
P% 0
Q1TIC FILE. COPY

00

fELECTE
SEP 30 0

AFIT-EN-TM-87-7
Air Force Institute of Technology

FEnvironm ent Portability and Extensibility Meqzures
Capt Scott A. DeLoach

10 August 1987

APoved iot public release;
Dist d~ton -Unlmitd

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

25 060

" LECi

AFIT-EN-TM\-87-7
Air Force Institute of Technology

Environment Portability and Extensibility Meqqiires
Capt Scott A. DeLoach

10 August 1987

[Approved for pubhpc reo;;q
Distfibution .Unhiitcd

UNCASSIT DF
SECURITV CL.ILStFICATION OF THS PAGE

REPORT DOCUMENTATION PAGE

I*. REPORT SECURITY CLASSIFICAT ION lb. RESTRICTIVE MARKINGS

SWA UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2M. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4PERFORMING ORGANIZATION REPORT NUMuER(S. 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT-EN-TM-87-7
6S NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7i. NAME OF MONITORING ORGANIZATION

(ItapplicablJ

School of Engineering AFIT/EN

6c. ADDRESS (City, Stoic and ZI1' Code) 7b,. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

Be. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicablei

Systems Avionics Division AFWAL/AAAF-2

Sc ADDRESS WCity. Stale and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Air Force Wright Aeronautical Laboratory ELEMENT NO. NO. NO. NO.

Wright-Patterson AFB3, Ohio 45433-6583
11 TITLE (Include Securit Clarafficotionj

See Box 19

12, PERSONAL AUTHORiS)
Scott A. DeLoach, Capt, USAF

13x. TYPE OF REPORT l3b TIME COVERED |4 DATE OF REPORT jY,...Mo.. Day) 15. PAGE COUNT
Technical Memorandum FROM To 1987 August 10 7

16. SUPPLEMLNTARY
NOTATION

17 COSATI COOES 18 SUBjECT TERMS (Continue on reverse ifnccesa' y and identify by block number)

FIELD GROUP SUS GR.

12 05 M Measurement, Computer Programming, Environments,
Computer Program Verification

19. ABSTRACT (Contan.. on reLj,,e if necessary and den lty b) bt,ck number

Title : ENVIRONMENT PORTABILITY AND EXTENSIBILITY MEASURES

Advisor: Richard R. Gross, Lt Col, USAF
Assistant Dean , 1'71 Afl;

School of Engineering V d'%i4? e
Jpt 1 r

t
I

!I 112n:h and . !c mt er l tl~ t e I T ,,.:n oI ,/ (y 3 1

70. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIF#ED/iNLIk1,TED'7 SAM.4E AS RPT, LX 0TfC USRFIS 0

22a NAME OF RESPONSIBLE INDIVIDUAL 22o TELEPHONE NUMBER 22c, OFFICE SYMBOL
(Include A tvo Code I

Richard R. Gros' . (513) 255-in25 AFIT/EN
OD FORM 147383 Afi -. ,j l- 7".1i

" ' ,S' IF 1)
-- 63 A,

- ,

1.0 Introduction / /
- To validate my thesis (DeLoach, 1987), that environ ents based on abstract interfaces provide

enhanced portability and extensibility, I decided to compare ai environment against existing non-interface
based environments. To do this, I needed two metrics: one to measure portability, and the other to meas-
ure extensibility. These metrics had to be applicable to the environment as a whole and had to exhibit the
following characteristics. First, the metrics had to be objective: given sufficient knowledge of the system,
an individual should be able to compute only one possible measurement. Second, the metric must be appli-
cable given only the environment design documentation and source code, thus ensuring the metrics are
based solely on the characteristics of the software.

2.0 Portability Measurement
Intuitively, software (environment) portability, "the ease of movement among distinct solution

environments" and "a function of the number and complexity of the requisite changes" (Yourdon and Con-
stantine, 1978: 322), should be fairly easy to measure. There have been two approaches to measuring
software portability. The first approach describes portability in terms of the effort expended to rehost the
software. Although this approach measures both size and complexity, it also includes other factors such as
personal skills, tool availability, etc.

The second approach is simple and straightforward. It measures the amount of code changed during
the rehosting process. Although it does measure the change size and is dependent solely upon the software.
it does not measure the complexity. However, an extension to the line- of code approach that considered
complexity could meet the metric requirements discussed above.

Change complexity includes many components, most of which are hard to measure (e.g. understand-
ing new host operating systems, simulating non-existent host computer functions, intrinsic difficulty of the
function, etc.). However, one important aspect of complexity that is quantifiable is localization of the
changes. If a piece of software requires changes to 500 lines of code. it is much easier to rehost if the
changes are located in five modules instead 50. Therefore, I propose to measure the size of the change by
lines of code and the complexity by locality of the changes (how many modules or packages have to be
changed). Therefore, the size of a change is simply:

size = (I - Nic/N U)

where N is the number of source lines of code added, deleted, or modified, and N is the total number of
source lines. (Source lines are defined as one executable or declarative statement.) t'

The locality (complexity) of the portability changes is described in two parts: modularity and local-
ity. Modularity describes the percentage of modules changed whereas locality describes the number of
packages changed. Modularity is computed as:

modularity = (1 - N Ntm)

where N is the number of modules requiring change and N.M is the number of total modules. Likewise,
the locality of changes is computed as:

locality = (1 - N /N

where N is the number of packages changed and N is the total number of packages in the system.
PC %P

The overall environment portability is then computed as the average of the individual portabilitN
metrics.

portability = (size + modularity + locality) 3

G t

i |4,o

When talking about the portability of a single component, it is usually rather difficult to talk about
locality as defined above since each component probably consists of very few and probably only one pack-
age. Therefore, to measure the portability of a single environment component, only the size and modular-
ity are used.

component portability =- (size + modularity) / 2

3.0 Extensibility Measurement
Environment extensibility has been defined as the albflity of an enviropment to adapt to major

changes in the environment's capabilities and has four basic component-s:

Tool Modification
New Tool Integration
Existing Tool Integration
Database Extension

Although extensibility has been recognized as being a critical factor in environment success, there has
been no real attempt to measure it. In the more general case, extensibility is usually considered part of
software maintenance. It is also generally accepted that software structure (modularity) is critical to
software maintainability (Glass, 1979: 158).

The quality of program modularity is measured by two well accepted measures: coupling and cohesion
(Pressman. 1982: 158). Because environment extensibility is similar to normal software system extensibil-
ity (think of each environment component as a module), a measure similar to coupling and cohesion is pro-
posed to determine environment extensibility. Therefore, I have developed four levels of extensibility to
measure two basic areas: tool integration and database extension. To measure the quality of environment
extensibility, each type of extensibility (tool integration or database extension) is placed into one or more
of the following categories.

Indirectly Extensible
Directly Extensible
Tool Extensible
Structure Extensible

Indirect Eztensibility refers to the ability to integrate a tool or data object through use of data struc-
tures external to the environment components. An analogy to this type of extensibility is indirect addres-
ing. In indirect addressing, the program code refers to a known location that holds the desired address
This type of extensibility is powerful because it allows simple integration yet remains very flexible.

Direct Extensibility is similar to indirect extensibility in that it requires no change to the environment
components themselves. In the case of direct extensibility, instead of changing an external data structure,
the new tool or object is required to meet the environment's non-modifiable reference scheme (i.e. a tool
must be placed in a particular directory). Although direct extensibility may require less effort than indirect
extensibility. it is also less flexible. Again, the analogy for direct extensibility can be made to direct
addressing where the actual address is placed directly in the program code If the address changes, the pro-
gram must be modified everywhere the address is used.

Tool Exten.ibility refers to a situation where to integrate a tool or database object, one(or more tools
must be altered. A common example of this is when a environment's command line interpreter must be
changed to recognize a new tool, or, when the database tool must be changed to allow incorporation of new
object types. This type of change, as a minimum, requires recompilation and retesting of all the environ-
ment components affected.

The worst type of extensibility is structure extensibility. In structure extensibility, the overall struc-
ture of the environment must be changed to incorporate new tools or database objects If the structure of

........... C

the environment changes, then the assumptions made about the environment change causing an enormous
amo, J " redesign, retest. and reintegration of environment components. Obviously, this type of extensi-
bilit jhly undesirable.

ompute a single environment extensibility rating requires associating values with each type of
ex'eL ,&ity discussed abo% .. To develop a quality metric, a considerable effort would be required to deter-
mine how much better or worse any one particular type of environment extensibility is than the others.
However, because exact numbers are not necessary to show a general trend, intuitive estimate for these
values are used. The following equations reflect that estimate.

tool extensibility = I*N i + 5 *Nd + 20*N + 100*N

database extensibility = I*N + 5*Nd + 20*N + 100*N
I g

extensibility =- tool extensibility - database extensibility

where N. is the number of indirect references modified, N is the number of direct references satisfied, N is
-the number of tools modified, and N is the number of structural modifications. Therefore, to apply tiis

measure, each category of extensibility (and the number of times it applies) is counted, multiplied by its
associated weight, and then summed.

-.

References

DeLoAwh, Scott A. An Interface Based Programming Support Environmnent, MS Thesis - DRAFT, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AF13, OH, June 1987.

Glan, Robert L. Software Reliability Guidebook, Englewood Cliffs, New Jersey: Prentice-Hall, 1979.

Pressman, Roger S. Software Engineering: A Practitioner's Approach, New York: McGraw-Hill, 1982.

Yourdon, Edward and Larry Constantine. Structured Design, New York. Yourdon Pres-,. 1978.

