P~
¢
N
¢
o0
-
T
Q
<

AFIT-EN-TM-87-7
Air Force Institute of Technology
Environment Portability and Extensibility Mea<ures
Capt Scott A. DeLoach
10 August 1987

DISTRIBUTION STATEMENT A
\ Approved for publi? xe:lone.

Distribution Unlimit —

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

&8 9 25 060

DB Vava oy 0 . - . o
B S Dt O YT, pegtes N BRSOt DT J--'\l‘- DL OGNS



AFIT-EN-TM-87-7
Air Force Institute of Technology
Environment Portability and Extensibility Measures
Capt Scott A. Deloach
10 August 1987

DISTRIBUTION $1 7 i) WT A

Appn?ved for publiz rel(—,;mc:; i
Distribution .Unlimited J

‘:“v;‘agz_i‘rv’.-} *‘a’i‘*;’.‘e‘-.':'




‘\i{,!é&mwv CLASSIFICATION OF THiS PAGE

; REPORT DOCUMENTATION PAGE
te. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFI

8. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGHADING SCHEDULE Approved for public release;
distribution unlimited.

4 PERFORMING QRGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REFORT NUMBER(S)

AFIT-EN-TM-87-7 _ J
6 NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

b (1 epplicable)

School of Engineering AFIT/EN
6¢c. ADDRESS (City, State ond ZIP Code) 76. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology

ORGANIZATION ) t1f applicablv)
Systems Avionics Division ATYWAL/AAAF-2

Bc ADDRESS (City, Staic ond ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Air Force Wright Aeronautical Laboratory ELEMENT NO. NO. NO. NO.

Wright~Patterson AFB, Ohio 45433-6583

Wright-Patterson AFB, Ohio 45433-6583
8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

1V TITLE tlnciude Security Classification

See Box 19

12. PEASCNAL AUTHORIS) {

Scott A. DeLoach, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 18. DATE OF REPORT (¥r., Mo., Day) 15, PAGE COUNT
Technical Memorandum | from 10 1987 August 10 7

15. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Conutnue on reverse if necessary and identify by block number)
FIELD GROUP SUB GR.
12 05 Measurement, Computer Programming, Environments,
Computer Program Verification
19. ABSTRALT (Continue on reverse if necessary and tdentify by block number)

Title: ENVIRONMENT PORTABILITY AND EXTENSIBILITY MEASURES

Advisor: Richard R. Gross, Lt Col, USAF
Assistant Dean Lypesved 1o abue rilocses

Cy
School of Engineering -mwcuvgn

m fot Fevemeayy
* Ta and Py R
e Force fnrsiy Prafacaionag Cavslopment

e AR ;90.},.

d wis ol Tepl =
Wi Te : tinelagy
Ih Sierzon aFB oy 45235 ¢

20. DISTRIBUTICN/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

unc;assmzommmmem% samE As RPT. ¥ oTic usens [

22s. NAME OF RESPONSIBLE INDIVIDUAL 220 YELEPHONE NUMBER 22c. OFFICE SYMBOL
tInclude Area Code)
Richard R. Gross (513) 255-3025 AFIT/EN
DD FORM 1473‘ a3 Ar i B0 Ll tuAnR IS annra e, N t!*:.:{,!(?ﬁ_}’“}?lup;p i

-

TUTY CLASSIFICATION O 1, L 0 Ey



ok N B bt dtndh el ek sl e it dh adin e e dinadan |
ﬂ.o'\'
)
fe, e
o -
ey /e
g 0 Introducti ;- T
o 1.0 Introduc ion . g
" -+ /
if,f" ~ To validate my y thesis (Deloach, 1987), that envu'omente based on abstract interfaces provide
enhanced portability and extensibility, 1 decided to compare environment against existing non-interface
o based environments. To do this, ] needed two metrics: one to measure portability, and the other to meas-
jﬁs::. ure extensibility. These metrics had to be applicable to the environment as a whole and had to exhibit the
til:o; following characteristics. First, the metrics had to be objective: given sufficient knowled;e of the system,
:;:I:.‘ an individual should be able to compute only one possible measurement. Second, the metric must be appli-
Wil cable given only the environmeut design documentation and source code, thus ensuring the metrics are
o based solely on the characteristics of the software
. ased solely on the characteristics of the so .
)
iy o1s
1:'::|’ 2.0 Portability Measurement
O o P . .
':':‘:0'| Intuitively, software (environment) portability, "the ease of movement among distinct solution
::'*:: environments" and "a function of the number and complexity of the requisite changes" (Yourdon and Con-
' stantine, 1978: 322), should be fairly easy to measure. There have been two approaches to measuring
o software portability. The first approach describes portability in terms of the effort expended to rehost the
“"::0:‘ software. Although this approach measures both size and complexity, it also includes other factors such as
ft.::!: personal skills, tool availability, etc.
',::'::: The second approach is simple and straightforward. It measures the amount of code changed during
":0:: the rehosting process. Although it dces measure the change size and is dependent solely upon the software.
. it does not measure the complexity. However. an extension to the lines of code approach that considered
& complexity could meet the metric requirements discussed above.
m Change complexity includes many components, most of which are hard to measure (e.g. understand-
. * g p . . . « - -
AT ing new host operating systems, simulating non-existent host computer functions, intrinsic difliculty of the
'5; function, etc.). However, one important aspect of complexity that is quantifiable is localization of the
3‘9. changes. If a piece of software requires changes to 500 lines of code. it is much easier to rehost if the
changes are located in five modules instead 50. Therefore, I propose to measure the size of the change by
A% lines of code and the complexity by locality of the changes (how many modules or packages have to be
:' ; changed). Therefore, the size of a change is simply:
B
:0 ) size = (1 - N,./N,)
ot
) where N is the number of source lines of code added, deleted, or modified, and N is the total number of
',‘f).‘, source lines. (Source lines are defined as one executable or declarative statement.)
4::;: The locality (complexity) of the portability changes is described in two parts: modularity and local-
fn‘&; ity. Modularity describes the percentage of modules changed whereas locality describes the number of
;::' packages changed. Modularity is computed as:
."'.
e modularity = (1 - N_/N_)
«‘| LY ) )
:‘: where N is the number of modules requiring change and N is the number of total modules. Likewise, -- -
::' the locality of changes is computed as: __
¥
LY ]
\'. . _ N .
:::‘.: locality (l I\PC/I\‘p) U
o where Npr is the number of packages changed and th is the total number of packages in the system. ‘9
y Y . . 4
o = The overall environment portability is then computed as the average of the individual portability -
:! metrics.
1 -
ad D .
‘f‘, portability = (size + modularity + locality) * 3 S N
o 4
. —— - - - A
e ~ . I e
) . Lot e
A:’ ' |
et : :
g A-1
‘ ! ‘
- h——-_....e_.____‘___...“_1

X i ) D 0 O VO
RNINCOTRMOCIROU IR O RN MR R 4 '. OO DR A Sy DI ‘.‘o’. i LN ORI O TN R DX



e
Ve H

When talking about the portability of a single component, it is usually rather difficult to talk about
locality as defined above since each component probably consists of very few and probably only one pack-
age. Therefore, to measure the portability of a single enviroament component, only the size and modular-
ity are used.

N component portability = (sise + modularity) / 2

3.0 Extensibility Measurement

SR Environment extensibility has been defined as the ability of an environment to adapt to major
! changes in the environment’s capabilities and has four basic components:

‘ Tool Modification
New Tool Integration
Existing Tool Integration

o ' Database Extension
it
ke
,.,'::I Although extensibility has been recognized as being a critical factor in environment success, there has
Ry been no real attempt to measure it. In the more general case, extensibility is usually considered part of
A |

software maintenance. It is also generally accepted that software structure (modularity) is critical to
software maintainability (Glass, 1979: 158).

3:.’1. The quality of program modulz?.rity is mezmureq b) two wfell_ accepted measures: coupling and cohesion

;:.v' (Pressman. 1982: 158). Because environment extensibility is similar to normal software system extensibil-

et ity (think of each environment component as a module), a measure similar to coupling and cohesion is pro-

::::f'" posed to determine environment extensibility. Therefore, I have developed four levels of extensibility to
; measure two basic areas: tool integration and database extension. To measure the quality of environment

. extensibility, each type of extensibility (tool integration or database extension) is placed into one or more

o). of the following categories.

)

';'I' Indirectly Extensible

B o ‘ Directly Extensible

Ve Tool Extensible

. Structure Extensible

0

::'E:: Indirect Extenasibility refers to the ability to integrate a tool or data object through use of data struc-

‘,t;-"t tures external to the environment components. An analogy to this type of extensibility is indirect address-

::s::' ing. In indirect addressing, the program code refers to a known location that holds the desired address.

This type of extensibility is powerful because it allows simple integration yet remains very flexible.

L Drrect Eztenaibility is similar to indirect extensibility in that it requires no change to the environment

::.' components themselves. In the case of direct extensibility, instead of changing an external data structure,

ﬁ.:;' the new tool or object is required to meet the environment’s non-modifiable reference scheme (i.e. a tool

’:: ' must be placed in a particular directory). Although direct extensibility may require less eflort than indirect

;."’: extensibility, it is also less flexible. Again, the analogy for direct extensibility can be made to direct
addressing where the actual address is placed directly in the program code. If the address changes, the pro-
- gram must be modified everywhere the address is used.

Y"’
Y] Tool Ertenaibility refers to a situation where to integrate a tool or database object, one or more tools
Yigt y b grat )
Ly must be altered. A common example of this is when a environment’s command line interpreter must be
N changed to recognize a new tool, or, when the database tool must be changed to allow incorporation of new
’ '. g g . . . . . p
% object types. This type of change, as a minimum, requires recompilation and retesting of all the environ-
} p yp g q g
' ment components affected.
X The worst type of extensibility is structure ertensibility. In structure extensibility. the overall struc-
A tup Y i 3
W ture of the envisonment must be changed to incorporate new tools or database objects. If the structure of




o —-— A s R v — STEE Y R LS TS W v W e e ——

the environment changes, then the assumptions made about the environment change causing an enormous

amov '+ redesign, retest. and reintegration of environment components. Obviously, this type of extensi-
bilit, shly undesirable.

ompute a single environment extensibility rating requires associating values with each type of
exte uty discussed abov.. To develop a quality metric, a considerable effort would be required to deter-
mine how much better or worse any one particular type of environment extensibility is than the others.
However, because exact numbers are not necessary to show a general trend, intuitive estimate for these
values are used. The following equations reflect that estimate.

tool extensibility = l*Ni + 5"N\i + 20“N‘ + lOO‘N‘
database extensibility = l‘Ni + S‘Nd + 20‘!\" + lOO‘N.

extensibility = tool extensibility ~ database extensibility

where N is the number of indirect references modified, N is the number of direct references satisfied, N is
the number of tools modified, and N is the number of structural modifications. Therefore, to apply this

measure, each category of extensibilily (and the number of times it applies) is counted, multiplied by its
associated weight, and then summed.




- WETESTENTIRY VTR e T - —'v—v-r--r-u‘w-'\v"'T

References
Deloach, Scott A. An Interface Based Programming Support Environment, MS Thesis - DRAFT, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, June 1987.
£ Glass, Robert L. Software Reliability Guidebook, Englewood Cliffs, New Jersey: Prentice-Hall, 1979.
Pressman, Roger S. Software Engineering: A Practitioner's Approach, New York: McGraw-Hill, 1982.

Yourdon, Edward and Larry Constantine. Structured Design, New York. Yourdon Press, 1978.

PR

- Ay A

Wt tegat,d d o] ; 2 W\ KT AT A o o O 3
ROCR IO PR MM T K % X RO T HN XA AR AR N e B T S TS AN AN N DA A T




