

.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

CALINGA CALING

FINAL REPORT

14

PUGET SOUND SEDIMENT DEPOSITION ANALYSIS:

PHASE II

ЪУ

Pamela Sparks-McConkey Peter L. Striplin

Evans-Hamilton, Inc. 4717 24th Avenue NE, Suite 303 Seattle, Washington 98105

Prepared for

May 1, 1987	Accesion For
	NTIS CRA&I
	DTIC TAB
	Unannounced Justification
	By per form 50 Distribution/
	Availability Codes
	Dist Avail chiefy or Silv Ciai

TABLE OF CONTENTS

rag	5
LIST OF FIGURES	
ACKNOWLEDGEMENTS	
INTRODUCTION	
MATERIAL AND METHODS	
NAVIGATION)
FIELD SAMPLING PROCEDURES 5	I
FIELD METHODS FOR CHEMICAL ANALYSIS 7	,
LABORATORY PROCEDURES	,
DATA ANALYSIS)
RESULTS AND DISCUSSION	
LUMMI/SINCLAIR ISLAND ZSF	L
McNEIL ISLAND ZSF	
BELLINGHAM BAY ZSF	L
ANDERSON/KETRON ISLAND ZSF)
DEVILS HEAD ZSF	}
CONCLUSIONS	5
LITERATURE CITED	5
APPENDIX A I	1
APPENDIX A II	2
APPENDIX B	5
APPENDIX C	2
APPENDIX D	Ł

£

LIST OF FIGURES

£

		Page
Figure 1.	Map of Puget Sound showing the general study areas	. 2
Figure 2.	Transects and stations sampled in each area	. 6
Figure 3.	Contours of five-day biochemical oxygen demand (mg/kg dry weight) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Bellingham Bay	. 12
Figure 4.	Contours of volatile solids content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Bellingham Bay	. 13
Figure 5.	Contours of water content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Bellingham Bay	. 15
Figure 6.	Contours of median grain size in Bellingham Bay	. 17
Figure 7.	Contours of clay content (percent) in Bellingham Bay	. 18
Figure 8.	Areas where at least one parameter (biochemical oxygen demand, volatile solids, or percent water) exceeded the 95% confidence interval or the 1.96 standard normal deviate for Bellingham Bay	. 19
Figure 9.	Contours of five-day biochemical oxygen demand (mg/kg dry weight) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in the Anderson/Ketron Island ZSF	. 21

1999) [KAKKA] KAKAA] KAKAAA KAKAAA KAKAAA KAKAAA KAKAAA KAKAAA KAKAAAA KAKAAAA INGAMAA AMAAAA MAAAA MAAAA MAAA

LIST OF FIGURES (continued)

Figure 10.	Contours of volatile solids content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values,		
Figure 11.	in the Anderson/Ketron Island ZSF Contours of water content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values,		
Figure 12.	in the Anderson/Ketron Island ZSF Contours of median grain size in in the Anderson/Ketron Island ZSF		
Figure 13.	Contours of clay content (percent) in the Anderson/Ketron Island ZSF		
Figure 14.	Areas where at least one parameter (biochemical oxygen demand, volatile solids, or percent water) exceeded the 95% confidence interval or the 1.96 standard normal deviate for in the Anderson/Ketron Island ZSF , .	26	
Figure 15.	Contours of five-day biochemical oxygen demand (mg/kg dry weight) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in the Devils Head ZSF	29	
Figure 16.	Contours of volatile solids content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) value, in the Devils Head ZSF	30	
Figure 17.	Contours of water content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in the Devils Head ZSF	31	
Figure 18.	Contours of median grain size in in the Devils Head ZSF	32	λ ^γ
Figure 19.	Contours of clay content (percent) in the Devils Head ZSF	33	

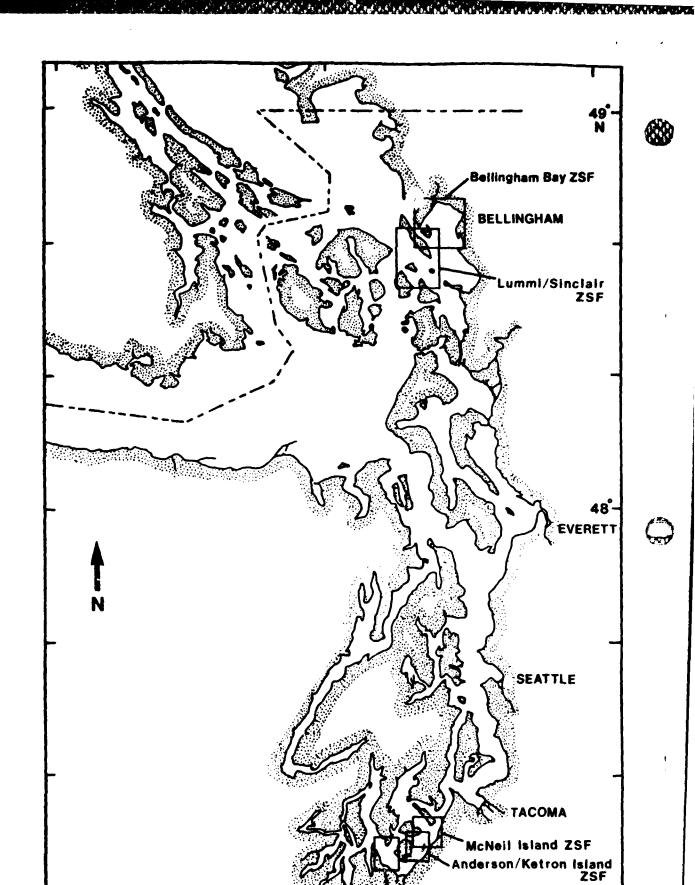
Page

LIST OF FIGURES (continued)

Page

Figure 20. Areas where at least one parameter (biochemical oxygen demand, volatile solids, or percent water) exceeded the 95% confidence interval or the 1.96 standard normal deviate for the Anderson/Ketron Island ZSF 34

ACKNOWLEDGEMENTS


The authors wish to thank those who assisted in this investigation. Special thanks to Chris Bannick and Gary Rosenthal who were most helpful in providing time in the execution of field and laboratory work. For the assistance in preparing this report Susan Ebbesmeyer, Toni Proctor, and Clay Wilson. Additional thanks goes to Mrs. Judy Heinze for the special support which was needed at the crucial time.

INTRODUCTION

Phase II of the Puget Sound Dredge Disposal Analysis (PSDDA), examined five Zones of Siting Feasibility (ZSFs). These zones were located in northern and southern Puget Sound, and as in the Phase I study, were evaluated for their suitability for the future disposal of dredged materials (Striplin et al., 1986). The Phase II area covers southern Puget Sound from the Narrows Bridge to Olympia, Northern Puget Sound from Foulweather Bluff and Saratoga Passage to the Canadian border, and the Strait of Juan de Fuca westward to Port Angeles. The Zones are located between Lummi and Sinclair Islands, in Bellingham Bay, east of McNeil Island, and between Anderson and Ketron Islands, and south of Devil's Head at the entrance to Drayton Passage (Figure 1).

Within each zone, preliminary disposal sites were located in areas where the tidal current energy was believed to be very low, because, under a "non-dispersive" philosophy, the goal was to choose sites where newly deposited dredged material generally would remain undisturbed. A number of checking studies were conducted in each ZSF to refine the disposal sites by identifying their gross physical and biological characteristics. A quantitative approach was required to confirm that the sites were situated within low energy or "depositional" environments where fine sediments naturally accumulate. A procedure was selected in which a statistical evaluation of physical characteristics of the sediments was carried out. This procedure, termed "depositional analysis", is based on the fact that fine sediments and organic material settle out of the water column to the sea floor in areas of low energy. The method involves examining the sediment at each station located on a specific depth contour, and identifying areas of low energy through statistical evaluations of measures of organic content, grain size, and water content.

The methods used in the analysis wore developed from observations made in southern California where the organic enrichment in the vicinity of municipal sewage outfalls was noted to be in direct proportion to distance from the discharge (Bascom, 1978). The concentration of organic material in the sediment decreased from the outfall in the direction of the alongshore current (Hendricks, 1976). Average values of 5 day biochemical oxygen demand measurements (BOD5) along depth intervals were calculated and compared to the BOD5 values at each station and the depositonal patterns due to the discharge plume were elucidated. The grid of stations established around the outfall region showed that the greatest amount of organic material deposited at the depth of the outfall and dispersed forming an eliptical pattern with the outfall at one apex. It was postulated that the natural deposition of particulate material may occur in a somewhat similar manner. However, the use of BOD₅ as the only indicator of deposition may not be adequate without a measure of grain size.

,123[•]

Devils Head ZSF

47

12Ž

124°W

The depositional analysis was refined by adding the grain size, percent volatile solids, and percent water to the analysis for studies in Puget Sound. The technique was used during the Seahurst and Duwamish Head baseline studies to identify areas where the depositon of organic material from an outfall most likely would occur (Word et al., 1984a, b). A comparison was made of the percent volatile solids, five-day biochemical oxygen demand, percent water, and median grain size of sediment samples taken from a number of stations located in the East Passage of central Puget Sound. Because of the natural depth dependent variation of these parameters, only samples taken at similar depths were statistically compared. Stations where sediment samples had high levels of organic material, high water content, and high percent clay were always found to be located in areas with low current speeds or tidal eddies. This correlation suggested that these areas were sediment sinks, or were depositional in nature. The fact that fine sediments tend to settle in low current areas is not surprising, but the significance of elevated values of the other parameters requires further explanation. A high level of volatile solids (% VS) indicates that a large percentage of the sediment by weight is volatile at 550°C. This volatile material consists of organic and inorganic solids. High BOD5 values indicate the presence of a large amount of biologically available organic material. Α high BOD_5 value is anticipated in sediments with high % VS but may not correlate with % VS if the organic material is not readily available to microorganisms. Large BOD5 values suggest that organic material is accumulating rapidly through settlement, or that there is a large amount of biological activity generating organic material for microbial use. Percent water is a byproduct of the volatile solids analysis, and a high percent water usually coincides with small seidment grain sizes.

None of the depositional analysis parameters independently provides complete assurance that an area is depositional. For instance, past studies have found that sediment grains between 0.1 and 0.5 mm sometimes are more easily eroded than sediments that are either larger or smaller (Moherek, 1978; Kendall, 1983). Therefore, if the selection of a depositional site depended solely on locating sediments with fine grain size and high percent clay, there is a possibility that an area of even lower energy could be overlooked. However, when at least one of the other parameters (volatile solids, BOD₅, or percent water) also indicates a low energy environment, the site may be labeled depositional with a high degree of confidence. RAMANA SUGAN SUPERIOR SUGAR SUGAR SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS SUCCESS

By examining existing bottom sediments through the depositional analysis methods, the end product of the Puget Sound basin's natural erosion and accretion process is being observed directly. The exact pathway by which the sediments arrived at a site may not be completely understood, but the knowledge that very fine sediments are accumulating greatly simplifies the task of predicting the fate of dredged material that is disposed at the site. If the disposal methods are selected to minimize the amount of material that is lost during its descent through the water column, and if the material's erodability characteristics are similar to those of the existing bottom sediments, the conclusion that the dredged material will also remain in place may be made with a high degree of certainty.

an address a second as a second second

122222

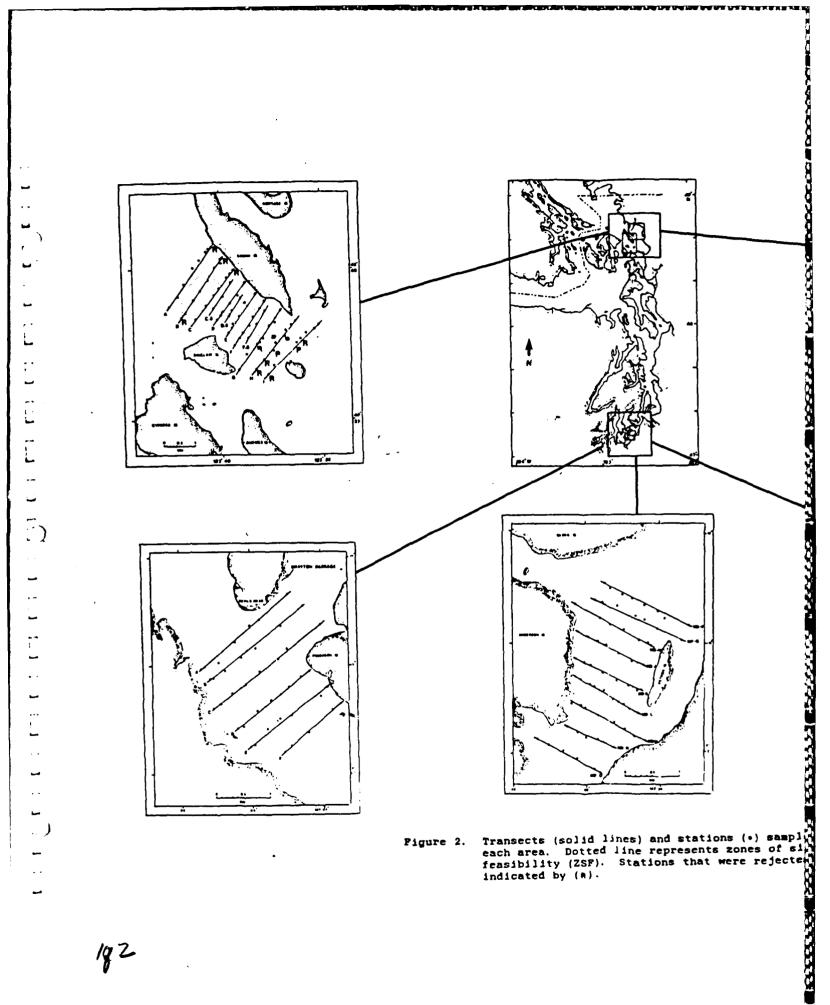
MATERIALS AND METHODS

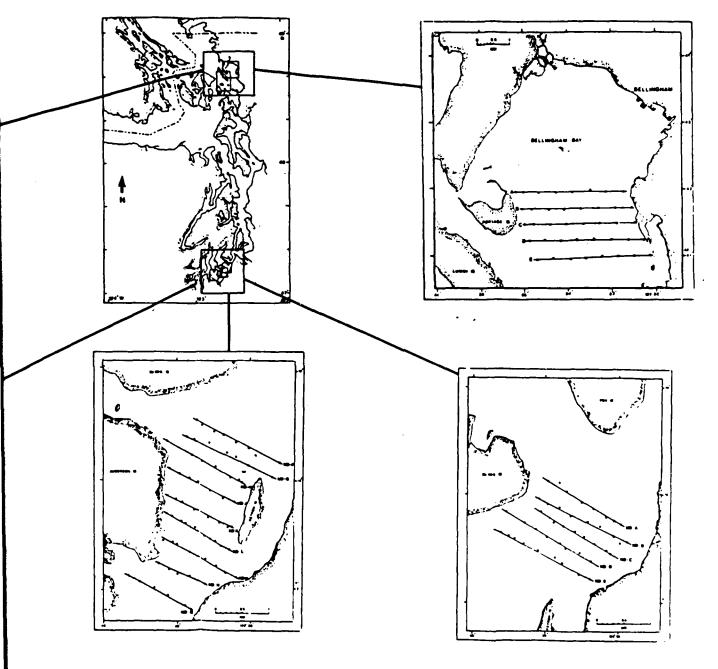
A total of 251 stations were sampled throughout all five ZSF's. Stations were selected along transect lines at specific depth intervals (50', 100', 200', 300', 400', 500', 600', 700') so that comparisons could be made among transects and to allow statistical computations of areas of elevated organics and smaller grain sizes for each depth sampled.

Fifty-nine stations were sampled at the Lummi/Sinclair Island ZSF on the 22nd, 25th, and 26th of September 1986. There were 40 stations established in Bellingham Bay on October 15-16 1986 (Fig. 2). In south Puget Sound, 149 stations were distributed among the three ZSF's. Sampling in south Sound occurred from October 20 to October 25 1986. The McNeil Island ZSF consisted of 42 stations, the Anderson/Ketron Island ZSF consisted of 66 stations and there were 41 stations in Devils Head ZSF (Fig. 2).

NAVIGATION

To achieve accurate station positioning a combination of navigational aids were employed. At the ZSF off Lummi and Sinclair Islands there was strong interference in the area making navigation by LORAN C unreliable. A Mini-Ranger III System (MRS) was used in conjunction with a variable range radar providing a positioning accuracy of approximately six meters.


In Bellingham Bay variable radar range was used in conjunction with LORAN C coordinates providing a positioning accuracy of approximately 18.5 meters. Navigation using LORAN C in Nisqually Reach (south Puget Sound) was not possible due to some strong interference in the area. Navigation was therefore accomplished using a Mini-Ranger III System (MRS) which provided accurate positioning to within three meters.


The water depth criteria used during this project for acceptable depth variation during replicate sampling were either 10% of the established depth or 20 feet, whichever was less. Depths were measured using recording paper and digital output fathometers.

FIELD SAMPLING PROCEDURES

Subtidal sediment samples were collected in a consistent repeatable manner with a 0.1 m^2 modified van Veen grab sampling device. Upon collection, the physical characteristics of the sediment were described and recorded for each sample. This information included sediment texture and color; strength and type of odors; sampler penetration depth, degree of leakage, and sediment surface disturbance; and any obvious abnormalities such

5

gure 2. Transects (solid lines) and stations (•) sampled in each area. Dotted line represents zones of siting feasibility (ZSF). Stations that were rejected are indicated by (#).

292

as, wood debris and biological structures (e.g., shells and tubes). Samples which showed excessive disturbance of the sediment surface were rejected. In addition, sediment samples were rejected if they did not meet the following minimum penetration depths.

1) 4 cm-coarse sand and gravel

- 2) 5 cm-coarse to medium sand
- 3) 7 cm-fine sand
- 4) 10 cm-silt with sand or clay

FIELD METHODS FOR CHEMICAL ANALYSIS

Sediment samples for chemical analysis were handled by first removing the overlying water in the sampler using a vacuum suction device attached to the seawater system on the vessel. Since an undisturbed sediment surface was necessary, the physical description of the sediments was delayed until after the chemical samples were taken. At each station separate samples were collected for: grain size, total volatile solids, and five-day biochemical oxygen demand.

Samples were taken from the upper two centimeters of the sediments using METRO's toxicant cookie cutter. The cookie cutter, an inverted stainless steel pan, was placed on the surface of the sediment, gently pushed into the sediment, and a flat plate slid just underneath the edge of the device. Material extending outside the device was sliced away and the material within the cookie cutter was transferred to an appropriately cleaned container. The cookie cutters were rinsed between replicates at each station, and between stations, with a solution of deionized organic-free water. Handling devices for the collection of grain size, total volatile solids, and biochemical oxygen demand were cleaned as described, and sediments were placed into clean eight ounce jars.

Sediment samples for measurements of grain size and percent water were kept in a cool place until returned to the laboratory where they were refrigerated (4° C). Samples for total volatile solids and biochemical oxygen demand were stored on ice until returned to the laboratory where they were stored in freezers.

LABORATORY PROCEDURES

In 1985, the U.S. Environmental Protection Agency (Region X) established protocols for the examination of water, sediments, and benthic infauna under the Puget Sound Estuarine Program (PSEP). These protocols, when used with those established in Standard Methods for the Examination of Water and Wastewater, are an extremely valuable guide to follow when conducting research in the marine environment. All procedures used in this study are those recommended for use by the above two manuals.

Percent Volatile Solids (X VS)

Percent volatile solids were determined by combustion at 550°C, once the samples were completely thawed and homogenized. A minimum of two replicates were conducted fo~ each station.

Five-Day Biochemical Oxygen Demand (BOD5)

The 5-day biochemical oxygen demand was determined following procedures in Standard Methods for the Examination of Water and Wastewater (1985). These procedures were modified for using seawater as the dilution water. Seawater was collected at the Seattle Aquarium and filtered through three Baker Hydro Sand Filters (Model HRV-36; #20 white silica sand), two charcoal filters, and an ultraviolet sterilizer (Model L-150). The water was then incubated at 20° C in the dark and aerated for quality improvement. The 5-day demand of the scawater dilution blank did not exceed the recommended value of 0.20 milligrams per liter throughout the study.

The microorganism seed culture was produced in the laboratory by continually aerating a three liter culture medium incubated at 20°C. The medium was initially composed of one liter of aquarium sand collected from the University of Washington School of Fisheries' saltwater aquarium gravity filter beds, and two liters of the supernatant of equal parts sand and saltwater. For the duration of the study the culture received 75 milliliters of salinity-adjusted METRO West Point Treatment Plant unchlorinated sewage effluent and 5 milligrams of Tetra-Min baby fish food every other day. Three times a week the seed culture was violently stirred and a portion transferred to a one liter glass jar where the particulates were allowed to settle and the supernatant was used in the BOD₅. A seed concentration of 1 milliliter per 0.3 liters of diluted sample was used.

In preparing the sediment sample for the 5-day test, the sample was allowed to thaw to room temperature and was homogenized. Four representative aliquots of the sample were weighed to within 10 milligrams of each other and then carefully transferred into incubation bottles. One milliliter of the seed culture was introduced into each bottle which was then filled with oxygen-saturated seawater. Care was taken when capping the bottles so that no air bubbles were introduced into the bottles. Two bottles were fixed immediately to measure the initial concentration of dissolved oxygen. The other two bottles were agitated for 10 seconds or until the sediment was completely suspended, and were placed in a darkened area and maintained at 20⁰C. The bottles were incubated for a period of five days, and were agitated daily to resuspend the sediments.

The 5-day BOD (milligrams of oxygen used per kilogram of sediment, dry weight) for each sample was calculated using the formula:

 $BOD_5 = \frac{(a-b) \cdot 3 \times 100}{(g) (R)}$

where,

- a = initial dissolved oxygen concentration at time 15
 minutes (mg/l)
- b = dissolved oxygen concentration at time 5-day (mg/l)
- g = grams of sediment added to each 0.3 liter test bottle
- R = ratio of the dry to wet weight of the sediment sample (expressed as a decimal fraction)

Quality control of the dilution water, the effectiveness of the seed culture, and the technique of the analyst, were maintained by: 1) preparing dilution seawater controls (test blanks); 2) using control mixtures of glucose and glutamic acid (1:1) with a theoretical oxygen demand of 218 \pm 11 mg/l; 3) preparation of several dilutions of seeded dilution seawater (seed control) with theoretical oxygen demand between 0.6 and 1.0 mg/l; and 4) duplicate determinations made using sediment samples with low and high organic loads.

Percent Water, Grain Size, and Percent Clay

The refrigerated scdiment samples were warmed to room temperature and homogenized. One aliquot was weighed, oven-dried $(103^{\circ}C^{-1} 5^{\circ}C)$, and weighed again for computation of percent water.

A second aliquot went through a stepwise procedure for sediment grain size determination. The grain size determinations were done based on methods modified from Plumb (1981), Krumbein and Pettijohn (1938), and Buchanan (1984). The sediment was wet sieved into two size fractions. Sediment larger than 62 microns were air dried and further analyzed by dry sieving through a series of graded sieves using a Braun mechanical shaker into the following categories: cobble (156-64 mm); gravel (64-2 mm); coarse sand (2-0.5 mm); fine sand (0.5-0.062 mm). Sediments finer than 62 microns were analyzed by wet pipetting techniques, and were classified into silts (0.062-0.004 mm) and clays (less than 0.004 mm). A computer program generated the median size class and the percentages of gravel, sand, silt, and clay.

DATA ANALYSIS

A statistical method was employed to determine if individual samples indicated a station to be more depositional in nature than other stations at a similar depth. To as are that the means, variances, and confidence intervals of the data could be calculated with parametric statistics, the Kolmogorov-Smirnov test was applied using a standard normal distribution. Results of this test indicate that the data are normally distributed, and that the use of parametric statistics is justified. The mean. standard deviation, 95% confidence interval (95% CI), and 1.96 standard normal deviate (1.96 SND) were calculated for BOD, % VS, and % water for each depth contour using data from all 251 Phase II stations as well as 201 Phase I stations. In addition, the volatile solids data from the Seahurst and Duwamish Head Baseline studies were added to the analysis to broaden the database (Word et al., 1984a, b; Sokel and Roth, 1969). The original intent was to incorporate data for each parameter from the Seahurst and Duwamish Hcad Baseline studies. However, it became apparent during discussions with the personnel that conducted the work that protocols established in Standard Methods for the Examination of Water and Wastewater were not followed except in the analysis of volatile solids. Thus, the data used in this study incorporated only the Seahurst and Duwamish Head volatile solids data and not the BOD₅ and percent water data.

Those values falling beyond the 1.96 SND were considered outliers. They were temporarily removed from the data, and the computations performed again. Removal of the outliers decreased the variance and produced more realistic average values for the data. Once the final mean, 95% CI, and 1.96 SND were obtained for each depth contour, the individual data for each station sampled (including previously removed outliers) were then compared to the appropriate values. Individual values which fell outside of the 95% CI but inside the 1.96 SND were considered to be potentially depositional compared to other stations at that depth. Any values falling outside of the 1.96 SND were considered depositional in nature as compared to other stations at that depth.

Stations exceeding the 95% CI and 1.96 SND were placed on a chart, and areas encompassed by the two levels were shaded.

The advantage of this technique is that the values of each parameter are averaged over a large geographic region. This gives a high degree of confidence that stations with sediments that exhibit abnormally high concentrations of the measured parameters are indeed indicative of a depositional environment.

RESULTS AND DISCUSSION

LUMMI/SINCLAIR ISLAND

Field data indicated that there was a large component of sand at all but two stations in the ZSF. The northernmost transects (A, B, and C; Fig. 2) also contained large numbers of scallop shell fragments (Appendix A I). At transects A and B there were roughly three to four live scallops in each 0.1 m^2 van Veen grab sample. The obvious lack of clay/silt sediments and the presence of scallops, which are indicative of high current areas, caused this ZSF to be removed from consideration as a potential disposal site.

MCNEIL ISLAND

The field data for the McNeil Island ZSF in south Puget Sound also showed it to be unsuitable for use as a non-dispersive site for the dredge material. A number of stations contained silty sediments but these sediments contained a large component of sand (Appendix A II). The majority of the stations in the central portion of the ZSF consisted of coarse sand with some gravel. For this reason the entire ZSF was removed from consideration.

BELLINGHAM BAY

The contour intervals showing the levels of organic material in Bellingham Bay are depicted in Figures 3 and 4. Both the BOD₅ and % VS show increasing concentrations from the southwest to the north and from the northeast into the center of the study area. Both measures show a high and uniform concentration throughout the center of the Bay and in the ZSF. These values exceed the 95% CI for both BOD and VS at all stations (Figs. 3 and 4; Table 1). In addition VS values exceeding the 1.96 standard normal deviate (SND) were found in the northwest, northeast, and southeast corners of the study area. BOD₅ values exceeding the 1.96 SND were located at the same stations where the % VS also exceeded that limit. The only data point that differs from the % VS is where the BOD₅ exceeds the 1.96 SND at the north edge of the study area.

The percent water values of the Bellingham Bay sediments are contoured in Figure 5. Percent water shows the same pattern as seen in the BOD₅ and %VS. Percent water values increase from approximately 30% at the western and northeastern edges to over 60% in the center and southeastern portions of the study area. At the northern edge of the ZSF 70% water content was encountered. Areas of elevated % water presented in Figure 5 shows the study area and ZSF to contain sediment with percent water in excess of the 95% CI. The northwest and southeast

11

and a second measure provided and the second measurement of the second measurement of the second measurement of

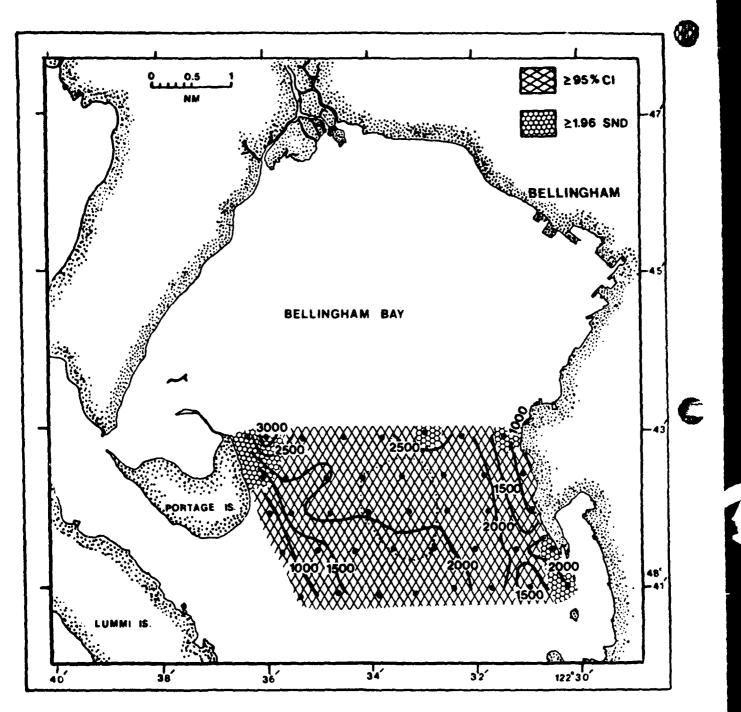


Figure 3. Contours of five-day biochemical oxygen demand (mg/kg dry weight) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Bellingham Bay. Dotted line represents preliminary ZSF boundary.

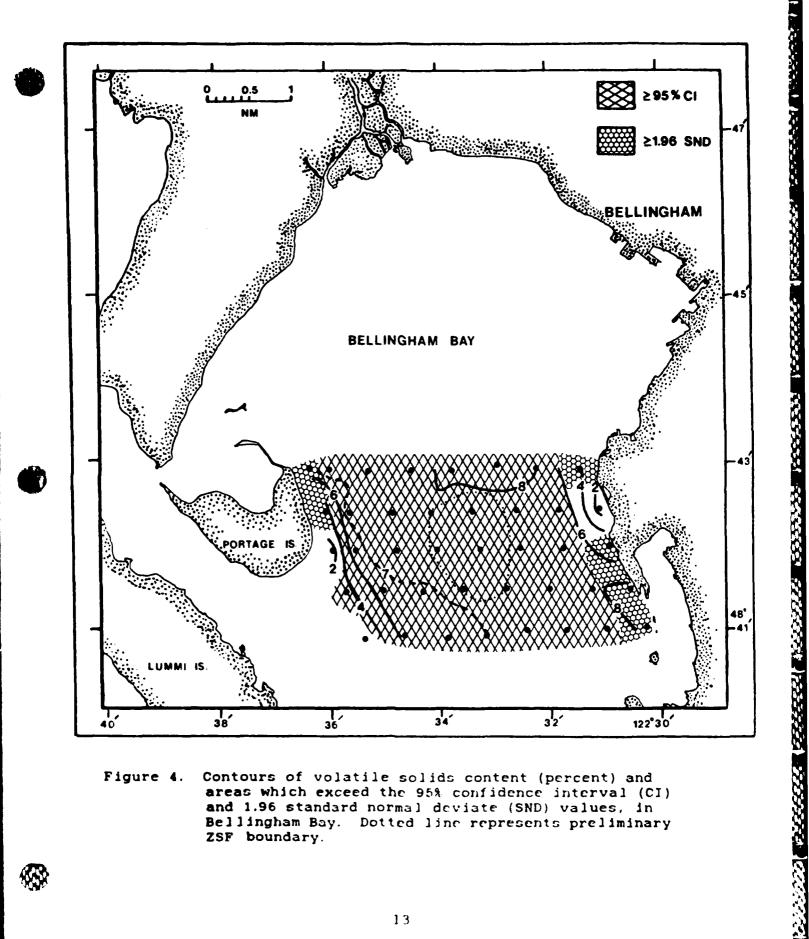


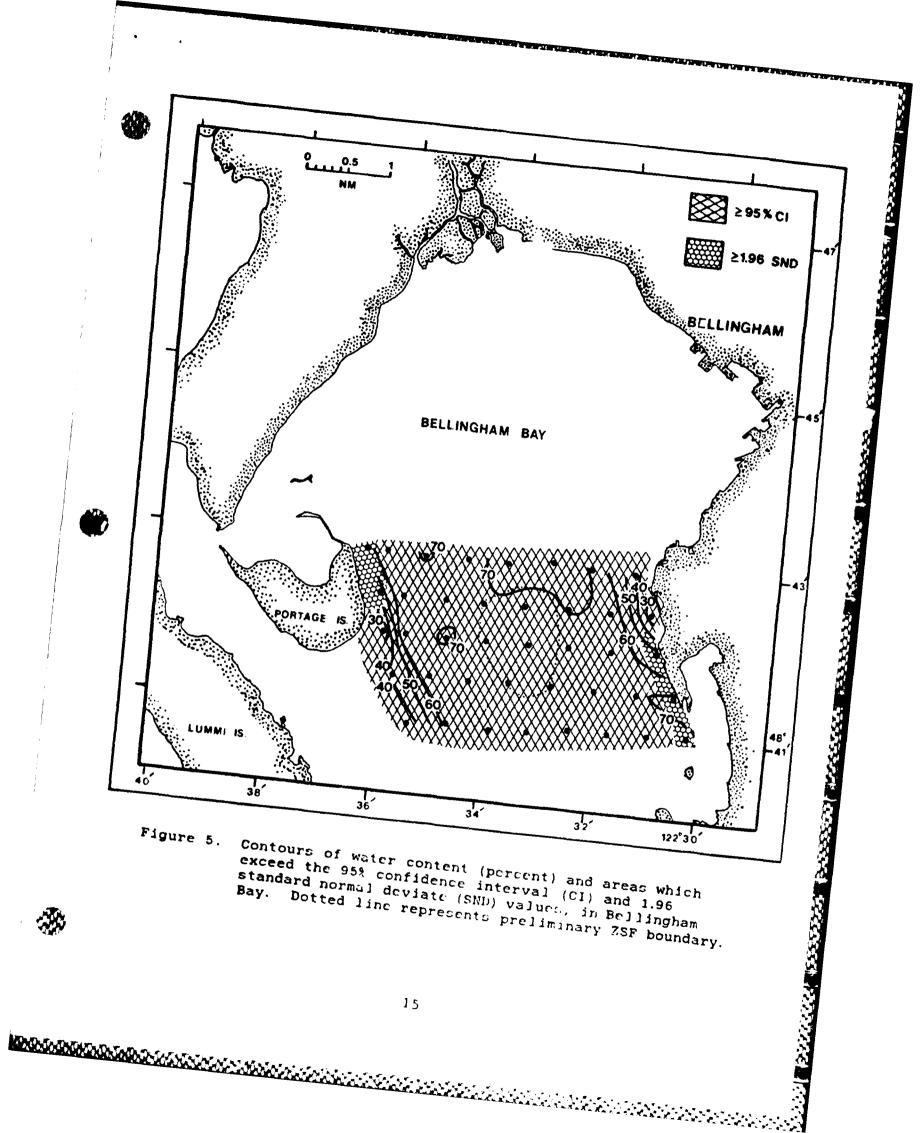
Figure 4. Contours of volatile solids content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Bellingham Bay. Dotted line represents preliminary ZSF boundary.

Table I. Mean

Mean, standard deviation, and 95% CI and 1.96 SND intervals for conventional chemistry measures for each depth contour sampled. (n - number of samples, x - mean, S.D. - Standard Deviation, C.V. - Coefficient of Variation, SND - Standard Normal Deviate, CI - Confidence Interval).

Measurement Type	50	100	200	Depth (ft.) 300	400	500	600	700
Volatile Solids								
G	73	co.	84	118	0	135	54	25
×	1.8	•	8	4	•	•	6.5	7.8
s.D.	1	2.8	ч	•	•		2.2	1.8
C.V.	0.57	0.63		0.57	0.58	0.56	0.33	0.23
x + 95% CI	•	4,9	2.2	•		•	7.1	8.5
X - 95% CI	1.6	4	•	•	•	•	5.9	6.9
X + 1.96 SND	•	10	4	•			10.8	11.4
X - 1.96 SND	0		0	o	0		2.2	-
Biochemical Oxygen								
Demand								
r	72	80	85	0	96	2	45	2
×	544	1265	9		σ	0	ማ	955
s.d.	272	85	4	S	ŝ	- 🖛	240	
	0.5	9.	ŝ	4	ŝ	ŝ	•	Q
	606	38	-	N	- 🕈	ŝ		96
0	œ	4	408	3	•	Q	2	•
	1077	6	934	1075	1198	1186	1271	968
x - 1.96 SND	10	0	0		80	N	32	
Percent Water								
c		~	92	116	0	145	54	2
×	•	S.		45	5.	-	57	9
s.d.			7.	14	~	ъ.	0	0
	2	4		е.	2	۳.	-	•
		•	34.8	7.	7.	6.	С	. 9
C)	•	2.	:	N	<u>ہ</u>	4	-	9
	46	85.7		72.5	69.7	77.4	78.4	66.3
x - 1.96 SND	14.8	•	18	7.		6.	5.	

1


8

3

いたが、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のないで、「ない」のない。

Description of the Constant

A DOOD

corners of the ZSF were significantly elevated due to their data points falling beyond the 1.96 SND range.

The median grain size characteristics of the Bellingham Bay stations are shown in Figure 6. Medium sand grading to very fine sand was located off the eastern shore and of the south end of Portage Island gradually grading into finer sediments (medium silt) in the center of the study area and ZSF. Two areas containing sediment consisting of fine silt are found in the far north and to the east of the ZSF.

The clay fraction found in this ZSF follows the grain size contour intervals (Fig. 7). The amount of clay increases from the east and west sides of the Bay towards the center of the area, and is roughly constant at 16-18% within the ZSF. Two lobes of 18%-20% clay were found northeast and northwest of the ZSF.

In reviewing the measured parameters, it is evident that the sediments in the Bellingham Bay ZSF contain a large amount of enriched organic material. BOD_5 range from 2000 to 2500 mg/kg of sediment, % VS are in excess of 8 percent and percent waters range just around 70%. The entire study area has all the attributes of a very low energy, depositional environment. The area that appears to be the most depositional in the study area is roughly 0.5 nautical miles due north of the existing ZSF. All stations in the Bay contained sediments where the BOD_5 , % VS and % water were enhanced beyond the 95% CI for each parameter (Fig. 8). The grain size is predominantly silt in this area and percent clay ranges from 18 to 20 percent.

00000000

えい

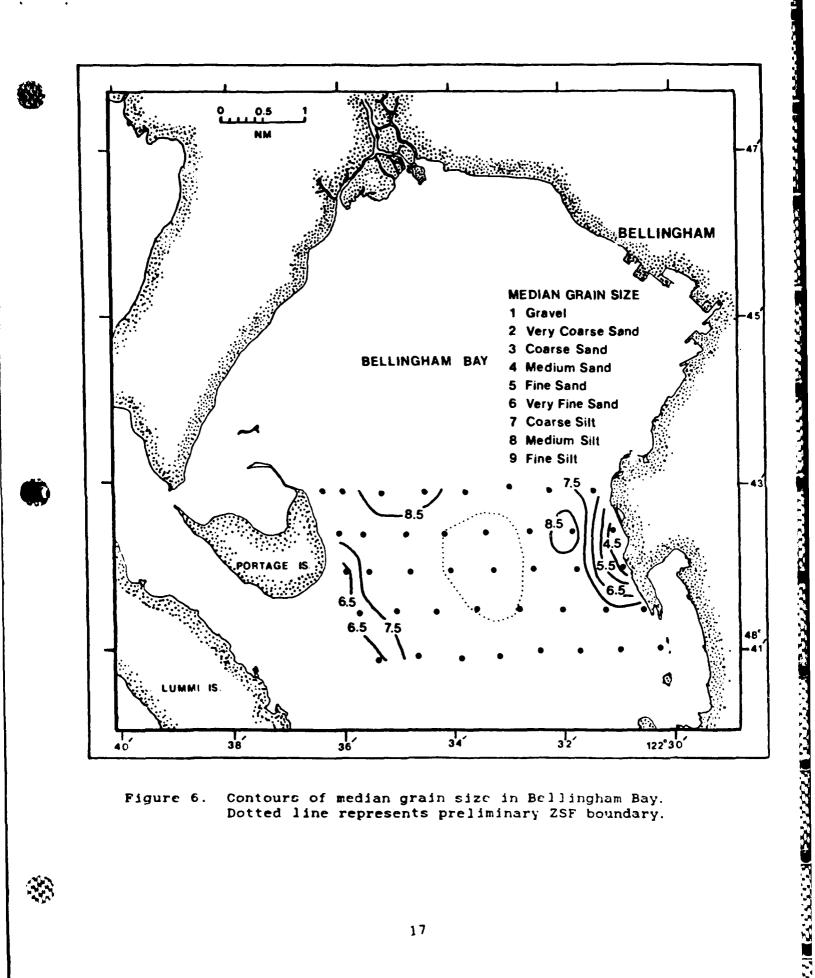


Figure 6. Contours of median grain size in Bellingham Bay. Dotted line represents preliminary ZSF boundary.

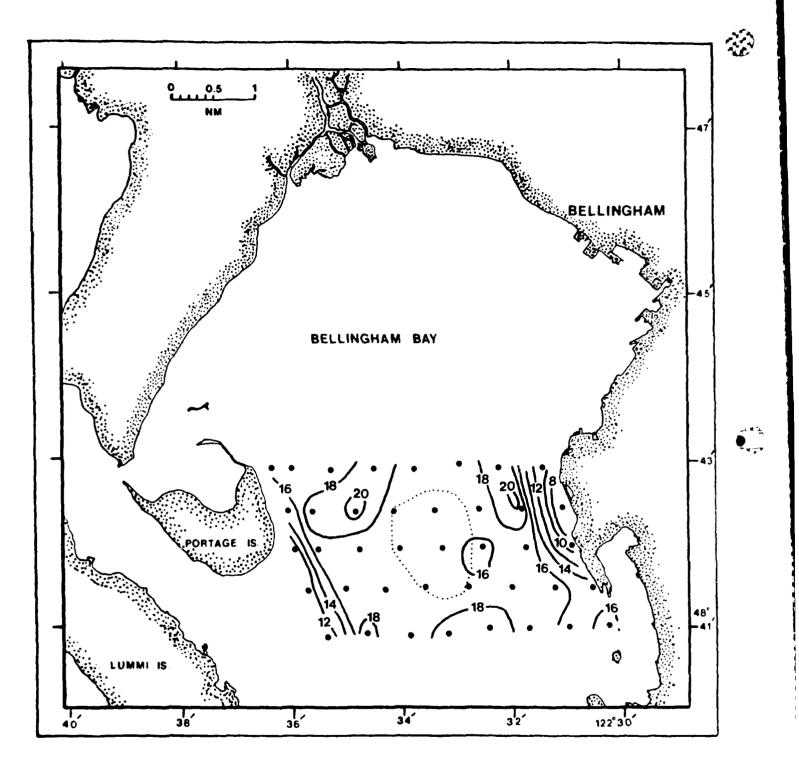


Figure 7. Contours of clay content (percent) in Bellingham Bay. Dotted line represents preliminary ZSF boundary.

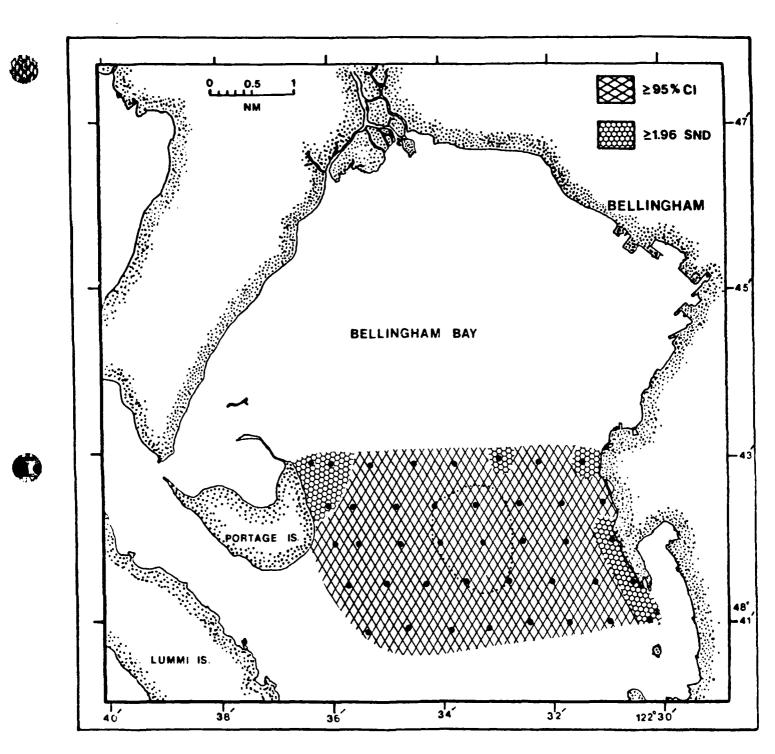
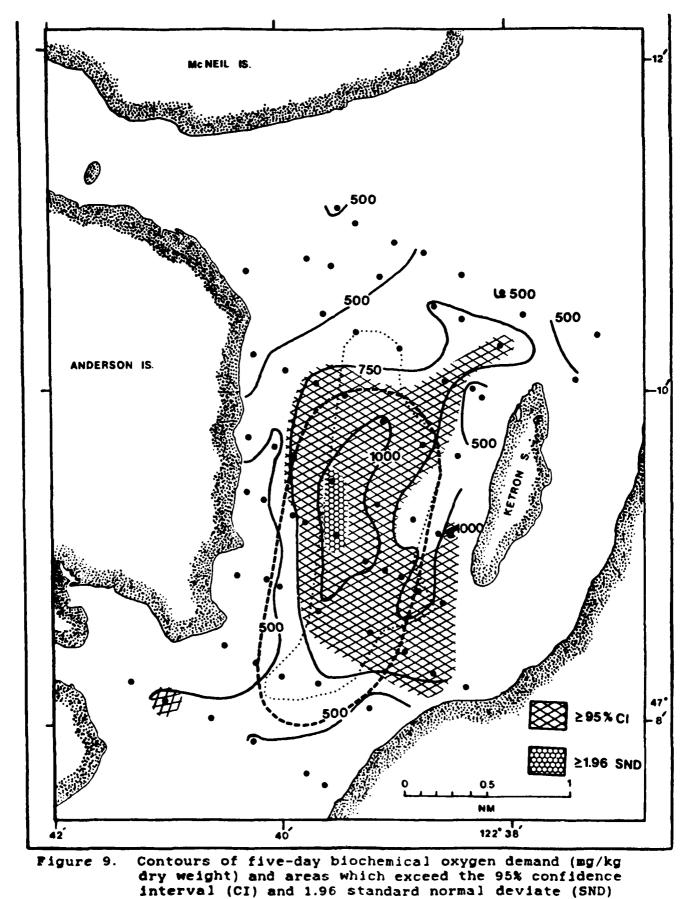
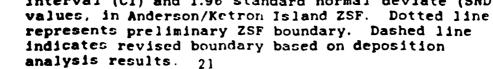


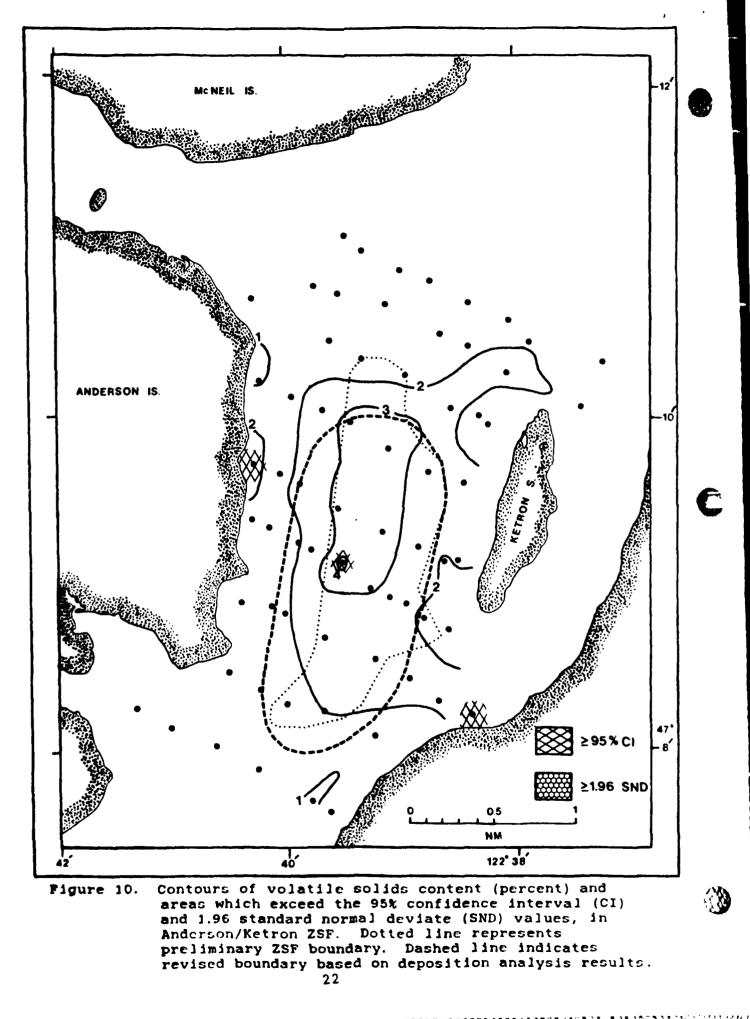
Figure 8. Areas where at least one parameter (biochemical oxygen demand, volatile solids, or percent water) exceeded the 95% confidence interval or the 1.96 standard normal deviate for Bellingham Bay. Dotted line represents preliminary ZSF boundary.

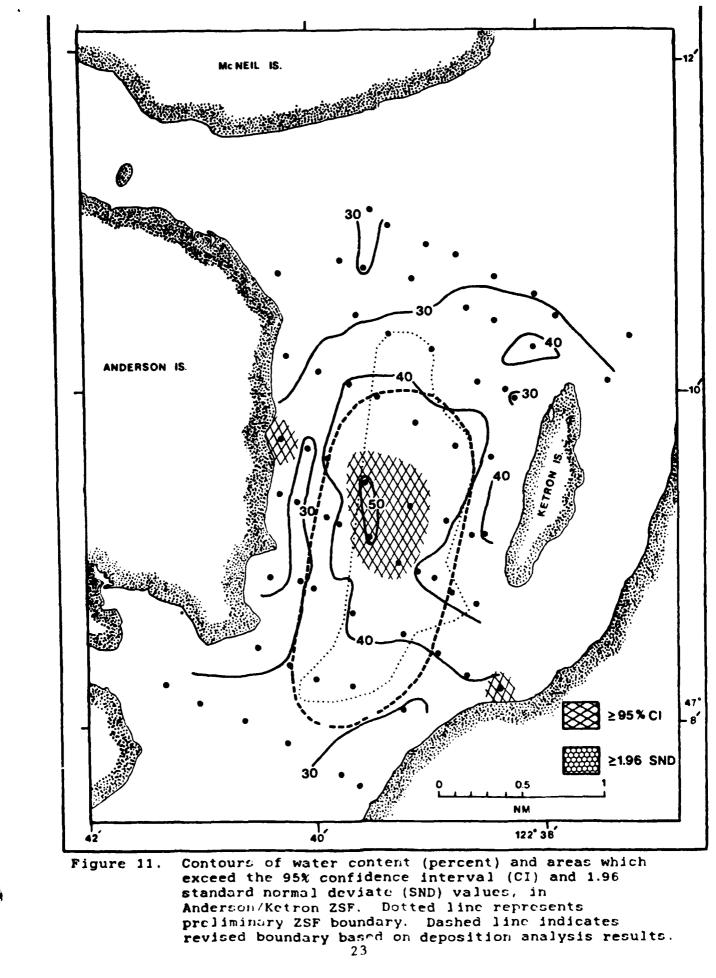
(A) (A)

ANDERSON - KETRON ISLANDS

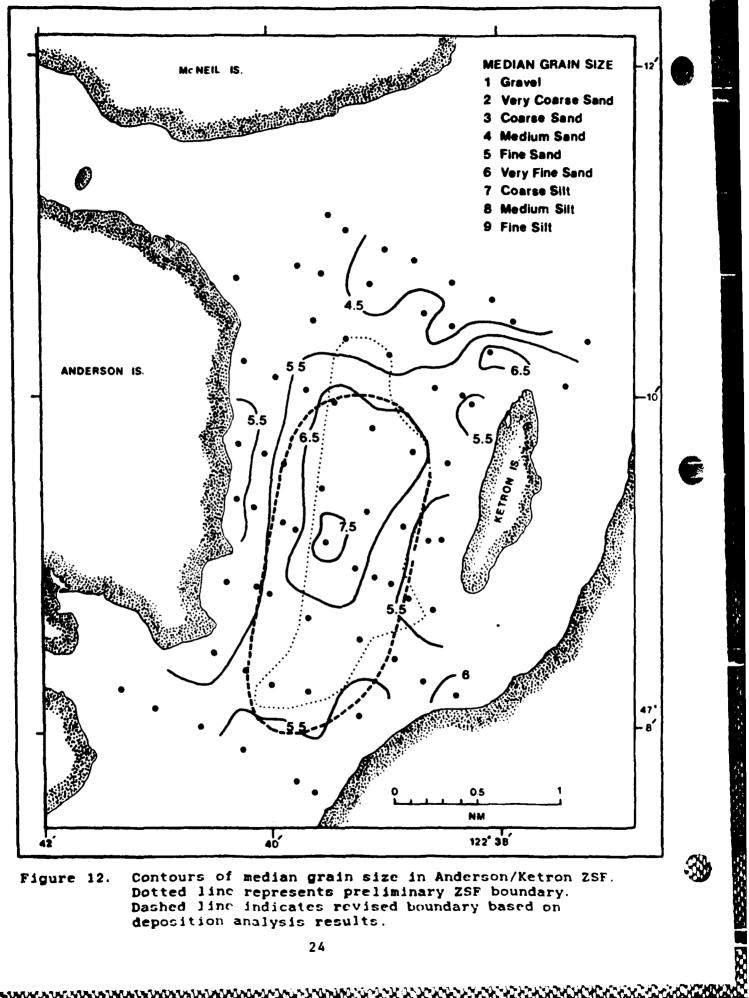

Results from the analysis of the biochemical oxygen demand (BOD_5) show that low BOD₅ values (< 500 mg/kg dry weight) occur at relatively shallow depths along the margin of Anderson and Ketron Islands (Fig. 9). Low values also occ⁷ at the northern and southern margins of the ZSF. Values of 7t, mg/kg dry weight were found at the base of the slopes from both islands and encompass the entire ZSF. The 1000 mg/kg contour abuts the western edge of the ZSF and extends to the north and south for a distance of about one nautical mile. Elevations in BOD₅ beyond the 95% CI are found throughout most of the ZSF and extern edge of the slope of the zSF and extends to the zSF and extend along the western edge of the slope of the zSF and concentrations beyond the 1.96 SND were found along the western edge of the study area and ZSF within the 1000 mg/kg contour.


Percent volatile solids (% VS) ranged from less than one to four percent. The contours shown by % VS are roughly similar to those seen for the BOD_5 (Fig. 10). The greatest amount of organic material was found at the base of the slopes between the two islands. The values in the ZSF range from two to four percent with the higher values found in the central portion of the ZSF. Elevations in the amount of organic material past the 95% CI occurs at one station within the ZSF and at two additional stations; one along the shore of Anderson Island and the other south of Ketron Island near the mainland.


Contours of percent water are presented in Figure 11. Trends in percent water are relatively similar to those seen for BOD_5 and % VS. Values range from less than 30 to over 50% water. The sediments with greater than 40% water content occur at the base of the slopes between the two islands and encompass much of the ZSF. Elevations in percent water beyond the 95% CI occur at four stations in the center of the ZSF and at two stations along the shorelines surrounding the ZSF (Fig. 11).


The median grain size and percent clay content of the sediment are presented in Figures 12 and 13, respectively. The median grain size at the extreme northern and southern parts of the study area was predominantly medium to very fine sand with percentages of clay ranging from four to eight percent. The sediment along the margins of Anderson and Ketron Islands consists of fine sand with six to eight percent clay. Sediments in the central portion of the ZSF were predominantly coarse silt with percentages of clay ranging from 10 to 12 percent.

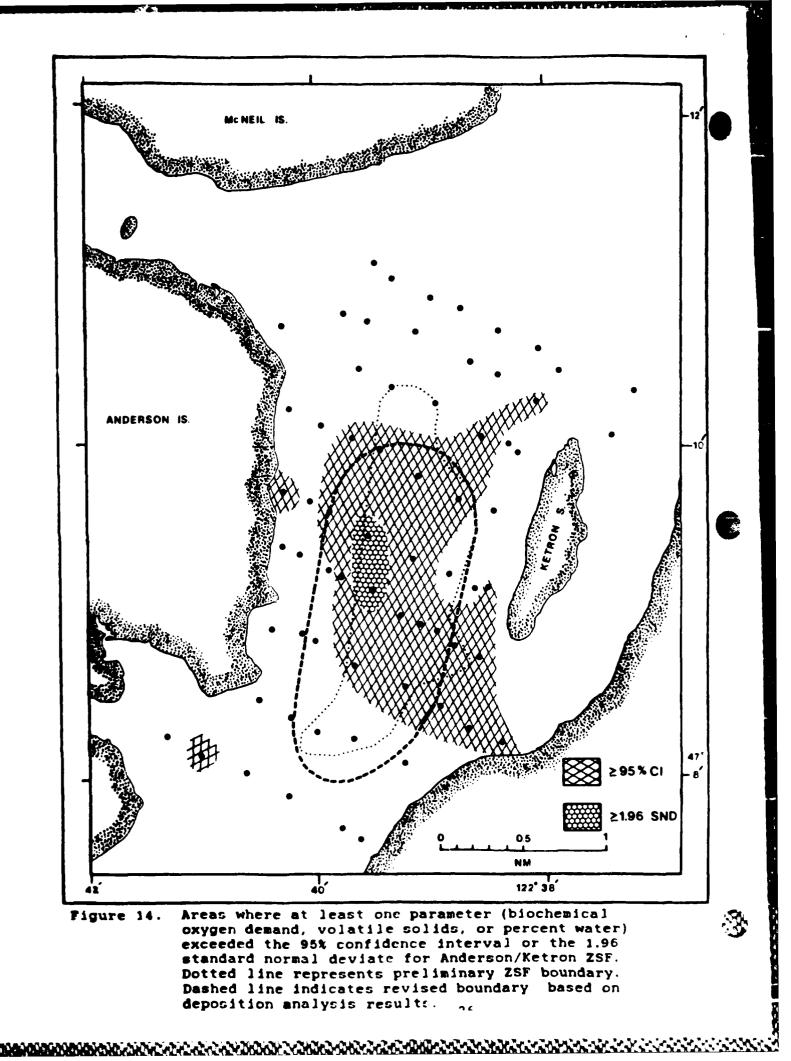
Areas containing the higher organic content and smaller grain sizes overlay much of the ZSF (Fig. 14). The highest concentrations and elevations of BOD_5 and percent water occur within the ZSF. Elevations of % VS beyond the 95% CI occurs at one station in the central portion of the ZSF at the same station where elevations of BOD_5 and percent water occur. This portion of the ZSF contains the finest sediment and the greatest percentage of clay. This combination is indicative of a low energy area where sediments are being deposited naturally. The suitability of this site for the disposal of dredge material



The Link A

7.2.2.4.4.5.5.F.W

Ż


ŝ . .

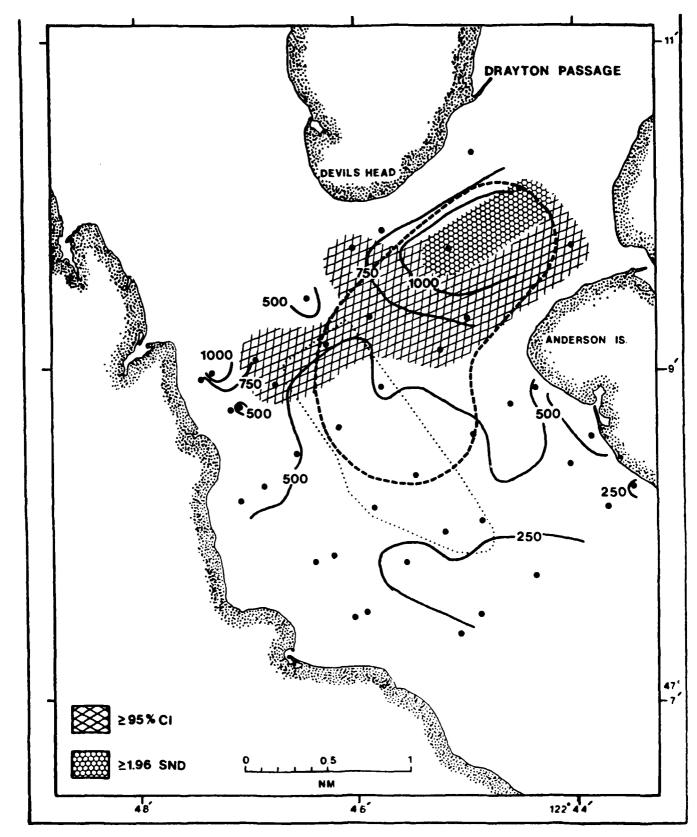
Contours of median grain size in Anderson/Ketron ZSF. Figure 12. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.

PERSONAL AND PROVIDED STATEMENT

Figure 13. Contours of clay content (percent) in Anderson/Ketron ZSF. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.

appears to be very good, as long as the dredge material's erodability characteristics are similar to those of the existing bottom sediment. The area that appears to be the most depositional is situated between Anderson Island and the southern end of Ketron Island in the center of the basin.

CALON S


DEVILS HEAD ZSF

The two parameters measuring the levels of organic material in the Devils Head ZSF are depicted in Figures 15 and 16. Both figures show similar trends in that low levels of BOD and VS occur in the south end of the ZSF and high values occur to the northwest in the direction of Drayton Passage. Concentrations of BOD₅ in the ZSF range from 250 to 500 mg/kg dry weight, while the % VS range from one to just under two percent. The greatest concentrations in BOD₅ occurred between Anderson Island and Devils Head on the Kitsap Peninsula. These values ranged from 500 to over 1000 mg/kg dry weight. The % VS in the same region ran from one to three percent. Elevations beyond the 95% CI and 1.96 SND occurred in this area for BOD₅. Elevations in % VS beyond the 95% CI occurred in the central basin and also between Anderson Island and Devils Head.

The percentage of water in the sediments in the study area surrounding the ZSF ranged from 30 to over 50% (Fig. 17). The contour patterns shown by % water are very similar to that seen for the two measures of organic material. Low percent water content (< 30%) occurred at the southern end of the ZSF. Highest concentrations (> 50%) were found in Drayton Passage between Anderson Island and Devils Head and in the northwest corner of the study area similar to the results for BOD₅ and % VS. Elevations beyond the 95% CI for % water occur at the northwest end of the ZSF proper and in the region in Drayton Passage.

The distribution of median grain size and percent clay are presented in Figures 18 and 19. The median grain size consists of medium sand southeast of the ZSF grading to very fine sand and fine silt within the ZSF. Coarse to fine silt predominates in the two areas mentioned as having elevated amounts of organic material and a greater percent water. These two areas are the northwestern corner of the study area and in Drayton Passage. Both areas contain greater amounts of the finer sediments which can be seen in the percent clay content (Fig. 19). The percentage of clay within the study area ranges from less than 5 to over 20 percent. The areas with the greatest amount of clay overlaps areas with the finest sediment. In the ZSF the percent clay ranges from 5% at the southern end to 20% at one station.

The area of lowest energy in the study area appears to be located at the entrance to Drayton Passage. This area contains the greatest amount of organic material based on elevations beyond the 95% CI for BOD_5 , % VS and percent water (Fig. 20). The median sediment grain size in the area is predominantly coarse to medium silt, and while the percent clay is not the highest encountered in the study area, it does range from 10 to 15 percent.

Cococcept

AN) SELADES POSSESSI PRESESSI PERSONAL PRESESSES

Figure 15. Contours of five-day biochemical oxygen demand (mg/kg dry weight) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Devils Head ZSF. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.

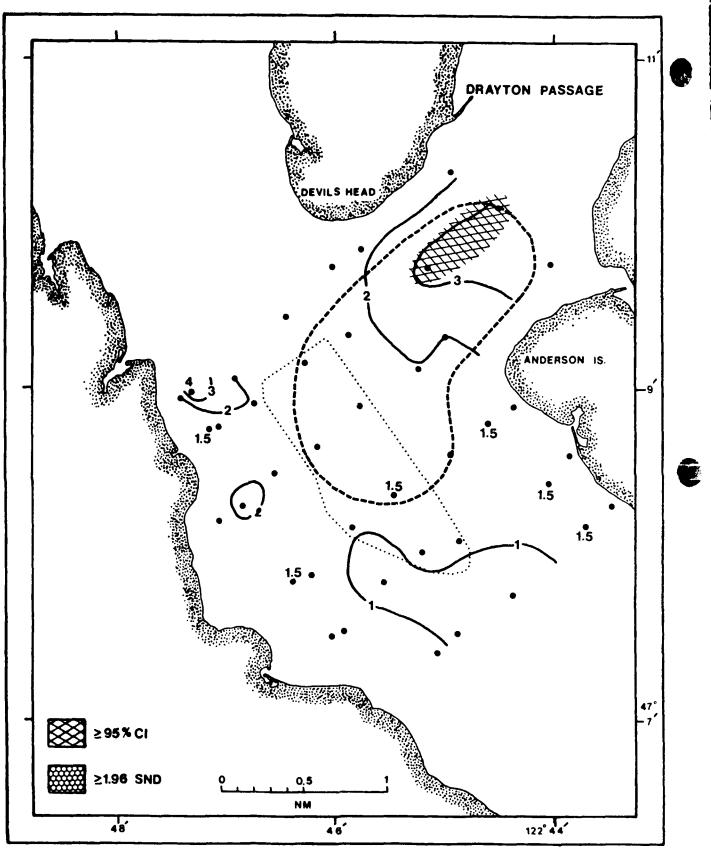
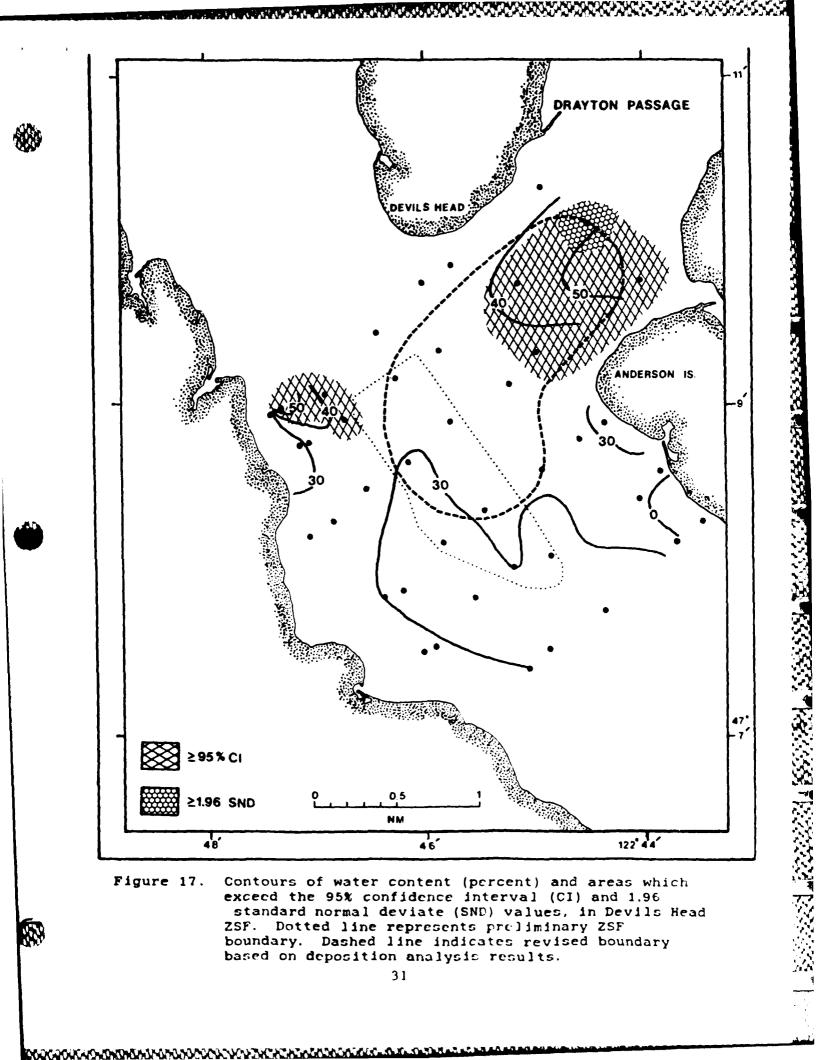



Figure 16. Contours of volatile solids content (percent) and areas which exceed the 95% confidence interval (CI) and 1.96 standard normal deviate (SND) values, in Devils Head ZSF. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.

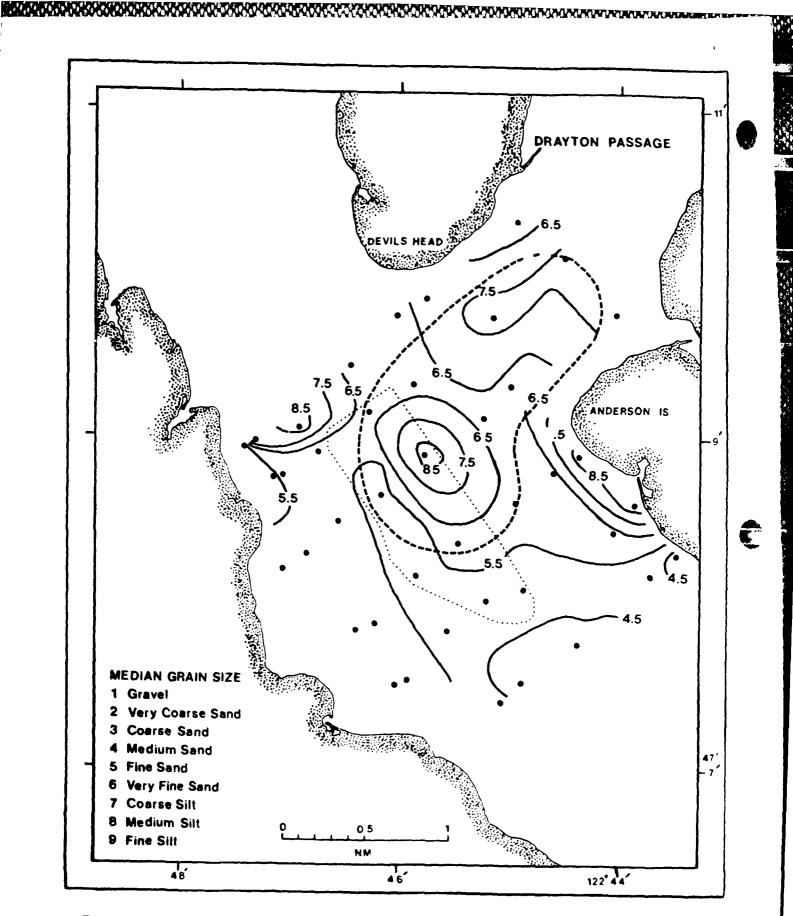
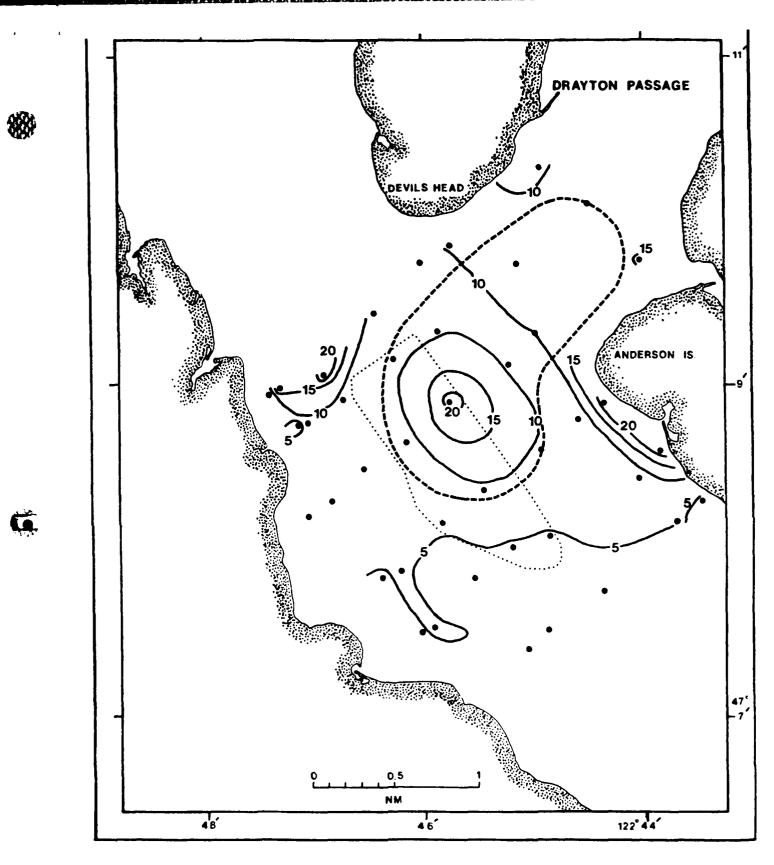
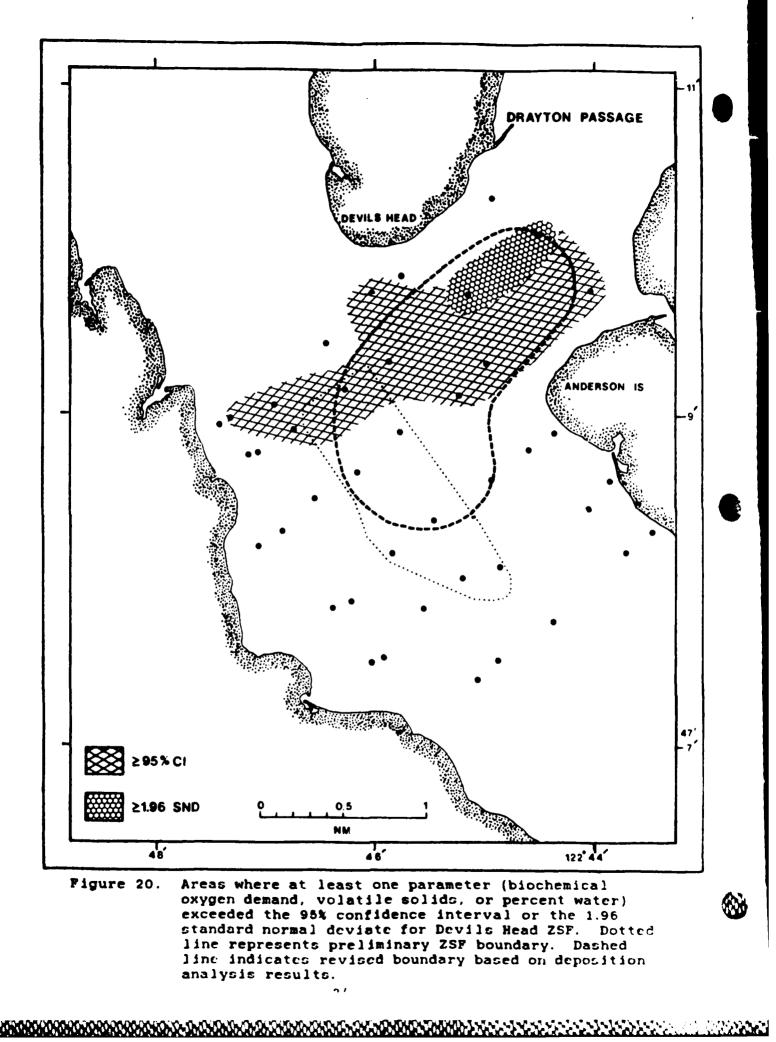



Figure 18. Contours of median grain size in Devils Head ZSF. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.


-36-36 a Star - 57 M

PROCOUNT OF

ANY SECT SPANDON MARKED IN CORRECT

Figure 19. Contours of clay content (percent) in Devils Head ZSF. Dotted line represents preliminary ZSF boundary. Dashed line indicates revised boundary based on deposition analysis results.

1.1.1

CONCLUSIONS

 (2ore of String Fearlielity)
 1) The Lummi/Sinclair Island ZSFkin northern Puget Sound and the McNeil Island ZSF in south Puget Sound were found to be unsuitable as non dispersive sites for the disposal of dredged material. At both ZSF's the grain size of the sediment was much too coarse and little organic material was in evidence. In addition the macrofaunal communities at both ZSF's were characteristic of a suspension feeding community which indicate that water currents in the ZSF are relatively high.

- Areas were located within each of the remaining three 3, ZSF's that are suitable non dispersive sites.
- 3) In Bellingham Bay the area that appears to be the most depositional is located roughly 0.5 nautical miles north of the existing ZSF.
- 4) The area of greatest deposition within the Anderson/ Ketron Island ZSF is located in the center of the ZSF, with the western half of the center area being slightly more depositional.
- 5) The region at the entrance to Drayton Passage has the greatest potential to be depositional. Concentrations of all measured parameters exceed the 95% CI and 1.96 SND in this region.
- 6. A comparison of all three ZSF's indicate that the amount of organic material in the sediment at Bellingham Bay is almost an order of magnitude greater than found in the south Puget Sound ZSF's. The median grain size and percent clay in the depositional regions of the south Puget Sound ZSF'S are roughly comparable to that found in Bellingham Bay.

LITERATURE CITED

lan tanan menangkan perangkan perangkan berangkan perangkan perangkan perangkan berangkan ber

- Buchanan, J.B. 1984. Sediment Analysis. In: Methods for the Study of Marine Benthos. N.A. Holme and A.D. McIntyre (eds). Blackwell Scientific Publications, Boston, Massachusetts. pp. 41-65.
- Krumbein, J.I., and F.J. Pettijohn. 1938. Manual of Sedimentary Petrography. Appleton-Century Crafts, N.Y. 549 pp.
- McConkey-Sparks, P.J. and C.A. Coomes. 1986. Literature Review of Tidal Currents and Marine Sediment Studies in regard to the Proposed Phase II Disposal Sites. Final Report. U.S. Army Corps of Engineers, Seattle, WA.
- Plumb, R.H. 1981. Procedures for Handling and Chemical Analysis of Sediment and Water Samples. Technical Report EPA/CE 81-1. U.S. Army Corps of Engineers, Vicksburg, Mississippi.
- Standard Methods for the Examination of Water and Wastewater. 16th Edition. 1985. pp. 97-98, 418-419, 525-532.
- Striplin, P.L., P.J. Sparks-McConkey, and M.E. Day. 1986. Puget Sound Sediment Deposition Analysis: Phase I. Final Reports. U.S. Army Corps of Engineers, Seattle, WA.
- Word, J.Q., P.L. Striplin, J. Ward, and P.J. Sparks. 1984a. Subtidal Benthic Ecology. Final Report. Vol. V. Sect. 6, in J. Stober and K.K. Chew. Principal Investigators. Renton Sewage Treatment Plant Project: Seahurst Baseline Study. Fisheries Research Institute, University of Washington, FRI-UW-8413.
- Word, J.Q., P.L. Striplin, J. Ward, and P.J. Sparks. 1984b. Subtidal Benthic Ecology. Final Report Chapter 6, pp. 134-189. In J. Stober and K.K. Chew. Principal Investigators. Renton Sewage Treatment Plant Project: Duwamish Head Baseline Study. Fisheries Research Institute, University of Washington, FRI-UW-8417.

Appendix A I.

PSDDA phase II sediment sampling at Lummi/Sinclair Island ZSF in north Sound was conducted on 22, 25, and 26 September 1986. At that time 60 stations were established and a sediment sample was obtained to determine the grain size, percent water, percent volatile solids, and biochemical oxygen demand (5 days). In addition, the sediment samples collected at each station were qualitatively defined by their physical characteristics (see Table 1 for explanation of terms). Table 2 presents the information for each station as taken from the field notes.

Seventeen stations were rejected on site in the field due to an inability to collect an adequate grab sample that held a minimum amount of sediment (as based on penetration depth). Table 3 presents data which shows whether the topography of the bottom and/or the sediment composition prevented the collection of a suitable sample.

A decision was made to halt evaluation of the sediment samples pertaining to the Lummi/Sinclair Island ZSF for the following reasons:

- North end of Lummi/Sinclair Island ZSF (transects A & B) large numbers of live scallops and clams found $(4-5 \text{ per } 0.1 \text{ m}^2 \text{ or } 100,000/\text{acre}).$
- Towards the center of ZSF (transects C, C.3, D, D.5 and F.5) large size shell fragments were found.
- South end transects (G, H, and I) consisted of rock, gravel, cobble, and coarse sand.
- Qualitative observations of the large infauna indicated that suspension feeding polychaetes were more prevalent than the deposit feeding types.
- Some stations did contain silt (<50%) but there was always sand present and sometimes cobble and shell fragments.

Press Conce

Table 1. Qualitative descriptive information for subtidal 0.1 m^2 van Veen grab samples. REP#: R = Rejected station.

CODE: G #GRAIN SIZE V =VOLATILE SOLIDS B =BIOCHEMICAL OXYGEN DEMAND

SEDIMENT TYPES	MODIFIELS	>50%
Rock :	RCKY	RCK
Cobble :	CBLY	CBL
Gravel :	GVLY	GVL
Sand :	SY	S
	Coarse	С
	Medium	M
	Fine	F
Silt :	SLTY	SLT
Clay :	CLY	CL

EXAMPLE : SY(M)-SLT

The modifier is listed first: SY = Sandy, and the type of sand is (M) medium. The last component: SLT, exceeds 50% of the sediment's composition.

COLOR D.O. = Drab Olive G = Green GRY = Grey B = Black BRN = Brown

ODOR H2S = Hydrogen Sulfide Table 2. Qualitative sediment characteristics for stations in ZSF 6.

STATION	REP	C00E	LAT	ITU	CE	LCNG	ITUI	DE D	EPTH M	TINE	(DATE		SED TYPE	E	COLOR	ODOR	PEN DEPTH CM	COMMENTS
A-1(247)	2	GV8	48	38	07	122	42	05	75	1139	25 :	SEP	86 3	SLTY-S(C))	0.0.	NONE	4	SCALLOP SHELLS & URCHIN
A-1.5				39		122			80	1119		٠		SLTY-S(C)		D.O.	NONE	10	SHELL FRAGS.
A-2(248)	1	GV8		39		122	41	08	75	1101		•	S	SY(C)-SLI	T	0.0.	NONE	9	SCALLOP(SHELL FRAGS)
A-3(222)	1	GV8	48	40	01	122	41	03	67	1049		•		S(C,M)		0.0.	NONE	6	SHELL FRAGS.
A-4(221)	1	GV8	48	40	03	122	41	00	67	1039		•	5	SLTY-S(F))	0.0.	NONE	7	SHELL FRAGS.
A-5(185)	1	GV B	48	40	06	122	40	07	58	1030		•		SY(F)-SL1		D.O.	NONE	10	SHELL FRAGS.
A-6(102)	2	GVB	48	40	07	122	40	06	32	1017		•		SLTY-S(C))	0.0.	NONE	9	LARGE COBBLE MIXED
B-2(190)	3	GVB		38		122			50	1222		•		SLTY-S(C)		D.O.	NONE	9	
8-3(203)	1	GV8		39		122			52	1235		•		SY(F)-SL		D.O.	NONE	9	
8-4(199)	1	• • •		39		122			60	1245				SLTY-S(M)		0.0.	NONE	12	FULL OF SHELLS
B-5(228)	1			39		122			70	1256		•		SLTY-S(M		9.0.	NONE	11	FEW SHELLS
9-6(258)	1	- · -		40		122			78	1305				SLTY-S(M	-	D.O.	NONE	10	COBBLE & SHELL FRAGS.
C-1(64)	1			39		122			20	1513				SLTY-S(M		0.0.	NONE	8	SHELL FRAGS.
C-2(154)	1			38		122			47	1503		•		SLTY-S(M	-	D.D. D.O.	NONE NONE	12 12	SHELL FRAGS.
C-3(190)	1			39		122			55	1444				SY(M)-SL SY(M)-SL		D.O.	NONE	15	FEW SHELL FRAGS.
C-4(271)	1			39		122			82 56	1356				SLTY-S(M		D.O.	NONE	9	SHELL FRAGS.
C-5(195)	1	• -		39 39		122 122			56	1347				SLTY-S(C		0.0.	NONE	8	FEW SHELLS
C-6(185) C-1(51)	1	GV b GV b		38		122			20	1526				SLTY-S(C		D.O.	NONE	6	ROCK & SHELLS (FRAGS)
D-1(61) D-2(116)	1	GV8		38		122			35	1535				SLTY-S(M		0.0.	NONE	9	Phyllochaetopterus(ANNELID)
D-3(239)	1			38		122			73	1544		•		SLTY-S(F		D.O.	NONE	11	LARGE CLAM SHELLS
D-4(237)	1	-		39		122			72	1553		٠		SY(F)-SL		D.O.	NONE	10	
D-5(225)	1			39		122			69	1505		•		SY(F)-SL		D.O.	NONE	9	SCALLOP & CLAM SHELLS
D-6(101)	1			39		122			30	1616		•		SY(F)-SL		0.0.	NONE	10	
E-1(67)	3	-		37		122			21	1716		•		SY(C)-GV		D.O.	NONE	5	ROCK (2°) & SHELL FRAGS
E-2(125)	1	-		37	09	122			38	1705	i	•		SY(F)-GV	/L	D.O.	NCNE	10	ROCK & SILT(5%)
E-3(190)	1	GV8	48	38	02	122	39	05	55	1559)	•		SY(F)-SL	1	0.0.	NONE	10	ROCK (1°) & SHELL FRAGS
E-4(235)	1	GVB	48	38	04	122	39	01	71	1551		•		SY(F)-SL	.1	D.O.	NONE	14	
E-5(190)	1	GV9	48	39	09	122	39	09	55	1541)	•		SY(F)-SL	LT	D.O.	NONE	11	
E-6(189)	1	G v8				122			57	1633)	•		CLY&SL1		D.O.	NONE	14	
E-7(109)	1	GVB				122			33	1625		•		CLY&SL1		D.O.	NONE	14	Phyllochaetopterus(ANNELID)
F-1(65)	2	GV 8				122			20	1745		•		SY(M)-SL		D.O.	NONE	9	ROCKS
F-2(154)	1					122			47	175		•		SY(F)-SL		0.0.	NONE	10	ROCKS
F-3(183)	1					122			56	1801		:		SY(F)-SL		D.O.	NONE	10	FEW ROCKS
F-4(230)	1					122			70	180		•		SY(F)-SU		0.0.	NONE	11	DRIFT CARD #41-50 RELEASED
F-4.5	1					122			57					SLTY-S(0.0.	NONE	12	LARGE SHELLS
F-5(188)						122			57	184		354	80	SLTY-S(D.O.	NONE NONE	12	
F-6(175)	1								53 17			650	96	CLY&SLT SY(C)-CE		D.O. D.O.	NONE	9 6	LEANAGE & ROCKS
G-1(55) G-2(85)	2	GV8 GV8				122			26	164			00	SY(C)-C		0.0. 0.0.	NONE	4.5	LEAKAGE & ROCKS
G-2(85) G-4(187)	2				02				57	171		•		SY(C)-CI		D.O.	NONE	4.5 7	ROCKS & SHELL FRAGS
G-4(187) G-5(297)	1				00 0			00	87	172		•		SLTY-S(H2S-SLIG		COBBLE & SHELL FRAGS
G-6(308)	, ,	GVE			02					174		•		SHELL-F		-	NONE	7	SILT(10%)
G-7(307)	1				03			03	94	175		•				DO(8-1CM)		10	SHELLS(WHOLE)
G-8(208)		GVE			07			01		180		•		SY(C)-S		D.O.	NONE	9	SHELL FRAGS
H-(1)N	1				00			09		151		٠		SY(F)-S		D.O.	NONE	8	FEW SHELL FRAGS
H-320N	1	GVE			1 02			06		150		•		SLTY-S		D.O.	NONE	7	SHELL FRAGS(80%)
1-250N	1	GVE			02			5 02		132		•		SILT		D.O.	NCNE	13	GRAVEL(20%)
I-300N	1	GVE			00			5 04		134		٠		SY(F)-S	ilt	D.O.	NONE	9	GRAVEL (20%) & SHELL FRAGS

Table 2. Qualitative sediment characteristics for stations in ZSF 6.

I-380M C.581 C.582 C.583 D.581 D.582 D.583 F.583 F.581 F.582 F.583	1 1 1 1 1 1	GVB GVB GVB GVB	48 49 48 48 48 48 48 48 48 48	38 39 38 38 39 39 37 38	07 01 05 05 06 01 07 02	122 122 122 122	4 (3 9 3 9 3 9 3 9 3 9 3 8 3 8	03 09 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 07 03	40 74 57 56 77	1353 0947 0939 0928 0859 0909 0921 0820 0829 0829 0838	26 SEP :	86	SY(F)-SLT SY(F)-SLT SY(F)-SLT SLTY-S(M) SLTY-S(M) SLTY-S(F) SLTY-S(M)	0.0. 0.0. 0.0. 0.0. D.0. D.0. D0(GY5CM)	NONE NONE NONE NONE NUNE NONE	9 10 9 11 6 12 11 13 11 13	LEAKAGE & COBBLE ROCK & SHELL FRAGS SHELL FRAGS SHELL FRAGS ROCKS & SHELL FRAGS LARGE SHELLS(WHOLE) SHELL FRAGS SHELL FRAGS & CRAB SP.(?) SCALLOP (SHELL FRAGS)	
--	----------------------------	--------------------------	--	--	--	--------------------------	--	---	----------------------------	--	----------	----	---	---	--	---	---	--

2393757777 - CONSIGNAL STATE OF 7777777 - CONSIGNAL OF 7777777

Table 3. Qualitative sediment characteristics for stations in ZSF 6.

STATION	REP	CODE	LA	TIT	UDE	LON	GIT	UDE	DEPTH M	TIME		DATE	E	SED TY	PE	COLOR	ODOR	PEN	I DEPTH Cm	COMMEN	TS
A-7(68)	3	GV8	48	40	07	122	40	04	19	1007	25	SEP	86	CBL					<4		
8-1(131)	4	GV8	48	38	04	122	41	09	39	1152		•		RCK						WASHED	OUT
8-7(100)	4	GV8	48	40	04	122	39	09	30	1317		•		RCK						WASHED	OUT
C-7(142)	4	GY9	48	40	00	122	39	04	43	1339		•		RCK						WASHED	OUT
F-6(107)	4	GV8	48	39	00	122	37	09	32	1834				CBL						WASHED	OUT
G-3(122)	4	GV9	48	37	05	122	38	03	37	1703	22	SEP	86	RCK						WASHED	OUT
H-144N	4	GV8	48	36	07	122	38	03	44	1619		٠		RCK						WASHED	OUT
H-185N	2	GVB	48	37	00	122	37	09	56	1606		•		RCK/C	8LE				<4		
H-283N	4	6V8	48	37	06	122	37	04	86	1541		•		RCK						WASHED	OUT
H-300N	2	GVB	48	38	03	122	36	03	90	1435		٠		RCK/C	BL				<4		
H-310	4	GV8	48	37	80	122	36	09	95	1528		•		RCK						WASHED	OUT
H-343N	2	GV8	48	37	03	122	37	04	105	1554		•		RCK/C	8 L				<4		
I-120S	3	GV8	48	36	05	122	37	08	37	1036				CBL					<4		
I-240S	3	GVB	48	36	09	122	37	03	73	1100		٠		CBL/G	٧L				<4		
1-380	4	GV8	48	37	06	122	36	03	115	1300		•		RCK						WASHED	OUT
I-380C	4	GVB	48	37	07	122	36	00	115	1412		•		RCK						WASHED	

Appendix A II.

PSDDA phase II sediment sampling at McNeil Island ZSF was conducted on 23 and 24 October 1986. Forty stations were established at that time to determine grain size, biological oxygen demand (5 days), percent water, and percent volatile solids values for each station. Field observ: "ions were made at each station qualitatively characterizing the physical properties of each sediment sample (see Table 1 for an explanation of terms). のこうであると

Notes in the second

Four stations were rejected on location in the field. The rocky substrate and/or bottom topography prevented the grab from penetrating to a depth adequate to retrieve a minimum amount of sediment. Table 2 presents data which shows rejected stations, penetration depths, sediment properties, and depth for each station sampled.

As in case of the Lummi/Sinclair Island ZSF, the sediments from the McNeil Island ZSF were obviously <u>not</u> representative of a depositional area. For this reason, no laboratory analysis of the McNeil Island ZSF sediments was carried out, and the ZSF was dropped from further consideration. Table 1. Qualitative descriptive information for subtidal 0.1 m^2 van Veen grab samples. REP#: R = Rejected station.

CC	DDE :	
G	=GRAIN SIZE	
V	=VOLATILE SOLIDS	
В	=BIOCHEMICAL OXYGEN	DEMAND

SEDIMENT TY Rock : Cobble :	(Pes Mo	DDIFIERS RCKY CBLY	>50% RCK CBL
Gravel :		GVLY	GVL
Sand :		SY	S
	Coarse		С
	Medium		M
	Fine		F
Silt :		SLTY	SLT
Clay :		CLY	CL

EXAMPLE : SY(M)-SLT

The modifier is listed first: SY = Sandy, and the type of sand is (M) medium. The last component: SLT, exceeds 50% of the sediment's composition.

COLOR D.O. = Drab Olive G = Green GRY = Grey B = Black BRN = Brown

ODOR H2S = Hydrogen Sulfide Table 2. Qualitative sediment characteristics for stations in ZSF 1.

STATION	REPU	CODE	LAT	LONG DEPTH (ft)		DATE	SED. TYPE	COLOR	ODOR	PEN. DEPTH (cm)	
ND-A1E	R	GYB	47 11 27	122 35 55 398	1115	23 OCT 86	-				
ND-A2E	3	GVB	47 11 30	122 36 08 490	1104	•	CBLY-S(C)	/BRN	NONE	3	
ND-A3C	R	GV8	47 11 35	122 36 20 478		•	-				
ND-A4C	1	6V8	47 11 44	122 36 40 525		•	SY(M)-SLT	D.O.(B-1cm)	NONE	9	
ND-A5C	1	GVB	47 11 51	122 36 58 542		•	SLTY-S(M)	0.0.	H2S-slight	12	
ND-A6W	1	GVB	47 12 02	122 37 24 527		•	SY(F)-SLT	D.O.(GRY-1cm)	H2S-slight	14	
ND-A7W	1	GV8	47 12 12	122 37 35 537		•	SLTY-S(M)	GRY	H2S-slight	14.5	
ND-A8W	1	GVB	47 12 14	122 37 56 527	852	23 OCT 86	SY(M)-SLT	D.O.	NONE	?	
ND-B1E	1	GVB	47 11 05	122 35 57 300		23 OCT 85	SLTY-S(C)	D.O.	NONE	9.5	
ND-B2C	R	GVB	47 11 13	122 36 08 420	1210	•	-				
ND-B3C	R	GV8	47 11 24	122 36 30 478		•	-				
ND-B4C	2	GV8	47 11 29	122 36 50 522		•	C8LY-S(C)	D.O.	NONE	٤	
ND-85C	1	GVB	47 11 36	122 37 17 53		•	SLTY-S(M)	D.O.	H2S-slight	12	
ND-85k	1	GVB	47 11 45	122 37 35 517		•	SY(M)-SLT	D.O.	H2S-slight	S.5	
ND-87W	1	GVB	47 11 49	122 37 55 502		•	SY(M)-SLT	D.C.	H2S-slight	g	
ND-88W	1	GV9	47 11 54	122 38 10 479	1421	23 DOT 86	SLTY-S(M)	D.O.	NONE	1.5	
ND-C1E	1	GVB	47 10 54	122 36 13 309	1647	23 OCT 85	SLTY-S(M)	D.O.	NONE	8.5	
ND-C2C	2	GVE	47 10 58	122 36 18 350) 1637	•	S(M)	D .O.	NONE	10	
ND-C3C	2	GV8	47 11 04	122 36 38 424	1619	•	MIX	D.O.	NONE	6	
ND-C4C	3	GVB	47 11 12	122 36 55 480		•	CELY-S(C)	D.O.	NONE	3	
ND-C5C	1	GVB	47 11 19	122 37 10 52		•	GVLY-S(C)	D.O.	NONE	5	D'
ND-C6C	1	GVB	47 11 24	122 37 29 535		•	SLTY-S(M)	D.O.	NONE	12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
ND-C7W	1	GVB	47 11 28	122 37 44 521		•	SLTY-S(M)	D.O.	NONE	13.5	
ND-C8N	1	GVB	47 11 40	122 38 06 519	1435	23 OCT 86	SY(M)-SLT	D.O.	NONE	10	
ND-DCE	1	GVB	47 11 06	122 35 46 15	5 1127	24 OCT 86	SLTY-S(F)	D.O.	H2S-slight	11	
ND-D1E	1	GVB	47 10 45	122 36 46 30		•	S(C)	GRY	NONE	16	
ND-D2E	1	GV8	47 10 54	122 37 03 34		•	CBLY-S(C)	D.O.	NONE	e	
ND-D3C	4	GVB	47 11 00	122 37 26 52		•	CBLY-S(C)	BRN	NONE	10	
ND-D4C	1	GVB	47 11 05	122 37 35 54		•	GVLY-S(C)	BRN	NONE	12	
ND-D5W	1	GV8	47 11 12	122 37 55 54		•	SLTY-S(F)	D.O.	H2S-slight	9	
ND-D6W	1	GV8	47 11 20	122 38 14 52		•	SLTY-S(F)	D.O.	H2S-slight	10	
ND-D7W	1	GVB	47 11 28	122 38 34 53			SLTY-S(F)	D.O.	H2S-slight	11	
ND-D8W	1	GVB	47 11 40	122 39 04 6	5 904	24 OCT 86	SY(M)-SLT	GRN	H2S-slight	ę	
ND-EDE	1	GVB	47 10 25	122 36 46 22		24 OCT 86	SLTY-S(F)	D.O.	NONE	11	
ND-E1E		GVB	47 10 31	122 37 05 25		•	SLTY-S(F)	D.O.	NONE	9	
ND-E2C	1	GVB	47 10 43	122 37 32 52		•	CBLY-S(M)	D.O.	NONE	?	
ND-E3C	1	GVB	47 10 50	122 37 44 56			SLTY-S(C)	D.O.	NONE	£	
ND-E4W	1	GV9	47 10 57	122 38 12 54		-	SY(C)-SLT	BRN	NONE	ę	
ND-ESN	1	GVB	47 11 04	122 38 35 53		•	SY(M)-SLT	D.O.	NONE	10	
ND-E6W	1	GV8	47 11 10	122 38 51 51		-	S(F)-SLT	D.O.	H2S-slight	11	
ND-E7W		GVB	47 11 13	122 39 00 52		24 007 00	SY(C)-SLT	D.O.	H2S-slight	13	
ND-E8W	1	GAB	47 11 16	122 39 13 32	0 1408	24 OCT 85	SLTY-S(F)	D.O.	NONE	8	

1.0

÷7

APPENDIX B. Station locations, date, time, and type of samples collected for the sediment depositional analysis.

STATION	REI	P CODE	LA	T	1	LONG		DEPTH (ft)	TIME		DAT	E
Bellingham	Bay	ZSF						(2)				
BB A1-E	1	G/VS	48 4	2 55	122	31	29	62	0930	15	OCT	86
BB A2-E	1	G/VS		2 55	122	32	13	97	0946		"	00
BB A3-E	1	G/VS		2 58	122	32		96	0957		11	
BB A4-C	1	G/VS		2 55	122			94	1010		===	
BB A5-W	1	G/VS		2 55	122			90	1020		11	
BB A6-W	1	G/VS		2 55	122			84	1027		11	
BB A7-W	1	G/VS		2 55	122			78	1035		n	
BB A8-W	1	G/VS		2 57	122			63	1040	15	OCT	86
BB B1-E	1	G/VS	48 4	2 26	122	31	09	65	1202	15	OCT	86
BB B2-E	1	G/VS	48 4	2 26	122	31	49	97	1155		11	
BB B3-E	1	G/VS	48 4	2 25	122	32	35	99	1143		81	
BB B4-C	1	G/VS	48 4	2 25	122	33	23	98	1130			
BB B5-C	1	G/VS	48 4	2 25	122	34	11	94	1120		11	
BB B6-W	1	G/VS		2 24	122	34	51	90	1113		11	
BB B7-W	1	G/VS	48 4			35		92	1104		11	
BB B8-W	1	G/VS	48 4	2 25	122	36	03	64	1055	15	OCT	86
BB C1-E	1	G/VS	48 4	2 00	122	30	54	62	1237	15	OCT	86
BB C2-E	1	G/VS		1 58		31		95	1248			••
BB C3-E	1	G/VS	48 4	1 58	122	32	31	98	1256		11	
BB C4-C	1	G/VS	48 4	1 58	122	33	15	99	1305			
BB C5-C	1	G/VS	48 4	1 57	122	34	02	97	1313		11	
BB C6-W	1	G/VS	48 4	1 58	122	34	48	96	1320			
BB C7-W	1	G/VS	48 4	1 58	122	35	30	98	1329		n	
BB C8-W	1	G/VS	48 4	1 58	122	35	54	66	1336	15	ост	86
BB D1-E	1	G/VS		1 30	122	30	33	67	1436	15	ост	86
BB D2-E	1	G/VS		1 30	122	31	17	89	1428		11	
BB D3-E	1	G/VS		1 30	122	32	00	91	1421		11	
BB D4-C	1	G/VS		1 30	122	32	48	92	1414			
BB D5-C	1	G/VS		1 28	122	33	33	94	1407			
BB D6-W	1	G/VS		1 28	122	34	18	98	1400		11	
BB D7-W	1	G/VS	48 4		122	35	01	99	1354			
BB D8-W	1	G/VS	48 4	1 29	122	35	42	65	1345	15	OCT	86
BB E1-E	1	G/VS		1 00	122			67	1446	15	OCT	86
BB E2-E	1	G/VS		0 59	122			81	1453		11	_
BB E3-E	1	G/VS		0 59	122		45	82	1500		0	
BB E4-C	1	G/VS		1 00	122	32	25	84	1507		н	
BB E5-C	1	G/VS		0 57	122	33	12	88	1515			
BB E6-W	1	G/VS		0 54	122	33	54	97	1521		*1	
BB E7-W	1	G/VS		0 57			41	106	1529		n	
BB E8-W	1	G/VS	48 4	0 54	122	35	24	68	1537	15	OCT	86

McNeil Island ZSF

ND	A-1E	R	1	G/VS	47	1127	122	3555	428	1115	23	OCT	86
	A-2E		2	G/VS	47	1130		3608	490	1104		"	••
	A-3C	R	1	G/VS	47	1135		3620	478	1030			
	A-4C		1	G/VS		1144		3640	525	0956			
	A-5C		1	G/VS	47	1151		3658	542	0940		-	
	A-6W		1	G/VS		1202		3724	5 7	0926			
	A-7W		1	G/VS		1212		3735	537	0911			
	A-8W		1	G/VS		1214		3756	527	0852	22	OCT	96
			•	3, 13			466	5150	521	0002	23	001	80
ND	B-1E		1	G/VS	47	1105	122	3557	300	1158	23	OCT	86
	B-2C	R	ī	G/VS	47	1113		3608	415	1230	20	"	00
	B-3C		1	G/VS	47		122	3630	478	1244			
	B-4C	••	2	G/VS		1129		3650	522	1327		11	
	B-5C		1	G/VS	47			3717	531	1340		в	
	B-6W		1	G/VS		1145		3735	517	1357		**	
	B-7W		1	G/VS		1149		3755	502	1410			
	B-8W		1	G/VS		1154		3810	479	1421	23	ост	865
ND	<i>D</i> 0N		*	G/ V3	4 4	1104	122	3810	413	1421	23	001	805
ND	C-1E		1	G/VS	47	1054	122	3613	309	1647	23	ост	86
	C-2C		2	G/VS		1058		3618	350	1637	20	"	00
	C-3C		2	G/VS	47			3638	424	1619			
	C-4C		2	G/VS		1112		3655	480	1543			
	C-5C		1	G/VS		1118		3710	528	1513		11	
	C-6C		1	G/VS		1124		3729	535	1513			
	C-7W		1	G/VS		1124		3744				n	
	C-8W		1	G/VS G/VS		1128		3806	520	1447	• •		0.6
ND	C-04		1	G/V3	40 1	1140	122	3800	519	1435	23	OCT	86
ND	D-OE		1	G/VS	47	1106	122	3546	165	1127	24	ост	96
	D-1E		1	G/VS		1045		3646	309	1116	24	"	00
	D-2E		1	G/VS	47	1054		3703	343	1105		н	
	D-3C		1	G/VS	47	1100		3726	520	1048		н	
	D-4C		1	G/VS	47	1105		3735	546	0956		E1	
	D-5W		1	G/VS		1112		3755	544	0944			
	D-6W		1	G/VS		1120		3814	528	0930		n	
	D-7W		1	G/VS		1128		3834	531	0915			
	D-8W		1	G/VS		1140		3904	66	0904	24	ост	86
	2 0		-	0,10				0004	00	0504	67	001	00
ND	E-OE		1	G/VS	47	1025	122	3646	223	1137	24	ост	86
	E-1E		1	G/VS				3705	266	1147			•••
	E-2C		1	G/VS		1043		3732	528	1200			
	E-3C		1	G/VS		1050		3744	560	1217			
	E-4W		1	G/VS		1057		3812	545	1319		n	
	E-5W		1	G/VS		1104		3835	536	1333		11	
	E-6W		1	G/VS		1110		3851	518	1344		п	
	E-7W		1	G/VS		1113		3900	522	1356		11	
	E-8W		1	G/VS		1116		3913	320	1408	24	OCT	86
			•	0, 10	¥ 1		4 L L	0010	020	1400	- 7	001	
An	derso	n/Kei	tron	Island	791	F							
- 1 - 1						•							
ND	F-OE		1	G/VS	47	1020	122	3716	215	1541	22	OCT	86
ND	F-1E		1	G/VS		1026		3755	540	1554		- 11	
	F-2C		1	G/VS		1035		3807	569	1606			

¢

83

ND F-3V	V 1	G/VS	47	104	1	122	382	9	556	1€	519		н	
ND F-4V	N 1	G/VS	47	104	7	122	384	8	532	16	532		44	
ND F-5V	V 1	G/VS	47	105	3	122	390	4	516	16	543		**	
ND F-6V	N 1	G/VS	47	105	9	122	392	3	504	17	100		41	
ND F-7V	N 1	G/VS	47	110	3	122	393	4	350	17	801	22	OCT	86
ND G-11	E 1	G/VS	47	09	56	122	37	13	189	15	532	22	OCT	86
ND G-21	E 1	G/VS	47	10	03	122	37	28	219	1!	522		11	
ND G-3I	E 1	G/VS	47	10	16	122	38	80	546		508		11	
ND G-41	E 1	G/VS	47	10		122	38	28	557	14	454		11	
ND G-51		G/VS	47	10		122			521		142			
ND G-60		G/VS	47			122		12	513		428			
ND G-7		G/VS	47	10		122			511		414	• •	"	• •
ND G-81	W 1	G/VS	47	10	46	122	39	51	308	1:	359	22	OCT	86
	B 4	C (110	47	<u></u>	E 0	100	20	10	207	4	110	22	OCT	96
ND H-11		G/VS	47 47			122 122		13	307 433		113 138	22	"	00
ND H-21 ND H-31		G/VS G/VS	47	10			38		433 486		156		п	
ND H-31 ND H-41		G/VS G/VS	47	10		122			478		243			
ND H=4		G/VS	47	10		122	39		468		255		11	
ND H-6		G/VS		10		122			481		305			
ND H - 7		G/VS		10		122			514		316		11	
ND H-8		G/VS		10		122			68		345	22	OCT	86
		0,					- •		•••	-				
ND J-1	E 1	G/VS	47	09	35	122	38	31	407	1	102		11	
ND J-2		G/VS	47		39	122			429	1	053		11	
ND J-3	C 1	G/VS	47	09	47	122	39	09	442	1	040		11	
ND J-4	C 1	G/VS	47	09	57	122	39	30	459	1	030		11	
ND J-5	W 1	G/VS	47	10	01	122	39	44	488	1	018		11	
ND J-6	W 1	G/VS	47			122	40	00	484	1	007	22		
ND J-7	W 3	G/VS/B	47	10	11	122	40	17	68	1	426	24	OCT	86
							• -		• • •	_		• •		• •
ND K-1		G/VS		09		122			311		835	22	OCT	86
ND K-2		G/VS	47			122			394		846			
ND K-3		G/VS		09	12	122	38		377		858			
ND K-4		G/VS	47 47		17	122	39 39	12	421 445		908 919		11	
ND K-5		G/VS		09 09	25						929		н	
ND K-6		G/VS G/VS		09		122 122			46 0 396		941	22	ост	86
ND K-7 ND K-8		G/VS/B				122			70		954		OCT	
ND K-0	n 3	G/73/B	** 1	05	42	122		20	10	U	204	<i>6.</i> 4	001	00
ND L-1	E 1	G/VS	47	08	43	122	38	38	306	1	584	21	OCT	86
ND L-2		G/VS		08		122			386		605		11	
ND L-3		G/VS		08					354		617		61	
ND L-4		G/VS	47			122	39		360		627		11	
ND L-5		G/VS	47		57	122			408		636		н	
ND L-6		G/VS		09		122	39	34	427		650		11	
ND L-7		G/VS	47	09	10	122		50	440		700		11	
ND L-8		G/VS	47		13	122	39	57	444	1	709		11	
ND L-9	W 1	G/VS	47	09	18	122	40		310	1	719	21	OCT	
ND L-1	0W 3	G/VS/B	47	09	21	122	40	20	68	1	522	24	OCT	86
ND M-1	E 1	G/VS	47	08	11	122	38	25	70	1	539	21	ост	86
ND M-2		G/VS		08				43	303		530		11	
ND M-3		G/VS		08				57	324		521			
	-				-		-	-		_				

Reading and the second s

 $\sum_{i=1}^{n}$

															•
ND	M-4C	1	G/VS	47	80	30	122	39	16	365	1511		11		
ND	M-5C	1	G/VS	47	80	39	122	39	43	407	1500				
ND	M-6W	1	G/VS	47	08	47	122	40	02	424	1450		81		
ND	M-7W	1	G/VS	47	08		122			400	1430		11		2002
ND	M-8W	1	G/VS		80		122			68	1428	21	ост	856	700
ND	N-1E	1	G/VS	47	08	04	122	39	16	300	1332	21	OCT	86	
ND	N-2C	1	G/VS	47	08	11	122	39	43	<pre>/ `0</pre>	1345				
ND	N-3C	1	G/VS	47	80	14	122	40	02	⊾ ⊥ 0	1401		*1		
ND	N-4W	1	G/VS	47	08	19	122	40	16	405	1410		**		
ND	N-5W	1	G/VS	47	80	25	122	40	33	68	1419	21	OCT	86	
ND	0-1E	1	G/VS	47	07	35	122	39	38	288	1314	21	OCT	86	
ND	0-2E	1	G/VS	47	07	40	122	39	49	307	1301		91		
ND	0-3C	1	G/VS	47	07	50	122	40	16	365	1250		11		
ND	0-4W	1	G/VS	47	07	59	122	40	38	398	1238				
ND	0-5W	1	G/VS	47	80	04	122	41	03	156	1154		11		
ND	0- 6W	1	G/VS	47	08	11	122	41	20	96	1145				
ND	0-7W	1	G/VS	47	08	16	122	41	27	70	1135	21	ост	86	
Dev	vils Head	ZSF													
NR	A-OE	1	G/VS	47	10	16	122	44	55	66	1340	20	OCT	86	
NR	A-1E	1	G/VS	47	09	50	122	45	42	102	1029				
NR	A-2E	1	G/VS	47	09	45	122	45	58	314	1042		11		
NR	A-3C	1	G/VS	47	09	26	122	46	23	248	1053		11		
NR	A-4C	1	G/VS	47	09	04	122	46	50	248	1111				
NR	A-5W	1	G/VS	47	80	59	122	47	11	135	1125		••		
NR	A-6W	1	G/VS	47	08	57	122	47	19	71	1132	20	OCT	86	
NR	B-OE	1	G/VS		10		122			170	1333	20	OCT	86	
NR	B-1E	1	G/VS	47			122			183	1324				
NR	B-2E	1	G/VS		09		122			239	1314		11		
NR	B-3C	1	G/VS		09		122			228	1216				
	B-4C	1	G/VS		08		122			249	1203		**		
	B-5W	1	G/VS		08		122			103	1153		11		
NR	B-6W	1	G/VS	47	08	54	122	47	04	72	1142	20	OCT	86	
		_													
	C-OE	1	G/VS		09		122			130	1352	20	OCT	86	
	C-1E	1	G/VS		09		122			185	1406				
	C-2E	1	G/VS		09		122			258	1417				
	C-3C	1	G/VS		08		122			218	1430				
	C-4C	1	G/VS		08		122			218	1440				
	C-5W	1	G/VS			30	122			188	1448		11		
	C-6W	1	G/VS			18	122			96	1457	•		96	
NR	C-7W	1	G/VS	4 /	08	13	122	40	28	65	1505	20	OCT	80	
-	D-19	4	6 /110	4 77	00	64	100	A A	00	E 0	1601	20	0.05	96	
	D-1E	1	G/VS		08		122			68	1621	20	OCT	00	
	D-2E	1	G/VS			48	122			251	1613				
	D-3C	1	G/VS			37	122			219	1603				
	D-4C	1	G/VS G/VS			22	122			219	1551				
	D-5C	1	G/VS G/VS			10 54	122		10	184 97	1542 1533				• -
	D-6W D-7W	1	G/VS G/VS			54 52			20		1533	20	ОСТ	96	· · · ·
IN IX	D-1M	1	0/ 03	41	01	52	142	40	20	65	1910	20	001	00	

 $\overline{\mathbb{C}}^{\times}$

<u>00</u>;

NR	E-1E	1	G/VS	47	08	36	122	43	53	69	0920	21	OCT	86
NR	E-2E	1	G/VS	47	80	27	122	44	05	242	0928			
NR	E-3C	1	G/VS	47	80	05	122	44	53	212	0942		51	
NR	E-4C	1	G/VS	47	08	01	122	45	11	193	0950		11	
NR	E-5W	1	G/VS	47	07	50	122	45	31	183	0959		Ħ	
NR	E-6W	1	G/VS	47	07	33	122	45	53	100	1010		11	
NR	e-7W	1	G/VS	47	07	31	122	46	00	69	1019	21	OCT	86
NR	F-1E	1	G/VS	47	08	18	122	43	32	70	1109	21	ост	86
NR	F-2E	1	G/VS	47	80	11	122	43	45	245	1102		"	
NR	F-3C	1	G/VS	47	07	46	122	44	23	169	1049		11	
NR	F-4W	1	G/VS	47	07	32	122	44	53	122	1036		11	
NR	F-5W	1	G/VS	47	07	24	122	45	04	70	1028	21	OCT	86

APPENDIX C. Grain Size Data for Phase II Depositional Analysis

ъŶ

STATION	%GRAVEL	%SAND	XSILT	%CLAY
BELLINGHAM BAY ZSF				
A1E	5.071	30.166	52.831	11.932
A2E	0	1.469	78.737	19.794
A3E	0.069	1.583	81.67	16.678
A4C	0.044	1.01	82.048	16.898
A5W	0.061	1.36	79.162	
A6W	0.401	1.733	80.905	
A7W	0.085	2.075	81.615	16.225
ASW	0.042	1.141	81.67	17.147
B1E	0.079	76.883	18.643	4.394
B2E	0	1.194		20.075
B3E	0	1.525	81.369	17.106
B4C	0.007	0.988	81.888	17.116
B5C	0.005	0.995	81.769	17.231
B6W	0	1.188	78.768	20.044
B7W	0.006	0.946	79.998	19.05
B8W	0.142	24.02	61.433	
C1E	21.972	31.159	38.659	8.209
C2E	0	1.104	81.545 82.91	17.351 15.755
C3E	0.068	1.267 1.102	81.302	
C4C	0.405		81.502	
C5C	0 0.041	1.465 1.348	82.013	
C6W	0.007	1.491		
C7W	0.077	49.687	38.519	11.717
C8W D1E	0.055	49.007	81.681	15.689
D1E D2E	0.056	1.581	81.947	16.417
D3E	0.000	1.389	81.51	17.101
D4C	0.013	1.499		
D5C	0.007			
D6W	0.05	1.763		
D7W		2.589		
DBW		37.252	51.138	11.538
E1E	0.027	1.781	81.988	16.204
E2E	0	1.88	82.378	15.742
E3E	0	1.285	81.715	16.999
E4C	0.411	1.236	78.843	19.51
E5C	0.078	1.293	78.866	19.764
E6W	0.042	1.651	82.009	16.298
E7W	0.088	2.371	79.079	18.462
ESW	0.118	51.725	38.545	9.612
Anderson/Ketron I:	sland ZSF			
FOE	. 0	78.506	15.608	5.886
F1E	24.28	47.785	21.5	6.436
F2C	1.798	65.483	25.217	7.502
F 3W	2.09	58.842	29.933	9.135

STATION

Anderson/Ketron Island ZSF

F4W		0.201	61.486	29.332	8.98
F5W		0.142	70.364	21.973	7.521
F6W		0.073	69.732	22.316	7.88
F7W		0.024	69.997	22.09	7.909
G1E		0.189	48.178	40.761	10.872
G2E		0.996	67.702	24.621	6.681
G3E		0.658	45.973	42.233	11.136
G4E		13.27	47.64	31.931	7.16
G5E		9.27	53.691	29.705	7.334
G6C		0.103	72.7	21.637	5.56
G7W		0.074	72.665	21.259	6.002
G8W		0.573	76.793	17.365	5.269
H2E		18.9	42.822	29.849	8.429
H3E		0.073	66.105	27.839	5.984
H4E		0.131	52.715	37.025	10.129
H5E		0.104	62.17	29.719	8.008
H6C		0.008	61.467	29.457	9.068
H7W		0.027	73.772	20.166	6.034
H8W		0.115	74.871	18.983	6.031
J1E		0.08	56.128	35.213	8.58
J2C		0.014	49.791	39.787	10.408
J3C		0.019	42.482	46.043	11.457
J4C		0.024	43.483	45.549	10.944
J5W	4	0.046	54.776	36.369	8.809
J6W		0.183	69 .59 3	22.883	7.341
J7W		0.037	77.687	16.341	5.935
K1E		10.52	43.208	37.034	9.239
K2E		0	63.09	29.572	7.338
КЗЕ		0.028	58.442	33.06	8.469
K4C		0.054	38.708	48.356	12.882
K5C		0.012	35.238	51.52	13.23
K6W		0.009	51.448	38.57	9.973
K7W		0.169	77.114	17.489	5.228
K8W		0.243	51.84	38.317	9.6
LIE		0.027	60.025	31.464	8.484
L2E		0.008	65.951	26.185	7.857
L3E		0.017	53.396	36.24	10.347
L4C		0.062	56.279	33.563	10.095
L5C		0.024	43.671	45.907	10.397
L6C		0.112	29.958	56.917	13.013
L7W		0.061	53.859	36.606	9.474
LBW		0.026	62.686	29.788	7.5
L9W		0.188	71.949	21.413	6.45
LIOW		1.834	63.946	27.422	6.798
MIE		0.091	47.762	41.15	10.997
M2E		0.009	50.337	38.77	10.88
M3E		0.002	56.106	35.206	8.66.
M4C		0.022	52.728	37.152	10.098
M5C		0.074	51.486	38.501	9.939
MGW		0.125	59.793	31.473	8.609
M7W		4.965	68.926	20.2	5.909

STATION	%GRAVEL	*SAND	% SILT	%CLAY
Anderson/Ketron	Island ZSF			
MBW	0.019	64.856	27.412	7.712
NIE	0.02	75.741	19.044	5.195
N2C	0,005	60.27	30.777	8.949
N3C	0.047	65.579	27.471	6.904
N4W	0.021	73.564	19.595	6.82
N5W	1.465	76.129	16.982	5.425
01E	1.306	75.503	17.49	5.701
02E	0.028	83.584	12.412	3.976
03C	0.007	67.047	25.756	7.19
04W	0.546	68.643		6.734
05W	0.034			8.529
06W	1.781	64.937		6.762
07W	0.608	68.214	24.907	6.272
Devils head ZSF				
AOE	0.242	54.683	35.954	9.121
AIE	5.076	30.198	52.789	11.936
A2E	0	67.78	25.127	7.092
A3C	Ō	66.112	26.814	7.073
A4C	0.096	2.208	74.703	22.993
A5W	0	20.024	64.333	15.643
A6W	0.174	68.714	24.661	6.451
BOE	0	25.758	59.998	14.244
B1E	0	26.269	60.356	13.374
B2E	0	71.523	21.818	6.659
B3E	0.059	63.087	28.731	8.124
B4C	0.026	59.233	32.035	8.705
B5W	0	56.381	34.282	9.337
B6W	0.203	75.136	19.991	4.669
COE	0	19.032	66.103	14.864
C1E	0	54.972	35.165	9.863
C2E	0.003	56.494	33.969	9.534
C3C	0.166	3.121	74.829	21.884
C4C	0.026	74.28	20.026	5.667
C5W	0.052	66.757	26.11	7.08
C6W	0	59.246	32.255	8.499
C7W	0.014	60.503	31.773	7.71
D1E	0.11	5.125	74.529	20.237
D2E	0	67.353	25.104	7.544
D3C	0.162	71.951	21.569	6.318
D4C	0.09	59.052	32.873	7.985
D5C	0	77.388	16.621	5.992
D6W	0	75.239	19.326	5.435
D7W	0.009	79.316	16.099	4.576
E1E Pop	0.071	4.735	72.342	22.852
E2E E3C	0.053	65.996	26.372	7.579
ESC E4C	0.07	79.02	16.013	4.897
E5W	0.073 5.668	79.926	15.11	4.891
	0,000	94.332	0	0

THE PROPERTY OF THE PROPERTY OF THE

Ć

.....

382

52

STATION	% GRAVEL	*SAND	XSILT	*CLAY
Devils head ZSF				
EGW	0	74.723	19.649	5.627
E7W	0.224	74.66	20.207	4.91
F1E	7.017	74.974	14.642	3.367
F2E	0	74.418	20.252	5.33
F3C	0.005	95.564	3.156	1.275
FAW	0	100	0	0
F5W	0.01	81.055	14.533	4.403

 $\langle \rangle$

APPENDIX D. CONVENTIONAL CHEMISTRY DATA FOR PSDDA PHASE II

STATION	vs	BOD	H20
BELLINGHAM BAY			
A1E	4.12	1195	39.7
	4.07 8.25	1206	40.6 70.3
A2E	8.25 7.87	19 44 1898	69.4
	1.01	2795	03.4
		2468	
A3E	8.51	3164	72.6
	8.47	3106	72.7
		2605	
		2634	
A4C	8.19	2396	72.5
	8.29	2572	72.4
		2030	
		2299	
A 5W	7.35	2309	67.6
	7.96	1691	68.8
		2212	
1 GM	7 70	226 4 2095	70.7
A 6W	7.73 8.03	2095	70.6
	7.06	2185	69.1
	7.42	1837	70.8
A7W	7.48	3379	67.9
A.W	7.54	3460	67.9
	••••	3690	• - • •
		3810	
A8W	6.85	2384	58.9
	6.6	2422	59.1
		2339	
		2290	
B1E	1.47	500	25.4
	1.75	564	25.9
B2E	8.19	2135	69.7
	7.99	1911	70.2
	7.74 7.77	2386 2055	70.3 69.2
B3E	7.81	1940	70.4
B 52	7.33	1797	70.8
	7.59	2424	70.8
	7.78	2264	69
B4C	7.59	2055	67.3
	7.58	1883	68.3
	_	2057	
		2203	
B5C	7.72	2000	68.7
	7.81	1928	69.3
		2550	

.1 . . .

the the

A. M. MARCHIGH, M. M. S.

1.

STATION	VS	BOD	H20
BELLINGHAM BAY			
B6W	7.67 7.71	1850 1925 2108	68 68.2
B7W	6.81 7.28 7.5	2018 2284 2222 1771	67 67 66.8
B8W	7.37 3.62 3.35	1765 1291 1374	66.3 46.2 46.5
C1E	3.95 4.61	1043 930	49.7 51.6
C2E	7.99 8.09	2015 1920 2486	68.1 68.1
C3E	7.63 7.42	2455 2138 1817 2266	68.4 68.3
C4C	7.49 7.24	2236 1974 2194 2157	68.8 68.8
C5C	7.3 7.41	2299 1777 1820 2352	67.6 67.7
C6W	7.99	2313 2465	70.9
C7W	7.66 7.26 6.66 6.71	2214 1734 1612 2034	70.5 67 66.9 66.4
C8W	7.1 0.43 1.73	1978 448 706	67.2 27.8 27.9
D1E	8.65 8.95	2143 2193 2672 2684	71.8 71.3
D2E	7.81	1797	68.9
D3E	7.82 7.38	1997 2369	70.2 69.4
D4C	7.83 7.13	2052 1857	69.5 68.2
D5C	7.46 7.43	1832 1899	68.6 68.9
Dew	7.59 6.37 6.94	1900 1858 1813	68.8 67 66.6

R.

1225-52 F

STATION	vs	BOD	H20
BELLINGHAM BAY			
D7W	7	1287	65
	6.38	1278	65
D8W	3.12	941	41.5
	3.29	900	42.1
Ele	8.26	2080	69.1
	8.34 7.45	1930 1379	68.6 69
E2E	7.36	1848	69.3
E3E	7.61	2199	67.8
EJE	7.67	2171	67.7
	7.61	2626	68.1
	7.53	2393	67.6
E4C	5.82	1468	64.3
	6.86	1573	63.7
		2057	
	7 00	2113 18 4 6	67
E5C	7.03 6.94	1895	67
EGW	6.77	1496	62.1
ECH	6.35	1585	62.1
	6.51	1523	60.9
	5.92	1660	61.9
E7W	6.66	1429	61.4
	6.61	1538	61.4
E8W	1.94	466	33.4
	1.86	520	32.9
Anderson/Ketron	Island ZSF		
FOE	1.25	335	26.1
	1.22	284	24.5
F1E	1.83	672	30.3 29.6
200	1.91	573 460	28.1
F2C	1.43 1.28	480	27.5
F 3W	1.79	572	29.1
2 0 11	1.73	615	27.7
F4W	1.4	553	25.7
	1.34	525	25.3
F5W	1.25	390	26.2
	1.3	410	25.9
F6W	1.43 1.37	400 375	29.4 29.4
F7W	1.71	452	31.6
E 1 M	1.6	620	31.8
	1.64		
G1E	2.74	1030	43.5
_ 	2.8	1110	43.8
	2.74		

Ċ

STATION	vs	BOD	H20
Anderson/Ketron	Island ZSF		
G2E	1.86	577	32.2
	1.78	455	31.9
G3E	2.33	995	43.2
	2.16	995	44.9
G4E	1.85	750	34.1
	1.84	814	34.1
CER	1.9	765	20 E
G5E	1.66 1.61	765 740	32.6 32.9
G6C	1.24	476	26.4
	1.18	460	26.2
G 7 W	1.55	442	30.8
	1.35	413	30.8
G8W	1.11	320	26.4
	1.21	360	26.1
H1E	1.5	375	33.7
H2E	1.49 1.51	408 406	33.1 31.2
NZE	1.51	407	28.2
H3E	1.44	379	31.2
	1.45	325	31.2
H4E	2.22	830	38.9
	2.35	805	38.6
H5E	1.86	505	35.9
	1.75	560	35.7
H6C	1.58	548	32.3
H7W	1.65 1.52	517	32.3 28.6
niw	1.52	500 475	28.8
HSW	1.16	450	25.7
	1.16	390	25.7
J1E	2.21	627	39.6
	2.06	506	38.6
J2C	2.67	846	43.2
*00	2.67	839	42.3
J3C	3.39 3.22	1090 1055	43.7
J4C	3.11	969	43.9 43.6
510	3.01	952	45.3
J5W	2.4	845	41
	2.55	870	40.8
J 6W	1.68	650	32.9
	1.7	665	32.3
J7W	0.99	411	25.8
V 1 E	0.89	395	25.1
K1E	2.38	1015	42.2
	2.41 2.33	1010 935	41.5
	£,JJ	1063	
K2E	1.36	685	34.6
	1.42	724	34.7

STATION	VS	BOD	H20
Anderson/Ketron	Island ZSF		
KJE	2.29	557	40
	2.16	552	40.1
K4C	3.12	855	48.7
	2.82	835	46.7 51
K5C	3.61 3.71	1374 1259	49.8
K6W	2.58	856	40
VOM	2.4	857	41.1
K7W	1.47	253	29.5
	1.39	321	29.6
K8W	2.34	590	34.5
	2.58	595	34.3
		605	39
L1E	1.56 1.7	823 776	38.7
T 9 F	1.74	540	37
L2E	1.71	560	35.6
L3E	2.09	780	40.7
•••	2.24	770	37.9
L4C	2.33	920	39.2
	2.35	800	39.6
L5C	3.21	1127 993	47.5 46.1
1.60	3.04 3.87	1227	53,6
L6C	3.95	1285	53
L7W	2.26	860	41.3
	2.51	847	41
	2.53		41.5
	2.36		05 7
L8W	1.78	673 761	35.7 35.4
1.00	1.92 1.5	402	28.8
L9W	1.48	434	28.3
L10W	1.78	416	32.4
2100	1.83	330	30,7
		376	
M1E	2.33	600	38.7
	2.41	585 850	39.2 41.5
M2E	2.24 2.15	942	41.3
M3E	2.19	905	44.2
MJL	2.46	944	42.5
M4C	2.04	856	40.8
	2.15	820	39.8
M5C	2.51	1000	42.5
	2.4	948	41.3
	2.47	965 940	
MGW	1.93	940 617	34.9
17 O M	1.9	619	34.8

お お ち ち ち ち ち

CCCXXXX4

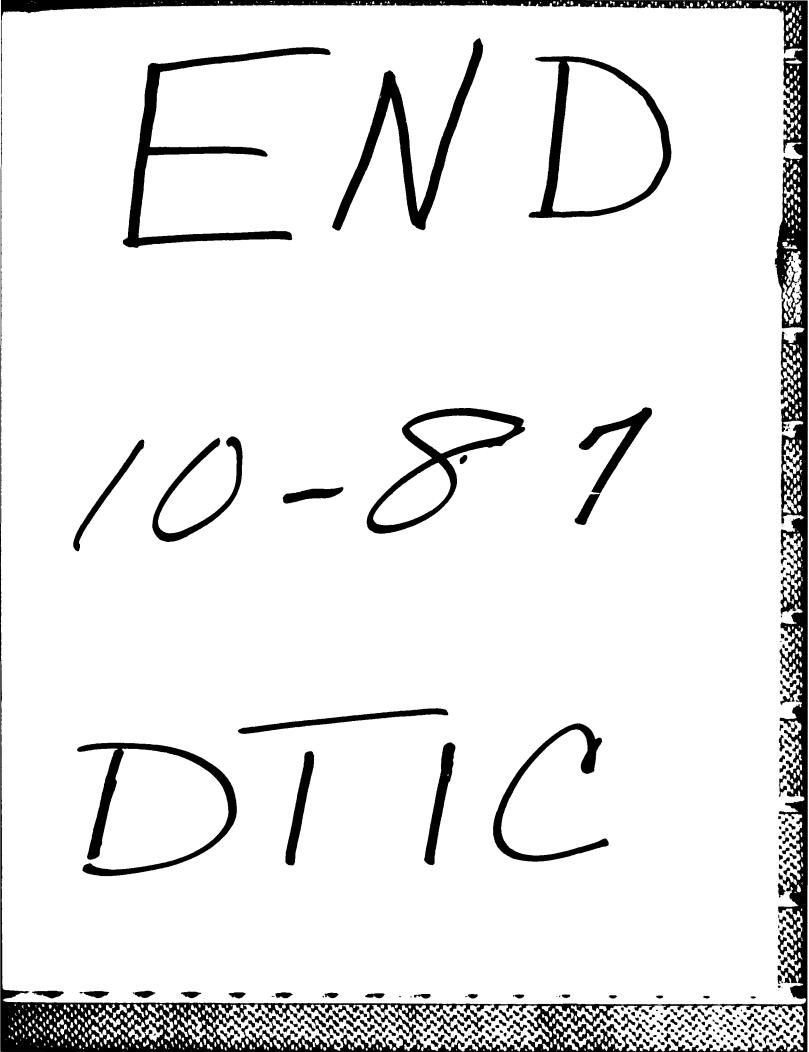
4. 6.

Č,

58

STATION	VS	BOD	H20
Anderson/Ketron	Island ZSF		
M7W	1.47	406	28.2
	1.35	405	28.7
M8W	1.71	390	32.9 33.2
	1.72 1.08	415 412	28.7
NIE	1.08	400	27.9
N2C	2	748	35.2
	2.03	712	37.OK
N3C	1.63	710	35.8
	1.66	677	35.8 30.4
N4W	1.37 1.35	323 304	29.7
N5W	1.16	285	23.9
NSW	1.12	263	24.2
01E	1.22	283	28.2
	1.3	242	28.3
02E	0.92	225	27.7
	0,95	220 482	27.8 33.5
030	1.57 1.54	462 508	33.6
04₩	1.65	590	34
041	1.59	555	34.5
05W	1.75	640	34.5
	1.64	675	33.9
06W	1.5	375	31.2
0.751	1.55 1.59	366 640	31.2 31.8
07₩	1.5	525	32.1
Devils head ZSF	,		
AOE	1.8	508	34.2
	1.79	505	34.5 30.7
A1E	1.77 1.87	542 606	30.7
A2E	1.74	734	35.3
AZE	1.73	708	35
A3C	1.58	390	34.5
	1.58	410	33.9
A4C	1.99	644	36.1
	1.95	657	36.3 55.2
A5W	4 3.92	1336 1280	55.2
A6W	1.46	555	29.8
•• •••	1.38	500	28.8
BOE	3.25	982	50.3
	3.2	930	48.6
B1E	3.22	1428	47.8
D 3 F	3.36 1.53	1343 658	47.4 34.1
B2E	1.33	590	34

 $a \sim a \sim a \sim a$


STATION	vs	BOD	H20
Devils head ZSF			
B3E	1.56	550	34.5
	1.67	580	33.8
B4C	1.98	636	37
	1.98	638	36.5 30.7
B5W	1.44 1.37	440 480	30.5
	1.51	436	00.0
B6W	1.24	495	25.6
Don	1.32	535	24.3
COE	3.75	1521	54.7
	3.75	1430	54.3
C1E	1.86	796	38
_	1.91	770	35.9 36.9
C2E	1.94 2.06	670 715	36.7
C3C	1.71	570	31.1
636	1.67	490	31.2
C4C	1.27	260	29
4	1.33	315	29.5
		267	
C5W	1.79	520	34
	1.75	504	33.6
Cem	2.22	660 662	38.5 37.6
	2.23 1.85	662 665	34.3
C7W	1.85	680	34.5
D1E	1,33	452	28.4
DIE	1.3	468	28.6
D2E	1,49	530	32.8
-	1.43	641	33
D3C	1.48	385	30.7
	1.52	405	30.4 31.3
D4C	1.53 1.52	424 462	31.3
D5C	1.05	303	27.1
D3C	1.05	311	26.7
D6W	1.37	370	29.2
	1.39	400	29
D7W	1.2	250	29.8
	1.18	350	30.2 30.8
E1E	1.4 1.45	63 4 715	30.8
202	1.45	484	33.2
E2E	1.6	458	33.6
E3C	1.04	320	28.7
	1.06	311	27.9
E4C	1.17	379	30.2
	1.16	396	29.7
E5W	0.63	86	28 27 1
	0.62	90	27.1

SA DAA DAADAA DAADAA DAADAA SAADAA SAADA

STATION	VS	BOD	H20
Devils head ZSF			
E6W	1.38	445	30.2
	1.38	423	30.5
E7W	1.3	368	31.3
	1.34	327	30.8
F1E	1.09	225	23
	1.01	238	23.4
F2E	1.5	416	31.1
	1.48	424	31.7
F3C	0.33	62	24.1
	0.39	65	23.4
F4W	0.57	70	25.3
	0.59	53	24.6
F5W	1.14	415	30.1
	1.24	396	29.9

56.66

