term is always to be the right-hand side of the equality -,
literal.

3 TRANSFORMATIONS 'KN
3.1 One-to-one Transformations

The rule form for one-to-one transformations is the simplest to derive i
with the new-expression directly replacing the old_expression. See
the previous example.

3.2 One-to-many Transformations

The rule form for one-to-many transformations involves matching. :.b
This is done by using variables within the expres;ions. The variables .,
in different equality literals are completely independent, even if '

they have the same name. The first part of the rule will allow for
single-atom instantiation or multiple-atom instanti:tion. Single-atom
instantiation will be specified by using the "?" sy,1bol.

For example: match '(? x) 'hello

will cause x to be instantiated to "hello".

Multiple-atom instantiation will be specified by using the "+" symbol.

For example: match 'V x) '(hello world)

will cause x to be rsa:- a'ed io hel 'cii.

q

The sezond oar% o -ne :u :-ave -h va a s " -_ -

3n.1.7

.'-



As an example of one-to-many substitution:

The relationship: EQUAL (nequal (? x) (? y) : not (equal x y))

The Franz function: (defun example_2 ()
(cond ((nequal 'a 'b) (print 'a))))

The Common function: (defun example 2 ()
(cond ((not (equal 'a 'b)) (print 'a))))

3.3 Many-to-many Transformations

This type of translation can be seen as a combination of ,
one-to-one and one-to-many translation. With operations being
performed on the variables and a direct substitution between the twc -

instructions.

As an example of many-to-many substitution:

The relationship :

EQUAL (appendl (? x) (? y) : append x (list y))

The Franz function: !'

(defun example_3 () (appendl '(a b c) 'a)) X

The Common function :

(defun example_3 () (append '(a b c) (list 'a)))

3.4 Special One-o-..,any Transfo- .ation

To translate superparentheses from Franz to Common Lisp a special
type of translation is needed. In Franz Lisp a right superpacnthczsi-
is represented by "I" and can close off as many opin left parenthes-,
as needed until the end of the function is reached or until an open .,

left superparenthesis is encountered. A left superparenthesis is
represented by "[" and closes one right superparenthesis.
Superparentheses are not allowed in Common Lisp so a transformation is
needed to change superparenthesis to parenthesis. At present this
substitution takes place in a function and is not implemented with a
rule.

The Franz function: (defu .examle .

-* "L;w n fun,-_t on: oe:unc xacc u 4 '.. .-.

318 q
l . '
/%S *

K ,4fl~Yp,'~r' ~ P~~ ~ 'bE ~ t'%1% V. .. %'m ?



Semi-Applicative Programming

N.S. Sridharan
BBN Laboratories Inc. 10 Moulton St. Cambridge. MA 02238

.4rpanct ."ridharan'aG'BBA" ARPA

Novel parallel machines are being designed and built Amid the loud applause for the %

ingenuity of the ideas and implications of their success, we also hear the remark "But
how are you going to program such a beast" . thereby implying that the software
problem remains once the hardware is designed Similarlv. several attempts are being
made at parallel programming language design. one hears the remark "What we really

need are ways of thinking and problem solving that incorporate parallelism" This
reaction stems from the view that a programming language is merely a notation and
new developments in programming methodology are essential for the proper use of the
next generation of computers. %

We aim at developing a programming language and programming methodology that allow
effective use of medium-scale, medium-grain parallelism support correct program
development, and allow effective, error-free control of program behavior through a
variety of means

As an initial set of problems to study in the project. we are investigating search -.
algorithms (alpha-beta. branch and bound. backtrack), constraint propagation and
marker propagation algorithms, constraint satisfaction and relaxation algorithms and
parsing algorithms

The full length version of this paper [9] presents the results of study on parsing
algorithms for context-free grammars We start with the specification of a recognizer
for context -free grammars in Chomskv-Normal -Form (CNF) and derive by ,.,

transformations a variety of different purely applicative parallel recognition
algorithms. We then introduce program annotations and display semi-applicative
algorithms In one algorithm we indicate how adaptive scheduling can control the
behavior exhibited by the algorithm Thus we hope the reader observes the use of

transformations, annotations and scheduling as means of controlling program behavior

1 Resource control in applicative programs

We are experimenting with a programming langu:.ge. SALT. that has an zmp!d: zt1y % P
parallel applicative language as the base language, and then we introduce constructs -,

iThis research was sponsored by the Advanced Research Projects Agency of the Department of

Defense and was monitored by ONR under Contract No NOeO14-85-C-0079 The views and

conclusions contained in this document ore those of the author and should not be interpreted
as necessarily representing the official pocices. ei ther expressed or implied. af the
Defense Advanced Research Projects Agency or the U S Government

4 .1

319

e e e -~ . . ?',,' % -% . ;,' , ,% .. ':': ;-% ' '-% N -% -',:';1< ,:,. " "".- "" -' " "- " "'. - -': -""-," -': " -",""-



that inhibit parallelism The base language. .ALT, uses pure LISF' [7] as a foundation
and blends in interesting features of Prolog (6] and FP [1] We introduce several
techniques of controlling the behavior of functional programs without changing their

meaning or functionality. () program annotation with constructs that have benign
side-effects. (n) program transformation, and (ni adaptive scheduling This
combination vields us a semi-appItcatii e programming language and an interesting
programming methodology Because the applicative language has simple clear parallel %

semantics, it facilitates doing program transformations Because the expression of
concurrency is implicit, this provides freedom in scheduling tasks and thus facilitates
adaptive scheduling. We believe that this approach combining implicit parallelism and
explicit control will reduce the risk of introducing bgs in the process of tuning
programs for performance, as well as providing an antidote to Amdahl s law

I. Program annotations

We have developed an initial design for an annotation language called PEPPER

Annotations in PEPPER include precedence control, function call; result caching [4. 5].
and lazy (or demand-driven) evaluation Our initial design document describes
PEPPER annotations and gives several examples of their use A key feature of PEPPER
annotations is that their introduction will not alter the functional value of a program.
and will affect only its run-time behavior . -

1.2 Program transformation

Program transformation [2, 3, 8] of the source-level algorithms written in SALT is
essential There are two quite different reasons for considering program
transformation Firstly. given that PEPPER annotations are to be added to the text of
a program, it is evident that textually different but functionally equivalent programs
offer different opportunities for adding annotations, and hence provide different
opportunities for achieving different behaviors A programmer can make full use of
annotations only in conjunction with the ability to do program transformations
Secondly different programs yield differtnt data-depcndency orderings thus allowing
differing amounts of concurrency Thus, program transformation is a technique for
controlling the available concurrency in a program

1.3 Adaptive scheduling

Adaptive scheduling can yield improved behavior with repeated runs of the same
program Adaptation requires monitoring and measuring run-time characteristics of
SALT*PEPPER programs in order to make scheduling decisions dvnamically In working
with virtual parallelism. the program only expresses 'available ccncurrencV without
mandating what in fact will. execute concurrently with what The scheduler converts
the available concurrency into physical concurrencv making its choices for running
tasks by considering available resources. resource requirements and other attributes
of tasks The scheduler typically is a heuristic procedure and does not Yield optimal ....

behavior in all cases Thus. another avenue open to the programmer is to tune some.-
parameters of the scheduler to alter the behavior of the prooram We feel this meth(,d
of control is 'indirect' and while that is necessary it i. not ie~v to be suffio ient It

may be useful to construct, an adaptive scheduler that tures it- porameters ha: ed o "-.

empirical measurements

320

• .- '..



2 Research Results: Recognition algorithms for CNF grammars

The initial specification is a standard mathematical definition for what a recognition
algorithm should do. In several steps of transformation, we derive a variety of
parallel recognizers (see Figure 1). In the literature there are two well-known
parsing algorithms. Cocke. Younger and Kasami, independently reported on the

development of a bottom-up parser that works on a restricted form of grammars
called the Chomsky-Normal-Form. Earley published an algorithm that works with
unrestricted context-free grammars and parses an input string in a top-down fashion
using left-context to limit search. Most of us. including the author, have admired the
cleverness of such algorithms. One of the things we do in the full paper is to
demonstrate that these algorithms have real close affinities to each other and that
they can be arrived at systematically. Similar derivations of various SORT algorithms Ni
have been previously presented in the literature. All of these have been successful ,
only at deriving a few of the already known sort algorithms, none of these derive any

new SORT algorithm. Can one readily adopt these transformational techniques to
derive new algorithms? Our attempt hopefully convinces the reader that new parallel
algorithms can be derived systematically.

Acknowledgement. It is my pleasure to thank Andy Haas for the help he has offered
always with enthusiasm. He has also pushed me to search for simplicity for which I am
grateful. I also thank my several colleagues at BBN Laboratories who have provided

me their generous help and support.

I orfivel

LION re , 'a
M Tq)- rcwtmXB, XIIL XIV, XV, XVI

"W coafmoI

-. :.

mbuca

VII mrmIof (Y r~9'~~r X Pruic rtl.cor

Figure i. Chart showing transformational derivation of different atitorithmls
for context-fr.. recognition using Chomsky Normal Form gramemars

321

%0'



References

[i] J. Backus.
Can programming be liberated from the Von Neumann style"
Communications of the ACM 21(8) 613-641, July, 1982.

[2] R. Balzer.
A 15 year perspective on automatic programming
IEEE Transaction on Software Enginecriag SE-Il1ll) 1257-68. November, 1985

[31 W. Bibel. --

Syntax-directed. semantics-supported program synthesis.
Artificial Intelligence 14.243-261. 1980.

[4] R.S. Bird.
Tabulation techniques for recursive programs
Computing Surveys 12(4).403-417, December, 1980

[5] R.M. Keller and M. Ronan Sleep.
Applicative caching. %

In Proceedings of the 1981 ACM Conference on Functional Programming
Languages and Computer Architecture. pages 131-140 Association for
Computing Machinery, October, 1981. v

[6] R. Kowalski.
Logic for Problem Solving.
Elsevier North-Holland. New York, 1979.

[71 J McCarthy et al
LISP 1.5 Programmer's Manual.
MIT Press, Cambridge, MA. 1963.

[8] H: Partsch and R Steinbruggen
Program transformation systems
Computing Surveys 15(3).199-236, 1983

[9] N.S. Sridharan.
Semi-Applicative Programming. Examples of context-fre recognizers %
Technical Report 6135, BBN Laboratories Inc. November. 1985

-

322



Experimenting with parallel programming in logic

by
Abraham Waksman

Temple University
Philadelphia, PA 19122

We present an extension to the logic programming language Prolog,
SISPRO (Super 'is' Prolog). This extension is on a very small scale but is
typical of other efforts in this area to extend the capability of purely

logic programs to handle also functional constructs. The motivation for
efforts in this direction is to remove obstacles in bringing about the
further development of a very promising software tool.

The particular extension to Prolog to be discussed is realized by the

introduction of a rewrite rule permitting the specification of functional
terms to reside side by side with logical terms. A new local variable
assignment operator is also introduced to take the place of the conventional
'is' operator. In addition to assignment to a local variable, results of
simple arithmetic, SIS, the new operator, can also bind to the local .

variable results of function evaluation. In fact there is no restriction on
the bindings capabilities of SIS.

The implementation of SISPRO was achieved by the creation of a small
interpreter written in regular Prolog. This is but a small example of the

use of Prolog as a language for the creation of runnable specification for
software. The SISPRO interpreter will evaluate functions defined
recursively and at the same time pass regular Prolog terms to the
Prolog interpreter for conventional evaluation.

append([] L,L).
append([X L i],L2,[XJL3]):- append([nl,L2,L3]). 1

Example la. Standard Prolog does not require any specific variable binding
order, thus achieving "multi directionality"

append([] B) => B.
append([XIY],B) => ([XI append(Y,B)]). .,

Example lb. SISPRO requires that the input variables be bound at the
beginning of execution, thus achieving "uni directionality"

As technology evolves, there is greater hope to free the software
developer from the Von Neumann model of computation. Conventional or

imperative programming languages are intimately tied to the Von --

Neumann model of computation. On the other hand, declarative languages
such as Lisp and Prolog have their origin in mathematical formalism which
have developed totally seperate from any consideration of
implementation by computation devices. This freedom resulted in formalisms
which achieved greater experssive power, possibility for formal
manipulation and ease of parallel evaluation. These attributes might very
well influence the direction of future computer implementations.

323

-%



Declarative languages have taken two forms: functional with lambda
calculus and recursion equations systems, and logic programming based
on procedural interpretation of the first order predicate calculus.

Logic programs are very amenable to parallel execution. We can view
the computation of a logic program as a process of constructing a proof
to the goal statement based on the axioms available to the program. The
search space consisting of these axioms is often described as an And/Or
tree, where an And node correspond to a conjunctive goal and an Or node
correspond to the different ways a unit goal can be reduced.

The Prolog interpreter selects the first listed Or term and then
proceeds to travers the And nodes from left to right. Or parallelism %

occurs when several Or paths are tried at once. And parallelism occurs when
all the conjunctive pathes are tried at once. Goals in the conjunctive nodes
may have variables in common and therefore are not independent of each
other. Thus the coordination of the And parallel execution is necessary.

To date, the fundamental approach to the parallel evaluation of Prolog
clauses follows the pattern of constructing experssions of the
following form:
A:- GI,G2 .......... Gml BI,B2 ........... Bn. m,n >= 0

G's and B's are atomic formulas (unit goals) and A is a clause head. The
G's are the guards and the B's are the body. A variable within an
atomic formula in the body of a clause can assume an independent role when
evaluated during parallel execution, or it can assume a dependent role,
resulting in susppension of execution for the term until a value is
"communicated" to it from a term with the same variable in an independent
role.

The essential difference between functional and logic programs
is mostly considered in their "input output directionality".
Functional languages are directional in that their programs make an
explicit commitment about which quantities are inputs and which are outputs.
Logic programs do not make such commitments. Non directionality, although
endowing logic programs with greater expressibility, results in problems of
efficiency of execution and problems in their parallel implementations.

The "input output directionality" disparity between functional
and logic programs is the direct consequence of the calling mechanisms
employed by the two languages. Functional languages employ 'pattern I
matching' while logic programs employ 'unification'. Unification subsumes 0
pattern matching, herein lies the capabilities of logic programs not
possessed by functional programs. In unification, both the goal and the
head of the clause being resolved against are allowed to contain
variables, and a successful unification produces two seperate substitutions,
Input substitution and output substitution. In pattern matching, only the
head of the clause or the goal are allowed to contain variables, thus
input or output directionality is implicitly specified permitting only
input or only output substitution at runtime.

324

.%



UW N1U UW. AP-U X Pt~!qil NM1 ZJ!.N VWV mJ1 ', Xr rUnA AWX P !VU W% PT V W1KrVWVW VWVWV'J

-The objective strived for in the design of SISPRO was to introduce
directionality via the specification of functional terms, for the
purpose of execution efficiency. Evaluation in such cases is purely
deterministic and backtracking is not needed by the interpreter for
undoing previous bindings. The dual directionality of the logic component of
the language remains unaffected and the programmer is free to switch back
and forth between functional clauses and relational clauses.

In most parallel implementation of logic programs, in order to avoid
ambiguity during run time assignment process, modality has to be specified
and variables that appear in more than one formula have to be tagged.
Modality refers to the specification of the mode of evaluation for the
clause. Tagging refers to the identification of variables in terms of their
role in the run time binding priorities. Such tagging goes by the names of: -

Read only variables, lazy or eager evaluation variables and consumers and
producers variables.

In SISPRO delayed (lazy) evaluation of the second term of a rewrite
rule, often occurs. When a variable is unified with a term of the form =>
f(foo), rewriting must not always be completed. Often, it is sufficient
just to do normal Prolog unification to the term and proceed with
the rest of the computation for a while. This is a form of delayed
evaluation providing automatic moding in a parallel evaluation environment.

The runtime behavior of functional programs is much simpler to control
than that of logic programs, particularly in parallel execution contex. By
reducing, whenenver possible, the logic program to its functional
equivalence, we achieve greater runtime efficiency, greater clarity in
program statements and greater control over program execution.

qsort([]) =>[1
qsort([XIU]) => append(qsort(Ul),[Xlqsort(U2)]):-

partition(X,U,U,U2). 
t_

partition(X,[],[],[]).
partition(X,[YIU],[Y|Ul],U2):- Y =< X, partition(X,U,Ui,U2).
partition(X,[Y1U],Ul,[YIU2]):- X < Y , partition(X,U,Ul,U2).

Example 2. Definition of the sorting algorithm QuickSort as an hybrid of
functional and logical expressions, resulting in a much more
efficient parallel evaluation.

Concluding remarks:

The use of logic programming as runnable specifications of software
systems is growing. In particular, its use in specifying parallel processes.
For efforts in this direction to have an impact, logic programming needs to
be extended in a number of directions. This note examined via an
implementation example, one such direction for extension.

325 ,

".'

325 p.



Parallel Architectures for Logic Programming1

Vipin Kumar & Yow-Jian Lin
Artificial Intelligence Laboratory
Computer Science Department
University of Texas at Austin

Austin, Texas 78712

Summary

This project is investigating parallel logic programming architectures for AI appli-
cations. Logic programming provides a convenient paradigm for expressing parallelism
because it allows the separation of logic and control in an algorithm. Potential parallel-
ism in a logic program can be extremely large. A given sequence of subgoals B1,...,B..
can be solved by solving each subgoal Bi in parallel (AND-parallelism). Solution of a
subgoal Bi can be attempted by trying all possible rules in parallel whose heads match Bi "
(OR-parallelism). But this scheme generates extremely large number of concurrent
activities, and can only be implemented on an idealized architecture having an unlimited
number of processors and zero communication overhead. Furthermore, much of the
work done by this unconstrained search may be redundant. For example, if two subgoals,
B 1 and B2, share variables, then many incompatible solutions of B 1 and B2 may be gen-
crated. If only one solution of the original goal is needed, then many solutions generated
for a subgoal can be redundant. Since a practical parallel processor can only have finite
amount of resources, we need to develop a strategy which creates parallel activities in a
judicious manner. le

In our research we are investigating various (constrained) ways of using parallelism
in logic programs and architectures for implementing them. We have developed a paral-
lel execution model for logic programming. The model is process based and uncovers
both AND and OR parallelisms, which makes it particularly suited for Al applications.
We have developed a strategy which controls the exploitation of AND-parallelism with %
the help of domain-specific information provided by the programmer, and has minimal
run time overhead [4]. When subgoals share variables, failure of a subgoal may mean
that some other subgoal needs to backtrack and generate a new solution. This can be
done easily (by backtracking to the subgoal to the left of the failed subgoal) if the
subgoals are solved strictly sequentially. But when AND-parallelism is being exploited, %
the backtracking decision becomes nontrivial. We have developed an algorithm for
backtracking which is more efficient than the ones previously proposed [2], [1], and %
requires minimal run time overhead [6]. Another feature of o.ur execution model is that it
can be implemented in a fully distributed manner, i.e., the AND process solving a
sequence of subgoals does not have to work as a message center for "child" OR processes
[5].

Due to limited resources, we have to choose the relative degrees of permitted AND
and OR parallelisms. The relative utility of these two parallelisms is greatly dependent

This work was supported by Any Research Office grant #DAAG29-84-K-0060 to the Artificial Intelligence Laboratory at the %

0z r
326

%I V....:



upon the specific logic program, as in some cases (e.g., for deterministic logic programs)
OR-parallelism would only create redundant work, whereas in others (requiring lot of
backtracking) OR-parallelism would be very useful. We plan to run simulations to study
the trade off between AND and OR parallelisms for different kinds of logic programs. A
study to investigate the effectiveness of various strategies for exploiting OR parallelism
in logic programs is already underway [3].

Allocation of processors to processes in the physical architecture is another impor-
tant issue needed to be solved. On one hand, since processes have to communicate, we
do not want to allocate related processes far away in the network; on the other hand,
since speedup is the main concern of parallel execution, we would like to distribute
processes to every available processor. The trade-off here depends on the connectivity of
underlying architecture. Different strategies for sharing data structures among processes
can also be used to control the amount of message traffic generated. We are currently
looking for some potential solutions to these problems and plan to test their usefulness
via simulations.

REFERENCES

1] J.-H. Chang and A.M. Despain, Semi-Intelligent Backtracking of Prolog
Based on a Static Data Dependency Analysis, Proceedings of IEEE Sympo-
sium on Logic Programming, pp. 10-2 1, August, 1985.

[2] J.S. Conery and D.F. Kibler, AND Parallelism and Nondeterminism in Logic
Programs, New Generation Computing 3(1985), pp. 43-70, OHMSHA,LTD.
and Springer-Verlag, 1985.

[3] V. Kumar and C. Wang, Exploiting OR Parallelism in Logic Programs,
Under preparation, University of Texas at Austin, 1986.

[4] Y. Lin and V. Kumar, A Parallel Execution Scheme for Exploiting AND-
parallelism of Logic Programs, to appear in, Proceedings of 1986 Parallel
Processing Conference, August 1986.

[5] Y. Lin and V. Kumar, A Decentralized Model for Executing Logic Programs
in Parallel, Submitted for Publication, March 1986.

[61 Y.J. Lin, V. Kumar, and C. Leung, An Intelligent Backtracking Algorithm
for Parallel Execution of Logic Programs, to be presented at the Third Inter-
national Conference on Logic Programming, London, England, July, 1986.

University of Texas at Austin.

327

WIP %,.s



Real Time Artificial Intelligence Architecture

Peter E. Green

Ronald J Juels

Worcester Polytechnic Institute
Department of Electrical Engineering

Worcester, Mass. 01609

William R. Michalson

Raytheon Corporation
Equipment Division

Sudbury, Mass. 01776

Introduction
The research reported here is part of an overall research project into real-time

intelligent systems. The goal of this research is to learn how to build the next genera-
tion of systems which have extensive embedded decision making capability. The trend
is to embed ever increasing amounts of computational power into systems and to
transfer responsibility for decision making from the human operator to the computers
embedded within the system. The goal is to be able to build highly complex systems
that are reliable and fault tolerant and yet can be operated by people who do not need
a detailed knowledge of how the system works. Specifically the research is concerned
with the development of hardware and software structures for real-time resource-
limited decision making by computer.

Research Models

Real-time intelligent systems are being investigated by building several model
systems and looking for common themes. From these themes a software architecture is
being developed that can support real-time intelligent decision making and a hardware -.

architecture is being developed to efficiently execute the required software paradigms.

The decision making systems currently under development include:

(1) An intelligent robot which attempts to dynamically optimize the order in which it
places piece parts from a conveyer belt into a set of bins. As the arm has limited
motion velocities, the order in which the pieces are placed in the bins is critically
important if a piece is not to pass out of the reach of the arm before it is picked
up. We are using this problem to investigate the use of incremental evidence and
approximate decision making in real-time computation resource limited situations.

(2) A mobile robot which attempts to navigate its way to a goal point some distance
away in a maze. The robot does not have any a priori knowledge about the maze
and must learn about the maze using a rangefinding sensor which can be pointed
in any direction. All decisions must take account of the time to compute the deci-
sion and of the robot's movement inertia, e.g. the decision to stop must be made
in time to avoid hitting a wall.

I328 A



(3) A fault evaluator and a process scheduler for a multi-processor computer system.
This program, which must run very fast and be aware of its own time-line, will
evaluate fault reports from different processors and decide dynamically which
processes should run on which processors. This is similar in nature to (1) above
but has much more severe computational constraints and a much more dynamic
environment It also addresses the problems of distributed decision making and
the difficulties caused by false reports and erroneous decisions.

Activation Frame
As a result of these investigations, a real-time decision making technique 1, 2 has

been developed that performs planning by using a number of concurrent processes that
execute in parallel. Some of the processes are able to quickly, but not accurately,
evaluate alternative decisions and others take longer to provide a more in-depth evalua-
tion. A decision is made at a required point in time by looking at the weight of the
evidence generated by the different planning procedures up to that time. This tech-
nique has been combined with prior work in neural network modeling, real-time U..

operating systems, and frame based AI systems to develop the Activation Framework
concept-ffor programming real-time artificial intelligence applications.

This technique is based on the use of Communicating Expert Objects (CEOs). A
Each object contains a local domain of expertise embodied in hypotheses and pro-
cedural knowledge. These objects communicate by means of messages and can execute
in parallel on different processors. When a message arrives at a CEO, it triggers the
execution of a section of code which may create new hypotheses, modify the evidence
for existing hypotheses, and/or delete hypotheses. In addition the section of code may
send messages to other expert modules to inform them of some deduction that has
been made or to request information about certain hypotheses.

In application, separate CEOs could be used for each of the methods used to
evaluate the evidence for different courses of action. Each of these CEOs would be
sent a message containing information about the decisions to be evaluated and the
world state in which they would be applied. The CEOs will then evaluate the deci-
sions and send to another CEO the evidence for or against the proposed alternate
courses of action. This CEO will then make a decision based on the evidence received
from the other CEOs.

The power of this method lies in the concept that some CEOs will contain quick
rules of thumb that are able to execute quickly and generate early evidence. Other
CEOs may contain more exact evaluation procedures that take much longer to execute
and these may involve the interaction with other CEOs that have specific domain
expertise needed to support the evaluation. As the decision making CEO receives evi-
dence it can evaluate whether it has enough evidence for a decision, or it can choose
the best decision based on its knowledge of the available time before a decision must
be mhade. In order to realize the potential of this method, an architecture is needed

which is capable of supporting the execution of many CEOs in parallel. This lead to
the evolution of the concepts presented here. i%

Any CEO can communicate with any other and does so by means of a message
addressed to the destination CEO. These messages have a message type that is used to
designate which section of the procedural code within the CEO will be triggered by
the message. Messages also have an activation level (akin to a priority level) that is a
product of the importance that the CEO places on the message and the decision mak-
ing importance of the code within the CEO. To realize this software architecture, a
hardware architecture was selected in which each CEO would be executed within its ItA

329

. •~* ~ . 1V <,J ~~-. .* ,°% .w%



own processor so that each CEO could execute truly in parallel. In making this choice
it was realized that that at any time many of the CEOs and therefore processors would
be idle. It was postulated that such a system would still be a very cost effective deci-
sion making processor despite this inefficiency because:

(a) This inefficiency would be more than compensated for by the efficiencies gained
by not having any multi-processing scheduling overhead in each of the processing
elements,

(b) This design would have the potential for being realized at a low cost per process-
ing element through the use of VLSI technologies.

A major thrust of our work is to investigate such an architecture.

Activation Cells
Activation Cell Processor (ACP) was chosen for the processing element that

would contain each CEO. It was decided that, as there would be many ACPs in a sys-
tem (our thinking number is 1024), the simplest interconnect network would be some
form of ring. Each ACP, and therefore CEO, would have a unique address on the ring
and all messages would pass through each ACP in the manner of a token ring. In this
sense the system is similar to some data flow architectures 4 but performs a very dif-
ferent function in that its major objective is decision making rather than numerical
computation. As currently envisaged, the ring of ACPs will have a host interface by
means of which messages can be injected into the system to cause it to start making "V
decisions and by means of which decision results can be extracted. It is also envisaged
that messages will be used to load CEO code into each ACP and to perform debugging
and monitoring functions.

Summary
The implementation of this activation framework architecture for real-time AI is a

major thrust of our current research. Devising a software methodology for program-
ming CEO based expert systems and finding algorithms to efficiently handle the large
volume of messages in this type of system is an important part of our research. We
are also investigating an architecture for an ACP which uses specialized VLSI chips in
conjunction with standard VLSI processor components to provide an efficient environ-
ment for supporting the activation framework. We are also pursuing the design and
simulation of a simple bit-serial VLSI ACP for use as a test vehicle for the activation
framework concept.

References

1. P. E. Green, "Issues in the Application of Artificial Intelligence Techniques to
Real-Time Robotic Systems," To appear in Proc. 1986 ASME Computers in
Engineering Conference, Chicago, IL (July 1986).

2. P. '. Green, "Resource Limitation Issues in Real-Time Intelligent Systems," To
appear in Proc. SPIE Conf. on Applications of Artificial Intelligence Ill,
Orlando, FL 635 (April 1986).

3. P. E. Green, "AF: A Framework for Real-Time Distributed Cooperative Problem
Solving," Collected Papers of the 1985 Distributed AI Workshop, Sea Ranch,
CA, pp. 337-356 (November 1985).

4. I. Watson and J. R. Gurd, "A Practical Data Flow Computer," IEEE Computer
15(2), pp. 51-57 (February 1982).

330



Session 1 5A: miscellaneous

Chairprson: H. J. Siegel
Purdue University

331



A STRATEGY FOR FAILURE PREDICTION

Dorothy M. Andrews

Advanced Decision Systems Center for Reliable Computing
201 San Antonio Circle, Suite 286 Stanford University
Mountain View, CA 94040-1270 Stanford, CA 94305-4053 -

There is no "problem area" more important than assurance of reliable computer
systems. Unfortunately, reliability is becoming an even more crucial problem because of
the criticality of many computer applications. One of the reasons for the escalating
interest in reliability is that some of the most critical applications will be executed in
distributed computer environments and distribution introduces another level of .
complexity. The preliminary results of a recent research study indicated that failure
prediction might be a viable approach to increasing computer reliability. It also
appears that prediction could be especially useful in increasing the reliability of
distributed systems.

The main objective of a failure prediction system is to prevent catastrophic failures;
however, a secondary objective is to provide early (and automated) diagnosis of possible
component failure. Early diagnosis of potential problems allows recovery procedures to
be initiated sooner and thereby improve the possibility of preventing failures. The
sooner reconfiguration is enabled (through early warning of potential failure) for
systems having distributed architectures, the less chance there is that data corruption
and other related distributed system problems will occur.

The failure prediction research was part of a study to measure and model computer
reliability as affected by system activity Ayer 82,85 , Mourad 85 , Velardi 841. Data %
was collected from several generations of mainframe computers. During analysis of the
computer failure and activity data, Velardi observed that immediately before a crash
there was an increase in the number of errors recorded by the operating system.
Subsequently, part of the research effort was directed toward determining the
characteristics of the change in error generation prior to failure with the hope of being 2
able to provide a statistical basis for a failure prediction strategy. The first step was to
characterize and cluster "crashes" to find appropriate intervals of time for analysis of
data. The next steps involved averaging and weighting error distribution data,
analy'zing, individual intervals between crashes, and analyzing C'PT. utilization rates
prior to crashes. k detailed methodology for analysis of fail,ire prediction dat:i e% ..

(j'v )'%,6 fl :1!1I ',,ported in Na -- r ''5 .,

Ince tihe rerults ot a rigorous , data ana1 v-,i-, curntIrrti < the lexi+t 'we ();' f'rtain patttrnI.'
in 'rr)r itib, iol ri be'or,' a ('r3l-h. a prototr v of nt n '? :il ti':6iire 9 reli':ion ,ot't % are

,,:i- rip .'rlft ' d . 'rhe :lori Lrn t , , hi m -se, otr the de'<"'' i, ot' lr:ai r orror

332

%,1.
,' .S

i' '*::R . A:4



clusters, that is, a threshold number of errors which might be precursors of a crash.
(Threshold numbers were obtained for each type of error from historical data.) When
this elementary strategy was tested by simulation using available data as input, the
results indicated that failure prediction may indeed be feasible. Other parameters (such %
as the gradual increase in error generation rate andor system utilization) could be
included in the algorithm to further refine and improve the accuracy of the strategy.
Additional experimentation and study, however, is necessary to provide the ultimate
assessment of failure prediction feasibility.

The failure prediction strategy proposed as a result of this research is based on actual
error statistics (and probabilities) and could be implemented using artificial intelligence
technologies. A particularly useful feature would be to build an adaptive or learning
algorithm into the implementation of a failure prediction strategy in order to improve
diagnostic capabilities. If this were done, then changes in architectures of the host
computer would not require a completely new implementation of a failure prediction
strategy.

This work was supported in part by the U.S. Army Research Office under contract
number DAAG29-82-K-105. The views, opinions, and/or findings contained in this
document are those of the author and should not be construed as an official Department
of the Army position, policy, or decision, unless so designated by other official
documentation.

'Iyer 85o R.K. Iyer and P. Velardi, "Hardware Related Software Errors: Measurement
and Analysis," IEEE Transactions on Software Engineering, Feb. 1985.

'lyer 82' R.K. Iyer, S.E. Butner, and E.J. McCluskey, "A Statistical Failure Load
Relationship: Results of a Multicomputer Study," IEEE Transactions on Computers,
July 1982.

[Mourad 85i S. Mourad and D.M. Andrews, "On the Reliability of the IBM IVWS/XA."
Proc. The Fifteenth [nt'l Symposium on Fault-Tolerant Computing (FTCS-15). Ann
Arbor, Michigan, June 19-21, 1985.

Nassar 85' F. Nassar and D.M. Andrews, "A Methodology for Analysis of Failure
Prediction Data," Proc. Real-Time Systems Symposium. San Diego. CA, Dec. 1985.

Velardi S4 P. Velardi and R.K. Iver. "5oftware Related Failures and Recovery in the %
SI " Opema ik,,, - tefn.- [F'EE Tri,;(,,',ov,.4 o,, 'owp,,ter,. \'ol ,--331. No. 6. Tl',;,"''

N 1.

333 i
NrN 0 N.

%



F_ WW W Wi WWV'

Programming Language Translation for Multicomputers

Jon Mauney
Computer Science Department

North Carolina State University

Everyone seems to agree that parallel computing is an essential part of the
future, and that programming is a major challenge in effective use of parallel sys-
tems. The problem for language and compiler researchers in the coming years is to
provide languages convenient to programming and compilers to translate them to
efficient parallel code.

We can divide the problem of compiling for parallel target machines into two
pha-es: parallelism detection and parallelism exploitation. Detection is the process .
of discovering which activities may be performed in parallel; exploitation is the
process of determining which activities will in fact be performed in parallel on the
limited resources of the machine. Parallelism detection can be performed without
regard to the characteristics of the target machine; parallelism exploitation is
dependent on the machine, but is independent of the language in which the pro- .
gram was written.

Although detection and exploitation can be separated, they are typically con-
sidered together, and most papers present a technique for a particular language
and target machine. Vectorizing compilers, for expample, only search for the %
kinds of parallelism that a vector machine can exploit. The trace scheduling tech- -.

nique is closely associate with the Bulldog compiler and the VLIW machine[2].

Although there is nothing wrong with combining the two phases in a particu-
lar compiler, there is something to be gained by separating them. Just as tradi-
tional optimization techniques for sequential machines are divided into machine-
independent and machine-dependent parts, so should optimizations for parallel
machines be divided into machine-independent parallelism detection, and
machine-dependent parallelism exploitation. Future work on parallel compilers
will benefit by maintaining the distinction.

When one discusses parallel compilers, one of the first questions asked, unfor-
tunately, is "what language will you compile?" The choice of language is, of course,
very important. Features of the language may help or hinder the compiler in the V
discovery of parallelism. More importantly, a good language for parillel computa-
tion will encourage the programmer to write code so that parallelism inherent in
the algorithm is not obscured, and perhaps to think of algorithms that have more .J >.

inherent parallelism. But the choice of language really only affects parallelism
detection, and the emphasis on languages tends to draw attention away from the
equally important problem of parallelism exploitation.

A parallel loop may be written as a sequential for-loop, with the t irallelism
being detected by careful analysis of data flow, or it may be written as an explicitly

334 * a -

, -. -. - .-..-..,-. -:. .. . . . , ... . . . . -.-. ,, ....... . . -. . . .. . . .- - . . . . -- - . - . .. - . .. -" .:.:.



parallel forall loop, or it may be written as a single operation to an entire array, as
would be typical in APL. Having discovered that the loop is potentially parallel,
the compiler must still determine whether the parallelism can be used by the target
machine, and whether using the parallelism is likely improve the performance of -
the program. If parallel computation increases contention for resources or over-
head for synchronization, then the speedup due to parallelism may be lost. On
some machines, careful selection of parallel operations and assignment to proces-
sors and memory is as important as detecting the parallelism in the first place. %

Since parallel compilation techniques are usually presented in the context of a
particular model of parallel computation, their potential applicability to other
models of computation is often given little notice. Loop analysis techniques are
most often applied to vector and array processors, but the parallelism detection
they provide may be used on a variety of machines. Trace scheduling is associated
with the VLIW machine [2], but may be useful on other multiprocessor systems [1].
By paying attention to what the machine dependencies really are in various compi-
lation techniques, researchers will be better able to share and adapt good stra-
tegies. The sharing of similar strategies for parallelism detection and exploitation
will also facilitate comparison of various models of parallel execution.

Carefully maintaining the distinction between the machine independent and
dependent parts of a parallel compiler, then, will aid future work in several ways.
First, it will help to emphasize that the goal of a new language for parallel comput-
ing is not to make the programmer code in more parallelism, but to keep him from
coding in sequentiality. Ideally, the programmer should be removed from low level
details of parallelism. Second, it will help to show the similarities and differences
in various compiling techniques. And third, it will help to make software support
more uniform across a variety of parallel architectures, simplifying the problem of
comparing their merits.

1. References

1. Z. Amir, Decomposition of a source program into parallel components,
Master's Thesis, N.C. State University, 1985.

2. J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, MIT Press,
Cambridge, 1986.

JI
335

-.. p'.A % -1 -.- 1 w



Resilient Procedures: A Structured Replication Approach

Kwei-Jay Lin
Mark E. Wittle

Department of Computer Science
University of Illinois at Urbana-Champaign

1304 West Springfield Avenue
Urbana, Illinois 61801

1. Availability and Replication a normal procedure can be replaced by a RP

Distributed systems have the potential to whe-ever the resilience or the concurrency is

achieve better reliability and performance because desired.
of their many resources. Atomic actions [71 have (3) Efficiency: RP's may yield performance
been proposed to guarantee correct system gains, as some sites may be less loaded,
function regardless of site crashes and conflicts providing shorter response time than if the
between concurrent operations. By ensuring the procedure were performed at a single site.
atomicity of a Remote Procedure Call (RPC) [61, In Section 2, we briefly describe the RP
atomic RPC [51 can provide a transparent and construct. We discuss some fault tolerance issues
reliable primitive which hides distributed in Section 3.
programming complications from naive users.

One desired property which is not provided 2. Resilient Procedure
by atomic RPC is availability: the system should We assume first that all sites are
be available with high probability. Replication [4] homogeneous. Heterogeneous environment
has been proposed as a means to increase problems will be discussed in section 3. Networks
availability; either data or operations are are assumed to be asynchronous but reliable, i.e.
replicated on independent sites so that some sites' messages are always delivered correctly and in-
failures still leave the system with enough order.
resources to continue execution. Replicated data
are stored on different sites and are usually A RP is a special procedure construct which
identified by version numbers. Algorithms exist to consists of a coordinator and several cohorts ..

guarantee consistency between copies [2,3]. Due to (Figure 1) residing on multiple sites. The
the recent dramatic decrease in the cost of coordinator is the only entity of the RP visible :.
computer hardware, it is now possible and will be from outside. All incoming call/return messages
common in the future to have many processors are directed to the coordinator and all outgoing
devoted to a single application. We are call/return messages are sent from the coordinator.
implementing a new construct, Resilient Procedure
(RP), which allows a procedure to be hierarchically
replicated at several sites so that the service
provided by the procedure will be available despite
site failures. The RP construct has several A coordinator
desirable properties: . .

(1) Fault-Tolerance: By replicating a
prodedure at k sites, the resulting RP can
survive up to k-1 site failures.

(2) Transparency: From a caller's point of cohort I cohort 2 cohort 3 i

view, a RP is the same as a normal
procedure providing the same service. Thus ---

This rpsearch was supported by the Univ,.rsity of Illinois Figure I RP called by A and calls B
Research Board under Grant 1-2-69730-6300.

%P %

336

.21r.*.



WVW~r.W tru.p N.r PanX For) ru a

When an incoming call message is received Two types of failures can occur during a

by the coordinator, it determines if the call can be procedure's execution: ezpected or unexpected

accepted, just like a normal atomic procedure. If failures. An expected failure can be handled by
the call is accepted, it is then transferred to the some kind of exception handling mechanisms. An

cohorts. Upon receiving the call message from the unexpected failure is usually handled by a

coordinator, each cohort starts its execution backward recovery mechanism. In the RP

independently. No global coordination is required. environment they can be treated as site crashes,

When a cohort wants to call an external merely reducing the number of cohorts in the RP.

procedure, instead of sending the call message to However, if we can guarantee that each RP always

the callee directly, the call is sent via the has at least one active cohort available and if all
coordinator. The coordinator collects all cohort procedures in the system are implemented with the

call messages destined for the callee and sends only RP construct, then no backward recovery is
one call. The fact that there are multiple cohorts needed.

is transparent to the external procedure which
performs a single call as if it were from a non- .2. The Coordinator Resiliency
resilient procedure. The coordinator is the critical component of

The coordinator does not have to wait until the RP; its failure renders the cohorts unreachable.

all of its cohorts have requested the call to the Therefore, if the coordinator crashes, one of the

same callee. Although some cohorts may be slower cohorts must be promoted to become the new .

than others, all will eventually make the call coordinator for the RP. In order to allow a cohort
thanothrs, ll illevenualy mae te cll t beomea coordinator, any system information

(unless they crash - this is handled separately). If to become
a fast cohort has made the call, and the result has maintained by the coordinator must be replicated

already been returned, then the coordinator simply in each of the cohorts. Our approach is to
returns that result to the slower cohort piggyback updates to the system information table

immediately. This approach, besides speeding up onto the call request and return messages '.

the overall performance, synchronizes all cohorts exchanged between the coordinator and its cohorts.
by allowing a slow cohort immediate access to Since the system information is updated only when
external results, there are new call/return activities, there is always

communication between the coordinator and
When an external procedure call result is cohorts immediately following a table update. So

received by the coordinator, it checks to see which the coordinator does not have to wait a long time
cohorts are waiting for the result. The result is before the update is propagated.
distributed to those cohorts which then resume
execution. Upon completion, each cohort returns When the coordinator crashes, the cohort

its result to the coordinator. The coordinator which communicated with the coordinator most .
collects results from all cohorts and returns a recently has the current system table, and will
single result to the caller. become the new coordinator. Each cohort keeps a

timestamp sent by the coordinator during the last

3. Fault-Tolerance Issues successful conversation. By comparing timestamps
in a voting protocol, the cohort with the latest .'..

8.1. Atomicity Considerations timestamp is promoted.

Concurrency control is required to 8.3. Heterogeneous Environment
implement atomic procedure calls. One procedure C snhe
may receive call messages from several concurrent Cohorts running in a heterogeneous
caller procedures; only one of the calls should be environment can return different results with
accepted to avoid inconsistent read/write different response times. Depending on the
interleav ing oti local dlata. Fuirthermnore, if a application, many protocols can be used to choose

nested atomic call model is used, a non-recursive one result from the returned values. Some of the
new call must be delayed until tlo previous atomic possible protocols are: majority, first. or primary.-

call has committed. Since the coordinator is the Majority protocol takes the result of the majority
of the cohorts and is used to deliver more reliable ''

only entity visible from other procedures , it must or sde
perform concurrency control for the RP. results in a noisy environment. First protocol' %

returns the first result received by the coordinator .e,

337 %

. . .................... ........... .... ":



and is used to improve performance. Primary (4) Herlihy, M., "Atomicity vs. availability:
result protocol is used if one cohort is known to be Concurrency control for replicated data,"
the most accurate or reliable. Carnegie-Mellon Univ., Pittsburgh, PA,

A heterogeneous environment can be used to CMU-CS-85-108.

detect faults at cohort sites. By replicating a (5) Lin, K.-J. and Gannon, J.D., "Atomic
procedure onto multiple sites, the RP becomes remote procedure call," IEEE Trans.
tolerant of transient physical faults. If the sites Software Eng., vol. SE-11, pp. 1126-1135,
are heterogeneous, the RP then provides hardware Oct. 1985.
design tolerance. Software design tolerance for the (6) Nelson, B., "Remote procedure call," Ph.D.
system software and execution environments at the Dissertation, Carnegie-Mellon Univ., %

distributed sites is also provided. Furthermore, if Pittsburgh, PA, CMU-CS-81-119.
different software versions [I are executed at
different cohorts, software fault-tolerance can also (7) Reed, D., "Implementing atomic actions on
be achieved, decentralized data," ACM Trans. Comput.

The RP construct allows the user a great Sylst., vol. 1, pp. 3-23, Feb. 1983.

degree of freedom in choosing the method used by .
the coordinator to resolve inconsistent cohort
execution results. The advantages of a consensus
decision are imparted by replication, and
application specific criteria can also be
incorporated into the decision algorithm.

4. Conclusion

In this paper, we presented a new system
construct, Reslient Procedures, which has the
desirable properties of fault-tolerance and - W, . -

availability. We discussed the atomicity and
heterogeneous issues that can occur when
replicating a procedure. We showed further that
the structure can be used for many applications in
distributed and parallel computations.

By allowing the user to specify the degree of
replication, the diversity of replications (e.g.
heterogeneous sites, software versions, etc.), and
the method of coordination, the RP construct
provides the user a friendly and powerful , *-
programming environment.

References

(1) Avizienis, A., "The n-version approach to
fault-tolerant software ," in IEEE Trans.
Software Eng., Vol. SE-11, no. 12, pp.
1491-1501, Dec. 1985.

(2) Bernstein, P.A., and Goodman, N., "An N.-.
algorithm for concurrency control and r.%
recovery in replicated distributed databases," % lp
ACM Trans. Database Systems, Vol. 9, no. 4, _

pp. 596-615. Dec. 1984.

(3) Gifford, D.K., "Weighted voting for
replicated data," in Proc. 7th Symp.
Operating System Principles, December 1979.

338

Ni



I.x

Session 15B: VLSI Related Issues

:...:.
., p..,=

Chainmerson: Mary Jane Irwin

Institute for Defence Analysis -4
.- d,. 91;

.-. p..''-

.. %

,% , % I

339 F

*. ... ,. j,,,S ,P,9 - - --



PARALLELISM AT THE MICROLEVEL: COOPERATIVE MICROCONTROLLERS

WITH REAL TIME CONSIDERATIONS

Christos A. Papachristou
Computer Engineering and Science

Center for Automation and Intelligence Systems
Case Western Reserve University

Cleveland, Ohio 441O6

Introduction

Increased computer power and performance in recent years made possible advanced
applications in such fields as avionics systems, aerodynamic simulations, industrial automa--,
tion, military defense, weather forecasting, and more. Most of these advances are based on %
the concept of parallel processsing. Parallelism can be applied at various levels of computa-
tion, i.e., the algorithm level, program level, system level, machine level, and the microlevel.
Research effort on parallel processing currently underway has been directed mostly at the
higher end of the computationectrum. For example, work on multiprocessing, pipeline
machines and distributed computers is well documented in the literature. Little has been
done at the lower end, with the exception perhaps of systolic array structures.

The aim of this work is to propose an approach to low level parallel processing. In our
view, parallelism at the microlevel refers to a multiprocessing environment controlled by
cooperative microengines executing concurrent microcode. This environment provides the
capability for parallel implementation of functions via concurrent microprogramming. This
would essentially constitute parallel firmware migration. The reasons for parallel migration
are quite similar to the ones of function migration in uniprocessing structures; namely, sub-
stantial gains in speed, reliability and stability. Moreover, due to faster time response,
microlevel parallelism would be better equiped to handle real-time applications, e.g., mul-
tisensor functioning of complex automation systems. In what follows, first we present the
essential ideas of a new technique for function migration in a uniprocessor controlled
environment. Then, we describe the structure of a cooperative microcontrol system
together with extended sequencing protocols to support concurrency at the microlevel.

Migration Technique

Recall that vertical migration of frequently used software into firmware, labeled
firmware migration, is a well known technique for improving the system performance. It
has been practiced by the designers of such systems as the IBM 370 and the DEC PDP 11
series. However, firmware migration has been influenced by VLSI technology due to the
capability to embed in silicon not just "traditional" microprograms, i.e. instruction set
interpretations, but also complicated software functions such as data tables, parsers or
operating system primitives. In addition to system softw-,re. complex algorithms appear in
other areas that may have military applications such as communication algorithms and
radar tracking. In general, such functions have complex logical, i.e. sequencing. structure
They are represented by complex flow charts with many multiway branchings. nested loop-
ings and the like. Thus, cost-effective migration of such functions requires modular
microprogram structures with powerful sequencing capability.

340

.. . !-...



Our major objective of our recent work has been to explore a new methodology for %
automated software-to-firmware migration based on a new microcontrol architecture we
have developed recently. This scheme is endowed with complex sequencing constructs
available at the microlevel. We feel that our approach has the advantage of compatibility
with VLSI in that it effects software migration into VLSI microcode via firmware tech-
niques. Such an automated migrator could be an important ingredient of a hierachial sili-
con compiler if it is interfaced to appropriate CAD layout tools.

The basic idea of the proposed method is to capture the sequencing structure of the
candidate function via effective compilation techniques. This idea can be described by the
following abstract migration model which, incidently, can be employed at several computa-
tion levels but it is very effective at the microlevel. Every function F can be represented by
the following two data structures:

1. A sequencing graph, dependent on F.

2. A library of operation modules, which is independent of F.

The sequencing concept encapsulates essentially the sequencing structure of F. It consists
of a listing of pure sequencing constructs including sequence calls to the library. The
modules in the library consist of series of command-types performing related operations
comprising a meaningful subfunction, for example ADD module. Specifically, the modules
comprise the structured firmware implementation of an instruction set of a base machine on
which the migrating function is to be tested. If this firmware code is not already available,
it may be produced by a microcode generator tool and executed on the base machine.

The important point here is that the library is a universal structure, i.e., it should be
general enough to cover a collection of functions but, once it is written, it can be employed
with every function in the collection. To perform migration, in this model, we only need to
generate the sequencing structure of each F and then link it to the library. The basic steps
to do this are: a) function high-level compilation, b) control flow graph construction, and c)
sequencing constructs detection in the function graph. The end result is the generation of
microsequencing code for the function, consisting of the constructs mentioned earlier, par- . .
ticularly sequence calls to the library of microcode modules.

An important requirement for the proposed method to be practical is the retargetabil-
ity of the migration process. This term means the adaptability of firmware migration to a
new base machine obtained by architecture redefinition. The latter is usually accomplished
by means of a hardware design language at the register-transfer level. In our view the fol-
lowing three problems are involved: P.

(a) Redefinition of the base machine structure.

(b) Retargetability of the migrator sequencing code.

(c) Library construction for the machine defined.

Our approach involves the use of a hardware design language (HDL) such as ISP'-N.mPc ,
developed by other colleagues at Case. The basic property of these languages is their capa-
bility to define a microarchitecture by its structure and behavior. We plan to expand this
capability by defining the control scheme to be used. Our basic idea to achieve retareta-
bilitv is to capture the assemlblv code version of the migrating function and then pro(.e-
along the steps described earlier. lowever, we propose to use as asseml)lv ode the .
behavioral statements of the IIDL. Further, we )lan to use a preprocessor which %%ill
translate the high-level language description of the migrating function into the I).
behavioral code. Machine depen(lencies will be introduced at, that level bV binding together

341

,%'



the structural and behavioral descriptions of the machine. A major advantage of this tech-
nique is that it does not require changes in the migration process when the base machine is
redefined. Thus, the problem of migration retargetability is handled by the means used for
architectureecification.

Parallelism at the Microlevel

In general, parallel processing at the higher-end refers to the concurrent operation of
several processors which share a number of resources. Clearly, there should be a control
mechanism or protocol to regulate the accessing and releasing of resources to avoid coflicts.
Such regulation mechanisms based on mutual exclusion principles are well documented in

the literature. These general principles also apply to parallelism at the microlevel. In our
approach, we consider a cooperative microcontrol environment consisting of several micro-
controllers each executing a migrating function. The proposed scheme is briefly discussed
below.

Consider m microcontrollers CI,...,Cm, that implement concurrently the migration
functions FI,...,Fm, tectively. More precisely, each Ci contains the sequencing structure of
Fi in its sequencing store Si. Moreover, there exists a library Li of microcode modules @
embedded in the microcode store Mi of Ci, i=l,...,m. There are also n processing regions
PI,...,Pn which can be requested by the microcontrollers such that Pi can be requested by
only one microcontroller Cj at the time. We make no assumption as to the nature of pro-
cessing regions Pi, in other words, they may be processors, peripherals, memories or simply
distributed hardware. The requests of the processing regions are made by explicit reference
of the regions in the code structure of the library microcode modules. For example. an
ADD type of module in the second library L2 may refer to an adder located in the third
processing region P3. These references of microcode modules to regions may be static or
dynamic. The preceding adder example is a static reference whereas an indirect reference S, Wt

to a main memory location is dynamic. A.

The main problem of the cooperative microcontrol scheme is a resource management ,
problem at the microlevel: the effective regulation of the competetive requests of processing
regions coming from microcode modules. Although solutions to this problem at the high end
are well documented in the literature, the problem has not even been formulated in the
microlevel context. The advantage of our approach is in utilizing a microcontrol scheme
with poweful sequencing capability supported by developed tools. We feel that for coopera-
tive microcontrol we need to extend the proposed sequencing constructs to include con- ,(
structs that provide synchronization at the microlevel. The coordination protocol is con-
ceptually described below, assuming that each microcode module requests a single process-
ing region at each time.

When the microcode module Dip, located in library Li, is invoked by a sequence call,
then the controller Ci should issue a signal indicating the attempt to "enter" (request) a
processing region Pk. Again, Pk is referenced in the code structure of Dip. If Pk is not
currently "occupied" i.e. not requested by another module Djq, then Dip can safely enter _V
Pk. However, if Pk is currently occupied, then Ci should enter a "wait-until" loop till Pk is
released." During this waiting time the microcode store should be in a NO-OP state.

perhaps via a No-Op module. Additional sequencing constructs required are "enter region
"exit region". 'return without exit" and "return with exit". These should be included in
the repertoire of constructs for microlevel implementation of parallelism in the context of
our scheme.

342 1

- ii Or+" .+, , +. ." ," - +. .+ . , • • %' '-. "" " .".. % % % %' '+'+'''''''+'''+ -'+' -. % k"- % % e+'- , ,r-



WAFER SCALE IMPLEMENTATION OF A GaAs SYSTOLIC

SIGNAL PROCESSOR CELL

H. Merchant, H. Greub, R. Schreiber,
Capt. B. Donlan and J. F. McDonald
Center for Integrated Electronics
Rensselaer Polytechnic Institute

Troy, New York 12181
(518) 270-6033

ABSTRACT

This paper describes some preliminary results obtained by the
authors while attempting to design a systolic signal processing _
element to be implemented using the Tektronix-TRIQUINT GaAs E/D
MESFET Foundry.

INTRODUCTION

The design constraints implied by the literature published by
TRIQUINT for their E/D MESFET gates are:

1) Fanin < 3 'I"

2) Fanout < 4
3) Number of gates per testable cell < 80 (for 83% yield)

The goal is to design a systolic cell similar to that implemented
by the Saxby Computer Corporation but using GaAs. Because of the
yield problems of GaAs, the architecture had to be decomposed
into small "bit-slice" cells which could be fabricated, tested
and interconnected to form the systolic element. The
interconnection process employs fine geometry (5-10 IVm) thick
metal lines embedded in a polyimide dielectric. The logic cells
can be "in" the substrate or "on" the substrate.

Given the space constraints of this article, here we consider
only the implementation of the systolic cell function Y=X+A*B in
16-bit arithmetic. Since the TRIQUINT process involves 1 )m
feature sizes, their lithography employs step and repeat reticles
(up to 4 may be specified). Figure 1 shows the bit slice cells
defined as module subdivisions of these reticles. The four -,

modules M1 - M4 are various column counters for the multiplier .-. ,
and the S cells are all identical four-bit carry select adders.

If these cells were fabricated and mounted in separate
packages, the packages would adversely affect the performance of
the system. By directly connecting the dies on the wafer (wafer
scale integration or wafer scale hybrid) an extremely dense
system is feasible. -

Figure 2 shows the overall architecture of this systolic
cell. Figure 3 shows a simulated four-inch wafer witt several

343 %%



hundred (at 70% yield) of the desired cells in the rough
proportions demanded by the architecture. Figure 4 shows the
routed wafer. Evidently, there will be plenty of room to scale
up the processor to a full 32-bit processor possibly withA
floating point features.

A histogram of the typical wiring lengths required for the
16-bit integer ease Is shown in Figure S. The estimated maximum
delay for this version of the systolic cell is 7.92 ns plus I/O
pad delays. Improved versions are definitely possible,
especially if the TRIQUINT yields are even only slightly better.

CONCLUSION

Wafer integration of many small GaAs E/D MESFET cells offers
an attractive alternative to VLSI when the yield is low for the
latter.

Eli TYP- A 4 X I- -IF HE E:Z
TYEATYPE A TYPE E 1. E:-A^'LE~ !1-7' - -qK'

TV rn77
52 i ~ TZ TI

TYE TYPE:
Figure 1. Step-and-Repeat Reticle

Module Assignments

NO 4 - N 0)) 1.

104))-

I(2 I 44

102111) 10S.0<5
cmii, iii Z -101 ~__ ~..

CMc1 OU - .All IN..

Figure 2. Overall Systolic Cell Architecture

344



VMS

r-1,

Or- OC.,'

Figure 4. Routednc wafer efor wyatfli aritecur

W:RE .ENG-H D:SR:3' :N

:20 WMX

N LXARSZ

2 8.

- IT ____T

2t .

345



DESIGN FOR A TPL COMPILER SYSTEM -- A SYSTEM FOR

RETARGETING HIGH LEVEL LANGUAGE PROGRAMS

S. Leong, 0. Jiang, S. Jodis, and P.A.D. de Maine

Computer Science and Engineering Department
Auburn University

Auburn, Alabama 36849

I. INTRODUCTION:

A key problem is the retargeting of software coded in high
level languages so that they will efficiently execute in new
computer environments that may have totally different computer
architectures and/or supporting software. A standard high level
language like ADA [Ii that is fully transportable cannot, by
itself, solve the fundamental problem of transporting existing
programs to new environments. Mimicking, either by hardware or
software, the source environment is not a viable solution because
such methods L2]: Must be separately implemented for every diffe-
rent object environment; and they do not fully exploit the charac-
teristics of the new environments.

In the Transportable Programming Language, TPL, Method L3] the
essential concept is a retargetable bifunctional compiler, called
the HLL-TPL Compiler, that uses a hypothetical language, called
the Hypothetical Parent High Level Language (HPHLL), as the trans-
porting or retargeting vechile. The HLL-TPL Compiler, which can be
retargeted for any environment (or dialect), converts the local
dialect to the HPHLL and visa-versa. That means the TPL System,
which consists of the lLL-TPL Compiler and its supporting soft-
ware, can be transported or retargeted by itself.

The TPZ system that has evolved has three different parts:

I. The Support Facilities
2. The Hypothetical Parent High Level Language, HPHLL
3. The HLL-TPL Compiler System

The Support Facilities are used by the bifunctional HLL-TPL Compi-
ler to compensate for;

(a) Differences in architectural features like the byte or word
sizes and the amount of available core-memory.

(b) Special instructions that exploit architectural features, like
the character type operation in IBM FORTRAN.

ihe Kypothetical Parent High evel Language, -PJL for very
different high level language is constructed from its dialects a3
described in L3]. Essentially the IPAiLL is a superset that c on-
tains all the instructions in all the dialects of tie LL.

The HllL-TPL Compiler System that is now being tested has three
parts

1. The Rule Modifier.
346



2. The Table Generator.
3. The HLL-TPL Compiler itself.

An essential part of the design is the Conversion Rules Descrip-
tion Language, CRDL [4]. CRDL is a meta-language that is used to
describe the procedures for converting one language into another.
The CRDL descriptions of the conversion procedures are used by the ",
Table Generator to produce the TTM and CM Tables that drive the
HLL-TPL Compiler in its two modes: For converting the local dia-
lect to HPHLL and the HPHLL to the local dialect.

The Rule Modifier and Table Generator are normally used only
when the HLL-TPL System is installed, while the HLL-TPL Compiler
is used for each program conversion. The roles of the Rule Modi-'
fier, Table Generator and HLL-TPL compiler are discussed in Sec-
tions II, III and IV.

II. RULE MODIFIER.

The Rule Modifier is a special purpose editor that accepts -

descriptions of differences between the Default Dialect (or envi-
ronment) and the Local Dialect (or environment) and then modifies
the files, coded in CRDL L41, that are used by the Table Genera-
tor to produce the tables that actually drive the HLL-TPL
Compiler. The functions of the Rule Modifier are as follows.

1. It is a tool for altering the CRDL descriptions of the Default
Dialect.

2. It is an abstract layer between the person who installs the
dLL-TPL System and the detailed descriptions of the procedures
for converting the Local (or object) Dialect to the HPHLL and
vice-versa.

The description of the Default Dialect is an integral part of the
.LL-TPL Compiler System. The Default Dialect is a composite con-
structed from the "most probable" dialects. Those charged with new :-
installations of the HLL-TPL System use the Rule Modifier only
once to alter the descriptions of the Default Dialect to the Local
Dialect. It should be noted that this approach simplifies the task
of installing HLL-TPL and that it is especially useful for compa-
ratively well standardized languages like FORTRAN or COBOL.

III. TABLE GENERATOR:

The Table Generator part of the -iLL-TPL Compiler System can be
viewed as a special compiler that translates CRDL descriptions of "s
the conversion procedures to a form that is used by the HLL-TPL _
Compiler to convert the local dialect to HPHLL and vice-versa. Tne

onversion Rule Description Language, CRD, is a e -l: .e_
that acts as a second abstract layer (between language experts
and the actual implementation of the iL -TPL Compiler).

The !able Generator translates the descriptions in the inter-
mediate files to the two so called Internal Tables (TTN and C:.1).
that are used by the HRL-TPL Compiler to covert the local dialect
to iiPHi{L and visa-versa. %

347

S DOW 4*~



IV. HLL-'TPL COMPILER:

The HLL-TPL Compiler can be viewed as a simulated compiling
machine with a dispatcher and processors to execute its own
instructions. In the Transportability Testing (TTM) and Compila-
tion (CM) Modes the HLL-TPL Compiler executes a conversion proce-
dure by fetching instructions one at a time from the TTM and CM
table respectively The sequence of operations is terminated when
the conversion procedure is completed. This kind of approach for
implementing the iILL-TPL Compiler offers the following advantages:

1. Transportability is more easily achieved because the TTM and
CM tables have uniform structures and both its size and com-
plexity are significantly reduced by describing the conversion
procedures in the form of easily accessed tables.

2. An efficient implementation can be realized by using some of
the many well known optimization techniques [51.

3. Debugging and maintenance are simplified because the diffi-
culties associated with debugging parsing tables are avoided
[5 .

The planned extension of the TPL method for use to convert any
dialect of any high level language to a standard language like A 7;.
are discussed in 4. .

V. REFERENCES:

[1] For example.
a. H.F. Legard, "ADA: An Introduction and the ADA Reference

Manual", Springer-Verlag, New York, 356 pages (131).
b. Collection of ADA papers in: Proc. of the ACM S IPzAN

Symposium on the ADA Programming Language, ACM SIGPLAN,
NOTICES vol 15, no 11 (1980).

[2] P.A.D. de Maine and C.G. Davis, "Specification for a Trans-
portable Programming Language System", Proc. COMPSAC 1982,
468-494 (1982).

[3] P.A.D. de Maine, S. Leong and C.G. Davis, "A Transportable
Programming Language (TPL) System. I. Overview", Int. J.
Comp. and Inf. Sciences 14, 161-182 (1985).

[4] S. Leong, 0. Jiang, S. Jodis and P.A. D. de Maine, "A Trans-
portable Programming Language (TPL) System. II. The Bifun-
ctional Compiler System, Submitted to Int. J. Comp. and Inf.
Sciences 8/May/1986.

.. . I . 2 U, " 1m a :n.P r n C....
Addison-.iesley ?uL1ishing omp'ny, e ihw, ad:. . ,
(1 )73, )

348
Ad

- .,,,,,-J ',-, ',ij -'-'-"-"-"-. .,' . .-. -' , ,,-% . -"''''. . ,-. ' . -' """-' ',,.,,, .. h ,'.- ..-.- ,'",% .



A VLSI Implementable Block Oriented Data Driven Multiprocessor

B. Shirazi A.R. Hurson
Southern Methodist University Pennsylvania State University-.

ABSTRA CT
The traditional parallel processing approaches to closing the computational gap have con-

sistently failed since parallelism has been forced through the extensions of the sequential von-
Neumann model rather than using an inherently parallel model. The data driven model allows a
high degree of parallelism and asyncbrony among its basic operators and thus, it has been con-

sidered as a promising alternative to the von-Neumann based architectures. This paper first
discusses the trend in the design of the data driven machines through a classification of these sys-
tems. It then addresses the design of a processing module capable of executing a program block
in data driven fashion. These processing modules are used as the building blocks for the construc-
tion of a block driven multiprocessor. The organization of this system matches the semantics of
the block and data driven models by allowing efficient and faster intra block as opposed to the
longer inter block communications. In addition to the basic design, we will address the VLSI
complexity of the system by estimating the geometry area of the basic elements and the timing
delay of the operations based on the current technology.

1. Introduction and Background

The challenge of closing the computational gap has promoted the introduction of some alter-
native architectures to the von Neumann machines. The data driven model is one the most
promising of such alternatives. In a data driven environment, an operation is carried out, in
parallel with other operations, as soon as its input operands are available. The concept of asyn-
chrony embedded in the definition of a data driven architecture provides grounds for a high
degree of implicit parallelism. In addition, the data driven organization eliminates the need for
an updatable storage, use of identifiers and all of their associated by-products such as global side-
effects and aliasing.

Nevertheless, the parallel nature of the data driven computation coupled with the freedom
from side-effects, imply a strain on the interconnection network or these systems. This leads to
the increased cost and complexity of the network as well as erecting a potential bottleneck due to
network delays. Therefore, the large-grained data flow architectures have recently been investi-
gated as An alternative for their fine-grained counterparts. This has led to the development of the
block driven architectures which explore the parallelism at the program block level 1]1.

Basically, data driven architectures are decentralized control systems and hence, they could
be classified as MIMD machines. We propose a classification which is based on the interrelation-
ship and communication among the data me iory, the instruction memory, and the processing
elements. According to this classification, the data driven architectures are grouped into three
classes. Class I, which is representative of the dynamic data driven machines, uses a separate
data and instruction memory as well as a set of separate processing units. The Manchester and
the Irvine machines are examples of the architectures in this class. They allow recursion and
parallel execution of different activations of a block. However, some additional overhead is intro-
duced due to the manipulation of the color information and the fact that only one ,:opy of the-- .
program block is kept. The Class II, or static data driven architectures, represents th' unification
of the data and the instruction memories in which each instruction is self contained. The MIT -'
and the TI machines are some examples in this group. Even though the machines in this class
have a simpler organization and do not introduce additional overhead, they do not allow coex-
istence of multiple activations of the same block. Finally, in Class Ill, as a promising representa-
tive of the future data driven machines, the processing power is incorporated at the memory level.
In other words, each memory cell contains an instruction and has enough processing power to
carry out the operation, when the data is available. The system has a cellular organization and

349

' , , , .. 3,,,-,., , .". , "... ..-...... :.._ -, ... - .. - <... .,4 q. .' %',. , : V , , . '. - .% , ',-, -



therefore it is suitable for VLSI implementation.

This paper discusses the architectural aspects of a data driven organization which is based
on the characteristics of the Class 11, while incorporating multiprocessing capabilities at the pro- ,_

gram block level (block driven). The VLSI complexity of the proposed architecture is discussed
through an analysis of the timing and geometry areas of the building block elements.

2. The System Overview

A viable data driven architecture should comply with the technological constraints, offer a J^.
better performance for inherently parallel problems, reduce fine-grained communication delays,
and introduce a practical and effective solution for the manipulation of the data structures.
These criteria have led us to the introduction of the WDDM, a Wafer-scale Data Driven Mullipro-
ceosor 121. The system consists of m identical processing modules (each on a silicon wafer), a
host, and a data structure module. The system units communicate through a double star inter-
connection network, with the host and the data structure modules as the centers and the process-
ing modules as the orbital nodes (Figure 1). The two centers are connected via a dedicated chan-
nel which allows them to share the run time system management information. It should be men-
tioned that the choice of the star network is not fixed and we are currently investigating other
networks as possible candidates.

Although the star network is potentially prone to creating a bottleneck at the center station,
we have incorporated many measures in the architecture in order to alleviate the possible
bottleneck. For example, a number of independent dedicated buffers are used for simultaneous
transfer of blocks between the host and several processing modules. In addition, in order to
reduce the overhead of the host in the memory management operations, associative processing is
utilized. This not only allows fast parallel search of the different tables which are used for
memory management operations, it also provides opportunities for parallelism among different
associative memories.

It should be mentioned that the system operations are based on the dynamic data flow prin-
ciples by allowing simultaneous execution of different activations of the same block. However,
within a block, the operations are based on the static data flow model. In other words, coloring
(labeling) is used at the program block level instead of the data token level.

The data structure module holds the data structures and partially performs or initiates the
data structure operations, using the processing modules. An input data structure is duplicated for
each function, thus eliminating the side-effects among the functions. However, upon the comple-
tion of a function, the input and intermediate data structures are destroyed and only a pointer to
the output data structure is returned. Within a function, a scheme similar to the I-structure pro-
posed by Arvind 131 is utilized. Provisions are made to utilize processing modules to allow vector
operations on arrays. In addition, the interleaved organization of the data structure memory
allows simultaneous access to many elements.

3. The Proposed Processing Module -."

An active program block assigned to a processing module is executed in data flow fashion.
Therefore, there are two levels of parallelism during the execution. First, there is a large-grained
parallelism due to the concurrent execution of the program blocks. Second, there is a fine-grained
parallelism due to the data flow operations within a processing module. In order to reduce the
network delay of the fine-grained data flow parallelism, the processing power is distributed among
the memory or instruction cells. Therefore, as much of the processing as possible is carried out in
the instruction cell itself and only the result values are routed to the network. However, because
of the economic considerations and according to the RISC (Reduced Instruction Set Computers)
philosophy, only the simple but most often executed instructions are executed by the instruction * ,
cells and the complex operations are sent to the coprocessors. "

Figure 2 depicts the general organization of a processing module. The instructions of a data
flow program block are distributed among the Elementary processing units (E-unita). The simple .. '. .

350 rd



operations such as fixed point addition are directly executed by the E-unit, resulting in a data
token which is sent to the succeeding instruction via the sub-net. The E-units ae also responsible
for matching the input data tokens. For more complex operations, such as floating point division,
the E-unit forms an operation token and routes it to the corresponding Functional unit (F-unit)
through the sub-net. The data tokens generated by the F-units are routed to the destination
instructions.

The Sub-net is an arbitration network providing the intra-module communication among
the elements of a processing module. It also connects a processing module to the host and the
data structure modules.

The Active/lInactive Detector (AID) unit keeps track of the status of a program block as it
is executed by the processing module. When a processing module becomes idle due to a procedure
call, the status is reported to the host and the block's image is saved in the host. This allows the "
processing module to be assigned to another enabled block.

4. VLSI Complexity

The proposed system is suitable for VLSI implementation because it has a regular and cellu-
lar organization; i.e. duplication of processing modules at system level and duplication of E-units
and F-units at a lower level. Furthermore, the VLSI 10 pin limitation problem is resolved
through the use of wafer-scale integration for implementation of the processing modules. The
intra-block communication takes advantage of the on-chip (on-water) interconnections, and the k%

inter-block connections can have large bandwidths due to the increased size of the wafer.

In addition to utilizing some standard units, we have proposed a number of special-purpose
VLSI components, such as a systolic multipler 141 (as an example of an F-unit) and an associative
memory module 151 (for use in the memory management operations).

The basic component of each E-unit is the elementary processor which performs simple
logic and arithmetic operations. In order to accommodate such capabilities into an E-unit, we
will take advantage of the OM2 Data Path ALU 16). Each ALU bit occupies an area of
.Immx.6mm. Considering the area needed for superbuffer drivers for the ALU control lines, the
storage space for the controller, and the I/O ports, the total E-unit area for a 32-bit ALU is
estimated at 4rm X 4mm.

The sub-net consists of (log 2 n)-2 stages of standard 2-by-I arbitration switches followed by %
two stages of 2-by-2 square switches. The area of an arbitration switch, routing m bits in paral-
lel, is about 30mX X 1O0X. Let n be the total number of the E-units, F-units, and the two input
ports on a processing module. The length of the first stage of the network will then be
2000X(n/2). The network requires (log 2 n)-2 stages of arbitration and 2 stages of square switches,
yielding a network width of 200X(1og 2 n). With n=32, the network dimensions are 32000X X
1000X. The network delay for a token of 64 bits is 10(log n)-2)+90 ns if there is no conflict with
the passage of the other tokens. With n-32, this delay is 120 as.

The result of this analysis reveals that our proposal for implementation of the processing
modules on silicon wafers is well within the limits of current technology. For example, with a
conservative X parameter (2.er (2.5pm), a system of 32 E-units can be easily implemented on a
wafer. This size is sufficient enough to handle the majority of loops and small procedures. Natur-
ally, as the X size is shrunk due to the advances in technology, the number of E-units on a wafer
can be increased. For example, with )=.8 pm, a 64-E-unit processing module will be reasonably
practical.

5. Conclusion

This paper has introduced a new multiprocessor system based on the data and block driven
computation principles. The system has a cellular architecture suitable for VLSI implementation.
The wafer-scale integration technology is used to speed up the intra-block communication, reduce
the cost, and in-prove the 1/O pin limitation problems. The system has been simulated both
based on a probabilistic model and an emulation model. The simulation results cannot be

351

7Y

"" " "" ,



P 111011011P ~~i~nwJvWlvwXvwwuwKi.ur W ~f wwiAknrvwvY~ vx ,

presented due to space limitations. The performance improves by increasing the number of E-
units and processing modules, but saturates at some point due to I/O delays and ingle program
environment simulation.

&.REFERENCES

1. Chang, T.L. and Fisher, P.D., "A Block-Driven Data Flow Processor," Proc. of the 1981
Int'l Conf. on Parallel Processing, Aug. 1981, pp. 151-155. ~

2. Shirazi, B., "WDDM- A Wafer-scale Data Driven Multiprocessor," Ph.D. Dissertation,
University of Oklahoma, July 1985.

3. Arvind, Kathail, V., and Pingali, K., "A Processing Element for a Large Multiple Processor
Dataflow Machine," 1980 Int'l Conf. on Circuits and Computers, Oct. 1980, pp. 601-605.

4. Hurson, A.R. and Shiraui, B., "A Class of Systolic Multiplier Units for VLSI Technology,"
Int'l Journal of Computer & Information Sciences , vol. 14, no. 5.%

5. Hurson, A.R. and Shirazi, B., "A VLSI Design for the Parallel Finite State Automaton,"
ICCD '84, pp. 358-363.T

6. Mead, C. and Conway, L., Introduction to VLSI Systems , Addison-Wesley, Mass., 1980.

?rocasi., *od,,Ie S on, a siliconi wat

V %"W1

a

a

Th~~ra Nosta~ d.a to

Strietwa Slreetura

proce..in OadUl.

352

.M



On Systolic Architectures for Interpolation and Integration ?

S.I.Omar and G.H.Masapati
Department Of Computer Science

University Of Ottawa
Ottawa,Canada KIN 9B4

Introduction .'

Recent advances in custom VLSI chip fabrication technology have made it economically feasible to
implement parts of a system in hardware. A number of issues have to be addressed if this approach
is used. One of them is the systematic derivation of a processing architecture from specification of
subsystem. The paper addresses this issue. The basic approach used is the Transformational or
Mapping approach. Our version of the approach differs from others [1-3] in several respects. After
producing an Algorithm Model from Recurrence Relations we derive a Processing System Model
algorithmically. Interpolation and Integration have been used as examples.

Algorithm Model

We propose a new graph model called Compute-Store Graph Model to describe computations being
studied in this paper. Our formalization of an algorithm is as follows:

Definition 1. (Compute-Store Graph) t,

A Compute-Store graph is a labeled DAG(D2irected Acyclic Graph) and is characterized by a
3-tuple (C,S,E) where
(1) C is finite set of Computing nodes. Each computing node is assigned a unique co-ordinate in

a 2-D Euclidean space. (Tranformation 1)
(2) S is a finite set of Storage nodes. With each storage nodes associated are two attributes (D,d)

where D is the Data type and d is the delay. Each storage node is assigned a unique label from
the set N of natural numbers. (Transformation 2)

(3) E is a finite set of directed Edges. Each incoming and outgoing edges are labeled uniquely
from the set N..

(4) Vw cC, u,vc- S : uw c. E and wv e E
(5) Yu,v r C and u#v, uvt E and vu# E
(6) VseS, there is at most one ueC : sueE.

Let u6C, A= {w S:wuC-E} and R= {w S:uwciE}.

Definition 2. (Computable) .---
u is said to be Computable if arguments are available in elements(storage nodes) of A and
elements(storage nodes) of R are empty.

Dfinition 3. (one clock tick)
Let tr be the time taken to receive arguments from the elements of A. Let tc be the time taken to
compute the function by u. Let tc be the time taken to store the results in the elements of R. Then t
is said to be one clock tick if t=tr+tc+ts.

Definition 4. (Rules of Computing)
(1) u is computable.
(2) u receives arguments from elements(storage nodes) of A, computes the function, and stores '-"

the result in elements(storage nodes) of R, in one clock tick. I'.

Model of Processing System

The basic objects of the model are: Processing Elements(PE) and Communication Links(CL). PEpefrsthe ncessary functional transformation using the data communicated to it via CL through "''
input ports and data in its storage registers. It performs the functional transformation after the elapse

of specified units of time contained in its status register. The delay in the activation of functional
transformation ensures that all the required data are available. After the transformation the resulting

353



data are communicated to other PE via CL through output ports. CL provides the facility for inter-PE
communication. Each CL starts at an output port and terminates at an input port. It communicates data
of specified type.
In terms of these basic objects a Processing System(PS) is defined as a 2-tuple (PE,CL), where PE
is a finite set of Processing Elements and CL is a finite set of Communication Links. PE is defined as
a 5-tuple (FT,IP,OP,ST,SR), where FT is a finite set of functional Transform Units, IP is a finite set
of Input Ports, OP is a finite set of Output Ports, ST is a finite set of Status Registers and SR is a
finite set of Storage Registers. CL is defined as a 3-tuple (OP,IP,EV), where OP is a finite set of
Output Ports, IP is a finite set of Input Ports and EV is a finite set of Data Types. Also
IP=IPI U IPE where IPI is a finite subset of Input Ports at the termination of CL and IPE is a finite
subset of Input ports from the Environment to PS. Similarly OP=OPI U OPE.

Processing Architectures for Interpolation and Integration

Recurrence relation for Neville's Interpolation is • ,.*"

Qi,0 f(xi) ; i = 0,1 ..... ,n 
Qipj = [ (x-xi) * Qi-l,j-l - (x-xi-j)*Qij-l / (xi-j - xi) ; i 1,2,...,n and j 1,2 ..... i

The Compute-Store graph for this relation and the corresponding Processing Architecture are shown
in Figs. 1 and 3.
Recurrence relations for Romberg Integration are:

R1,1 0.5*(b-a)*[f(a)+f(b)]
Rk, 1  0.5*[ Rk.,1 + hk * SUM { f(a+(i-0.5)*hk-l) } from i I to 2**(k-2)] ; k = 2,3,..,n
hk = b-a / 2**(k-1)
Ri j = Ril,j_1 - (4**(j-1)) * Rij_ / (1 - (4**(j-I))) ; i = 2,3,...,n and j = 2,3,....i

The Compute-Store graph and Processing Architecture for this relation are shown in Figs. 2 and 4.

Mapping Algorithm

The mapping process consists of applying the following transformations between the basic objects of
Algorithm Model and Processing System Model.

Transformation 1: Define TI : C ---- > Es s.t. TI(Cij) = (ij)
Transformation 2: Define T2: S ----> N s.t. T2(si) = i where i E N
Transformation 3: Define PE = T3.C where T3 is an nXn integer matrix. One feasible way of

choosing T3 is : T3 = I
Transformation 4: Define T4 : (S,E) ---- > (SR,ST). Algorithm A constructs T4.
Transformation 5: Define T5 : (C,S,E) ---> CL. Algorithm B constructs T5.
Transformation 6: Define T6: (S,E) ---- > (IP,OP). Algorithm C constructs T6.

Algorithms A,B and C have been described in [4].

Conclusion .. .,_

We have shown that by representing a Recurrence Relation as a Compute-Store Graph it is possible
to algorithmically obtain a feasible Processing Architecture in the form of Processor-Commlink ".

Model. This architecure is solely based on the characteristics of the Recurrence Relation. No external 4
constraints are imposed on it. Our Mapping Algorithm produces a speed-up of O(n) for the example
architectures. Several related issues are being investigated. One of them is obtaining an optimal from .,

the feasible architecture.
References
[I] D.I.Moldovan and J.A.B.Fortes, "Partitioning and Mapping Algorithms into Fixed Size Systolic

Array", IEEE Tr. Comp., C-35(l), Jan. 1986, 1-12.
[2] I.V.Ramakrishnan, D.S.Fussel and A.Silberschatz, "Mapping Homogeneous Graphs on Linear

Arrays", IEEE Tr. Comp., C-35(3), Mar. 1986, 189-209.
[3] I.Koren and G.M.Silberman, "A Direct Mapping of Algorithms onto VLSI Processing Arrays", ....

Proc. 1983 IEEE Intl. Conference on Parallel Processing, 335-337.
[4] S.I.Omar and G.H.Masapati, "On Mapping of Algorithms onto Processing Systems",(to be %,%-e

submitted for publication).
354.-,



0x-x. x-x..

21 2 3a

QU-1 'j i

7 QR 1 8j 0- 9 2 1

2 4j 10,1

1 2, ,1 222 R 2  0

Fig. 2. Compute-Store graph for RoNele' Interoation

2(b-&)

0355

3 Ri-lv



Hold X-X iand x-x k

Q3oX-X2  2, 1  X- 

x-3 31 X-x 3 01 x-x1  - 0  ,

04, 1 Q420,30,

0 (b-a) R-,1h-

Z-3a. 1, !-

if 2 2z 2

,2, (b-a)/2R2,

ifZ 2-q Z-

f R3 ,1  3,3 e1
34  R4z~ R R 4 R4  ' ~

P, 3 1 -,

3,1 .3 R 3,, :11,

R3, 11 (ba)/

P3 R71

Z-

356t



An Applicative Programmer's Approach to Matrix Algebra, "F71
Lemons for Hardware and Software

David S. Wise dswise.indiana~csnet-relay %

Computer Science Department
Indiana University

Bloomington, IN 47405-4101

It has now been ten years since the "data pull" nature of lazy applicative programming was
proposed as a solution to the process fragmentation problem of parallel processing [3]. Since that
time there has been considerable development of hardware, both pipelined/vector machines and, e"]

more recently, cube- and switch-connected engines composed of tens and hundreds of processors.
The style of programming for the former machines has not improved during that time, and we yet ,
have no languages suitable for taking appropriate advantage of the latter.

At the same time, the early development of machines derived from applicative languages has
proceeded from combinator-based hardware to more elaborate multiprocessor architectures. This
paper proposes algorithms derived using applicative programming, suitable for multiprocessors
switch-connected to a banked (self-managing) heap memory. Although shared-memory access
to M locations requires time at least logarithmic in M, we are accustomed to constant-time access
(for small M-or cache), which is finally disappearing in tree- and switch-connected multiprocessor
proposals. Moreover, there are several solutions, some in hardware [15], for distributing management
of a shared heap.

The Daisy Project at Indiana has been exploring parallelism through implementation of and .
practice in an applicative (or functional) programming language. One facet of this effort is extending
this style, well grounded as it is in formal semantics, back toward hardware in order to discover
the essence of a rich run-time environment, suitable to achieve the efficiency apparent in the high-
level program. Aiming at a well known problem area, Matrix Algebra, this overview demonstrates
the power of applicative programming in impressing a new, parallel perspective on a well studied
problem.

Premises:

Applicative (functional) programming is a programming style [3, 11] in which the only control
structure is the application of function to argument (-list). There is no rebinding of identifiers
(assignment statement), except through binding of parameters to arguments, and no sequential
flow except that inferred from primitive functions (such as addition where the values of all terms
are necessary before the computation of their sum.) Functional operations, like composition and
mapping, should allow for one function application to return several results, just as it may take
several arguments [4].

A significant feature of this style is that there is no inherent sequentiality of execution. Relaxed
(lazy) evaluation order means that arbitrary parallel evaluation is safe. This fact makes Daisy most "
suitable both for describing parallel algorithms and for describing parallel hardware [7J.

Once we have the ability to identify parallelism within a large function (program), there remains
the problem of which processes to run with only finitely many processors. While the problem is
unsolved in general, we observe that it is better to dispatch processes as high as possible in the W
structure of the program. This "height heuristic" is an effort to create long-running processes in order
that the overhead of process dispatch and recovery be amortized over as long a parallel computation .

as possible. If processes are only dispatched from points deep in the structure of a program (e.g. only
in FORTRAN's arithmetic expressions) then they will be too short-lived to justify their creation.
Therefore, it is important to lift parallel-processing notation to as high a level as possible, providing
it throughout the programming language, if possible.

357



Application to Matrices:
If applicative programming is a better style for driving parallel architectures than conven- ..,,

tional/iterative languages (like FORTRAN), then it ought to be able to offer some new perspective- "
or even an improvement--on problems for which those languages are thought to be suited. As a test . ..

of this premise, we consider important problems from Matrix Algebra, where pipelined/vector pro-
cessors ought to be optimal.

The following is a thumbnail sketch of an applicative approach to matrix algebra. It is remarkable
because it demonstrates that the selection of a tree-like data structure, directly suggested by the k
recursive paradigm and contrary to most memory architecture, leads to new parallelism, a new
strategy for processor allocation, and an efficiently stable algorithm.

Representation is a most important issue. A conventional structure in the highly recursive style
of functional languages is the tree. Thus, we are drawn to finite trees for representing finite structures:
specifically, an n-dimensional array will be represented by a 2*-ary tree, as in Figure 1. The exact
size of an array is implied by data independent of this structure, because a scalar is to be interpreted
as such an array of any size. That is, the scalar, 3, may be interpreted as the (2-dimensional) matrix ,
of arbitrary size that is three times the identity matrix; the identity matrix is 1 and 0 is the zero
matrix. A matrix is either such a scalar or it is four quadrants, each a (sub)matrix.

Implicit in this definition is that sparse matrices are represented sparsely and, therefore, that ,'
the space necessary to fill out this Strassen-like decomposition 1101 to a large matrix of size 21 x 2" .
is negligible. The preferred memory architecture, however, is a heap.

Figure 2 shows the process decomposition for conventional operations like matrix addition and
multiplication. It exhibits two facts: first that task decomposition occurs at the root, into four
or sixteen large subprocesses, which will run for quite a while amortizing the expense of their dis-
patch/recovery; quite an improvement over parallelism only at the leaves of an expression tree!
Second is behavior on uncovering sparseness; sparse behavior is effected when the algorithm encoun- 'r
ters a scalar 0 instead of a pointer to a large matrix. When an argument to addition or multiplication -
includes a 0 (or 1) quadrant, then 25% of the effort is annihilated by borrowing a reference to pieces -
of the other operand (13, 141. .

More important, however, is matrix inversion, or solving bilinear forms. Figure 3 illustrates
the decomposition for a Pivot Step at a known position pivot position. The solution is to return
the pivoted matrix, and the pivot row and column, each represented as a binary tree. The problem '
decomposes four ways into quadrants identified as that containing the (non-zero) pivot element (piv),
those coordinating horizontally (row) and vertically (col), and that diagonal (off). The algorithm is -
interesting 116J, admitting massive parallelism in the transformations of row, cot, and off.

The possibility of performing full row/column pivoting is implicit with essentially no increase
in search cost. Suppose that before beginning the pivoting the tree structure had been recursively %
traversed and annotated at each nonscalar subtree with the largest contained (absolute) value and
with two bits indicating in which quadrant it lay. Sufficient information exists at the root of the tree
to initiate the Arst-pivot step without further search. Moreover, those maxima miny be maintained
by the Pivot Step transformation, because the information is local to values/subtrees being changed, ;....

and because that maxima information is static off subtrees unaltered (because they coordinated on .
zeroes in the pivot row or column) by the transformation. Thus, this sufficient information will be -...

maintained at the root of the tree to initiate each successive Pivot Steps without further search.

Acknowledgement: Research reported herein was supported by the National Science Foundation
under a grant numbered DCR 84-05241.
References
1. S. K. Abdali & D. D. Saunders. Transitive closure and related semiring properties via eliminants. .-

Theoreticd Computer Science 40, 2,3 (1985), 257-274.
358

%"" ..



2. J. Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. Comm. ACM 21, 8 (August, 1978), 613-641.

3. D. P. Friedman & D. S. Wise. Aspects of applicative programming for parallel processing. IEEE
Trans. Computers C-27, 4 (April, 1978), 289-296.

4. C. V. Hall and J. T. O'Donnell, Debugging in a side effect free programming environment, ACM
SIGPLAN 85 Symp. on Language Issues and Programming Environments, SIGPLAN Notices
20, 7 (July, 1985), 6068.

5. C. V. HaiL Compiling Strictness into La Lists. Ph.D. dissertation, Indiana University (to appear).
6. S. D. Johnson. Connection networks for output-driven list multiprocessing. Tech. Rept. 114, Com-

puter Science Dept., Indiana University (October, 1981).
7. S. D. Johnson, Synthesis of Digital Designs from Recursion Equations, in ACM Distinguished

Dissertation Series. M.I.T. Press, Cambridge, MA (1984).
8. S. D. Johnson. Storage allocation for list multiprocessing. Tech. Rept. 168, Computer Science

Dept., Indiana University (March, 1985).
9. A. T. Kohlstaedt. Daisy 1.0 reference manual. Tech. Rept. 119, Computer Science Dept., Indiana

University (November, 1981).
10. V. Strassen. Gaussian elimination is not optimal. Numer. Math. 13, 4 (August, 1969), 354-356.
11. D. S. Wise. The applicative style of programming. Abacus 2, 2 (Winter, 1985), 20-32.
12. D. S. Wise. Compact layout of banyan/FFT networks. In H. Kung, B. Sproull, & G. Steele (eds.),

VLSI Systems and Computations, Computer Science Press, Rockville, MD (1981), 186-195.
13. D. S. Wise. Representing matrices as quadtrees for parallel processors (extended abstract). ACM_

SIGSAM Bulletin 18, 3 (August, 1984), 24-25.
14. D. S. Wise. Representing matrices as quadtrees for parallel processors, Information Processing %

Letters 20 (May, 1985), 195-199. %
15. D. S. Wise. Design for a multiprocessing heap with on-board reference counting. In J.-P. Jouan-

naud (ed.). Functional Programming Languages and Computer Architecture, Berlin, Springer
(1985), 289-304.

16. D. S. Wise. Parallel decomposition of matrix inversion using quadtrees. Proc. 1986 Intl. Conf. on
Parallel Processing (to appear). v.

0 3 000 -2 0 00
o o 0 I 0-2 0 0[H0H] 0 0-2 0%

& 7 0-2

I 2 5641ox .
X9

Figure 1. The vector,! 20056771. 0030 0 011
/00031

and the matrix. o4010 /
L040  J -1

position~ I10

1-2- 03000 1 2 0 3 0 0. % .

100-1 2 0 03 0
A+W BX 000 1 0 0 o

Figure 3. Pivoting selected on the 15.41
Figure 2. Simple decomposition of sum. element; southwest quadrant indicated.

359



V

Session 15C: Applicative Language and

Data Flow Techniques :

ChairmQrson: Kim Gostelow

GE Research and Development Center

360
N.



IMPLEMENTING LOGICAL VARIABLES
ON A GRAPH REDUCTION ARCHITECTURE 1

Gary Lindstrom

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

1. Functional and Logic Programming
Logical variables offer a semantic meeting ground between functional and logic

programming languages [7]. From the perspective of functional programming, logical
variables present a radically different basis for information flow. In particular,

logical variables are not directly bound by uniquely determined expressions, in

contrast to the customary dataflow orientation of functional languages;

* rather, they denote values determined by the intersection of successively

applied constraints.

In a functional programming language with logical variables, this difference can permit
novel effects otherwise quite difficult to obtain. These include:

an action at a distance effect, whereby certain kinds of "side-effects" can be
achieved within an applicative setting (the Prolog "difference list" trick for
constant time list concatenation is a familiar example);

*a stronger object orientation, under which logical variables play the role of

mutable shared entities, and

* the use of this object orientation as a basis for isotropic process
communication and synchronization, as in Concurrent Prolog [8].

2. Reduction Architectures
Graph reduction offers many advantages as a strategy for executing applicative

programs. These include:

very flexible patterns of concurrency and load distribution on parallel
architectures;

clean support for infinite and cyclic data structures through demand

evaluation [1];

1 This material is based upon work supported by NSF Grant OCR 8506000. and r Shared Univesty Research

Grant from the IBM Corporation. A full paper on this subject is available from the author

361

A~=. .

3 6 1 " (a



INr

* good program and data locality effects;

* the support of recursion and iteration (via tail recursion) without the need for
explicit token objects or "color" tags and associative memories for their
assembly into operator "firing sets", and

* the ability to incorporate a form of data-drive as a submode.

The principal prices to be paid for these advantages are potentially costly storage
management, and the added overhead of demand propagation. A good survey of
reduction architectures may be found in [9].

3. FGL+LV on Rediflow
We have developed a strategy for implementing FGL+LV [5], a functional language with

logical variables, on the Rediflow multiprocessing graph reduction architecture [2]. The .....

aspects of logical variables receiving special consideration include:

a. parallel unification, especially proper treatment of indeterminate behavior, e.g.
mutual exclusion on variable binding [31;

b. variable binding through emulated graph node merging;

c. exploitation of two levels of demand: assertive (during unification), and
non-assertive (ordinary "read-only" usage), and

.% "%'

d. avoidance of meaningless cyclic variable bindings.

The existing base language implementation is smoothly extended, with a word size
increase of only one bit (needed to implement two levels of demand). Lazy evaluation in
the base language is retained, except that actual parameters are now made strict to one
level of evaluation. This requirement, overlooked in [5], is argued to be semantically and
operationally inescapable in a functional language with logical variables. It also provides V
insight into the vexing problem of how to apply the occur check in a language with
infinite data objects. A novel technique for merging cyclic lists is used to implement '

logical variable binding in a distributed manner without locking or busy waiting.

4. Extensions
Our work thus far has focused on the adoption of logical variables in a deterministic

setting, i.e. without support for backtracking or OR-parallel search [41. This single
extension brings into the realm of functional programming such elegant techniques as the
Milner algorithm for polymorphic type checking [6]. And, while the absence of OR-
parallelism may be lamentable, in partial compensation we retain functional
programming's execution directionality, which offers a clean solution to the AND-parallel
control problem which plagues pure logic programming.

Continuation work is underway aimed at augmenting this implementation approach to
embrace OR-parallelism.

362



References

[1] R.M. Keller and G. Lindstrom.
Applications of feedback in functional programming.
In Conference on functional languages and computer architecture, pages 123-130.

October, 1981.

[21 R.M. Keller, F.C.H. Lin, and J. Tanaka.
Rediflow multiprocessing.
In IEEE Compcon '84, pages 410-417. Feb., 1984.

[31 G. Lindstrom.
OR-parallelism on applicative architectures.
In Sten-Ake Tarnlund (editor), Proc. Second International Logic Programming

Conference, pages 159-170. Uppsala University, July, 1984.

[41 G. Lindstrom and P. Panangaden.
Stream-based execution of logic programs.
In Proc. 1984 Int'l. Symp. on Logic Programming, pages 168-176. February, 1984

[51 G. Lindstrom.
Functional programming and the logical variable.
In Symposium on Principles of Programming Languages, pages 266-280. ACM,

January, 1985.

[61 R. Milner.
A theory of type polymorphism.
J. of Comp. and Sys. Sci. 17(3):348-375, 1978.

[71 U.S. Reddy.
On the relationship between functional and logic languages. -" *,

In D. DeGroot and G. Lindstrom (editors), Logic Programming: Functions, Relations,
and Equations. Prentice Hall, 1986.

To appear.

[81 EY. Shapiro.
A Subset of Concurre.7t Prolog and Its Interpreter.
Technical Report TR-003, Institute for New Generation Computer Technology,

January, 1983.

[91 PC. Treleaven, D.R. Brownbridge, and R.P. Hopkins 2]
Data-driven and demand-driven computer architecture.
Computing Surveys 14(l):93-143, March, 1982.

363



MULTI-PROCESSOR REDUCTION MACHINES

J.L. Meador and M.L. Manwaring

Washington State University Electrical and Computer Engineering 6

Pullman, Washington 99164-2210 (509)335-6602

For future symbolic multi-processing, networks of several hundred processors
are anticipated, each consisting of IOK-20K devices. At 1984 commercial densities %
this equates to 4 to 8 devices per chip. According to anticipated 1988 densities [Il],
this can be expected to increase to as many as 128 per chip. We are quickly
approaching a time when the technology will support large scale symbolic parallelism,
but only if we can find ways to efficiently implement it. To help achieve this goal,
there is a need to investigate moderately sized, computationally versatile processors
designed for efficient inter-processor communication within a multi-processor
organization.

There exists a general trend at present toward language directed architectures.
RISCs, CISCs, and direct execution machines have all attacked the uni-processor design
problem with various language directed goals.

RISC architectures are designed with the goal of CPU control simplification. %
This simplification can be made based upon instruction frequencies in compiled
languages. Here, more frequent instructions are implemented with fewer clock cycles.
A simpler control section also allows for additional on-chip register space. CISC
architectures take a contrary approach, that of CPU control enhancement. This
enhancement is less based upon frequencies of common instructions than it is upon
building new ones. Thes new instructions are intended to accomplish in one main
memory access what would have otherwise required several. Both RISC and CISC
approaches share the goal of providing more efficient support of compiled high level
languages. Whether one does so better than another is a subject of debate. It is not
the intention of this paper to take a stand on that issue. The point here is that
both approaches share a design philosophy based upon some aspect of abstract
programming language semantics.

Direct execution processors discard the conventional RISC and CISC machine
instruction set notion for the direct representation of a high level language. Once
again, the idea is to construct hardware specifically suited to an abstract
programming language. High performance Lisp machines have been commercially available
for some time now. At least eight commercial development efforts for machines
directly executing Ada, Prolog, Forth, Lisp and other languages are under way.
Impressive performance measurements have been reported [3].

Functional programming architectures represent one language directed approach
to multi-processing. Functional languages are a subclass of declarative programming
languages, of which Prolog is perhaps the best known member. Declarative languages
provide flexible expression of general purpose algorithms, while implicitly expressing
parallelism. The interested reader may find a useful development on functional
languages in [4]. Informative surveys of architectures influenced by this .

programming paradigm may be found in [6] and [8].
Several aspects affect the design of a multiprocessor for functional -

programming languages. These include the language itself, the execution algorithm,
and the hardware organization.

To make effective use of current and anticipated technology, it is felt that
the selected machine language must have a simple basis, be expressive, and be
extendable. If the language starts out simple, then less hardware area will be
expended to implement the bare essentials. Furthermore, the language will not be
useful in a general purpose sense if it is not expressive and extendable. Berkling's

lambda-reduction language [2] and Turner's combinators [7] have been considered by the
authors for kernel languages. Lambda reduction languages are composed of lambda

364



calculus expressions having string based reduction semantics. Turner's combinator
language is similar, except that it has graph based reduction semantics, and makes use
of special purpose functions called combinators. Berkling's lambda reduction language
and its derivatives have the advantage of being more readable, at the cost of the
extra complexity due to bound variables. Combinators, on the other hand, sacrafice
readability for a simpler implementation requiring no bound variables. Lambda-
reduction languages are the current focus of the authors' work because of their
similarity to Lisp. Combinators could play an important future role if they promise
superior multiprocessing performance or hardware simplification is required. It is
expected that once more is understood about implementing these two languages, then
others such as functional Lisp dialects, FFP, and Hope may be considered.

The execution algorithm specifies hardware state transitions in terms of
machine language syntax and semantics. Internal representation, and the
interpretation method each play a role in the determination of an execution algorithm.

Internal representation is the way machine language is encoded to represent
part of the hardware state. Virtually all computing machines use either a string
based representation or one that is graph based. Conventional instruction sets use a
combination of the two. In string based systems, logically adjacent tokens are
physically adjacent in machine memory. In graph based systems, logically adjacent
tokens are linked by indirect references using physical addresses, so need not be
physically adjacent. String based program representations are widely recognized to
have an undesirable difficulty with sequential evaluators. To update a reference in a
string representation, all occurances of that reference within the string must be re-
written. This can require scanning the entire program string -- clearly an %
undesirable action in a sequential evaluator. Graph representations avoid this
problem by allowing each reference to point to the same value, so only one update need
be performed to satisfy all references. By exploiting this property, graph
representations eliminate the need to re-evaluate sub-expressions, and are more
compact. These are all useful attributes for sequential evaluation. However, complex
memory management requirements (including garbage collection), and the "fine-grained
violation" of the Church-Rosser property make graph based representations less
desirable in a multi-processor. String representations have a predictble information % %

flow, and ability to take advantage of simple memory management schemes. For these
reasons, it is felt that string or at least predominantly string based representations
should be considered for multi-processor implementations.

Closely related to internal representation is the issue of how a given
representation is interpreted. Interpretation by evaluation implies program values %
are combined to produce a result. Interpretation by reduction implies that the
program string is repetitively re-written to obtain a result. It is felt that
reduction offers a better alternative for a multi-processor because state and control
information can flow as a unified stream between processing elements.

Several hardware organizations are under consideration for reduction based
multiprocessing. A simple linear organization, for example, is one under
investigation. A processing element of this array uses string reduction. It accepts
input tokens, expecting a left-to-right traversal of the program expression's internal
representation. At any moment, it is responsible for the reduction of a single sub- "'
expression.

Since the current target is Berkling's lambda reduction language, the program -r 4
string consists of a sequence of atoms and constructors. Constructors combine -- %
expressions to form larger ones, in a way similar to what CONS does for lists in Lisp.
Constructors also act as special operators in the languages. The two most important
constructors are lambda and apply.

If a lambda constructor is encountered, then a beta-reduction based on the
beta-conversion operator of lambda calculus is performed. If an application
constructor (applicator) is recognized, tokens are absorbed until either another
constructor is encountered, or the end of the reducible expression is reached. If
another constructor is encountered after the applicator, all tokens absorbed to that

365
.- %



point are passed to the output, that information becomes available to a neighbor
processing element, and interpretation proceeds with the new constructor. If no
additional constructors are found, that means the innermost expression has been 0.

reached and a function application is performed. Lambda constructors follow an
outermost reduction rule, and applicators follow an innermost rule. The innermost
function applications are recognized because the processor only remembers information
since the last applicator. Only outermost lambda reductions are performed by an
element because sub-constructors are ignored. For a single traversal of the program
representation, either all innermost function applications or all outermost lambda
expressions will be reduced.

A linear array of such processing elements yields a network similar to the
Newcastle reduction machine [5]. It differs in that the program expression flows in
one direction, helping simplify the processing element and inter-processor
communications. It is expected that a processing element having a useful set of
functional primitives will require 1OK to 20K devices for control and local memory.
As a result, multi-processor reduction machines based upon these ideas are expected to
offer a viable approach for future symbolic processing.

REFERENCES

[1] -, "Report of the Research Briefing Panel on Computer Architecture", Research
Briefings 1984 for the Office of Science and Technology Policy, the National
Science Foundation, and Selected Federal Departments and Agencies, National
Academy Press, 1984.

[2] K.J. Berkling, "Reduction languages for reduction machines", Proc. 2nd Int. .
Symp. Computer Architecture, IEEE, New York, 1975.

[3] C.C. Cole, "A Pride Of New CPUs Runs High-Level Languages", Electronics,
November 25, 1985.

[4] H. Glaser, C. Hankin, and D. Till, Principles of Functional Programming.
Prentice-Hall International, 1984.

[5] P.C. Treleaven and G.F. Mole, "A multi-processor reduction machine for user-
defined reduction languages," Proc. 7th Int. Symp. Computer Architecture, IEEE,
New York, 1980.

[6] P.C. Treleaven, et.al. "Data-Driven and Demand-Driven Computer Architecture" ACM
Computing Surveys, Vol. 14, No. 1, March 1982.

[7] D.A. Turner, "A New Implementation Technique for Applicative Languages",
Software Practice and Experience, January 1979.

[8] S.R. Vegdahl, "A Survey of Proposed Architectures for the Execution of Functional
Languages", IEEE TRANS. ON COMPUTERS, Vol. C-33, No. 12, December 1984.

34',



Massive Fine-Grain Parallelism in Array Computation o
- a Data Flow Solution

Guang R. Gao
Department of EECS, M.I.T.

Cambridge MA 02139

Abstract
This paper argues that massive parallelism in vector computation can be exploited

effectively utilizing data flow principles in future generation computers. The key is to
organize the data flow machine program graph such that array operations can be fully
pipelined. The applicative nature of the data flow graph model allows flexible scheduling
of the execution of enabled instructions in the pipeline data flow programs. Accordingly,
program transformation can be performed on the basis of both the global and local data d

flow analysis to generate efficient pipelined data flow machine code. A pipelined code
mapping scheme for transforming array operations in high-level language programs into
pipelined data flow machine programs is described.

1 Massive Parallelism in Array Computation

A major driving force in the development of high-performance computers has been scientific
computation. The kernels of such computations typically are expressed in linear algebra _

with all data structured as elements of arrays. In the computation, the bulk of the elements
of an array are processed in a regular and repetitive pattern through the different phases of
execution. For example, many applications take the form of computing successive states of
a system represented by physical quantities on an Euclidean grid in two or three dimensions,
and the new values of each grid point may be computed independently. Thus, the degree
of concurrency is often at least equal the number of* the grid points (for a 100xlOOxlOO
case, the parallelism will be well over a million!). Therefore, the efficient mapping of the
massive parallelism of array computation into machine-level code structure has been a
major consideration in the design of high-performance computer architecture as well as its -r.:"
program trana,orming compilers. p?

2 Fine-grain Parallelism and Array Computation

2.1 Pipelining of Data Flow Programs

Fine-grain parallelism exists in two forms in a data flow machine level program, as shown
in Figure 1, which consists of seven actors divided into four stages. In Figure 1 (a), actors - -
1 and 2 are enabled by the presence of tokens on their input arcs, and thus can be executed
in parallel. Parallelism also exists between actors 3 and 4, and between actors 5 and 6.
In static data flow architecture, we can arrange the machine code such that successive

computations can follow each other through one copy of the code. If we present a sequence

%

/< X

, Figure I Pipeliling of Data Flow Progrm
367 e

A' '~~*.... '...."" T ',-:7 /, ;,, '4 """¢ ":;:€¢'' ' ' [ '... .4 1.



of values to the inputs of the data flow graph, these values can flow through the program
in a pipelined fashion. In the configuration of Figure 1 (b), two sets of tokens are pipelined
through the graph, and the actors in stage 1 and 3 are enabled and can be executed
concurrently. Thus, both forms of parallelism are fully exploited in the graph.

2.2 Data Flow Languages and Array Computations

The use of data flow languages such as Val (11 encourages an applicative style of program-
ming which does not depend on the von Neumann style of machine program execution.
The basic operations of the language, including operations on arrays, are simple functions
that map operands to results. Data dependencies, even those involving arrays, should be
apparent. Since our major concern is how to utilize the regularity of array operations
in the source program, we concentrate on two array creation constructs - the forall and
for-construct expressions.

The forall construct allows the user to specify the construction of an array where
similar independent computations can be performed on all elements of the array. Figure 2
(a) is an expression which defines a one-dimensional array X from an input array A. The
for-construct expression, proposed as a special case of the Val iteration construct, is used
to specify construction of an array where certain forms of data dependencies exist between
its elements. Figure 2 (b) is a for-construct expression which constructs an array X
based on the first-order linear recurrence, using array A and B as parameter arrays. Z.!%

The two constructs provide a means to express array construction operations of desired
regularity without using array append operations. Expressions based on these constructs
are the major code blocks studied in this paper.

fWeM I ,lO.m+tl for ,rromOtom-,

YntoT .trayruali from arry-emsty
it i - 0 im, AMl COMM"
ebeit fi o. t t .( AM ta X 0

ehm ee Ali J* i- II- Bai1-

(Ali-tAl -li -ali 1)D/3 ll

00191

3 Pipelining of Array Operations _

One objective of the machine code mapping scheme for static data flow computers is to
generate code which can be executed in a pipelined fashion with high throughput. The
pipeline must be kept busy j" computation should be balanced and no branch in the
pipe permitted to block the data flow. Furthermore, computation resources should be
efficiently utilized. In particular, the usage of storage for arrays is important because the
user program usually contains vast amounts of array data to be processed.

In a data flow computation model, an array value can be regarded as a sequence of
element values carried by tokens transmitted on a single data flow arc. In Figure 1 (c),
the tour input arcs are presented with four input arrays A, B, C, D; all are spread in time. % -"
Thus, the graph can be fully piplaned.f

We can observe that each actor in Figure (b) is performing a vector operation, e.g., ac-
tor 1 - vector addition, actor 2 - vector subtraction, etc., a total of seven vector operations.
However, unlike the vector operations usually supported in conventional vector processors,
there is no requirement that the activities of one such vector operation be continuously
processed by one or a group of dedicated function units in the processor. The applicative
nature of the data flow graph model allows flexible scheduling of the execution of enabled
actors in the pipeline. In fact, an ideal data flow scheduler (with a sufficiently large data
flow computer) will execute each actor as soon as its input data become available. As a
result, the activities of the seven vector operations overlap each other, performing opera-
tions on different elements of different arrays concurrently. Therefore, massive parallelism " '
of vector operations can be effectively exploited by a data flow computer ,n a fine-grain
manner: the scheduling of the physical function units and other resources for sustaining
such vector operations are totally transparent to the user.

368

0... .0



T.-N

A

Figure 3: A group of code blocks

4 Program Mapping and Optimization Techniques

We have developed a pipelined code mapping scheme which concentrates on the analysis
and handling of the two types of code blocks [6]. It is essentially a two-step process. The . ,d

first step consists of the application of a set of basic mapping rules which can translate
the code blocks into pipelined data flow graphs. In this step, the conceptual model of
arrays in the source program - i.e. the input and output arrays as seen by each code
block - remains unchanged, but the array operations are translated into corresponding
data flow actors in the result graph. The second step consists of the application of a set %-*k"%

of optimization procedures which can remove the array actors from the result graphs of
step 1 and replace them with ordinary graph actors. Thus, the links between code blocks
become ordinary arcs of a data flow graph. The result graph for a pair of producer and n'.,
consumer code blocks may be executed concurrently, both in a pipelined fashion, without
involving array operations.

5 Summary .

Based on the pipelined code mapping strategy, the performance analysis of a recently
proposed data Row supercomputer architecture consisting of 256 processors has reported .
promising expectation in a number of benchmark problems, notably the global weather
simulation model [31, the three dimensional aerodynamic simulation problem [4], and sev-
eral benchmarks studied in [71. It remains to be seen how broadly applicable are such code
mapping scheme in data flow supercomputing.

REFERENCES

I. Ackerman, W. B. and J. B. Dennis. "Valj'A Value-Oriented Algorithmic Language
Preliminary Reference Manual.", Technical Report 218, Laboratory for Computer f_
Science, MIT, Cambridge, MA, 13 June 1979.

2. Ackerman, W. B., "Data Flow Languages", AFIPS Proceedings, Vol. 48: Proceed-
ings of the 1979 National Computer Conference, AFIPS, 1979.

3. Dennis, J. B., Gao, G. R. and Todd, K. W., "Modeling the Weather with a Data
Flow Supercomputer", IEEE. Trans. on Computers, C-33, 7, July, 1983. ,,'.

4. Dennis, J. B., "Data Flow Computation - A Case Study", submitted for publication,
Lab. for Computer Science, MIT, Cambridge, M4, Jan. 1986.

5. Gao, G. R., "A Maximally Pipelined Tridiagonal Linear Equation Solver", to appear
on the Proceeding of IFIP Highly Parallel Computer Conference, Nice, France, March

Ph.1986.

6. Gao, G. R. "A Pipelined Code Mapping Scheme for Static Data Flow Computer',Ph.D dissertation in preparation, Lab. for Computer Science, 1986. i,

7. Adams, G. B., Brown, R. L. and Denning, P. J., "Report on an Evaluation Study of
Data Flow Computation", Research Institute of Advanced Computer Science, April,

369 'U

S . .4



AUTOMATED DATA FLOW DIAGRAM VERIFICATION

Reva Frieduan
Northwestern University, Evanston, Illinois

Waldo C. Kabat
University of Illinois at Chicago, Dep. of Electrical Engieneering

and Computer Science

Wojtek Kozaczynski

University of Illinois at Chicago, Dep. of Information and Decision

Sciences

SUMMARY

An initial implementation of an interactive Automated Data Flow
Diagram Verification system (ADFDV) is described. ADFDV is a

component of the larger sytem called System Analyst's Apprentice
(SAA). SAA is being developed to assist an analyst in different
phases of Computer Information System (CIS) design and development.

The ADFDV is a tool for mechanical checking of Data Flow Diagrams for

correctness. The philosophy behind the system is to assist the
analyst in the error prone job of the verification of Data Flow %

Diagrams for large programming projects.

Structured Analysis and Design techniques have been used to avoid
errors that may have an impact on the quality of final CIS design.
First, in early 1970s, these techniques were successfully applied to
the development of highly structured programs. In late 1970s Edward
Yordon and Larry Constantine first described a structured process-
oriented method for system analysis and design. This method is based
on functional system decomposition and stresses flow and

transformation of data in the computer system. It uses diagramming
techniques for system design specification. Data Flow Diagrams are
the focal point of those techniques. They are used as a formal
descriptive language as well as informal means of communication
between system developers and future system users. They are used to
describe the system on very high logical level as well as on the low
physical level.

The system analysis and design method first proposed by Yordon and

Responsible for all corespondance

370

AJ



Constantine and later improved by others is well known under the name ,
of Data Flow Analysis Method (DFAM) and has been widely accepted by

the IS professionals. The purpose of the present work is to develop a

prototype expert system, System Analyst's Apprentice (SAA), to assist

the analysts in the process of application design and development

through DFAM techniques. The gratest advanatage of the system comes
from the fact that it will free the analyst from a great amount of

tedious and low level work. That in turn will give him the oportunity

to direct his attantion to higher level problems.

The current system implementation is based on the formalization of the

primitives for the interactive design of DFDs and the rules for DFD

verification using knowledge representation language MRS as a tool.

New primitives and new rules can be added to the system. The greatest

advantage of ADFDV can be realized when interactive development of a

Data Flow Diagram is done with the verification option running in the

background. The design and implementation of ADFDV serves as a

testbed for the design of System Analyst's Apprentice. .4

Keywords: Expert Systems, Information Systems Analysis, Information
Systems Design, Data Flow Analysis, Data Flow Diagram Verification.

>.'

***,, .

371

N

',' A



FINELY GRAINED PARALLELISM IN AN APPLICATIVE ARCHITECTURE

John T. O'Donnell
Computer Science Department

Indiana University
Bloomington, Indiana 47405

THE APSA PROJECT

The Applicative Programming System Architecture (APSA) research project [2, 3, 4, 5) is developing
new ways to use finely grained parallel architectures to support applicative programming languages. The
goal is a parallel machine that is easily programmable with a LISP-like language. The programmer does
not need to control the parallelism explicitly. Instead, the system provides a number of rich types of data
structure with parallel operations that perform complex operations on the data structures. Some of these
data structures are used by the language interpreter, and others are available to the programmer. Even
a programmer who does not directly use any of the parallel data structures will benefit from the system
because the language interpreter itself uses parallel data structure operations to run faster. This approach
ensures that programs can actually make use of the architecture's power and it greatly eases the burden
of writing parallel programs.

In a conventional computer, the CPU can issue two "instructions" to the memory: fetch and store.
Programmers must implement all their data structures and algorithms using just these two operations,
along with the ability to do address arithmetic in the processor. APSA consists of a processor connected
to a heap memory which executes about 30 data structure instructions in addition to fetch and store. Some
of these heap memory instructions can do work that requires a loop if only fetch and store are available -
in a constant number of cycles. Several examples of APSA data structure operations are given below.

Most approaches to multiprocessing view a computation as a given set of instructions that must be
executed, and they try to partition the instructions into subsets that can be executed in parallel on separate
processors. In contrast, APSA uses parallelism to reduce the number of instructions that must be executed, e; A

and it reduces the time complexity of several key algorithms by 0(n), where n measures the size of the

problem.

APPLICATIVE LANGUAGES AND PARALLELISM "1 ".

In most recent research on parallel computing, the underlying language is imperative (e.g., Fortran), _,

and the underlying architecture comprises conventional processors, memories, and switches organized as
a coarsely grained multiprocessor or vector processor. These assumptions limit the amount of parallelism
that can be obtained because:

" Imperative languages place unnecessary constraints on the order and concurrency of primitive opera-
tions.

" Systems built from conventional processors and memories cannot fully exploit the fine grain parallelism
that VLSI hardware makes feasible.

APSA produces parallelism through an applicative language running on an architecture with an extremely
fine grained mixture of logic and storage. This serves several purposes, discussed below: (1) APSA makes
the speed of an applicative program comparable to the speed of an imperative program by making the
primitive applicative operations fast, (2) APSA can perform independent reductions in parallel, indicating "q
that it may be able to exploit the high level parallelism inherent in applicative languages, and (3) the
APSA hardware uses t6e ability of VLSI to mix logic and storage in regular layouts.

The main drawback of applicative languages is that they are usually slow, because conventional data
structures based on fetch and store cannot support many primitive applicative operations efficiently. For
example, a FORTRAN program can fetch the value of a variable simply by executing a fetch on a conven-
tional machine, but fetching the value of a variable in an applicative language is much more complex andusually requires iteration. This phenomenon creates the illusion that the applicative language is inherently".,.

slower than FORTRAN, but the real problem is just a mismatch between the language and conventional ,-
architectures. APSA uses parallel data structure operations to make the primitives for an applicative '.
language execute in a small constant time. -%

372



As it runs, an applicative program generates many expressions whose evaluation cannot affect the
execution of other expressions. Several "parallel reduction machines" have ,.,een proposed to exploit this
inherent parallelism. In many cases APSA is able to do parallel reductions, and further research in this
area looks promising.

Since it performs data structure algorithms in the heap memory hardware, APSA combines substantial
processing logic with every memory word. This organization takes advantage of the properties of VLSI
circuits: a large heap memory consists of a simple regular pattern of memory word components. In
addition, the heap memory could use wafer scale integration because of the simple interconnection of its
components. A preliminary VLSI design of the heap memory is in progress.

PARALLEL DATA STRUCTURE ALGORITHMS

Many key algorithms for implementing applicative languages are generally considered to be inher-
ently sequential. For example, indexing into a linked list, marking accessible words in a garbage collector,
managing continuations and maintaining variable environments are all crucially important for applica-
tive language implementation - yet these are implemented sequentially even in proposed multiprocessors.
APSA implements all these operations quickly by providing special instructions in the heap memory that
use hardware parallelism instead of software iteration.

The implementation of a combined list/vector data structure illustrates how APSA works. Vectors are .. -
normally implemented by storing adjacent vector elements in storage locations with consecutive addresses.
This allows the address generation hardware in conventional memories to access an arbitrary vector element
directly. However, it is very expensive to insert or delete an element in the middle of the vector, because
that requires recopying much of the vector in order to make space for the insertion or to fill up the hole
left by the deletion. The properties of linked lists are just the opposite: "indexing" into the middle of
a linked list is slow, because it requires a loop that follows pointers from one element to the next, but
insertion and deletion are fast because they require only a few pointer manipulations. Programmers know
how to use vectors and linked lists effectively, but they also 'know" that a data structure cannot combine
the advantages of both.

The APSA heap memory can usually store a linear data structure compactly, similarly to the con-
ventional vector representation. It can index any element directly, and it can also perform an arbitrary
insertion or deletion in constant time by moving as many data elements as necessary out of the way in
parallel. This provides the programmer with an extremely powerful data structure. Instead of thinking
about how to schedule multiprocessors, the programmer thinks about how to use the flexibility of the data
structure manipulation made possible by APSA. Lists and vectors are just special cases of the APSA data
structure.

Parallel garbage collection shows another way that APSA speeds up algorithms, and it also illustrates
how two levels of parallelism can be combined in a single algorithm. Garbage collection is one of the
most crucial algorithms required to implement applicative languages, and its performance may determine
whether an applicative programming system is usable. Other researchers have proposed several ways to - -*

construct parallel garbage collectors. Those techniques involve two processors running the interpreter and
the garbage collector simultaneously, but the processor doing the garbage collection is strictly sequential. % %
APSA also runs the interpreter and garbage collector in parallel. In addition to this high level parallelism,
the APSA heap memory is able to mark many accessible words in parallel, achieving low level parallelism
within the garbage collector. The resulting garbage collector is faster than it would be if either form of
parallelism were used without the other.

APSA'S HARDWARE AUGMENTS CONVENTIONAL RAM ADDRESS DECODERS

The heap memory organizes all the memory cells into a linear shift register with data paths connecting
neighboring cells. In addition, some of the memory instructions require a tree of combinational logic
connected to the memory cells. Even with all this hardware, the APSA heap memory is similar in speed to " "

conventional RAM memories, because RAM address decoding logic has the same time complexity: log N
for N words.

This analysis explains the source of APSA's parallelism. Conventional memories get very little power
from their address decoders: they i,-.)t implement fetch and store. APSA uses its combinational logic tree
to implement a variety of parallel uata structure primitives.

373



EMULATION OF APSA USING FINE GRAIN PARALLEL MACHINES

In general, it is not clear how to implement LISP on parallel computers. However, the APSA research
provides an approach for doing this. Instead of implementing LISP directly on the parallel computer, we
can emulate the APSA heap memory, which is usually more straightforward. The processing elements of
the real parallel computer can then execute the applicative data structure operations in parallel.

Following this method, APSA is currently being emulated using the Goodyear Massively Parallel If
Processor (MPP) [3, 6, 7]. The Connection Machine (CM) [1] would also be a good host for emulating
APSA. This raises a number of interesting issues relating to the MPP and the CM. For example, the
MPP processing elements can communicate only with their nearest neighbors, while the CM has long data
paths. However, the MPP has an advantage that may compensate for its lack of connections between
distant processors: the MPP communication algorithms are deterministic, synchronous and very fast.
Although the CM can send messages directly over long distances, it cannot guarantee their arrival at a
particular time. Thus the APSA emulation requires less overhead due to synchronization on the MPP
than on the CM. We do not know yet what the relative performance of the MPP and the CM would be.

DISCUSSION

There is a tradeoff between how specialized a machine is and how successful it is on a wide range of ,.-

applications. There are two ways of looking at APSA:

* It is a special purpose machine, and its intended application is the implementation of applicative
language interpreters.

* It is a general purpose programming language host which can run algorithms for any application.
Thus APSA makes any applicative program run more efficiently. APSA's chief advantage is that it is t..

easy for the programmer to obtain the benefits of its parallelism, because the programmer doesn't need
to worry about breaking the problem into independent parts, or scheduling a number of processors, or
reducing memory contention. However, there is a penalty for this ease of use: the fastest possible parallel
algorithm for a particular problem may not be able to run on APSA. An important area for further research
is investigating how to fit more specialized parallel algorithms into the APSA framework.

APSA achieves two levels of parallelism in its garbage collection algorithm: (1) simultaneous instruc-
tions issued by two processors and (2) parallel operations within the heap memory. Many other problems
also exhibit several levels of inherent parallelism, and it will be fruitful to try to exploit as many levels as
possible in one system. If it is possible to combine APSA's heap memory operations with multiprocessor
parallelism, the resulting architecture might provide seve-al levels of parallelism for a large set of problems.

REFERENCES

[1] W. Daniel Hillis, The Connection Machine, The MIT Press, Cambridge, Mass., 1985.
[2] John T. O'Donnell, A Systolic Associative LISP Computer Architecture with Incremental Parallel

Storage Management, Technical Report 81-5, Computer Science Department, The University of Iowa,
Iowa City, 1981. -

[31 John T. O'Donnell, "An Approach for Simulating an Applicative Programming Storage Architec-
ture on the Massively Parallel Processor", Technical Report 179, Computer Science Dept., Indiana
University, Bloomington, Sept. 1985.

[4] John T. O'Donnell, "An Architecture that Efficiently Updates Associative Aggregates in Applica-
tive Programming Languages", 1985 IFIP Symposium on Functional Programming Languages and
Computer Architecture, Springer-Verlag Lecture Notes in Computer Science 201, 1985.

[5] John T. O'Donnell, "An Efficient Architecture for Implementing Sparse Array Variables," Twenty-third
Allerton Conference on Communication, Control and Computing, Coordinated Science Laboratory,
University of Illinois, pp. 986-995, October, 1985.

[6] John T. O'Donnell, "Simulating VLSI Systems Using the Massively Parallel Processor", Proceedings
of the 1986 Summer Simulation Conference, The Society for Computer Simulation.

(71 Jerry L. Potter (ed.), The Massively Parallel Processor, The MIT Press, Cambridge, Mass., 1985. a
37.

• r- F_ . . . . . . .* .* .



Session 16: Recommendations ".°

..,,..

*% 4

375

- r\. !v' ,,'",'5"" . '','.",'. ,-" '. ,''North-.'-',. Ca oln State'-- University,.--'- .-.--- ,,.----



DISCUSSION SESSION: "Future Directions in Computer Architecture
and Software"

BY: Dharma P. Agrawal

CSNET ADDRESS: AGRAWAL@MCNC

COMPMAIL+ D.AGRAWAL ,-

d.

TOPIC: Instruction Set Considerations

- RISC vs. CISC ".,-
- Mi croprogrammi ng
- Two level microprogramming
- Nanoprogramming

TOPIC: Custom Chips
Custom Chips vs. Off-the-shelf Component

- Lead time
- Impact of algorithm enhancement
- Changing algorithm r
- Use for multiple applications

TOPIC: Memory Hierarchy

- Cache
- Second level cache KN
- Large shared memory and access time .41
- Multiport access conflict
- Differential growth in speed

(RAM fast, )ISC slow) J d
- Associate ner.
- Hot spots
- Sync Primitives
- Interconnection Hetwork

376

0-,. -



8194 949 PROCEEDINGS OF THE MORKSMOP ON FUTURE DIRECTIONS IN 5/!
COMPUTER ARCHITECTURE.. (U) BATTELLE COLUNIUS LABS

RESEAR:CH TRIANGLE PARK NC 0 P ARANAWL ET AL. 36 RUG Si

UNCLASSIFIED ARO-S6394-EL DRAA29-81-D-0100 F/O 12/5 M



M~ 122.5
LI

JIJtJII25 111 .4 I



TOPIC: Interconnection Networks

- Optical IN
- Cross bar switches
- Fault-Tolerant Reliability

(very large network - 10,000 proc.
for massively parallel M/C)

- Multistage interconnection network
- Multibus
- Seri al/paral 1 el
- Circuit switched/package switching
- Hypercube
- Tree
- CCC, Pyramid

TOPIC: SIMO / MIMD / Reconfiguration Strategies

- use of switches and involved complexity
- WSI
- Data distribution
- Clock Skewing / data skewing
- Automatic Configuration i.
- Dynamically changing precedence graph

TOPIC: Granularity Issues (based on instruction or data)

- compilation granulation
- execution granulation
- large grain
- small grain
- medium grain
- degree of parallelism
- computation communication trade-offs

TOPIC: Granularity based on Processor Precision

- access to parallel machine

TOPIC: Mapping Algorithm and Task Assignment

match1ing algorithm & architecture
* choosing right algorithm
* given algorithm, choose architecture
* reconfigurable system for a given algorithm

377 I

, ., , • , 4 . N . ... , . .; ,



computation model
correctness A accuracy

- effectiveness of measurement
- dynamic scheduling
- static scheduling
- performance parameters

trade-offs
- benchmarking

TOPIC: Reusable and Retargetable Software

- Generic building block
- What do we do with code for older machine

(uni processor)?
- How could they be modified to run on a

newer parallel system?
- Automated tools?

How & what?
- Retargetable code generator
- Software factories

TOPIC: Distributed Operating Systems

- Multiple kernels
- Coordination

global resource management
specially heterogeneous

- Concurrency control
- Replication (some service) sharing
- Network V/S, Multicomputer O/S
- Global resource management
- Tradeoffs of kernel v/s high level mar.

TOPIC: Concurrency Control

- Database update
- Formal correctness
- Heterogeneous O.D. Base
- Synchronization

Synchronous vs. Asynchronous Algorithms
- Performance Evaluation
- Non-serialized transactions
- Deadlock
- Shared Memory Access Hardware

Fetch & Add: cost effectiveness
and alternatives

378

-9~



TOPIC: MIMD Parallelism and Support

- Shared Memory
" vs. local
" vs. hybrid

- Packet Switching
- Synchronization Overhead

TOPIC: VLSI - Progranming

* How do you do It?
* What needs to be done?

- Parallel Programing
- Experience with Parallel System & Languages
- Implicit vs. explicit parallelism & tradeoffs
- Machine dependent vs. independent

TOPIC: Logic & Functional Programming

- For what applications?
- Logic Programming in distributed data bases
- AI
- Large-grain parallelism?
- Implementation
- Hardware support

37.

379

C f r a v a. *'V * q * 
"=
.
¢

r
h
y 1

"
"*- j' ' ; " ; 

'
% m %" p"wO



Future Directions in Computer Architecture

A Recommendation for the Army Research Office Workshop on
Future Directions in Computer Architecture,

April 1986

E. Douglas Jensen

COMPUTER SCIENCE DEPARTMENT
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

412-268-2574

1. Summary
This is a brief outline of the author's recommendation about one future direction which computer

architecture ought to take. The focus is on lowering the preponderant evolvability and interoperability

component of life cycle costs for real-time C3/battle management computer systems, through greatly

improved architectural (particularly processor) modularity; an additional cost/performance contribu-

tion by such modularity is the enhanced feasibility of architectural algorithmic specialization (an

important capability despite the misunderstandings of RISC proponents).

2. Recommendation
This recommendation is directed towards embedded computers for real-time supervisory control,

particularly in DoD combat platform and battle management applications - it is applicable in some

degree to many other contexts.

In real-time control systems, the computer requirements are ill-defined initially and continue to

change across not just the design phase but even across the entire lifetime of the system; that lifetime

is often decades in DoD and certain industry (e.g., electric utility) applications. The principle reasons

for this are: that the application is complex and is not (perhaps cannot be) well understood; the

application environment (e.g., the threat) varies according to geopolitics, doctrine, etc., requiring that

the system functionality be altered, the performance improved, and the size increased; technology

evolves, making some desireable system attributes possible and others more cost-effective, but also

making older technology first exhorbitantly expensive and then unavailable for further production or

even maintainance, so internal and transparent substitution is called for; the computer is considered

the ultimate recourse for accomodating system modifications, because "it's a simple matter of

programming."

380 ...

: ,a"

a"n



We will use the term modularity for the characteristic a computer system needs in order to be

successful In these exceptionally demanding circumstances. Common synonyms Include
"interoperability", "evolvability", and "extensibility," all of which we prefer to consider system at.

tributes which depend on modularity.

Both software (e.g., the use of standard high level languages, and increasingly, operating systems)

and hardware play a part in computer system modularity. We are concerned here with hardware, and

specifically with approaches for individual processors; these can then be utilized in various kinds of

multiple-processor computers to achieve additional modularity.

The costs of insufficient computer system modularity are consistently estimated to be an order of

magnitude larger than the initial design and procurement costs. But a high degree of modularity is

almost never even one of the driving forces in processor architecture, which suggests that computer

system designers generally exhibit a blind spot and misplaced priorities (e.g., the single-minded pas.

sion for throughput in millions of instructions per second), at least so far as the real-time control

environment is concerned. Consequently, the technology for achieving modularity is very primitive,

and much more research and experience are necessary.

One approach has been the family of upward-compatible computers: but even when there is effec-

tive compatibility among family members, the cost/performance and functionality alternatives are

limited and have been chosen by the computer manufacturer (with his own constraints and objectives

in mind), not by the users for their requirements.

More appropriate would be an expandable range of processor instruction set architectures, starting

with a basic core of instructions similar to the RISC notion, except that neither single-cycle execution

nor frequency of use are inherently the proper (much less sole) criteria for membership in this core.

On such a foundation, further functionality is added as justified by cost-effectiveness tradeoffs to

meet current system requirements - for example: performance (e.g., algorithmic specialization, not

only for an application but also for the system, such as object invocation, interprocess communica-

tion, real-time scheduling); fault tolerance (e.g., support for atomic transactions, replication); software

compatibility.

This suggests the use of microcode as a processor modularity techniqu., although historically it has

been devoted primarily to instruction set interpretation, with fewer instances of vertical migration from

the operating system level and fewer still from the application level. While the advantages of

microcode have not yet been fully exploited (for various technical and non-technical reasons), as -

381

P V VV V V V V * j ,.



currently envisioned it is inherently limited. The microinstruction set is bound to a particular collec-

tion of data path resources - the functional (e.g., arithmetic) elements, storage units (e.g., registers),

and transfer paths - and often there are interpretation segments (e.g., macroinstruction fetch) which

are hardwired. This permits only limited flexibility in creating instruction set architectures and func-

tionally specialized microengines tailored to given requirements.

Maleability of the instruction set (exo.)architecture is only part of the solution, however; a high

degree of modularity implies that its implementation (endo-architecture) must also be alterable -

e.g., acceleration mechanisms such as pipeline stages and caches can be included when and where

they are needed. At the present time, the instruction set architecture and its implementation are 7l.

always bundled together In any given processor, whether or not it is microprogrammed.

Another form of modulaity is found in the idea of co-processors, such as the popular floating point

units for microprocessors. The interfaces to current Incarnations of co-processors are improving, but

they are still excessively constrained. Control is usually master/slave and highly stylized (e.g., no

form of nesting or other composition), execution is synchronized to the instruction sequencing of the

main processor, and there are too few shared resources between the processors. An 'extended

function unit', which is ordinarily a simple synchronous adjunct to the processor's main arithmetic

unit, can also be used for incorporating certain extensions.

Thus, the recommendation is that effort be directed toward seeking new exo- and endo-

architectural concepts and techniques which overcome the modularity obstacles of con-

ventional processors. It should be possible to have a physical and logical framework that remains

constant, to which various special-purpose and general-purpose functional (data handling and

control) hardware and microcode elements are added at system configuration time as

cost/performance tradeoffs call for. This can be done in a manner which combines the best of both

the RISC and CISC philosophies - complex functions implemented in hardware or microcode are

faster than equivalent software, but do not slow down the execution of simple functions which require

only a single cycle. It should be possible for functions to be migrated among software, microcode,

and hardware levels transparantly to the programmers, perhaps by elmininating the classical

dichotomy between software invocation mechanisms (i.e., procedure calls) and hardware/microcode

invocaction mechanisms (i.e., op codes), making the invocation of every functic'i identical regardless

of its implementation.

382

( ' "



FUTURE DIRECTIONS IN COMPUTER ARCHITECTURE
AND SOFTWARE WORKSHOP

Comments by J. R. Burke, Chairman Session 5
Interconnection Strategies

Interconnection networks are required to provide communication links in a
multiprocessor computer system. Whether such networks are static or dynamic,
their throughput can become a bottleneck when the number of processors is
large. The paper "Image Texture Classification with an Optical Crossbar
Interconnected Processor," in the Interconnection Strategies session describes
a development which may overcome this bottleneck. The crossbar is effected
optically and dynamically using, for example, lenses or acousto-optic gratings
to determine the optical path between an array of laser diodes (representing
sources) and an array of photodiodes (representing destinations). Messages
would be passed by modulation of the laser diodes.

The following recommendations were abstracted from the summary session where
the workshop presentations were discussed:

1. The trade-off between design of custom chips vs. off-the-shelf ships
will require modified algorithms.

2. Differential between processor speed and memory access time is increasing.
On chip memory and overlapped pipelining of instruction and operands is
helping. However, there are no revolutionary ideas as to how to fix this
limiting bottleneck.

3. TI presented a paper on a fiber optic crossbar switch for a multiprocessor
interconnection network. Because of large bandwidth of fiber optics,
the bit rate can be much greater than on wire. Thus serial rather than
parallel word transmission can be used. This significantly reduces the
number of wires that need to be used. There was unanimous agreement that
this technology should receive further support. As the DARPA contract
with TI is about to end, I have suggested to John Zavada that he might
want to consider a follow-on.

4. It was argued by some of the attendees that there are important
applications where a multiprocessor system containing 10,000 processors
would be useful (i.e., an imaging system using one processor per bit).
In contrast to general belief, it was also argued that programs to exploit
such a large degree of parallelism would )e written if the machines were
available.

5. As a corollary to #4, there is a need to provide multiprocessor machines
to the community in order to accelerate experience in writing and testin.
programs to exploit parallelism for speed-up.

6. Automatic dynamic reconFiguration of processor interconnections to fit
changing precedence graohs.

7. An evaluation of what are the desired performance measures for machines.

383

% %!



8. More appropriate benchmark algorithms/programs.

9. Theoretical measures for determining architecture effectiveness
independent of software.

10. Tools to retarget software to new machines needed to avoid inefficiency
of older languages such as Fortran on such machines. Billions of
dollars has been invested in software development which is now OBE.

11. While distributed operating systems provide fault tolerance, efficiency
and survivability, cooperation and correlation are problems. Techniques
for global resource management need to be developed.

12. Tradeoffs between the uses of synchronization versus asynchronization
need to be examined. Partial synchronization may be more important
for some problems.

.'"

13. Need theory for non-serialized transactions. .

14. Heterogeneous networks of machines are needed for some applications.
Work on how to develop data bases for such networks is needed.

15. More work on Logic and Functional Programing.

384~

t.'......

384%



Doyce Satterfield

SUMMARY

ADVANCED DISTRIBUTED ON-BOARD PROCESSING

The U.S. Army Strategic Defense Command has been over the past few years
investigating advanced signal and data processing technology for obtaining
target information with complex infrared (IR) sensors. The results of
these investigations have culminated in the development of a very sophisti-
cated hardware-in-the-loop signal and data processing testbed. This testbed
facility consists of a Mosaic Sensor Emulation Unit (MSEU), an Auxilliary
Sensor Signal Processor Unit (ASSPU), and an Advanced Distributed Onboard
Processor (ADOP).

The ADOP system has a 15 MIP capability and comprises five processing
elements or nodes which communicate on three, 1 M word/sec independent
global buses. Each node contains three Central Processing Units (CPUs),
three Floating Point Processors (FPPs), one million (1M) words of 17-bit
memory, and a Global Bus Interface Controller (BIC).

The ADOP node architecture exercises four basic functions:

(1) A fixed point, MIL-STD-1750A instruction set architecture, CPU
capable of executing the fixed-point Digital Avionics Instrumentation
System (DAIS) instruction mix at 1 MIPS. The CPU implements a pipelined
instruction queue and embedded memory management unit function to achieve
this throughout, while addressing up to IM words of memory. The basic CPU
microcycle time in 200 nsec while the memory system access time is 350 nsec.

(2) A FPP serves as an adjunct to the CPU to facilitate achievement of
1 MIPS full DAIS floating point operation. Using the built-in function
generator option of MIL-STD-1750A, special macro instructions can be coded
to do special operations for signal processing operations. The FPP contains
a hardware multiplier and an ALU which essentially "shadows" the CPU
arithmetic Logic Unit.

(3) A four port local memory organized as 256K words by 17 bits (1 parity
bit). A read-modify-write function facilitates semaphore operations required
by the operating system. The system of node-local buses provides access to
all of memory by each CPU.

(4) A BIC, which coupled with the real-time operating system,
efficiently handles all global communications. The BIC accesses message
queues in node-local memory and moves messages on the system of global buses.
A logical addressing scheme allows the routing to be configured by the -
operating system without affecting application software.

The ADOP node structure allows virtually contention free processing of an %.%

application program when data sets/algorithms are mapped non-overlapping. To

this end, a complete set of software tools has been developed, including a PASCAL

compiler and a distributed operating system. The use of these tools provides
a strict adherence to programming standards and configurdtion controls that make
experimentation on the Multi-CPU, Multi-Node (distributed) architecture an
achievable task.

385

' -. **-. p - "°.



SUMMARY N

ADVANCED DISTRIBUTED ON-BOARD PROCESSING

(Continued)

The distribution of data bases, the mapping onto the architecture
and the distributed operating system for this research and development
program will be described at the 5 - 7 May 1986 workshop.

I

386.

" **I.

3.-. !-

*- f

* ' • :

J.-W

386 
-

N - - *..*~**.,***'*.- . . .



r-

ARO workshop conclusions

Jon Hauney

I will restrict my comments to two software areas discussed at the
workshop, leaving the other areas to those with more expertise.

Reusable Software

At the wrap-up session, two distinct topics were grouped under the
heading of "Reusable Software." The first problem is the continued use
of existing applications on new systems. This is an important problem
because of the vast investment represented by the body of existing code.
To protect this investment, the code must be adapted to new versions of
a system, and to new operating systems, which may support different T

dialects of the programming language. Such transport, although impor-
tant, does not seem to be a major research issue. The presentation by
Takefuji and Dowell at the workshop described a fairly simple expert
system for dialects of LISP; the Lexeme corporation is advertising a
commercial product that translates among high-level languages such as
Fortran, Pascal, and Ada.

A harder problem is efficient execution of existing code on very
different hardware, such as vector and parallel machines. Again, this
is important if the benefits of new architectures are to be extended to
existing programs. This problem is addressed by much of the research
into parallel compilers, especially the so-called "dusty-deck" com-
pilers. There is still a lot to be done in this area. However, the
general feeling of the languages-and-compilers researchers at the
workshop was that the future lies with newer languages, more closely
related to logic and functional programming than to Fortran.

The other Reusable Software problem is one of productivity in the
writing of new applications. Programmers can be more productive if they
can reuse parts of previous projects, or access a library of program
building blocks, rather than having to start from scratch. This problem
is the one addressed by the presentations in the workshop, and it is the
kind of thing that the STARS program was set up to attack. This is
clearly an important problem for the future.

Functional and Logic Programming

At the session on Logic and Functional Programming there was, of
course, agreement that this style of programming is the direction to go
in the future. Most people working on compilers and related software
for parallel architectures have decided that functional languages have
overriding advantages. It may be worthwhile studying ways to convince
the everyday programmer that this is so.

The current research projects presented at this session were
divided on the question of automatically detected parallelism versus
explicitly programmed parallelism. One presentor began by stating that
he rejected explicit parallelism and described how he avoided it,
another described a parallel architecture for LISP using explicitly
coded parallelism. This disagreement applies to conventional imperative
languages as well as logic and functional languages. In the discussion

387 .



following, the consensus was that automatic detection of parallelism is WI

preferable, especially if very large numbers of processors are avail-
able, but that there will always be applications that push the limits of
performance and require close programmer control of parallelism. It
would seem, therefore, that it will continue to be important to do
research in automatic detection and exploitation of parallelism (both in
conventional and in functional languages), and to determine what the
best trade-off point is between automatic and explicit parallelism.

%

388 - "

% V



Bell Laboratories

Crawfords Corner Road
Holmdel. New Jersey 07733
Phone (201) 949-3000

May 18, 1986

Professor Dharma P. Agrawal
Professor & Workshop Chairman
North Carolina State University
Department of Electrical & Computer Engineering ,

Box 7911 1,
Raleigh, NC 27695-7911

Dear Professor Agrawal:

I enjoyed attending the workshop on future directions in architecture and software.
Although I spent only one day at the conference I found the papers very interesting. More
importantly, the attendees represented the right mix of academia and industry and I found
the discussions extremely fruitful.

The only area I would like to see covered in addition to the ones already discussed at the
conference is the availability of new technologies. Development of new technologies such as
wafer scale integration, optical computing, etc., can (and will), have a major impact on
future computer systems.

Thank you very much for the opportunity to participate in the workshop. I look forward to
interacting with you again in the future.

Yours Aery/tul /

Sudhir R. Ahuja
Head
System Architectures

k.-k
Research Department -R

389

%'.,

as,, ,, , . *,.'. . ... ..... .R, .. ,.., ., -)'..,



DEPARTMENT OF THE NAVY
NAVAL TRAINING SISTEmS CENTER

2 Jun 86

Dr. Dharma P. Agrawal
Department of Electrical and Computer Engineering
North Carolina State University School of Engineering
Box 7911
Raleigh, NC 27695-7911

Dear Dr. Agrawal:

I must apologize for not answering your letter sooner relating to the recent
ARO-sponsored workshop. Official travel seems to have occupied most of my time
since returning from the workshop.

Speaking very candidly, I did receive benefits from participating; such as
informal professional opinions and technical discussions in addition to the
contacts made. However, as was discussed, the thrust of some of the
presentations covered previous work rather than postulate future directions of
the technology. Concerning my session (Session 4), 1 did feel that a portion
of the presentations were within the workshop theme. The discussion by Dr.
A. J. Smith of UC-Berkley concerning the future of memory hierarchies seemed
to be of particular interest to the participants. The presentation of Dr. P.
A. Subrahmanyane of AT&T Labs concerning parallel architectures for integrated
system design tools was unique to a technology area (CAD/CAM) that is becoming
increasingly important to the total computer technology arena.

For my own input to you, I am directly involved in exploratory development
(6.2) and advanced development (6.3) projects related to specLal parallel
processing architectures for unique very high speed processing. These also -

relate to future real-time artificial intelligence (expert systems) adjuncts
to training systems. The potential of dataflow architectures to provide
solutions to our long range requirements is also being addressed. It goes
without saying that with the advent of the new standard DoD language, Ada,
software developments should assume a new and different perspective for the
future. Much work needs to be accomplished in this area.

My overall evaluation of the workshop was positive and I am of the opinion it
served a need that should be exploited in the future. I would hope ARO would
see the potential for and value of such workshops and assume the initiative in
planning and executing them periodically. I would appreciate any opportunity
to attend and participate in any such workshops.

I felt that you and your staff did a very fine job in planning and running the
workshop. The location chosen was certainly unique and the facilities adeqtate.
I will appreciate maintaining a contact with you in the future for the beneficial
exchange of informatLon related to the rotal area of coMpliter technology.

Sincerely,

C. FORRE~ST SUMER, P.E.

Head, Advanced Computer Technology Branch
Dr9varch and Development Department

!W % , "W - ... .. ,' . ..... ,...f-/-.-,.- .. .- .. *'-,.." - .. "



August 4, 1986

TO: Dharma P. Agrawal
Department of Electrical and Computer Engineering
232 Daniels Hall
North Carolina State University
Raleigh, NC 27695

FROM: R. R. Oldehoeft L-419
Lawrence Livermore National Laboratory
P. 0. Box 808
Livermore, CA 94550

SUBJECT: Future directions in architecture and software

Thank you for your recent telephone call. I had intended a prompt
response to your original request, but the end-of-semester rush com-
bined with my relocation to California for my sabbatical leave prevented
me from getting to it. I assumed my input was no longer timely, but I
appreciate this opportunity nevertheless. Since I am not an architec-
tural specialist, I can only comment from my point of view as an
academic computer scientist and a software designer.
1. An important requirement for progress in parallel processing

research is the provision of parallel processing testbeds for
academic researchers. Since many will not have the capability or
propensity for construction and maintenance of custom systems,
this means that commercial systems are necessary. Fortunately,
some are currently available, and they represent a variety of
approaches to parallel processing. They include BBN's Butterfly,
the Sequent Balance 21000, the Loral Dataflow system, Intel's
Hypercube, the Ncube boards for use with an IBM AT microproces-
sor, vector processor add-ons, etc. More will surely appear.

Probably the best way to make these systems widely available
(except for the cheapest) is to establish network access to "many"
centers whose purposes are several. First, the centers must make
availability and uptime of the systems and the network their prime
concerns. Second, they need to help their clients in learning to use
the systems. Third, they must individually and collectively dissem-
inate useful information, tools and techniques to the entire com-
munity and the larger audience as well. Funding needs to be avail-
able for the establishment and continuing support of these centers,
and the country's network capability needs to be expanded to
reach more researchers.

There should be an educational aspect to these centers as well. We
need many more people with an appreciation of parallel processing

391

- '



as a general technique for effective programming. To the extent
possible, these centers should support some instructional access to
the supported machines. The extent depends on the amount of
total access that can be provided.

2. On the software side, I'd like to discuss current issues with which I
have some familiarity. The importance of applicative (functional)
programming languages is beginning to be understood with the
early results of the SISAL project, among others.
a) Additional language development is necessary to bring projects

"up to speed" with respect to features that have been
developed largely outside the domain of multiprocessing.
Vector/array processing capabilities and modularity con-
structs for developing large systems are two examples.

b) The requirement that extant codes remain useful in the paral-
lel functional world presents some interesting research oppor-
tunities. In particular, libraries of useful routines need to be
accessible from applicatively written programs without
sacrificing two advantages of writing in an applicative
language. Parallelism must be reasonably well preserved, and
the functional nature of computing must be protected from
arbitrary interference by these imperatively written routines.

3. Finally, we need some studies in the granularity of parallelism
different from the current approach. We use the granularity pro-
vided by a parallel processing system to obtain one point of data
describing what works on a particular machine. Instead, we should
find ways to easily alter the units of parallel work as well as the
detailed hardware structures that do the work. This means that
simulation studies will continue to be important for this research.

Once again, thank you for the opportunity to respond in such a
tardy fashion. Please let me know if I can be of further help.

.¥

-'.N.

392

S' . .. . . . , . . . . . . . . . .. . . . . .. -. . .- - .



Comments on the
ARO Workshop on Future Directions in

Computer Architecture and Software, May 1986

L. N. Bhuyan

The Workshop organized by the Army Research Office was a great success.
Although the scope of discussion was a little broad, there was a lot of personal rap-
port between the researchers working in definite areas. Particularly, the short
presentations and discussions on the last day of the workshop were lively.

In general there was a feeling that the software was lagging behind the archi-
tecture. It is quite natural because not many parallel systems have been built for
the researchers to do experimcnts with. It is my opinion that more effort needs to
be spent on the design of operating systems, algorithms, and software both at basic
research and experimental levels. At the same time, the ARO should continue sup-
porting innovative ideas in architecture and encourage design and implementation
of such architectures at the universities and industries.

393



COMMENTS ON COMPUTER A&S WORKSHOP: John Zavada

While a number of interesting talks were given at the workshop, only a few
people seemed willing to express their ideas for new directions of research.
Most of the talks were centered about an individual investigator's recent
research activities. While the people at the workshop represented a cross
section of the foremost researchers in this area, I think that the body of
presented talks is an indication of the direction of current and near-term %%
research and not directly a source of ideas for future directions. Of course,
there were exceptions and I will comment on several that T noticed.

Col. Ward gave a ver7 interesting talk concerning some of the DoD needs in the
area of computer A&S. One of the items that impressed me dealt with the huge
volume of software in DoD use and the effort to convert the data into a sinale
language (ADA). While this doesn't sound very glamorous, I view this as a major -
problem confronting DoD operations. If existing codes for aircraft. missile
defence, etc. are to be recoded accurately, either a great many computer people
will have to be hire by DoD or a very long time will be required. This topic
did not seem attract much attention in the body of talks at the workshop. An
area in which this need would seem to be critical is that of nuclear weapons. ?Z.
The software that is utlized for nuclear missile firings, guidance, and control
must simply be of the highest quality and free of errors.

Another topic that Col. Ward mentioned was the need for machines capable of
billions of operations per second. This topic is often mentioned in workshop
meetings either on electronics or computers. I feel that there are a number of
approaches to this problem but that nobody is quite sure on how to achieve this
goal other than bv brute force: smaller electronic devices, higher chip device
density, networking of computers. It is much harder to develop new ways to
process the data and to realize efficient parallel processing. Very few talks
seemed to address new techniques for achieving such processing.

D. Jensen of CMU tried in his talk to simulate ideas concerning future research ..

directions. I think that his comments questioning present computer techniques .-
are valid, However, there wasn't much time for discussion and his talks often
have a humorous aspect that may distract the audience from his central message.
Still there should be more discussions on the present status of computer
science and on the historical development of the area.

A. McAulav of TI gave an interesting talk on the use of optics for parallel
processing and interconnects. While much of his talk was devoted to describing
the hardware for achieving an optical crossbar switch, the actual use of such -..
a device for computing was only briefly treated. I think that the use of optics
in computer A&S is a largely undeveloped field. Clearly. optics is going to o
play a greater role in electronic devices and chips. but how is the architecture -v
and software going to accommodate the added capabilities optics provide. Alonig _
with this use of optics is the question of reconfigurable architecture. Optics A

holds the promise of doing this if a number of material and manufacturina
problems can be overcome. But only a small amount of work seems to be devoted
to explorincr how this reconficruration can be utilized. J. Gray of VPI is doina..r
work for fault tolerant operations bit there must be other areas that could
benefit from reconfigurability.

J. Staudhammer of Univ. of FL presented interestina results :oncerninz 3-D
color iraohizs. His :alk centered on imaae iener-:4:n and inae trin.34tion.
Svbolics is in imoortant area of -:omputer acplications .?sceciallv in the
DoD arena. Man 7.siuations call for the manipulatocn of symbols and more .

394



effort should be devoted to performing these operations efficiently. The
implications on computer A&S should be studied.

In general, it is very difficult to predict the future, even for experts in
a given area. Also, in an open forum many such experts may be reluctant to
express their new ideas or feelings. Novel ideas are probably best reserved
for funding agencies and Ph.D. topics. Consequently, it is easier to present
results of studies that have been completed and submitted for publication.
An example of this can be found in the talk by S. Lundstrom of MCC.
While his talk was informative, it was a summary of work that has already been
completed for the airline industry. Directions that MCC is following were not
mentioned. Another aspects is that only a few people have the experience and
knowledge to accurately judge trends and developments. Usually, these are the
older people with years of work in the area. People like Jensen are a valuable
source of information but there has to be suitable forum for them to expoundtheir views and listen to opposing comments.

Perhaps there should be a follow-up workshop involving a smaller number of
people drawn from the ones that were at Seabrook. Their objective would be to
discuss the results of Seabrook I and to develop detailed scenarios as to the
future directions of computer A&S.

John Zavada
ARO/ 18 Aug 86

3.

5.'.5

395



ARO WORKSHOP CONCLUSIONS

Doyce Statterfield

Mav 20, 1986

Dear Dr. Agrawal:

I was very pleased to participate in the excellent ARO-sDonsored
workshop. You had it well organized and with manv outstanding presentations.
The Wednesday afternoon discussions were informative thanks to your taking the
time to prepare the lead-in view Fraphs.

As far as feedback, I have given this considerahle thought and from the
ARO Dersoective of balancing their basic research nroqram in computer science.
My general feeling is that their nropram is well structured and balanced for
their budget. I believe that we still have a lot of research to do before
there will exist a fully distributed computing system. That is, a computing
system that has distributed processors, distributed data base, and a
distributed operating system, all required to realize the full notential of
distributed computing.

One area that appears to be a bottleneck for high performance processing
is that of memory access time. If there was one area that I would like to see
more effort in, it would he this. Another important area is that of task
assignment and mapping algorithms where the real world prohlems are a mix of
sequential and parallel operations. I don't know that we are smart enoiigh in
this area.

My problem really is looking at hsic research and not trving to make it
immediately solve an existing real-world problem - like a scan-to-scan
algorithm for a passive sensor -- hut this is mv problem.

Again, thank you for considering me as a articiant for your workshoo. :...

I look forwrd to seeing you again.

396

"kk



COMMENTS ON ARO WORKSHOP ON F&TURE DIRECTIONS %

IN ARCHITECTURE AND SOFTWARE, May 5-7, 1986

C.A. Papachristou

A. The general problem of mapping software algorithms or functions into parallel archi-
tectures has not been formulated adequately. Some speakers presented one or two
interesting techniques but they were all :rmited to special purpose systems, e.g., image
processing. More work needs to be done in this area.

B. There were several talks on distributed computer systems but little was said about
parallelism in embedded computer systems such as the ones incorporated in a large
platform (e.g., an aircraft). There are differences between distributed and embedded
systems with regard to capabilities for parallel processing. Embedded microsystems
require parallelism at the microlevel, i.e., configurable microarchitectures that are ep
amenable to VLSI and sophisticated microcontrol designs to support these structures. P

A research program in these areas is needed.

C. There is a need of formal synthesis techniques and tools for multiprocessing architec-
tures. There are several tools with the capability to automate or semiautomate the
synthesis of processors; there are no such techniques for multiprocessors. At present.
multiprocessors are put together basically by intuitive and empirical methods and then %
the design is evaluated by analysis or simulation. With the expected proliferation of
parallel architectures, there will be a need to formalize the synthesis of such machines
on the basis of formal requirements, specifications and design processes.

Following are ten areas which I feel should be supported by the ARO research pro-
grams in Computer Science over the next five years or so. Several of these areas were dis-
cussed during the team leaders meeting (I missed it but I have a copy of the transparen-
cies). No particular order of significance is assumed.

1. Instruction set architectures and microprogramming
2. VLSI architectures and optical technologies

3. Embedded systems - parallelism at the microlevel

4. Distributed systems (including Operating systems)
5. Concurrency and concurrent systems (both synchronized and asynchronous)
6. Mapping algorithms into multiprocessor architectures

7. Interconnection networks and parallel architectures
8. Synthesis tools for multiprocessor and architectures

9. Reusable software design
10. Programming issues (including parallel and logic programming)

.. %

397

V. N N N,.NN



Mt

May 9, 19e6

KLim Gostelow
Comments on

Future Directions in Computer Architecture and Software
5

I have made my report in the form of the following comments:

1. The remark was made that "software is behind hardware". To
correct this situation it is necessary to encourage organi-
zations to buy/build harduare and experiment on it. I.e.,
work with real systems and learn. That is, the problem is
to some extent nanagerial. Otiiy when large numbers of
organizations have such machines and do work on them will
the appropriate directions be learned.

Let's get on uith it and build the machines; then the
software uill catch up. Software certainly won!'t catch up
without the practical experience gained from working with %
actual machines.

2. Another area involves the time and expense of producing
large parallel systems. Such systet.is require custom chips
which are as expensive and time-consuming to make as
softuare. Combined with the softuare costs, the time from
concept to system availability is far too long and far too
expensive to do a great deal of experimentation.

Some kind of design tools arv needed to translate ideas
into reality in a nuch more automatic fashion than is
currently possible.

3. A topic not mentioned at the workshop is packaging. The
impact of packaging is much more than Is commonly recog-
nized. For example, the comment was made that "nemory
speeds are falling behind that of the cpu". The reason is
not that oemory is not fast enough, since memor y is
currently available that is even faster, in proportion to ',
cpu speeds, than 10 years ago. For example, 25 ns memory is
currentlygavailable in 64K bit chips.

The problem is packaging. By the time the memory is
mounted on boards in sufficient quantity, the effective
speed of the above 25 ns chips is almost dowei to 100 ns (in
round numbers). This can be improved upon only by packag- "CV.
ing. When such 25 ns memory can be used effectively, then
the pioblemi for multiprocessors brought about by caches
(for example, the cache consisteicg problem) are solved --

simply eliminate caches (one can even pipe the memory and
the processors for even greater resource utilization).

4. The problem of "RISC verses CISC", and the problem of
"instruction set architecture" are not problems at all. I
agree uith the coment that "it is a problem of good
engineering" and nothing nore.

398 *

5% .W % -



Research directions of interest to ARO:

The key aspects of conputer development in the next decade,
and for oost Army applications# especially Involving uldely
distributed resources and personnels uill be. _
1) The explosion in COMMERCIALLY available parallel electronic

processorsi
2) The rapid development of new algorithms, efficient on these

widely available parallel machines;
3) Improvements in parallel programning techniques and languages;
4) Computer Aided Design tools that uill aid in rapid application
of new computer technology, such as VLSI custom integrated circuitryi
3) Computing power enough to finally realize much better human

interfaces especially high resolution color graphics, realtime
speech generation and understanding, efid tactile/motion-detecting
sensorsi

6) The increasing importance of communication and suitching based on
fiber optics that will push to becone very fast# full-fledged
optical processing uitNin 10 years.

In summary. the nain t;wo ways to get better computing will be through
parallelism and though much faster individual processor circuitry.

The short-term parallelism lioits are about 1,000 powerful (1 MIPS +)
processors or about 100,000 1-bit processsors for aggregates of
1 to 10 billion operations per second (1 -10 DIPS).
Within 10 years, the fastest parallel computers will provide 100 to
1000 DIPS fron about 100,000 heavy processors in massive systems
sharing many levels of memory or about 10,000,000 simple processors -

essentially very simple eye/brain combinations. The new algorithm,
programming, and language issues will be the key to harnessing
parallelism o although some work will be needed in improving
hardware switching and control mechanism to allow rapid access.
to many level of shared memory in massively parallel systems.
Creating faster individual processors will be a matter of first %

extending silicon VLSI technology to galLiun arsenide for the first
10 fold speed ups then slowing developing optical switching, memory, 'Oa
& processing for a massive 1,000 to 100,000 fold improvement in speeds
This will be mainly very basic hardware research in the next few years.
Conpututation speedups with optical computing will come both from
faster signalling and nuch easier massive parallelism with optical
distribution on data* but speeds in 10 years probably will be in the
10 to 100 DIPS range only Programming and use issues will come more
slowly
I hope this helps. Let me know if you need nore evaluations.

Larry Wittle, 19 Aug 1986

399



Dear Dharma,

Thank you for your letter of May 9 and the list of topics on which we
should comment. I an sorry for not reponding earlier. (I have been

in and out of toun in May.) Following are my general comments. Please let
me knou if you uant me to elaborate on uhat is said here or to provide
more references. Do You want tho copy of the transparencies used in_%
the discussion session returned with some kind of markings %

Regards,
jane

Although most of the position papers delivered in the Workshop
on Future Directions in Software and Atc)-itecture are concerned with
hardware aspects of coanputer architecture, the attendees whom I
I had opportunitg to talk with inforn3111 during the Workshop agreed
that the most pressing problems in the future are in software
design and development. Hou to write programs for parallel nachines
and distributed systeos, bou to maximize concurrency. how to increase
reliability of the overall systems, and how to make softua-e reusable
are examples of these pressing problems. But among all these problems,
the most important one of then# in my opinion, is how to bring together
hardware design and software design and engineering disciplines in order
to find good overall system design, andlysis and synthesis :ethods.

Currently, computer hardware designers and software designers
almost aluays waork in insolation from each other, rather than taking
a s:stem-design-oriented approach. The ndjority of the papers given
at the Workshop demonstrate this fact quite well. This traditional
approach of partitioning the system design problem into design of
machine instruction sets, memory hierarchy, interconnection networks,
control structures, scheduling and resource nanagament algorithms, etc.
has served us uell thus far. It was neccessary to understand the design
issues concerning individual components of any system before one can
address the design issues concerning the overall system. Many of the
well adopted syster design approaches. (e. g., the layered approach
to design of distributed systems and computer networks, ) encourages
the partitioning of systems into components and attacking the design
and developnent of conponents separately.

In recent years, as computer systpms become more conplex and
their applications more critical, higher performance, fault tolerance
and availability become more essential. Addressing the performance
and reliability of subsystems independwn.ly of each other often
results in lack of overall efficiency and robustness. It is time
to develop top down, integrated approaches to syster (software
and hardware together) design. My paper on distributed, macro
dataflow architecture is an attempt in this direction, in general.
The view of the distributed system as consisting of a collection of
servers uhich can be invoked to oerfcrn different computation and
communicatioii primitives discussed in my paper is consistent with
the view pointed presented the io the paper entitled "An approach to
decentralized computer systen" by J. N. Gray, IEEF Transactions on
Software Engineering, June, 19e6.

400
DO'



Dharma, "

Below are some of my general comments about recomnm.ndations to
the Army CARO, and others) about funding priorities. This is not -V
particularly an ordered list, and obviously reflects my research
interests.
By the way, thanks for your hard work on the worbshop. It generally

went well, despite the housing problems. A future uorkshop, however,
should probably attempt to select a higher quality set of attendees.
Maybe a nore personal and strongly solicitation would have been \-P

appropriate?
thanbs again for your efforts.

Alan Smith

Memory Hierarchies:

Extremely important topic. Highest funding priorities to CPU
Cache Memories and Disk Cache. The former is important for high

performance CPUs, as are used in many weapons, guidance systems,

and C&C systems. The latter is important to large data processing
installations such as the Army has it itu larger bases.
Also important is optiitzation of memory systems in distributed systems.

Memory interconnection networks are wo,-th some study, especially
in conjunction with (a) cache ,emories ani (b) implementation.
More pure modelling studies are probably not called for at this time.

Instruction Set Considerations
My impression is that the military computer archite-ture standard,

which v've actually neer looked at, ir 16-bit. If so, it is time
for a 32-bit standard. -

Further research on RISC vs. CISC is called for, with more comparisons
and sound scientific studies.

The increased use of custom chips as opposed to large software "

systems and standard processors should be studied.

There is the need (as wc discussed at the end of the uorkshop) for the
Army to have a Computing Research Advisor, Board, to be used to oversee

the award of research grants and contracts, through ARO and other
organizations (E.g. Bll.) Huntsville). I can suggest appropriate
people (including myself) if requested.

Work on reconfiguration strategies is unlikely to be worth funding

until someone has a workings usable, programmable reconfigurable
computer. At that point, some experiments and further studies
are called for.

The Army (or DOD) should allocate a lot of money (>010,000,000) to place

parallel machines (e.g Encore, Sequent) in universities and research
labs, for studies of parallel software development, granularity issues,
etc.

My personal opinion is that small grain parallelism is a poor idea for
.-ost applications and won't work.

Likewise, I think that .rultiprocessors uith large numbers of processors
(currently. more than 100) are a verq questionable undertaking until
we learn hou to make and use MiPs Uith s'all numbers of processors.

Such systems are likely to be of use only for certain specialized

applications. 401

~401

A. %..% . .*- -- . . .A * . .

_ • A ,



,.

Mapping algorithms and task assignment - this needs to be studied in the 5,

context of real harduare on which to experinent. (see above).
More abstract studies should be deemphasized for the time being.

Reusable and retargetable software is an idea whose time never seems
to come. Everyone wants to write softuare for OTHER people to reuse.
No one ever Ltants to use existing software. I would not put money
into this.

Conversely, I would put money into experinents on software productivity
where existing parsonnel are given STATE OF THE ART softuare environments, MS

(e. g SUN workstations, good AD.A compilers# syntax directed editors.
interactive debuggers, large nainfra-e), and are to work on regular, ".'"
normal, military software projects. My suspicion is that the software S.

environents are probably lousy, and that the Army is not using existing
and known techniques. 5..

The developnent and optimization of distributed operating systems is 5. ,

important. Oe important project would be to fund development of
distributed (generally available) UNIX. (E.g. Berkeley 5.0 BSD).
What is needed is a real distributed operating system on which people
can experiment. (see also above about tk ng parallel systems available).
This is a generally im portant area. .

Curreicy control - currently ton many theoretical studies, too little actual -,.,

data, inplertentation, and/or practical studies. '.-

%<:

I %

4,0'.-:

i.-7



Comments on
Future Directions in Computer Architecture and Software
Mary Jane Iruin
This write-up discusses research directions in only four of
the session topic areas.
Two (custom chips and grainularity issues)
are directly related to our ARO supported research effort
at Penn State and two are areas which are of interest to the
researchers at SRC.
Custom Chips
Research has evolved in the past several years from a single chip
design to s9stems design, an assemblage of many custom chips as well
as many off-the-shelf components.
In systems designs not only must the Individual custon chips work
as required but they oust also be configured into a system which
requires clock and data distribution across board(s).
As chips get faster and systems more complex, both clock skew and
data sheu nay become problems.
Thus, researchers have to learn to think and look beyond the
single chip.
To do this requires more expensive design equipment and supporting
personnel.
CAD tools and equipment which support sysLems design are largely
missing at Universities, as such tools are very expensive
and not generally available for free to Uitiversities.
At least in Coaiputer Science Departnent!'s, supporting personnel
are also not usually available.
Special purpose systems based on unusual number representations
(residue, logzrithmic, and signed-digit) are now in production.
Memory Hierarchies and Interconnection Networks
Research in the areas of memory hierarchies and interconnection networks
has been directed, in part, at reducing memory latency.
(Interconnection networks when used to connect processors and memories
in an MIMD system; caches in memcry hierarchies.)
Both of these approaches have inherent limits.
Data consistency problems can arise when using caches and local
memories.
As the number of processors and menories increase, interconnec.tion
networks which are more scalable (e.g. rooted networks like
H-troees and log n networks like ccc!'s) are more promising .

than those that don!'t scale at all (e g., buses and rings).
Network hotspots, combining networks (like Fetch-and-ADD),
circuit versus packet suitching, layout in VLSI, and fault
tolerance of interconnection networks are also important research
issues.
Avoiding the memory labency problem uith new CPU architectural
techniques is even more promising.
By issuing the next instruction to the instruction pipeline from
a different pi'ocess every cycle& the memory dependency problem
can be reduced significantly or. removed altogether.
This technique requires enough registers to allow free (or
almost free) context switching every cycle; each process must
own its ouis 'register set when 'active."

403

~~~~~~~~~~~~~ *. * '.** % ~** - *~;**
A ll~, *'lll161 1

wwULUJW* VWWW -WW- --

This techniques is used in the HEP nachines to reduce the
Impact of memory latency.
How manqj processes need to be active, hou are the
register sets nanaged# uhat happens when the data has
not qet arrived and the next instruction In the process
is due to be issued are research issues.
Grainularity Issues
Qralnularlty can relate to the physical size of the processors,
the process size, or the context switch cost.
Processors uhich are fine grain are attractive because of the obvious
VLSI advantagcs.
They probably have bit or digit serial data transmission and can
benefit greatly in speed if the operations can also be pipelined at
the bit or digit level.
Processes which are fine grained ("light weight") can more easily
be created, destroyed* and exported in an MIMD evironnent and
may have advantages over the more traditional "heavy weight" processes.
More research needs to be done in this area.
Fine grained context switching allous one to avoid the memory
latency problen uith round robin instuction issuing as discussed
in the section above.
Issues in MIMT) Architectures.
Both message passing sjsteirs (like the iPSC and NCUBE) %
and shared nenory systens (like the BSN Butterfly and
RP3) are nou in production.
The debate continues as to which is the better approach for
an MIMD nachine.
However, building the machine is only one part of the

problem.
The design of parallel languages to
accommodate such architectures and the development
of parallel algorithm, both
very important research areas,
uould be encouraged by making sJch V.A
machines available to the University researcher.
Is a hybrid system feasible, one which relies on
message passing for those operations uhich work best in that
environnent and one uhich relies on shared memory for
the others. 7]

404

or r Nr

ARO Directions Workshop

H. J. Siegel 8/22/86

List of topics I feel are important to pursue INCLUDES (in
random order):

RISC vs CISC architecture - when is each appropriate; what
are the tradeoffs.

parallel processing system memories - local mem. vs global
shared mem. vs hybrid approaches; "hot spots" in
shared memory accessing; use for synchronization
primitives; when is the "fetch and add" primitive
cost-effective?

interconnection networks for large-scale parallel processing
- use of optics for implementation; fault tolerance;
tradeoffs among packet-switching, circuit-switching
and hybrid approaches; tradeoffs between multistage
cube and hyper cube approaches.

SIMD/MIMD/reconfigurable systems - operating system methods
for switching between SIMD and MIMD modes, and for
performing other reconfigurations; language features N's

to specify reconfiguration; hardware support for
efficient reconfiguration; mapping algorithms to
reconfigurable systems.

mapping algorithms and architectures - models of algorithms
and architectures and how they interact; given
parallel architecture - which algorithm approach
best; given algorithm - which architecture best;
given a reconfigurable system - which
configuration/algorithm pair best.

parallel programming - what language features needed for
efficient "explicit" specification of parallelism;
what features needed for effectively compilable
"implicit" specification of parallelism; portable
parallel languages for sharing work; common methods
for expressing parallel algorithms so that
researchers can share and communicate results among
themselves more easily; tradeoffs between the
efficiency of writing machine dependent "explicit"
specification of parallelism programs vs machine
independent "implicit" specification of' p!rallelism,;
levelc ng n ocument in k o o r'1e,
i~oramm n 1 ruq!eies. i

405

LIST OF ATT'ENDEES

T Aggerwal Ba" IBM Caporation
1919"543-522 RTP, NC 27709

2 Aggarwal, Prom Northarn Tetecomm.
RTP, NC 27709

3 Agrawal, Dharma P. Dept. of Electric and Computer Engineering
North Carolina State University

1919-737-2 Raleigh, NC 27607

4 Allen, Keith R. Dept. of Computer Science
Clemson Univ.

- - 4 Clemson, SC 29634-1906

5 Alonso, Rafael DepL of Computer Science
8224 Engr. Quadrangle1609-452-369 Princeton Univ.
Princeton, NJ 08544

6 Andrews, D. Advanced Decision Systems
201 San Antonio Circle Suite 286

1415-941-391 "Mountain View, CA 94040-1289

7 Barbaccl, Mario Software Engr. Institute

1412-268-77U41 Pittsburgh, PA 15213

8 Bhuyan, LN. The Center for Advance Computer Studies
University of SW Louisiana!

1318-231-6 P.O. Box 44330
Lafayette, LA 70504

Burke, J. Richard P.O. Box 12211
Research Triangle Park, NC 27709-22111919-549-041:--.

10 Chen, Pin-Yeo RCA
Addvanced Tech. Lab.

1609866-M'T Moorestown, NJ 08057

11 Che", Raymond RCA Corporation
Memo Highway

16 0 9 . 7 2 2 -2 7 M9 Moorestown, NJ 08057

12 Chung, Moon Jung Dept of Computer Science and Center for
Integrated Electronics

1518-266-= Pi
Troy, NY 12180-3590

1 c..,i, Robert P. Dept. of Computer Science
Univ. of Virginia

8 0 . 9 2 4 .7 6 0 5 Thornton Hall
Charlottesville, VA 22903

14 Dasgupta, Partha School of Info. & Computer Science
Geogia Institute of Technology

1404.894.- Atlanta, GA 30332

406
*.~~~o V .I~r *.r --.- f-.- qP.

a

15 do Maine, P.A.D. Computer Scence and Engr Dept.
Auburn Univ.
Auburn, AL 36849

16 Desal, B.C. Computer Science Dept
Concorda Univ.
Monrvil, Quebec H4B 1 R6
Cam .-

17 Dowell, Mike Dept. of Electrical and Computer Engr.
Univ. of South Carolina ,

1803-77 9 Columbia, SC 29208

18 Dyment, Doug Dept. of Computer Science
University of Watedoo

15 19-888-4451 Waterloo, Ontario, Canada N2L 3G1

1I9 Ele, Kernel 218 Math Science Bldg.
Univ. of MO-Columbia M,.

13 14-882-480 Columbia, MO 6s211

20 Elderhorst, Undo DMCo. ,rp

3 - 6] 20 Coral Drive
Lexitton Park, MD 20653 kle

21 Elmagarmid, Ahmed Dept. of Eiectrical Engineering
81 Penn. State University

18 1 University Park, PA 16802

2y Fendrich, John W. Dept. of Computer Science
Bradley Univ.

1309-676- 1 Peona, IL 61625

23 Gao, Guang R. NE43-253 '/-

Lab for Computer Science16 17- 23-0791 MITrrp
Cambridge, MA 02139

2V Gehrlnger, Edward ECEdept.

1919-737-236 Raleigh, NC 27607

25 Gilmer, John B., Jr. TheBDMCorp.
7915 Jones Branch Dr

SMclean, VA 22102

26 Gosteiow, Kim GE Researchl and Development Center .% , %
/'_KWC-26, P.O. Box 8,. ."

151 8-387-580561 Scheetady, NY 12301 .,

27 Gray, F. Gall Dept of Elec. Engr
Virginia Polytechnic Institut and State Univ.

1703-9 5 alackst'urg, VA 24601

28 Green, C. Ronald P.O. Box 12211
Research Triangle Park, NC 27709-2211

11 9- 49-641

407

.~~ .0 "1""

29 Hand, Steve Dept of ECE

19977-36 Raleigh, NC 27696%

Helal, A. Dept. of Electuical Engr.
Penn State Univ.

1814863T 7 University Park, PA 16802

3T1 Hwang. Phil C

1202996-312 AeorI In gton, VA 22217

37Irwin, Mary Jan* Institute for Defence AnalysisP44380 Farbe" Blvd.
1301- -4451Lanhamn, mD, 20706

~33 Jamieson, Leah H. School of Elec. Engr.
~~ Purdue University

13 -9-;3 West Lafayette, IN 47907

3jr Janaklram, I. DepL of ECE

I Raleigh, NC 27695

35 Jensen, E. Douglas Dept. of Elec. and Computer Engr.
~ Carnegie-Mellon Univ.

14228-54 Pittsburgh, PA 15213

*36 Johnson, Ralph E. Dept of Computer Science
1 -1-01 West Springfield Ave.

37 Joy, Edward J. 2 Mason Street
Troy, NY 12180 "

38- Kaplan, Ian Loral Data Flow~ Group .,

~ Loral Instrumentation
161 95607 8401 Aero Dr.

3~ Kplan Simn M.San Diego, CA 92123
39 apln, imo M.Dept of Computer Scoence

-- 1304 West Springfield Ave.
121 -244 3MIUrbana, IL 61801

SKozaczynski, W. 1120 Science and Energy Offices
~~ University of Illinois

131-99-7_7i Chicago, IL 60612

41Kumar, VIpln Al Lab
__________Computer Science Dept

1 2-4 714-_33 Univ. of Texas at Austin
Austin, TX 78712

74Y Lou, Ja-Song Dept. of ECE

1919-372 y6 Raleigh, NC 27695

408

PIP

43 Un, Kwel-Jay Dept of Comuter Science
University of IL at Urbana-Champaign

1217-! -42 Urbana, IL 61801

4 Undstrom, Gary Dept. of Computer Science
Univ. of Utah

-581-55861 Salt Lsie City, UT 84112

45 Uu, Jane W.S. DepL of Cwpue Science
1304 West Springfield Ave
Urbana .L 61801

46 Lundstrom, Steve Vice President, MCC
9430 Research Blvd.

512 34332 JEchelon Building #1, Suite 200
Austin, TX 78759

47 Mahgoub, I. 0. Dept of ECEN=S

191 9"! "2 Raleigh, NC 27695

48 Manwaring, Mark ECE Dept
Washington State University CAI

Pullman, WA 99164-2210

4 Mauney, Jon CSC 5 1

1919-737-789 Raleigh, NC 27607

50 McAulay, Alastair TI Inc.
Computer Science Center

1214-995-03451 P.O. Box 226015, MS 238 ."

Dallas, TX 75266

51 McDonald, John F. Center for Integrated Electronics
ISU

18- 0 03 Troy, NY 12181

52 Meador, Jack L ECE Dept-
1 5 Wash. State Univ.

- 3 80 Pullman, WA 99164-2210

53 Mehrotra, Ravi ECEdept

1 -737-23361 Raleigh, NC 27607

54 Michalson, William Raytheon Corp.
Equipment Division
Boston Post Road
Sunbury, MA 01776

55 Mlelke, Roland R. Dept of Elec. Engr .
CCU

1804-4 - 41 Norfolk, VA 23508

56 Mudge, Trevor N. DeptofEEandCS
Univ. of Michigan

137-64-02031 Ann Arbor, M' 48109

409

N...

57 NI, Uonel M. DePl of C*mPutrScience

Michigan State Univ.
1517-353- East Lansing, M1 48824

5T Nickel, Vincent V. 14 Pinto Law
Rolling Hils Estates, CA 902741213.217.37M0

59 O'Donnll, John T. Corpt Science Dep,

Iiana Univ.
181 2-335-701 ol indley Hal

Bloomington , IN 47405-4101
60 Oldohooft, R.R. CSdept. .

Colorao State Univ.
303-491-7b77 1 Fort Colifns, CO 80523

61 Omar, S.I. Dept. of CS
Univ. of Ottawa

1613-564-5449 Oftv, Canada KIN 9134

62 Owens, Robert M. De of Computer Science
80 Penn State Univ.

University Park, PA 16802

-63 Page, Edward W. Dept of Computer Science
Clemson Univ.

1803-656- Clemson, SC 29634-1906 4r

64 Papachrlstou, C.A. Computer Engr. and Science .,.
Case Western Reserve Univ.

[216-38-52771 Cleveland ,OH 44106

55 Pargas, Roy P. Dept of Computer Science
Clemson Univ.

803-656-34441 Cmson, SC 29631

66 Prommel, Joan Los Alamos National Lab
C-l MS B296

1505-667-69611 P.O. Box 1663 4"

Los Alamos, NM 87545 .

Przybyllnski, S. M. General Dynamics Data Systems Division
P.O. Box 85808
V2-5530
Son Diego, CA 92138

6W Raney, Steven D. Martin Marietta Aerospace

-- --- MS 0427
4

- 43 p.o. Box 179
Denver. CO 80201

69 Satterflield, Doyce Dept. of the Army, Office of the Chief of Staff
U.S Army Strategic Defense Command - Huntsvile

205-895-4431 P.O.BOX 1500
Huntsville, AL 35807 - 3801

70 Shin, Kang G. Div. of Computer Science and Engr. e

1313-763-0391 eThe Universty of Michigan
Ann Arbor. MI 48109

410 4N

71 Shirazi, Behrooz Dept. of CS
-- 4 School of Engr. and Applied Sc.

121 4-692-2Z741 Southern Methodist Univ.
Dalas, TX 75275

-7r Siegel, H.J. School of Elctrical Engineering
Purdue University

1317-494-3 West Lafayette, IN 47907

Slnghal, Mukesh Dept. of Elect Engineering
The Ohio State Univ. ,,

1614-42 2 -463J 2038 Neil Avenue Mall
Cotunbus, OH 43210

74 Smith, Alan Jay Computer Science Div.
EECSdePL

41-4-20 Unv.~ of California -. p'

Berkeley, CA 94720

75 Srldharan, N.S. B N Labs
10 Moulton St.

1617-497-336 Cambridge, MA 01742-Z

76 Staudhammer, John College of Engr.
Univ. of Florida

1904-392-491 1Gainsville, FL 32611

77 Stoughton, John W. Dep. of Eec Engr.
Old Dominion Univ.

1804"440-3741 Norfolk, VA 23508

78 Strip, David R. ORG 6228, Sandia National Lab.
P.O. Box 5800

1505-844-392 Albuquerque, NM 87185 ..-

7V Subrahmanyam, P.A. AT&T Bell Lab.
Crawfords Comer Rd.

1201-949-5121Holmdel, NJ 7733

80 Sugla, Blnay 4G604 AT&T Bell Lab.
Crawford Comer Rd.

1201-949-0801 Holmdel, NJ 07733-1988

01- Summer, C. Forrest Head, Advanced Computer Technology Branch '"
Code 741

1305-646447 Naval Training System Center
Orlando, FL 32813

82 Szymanskl, Bolek Dept of Computer Science

Troy, NY 12180

83 Taylor, Fred J. Dept. of Elec. Engineenng
Larsen Hall

1904-392-0 11 Univ. of Florida
Gainsville, FL 32611

84 Testard-Valliant, F. Laboratoire d'lnformatique Theornque et
Programmation

1433-625-;= 5 Place Jussieu 75252
Paris Cedex 05, France

411

-4 -',. "-.

85 Tracs, William J. Computer Science Lab
SStanford Univ., "

[415-723-18M Stanford, CA 94305

8 Waksman, Abraham Temple Univ.
- -1 Philadelphia, PA 19122

87 Wallace, C.S. Dept. of Computer Science
Monash Univ.

1613-541-3900 Clayton, Victoria
Australia 3168

78 Ward, Frank Office of Undersecretary
O-USo (R&AT)

________ Room 3-El 14 Pentagon
Washington, DC 20301

89 Wise, David S. Computer Science Dept.
Indiana Univ.

1812-335-O66 Bloomington, IN 47405-4101

90 Wittle, Larry D. Dept of Computer Science
SUNY at Stony Brook

1516-246- Long Island, NY 11794-4400 ,.

91 Yu, Clement Dept. of Elc Engr and Computer Science
Univ. of Ilinois at Chicago

[312-996-23 J Chicago, IL 60680

92 Zavada, John M. U.S Army Research Office
- - 1 P.O. Box 12211

RTP, NC 27709-2211

93 Zee, Benjamin IW IA-232
AT&T Information Systems ...,

1312-929-79M3 1100 East Warrenville Rd.
Naperville, IL 60566

94 Zwaonepoel, Willy Dept. of Computer Science rl
Rice Univ. ,

1713-527-8101 Houston, TX 77001 ,'.-

412

A .A.!.A-: i-

Autwkorh'G~ft P.

Ahula, Sudhir R. 5.1 86
Allan, S.J. 7.2 139
Allen, R.R. 14B.5 301
Alonso, Rafael 10.2 202
Andrew*, D. 15A.1 332
Barbaccl, Mario 13.3 261
Bhuyan, L.N. 5.3 99
Cann, D.C. 72 139 .
Chong, Raymond 2.3 29
Chung, Moon Jung 14A.3 276
Cook, Robert P. 2.2 21
Dasgupta, Partha 6.3 122
do Maine, P.A.D. 15B.3 346
Delp, E.J. 8.1 147
Desal, B.C. 6.2 114
Doulan, B. 158.2 343
Dowell, M. 14C.1 316
Efe, Kemal 8.3 163
Elmagermid, Ahmed 12.2 228
Fendrich, John W. 14B.4 299
Friedman, R. 15C.4 370
Gao, Guang R. 15C.3 367
Gehrlnger, Edward 14A.4 279

14A.1 270
Gendreau, T.B. 148.1 290
Gilmer, John B., Jr. 3.3 55
Gray, F. Gall 6.1 103
Green, P.E. 14C.5 328
Greub, H. 15132 343
Grimshaw, A. 8.2 155
Guh, K.C. 12.1 220
Helal, A. 12.2 228
Hurson, A.R. 12.2 228
Husson, A.R. 15B.4 349
Jamieson, Leah H. 8.1 147
Jensen, E. Douglas 2.1 17
Jiang, 0. 15B.3 346
Jodls, S. 15B.3 346
Johnson, R.E. 9.2 178
Juels, Ronald J. 14C.5 328
Kabat, W.C. 15C.4 370
Kaplan, lan 7.1 131
Kaplan, Simon M. 9.2 178
Kozaczynskl, W. 15C.4 370
Kumar, VIpIn 14C.4 326
Leblanc, R.J., Jr. 6.3 122
Leong, S. 15B.3 346
Lin, Kwel-Jay 15A.3 336
Lin, Yow-Jian 14C.4 326
Llndstrom, Gary 15C.1 361
Llu, Jane W.S. 8.2 155

4.

413 "'

.J

Author Index Section Page No.

Lodo, A.A. 14A.3 276
Lundstrom, Stephen 11.2 214
Manwaring, Mark 15C.2 364
Marshall, D.A. 13.2 253Masapatf, G.H. 158.5 353
Mauney, Jon 15A.2 334
UcAulay, Alastair 5.2 91
McDonald, John F. 15B.2 343
Meador, Jack L. 15C.2 364
Mehrotra, Ravi 14A.4 279
Merchant, H. 158.2 343
Mielke, Roland R. 1483.7 304
Mudge, Trevor N. 14A.2 278
NI, Lionel M. 1413.1 290 N
O'Donnell, John T. 15C.5 372
Oldehoeft, R.R. 7.2 139
Omar, S.I. 15B.5 353
Owens, Robert M. 3.1 38
Page, Edward W. 14A.5 284
Papachristou, C.A. 15B.1 340
Pargas, Roy P. 1413.5 301
Pose, R. 148.2 293
Przybyiinski, S. M. 9.3 186
Raney, Steven D. 13.2 253
Satterfild, Doyce 4.2 72
Schreiber, R. 158.2 343
Shin, Kang G. 14A.6 287
Shirazi, Behrooz 158.4 349
Siegel, H.J. 8.1 147
Slnghai, Mukesh 12.3 236
Smith, Alan Jay 4.1 62
Sridharan, N.S. 140.2 319
Staudhammer, John 1413.3 296
Stoughton, John W. 1413.7 304
Styles, R.C. 4.2 72
Subrahmanyam, P.A. 4.3 78
Sugia, Blnay 5.1 86
Szymanski, Bolek 13.1 245
Takefuji, Yoshiyasu 14C.1 316
Taylor, Fred J. 3.2 48
Testard-Valillant, F. 1483.6 307
Toy, E.J. 14A.3 276
Tracz, William J. 9.1 171
Waksman, Abraham 14C.3 323
Wallace, C.S. 148.2 293
Whinston, A. 8.1 147
Wise, David S. 15B.6 357
Wittie, Larry D. 10.1 195
Wittle, M.E. 15A.3 336AYu, Clement 12.1 220Zwaenepoel, Willy 10.3 208

414 '

% % %.0%. I. % lp %

