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FINAL REPORT

A. Introduction

As the conclusion of the contract efforts, this Final Report summarizes the
objectives of the studies undertaken, results and conclusions of the
research tasks envisaged and the scope for future investigations to be

followed.

The objectives of this fundamental research address the following three

major efforts:

1. Studies on the interaction of electromagnetics due to electrical

overstressing/electrostatic discharge with the microelectronic devices.

2. Evaluation of the resulting susceptibility of devices to damages in
terms of cause-effect relations predicting the IC reliability vis-a-vis

EOS/ESD.

3. Development of new failure preventive methods/on chip-protection

circuits.

The  background details which motivated the research impetus are as

summarized below:
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The damages caused by electrostatic discharges (ESD) seriously challenge the

reliability of microelectronic devices since they may result in degraded
device performances, system software errors or catastrophic failures.
Different technologies present different susceptibility levels to ESD but

none is completely immune to their adverse effects.

As ESD-induced damages have been observed even on the early small-scale ICs,
efforts have been undertaken to improve the reliability of IC regarding ESD.
Although progress was made in the development of electrostatic discharge
models and in the design of protective circuits for a few special devices,
the threat of ESD considerably increased with the introduction of VLSI/ULSI
implementation. The seriousness of the ESD challenge could be better

understood by considering the following facts:

1. The device scaling-down to micron or sub-micron level have made

microelectronics vulnerable to energies as low as microjoules.

2. The thin gate-oxides which have a thickness of the order of hundred of
angstroms can irreversibly be damaged by voltages as low as tens of

volts.

3. During ESD, there is a localized power dissipation which is relatively
high enough to short circuit the shallow junctions of contemporary

devices by forming metal spikes and excessive alloy.
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Often conductive runners of relatively small cross-sections are
destroyed by the transient large current densities produced by ESD, and

SO on.

In addition to the problems directly associated with the scaling-down in

device dimensions, there are thermal problems. In technologies, such as

SRR AN

silicon on sapphire (SOS) and silicon on insulator (S0I), the ESD problem is
further enhanced due to poor thermal conductivities of sapphire and silicon

dioxide. Further microelectronic devices are not free from the

susceptibility to damages by ESD even after being installed on a PCB or a

subsystem. Likewise, specific studies indicate the existence of failures

SNSRIV D LA

due to electromagnetic interference (EMI) caused by ESD occurring in
proximity to a device. Overstressings due to electromagnetic pulsing (EMP)

causing deleterious effects on microchips have also been indentified.

Research envisaged in the Project concerned with the development of methods
to model the static-induced failure-modes by considering the
electromagnetics associated with the critical current-voltage relations
prevalent in the test microelectronic circuit at the instant (or during) a

failure. The failure-mode models so developed would enable identification

o 1gF (X 5

(and/or 1isolation) of the failure-prone rogue components (or parts) and

determine the rate and the extent of damages incurred so that relevant
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design improvements or counter-measures can be decided to achieve improved

intrinsic reliability of the device concerned.
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Specifically, the research addressed a detailed study of the menace of

!(‘,"
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.E._ Electrostatic Discharges (ESD), inducing damages in microcircuits which are
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capable of destroying totally or degrade the performance of bipolar and
unipolar devices. Such damages pose a major problem as it is very hard to
identify the sources and paths of the electrostatic discharges which are
subtle and difficult to be traced. Further, ESD failures can occur at all
stages of handling--from the manufacturing-point to the customer-end. Hence
the failure characteristics do not concur with the conventional "bath-tub"
description of component failures. However, in general, ESD damages involve
those parts associated with handling and packaging practices and therefore

certain studies exclusive to these vulnerable parts were undertaken.

Inasmuch as ESD failures result from electric transients phenomena, relevant
analysis/studies are built-up on time-dependent electromagnetic
considerations; the random nature of electric discharge of failure-inducing
paths are studied via stochastical aspects. Apart from computer-based
simulation studies/analytical failure models, relevant high-voltage pulse-
testing were also carried out on devices to trace the hazardous paths
involved in the transient electrical conduction within the device

infrastructure.

On the basis of the overall results of the studies, suggestions for proper
isolation, grounding, encapsulation, handling and packaging  of
microelectronic devices under various environmental conditions are

stipulated so as to ensure higher reliability of microelectronic products.




B.

Specific Research Tasks:

I.

Theoretical Work

EOS/ESD: Electromagnetic Phenomena:

The transient influence of any electrical overstressing (such as
electrostatic discharge, ESD) on microelectronic devices are
regarded as the time-dependent electromagnetic phenomena which
transfer energy from static potential (or from any electrical

overstressing source) to the device.

Such transfer of energy has been observed to manifest in two
possible modes, namely: 1) direct or invasive influence in
which the device in question comes in contact with the
overstressing source; and 2) indirect or noninvasive mode
wherein  the coupling is caused via electromagnetic wave

phenomena.

In either case, considering the high magnitude of overstressing
voltage which is discharged through a device within nanosecond
time-regimes, the proneness of the device to failure would be
very high. Hence, in the present research, the following

theoretical efforts were considered:
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1. Development of theoretical models depicting the realistic
electromagnetic transfer of energy in the overstressing

transients.
2. Quantification of the resulting formation of electrothermal
stresses and other degradation mechanisms in the

microelectronic devices.

By these models, the severity levels of ESD/EQS zaps and the

corresponding lethality endurance sustained by the semiconductor

devices were evaluated. The corresponding results would lead to
locating and identifying the maximum ESD-prone regions in
practical IC devices which would eventually help in

understanding the fundamentals of device survivability under

electrical overstressings.

Discrete devices, high density microelectronic devices and other
special semiconductor devices such as IMPATT diodes, which are
likely to be overstressed, not only due to ESD, but also due to

EMP (NEMP, for example) phenomena in military applications,

have also been investigated.

Specific attention was paid to consider the areas in which

fundamental researching had been lacking. For example, latent

failures due to (EMP/EMI-based) noninvasive influence of ESD,

transient (overstress-induced) electromagnetic intervaction vith

PCB-mounted and/or hybrids, electromagnetic (transient)
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interaction with  submicron devices, thermoelastic stressings in

the device due to transient EMP/EOS effects, etc., would require

considerable research-input and hence were considered in detail.

b. Device-modeling under electromagnetic overstressing:

1. Both bipolar and unipolar devices with shrinking geometries
vere modeled via rigorous analytical/ numerical methods, to
understand their response under electromagnetic

overstressings.
2. Device protection circuits were considered in terms of their
viability to withstand the electromagnetic overstressings.

Relevant changes have been suggested.

II. Experimental Work

To verify the various cause-effect relations pertaining to

electromagnetic stressings, some basic tests to simulate the

overstressings and to quantify their effects on the devices (such as

MOS capacitors, etc.) were conducted. The overall strategy of the

research envisaged is summarized in the accompanying flow-chart.

C. Details on the Accomplishments:

Apropos of the specific objectives of the project, the folloving are the

details of the tasks accomplished.
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3.

4.

Procurement of Documents/Reports and Publications:

--Completed--

Dialogue with 1Industries: Contacts were made with scientists/

engineers dealing with ESD/EOS problems in industries and in
laboratories. Valuable exchange of scientific information was

carried out and utilized in the investigations.

Procurement of Test Instruments and Setting Up of the Laboratory:

~-Completed--

Research Tasks Completed:

I. Modeling of EOS/ESD as Electromagnetic transient overstressing

phenomena.

1. Invasive and noninvasive influences of EOS vere

distinguished in respect of the followving and relevant

modelings were done:

a. Direct/Indirect electromagnetic coupling with discrete

(large-sized) devices.

b. Direct/Indirect electromagnetic interaction with devices

of micron/submicron dimensions.
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II.

c. Direct/Indirect coupling of EMP with PCB-mounted and/or

hybrid devices.

d. EMP interaction on devices housed inside the equipment:

EOS treated as a lethal EMI.

Failure/Susceptibility Analyses

a.

Concept definitions and quantifications of cause-effect
relations relevant to ESD-to-device interaction were

developed. They are termed as the Severity Factor and

Lethality Endurance Coefficient. These quantities are

analytically linked to the Life-Time of the device.

Latent failures in the devices resulting from ESD
vere considered as thermoelastic stress-induced
overstresses. Relevant thermodynamical and thermoelastic

analyses have been completed.

Considering filamentary type of "hot-spot" resulting from

electrical transients (such as ESD), the conventional
Wunsch-Bell model was modified by a more comprehensive
computer-aided algorithm. The method was applied to study

IMPATT diode reliability.

Thermoelastic-based stress-relief in microelectronic devices

was analyzed via crack-propagation principles.
-9_
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III.

AT

Susceptibility aspects of PCB-mounted devices were analyzed.

Susceptibility aspects of protective-circuits were

evaluated.

An EMI model has been developed to assess the non-invasive

influence of the ESD on an equipment-mounted device.

Assessment of MOS device degradation via noise

characteristics was investigated.

One-to-one correlation between electrical overstressing and

ionizing radiation effects in MOSFETs was elucidated.

Susceptibility studies on Stripline-Opposed-Emitter (SOE)

package Bipolar Devices have been performed.

Protection Circuits and Preventive Studies

a.

A comparative study on the relative protection capabilities
of all the existing protection circuits was carried out.
The survey indicated that the existing protection circuits
themselves are prone to damages due to ESD and hence need

improvement.

-10-
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Iv.

To achieve this, a "junctionless" protective device has been

developed on the basis of a geometry using Static Induction

Transistor principle.

b. Regarding static conductive materials, relevant design
formulations have been developed on the basis of
stochastical mixture theory. Such composites are useful as
bonding agents in ICs with optimal electrothermal

characteristics.
MOS Gate-Oxide Degradation

Considering the possibilities of charges being pumped into the
gate-dielectric as a result of external electromagnetic
influence, studies to quantify the extent of severity and the
amount of charge pumped in and getting trapped in the gate oxide
vas performed. The effects of trapped charges were being
studied in terms of degraded dielectric behavior of the oxide
manifesting as 1) reduced break-down strength; 2) non-linear

transfer function (gm) relations; and 3) as increased noise

effects.

The state of charge and field distribution in a MOS structure
vhich may arise due to external electromagnetic coupling was
also studied exclusively via appropriate modeling of potential
distribution in the device (static and transient) in terms of

two-dimensional Poisson’s equation. Effects of doping level(s)
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% and channel length have been considered. A formal solution of
two-dimensional Poisson’s equation by Method of Moments was

obtained.

Dielectric degradation was analyzed in terms of low frequency
noise performance of the device. Cumulative increase in the
o noise resistance of the device was quantified in terms of charge

injection and trapping resulting from repetitive electromagnetic

£ influence.

Studies pertaining to the analogous influence of 1ionizing

", radiations and electrical overstressings on MOS devices were
Ki
K’ g
th carried out. The resulting damage characteristics were modeled
L)
K . .
‘ via noise parameters.
K
4
)
!

-_.
e

It is also investigated to ascertain the extent to which a

Y
n.-.ﬂ

radiation-hardened device would be tolerant/less-susceptible to

electrical overstresses.
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Failures. Presented in 7th Annual EOS/ESD Symp., September 1985,

Minneapolis, Minnesota.

P.S. Neelakantaswamy, R.I. Turkman, and T.K. Sarkar: Filamentary
Hot-Spots in Microwave IMPATT Diodes: Modified Wunsch-Bell Model.
Presented in 7th Annual EOS/ESD Symp., September 1985, Minneapolis,

Minnesota.

P.S. Neelakantaswamy, T.K. Sarkar, and R.I. Turkman: On the Threat
to Dielectric-Based Devices and Components from Repetitive
Nonsinusoidal Electrical Overstresses. Presented in 17th Electrical
& Electrical Insulation Conference, September/October 1985, Boston,

Massachusetts.

P.S. Neelakantaswamy, R.I. Turkman, and T.K. Sarkar: Failures in
Microelectronic Devices Due to Thermoelastic Strains Caused by
Electrical Overstressings. Presented in 6th Biennial Conference on

Failure Prevention and Reliability, September 1985, Cincinnati,

Ohio.

P.S. Neelakantaswamy, T.K. Sarkar, and R.I. Turkman: Susceptibility
of PCB-Mounted Microelectronic Devices to Failures Caused by
Electrostatic Discharges. Electronic Packaging & Production, 132-

134, February 1987.

P.S. Neelakantaswamy, R.I. Turkman, and T.K. Sarkar: Susceptibility

of On-Chip Protection Circuits to Latent Failures Caused by
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II.

III.

Electrostatic Discharges. Solid State Electronics, Vol. 29 (6),

677-679, 1986.
P.S. Neelakantaswamy: Impulsive EMI Radiated by Electrostatic
Discharges (ESD). Interference Technology Engineer’s Master, 1987

(under Print).

ESD Preventive Methods:

P.S. Neelakantaswamy and R.I. Turkman: Electrostatic Propensity of
Filler-Added Plastics Used in Microelectronics. Presented in RIT

Polymer Symposium, May 9, 1986, Rochester, NY.

P.S. Neelakantaswamy, R.I. Turkman, and T.K. Sarkar: Complex
Permittivity of a Dielectric-Mixture Corrected Version of
Lichtenecker’s Logarithmic Law of Mixing. Electronics Letters,

Vol. 21(7), March 1985, pp. 270-271.

Mos Gate-Oxide Degradation:

P.S. Neelakantaswamy and R.I. Turkman: Gate-Insulation Degradation
in MOS-Devices due to Electrical Overstressings: Characterization
via Noise Performance Studies. Presented in 1986 IEEE International

Symp. on Electrical Insulation, Washington, D.C., June 8-11, 1986.
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2. P.S. Neelakantaswamy and R.I. Turkmun: MOS Scaling Effects on ESD-
Based Failures. Presented in Custom Integrated Circuit Conference,

May 12-15, 1986, Rochester, NY.

3. P.S. Neelakantaswamy and R.I. Turkman: Analogous Influence of
Ionizing Radiations and Electrical Overstressings: Damage
Characterization via Noise Parameters. Natural Space Radiation and

VLSI Technology Conference, Houston, Texas, January 20-21, 1987.
4. P.S. Neelakantaswamy and R.I.Turkman: Noise Characteristics of
Ionizing-Radiation Stressed  MOSFET Devices. Solid State

Electronics (under print).

D. MOS Device Modeling:

1. E. Arvas, R.I. Turkman and P.S. Neelakantaswamy: MOSFET Analysis
Through Numerical Solution of Poisson’s Equation by Method of

Moments. Solid State Electronics (Under Print).

E. Scope for Future Studies/Extended Ffforts

The results of the investigations are documented in Technical Reports listed

in the Appendix I.

The concepts of the basic research undertaken here have been published (are
being published) in refereed journals and/or presented in international

symposia. On the basis of feedback received from the scientific and

-15-
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industrial community, the potential to extend the present studies is

excellent.

The scope of the extended tasks beyond the present contract period and the
good reasons and the need for such efforts are described in the enclosed
Proposal for Continuation of Efforts on the Project #613-005/N00014-84-K-
0532 (1984-1987), entitled "Electromagnetic Radiation Effects on
Microelectronic Ensembles: Concept Definition and Analysis of

Electromagnetic Overstressings," submitted to ONR on 4-28-87.

A set of Technical Reports as listed in Appendix I is also enclosed.
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10.

Electromagnetics and Electrothermal Approach to Evaluate Failure
in Microelectronic Devices Caused by Electrostatic Discharges:
Stochastical Aspects of the Device Reliability

Office of Naval Research Project:

No.
RITRC 001
Tech Report
#01

RITRC 002
Tech Report
$02

RITRC 003
Tech Report
$04

RITRC 004
Tech Report
#04

RITRC 005
Tech Report
#05

RITRC 006
Tech Report
#06

RITRC 007
Tech Report
$07

RITRC 008
Tech Report
#08

RITRC 009
Tech Report
#09

RITRC 010
Tech Report
#10

. RITRC 011

Tech Report
#11

Principal Investigator:

TECHNICAL REPORTS
Title

Solution of Poisson’s Equation Using
Method of Moments: Application to
MOS Devices

ESD/EQS Susceptibility of a Class of
Bipolar RF Power Transistor: Experi-
mental Studies on Stripline-Opposed
Emitter Transistors

Electrostatic Propensity and Bleed-Off
Characteristics of Composite Materials

Filamentary Hot-Spots in Microwave
IMPATT Diodes: Modified Wunsch-Bell
Model

Failures in Microelectronic Devices
due to Thermoelastic Strains Caused by
Electrical Overstressings

Susceptibility of On-Chip Protection
Circuits to Latent Failures Caused by
Electrostatic Discharges

MOS Scaling Effects on ESD-Based
Failures

Susceptibility of PCB-Mounted Micro-

electronic Devices to Failures Caused by

Electrostatic Discharges

Impulsive EMI Radiated by Electrostatic
Discharges (ESD)

Noise Characteristics of MOS Devices
Degraded by Electrical Overstressings

Influence of Ionizing Radiations and
Electrical Overstressings on MOS
Devices: A Comparison

N00014-84-K-0532/NR613-005/1984-1987

Dr. P.S. F relakantasvamy
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ABSTRACT

An algorithm for the computation of solution to Poisson’s
equation in a two-dimensional domain is developed in terms of
equivalent sources on the boundary. The region considered
can be of arbitrary shape, and the boundary conditions can be
Dirichlet, Neumann or mixed type. The solution is obtained
by method of moments. Pulse expansion and point matching

techniques are used. Computed .results closely agree with the
available data concerning MOS devices.




I. INTRODUCTION

Poisson’s equation is one of the most important
differential equations of physics. For example, it can be
used to find the threshold voltages of MOSFET’s. When the
channel length is small, the depletion-layer widths of the
source and drain junctions are comparable to the channel
length, and the potential distribution is two dimensional
amenable for solution via Poisson’s ecuation.

In this work we give a simple method for solving two-
dimensional Poisson’s equation in a region subject to general
boundary conditions on the bounding surface. Equivalent
surface charges are placed just outside the boundary and the
total potential (produced by the impressed volume charges and
the equivalent surface charges) is enforced to satisfy the
boundary conditions. This transforms the boundary value
problem into an integral equation for the equivalent surface
charges. Then the method of moments [1] is used to
solve the integral equation numerically.
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II. STATEMENT OF PROBLEM

Consider a 2-dimensional region R bounded by the contour
C as shown in Figure 1. The problem is to find the total
potential ¢ (x,y) in R which satisfies the Poisson’s equation

3%y a2y
—— + = -
dx ? oy 2 DV/E (1)

in R, with the boundary condition(s)

ap + B aw =Y (2)

on C.

In egn. (1), dv denote the volume charge density, and ¢
is the permittivity of the material in R.

\
In egqn. (2), a ,B and y denotes known functions defined

on C.

Note that the general condition of egn. (2) includes, as
special cases, of Dirichlet (a =1, 8 =0) and Neumann ( a =0, B
=]1) conditions.

The Laplace'’s equation is the special case of eqn. (1)
with o, T.0 The solution of Laplace’s equation is given in
detail in (2). The present work is an extension of the work
in [2), modified for Poisson’s equation applied to MOS
structures.

III. METHOD OF SOLUTION

-

In solving egn. (1) subject to boundary condition of
egn. (2) we let

Y =¢p-+¢h (3)

where (4)

and (5)
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% The solution to eqn. (4) is
(6)

1o e am b«

1
¢ = Zme r P In

e an 4V 5

where r and r’ denote the radius vector to the field and a

source point respectively, »p (r') is the value of the ;
impressed charged density at r’s and k is an arbitrary h
constant (taken as 100.0 in this work).

| 1
: The Laplacian potential £, can be assumed to be produced ﬁ
by some equivalent surface charges, ¢ , outside R (Fig. 2).. i
Hence 8} is the solution of eqgn. (5) subject to boundary "
condition by
"
3¢ 3¢ (7) o

B ovap -p—L
wh + B on Y ad)p B on -on ¢ : : ’

Since 8y has the form
: (8)

= I3 k "

¢h e C 0 1In — dxldyl :

i.. .:
we see that egn. (7) is an integral equation for ¢ . N
3

h

Note that (5) subject to the boundary condition of eqn.
(7) is the same boundary value problem as the one considered
in {2]). We use pulse expansion and point-matching techniques ‘s
to solve this problem.

+

The approach involved is to first model the surface C
by N planar strips and the assume a constant charge density
on each segment. Satisfying the boundary condition of eqn.
(7) at the center of each of N strips, gives N algebraic
equations. The solution of these equations gives the value
of the constant charge density on each strip. The details
are elaborated in [2]). Once egn. (7) is solved for ¢ , we
obtain the total potential ¢ using egns. (8), (6) and (3).
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IV. SAMPLE RESULTS

[

A FORTRAN program is written to implement the theory
developed above.
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The first test problem that we tried is shown in Fig.
-12
3, where a line charge of p = 8.854x10 C/m is placed at
1

the center of a grounded rectangular boundary. The total
potential was evaluated at the points A, B, C and D as shown.

Table 1 illustrates the convergence of the computed
results as the number N of segments is increased. The exact
result [3, egn. 4-7.23) is also shown for comparison. The
last column of the table shows the CPU time on a VAX 11,/782.

A second test problem formulated to study a short
channel MOSFET is described hereunder.

VI. APPLICATION TO MOS STRUCTURES

To demonstrate the applicability of the proposed
numerical method to MOS structures, a test N-channel MOSFET
illustrated in Fig. 4 is considered. The rectangular
depletion region under the gate and its expanded view with
the relevant boundary conditions are depicted in Fig. 5.

The notations followed are those detailed in (4]. Figs.
6 and 7 illustrate the surface potentialV (x, y = d)
variation along the channel for 2 typical devices with
channel lengths L = Ium and 5 y m respectively.

The corresponding threshold voltage (V -V )versus
T FB
channel length for drain voltage (V ) of 0 and 5V is
presented in Fig. 8. D

For comparison, along with the computed data, the
results obtained by (approximate) closed-form solution due to
Poole and Kwong [4] are also shown in Figs. 6, 7 and 8.

Referring to these figures (Figs. 6, 7 and 8), close
agreement between the results may be observed. Any deviation
can be attributed to the approximations involved in the
truncation of the series solution given in [4]) and due to the
variations in the values of d and Vv considered in the
analysis. gm

However, the present work indicates the applicability of
the method of solution envisaged to the MOS structures. This
method can be extended to a more realistic model of the MOS
structure involving curved depletion boundaries and the
depletion width (d) varying along the channel length.

-5-
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Further, this steady state solution can be extended to

study transient causes pertaining to ESD/EOS induced effects.

v.

(1]

(2]

(31

(4]
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m Table I

Potential computed for the problem of Fig. 3

N A B (o D CPU Time
(0.25,0.75) (0.25,0.50) (0.1,0.25) (0.45,0.95) (Sec.)

4 0.05924 0.1133 0.01411 0.3145 3.28
8 0.07271 0.1268 0.02757 0.3280 3.55
12 0.07113 0.1226 0.02875 0.3244 4.03
16 0.07050 0.1221 0.02747 0.3238 4.54
20 0.07032 0.1219 0.02721 0.0236 5.15
24 0.07024 0.1218 0.02719 0.3235 5.92
32 0.07018 0.1217 0.02714 0.3234 7.86
'E§ 40 0.07016 0.1217 0.02712 0.3234 10.69
! 60 0.07014 0.1216 0.02711 0.3234 21.43
80 0.07014 0.1216 0.02711 0.3234 37.59

Exact
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-7-

T A G D Ly O N G O L O TG N e A A TP
. . L % L) - » . R « 8 . A . N A B B .

BN A IR




APPENDIX A: COMPUTER PROGRAM

The FORTRAN computer program is composed of a main and 9

subprograms. The subprograms are:

INFOR
SOLTN
VMATRX
ZMATRX
FIELD
ELSV
POTEN
INTG
GRAD

The last three programs compute the potential and its

gradient at a point (x,y) due to the impressed charge
distribution. Hence, as the source is charged, these
programs must be changed accordingly.

a)

b)

c)

The Main Program:

The main program reads in:
the number (NTOTAL) of the straight line segments
approximately the boundary C of the region R.

the dielectric constant (SPSR) of the medium R. "
the parameter LAPOIS. If LAPOIS is equal to zero, the x
problem is to solve the Laplace’s equation. (In this o
case the last three subroutines are not needed). 1If »

LAPOIS is equal to 1, we are solving Poisson’s eguation
and hence the potential and its gradient produced by the
impressed sources must be provided by the last three
subroutines.

For each of NTOTAL linear segments, the main program

calls the subprogram INFOR. Then it calls the subroutine

SOLTN.

a)

The INFOR subprogram:

The subroutine INFOR reads in

The coordinates (X1, Y1) and X2, Y2) of the starting and
ending points of each linear segment approximating the
boundary C. (X1, Y1, X2, Y2 are in micrometers).

The number NSEC, of subsections that each linear segment
is to be divided into.
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¢) For each linear segment ¢ , B and ¢ are read in. These
are sent back to the main program, where they are stored
in the matrix BCOND.

In the subroutine INFOR, the coordinates of the starting
and ending points of each subsection is computed. This
information is stored in arrays XV1, Yvl, Xv2 and

The subroutine SOLTN:

In this subroutine the moment matrix equation is formed
and solved. This subroutine calls various subroutines.

i)} The subroutine VMATRX:

In this subroutine the right hand side of egn. (7) is
computed at the center of each subsection. The result is
stored in the array V.

ii) The subroutine ZMATRX:

In this subroutine the moment matrix 2z is computed. The
(i,j ) th element of this matrix is the right hand side of
eqn. (7), computed at the center of jth subsection. (0 here
is the potential produced by a constant charge density of

2
1(C/m ) on the jth subsection).

iii) The subroutine ELSV:

This subroutine takes the inverse of the moment matrix 2
and stores the inverse matrix into the Z matrix.

Once Z matrix is inverted, the surface density is
computed in SOLTN subroutine by multiplying the inverse of
the Z matrix by the column vector V. The charge density is
stored in the array I.

iv) The subroutine FIELD:

This subroutine computes the total potential at K points
equally spaced between the points. (XIN, YIN) and XFIN, YFIN)

The last three subroutines compute the potential and its
gradient at a given point due to a constant volume

charge density RHO (C/m ) in a rectangular cylinder of
infinite length.
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INPUT/QUTPUT OF THE PROGRAM

The input to the program is through the data file 92.
The first line of the input file is

NTOTAL, EPSE, LAPOIS

Then we have NTOTAL pairs of lines which have the form
X1, vl, X2, Y2, NSEC

ALPHA, BETA, GAMA.

where (X1, Y1) and (X2, Y2) denote the coordinates of the
starting and ending point of a linear segment, and NSEC is
the number of subsection, that the segment will be subdivided
into ALPHA, BETA AND GAMA show the values of a , B
and O on the segment.

The last line in the input file has the form
XIN, YIN, XFIN, YFIN, K where (X IN, YIN) and (XFIN, YFIN)
are the coordinates of two points, and K is an integer. The
program will compute the total potential at K equidistant
points lying between the points (XIN, YIN) and (XFIN, YFIN).

The output of the program is printed in data file 18.
Here the potential at K points is printed. X and Y are the
coordinates of the point at which the potential is computed.




i % PROGRAM LISTING ' )

The following is the listing of the program:
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C THIS PROGRA!Y COMPUTES THE EQUIVALENT ELECTRIC

C CHARGE DENSITY OMN THE SURFACE OF A LOSSLESS DIELECTRIC

C CYLINPER. THIS IS A TUO-DIMENSIONAL PROELEM. THE TOTAL

C POTENTIAL INSIDE THE DIELECTRIC 1S DUE TO SOME SPECIFIED
> CHARGES INSIDE AND CUE TO SOME IMPRESSED POTENTIALS

C ALONG THE SURFACE.

C

@ C AT ANY POINT ON THE BOUNDARY OF THE CYLIMDER WE HAVE

C

C ALPA(C)*POT(CHARGE)+BETA(C)*(D/DN}{(POT{(CHARGE)) = -ALPHA(C)
C *POT(SOURCE)-BETA(C)*(D/DN)POT(SOURCE}+GAMA(C)

Cc

C VIHERE;

C C SHOVIS THE VARIABLE ALOMG THE BOUMNDARY OF THE CYLINDER,

C ALPHA(C), BETA{C) AND CAMA(C) ARE THREE FUNCTIONS THAT ARE
C SPECIFIED AT ANY POINT C,

C POT(CHARGE)=POTENTIAL PRODUCED AT THE POINT C, BY THE

C UNKOWN EQUIVALENT SURFACE CHARGE RESIDING ON THE BOUMNDARY

C OF THE CYLINDER,

C (D/DN) IS AN OPERATOR WHICH GIVES THE NORMAL DERIVATIVE

C OF THE FUNCTION THAT IT OPERATES ON , AND

C POT(SOURCE) IS THE POTEMNTIAL PRODUCED BY THE IMPRESSED

C SOURCES AT THE POINT ON THE BOUNDARY. THE IMPRESSED

C SOURCES ARE THE VOLUME CHARGE DENSITY INSIDE THE CYLIMNDER.
C THESE ARE THE SOURCES THAT APPEAR ON THE RICHT

C HAND SIDE OF THE POISSON'S EQUATION.

o
CCCcceeeeeceecceeeceeececececeeececcececeeeeecceececeecceeececececcecccecceccecce
CCcceeeeceeceececeececceecceeeececcececeeeececeeceeecceceecececeececc
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c

IMPLICIT COMPLEX*16 (C)
IMPLICIT REAL*8(A-B,E-H,P-2)
DIMENSION V(200),RI(200),2(200,200)
DIMENSION XV1(200),YV1(200),Xv2(200),YV2(200)
COMMON/NNN/NDP(10) ,BCOND(10,3) ,NTOTAL
COMMON/TYPE/LAPOIS ,EPSR
NMAX=200
“ - C
“ C READ TOTAL NUMBER ,NTOTAL,OF LINEAR SEGMENTS WHICH
C CONSTITUTE THE BOUNDARY FOR THE PROBLEM. ALSO
C READ THE DIELECTRIC CONSTANT ,EPSR, OF
C THE MEDIUM.
C
C IF LAPOIS IS Z2ERO THEN WE ARE SOLVING LAPLACE EQUATION
C IF LAPOIS IS ONE THEN THE PROBLEM IS POISSON TYPE.
C

READ(92,*) NTOTAL,EPSR,LAPOIS
IF(LAPOIS.EQ.1)VWRITE(93,1232)
IF(LAPOIS.EQ.O0)WRITE(93,1233)

1232 FORMAT(/,25X, 'THIS IS POISSON S EQUATION:',/)

1233 FORMAT(/,25X,'THIS IS LAPLACE S EQUATION:',/)
WRITE(93,1234)NTOTAL,EPSR

1234 FORMAT (25X, '======wreemmeem ;e e e m e m e !

.
e
. »

. e 0"
PR A

e

& ,//,10X,'NO. OF TOTAL LINEAR SEGMENT BOUNDARIES=',12,/,10X, ! {ﬁ
4 'THE DIELECTRIC COMSTANT OF THE CYLINDER IS=',F8.4,//) L
NAI=0 N
= "
NBI=0 )
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DO 199 1=1,NTOTAL

FOR EACH OF NTOTAL LINEAR SECMENTS FORMINC THE BOUNDAPRY

CALL THE INFORMATION (INFOR) SUBROUTIME TO

A) READ IN THE COORDINATES (X1,Yl) OF THE INITIAL POINT AND (X2,Y2)
OF THE FIMAL POINT OF I'TH LINEAR SEGMENT.

B) READ IN THE NUMBEPR ,NSEC, OF SMALLEP SUBSECTIOMS THAT THIS PARTICULAR
LINEAR SECMENT IS TO BE DIVIDED. THE CENTER OF EACH OF THESE
SUBSECTIONS IS A MATCHING POINT.

C) READ THE VALUES ALPHA, BETA, AND GAMA FOR THIS PARTICULAR
LINEAR SEGMENT.

D) FIND THE COORDINATES OF THE STARTING AND ENDING POINTS OF THESE

SUBSECTIONS AND STORE THEM IN THE ARRAYS XV1,YV1,Xv2,YVv2.

OOONO0OOA0OO0ONNONO

CALL INFOR(XV1,YV1,XV2,YV2,NAI,MMAX,A,B,G)
NDP(I}=NAI-NBI

BCOND(I,1l)=A

BCOND(I,2)=B

BCOND(I,3)=C

WRITE THE BOUNDARY COMNDITIONS DATA FOR THIS LINEAR SEGMENT;

[e N Xe!

WRITE(93,111)
111 FORMAT('1"')
WRITE(93,112) I1,A,B,G
112 FORMAT(////SX,'THIS 1S THE INFORMATION OF THE
S BOUNDARY =',1X,I13,//,5X,'HERE ALPHA=',F9.5,3X,
S 'BETA=',E11.4,3X,'GAMA=',F9.5,/)

..{(l.'l.’d

WA N SN

C WRITE GEOMETRICAL DATA FOR THIS LINEAR SEGMENT;
c
VIRITE{(93,114)
114 FORMAT(////12X,2('X~COORDINATE' ,5X,' Y~COORCINATE' ,5X))
WRITE(93,115)(J,XV1(J),¥YV1I(J),XV2(J),Yv2{J),IJ=NBI+]1,NAI)
115 FORMAT(//(5X,13,4(2X,1E)})/)

. : NBI=NAI
199 CONTINUE

C
C OBTAIN THE TOTAL NUMBER OF UNKNOWNS IN THE MATRIX EQUATION.
C
NUNKNS=NAI
VIRITE(93,993)NUNKNS
993 FORMAT(5X, 'TOTAL NO. OF UNKNOVINS=',13,//)
C
C CALL THE SOLUTION SUBROUTINE TO SOLVE THE PROBLEM.
C
CALL SOLTN{(Z,V,RI,XV1,YV1,XV2,YV2,NUNKNS,6K NMAX)
998 CONTINUE
STOP
END

CCcCereeeeeececeecceeecceccceceeceecececececeecececceeecceceecccecceccecceccccecec
CCCCCCCCCCereeeeeeeeeececceceecceeeececeeccececeeceeccecccececececeecceccece
SUBROUTINE IMFOR(XV1,YV1,XV2,YV2,NAI,NM,A,B,G)

IMPLICIT COMPLEX*16 (C)
IMPLICIT REAL*8(A-B,E~H,P-2)
C
C IN THIS SUBROUTINE THE DATA IS ARPRANGED IN THE PROPER FORH
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CFOP PURIHENM CUMPULALILOMY.,
C
CIMENSION XVI(MM),YVI(NM) ,XV2(NM),YV2(1IIM)
NNODES=MNAI
READ THE COOCRCINATES (X1,Yl) AMD (X2,VY2),
READ THE NUMBRFR OF SECTIONS OF THE BOUMNDARY (NSEC),
ALSO READ THE BOUMNDARY CONDITIONS INFORMATION; ALPHA(A),
BETA(B) AND GAMA(G) !

OOONON

READ(92,*)X1,Y1,X2,Y2,NSEC

X1=X1*1.D-06

Yl=Y1*1.D-06

X2=X2*1.D-06

Y2=Y2*1.D-06

READ(92,*)A,B,G

EDELX=(X2-X1)/FLOAT(NSEC)

EDELY=(Y2-Y1)/FLOAT(NSEC)

DO 20 J=1,NSEC

NMODES=NNODES+1

XV1 (NMNODES )=X1+FLOAT(J-1)*EDELX

YV1(NNODES)=Y1+FLOAT(J-1)*EDELY
20 CONTINUE

DO 70 I=MAI+1,NNODES-1

XV2(I)=XV1(I+1)

YV2(I)=YV1(I+1)

70 CONTINUE

75 XV2 (NNODES)=X2
YV2{NNODES) =Y2

76 NAI=NNODES
RETURN
END

CCcceeceeceeeeceeeceececececeeeceeeceececeecceeecceeceececcececce
CCLCceeececececeeceeecececceeeccceeececcceeecececcecececececececececece

SUBROUTINE SOLTN(Z,V,RI,XV1,YV1,XV2,YV2,N,NM)
C
C IN THIS SUBROUTINE THE MATRIX EQUATION AX=Y IS SOLVED USING THE
C METHOD OF MOMENTS.

C
IMPLICIT COMPLEX*16 (C)
IMPLICIT REAL*8(A-B,E-H,P-2)
DIMENSION V(N),RI(N),Z(N,N),AUX1(600),AUX2(600)
DIMENSION XV1(NM),YVI(NM),XV2(NM),YV2(NM)
COMMON/NNN/NDP(10) ,BCOND(10,3) ,NTOTAL
C
C INTIALIZE THE VECTORS 2Z,V,AND RI.
C
DO 5 I=1,N
v(1)=0.D0
RI(I)=0.D0O
5 CONTINUE
DO 10 I=1,N

DO 10 J=1,N
2(1,3)=0.D0
10 CONTINUE
CALL THE SUBROUTINE VMATRX TO COMPUTE THE EXCITATION VECTOR.

CALL VMATRX(V,N,XV1,YV],XV2,YV2,NM)

O 0o00n
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C CALL THE ZMATRX SUBROUTINE TO OBTAIN THE INPEDANCE MATRLIX.

c
CALL ZMATRX(Z,XV1,YV1,XV2,YV2,HN,HM)
c
C CALL THE ELSV SUBROUTINE TO INVERT THE MATRIX.
C
% EP=0.1D~09
: ' CALL ELSV(Z,AUX1,AUX2,N,DE,EP)

WRITE(93,118)DE
118 FORMAT(5X,'DE =',1E)
C
C MULTIPLY THE INVEPRSE OF Z-MATRIX WITH THE EXCITATION VECTOR
C TO OBTAIN THE CHARGES.
c
DO 25 I=1,N
; SUM=0.D0
DO 24 J=1,N
SUM=SUM+2(I,J)*V(J)
24 CONTINUE
RI(I)=5UM
25 CONTINUE
c
t C WRITE THE CHARGES OM THE OUTPUT FILE.
C
]
i NF=0
DO 135 JKLM=1,NTOTAL
NI=NF+1
NF=NF+NDP(JKLM)
WRITE(93,101)
101 FORMAT{'l')
VIRITE(93,102) JKLM
102 FORMAT(//5X,'CHARGES ON THE BOUND. =',1X,12,//)
ALPHA=BCOND(JKLM,1)
BETA=BCOND(JKLM,2)
GAMA=BCOND(JKLM,3)
WRITE(93,198)ALPHA,BETA,GAMA

198 FORMAT(5X,'FOR THIS BOUNDARY ALPHA=',Ell.4,
Q &3X,'BETA=',El1.4,3X, 'GAMA=',F11.4,//)
- DO 30 I=NI,NF

WRITE(93,105) I,RI(I)
105 FORMAT(/1X,I3,5X,F11.4)
30 CONTINUE
135 CONTINUE
CALL FIELD(RI,N,XV1,XV2,YV1,YV2,NM)
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcceecceeeeeceee
SUBROUTINE VMATRX(V,N,XV1,YV1,XV2,YV2,NM)

c
C IN THIS SUBPROUTINE THE EXCITATION VECTOR V IS
C COMPUTED .
C
IMPLICIT COMPLEX*16 (C)
i IMPLICIT REAL*8(A-B,E~H,P-2)
| DIMENSION V(M) ,XV1(NM),YV1(NM),XV2(NM),YV2(NM)
COMMON/NNN/NDP(10) ,BCOND(10,3) ,NTOTAL
‘ COMMOM/TYPE/LAPOIS,EPSR
‘ PI=4.DO*DATAN(1.D0)
‘ TP=2.DO*PI
EPS=EPSR*8.£54D-12
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NF=0 ;

DO 110 JKLMN=1,NTOTAL -,

NI=NF+1 )

NF=NF+NDP(JKLMN) g

) ALPHA=BCOND(JKLMN,1) 4
@ BETA=BCONT (JKLMN, 2) §
GAMA=BCOND(JKLMN,3) !

DO 100 I=NI,NF
V(I)=GAMA*TP
IF(LAPOIS.EQ.0)GO TO 100

X1=XV1(I) :
Y1=YV1(I) b
X2=XV2(1I) 0
Y2=YV2(1) -
XF=(X1+X2)/2.0 .
YF=(Y1+Y2)/2.0
IF(ALPHA.EQ.0.0)GO TO 90
CALL POTEN(XF,YF,POT) .
V(I)=V(I)-ALPHA*POT oy
o IF(LAPOIS.EQ.1.AND.BETA.EQ.0.0)V(I)=10.0*V(I) e
IF(BETA.EQ.0.0)GO TO 100 £
90 CALL GRAD(XF,YF,POTX,POTY) i

FNRMD=-(X2-X1)*POTY
FNRMD=FNRMD+(Y2-Y1}*POTX
FL=SQRT( (X2-X1)*(X2-X1)+(¥2-Y1)*(Y2-Y1l))
V(1)=V(I)~BETA*FNRMD/FL
100 CONTINUE
110 CONTIMUE
RETURN
END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCeee
SUBROUTINE ZMATRX(2,XV1,YV1,XV2,YV2,N,NM)

W

c
C IN THIS SUBROUTINE THE Z-MATRIX IS FORMED.
c
N IMPLICIT COMPLEX*16 (C)
“ IMPLICIT REAL*8(A-B,E-H,P-2)
DIMENSION XV1(NM),YVI(NM),XV2(NM),YV2(NM),Z(N,N)
COMMON/NNN/NDP(10) , BCOND(10,3) ,NTOTAL
COMMON /TYPE/LAPOIS , FPSR
C1=DCMPLX(1.D0,0.D0)
CK=DCMPLX(100.C0,C.D0)
PI=4.DO*DATAN(1.D0)
NF=0
DO 1000 JKLM=1,NTOTAL
ALPHA=BCOND(JKLM,1)
BETA=BCOND(JKLM, 2)
NI=NF+1
NF=NF+NDP(JKLM)
DO 999 I=NI,NF

L A AL

LA,

BRI YE

- -

'(:'fa

c
C COMPUTE THE PARAMETERS OF THE FIELD SUBSECTION
C

YL )

XI=XV1(1)

XIP1=XV2(I)

YI=YV1(I)

YIPl=YV2(I)
CZI=CMPLX(XI,YI)
CZIPl=DCMPLX(XIP1,YIPl)

-

A e

LRAS
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ELELLI=CDABOLLLLIPLI=-LLY)
CUI=(C21P1-C21)/EDELI
CZICAR=(CZI+C2IPl})/2.D0
DO 888 J=1,N

c
C COMPUTE THE PARAMETERS OF THE SOURCE SUBSECTION
C
XJ=XV1(J)
XJP1=XV2(J)
YJI=YV1(J)
YIPl=YV2(J)
C2J=DCMPLX(XJ,YJ)
CZJP1=DCMPLX(XJP1,YJPl)
EDELJ=CDABS (CZJP1-C2J)
CUJ=(C2JP1-C2ZJ)/EDELJ
CARG=(CZICAR-CZJP1)/(CZICAR-CZJ)

c
CTERM=CDLOG( CARG) /CUJ
IF(BETA.EQ.0.D0)CO TO 666
IF(I.EQ.J)EDERV=PI
IF(I.NE.J)EDERV=DIMAG(CUI*CTERM)
2(1,J)=BETA*EDERV
IF(ALPHA.EQ.0.DO)CO TO 888

cceececeeccecec

666 CT1=(C2ICAR-CZJ)*CTERM
CT2=EDELJ*(1.D0+CDLOG(CK/(CZICAR-CZJP1)))
2(1,3)=2(1,J)}+ALPHA*DREAL(CT1+CT2)

(o IF(LAPOIS.EQ.1.AND.BETA.EQ.0.D0)2(1I,J)=10.0%2(1,J)

888 CONTINUE

999 CONTINUE

1000 CONTINUE
RETURN
END

cceececeeececceeceecceececeecccececcecccecrececcececcecececceccecececc
SUBROUTINE FIELD(RI,N,XV1,XV2,YV1,¥YV2,6NM)
IMPLICIT COMPLEX*16 (C)
IMPLICIT REAL*8(A-B,E-H,P-2)
DIMENSION RI(N),XV1(NM),XV2(NM),YV1(NM),6 YV2(NM)
COMMON/TYPE/LAPOIS,EPSR
TPI=8.DO*DATAN(1.D0)
IF(LAPOIS.EQ.1)TPI=TPI*EPSR*8.854D-12
Cl=(1.D00,0.D0)
CKk=(100.D0,0.D0)

C
C READ K=NO. OF POINTS AT WHICH FIELD AND POTENTIAL IS TO BE COMPUTED
C
READ(92,*)XIN,YIN,XFIN,YFIN, K
IF(K.EQ.1)IJKL=]
IF(K.E0.1)GO TO 78
XDEL=(XFIN-XIN)/FLOAT(K-1)
YDEL=(YFIN-YIN)/FLOAT(K-1)
78 CONTINUE

DO 50 J=1,K

X=(XIN+FLOAT(J-1)*XDEL)*1.D-06
Y=(YIN+FLOAT(J~1)*YDEL)*1.D-06 ~
IF(K.EQ.1.AND.J.NE.1)CO TO SO

CZK=DCMPLX(X,Y)

SUMP=0.D0O

SUMX=0.D0

SUMY=0.D0
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C2I=DCMPLX(XV1(I),YV1(1))
CZIP1=DCMPLX(XV2(I),YV2(I))
EDFLI=CDABS(CZIP1-C2I)
CUI=(CZIP1-C21)/EDELI
CAPG=(C2K~-C2IP1)/(C2K-CZI)
CTERMO=CDLOG (CARG)/CU1
CTERM=(C2K-C21)*CTERMO
CTERM2=EDELI*(Cl+CDLOG(CK/{CZK~-CZIP1)))
CWI=CTERM+CTERM2
SUMP=SUMP+RI(I)*DREAL(CWI)
SUMX=SUMX+RI(I)*DREAL(CTERMO)
SUMY=SUMY-RI(I)*DIMAG(CTERMO)
SUMF=SQRT ( SUMX*SUMX+SUMY*SUMY)

45 CONTINUE
SUMP=SUMP/TPI
SUMX=SUMX/TPI
SUMY=SUMY/TPI

. SUMF=SUMF/TP1

c WRITE(18,55)C2K,SUMP,SUMX, SUMY, SUMF

1F(LAPOIS.EQ.0)CO TO 50
CALL POTEN(X,Y,SP)
SUMP=SUMP+SP/TPI
WRITE(18,49)X,Y,SUMP

49 FORMAT(3X,'X="',E11.5,2X,'Y="',E11.5,3X,'TOTAL POT=',El11.4,/)
50 CONTINUE
55 FORMAT(1X,’'2="',2E11.5,3X,'POT="',E10.4,3X,'EX="',E10.4,2X,
6 'EY=',6E10.4,3X,'ETOT=',E10.4)
RETURN
END

CCCCCCCCCcCeeeeeceeceeeeeceeececeeeeceeeceecccececeecececeeceeccecccecececee
SUBROUTINE ELSV(A,B,C,N,DE,EP)
IMPLICIT REAL*8(A-H,P-2)
DIMENSION A(N,N),B(N),C(N)
po 11 I=1,N
B(1)=0.D0
C(1)=0.D0
DO 12 J=1,N

12 C(I)=C(1)+A(I1,J)
11 A(I,1)=A(I,I)-1.DO
DO 13 K=1,N
DO 14 J=1,N
B(J)=A(K,J)

14 A(K,J)=0,D0O
A(K,K)=1.D0
W=B(K)+1.DO
IF(ABS(W).LT.EP)GO TO 17
DO 13 I=1,N
Y=A(I,K)/wW
DO 13 J=1,N

13 A(I,J)=A(I,J)-B(J)*Y
DE=0.DO0
Do .15 J=1,N
B(J)=0.D0
DO 16 I=1,N

16 B(J)=B{J)+A(1,J)

15 DE=DE+C(J)*B(J)
RETURN

1. CE=-1.D0
RETURN
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OOOO0ONOO0O0O0O00N000

IMPLICIT COMPLEX*16 (C)
IMPLICIT REAL*8 (A-B,E-H,P-2Z)

THIS PROGRAM GIVES THE POTENTIAL AMND THE

GRADIENT OF THE POTENTIAL PRODUCED BY A
“ZRTAIN TVO DIMENSIONAL CHARGE DISTRIBUTION
£ A POINT (X,Y).

NOTE THAT AS THE CHARGE DISTRIBUTION IS CHANGED
THIS PROGRAM SHOULD BE CHANGED ACCORDINGLY.

THIS PROGRAM WILL BE CALLED BY THE PROGRAM NAMED
‘DNEVPOISSON' ONLY IF THE PARAMETER LAPOIS IS 1 IN
THAT PROGRAM.

RHO=-3200.D0
AK=100.D0
X1=-0.50D-06
¥1=-0.04D-06
X2=0.5D-06
¥2=0.04D-06

cceeceeceecececeecceeccec

POT=(Y¥2-Y1)*(X2-X1)*DLOG(AK)

ccceeceececcceeceeeccecec

EDEL1=DABS(X2-X1)
Ul=(X2-X1)/EDEL1

ccceeecececececececccecece

FIl=(Y2-Y1)
POT=POT+EDEL1*FI1l

cccceeeececceeeccecccec

C23=DCMPLX(X2,Y1)

CZ4=DCMPLX(X2,Y2)

CZ=DCMPLX(X,Y)

EDEL2=CDABS(C24-C23)

CU2=(C24-C23)/EDEL2
CT2=(CZ~-C23)*CDLOG((C2Z-CZz4)/{C2~C23))/CU2
CT2=CT2+EDEL2*(1.D0-CDLOG(CZ~-Cz4))

ccceeceeeceececececcececcecce

FI2=DREAL(CT2)
FI31=(X1-X)*FI2
POT=POT+EDEL1*FI2+FI31/01

cceeeceecccececeececccece

XSs=X2
CALL INTG(XS,Yl,Y2,X,Y,RES32)

cceceeceeeceecececeeccceeeccce

FI32=RES32
POT=POT+FI132/U1

cceceecececcececeeecce

C25=DCMPLX(X1,Yl)

CZ6=DCMPLX(X1,Y2)

EDEL3=CDABS(C26-C25)

CU3=(C26-C25)/EDEL3
CT41=(C2-C25)*CDLOG((C2-C26)/(CZ~C25))/CU3
CT41=CT41+EDEL3*(1.D0-CDLOG(CZ-C26))

ccceeceeeecececeeceececcccececce

FI41=(X1-X)*DREAL(CT41)
POT=POT-F141/01

cccececeecceeeececececcecece
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CALL INTG(XS,Yl,Y2,X,Y,RES42)

CCCCCCCCCCCCCCCCCCCCCCCeeeece }Q
FI42=RES42 W
; POT=POT-F142/U1 te,
| POT=RHO*POT ﬁﬁ
l w RETURN vy
ﬁga; END N
' SUBROUTINE INTG(XS,Y1l,¥2,X,Y,RES)
IMPLICIT REAL*8(A-B,E-H,P-2) '
PI+4 .DO*DATAN(1.DO) o
TP=2.DO*PI "
PO2=PI1/2.D0 h
PO4=P1/4.DO o
IF({X-XS)20,10,15 ot
10 IF(Y.GE.Y2)RES=PO4*( (Y2-Y)*(Y2-Y)-(Y1-Y)*(Yl~Y)) :
IF(Y.LE.Y1)RES=-PO4* ((¥2-Y)*(Y2-Y)-{Y1-¥)*(Yl-Y)) E
IF(Y.GT.Yl.AND.Y.LT.Y2)IM=1 \‘
IF(IM.EQ.1)RES==-PO4*( (Y2-Y)*(Y2-Y)+(Y1-Y)*(Y1-Y)) RS
RETURN )
15 Tl=(X-XS)*(Y2-Yl) “
T2=(Y-¥2)*(Y-Y2)+(X-XS)*(X~XS) X
T3=(Y-Y1)*{Y-Y1)+(X-XS)*(X-XS)
T4=(Y2-Y)/(X-XS) ..
TS=(Yl=-Y)/(X~-XS) :;
IF(Y.GE.Y2)RES=(T1-T2*DATAN(T4)+T3*DATAN(TS))/2.D0 .
IF{Y.LE.Y1)RES={T1-T2*DATAN{T4)+T3*DATAN(TS))/2.D0 g
IF(Y.GT.Y1.AND.Y.LT.Y2)IM=1 ~
IF(IM.EQ.)1)RES=(T1+T3*DATAN(TS)-T2*DATAN(T4))/2.D0 .
RETURN '
20 Tl=(XS~X)*{Y2~-Y1) :
T2=(Y2-Y)*(Y2-Y)+(XS=-X)*(XS-X) .
T3=(Y-Y1)*{Y-Y1)+(XS~X)*{XS-X) N
T4=(Y2~Y)/(XS=-X) N
TS=(Y1~-Y)/{XS-X} N,
TERM=PO2* ((Y2-Y)*(Y2~Y)-(Y1l-Y)*(Y1-Y)) ~
IF(Y.GE.Y2)RES=TERM~(T1-T2*DATAN(T4)+T3*DATAN(TS))/2.D0 ;
Q IF(Y.LE.Y])RES=-TERM+(T2*DATAN(T4)-T1-T3*DATAN(TS))/2.D0 -»
IF(Y.LT.Y2.AND.Y.GT.Y1)IM=1 w
IF(IM.EQ.1)TM=-PO2*((Y1-Y)*(Y1-Y)+(Y2-Y)*(Y2-Y)) -
IF(IM.EQ.1)RES=TM~{T1+T3*DATAN(TS5)-T2*DATAN(T4))/2.D0 ol
RETURN N
END -
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeceeece N
SUBROUTINE GRAD(X,Y,GX,GY) 2
implicit complex*16 (c)
IMPLICIT REAL*8(A-B,E-H,P-2) P
RHO=-3200.D0 N
C2=DCMPLX(X,Y) A
X1=-0.50D-06 ‘
Y1=-0.04D-06. -3
X2=0.5D-06 2%
Y2=0.04D-06 4
C21=DCMPLX(X1,Yl) .
C22=DCMPLX{X2, Y1) N
C23=DCMPLX(X1,Y2) o
C24=DCMPLX(X2,Y2) N
EDEL1=CDABS(C22~C21) t)
CU1=(C22-C21)/EDEL] e
EDEL2=CDABS(C24~C23)
Cd
i
:.r
>
)

: " R
R S YN 4




CU2=(C24-C23)/EDEL2
CTEPM1=(CZ-CZ1)*CDLOG((C2~C22)/(C2-C21))/CUl
CTERM1=CTERM1+EDEL]1*(1.D0+CDLOG(1.D0/(C2-C22)))
CTERM2={CZ-C23)*CDLOG((C2-C24)/(C2-C23))/C02
CTERM2=CTERM2+EDEL2*(1.D0+CDLOGC(1.D0/{C2-C24)))
; GY=-RHO*DREAL({CTERM2-CTERM])

‘ m CX=0.D0
RETURN
END
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SAMPLE INPUT/OUTPUT FILE:

channel MOSFET problem considered in Pig. 4. The results

+
The following is the input/output file for the long E
presented in the following are plotted in Fig. 6 and 7. 6
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} T T T TR TR TR TR BT W AV W WS WS LW b

11,7501
.5 -0.106 0.5 0.106 12
.0 0.0 5.9
0.5 0.106 -0.5 -0.106 12
.0 0.0 0.2
0.5 -0.106 0.5 -0.106 25
.0 1.0 0.0
.5 0.1¢6 -0.5 0.106 25
.0 0.22E-06 2.0
0.50 0.1059999 0.50 0.105999 21

t = OO 121 PO P

X=-.50000E-06 Y=0.10600E-06 TOTAL POT= 0.9552E+00
¥X=-.45000E-06 Y=0.10600E-06 TOTAL POT= 0.1016Z+01
) ¥=-.40000E-06 Y=0.10600E-06 TOTAL POT= 0.1005E+0l

¥=-.35000E-06 Y¥=0.10600E-06 TOTAL POT= 0.9841E+00

X=-,30000E-06 Y=0.10600E-06 TOTAL POT= 0.9704E+00

X=-.25000E-06 Y=0.10600E-06 TOTAL POT= 0.9631E+00

X=-.20000E-06 Y=0.10600E-06 TOTAL POT= 0.9827E+00

X=-.15000E-06 Y¥=0.10600E-06 TOTAL POT= 0.1012E+01

X=-.10000E-06 Y=0.10600E-06 TOTAL POT= 0.1053E+01

X=-.50000E-07 Y¥=0.10600E-06 TOTAL POT= 0.1126E+01

X=0.00000E+00 Y=0.10600E-06 TOTAL POT= 0.1216E+01

fl- X=0.50000E-07 VY¥=0.10600E-06  TOTAL POT= 0.1332E+01
¢ X=0.10000E-06 Y=0.10600E-06 TOTAL POT= 0.1478E+01
X=0.15000E-06 Y=0.10600E-06 TOTAL POT= 0.1661E+01

X=0.20000E-06 Y=0.10600E-06 TOTAL POT= 0.18%1E+01

X=0.25000E-06 Y=0.10600E-06 TOTAL POT= 0.2178E+01

X=0.30000E-06 Y¥=0.10600E-06 TOTAL POT= 0.2534E+01

X=0.35000E-06 Y=0.10€J0E-06 TOTAL POT= 0.2986E+01

X=0,40000E-06 Y=0.10600E-06 TOTAL POT= 0.357SE+01

X=0.45000E-06 Y=0.10600E-06 TOTAL POT= 0.4387E+01

X=0.50000E-06 Y¥=0.10600E-06 TOTAL POT= 0.5556E+01
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T Adbs ! 2V &
2.5 -0.106 2.5 0.10& 12
1.0 0.0 5.9
~-2.3 0.106 -2.5 -0.106 12
1.0 0.0 0.9
; -2.5 -0.106 2.5 -0.106 50
% 5.0 1.0 0.0
. 5 0.106 -2.5 0.106 50
1.0 9.22E-06 2.0
-2.50 0.1059999 2.50 0.105999 21
X=-.25000E-05 V¥=0.10600E-06 TOTAL POT= 0.923B8E+00
X=-.22500E-05 ¥=0.10600E-06 TOTAL POT= 0.7867E+00

X=-,20000E-05 Y=0.10600E-06 TOTAL POT= 0.6475E+00
X=-.17500E-05 Y=0.10600E-06 TOTAL POT-=

o

.5955E+00
X=-.,15000E-05 Y=0.10600E-06 TOTAL POT= 0.5764E+00
X=-.12500E-05 Y=0.10600E-06 TOTAL POT= 0.5694E+00
X=-.10000E-05 Y¥=0.10600E-06 TOTAL POT= 0.5663E+00

X=-.75000E-06 Y=0.10600€-06 TOTAL POT-=

0.5659E+00
X=-.50000E-06 Y=0.10600E-06 TOTAL POT= 0.50656E+00
X=-,25000E-06 Y¥Y=0.10600E-06 TOTAL POT= 0.5655E+00

{=0.00000E+00 Y=0.10600E-06 TOTAL PO0T= 0.5656E+00
X=0.25000E-06 ¥=0.10600E-06 TOTAL POT= 0.5659E+00
‘ X=0.50000E-06 Y=0.10600E-06 TOTAL 20T= 0.5667E+00
X=0.75000E-06 Y¥=0.10600E-06 TOTAL POT= 0.5692E+00
X=0.10000E-05 Y¥=0.10600E-06 TOTAL P0T= 0.5758E+00
X=0.12500E-05 Y¥=0.10600E-06 TOTAL POT= 0.5940E+00
X=0.15000E-05 Y=0.10600E-06 TOTAL POT= 0.6434E+00
X=0.175C0E-05 Y¥=0.10600E-06 TOTAL POT= 0,7788z+00
X=0.20000E-05 Y¥=0.10600E-06 TOTAL POT= 0.1147E+01
X=0.22500E-05 Y=0.10600E-06 TOTAL POT= 0.2158E+01

X=0.25000E-05 Y=0.10600E-06 TOTAL POT= 0.5499E+01
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Fig. 1. Geometry of the problem.
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Fig. 2.

The potential in R is produced by the impressed

volume tharges Py and the equivalent surface charges g.

+

The surface charges are on C , (just outside of bounding

surface C).
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Fig. 3. - A line charge at the center of an infinitely
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long grounded, rectangular pipe.

¢ AR 7

- 1‘_ r, .

«
3

-28_

. -..-.~\ -.~..' ".-

- - - .
" o' o e
,ufn.m‘.. L{LILQMJJJ.MAA-‘.AAA. ‘..MMMM,LL PSRN GOSN Py




L g6 g ARy S

oL +O.&a*léé% =g

¥Y=0.9v v;}y:—g_/\/g LH=5.C?v

° MW o

N

Fig. 4. An approximate model for a rectangular depletion

region in a MOSFET.

{ E = E E , 9 Na = -3200.0 ¢/3 )
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BSD/BOS SUSCEPTIBILITY OF A CLASS OF BIPOLAR RF POWER TRANSISTORS:

EXPERIMENTAL STUDIES ON STRIPLINE-OPPOSED EMITTER TRANSISTORS

Perambur S. Neelakantaswamy Rennan I. Turkman

RIT Research Corporation Dept. of Electrical Engineering
75 Highpover Road Rochester Institute of Technology
Rochester, NY 14623-3435 1 Lomb Memorial Drive

Rochester, NY 14623-5649

ABSTRACT

Susceptibility of a class of bipolar RF power transistors (known as
stripline-opposed emitter (SOE) devices) to electrical overstressing (E0S)
is studied. By virtue of bhaving unique packaging compatible for
RF/stripline applications, SOE devices pose prominent/extended exteriors for
static propensity and hence are critically vulnerable to damages/degradation
as predictable by the charged-device modeling. As such, contrary to the
popular notion that rugged bipolar devices are not excessively prone to ESD-
based detrimental effects, SOE transistors, on the other hand, are severely

vulnerable to EOS threats. It is not just the Wunsch-Bell limit of
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catastrophy due to PN junction burnout (under high-level zaps) that dicates
the damages in the devices 1like SOE transistors. The entire device
configuration, namely, active junction, metallization, bonding, etc., as
vell as the external packaging, decide the device lethality. This is
demonstrated by experimental studies on a family of SOE devices by
subjecting them to ESD zaps using a Human Body Simulator. The results

positively indicate that their vulnerability is in excess of Class II limit

specified by DOD-HDBK-263 and require specific handling precautions, lest
they would pose quality control and/or field failure problems. Especially,
considering these devices being extremely costly, specific ESD control

efforts are rather imminent.
* INTRODUCTION

This work addresses the proneness to ESD/EOS of certain bipolar devices
used in RF power amplification, commonly known as stripline-opposed emitter
(SOE) transistors. These devices have characteristic packagings as depicted
in Fig. 1. They are silicon transistors designed for high efficiency, high

linearity Class A-power amplification at UHF bands [1].

The primary electrical advantage of the SOE packages are the low
inductance stripline leads which interface very well with the
microstriplines often used in UHF/VHF equipment and the good collector to
base isolation provided by the two emitter leads. The two-emitter concept

promotes symmetry 1in board layout when combining devices to obtain higher

P




Pa  Ba A 08 Do 03 3 %

P
")
W

K

2

U

8:

]

1

& ]

powver output. Further, stud and/or flange-mounting feasibility of SOE

devices permit excellent heat-sinking and hence high thermal performance. 5’

04

Vhile the aforesaid characteristics allow popular use of the SOE 3

4

devices for the purpose of RF power amplification, there is no available ;

A

data regarding their performance under electrostatic discharge k
(ESD)/electrical overstressing (EOS) environment. Like any bipolar device, ,‘

I

per DOD-HDBK-263, these devices may, 1in general, fall under Class II Q
(]

category [2] of components in respect of their ESD/EOS proneness. However, o
Q

this generalization needs to be verified because the peculiar package- P
geometry pose a prominent/extended cross-section of exposure to the static :!
environment. As such, the severity of ESD damage in such bipolar devices %f

e would be reduced not only by the Wunsch-Bell limits of catastrophy [3] at £
the PN junction [4], but also by the static propensity and parasitic (shunt) St

e

paths of static-discharge associated with the device package. Further, the S

~’\

inherent capacitive and/or inductive reactance of the device-exterior will N
profusely influence the static discharge characteristics and hence the ;’

.

relevant ESD-based stressings on the device. .

:

Thus the present work will decide whether SOE packaged bipolar devices =

be classified under general Class II type of ESD-prone components as listed -
in the DOD-HDBK-263. Relevant effort will also explicitly determine the =)
effect of performance-based packaging on the device vulnerability to g’

~

ESD/EOS. ‘:
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In SOE devices, the junctions are designed enough to carry a sustained
current flow of about 1 ampere, compatible for high power applications.

Therefore, the possibility of total junction burnout (Wunsch-Bell limit) by

ESD zaps may not be anticipated. However, considering the total device
geometry (with its constricted regions, bond/metallization regions, etc.),
vulnerability of the device to ESD-based damages cannot be ruled out,
especially due to the presence of high static propensive exterior
(packaging). Hence, the present investigations are done on the devices
subjecting them to simulated ESD zaps to evaluate their proneness to EOS

damages.

EXPERIMENTAL STUDIES

The test transistors considered are: ENI 10A, ENI 14B and ENI 2240.
These devices form a class of bipolar active elements intended for
applications with high  performance thermal and high frequency
characteristics. They have typical stripline opposed emitter (SOE)
packaging designed for interfacing with microstriplines and for good thermal

dissipative capabilities.

Prezap Tests:

The static characteristics, as well as the transistor gain hFE' vere

measured prior to the application of =zaps. The unstressed device
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characteristics indicate that for a given type of transistor, the reverse-

bias leakage current varies widely from piece-to-piece at ambient
conditions. The reverse breakdown also ranged from abrupt to smooth
artifacts. In some cases, ohmic short across base-emitter (B-E) junctions

vere observed.

The prezap test results are presented in Tables 1 to 3 and the prezap

test is labelled as ‘a’ in the test sequence.

Zap Tests:

The zap tests were performed on the devices using an ESD human-body
simulator (Model: IMCS2400). This equipment simulates the transient
discharge characteristics which is a close representation of the ESD event
pertaining to the static discharge from a human body. The simulator circuit

(per MIL-M-38150) [2] is depicted in Fig. 2.

Testing methods are documented [2] in DOD-HDBK-263, Art. 6.2. Normally
ESD-based part failure is defined as the inability of a part to meet the
electrical parameter limits of the part specifications. Any measurable
change in a part electrical parameter due to an ESD could like an indication
of part damage and susceptibility to further degradation and subsequent

failure with successive ESD.
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Hence using the standard ESD Simulator (Model: IMCS2400), the test
devices were subjected to various combinations (in terms of polarity,
amplitude, multiplicity, etc.) of ESD zaps. (Prior to overstressing, the
devices were assessed for their characteristics, as mentioned earlier under

‘Prezap Tests’).

The characteristics of the devices after each mode of test were
measured using the Semiconductor Parameter Analyzer Model: HP4145. These
results are presented in Tables 1-3. The sequence of tests conducted after

overstressing are referred to as b, ¢, d, e, f, and g.

Tables 1-3 provide the complete compilation of test data and summarize
the results. The recorded characteristics are depicted in a few sets of
figures appended. Each set of figures is identified by the device
type/number, the sample number, and the test sequence. For example,
Fig. A 1.b denotes the characteristics of the transistor A (ENI 10A), sample
number 1, after the overstressing sequence of ‘b,’ as described in Table 1.

Likevise, B refers to transistor ENI 14B, and C denotes ENI 2240.

OBSERVATIONS

a. The tested devices are prone to ESD-based failures and/or

degradations.
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Low level zaps cause no catastrophic damages. Howvever, the devices

are susceptible for catastrophic failures at high zap levels which

can be anticipated at low humidity situations.

The degradation is cumulative but stabilizes after a few multiple

zaps. Up to 20X change in hFE and a more serious variation of IEBO

(leakage current) changing in excess of 100X were observed.

Polarity Dependence: 2aps of alternating polarities appear to

influence the degradation to a larger extent. (The probabilities

of occurrence of positive and negative zaps can be anticipated to

be the same in practice.)

Multiple single polarity zaps of larger magnitude do not cause more

harm than low intensity, multiple zaps of bidirectional polarity.

Isolated single =zaps appear to cause no damage (even on already

wounded devices).

Frequent manual handling of the devices with the possibilities of

of bidirectional polarities in a sequence, would

applying zaps

damage them to a maximum extent.
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The devices are more prone to damages while receiving a set of
initial =zaps. Subsequent zaps may not influence any further
degradation. However, the devices pose high probabilities of
receiving initial =zaps anywvhere in the production/manufacturing,

shipping or assembly lines.

The devices can be subjected to harmful zaps at subassembly/PCB
levels. However, their chances of getting degraded by single or

multiple zaps at equipment level are rather remote.

Devices which exhibit base-emitter ohmic leakage during prezap
screen, have been observed to suffer higher damages, even at low or

subcatastrophic ESD levels.
Description of observed damages in these test devices:

Noncatastrophic ESD-Human Body model zaps applied between the base
the the emitter of the transistors with serial numbers ENI 10A and

ENI 14B caused these devices to exhibit lower hFE and/or larger

base-emitter junction leakage current. ESD pulses that forward

biased the B-E junction, lowvered the hFE without significantly

increasing the leakage current while pulses of reverse biasing
polarity degraded the B-E junction’s characteristics invariably

without affecting the transistor gain at nominal current levels.
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ESD pulses of reverse polarity did also affect the low current
level transistor gain. The observation can be explained as

follows:

1. Vhen a reverse biasing ESD pulse is applied to the junction,
most of the power dissipation occurs within the depletion
layer where the electric field intensity is maximum. The
temperature rise and the subsequent crystal damage in the form
of increased recombination/generation centers can Dbe
anticipated to be very high in the vicinity of the junction.
Therefore, junction leakage current which is predominately
controlled by carriers that are generated within the depletion

region increases.

2. The transistor gain at nominal current levels does not depend
on depletion layer parameters and therefore, it 1is not

sensitive to reverse biasing ESD pulses.

3. The reason for transistor gain being lover at lov current
densities is the significant loss of injected carriers by
recombination across the B-E junction’s depletion layer; this

parameter drops when reverse biasing ESD pulses are applied to

the junction.
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4. The test transistors are made by planar technology. The
curved edges of the junctions are the most vulnerable regions
in reverse bias; the reverse breakdown occurs first at these
edges and most of the ESD transient current flows through edge

regions.

The rest of the junction, as well as the bulk of the emitter
and the base, are however, much less affected. As the
transistor gain at nominal current depends mainly on what
occurs in these regions, this parameter is not very sensitive

to ESD pulses of reverse polarity.

The transient current during forward biasing due to ESD zaps

flows through the entire junction area and degrades the bulk

of the emitter and the base, thus affecting hFE at all current

levels.

The catastrophic failures observed with the transistors ENI 10A and ENI
14B are due to the (emitter) contact metallization penetrating into silicon
and introducing an ohmic lov resistance path across the B-E junction. This
metal-silicon alloy spike(s) penetrate deep into the base, even reaching the
base-collector junction depletion 1layer, thus, severly affecting current-

voltage characteristics at this junction.
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Regarding the transistor ENI 2240, the observed latent failures vere
due to an increased wire/thin film and/or thin film metallization/silicon
contact resistance. Both the emitter and the base contacts displayed this
sort of vulnerability to ESD zaps. The contact fatigue increased gradually
with repetitive ESD =zaps, resulting in an wundue increase in contact

resistance values. As a result, larger V__ values were needed to pull the

CE
transistor out of saturation (an increasingly larger portion of the applied

VCE dropped at the contacts, rather than appearing across the internal PN

junctions). The excessive Joule heating at the contacts resulted in the
penetration of the thin film metallization into the silicon. Low resistance
paths were found across the B-E and/or B-C junction of the devices that

suffered catastrophic failures.

DEVICE HANDLING: SUGGESTIONS

1. Inasmuch as the test devices indicated proneness to wounding and/or
catastrophic failures under ESD zaps, proper handling procedure is

suggested.

2. Though classified as Class II, the test devices being costly

semiconductors be packaged, transported and handled with necessary care

as specified in DOD-HDBK-263.
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(1)

Part Screening: Some of the devices tested exhibit bypass leakage
characteristics across B-E junction (e.g. ENI 10A) prior to zapping.
This could have resulted from improper handling (?). Another test pilece

having normal prezap characteristics was zapped (ESD-HBM Test Voltage

16KV peak, multiple) and shovwed similar wounded ohmic characteristics. -

Therefore, it is suggested that for reliable circuit operation, devices
wvhich could have been damaged earlier either due to ESD or otherwise may
be screened out via simple base-emitter I-V characteristic tests

enabling the rejections of damaged pieces.

ENI 2240 shows contact and/or metallization based vulnerability to
damages under EOS. Test results indicate contact and/or metallization
resistance increasing cumulatively with number of =zaps. Hence, it

limits the Ic max capability of the device to a significant extent and

makes it unsuitable for large-signal applications. Both emitter and
collector pose the above enhanced contact/metallization resistance

problem. In this point of view, use of ENI 2240 may be carefully

reviewved.
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Electrostatic Propensity and Bleed-off

Characteristics of Composite Materials
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College of Science o
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Rochester Hilton
175 Jefferson Road .
Rochester, New York 14623 . -

ABSTRACT

A class of composites, popularly known as static dissipative
materials, is widely used in semiconductor manufacturing and/or
handling situations, as surface-finisl.es, packing media, etc. to
prevent excessive triboelectric charge accumulation upon semiconductor
devices, lest device failure may occur due to electrical overst;essing.
Presently, a mixture model to predict the effective electrostatic
propensity of a two-phase composite formed by a dispersal of conducting
iand shaped) inclusions in an insulating medium is developed on the
basis of stochastical considerations. A closed-form expression to

determine optimum design-value for the volume-fraction of conducting
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inclusions so as to get a minimum static bleed-off time, is derived.
The optimization is done with the constraints imposed on the !
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@ electrical resistivity of the composite by certain practical .

considerations.
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INTRODUCTION

q&g; A variety of synthetic and organic composites are used in the
industrial environment as bench-top materials, floor-finishes,
containers, carpets/floor-mats, workroom apparel/garments, etc.
and these materials, in general, are highly electrostatic propensive
[1-5]. That is, whenever there are two nonconductive (insulating)
materials moving in opposite directions abrading against each other,
a high triboelectric potential would build up between the abrading
surfaces on separation; as a result, electric charges of opposite
polarity accumulate upon these surfaces and they do not bleed-off
easily due to high resistivity of the insulating media. They can
stay put upon the surfaces as puddles over a long duration of time

until a conducting medium comes in contact with the surfaces [2].

In electronic industries triboelectricity is regarded as a menace

(1Y

&

(6] because any accidental static voltage transfer/buildup occuring

in a semiconductor device may cause catastrophic or latent device-
failure. Especially microelectronic devices pose high reliability
problems arising from sneaky failures due to electrostatic discharge
(ESD) which is considered as a new contaminant of the age of chips.

One of the preventive measures adopted to control static electrification
in microelectronic industries is to use a distinct class of synthetic

composites which are less prone to triboelectric effects. Such

static propensity-controlled composites are of two types, namely (i)
antistatic or static-repulsive materials and (ii) static-dissipative or

static-conductive materials [5].

Static-conductive composite materials help to solve the problems of




electrostatic discharge by controlling the generation, accumulation,
and dissipation of static charges. They offer proven static protection
in electronic manufacturing, assembly, and test areas -- in hospitals
and in computer facilities where sensitive electronic equipment is

installed and handled.

Static dissipative composites are, in general, composed of
conductive materials (such as carbon, metallic particles, etc.) which
are diffused into an insulating medium like ceramic, rubber or plastic,
etc. The conductive elements are randomly distributed throughout the
surface as well as in the bulk portion of the material so that a
required amount of volume and surface electrical resistivity are
realized, and this resistivity generally determines the ability of the
material to dissipate the static charge. Though it can be expected
that electrostatic decay performance would bear a linear relation with
the conductivity, this hypothesis may not be wholly correct in respect
of a composite material. This is because of the capacitance effects

associated with the material which would "slow down" the charge

dissipation rate.

The purpose of the present investigations is to develop a stochas-
tical model which would predict the electrostatic propensity and bleed-
off properties of a static dissipative composite in terms of quantifiable
terms suitable for design calculations pertaining to the fabrication of

composites having desired static-dissipative characteristics.

-
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Stochastical characteristics of the test composite:

In order to design a composite medium which has a high electro-

static dissipative property, it is necessary to consider the electro-
magnetic response of the material in terms of both electrical
conductivity and permittivity of the medium. For this purpose, the
test composite is presently regarded as a two-phase stochastical mix-
ture in which the insulating medium forms the ¢ spersing continuum and

the conducting phase constitutes the random inclusions.

The electrostatic propensity of this composite/mixture can be
quantified in terms of electrical polarisability of the medium which
depicts the surface density of bound charges therein. And the
polarisibility can be assessed in terms of dielectric susceptibility
or permittivity characteristics of the chaotic mixture. And, to
quantify the static-bleed-off abilities of the test medium, one has to
consider the resistivity of the medium which is primarily determined

by the conducting inclusions.

To evaluate the effective permittivity and/or conduétivity of the
test material, the relevant parameters to be considered are therefore,
(1) the permittivity (e1) and the conductivity (0;) of the dispersing
inclusions, (ii) the volume-fraction of the inclusions (¢), (iii) the
permittivity (€2) and conductivity (gz) of the dispersing insulator,

and (iv) a shape-factor (g) depicting the geometry of the inclusions.

There are a host of formulas available in the literature [7] to



calculate the effective permittivity and/or conductivity of multiphase
systems. However, they are based on the analytical formulation

‘ Qﬁg& pertaining only to the material response to the electric field

[

{Clausius-Mosotti principle) [7] and they do not consider the true

statistical aspects of the mixture. The only stochastical formulation

that exists is due to Lichtenecker {7} and Rother ([8,9) and is known

as logarithmic law of mixing. But even this logarithmic law has two

deficiencies, namely (i) it has no dependency on the shape-factor (g}

which is incorrect, and (ii) it would not reduce to a linear form so '
as to be inconsistent with certain limiting conditions as indicated

by Reynold and Hough [10]. This inconsistency is due to an illogical

supposition by Lichtenecker who considered a mixture as chaotic and

oxrdered simulatneously [11]. !

Taking into view the aforesaid limitations on the existing

TR LA

* mixture formulas, a generalized stochastical formulation applicable to
/
any physical property of a mixture is presently derived by modifying N

the logarithmic law as indicated below:

Modified logarithmic law of mixing :.
Considering the theory of mixtures as a probability problem,

Lichtenecker and Rother [8,9] deduced the logarithmic mixture law from

general principles. For a mixture of two components, it is given by,

oo 19

where p depicts any g aeric physical property. Inasmuch as the
logarithmic formulation is not consistent with Reynold-Hough's

Lo generalization on linearity [10], an alternate form of weighted

e oy ey
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geometric mean, as given below, is proposed here:

@ P = Clp,, By 9 pf /%) plon(a/b) (2)

where p, = ¢p, + (1-¢) p, and p; = [¢/p) + (1—4>)/pzl'l are the Weiner's
upper and lower limits respectively. In Equation (2) it is presumed
that nth fraction of the chaotic system behaves as if oriented in

the direction of the electric field induction and the remaining

(l-n)th fraction is oriented orthogonally. Here, n is considered as

a function of the axial ratio of *he shaped-inclusions (namely a/b)

' only, and C is the weighting factor depending on Pyr Py and ¢.

The expression of Equation (2) is, however, applicable to a
statistical mixture only when the following constraints are met with:
(i) In the limiting value of n + 1/2, Equation (2) should degenerate
“ to Equation (1). (ii) In order to satisfy the extreme conditions of
a/b tending to infinity or zero, n(a/b) should be bounded within the
limits 0 < n < 1 for any values of Py and P, and for 0 < ¢ < 1.

(iii) The magnitude of p (for any finite values of Py and P, and for

0 £ ¢ < 1) should always be bounded and lie within Wiener's limits.

RIS

(iv) At the terminal values of ¢ -- namely 0 and 1 -- the value of p

y
N
.o
.
o
I
[

should be entirely specified by the single component value, pl

S Ay

%

and pz.
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With the application of the aforesaid constraints, and after elaborate
algebraic manipulations, Equation (2) can be explicitly given by the

following expression(s):
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: J

Y($)/2, pl>pz,

X(¢)/2, P1<P21

~

where X(4) = Z(4) + 1/p, (4), Y(6) = Z(§) + py($), Z(4) = p(d) / B ~(9),

and () = 5} o1/ /B (9 p @),

A®) =1+ 1/py B, BlO) =1 41/

Further, by implementing the constraint on the extremities of a/b ratio,

the parameter n can be written explicitly as a function of a/b in the

following manner:

_(-M ,
n=Ty ifp 2p
and
aiM-1)
no=—a ifpzipl.

Here, M is a function of a/b ratio and is given by ([12],

PSS PRI I T P UL I P
AT N e o alaharaat

0< ¢ < ¢1:

1/2 + ° C(¢) z(¢)l Pl>92:
¢lf_ $ < ¢2:

2c(¢1) + 2C(¢2) *« C(¢) Z(¢), Py <P,/

(3)

(4a) j

(4b)




2 arc sin (e)

M=e 1 - (1-e) P

where e is the eccentricity of the particle which can be expressed

in terms of the axjal ratio as follows:

a - g.) if a>b (6a)

L}

and e (% - 1) if a <b. (6b)

When e = o (which corresponds to the base of % = 1, or for
spherical and sphere-like particles), the value of M becomes 3;
and when % >>1 or % <<1, M asymptotically reduces to unity. Hence,
from Equation (4) it follows that

1
=3 (7a)

n(%) (7b)

lor 0 (if p, > p.);
%-*woro 1 2

"

0 or l (if P, <p2).

Therefore, n(%) is always within 0 to 1l limits, irrespective of

the extent of particle eccentricity.

Further, it can be shown that the coefficient function C of
Equation (2) attains minimum and maximum values at volume fractions

of ¢1 and ¢2 = (1 - ¢1) respectively; and ¢1 is given by

(5)

AN
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¢, =k -%/1 -4t (8a)

where t can be explicitly stated as

2(py - py) zn(E;) (pl-pz)2
)

. (pl+pz) . 1 p,P,

. (8b)

2

Equation (3) represents a generalized expression which can quantify
the effective property such as the electrical permittivity, magnetic
permeability, electrical conductivity, thermal conductivity,
diffusion constant, and elastic properties of a two-phase composite
in terms of the corresponding properties of the mixture constituents

and the shape and volume-fraction of the inclusions [13].
ELECTROSTATIC PROPENSITY AND BLEED-OFF CHARACTERISTICS

To study the electrostatic propensity and bleed-off character-
istics of a test composite, the two electrical properties which are
of interest are the permittivity (€) and the conductivity (o) of
the mixture-state which can be quantified by Equation (3), by
substituting € or 0 in the place of the general parametric quantity,
namely p. When a composite medium with an effective permittivity
€ is subjected to triboelectrification, the corr=sponding surface-
charge (qs) induction can be related to the electrical polarisation

(P) as follows:

q, -li;I’ (e-1) e'olfl (9)
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where 80 is the free-space permittivity and E denotes the
electrical field intensity associated with the triboelectric

mg potential of the medium.

Hence, the electrostatic propensity arising from triboelectric
polarisation is directly proportional to the dielectric constant or
the effective permittivity of the composite (assuming that the two
materials involved in the abrading process are identical); however,
if the materials involved are dissimilar, the triboelectrification
would depend on the ratio of the dielectric constants of the
materials concerned. That is, the relative triboelectrification in

the materials A and B can be specified as

(eA—l)

. (10)
(€5-1)

o |5

In view of the above considerations, it follows that materials
with low effective permittivity are less susceptible for tribo-

electric propensity. This property should be duly considered in

the design of static-conductive materials as described below.

I

Static conductive materials can be characterized by their high

static-dissipative abilities. Quantitatively, the time-constant

REARL " 4

A

(T) of static bleed-off can be regarded as an indicator of the
static-dispensing nature of the test medium. This time constant T
can be expressed in terms of the effective values of permittivity

(e) and the electrical conductivity (0) of the composite as follows:

e, it L% Y I AN XN TS
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1=e°e/o (11)

where the values of € and ¢ can be determined by Equation (3) and

Eo is the free-space permittivity.

In order to achieve a fast bleed-off, the time constant T must
be minimum. However, minimization of T is subjected to certain
practical constraints. The constraints are: (i) The test composite
is a stochastical mixture and therefore the effective values of €
and ¢ should be specified by the expression of Equation (3).
(ii) The maximum value of the volume-~fraction (¢) of the conducting
inclusions is equal to 1. (iii) The minimum value of the volume-

fraction (¢) (threshold value) is determined and limited by the

amount of conducting inclusions required for the establishment of
the electrical percolative current paths in the mixture-matrix.
(iv) Considering a test material of cross-sectional area 'a' and
length '£,' the resistance per unit length, namely R/f = 1l/ca,
should be greater thar. a minimum value specified by certain manda-
tory rules concerning fire-hazard/short-circuit protection
specifications stipulated for industrial applications_of these
materials (14)}. With the aforesaid constraints, an optimum value
for ¢ can be obtained by minimizing the bleed-off time-constant (T)

as detailed below:

The electrical capacity (C) and the resistance (R) of the test

material of cross-sectional area 'a' and length '£' are given by

C =gy asl (12)

o,
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and

R = £/ca. (13)
And considering the fire-hazard /short-circuit protection limita-

tions on the resistivity of a test material, the relevant constraint

can be explicitly written as:

<
Prin~ —;- (14)

where Pmin is the minimum value of bulk resistivity of the composite

material prescribed by fire-proof regulations [15].

Using Equation (3) and with relevant simplifications, the con-

straint specified by Equation (14) can be rewritten as

d . < ¢< ~Log, (i) (15)
mn Zog_ To,/0,)

where ¢min specifies the threshold value required for-the current

percolation.

Considering the time-constraint T (equal to RC), its approximate

value, determined by Equations (3) and (11), can be expressed as

follows:

6
cmel2l A (16)
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Hence, to obtain a minimum value for 1, (i) 52 should be close to 1;

and, (ii) since 0_>>0., it is necessary to take the largest possible

T 2 71
%‘ value of ¢. Therefore, the design- value of ¢ (as given by Equation
15) should be
Logo (Ppin 990 (17)

¢ = -
!Loqe (01/02)

DESIGN EXAMPLE

Consider a composite material formed by blending Bakelite and

recycled aluminium powder. The Bakelite material (insulator) has

the following values for the electrical constants: €, = 4.5 and

p2 =2 x 10'" ohm-meter; and for aluminium, €, = 1 and 0, = 3.53 x 10’

1 2
“ Siemens/meter.

Sunpose this composite material is used as a static-conductive
floor covering. Then, it has to meet the electrical resistance
requirements of the National Fire Protection Association Bulletin
56A, "Standard for the Use of Inhalation Anesthetics.“ This stan-
dard specifies that the average electrical resistance of an
installed floor shall be between 25000 ohms and 10% ohms as
measured between two electrodes placed 3-feet apart. ne averaue
resistance to ground shall be more than 25000 ohms as measured

between a ground connection and an electrode placed at any p<i:°

on the floor. The resistances represent the average of five

more readings per room or installation and are measured acivrding
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to the procedures outlined in NFPA 56A which are essentially the
same as that of ASTM F 150-72, "Standard Test Method for Electrical

Resistance of Conductive Resilient Flooring."

Hence, taking the specified minimum value of 25000 ohms, the
corresponding value of resistivity (pmin) of the test composite can
be calculated by assuming the thickness of the floor covering as 1/8

inch. Then the calculated value of Ppin 15 equal to 8 x 10° ohm-meter.

Using Equation (17), the optimum value of ¢ can be determined. In
the present example, it is equal to 0.3386. The corresponding value
of decay time-constant T is 191.53) sec. This value is acceptable as
per MIL-B-81705B specification which stipulates a decay rate of 2.0

seconds as maximum.

The static decay time-constant (T) of materials is normally
measured by the procedures outlined in Method 4046 of Federal Test
Method 101B, dated 8/15/74. The static accumulation or propensity
can be determined similar to the test procedure of AATCC-134,

"Electrostatic Propensity of Carpets."” (or ANSI-ASTM D 2679-73 [15].)

STATIC PROPENSITY OF COMPOSITES

WITH FIBROUS CONDUCTING INCLUSIONS

The present analysis can also be extended to composite materials
formed by adding fibrous conducting inclusions in an insulating

medium. Such composites would give a required extent of electrical
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conductivity in a preferred direction determined by the orientation
of the fibers. Using Fricke's formulation (described by one of the
authors elsewhere {12]), Equation (3) can be simplified for long

(or needle-like) fibrous inclusions. Relevant investigations are in

progress.

RESULTS AND CONCLUDING REMARKS

The present work essentially describes, via appropriate modeling,
a design methodolegy for choosing the correction composition of

materials in the fabrication of static-conductive composites.

The relative electrostatic propensity of two materials (A and B)
can be specified in terms of their dielectric constants (eA and eB)
(Equation 10) as illustrated in Figure 1. For identical materials

(N = EA/EB = 1), the charge propensity is the same in either of them

as expected; and for large values of the dielectric constants of any
one of the materials (say, CA), the relative propensity approaches
asymptotically the ratio of the dielectric constant, namely N,
irrespective of the magnitude of N. However, for low values of Epr
the relative propensity tends to infinity for any given value of N.
Therefore, it follows that, when a material of low permittivity
abrades with a material of higher permittivity, the triboelectrifica-

tion would be intense. This is true for composite materials also.

Considering the design of a composite with controlled static
propensity, the choice of optimum value of volume-fraction (¢) (with

the constraint on resistivity specified by fire-hazard limitations)

18




depends on both the conductivity of the inclusions as well as on the

ratio of the conductivities of the dispersing insulator and the
‘ dispersed inclusions (Equation 17). Figure 2 illustrates the

typical ranges of the practical values of the material constraints

and the corresponding design-values of the volume-fractions.

? If low volume-fraction of inclusions is preferred (so as to
obtain, for example, certain desired mechanical/elastic properties),
then as could be inferred from Figure 2 it is necessary to choose
the dispersing material with higher conductivity. Thus the present
formulation has a design flexibility to suit the practical

situations.

Bleed-off time of a composite material as a function of conduc-
tivity of dispersed inclusions is presented in Figure 3 for two

‘ different volume-fractions of the inclusions. The delay or -

capacitive effects of the dispersing insulating medium is

determined by the dielectric constant (ez), and Figure 3 corresponds
to a (practical) parametric value of t~:2/o2 equal to 105 ohm-meter.
It can be observed from Figure 3 that both 01 and o, control the
bleed-off time to a significant extent and that the roie of €, is
implicit. However, compatible design can be achieved as illustrated

by an example given before as regards a mixture composite of Bakelite

and aluminium powder.

Thus, the present work considers cohesively all the effective

parameters which decide the bleed-off and static propensity properties

w=xs

of a composite material, and its utility in the design of static
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dissipative composites needs no emphasis. Special composite

dielectrics using rubber [6] as the insulator and solid electrolytes

{17]) as inclusions are being designed as per the Present investigations.

ACKNOWLEDGEMENTS

The work reported in this paper is supported by a research grant

(No. 613-005) by the Office of Naval Research, which is gratefully

acknowledged.

ST A R MR AL AR TR R

20

TR L I A R L PRI
m"ﬁ'@\&&\ﬁéﬁ NS S



iiib (1)

(2]

(3]

[4]

[5]

(e}

)

(8]

0] ™ P N A
* x*‘.‘d.-.’f‘«.'ﬂ. WA AU N IS AT ‘:‘I':.l U RS W

REFERENCES

Lingousky, J.E., and Holt, V.E., "Analysis of Electrostatic
Charge Propensity of Floor-Finishes,"” EOS/ESD Symp. Proc.,

Vol. EOS-5, pp. 17-20 (1983).

Felt, F.S., "Coplanar Triboelectrification of Selected Materials,"

EOS/ESD Symp. Proc., Vol. EOS-5, pp. 95-101 (1983).

Briggs, C. Jr., "Electrostatic Conductivity Characterisation of

Workbench-top Surface Materials," EOS/ESD Symp. Proc., Vol. EOS-1,

pp. 7-12 (1979).

Halperin, A., "Static Control Using Topical Antistats," EOS/ESD

Symp. Proc., Vol. EOS-1, pp. 13-21 (1971).

Kolyer, J.M., and Anderson, W.E., "Selection of Packaging Materials

for Electrostatic Discharge-Sensitive Items," EOS/ESD Symp. Proc.,

¥.-y

Vol. EOS-3, pp. 75-84 (1981).

S -

-_-}

Frank, D.E., "ESD Considerations for Electronic Manufacturing,"

-

presented at American Society of Manufacturing Engineers: Westec

Conference, Los Angeles, Californmia, March 21-24, 1983.

Tinga, W.R., and Voss, W.A.G., "Generalised Approach to Multiphase

Dielectric Theory,"™ J. Appl. Phys., Vol. 44, pp. 3897-3902 (1973).

Lichtenecker, K., "Mi{schkOrpertheonie als Wahnscheinlichkeitz
- problem," Physik leitschr., Vol. Xxx, pp. 805-809 (1929).

21

, R S R R R A NS S LI St “ [N AR I S ...'-“_.‘
Ok \" . .. Ay ..~ -"-'\-‘\"' ~'~f‘-" PO



(9] Lichtenecker, K., and Rother, K., "Die Henleitung des

)
Loganithmischen Mischungsgesetzes aus allegemeinen Prinzipiew ::ﬁ
O den stationdren Sthomung," Physik leitschr., vol. XXXII, ‘:-‘

Pp. 255-260 (1931).

l.o
(10} Reynolds, J.A., and Hough, J.M., "Formulae for Dielectric ::
. o
f Constants of Mixtures," Proc. Phy. Soc., Vol. LXX, pp. 769-77S )
' W
(1957). \
]
§
X
{11} oOukhin, S.S., and Shilov, V.N., "Dielectric Phenomena and the )
vy
Double Layer in Disperse Systems and Polyelectrolytes,” John .
Wiley (1974). ::
7~
. in"
{12] Kisdnasamy, S., and Neelakantaswamy, P.S., "Complex Permittivity b
f i
of a Dielectric Mixture: Modified Fricke's Formula Based on

§
“ Logarithmic Law of Mixing,"™ Electron. Letts., Vol. 20, £
pp. 291-293 (1984). . .'..

(131 Gunther, K., and Heinrich, D., "Dielehtrnizitdtskonstante, ;
Permeabilitdt, elehtrische Leitfdhigkeit, Warmeleitfdhigheilt und ;

- - . - - . . \
Diffusionkonstante von Gemischen nit kugel§onmigen Teilchen &
(gittenfbnmige und statistische Anordnung)," Zeitschr. Phy. -

Vol. 185, pp. 345-374 (1965). ‘ .~

A
W
"
:}:.
.
(14] National Fire Protection Association, Booklet No. NFPA-99, :f'.
"Standard for Health Care Facilities,” 1984. .-

N

~
‘
"

iR

22

<

"'a 'k"u‘!h‘,kﬁ.h’,l v N"

" q~'.'-\-,'.- . ..n"I,-.l.'c..v.-'_q--- L I SN T UL QP
M . ey Tt e s N ® e - - - » -
PPt o AL TV VLTS VL L v P Y A A T T L oY



{15) "standard Test Method for Electrostatic Charge," American 3
National Standard (American Society for Testing and Materials), t

0 No. ANSI/ASTM D2679-73 (Reapproved 1978).

(16] "Standard Test Method for Rubber Property - Volume Resistivity of

Electrically Conductive and Antistatic Products,” American

National Standard (American Society for Testing and Materials)

No. ASTM D991-83.

- g -

[17] Neelakantaswamy, P.S., Chowdari, B.V.R., and Rajaratnam, A.,

"Estimation of Permittivity of a Compact Crystal by Dielectric

Measurement on its Powder: A Stochastic Mixture Model for the

LN o

Powder-Dielectric,” J. Phys. D: (Appl. Phys.), Vol. 16,

pp. 1785-1799, (1983).




CAPTIONS FOR DRAWINGS:

. Figure 1. Relative electrostatic propensity of two abrading (nonconducting)
: materials A and B. The magnitude of relative propensity is
decided by the electrical polarisability/susceptibility of the

materials quantified in terms of the permittivities EA and eB. ‘

s
..‘

S
- ">

{f Figure 2. Dependency of the optimized volume-fraction on the conductivities
4
1 of the dispersing insulator (02) and the dispersing inclusions

(0,). The range of values of 0. and ¢, indicated correspond to

1 1 2
ﬁ‘ practical materials; and the resistivity of a composite is limited

it to a minimum value of pmin = 8 x 10%chm-meter (as decided by fire-

! (ji? hazard requlations).

o Figure 3. Bleed-off time of a test composite as a function of the conductivity
4 (01) of inclusions in the insulator for two typical volume-fractions
o (¢). The capacitive effects of the insulator are implicitly

& decided by the ratio €

5 taken as a constant parameter. (The ranges

of the constants depicted correspond to practical materials.)
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COMPLEX PERMITTIVITY OF A DIELECTRIC
MIXTURE: CORRECTED VERSION OF
LICHTENECKER'S LOGARITHMIC LAW OF
MIXING

Indexing terms: Dielectrics, Complex permittivity of o mixture,
Lichtenecker's formula, Logarithmic law

Lichtenecker's logarithmic expression for the permittivity of
a dielectric mixture is correctied 10 eliminate certain mathe-
matical inconsistencies. This is done by 8 weighted geometric
mean technique which renders the expression compatible
with the so-called Reynold-Hough linear formulation. Cal-
culated results are compared with some available date.

Introduction: Calculation of electrical induction in a dispersed
system by classical electrostatic techniques forms the basis of
the existing analytical descriptions of mixture diclectrics. The
permittivity of a mixture (¢, is usvally expressed in terms of
the permittivity of the inclusions (¢,,) and that of the disper-
sing continuum (¢,,). (The suflix s here denotes the static field
conditions) The interrelation between the permittivities would
also include the volume fraction ¢ of the inclusions and a
‘field-ratio’ term' to account for the depolarisation effects’
governed by the shape and spatial distribution of the inclu-
sions.

Reynold and Hough? succgeded in 1957 in reducing all the
mixture formulations then available to the closest approx-
imation of a linear form except for the so-called ‘Jogarithmic
law of mixing’ developed by Lichtenecker and Rother.?® They
doubted some error in the logarithmic formulation and later
(in 1974) Dukhin® attributed the observed incousistency to an
illogical assumption by Lichtenecker,?-* who considered s dis-
perse system as chaotic and ordered simultaneously.

Despite the prevalence of the aforesaid mathematical incon-
sistency, the logarithmic law of mixing has surprisingly gained
recognition, supported by experimental data gathered on
chaotic mixtures with near-spherical inclusions.>? However,
it is still preferable to climinste the persisting incompatibility
of the logarithmic law with respect to the generalised linear
form.! This could be donc by the modifications suggested
below.

Theoretical formulation: Considering a chaotic mixture, the
effective permittivity as given by the logarithmic law of mixing
corresponds to a weighted geometric mean? of ,, and ¢,,,
namely ¢, = ¢f,c%,.

Inasmuch as the logarithmic relation is inconsistent, a dif-
ferent form of weighted geometric mean, as given below, is
proposed :

£ = C(ey, &y, Q)P ~=e¥ W

where ¢, = ¢¢, + (1 — ), snd ¢, = [d/e;, + (1 ~ ¢)e,)!
are Wiener's upper and lower limits, respectively. In eqn. 1, it
is presumed that the ath fraction of the chaotic system
behaves as if polarised in the direction of the cloctric field
induction, and the remaining (1 — aXth fraction is polarised
orthogonally. Here, n is considered as a function of the axial
ratio of the inclusions (namely, a/b) alone and C is the weigh-
ting factor depending on ¢,, ¢;and ¢.

The expression of eqn. 1 should satisly certain limiting con-
ditions pertaining to n, ¢ and e The conditions are: ()
0<ns1; (i) 0<¢ <1 and (iii) for any finite values of ¢,
;‘nd ¢;, ¢ must be bounded and lic within Wicner’s limits.

ence

Y] 05454,
%[;‘C%'l’) +%%]C(¢m¢), 6>

.- bsb<ds O
] [5%% + %‘%} A2 e, <t
Xovm e o) #5951

where  X(¢) = Z(¢) + 1/e,(4), Y(¢) = Z(¢) + erd) Z(¢$) =
UVl @k A@) =1+ 1/dpel, B(¢)=1+1/6 """ and
Q) = /[en(gVed)lel e} %,

Further, n is equal to (5 — M)/4 or (M — 1)/4, depending on
¢, > ¢; or ¢, < ¢, respectively, Here, M is & function of the
a/b ratio which can be determined in terms of the eccentricity
of the inclusions as indicated in Reference 7.

In'eqn. 2, ¢, and ¢, = (1 — ¢,) denote the volume fractions
at which the weighting coefficient C attaint minimum and
maximum values, respectively; and it can be shown that

ébi=4-4J0-4) &)
where ¢ is given by

(g, +¢3) ‘ 2,8

A — el (6~ e

@

Results and conclusions: Since eqn. 2 is in 2 linear form and is
functionally related to the shape-dependent (depolarising) par-
ameter a/b, it is compatible with Reynold-Hough's expression.
It is also valid for dynamic (time-varying) cases relevant to the
compiex permittivity of a mixture.

Table | COMPARISON OF CALCULATED DATA ON THE PERMITTIVITY OF A DIELECTRIC MIXTURE

Volume fraction, ¢ 0 01 02 03

04 05 06 07 08 09 10

a/b ratio  Calculated by:

Dielectric constant of mixture (¢)
(Mixture constituents: ¢, = 783, ¢, = 2-0)

Lichtenecker's 200 289 417 6-01 867 12:51 1806 2606 37-60 54-26 783
formula?

1-0 Present method 200 289 417 6-01 867 1251 1806 2606 3760 54-26 783
Boned & Peyrelasse 200 302 425 5-00 7.5 1100 1701 2696 40-52 583 783
formula®
Lichtenecker's —_ — —_ — — — - — — — —
formula?

50 Present method 200 432 600 906 1343 1953 2796 3927 53710 5891 78-3
Boned & Peyrelasse 200 436 642 841 1246 1925 2127 37190 S0-16 6417 783
formula®
Lichtenecker’s _ - - = - = = = = — -
formula?

o1 Present method 200 47 660 1029 1541 2249 3209 4463 5900 6197 %3
Boned % Peyrelasse 200 570 841 11-52 17444 2567 3594 4823 5820 6802 783
formula

Reprinted from ELECTRONIC LETTERS, 28th Merch 1985, Vol. 21 No. 7 pp. 270-271
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To verify the present formulation, theorstical results on the
mwu,mm.mmdmm
Peyrelasae” for a typical dispersed system are prosented in
Table 1 along with the results due to i
uxlomuhdoumloﬂwhmdlo-dndm’
is rigorous but involves elaborate integrati in computing
the results. Comparable results can, however, be obtained

casc by the present formulation which s in
feqa. 2}
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1985 Electrical Overstress/

Electrostatic Discharge Symposium

VILAMKNTAKT BOT-SPOTS IN MICROUAVE INPATT DICODRS,
MODIYIED WOWSCE-BXLL MODEL :

Perambur §. Neelakantasvemy
RIT Rasearch Corporation
Rochester, Nev York 146233438
(716) 4735-2308

Swmmary

IMPATT diodes are wuseful as high ' peak-pover
microvave sources intended for short duratiom applica-
tions such as im wmissile-borme systams. However,
they exhibit high-catastrophic fatilures {ndicated
by either peripheral (mess surface) *burnouts or by
i{ntense filamencary shortouts within ¢the Ddulk of
the semiconductor. Such failures are normally attri-
buted to electrical overscressings (EOS) arising
from RF-sssociated transients or perturbations due
to chaoges io bias voltage, RF-impedance loading
and/or due to external stimuli such as electrostatic
discharge (ESD), electromagnetic pulsing (DP), stc.
These alectrical overscreassings significantly influence
the temporal and spatisl thermal response of the
davice leaading to the provocation of catastrophic
failures. lNence in order to obtain optimum ucility
yiald of IMPATIs, failure-prediction and trade-off
studies required for design-revievs are considerad
here by identifying the mechsnisms of failores along
wvith relevant Dbheat-flow calculations (Wuasch-Bell
spproach) compatible with the diode gecmetry and
alectrotharmal power ralatiocns. For a gives extent
of failure propensity due to thermsl runsway relisdil-

ity aspecta of some typical diode structures are
evaluated.

Iatroduction

* Modern high performance radars and missile-borne
systems requirs microwave solid-state sources capsble
of delivering high peak-povers at maximum efficiwscy,
togethar with the adjunct requirement of high perform~-
ance reliadility. IMPATT diodas are useful in such
applicstions, but they exhibit significant susceptibil-
ity to catastrophic failures arisiog from elactrical
overscresses (EOS) caused by electrical transients/
perturbations due to undesirable external influences,
such as ESD, EMP, etc., Or from circuit-associated
changes like bias-voltage fluctuations or RF-impedance
("detuning”) effects?, etc. Proneness to such failures
of IMPATTs s due to the diodes being operated close
to their electrical and thermal limitations so as
to realize uigh RF power output and maximm efficiency.
Typically, {nput power deosities of IMPATI» are in
the 10% W/ range under CW operation; and they
approach 105 W/em? under pulsed operacions with pulse
durations of several microseconds at ducy cycles
in the range of 10 to 40%.

R Io order to improve the yield of lese faflure
prone IMPATT diodes so0 as to make them cost-effective
vhen used in high reliability systems, (t 1s pecessary
to understand thoroughly the failure mechanien(s)
involved so that appropriate corrective wmeassures
can be adopted at the design-leval.

The available fault-isolation data frow failed
diodes)"3 indicate wmatal penetration from contacts
into the esemiconductor and/or bdurnout sheaths and
cracks alcug the mesa periphery. Although the damsge
sites usually shov shapeless, large~ares metal precipi-
tstes, well-defimed wmetallic (filaments indicating
the existemce of oelongated bhot-spots ia the gors
have alse been identified in seme ftnstancesd. The
eat phis app of sueh filamenctary het-spets

LMy
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originate from the nonuniform tempersture distribution
across the diode resulting from finite thermal epresd-
ing resistance of the diode/heat-sink combination.
Mormally, the edge regions of the diode are cooler
thas the inoer onss. PFurther, since both the satura-
tion current and the avalanche msultiplicatiom factor
are heavily dependent on local junction temperature,

the resulting current density profile would invariably
be nonuniform.

Under normal opsrating conditioms, the negative
temperature coefficient of the avalanche multiplicacion
process would dominate the positive tempersture coeffi-
cient of the saturation current. Consequently, the

cooler regions of the diode would carry more curreat -

than the varmer parts. This overall negative tempera-
ture coefficient of the currest demsity stabilizes
the diode against the thermal runavay. That {is,
any local {increase in temperature would cause the
current and heace the power dissipation to drop st
that point, brimging the tewparsture dovovard.

Hovever, with the changes in input pover, this
stabf{lization of current distribution within the

diode will be upset by either one of the following
situationss

(1) The tempersture build-up fu the warmer
(ioner) parts of the diode alloving the
saturatiom current to dictate the local
current flow and power dissipscion, and

(11) large current densities i{s the cooler (outer)
parts of the dfode may induce a current-
controlled bulk negative resistance’ 10
via space~charge effects associated with
the generated carriers.

Both of these perturbation phenomena wvould ulti-
mately lead the diodes to catastrophic failures.
Changes in input powver causing the aforesaid perturba-
tion(s) may arise from external stimli, such as
electromagnetic pulsing (EMP), alectrostatic dtuhuul
(ESD), aete., or from circuit-associsted inscabilities
provoked by bias-voltage fluctuatioms and/or by “detun-
tng” effects? relsted to RF impedance loading.

In general, perturbations responsible for electri-

cal overstressing would be trassient {(n nature.
Therefore, the relevant failure wmechaaisms would
be studied by ctempural and spatial electrothermal

modeling of the diode/hear-sink combination and the
criteria for failure should be established via therwal
runavay/heac-flov formulacions (Wunsch-Bellll
approach).

Considering the destabilizatiom of current distri-
bution due to temperature build up in the varmer/core
regions of the diode, Olson?d daveloped an ome-dimen-
sionsl model which cowputes the d.c. J-V charactaris~
tics of Schottky-barrier IMPATT diodes for a pecified
heat-sink tharmsl resistanca. The characteristica
displayed regions of fnitial 1increase asd later
decrease in positive differemtial rvesistanes (PDR)
felloved by & region of curreat-contrelled megative
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(NDR). Olson
the formation of high current density filasents with
the presencs of not oaly the NDR, but also with that

differential resistance associaced

of the decreasing PDR. Indeed, experimental asspects
of his study did indicate device failures for operatisg
conditions of decreasing PDR. To explain such faflures
Olson3 resorted to and extended the "phenomenologicai”
argument of Sze regarding the formation of a high-
current filament even before the resistance of a
diode going negative. Accordiog to Olson, the srgument
as applied to an IMPATT diode would go as follovas
suppose the diode current is uniform and the diode
resistance {s positive but 1s dropping wvith increasing
diode voltage  (and electric (field). Now, suppose
that the electric field is also momentarily perturbed
upvard at some locale in the diode. This vould causs
the resistance at that point to drop snd more curreat
to flov through that point. By virtue of curreat
continuity, the low-resistance high-current regiom
will grov into a complete filament along the direction
of curreat flow.

This argument of Olson3d is not juscifiable because
a local increase in the field intensity would enhance
the current flow at that point as long as the IMPATT
operates in the PDR region, no matter wvhether PDR
decreases or nocC. That {s,  local changes ia the
field cannot be applied selectively to the decreasing
PDR region alone {n order to explain the observed
failures. Moreover, Olson's -od-lJ. vhich {s one-
dimensional, bears an inherent assumption of uniform
radial current and temperature discributions.
Therefore it does not form a natural basis to explaina
the tvo-dimensional current filamentatfon extending
in the radial and longitudinal directions.

Hence, 1in the present investigations a compre-
hensive tvo-dimensional (numerical) modal to descride
the local current density varistions with changes
in {nput pover is developed which s devoid of the
inconsistencies present in the Olson's phenowenologfcal
approach.”»

Fumerical Model

In the proposed model, the d.c. I-V character-
fstics of a Schottky-barrier IMPATT diode is evaluaced
via algorithmic description of the variations (spatial)
in the curreant density as functions of {input power.
Numerical computation of the local curreat density
is done wusing expressions relevant to thermionic
emiseion current and avalanche wmultiplication factor,
M.

The specific geometries of the diode considered
here are fllustratad in Figures (la) and (1b). They
represent cylindrical and annular ring mesald serue-
tures, rtespectively. Further, the heat-sfnks in
Figures (la) and (lb) are caken to be sufficiently
large 8o that constriction effects are {ignored.
For a d.c. voltage applied to the diode, the resulting
current and temperature profiles are determined as
detailed below. 2
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Cylindrical Mesa Diode

Considering the diode structure depicted in
Figure (la), & wuniform pover density (P) profile
is {nitially assumed over the diode crose-section.
Whea a disk-shaped region (cylindrical diode) {»s
placed over an infinitely large heat-sink and dissipat-
ing pover uniformly across {ts cross-section, Laplace
equation, for the epatial temperature distribution
has a closed form solution for the region = §

0. In the t = 0 plane, this solution is givea bylé,15

R 2
T(r,0) = P‘:BT Z(m) + T,» Osrsky (1)
and

| §
ey mr =2,
.

1 a-1 1
(E(=)- (—IX(=)] + T, r2R, (2)
- = a A

vhere ky 18 the thermal conductivity of the heatsfink,
Tao i» the sabient temperaturs, m = (r/R)2 and K(m)
and E(m) are complete elliptic iategrals of cthe
first and second kind, respectively. The resulting
temperature profile presents a maxisum at the cencer
of the disk and decresses vwith, r (Figure 2a).
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The temperature profile computed via equations
(1) and (2) can be used tc determine the current
and pover distribucions, denoted respectively as
J(r) and P(r), by an {terative procedure as outlined
by Olson), but wmodified to include the radial
dspendancy of the tesperaturs and current densities.
The analytical relations wused in the iterative
computational procedure are as follove:

(1) The saturation currant density Jg(r) versue

pesk elactric field {ntensity, Lalr)
at a temperature T(r)
"~ ~(op-7(qlalr)/bne
3,(8) = arr 12(r)exp | L T )
e
vhere A** g cthe Richardson constant, k is the

Boltzmann Coostant, ¢p is the Schortky-barrier height,
q 19 the electronic charge and ¢ 1is the permittivity
of the device-medium.
(41) Avalanche multiplicstion factor:
Mir) = J(r)/3,(r) (&)

wvhere J(zr) i3 the local current density.

(141) Avalanche wmultiplication factor versus
impact jonization coeffictent, a(r):
1 w(r)
1- -j afz) dr (s)
n(r) 0

where alr) = olr) exp l-lb(r)/(-(r)lzlo

al{r) and b(r) are temperature dependent
and W(r) {s the local extensionm
It is related to {gu(r)

Purther,
{onization constants
of deplstion region.

end carrier space changs effects via Causs lav as
given balow:
W(z) = £ulr)/(qNp-3(r)/vy(r)] )

vhere Np is the doping level and V4(') is the local
electron drift velocity.

(iv) Lastly, the 1local current density can be
expressed via space charge resistance concept
as follows:

elal(r)

J(r) = [qNp- ) valr) 3

wvhere V is the applied diode voltage.
Hence, the pover density P(r) is given by
P(r) = J(z) x ¥ (8)

A typical pover density variation with respect to
r is shown in Figure 2b. 1In the computstional proce-
dure, this nonuniform profile of P(r) {s approximsted
by the superposition of s series of constant pover
density profiles. Corresponding to Pyyp in Figure
2b, the temperature profile is obtained via equations
(1 and 2). And the effect of aach fncremental (uni-
form) pover deasities AP is determined Dy superposing
the tempersture distribution duva to & dissipation
AP ever & disk vadius R sad the ome which would

result from a ficcitious dhupu‘lon of -4?

over a disk rsdius of a, again by using equations
(1 and 2). Once the nev tesperature T(r) is obtatned,
the procadure {s iteratad {1l the tempersture profiles
st twvo consecutive iterstions do not differ from
each other by more thsn a permissible error. Hence,
from the final solution for J(r), the diode currest
is calculated by integrating the current density
profile over the diode area.

Anpular-Ring Mesa Diode

The treatment of annular riag diodes (Figure 1b)
fs similar cto that of the cylindrical diode. That
is, initially a uniform powver density dissipation
(P) 1s presumed over a disk of radius Ry which fis
superimposed with a uniform pover density (-P) “dissi-
pated” over a disk radius of Ry (Figure 1b). The
resulting temperature profile {s schematically showvn
i{n Figure la

RADIUS (1) emmem-
Fi Jis) TOPERATURE PROFLE AT DE TOP SURRME
OF THE HEAT SINK
(ANNMIAR RING DIODE}

The maximum tempersture occurs vithin the diode at
a point relatively close to the inner edge of the
asnular ting. Tigure 3b depicts the pover density
profile associatad vith such & tesperature distribu-
tion. The discrate approximation of the powver density
profile by osuperposing quantized, comstant-density
levels (AP) required for iterative computatiom,

is also {llustrated in Pigure 3db.

an |lAH

POWER DENSITY =
n

0
ha RADIUS (r) —
F16. ) FOWER DENSITY VEFSUS RAOIUS
(ANNULAR RING DIOOE)

Pulsed Operationm

Under pulsed conditions, the temperature and
current density profiles are computed as followe:
As IMPATTs operate at large duty cycles (above 107)
and as the diode/heat-sink thermal time-comstant
ie much larger than the pulse-duration, the teamperature
at & given point is estimated by superposing 8 time

L afidadhnd

average value T(r) with s transient increment 4T{(r,v) =.

2P(r,t)/at/ky7?, vhers & is the diode/heat-siak thermsl
diffusivity and P(r,t) 1s the imstantanecus local
pover dessity. This time-dependest tempersture distri-



betion {s cthen wused to compute the instancaneocus
current-density profile {n the same manner as (n
the CW oparstion. x

Results asd Discussion

"A.  TFailure Mechanisms . . .

@ To analyze the wmechanisa(s) of fatlure, chree
versions of diode structures, namely single mesa,
quad-sesa 7 and snnular-ring mesa msounted on copper
or dismond heat-sink are considered for relevant
computar simulstion. All the structures asre assumed
to have am effective cross-sectional ares A equal
to 5.6 x 10°%cal. The snnular ring wess structure
with oucer-to-inner radius ratio of R3/Ry, has the
same circumference 4as the quad-mesa diode. The
semiconductor (s asssumed to be doped n-CaAs with
a doping level of Np equal to 1016 a3,  ror the
p-CaAs-to-refractory metal (Pc, Wo ate.) coatact
the Schottky-barrier height ¢3 1is Cypically
0.8ev vhich is used {n the computations.

BSENHS! Wit

. The computed d.c. J-V charscterisitics of test
diodes (mounted om Cu hest-sinks) are presented in
Pigures ba-6a. These Lillustrations display the average
current density J = 1/A, the current density at the
core of the cylindrical diodes (J.) and the edge
current density, Jg, as functions of the applied
diode wvoltage, V. For the annular structures, the
outer and {inner current densities are denoted as
Jgy and Jgz, respectively. The curveant density at
the bottest zons of the annular diode is depicted 00 10
as J,. In the computations, the thermal resistance RACILES (1) IN pm
assoclaced wvith the contacts and placing metallic RO CUVENT DOEITY AND TOPERANFE VERSLE
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Pigures &b-60 {illustrate the radisl variationm
of tha current density and the temperature st the
diode/hest-sink interface, for maxisum approximate

temperatures of 250°C and 350°C. The corresponding :_
d.c. bias conditions are also indicated. 1In the 3
case of annular structures, the tesmperaturs profile e
slong the entire heat-sink surface is showvn om appro- o
‘ priste diagrame. s
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sing PDR region. At these temperaturss,
. current flov due to thermally geserated 'y
a the depletion layer 1s saversl hundreds W
mee, the corresponding fmcresse im the .:‘
:ioa vould naturslly result in a thermal :p’.
n . 1)
. e Ry | . "J
og the IMPATTs which are fabricated X1
thermal designs, the failure mechanies
ally initieted. These diodes have ;
arrying capability as shown om Pigures 6a V.
example, the diode o Figure ? has W,
sink, and {f tes bias current is kept "
k level, the computed maximum function 1'4
s less tham )50°C. Also, the current - o
s warmest part of che diode does pot ':-'
reasing POR. All these conditions are '
safe opesration of the diode. MNovever,
in bias current in excess of the peak e
wstrophic; and 4in sa actempt to allov
current flov, the diode voltsge and
er dissipation would resch unacceptable
he edge regions suffering to a maximum
cth as they carry the largest current 1
3 itually, the diode would burnout before >
ble operating point. Hence, for raliable
ool - L] ' s bias current should be limited to A
e ) P the peak level, by a margin of eafety. ..:
FIL 601 QNI OOGTY MO TDPCAUIURE VERSLS ’ W
ADIUS (ANVALAR RN BODE ON Co MEATSWK y of Various Diode Designe: A Comparison .
-.m.wn : [
8 _better heat-sink {8 general! has )
) 16,17 ts be the most important aspect ‘li‘
he pover handling capability of IMPATTs. ,
pose, diamond heat-sioks are normally o
<3

r heat-sinks (as well as with diamond),
mall area diodes or realizing annular Y
also would provide improved performance Y,
the present analysis.

~
presents the relative pover handling O
£ the best diodes studied in the present o’
‘ » It refers to CW operatiom with safe .
tion temperature of 230°C. The results ‘
md heat-sink improves the power handling ."
a factor of 2.5 over copper; and annular
P ts shov an improvement of about 252 o)
JnuUToY 4000 ‘mesa devices vhile retaining comparable
.formity 4im curreant distribution which !:y
le factor concerning the efficiency, ‘t!
, 1g sensitivity of IMPATT diodes. -
—Sﬂ /!n--as’t n
:'th -5 ’ : Under Pulsed Operation: :
-~
3 _3_ ty cycle of 10% and peak power levels -f
nJ as those resulting in a maximum junction
{heCRy Ja (PeER) £ 2506°C  under CW operation, the 3
Ju (MOTTESY 2 OMD) Ju (HOT TEST 2001 thow that the IMPATTs are relatively .
tance, the core temperature of quad-mess Wiy
mond heat-sink {s only 45°C when they W)
peak power level of 410 W. However, »\
- 00| iode temperature being very lov, the o”
ZH 22 lon becowes intense resulting {n current ¢
- large as 5800 A/cm? fn the cooler, ¥
F%u— gions. Such  high current densities hY
'un © o ™) 0 %0 300 ifode failure by forcing it to operace ;
. QIOOE  VOLIAGE (¥} ——= region with the current discridbution N
QUMD DOGTTY YERSUS DIOOE YOLIAGE
vasae V)-—o MNORIAR BOWIT ON OLASOMD HEATSI tble across the diode. The current U Y
'l.m.w).‘ T will be the highest at the locales )
PEATDer: 0/ a7y i irrent  density. It wmesns that under .
- ’ 5. the catastrophic high density shesch N
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Table 1. Comparison of the Pover Handling Capabilities of Different CaAs Schottky-barrier
INPATT diodes (Msxiwum Function Temperature » 250°C)
CW Operation
Design Type Diode Voltage 7.C. Input Power* Relative Pover
and Current Handling Capacicy
Single-wesa on Cu Heat-Stak Vs 9.720 9V P 42.3W 1.00
I1e 0.6664A
Quad-uesal? on Cu Beat-sink v s 103 v Pe 869V 2.06
1 s 0.84h A
Annuler-ring sesald on Cu Heat-sink Vv s108.8 V P 116.5 W 2,76
R2/Ry = 100 um/167 um = 1.67 I=s 1,071 4
Single-mess on Diamond Hest-aink Vs 105.8 V Ps 104 W 2.46
1l 0.983 A
Qu.ld—-cun on Diamond Hest-sink v s 130 v Ps 201.8W 4.7
Is= 1.552 A
Aanular-riog mesald on Dismond Heat-sink v = 151 v Ps 285.8W 6.76
R2/Ry = 1.67 1= 1.8934
Aonular-ring »esald on Diamond Hest-siok Vs 162 v Pes 239.5W S.67
R2/R) = 142.6 ym/S0 ym = 2.85 1= 1.687A

*Thermal resistance due to contact and plating wetallic layers at the heat-sink/diode interface is neglected.
Typically, this additional resistance may bring down pover handling by 302,

.

Conclusions

A tvo-dimensional current distribution wmodeling
is necesssry for the realistic analysis of the
pover handling capabilities of IMPATTs.

Diodes with distinct thermal designs bhave differ-
ent 1~V characteristics.

Poor thermal designs exhibit a decreasing PDR
region followed by & current controlled NDR
wi_h current filamentation at the hot-spot as
the probable failure mechanism.

Diodes with better thermal design shov 2 distinct
maximue bias currest capabilirty. Forcing the
bias current above this level would push the
IMPATT into a voltage-controlled NDR and the
resulting failure will be due to excessive diode
voltage among the test diodes considered.

Annular~ring IMPATTs indicate relatively superior
performance characteristics.
High temperature

conditions way &i1s0 provoke

diode failures, due 20 excessive generation
of intrinsic carriers.
Under pulsed operation, IMPATT reliability (s

juopardized not by a high junction temperature,
but rather by sn excessive current flow causing
a4 high-density current sheath at the wesa
periphery.

Unlike simple PN juaction diodes, IMPATTs warrant
&8 comprehensive numerical modeling to assecos
the Wunsch-Bell 1limit of catastrophy due to
thermal renavay.
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=-A REVIEW

Perambur S. Neslakantaswamy
RIT Research Corporatioa
3204 EZast River Road
Post Office Box 92130
Rochester, New York 14692

Tapan K. Sarkar and I.R. Turkman
Department of Electrical Engineering
Rochester Institute of Technology
One Lomb Memorial Drive
Post Office Box 9887
Rochestar, New York 14623

BOSTON SHERATON
BOSTON.MA

SUMMARY

Microelectronic devices and componants ars essen-
tially dielectric-based monolithic structures with some
additional metallization parts. These integrated cir-
cuits are highly susceptidble to woundings arising from
zappings due to electrical transients. Presently,
electrostatic discharge(ESD)~-based repetitive over-
stressings wvhich may rendar the devices in a states of
latent mode of failure are considersd.! Such wounded
or 'rogue’ componants may still be functional with
deviatory charactsristics, and ars potentially prone
to catastrophic failures on subsequant stress-repeti-
tions.? The time-dependant degrading performance of

ded comp s is quantified via static-induced
electrotharmal effects in the device structurs. The
aging of the davice is specified in terms of four pos-
sible damaging influences; namely, the elevatad temper-
ature, intensive electric field, depletory electromi-
gration, and undue thermoelastic stresses. Based on
the relative severity of these influences, a lethality
endurance factor (L.E.P) is defined to estimate the
failure time. Enhancemant of severity due to pulsed
wavefors is also discussed. Lastly, the latant failure
is regarded as ths balataed respouse dua to slow epdo-
chronic growth of microfractures (creeping) caused by
therrmoelastic stresses arising from repetitive

due to ch-' unpredictable or 'phantamous' appesrance of
menacing latent failures.

Presently the interaction of repetitive electrical ’
transients and the device is studied to assess the
extent of threat involved due to latent fajlures by
formilating a quantitative description of the perfor-
mance degradation or forced acceleration of the aging
procass.

ENDOCRRONIC MODEL

latent fajilure occurs whan a device takes multiple
{low-lsvel) zaps at random (or regular) intervals and
the resulting wounding remains dormant over an unspeci-
fied period with the complete cut—of-spec condition
showing up at & much later time. The time dependent H
or endochronic performance degradation of the device
and the belated failure can be expressed by a consti-
tucive law, in texrms of a generic function S(t) as
follows,?

S(t) = s, exp [-a/T*(t)].

zappings. lE(t)/Et)'L’””' (t) :
INTRODUCTION (C(t)/cilﬂm ()
In the area of mjicroelectronics there is an —ned/ T (E)
increased awAreness to assess the long-term reliapility [H(t)/HiJ )

of semiconductor devices which are susceptible to dam-
ages due to electrothermal effects at the Aielectric
and metallization interiors of the device arising from
electrical overstresses caused by electrostatic dis-
charges/transients.? High-intensity electrostatic
zappings normally provocats catastrophic failures in
the device either by burnouts due to high current den-
sities or by dielectric puncturing (breakdown) result-
ing from high electric field intensities across capac-
itive elements.? Por example, high-current burnouts
are common at PN junctions and metallizations, and
dieleczric breakdowns have been observed at the tuan
gate-oxade layers of MOS structures. While high-
intensity zaps would induce the afogesaid catastrophic
failures, low-level transients may be regarded as the
causative factors for thas so-called 'soft' or latent
type of failures in which the test devicas exhibit
endochronic performance dsgradaticn. RecCurrence of
zaps would ultimataly lead the 'wounded' devices from
the dormant stage of (mal)functionability to the out-~
of-spac or catastrophic condition.! The performance
dagradation or forced-aging due to alsctrical ower—
stresaing aot only reduces the life expectancy of the
davice but also would necessitste costly fiald-regairs
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where a, b, ¢, & are constants and T*(t) is a time-
dependent tempsrature function given by (L) =
Ti r(t)/‘r(t)-wri. Here 'ri denotes the initial tempera-

ture and T(t) is the hot-spot temperature within the
device at an observation time, t. Purther, in Equation
Q) Si depicts the initial value of the generic parame—

ter S and the exponential term represents the thermal
life of the device as govermed by the Arrhenius model.
The quantities §, C, and M are time-dependent slectri”
cal, chemical, and mechanical stress parameters respec
tively and the initial values of §, C, and M are Ei'

C,, and M. (respectively), belov which the correspond-

ing processes of aging are insignificant. The tarms
containing €, C, and K in Bquation.(l) follow the :
inverse power law depicting endochronic deterioraticet
and the quantities {, m, and n denota respectively '-":
electrical, chemical, and mechanical endurance coeffl
cients characterizing respective aging processes.
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EZquation (1) essentially depicts four major
failure-inducing mechanisms. The domination of one
particular process would depend on the strength of the

. excitation source {(namely the ESD) and the infra-

structure of the devicse. For oxuyplo. intense
transients can melt the PN junctions and/or metalliza-
tions; the resulting damage can therefore be regarded
primarily as thermal. Likewise, dielectric-breakdowns
at the gate-oxides of MOS structures are failures due
to high electrical field stressing (£). Purther, elec-
tromigration of metals at vulnerable zones, inducing
localized pittings and voids, is a thermochemical/dif-
fusion-based failure governed by the factor €. Mechan-
ical damage characterized by the quantity M would often
result froa thermoelastic stresses which may develop in
the composite-device structure due to thermal gradients
and other thermodynamical inhomogeneties."

Both the current~induced burnouts (melting) and
voltage-induced dielectric breakdowns are, in general,
catastrophic in nature, and therefore the relevant
causative parameters are considered to be of the high-
est severity. With low level zaps, however, the degra-
dation (say due to electromigration or thermoelectric
straining) would be relatively less severe and the
failure would take latent mode based on the cumulative
growth of electromigration and/or thermoelastic micro-
fracturing. Hence, representing the net failure pro-
cess of Equation (1) by a monotonic decay function such
as,

S(t) = 5 e.xp(-Kot) (2)

(whare xo is the decay~rate constant), it is possible

to specify the endurance of the device to lethality for
different severity conditions, as follows:

S(t)
S(t)

Actual Process

Catastrohic
Process (&)}

Lethality Pndurance Factor =
(L.E.P)

Hence, for a catastrophic failure (either current in-

duced or voltage induced), the severity actor (S.F) is
taken as 1 and the corresponding L.E.F is equal to 1.

However, for less severe dosages (S.P<l), the corres-

ponding value of L.E.P can be written as,

~m+c/T* (t)
L.E.EL -
(3391

K2 ln(c)/ni)

Ki[C(8) /C)

s(e) |Catastroph.ic Process

~n+d/T* (t)

S(JrCamtrophic Process (4)

depending on the mechanism involved being electromigra-
tion or thermoelastic creeping, and X; and K, are con-
stants of proportionality. The value of L.E.F in
Equation (4) would be greater than 1, depicting the
higher endurance by the device to zaps of lower inten-
sity or severity. It can be shown that L.E.F is also
identically equal to the ratio of failure times of the
actual and catastrophic phenomena. That is,

(il Actual Process

L.EF = )
a4 |Catut.tcphic Process (5)

where td is the un-to-huuh.

Explicit determination of L.E.P and 8.F can be
done by considering the charactaristics of the ESD
source and the static discharge path as described
in the following section:
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DETERMINATION OF L.E.F & S.7: ESD MODELS

The ESD phenomena normally encountered can be
simulated by three well-established aodels; namely,?
(1) human-body model, (ii) charged-device model, and
{111) field-induced model. The human-body model (Fig.
1) depicts the transfer of static from a charged indi-
vidual to ground via the test device. Charged-device
model represents the bleed-off of accumulated charge
upon the device-surface to ground through the Pin and
conductive parts of the active device (Fig. 2). The
third model simulates the effect of the charge distri-
bution and discharge, when a device is exposed to a
static-electric field (rig. 3).
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The severity of zapping in each model is deter- is given by,
sined by the scurce voltags (Vi) and the load condi-

tions of the discharge path. The corresponding P (&) =fmpc (T -1 )‘-l’ -
lethality can be assessed by computing the average ¢ p m A
junction dissipation per unit area (if the lethality
is current-based) given by, where k, p, and c:p are respectively the thermal conduc- :
t tivity, density, and hert capacity of the device .
Pt) = 1 S(V; (t)/Rj]dt (6) material with a melting point cqu.a.l. to T . Hence, the
d At lethality endurance factor (L.E.P) is given by,

whers A iz the junction area. Purther, a complete or
catastrophic failure wvould occur when the junction LE? = n ©
melts and the corresponding power density Pc(t) can be oL 1

]
calculated from the so-called Wunsch-Bell model.” It whers 71 is determined by the equation ., - Pc(“);

and 12 is the catastrophic failure-time determined by

the Wunsch-Bell relation (applied to spherical hot-
spot), and is nearly equal to (A p C_/35k).

1000 4 s
- Por the husan-body model shown in Pigure 1, by )
3 taking the severity factor (S.F) as 1 corresponding to iy
- \71 = 750V, the computed S.F versus L.E.P is shown in N
g R=iocon . Figure 4. For different component values of the simu~ “
[ lated charged-device circuit (Fig. 2), the calculated e

100 values of L.E.F are listed in Table 1. These results
g indicate the dependency of lethality on source as wall
§ as loading conditions.

E ESD The extent of severity would also depend on the :
£ O wave-shape and rate of occurrenoce of the transients.
E ¥ e -] Such enhanced severity can be quantified by a risk~
-<-l 10 coefficient Y reprasenting the overvoltage effects of
3 HUMAN-BODY MOOR), recurring transients. It is given by:
Y - Q
SF «(Vi/730! (1+tan® §)e?Y n?lrma|? o~
DEVICE MATERIAL: Si Y- s (9 ;
A: 0out an? 7 1+n? tan? §
L)
10 =+ * + + + where & = 2%/T and T is the pulse repetition rate (or D
° a2 Q4 05 o8 1O average number of zero-cxrosaings if the occurrence is
e SEVERITY FRACTOR (SF) random), u is the pulsating componant of the transient
GURE 4 . LETHA CHARACTERISTI and P is the Pourier transform of the exciting time A
Fi 4: pros un!'lgn-us;n n,ug function. Purther, the quantity tan § denotes the loss- A
tangent of the device-dielectric at the angular frequen- .
cy of w. The risk-coefficient y¥ in general would be .
larger in comparison to unity (depicting increased '$
e
Table 1: Calculated Lethality for the Charged-Device Model (Figqure 2)
Y
V, = 500V; Material: Si; A = 100 ym? O
" -
Ly = 10nH; C; = 3 pP; Ry = 100 ‘_-‘.
N
'l
td td ]
ng | (Wunsch-Bell) | (Actual) L.E.F ¥
No. Case La Ca pF os ns :I‘
",
1
1. | Worst Case A: Low Ly 10 1 /\ 0.1 0.003 )
Low Cy
2. | Worst Case B: Llow Ly 10 1l 0.3 0.009
Med C3
3. | Expected Case A: Med L, 50 1 33 0.5 0.01%
- Low Cy : A
4. [Expected Case 31 Med le | 50 | 20 ] 9.0 0.273 .
Med Cp . o
S. | migh Inductance Righ Lg | 100 1 \ 6.0 1 0.182 o
Discharge Path: Low C; ° &
’
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pover dissipation) when the transients are narrow
(short-duration) pulses. Typical static-discharge
wvaveforms are shown in Figure 5. For random recurrence
of transients, the Pourier transform in Equation (9)
can be obtained froa the relevant autocorrelation
calculations.
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WAVEFORM NQ. L WAVEFORM NO.2
DOURLE EXPONENTIAL) (OOUBLE EXPONENTIAL
¢ OER{VATIVE )
LA.
WAVEFORM NO. 3 WAVEFORM NG 4

(DAMPED SINUSOID) (DECAYING EXPONENTIAL)

PIGURE S ° TYPICAL ELECTROSTATIC TRANSIENTS

When a voltage-based noncatastrophic failure (such
as in a MOSFET) is considered, the performance degrada-
tion can be assessed from the enhanced nonlinsarity of
the CV characteristics. By measuring the distortion
factor of the wounded device, it is possible to assess
the severity and the lethality involved. Figqure 6
illustrates a typical L.E.P versus S.P curve of a
MOSPET, obtained by measuring the 3rd harmonic distor-
tion in the transfer characteristics of a stressed
device.

DIELECTRIC: Therrmaly gowe
$102
Thichress. 525 A
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FIGURE 6 * LETHALITY CHARACTERISTICS OF
VOLTAGE -BASED FAILWRE

LATENT FAILURE

As mentioned before, when less severe but repeat-
ed stressing prevails, slow material depletion/damage
could occur and it would cumulatively build up leading
to a belated cut-of-spec or irreversible damage con-
dition. In such latent failures, the material damage
is often regarded as dus to metal (Al, Au, etc.) migra-
wlon from crucial sites causing lins-to-line short cir-
cuits or interconnection ruptures (open-circuits).
Such electromigration is assentially a thexmochemical
process governed by the factor € of BEquation (1).
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Presently, another possibility of microrupture is
considered. That is, owing to the existance of thermo-
dynamic inhosogenities in the device structure, the
electrothermal processes due to zappings can possibly
induce thermoslastic stresses within the composite di-
electric interiors of the device. The corresponding
strains/creeps can cumulatively build up (or propogate)
by receiving repeated zaps, ultimately reaching an
active site, leading to a failure. When an ESD sets up
a temperature gradient of AT at a hot-spot inside the
davice, the maximum thermoelastic stress that would
davelop is given by

a(T)E AT
Opax ” Tov (10) ‘
where a and E are the coefficient of thermal expansion
and Young's modulus of elasticity of the device materi-
al respectively; and v denotes the Polsson's ratio.
In Fiqure 7, considering si as the device material,

om is plotted as a function of temperature, T. Also

shown in Pigure 7 is the variation of fracture stress
with respect to the temperature.’ It could be evinced
from Pigure 7 tbat the thermoelastic stress could ex-
ceed the fracture strength of the material even at a
temperature mich below the melting point or the Wunsch-
Bell's ‘limit of catastrophy.' Hence, at low severity
factors (for which the temperature elevatioa is well
below the melting point), the lethality endurance is
possibly limited by cumulative effects of thermoelastic
rupturing and thermal shocks due to repeated stressings
which would eventually lead to the observed latent
failures.
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..g ® Chaax 4 (91 '
i o m-w-;'y/// Frechwe)
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FIGURE 7. THERMOELASTIC AND FRACTURE STRESS
VERSUS TEMPERATURE

Work is in progress to determine the average num-
ber of zaps per unit time required to cause a latent
failure. This would enable the prediction of latent-
failure time. FPurther, a systematic accelerated aging
procedure and an algorithm based on the principle of
equivalent aging are being developed to assess the
statistics of latent failures, pertaining to microelec—
tronic devices. The aging would be assessed by devia-
toric leakage curxent and/or nonlinear transfer charac-
teristics of the device.

CONCLUSIONS

A possible mechanism of latent failure duve to
ESDs in microelectronic devices is the time-dependsnt
(cumulatige) therwoalastic responss of the device med-
fum. Latent moda of failures can be assessed via two
quantifiabls terms; namaly, severity factor (8.r}
dapicting the extant of causative influance and
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'
lethality endurance factor (L.E.F) denoting the degree
of daleterious effects observed. Both S.P and L.E.F
are governed by the source (ESD) and load (discharge
path, device) conditions.
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RESTDUAL FATICUES T¥ WICROCLECTROWIC DEVICES
DUE TO THERMUCLASTIC STRAINS CAUSED BY

REPETITIVE ELECTRICAL OVEASTRESSINGS:

A MODEL FOR

LATENT FAILURES

Perambur S. Neelakancawvamy
RIT Research Corporation
Rocheater, Nev York 14623-3418
(716)473-2308

Swsmsry

Latenc ESD/EOS effects produce mo detectable changes
in device performsnce st tae time of ESD/LOS event(s),
but subdsequently produce duviatory device characteris~
tics during sorma] use. The causscive factors and the
sechanise(s) of EDS-based lateat fgilures are subtle fa
nacure. Sovever, considering the time-dependenc degra-
dacion obsarved st lov or subcacsscrophic thresholds of
stacic-exvosure, the latent fatlure taductios caa de
sttridbucted to the cumulacive buildup ¢f scrains due to
thermoelsstic stresses caused by repetitive zaps.
Presentiy, the inceraction between repetitive trsasnfents
and the device 13 specified by two quantifisble termes
designaced as severity factor (SF) and lethality endur-
ance factor (LEF). A thermodynamical enslysis (s jevel-
oped to portrayv the chermoelastic straining, end the re-
sulting endochroanic resp of stress-celief 1a studied
by & constitutive wodeling of the creep Lovolwved.

Iotroductiom

In the area of unictoelectromics there is an
{acTersed awvareness to assess the loang-tsrm relfabiltcy
=f semiconductor devices vhich are susceptidle to dam—
ages jue to electrothermsl effects st the dislectric
and wetallization inceriors of the device arising from
alectrical overstresses caused by electroscatic dis—
charges/transients. Righ intensity electrostatic zsp—
pings sormally provocate catastrophic fatlures ia the
device either by burnouts due to high current densities
or by dielectric puocturing (breskdowm) resulting from
high elecrric fieid intensities actruss capacitive
elements (Fig. 1). For exasple, bigh—corrent burncuts
are common at PN junctions and setallizstious, eod di-
eleceric Steskdowns bave been vbsurved ac the thia gace-
oxide layers of WOS scructures. WUhile high-intensiry
23pe would induce the aforeseid catastrophic failures,
low-level transients say be regurded as the cansative
tactors for the so—called ‘soft' er latent type of
failures ias vhich the test devices exhibit endochrout

Yapan K. Sarkar and Ibrahis R. Turkmsa
Rochescer Ilnstitute of Technology
Rochester, Mev York 14623
(716)475-2143 (716)475-2397

te lstent fatlure by formulsting a quantitative des-
cripcicn of the performance degradation or forced ac-
celeration of the sging processes as governed by the
elastic creep.
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20S-induced Thermoelastic ¥ffects:
dynsnical formulation

A Thermo—

External ealectrical overstressings would generate
beat vizhis the device due to I'R loss and would ser
up 8 tewperaturs gradiest scross the hetergyenecus de—
vice media. Owving to tha discontinuities (spatial eor
temporal) in the thermvdyusmicsl varisbles, samely,
sass densicy (p), specific heats (C' and C'). thernal

coefficient of expansion (@) and {sothersal cospress-
ibtliey (!r). or, dua to inhomogenecus energy sbsorp-

tion characteristics, thermoelastic straias may be

performance degradation. Recurrence of zaps woald
ultimately lead the ‘wounded’ devices from the dormsnt
scage of (mal)fuactionability to the ouc-—f—spec or
cacastrophic coudition. The performsace degradstion or
forzed-eing due to electricsl overstressisg sot omly
reduces the life expectancy of tha device but also would
necessitare coscle fleld-repairs due to the unpredice-
able or 'iruuu-ou-' appearaace of eenzcing lateaz
farlures.

The lscent wode of device failure {s expected to
arise from the Jjegradatioa of eay generic property oi
the levice wnder repeated electrical scressing. Vhen
the 05 s a0o¢ large encugh to cause & total At cacas~
tropniz faflure. 1t way scill be sufficient to wonmd
the sevice through elantic stress formaticn. The wound-
ed aevice mev remain dJormact over s (unspecified) per—-
ioc, sur eventuail?, when it continues to teceive repet—
ftive zars, the damage resuiting from elastic stress
bezowes mmmistive and turns the device Llnto & rogue
cowponenr with high chances of exhibiting mslfunctious.
Presestly, & thermodynamical sodel i3 developed o
depict che existence of thermoelastic stresses/struisms
arising ‘ros ENMS-based electrotberwal processes, snd
the interactiom of cepetitive tramsiencs vith the device
1s studied to oesesn the extent of threat imvolewd dea

i{ndoced in the device which may initiste microcracks.

. Subseguent zape would cause the percolatiocn of the
flavs to crucial sites (in the active parts of the
device) leading to performance degradation and/or total
fafluce.

Counstdering sn srbitrary bot—spot (Fig. 1), the
system trelations based on conservaction of sass, conser~
vation of energy, sad thermodyoamical equations of
state can be written as follows:!

‘tp +9.7 =0 (la)
pd‘ 'l + C’ ou -9 (1%)
Cu ‘j v‘opd:!_‘ - oW (1c)
e [= ? v
el (C'loa) + (1Y oy ej v /9.v) 40
+ (c'lq) (\r)“ d‘ cu (1d)

whers the eperator d‘ i{s the convective derivative

equal to 3/3t ¢ v.V vhere ¥ {s the bulk velocity of
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Tsble 11 Calculated Lathality for the Charged-Device Model (Fig. &)

V, = 500V; Material: St; A = 100 iu!
Ly » 10nl; C, = 3 pF; R, = 10
(‘ !‘
(Wunsch-Bell) | (Actual)

o, Case Le oK | C; pF s as Ler

1. | Woret Cese A: Lov Ly 10 1 0.1 0.003
low Cg

2. [ vorst Case B: Lov L; 10 1 0.3 0.00%
Med Cy .

3. | Expected Case A: Med Ly 1 3 0.5 0.015
lov C3

4. | Expected Case B: Med L, 10 $.0 0.27)
Med Cp

3. | High Inductance High Ly | 100 1 6.0 0.182

Dischsrge Pach:

lethality endurance factor (LEF) {s given by,

LEF - }'l a2)

where 1) i{s detersmined by the equation rd(n) - Pe(h);

and 13 {s the catastrophic failure~time determined by
the Wunsch-Bell relation (applied to spherical hot-
spot), and is nearly equal to (A p C'I”k).;

For the human-body wmodel shown in Fig. ), by teking
the severity factor (SF) as 1 corresponding to " -

730V, the computed SF versus LEF {» shown in Pig. 6.

For different component values of the simulated charged-~
device cireuit (Fig. 4), the calculsted values of LEF
are listed in Table 1. These results indicate the de-
pendeacy of lethality on source as well as loading
conditions.
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FIGAE 6 . LETHAUTY CHARACTEATSTICS
OF QURRENT -BASELD FAURE

When a voltage-baned noncatastrophic failure (such
49 in 8 MOSFET) is considered, the performance degrada-
tion can be assessed fros the enhanced nonlinesricy of
the CV characterietics. By seasuring the distortion
factor of the wounded device, it 1s possible to assess

U AR ‘h"(‘ “. ".{"d" 2% ] A

the severity and the lethality involved. Fig. 7 {1lus-
trates a typical LEF versus SF curve of a MOSFET, ob-
tained by measuring the 3rd harmonic distortion in the
transfer characteristics of a stressed device.®
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The extent of severity would also depend cu the
wvave-shape and rate of occurrence of the ctransients.
Such enhanced severity can be quantified by a risk-
coefficient Y representing the overvoltage effects of
recurring trsansients. It fe given by:

o (1+tan? §)o? = o] F(nu)] 2
20?2 1 1l+a? can? §

Y (1))
where & = 2n/T and T is the pulse reprtition rate (or
average nuaber of zero-crossings L{f the occurrence s
randou), u is the pulsating cowponent of the transient
end T is the Fourfer transform of the exciting tiwe
function. Further, the quantity tan & denotes the
loss-tangent of the device-dielectric at the sagular
frequency of . The risk-coetficient Y in general
wvould be larger in comparimon to unity (deplctiog im-
cressed pover dissipation) vhen the transients sre
ocsrrov (short-duration) pulsea. Typical EOS vaveforms
are shown in Fig. 8. For randow recurrence of
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transients, the Fourier transfors in equation (1)) can be
obtatned from the relevant autocorrelation calculations.
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FIGURL 8. LETHALITY CLARACTIAISTICS OF
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Thermoelastic Stressing

As mentioned before, vhen less severe but repeated
stressing prevails, slov material depletion/damege could
occur and it would cumulatively build up lesding to a
belated out-of-spec or irreversible dasage conditiom.

In such latent failures, the material dsmage is oftea
regarded as due to wetal (Al, Au, etc.) ligutlon’ from
crucial sites causing line-to-line short circuite or
interconnection ruptures (open~-circuits). Such electro~
migration fs essentially a thermochemical process gov-
erned by the factor C of equatioa (3).

Another possibllity of sicrorupture, ss $ndicated
earlier, ar{ses oving to the existence of therwodynsaic
inhosogenities in the device structure. That is, the
electrothermal processes due to zappings can possibly
induce thermoelastic stresses within the composite
dielectric fateriors of the device as specified dy the
therwodynamical relation of equation (3). The corre-
sponding strains/creeps can cusulatively build uwp (or
propogate) by receiving repested zaps, ultimately reach~
ing an active site, leading to s fstlure. When en ESD
sets up a temperature gradient of AT at a bot-spot ia-
side the device, the maximm thermvelastic stress that
would develop 1s given by

o« (T AT as

[ 1] [T

where o snd E are the coefficient of thermsl expansios
sud Young's modulus of elasticity of the device materi-
al respectively; and v denotes the Poisson's ratio. 1Inm .
Fig. 9, considering silicon and CaAs se the device ma-
terials, o." ia plotted ss s function of temperature,

T. Also shown in Fig. 9 {s the variation of fracture
stress vith respect the temperature. It could be
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evinced from Fig. 9 that the thermoelastic stress could
exceed the fracture strength of the saterfal even at &
tewperature much belov the melting point or the Wunsch-
Bell's iimit of catastrophy. Hence, ot low severtity
foctors (for which the temperature elevation s well
belov the melting point), the lethslity endursnce 1s
posaibly limited by cumulative effects of thermrelastic
rupturing and thermal shocks due to repeated stressings
which would aventually lead to the obeerved lstent
fatlures.

Percolation of Faflure Front

Once & olcroflav (s inftisted, subsequent external
stimuli would encoursge a cusulative growth of the
deformation until & total fallure occurs. Depending oo
the oite of inftiation (nuclestion) of the microflav, .
the extent of functional charscteristics of the device
been affected can be decided. As long as the fnitia-
tion and growth of flave are in the nonactive reglons
of the device, the catastrophic failure msy not shov
up, Perhaps s performence degradation say occur. How-
ever, as the flav percolates end resches a wvulnerable
site or an active zone in the device, the device fatl-
ure vill be complets with an irreversible damage.
Therefore, until the growtbh process culainates {s a
catastrophic or out-of-spec conditjon, s dormsot state
of failure would prevail. The propogation of a sicro~
flaw end the creep rupture of sn electrically over~

etressed device can be studied by the folloving simple
wodel:
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Consider s thin layer of the atressed saterisls of
width B, let T\ end Ty be tewparatures at the two ex-
tremities of the layer as shows in Pig. 10, vhere T;>
Tr. The test waterial being composite in nature, the
anslysis {s done by dividing the layer into N-strips.
Due to the temperature difference, the therwoelascic

stress and straine at the ltb strip can be represented
by the qusntities v.7i and t1. respectively. If 51 is

the elongstion of the lth strip, then the basic equa-
tions of equilibrium are:

N n
1-4 -
12_1 o -Sl-l ¢ 0, 8T = q, as)

where AT i3 the temperature difference, (T,-T,). !‘

and 3, sre the Young's modulus end coef{icient of ther-

w2l expansion of the llh strip respectively.

The strain-displacewent relation can be specifled
as

€ " 6‘ /s, (1e)

together with the compacibilicy condition,

o~ M=t . an
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Yurther, the conetitutive equations of creep inftiation
and growth are given by

€ " (°t/‘|’ +e, (18a)
]

dc /Jdt = €| (0,/1q) ° (18p)
k

de /e = €1 (0,/1-q)) ° (18¢c)

vhere C;, C3, LR and h° are materisl constants and L is

the creep-strain. The quantity ¢ is s damage parsmeter
wvhich increases froa zero in & virgin state to unity at
rupture. For sost of the materisla the value® of n 1s

less than S and k° is nearly equal to 0.7 LI

When 8 continuous body occupying a volume V {9 acted
upon the surfsce by a certain stress, the constitutive
tactor concerning stesdy creep behavior would de sono-
tonic. That is, increases in stress would csuse in-
creases in the strain rate. Tor a steadily creeping

waterial, the grovth lav of damsge can be written as’

dl:c/dt - Glloldt (19)
and

k k k
da/dt = C: $°00) / (1-0) =0 (@) / 1-0) °  (20)
o

vhere I!.l (@) = Cy 0& (0) and ¢ (0) ts & scalsr invari-
°

sot of the stress fuactiom, 0.

Further, the specific rate of work done in the creep
process ot the straio—energy dissipation cao be written
[ 1]

el
t(e) = %HI(H) ° . (21)

Integrating the damage velation dq/dt of equation (20)
over the volume of the body (V) and cowbiaing with equa-
tiomn (21), the following result is obtaimed:

172 1) de(e)/de = %ﬁ‘fﬂ\l, @ . (22

The growth damage as decided by the above relstion would
culminate at & criticsl stress level of statically
sdsissable value snd then the rupture vill take place.
Initially, q = 0 throughout the body; that 1s, {(0) = 0.
At final rupture. t = 10. L= "U > 0. Heace by inte-

grating equation (22) over the time {nterval (O, vu).
the upper bound on life-time (s obtained as,

x
T, < vty o/ ((x«uoﬂ}jf. ¢° (o) av] . N

The steadv-state strese for the multiple strip
structure (Fig. 10) ts given by®

1/n
- - ° ! -
o, {(N+1-1) /W] QA:Ino(N). 1=1,2,3... (24)
wvhere
N l‘l/no
1,0 = = [M1-/N] .

i=1

The corresponding upper bound of normalized rupture time
casn be estimated as:

3
- .
‘Ul'o ’u“o) / (0100) (23)

vhere 1° is the rupture time of & single strip under
the tensile otress a° and 0 * of AT; further,

n RIS B LIS
P, ) = w {1 [(Ne1-1)/N]} (2¢)

The variation of sorwalized creep-faflure tiwe as &
function of tesperature difference for a typical
deteriorating semiconductor structure (thin layer) e
shown in 7ig. 10. $ilicon and CaAs are taken gs the
test materiale, and the faflure 1o presumed te nccur
vhen the creep reaches the fourth strip (that ia, R =
4).

In Fig. 10, a fast deterioration is Indicated for
large differential temperstures. That 1is, for higher
severity levels, there 1s sn accelerated dsmepe perco-
lation as expected. At subcstastrophic levels the
failure percolation {s belated and the failure involved
would be of latent mode.

Conclusions

1. A possible mechanism of latent fatlures in eicro-
electronic devices 1s the therwoelastic stress-
relief cracks induced by repecitive electrostatic
discharges at subcatastrophic levels.

2. The therwoelsstic stressing is sainly governed by
the thermodynamical discontinuities ia the materisl
variables snd by the inhowogeneity of the source
functiom. : '

). The cause-effect relstions iovolved im tbe ESD/EOS-
based damsges coes be quantified via severity and
lethality endurance factors (SF aed LEF). The
level of severity would specify the catastrophic
and/or latent modes.

4. The extent of severity 1s also governed by the ESD
source. That is, the severity factor (SF) snd the
corresponding lethality are determined by charge-
transfer/discharge pertaisiag to humsn-body wmodel,
charge-davice model, or fislé-induced wodel.

S. The eadochronic resp (damnge) of the davice is
determined by the characteristics of the intersc-
ting pulsations, mnamely, repetition rate, shape,
end smplitude.

6. The initiation and propagation of microcracks and s
flave vithin the device sre directly controlled by
the extent of thermoelastic stressing.

7. The maximum thermoelastic stress can reach the
fracture strength value at differencial tespera-
tures of magnitude well belov the welting point.
That is, structural damage can be anticipated at R
zap-levels considerably lover than the Wunsch-Bell
limit of catastrophy.

8. For a epecific device, on the bdasis of fault-
fsolation dsta gethered via micrographic studies oan
lateat failed devices, the creep propagation can be
traced and vulnerable rones prone to thermoelastic
atratning can be identified, In addition, data
collected from parametric mseasurewents under accel-
erated testing cao be used to develop an algerith-
mic representstion of creep—propagation and latent
time—to-failure in terss of mumber of zspe per unit
time. Relevant work 1s In progress.
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ABSTRACT a datum level of susceptibility of the device to the
hazardous influence.

The causative factors and mechanism(s) of latent-
failures in microelectronic devices induced by electri-
cal overstressing are subtle in nature. Howvever,
considering the age-dependent performance degradation

ii that occurs at low thresholds of externsl slectrical tadle 11 Pailure Mechanisms Expected te Affect

stressings (such ss electrostatic discharge, electro-
magnetic pulsing, etc.) vhich may lead s device into
out-of-spec conditions, the failure induction can bde
attributed to the cumulative buildup of residusl strains
wvithin the device resulting from thermoelastic stresses .
caused by repetitive zaps. The corresponding thermsl Device Nechaniew Type of Failure
shock and fatigue can initiaste microflaws in the device
structure, and therefore the latent mode of device fail-
ure can be regarded as the endochronic response of the
stress-relief in the device structure which can be Oetallisations) BlectromigratioB......eseeesscsssnroncs Latent
analyzed by electromsgnetics-based electrothermal/ther-

micreslectreaic Oevices

Locales ia the

1. Conducters stross Mailef Crackd....ccovcvecesesess latant

Grals Sixe RIfeCt@....ccvsvvecacrcccnns Latant
moelastic considerations as detailed in the present
lnvcnigation.. RU1lock Pormation.....cececenconrscanas lateat
COTTORLOB. s vescsocsssocnsosnssancanans Latast
INTRODUCTION 2 T T S Catastrophic
A major limitation that hangs over the future
generation of microelectronic devices is the assurance 3. insulstors Stress Malief Cracks........ Verereenans Latent
of a suitable degree of reliability arising from physi-
cal considerations due to ultraminiaturization. Under- (dlelecerics) Surface Charge Acoumulatien............ Lateat
standing the reliability attributes of monolithic Dlelectric Breakdowm.....onvvees Catastrophic/latent
integrated circuits requires knowledge of both physical .
and chemical phenowens that can occur after a device is arye a3 (Mot Carviarade.o.. caras
msnufactured and that can affect reliability [1]). 1In
the course of development of complex, monolithic device 3. Semi focta/Inperfoctiong. ..oucenees ver..Catastrophie
structures, it has been observed that most feilures
could be characterized ss function feilures governed by ORTEA COMLARL..coaeniistestssetaneeaes Tatest
electrical, thermal, chemical, and electrical-field DLEfualon PRRItS.coviicarranrsonrncns Catastrephie
fasctors. The related failure mechsnisme expected to
plague the devices cam be grouped sccording to suscep-
tible physical locales as indicated ia Tadle 1. 6. Daterfases Tatesmetalliie GrOweRs....co0ce eosesses latent
Mhaslon Lo0S..ccoureiranarns seesessses Latame

The failure mechanisms can be further classified

,&E into two categories; namely, (1) persistent stressing CORARIRALLON. - conennrinritntetantonnns Lotest
.\, . dus to tempersture elevations caused by the operating

" current or due to environmeantal factors such as humidity
vhich continuously act according to the Arrhenius pro-

cess lav, and, (i1) threshold-limited damage governed by
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While the stressings above the threshold level
would cause irreversible (or catastrophic) damages, it
is possible that low-level zaps can stimulate degrada-
*4ons in the device performance characteristics. A

lative growth of performance degradation would even-
1y lead the device into out-of-spec conditions.
is brand of failure is better known as the latent
failure. Such time-dependent failures are often caused
by low-level overstressings due to electrical transients
or electrostatic discharges.

Presently, the endochronic performance degradation
is snalyzed as a thermoelastic-based creeping of micro-
ruptures srising from thermodynamical inhomogeneities
i{n the composite device structure.

ENDOCHRONIC PERFORMANCE DEGRADATION

The time-dependent performance degradation of s
microelectronic device and the belated failure can be
modeled by a constitutive law in terms of a genmeric
function S(t) given by (2]:

S() = 5, exp [-a/Ta(0)]  [£(e)/,)MP/THE)

(e /e, 1™/ THE) ey ) BRITHE)

vhere a,b,c,d are constants and T*(t) is a time-depen-
dent temperature function given by T#(t) = ‘r1 T(t)/

[{T(t) - Til' Here, Ti denotes the initial temperature

snd T(t) is the hot-spot temperature within the device
st an observation time, t. Further, in equation (1),
81 depicts the initial value of the generic parameter S

#7 the exponential term represents the thermal life of
evice as governed by the Arrhenius process. The
ities £, C, and M are time-~dependent electrical,

chemical, and mechanical stress parameters respectively;

and their initial values are 51, Ci, and Hi below which

the corresponding processes of aging are insignificant.
The terms containing £, C, and M in equatfon (1) follow
the inverse power law depicting endochronic deteriora-

tions; and the 4Quantities L, m, and n denote the corre-
sponding electrical, mechanical, and chemical endurance
coefficients respectively.

Equation (1) essentially represents four major
failure-inducing mechanisma. The domination of one
particular process wvould depend on the extent of the
corresponding stress and the strength of enduyrance of
the device infrastructure (to that particular stress).
Yor example, intense electrical transients can melt PN
Junceions and/or metallizations; the resulting damage is
therefore primarily thermal [3). Likewise, dfelectric
breakdowns [4) at MOS-gate structures are failures due
to high electric field stressing ({). Further, electro-
nigration of metals (Al, Au, etc.) at vulnerable sites
can induce localized or extended pittings and voids
[S$,6]. This is & thermochemical/diffusion-based failure
vhich 1s governed by the factor C. Mechanicsl damage
characterized by the quantity M would result from
thermoelastic stresses vhich may develop in the com-
poeite device structure due to thermal gradients and

::::: thermodynanical inhomogeneities as discussed

THERMOELASTIC STRESSES AND MICRODEFORMATIONS

JE‘kteml electrical oventreuingl would generate
vithln the device due to I’R loss, and would set up

VEUVSVANVNE RS mw — = — = "= - =

a temperature gradient across the heterogeneous device
media. The spatial and/or temporal variables such as
mags density (p), specific heats (Cp and Cv). thermal

coefficient of expansion (a) and isothermal compressi-
biliey (kT) would induce thermoelastic stresses which

may initiate microcracks. Subsequent zaps would cause
the creep-propogation and the percolation of cracks to
crucial sites (such as metallization interconnections)

would cause performance degradation and/or total failure

EXTERNAL ELECTRICAL STRESSING
( ESD, EMP, Eic. )
{ POWER INPUT: W )

Y]___ FILAMENTARY *NOT-SPOT'
x AT TEMP . T ¢C
® VOUME : V
AREA OF
l—— | —! CROSS-SECTION: A

m (fDCPDCVI “n .T )

FIGURE | . STRESSED DEVICE AND HOTSPOT FORMATION

Considering an arbitrary hot-spot (Fig. 1), the
system relations based on conservation of mass, conser-
vation of energy, and thermodynamical equation of state
can be written as follows [7]):

dp+ oV.v = o (2a)
pdt v+ 6j a1j =0 (2b)
°1j I +pd, B/ = oW (2¢)

dg Ep = {-(C foa) + (1/p?) oy4 8y v I9.5) dpp

+ (C,/a) (X )ij %y 2d)

wvhere the operator dt 18 the convective derivative equal

to 3/t + v.V where v is the bulk velocity of the
thermoelastic vibration. Further, 6j depicts the space

derivative 3/3xj. and E1 is the internal (thermodynawic)

energy density and W is the power input from the exter-
nal stimulus. The quantity °ij represents the stress
tensor.

A small hot-spot region (Fig. 1) can be regarded as
mechanically isotropic and hence equations (2) can be
simplified to obtain linear equations for 4 P O snd

¥. They are given by [7]

2 gt - fC? 2
8} (8,p) - C; VI(8,p) = [C, pa/C ), V'V (32)
] 2 ot o 2
cto -c Ve [pcoa / cpl 6t w (3b)
5: v - c;v’G - -(c;u / cp] W Q3c)
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where 0 refers to the stress at time t in the homoge-
«n. Deous, isotropic hot-spot region, and Co is the thermo-

ﬁ{}’ elastic wave velocity in the device media.

It is equal
>

to ((CP/pCv kr)klo. (The suffix o denotes the equilib-
rium state and 6: refers to the operator 3/9t.)

The wave equations given by the relations (3) can
be solved with sppropriate boundary conditions 1if the
hot-gpot dimensions sre specified. Thus, for a filamen-
tary hot-spot of length L and cross-sectional area A
(Fig. 1) which wsy result from a pulse input due to an
externsl stressing (say, electrostatic discharge), the

following solutions concerning the stress waves can be
obtained [7):

o W(w )
01,2 (x,t) =2_A
n

Ni1,2 wn exp (-ant)

%)

wvhere the indicies 1 and 2 represent the regions inside
and outside the hot-spot; n is an odd integer, if tan ¢
- (pCo)zI(pco)‘ <1; otherwise it is even. The coeffi-

cients An‘ and An2 are given by,

Ay = D) =1 [ (pac}/c L)y [Con (w, x/C, )
and
Ay = D) Jor (pac}/2C L); tan(28) explju (x-L)/C, )

&)

G‘?utther. © - [(Co)‘lzl.) (nl-on) vhere Y, 1s the

solution of the equation coth(Yo) + (-l)n cech(yo) =
tan ¢.

For each frequency component oy the corresponding

¢ stress amplitude exhibits some resonance phenomena

1 according to the value of the pulse width. The influ-
ence of pulse widths of electrical transients in causing
performance degradation has been established via experi-
mental studies [8,9] and the present snalysis indicates

b the existence of elastic (resonant) stress waves arising
from external stimuli which could possibly induce micro-
deformations,

The maximum stress developed at a vulnerable site
due to a temperature gradient of AT is given by

Oax ™ a(T) E AT /(1-v) (6)
vhere E is the Young's modulus of elasticity and v 1s

. the Poisson's ratio. Considering silicon as the device

' material, onax is plotted in Fig. 2 as a function of T

along with the variation of fracture strength with res-
pect to temperature. It can be seen from Fig. 2 that
the thermoelastic stress can exceed the fracture
strength at a temperature vwell below the melting point
(1215°C), indicating that even low~level zaps caen possi-
! bly initiate microdeformations in the device via
J i{induction of thermoelastic stresses.
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PERCOLATION OF FAILURE-FRONT

Once a microflav is initiated, subsequent external
stimuli would encourage s cumulative growth of the
deformation until s total failure occurs. Depending on
the site of initiation of the microflav, the extent
to which the functional characteristics of the device
are affected can be determined.As long as the initiation
and growth of flaws are in the nonactive regions of the
device, the catastrophic failure may not show up. Per-
haps a performance degradation may occur. However, as
the flaw percolates and reaches a vulnerable site or an
active zone of the device, the device failure will be
complete with an irreversible damage. Therefore, until
the growth process culminates in a catastrophic or out-
of-spec condition, & dormant state of failure would
prevail., The propsgation of a microflav and the creep
rupture of an electrically overstressed device can be
studied by the following simple model:

ne$ ; kgQ7n
N=4
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TEMPERATURE OUFFERENCE (aT,*°C)

Consider a thin layer of the stressed materials of
wvidth B, Let T; and Ty be temperatures at tha two
extremities of ths layer as shown in Fig. 3, vhers
T;>Ts. The test msterial being composite in nature,
the analysis is dopne by dividing the layer into N strips.
Due to the temperature difference, the thermoelastic

stress and strain at the 1th strip can be represented by
the quantities 9 and € respectively. If 51 i{s the

" n " - - = = -
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eslongation of the 1th strip, then the basic equations of
cguiltbriu- are:

N+l-4
(-T- 01) - ; € 9 aT = Q, ¢))]

wvhere AT is the temperature difference, (T)-Ti). !1 and

a, are the Young's modulus and coefficient of thermsl
expansion of the 1‘“ strip respectively.

The strain-displacement relation can be specified

€ - 61 /B, (8)

together wvith the compatibility condition,

g, M-t

i N 9)

Further, the constitutive equations of creep initiation
and growth are given by [10]):

€, - ("1/‘1) +e, (10a)
no

ac/d: - c1 (°1/1'“1) (10b)
ko

dqild: = €2 (0,/1-q,) (10c)

vhere G, C,, n° and ko are material constants and cc is

reep-strain. The quantity q is a damage parameter

h increases from zero in a virgin state to unity at

rupture. For most of the materials [10]), the value of
L is less than S and ko is nearly equal to 0.7 L

When a continuous body occupying a volume V s
acted upon the surface by a certain stress, the consti-
tutive factor concerning steady creep behavior would be
monotonic. That is, increases in stress would cause in-
creases in the strain rate. For a steadily creeping

material, the growth law of damage can be written as
(10],

dcc/dt - dnkold: (11a)

and

k k k
dg/dt = €2 ¢ °(0) / (1-@) = @, (0) / (1-q) ° (11b)
o
k
vhere Ql (0) = Cy ¢ ° (0) and ¢ (0) 1s a &.alar invari-

°
ant of the stress function, ¢ [10).
Further, the specific rate of work done in the

creep process or the strain energy dissipation can be
written as

k 41
Te) = lm 1-) ° v 12)

’\#gnting the damage relation dq/dt of equation (11)
ov.f the volume of the body (V) and combining with equa-
tion (12) the following result is obtained:

o

.
_,_ .\‘-

AWV p s A Y

!,

g eV .L. ( 'y 4 o 4 A‘.'A_l‘h

(-1/k #1) dE(e)/de = %Hjnko © @v . (13)

The growth damage as decided by the above relation would
culminate at a critical stress level of statically ad-
missable value and then the rupture will take place.
Initially, q = o throughout the body; that is, (o) = o.
At final rupture, t = TU. v - cu > 0. Hence by inte-

grating equation (13) over the time interval (0, T ).
the upper bound on 1ife time is obtained as,

k
Ty € VQA-T) / [+ ) IHCI $° () av] . (14)

The steady-state stress for the wultiple strip
structure (Fig. 3) is given by [10)

1/a

o, = [(#1-1)/N) /1, M), t=1,2,3... 15)
-]
where
L 1+1/
1_(%) -121 [(Ne1-0)/8) %

The corresponding upper bound of normalized rupture time
can be estimated as (11):

k
TlT, = Fylk,) / (ola)) ° (16)

vhere T is the rupture time of a single strip under the
tensile stress ao and 0 = af AT; further,

k /k-1] k-1
P, (k) =K Z [(w1-2)/8) ° . an
=]

The variation of normalized creep-failure time as a
function of temperature difference for a typical deteri-
orating semiconductor structure (thin layer) is shown in
Fig. 3. Silicon and GaAs are taken as the test
materials, and the failure 1s presumed to occur when the
creep reaches the fourth strip (that 1s, N = 4).

Work is in progress to estimate latent damage time
due to creep propagation to vulnerable sites. This is
done by evaluating the severity of zaps and the lethali-
ty of the effect. The lethality will be measured in
terms of the creep failure time quantified by equation
(16).

Further, the average number of zaps per unit time
required to cause a latent failure will be determined by
a systematic accelerated aging procedure based on an
algorithm formulated on the principle of equivalent
aging. The aging of the test device will be assessed by
deviatory leskage current and/or nonlinear transfer
characteristice of the device.

CONCLUS 10MS

A possible mechanism of latent failure dus to elec-
trical overstressing in microelectronic devices is the
time—dependent (cumulative) thermoelastic response of
the device medium. That 1is, latent modes of failure can
be attributed to the creeping of microflaws in the ac-
tive locales of the device leading to deviatory perfor-
mance characteristics. The thermoelastic response of

>

AN SN ™
D AN 1

F

Yy

£r

N
P

¢ s =y
y &, ' e




mmm“m.m b
| .

%

.

Nav

K5

the device is governed by both the thermodynamic inhomo-
geneities of the medium as well as by the pulsating/
transient nature of the external stimuli. The present
theoretical analysis on creep percolation can supplement
the (latent mode) failure analysis based on micrographic
studies of failed devices; hence the statistical predic-
tion of latent failure time 1s possible with the data
acquired vis accelerated tests and calculations baned on
the equivalent aging principle.
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SUSCEPTIBILITY OF ON-CHIP PROTECTION CIRCUITS TO
LATENT FAILURES CAUSED BY ELECTROSTATIC DISCHARGES

(Received 26 August 198S; in revised form 2 November 1985)

INTRODUCTION

Among the LSI devices, MOS circuits are highly seasi-
tive to damages due to electrical overstressings (EOS)
arising from electrostatic discharges (ESD). Hence,
several schemes have been developed for LSI input pro-
tection (on-chip) circuits {1, 2]. However, it has beea
observed that, if repeated, and/or muitiple discharges
occur, the protection circuits themselves would be cumu-
latively stressed, with the result that their protection
capability will be degraded progressively [3]. At a par-
ticular stage, the ineffectiveness of the protection circuit
will allow subsequent stress occurrences (“zaps™) to reach
the active MOS regions causing a total device failure.
Considering various component-damages (*woundings™)
observed at the protection networks, the cumulative
degradation at low or subcatastrophic thresholds of
static exposure can be modeled by an appropriate ag-
ing process with relevant statistics as indicated in the
present work.

AGING MODEL

Ou-chip protection circuits which provide s low im-
pedance path for surge voltages consist either singly or
as a combination of the following basic structures [3):
(i) Polysilicon or N* (diffused) resistors; (ii) thin or
thick oxide transistors; (iii) field-plate diodes; and
(iv) punch-through devices. Low-level discharges at
these protection elements may not cause the threshold-
power dissipation required for catastrophic damages
such as junction burnouts, oxide punchthrough and/or
metallization bumouts (3). However, repetitive, sub-
catastrophic occurrences of ESD can possibly induce
stressings which may cause electrothermal-based
“woundings™ (or damage such as electromigration of
metals (1,3], thermoelastic strains (4], oxide pin-hole
formation (1-3), etc.). Cumulative buildup of damage
with the recurrence of stresses amounts to a dormant
stage of failure during which the circuit would exhibit a
performance degradation. Ultimately, the deviaat per-
formance would lead to catastrophic conditions.

The time-dependent degradation or aging can be
assessed by measuring the time variation of a non-
destructive property (p) related to the aging of the cir-
cuit. Suppose two time-variation curves are obtained
corresponding to two distinct (subcatastrophic) stress-
levels. The functional form of p is assumed independent
of the stress magnitude and the two curves will have the
same shape, but different length (along the time axis) as

shown in Fig. 1. The times comesponding to some fixed
value of p under two distinct stress levels are 7, and 1,
(Fig. 1) and arc known as “equivalent times” {5]. The
“equivalent-aging principle” (5], assumes that

Vity = Vit = K, (Constant) )

where a is the endurance coefficient. Equation (1) can
also be written in terms of the average numbers of “zaps™
(number of stress occurrences) Z, and Z, assumed pro-
ponionll to the penods 1, and 1; as

ViZ, = V3Z, = K, (Constant). 2)

Thus, from eqn (1) or (2), for a given value of p, the
corresponding value of failure-time (or average number
of stress occurrences during the period of failure-time)
can be assessed by determining the values of n and the
constant X, or K.

CASE STUDY
For test studies, EPROMS fabricated with N-channel,
silicon-gate technology are considered and the follow-
ing test results due to Chase (6] are analyzed: The device
was stressed at different severity (stress) levels
(V= £1000 V and =300 V) by a transient discharge

STRESS LEVEL V >V,

OEGRADING PROPERTY (p) —e

Y 2

TIME(?t) ~—=

Fig. 1. Unspecified degrading device characteristics (p) vs
aging time for two distinct stress levels V, and V.

677

3

*.': N -}\' “ -_x:;.‘_'. o3

1

o



'§§ 2

5

INPUT LEAKAGE CURRENT { T, HAMPS) —
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&

0
o 4 ] R 1] 20
NUMBER OF DISCHARGES(Z)—

Fig. 2. Input leakage current as a function number of static

discharges at a sensitive pin. Test results by simulating the zaps

via equivalent human body RC-network model (6], o—o—®,

Ve+1000V; 0—0—0, V= —-1000V; A—A—A,

V=4+4+300Vad X—X—X,V = -300 V chip details are
given in [6].

from an RC-network as shown in Fig. 2. (The RC-
network chosen simulates the ESD from a human-body
[6].) Stressing was done at a sensitive pin and the
performance-degradation was monitored by measuring
the input leakage current (). Device failure was as-
sumed whea I; exceeded 400 pA. The relevant results
are shown in Fig. 2. The endurance coefficient calcu-
lations {eqn (2)] (based on the criteria that the criti-
cal leakage current (Ic) exceeded 400 pA), yields
n = 1.390 and 0.704 for positive and negative values of
V, respectively. (Relevant calculation uses data points
namely V), V;, Vs, Vs & Z,, Z3, Z,, Z, shown in Fig. 2.)

LIFE-TIME STATISTICS

The device reliability relevant to the degradation-
performance under repetitive stressings can be modeled
by assuming that degradation rate is proportional to the
existing degradation {7]. The proportionality constant is
a positively distributed random variable. Then the extent
of degradation would tend to be asymptotically log-
normal. Hence, the general form of life distribution in
terms of Z (number of stress occurrences) is given by (7).

GZ.y) =1 - ¢[i"’—"i] )

-4

where ¢ is the standard pormal distribution and y, =

U: — I.,). Further, In( y.) has the mean value of 1 and a
standard deviation equal to ¢. From the data pertaining
to stress level of +1000 V of Fig. 2, the presumed log-
oormal fit [eqn (3)] is demonstrated in Fig. 3 where the
quantity k. refers to In(1 ~ ¢)™".

CONCLUDING REMARKS

The existing works on protection network reliability
are invariably concerned with catastrophic failures
{3, 8]. The lack of analyses on latent damages prompted
the present investigations. The approach indicated here
provides an algorithmic support based on “equivalent
aging principle™ to analyze the test data on latent fail-
ures. The study reveals the applicability of lognormal
distribution to the statistics of aging process of the pro-
tection circuits.
Acknowledgement — This research work is by a grant
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MOS SCALING EFFECTS ON ESD-BASED FAILURERS
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ABSTRACT transients occur repeatedly, endochronic build-up !

of interface-states, trapped charges in the bulk-
VLSI/ULSI strategies applied to MOS devices dielectric, etc., vould occur due to the field-

a m_wom -

shr;?k-dov? ;hc n:tive dimensions to extresely {nduced injection and/or impact ionization

snall sagnitudes and varrent unique modeling of the 5

device-response under electrical overstresses (E0S) phenomena in th: oxides. The purpo;e of t:e

caused by external influences like electrostatic present investigations i3 to analyze the

discharge (BSD), electromagnetic pulsing, etc. The performance degradation failure of a MOSFET under s

resulting adverse effects can manifest in tvo various severity levels of BSD zaps and to evaluate :

failure modes, namely, the catastrophic damage and the  corresponding extent of lethality  in

endochronic degradation. The impact of scaling- quantifiable terms via appropriate sodels depicting P

dovn on device failures is deduced in terms of BOS the various modes/mechanises of ESD interaction ;

parameters and device-dimensions. vith the {nfrastructure of the device. Hence, the :
role of geometrical paramseters in decldin:dthe
lethality/survivability of the device subjected to ’

INTRODUCTION ESD  transients (single or repetitive) is

elucidated. This analysis vould fora the basis to
assess the device reliability as a function of
scaling-dovn strategies.

A nev type of contaminant that plagues the
sodern microelectronics industry is the
triboelectric static accusulstion and discharge

e

‘ through semiconductor devices.! Especially among ARALYSIS -
all devices, the component most sensitive and -
susceptidle to damages arising from electrostatic The BSD phenomena normally encountered can be IS
discharge (ESD) {s the metal-oxide semiconductor; 51“1“:0 by three vell-established models, .
high electrostatic potential build-up often renders namsel a) husan-body model, (b) charged-device oS
the MOSFETs to fail completely (catastrophic lodel),hand((Z) iield-ind\ysced m&é.’ The ,‘,m-bod, "
damage) or to shov performance degradation as a model (Pig. 1) depicts the transfer of static from .
result of deterjorations in the dielectric a charged individual to ground via the test device. .
integrity and oxide-silicon interface under ESD )
envh'onlents.2 Charged-device’ model represents the bleed-off .

of accusulated charge upon the device-surface to h
Vith the scaling-dovn imposed by shrinking ground through the pin and conductive parts of the N
geometrical requirements designed to obtain active device (Pig. 2). The third model simulates 3
improved device characteristics and {increased the effect of the charge distribution and discharge D
packaging density, the gate-region of the NOSFET vhen a device is exposed to a static-electric field 3
has become even more vulnerable to ESD-based (Fig. 3). “ :
failures caused by tvo major geometrical factors, ’
namely, (a) scaling the gate-oxide thickness to :
ultra thin dimensions (about IOOA) results in an @'
extremsely high field intensity in the dielectric * Oe
~
approsching the 1limits of breakdown conditions . ”' .
and (b) geometrical reduction leading to shortened e
channel length and narroved channel vidth can Ps
sugument the possibilities of electrical
overstressing due to external transients. R Lok
Thus the net effect of shrunk geometry vould be T oo ‘!
to enhance the susceptibility of the device to ESD- ¢« 100w
based failures vith tvo possibilities: The first b ST WY
one vwould refer to irreversible (catastrophic) I I I J :
gate-oxide (dielectric) bdreakdovn due to the : -
1
impulsive BSD szap at the gate teninal.‘ The ~
second type of damage vould pertain to slov (time- HMAN - BT DENCE. PAAALETERS
. dependent) performance degradation resulting from 101 ¢ AN - BOOY MOOEL .
-:':‘\' sub-catastrophic zaps; vhen such lov-level : i
400 &
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In the event of a high intensity ESD at the
gate of a MOS device, a dielectric breakdowvn is
likely to occur in the thin gate-oxide film. This
breskdowvn process wmay be divided into two stages:
During the first or build-up stage, localized high-
field current density are formed as a result of
charge-trap generation vith accompanied barrier
lovering. Bventually vhen the local current
density or field exceeds a critical value, the
rapid runavay stage begins during vhich additional
runavay (electrical and/or thermal) process result
in breakdown.

The field-controlled breakdovn essentially
depands on the intrinsic breakdovn strength
("8MV/cm) of the oxide and is prisarily dictated by

the Povler-llordhell3 tunneling of electrons from
the conduction band of Si substrate into the oxide.
The corresponding curreat density . (J) "'is

approximately equal to szcxp (-B/B) vhere A and B
are constants vith (approximate) values of 2 x 106

n-porol/(lV)z and 238 WV/ca, respectively.a The
oxide-defects also wvould significantly influence
the breakdovn mechanisa.

Tunneling of electrons from Si into the oxide
is folloved by transport of these charges in the
oxide with the creation of electron-hole pairs by
the interaction of field-accelerated electrons vith
the oxide via impact ionization. This may lead to
local dissipation of energy from the excited
carriers into heat through excitation of lattice
vidration mode; i{f this joule heating is not
extracted fast enough by conduction, the local
temperature vould rise until a permanent damage

*\ -occur-, as observed by Yamabe, et nl.9
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The critical voltage or severity level of
catastrophy at vhich frreversible gate-oxide damage
vould occur can be formulated in terms of EOS
parameter(s) and the vulnerable geometries of the
device as follovs:
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FIG & HEAT- FLUX ACROSS THE GATE- OXIOE

Considering a cylindrical current path from Si
substrate to the polysilicon electrode across the
gate-dielectric (Pig. 4), the heat-flux (H) in the
current path into the $1 substrate can be vritten
as

8 - znzxuwus‘, and )

!2 - ZlRtox Ks‘ozdllhxsioz (2)

vhere K and &x are thermal conductivity and thermal
diffusion wvidth, respectively. Purther, 4T is the
temperature rise, R is the radius of current path

and tox is the gate-oxide thickness.In terms of

electric pover dissipated as heat, the critical
voltage (Vc) of oxide breakdown can be obtained

fros the folloving relation:

dVi/tox = B (per unit area) (3)

vhere o refers to the electrical conductivity of
the oxide-film. Por steady-state temperature rise

(a1,
172
vc' (‘51AI-tox’(axslq)l 4

Por the transient condition governed by the
narrov pulse regime of the ESD events, the thermal
conduction equation for the dielectric gate can be
vritten as

Cod(8T)/dt - v.(xsmz(vm P x: 5)

vhere lc is the critical breakdovn field, C and p

refer to the specific heat and mass density of the
oxide material, respectively. Por a pulse duration
of V¥, the critical voltage of breakdowvn ch can be

obtained from the principal solution of Bq. (5).
It is given by

172
ch(x,t) - [KSltox KTVI(GAKSi)] (6)
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vhere nv « & [1-a(x,t)]. BHere &T_ (x) is equal

2 and

2

2 2
to ¢ 'e lt“ /74-3°)/2K

$10

«(x,t)sl- ;-1 (-1)‘(4' (erf x"+erf x*)dt) vhere x
is the hot-spot under observation. Purther x «»
lznol)to'/z 3 xJ/72 ‘oz vhere '5102 is the
thermal diffusivity of the oxide.

Thus Bq. (6) evaluates the critical voltage in
terms of the BESD parameters (lc and V) and the
device geometrical (scaling) quantity, namely, tox'

It applies to the zap received by the gate from

s human-body (Pig. 1) or a charged-body (Pig. 2).

It 4is analogous to the popular Wunsch-Bell
10

relation specified for junction devices to
calculate the critical pover dissipation at the
junction.

Pield Induced Model (Pig. 3)

A MOS device subjected to field-induced mode of
electrical overstressing can be analyzed
considering s dielectric plus air-gap model
depicted in Pig. S.
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FI6.8 FIELD-INDUCED BREAKDOWN ACROSS THE

GATE-OXIDE PLUS AIR-GAP

The critical air-gap voltage V° at vhich

breakdovn occurs and pumps the charges into the
dielectric can be specified in terms of an over-
voltage parameter AV is given by

2 2
Av.cltox IIIG(lotox/lcSioz) ¢))

vhere is & constant and II is the intrinsic
breakdovn strength of the oxide.

Thus the electrical overstressing pertaining to
the field-induced condition may 1initiate a
breakdovn by the critical overvoltage (due to
stressing) vhich is directly proportional to the
square of the dielectric thickness and is inversely
proportionsl to the gap vidth.
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ENDOCERONIC DEGRADATION

At subcatastrophic levels of stressing, the
device wvould exhibit a latent mode of faflure
manifesting as the endochronic performance
degradation. Such "vounded® or "rogue" components
may still be functional (hovever, vith deviatory
characteristics) and are potentially prone to
catastrophic fajlures on subsequent stress
repetitions.

The aging of a device can be specified in teras
of four possible damaging influences, namely, the
elevated temperature, the intensive electric field,
depletory electrosigration and undue thermoelastic
stresses. Specifically, in a HNOS device, the
degradation is observed in the form of shifts in
the threshold voltage and/or changes in trans-
conductance. Vhen a device takes multiple (lov-
level) zaps at random (or regular) intervals, the
net time-dependent degradation due to M stresses

(zaps) can be vritten as £ollovsxll

oy, N 8v...1/2 1-p
T C_T1) r
< = {11 ] -1)
Ve I» %7
and
%, n g, 121p x
_'-. - {1+ T-p —‘. ] -1 (8)

vhere VT and & refer to the threshold voltage and

the transconductance, respectively. FPurther, p is
a constant (<1) and the exponent r is greater than
one. Avrl and A‘nl are the changes in VT and 8

(respectively) for a single zap. In general, AVT or
&, is determined by the magnitude and sign of th«

charge injected into the dielectric. Typical
variation (measured) of Ag./g- as a function of

number of zaps is presented in Pig. 6.
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Changes in g, or v, is mainly controlled by the
trapped carrier density N(t) given bylz
N(t) = Rp(d-exp[-o, (1))} 9
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vith Ny (t) = waft Jipg (V)8 Bere ¢ is the
charge accumulation coefficient and Jinj refers to
the injected current density.

The effect of scaling dovn on the performance
degradation wvil)l be implicitly determined by the
injected current density. That {s, for given
operating potentials, the scaling dowvn vould slter
the field intensity (magnitude and pattern) at the
active regions wvith the corresponding changes in
the magnitude of injected current density. Hence
the degradation of the device vould be influenced
by the alterations 1in all the major three device
(geometrical) parameters, namely, the channel
length, the channel vidth, and the oxide thickness,
inassuch as all these parameters individually or
collectively decide the field that controls the
current injection phenomenon.

CONCLUSIONS

Prom the analyses indicated here, the folloving
conclusions can be inferred:

1. Por an ESD addressed to human-body model and/or
charge-device model, the critical breakdovn
voltage of the oxide is approximately
proportional to JT;X.

2. The corresponding damage is also controlled by
the overstressing parameters, namely, the

stress level and the pulse-vidth of the
transient.
3. Vhen the overstressing refers to field-induced

model of Pig. 3, the excess voltage required
for the breakdown 1o take place and hence for
the injection of charges into the dieletric, is

proportional to tox and decreases with the

increasing gap-vidth.

A. The time-dependent degradation due to
subcatastrophic and repetitive stresses can be
specified by the endochronic changes in 8y OF

VT (Pig. 6). The grovth of degradation wvould

depend essentially on the initial value of
damage caused by a single zap and the time-
dependent increase vould be decided by the
nuaber and rate of subsequent zaps. (Eq. 8).

5. The performance deviation caused by a single
zap would be determined by the cohesive
influence of current pumping due to the field

vithin the device infrastructure; and this
field is a function of the geometrical
parameters, namely, the channel vidth, the

channel 1length, and the gate-oxide thickness.
Any scaling-dovn strategy vould thus directly
alter the single-zap damage (Aglllg- or

AVTI/VT) vhich initiates the endochronic
derivatory response.
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Susceptibility of PCB-mounted devices to failures caused by

electrostatic discharges (ESD) is studied. Theoretical analysis and a

-

™

) simulated experiment indicate higher wvulnerability of subassembled (PCB-
b

N mounted) devices relative to their unmounted (isolated) counterparts.
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;23 relatively high humidity conditions and often as high as 15,000 V 70 20,000
V under dry conditions. The charges induced on a nonconductor can remain in
“"puddles" on the surface for hours for even days. Wher. such a static build-
up occurs in a semiconductor, the device may fail either due to excessive
voltage difference or, due to the discharge of this voltage across the
device causing an excessive current to flow. In either case, a damage
(catastrophic or performance degradation) in the device is likely to occur

in the sensitive parts of the devices.

Thus electrostatic discharge (ESD) plagues the modern microelectronic

industry as a new contaminant and poses unique reliability problems due to
"sneaky" failures in production lines, in the inspection departments, at the

stock-room, while-on-transit or in the hands of the customers.

In general, such ESD threats are conceived as and supposedly
experienced only in isolated devices; that is, in those devices which are
not subassembled or mounted on a PCB. This presumption is rather incorrect
and as pointed out by Donald Frank (Ref. 1), it is a "my*h" to presume "an
E3D sensitive component cannot be damaged once it is installed on a circuit
board." Notwithstanding, in the existing practice, survivability assessment
of electronic systems under electrical overstresses (EOS) arising from
electrostatic discharges (ESD) have been invariably restricted to analyzing
the isolated components only; and, failure prevention measures (Ref. 2) have
been prescribed acordingly in respect of handling and using isolation
devices. Further, failures threshold studies and protective circuit designs
have also been based mostly on the anticipated ESD threats exclusive to

unmounted/isolated devices only.
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However, case studies (Refs. 1, 3 & 4) reveal that devices mounted on
printed circuit boards (PCB) would experience high failure rates under ESD
environments despite exercising the prescribed precautionary measures. For
example, as indicated by William Thompson, (Ref. 3) non-observance of ESD
protective measures in handling and using certain costly replacement
subassemblies of tactical systems like missiles, resulted in excessive loss

and warranted frequent field-repairs.

Not taking care to protect ESD sensitive components from the damage
after they have been installed in an equipment can also result in
performance degradation of the unit, as pointed out by Donald Frank (Ref. 1)
referring to a case of a scientific calculator being not able to retain the

programmed memory when necessary handling procedures were not followed.

More evid.ence on ESD-induced damage to integrated circuits on PCB's
has been recently furnished by Shaw and Enoch (Ref. 4) with experimental
data pertaining to the sensitivity of a batch of octal-latch integrated
circuits moun<=d on a printed circuit board to ESD transients. Their
experiments reveal the high static propensity of PCB's would lead to an ESD
transient, sufficiently large enough to cause catastrophic damages in

mounted devices.

In order tc assess, the proneness of PCB-mounted devices to failures
under ESD-based overstresses, it is essential to formulate a systematic
model 80 as to estimate the relative lethality of such devices (in the

subassembly) in comparison with that of isolated (unmounted) counter parts.

A typical model can be conceived as follows:
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THEORETICAL MODEL

Referring to Fig. 1, the electrostatic discharge from a human body onto
a PCB-pin is equivalently represented by a network. The components of the
dual-RIC network (Ref. 5 & 6) (namely Ry Ly Cp & Ry Iy CH) denote the body

and the hand, and the voltage Vi on CE depicts the electrostatic voltage on

the body. The transmission-line path between the PCB-pin and the device-pin
is represented by an equivalent T-network (Rsf. 6) with lumped elements of

Le and Ce' The device junction under stress is assumed to be purely
resistive (Rj) and is shunted by substrate/packaging capacitance, Cj’
Associated with Rj is the effective junction area (A) through which the bulk
of the ESD current is passed. Typical values OF RJ, CJ-, and dual-RLC

elements are shown in Fig. 1. Further, the path-length of the PCB
transmission-line is assumed as 5 cm (a typical value) with a characteristic

impedance of 50£). The corresponding Le and Ce values (Ref. 7) per unit

length are 2.5 ni/cm and 1 pF/cm, respectively, if the PCB has & dielectric

constant of 2.5.

Analysis: The transient voltage Vj(t) across the device junction is
computed by laplace transform technique, assuring 2 stress volitage of Vi =

1000 V. The device considered is of silicon material with A = 1000 sq.

microns. For a known (computed) Vj(t), the average power per unit junction

area, namely, P(PCBM-D) as a function of time is plotted in Fig. 2. To find

a measure for the damage (as implied by junction melting), the junction

.
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power per unit area at the melting point of the device medium {silicon),
% denoted as P(W-B), is computed as a function of time via well-known Wunsch-
Bell (Ref. 8) heat transfer equation. The relevant results are also

presented in Fig. 2.

The condition for catastrophic failure of the PCB-mounted device is
that P(PCBM-D) > P(W-B). From Fig. 2, this failure condition corresponds to

the time, t = 'C, = 4 nsec. If the test device considered were to be an

isolated piece (instead of being mounted on a PCB), the corresponding
junction power per unit area, P(I-D) as a function of time, can be
calculated (Ref. 5) by the equivalent network of Fig. 1 with the omission of
transmission line and inductive parameters. The results are shown on Fig. 2

with the associated failure time beingT2= 9 nsec. Hence the relative

lethality endurance (Ref. 9) of the PCB-mounted device in comparison with an
e'; isolated device is given by (Ref. 9) T1/'t'2 = 0.44. That is, for a given

severity level of ESD, the PCB-mounted device has an endurance capability
(Ref. 9) of only 44% of that of an isolated device. The enhanced lethzality
and higher proneness to faiiure of the PCB-mounted device results from
current-peaking effects (Ref. 10) due to inductive elements of the
equivalent circuit shown in Fig. 1. The super-fast initial-voltage spike

across Rj is indicated by the overshoot curve of Vj (PCBM-D) would pose a

higher severity, as experienced in the reported case studies (Ref. 1, 3, &

4).
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EXPERIMENTAL STUDIES

To understand the implications of current-peaking effects due to the
inductive elements of the transmission-line on the PCB, an experiment
simulating the equivalent circuit of Fig. 1 was constructed using a PCB with

Scm long parallel line, terminated by a parallel combination of Rj = 100 ohm
and CJ = S5pF. The typical output-discharge voltage waveforms, with and

without the transmission-line, as observed on a wide-band oscilloscope are
shown in Figs. 3 A & B. These waveforms closely depict the computer-
simulated discharge profiles of Fig. 2. The characteristic initial peak
(due to the inductive elements of the transmission line) of Fig. 3A can
drive the junction into the Wunch-Bell's limit of catastrophy (Ref. 8). But
when the inductive elements are absent (that is, when the device is
considered as an isolated component), the discharge waveform is essentially
an RC transient curve without initial peak(s)/overshoot(s) as could be
observed from Fig. 3B. Thus the simulated experiment supplements the
concept that the ESD threat could be higher when the components are on a PCE

than when the components experience the ESD zap as isolated devices.

Remedial Measures: 1In spite of exercising ESD controls (Ref. 2) during
design, test, manufacture, assembly and packaging for delivery, etc., there
persists an enhanced threat of failure in respect of replacement assemblies
(PCB) as indicated in the present analysis. Therefore additional protection

methods may be required exclusivly at subassembly levels. Transient

suppression at subesssembly level can be done by three schemes: In the first
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method (Ref. 4) as recommended by some manufacturers, resistors {up to 400
ohms) can be included in series with inputs that are directly wired to off-
board connectors, so as to limit discharge current of an E3D transient.
Such in-line resistors have been observed to be effective in protecting ICs
on a board only to a moderate extent; and also their effectiveness is
dependent on the polarity of the transient, the greater effect being

achieved for negative transients (Ref. 4).

Another scheme suggested here is to use a negative resistance elements
(varistors) as shunt-type transient suppressors across the inputs and off-
board connectors (Ref. 11). Because of the symmetrical sharp breakdown
characteristics, a varistor can provide adequate bipolar transient
suppression. PFurther, availability of surface-mounted varistors (Ref. 11)

indicate their promising applications in PCB technology.

The third method (Ref. 12) of transient suppression can be achieved by
using positive temperature coefficient (PIC) resistors as series elements at
the input terminals. Low resistance conductive polymer-based PTC devices
have been studied as overcurrent protectors (Ref. 12) and their use as
protective devices for PCB-mounted components awaits the trial of

experimentation.

It is suggested here that a miniature protective components compatible
for PCB applications can be developed by judicious combination of in-line
resistors, varistors and PTC resistors. If such a scheme is effectively
implemented, the hazard-proneness of PCB-mounted devices to ESD-based

overstresses could possibly be overcome.
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@ Fig. 1: Human-body model of electrostatic dischargs (ESD) through PCB- P
mounted devices: Equivalent circuit representation. f"'

. »

Fig. 2: Variations of ESD-induced junction voltage (Vj) and average ;

’n

power/unit junction area (P) as functions of time; Vj(PCBM—D) & 2

P(PCBM-D) correspond to PCB-mounted device. VJ.(I—D) & P(I-D) M

: =

correspond to isolated device. P(W-B): Calculated by Wunsch-Bell s

¥

model. X

@ ;
Fig. 3: Typical outputs from an ESD Simulator Depicting the Human Body !

Model shown in Fig. 1. ;

ﬁ.

A. Reactive Elements of the PCB Transmission Line are included. '.:.

B. PCB Transmission Line is ommitted. s
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ESD Failures of
Board-Mounted Devices

Analysis and simulated experiment indicate that mounted devices
are more vulnerable to ESD than are unmounted devices.

By Perambur S. Neelakantaswamy,
RIT Research Corp., Rochester, N.Y .,
and Rennen I. Turkman, Rochester
Institute of Technology,

Rochester, N.Y.

Electrostatic discharge (ESD) plagues
the modern microelectronics industry
and poses unique reliability problems
due to failures on the production line,
in the inspection department, at the
stockroom, while in transit or in the
hands of customers. _

Such ESD threats are supposedly
experienced only 'in isolated devices;
that is, in devices which are not
mounted on a printed circuit board
(PCB). This presumption is incorrect.!
It is a myth that an ESD-sensitive
component cannot be damaged once
installed on a circuit board.

Nevertheless, survivability assess-
ments of electronic systems under elec-
trical overstresses (EOS) arising from
ESD have been restricted to analyzing
isolated components only, and failure
prevention measures with respect to
handling and using isolated devices
have been prescribed accordingly.?
Further, failure threshold studies and
protective circuit designs have also
been based mostly on anticipated ESD
threats exclusive to unmounted devic-
es.

Case studies reveal that devices
mounted on PCBs experience high fail-
ure rates in static-charged environ-
ments even when the prescribed pre-
cautions are taken.'** Non-observance
of ESD-protective measures in han-
dling and using certain costly replace-
ment subassemblies of tactical sys-
tems, like missiles, resulted in
excessive loss and frequent field re-
pairs.?

Not taking care to protect ESD sen-
sitive components from damage after

- PCB with mounted components

Equivalent
T-network

2
0:

| Transmission line
(interconnection)

1. Equivalent clrcult representation for a human-body model of electrostatic discharge

(ESD) through PCB-mounted devices.

they have been installed in equipment
can also result in performance degra-

dation of the unit, as pointed out by -

Donald Frank,! referring to a case of a
calculator that was not able to retain
its programmed memory when the
necessary handling procedures were
not followed.

More evidence on ESD-induced dam-
age to integrated circuits on PCBs has
been recently furnished by Shaw and
Enoch,' with experimental data per-
taining to the sensitivity of a batch of
octal-latch  integrated circuits
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mounted on a printed circuit board, to
ESD transients. Their experiments re-
veal that the high static propensity of
PCBs would lead to an ESD transient,
sufficiently large enough to cause cata-
strophic damages in mounted devices.

Theoretical mode!

In order to assess the likelihood of
PCB-mounted devices to fail under
ESD-based overstresses, it is essential
to formulzle a systematic model so as
to estimate the relative lethality of
such devices (in the subassembly) in
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2. Variations of ESD-induced junction
voltage (V) and average power/unit
junction area (P) are shown as functions of
time. V; (PCBM-D) and P(PCMB-D)
correspond to PCB-mounted devices.
V/(I-D) and P(I-D) correspond to isolated
devices. P(W-B) is calculated by the

P(PCBM-D)

comparison with that of unmounted
counterparts. A typical model follows.

Referring to Fig. 1, the electrostatic
discharge from a human body onto a
PCB pin is equivalently represented
by a network. The components of the
dual-RLC network® (namely Ry Ly Cy
and Ry, Ly Cip) denote the body and the
hand, and the voltage V; on Cp depicts
the electrostatic voltage on the baody.
The transmission-line path between
the PCB pin and the device pin is
represented by an equivalent T-net-
work® with lumped elements of I, and
(', The device junction under stress is
aszumed to be purely resistive (R) and
1w shunted by substrate/packaging ca-
pacitance, (1 Associated with I is the
effective junction arean (AY through
which the bulk of the ESD current is
passed. Typical values of R, C. and
dual-RLO elements are shown in Fig.
1. Further, the path lenpth of the PCR
transmission line s assumed to be 5
cm (a typical value) with a characteris-
tic impedar ce of 500 The correspond-

ing L, and C, values’ per unit length
are 2.5 nH/em and 1 pF/em, respective-
ly, if the PCB has a dielectric constant
of 2.5.

The transient voltage V{t) across
the device junction is computed by
Laplace transform technique, assum-
ing a stress voltage of V, = 1,000 V.
The device considered is of silicon ma-
terial with A = 1,000 sq microns. For a
known (computed) Vit), the average
power per unit junction area, namely,
POPCBM-D) as a function of time is
plotted in Fig. 2. To find a measure for
the damage (as implied by junction
melting), the junction power per unit
arca at the melting point of the device
medium (silicon), denoted as P(W-R),
is computed as a function of time via
the well-known  Wunsch-Bellf heat-
transfer cquation. The relevant results
are al=y presented in Fig, 2

The crndition for catastrophic fa
ure of the PUB-mounted device is that
PPCBM-1D) - POW-B). From Fig 2

this futlure condition corresponds to

1

the time, t = 7, = 4 ns. If the test
device considered were to be an iso-
lated piece (instead of being mounted
on a PCB), the corresponding junction’
power per unit area, P(I-D) as a func-
tion of time, can be calculated® by the
equivalent network of Fig. 1 with the
omission of fransmission line and in-
ductive parameters. The results are
shown con Fig. 2 with the associated
failure time being 72 = 9 ns. Hence the
relative lethality endurance® of the
PCB-mounted device in comparison
with an isolated device is given by 7,/7,
= 0.44. That is, for a given severity
level of ESD, the PCB-mounted device
has an endurance capability of only 44
percent of that of an isolated device.
The enhanced lethality and higher
proneness to failure of the PCB.
mounted device results from current-
peaking effects’® due to inductive ele-
ments of the equivalent circuit shown
in Fig. 1. The super-fast initial-voltage
spike across R, indicated by the over-
shoot curve of V, (PCBJM-D), would
pose a higher severity as experienced
in the reported case studies 34

Experimental studies

To understand the implications of
current-peaking effects due to the in-
ductive elements of the transmission
line on the PCB, an experiment simu-
lating the equivalent circuit of Fig. 1
was constructed using a PCB with
5-cm long parallel line, terminated by
a paraliel combination of R, = 100 Q
and C; = 5 pF. The typical output-
discharge voltage waveforms, with and
without the transmission line as ob-
served on a wide-band oscilloscope, are
shown in Figs. 32 and 3b. These wave-
forms closely depict the computer-sim-
ulated discharge profiles of Fig. 2. The
characteristic initial peak (due to the
inductive elements of the transmission
line) of Fig. 3a can drive the junction
into the Wunch-Bell's limit of catastro-
phe? But when the inductive elements
are absent (that is, when the device is
considered as an isolated component),
the discharge waveform is essentially
an RC transient curve without initial
peak(s)overshoot(s) as could be ob-
served from Fig. 3b. Thus the simu-
lated experiment supplements the con-
cept that the ESD threat could be
higher when the components are on a
PCB than when the components expe-
rience the ESD zap as isolated devices.

In spite of exercising ESD controls®
during design, test, manufacture, as-
sembly and packaging for delivery,
ete., there persists a greater threat of
failure of replacement assemblies
(PCB) as indicated in the present anal-
veis. Thevefore additional protection
may be required exclusively at subase
sembly levels. Transient suppression
at subasgembly levels can b accom-
plished by any one of three rethods In
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Additional protection may be required exclusively at subassembly levels.

the first method,* as recommended by
some manufacturers, resistors (up to
40082) can be included in series with
inputs that are directly wired to off-
board connectors, so as to limit dis-
charge current of an ESD transient.
Such in-line resistors have been ob-
served to be effective in protecting ICs
on a board only to a moderate extent,
and their effectiveness is dependent on
the polarity of the transient.

Another scheme suggested is to use
negative resistance elements (varis-
tors) as shunt-type transient suppres-
sors across the inputs and off-board
connectors.!! Because of the symmetri-
cal sharp breakdown characteristics, a
varistor can provide adequate bipolar
transient suppression. Further, the
availability of surface-mount varistors
indicates their promising applications
in PCB technology.

The third method!? of transient sup-
pression can be achieved by using posi-
tive temperature coefficient (PTC) re-
sistors as series elements at the input
terminals. Low resistance conductive
polymer-based PTC devices have been
studied as overcurrent protectors and
their use as protective devices for PCB-
mounted components awaits the trial
of experimentation.

It is suggested that miniature pro-
tective components compatible for
PCB applications can be developed by
a judicious combination of in-line re-
sistors, varistors and PTC resistors. If
such a scheme is effectively imple-
mented, the susceptibility of PCB-
mounted devices to ESD-based over-
stresses could possibly be overcome. ®
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IMPULSIVE EMI RADIATED BY ELECTROSTATIC DISCHARGES (ESD)

Failure of equipment-mounted devices due to indirect (noninvasive)
energy transfer from the ESD via transient electromagnetic
coupling/interference warrants a wunique modeling as detailed in this

article.

PERAMBUR S. NEELARANTASVAMY, RIT RESEARCH CORPORATION, ROCHESTER, NEW YORK

Conventional studies on ESD-based damages are invariably restricted to

chip—level.1 However, there has been an increased awareness recen:'y to

investigate the susceptibility of equipment and subassemblies to ESD

2,3

failures, because such larger systems would present prominent cross-

sections of exposure to impulsive electromagnetic interference (EMI)

emanating from <an external ESD event.a That is, equipment, in general, is
potentially propensive to accept electromagnetic waves radiated from an
external ESD occurring in the vicinity. Therefore, any sensitive device
mounted within the equipment is 1likely to be damaged by absorbing the
interfering electromagnetic energy penetrated through apertures (on the
equipment-shielding) and/or coupled via conductor surfaces, connectors, etc.
Eventually circuit malfunctioning and/or equipment-breakdown would occur

depending on the failure being latent-type or catastrophic. Appearance of
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"ghost-bits" and "bit dropouts™ in computers and "sneaky” equipment failures
in production lines, in the inspection departments, at the stockroom, while-

on-transit or in fields, etc., can be largely attributed to such ESD-based

electromagnetic influences.5 To evaluate the cause-effect relations
quantitatively in the aforesaid failure-mode, it is essential to develop an
EMI model representing the ESD-excited electromagnetic wave, its coupling to
devices via equipment/subassembly cross-section(s) and the resulting damage.
This article proposes a model to portray exclusively the implicit (EMI-

based) ESD-to-device interaction in contrast with the existing models

(human-body model,6 charged-device model7 and field-induced modelB) wvhich

rather describe the direct (contact-based) interactive damages.
BSD MODELS

The electrostatic discharge (ESD) phenomenon that plagues the modern
electronic industry as a new contaminant, is normally simulated by three

6,7,8

well-established models describing the device to ESD interactions: The

human-body model6 shown in Figure 1 depicts the transfer of static from a

charged person to ground via the test device. Charged-device model7
(Figure 2) represents the bleed-off of accumulated charges (which "normally

stay put as puddles" upon the device-surface) to ground through the pin(s)

and/or conductive parts of the active device. The third model8 simulates
the effect of the charge distribution and discharge vhen a device is exposed

to a static-electric field (Figure 3).
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In general, ESD threats modeled as per Figures 1-3 are conceived and
supposedly experienced only in isolated devices; that is, in those devices

vhich are not subassembled or mounted on PCBs of the equipment. This

presumption is rather incorrect and as pointed out by Frankg, it is a "myth"
to presume "an ESD sensitive component cannot be damaged once it is
installed on a circuit board.” Notwithstanding, in the existing practice,
the survivability assessment of electronic systems under electrical
overstress (EOS) arising from ESD have been invariably restricted to analyze
isolated components only and failure prevention measures have been
prescribed accordingly--only to the handling and using of isolated devices.
Further failure threshold studies and protective circuit designs have been
mostly based on anticipated ESD threats exclusive to unmounted/isolated

devices.

However, case studies reveal that devices mounted on printed circuit
boards (PCB) in equipment would experience high failure rates under ESD

environments despite exercising the prescribed precautionary measures. For

example, as indicated by Thompson,2 non-observance of ESD protective
measures in handling and using certain costly replacement subassemblies of
tactical systems 1like missiles, resulted in excessive loss and warranted

frequent field-repairs.

Not taking care to protect ESD sensitive components from the damage

after they have been installed in an equipment can also result in
performance degradation of the unit, as pointed out by Frank9 referring to a
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case of scientific calculator being not able to retain the programmed memory

wvhen necessary handling procedures vere not followed.

P SO

More evidence on ESD-induced damage to integrated circuits on PCBs has

been recently furnished by Shaw and Enoch10

wvith experimental data
pertaining to the sensitivity of a batch of octal-latch integrated circuits

mounted on a printed circuit board to ESD transients. Their experiments

w_ A 8 _®

reveal that high static propensity of PCBs would lead to an ESD transient

sufficiently large enough to cause catastrophic damages in mounted devices.

Recently, the author has also studied3 the susceptibility of PCB-

mounted devices to failures caused by ESD and indicated the higher

ﬁ vulnerability of subassembled structures.

EMI MODEL

In ESD problems related to subassembled and/or equipment-mounted
devices, the threat would arise not only from direct/contact-based bleed-off
of electrical charges, but also due to noninvasive electromagnetic coupling
(Figure 4). That is, as mentioned11 in DOD-HDBK-263, electromagnetic pulses :

(EMP) caused by ESD in the form of a spark can cause part failures in

equipment. "
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’ The following analysis will enable a simulation/modeling to represent

such noninvasive ESD-base EMI threats. Consider an ESD event, say, from a
finger tip occurring in the vicinity of a circular aperture on an equipment
(shielding) as 1illustrated in Figure 5. For the purpose of analysis, the
finger 1is regarded as a dielectric-vedge (vide the insert in Figure 5)
inducing an intense electric field in the discharge gap. The propagating,
transient electromagnetic field generated at the gap can be represented by

the lightning function as follows:

el(t) = Ellexp(-At)-exp(—Bt)] (1)

vith A and B being constants dependent on the rise and decay times of the

* impulse discharge. The amplitude El at the center of the discharge-gap is

proportional6 to T DT_1 vhere D is the gap-width and v is a parameter

(0<1<1) dependent on the wedge-angle («) and on the ratio of dielectric

constants, ez/el. The electric field El becomes singular attaining

infinitely large magnitude as D approaches zero. This enhanced local field

(El) due to thé vedge-like structure of the finger can be evaluated by the

analysis due to Meixner.12

As the induced field is intercepted by the circular aperture on an
(invariably) grounded and charge-free equipment-shield, the corresponding
electromagnetic wave interior to the shielding is related to the exterior

o field components by means of a coupling coefficient (K) given by13

-5
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'3
;
wvhere 90 is the semiangular width of the circular aperture, assumed to be )
s
located on a large, hollow, spherical shield (Figure 5) of radius, p. y
o
3
The penetrated EMI is incident on a lossy dielectric sphere (of R
a
microscopic dimension) representing the vulnerable part ("hot-spot") in the N
: Koy
microelectronic device, presumed to be located at the center of the f‘
spherical shield. The peak absorbed energy (W) at the dielectric sphere ;:
o
(wvith complex permittivity equal to €'-je") can be determined by the ;
' 14 5
“ spherical wave expansion technique (Mie solution) due to Stratton  with

appropriate boundary conditions and small argument approximations and by i
&

expressing the EMI field in the frequency domain through Fourier transform “
Fa i
method. The result is, -
3
. J
3 2.2 2 2 he
Vo= (4ma°/3) oK’ [F(R, 6, 0)] *(B-2)%/(B+a) (3) .-'

N

.

vhere o = we.e" and, /
N

"
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vith ko being the free-space propagation constant.

" If AJ is the junction area in the device, V/AJTO would refer to the average
P pover density over a pulse duration, T Presuming that the failure occurs
n

? at td’ the quantity V/AJTO can be equated to the Wunsch-Bell’s limit15 of
Yy catastrophy (due to junction burnout) and the corresponding result yields an
A

? expression for the damage-time (td) as:

3

.

¥

Sy

) 2.2 2 2
b td = ro aJ(Tm_Ti) (nkdpon)/V (5)

! vhere Trn and Ti are the melting point and initial temperature of the device,

respectively; further, the quantities kd, ° and C,, respectively, refer to

o P

[

I thermal conductivity, density, and specific heat of the device material.

¢

¢

X The results on damage-time (td) as a function of the rise-time (tr) of the

)

1,

) excited transient field (Equation 1) indicate that the relative damage-time

)

i tdl/td2 (corresponding to two rise-times, namely, T and Trz) is

M approximately equal to (Trl/trz)2 assuming that the pulse duration (to) is

i

N constant and T is equal to &n(B/A)/(B-A). In the computation, the value of
QEF\ k was taken approximately equal to 2n/ct_ (with c being the free-space

" & o r

U

1) —7-

.-
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velocity of the electromagnetic wave); further, the square-law relation

J
between the relative values of td and T is found to be valid, irrespective 2
of the material of the device (that is, either silicon or GaAs). ]
)
%
The author has indicated elsewhere16 that the relative damage-time directly 3
specifies the 1lethality endurance coefficient (LEF) of the device. Hence, N
it follows from the present analysis that the LEF is equal to (trlltrz)z. :f
A
l
EXPERIMENTAL STUDIES >
o
by
e

As radiated interference results from discharges to nearby conducting

“ objects, the currents flowing through the conducting surface would create }
transient electromagnetic waves which can be picked up by wires acting as Ef

antennas interpreted as valid signals; or, the interference can also k%

directly invade the devices causing catastrophic or latent failures. The %

extent of lethality is governed by the analysis iadicated before. t

[

The existence of ESD-based EMI can be verified by an experiment ﬁ,

simulating the ESD-sparking environment. Per DOD-HDBK-263, ESD spark E
testing11 can be performed by discharging the ESD in the form of a spark ;[

across a spark-gap sized for the ESD test voltage or by slowly bringing the 9.

high voltage test lead of the test circuit close to the case or electrical If

terminal of an EBSD sensitive item while it is operating until the voltage is EE
discharged in the form of an arc. )

h »
-8- >
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More elaborate test methods have beer described by Honda and Ogura17
vho wutilize time-domain and frequency-domain methods for quantitative

prediction of ESD-based EMI.

Presently a simple arrangement is described to simulate the test
studies under discussion. The principle of the test method is depicted in

Figure 6, and Figure 7 illustrates the actual experimental set-up used.

A human-body zap simulator (IMCS Model 2600) is used to establish the
spark across a metal tip and a grounded metal sheet. The simulator can

provide positive or negative 25v to 25 kV peak, single or sequenced (5 or

10} pulses with variable ramp up rate of 5 to 25 kV/sec. The pulse mode

‘ operation corresponds to the human-body ESD of Pigure 1.

The equipment/subassembly is simulated by portable static sensor
(RITRC-1000) developed by the RIT Research Corporation. It is a
miniaturized static sensor (originally developed to evaluate the efficacy of
ESD protection pags) mounted on a PCB with an associated circuitry to
respond with audio (buzzer) and video (LED) annunciations when the sensed

static or static-induced electric field exceeds a present level.

The sensor was enclosed in an EMI shield (metallic sandwich box) with a
small coupling hole of 1/4" diameter. It was placed at a convenient

distance (d) from the induced spark, such that for a given discharge voltage

di
JEF (peak) Vs and ramp rate (r=faf) the sensor would annunciate the reception of
"N

_9-
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EMI. For a given gap width at the spark, it was observed that the sensor

response level was proportional to product of Vs and r.

The test performed confirms the possible noninvasive interaction q
betwveen an ESD and a nearby equipment via electromagnetic coupling; and §
quantitatively, such an interference is governed by the arc gap-width, .f
coupling cross-section and the product of Vs and r. h
CONCLUSIONS A

v

From the analytical discussion presented before and from the

|i| experimental results obtained, the following conclusions can be inferred:

1. Quantification of EMI coupling reveals that the extent of severity 3
involved primarily depends on the ESD source and the coupling through

the shield.

Ry

Y

™

f

o

2. The intrinsic lethality of the device is mainly a function of the ;‘
electrothermal parameters of the junction in the vulnerable device. ;

3. The intensity and rise-time of the transient ESD overwhelmingly dictate ;.

the extrinsic-dependency of the device-lethality. .




4. The present analysis also indicates that the influence of ESD via EMI is

governed by the gap-width (D), as experimentally observed by Honda and

4
Kawamura.

5. The overall lethality of the device is directly proportional to the
effective cross-section of the equipment exposed to the EMI, quantified

via the coupling coefficient, K.

6. Intense EMI coupling would be experienced if the ESD event is provoked

by short-tips or wedges.

7. The 1implicit dependency of device-lethality on the transient nature of

the ESD (expressed in terms of Tr) as evinced in the present work,

concurs with the results due to Honda and KavamuraA vho expressed the
EMI severity in terms of the voltage and rate of change of current

product (Vs p 4 dis/dt) pertaining to the ESD loop (Figure 5).

8. Lastly, the relative lethality of the device to transient discharges is

equal to the square of the relative rise-times of the transients.

There are two possible solutions against radiated interference from an
ESD. The first method is simply to make the overall equipment shield as
complete as possible. That is, making the shield a nearly seamless six-

sided box, would reduce or eliminate the internal fields induced by the

invading interference.

EYO Y X ¥V FN
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However, for cosmetic reasons, if a complete metal-housing is not
possible, the second approach is to adopt second internal shields exclusive
to ESD-sensitive PCBs and connect the second shield to the first (external
shield) at the electrical power inlet. By this arrangement, the outer
shield acts as radiating plane producing fields in its interior, the second
shield, at the same time does not have induced current flowing through it.
Similar effect can also be activated by a ground-plane under the PCB or

multilayer board with a buried ground plane.
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Figure

Figure

Figure
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ESD: Human-Body Model

ESD: Charged-Device Model

ESD: Field-Induced Model

EMI Due to Static Effects

ESD-Based EMI: Modeling

Principle of Simulating ESD-Based EMI

ESD-Induced EMI Coupling To A Circuit:
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IMPULSIVE EMI RADIATED BY
ELECTROSTATIC DISCHARGES (ESD)

An understanding of failure of equipment-mounted devices due to indirect (nomnvaswe) energy transfel

from the ESD via transient electromagnetic coupling/interference warrants a unique modeling.

Perambur S. Neelakantaswamy, RIT Research Corporation, Rochester, NY

INTRODUCTION

Conventional studies on ESD-
based damages are usually restricted
to chip-level.! However, an in-
creased effort to investigate the sus-
ceptibility of equipment and subas-
semblies to ESD failures is now un-
derway?:3, because such larger
systerns expose prominent cross-sec-
tions to impulsive electromagnetic in-
terference (EMI) emanating from an
external ESD event.%. That is, equip-
ment in general is potentially suscep-
tible to accept electromagnetic
waves radiated from an external
ESD occurring in the vicinity. There-
fore, any sensitive device mounted
within the equipment is likely to be
damaged by absorbing the interfer-
ing electromagnetic energy which
penetrates through apertures (on the
equipment-shielding) and/or is cou-
pled via conductor surfaces, connec-
tors, etc. Eventually, circuit malfunc-
tioning and/or equipment break-
down can occur, depending on
whether the failure is latent or cata-
strophic. The appearance of ‘‘ghost-
bits™ and ‘'bit-dropouts™ in comput-
ers and ‘‘sneaky’’ equipment failures
in production lines, inspection de-
partments, at the stockroom, while
in -transit or in the field can be
largely attributed to such ESD-based
electromagnetic influences.®

To quantitatively evaluate the
cause-effect relationship in the fail-
ure mode described above, it is es-
sential to develop an EMI model rep-
resenting the ESD-excited electro-
magnetic wave, its coupling to
devices via equipment/subassembly
cross-section(s) and the resulting
damage. This article proposes a
mode! to portray exclusively the im-
plicit (EMl-based) ESD-to-device in-
teraction in contrast with the existing
models (human- body model®,
charged-model device’, and field-in-
duced model8) which rather describe
the direct (contact-based) interactive
damages.

104
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Figure 1. ESD: Human-Body Model.

ESD MODELS

The electrostatic discharge (ESD)
phenomenon that plagues the mod-
ern electronics industry as a new con-
taminant is normally simulated by
three well established models®-7-8 de-
scribing the device to ESD interac-
tions. The human-body model®
shown in Figure 1 depicts the trans
fer of static from a charged person to
ground via the test device. A
charged-device model’ (Figure 2)
represents the bleed-off of accumu-
lated charges (which otherwise ‘“‘nor-
mally stay put as puddles” upon the
device-surface) to ground through
the pin{s) and/or conductive parts of
the active device. The third modei®
simulates the effect of the charge
distribution and discharge when a de-

vice is exposed to a static-electric
field (Figure 3).

In general, ESD threats maodeled
as per Figures 1 to 3 are conceived
and, supposedly, experienced onlyr
isolated devices: that i< in thoee A¢
vices which are not subassembled o
mounted on PCBs of the equipment
This presumption is somewhat incor
rect, and as pointed out by Frank
is a “myth"” to presume "‘an EbD
sensitive component cannot be dam-
aged once it is installed on a circuit
board.” Notwithstanding, in the ex-
isting practice, the survivability a:
sessment of electronic systems unde.
electrical overstress (EOS) arising
from ESD has been invariably re-
stricted to an analysis of isolated
components only and failure preven:
tion measures have been prescribed
accordingly — only to the handling
and usc of isolated devices. Further
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Figure 3 ESD: Field-Induced Model

failure threshold studies and protec:
tive circuit designs have been mostly
based on anticipated ESD threats ex-
clusive to unmounted/isolated de-
vices

However, case studies reveal that
devices mounted on printed circuit
boards (PCBs) in equipment would
experience high failure rates under
ESD environments despite exercis-

ing the prescribed precautionary
measures. For example, as indicated
by ThompsonZ, non-observance of

ESD-protective measures in handling
and using certain costly replacerent
subassemblie. of tactical systems,
like missiles, resulted in excessive
loss and warranted frequent field re-
pairs.

Not taking care to protect £5D

sensitive components from the dam.
age after they have been installed in
equipment can also result in perfor-
mance degradation of the unit, as
pointed out by Frank?, referring to a
case »f a scientific calculator being
unakie to retain the programmed
memory when necessary handling
procedures were not followed.

More evidence on ESD-induced
damage to integrated circuits on
PCBs has recently been furnished by
Shaw and Enoch!® with experimen-
tal data pertaining to the sensitivity
to ESD transients of a batch of octal-
latch integrated circuits mounted on
a printed circuit board. Their experi-
ments reveal that the high static pro-
pensity of PCBs would lead to ar
ESD transient sufficiently large to
cause catastrophic damage in
mounted devices. Recently, the au-
thor has also studied3 the susceptibil-
ity of PCB-mounted devices to fail-
ures caused by ESD and indicated
the higher vulnerability of subassem-
bled structures.

EMI MODEL

In ESD problems related to subas-
sembled and/or equipment-mount-
ed devices, the threat would arise
not only from direct/contact-based
bleed-off of electrical charges, but
from noninvasive electromagnetic
coupling as well (Figure 4). That is, as
mentioned!! in DOD-HDBK-263,
electrornagnetic pulses (EMP) caused
by ESD in the form of a spark can
cause part failures in equipment.

The following analysis will enable
a simulation/modeling to represent
such noninvasive ESD-based EMI
threats. An ESD event is considered,
say, from a finger-tip in the vicinity of
a circular aperture on a piece of
<quipment (shielded) as illustrated in
Figure 5. For the purpose of analy
sis, the finger is regarded as a dielec:
tric-wedge (insert, Figure 5) inducing
an intense electric field in the dis
charge gap. The propagating, tran
sient electromagnetic field generate !
at the gap can be represented byt
lightning function as follows
ey(t) = Eqlexp(~ Al - o
with A and B ‘w-v:n; [
dent on the nse an i o,
the impulse et
tude by at the
charge-gep s o
where [ et
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the wedge-angle (@) and on the ratio
of dielectric constants, ¢z/€;.. The
electric field E; becomes singular at-
taining infinitely large magnitude as
D approaches zero. This enhanced

local field (E;) due to the wedge-like ~ a N\ omect oiscHane
@ structure of the finger can be evalu- :
ated by the Meixner analysis.!? P b IR

‘ As the induced field is intercepted

by the circular aperture on an (invari-
, ably) grounded and charge-free
| equipment shield, the corresponding
electromagnetic wave interior to the ‘
shielding is related to the exterior TRIBOELECTRIC
field components by means of a cou-
pling coefficient (K) given by!3

ELECTRONIC
DEVICES

K = 1/m(8, —(sind,)/2 —(sin26,)/2
+(sin30,/6)

(2)

where 8, is the semiangular width of ] )
the circular aperture, assumed to be Figure 4. EMI Due to Static Effects,
located on a large, hollow, spherical
shield (Figure 5) of radius, p.

The penetrated EM is incident on

a lossy dielectric sphere (of micro- -

scopic dimension) representing the ‘ \\

vqlnerable pa-rt (“h_ot-spot”) in the DIELEGTAIC SPHERE 7 \

microelectronic device, presumed to (E'JE") 2P 2 X \

be located at the center of the spheri- O SpOT I THE

cal shield. The peak absorbed ener- y o, HOLLOW SPHERICAL

, EQUIPMENT SHIELD

- gy (W) at the dielectric sphere (with
‘ complex permittivity equal to € — je)
can be determined by the spherical
wave expansion technique (Mie solu-
tion) of Stratton!* with appropriate
boundary conditions and small argu-
ment approximations and by ex-
pressing the EMI field in the frequen-
cy domain through the Fourier trans-
form method. The result is

W= (47a3/3)oK2E2 |F(R,o.<1>|2
(B—AR/(B + A) @)

where ¢ = we.€' and,

|F(R,0.<I>)|2 = [9/(e + e‘“z)
+ 0.4(k,a/2)?] (4)

QUIPOTEN-
IAL LINES

=-m

SOURCE

\Y
. . i N /: \
ulnth ko being the free-space propaga i ZA
tion constant. 4TS
If Ay is the junction area in the I~ weoee -
device, W/A 7, would refer to the l
average power density over a pulse

duration, 7. Presuming that the fail-

ure occurs at tg, the quantity

W/Aj7, can be equated to the Figure 5. ESD-Based EMI: Modeling.
Wunsch-Bell's limit!5 of catastrophy '

{(due tojunction burnout) and the cor-

responding result yields an expres-

sion for the damage-time (t4) as:

g = TozAJ2(Tm - Ti)z(ﬂ'kdpocp)/wz
: (5)
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w 2re T and T, are the melting

int and initial temperature of the
-device, respectively; further, the
quantities k4, poand C;, refer to ther-
mal conductivity, density, and specif-
ic heat of the device material, respec-
tively.

The results on damage-time (tq) as
a function of the rise time (7,) of the
excited transient field (Equation 1)
incicate that the relative damage- -
time td1/tg2 (corresponding to two
rise times, namely, 7,1 and 7,9)is ap-
proximately equal to (r.1/7,2)? as-
suming that the pulse duration {7, is
constant and 7, is equal to
joge (B/A)/(B-A).In thecomputation,
the value ot kg was taken approxi-
mately equal to 27 /cT, (with ¢ being
the free-space velocity of the electro-
me:jnetic wave); further, the square-
law relation between the relative val-
ues of tg and 7, is found to be valid,
irrespective of the material of the
device (i.e., either silicon or GaAs).

The author has indicated else-
where!® that the relative damage-
time directly specifies the lethality
endurance coefficient (LEF) of the
device. Hence, it follows from the
present analysis that the LEF is equal
to (rr1/7e2)%.

EXPERIMENTAL STUDIES
As radiated interference results
from discharges to nearby conduct-
ing objects, the currents flowing
through the conducting surface cre-
ate transient electromagnetic waves
wkizh can be picked up and inter-
preted as valid signals by wires act-
ing as antennas; or, the interference
can directly invade the devices caus-
ing catastrophic or latent failures.
The extent of lethality is governed by
the analysis previously indicated:
The existence of ESD-based EMI
can be verified by an éxperiment sim-
ulating the ESD-sparking environ-
ment. ESD spark testing!!, per DOD-
HDBK-263, can be performed by dis- -
charging the ESD in the form of a
spark across a spark-gap sized for
the ESD test voltage or by slowly
bringing the high voltage test lead of
the test circuit close to the case or
electrical terminal of an operating
_ESD-sensitive item until the voltage
Is discharged in the form of an arc.
More elaborate test methods have
been described by Honda and
Ogural? who utilize time-domain and
i_’eqUencydomain methods for quan-
titative prediction of ESD-based EMI.
simple arrangement, depicted

Interference Technology Engineers’ Master
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Figure 6. Principle of Simulating ESD-Based EMI.
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DEVICE/CIRCUIT |
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|
RITRIC DISPLAY
-1000 iy
TEST-BOARD 1
EMI

SHIELDING

GROUND ~

PLATE ARC

(IMCS MODEL 2600}

ELECTROSTATIC
INTERFERENCE
SIMULATOR

SIMULATOR

Figure 7. ESD-Induced EMI Coupling to a Circuit: Experimental Setup.

in Figure 6 and Figure 7, is described
to simulate the test studies under
discussion. A human-body zap simu-
lator is used to establish the spark
across a metal tip and a grounded
metal sheet. The simulator can pro-
vide positive or negative 25 V to 25
kV peak, single or sequenced (5 or
10) pulses with variable ramp-up rate
of 5 to 25 kV/sec. The pulse mode
operation corresponds to the hu-
man-body ESD of Figure 1.

‘The equipment/subassembly is
simulated by a portable, miniaturized

static sensor {originally developed to

LR TR TR -f {"- ’n¢l'\ W g™

e i

e
L)
4 B8

evaluate the efficacy of ESD-protec-
tion bags) mounted on a PCB with an
associated circuitry to respond with
audio {buzzer) and video (LED) an-
nunications when the sensed static or
staticiinduced electric field exceeds a
present level. The sensor was en-
closed in an EMI shield (metallic sand-
wich box) with a small coupling hole
of Y4-inch diameter. It was placed at a
convenient distance (d) from the in-
duced spark, such that for a given
discharge voltage (peak) V, and
ramp rate (r = di,/dt) the sensor
would annunciate the reception of
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EMI. For a given zap width at the
spark, it was observed that the sen-
sor response level was proportional
to the product of V, and r.

The test performed confirms the
possible noninvasive interaction be-
tween an ESD and nearby equip-
ment via electromagnetic coupling,
and that quantitatively, such an inter-
ference is governed by the arc gap-
width, coupling cross-section and the
products of Vgand r.

CONCLUSIONS

From the analytical discussion
previously presented and from the
experimental results obtained, the
following conclusions can be in-
ferred:

1. Quantification of EMI coupling
reveals that the extent of sever-
ity involved primarily depends
on the ESD source and the cou-
pling through the shield.

2. The intrinsic lethality of the de-
vice is mainly a function of the
electrothermal parameters of
the junction in the vulnerable
device.

3. The intensity and rise time of
the transient ESD overwhelm:-
ingly dictate the extrinsic de-

pendency of thedevice-lethality.

4. The present analysis also indi-
cates that the influence of ESD
via EMl is governed by the gap-
wdth (D), as experimentally ob-
served by Honda and Kawa-
mura-4,

5. The overall lethality of the de-
vice is directly proportional to
the effective cross-section of

the equipment exposed to the -

EMI, quantified via the coupling
coefficient, K.

6. Intense EMI coupling would be
experienced if the ESD event is
provoked by short-tips or
wedges.

7. The implicit dependency of de-
vice-lethality on the transient
nature of the ESD (expressed in
terms of 7,) as evinced in the
present work, concurs with the
results of Honda and Kawa-
mura* who expressed the EMI
severity in terms of the voltage
and rate of change of current
product (V, x dis/dt) pertaining
to the ESD loop (Figure 5).

110

Lot v [N !

8. Lastly, the relative lethality of
the device to transient dis-
charges is equal to the square
of the relative rise times of the
transients.

There are two possible solutions
against radiated interference from an
ESD. The first method is simply to
make the overall equipment shield as
complete as possible. That is, mak-
ing the shield a nearly seamless six-
sided box would reduce or eliminate
the internal fields induced by the in-
vading interference.

However, for cosmetic reasons, if
a complete metal housing is not pos-
sible, the second approach is to
adopt second internal shields exclu-
sive to ESD-sensitive PCBs and con-
nect the second shield to the first
(external shield) at the electrical pow-
er inlet. By this arrangement, the
outer shield acts as a radiating plane
producing fields in its interior. The
second shield, at the same time, does
not have induced current flowing
through it. A similar effect also can
be activated by a ground plane under
the PCB or multilayer board with a
buried ground plane.
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latersations! Conlersnce . The endochronic degradation eof ROS devices arising from the global response of the
device patameters collectively dateriorating under the repetitive i{nfluence o‘t, electrical

Canter Kobe overstreosses (at subcatastrophie levels) such as electrostatic discharge (ESD),
electromagnetic pulsing (CHP), etec., 48 quantified in terss of nolse charsctecistics.

Life-time studies depicting the degradation of a test device are pres
t .
saperimental data are furnished, ' presented Cosputed and

THME aTH
INTERNATIONAL
HICROELECTRONICS
CONFERENCEK 1INYRUDUCTLION static [rom 8 charged individual to ground via
the test device.
Studies on gate-oxide degradation of
Soensered by I Jopen chagte elecé;éjz’l‘:y ov;rstressed HUS devices subjected Charged d"’“S sodel represents the bleed
to environments are useful to establish - sec-
design-revievs required to achieve reduced device ::‘ ::u:;:\:;ulat;d';huge up:n the device-surface
instabilities and improved performance thc‘ active ':uti ¢ ;‘n ."2 conductive pacts of
reliability. evice (Fig. Y. The third model

sisulates the effect of the charge distribution
and discharge vhen g device s exposed to s

The effect of electrical-overstressing of static-electric field (Fig. 3)

gate-oxides prisarily causes charge-trapping in
the oxide-region together vith the corresponding

changes in the interface sutu.l In genersl,
intensity, polarity and the rate of occurance of
overstressing voltages vould detersine the extent

w of damage to the insulator lmegrlly.2 Vaile

high-level zaps vould cause oxide puncture(s)
vith catastrophic (irreversible) damages,
subcatastrophic transients occuring repeatedly ™
may casuse a cumulative grovth of deviee ’Vlll
degradation snd the time-dependent or endochronic
damage of the device vould be reflected f{s

measurable rnu'aneters.J such as transconductance
(8,), threshold voltage (Vl). etc. Inasmuch as

all the degrading device paraseters are Re 13K
interdependent, the cohesive damage of the device
should be assessed by an  appropriate
characteristic function vhich collectively
represents the net physical damage due to €4 ¥00p!
overstressings. It {is presently demonstrated -[‘l"

€S0

i .
G+ ALY
that nolise characteristics can depict the global
representation - of the stochastical varistions in
chatge-trapping and interface generation under
external overstressings; and noise lelsu;t;tl;ll L

of degraded devices can therefore be useful for

accelerated test procedures adopted in life-time MUMAN - BCOY DEVICE PARAMETERS
modeling strategies.

FIG !~ HUMAN - BOOY MOOEL
TUEORET1CAL CONSIDERATIONS

The ESD phenomena normally encountered can
be simulated by three vell-established aodels,

na-ely.‘ (a) human-body model, (b) charged-
device model, and (¢) field-induced nodel. The
hussn-body model (Fig. 1) depicts the transfer of
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Vhen & MOS device is subjected to an
electrical overstressing at the gate due to an
impulsive transient caused by an RSD (or an ENP),
the corresponding induction of charge-trapping
and generation of interface states can
equivalently represented by an input noise

resistence RN given by‘

N, 9ot B R
s (o) () (__38) (1)
M ar) (0 g

vhere k {3 “the Boltzmann constant, T is the
temperature (~300 K) and q 4s the electronic
charge. Purther, 'ox and €, U1 the thickness

and  the persittivity of the gate-oxide,

respectively; Ns is the surface-state density and
L‘S o,,,"h" to the field-effect mobility to lov
field-wobility ratio.

Eq. (1) indicates that l. is directly
proportional to "S concurring vith the

experiaental results  due o Abovitr) et
sl (Fig. 4). Hence the time-dependent history of
Ns as controlled by any external overstressings

can be tracked via the assesszent of 'N'

The field-elfect mobility is also dependent
on "S and is therefore llnked:s's vith the device
parameters g snd Vl. Explicitly,

1 1
B o o @

-
P’ lodls £, !ob(Vc-Vl)

Bere « and P ace constants and [ tefers to the
value of g, under unstressed conditions.

Further, \v'c is the applied gate potential.

Froa Eq. (1) and (2), the folloving relation
can be obtained:

Mo, — L
TR

The constant 8 has the approxisate values of
0.138 and 0.308 for the n-channel and p-channel

NOSFETs, respeclively..

(3)
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:nﬂl]"' y
7/
T4
"‘I 19w 4 3
o~ 4
o
- -7
i 57 :
*w} rd 4
4 3
b p
' ]
»‘u' TG.T o T

n‘ln"(‘l ——
FIGL SURFACE STATE DENSITY VERSUS
NOISE RESISTANCE: MOS DEVKE
(REF N

EXPERIMPNTAL STUDIES

A typical n-channel (enhancesent mode)
MOSFET vas subjected to subcatasstrophic zaps at
fts gate-input wusing a human-body ESD simulator
(Pig. 1). Variations of [ and V‘ vere measured

as the functions of the number of zaps.

7ig. 5 i{llustrates the relevant results.
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Using the results presented in Pig. 5, the
fractional change in as a function of the

number of zaps (Z) can be calculated via Bq. (3).
Thus Pig. 6 depicts the relevant computed dats
shoving that the rate of variation of l" is

approximately tvice as that of Purther,
ARNIR“ is linearly proportional to Z confirming

the observations of Abovitz, et |1.7 Hence, the
present study indicates the plausibility of
assessing the EBOS-based degradation via noise
characterization.
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Cuaulative build-up of degrsdation vith the
recurrence of zaps amounts to a dormant stage of
failure during vhich the device vould exhibit a

performance degradation leading to out-of-spec
condition(s). This device-aging can be assessed
by seasuring the time varfation of s
nondestructive property (p) such as & noise
parameter as indicated in the present analysis.
Suppose tvo time-variation curves are obtained
corresponding to tvo distinct (subcatastrophic)
stress-levels. The functional form of p vill be
{ndependent of the stress sagnitude and the tvo
curves vill have the same shape, but different
length (slong the time axis) as shown ia Pig. 7.
The times corresponding to same (extent of) aging
under tvo distinct stress levels can be denoted
as ‘l and ‘2 (Pig. 7) and are knovn as

“equivalent tines." By the application of
®equivalent aging principle,® 1t 13 possible to
relate the equivalent times in terms of their
corresponding stress levels, namely, Vl and Vz.

It is given by9

v Yy - v; t; = Ky (Constant) )

vhere n is the endurance coefficient. Bq. 4 can
also be wvritten in terms of the aversge numbers
of zaps 21 and 22 occurred during the period (1

and '2' respectively. That is,

v’l‘ 2 - v‘z’ 2, = K, (Constant) )

Thus, fros Bq. & or S, for a given severity
level, the corresponding value of feailure-time
(or average nusber zaps during the period of
fallure-time) can be assessed by detersining the
valves of a and K.
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Further, the device reliadility relevant to
the endochronic degradation can be modeled by
assusing that degradation rate {s proportional to

the existing degradation. The proport{onality
constant is a positively distriduted randon
variable and the extent of degradation vould tend

to  be asysptotically log-norssl. FRence the
general form of 1life distribution Z (number of
taps) is given by

In(p, )-}

6(2,p) = 1-4 | ) (6)

vhere ¢ {s the standard normsl distribution and
p -

c ro-r.. Rere r « annlnu and the suffix ¢
depicts the critical value of r. Further In (p:)

has a mean value of and » standard deviation of

o. This log-normal aspect of 1life-time
statistics as applied to endocronic degradation
has been verified by the authors (vith the HOS

input leakage current as the control parameter,

p) and the results are presented elscvherc.ll
CONCLUSIONS

From the results presented here, the
folloving conclusions can be {nferred:

1. Noise parameter changes in a MOS
device subjected to electrical overstressings
represent the global, t{me-dependent
degradatioan.

2. Such noise parameter varistion expressed in
terms of the fractional change in the noise
resistance (.N)' is explicitly related to tvo

major MOS-device parameters, namely, [ 5 and
V( (Eq. 3).

3. The
number of zaps is approximately linear.

rate of change of R, vith respect to the

4. Furtber, this
approximately

in 8,

rate of change of l' is

tvice the corresponding change

5. Using ARN/RN a3 a control paraseter (p), the

principle of equivalent aging can be applied
to MOS degradation for accelerated aging
studies.

6. The degradation process can be sodeled vith
log-normal distribution for relevant lifetime
statistical analysis.
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ABSTRACT - Design-revievs required to achieve
improved performance reliability wvarrant the
assessment of gate-insulator degradation in metal-
oxide semiconductors (MOS) subjected to electrical
overstressing (EOS) environments involving
electrostatic discharges (ESD) and/or
electromagnetic pulsing  (EMP). The collective
response of all the degrading parameters of the
stressed devices can be cohesively studied via noise
performance characteristics, as indicated in the
present  analysis. The global influence of
overstressing quantified in terms of degrading noise
parameters is useful in life-time prediction
efforts. Relevant test calculations and
experimental data are presented.

INTRODUCTION

Assessment of gate-insulator degradation in
setal-oxide semjconductor (MOS) devices caused by
electrical overstresses (EOS), such as electrostatic
discharge (ESD), electromagnetic pulsing (EMP),
etc., is essential for necessary design-revievs
required to achieve reduced device-instabilities and
improved performance reliability.

The primary effect of electrical overstressing
is to cause a charge-trapping phenomenon in the
gate-oride fila [1]. The extent of gate-oxide
degradation arising from electrical overstressing

vould depend on the cumulative magnitude of charge-
trapping and the corresponding changes in the
interface-states; and  hence, it is directly
dependent on the intensity and rate of occurrence of
electrical overstressings.

In the existing studies {1,2) on gate-oxide
degradation, the parameters normally considered to
characterize the influence of overstressing and the
resulting charge-trapping/surface-state effects are
[3], (a) device transconductance, 8 (b) gate-
current due to pumped-in charges, Ic i (c) gate-
oxide capacitance, Cox; and (d) threshold voltage,
Vt. Inasmuch as the aforesaid parameters are
largely interdependent, the estimation of one of
thegse parameters (to depict the degradation) as a
function of overstressing does not explicitly

account for the deviatory characteristics of the
rest of the parameters.

Bence, it is purported in the present
investigations to develop a nev and cohesive
forwulation in terms of noise performance of the MOS
device to characterize the overall degradation due
to overstressing., The noise characteristics of a
MOS device vould, in general, depict the collective
response of all the degrading parameters. This ia
because the net effects of charge-trapping and the

associated occupation of surface states can be
vieved as random/fluctuating phenomena vhich
manifest as the device-noise vith a typical 1/f type
pover-spectrua., That is, noise characterization
vould present the global influence of overstressing
unlike the other parameters (specified earlier)
vhich vould rather represent the partial effects
only.

In the present studfes, an analytical
formulation relating the charge-trapping and the
electrical overstressing is derived in terms of an
equivalent noise resistance. Measured data acquired
from a typical HMOS integrated circuit subjected to
electrical overstressings are presented.

ANALYSIS

The ESD phenomena normally encountered can be
simulated by three wvell-known wvodels, namely, (a)

human-body model {4], (b) charged-device aodel (5],
and (c) field-induced model ({6). The human-body
model (Fig. 1) depicts the transfer of static from a
charged individual to ground via the test device.
Charged device model represents the bleed-off of
accunylated charge upon the device-surface to ground
through the pin(s) and conductive parts of the
active device (Pig. 2). The third model simulates
the effect of the charge distribution and discharge
vhen a device {is exposed to static electric field
(Fig. 3).
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Vhen a MJS device is subjected to electrical
overstressings at the gate due to impulsive
transients caused by electrostatic discharges (ESD),
the corresponding induction of charge-trapping and

generation of interface-states can be specified in
terms  of the stochastical aspects of charge-
accumulation represented by the device noise
characteristics. Than is, under identical pumped-in
current by repetitive transients, Leventhal [6] has

shown that the resulting input noise resistance R“

is given by
2
qt, 2 N M
Ry = ) =) o) @
ox f‘o

vhere k {s the Boltzman constant, T is the
temperature (~ 300 K) and q 1is the electronic
charge. Purther, ox and €, are the thickness and

V'f-’-f""‘n‘.
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persittivity of the gate-oxide, respectively; Ns is

the surface-state density lnd}ls /fko refers to the
field-effect mobility to lov-field mobility-ratio.

that RN is

concurring vith the experimental

Eqn. (1) indicates directly

proportional to Ns

results due to Abovitz, et al {7}, (Fig. 4). Hence
the endochronic history of Ns as dictated by

external overstressings can be tracked via noise

parapeter measureaents.
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NOISE RESISTANCE: MOS DEVICE

(REF. 7}

The field-effect
on N’

mobility is itself dependent
as vell as on the other device parameters,

nasely,
voltage (Vz).
Hsu and Tam [3] and Akers, et al [8], one obtains

the transconductance (g-) and the threshold
Explicitly, by using the results of

Ms 1 | EE__g 1 (2)
U, leaN " “g "1 s(vg-vt)
vhere « and B are constants and - S refers to By
under unstressed conditions. Further, Vg is the
applied gate potentials.

Combining Eqs. (1) and (2), the folloving

relation is
RN’ Vt and -

obtained for the fractional values of

®y e 1

& 2 - y—————] &)
_F; [ 1 -”AV ( 1 )
Tt il

EXPERIMENTAL STUDIES

A typical n-channel (enhancement mode) KOSFET
vas subjected to subcatastrophic zaps at its gate-
input using a human-body simulator (Pig. 1).
Variations of 8, and V measured as the functions of

the number of zaps.
results.

Pig. 5 {llustrates the relevant
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NOISE PARAMETER & AGING MODEL

The fractional change in RN as a function of

the number of zaps can be calculated using Eqn. (3)
and the measured data of Pig. 5. The corresponding
results are presented in Pig. 6.

as T (R
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w} .,..I.,, l‘
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FIG6 INCREASE IN NOISE RESISTANCE WITH NUMBER OF ZAPS

4

Prom the data presented in Fig. 6, it can be
ascertained that ARN/RN is linearly proportional to

Z (number of zaps), closely agreeing wvith the
observations by Abovitz, et al (7). Further, the
rate of change of RN is approximately tvice as that

of 8y That {s, the degradation can be more

accurately assessed in teras of noise parameter
measurements than by g, determination.

Cumulative build-up of degradation vith the
recurrence of zaps amounts to a dormant stage of

failure during vhich the device vould exhibit a
perforasance degradation leading to out-of-spec
condition(s). This device-aging can be assessed by

seasuring the time variation of a nondestructive
proparty (p) such as a noise paraseter as indicated
in the present analysis. Suppose tvo time-variation
curves asre obtained corresponding to tvo distinct
(subcatastrophie) stress-levels, The functional
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form of p will be independent of the stress
magnitude and the tvo curves vill have the same
shape, but different length (along the time axis) as
shovn {n Fig. 7. The times corresponding to same
(extent of) aging under tvo distinct stress levels
can be denoted as 4y and t, (Fig. 7) and are known

as "equivalent times" [9}. By the application of
"equivalent aging principle,”™ it is possible to
relate the equivalent times in terms of their
corresponding stress levels, namely, V1 and V2. It

13 given by (9]
V; t - V; ty - Kl (Constant) (4)

vhere n is the endurance coefficient. Egqn. 4 can
also be vritten in terms of the average numbers of
zaps Z1 and 22 occurred during the period 4 and ty,

respectively. That is,
v'l‘ z) - v‘z‘ 2, = K, (Constant) (5)
Thus, from Eqn. 4 or 5, for a given severity level,

the corresponding value of failure-time (or average
number zaps during the period of failure-time) can

be assessed by determining the values of n, Kl and

Kz.

DEGRADING PROPERTY (p)} —=

FiG.7 DEGRADATION VERSUS TIME unl:zil
TWO DISTiNCT STRESS LEVELS

Purther, the device reliability relevant to the
endochronic degradation can be modeled by assuming
that degradation rate {is proportional to the
existing degradation (1l0]. The proportionality
constant is a positively distributed random variable
and the extent of degradation wvould tend to be
asymptotically log-normal. Hence the general fora
of life distribution Z (number of zaps) is given by

1n(p,)-H
G(Z,py) = 1-¢ [—5—1 (6)

vhere ¢ is the standard normal distribution and P "
r - 1. Here r = ARNIRN and the suffix c depicts
the critical value of r. Purther la (pc) has a mean

value of M and 2 standard deviation of o. This log-
normal aspect of life-time statistics as applied to
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ANALOGOUS INPLUENCE OF IONIZING RADIATIONS AND ELECTRICAL
OVERSTRESSINGS: DAMAGE CHARACTERIZATION VIA NOISE PARAMETERS

Perambur S. Neelakantaswamy Rennan I. Turkman
RIT Research Corporation Department of Electrical Engineering
75 Highpower Road Rochester Institute of Technology
Rochester, New York 14623 Rochester, Mew York 14623
(716) 475-2308 (716) 475-2192

ABSTRACT

Primary mode of failure and/or degradation of MOSFETs due to
‘oxide-charge and surface-effects’ can result either from ionizing
radiations or from electrical overstressings. In either case, the
resulting damage can be characterized by a global parametric degradation
specified in terms of device noise characteristics. That is, the net
effect of charge-trapping and the associated occupation of surface
states can be vieved as random/fluctuation phenomena which manifest as
the device noise. Thus a common noise model can be prescribed to
represent the analogous influence of ionizing radiations and electrical
overstressings. Relevant theoretical results and measured data are
presented.

INTRODUCTION

The knowledge of common mechanisms involved in the degradation
process(es) due to external stimuli, such as ionizing radiations and
electrical overstressings, is useful, not only in understanding the
interactive physics involved, but also will enable a common hardening
technique (process/design) to achieve protection against these stimuli.
Such studies will further indicate a one-to-one correlation (in
quantifiable terms) betwveen the intensity/magnitude of an ionizing
influence and an electrical overstress which may cause the same extent
of damage. This equivalence will enable substitution of test method(s)
to simulate failure/degradation effects. ‘Oxide-charge and surface-
effects’ [1,2] observed wunder the influence of ionizing radiations or
electrical overstresses result from positive charge build-up in the
gate-oxide due to radiation-induced (or EOS-induced) creation of
electron-hole pairs; and the trapping of holes at the silicon-to-oxide
interface alters the device parameters, namely, the transconductance
(gm), MoOS capacitance (C ) and the threshold voltage (VT). To

understand the physics of these analogous effects observed, the mode(s)
of energy transfer from the invasive external stimulus to the device
interior, warrants unique modeling and analysis as discussed in this
paper.

Inasmuch as all the degrading device parameters (gm, C and VT)

are interdependent, the cohesive damage of the device would be assessed
by an appropriate function which collectively represents the net
physical damage due to external stimulus. It is presently demonstrated
that noise characteristics can depict the global representation of
stochastical variation [3] in charge-trapping and interface generation
due to the external stimuli (ionizing radiations or E0S); relevant noise
measurements of degraded devices can also be useful in accelerated test
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procedures (using equivalent EO0OS to simulate ionizing radiations)
adopted for life-time modeling strategies and in hardening effectiveness
evaluation.

OXIDE-CBARGE & SURFACE EFFECTS

A MOS transistor can be looked at as a capacitor with the metal
and semiconductor as the plates and the gate-oxide as the dielectric.
Under ionizing radiation conditions, the ionization process is

illustrated in Fig. 1. At t =0 (Fig. la), the condition prior to
irradiation is shown. At t = 0 (Fig. 1b), the ionizing energy is
delivered to the oxide, and the electron-hole population is generated.
Immediately after ionization, the process of electron-hole recombination
will occur, but so will electron transport. But as electron mobility in

the oxide at room temperature is approximately 20 cmz/V—sec, and hole

mobility 1is approximately 2 x 10_5cm2/V-sec, under the applied voltage,
any electrons that do not undergo recombination will be swept to the
gate and removed in picoseconds, leaving behind the less mobile holes.
These holes will begin a transport process toward the silicon-to-oxide
interface as shown 1in Fig. le. Some holes will pass into Si, while
others will become trapped at defect centers very near the interface of
the gate oxide and the bulk silicen.

Fig. 2 depicts the shift in the C-V curve associated with the
entire process and the resulting permanent shift due to the trapped
charge buildup. In the case of the N-channel device, the trapped
positive charge will continue to build up and, in effect, make it easier
to create the N-channel (inversion 1layer). This will lover the
threshold voltage (Fig. 3). The reversal of threshold shift is caused
by the saturation of surface traps and interface state generation at the
silicon-to-oxide boundary occurring at higher levels of 1ionizing
radiations. This mechanism of interface state generation is not well
understood at this time except for a simple theory that two different
crystal structures (silicon and oxide) meet to form an interface having
some irregularities, the number of which increases with increased
irradiation. In the case of a corresponding P-channel device, the
buildup will make it more difficult to create an inversion layer (in an
enhancement mode P-channel transistor). The effect of ionizing
radiation on a P-channel threshold is shown in Fig. 3. The net effects
of 1ionizing radiation on a MOS device as a function of threshold shifts
are therefore: N-channel devices are easier to turn on or can actually
become depletion mode; and P-channel devices become more difficult to
turn on.

Similar oxide-charge and surface-effects also appear when a MOS
structure is subjected to an EOS, say by a (positive) high-voltage at
the gate. During the high-voltage pulses, electrons are injected into
the gate-oxide via Fowler-Nordheim tunneling from the Si substrate, and
some fraction of the injected electrons then create electron-hole pairs
in the bulk of the oxide through impact ionization (Fig. 4a). The
resulting electrons and holes behave similarly to those generated by
ionizing radiation in MOS structures under positive (worst-case) bias
(Fig. 4b): Most of the electrons are swept out of the oxide while the




holes drift under the positive field toward the oxide-to-silicon
interface vhere they may be removed or trapped. Some of these holes may
33&? also cause interface states to be produced. The resulting flatband-

voltage shift and interface-state build-up can be depicted as in Fig. 2.
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t Ionizing radiations or electrical overstressings will also cause
2 carrier mobility degradation because of the presence of trapped charges
o near the silicon-to-oxide interface and interface generation, of which
. interface generation is more dominant and it becomes negligible at lower
levels of 1ionizing radiations/E0S. As the stressing levels are
increased (about a million rad for ionizing radiations or 9MV/cm for
EOS), mobility degradation will affect P and N-channel device
W performance, with increased interface states being the primary cause of
" degradation. This mobility degradation can be observed via
A transconductance (gm) measurements. Another performance problem induced

by ionizing radiations or EOS is the increase in leakage current due to
o surface effects.

RA MOSFETs stressed by ionizing radiations or by EOS have the
h tendency to anneal. Annealing 1is the time-dependent detrapping of
ﬁ trapped charge at the silicon-to-oxide interface. It is sometimes
: referred to as a self-healing effect. However, the time constant
» involved is in the order of minutes to over one year, depending on the

extent of damage, design-based on-chip protection and the type of
) processing. Though  the surface states generated are relatively
fn permanent, it can also be annealed with high temperatures (>125° C).
¥) Any lattice damage (interstitials, vacancies), however, is irreversible.
) (é Experimental studies indicate that trapping of holes or oxide-
' silicon interface degeneration does not differ significantly between

electrical overstressing and ionizing irradiations [4] despite the fact
that holes are transported to the interface rather under high field

2 conditions in EOS phenomenon; wvhereas, hole transport under ionizing
4 irradiations 1is not field activated. Hence, it is evident that capture
of hole by a trap at the interface is not a strong function of electric
N field in the oxide.
48
: SINGLE-MODEL REPRESENTATION OF IONIZING RADIATION AND EOS EFFECTS
ty On the basis of aforesaid discussions, the identical effects
observed in MOSFETs when subjected to ionizing radiations or EOS can be
W summarized as follows: 1) shift in threshold voltage; 2) Change in
i oxide-capacitance; 3) Mobility  (p) degradation; 4) Change in
' transconductance; 5) Increase in leakage current; and 6) Annealing.
X These various parameters though can represent the degradation (either
Q due to 1ionizing radiations or due to EOS) independently are, however,
interdependent and explicitly related through analytical expressions.
" Therefore, it 1is possible to establish a general expression which
e uniquely represents the cohesive damage, irrespective of the nature of
» external stimulus. For this purpose the global effect of stochastical
\ variations in charge-trapping and interface generation (under external
? stimulus) can be considered to model the net physical degradations
' observed. And as these stochastical fluctuations in the device-interior
. f2§3
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manifest as the ‘device-noise,’ the desired modeling can be
@ characterized by appropriate noise parameters of the d.-ice.

Vhen a MOS device is subjected to external stress (either ionizing
radiations or EO0S), the corresponding induction of charge-trapping and
generation of interface states can be equivalently represented by an
input noise resistance RN given by [5]

RN = CoNs("s/uo)2 (1)

vhere C, is a constant, N¢ is the surface-state density and ps/po refers

to the field-effect mobility to low-field mobility ratio. Eqn. (1)

indicates that RN is directly proportional to NS concurring with the

experimental results due to Abowitz, et al [6]). Hence the time-
dependent history of NS as controlled by any external overstressings can

be tracked via the assessment of RN. Further, the field-effect mobility
is also dependent on N_ and is therefore linked with gn and VT of the

S
device. Explicitly,

p 1 g 1
s
S = e M . (2)
¥, 1+aNs €m0 1+B(VG—VT)
‘ Here, « and B are constants and €mo refers to the value of €

under unstressed conditions and VG denotes the applied gate potential.

From Eqns. (1) and (2), the following relation can be obtained:

ARN og 1

— = "2 - ] (3)

R g l—AVT 1

N m
VT (VG—VT)B

The constant B has the approximate values of 0.138 and 0.308 for
the N-channel and P-channel MOSFETs, respectively [4). More generally,
VG can be expressed in terms of the electric field across the gate-
oxide, namely, EG' That is, VG = EGtox’ vhere tox is the gate-oxide

thickness. Vhile EG refers to the electric field intensity

corresponding to an electrical overstress (E0S) phenomenon, it is

possible to establish an equivalent EG to represent the ionizing

radiation dosage, which produces the same extent of degradation
expressed via noise parameter of eqn. (3). Let DI be the dosage

delivered (or, absorbed dosage) to an oxide-gate, which through
ionization process creates a hole density (area density) of QR equal to

K

o

LI ¢

ItoxDIF‘(BG) vhere KI is the infinite field ionization coefficient {4]
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C CM rad_1 (Si02) and F(EG) is the E-field
dependent charge-yield parameter [4] with approximate value of 0.83 at

EG = 1IMV/cm. If the same hole-density of 0R has to be stimulated by an

electrical overstress phenomenon (via high field injection of electron
current density through Fowler-Nordheim tunneling by the gate-oxide
field-intensity, EG), the corresponding current density (j) can be

2
G
(-B/EG) wvhere A and B are constants. The best estimates of [4] A and B

-6 3

equal to 1.22 x 10

expressed (by neglecting space-charge effects) as equal to AE; exp

are 2x106 amperes/(HV)2 and 238 MV/cm, respectively. Therefore E0S-
equivalent of QR can be wvritten as

Qp (EOS) = jo t Ot (4)

vhere o« 1is the probability per unit length that an injected electron
will create an electron-hole pair and is equal to @ exp (—H/EG) vhere

e« = 6.5 x 100! en?

o and H~ 180MV/cm [4].

Further, At in eqn. (4) specifies the duration of EQS event.
Assuming that lightning function of the form el(t) = EG [exp(-Ct)-exp(-

Dt)] to represent the transient electrical overstressing, the duration,
At is given by

Bt = [(D-C)/CD] [exp (-Ct_)-exp(-Dt_)] ! (5)

vhere tm is the rise-time of the transient equal to ﬂn(D/C)/(D-C). The

values of C and D can be explicitly specified for a given type of EOS
event, such as human-body ESD model, etc., and are dependent on the peak
value of the stressing potential, VG.

Combining eqn. (4) and eqn. (5), the equivalent dosage DI can be
expressed as

DI = o A Eé [(D-C)/CD] [exp(—Ctm)—exp(—Dtm)]_lexp [—(H+B)/EG] (6)

Hence, using approximate values for the parameters discussed
previously, the expression for DI reduces to

24 2
Dy = 1077 (Vg/t_ ) exp(-418 t_ /V.)bt(V,) €A

vhere VG is expressed in MV, tox in c¢m and At is functionally dependent

on VG.
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Considering a typical electrical overstressing due to an
electrostatic discharge (ESD) of subcatastrophic level (say VG = 50V

peak) from a finger tip (Fig. 5) across a gate-oxide of thickness 30 nm
over a pulse-duration, 4t = 10n sec, the corresponding equivalent
radiation dosage is approximately equal to 36 M rad (SiOz). That is,

this ESD event would introduce as many ~les into the oxide as a 36 M
rad (SiOZ) of ionizing radiation.

RELATIVE NOISE PERFORMANCE UNDER EOS AND JONIZING IRRADIATIONS

For a given injected electron fluence (0I = jot), the relative

damage introduced in the MOSFET by an EOS and an ionizing radiation can
be estimated as follows: By virtue of one-to-one equivalence between
the magnitude of EOS and ionizing dosage, the relative damage expressed,

say, 1in terms of threshold shift AVT/VT can be written as a linear
proportionality relation of the form AVT(EOS)/VT = K AVT(RAD)/VT vhere K

is a constant.

Considering the results due to Boesch and McGarrity [4], for a

given amount of injected electron fluence (1.9 X IO_SC/cmz), the
theoretical and experimental results corresponding to high field

stressing of 9MV/cm) and 6000 irradiation (104 rad Si02) on a tox = 1000

A MOS structure, the value of K is found to be approximately equal to
2.3; or, 1in general, Kd>l. Hence, using the linear relation between
AVT(EOS)/VT and AVT(RAD)/VT, it can be shown that ARN(EOS)/RN is nearly

equal to (4/3)ARN(RAD)/RN. In other words the damage, manifesting as

the device noise under EOS injecting a given amount of electron fluence
into the gate, is approximately 25% more, for the same extent of

electron fluence 1injected by a radiation source. Typical noise
OR,./R

parameter (p =. ) variations as functions of radiation dosage for a
bg /8,

P and N channel MOSFETs are shown in Figs. 6 and 7. Corresponding
variations of threshold voltage, VT are also depicted in Figs. 6 and 7,

from which it can be observed that the noise parameter follows the trend
of VT variations(s).

Vill radiation hardening concurrently improve static-protection or
vice versa? The observed similarities suggest the possibility of
formulating a one-to-one equivalence of modeling of radiation damage
versus EOS effects from which it can be extrapolated that any scheme
that 1is implemented (either via processing or via design methods) to
prevent/reduce radiation-induced (deleterious) effects may also subdue
the influences of EOS effects. In other words radiation hardening
schemes (process/design) with a few optimization changes may provide
dual protection to prevent/reduce gate-oxide damages arising from
ionizing radiations or from EO0S. In order to achieve effective dual
protection through optimization of process/design techniques, basic
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research is required to determine this ionization radiation-to-EOS
equivalence so that the common-to-both type of damages(s) in the gate-
oxide can be effectively prevented through optimization procedures.

CONCLUSIONS

This work provides a basic insight into the problem of a comparative
study relating ionizing radiations and EOS effects on MOS devices. The
results indicate a strong correlation betveen the two effects cited,
vhich suggests the feasibility of designing common countermeasures, as
vell as adopting substitutions in the analysis and/or simulation
techniques.
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NOISE CHARACTERISTICS OF IONIZING-RADIATION STRESSED MOSFET DEVICES

INTRODUCTION

It has been known for years that ionizing radiations can change the
electrical properties of solid state devices, leading to possible system
failure [1]). In particular, gamma rays, X-rays and neutron bombardment have
proven most harmful. Among the LSI devices, MOS circuits are highly
sensitive to damages wunder critical radiation environments. The primary
failure mode and/or degradation of MOSFETs resulting from ionizing
radiations is due to the ‘oxide-charge and surface-effects,’ [2], occurring
in the gate-oxide and/or field-oxide regions. The effects of ionizing
radiations are mainly threshold voltage shift and channel mobility
degradation caused by the creation of electron-hole pairs and trapping of

holes at the Si—SiO2 interface {2]. The net effect of charge-trapping and

the associated occupation of surface states can also be viewed as a
random/stochastical phenomenon which can be characterized by a global noise
parameter. Such a representation/model will be useful to study the noise
performance of the device under radiation environments as indicated in the

present work.

NOISE-MODEL
The global effect of ‘oxide-charge and surface-effects’ described above
can manifest as the device noise which can be quantitatively represented by

a noise-model as described below:
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Following the analysis by Leventhal [3], the effect of charge-trap

induction and generation of interface states can be equivalently represented

by an input noise resistance RN given by

2
Ry =¢ (350) Ns )

vhere C 1is a constant of proportionality and NS is the surface-state
density; us/po refers to the field-effect mobility to low field-effect
mobility ratio. Purther, inasmuch as field-effect mobility is also
dependent on Ns and is, therefore, linked with the device transconductance
(gm) and the threshold voltage (VT) [4,5}, the following relation can be

obtained [6] from eqn. 1. (Note the typographical errors in [6]: eqns. 1

and 3 of [6] should read as egqns. 1 and 2 of the present paper,

respectively.)

vhere AVT is the threshold-voltage shift and B is a constant, approximately

equal to 0.138 and 0.308 for the N-channel and P-channel MOSFETs,

respectively {5].

The quantity VG in eqn. 2 represents an ‘equivalent gate-potential’

vhich would inject the same electron-fluence into the gate equal to that

injected by the ionization irradiation. VG can also be expressed in terms

-------
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N of an ‘equivalent electric field’ across the gate-oxide, namely EG. That

g éags is, VG = BG tox’ vhere tox is the gate-oxide thickness.

This equivalent electric stress parameter E can be <specified

G’

< explicitly in terms of the radiation dosage, D, assuming that, over a

W duration of At, the effect of EG or D is to inject the same extent of
L »

:

3 electron fluence, namely jaAt, wvhere j 1is the current density. Hence,
)

)

13

relevant analysis yields,

; 2

i ~ -

& D =A EG At exp ( B/EG) (3)

F

ﬁ vhere A and B are constants approximately equal to 1024 and 418,

4

)

: respectively [7], 1if EG is expressed in MV/ecm. Thus for a given dosage
‘Io

\ level of D, using eqns. 2 and 3, the noise performance of the device can be

g decided quantitatively.

TEST STUDIES & CONCLUSIONS

; ORy g

Variations of the noise parameter
Ry g
m

L. channel and an N-channel MOSFETs as functions of the radiation dosage

corresponding to a P-

(X-ray), are depicted in Figs. 1 and 2. Also shown in Figs. 1 and 2 are the

" threshold voltage shifts in the P- and N-channel MOSFETs [8]. The results

k) on noise parameter presented in Figs. 1 and 2 are calculated via eqns. 2 and

§ 3, using the available data on threshold voltage shifts versus radiation

h, dosage [8]. From the results shown, the following can be inferred:
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1. Damage introduced by ionizing radiations in a semiconductor device (such
@ as MOSFET) can also be characterized by the noise performance of the

device.

2. The noise parameter, as a function of radiation dosage tends to track
closely the variation of V with respect to the dosage level. This is

true for both P- and N-channel MOSFETs (Figs. 1 & 2). The percentage

shift in the magnitude of noise parameter, for a given level of
radiation dosage 1is, howvever, 1less than the corresponding percentage

shift in the threshold voltage. Referring to Fig. 1 , (P-MOS) for a

dosage 1level of 107 rad (Si), VT shifts by 170%, whereas the noise

parameter changes only by 26%. Similarly in Fig. 2 (N-MOS), VT shifts

6 and 107 rad (Si) are -52X% and +42%, respectively. However, the

for 10
w corresponding noise parameter shifts are +28% and -8%, respectively.

Thus, for a given 1level of irradiation, the variation in VT is more

overvhelming than changes in noise performance.

3. Nevertheless, in low noise applications of the device, the influence of
ionizing radiations should be duly accounted for in the system design as
noise performance degradation is inevitable as a result of radiation-
induced oxide effects. While ‘single event’ upsets due to ionizing
radiation usually cause concern in digital circuits, noise performance
degradation due to cumulative/total ionizing irradiations may require
specific attention in 1linear devices. Especially, as the device is
stressed repeatedly, the device damage (noise performance degradation)
vill cumulatively increase. Such endochronic degradation response would

HE?\ be detrimental for lov-noise system operation. The present analysis is
"

useful in the relevant studies.
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4. The simple model presented here psovides a quantitative approach to
determine the noise performance of a MOSFET ionizing irradiations. The

agsa relevant calculations are useful to determine the extent of radiation
hardening required to achieve a given level of lov noise performance of

the device under ionizing radiation environments. And, noise monitoring

can serve as an adjunct support to conventional VT and Cox estimations

adopted in hardness assurance efforts.

5. The present work models only the effect(s) of ionizing radiations on the
device-noise. Should the geometrical parameters (such as the channel
length) change, the transconductance would be significantly affected
(especially 1in short-channel devices) and the relevant noise-model will

be more involved. Related studies are in progress.

“ 6. It can be shown that Agm/gm & AVT/(VG—VT). Hence, the noise-parameter

profiles of Figs. 1 and 2 will remain the same (except for a scale-
factor) 1if the noise-parameter is normalized with respect to threshold-

voltage shift.
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CAPTIONS FOR THEB DIAGRAMS

Fig. 1 Threshold voltage and noise parameter versus total radiation dosage
(P-Channel MOSFET).

Fig. 2 Threshold voltage and noise parameter versus total radiation dosage
(N-Channel MOSFET).
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BREAKDOWN IN AN ELECTRICALLY OVERSTRESSED THIN-OXIDE OF A MOS CAPACITOR:
NONEXPLICIT SEVERITY DUE TO GEOMETRICAL PERTURBATIONS
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Rochester, New York 14623-3435

and

Ibrahim R. Turkman
Microelectronic Engineering Department
Rochester Institute of Technology
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ABSTRACT

Scaling-down efforts and process variations will cause
involuntary perturbations in the geometry of gate-oxide
region of a M0NS structure. Such stochastical variations
will significantly influence the breakdown mechanism at
the thin gate-dielectric. Expressions to depict the
enhanced severity of overstressings due to such
perturbations are derived. Competing influence of scaling-
down and the perturbations is elucidated.

INTRODUCTION
Submicron implementation with acceptable reliability warrants a thorough

understanding of the physics of thin-oxide breakdown in MQS structures underv

electrical overstressings so as to seek preventive solutions against high-
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stress failures [1]. Existing studies address the direct influence of oxide-
thickness, crystal purity/contamination, dielectric integrity, processing
methods (2] and the characteristics of overstressing voltages on the breakdown
mechanism [3,4,5]. And simulation studies are done on tailor-made MOS
structures with Al, Mo, Vo, polysilicon or silicide field-plate(s) of circular

or rectangular geometry, the substrate being p- or n-type material [6,7].

SYSYYSe

In these studies, however, effects of field-plate dimensions and stochastical

variations/perturbations in the geometry of the gate-oxide region [8] have not

gty o

-
a

been seriously considered in depicting the breakdown model of MOS capacitors;

e

O

only, some experimental results from post-breakdown examinations have been

compiled [3] which indicate the clustering of failure sites being about 80% at

"

‘ the corners of rectangular/square field-plate(s). Qualitative explanation
based on electric field fringing at the corners have been presented to justify

the observed data.

Invariably, changes in the design (geometrical scaling-down), processing

methods and optimized material selection decide the field-plate and gate-oxide

dimensions as well as the geometrical perturbations [8,9,10] involved; and in
order to determine the corresponding electrical overstressing (EOS) threat on
a priori basis, an exclusive analysis formalizing the extent to which
breakdown will be influenced by the geometrical parameters (perturbed and/or

unperturbed) is imminent. Studies presented here will determine this
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overextending severity.
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THEORETICAL FORMULATION

Unperturbed MOS structure: Fig. 1 depicts a MOS capacitor with a rectangular
field-plate of unperturbed boundary and separated by a thin oxide-dielectric
from a semi-infinite substrate. Should the breakdown due to an applied

voltage ¢G occur, the potential distribution (¢) below the field-plate can be

determined by solving the differential equation with appropriate boundary
conditions. Thus, referring to Fig. 1, the injected current (I) upon
breakdown is assumed to be evenly distributed over the length (L) of the plate

and flows in the vy-direction down the field-plate from the runner

metallization over the width W. VWith a dimensionless constant Y = y/W, the
differential equation governing the potential distribution (¢) in the post-

_‘ breakdown dielectric gate-region can be written as

d2¢/d2Y2 = 2k14> (1)

2 ] . .
where kl = coxw /(toxtfcf). Here O0x and tox depict the post-breakdown oxide

conductivity and the gate-oxide thickness, respectively. Likevise o¢ and te

represent the electrical conductivity and the thickness of the field-plate,

.xﬁisn’;”nnﬁ:

respectively. Equation (1) can be solved with the boundary conditions,
namely, ¢ = ¢C at Y = 0 and d¢/dy = O at Y = 1. The result is j
o
< “
— S,
¢ = A exp (/2k1Y) + B exp (—¢2k1Y) (2) 5"
7.
aw f\
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where

>
i

¢/ (exp [2/511]-1] and

o2
"

¢ exp [2/2k 1/ (exp [2«5&1]-1}.

From the expression of equation (2) derived for the post-breakdown potential
distribution (¢) under the field-plate, it is possible to quantify the extent

to which the electrical conductivity and finite thickness of the field plate

would influence or distort the uniform current flow vertically beneath the
field-plate. Inasmuch as the gate-oxide breakdown is significantly affected

. by this nonuniform potential/current distribution, a quantifiable measure of
Q this nonuniformity would specify the severity of overstressing. Assessment of
this severity parameter will enable distinguishability between the breakdown

due to loss of dielectric integrity and that caused by field-plate induced
nonuniform electric-flux concentrations. That is, the severity of electrical
overstressing due to wuneven current/potential distribution caused by the

finite thickness and conductivity of the field plate can be expressed by a
Severity Factor (SF) denoting the ratio of maximum current density to the
uniform current density. For the unperturbed rectangular geometry of Fig.

(1), it can be shown that,

SFy = /fﬁl/tanh/iil (3)

LN



where the suffix U depicts the unperturbed status.

In practical devices, using thin field-plates of Al, W, Mo, polisilicon,

silicide, or polycide (like MoSi materials, the magnitude of k, is very

2) 1
large and therefore the severity expression of (3) reduces to (via large

argument approximation):

SF, = /ikl >>1. (4)

MOS structure with perturbed rectangular boundary: Fig. 2 depicts a MOS
structure with a gate-oxide region having a stochastic edge. The randomness
of the rectangular boundary 1is specified by a stochastical variable 4r, so
that any point r on the rectangle corresponds to a point r + &r on the

real/perturbed boundary as indicated in Fig. 3, where'ﬁ; and‘ﬁ}, respectively,

denote the normal and tangential unit vectors. For simplicity Ar is presumed

to be directed along tif

The post-breakdown potential ¢, in the oxide region can be implicitly

expressed by means of an auxiliary potential ¢ given by

w=/ MOLT (5)
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vhere ¢S is the post-breakdown voltage-drop across the substrate region. The

function ¢ satisfies Laplace’s equation, namely Vzw = 0 with the boundary

conditions y = ws at x = 0 and Vw.ﬁ;:O all along the rectangular boundary.

.0

‘4t

:‘»'

[\)

:f With the specified perturbations, spatial distribution of ¢ can be written in
'0

terms of the zeroth and first order approximations as

"

5

Al

R W) = ¥ (F) + ¥ (D) (6)

and the corresponding boundary conditions can be approximately specified as
(F) = v_and v.(F) =0 at x = 0. Also, Yy .T_ = O and Uy,.T_ = - bra’y /3n°
Wo = WS a wl T) = at x = 0. so, wo’ln = wl.un = - Or wo

+ 98/9r(Or) 9d/3t (dwo/dt) along the perturbed boundary. Here n and t,

&
:3 respectively, denote the normal and tangential coordinates at any given point
)
kK on the boundary. Further wo and ¥ should independently satisfy the Laplace’s
o
X . 2 2
¥ relation, namely, V"¢ = 0 and V'y, = O,
~ o 1
*i
zf
5 The zeroth order current density (Jo) in the oxide-region under post-breakdown
(W
b condition can be written as equal to (cox/tox) (wc—ws); and the corresponding
3
Ly

first-order current density (Jl) can be derived from the auxiliary potential

A

4

4# wl specified in terms of the Green’s function G(r/r’), satisfying the two-
.:l

f? ) 7 o

o dimensional differential equation V'G(1/r’') = &(r-vr’') wvith appropriate
N .l‘c(‘\
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’ boundary conditions [11]. (Here, & represents the delta-dirac function.) In

general, via Green’s theorem,
wl(r') =¢[G(r/r' )le(r).un—wl(r)VG(r/r’).un]dt. (7)

With necessary simplifications, the following approximate solution for Jl can

be derived from wl of (7)

Iy = (o, It VIV) (wc-ws)ggmdt (8)

the integration being along the boundary. The negative sign in (8) depicts

Q the decrease in the current density for any deviations in the original
geometry. Further, the perturbed boundary of Fig. 2, has an expectation value

<Ar> equal to zero so that the mean value <J1> also vanishes. The variance of

Jl can be calculated from (8) as follows:

2 2 2 2§ § e
o) = <Jl> = (aox/toxLW) (wG—wS) dtl <Ax(r1)AL(12)>dt2 (9)
vhere <Af(r1)Ar(Fb)> is the autocorrelation function [12]. For large

correlation distance o of the perturbations (comparable to the device

dimensions), the autocorrelation function is given by
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<Ar(?1)Ar(FE)> = ui exp [(-At)2/2a2] (10)

wvhere % is a constant and At is the tangentially measured distance between

the points at Fl and Fz. However, for a small correlation distance, the

autocorrelation function can be simplified to oi/fﬁa&(?l—?z) and the
corresponding variance of J1 is given by

2 2 2 2

o) = (o ./t LW (vs-v.) on o afﬁdtl . (11)

Here fﬁcltl is the rectangular periphery equal to 2(L+W). Hence, with respect

to the zeroth order current density JO, the relative rms deviation is given by

R, = v<J

. >, = o, /BT o (L+V)/L. (12)

And the corresponding severity factor is equal to

SFpy = /iil (1+R1). (13)

(Suffix P here denotes the perturbed status.)
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MOS structure with perturbed oxide-thickness and of unperturbed rectangular

gate-oxide boundary: Relevant configuration is illustrated in Fig. 4, where

the mean oxide-thickness tOX has a variation denoted by a two-dimensional

stochastical process d(x,z). The corresponding post-breakdown conductivity of
the oxide-region is decided by the perturbed local electrical field and hence

by the potential ¢. That is,

Iox = f1(¢) + df2(¢) (14)

vhere fl and f2 are known functions of ¢. Hence, using the condition V(ooxv¢)

= 0, under small perturbation approximation, the potential ¢ can be expressed

* as a correction of its zeroth-order value, ¢O as follows:

VIE ($)T4) = - V.dE,(8)04, 1. (15)

$
Defining an auxiliary potential, Wy = f1(¢)v¢ (or, ¢ = SG f1(¢) de¢), it
¢

s

follows that

Wy - ~U. [df, (4 )09 ] (16a)

and




v, = £1(4,)9(4,). (16b)

Further, application of Green’s theorem to (16) leads to,

WE) = vy (©) + ffd<?>f2<¢o>v¢o.vc(?/‘r"'>ds (17)
S

with the surface integration perform$d over the area S enclosed by the

rectangular boundary.

The corresponding first-order term of the post-breakdown current density, J1

i can be expressed as
J1 = (oox/towa)'tox/(wG"ws)]./;/—ld(r)f2(¢o)v¢o'vwo]ds (18)

the variance of which is given by

- W

2 2 2 - -
oy = <J1> = (cox/toxLV) (tox/wc—ws) j;'[dsl j;/{<d(11)d(12)> X
LE (8098 Ty |y (£,(8)74 .74 ],dS, (19)

where <d(Fi)d(f§)> is the autocorrelation function of the oxide-thickness

variations, d. For small perturbations (in comparison with the device

) ;fﬁit
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dimensions), <d(r1)d(r2)>=o§2n628(r1—r2) wvhere B is the correlation distance:

therefore,

2 2, 2, 22 2 ] ,f 2 2
9y = 1o,/ tox W) loy™ 2rB e /(ve-v )] < £y (8,0(99 .9y )7dS

2, 2 2 2 2 2
= (oox/toxLV) (UOZKB (wc—ws) /tox ]’/5 j}2 (¢1) ds . (20)

The ratio f2(¢o)/f1(¢o) is decided by the relative magnitude of tox and y

vhere vy is constant factor which functionally relates the Iox and the

‘ potentials as follows:

log(oy, ) = v log [(4,-¢-4)/(t +d)] (21)
and f2/f1 = - y/tox
Therefore,

2 2, 2 2 22 2
o) = (oox/towa) (c0 2ng (wc—ws) Y /tox ) /;‘/ds

2,2 2 2 2 2
= (0t 7o 287 (ue-w ) VL T (22)

%




The relative rms deviation is

R
R, = /kJ1>/Jo = o /Inpy/t_ /IV (23)
Hence
SFpy= V2k; (14Ry) . (24)
RESULTS
‘ Presently three major overstiressing aspects are considered: 1) The first one

refers to unperturbed geometry of a MOS structure and the overextending

influence of the geometry and material of the field-plate is quantified via

the parameter kl' For a given gate-oxide, the severity is then specified by
SFU being directly proportional to the width W and is inversely proportional
to /FEEE. That 1is, the thinner field-plates of less conductive material(s)
would significantly enhance the overstressings. For typical values of L =

100 pm, t = 500 A, t. = 2000 & and o = o_, (under post-breakdown
ox f ox si

conditions), severity with metallic electrodes (such as W, Mo, Al) is only w

g

about 10% relative to the severity with a polysilicon electrode. Under Q

™

similar conditions MoSi2 field-plate will pose about 31.5% of threat relative .
to the conditions with a polysilicon electrode. If the thickness of the -~
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field-plate is very large, the factor SFU will tend to be unity via (3).

2) The second consideration addresses the influence of stochastical
perturbations in the rectangular boundary of the gate-oxide region; the

corresponding overstressing 1is expressed by a factor R1 so that the overall
severity is quantified through SFPl given by (13). Relative to an unperturbed
structure, severity is essentially decided by Rl’ Therefore, by dimensional
scaling-down, say, when all the physical dimensions are multiplied by a
factor, © (<1, Rl becomes approximately equal to 1//@3, That is, by scaling-

down a MOS structure by a factor © = 0.2 (say), the severity due to edge-
perturbations will increase by a magnitude equal to 11. 3) The third aspect
of overstressing arises from the random variations in the gate-oxide. Again,

relative to an wunperturbed structure, severity is decided by the term R, of

2

(24). If all physical dimensions are multiplied by the scaling factor 6<1,
the value of R2 is close to 1/62. That is, for a scaling factor of 6 = 0.2

(say), severity due to stochastical variations in the gate-oxide thicknesses

will be 25 times larger. However, if tox is left unchanged and only the area

(LxW) is scaled down, then Rl is nearly equal to 1/6, so that with 6 = 0.2, R1

= 5; it means that only a smaller influence on the severity can be expected

[13].

Thus the thin-oxide breakdown in MOS structure is significantly influenced not

only by the dielectric integrity, but also by the geometirical and material
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characteristics of field plates. In addition, the stochastical variations or
perturbations at the edges and the thickness of the gate-oxide will also
profusely enhance the overstressing severity. Especially, when scaling down
strategies are attempted, care should be taken to minimize the perturbation
level, 1lest failures due to dielectric breakdown will be augmented. The
breakdown characteristics of thin dielectrics with stochastical edge/thickness
can also be analyzed by applying perturbation technique to the integral
equation formulations due to Olsen [14]. Attempts are being pursued to obtain

relevant closed form solutions.
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CAPTIONS FOR THE DIAGRAMS

Fig. 1 MOS structure with unperturbed gate-region

Fig. 2 MOS structure with a gate-region having a stochastic edge

Fig. 3 Perturbed boundry: Enlarged view

Fig. 4 MOS structure with a stochastical gate-oxide thickness
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NOTE

VOLTAGE BREAKDOWN IN MOS CAPACITORS: OVERSTRESSING SEVERITY DUE TO

THE GEOMETRY AND MATERIAL OF THE FIELD-PLATE

High reliability performance [1-4] with ultra-density packaging warrants a
thorough understanding of the physics of thin-oxide breakdown in MOS
structures under high stress conditions. In the existing practice,
simulation studies are carried out with tailor-made test samples formed by
Al, Mo, Wo, polysilicon or silicide field-plate(s) of circular or
% rectangular geometry, with p or n type material being the substrate of the
test structures [5]. Relevant studies address the influence of oxide-
thickness, crystal purity/contamination, dielectric integrity and processing
methods on the breakdown characteristics. Further, the overstressing
effects of applied voltage parameters, namely, amplitude, polarity,
transient waveform artifacts, continuous or pulsed excitation, duty cycle,
etc., on the thin-oxide have also been broadly analyzed [6]. However, the
effects of material and geometry of the field-plate have not been seriously
considered in depicting the overstressings in MOS capacitors, except for the
collection of some experimental data from post-breakdown examinations [7]
wvhich reveal that about 80% of failure sites cluster at the corners (of
rectangular/square field-plate(s) and the vreminder at the edges of the

plate); some qualitative explanation based on electric field concentration

"t AT AT " A ® . - e, w
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at the field-plate corners has been presented to justify these observed ;
results. Thus, from the available studies it is clear that for a given
stressing voltage, the breakdown of oxide-~dielectric is determined not only '
by the intrinsic dielectric integrity of the oxide but also by the extrinsic :
(overstressing) influence of the geometry and the material of the field-
plate.
Rigorous analytical formulations which exclusively assess the effects of
field-plate geometry and its material in terms of post-breakdown voltage and
current distributions beneath the field-plate are developed here. That is, '
post-breakdown current distribution is considered as an implicit indicator
of overstressing influence or severity due to the field-plate parameters.
» Relevant results will indicate the extent to which the breakdown will be
‘It} affected by the finite-sized field-plate (of finite electrical conductivity)
in relation to an ideal system wherein the field-plate influence is presumed '
to be absent so that the breakdown is entirely determined by the oxide

thickness and its integrity.
RECTANGULAR FIELD-PLATE MOS CAPACITOR

Fig. la depicts the geometry to be analyzed. A rectangular disk (field-
plate) 1is separated by a thin oxide-dielectric from a semi-infinite

substrate. Should the breakdown due to an applied voltage ¢o occur, the

potential (¢) distribution below the field-plate can be determined by

solving the differential equation with appropriate boundary conditions. ;
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Thus, referring to Fig. la, the injected current, upon breakdown, is assumed
to be evenly distributed over the width (B) of the plate and flows in the y-
direction down the field-plate from the runner metallization along the
length L. Considering, the y-directed current flows in the field-plate and
in the substrate-sheath below the gate-dielectric, the differential equation
for the post-breakdown potential distribution ¢ below the field-plate can be
deduced from the following relations: 1) Over the differential length dy,
the current dIy = (aox/tox) B¢dy; and Iy = Btfony vhere Ey is the electric
field gradient along y; further, 2) current continuity relation, namely, dIy
(field-plate) + dIy (substrate-sheath) equal to zero is satisfied. Here L
and tox depict the post-breakdown oxide conductivity and the gate-oxide
thickness, respectively. Likevise ¢ and ty represent the electrical
conductivity and the thickness of the field-plate, respectively. Hence,
vith a dimensionless constant Y=y/L, the potential distribution (¢) can be

specified by,
d2¢/dY2 = 2k1¢ (1)

2

where k1 = O L /toxtfdf' Eqn. (1) can be sclved with the boundary

conditions, namely, ¢ = ¢0 at Y=0 and d¢/dY=0 at Y=1. The result is,

6 = A exp (/ﬁl Y) + B exp (-/?Ely) (2)
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vhere
A= ¢ /lexp (2/5?&)-1] and
B = ¢, exp [2 /iii] / lexp (2 /5?&)-1].

CIRCULAR FIELD-PLATE MOS CAPACITOR

Relevant to the <circular field-plate geometry of Fig. 1lb, the governing
differential equation describing post-breakdown potential distribution in

the dielectric (gate-oxide) region is given by

a2¢sar? + (1/R)d¢/dR=2k ¢ (3)

2 . . .
where R = r/af , k2 = onaf/toxtfdf and ag is the field-plate radius.

Assuming that the electrical contact at the centre of the field-plate has a

diameter 2aC over which current 1is injected evenly (during the post-
breakdown situation), solution to eqn. 3 can be written in terms of Bessel

functions as (In and Kn’ n=0,1,2...) as [8]

¢ = CIO(/7EZR) + DKO(JiiéR) (4)

(0 s ()
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distinguishability between the breakdown due to the failure in dielectric

integrity and that caused by field-plate induced, nonuniform electric-flux
concentrations. Thus, the severity of electrical overstressing due to
uneven current or potential distribution caused by the finite thickness and

conductivity of the field plate can be expressed as the ratio SF = IU/IA

where IU denotes the current that would flow if the current density was
uniform and equal to the maximum observed; and IA is the actual total

current fed to the field-plate. For the rectangular geometry (Fig. la), it

can be shown that

SFp = /2—k1/tanh /z_k1 (6)

and for the circular geometry (Fig. 1b),

2 aag CIl(q)-DKl(q) ai -1
p (a_-a}) CI_(q)+BK (q) ag
RESULTS & DISCUSSION
In practical devices, the field-plate materials wused [5] are Al,

polysilicon, silicides/polycides, (such as MoSi,), W, Mo, etc. From eqns.

(6) and (7) it is «clear that for a given gate-geometry/dimensions, the

severity is decided by the electrical conductivity of such field-plate
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materials. For a typical gate structure with rectangular field-plate, the -

o

practical value of k1 vill be large and therefore severity expression of y

eqn. (6) reduces to (via large argument approximation) ot

a

= VI, : (8a) p

(]

A

p

Likewise, for the «circular geometry with ac/af<<1 and k2>>1, eqn. (7) }ﬂ

w

simplifies to [8] 'i

]

= K N

SF, = V2k, . (8b) -

A

& -
Table 1 illustrates the relative severity due to identical field-plates (of >

\ .

rectangular geometry) but of different electrical resistivities. The 2'

N

results show how the electrode resistivity of the gate-electrode would play :

)

a significant role in deciding the severity of breakdown. Further, if a 3

w1

circular geometry 1is wused with the gate electrode covering the oxide over N,

<

. . 2 2 . p.

the same area as a square field-plate (that is, L™ = naf), from eqn. (8), it g

can be deduced that the severity involved in the case of circular structure 'y

will be enhanced by a factor of /n, assuming the gate-material in each being h

the same. s,

\
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A NOVEL ON-CBIP ESD PROTECTION DEVICE
USING STATIC INDUCTION TRANSISTOR PRINCIPLE

R.I. Turksan
Dept. of Electrical Engineering
Rochester Institute of Technology
One Lomb Memorial Drive
Rochester, NY 14623-3435
(716) 475-2912

Abstract

Existing on-chip protection netvorks include one
or several pn-junctions as static discharge by-pass
paths. The high field and/or current crowvding
regions associated with the pn-junctions increase
significantly the vulnerability of protection
netvorks to ESD damage. Presently a novel on-chip
protection method which allovs the sinking of
discharge current directly from the pad to the
substrate by implementing a vertical static inductjion
transistor underneath each bonding pad is described.
This design avoids lateral flow of discharge current
on the chip-surface, removes any reverse-biased
junction along discharge path, saves the chip area by
rendering the possibility of being implemented under
the contact pads and offers the advantages of high
speed and good thermal stability by virtue of being a
majority-carrier device.

I. Introduction

Although cogpsiderable progress has been made in
the design and {mplementation of onschip static
protection netvorks, they still remain prone to

mpremature failure(s). The main reason for such
ulnerability of thesc networks is that they are all
based on & combination of resistors, diodes,
transistors and/or four layer devices and that

consequently, they include one or several pn-
junctions along the static discharge path.
Essentially non-uniform heat dissipation at the

periphery of diffused regions in the reverse-biased
junctions, 1is the most commonly observed cause of
failure as reported in the literature [1]f2][3]]4].
Even the thick-field-oxide transistor which is
currently considered to be the most effective for
NMOS and CMOS protection (Fig. la), suffers from
excessive localized heating at its reverse-biased
drain-to-substrate junction.

CONVENTIONAL TYPE

R1 R2
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PAD TO CIRCUTY
UNDE R
PROTECTION

PROTECTION CQIRCUIT

e
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o =
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4 -
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Cr-2uv 7

FIG. 1: ON-CHIP PROTECTION METHODS

P.S. Neelakantasvamy
RIT Research Corporation
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(716) 475-2308

Excessive temperature rise at the drain region
of stressed thick-oxide NMOS FETs has been observed
by using infrared microscopy technique [4]. Purther,
scanning electron micrographs of damaged thick oxide
protection devices shov that the device failures are
due to the formation of metal/silicon shorts betveen
the drain contact and the channel and/or the bulk of
the substrate as a result of electrothermal migration
{1}]. The temperature rise may even be so large as to
cause polysilicon filament formation shorting the
polysilicon from the gate to the drain and sometimes
to the source regions as observed in output buffer
FETs damaged by ESD transients (1].

Such localized heating stems from the presence
of intense field and/or current regions in the pn-
junctions. The powver dissipation level and hence the
resulting damage are more pronounced when the
junction 1s reverse biased explaining why the drain
region is the prime damage site. These high field
and/or current crovding regions are inherent to pn-
junctions, not only because the total elimination of
structural and layout irregularities in practice is
impossible, but more specifically because of the
existence of curved peripheral junction reg‘ons in
the planar technology. Furthermore, the thi. -oxide
protection devices are designed to operate in the so-
called snap-back or bipolar second breakdovn mode in
order to clamp the ESD voltage transient to values
lov enough to cause no damage to the protected
internal gate oxides ([5]. The tvo other possible
modes of conduction for these devices, namely, the
MOS transistor mode and the punch through mode,
correspond to an unacceptably large on-resistance and
therefore will be totally inadequate for the
protection of future submicron geometry MOSFETs with
gate dielectric thicknesses ranging from 100 to 300
A. On the other hand, it is well known that the
possibilities of thermal runavay, current
filamentation and subsequent device failure are
greatly increased when a semiconductor device is
forced to operate in the second breakdown mode. 1In
summary, it appears that a substantial improvement in
the performance of on-chip protection networks would
be possible by designing them in a way that no
reverse-biased pn-junction operating under the first
and especially the second breakdovn conditions is
present along the intended static discharge path.
Moreover, the designers should take advantage of
continuous increase in the use of thin epitaxial
layers in NMOS and CMOS technologies which makes it
possible to sink the static current to the substrate
through a lov impedance path instead of allowing it
to flov laterally at the surface of the chip. In the
folloving sections a vertical static induction
transistor (SIT) structure is proposed and discussed
ac an attractive way of implementing the above
mentioned design considerations (Fig. 1b).

11 Static Induction Transistor as an ESD
Protection Element

The Static Induction Transistor (SIT) has been
introduced by Nishizava, et al. [6], as a solid state




device vith characteristics similar to the vacuum
tube triode. Its both output and input
characteristics are based on the static induction

principle {6]. It is basically a short-channel JFET

vhich, unlike the usual saturating pentode-like I-V
haracteristics of JFETs, presents triode-like I-V
haracteristics (Fig. 2 and 3).
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FIG. 2: CONVENTIONAL JFET
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FIG. 3: STATIC-INDUCTION TRANSISTOR

Triode-l1ike behavior arises from the proximity
of source and drain regions and the ability to
modulate the electrostatically induced potential
barrier at the source-end of the channel, not only by
the gate voltage (as in standard JFETs), but also by

the drain voltage. This requires the product (rs.gm)

to be much 1less than unity. (Here r denotes the

differential channel serjes resistance after pinchoff
and g, is the device transconductance.) 1In practice

this condition is established by making the channel
length L comparable to its width V; hence the term
"short-channel® is used above.

;@ The wmajor mechanism of current transport in SIT
is majority carrier injection over the source-to-
channel potential barrier. The device is known for
its lov impedance, high current density capability

(several 1000A/c-2). good thermal stability, high

transconductance and fast response time (in the order
of a nanosecond). Hitherto SITs have been realized
as pover microvave devices (100 V output pover at GHz
frequencies) [7]{8]{9](10], high pover-high frequency
transistors (fev KV at MHz frequencies) [6], high
(breakdovn) voltage pover devices [11) as well as

VLSI level logic circuit elements (SIT-IzL) [12].

The high current-high speed properties of SIT
makes it also suitable as an on-chip ESD protection
element. The device proposed here is a vertical,
normally OFF type SIT that operates under VGS' 0,

vith the channel being depleted and the source
potential barrier being established by the built-in
potential of the gate to source junctions. The
structure can be incorporated directly under the
contact pad areas. For a chip using a p-type
epitaxial layer on p+ substrate, the relevant
processing steps can be summarized as follows
(Fig. 4):
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FI1G. 4: PROPOSED ON-CHIP PROTECTION SCHEME USING
SIT PRINCIPLE

a) Unlike the standard practice of having the bonding
pads on the field-oxide, the oxide is removed from
the pad locations. This could be, for instance, a
part of a LOCOS process scheme vith the provision
that all subsequently deposited thin films prior to
metallization should be selectively removed from the
pad areas.

b) An nt grid (gate) is formed by lithographic means
and doping/annealing techniques. The distance

between adjacent n* diffused regions (channel vidth
V) should be small enough to deplete the vertically
sandviched p-layer (the channel) under equilibrium
conditions. Typically, a channel vhich is about a

micron vide and doped in the mid-lou/cm3 range would

be totally depleted.

¢) A blanket shallow p* doping (source) is introduced

at the surface of the p-epi layer. This p‘ layer
serves a dual purpose: first it prevents the high
electric fields that are generated within the channel
region from reaching the silicon surface; and

secondly, it introduces a p*p high-lov junction vhich
increases the channel barrier height and thus reduces
the pad to substrate leakage current under normal
operating conditions, (that is, without an ESD
event).

d) Aluminum is deposited and left over the entire pad
area(s). If the p* doping level is belowv the surface
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doping density of n* fingers, the pad metallization
introduces a short betveen the top source and gate
fingers, and the resulting device may be called a

@urhce grid SIT. Othervise, a buried n* grid

version is also possible as long as the pad metal
covering the p‘ layer makes contact with the n+ grid
at some point.

The p’ substrate plays the role of drain region
in this vertical structure. The ESD reliability may

also be further enhanced by introducing p*
polysilicon tabs betveen the pad metal and the p*
source layers, in  vhich case, the device is

necessarily of the buried grid type. It is also
possible to use the p* poly tab as the diffusion
source for the formation of the p‘ source region in a
vay similar to the buried contact process technique.

To illustrate the operation of this protection

device, consider a MOS circuit made on the p epi/p*
substrate (Figure 5).
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!
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FIG. 5: OPERATION OF THE PROPOSED PROTECTION METHOD

For nominal voltage levels at the input pad (say
0 to 5V), the normally OFF SIT presents a large
impedance path to the grounded substrate. The cut-in
voltage VC of the SIT, vhich is arbitrarily defined

voltage VSD

corresponding to a uA drain current ID for VGS =0

should be just above the positive nominal operating
voltage. At the event of a positive polarity ESD,
the increasing source-to-drain voltage results in the
lovering of the source-to-channel potential barrier.
The discharge current 1is sunk to the substrate

through the multiple p’-p-p+ "channels™ vhile the
source, that is, the pad-voltage, is clamped to vHAx

vhich should be 1less than the dielectric breakdown
voltage of the internal gate oxides. On the other

on Fig. 5 as the source-to-drain

@

L)

)
‘.‘i ““-..{ f ¢

hand, wvhen a negative ESD occurs, the pad voltage is
clarped by the then forvard-biased pin-diode formed

by the p' substrate, p-epi and n® grid regions.
Although the static discharge current flows through a

pn-junction like in the conventional protection
netvorks, the device {s expected to handle the
relatively low pover dissipation that is

associatedvith forvard biased diodes.
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FIG. 6: PROTECTION UNDER NEGATIVE ZAPS
III. Design Considerations
Discussions in this section are subdivided into

three parts: first, the OFF state characteristics of
the SIT under normal IC operation conditions and the
impact of the design parameters on these
characteristics are analyzed; secondly, the behavior
of the SIT at very high current densities that
usually prevail during an ESD transient is examined;
and finally a few remarks are made regarding the safe
operation of the SIT at the event of a negative
polarity ESD.

A. Off State Characteristics

The SIT should be designed to minimize the pad
to substrate leakage current for nominal voltage
values at the pad 1level. Under such lov level
injection conditions, the drain current ID is

approximately an exponential function-of the source-
to-drain voltage VSD for VGS = 0 (as wvell as for a

given gate to source reverse bias). The key element
in controlling ID is the source-to-channel potential

barrier .B over which the majority caiiriers are

injected into the channel. ;B varies across the

channel width V, increasing tovards the gate regions
vhile presenting a minimum at the center of the
channel. The drain current density JD at given plane

(x) across the channel width is exponentially
dependent on the local barrier height QB(x), vhich in

turn is a linear function of VSD:
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a(x) V +b(x)
J (x) « exp[m‘] l- KT/q )] (1)
%mch upon integration leads to:

{
; 1, -Exp - (mﬂ (2)

The design related parameter n is positive and
less than unity.

As ’B plays the key role in determining the OFF

state impedance of the SIT, the question is to find
the range for .B vhich would be suitable for the

present application. The use of SIT as a protection
element requires a sub drain current in the
absence of an ESD event. For an effective channel

area A = 10_4 cm2 this would correspond to an average
drain current denmsity J; of 10 2a7ca? or less. A

number of analytical, numerical and experimental
studies have been carried out in the past to

determine the dependency of ID on vSD’ VGs and

various structural parameters such as the channel
vidth W, length L and doping density Nch

[13}{14)[15). Though these studies have largely
focused on normally ON type SITs, bipolar mode SITs
and/or SIT designs vith no relevance to the results
shov that ¢, at the central plane of the channel

B
should be greater than 650 mV if J_ is to be kept

D

&under 10 “A/crm In order to provide some design
guidelines for the proposed protection element an
analytical expression vhich, for VGS = 0, gives the

vertical potential distribution w(z) along the
central plane of the channel as a function of VSD and

structural parameters can be deduced [15]. It is
given by

16 © sinh [n(2n-1)(L/VW)(1-2 ]
Wz ) = -=Vo I L

2 5D & . 1 (2m-1)(2n-1)sinh[n(2n-1)(L/V)]
ns= 1
n(2m-1) n(2n-1)

x sin [/ | .sin |
2

2 e stan (REELOL),

0—2 vV I
n° € g .1 (2m-1)(2n-1)sinh[r(2n-1)(¥/L))
n=1
n(2m-1)
x sin { .sin {R(2n-1) Zn]
2
_Eﬁ ?E;b ; sin [312%31)] .sin (E&%ﬂ;l)]
5 —
nt € mel 2 2
(2m-1) (2 n-1)? |
L) ns=1 — + ==
0 g.':' [ v L _
sinfr(2n-1) 2|
x
{(21-1).(2m-1).2n-1)] 3)

vhere Zn = z/L with z = O and z =~ L representing the

positions of the drain and source ends of the
channel, respectively. Further, Vg denotes the n*
gate to p‘source bujlt-in potential. The constants g
and € have their usual meaning. This expression
(eqn. 3) 1is based on the assumptions that the

densities of the carriers within the channel are
negligible compared to Nch and that the length of the

gate fingers is much larger than both V and L.

The effects of Nch’ ¥V and L on the source to channel
barrier height 05
each set of design parameters, 03 is computed for
VSD' ov (‘Bo) and VSD = 5V ( 035). Vg is taken as
1.1 V. These simulations show that for V

between 0 and 5V, channel doping density being less

are summarized in Table 1. For

SD changing

than 1015/cm3 and channel aspect ratio L/V of about 2
result in the desired range of the potential barrier,
that is, QB>650 av. Although it 1is possible to

improve the barrier height and thus reduce the
leakage current by increasing L/V beyond 2, such
aspect ratios would cause the deviations in the
triode like properties of the SIT.

Channel ; i

Dimension t V=0.8pm Poval pm
L=1.5pnm Le2pm !
; |
123
%Nch =10 Y/em | 4gg = 912 mV | ¢30 = 931 aV ’
; 1 .BS = 723 mV ’BS = 774 mV
| s -
Nch =5 x 10" /em f .BO = 870 mV ; ‘BO = 863 mV
: ‘BS = 682 mV 2 055 = 709 mV;
I
15 3 ! |
Nch = 107" /cm E ‘BO = 817 mV 5 .BO « 779 mV
‘ .BS = 632 mV ! 035 = 629 mV

.

Table 1 Potential Barrier Beights (.BV Va0 5):
Design Values ' '

B. Positive Polarity ESD Handling

At the event of a positive polarity ESD
occurring, the pad voltage should be rapidly clamped
to some tens of volts so as to avoid damage to the
IC. For instance, since the dielectric strength of
silicon dioxide 1is about 10MV/cm, the pad voltagg
should not exceed vSDmax = 30V in the case of a 300 A

internal gate oxide technology. At such pad (or SIT
source) voltages, the channel potential barrier
vanishes and a very high level current-injection
takes place, and as the density of majority carriers
injected into the channel exceeds the channel doping
density, SIT operates in the space-charge limited
current  flov mode. Assuming™ that the majority
carriers (holes) move at their limiting velocity Vi

(= 107 cm/s in Si), JD and p are related through:

JD = qpvy - (4)
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The injected-hole induced space charge generates
s vertically oriented electric field within the
channel and the portion of the epl layer wvhich is

~, betveen the channel and the p‘ substrate (drain).
Ffhis electric field increases linearly from the p*
source to the p‘ substrate vith a slope given by:

dE q
dz = F PNy )
Combining equations (4) and (5) and

integrating €(z) from the p* source to the p*

substrate wvith the assumption that the field at the
source-channel high-lov junction is much lowver than
elsevhere in the space-charge region, yields:
2Vt
SD
JD = qvy (t—zq— + Nch) (6)

vhere t is the total source to substrate distance
vhich includes the channel length L. For V

SDmax
14 3
30v, Nch = 5 x 107 /cm” and t = 3pm, eqn. (6)
2

predicts a JD of approximately 7500 A/cm” which

corresponds to an ESD current of 0.75A, 1if the

effective channel area is set as 10°% cmZ.

There are a number of important points which are
pertinent to the above design/calculations:

1) The maximum field E, in the SIT regjon occurs at

. the p epi - p' substrate junction. This peak
field value should not approach the dielectric
strength of silicon (300,000 v/cm approximately)

at vwvhich point current-mode second-breakdown may

occur as a result of a double-injection

mechanism. EH can be obtained by (%5». t) which

ZVSD
is equal to < and is about 200,000 v/cm in

the previous example.

2) Some spreading of the hole current is expected
betveen the channel and the p* substrate.

3) The avalanche breakdown voltage of the parallel

n’ gate - p epi - p‘ substrate pin diode should
be above the maximum expected pad voltage
vSDmax' The thickness (t-L) of the base of this
pin diode should be designed larger than
vSD uax/3 x 105 v/cm) to prevent its breakdown.
In the design example discussed, this condition

can be satisfied by setting L = 1.5 pm vhich
makes (t-L) = 1.5 pm.

Thus the results of this first order analysis
suggest the current handling capability of SIT is
appropriate for its use as an ESD protection device.
It can certainly be improved by undertaking a more
systematic device design, implementation, testing and
optimization approach. It is also possible to
implement the SIT in the proximity of the pad with a

urrent limiting resistor as shown in Fig. 1b.
#af. Negative Polarity ESD Bandling

The negative polarity electrostatic zaps are
handled by the pin diode path. 1In the case of a

surface grid SIT, the metal to n* cathode contact is
distributed over the entire pad area and is in close

proximity to the n'p junction at any device cross

section. Consequently, no significant current
crovding and intense local power dissipation should
take place. However, if the structure is a buried

grid SIT, the lateral flov of the ESD current along
the narrov n* fingers could cause some local

debiasing of the n*p junction. Such nonuniformities
in the current flov can be minimized by designing
multiple contact regions betveen the pad metal and
the buried grid.

IV Conclusions

1. The present work suggests the feasibility of
using SIT as an on-chip ESD protection device.

2. The merits of such SIT based protection circuits

are:

a) It eliminates pn-junction(s) as against the
conventional static bypass strategies.

b) It allows the wmassive ESD current to sink
vertically to the substrate.

¢) It is a majority carrier device with fast
response time and good thermal stability.
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