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ABSTRACT

In order to provide a deeper understanding of the

workings of principal components, four data sets were

constructed by taking linear combinations of values of

two uncorrelated variables to form the X-variates for

the principal component analysis. The examples

highlight some of the properties and limitations of

principal component analysis.

This is part of a continuing project that produces

annotated computer output for principal component

analysis. The complete project will involve processing

four examples on SAS/PRINCOMP, BMDP/4M, SPSS-X/FACTOR,

GENSTAT / PCP, and SYSTAT / FACTOR. We show here the

results from SYSTAT/FACTOR, Version 3.

* Supported by the U.S. Army Research Office through the Mathematical

Sciences Institute of Cornell University.



1. INTRODUCTION

Principal components is a form of multivariate statistical

analysis and is one method of studying the correlation or

covariance structure in a set of measurements on m variables for

n observations. For example, a data set may consist of n = 260

samples and m = 15 different fatty acid variables. It may be

advantageous to study the structure of the 15 fatty acid

variables since some or all of the variables may be measuring the

same response. One simple method of studying the correlation

structure is to compute the m(m-l)/2 pairwise correlations and

note which correlations are close to unity. When a group of

variables are all highly inter-correlated, one may be selected

for use and the others discarded or the sum of all the variables

may be used. When the structure is more complex, the method of

principal components analysis (PCA) becomes useful.

In order to use and interpret a principal components analysis,

there needs to be some practical meaning associated with the

various principal components. In Section 2 we describe the basic

features of principal components and in Section 3 we examine some

constructed examples using SYSTAT/FACTOR to illustrate the

a, interpretations that are possible. In Section 4 we summarize our

results.

2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS

PCA can be performed on either the variances and covariances

among the m variables or their correlations. One should always
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check which is being used in a particular computer package

program. SYSTAT can use either the variances and covariances or

the correlations but uses the correlations by default. First we

will consider analyses using the matrix of variances and

covariances. A PCA generates m new variables, the principal

components (PCs), by forming linear combinations of the original

variables, X = (XI, X2 1 ..., Xm), as follows:

PC 1 = b1 X1 + b 2X +...+ b mXm = Xb 1

PC2 = b2 1 X1 + b2 2 X2 +..+b 2 mXm = Xb2

Pm = bmll + bm2X2 b mmXm = Xbm

In matrix notation,

P = (PCIPC2 ,....PCm) = X (bl,b2 ,....bm) = XB,

and conversely X = P B- 1 .

The rationale in the selection of the coefficients, bij , that

define the linear combinations that are the PC i is to try to

capture as much of the variation in the original variables with

as few PCs as possible. Since the variance of a linear

combination of the Xs can be made arbitrarily large by selecting

very large coefficients, the bij are constrained by convention so

that the sum of squares of the coefficients for any PC is unity:

1m b . = 1 i = 1,2,...,mj =i ij

Under this constraint, the blj in PC 1 are chosen so that PC1 has

maximal variance.
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If we denote the variance of X. by s? and if we define the
1 1

total variance, '1  as T, then the proportion of the

variance in the original variables that is captured in PC1 can be

quantified as var(PC1 )/T. In selecting the coefficients for PC2,

they are further constrained by the requirement that PC2 be

uncorrelated with PC1  . Subject to this constraint and the

constraint that the squared coefficients sum to one, the

coefficients b2j are selected so as to maximize var(PC2 ).

Further coefficients and PCs are selected in a similar manner, by

requiring that a PC be uncorrelated with all PCs previously

selected and then selecting the coefficients to maximize

variance. In this manner, all the PCs are constructed so that

they are uncorrelated and so that the first few PCs capture as

much variance as possible. The coefficients also have the

following interpretation which helps to relate the PCs back to

the original variables. The correlation between the ith PC and

the jth variable is

b. var(PC.)/s j
1) 1 )

After all m PCs have been constructed, the following identity

holds:

var(PCl) + var(PC2) +.+ var(PCm) = T = ?

This equation has the interpretation that the PCs divide up the

total variance of the Xs completely. It may happen that one or

more of the last few PCs have variance zero. In such a case, all

the variation in the data can be captured by fewer than m

-4-



variables. Actually, a much stronger result is also true; the

PCs can also be used to reproduce the actual values of the Xs,

not just their variance. We will demonstrate this more

explicitly later.

The above properties of PCA are related to a matrix analysis

of the variance-covariance matrix of the Xs, S . Let D be a

diagonal matrix with entries being the eigenvalues, Xi , of Sx

arranged in order from largest to smallest. Then the following

properties hold:

(i) Xi = var(PC.)

(ii) trace(S -i si = T I i X. I=l var(PC.)
x ili 1=1 1 111

(iii) corr(PCiXj)= bij i

s.

(iv) Sx = B'DB

The statements made above are for the case when the analysis

is performed on the variance-covariance matrix of the Xs. The

correlation matrix could also be used, which is equivalent to

performing a PCA on the variance-covariance matrix of the

standardized variables,

SYi= __

s i

PCA using the correlation martrix is different in these respects:

(i) The total "variance" is m, the number of variables.

(It is not truly variance anymore.)

(ii) The correlation between PCi and X. is given by

-5-
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b ij.var(PCi) = b ijvi = Ai (called component loading in

SYSTAT). Thus PCi is most highly correlated with the Xj

having the largest coefficient in PCi in absolute value.

The experimenter must choose whether to use standardized (PCA on

a correlation matrix) or unstandardized coefficients (PCA on a

variance-covariance matrix). The latter is used when the

variables are measured on a comparable basis. This usually means

that the variables must be in the same units and have roughly

comparable variances. If the variables are measured in different

units, then the analysis will usually be performed on the

standardized scale, otherwise the analysis may only reflect the

different scales of measurement. For example, if a number of fat-

ty acid analyses are made, but the variances, s?, and means, Xi'

are obtained on different bases and by different methods, then

standardized variables would be used (PCA on the correlation

matrix).

To illustrate some of the above ideas, a number of examples

have been constructed and these are described in Section 3. In

each case two variables, Z1 and Z2 , which are uncorrelated, are

used to construct Xi. Thus, all the variance can be captured

with two variables and hence only two of the PCs will have

nonzero variances. In matrix analysis terms, only two eigenvalues
will be nonzero. An important thing to note is that in general,

PCA will not recover the original variables Z1 and Z2 . Both

standardized and nonstandardized computations will be made.

-6-
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3. EXAMPLES

Throughout the examples we will use the variables Z1 and Z2

(with n = 11) from which we will construct XiX 2 ,...,Xm. We will

perform PCA on the Xs. Thus, in our constructed examples, there

will only really be two underlying variables.

Values of Z and Z2

Z -5 -4 -3 -2 -1 0 1 2 3 4 5

2  15 6 -1 -6 -9 -10 -9 -6 -1 6 15

Notice that Z exhibits a linear trend through the 11 samples and
1

Z 2 exhibits a quadratic trend. They are also chosen to have mean

zero and be uncorrelated. Z1 and Z2 have the following variance-

covariance matrix (a variance-covariance matrix has the variance

for the ith variable in the ith row and ith column and the

covariance between the ith variable and the jth variable in the ith

row and jth column).

Variance-covariance matrix of Z1 and Z2

[ 85.8

Thus the variance of Z1 is 11 and the covariance between Z1 and Z2

is zero. Also the total variance is 11 + 85.8 = 96.8.

Example 1: In this first example we analyze Z1 and Z2 as if they

were the data. Thus X1 = Z1 and X2 =Z 2 and m = 2. If PCA is
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perfomed on the variance-covariance matrix, then the SYSTAT

output is as follows (SYSTAT control language for this example

and all subsequent examples is in the appendix and the bold face

print was typed on the computer output to explain the calculation

performed):
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MATRIX TO BE FACTORED = Covariance Matrix (sij)

X1 X2

X1 8 -, - 11.000
X2 812 - 8 2 1 - -0.000 S*Z - 85.800

LATENT ROOTS (EIGENVALUES) i  1

1 2

X, = 85.800 X2 = 11.000

COMPONENT LOADINGS = biJA. = A Note: SYSTAT does not

print out bi (eigenvectors).

To obtain eigenvectors,
divide the component loadings

by 1 Xi

S=A, 2 =A 2

Xl 0.000 3.317 i.e. b' = [0 9.26]/ 485.8

X2 9.263 0.000 = [0 1]

VARIANCE EXPLAINED BY COMPONENTS

1 2

85.800 11.000

PERCENT OF TOTAL VARIANCE EXPLAINED = proportion of variance explained by PCm1

1 2

88.636 11.364

-9-
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FACTOR SCORE COEFFICIENTS = b. / U

1 =jY, 2 y

xi 0.000 0.302
X2 0.108 0.000

xi X2 FACTOR(1) FACTOR(2)
=PC, =PC 2

CASE 1 -5.000 15.000 15.000 -5.000
CASE 2 -4.000 6.000 6.000 -4.000
CASE 3 -3.000 -1.000 -1.000 -3.000
CASE 4 -2.000 -6.000 -6.000 -2.000
CASE 5 -1.000 -9.000 -9.000 -1.000
CASE 6 0.000 -10.000 -10.000 0.000
CASE 7 1.000 -9.000 -9.000 1.000
CASE 8 2.000 -6.000 -6.000 2.000
CASE 9 3.000 -1.000 -1.000 3.000
CASE 10 4.000 6.000 6.000 4.000

g CASE 11 5.000 15.000 15.000 5.000

PC. = (yil + iX)K

b ix1+ b 1 2 x2

PC1 o1 + x2

for case 1, PC 1 = 0(-5) + 1(15) =15

-10-



We can interpret the results as follows:

1) The first principal component is

PC 1 = O.X1 + l-X2 = X2

2) PC2 = 1-X1 + 0-X2 - X1

3) Var(PC1 ) - eigenvalue = 85.8 - Var(X 2 )

4) Var(PC2 ) - eigenvalue - 11.0 - Var(X1 )

The PCs will be the same as the Xs whenever the Xs are

uncorrelated. Since X2 has the larger variance, it becomes the

first principal component.

If PCA is performed on the correlation matrix, we get slightly

different results.

Correlation Matrix of Z1 and Z2

(0 0
A correlation matrix always has unities along its diagonal and

the correlation between the ith variable and the jth variable in

the ith row and jth column. PCA in SYSTAT would yield the

following output:

-11-
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MATRIX TO BE FACTORED =Correlation Matrix (r..)

X1 X2

Xl r11  1. 000
X2 r12 = r2 , -0.000 r.2 = 1.000

LATENT ROOTS (EIGENVALUES) =X

1 2

=, 1.000 X2 = 1.000 1=n=X i

COMPONENT LOADINGS = b.'k= A.

1 A, 2 =A 2  bi [I o] 41

=(1 0]
Xl 1.000 0.000
X2 0.000 1.000

VARIANCE EXPLAINED BY COMPONENTS

1 2

1.000 1.000

PERCENT OF TOTAL VARIANCE EXPLAINED = proportion of variance explained by PC1

1 2

50.000 50.000
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FACTOR SCORE COEFFICIENTS = b. Y,4
11 = Y 2 i

Xi 1.000 0.000
X2 0.000 1.000

xl X2 FACTOR(1) FACTOR(2)
=PC1  =PC2

CASE 1 -5.000 15.000 -1.508 1.619
CASE 2 -4.000 6.000 -1.206 0.648
CASE 3 -3.000 -1.000 -0.905 -0.108
CASE 4 -2.000 -6.000 -0.603 -0.648
CASE 5 -1.000 -9.000 -0.302 -0.972
CASE 6 0.000 -10.000 0.000 -1.080
CASE 7 1.000 -9.000 0.302 -0.972
CASE 8 2.000 -6.000 0.603 -0.648
CASE 9 3.000 -1.000 0.905 -0.108
CASE 10 4.000 6.000 1.206 0.648
CASE 11 5.000 15.000 1.508 1.619

PC1 = yilX1 /S 1 + y22S

= b 1 1 X1 /S 1 + b22S

PC1 = 1X,/3.32 + X 2 /9.26

for case 1,

= -5/3.32

= -1.508

The principal components are again the Xs (standardized Zs) themselves,

but the eigenvalues (var(PCs)) are unity since the variables have been

standardized first.

Example 2: Let X, = zip X 2 = 2Z and X 3= Z 2. The summary statistics

are given below.

Xl X2 X3
MEAN 0.000000 0.000000 0.000000
ST DEV 3.316625 6.63325 9.262829

If the analysis is performed on the variance-covariance matrix using

SYSTAT the results are:

-13-



MATRIX TO BE FACTORED = Covariance Matrix (sij)

Xl X2 X3 Note: SYSTAT does
not give covariances

Xl 11.000 above the diagonal
X2 22.000 44.000
X3 -0.000 -0.000 85.800

LATENT ROOTS (EIGENVALUES) = Ai

1 2 3 Note: 1i' re I" X.
2=1 =

85.800 55.000 0.000

COMPONENT LOADINGS = b 'i = A.

1 2 = [3.317 6.633 0]/455

X1 0.000 3.317 = [.447 .894 0]
X2 0.000 6.633
X3 9.263 0.000

Note: The 3rd component loadings were O's and are not printed by SYSTAT.

VARIANCE EXPLAINED BY COMPONENTS

1 2

85.800 55.000

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

60.938 39.063
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FACTOR SCORE COEFFICIENTS = bi / 'l? - Yj

xi 0.000 0.060
X2 0.000 0.121
X3 0.108 0.000

xi X2 X3 FACTOR(1) FACTOR(2)
=PC, =PC2

CASE 1 -5.000 -10.000 15.000 15.000 -11.180
CASE 2 -4.000 -8.000 6.000 6.000 -8.944
CASE 3 -3.000 -6.000 -1.000 -1.000 -6.708
CASE 4 -2.000 -4.000 -6.000 -6.000 -4.472
CASE 5 -1.000 -2.000 -9.000 -9.000 -2.236
CASE 6 0.000 0.000 -10.000 -10.000 0.000
CASE 7 1.000 2.000 -9.000 -9.000 2.236
CASE 8 2.000 4.000 -6.000 -6.000 4.472
CASE 9 3.000 6.000 -1.000 -1.000 6.708
CASE 10 4.000 8.000 6.000 6.000 8.944
CASE 11 5.000 10.000 15.000 15.000 11.180

PC~ = (YilXl + y 1 2 X2 + y 1 3 X3 ) 4K1

PC 2 =. 447X 1 + .894X 2 + OX 3

for case 1,

-. 447(-5) + .894(-10) + 0(15)

- -11.1



Analyzing the correlation matrix gives the following results:

MATRIX TO BE FACTORED = Correlation Matrix (r..)

Xl X2 X3

Xl 1.000
X2 1.000 1.000
X3 -0.000 -0.000 1.000

LATENT ROOTS (EIGENVALUES) =X

1 2 3

2.000 1.000 0.000

COMPONENT LOADINGS -b 4T = AS-i

1 2 bi= [1 1 o]/4-i

= [.707 .707 0]
Xl 1.000 0.000
X2 1.000 0.000
X3 0.000 1.000

VARIANCE EXPLAINED BY COMPONENTS

1 2

2.000 1.000

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

66.667 33.333

-16-
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FACTOR SCORE COEFFICIENTS - bi YJ)

1 mY, 2 my 2

xi 0.500 0.000
X2 0.500 0.000
X3 0.000 1.000

xi X2 X3 FACTOR(1) FACTOR(2)
=PC 1  =PC 2

CASE 1 -5.000 -10.000 15.000 -1.508 1.619
CASE 2 -4.000 -8.000 6.000 -1.206 0.648
CASE 3 -3.000 -6.000 -1.000 -0.905 -0.108
CASE 4 -2.000 -4.000 -6.000 -0.603 -0.648
CASE 5 -1.000 -2.000 -9.000 -0.302 -0.972
CASE 6 0.000 0.000 -10.000 0.000 -1.080
CASE 7 1.000 2.000 -9.000 0.302 -0.972
CASE 8 2.000 4.000 -6.000 0.603 -0.648
CASE 9 3.000 6.000 -1.000 0.905 -0.108
CASE 10 4.000 8.000 6.000 1.206 0.648
CASE 11 5.000 10.000 15.000 1.508 1.619

PC1 i y1 1 X1 /Sl + y12 X2/S2 + y1 3X3 /S3

- (b iiXI/51 + b 12 X2 /S2 + b 1 3 X 3 /S 3 ) / 4K,

PC, - (.707 X 1/3.317 + .707 X2/6 .633 + 0 X. 263) 4-'2

for case 1,

-. 707(-5)/3.317 + .707(-10)/6.633) / 4-i

=-1.508

-17-
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There are several items to note in these analyses:

i) There are only two nonzero eigenvalues since X2 can be computed

from X1.

ii) X3 is its own principal component since it is uncorrelated with

all the other variables.

iii) The sum of the eigenvalues is the sum of the variances, i.e.,

11 + 44 + 85.8 = 140.8
and

iv) For the variance-covariance analysis, the ratio of the

coefficients of X1 and X2 in PC2 is the same as the ratio of

the variables themselves (since X2 = 2X1 ).

v) Since there are only two nonzero eigenvalues, only two of

the PCs have nonzero variances (are nonconstant).

vi) The coefficients help to relate the variables and the PCs. In

the variance-covariance analysis,

(coefficient of X in PC2 ) var(PC2 ) A 12
Corr(PC 2 X 1 ) 1) (C)1

--var(Xl) Vvar(X,)

b V57-
_21 2

S 1

.447214/55

3.16625
=1

In the correlation analysis,

Corr(PC1 ,Xl) = b 1 1 V% = A11 = Component loading for PC1 , X 1

= . 707107V5

-18-

. .. . .



Thus, in both these cases, the variable is perfectly

correlated with the PC.

vii) The Xs can be reconstructed exactly from the PCs with

nonzero eigenvalues. For example, in the variance-

covariance analysis, X3 is clearly given by PC1  X1 and

X2 can be recovered via the formulas

x = PC 2/v5

X 2 = 2- PC 2/-, .

As a numerical example,

-5 = -11.180/v-A

Example 3: For Example 3 we use X 1 = Z1 , X 2 = 2(ZI+5), X3 = 3(Z 1

+5) and X = Z2 .  Thus X1, X2 and X3 are all created from Z1 .

The data and summary statistics are:

OBS Xl X2 X3 X4

1 -5 0 0 15
2 -4 2 3 6
3 -3 4 6 -1
4 -2 6 9 -6
5 -1 8 12 -9
6 0 10 15 -10
7 1 12 18 -9
8 2 14 21 -6
9 3 16 24 -1

10 4 18 27 6
11 5 20 30 15

x1 X2 X3 X4

MEAN 0.000000 10.00000 15.00000 0.00000
ST DEV 3.316625 6.63325 9.94987 9.62823

The analyses for the variance-covariance matrix (unstandardized

analysis) and correlation matrix (standardized analysis) are

given below.

-19-



MATRIX TO BE FACTORED = Covariance Matrix (sij)

Xl X2 X4 X3

Xl 11.000
X2 22.000 44.000
X4 -0.000 -0.000 85.800
X3 33.000 66.000 -0.000 99.000

Note the order that SYSTAT prints variable information. (Order is set by
SYSTAT based on order variables were created).

LATENT ROOTS (EIGENVALUES) = 1

1 2 3 4

154.000 85.800 0.000 -0.000

* COMPONENT LOADINGS = bi 4A i = A.

1 2 b = [3.317 6.633 0 9 .95 0]/J5-4

= [.267 .535 0 .802]
X1 3.317 0.000
X2 6.633 0.000
X4 0.000 -9.263
X3 9.950 0.000

Note: The 3rd and 4th component loadings were 0
VARIANCE EXPLAINED BY COMPONENTS

1 2

154.000 85.800

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

64.220 35.780

-20-
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FACTOR SCORE COEFFICIENTS bi  4K I Y

1 =Y 2 2

X1 0.022 0.000
X2 0.043 0.000
X4 0.000 -0.108
X3 0.065 0.000

FACTOR(l) FACTOR(2)
= PC1  = PC 2

CASE 1 -18.708 -15.000
CASE 2 -14.967 -6.000
CASE 3 -11.225 1.000
CASE 4 -7.483 6.000
CASE 5 -3.742 9.000
CASE 6 -0.000 10.000
CASE 7 3.742 9.000
CASE 8 7.483 6.000
CASE 9 11.225 1.000
CASE 10 14.967 -6.000
CASE 11 18.708 -15.000

PC i = bi (X1-X1 ) + bi 2 (X2 -X 2 ) + bi3 (X3-X 3) + bi 4 (X4 -X 4 )

PC = 0.267 (X1-0) + 0.535 (X2-10) + 0.802 (X3 -15) + 0 (X4 -0)

for case 1,

= 0.267(-5) + 0.535(0-10) + 0.802(0-15)

= -18.71

-21-
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MATRIX TO BE FACTORED = Correlation Matrix (r..j)

X1 X2 X4 X3

X1 1.000
X2 1.000 1.000
X4 -0.000 -0.000 1.000
X3 1.000 1.000 -0.000 1.000

LATENT ROOTS (EIGENVALUES) =X

1 2 3 4

*3.000 1.000 0.000 -0.000

COMPONENT LOADINGS =b. ~ A.
1 i

1 2 bi= [1 1 01)/43

= [.577 .577 0 .577]
Xl 1.000 0.000
X2 1.000 0.000
X4 -0.000 -1.000

*X3 1.000 0.000

VARIANCE EXPLAINED BY COMPONENTS

*1 2

3.000 1.000

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

75.000 25.000
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FACTOR SCORE COEFFICIENTS = b i / 4i = Yi

1 = Yl 2= Y2

X1 0.333 -0.000
X2 0.333 -0.000
X4 -0.000 -1.000
X3 0.333 -0.000

FACTOR(1) FACTOR(2)
=PC1 =PC2

CASE 1 -1.508 -1.619
CASE 2 -1.206 -0.648
CASE 3 -0.905 0.108
CASE 4 -0.603 0.648
CASE 5 -0.302 0.972
CASE 6 0.000 1.080
CASE 7 0.302 0.972
CASE 8 0.603 0.648
CASE 9 0.905 0.108
CASE 10 1.206 -0.648
CASE 11 1.508 -1.619

PC = Yi(Xl-X )/S 1 + Y 1 2 (X2-X2)/s 2 + Yi3(X3-X3)/83 + yi4(X4-X 4 )/s 4

, PC1 = .333(X 1 -0)/3.317 + .333(X 2 -10)/6.633 + .333(X 3 -15)/9.950 + 0(X 4 -0)/9.628

for case 1

= .333(-5)/3.317 + .333(-10)/6.633 + .333(-15)/9.950

= -1.508
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For the variance-covariance analysis, the coefficients in PC1 are

in the same ratio as their relationship to Z1 * In the

correlation analysis XI, X2 and X3 have equal coefficients. In

both analyses, as expected, the total variance is equal to the

sum of the variances for the PCs. In both cases two PCs, PC 3 and

PC4, have zero variance and are identically zero.

Example 4. In this example we take more complicated combinations

of Z1 and Z2 .

X =Z

2 1*X 2 = 2Z1

X3 = 3Z 1

X 4 = ZI/2 + Z2

x 5 =Z 1 /4 + Z 2

x 6 = Z1/8 + z2

X 7  Z

Note that XI, X2 and X3 are colinear (they all have correlation

4" unity) and X4 # X5 , X6 and X7 have steadily decreasing

correlations with X I. The data and data summaries are below.
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OBS X1 X2 X3 X4 X5 X6 X7

1 -5.000 -10.000 -15.000 12.500 13.750 14.375 15.000
2 -4.000 -8.000 -12.000 4.000 5.000 5.500 6.000
3 -3.000 -6.000 -9.000 -2.500 -1.750 -1.375 -1.000
4 -2.000 -4.000 -6.000 -7.000 -6.500 -6.250 -6.000
5 -1.000 -2.000 -2.000 -9.500 -9.250 -9.125 -9.00O
6 0.000 0.000 0.000 -10.000 -10.000 -10.000 -10.000
7 1.000 2.000 3.000 -8.500 -8.755 -8.875 -9.000
8 2.000 4.000 6.000 -5.000 -5.500 -5.750 -6.000
9 3.000 6.000 9.000 0.500 -0.250 -0.625 -1.000

10 4.000 8.000 12.000 8.000 7.000 6.500 6.000
11 5.000 10.000 15.000 17.500 16.250 15.625 15.000

Xl X2 X3 X4 X5 X6 X7

Mean 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
ST DEV 3.31662 6.63325 9.94987 9.41010 9.29987 9.27210 9.26283

The PCAs for the variance-covariance and correlation matrices are

given below.

-25-



MATRIX TO BE FACTORED = Covariance Matrix

X1 X2 X4 X5 X6

X1 11.000
X2 22.000 44.000
X4 5.500 11.000 88.550
X5 2.750 5.500 87.175 86.488
X6 1.375 2.750 86.488 86.144 85.972
X7 -0.000 -0.000 85.800 85.800 85.800
X3 33.000 66.000 16.500 8.250 4.125

X7 X3

X7 85.800
X3 -0.000 99.000

LATENT ROOTS (EIGENVALUES) = X i

1 2 3 4 5

347.015 153.794 0.000 0.000 -0.000

6 7

-0.000 -0.000

COMPONENT LOADINGS = b i '? = Ai

1 2
bi = [.466 .932 9.404 9.287 9.229

X1 0.466 3.284 9.171 1.398] / 4 3 4 7 .015
X2 0.932 6.567 = [.025 .050 .505 .499 .495 .492 .075]
X4 9.404 0.340
X5 9.287 -0.481
X6 9.229 -0.891
X7 9.171 -1.302
X3 1.398 9.851
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VARIANCE EXPLAINED BY COMPONENTS

1 2

347.015 153.794

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

69.291 30.709

FACTOR SCORE COEFFICIENTS = b/ .=y

Xi 0.001 0.021
X2 0.003 0.043
X4 0.027 0.002
X5 0.027 -0.003
X6 0.027 -0.006
X7 0.026 -0.008
X3 0.004 0.064

FACTOR(1) FACTOR(2)

CASE 1 25.921 -21.332
CASE 2 8.790 -15.937
CASE 3 -4.359 -10.918
CASE 4 -13.525 -6.275
CASE 5 -18.709 -2.009
CASE 6 -19.911 1.881
CASE 7 -17.131 5.395
CASE 8 -10.368 8.533
CASE 9 0.377 11.294
CASE 10 15.104 13.679
CASE 11 33.813 15.688

PC. b X + b. i2 X 4X4+b1 6X6+b1

PC =.025X + .050XK + .075XK + .505XK + .499XK + .495XK + .492X7

for case 1

25.921 = .025(-5) + .050(-10) + .075(-15) + .505(12.4) + .499(13.75) +

.495(14.375) +. 492(15)
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MATRIX TO BE FACTORED = Correlation Matrix

X1 X2 X4 X5 X6

X1 1.000
X2 1.000 1.000
X4 0.176 0.176 1.000
X5 0.089 0.089 0.996 1.000
X6 0.045 0.045 0.991 0.999 1.000
X7 -0.000 -0.000 0.984 0.996 0.999
X3 1.000 1.000 0.176 0.089 0.045

X7 X3

X7 1.000
X3 -0.000 1.000

LATENT ROOTS (EIGENVALUES) = A i

1 2 3 4 5

4.052 2.948 0.000 0.000 0.000

6 7

-0.000 -0.000

COMPONENT LOADINGS = b i  = A.

1 2

X1 0.290 -0.957
X2 0.290 -0.957
X4 0.993 0.117
X5 0.979 0.204
X6 0.969 0.247
X7 0.957 0.290
X3 0.290 -0.957
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VARIANCE EXPLAINED BY COMPONENTS

1 2

4.052 2.948

PERCENT OF TOTAL VARIANCE EXPLAINED

1 2

57.888 42.112

FACTOR SCORE COEFFICIENTS = b i / 'I=Yi

1 =Yl 2 =Y 2

X1 0.072 -0.325
X2 0.072 -0.325
X4 0.245 0.040
X5 0.242 0.069
X6 0.239 0.084
X7 0.236 0.099
X3 0.072 -0.325

FACTOR(1) FACTOR(2)

CASE 1 1.112 1.913
CASE 2 0.270 1.342
CASE 3 -0.366 0.834
CASE 4 -0.795 0.389
CASE 5 -1.017 0.006
CASE 6 -1.033 -0.314
CASE 7 -0.842 -0.571
CASE 8 -0.445 -0.765
CASE 9 0.159 -0.897
CASE 10 0.970 -0.966
CASE 11 1.987 -0.972
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We note several things:

i) In both analyses there are only two eigenvalues that are nonzero

indicating that only two variables are needed. This is not

readily apparent from the correlation or variance-covariance

matrix.

ii) In PCI, PC2 and PC3 where the standardizrd XI , X2 and X3 are

the same, they have the same coefficients.

iii) Neither PCA recovers Z1 and Z The PCAs with nonzero variances

have elements of both Z1 and Z2 in them, i.e., neither PC1 or

PC2 is perfectly correlated with one of the Zs.

4. SU MARY

PCA provides a method of extracting structure from the

variance-covariance or correlation matrix. If a multivariate

data set is actually constructed in a linear fashion from fewer

variables, then PCA will discover that structure. PCA constructs

linear combinations of the original data, X, with maximal

variance:
P = XB

This relationship can be inverted to recover the Xs from the PCs

• . (actually only those PCs with nonzero eigenvalues are needed -

see example 2). Though PCA will often help discover structure in

a data set, it does have limitations. Ih will not necessarily

recover the exact underlying variables, even if they were

uncorrelated (Example 4). Also, by its construction, PCA Is

limited to searching for linear structures in the Xs.
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APPENDIX

Control Language

Control language is typed in upper case and comments are in lower
case. Refer to SYSTAT, Version 3, 1986, for program documentation.

FACTOR - typed from DOS

USE PCAI - instructs SYSTAT to perform the analysis on the
Spreviously saved data file PCA1.SYS

SAVE PCACOR1 - instructs SYSTAT to save the PC scores in order
that they may be printed later with the DATA
module

NUMBER = 2 - indicates the number of components to print

FACTOR - instructs SYSTAT to perform the PCA on all
variables in PCAI

SYSTAT will compute the PCA on the correlation matrix unless
otherwise directed. To request PCA on a variance-covariance
matrix add the following command somewhere before the FACTOR
command:

TYPE = COVARIANCE
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