MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS: 1963-A | AD- | A | 184 | 920 | REPORT | D | |-----|---|-----|-----|--------|---| | | | | | | | | AD A 104 320 | REPORT DOCUM | | | | | |---|--|--|--|--|--| | Unclassified | | 16. RESTRICTIVE | MARKING\$ | | | | 2a. SECURITY CLASSIFICATION AUTHORITY | | 3. DISTRIBUTION | /AVAILABILITY OF | REPORT | | | 2b. DECLASSIFICATION / DOWNGRADING SCHEDU | .€ | | d for public
ution unlimi | | | | 4. PERFORMING ORGANIZATION REPORT NUMBER | R(S) | 5. MONITORING | ORGANIZATION RE | PORT NUMBER | (\$) | | | | AR | <u> </u> | -87-MA | | | 6a. NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL (If applicable) | 7a. NAME OF M | ONITORING ORGA | NIZATION | | | Mathematical Sciences Inst. | , | U. S. A | Army Research | h Office | i | | 6c. ADDRESS (City, State, and ZIP Code) | | 7b. ADDRESS (Cit | y, State, and ZIP C | Code) | | | 294 Caldwell Hall; Cornell Un: | iversity | P. O. I | Box 12211 | | j | | Ithaca, New York 14853 | | Researd | ch Triangle D | Park, NC | 27709-2211 | | 8a. NAME OF FUNDING/SPONSORING ORGANIZATION | 8b. OFFICE SYMBOL (If applicable) | 9. PROCUREMEN | T INSTRUMENT IDE | ENTIFICATION N | UMBER | | U. S. Army Research Office | | DAA | 6-29-85-6 | 0018 | | | 8c. ADDRESS (City, State, and ZIP Code) | | | UNDING NUMBER | | | | P. O. Box 12211
Research Triangle Park, NC 27 | 709-2211 | PROGRAM
ELEMENT NO. | PROJECT
NO. | TASK
NO. | WORK UNIT
ACCESSION NO. | | 11. TITLE (Include Security Classification) | | <u> </u> | <u> </u> | <u> </u> | | | Illustrative Examples of Princ | cipal Component | Analysis us | ing Systat/F | actor* (U |) | | 12 PERSONAL AUTHOR(S) | | | | | | | W.T. Federer, C.E. McCulloch a | | | | | | | 13a. TYPE OF REPORT Interim Technical FROM FROM | TO | May 20, | RT (Year, Month, D
1987 | Day) 15. PAGE
31 | COUNT | | 16 SUPPLEMENTARY NOTATION The view, | opinions and/or | findings co | ntained in t | this report | t are those | | of the author(s) and should not policy, or decision, unless so | be construed a | s an officia | l Department | of the A | rmy position, | | 17. COSATI CODES | 18. SUBJECT TERMS (C | Continue on revers | e if necessary and | identify by blo | ock number) | | FIELD GROUP SUB-GROUP | data sets; pi | cincipal comp | ponent analy | sis; linea | r combination | | | multivariate | statistical | analysis; c | orrelation | matrix; | | 19 ABSTRACT (Continue on reverse if necessary a | and identify by block n | umber) | | | | | In order to provide a deep four data sets were constructed variables to form the X-variate highlight some of the propertie. This is part of a continui principal component analysis. on SAS/PRINCOMP, BMDP/4M, SPSS-the results from SYSTAT/FACTOR, | by taking line es for the prince es and limitation ing project that The complete point X/ FACTOR, GENS | ear combination in the compone on sof principle of principle of produces are coroject will | ions of valuent analysis ipal component nnotated componer involve pro- | es of two. The exant analysi puter outp cessing fo TOR. We s | uncorrelated mples s. ut for ur examples | | 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT | A7 | | CURITY CLASSIFICA | ATIO | 6 | | ☐ UNICLASSIFIED/UNLIMITED ☐ SAME AS R 22a NAME OF RESPONSIBLE INDIVIDUAL | PT. DTIC USERS | | classified
Include Area Code | 1 22c OFFICE S | YMBOI | | | | -10. FEEEF HORE | miliade mies code) | , LEC. OFFICE S | | | SECUR | TY CLASSIFICATION (| OF THIS PAGE | | | |
 | | |-------|---------------------|--------------|--------------|--------------|------|------|---| | | | • | 14 | | | | | | 18. | (con't.) | | | | | | | | 1 | coefficients; | variance-c | ovariance; c | ontrol langu | uage | | | | 1 | ĺ | • | • | | | | | | | | | | | | | | | UNCLASSIFIED #### **TECHNICAL REPORT '87-50** ILLUSTRATIVE EXAMPLES OF PRINCIPAL COMPONENT ANALYSIS USING SYSTAT/FACTOR* BY W.T. Federer, C.E. McCulloch and N.J. Miles-McDermott MAY 1987 294 Caldwell Hall The state of s Ithaca, New York 14853-2602 (607) 255-8005 7 9 9 08 # ILLUSTRATIVE EXAMPLES OF PRINCIPAL COMPONENT ANALYSIS USING SYSTAT/FACTOR* W. T. Federer, C. E. McCulloch and N. J. Miles-McDermott BU-901-M November 1986 #### **ABSTRACT** In order to provide a deeper understanding of the workings of principal components, four data sets were constructed by taking linear combinations of values of two uncorrelated variables to form the X-variates for the principal component analysis. The examples highlight some of the properties and limitations of principal component analysis. This is part of a continuing project that produces annotated computer output for principal component analysis. The complete project will involve processing four examples on SAS/PRINCOMP, BMDP/4M, SPSS-X/FACTOR, GENSTAT / PCP, and SYSTAT / FACTOR. We show here the results from SYSTAT/FACTOR, Version 3. ^{*} Supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University. #### 1. INTRODUCTION Principal components is a form of multivariate statistical analysis and is one method of studying the correlation or covariance structure in a set of measurements on m variables for n observations. For example, a data set may consist of n = 260 samples and m = 15 different fatty acid variables. It may be advantageous to study the structure of the 15 fatty acid variables since some or all of the variables may be measuring the same response. One simple method of studying the correlation structure is to compute the m(m-1)/2 pairwise correlations and note which correlations are close to unity. When a group of variables are all highly inter-correlated, one may be selected for use and the others discarded or the sum of all the variables may be used. When the structure is more complex, the method of principal components analysis (PCA) becomes useful. In order to use and interpret a principal components analysis, there needs to be some practical meaning associated with the various principal components. In Section 2 we describe the basic features of principal components and in Section 3 we examine some constructed examples using SYSTAT/FACTOR to illustrate the interpretations that are possible. In Section 4 we summarize our results. #### 2. BASIC FEATURES OF PRINCIPAL COMPONENT ANALYSIS PCA can be performed on either the variances and covariances among the m variables or their correlations. One should always check which is being used in a particular computer package program. SYSTAT can use either the variances and covariances or the correlations but uses the correlations by default. First we will consider analyses using the matrix of variances and covariances. A PCA generates m new variables, the principal components (PCs), by forming linear combinations of the original variables, $X = (X_1, X_2, \ldots, X_m)$, as follows: $$PC_{1} = b_{11}X_{1} + b_{12}X_{2} + ... + b_{1m}X_{m} = Xb_{1}$$ $$PC_{2} = b_{21}X_{1} + b_{22}X_{2} + ... + b_{2m}X_{m} = Xb_{2}$$ $$\vdots$$ $$PC_{m} = b_{m1}X_{1} + b_{m2}X_{2} + ... + b_{mm}X_{m} = Xb_{m}$$ In matrix notation, $$P = (PC_1, PC_2, \dots, PC_m) = X (b_1, b_2, \dots, b_m) = XB,$$ and conversely $X = P B^{-1}$. The rationale in the selection of the coefficients, b_{ij} , that define the linear combinations that are the PC_i is to try to capture as much of the variation in the original variables with as few PCs as possible. Since the variance of a linear combination of the Xs can be made arbitrarily large by selecting very large coefficients, the b_{ij} are constrained by convention so that the sum of squares of the coefficients for any PC is unity: $$\sum_{j=1}^{m} b_{ij}^{2} = 1$$ $i = 1, 2, ..., m$. Under this constraint, the b_{1j} in PC_1 are chosen so that PC_1 has maximal variance. If we denote the variance of X_i by s_i^2 and if we define the total variance, $\Sigma_{i=1}^{m} s_{i}^{2}$, as T, then the proportion of the variance in the original variables that is captured in PC, can be quantified as var(PC1)/T. In selecting the coefficients for PC2, they are further constrained by the requirement that PC₂ be uncorrelated with PC_1 . Subject to this constraint and the constraint that the squared coefficients sum to one, the coefficients b_{2i} are selected so as to maximize $var(PC_2)$. Further coefficients and PCs are selected in a similar manner, by requiring that a PC be uncorrelated with all PCs previously selected and then selecting the coefficients to maximize variance. In this manner, all the PCs are constructed so that they are uncorrelated and so that the first few PCs capture as much variance as possible. The coefficients also have the following interpretation which helps to relate the PCs back to the original variables. The correlation between the ith PC and the jth variable is After all m PCs have been constructed, the following identity holds: $$var(PC_1) + var(PC_2) + ... + var(PC_m) = T = \sum_{i=1}^{m} s_i^2$$. This equation has the interpretation that the PCs divide up the total variance of the Xs completely. It may happen that one or more of the last few PCs have variance zero. In such a case, all the variation in the data can be captured by fewer than m variables. Actually, a much stronger result is also true; the PCs can also be used to reproduce the actual values of the Xs, not just their variance. We will demonstrate this more explicitly later. The above properties of PCA are related to a matrix analysis of the variance-covariance matrix of the Xs, $\mathbf{S_X}$. Let D be a diagonal matrix with entries being the eigenvalues, $\lambda_{\mathbf{i}}$, of $\mathbf{S_X}$ arranged in order from largest to smallest. Then the following properties hold: (i) $$\lambda_i = var(PC_i)$$ (ii) trace($$S_x$$) = $\Sigma_{i=1}^m$ S_i^2 = T = $\Sigma_{i=1}^m$ λ_i = $\Sigma_{i=1}^m$ var(PC_i) (iii) $$\operatorname{corr}(\operatorname{PC}_{i}, X_{j}) = \frac{b_{ij}\sqrt{\lambda}_{i}}{s_{j}}$$ (iv) $$S_x = B^*DB$$. The statements made above are for the case when the analysis is performed on the variance-covariance matrix of the Xs. The correlation matrix could also be used, which is equivalent to performing a PCA on the variance-covariance matrix of the standardized variables, $$Y_{i} = \frac{X_{i} - \bar{X}_{i}}{s_{i}}$$ PCA using the correlation martrix is different in these respects: - (i) The total "variance" is m, the number of variables. (It is not truly variance anymore.) - (ii) The correlation between PC $_{i}$ and X $_{j}$ is given by $b_{ij}\sqrt{\text{var}(PC_i)} = b_{ij}\sqrt{\lambda_i} = \Lambda_i$ (called component loading in SYSTAT). Thus PC_i is most highly correlated with the X_j having the largest coefficient in PC_i in absolute value. The experimenter must choose whether to use standardized (PCA on a correlation matrix) or unstandardized coefficients (PCA on a variance-covariance matrix). The latter is used when the variables are measured on a comparable basis. This usually means that the variables must be in the same units and have roughly comparable variances. If the variables are measured in different units, then the analysis will usually be performed on the standardized scale, otherwise the analysis may only reflect the different scales of measurement. For example, if a number of fatty acid analyses are made, but the variances, \mathbf{s}_{i}^{2} , and means, $\bar{\mathbf{x}}_{i}$, are obtained on different bases and by different methods, then standardized variables would be used (PCA on the correlation matrix). To illustrate some of the above ideas, a number of examples have been constructed and these are described in Section 3. In each case two variables, \mathbf{Z}_1 and \mathbf{Z}_2 , which are uncorrelated, are used to construct \mathbf{X}_i . Thus, all the variance can be captured with two variables and hence only two of the PCs will have nonzero variances. In matrix analysis terms, only two eigenvalues will be nonzero. An important thing to note is that in general, PCA will not recover the original variables \mathbf{Z}_1 and \mathbf{Z}_2 . Both standardized and nonstandardized computations will be made. #### 3. EXAMPLES Throughout the examples we will use the variables Z_1 and Z_2 (with n=11) from which we will construct X_1,X_2,\ldots,X_m . We will perform PCA on the Xs. Thus, in our constructed examples, there will only really be two underlying variables. Values of $$Z_1$$ and Z_2 Notice that Z_1 exhibits a linear trend through the 11 samples and Z_2 exhibits a quadratic trend. They are also chosen to have mean zero and be uncorrelated. Z_1 and Z_2 have the following variance-covariance matrix (a variance-covariance matrix has the variance for the ith variable in the ith row and ith column and the covariance between the ith variable and the jth variable in the ith row and jth column). Variance-covariance matrix of $$Z_1$$ and Z_2 $$\begin{bmatrix} 11 & 0 \\ 0 & 85.8 \end{bmatrix}$$ Thus the variance of Z_1 is 11 and the covariance between Z_1 and Z_2 is zero. Also the total variance is 11 + 85.8 = 96.8. **Example 1:** In this first example we analyze Z_1 and Z_2 as if they were the data. Thus $X_1 = Z_1$ and $X_2 = Z_2$ and M = 2. If PCA is performed on the variance-covariance matrix, then the SYSTAT output is as follows (SYSTAT control language for this example and all subsequent examples is in the appendix and the bold face print was typed on the computer output to explain the calculation performed): MATRIX TO BE FACTORED = Covariance Matrix (sij) X1 **X2** X1 = 11.000X2 LATENT ROOTS (EIGENVALUES) $\lambda_1 = 85.800 \quad \lambda_2 = 11.000$ COMPONENT LOADINGS = $b_i \sqrt[4]{\lambda_i}$ = A_i Note: SYSTAT does not print out b; (eigenvectors). To obtain eigenvectors, divide the component loadings by $1\overline{\lambda_i}$. $$1 = \Lambda_1 \qquad 2 = \Lambda_2$$ 0.000 i.e. $b_1' = [0 \ 9.26] / \sqrt{85.8}$ X2 9.263 0.000 = [0 1] 3.317 VARIANCE EXPLAINED BY COMPONENTS X1 1 2 85.800 11.000 PERCENT OF TOTAL VARIANCE EXPLAINED = proportion of variance explained by PC; 1 2 88.636 11.364 FACTOR SCORE COEFFICIENTS = $$b_i / \sqrt{\lambda_i} = y_i$$ | | $1 = y_i$ | $2 = y_2$ | |-----------|-----------|-----------| | X1 | 0.000 | 0.302 | | X2 | 0.108 | 0.000 | | | | | | | | X1 | Х2 | FACTOR(1)
=PC ₁ | FACTOR(2)
=PC ₂ | |------|----|--------|---------|-------------------------------|-------------------------------| | CASE | 1 | -5.000 | 15.000 | 15.000 | -5.000 | | CASE | 2 | -4.000 | 6.000 | 6.000 | -4.000 | | CASE | 3 | -3.000 | -1.000 | -1.000 | -3.000 | | CASE | 4 | -2.000 | -6.000 | -6.000 | -2.000 | | CASE | 5 | -1.000 | -9.000 | -9.000 | -1.000 | | CASE | 6 | 0.000 | -10.000 | -10.000 | 0.000 | | CASE | 7 | 1.000 | -9.000 | -9.000 | 1.000 | | CASE | 8 | 2.000 | -6.000 | -6.000 | 2.000 | | CASE | 9 | 3.000 | -1.000 | -1.000 | 3.000 | | CASE | 10 | 4.000 | 6.000 | 6.000 | 4.000 | | CASE | 11 | 5.000 | 15.000 | 15.000 | 5.000 | $$PC_{i} = (y_{i1}X_{1} + y_{i2}X_{2})\sqrt{\lambda_{i}}$$ $$= b_{i1}X_{1} + b_{i2}X_{2}$$ $$PC_{1} = 0X_{1} + 1X_{2}$$ for case 1, $PC_{1} = 0(-5) + 1(15) = 15$ We can interpret the results as follows: 1) The first principal component is $$PC_1 = 0 \cdot X_1 + 1 \cdot X_2 = X_2$$ - 2) $PC_2 = 1 \cdot X_1 + 0 \cdot X_2 = X_1$ - 3) $Var(PC_1) = eigenvalue = 85.8 = Var(X_2)$ - 4) $Var(PC_2) = eigenvalue = 11.0 = Var(X_1)$ The PCs will be the same as the Xs whenever the Xs are uncorrelated. Since \mathbf{X}_2 has the larger variance, it becomes the first principal component. If PCA is performed on the correlation matrix, we get slightly different results. Correlation Matrix of Z_1 and Z_2 $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ A correlation matrix always has unities along its diagonal and the correlation between the ith variable and the jth variable in the ith row and jth column. PCA in SYSTAT would yield the following output: MATRIX TO BE FACTORED = Correlation Matrix (r_{ij}) $$x_1$$ $r_{11} = 1.000$ x_2 $r_{12} = r_{21} = -0.000$ $r_{22} = 1.000$ LATENT ROOTS (EIGENVALUES) = λ_i 1 $$\lambda_i = 1.000 \quad \lambda_2 = 1.000 \qquad \sum_{i=1}^m \lambda_i = m$$ COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = A_i$ $$1 = \Lambda_1$$ $$2 = \Lambda_2$$ $$\mathbf{b}_{1}' = \begin{bmatrix} 1 & 0 \end{bmatrix} \sqrt{1}$$ $= [1 \quad 0]$ VARIANCE EXPLAINED BY COMPONENTS 1 1.000 1.000 PERCENT OF TOTAL VARIANCE EXPLAINED = proportion of variance explained by PC_{i} 1 50.000 50.000 The principal components are again the Xs (standardized Zs) themselves, but the eigenvalues (var(PCs)) are unity since the variables have been standardized first. = -1.508 Example 2: Let $X_1 = Z_1$, $X_2 = 2Z_1$ and $X_3 = Z_2$. The summary statistics are given below. | | X1 | X2 | X3 | |--------|----------|----------|-----------| | MEAN | 0.000000 | 0.000000 | 0.000000 | | ST DEV | 3.316625 | 6.63325 | 9.262829 | If the analysis is performed on the variance-covariance matrix using SYSTAT the results are: MATRIX TO BE FACTORED = Covariance Matrix (s_{ij}) X1 X2 X3 Note: SYSTAT does not give covariances above the diagonal X2 22.000 44.000 x3 -0.000 85.800 LATENT ROOTS (EIGENVALUES) = λ_i 1 2 3 Note: $\Sigma_{i=1}^{m} s_{i}^{2} = \Sigma_{i=1}^{m} \lambda_{i}$ 85.800 55.000 0.000 COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = \lambda_i$ 1 2 $b_2' = [3.317 \ 6.633 \ 0]/\sqrt{55}$ X1 0.000 3.317 $= [.447 \ .894 \ 0]$ X2 0.000 6.633 X3 9.263 0.000 Note: The 3rd component loadings were 0's and are not printed by SYSTAT. VARIANCE EXPLAINED BY COMPONENTS 1 2 85.800 55.000 PERCENT OF TOTAL VARIANCE EXPLAINED 1 2 60.938 39.063 FACTOR SCORE COEFFICIENTS = $$b_i / \sqrt{\lambda_i} = y_i$$ | | - J1 | 2 - <u>y</u> 2 | |-----------|-------|----------------| | X1 | 0.000 | 0.060 | | X2 | 0.000 | 0.121 | | Х3 | 0.108 | 0.000 | | | | | | | | X1 | X2 | ХЗ | FACTOR(1)
=PC ₁ | FACTOR(2)
=PC ₂ | |------|----|-----------|---------|---------|-------------------------------|-------------------------------| | CASE | 1 | -5.000 | -10.000 | 15.000 | 15.000 | -11.180 | | CASE | 2 | -4.000 | -8.000 | 6.000 | 6.000 | -8.944 | | CASE | 3 | -3.000 | -6.000 | -1.000 | -1.000 | -6.708 | | CASE | 4 | -2.000 | -4.000 | -6.000 | -6.000 | -4.472 | | CASE | 5 | -1.000 | -2.000 | -9.000 | -9.000 | -2.236 | | CASE | 6 | 0.000 | 0.000 | -10.000 | -10.000 | 0.000 | | CASE | 7 | 1.000 | 2.000 | -9.000 | -9.000 | 2.236 | | CASE | 8 | 2.000 | 4.000 | -6.000 | -6.000 | 4.472 | | CASE | 9 | 3.000 | 6.000 | -1.000 | -1.000 | 6.708 | | CASE | 10 | 4.000 | 8.000 | 6.000 | 6.000 | 8.944 | | CASE | 11 | 5.000 | 10.000 | 15.000 | 15.000 | 11.180 | $$PC_{i} = (y_{i1}X_{1} + y_{i2}X_{2} + y_{i3}X_{3}) \sqrt{\lambda_{i}}$$ $$= b_{i1}X_{1} + b_{i2}X_{2} + b_{i3}X_{3}$$ $$PC_{2} = .447X_{1} + .894X_{2} + 0X_{3}$$ for case 1, $$= .447(-5) + .894(-10) + 0(15)$$ $$= -11.18$$ Analyzing the correlation matrix gives the following results: MATRIX TO BE FACTORED = Correlation Matrix (r_{ij}) | | X1 | X2 | Х3 | |----|-----------|--------|-------| | X1 | 1.000 | | | | X2 | 1.000 | 1.000 | | | X3 | -0.000 | -0.000 | 1.000 | LATENT ROOTS (EIGENVALUES) = λ_i COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = \lambda_i$ VARIANCE EXPLAINED BY COMPONENTS 1 2 2.000 1.000 PERCENT OF TOTAL VARIANCE EXPLAINED 1 2 66.667 33.333 FACTOR SCORE COEFFICIENTS = $b_i / \sqrt{\lambda_i} = y_i$ for case 1, | | | 1 = y ₁ | 2 = y ₂ | | | | |------|-----------|--------------------|--|--------------------------|-------------------------------|-------------------------------| | | X1 | 0.500 | 0.000 | | | | | | X2 | 0.500 | 0.000 | | | | | | ХЗ | 0.000 | 1.000 | | | | | | | Хı | X2 | хз | FACTOR(1)
=PC ₁ | FACTOR(2)
=PC ₂ | | CASE | 1 | -5.000 | -10.000 | 15.000 | -1.508 | 1.619 | | CASE | 2 | -4.000 | -8.000 | 6.000 | -1.206 | 0.648 | | CASE | 3 | -3.000 | -6.000 | -1.000 | -0.905 | -0.108 | | CASE | 4 | -2.000 | -4.000 | -6.000 | -0.603 | -0.648 | | CASE | 5 | -1.000 | -2.000 | -9.000 | -0.302 | -0.972 | | CASE | 6 | 0.000 | 0.000 | -10.000 | 0.000 | -1.080 | | CASE | 7 | 1.000 | 2.000 | -9.000 | 0.302 | -0.972 | | CASE | 8 | 2.000 | 4.000 | -6.000 | 0.603 | -0.648 | | CASE | 9 | 3.000 | 6.000 | -1.000 | 0.905 | -0.108 | | CASE | 10 | 4.000 | 8.000 | 6.000 | 1.206 | 0.648 | | CASE | 11 | 5.000 | 10.000 | 15.000 | 1.508 | 1.619 | | | | | $/s_1 + y_{i2}x_2/s$ $1/s_1 + b_{i2}x_2/s$ | | | | | | | $PC_1 = (.707)$ | $x_{1}/3.317 +$ | 707 X ₂ /6.63 | 33 + 0 X. | 263) / 12 | = .707(-5)/3.317 + .707(-10)/6.633) / $$\sqrt{2}$$ = -1.508 There are several items to note in these analyses: - i) There are only two nonzero eigenvalues since \mathbf{X}_2 can be computed from \mathbf{X}_1 . - ii) X_3 is its own principal component since it is uncorrelated with all the other variables. - iii) The sum of the eigenvalues is the sum of the variances, i.e., 11 + 44 + 85.8 = 140.8 and 1 + 1 + 1 = 3. - iv) For the variance-covariance analysis, the ratio of the coefficients of X_1 and X_2 in PC_2 is the same as the ratio of the variables themselves (since $X_2 = 2X_1$). - v) Since there are only two nonzero eigenvalues, only two of the PCs have nonzero variances (are nonconstant). - vi) The coefficients help to relate the variables and the PCs. In the variance-covariance analysis, $$\text{Corr}(PC_2, X_1) = \frac{(\text{coefficient of } X_1 \text{ in } PC_2)\sqrt{\text{var}(PC_2)}}{\sqrt{\text{var}(X_1)}} = \frac{\Lambda}{\sqrt{\text{var}(X_1)}}$$ $$= \frac{b_{21}^{\sqrt{\lambda_2}}}{s_1}$$ $$= \frac{.447214\sqrt{55}}{3.16625}$$ In the correlation analysis, $$Corr(PC_1, X_1) = b_{11}\sqrt{\lambda_1} = \Lambda_{11} = Component loading for PC_1, X_1$$ $$= .707107\sqrt{2}$$ $$= 1 .$$ Thus, in both these cases, the variable is perfectly correlated with the PC. vii) The Xs can be reconstructed exactly from the PCs with nonzero eigenvalues. For example, in the variance-covariance analysis, X_3 is clearly given by PC_1 . X_1 and X_2 can be recovered via the formulas $$x_1 = PC_2/\sqrt{5}$$ $$X_2 = 2 \cdot PC_2 / \sqrt{5} \quad .$$ As a numerical example, $$-5 = -11.180/\sqrt{5}$$. Example 3: For Example 3 we use $X_1 = Z_1$, $X_2 = 2(Z_1+5)$, $X_3 = 3(Z_1+5)$ and $X_4 = Z_2$. Thus X_1 , X_2 and X_3 are all created from Z_1 . The data and summary statistics are: | | OBS | Хl | X2 | хз | X4 | | |--------|----------|----------------|-------|------|----------------|---------| | | 1 | - 5 | 0 | 0 | 15 | | | | 2 | -4 | 2 | 3 | 6 | | | | 3 | -3 | 4 | 6 | -1 | | | | 4 | -2 | 6 | 9 | - 6 | | | | 5 | -1 | 8 | 12 | - 9 | | | | 6 | 0 | 10 | 15 | -10 | | | | 7 | 1 | 12 | 18 | -9 | | | | 8 | 2 | 14 | 21 | -6 | | | | 9 | 3 | 16 | 24 | -1 | | | | 10 | 4 | 18 | 27 | 6 | | | | 11 | 5 | 20 | 30 | 15 | | | | Хl | | X2 | > | K3 | X4 | | MEAN | 0.00000 | 10. | 00000 | 15.0 | 0000 | 0.00000 | | ST DEV | 3.316625 | | 63325 | | 4987 | 9.62823 | The analyses for the variance-covariance matrix (unstandardized analysis) and correlation matrix (standardized analysis) are given below. MATRIX TO BE FACTORED = Covariance Matrix (s_{ij}) | | X1 | X2 | X4 | Х3 | |----|--------|--------|--------|--------| | X1 | 11.000 | | | | | X2 | 22.000 | 44.000 | | | | X4 | -0.000 | -0.000 | 85.800 | | | X3 | 33.000 | 66.000 | -0.000 | 99.000 | Note the order that SYSTAT prints variable information. (Order is set by SYSTAT based on order variables were created). LATENT ROOTS (EIGENVALUES) = λ_i COMPONENT LOADINGS = $b_i \sqrt[1]{\lambda_i} = \Lambda_i$ Note: The 3rd and 4th component loadings were 0 VARIANCE EXPLAINED BY COMPONENTS 1 2 154.000 85.800 PERCENT OF TOTAL VARIANCE EXPLAINED 1 2 64.220 35.780 FACTOR SCORE COEFFICIENTS = $$b_i / \sqrt[4]{\lambda_i} = y_i$$ | | | FACTOR(1) | FACTOR(2) | |------|----|-------------------|-----------| | | | = PC ₁ | $= PC_2$ | | CASE | 1 | -18.708 | -15.000 | | CASE | 2 | -14.967 | -6.000 | | CASE | 3 | -11.225 | 1.000 | | CASE | 4 | -7.483 | 6.000 | | CASE | 5 | -3.742 | 9.000 | | CASE | 6 | -0.000 | 10.000 | | CASE | 7 | 3.742 | 9.000 | | CASE | 8 | 7.483 | 6.000 | | CASE | 9 | 11.225 | 1.000 | | CASE | 10 | 14.967 | -6.000 | | CASE | 11 | 18.708 | -15.000 | $$PC_{1} = b_{11} (X_{1} - \overline{X}_{1}) + b_{12} (X_{2} - \overline{X}_{2}) + b_{13} (X_{3} - \overline{X}_{3}) + b_{14} (X_{4} - \overline{X}_{4})$$ $$PC_{1} = 0.267 (X_{1} - 0) + 0.535 (X_{2} - 10) + 0.802 (X_{3} - 15) + 0 (X_{4} - 0)$$ for case 1, $$= 0.267(-5) + 0.535(0-10) + 0.802(0-15)$$ = -18.71 MATRIX TO BE FACTORED = Correlation Matrix (r_{ij}) | | X1 | X2 | X4 | Х3 | |----|--------|--------|--------|-------| | X1 | 1.000 | | | | | X2 | 1.000 | 1.000 | | | | X4 | -0.000 | -0.000 | 1.000 | | | X3 | 1.000 | 1.000 | -0.000 | 1.000 | LATENT ROOTS (EIGENVALUES) = λ_i COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = A_i$ VARIANCE EXPLAINED BY COMPONENTS 1 2 3.000 1.000 PERCENT OF TOTAL VARIANCE EXPLAINED 1 2 75.000 25.000 FACTOR SCORE COEFFICIENTS = $$b_i / \sqrt{\lambda_i} = y_i$$ | | | FACTOR(1) | FACTOR(2) | |------|----|------------------|------------------| | | | =PC ₁ | =PC ₂ | | CASE | 1 | -1.508 | -1.619 | | CASE | 2 | -1.206 | -0.648 | | CASE | 3 | -0.905 | 0.108 | | CASE | 4 | -0.603 | 0.648 | | CASE | 5 | -0.302 | 0.972 | | CASE | 6 | 0.000 | 1.080 | | CASE | 7 | 0.302 | 0.972 | | CASE | 8 | 0.603 | 0.648 | | CASE | 9 | 0.905 | 0.108 | | CASE | 10 | 1.206 | -0.648 | | CASE | 11 | 1.508 | -1.619 | $$PC_{1} = Y_{11}(X_{1} - \overline{X}_{1})/s_{1} + Y_{12}(X_{2} - \overline{X}_{2})/s_{2} + Y_{13}(X_{3} - \overline{X}_{3})/s_{3} + Y_{14}(X_{4} - \overline{X}_{4})/s_{4}$$ $$PC_{1} = .333(X_{1} - 0)/3.317 + .333(X_{2} - 10)/6.633 + .333(X_{3} - 15)/9.950 + 0(X_{4} - 0)/9.628$$ for case 1 $$= .333(-5)/3.317 + .333(-10)/6.633 + .333(-15)/9.950$$ = -1.508 For the variance-covariance analysis, the coefficients in PC_1 are in the same ratio as their relationship to Z_1 . In the correlation analysis X_1 , X_2 and X_3 have equal coefficients. In both analyses, as expected, the total variance is equal to the sum of the variances for the PCs. In both cases two PCs, PC_3 and PC_4 , have zero variance and are identically zero. **Example 4.** In this example we take more complicated combinations of \mathbf{Z}_1 and \mathbf{Z}_2 . $$X_1 = Z_1$$ $X_2 = 2Z_1$ $X_3 = 3Z_1$ $X_4 = Z_1/2 + Z_2$ $X_5 = Z_1/4 + Z_2$ $X_6 = Z_1/8 + Z_2$ $X_7 = Z_2$ Note that X_1 , X_2 and X_3 are colinear (they all have correlation unity) and X_4 , X_5 , X_6 and X_7 have steadily decreasing correlations with X_1 . The data and data summaries are below. | OBS | X1 | X2 | Х3 | X4 | X 5 | Х6 | X 7 | |--------|----------|---------|---------|---------|------------|------------|----------------| | 1 | -5.000 · | -10.000 | -15.000 | 12.500 | 13.750 | 14.375 | 15.00 0 | | 2 | -4.000 | -8.000 | -12.000 | 4.000 | 5.000 | 5.500 | 6.00 0 | | 3 | -3.000 | -6.000 | -9.000 | -2.500 | -1.750 | -1.375 | -1.000 | | 4 | -2.000 | -4.000 | -6.000 | -7.000 | -6.500 | -6.250 | -6.00 0 | | 5 | -1.000 | -2.000 | -2.000 | -9.500 | -9.250 | -9.125 | -9.00 0 | | 6 | 0.000 | 0.000 | 0.000 | -10.000 | -10.000 | -10.000 | -10.000 | | 7 | 1.000 | 2.000 | 3.000 | -8.500 | -8.755 | -8.875 | -9.00 0 | | 8 | 2.000 | 4.000 | 6.000 | -5.000 | -5.500 | -5.750 | -6.000 | | 9 | 3.000 | 6.000 | 9.000 | 0.500 | -0.250 | -0.625 | -1.000 | | 10 | 4.000 | 8.000 | 12.000 | 8.000 | 7.000 | 6.500 | 6.000 | | 11 | 5.000 | 10.000 | 15.000 | 17.500 | 16.250 | 15.625 | 15.00 0 | | | Хl | X2 | Х3 | X4 | X 5 | X 6 | X 7 | | Mean | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | | ST DEV | 3.31662 | 6.63325 | 9.94987 | 9.41010 | 9.29987 | 9.27210 | 9.26283 | The PCAs for the variance-covariance and correlation matrices are given below. #### MATRIX TO BE FACTORED = Covariance Matrix | | Хl | X2 | X4 | X 5 | X 6 | |-----------|------------|--------|--------|------------|------------| | X1 | 11.000 | | | | | | X2 | 22.000 | 44.000 | | | | | X4 | 5.500 | 11.000 | 88.550 | | | | X5 | 2.750 | 5.500 | 87.175 | 86.488 | | | X6 | 1.375 | 2.750 | 86.488 | 86.144 | 85.972 | | X7 | -0.000 | -0.000 | 85.800 | 85.800 | 85.800 | | Х3 | 33.000 | 66.000 | 16.500 | 8.250 | 4.125 | | | X 7 | Х3 | | | | | | | | | | | | X7 | 85.800 | | | | | | Х3 | -0.000 | 99.000 | | | | ### LATENT ROOTS (EIGENVALUES) = λ_{i} | 1 | 2 | 3 | 4 | 5 | |---------|---------|-------|-------|--------| | 347.015 | 153.794 | 0.000 | 0.000 | -0.000 | | _ | _ | | | | -0.000 -0.000 ## COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = \lambda_i$ | | | _ | b' = [.466 .932 9.404 9.287 9.229 | |----|-------|--------|-----------------------------------| | X1 | 0.466 | 3.284 | 9.171 1.398] $/\sqrt{347.015}$ | | X2 | 0.932 | 6.567 | = [.025.050.505.499.495.492.075] | | X4 | 9.404 | 0.340 | | | X5 | 9.287 | -0.481 | | | X6 | 9.229 | -0.891 | | | X7 | 9.171 | -1.302 | | | X3 | 1.398 | 9.851 | | #### VARIANCE EXPLAINED BY COMPONENTS 1 2 347.015 153.794 #### PERCENT OF TOTAL VARIANCE EXPLAINED 1 2 69.291 30.709 FACTOR SCORE COEFFICIENTS = $$b_i/\sqrt{\lambda_i} = y_i$$ X1 **X2** X4 **X5** **X6** **X7** **X3** 0.004 #### FACTOR(1) FACTOR(2) | CASE | 1 | 25.921 | -21.332 | |------|----|---------|---------| | CASE | 2 | 8.790 | -15.937 | | CASE | 3 | -4.359 | -10.918 | | CASE | 4 | -13.525 | -6.275 | | CASE | 5 | -18.709 | -2.009 | | CASE | 6 | -19.911 | 1.881 | | CASE | 7 | -17.131 | 5.395 | | CASE | 8 | -10.368 | 8.533 | | CASE | 9 | 0.377 | 11.294 | | CASE | 10 | 15.104 | 13.679 | | CASE | 11 | 33.813 | 15.688 | $$PC_{i} = b_{i1}X_{1} + b_{i2}X_{2} + b_{i3}X_{3} + b_{i4}X_{4} + b_{i5}X_{5} + b_{i6}X_{6} + b_{i7}X_{7}$$ $$PC_1 = .025X_1 + .050X_2 + .075X_3 + .505X_4 + .499X_5 + .495X_6 + .492X_7$$ for case 1 $$25.921 = .025(-5) + .050(-10) + .075(-15) + .505(12.4) + .499(13.75) + .495(14.375) + .492(15)$$ 0.064 #### MATRIX TO BE FACTORED = Correlation Matrix | | Хl | X2 | X4 | X 5 | X 6 | |------------|--------|--------|-------|------------|------------| | X1 | 1.000 | | | | | | X2 | 1.000 | 1.000 | | | | | X4 | 0.176 | 0.176 | 1.000 | | | | X5 | 0.089 | 0.089 | 0.996 | 1.000 | | | Х6 | 0.045 | 0.045 | 0.991 | 0.999 | 1.000 | | X7 | -0.000 | -0.000 | 0.984 | 0.996 | 0.999 | | Х3 | 1.000 | 1.000 | 0.176 | 0.089 | 0.045 | | • | Х7 | Х3 | | | | | X 7 | 1.000 | | | | | | Х3 | -0.000 | 1.000 | | | | | | | | | | | ## LATENT ROOTS (EIGENVALUES) = λ_i | 1 | 2 | 3 | 4 | 5 | |--------|--------|-------|-------|-------| | 4 052 | 2.948 | 0.000 | 0.000 | | | 4.052 | 2.340 | 0.000 | 0.000 | 0.000 | | 6 | 7 | | | | | -0.000 | -0.000 | | | | ## COMPONENT LOADINGS = $b_i \sqrt{\lambda_i} = \lambda_i$ | | 1 | 2 | |------------|-------|--------| | X1 | 0.290 | -0.957 | | X2 | 0.290 | -0.957 | | X4 | 0.993 | 0.117 | | X 5 | 0.979 | 0.204 | | X6 | 0.969 | 0.247 | | X7 | 0.957 | 0.290 | | Х3 | 0.290 | -0.957 | | | | | #### VARIANCE EXPLAINED BY COMPONENTS | 1 | 2 | |-------|-------| | 4.052 | 2.948 | #### PERCENT OF TOTAL VARIANCE EXPLAINED | 1 | 2 | |--------|--------| | 57.888 | 42.112 | FACTOR SCORE COEFFICIENTS = $$b_i / \sqrt{\lambda_i} = y_i$$ | | 1 = y ₁ | $2 = y_2$ | |----|--------------------|-----------| | X1 | 0.072 | -0.325 | | X2 | 0.072 | -0.325 | | X4 | 0.245 | 0.040 | | X5 | 0.242 | 0.069 | | X6 | 0.239 | 0.084 | | X7 | 0.236 | 0.099 | | X3 | 0.072 | -0.325 | | | | FACTOR(1) | FACTOR(2) | |------|----|-----------|-----------| | CASE | 1 | 1.112 | 1.913 | | CASE | 2 | 0.270 | 1.342 | | CASE | 3 | -0.366 | 0.834 | | CASE | 4 | -0.795 | 0.389 | | CASE | 5 | -1.017 | 0.006 | | CASE | 6 | -1.033 | -0.314 | | CASE | 7 | -0.842 | -0.571 | | CASE | 8 | -0.445 | -0.765 | | CASE | 9 | 0.159 | -0.897 | | CASE | 10 | 0.970 | -0.966 | | CASE | 11 | 1.987 | -0.972 | We note several things: - i) In both analyses there are only two eigenvalues that are nonzero indicating that only two variables are needed. This is not readily apparent from the correlation or variance-covariance matrix. - ii) In PC_1 , PC_2 and PC_3 where the standardized X_1 , X_2 and X_3 are the same, they have the same coefficients. - iii) Neither PCA recovers Z_1 and Z_2 . The PCAs with nonzero variances have elements of both Z_1 and Z_2 in them, i.e., neither PC₁ or PC₂ is perfectly correlated with one of the Zs. #### 4. SUMMARY PCA provides a method of extracting structure from the variance-covariance or correlation matrix. If a multivariate data set is actually constructed in a linear fashion from fewer variables, then PCA will discover that structure. PCA constructs linear combinations of the original data, X, with maximal variance: P = XB. This relationship can be inverted to recover the Xs from the PCs (actually only those PCs with nonzero eigenvalues are needed - see example 2). Though PCA will often help discover structure in a data set, it does have limitations. It will not necessarily recover the exact underlying variables, even if they were uncorrelated (Example 4). Also, by its construction, PCA is limited to searching for linear structures in the Xs. #### **APPENDIX** #### Control Language Control language is typed in upper case and comments are in lower case. Refer to SYSTAT, Version 3, 1986, for program documentation. FACTOR → typed from DOS USE PCA1 → instructs SYSTAT to perform the analysis on the previously saved data file PCA1.SYS SAVE PCACOR1 -> instructs SYSTAT to save the PC scores in order that they may be printed later with the DATA module NUMBER = 2 → indicates the number of components to print FACTOR → instructs SYSTAT to perform the PCA on all variables in PCA1 TYPE = COVARIANCE SYSTAT will compute the PCA on the correlation matrix unless otherwise directed. To request PCA on a variance-covariance matrix add the following command somewhere before the FACTOR command: # **X** /()-