
-R14 S IMPLEMENTATION OF AN FIR BND PASS FILTER USING A 1/2

S" IT-SLICE PROCESSOR(U) NAVAL POSTGRADUATE SCOOL

N UTEREY CA D W PURDY JUN 97

WILRSIFIED F/I 12/6mmhhmmhhmhhhhl
EIIIIIIEIIIII
IIIIIIEEIIIEI
IIIIIIIIIIIIIl
IIIIIIIIIIIIIu
EIIIIIIIIIIIII

- U'18

~1I.25 1 .41.6

-qwr- -qw qw wV vw- .W sw Ae 10 .w w '1 - w* lo

% %

q* NAVAL POSTGRADUATE SCHOOL
0

Monterey, California 0 oi

a ':

L t ",, I-' ;

OCT 0 '1987."

THESIS
IMPLEMENTATION OF AN FIR BAND PASS FILTER

USING A BIT-SLICE PROCESSOR

by

Darrel Wayne Purdy

June 1987

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

,7 9 25 i30

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAG,.

REPORT DOCUMENTATION PAGE
a& REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
II SECURITY CLASSIFICATION AUTHORITY DISTiRIBUTIONIAVAILABILIrY OF REPORT

CA'Approved for public release;
Zb DECLASSrIONDOWNGRAO, NG SCHEDLEo,. distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUVBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(ifi

Naval Postgraduate Schoo Code 62 Naval Postgraduate School

6C ADDRESS (Cit. Staer and ZIPCode) 7b ADDRESS (City. Stafre, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

$a NAME OF FUNDING iSPONSORING IBb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if aecaeJ00

Sc ADDRESS(City. State. and ZIP Code) 10 SOURCE OP FUNDING NUMBERS

PROGRAM PROjECT ITASKC WORK .INI!
ELEMENT NO NO NO ACCESSION NO

11 T;TLE (include Security Chalcatlion) P
IMPLEMENTATION OF AN FIR BAND PASS FILTER USING A BIT-SLICE PROCESSOR

I PERSONA, AUTHOR(S)

Purdy, Darrel, W.
Ia OF REPORT I13b TME COvERED 14 DATE OF REPORT (Yea., Month Day) I PAGE CO,NT

Master's Thesis FROM ro 1987, June 164
'6 SLPPLEI ENTARY NOTATION

COSA1 CODES 18 SUBJECT TERMS (Continuie on ,everge of necessary and idents, by block numbe,)

F ELO GROUP SUS'GROUP FIR Band Pass Filter; Microprocessor;
Bit-Slice

9 BSTRACT (COntinue oA ,eveli ,f neceUAry and idntofy by block number),

A 13th order FIR filter for digital image processing is implemented
in microcode using the Am29203 bit-slice evaluation board of ADVANCED
MICRO DEVICES. To meet this requirement, the filter is first implemented
in Fortran. Then the results of both implementations are used for timing
comparisons. Although non-optimal bit-slice devices are used on the
evaluation board, a time of 1l microseconds is achieved, as compared so I
the 100 microseconds achieved in the Fortran implementation. Theoretical
estimates of 2.65 microseconds and 0.78 microseconds are obtained for
high speed Am2900 bit-slice devices and VITESSE's Gallium Arsenide bit-
slice devices respectively. It is shown that, although the initial
learning period for bit-slice devices is high, once learned, a skillful
bit-slice designer can implement a simple filter design in minimal time
with significant results in time savings.

4 0 S'AIUTONAVAILABIITY OP ABSTRACT 21 ABSTRACT SEC.UITY ..ASSiFICATION
:tNCLASSIFIED4JNLIMITEO 0 SAME AS RPT C3TIC USERS Unclassiz£ie

22& %AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22C OFFICE SYMBOL

Prof. Chin-Hwa Lee (408) 646-2190 1 Code 62Le
D FORM 1473, 4 MAR 93 APR ed,ton may be used u-t,I ewhaused SECURITY rLAS4 ! ArC, 7N F "-. 3ACE .i

All other e,itio a(e obsolete UNCLASSIFIED1

% o. ' %,. . ~... , .* % *.. ' ,,,... *-~--.. ,. ,..

UNCLASSIFIED
SOCUMTY CL.ASSIFICATION OF THIS PAG9 (Dm "a0. eee

#19 - ABSTRACT - (CONTINUED)

A brief discussion of bit-slice techniques is
presented and an argument is proposed as to whether
the bit-slice is a methodology or a device. The most
recent introduction of Gallium Arsenide devices is
included in the discussion.

In addition to the implementation of the filter,
its characteristics as well as its equation represen-
tations are presented. A discussion about noise and
quantization effects using this digital filter is also
presented.

Finally, two appendices are included. The first
appendix presents the use of the commercial software
SMARTCOM II with the IBM PC to emulate the user
terminal for the monitor system of the Am29203 evalu-
ation board. The second appendix presents a detailed
look at the bit-slice microcode used to implement the
filter.

N 0102- LF-014.6601

2 UNCLASSIFIED
SRCUITY CLASSIFICATION OF IS PAGEiMe Dos Entered

-""W% " \% % .* "% .~ • q ., ,,, % % . . V '. .

Approved for public release; distribution is unlimited

Implementation of an FIR Band Pass Filter
Using a Bit-Slice Processor

* by

Darrel Wayne Purdy
Lieutenant, United States Navy

B.S.E.E., University of Oklahoma, May 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: A J
S Darrel V*yne urz __

Approved by: __ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _

'-~ Chin-Hwa Lee, Thesis Advisor

Mitchell L. Cotton, Second Reader

ohP.Pwr, Chairman,,
Detriment of Electrical and

Computer Engineering

Gordon E. Schacher
Dean of Science and Engineering

a,.

3 0

%%'

ABTRC

A 13th order FIR filter for digital image processing is

implemented in microcode using the Am29203 bit-slice

evaluation board of ADVANCED MICRO DEVICES. To meet this

requirement, the filter is first implemented in Fortran.

Then the results of both implementations are used for timing

comparisons. Although non-optimal bit-slice devices are

used on the evaluation board, a time of 11 microseconds is

* achieved, as compared to the 100 microseconds achieved in

the Fortran implementation. Theoretical estimates of 2.65

microseconds and 0.78 microseconds are obtained for high

speed Am2900 bit-slice devices and VITESSE's Gallium

Arsenide bit-slice devices respectively. It is shown that,

although the initial learning period for bit-slice devices

is high, once learned, a skillful bit-slice designer can

implement a simple filter design in minimal time with

significant results in time savings.2-

A brief discussion of bit-slice techniques is presented

and an argument is proposed as to whether the bit-slice is a

methodology or a device. The most recent commercial

introduction of Gallium Arsenide devices is included in the

discussion.

In addition to the implementation of the filter, its

characteristics as well as its equation representations are

4

presented. A discussion about noise and quantization

effects using this digital filter is also presented.

Finally, two appendices are included. The first

appendix presents the use of the commercial software

SMARTCOM II with the IBM PC to emulate the user terminal for

the monitor system of the Am29203 evaluation board. The

second appendix presents a detailed look at the bit-slice

microcode used to implement the filter.

L)a

Sam-

K..

K .,

5 aO'

~ ~ -~- .~*~..'-g..~a../ * ,***~.* ***'*,,

TABLE OF CONTENTS

I. INTRODUCTION 9

A. GENERAL BACKGROUND ---------- -------------- 9

B. METHOD OF IMPLEMENTATION DEVELOPMENT --------- 11

C. BENEFIT OF STUDY ---------------------------- 12

II. BIT-SLICE METHODOLOGY ------------------------------ 14

A. INTRODUCTION -------------------------------- 14

B. BIT-SLICE HISTORY AND BASIC CONCEPT --------- 14

C. SIMPLE PROCESSOR USING BASIC BIT-SLICE
COMPONENTS ---------------------------------- 18

D. TYPICAL MACRO AND MICRO INSTRUCTIONS -------- 28

E. BIT-SLICE: METHODOLOGY OR DEVICE ----------- 35

III. FORTRAN IMPLEMENTATION OF FIR FILTER ------------ 39

A. INTRODUCTION OF FIR DIGITAL FILTER ---------- 39

B. "DSL" PROGRAM IMPLEMENTATION ---------------- 40

C. FORTRAN IMPLEMENTATION ---------------------- 50

D. FIXED POINT IMPLEMENTATION AND
QUANTIZATION NOISE EFFECTS ------------------ 55

IV. BIT-SLICE IMPLEMENTATION -- -------------- 71

A. INTRODUCTION ------------- ------------- 71

B. USE OF EVALUATION BOARD COMPONENTS ---------- 74

C. BIT-SLICE IMPLEMENTATION OF THE
FIR FILTER ---------------------------------- 77

D. FORTRAN AND BIT-SLICE IMPLEMENTATION
SPEED COMPARISONS --------------------------- 88

V. CONCLUSIONS ------------------------------------- 97

6

APPENDIX A: TERMINAL EMULATION USING SMARTCOM II - 100

APPENDIX B: DOCUMENTATION FOR MICROROUTINES ---------- 107

APPENDIX C: FORTRAN PROGRAM OF FIR FILTER WITH
CPU TIMING ROUTINE ADDED ----------------- 158

LIST OF REFERENCES ------------------------------------ 160

BIBLIOGRAPHY -- 162

INITIAL DISTRIBUTION LIST ----------------------------- 163

',..

.de

.

'b-S,

:'I

ACKNOWLEDGEMENTS

I wish to gratefully acknowledge by thesis advisor,

Professor Chin-Hwa Lee, who provided assistance and insight

in the completion of this thesis.

I would also like to express my gratitude to Professor

Mitchell L. Cotton for his time and input.

Further, I would like to thank the Defense Mapping

Agency System Center for sponsoring the use of the Am29203

Evaluation Board and to ADVANCED MICRO DEVICES (AMD) for

providing an extra copy of the Am29203 evaluation board

user's guide.

Finally, I would like to express my appreciation to my

entire family who supported mf during this period and

especially my wife and children without whose loving

patience I could not have completed this thesis.

8

%?

A. GENERAL BACKGROUND

The bit-slice method of computer processor organization

originated in the 1970's as an efficient partitioning of the

arithmetic and logic unit (ALU) circuitry into convenient

LSI components. These components (the "bit-slices") are

then applied in a parallel data-path organization to -

construct processors having any desired data-path width

(constrained of course to be a multiple of the basic "bit-

slice" size). Since the introduction of bit-slice

components, variations and extensions of the original

methodology have appeared. Generally the methods involved

reflect the following characteristics:

1) circuit technology reflecting an emphasis of speed
(e.g., bipolar or the most recent introduction of
Gallium Arsenide devices [Ref. 1]) rather than
density (e.g., conventional MOS microprocessors),

2) use of microprogramming to implement either standard
or custom instructions (usually facilitated by a
separate, replaceable ROM control store), and

3) related to 2) above, capability of realizing
variable instruction set computers.

As the variety and scope of applications of bit-slice

devices has evolved, it has become common to refer to the

related methodology as simply "bit-slice". Theref ore, in

this thesis, wherever reference is made to the unqualified

9

term bit-slice, it is this general methodology which is

referred to.

Of interest in military applications is the use of bit-

slice in the redesign of older equipment to emulate existing

instruction sets while increasing speed and reliability.

Generally, however, the main use of bit-slice is for speed

and it has emerged as the dominant technology in high-

performance graphics. Because of the complexity of bit-

slice microprogramming, much time is necessarily spent

toward researching and developing the skills needed in

implementing algorithms using this approach. Chapter II

introduces the method of bit-slice and its primary

components and additionally offers some examples of the

recent advances made in this area.

The main thrust of this study was to implement an image

processing FIR filter using-the methodology of bit-slice.

Image processing has a wide range of military applications

and the filters used in image processing are just a small

part of a very broad area of research. The filter, as

presented thoroughly in Chapter III, is a color band pass

filter having a carrier frequency of 3.58 MHz and is defined

as follows (Ref. 2]:

H(Z) =(-Z-1)2(I-Z-2)2(I+Z-3)(I+Z- 4)

The primary goal of course was to minimize the time used to

run this filter through standard and bit-slice methods.

10

~ ~ -.

wvirwn~rS.

Chapter III presents a standard approach using Fortran

programming. Necessarily, a secondary emphasis was placed

on investigating the advantages of using FIR filters and a

special emphasis was placed on the quantization effects

produced using these digital filters.

For the bit-slice implementation, the AM29203 evaluation

board will be used. This tool allows the user to develop and

analyze microprograms through the use of a monitor using a

screen-oriented terminal. A description of this tool as

well as the implementation of the FIR filter using it is

presented in Chapter IV. The AM29203 evaluation board posed

some limitations due to the fact that high speed was not a

design objective of the evaluation board. The onboard

memory is slow and the available look-ahead carry generator

f or the ALU was not used. However, the theoretical speed

which can be achieved is presented along with the actual

speed achieved and is compared to that of the Fortran

implementation. Finally, the conclusions of this study are

presented in Chapter V.

B. METHOD OF IMPLEMENTATION DEVELOPMENT

Again, the primary goal was to minimize the time used by

the filter using the bit-slice implementation. T"he proposed

method for achieving this goal was as follows:

1) Implement the f ilter in floating point using Fortran
programming methods.

2) Emulate implementation of the filter in fixed point
using Fortran programming methods.

3) Implement the filter using 68000 assembly language.

4) Implement the filter using bit-slice methods.

The third step, although looked at, was found to be

unnecessary. However, if additional time had been

available, it would have given a-more interesting comparison

between the speed of the bit-slice implementation as

compared to other methods. Using the method of approach as

stated above, a better understanding of the algorithm was

achieved, a logical progression of development occurred, and

comparisons in speed of implementation between Fortran and

bit-slice methods then became available.

C. BENEFIT OF STUDY

This study proved to be of great personal benefit in

bringing together and solidifying many areas of study

learned while at the Naval Postgraduate School. A better

understanding was achieved in the areas of filter design and

its associated algorithms and limitations; Fortran, assembly

and micro level programming and their interrelationships

were better understood; and finally, a better understanding

was achieved in the application of commercially available

hardware and software. This personal benefit will hopefully

result in some applied benefit to the Navy.

For Dr. C. H. Lee's interests in this area of image

processing, this study achieved two primary goals. First,

the FIR filter was successfully implemented using bit-slice

methodology. Secondly, the Am292O3 evaluation board was

12j

%VUVCYMKW ~ ~ ~ ~ w Ma Vwnfh W WW W W W-

successfully interfaced with an IBM personal computer to

allow for the creating and storing of files and for the easy

transfer of large amounts of data from stored files to the

evaluation board. This last item is documented in Chapter

IV and Appendix A.

p

,-

.

1.

5

13 f

II. BIT-SLICE METHODOLOGY

A. INTRODUCTION

It has been shown that the bit-slice approach, using the

simplest bit-serial processor, provides the maximum

computational power. [Ref. 3] Commercially, however, when

we speak of bit-slice, we are generally referring to 4-bit

slice processors such as those offered by ADVANCED MICRO

DEVICES (AMD). In this chapter, the bit-slice methodology

will be discussed and an example will be given using basic

bit-slice components to build a simple microprocessor. Then

a typical macro and micro instruction will be introduced

using this simple microprocessor. Finally, an argument as

to whether bit-slice is a methodology or a device will be

presented and discussed.

B. BIT-SLICE HISTORY AND BASIC CONCEPT

In 1974, Monolithic Memories Inc. introduced the first

bit-slice device, marketed as a microcontroller. Several

other companies joined in making bit-slice microprocessor

devices and by 1978, six companies were offering families of

devices classified as bit-slice microprogrammable processor

sets. Of these six, all were 4 bit-slice families with the

one exception of Intel which offered an unsuccessful 2-bit

family. [Ref. 4] During this period, AMD emerged as the

leader in bit-slice technology mainly due the design support

14
0

the manufacturer offered by way of data sheets and

application notes. Because of the critical need for this

type of support in designing with bit-slice components due

to its design complexity, it is apparent why AMD bit-slice

emerged& as and is still considered to be the standard of

bit-slice technology. Because of this standard, any further

ref erences in this paper to bit-slice technology will assume

to mean the 4 bit-slice as offered by AMD unless otherwise

noted.

Two important concepts must be understood concerning

bit-slice methods. The basic underlying concept is that in

bit-slice, the data flow is sliced vertically into 4-bit CPU

slices and these slices are then joined together

horizontally to form microprocessors in increments of 4

bits. In the example which will be presented later in this

section, four 4 bit-slices are joined together to form a 16

bit microprocessor. Secondly, the bit-slice technology is

most generally hidden from the end user. This is because

bit-slice is a method for microprogramnming machine-level

instructions or macro instructions. As shown in Figure 2.1,

levels A and B, the end user would normally be concerned

with the basic source code or at most, the assembly source

code of a computer. These codes would then be run through

a compiler or assembler program (software) to generate

machine level instructions. Figure 2.1, level C, then

* illustrates how these machine-level instructions (software)

15 W

BASIC BASIC COMPILER MACHINE-LEVEL
SOURCE CODE PROGRAM INSTRUCTIONS

SOFTWARE -SOFTWARE - -SOFTWARE

1B

ASSEMBLY ASSEMBLER MACHINE-LEVEL
SOURCE CODE PROGRAM INSTRUCTIONS

SOFTWARE SOFTWARE SOFTWARE

C

MACHINE-LEVEL MIRPORMPHYSICAL CONTROL
INSTRUCTIONS MIRPORMSIGNALS TO SYSTEM '

SOFTWARE FIRMWARE HARDWARE

Figure 2.1 Instruction Levels CRef. 5]

16

are microprogrammed (firmware) to enable physical control

signals to the system (hardware). Therefore, the bit-slice

design can be microprogrammed to support any instruction set

through the use of hardware and firmware. A good example of

how bit-slice is hidden from the end user was the

introduction in 1980 by Univac of its model 1100/60 computer

using bit-slice microprocessors in the central processing

unit. Despite the major change at the microprogramming

level, the outward appearance and instruction set was the

same as the previous 1100 series. (Ref. 6]

In bit-slice architecture, most of the architecture is

left to the user's definitions through the use of

interconnections and the microprogram. The advantages

offered with bit-slice design are fast complex design

capabilities relative to hardware, documentation is forced,

and upgrades are made easily by simply replacing PROMs. Bit

slice methods are typically used for machines with long

words, machines with special instruction sets, and with high

machine speeds. These last two categories make the bit-

slice particularly well suited for military application,

especially in the redesigning or upgrading of older

equipment. Also, because of its speed capabilities, the

bit-slice processor has emerged as the dominant technology

in high-performance graphics.

17

5

C. SIMPLE PROCESSOR USING BASIC BIT-SLICE COMPONENTS

The most basic of processors is shown in Figure 2.2. It

consists of a data manipulation section, the ALU, and a

control section, otherwise known as the sequencer. This

basic processor will be used in this section as a framework

to build a simple processor using basic bit-slice

components. The Am29203 evaluation board will be used as an

example of a processor using these components and will be

discussed in further detail in Chapter IV. The memory

section and any peripherals will be ignored for the time."

being.

Figure 2.3 shows a simplified view of the primary system

architecture of the AM29203 evaluation board divided into

the two basic sections. The ALU section of the evaluation

board consists of four 4-bit 29203 data manipulation (CPU)

slices to make up a 16 bit processor, and one 2904 status-

and-shift control unit which is used for shift register

linkage, status registers, and condition code testing. The

control section of the evaluation board is made up primarily

of the Am2910 and other associated hardware. The Am2910 is

a 12 bit sequencer with an instruction-decoding programmed

logic array provided on chip.

Looking at these basic components now in greater detail,

Figure 2.4 illustrates the general structure of the

manipulation unit, or the Am29203 in this specific example.

18

r I
PROGRAM :

I CONTROLLER] ARITHMETIC/ I'

(SEQUENCER) LOGIC
J I IUNIT

I. I®),

I MICROCODE I I
MEMORY ORJ CONTROL j@ J,
MEMORY"

IINPUT/
I ,,ueu .

CONTROL SECTION. __ DATA MAN__TION I I.

0 CONTROL LINES OR CONDITION INPUTS
TO/FROM

"j ADDRESS LINES PERIPHERALS

® DATA LINES

Figure 2.2 Basic Processor CRe. 4"

19 -J

• • W -

.5

.5

~*f**~f ~*~ ~ ~ *~ *~p . .1. ~ * - .X*.~*. .S' . ~

LIS.

PROMI

MI A

C>I-

U'a'

20

Va

4c4

LLA

= CL

>. 4c L)
cc W I.-

cc MA 1= 0
L2 LL,

Ica In. > 0 40 La

up 0

.C

00

C002

4J4

U.U.4

cc 01 .-..

CL.a

ac

00

-aA

UJ W Li

us
I

LCLca

211

W

As can be seen, it consists of the ALU, for performing the

required arithmetic or logic functions, general purpose

registers (RAM), a multiplexer for selecting pertinent

general purpose registers and a RAM shifter for performing

data shifting. Of importance is the horizontal connection

points shown, specifically the carry and carry look-ahead

connections. Figure 2.5 illustrates how the horizontal

connections are used to connect four CPU slices in a ripple

carry mode to form a 16-bit ALU. This is the mode used on

the evaluation board due to board space constraints and due

to the fact that speed was not the primary consideration

when designing the evaluation board. Had the P and G

signals been connected, the processor would have been in the

carry look-ahead mode, an Am2902 look-ahead carry generator

would have been used, and the processor speed could

therefore have been increased. This will be an important

factor when looking at the time considerations later on.

Also shown in Figure 2.4 are specific status conditions such

as carry, sign, overflow and zero detect which are then used

by the Am2904. Figure 2.6 shows the connections used

between the Am29203 array and the Am2904 to allow the Am2904

to perform its status, testing and shifting functions. The

Am2904 provides carry in from several sources which will

also be discussed later in greater detail.

22

rl.

LAA

IL

0.

U L

1'D
-4w

LL.

a'

* 23

0u
aa

a
U

rLn
0U

0

~fr,

2t 22 4

0*

(nuj

L

z 0,

9 9 2 O U- (5)

.4.

24 a

.. r& .rr

The Am2910 as mentioned earlier, is a 12-bit sequencer

used in the control section of the processor. Since it is a

12-bit sequencer, it is capable of addressing up to 4096

words of microcode, although the evaluation board only uses

10 of the 12 bits to address up to 1024 words. The function -

of the Am2910, put simply, is to control the sequence of

execution of microinstructions. The structure of the Am2910

is as shown in Figure 2.7. From this figure it can be seen

that the next address can come from four possible sources:

the microprogram counter (upc), the LIFO stack (F), the

register/counter (R), or from direct input through a mapping

PROM. The onboard instruction PLA provides the internal

controls which correspond to the next-address control logic.

(Ref. 5)

Putting these Am2900 basic components together, the

architecture of a 16-bit processor is as shown in Figure

2.8. It should be noted in this figure that the processor

is connected in the carry look-ahead mode by interconnecting

the G and P connection points. The addition of the pipeline

register should also be noted. This register permits the

next microinstruction to be in the process of being fetched

while the current microinstruction is still executing,

thereby improving the speed of the microinstruction

sequencing.

25

4.

REITR STC FULLPLXE

lj ~ - CLAR/ OUNTIf POINTER___

IN

Figurs 2. Dm91 arcietr fRf 7 ;p. 2.I

26TILEE

4 6)

s I'

2 L4

! Ld C
0 S j

44

u.-0

0

I (U
LO E

3 41

27

4 1* %P ~ ~ f

D. TYPICAL MACRO AND MICRO INSTRUCTIONS

As stated earlier, the machine level or macro

instructions would normally be generated by a basic compiler

or assembler program. A typical format for a macro

instruction is as shown in Figure 2.9. In the evaluation

board, the address mode is contained in the opcode, followed

by the source and destination. Suppose as an example, shown

in Figure 2.10, a macro instruction mnemonic of ADDRR (e.g.,

ADDRR R1 R2) [Ref. 7:p. 2.6] is given, with the opcode given

as AO and the total macroinstruction being A012. This

opcode is then mapped through a mapping PROM to give the

micro-address, in this case micro-address 304, to the Am2910

microprogram sequencer.

The format of a microinstruction can vary in length from

32 to 256 bits in length (or more) depending on the amount

of hardware being controlled by the microinstruction and by

the presence or absence of overlaid fields. Microprogram

memory (word control store-WCS) is therefore made up of

relatively long words and most macroinstruction sets can be

implemented in microcode using a small microprogram memory

[Ref. 7:p. 2.6]. In the evaluation board, the instruction

set and monitor using the instruction set are easily

implemented with the 1024 WCS locations addressed by the

Am2910. A typical format for a microinstruction is given by

the 48-bit general microinstruction format for the

28

N

p

OPCODE* ADDRESSING SOURCE DESTINATION

* address mode contained in opcode

Figure 2.9 Macroinstruction Format for Evaluation Board
CRef. 7:p. 3.53 a

.,

Sample Macroinstrction: A012

Mnemonic-ADDRR
AO-opoode to map to 304
1-storage address in R1
2-storage address in R2

Figure 2.10 Sample Macroinstruction

29

evaluation board as shown in Figure 2.11. The

microinstruction is broken down into fields that control the

various components. For the evaluation board, the

components controlled are the Am292O3, Ain2904 and the Am2910

which were discussed previously. The microinstruction has

several overlaid fields and even achieves what is referred

to as vertical programming through the use of an overlaid

command field and decoding PROM [Ref. 7:p. 3.10]. These

overlaid fields make microprogramming somewhat more

difficult but are used on less critical or seldom used

instructions to keep the microinstruction length shorter and

thereby decrease the cost of the memory (RAM) used. if

speed and not cost is the primary consideration, some of

these overlaid fields may have to be deleted which would

then increase the word length. The coding f or each of the

microinstruction fields is explained in detail in the

evaluation board users guide [Ref. 7]. A summary of these

codes which are generally given in hexidecimal or octal form

for ease of coding are shown in Figure 2.12. From this

sheet for a simple 48-bit implementation, it is easily seen

why a long learning process is required for complex design

work using bit-slice components.

A specific example of a microinstruction is shown in

Figures 2.13 and 2.14. In this example, the operation to be

performed is R5=2*(R3+R4). The codes for each f ield are

taken from the microinstruction coding format sheet, Figure

30

OPERAND ALU CONDITION SHIFT MICRO- NEXT
REGISTER OPERA- CODES & INSTRUCTION ADDRESS
ADDRESSES TIONS CARRY BRANCH SELECT

Ag29203 Am29203 Am2904 Am2904 AM2910 AM2910

Figure 2.11 General Microinstruction Format for Evaluation
Board CREf. 7:p. 3.5

31

31 .si'" . .,..

I1 ..., "; lgg3" ...

3 iif 13i 00.i cI~r IL; N~M *
S....

a .a

fil !
I1 Ii'11 M M

I Igoo

'~~~NA ". 'j i,,!!. ti,,!!~~1HP . 1333 3 1***

a - . .r. . *. .- "--i ,"

jUt! i t!II!________ ____ __._______. "

33

"..°. "3 °-

~!I f I ~: "'-'""'"'=--::.,,
"" ! iI ..I ,..

* . 1EV .,

ml, I * Ulllil~ll I l

:1I 31 Ii. ___

£ i iiii " ''i3 3t33335.'6 I",
i. ll;!il! i •.5,. ui~ili;

a/1'"'.//t~t '.l,

3 2 3 pm

4::

-- - --- -- -- -- , ,:,>.: 7 : . : , ;:;: . , ;. . ? . ./; .,..% / /,.-j. .. ;.j - , .-.-f

o -o

n 32 13

JIM SftV! MIN

Q u

4-0

.- 4

.311V2U11 2~L

.14

-io SO n-- Zo

'4 ~S33

BITS UALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline,
destination Rc specified by IR

44 B#O Enable Am2S203
43 B#O Enable Y output
42-00 000 Operand Sources from RAM
39-36 H#8 Destination to RAM with arithmetic

upshift

3S-32 H#3 ADD, Rc-Ra + Rb
31-30 B#00 No carry in
29-2 0#20 ALU status to status registers
23 B#1 Don't latch micro status
22 B#O Latch macro status
21 B#1 No command enable
20 8#0 Shift enable
1-16 H#2 Up shift, zero fill
is B#1 Don't set breakpoint
14 X Spare/Don't care
13-12 B#XX Don't care
11-8 H#3 Ra-R3
7-4 H#4 Rb-Ri
3-0 H#A Conditional Return

Resulting Microword: 8083 10A2 F34A

Perform RS-2-(R3+R4) with sources specified bW pipeline and
destination specified by IR

NOTE: B-Binary, 0-Octal, H-Hexadecimal

Figure 2.14 Sample Micrcvor- ith Field Oescriptions

34

~ ~".'' '

.

2.12, and transferred to a blank coding sheet as

demonstrated in Figure 2.13. These codes are formed into a

12-element hexadecimal word which is then explained in

Figure 2.14. For instance, the octal code #4 is placed in

bits 47-45 which translates to the sources Ra and Rb being

specified by the pipeline and the destination being

specified by the instruction register (IR). The pipeline

field, bits ll-4,then designates Ra and Rb to be registers

R3 and R4 respectively. The addition function is performed

by the ALU by specifying code hexadecimal #3 in the ALU

function field, bits 35-32, while the multiply by 2 is

implemented using the AM2904 shifter. The codes for the

shifting are placed in the Am2904 field and the micro status

is latched for possible overflow. The Am2910 instruction in

this case is a conditional return (based on the condition of

the status registers) and is performed by placing the

hexidecimal #A in the Am2910 instruction field, bits 3-0.

The resulting 12 element hexadecimal microword is as shown.

Typically, several of these microinstructions would be used

to implement a single macro instruction.

E. BIT-SLICE: METHODOLOGY OR DEVICE

Some people today believe that bit-slice is an outdated

device. The argument to be presented here is that a device

will be outdated as technology improves whereas a method

should be updated with advances in technology. Indeed, if

bit-slice were associated with a device, then bit-slice

35

-n a " -- '-- . - - ." .. , . " *.' '.*- ,- ,- - .',* - J. . . .*.. .*,-,. *. . -*.~-..a**~~

components, which were f irst conceived in 1974, should have

long been replaced by other devices and components,

considering the rapid developments in recent technology.

However, as technology has increased, bit-slice devices have

continued to improve and the demand for these components has

continued to grow. The following paragraphs will give some

specific examples of recent advances in the bit-slice

method.*

Probably the most widely used application of bit-slice

is that of its use in high-performance graphics, due to the

high speed required to process large amounts of data. An

example of this is found hidden in Ramtek's graphic display

system which uses the Am29lO sequencer for its memory

control processor [Ref. 8]. Although VLSI technology

recently brought about powerful graphic controller chips,

this same technology has also improved the performance of

the bit-slice. While the VLSI chips have the advantage of

low cost for high volume and capabilities for a non-standard

bus, the advantages of the bit-slice over the VLSI chips

are:

- very high writing speeds,

- support of graphics standards, and

- programmability.

This last item may be the distinct advantage in that it:

- permits graphics interface to be tuned to the particular
requirements of the application,

- can be programmed to emulate existing graphics devices,

36

A.' -&AL N. *&&A

- can easily accommodate field changes or upgrades,

- specialized graphics operations may be microcoded,
moving intensive computational loads from the host
processor to the bit-slice, and

- easily adapts to changing graphics standards. [Ref. 9] Sb

Sb

Texas Instruments introduced its STL 8-bit slice

microprocessor parts in .1985 and ECL 8-bit slice

microprocessor parts in 1986 using IMPACT (implanted

advanced composed technology). The STL devices enabled STL

circuitry to match conventional ECL gate delays but at a

thirtieth the power while the ECL devices cut ECL gate delay

three to four times with conventional ECL power dissipation.

This architecture raised throughput significantly as the

processor can read an address, perform an ALU operation, and

shift and write all in the period of a single clock cycle.

(Ref. 10]
.%

LSI Logic Corporation has made a recent introduction to

the semi-custom market using on-board bit-slice methods in

its design of structured arrays for microprogrammed systems.

These structured arrays can approach the density of full- .

custom design circuits while retaining the quick design

turnaround time of gate arrays. The LSA devices combine up

to eight 2901s, 64K of ROM and 3900 gates of logic array on
.%.

a single chip. In a typical application of these devices it
V

was shown that a single chip could be used to replace 59

discrete 2900-family devices with a power consumption

37

V.

reduction from 40 W to 1.5 W and a 50% increase in processor

performance. [Ref. 11]

The final example given is the introduction by VITESSE

Electronic Corporation of 2900 Bit-Slice components offered

in Gallium Arsenide chips. These devices were the first

commercial devices to be offered in Gallium Arsenide. Using

enhancement-depletion mode chips to solve earlier depletion-

mode Gallium Arsenide design problems, VITESSE was able to

achieve low cost production of these devices using a

silicon-like fabrication process. With amazing gate delays

in the range of 125 picoseconds (1/8 of a nanosecond),

VITESSE easily achieved speeds of 13-ns for a 4-bit add and

a RAM 3.5-ns cycle time using a conservative design

approach. Compared to AMD's high speed ECL 2900 components,

the Gallium Arsenide components can run at speeds two to

three times faster. This example is probably the most

convincing argument that bit-slice is not an outdated device

but rather a methodology which has continued to improve with

technological advances. [Ref. 1]

38

AZ.

T~4.

III. FORTRAN IMPLEMENTATION OF FIR FILTER

A. INTRODUCTION OF FIR DIGITAL FILTER

The filter chosen to be implemented in bit-slice was an

FIR (Finite-impulse-response) digital filter. This type of

filter offers many advantages. First, since it is FIR, it

can always be made to be stable and causal [Ref. 12].

Secondly, since it is digital, it possesses the inherent

advantage of immunity to noise and can be subjected to error

detecting codes, thereby offering a high reliability not

found in analog signals. As will be shown later in this

chapter, the accuracy of a digital signal can be increased

by increasing the number of bits used in the data stream and

software or hardware implementation. Further advantages of

the digital filter are that it can be easily duplicated for

precise processing, with fine tuning of analog components

replaced by data and program manipulation for consistent

output. With this precision, large amounts of data can be

processed with error detecting comparisons possible. The

digital signals used can be stored for long or short periods

of time without loss of accuracy. All of these advantages

come with the price of noise introduced due to quantization,

which will also be discussed in this chapter. Finally, the

cost and size of these highly reliable and accurate digital

lie

39

filters are greatly reduced from their expensive analog

counterparts. (Ref. 12]

The specific filter chosen to be implemented in bit-

slice was a clever video processor filter as shown in Figure

3.1, with an advertized bandpass color subcarrier frequency

of 3.58MHz and a sampling frequency four- times the

subcarrier frequency, or 14.32MHz. This filter is shown

below in equation (z-domain) form:

H(Z) = (-Z - 2) (+Z - 4) (+Z - 3) (1-Z - 1) (l-Z - 1) (-Z - 2)

This filter has the distinct advantage of using only

coefficients of 1 in each of its six stages which allows the

filter to be designed using simple shift and add circuits.

Reference 2 neither states or derives how this 13th order

filter was reduced to its six stages nor does it explain why

the stages were ordered in the manner in which they were

ordered. Mathematically, it does not matter which order the

stages are put in. However, in the real environment, it may

be possible that this particular ordering of the stages

offers some advantage. These issues were looked at only

briefly as will be mentioned in the quantization section of

this chapter, however, a possible follow-on thesis may

explore these issues more fully.

B. "DSL" PROGRAM IMPLEMENTATION

Initially, to obtain a better understanding of this

filter, the six stages were multiplied together to obtain

40

U

+ to

Lii

4JJ

-4-

tLS.

di.
4J S

411

the rational polynomial form and factored or cascaded form

as shown below:

Rational Polynomial Form:

H(Z)_Z- 1 3 (ZI3-2ZI 2-ZII+5ZI 0 -2Z9 -5Z8+4Z 7 +4Z 6 -5Z5-2Z4+5Z3-

Z2-2Z+1)

Factored or Cascaded Form:

H(Z)_Z - 13 (Z-l)4 (Z+l)3 (Z+.707+j.707)(Z-.707+j.707)
(Z+.707-j.707) (Z-.707-j.707) (Z-.5+j.866) (Z-.5-J.866)

These forms were used to obtain the required data entry to

utilize a student-designed graphing program entitled

"controls," on the IBM mainframe. Although this program

provided the expected magnitude frequency response, it

appeared to be too difficult to use to obtain desired signal

input/output graphs. Another program entitled "DSL"

(Dynamic Simulation Language), as provided by IBM in their

language reference manual and installed on the mainframe,

was then used. This program provided a more versatile

plotting of the magnitude-frequency response of the filter

and not only allowed the filter to be entered in its

coefficient form but also in its original six-stage form as

well. The "DSL" program proved to be a very useful tool in

the way of a quick visual reference of signal input/output

to the filter and was used continuously throughout the

thesis development.

42

First, "DSL" was used to obtain the magnitude-frequency

response as shown in Figure 3.2. The procedure and program

for obtaining this graph is shown in Figure 3.3. Indeed,

the frequency response for a bandpass filter is obtained as

expected. With THETA from the graph equal to PI, the

following is found to be true:

With f=input frequency and Fs=sampling frequency

f=THETA*Fs/2

For Center Frequency of Passband:

f=. 575*14.32MHZ/2=4.10MHz

For Subcarrier Frequency of the Passband:

f=.500*14. 32MHz/2=3. 58MHz

Therefore, the center frequency of the passband is found

to be 4.1 MHz and the subcarrier frequency of 3.58 MHz is

slightly below the center of the passband, both as predicted

by Reference 2. The "DSL" program was then used to obtain

input/output graphs using the rational polynomial form of

the filter as shown in Figure 3.4. In this particular

implementation and throughout the rest of the

implementations, a standard sine function was used for the

input to the filter. Figures 3.5, 3.6 and 3.7 show output

responses for inputs below, within, and above the passband

respectively as indicated. Again, as expected, the output

was zero (steady state) for an input below the passband.

The output for the in-band subcarrier frequency of 3.58 MHZ

43 '.

0U,

w 4.

I.L

.4s

tr

L.j

1

~iIOOS6 £WW/I

Cc
UU

TITLE DIGITAL FILTER
TO USE THIS PROGRAM, DO THE FOLLOWING STEPS:

* 1. BE AT A TEK618 GRAPHICS TERMINAL * (YOU ONLY NEED
* 2. TYPE "CP DEFINE STORAGE 1500K" *TO DO THESE FOUR
* 3. TYPE "I CMS" *WHEN YOU FIRST
* 4. TYPE "LINKTO DSL" * LOG ON...)

** RUNNING THE PROGRAM ******
* 5. GO INTO XEDIT AND MODIFY, IF NECESSARY, YOUR VALUES

* OF THE FILTER COEFFICIENTS.
.4 *6. NOW YOU CAN RUN AS MANY TIMES AS YOU WANT. TO RUN THE

* PROGRAM, TYPE "DSL DIGITA FORTRAN Al (G"

COMPLEX S,H,H1,H2,H3,H4
CONST Al=-2.0,A2=1.,A3=5.O,A4=-2.O,A5=-5.O,A6=4.O,A7=4.O
CONST AS=-S. O,A9--2. O.A10S. O,All=-l. O,A12=-2. O,A13=i. 0

* K=(1. /(1+Al+A2+A3+A4+A5.A6*A7+ASi.A9*AlO+All*Al2+Al3))
THET=THETA*P I
S=CMPLX(O. ,THET)
Hl=A1*CEXP(-S)+A2*CEXP(-2*S)+A3*CEXP(-3*S)+A4*CEXP(-4*S)
H2=A*CEXP(-5*S)eA6*CEXP(-6*S)+A7*CEXP(-7*S)+A8*CEXP(-S*S)
H3-A9*CEXP(-9*S)+AlO*CEXP(-10*S)+All*CEXP(-11*S)+A12*CEXP(-12*S)
H4-A3*CEXP(-13*S)+CEYP(S*O.)
H=Hl+H2+H3tH4
SHIFT=RADEG*PHASE(O. ,H)
MAGH10**GAIN(H)

RENAME TIME=THETA
CONTROL FINTIM=1. OO,DELT. 01
PRINT . 1.MAGH,SHIFT

I SAVE .01,MAGH,SHIFT
GRAPH (DE-TEK6I8) THETA(UN-PI RADIANS),MAGH
GRAPH (DE=TEK618) THETA(UN=PI RADIANS) ,SHIFT(UN=DEGREES)
LABEL FREQUENCY RESPONSE MAGNITUDE Of FIR DIGITAL FILTER
LABEL PHASE SHIFT PLOT FOR FIR DIGITAL FILTER
END
STOP

Figure 3.3 USL Pragram Enrg- Instructicns and "agnitude-
Frequency Response Pr-ogram

45

WWWW WWVwwwxvwwwx V p-~

TITLE DIGITAL FILTER(REAL TIME RESPONSE)
INITIAL Y-0.
INITIAL Xl=O. ,X2-O. 1X3iO. ,X4=O. ,X5=O. ,X6=O. ,X7=O. ,X8=O.,X9=O.,XlO-O.
INITIAL X11UO.,Xl2-O. ,X13=0.
INITIAL X0-.
CONST A1=-2.O,A2=-1.O,A3=5.OA4=-2.O,AS--S.O,A6=4.O,A7=4.O
COI4ST AS=-S.OA9--2.O,AIO=5.O,All=-l.01 A2=-2.0,A3=1. 0
CONST B-1.0
CONST Fin3. 58E5
CONST F5=1.432E7
DYNAMIC

X13inX12
X12=X1
xi i-xio
x1O=x9
X9-X8
X8=X7 '

X7-X6
X6=X5
X5-X4
X4=X3
X3-X2
X2-X1
X1-X I
TIME1-K/FS
THETA-2. *PI*F*TIME1
X-B*SIN(THETA)
Y-X+Al*Xl+A2*X2+A3*X3+A4*X4+A5*X5+A6*X6+A7*X7+A*X+A9*X9...

+A1O*XlO+All*Xll+A12*Xl2+Al3 *Xl3
RENAME TIME=K
CONTROL FINTIM-100,DELT1.
PRINT 1.,TIME1,X,Y
SAVE 1. ,TIMEl, XY
GRAPH (DE-TEK618) TIME1(UN-SECS) ,Y(MA=5)
GRAPH (DE-TEC618) TIME1(UN-SECS) ,X(MA4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.L* OSL Program oF FIR Filter in
Rational Polynormial Form

46

tot

>A

COD)

c~u

0

* 34)
In Ls

a a w

47J

a)LL

0

CL 0

43 a

0 16

- Ll

j a
i aj-

4b.

CD- J

48t

SO*

Alm~. WJonINI~w Pn pn m Iwl WI P Iw-w

CL

m41

-

CLf
4j4.

- U0

In

a L6.

wr w, r r

passed through the filter with a gain of approximately 23 as

predicted by the magnitude-frequency response (Figure 3.2).

And finally for an input above the passband, the output

showed aliasing in the computer environment as the sampling

frequency is no longer at least twice the input frequency.

C. FORTRAN IMPLEMENTATION
5.

The next step in preparation for implementing this

filter in bit-slice was to implement the filter in Fortran

on the VAX mainframe. The original concept was that once

the Fortran version of the filter was working, the VAX

command "Fortran/List/MachineCode 'File Name"' [Ref. 13]

would then be used to obtain the program file in a form

similar to the VAX macro assembly listing. The purpose of

obtaining this assembly code was to implement the filter at

the assembly language level or at least gain some insight as

to how the filter might be better implemented in bit-slice.

These "macro" level commands turned out to be too straight

forward for the "micro" level language of the bit-slice,

especially when considering the use of the registers for the

shifting, as will be demonstrated in the next chapter.

The six stage shift-and-add form of the filter was used

with the variables added to Figure 3.1 as shown in Figure

3.8. The equations for this implementation are as follows:

50

.. "'

4 +4

+

C41

-4

0

.

P*4)

51-

stage 1 Y1=X(K)-X2
X2=Xl
X=X (K)

Stage 2 Y2=Y1+Y14
Y14=Y13
Y13=Y12
Y12=Y11
Y11=YI

Stage 3 Y3=Y2+Y23
Y23=Y22
Y22=Y21
Y21=Y2

Stage 4 Y4=Y3-Y31
Y31=Y3

Stage 5 Y5=Y4-Y41
Y41=Y4

Stage 6 Y(K)=Y5-Y52
Y52=Y51
Y51=Y5

For ease of understanding the equations, each of the six

adder stages are printed in bold face type. The equations

which follow the adder equations are used to obtain values

for the unit-time delay variables. For example, in the

Stage 1 adder equation, the variable X2 represents the value

of X(K) delayed two units of time. To obtain the value for

X2, the two equations which follow the Stage 1 adder

equation are used, as shown in an example in Figure 3.9. In

this example, at time t, X(K) is equal to 5. Two units of

time later, at time t+2, the value of 5 has been 'shifted'

to the variable X2 in the adder equation.

A structured Fortran programming approach was used to

implement the filter, at this point in the development, with

the program as shown in Figure 3.10. This approach offered

many advantages. First, by breaking the different

components of the program into a main calling routine,

52

19wEffwjwww wu ,XvM WMX~'7 W.'I M-1 MCI AR Mn-w WI WYW1 110 Pv W- Ar P.M W-. ' K W.,-WJN 17 MPu l R. . W-7 wPJ MM PW M"

Data Seauence
time t: X(K)=5
time t+1: X(K)=8
time t+2: X(K)=10

Initial Conditions

X2=0

Time Seqruence

Yl=X(K)-X2 Yl=X(K)-X2 Yl=X(K)-X2

*=5-0 =8-0 =10-5

*X2=Xl X2=Xl X2=Xl
=0 =59 =8

Xl=X(K) X1=X(K) X1=X(K)
=5 =8 =10

Figure 3.9 Example of Stage 1 Equations and Numerical
Representations for Time t Through Time t+2

53

C THIS PROGRAM IS A REPRESENTATION Or A 13TH ORDER BAND PASS FILTE R
C

REAL *8 X(100),Y(100),T(101)
INTEGER N
PRINT 4

4 FCRMAT ('I')
CALL INPUT (NX,T)
CALL FUNCT (XY,N)
CALL OUTPUT (X,Y,T,N)
PRINT 4
STOP
END

C ------------ --

SUBROUTINE INPUT (NX,TIMEI)
REAL *8 X(100),F, FS,TIME1(101)
INTEGER N.K
N"100
-3. 58E6

FS-1. 432E7
TIMEI(I),0.
DO 100 Kml,N

THETA-2. *3. 1415926*F*TIME1(K)
X(X)-SIN(THETA)
TIMEI(K+1)mK/FS

100 CONTINUE
RETURN

C--
SUBROUTINE FUNOT (X,Y,N)
REAL *8 X(100),Y(100)
REAL *8 XI/O./,X2/O./,YI4/O./.YI3/O./,YI2/O./,Yli/O./,Y23/0./REAL *8 Y22/0./, Y2 I/0./, Y3 I/0./, Y41/O./, Y52/0./, YS I/0. /
INTEGER KN
DO SO K,1,N

YI-X(K)-X2
X2=Xl
)1-x(K)
Y2,YI+YI4
Y14-Y13
Y13=YI2
Y12-Yll
Y11=YI
Y3=Y2 Y23
Y23=Y22
Y22=Y21
Y21-Y2
Y4=Y3-Y31
Y31-Y3
YS-Y4-Y41
Y41,Y4
Y(K)YS-Y52
Y52-YS1.

s0 CONTINUE
RETURN
END

C--
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 X(100),Y(100),T(101)
INTEGER I,N
DO 200 Ift1,N

WRITE (13,220) I,X(I),I,Y(I),I,T(I)
220 FORMAT (' X',12,1X,',,',D17.10,SX,Y,12,1X,'-',D7.10,5

5 'T',12,IX,'=',D7.10)
200 CONTINUE

RETURN
END

Figure 3.10 Fortran Program of FIR Filter in ShiFt/Add Form

54

%', .@'4 '"
";

"
"

,"
" % .' -

". "4 -"
" / J , ' . " ', ' ' "" ~w ' "% ' " -• %

•"'"
" ', %

""
%

%
" "

' " '
"

.%"
" "

""
' '

" ""''"" "" %" %
' "

"" "
"

input, function (the filter), and output, the program was

easier to write and easier to understand. Second, it

allowed the section to be later implemented in the filter

hardware to be separated from the rest of the program.

Finally, it allowed changes to be made easily to the input

and output routines drring the many phases of development

and will be useful for any follow-on work that might be done

with this filter.

After completing and running this version of the filter

implementation, the results were found to be the same as the

rational polynomial form of the filter. In fact, these

equations were transferred to the "DSL" program as shown in

Figure 3.11 and the graphs produced were identical to the

rational polynomial graphs shown earlier. The problem

encountered in running the filter in Fortran on the VAX was

that although a stream of output data was produced, there

was not the quick visual reference as provided by the "DSL"

program. The Fortran program proved to be useful later on

however, when Root Mean Square (RMS) values were desired and

also when flags were added to the program to determine

overflow conditions as will be shown.

D. FIXED POINT IMPLEMENTATION AND QUANTIZATION NOISE

EFFECTS

The next and final step before being able to implement

the filter at the bit-slice level was to implement the

55

% %t

TITLE DIGITAL FILTER(REAL TIME RESPONSE)
INITIAL Y=0.
INITIAL X1=O. ,X2=. ,Y14=O. ,Y13=O. ,Y120. ,YllO. ,Y23=0. 1Y22=O. ,Y21=O.
INITIAL Y31O. ,Y41-0. ,Y52O. ,Y51=O.
INITIAL X0O.
CONST B=1.0
CONST F=3. 58E6
CONST FS=1.432E7
DYNAMIC

TIME1=K/FS
THETA=2. *PI*F*TIME1
X=B*SIN(THETA)
Y1-X-X2
X2=X1
x1=x
Y2=Y1+Y14
Y14=Y1 3
Y13=Y12 p
Y12-Yll
Y11=Y1
Y3-Y2+Y23
Y23=Y22
Y22=Y21
Y21=Y2
Y4=Y3 -Y3 1 5,

Y3 1Y3
Y5=Y4-Y41
Y41=Y4
Y=Y5-Y52
Y52=Y5 1
Y51=y5

RENAME TIME=K
CONTROL FINTIM-100,DELT=l.
PRINT 1. ,TIME1,X,Y
SAVE 1.,TIME1,X,Y
GRAPH (DE=TEK61S) TIME1(UN=SECS) ,Y(MA=5)
GRAPH (DE=TEK618) TIME1(UN=SECS) ,X(MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.11 DSL Program of FIR Filter in Shift/Addl Form

'S*

W'6 J

filter using fixed point precision arithmetic and to observe

the effects of truncation noise introduced. Although the

29203 evaluation board allowed for 16 bit precision in its

ALU processor, Dr. Lee imposed the additional constraint of

implementing the filter in bit-slice using only 8 of the 16

bits on the 29203 evaluation board. The purpose for this

change is to allow for easier implementation in discrete

random logic hardware at a later date.

Up to this point, the computer was assumed to have

infinite precision with no effects due to converting from an

analog signal to a digital signal through sampling. This

conversion from a smooth curve in the ideal case to'a signal

which has been restricted to a fixed number of signal levels

or quantization levels in the sampled case introduces what

is known as quantization noise. In the floating point case

the precision is assumed infinite, but when comparing the

RMS value of the floating point 100KHz 10*sin(Theta) input

signal to the ideal RMS value (0.707 of the magnitude), the

error is found to be 1.087 or approximately 15%. (Note:

The RMS values were obtained by inserting instructions in

the Fortran program to add the squared sampled values over

the period of a complete sine wave, taking the average of

the sum and then taking the square root to obtain the RMS

value.) When comparing the RMS value of a fixed point

100KHz 10*sin(Theta) input signal to that of the ideal

signal, the error was found to be 1.531, a difference of

57

only 0.45 from the floating point case. This difference of

approximately 0.4 did not change significantly as the

magnitude of the input signal was increased. Although this

difference did not appear to be significant, the difference

between the floating point and fixed point signal input had

a significant effect on the output of the filter as will be

shown in the next paragraph. This data is presented in

Table I and is summarized below.

The major concentration of effort was spent in looking

at how the fixed point output of the filter differed from

the floating point case. For the out-of-band floating point

signal, 10*sin(Theta) at 100 KHz, the steady state RMS value

was found to be very nearly zero at 0.391 x 10-3 which is

shown to be negligible in Figure 3.12. For the same signal

in fixed point, the noise is found to be significant, with

the steady state signal ranging in value from -9 to +9 and

with an RMS value of 3.86 as shown in Figure 3.13. The

noise which is introduced is first due to the limited number

of fixed point quantization levels, with the signal ranging

from -10 to +10 in increments of 1, which also causes the

sampled signal to be truncated. To be exact, the signal

ranges from -9 to +9 due to the fact that the computer

truncates the signal to the next lower number in the

positive case and to the next higher number in the negative

case. It is this truncation of the signal which introduces

58

C 0 %0*
r-. Ch r- to L

CN LCO q0 ON m

Go 0 f

0 IV
I. r- r. 0o *

r. H, 0% to
C% ,i in oL~ n

0n %0 N- V %

0 v C4i 0
N 9 O, '0

H m0hp

oi co m H
0 % i n a i n 0

02 m

z zz~H Hz

H ZM 4~ Mw* a RE4 E
59i u Z)H=

zm 0 ', 0 (3 a. o*~*'p JV 1*3 "*

CW 41

-4 4.
LA

-4J

43

* i CL

44

60 00

41

0.

41

N

41'

w0
00

41

41

0 0

0

- i
Q

m

C-4-

611

-~w~u~mr-1Wi

additional noise. As the signal was increased in value, for

the floating point case, the signal-to-noise ratio remained

constant. That is to say,.for every 10-fold increase in the

signal level, the output noise level was also increased by

10-fold. Although this is not an analog signal, this seemed

to correlate with the statement made by Gold [Ref. 14) that

every analog signal will have some finite signal-to-noise

ratio. Therefore, increasing the accuracy by which the

signal is represented will only increase the accuracy by

which the noise is represented as well. In the fixed point

case, however, as the accuracy of the signal representation

was increased, the output noise level remained fairly

constant with an RMS value ranging approximately between 3

and 4. As shown in Figures 3.14 and 3.15, this noise

becomes less and less significant as the input signal is

increased and therefore the signal-to-noise ratio is also

increased.

With this information in hand, the next problem was to

determine the maximum signal which could be used as an input

to the filter without producing an overflow, using the

available 8 bits of accuracy. Using 8 bits, the integer

signal levels could range from -128 to +127 in the two's

complement representation. This meant however, that with

the gain of 23 produced by the filter at the subcarrier

frequency of 3.58 M4Hz, the maximum input to the filter would

be approximately 5*sin(Theta). For the maximum gain of the

62

V4 V. U

4JI

0

4. 3

C

L (

L4.
4-4

CD

-4

63-j

4-1

-C

41'

w
4J

41 I-

VVO
0 cm

C

m 0

'U

L

0

a)

LL..

JWm

64a

filter of approximately 30, the maximum input signal would

have to be even less. As seen by the previous discussion,

this would not provide the necessary accuracy needed in

quantization levels of the signal. To compensate for this,

the signal was divided by two after each adder in the

filter, as shown in the "DSL" program of Figure 3.16.

Dividing by two allowed implementation at the bit-slice

level using shifters rather than expensive and time-

consuming dividers. Now with these dividers in place, the

maximum input signal to the filter as well as the number of

dividers actually required needed to be determined. To

accomplish this, the Fortran version of the program was used

and a flag was inserted after each adder to determine if an

overflow condition existed with a given input magnitude.

The magnitude was incremented in steps through the use of a

DO LOOP in the main calling program. This program is shown

in Figure 3.17. It had appeared, using "DSL", that a

maximum signal of 127*sin(THETA) could be used with 5 of the

6 dividers in place to produce an output signal of

approximately 91*sin(THETA) without producing an overflow

condition as shown in Figure 3.18. However, using the flag

program on the VAX Fortran, it was found that the first

adder limited the input signal to a magnitude of

63*sin(THETA). Anything above this magnitude would cause an

overflow condition to occur. This resulted in an output

magnitude of only 45*sin(THETA) which meant that the 8 bit

65

..

TITLE DIGITAL FILTER(REAL TIME RESPONSE)
FIXED X,Y,Xl,X2,Y14,Yl3,Yl2,Y11. Y23,Y22,Y21,Y31,Y41,?!52,YS1
FIXED Y1,Y2,Y3,Y4,Y5
INITIAL Y=0
INITIAL X10O,X2=O,Y14=,Yl30,Y20,Y110O,Y23=0,Y22=0,Y21=0
INITIAL Y31=0, Y41=0, Y52=O, y51=0
INITIAL X0O
CONST B=63. 000
CONST F1I.E5
CONST FS-14200000. 0
DYNAMIC

TINE1=C/FS
THETA-2. *PI*F*TIME1
XX=B*SIN(THETA)
X=INT(XX)
Yl1X-X2
Y1-Y1/2
X2-X1
x1=x
Y2=Yl+Y14
Y2=Y2/2
Y14=Y13
Y13-Y12
Y12=Yll1
y11=y1
Y3=Y2 +Y2 3
Y3=Y3/2
Y2 3-Y22
Y22=Y2 1
Y2 1=Y2
Y4-Y3-Y3 1
Y4=Y4/2
Y31=Y3
YS-Y4-Y41
Y41-Y4
Y=Y5 -Y52
Y52=Y5 1
YS1=Y5

RENAME TIME=K
CONTROL FINTIM=100,DELT1l.
PRINT 1.,TIMEI,X,Y
SAVE 1. ,TIME1,X,Y
GRAPH (DE=TEK61B) TIMEI(UN=SECS) ,Y(M!A=5)
GRAPH (DE=TEK618) TIME1(UN=SECS) ,X(MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.16 13SL FIR Filter Program in ShiFt/Add Form W~ith
Dividers Added

66

c =is rmola o 4 A 101101J1414 of A 13T 00000 &AM6 tISS 541.11

IN4SU 41041. t o

IaooOT I. I ,) o~41.
loll 481C407

CM I IlIA N=

CALL 4111410..0
CALINT C 4 11l460U
CAl.011141.7 1.1 m 53

g11

am

s0sows smut (N.CI11IA)

401000* 14 100)
401100 0. 1.41
0*100

M01.432171

"N 110A... 4I3QtilK

U11 4*tAM 1 *044lugA)
A4 "4*I1M3114 "4I

1101140016463I

S01 a4041 too).113.v3.141
34230l/o/ .9;/1714//.TI3101.l12/0/.vil/0/.133/0I

3M440 U.N/0. 12/0.30. I 4//1// 114/0/
4411 £51.41w.41.0
Do04 U0.1.04

CALL OVUM1 (VA11 4050. 44.4
Is (lwOI01 Toml

11.11/331.-11

ci"LLwn OV(lOs. 43610. 411.404
30 (41013.01. 04 1TV"

V14-113
113-113

V3.111

IF 0imo.00Viag

001TO 0bell
CA"L"I 931(4134123-13

T33.131S

131.-13

11-3 CALL 050Irl 4 I 43 TO 140

40 (1010.01.ov 0) lull
00 To00

141-14C" a (a

CA"L 05111. 41.2l5.1.104a
31 41361302.0) Toml

001TO00

1 U4-3-r
CA79 111114-11151I1.0

INSAO11111 W

WR11IT S 41330)I"l.a4URe

0045 104419
wails1 110441004

130 04 !1U.

00~c 100 "..4. fLA

C -.....................................

444G110 MIi. 44610411.
tor1& 4310133i Or

14647

'p %W10.0
1 01.

CDN

rp

hi 3

aU)

(. -4, 1
a))

Li

c- -4

-41 >

CD

a

68.(L

% % AA

accuracy of the bit-slice would not be fully utilized. The

dividers were then removed one at a time in a progressive

manner through the filter and it was determined that with

the limiting input magnitude of 63*sin(THETA), the fifth

divider was no longer needed in the filter. This meant that

the maximum output magnitude of the filter at the subcarrier

frequency of 3.58 MHz was approximately 91*sin(THETA) as had

been previously predicted by the "DSL" program. This limit

could have been determined by simply adding the magnitude of

63 to itself to realize that it would produce an overflow

condition of 128. It was thought, however, that the adding

and shifting of the filter with the added dividers might

produced some higher limit. Indeed, if the frequency was

varied slightly from that of the in-phase frequency of 3.58

MHz (e.g. 3.5 MHz), it was found that a slightly higher

input magnitude could be used without producing an overflow

condition.

This concluded the necessary implementation of the

filter at the Fortran level and its accompanying analysis.

Without this step in the design process, the implementation

at the lower level language of the bit-slice would certainly

have been more difficult. Before leaving this section, it

should be pointed out that one further step was taken in the

analysis of the quantization noise introduced by the filter.

The rational polynomial form of the filter was changed to

run as fixed point and the output data was compared to the

69

I , ,. > , , /9>>>-. , .,... ,<..... <..-.......... ,, *1,.

shift-and-add fixed point output data. Although it appeared

from (Ref. 34) that the rational polynomial form of the

filter might introduce additional quantization noise, there

was no observable difference in the output data. This may

be attributable to the fact that the coefficients of the

filter are already of integer form.

J

.

%

%

.°

5.

,.%

707

70

IV. BIT-SLICE IMPLEMENTATION I
A. INTRODUCTION

The Am29203 evaluation board was used to investigate the

effectiveness of implementing the FIR filter in a bit-slice

design. The Am29203 evaluation board is a tool whereby a

designer may learn and develop the skills needed to design

with components of the Am2900 family, keeping in mind that

the board would not be used in an actual implementation.

AMD offers excellent documentation of the board through its

Am29203 Evaluation Board User's Guide which offers many

step-by-step examples of using the three major components of

the evaluation board. The function and utility of these

components were briefly introduced in Chapter II. Once the

bit-slice components and the microprogramming of these bit-

slice components are fully understood, the user may then

develop and analyze microprograms through the use of a

monitor using a screen-oriented terminal. The relationship

of the 'monitor' to the system is shown in Figure 4.1. The

'monitor' should be treated as a separate system from the

primary system and except for the terminal commands, its

architecture and details of execution should be transparent

to the user. Using the 'monitor' commands, the user is able

to load and display main memory, micro memory (control K.

store), and registers and then run a loaded microprogram by

-o

71

% %> ,,-

i i "• 0.l

I I j

i Il 0

4J

I Al1I. N1

I C1

0

Al

72

stepping through it or by using set breakpoints. [Ref. 7:pp.

4.2-4.9]

Previous work done in the area of bit-slice at the Naval

Post Graduate School by Morris Bennett Stewart I! [Ref. 15]

used a dummy terminal for entering and analyzing programs.

The disadvantages to this approach are that programs must be

entered by hand, greatly reducing the scope of the programs

which can be entered, there is no memory capability for

retaining programs and there is no method for printing data.

The preliminary work which therefore had to be done before

implementing the FIR filter in bit-slice was to emulate the '

dummy terminal using an IBM PC and the commercial software

Smartcom II. This proved to be a somewhat difficult task

due to the lack of documentation provided and the lack of

expertise in this area given by personal conversation with

AMD. Once implemented however, the programs could then be

created using a personal editor to write ASCII files and

stored to disk. Then these files could be downloaded to the

Am292O3 evaluation board using Smartcom II. This greatly

facilitated the ability to run, analyze and change the FIR

filter microprogram. The additional feature was the ability

to record a working session or print out data stored in

micro and macro memory through the use of the printer. A

brief explanation and documentation of implementing the

monitor through the use of Smartcom II is provided in

Appendix A.

73

With the above hardware and software in place, the FIR

filter could now be adequately implemented using the Am29203
p

evaluation board. This chapter will describe the use of the

major components of the evaluation board and then present

the macro and microprogram used to control these components

and thereby implement the FIR filter using bit-slice

methodology. Finally, a time comparison between Fortran

implementation and bit-slice implementation will be given.

B. USE OF EVALUATION BOARD COMPONENTS

Chapter II introduced the basic architecture and

operation of the three major components of the evaluation

board which are directly controlled by the micro word: the

Am2910 12 bit sequencer; the 16 bit ALU consisting of four

4-bit Am29203 CPU slices; and the Am2904 control unit. A

good understanding of these components and the micro fields

used to control them are required before a designer can

write any microprograms using bit-slice. For example, a

simple add at the macro level may take several steps in

microcode. Although a novice designer may be able to "get

the job done", it takes an expert designer to truly optimize

and get the full time saving benefits of the microcode. It

has been estimated that it may take fully two years or more

before a designer will be able to design easily using bit-

slice methodology.

The Am2910 field can be taken as an example of how the

microword controls the components directly. The basic

74 ,

I

concept which must be understood about the Am2910 is that it

simply sequences the microinstructions, primarily through

the use of loops, counters and stack register. The

communication interface with the Am2904 provides the

necessary condition code status for the conditional

branching. The function of the Am2910 is probably best

understood by studying the sixteen Am2910 instructions shown

in Figure 4.2. These sixteen instructions are represented

by the sixteen hexadecimal values 0-F and in the case of the

Am29203 evaluation board, make up the field of the last 4

bits of the evaluation board's 48 bit microword. Although

it appears to be a fairly simple concept, [Ref. 7:pp.6.1-

6.18) uses an entire chapter to discuss the use of this

field and yet barely even touches on the subject of the

interrelationships required between the Am29203 and Am2904

fields.

As can be seen from the above discussion, it would be

impossible in this format to offer a brief explanation of

each of the fields and overlaid fields of the 48 bit

microword of the evaluation board. It is sufficient to say

here that the Am29203 performs the boolean logic operations

for executing the desired arithmetic or logic functions and

the Am2904 provides the status testing and shifting of the

operations.

75

* -A ZERO WE)b I CONS AS, PL "GI 1j aw 1~1LAP

'I I

13 ORU

STACS

33 63

*CONS AJ1 VECTOR I(G.M 7 COMO JMP RIPS. 1JURg

S. .

aI

8 REEAT LOOP. OOTIE 0 8 ImPG) S REPEAT PL. ONTA .6 (RPCTI to CONS RETURN (GRTI
STC

AIG4TIWISLaCTI

6)63 OR

64 43
%I CONO AIMP PI.a POP it"I 13 LO CNTR&aCONTINUS 1LOCTI T~

aI 1. 1o~ 1 3 TEST ENS LOOP ILOOP)

60 STACK14 CONTINUE (CONTI 16 THR19WAY BRANCH IThIO0

62

OR 4...I S)C IA. N

84 33 5DI

%1

FV u.L. mSOIsrcin ot-lFo ~F :.67
:1%*

V ' _VWJVJ1. 4

C. BIT-SLICE IMPLEMENTATION OF THE FIR FILTER

1. General Goals

The portion of the Fortran program implementation of

the FIR f ilter to be implemented in bit-slice is repeated

here in Figure 4.3. The DO loop portion of the code may be

somewhat of an artificiality, imposed by subjecting the

filter to a limited number of data points for testing

purposes, but was necessary in the testing of the bit-slice

code as well.

It was felt that the major goal of implementing this

f ilter in bit-slice would be to retain as much data in the

sixteen Amu29203 general purpose registers as possible. This

would greatly reduce the most time-consuming task of reading

and writing required data to be manipulated f rom RAM. The

ideal situation of course would be to retain all of the 13

shifting (delay) data points in the general purpose

registers of this 13th order filter. This seemed somewhat

impossible since generally only 7 of the 16 general purpose

registers are actually available for general data

manipulation. However, by not using the standard macro

instructions provided with the evaluation board, it appeared

potentially possible to free up 15 of the 16 general purpose

registers for this specific application, with the 2.6th 4

register needed for the macro program counter. With this in

mind, the filter is rewritten to use the registers as

variables in the delay equations as shown in bold type in

77

.5 A N * %*'. ~ - A ** ~ ** ** .5 -- - AV

IrI
0 N 4

IN U)

(4 >
I r I- a

>40 I

I 4 H

N 0

z >4N I L

x '110 N%
H 0. I- .1-)

I O 4 I 4-

E- >404>4
I- C4 i.

-X '44 m a 4N 4
+ .IHr H + N N I

H N>4 >4 04> 4> 4 > 41 4>
x >. 1 1 11 1 1 1 1 t 1 - 11 1

c4 rt 4 WWtZ3 I 0

M ('- 4 EA0 H z

0
I >4~>N I I

I .0 '.08

Figure 4.4. This would then leave two registers available

for incoming and outgoing data from RAM. Now looking at the

implementation of the new version of the filter, it is seen

that 6 variables are still required for each of the six

stages of the filter and one is needed for the input to the

filter. However, it was discovered that by alternating the

names of the variables, the number of variables required

could be reduced from 7 down to 2 as shown in bold type in

Figure 4.5. This meant that an input to the filter could be

read from RAM, then entirely manipulated in the general

purpose registers through the six stages of the filter, with

the output of the filter then written to RAM. These changes

reduced the total number of reads/writes required to RAM

from 38 down to only 2. The specific time savings will be

presented later in this chapter.

2. Bit-Slice Macro and Micro Instructions

In the design of the FIR filter in bit-slice, the

macro instruction and micro instructions were developed

somewhat simultaneously and it is difficult to separate the

two. However, logically the macro instruction for the

filter should be presented first. A typical instruction

sequence, using 30 points of input data to the filter for

testing of the code, is shown in Figure 4.6. This

instruction sequence is shown as printed out by the macro

memory display function of the evaluation board 'monitor'.

It displays the data in the form of eight memory locations

79

s - -

Y1-X-R2

RI-X
Y2- Y1+ R5

RS-R*
R4*-R3
R3-Y1
Y3-Y2+ RS
RS-RB
Re-R7
R7-Y2
YF-Y3-RA
RA-Y3
Y5-Y4kRB
RB-Y't
Y-YS-RE
RE-RD
RD-YS

Figure 4*.L FIR Filter Using 13 Registers of the Am292O3

RO-RC-R2
R2-R1
Ri -RC
RC-RO+R6
RG-RS
RS-R
R4-~R3
R3-RO
RO-RC+R9
R9SRB
RB-R7
R7-RC
RC-RO-RA
RA'-RO
ROinRC-RB
RB-RC
RC-RO-RE
RE-RD
RD- RO

Figure '4.S FIR Filter Using 1S Registers of the Am292O3

80

k. % .. S .. - - . . 5e *

mA.14owl

>DM ADDR:0200

0200 - 01FO 001E 0000 3E00 FF00 C200 0300 3E00

0208 - FBOO C200 0600 3E00 F800 C200 0900 3EO0

0210 - F500 C300 ODOO 3D00 F200 C300 1000 3C00

0218 - EEOO C400 1300 3B00 EBOO C600 1600 3A00

Figure 4.6 Macrocode for FIRFILT Routine

per line. The first instruction, OIFO, is the actual

"calling" instruction of the filter and as an example, might

be given the macro instruction mnemonic of FIRFILT which

would represent the call for the FIR filter microprogram.

The first two digits, 01, represent the opcode portion of

the instruction and through the mapping PROM, maps to the

micro-address 0004 where the microprogram sequence of

instructions for the filter is located. The second two

digits, FO, represent the source and destination registers,

register F and register 0 respectively, to be used later in

the instruction register in the micro code. The next macro

instruction in the sequence is actually not an instruction

but is the hexadecimal representation of the number of data

points which follow. This number will be fetched to the Q

reqister it tne -ucroprogram level and will be .ised as a
3

counter for the number of data points to process in the

filter. The next 30 instructions are then the 30 data

points represented in hexadecimal form which will be

processed by the filter at the micro instruction level.

81

0 d 0. . .

Now to run this macro instruction, FIRFILT, at the

micro instruction level, the macro instruction must first be

fetched from macro memory into the microprogram instruction

register (IR). The standard instruction fetch [Ref. 7:p.

9.7] is used here and the three micro instructions needed

are shown in Figure 4.7. A detailed explanation of all

micro instructions is provided in Appendix B. Basically,

the first instruction loads the instruction to the IR, the

second instruction updates the PC (macro program counter

located in register F), and the third instruction maps the

instruction to the microroutine which will execute the

instruction. Two notes are made here. First, this standard

instruction fetch also places a copy of the instruction in

register D which may be needed in some microprograms. In

this case however, it will be overwritten by the filter

microroutine. Secondly, the Am29203 chip allows the

fetching of an instruction and the updating of the PC to

occur simultaneously, however the architecture of the

evaluation board does not [Ref. 7:p. 9.8].

IFETCH: 0200 - 084F 3FD6 FFDE

0201 - 0044 7FFF FFFE

0202 - FFFF FFFF FFF2

Figure 4.7 Microroutine IFETCH

82

FWWWWW W w*W"WqwVWU'. -- W- Wu'w-w % wvv- -u-- ' UWVV W *- U'-.-- - - - -W

As stated earlier, the instruction is mapped to the

micro address location 0004 and this microroutine is shown

in Figure 4.8. Although these 49 lines are one

microroutine, it is broken down into several sections and p

labeled with mnemonics to break this long routine into

easily described sections and to create an easy method for

locating a particular section of the microroutine in

Appendix B. This microroutine is described in its mnemonic

labeled sections as follows:

LDCNTR--Loads the Q register with the counter as taken
from macro memory. The PC is not updated here but
put in the loop.

CLREG--Clears 13 registers for the implementation of the
13 delay equations.

LOOPBEG--Marks the beginning of the loop. It updates the
PC and brings in the first data point.

STAGEI--This marks the actual beginning of the filter in
microcode. Address H#014 provides the first adder
stage, H#015 and H#016 provide the call for the
microroutine to divide the result by 2 (shifter
microroutine) depending on whether the result is
positive or negative, and H#018-019 provide the
microcode for the 2 delay equations following the
adder. (Note: H stands for hexadecimal)

STAGE2--Provides the second stage of the filter with
adder, call for divide by 2 microroutine, and 4
delays.

STAGE3--Provides the third stage of the filter with adder,
call for divide by 2 microroutine, and 3 delays.

STAGE4--Provides the fourth stage of the filter witn
adder, call for divide by 2 microroutine, and 1
delay.

STAGE5--Provides the fifth stage of the filter with adder
and one delay.

83

LUDMTRs 0004 - 0'4F FF03 FFCE
00S - 0064 3FFF FFCE

CLREGs 0006 - 02*8 FFFF FF1E
0007 - 0280 FFFF FFZE
0008 - 028 FFFF FF3E

0009 - 028 FFFF FFE p

OOOA - 0248 FFFF FFSE P

0008 - 0248 FFFF FF6E
O00C - 0240 FFFF FFTE
0000 - 02*8 FFFF FFSE
O00E - 0248 FFFF FFSE
ooo - 0248 7F FFAE ,

0010 - 0248 FF77 Fe
0011 - 0248 FF FFOE0012 - 0248 FFFF FFEE

LOOPUKU. 0013 - 0044 7FFF FFFE

0014 - 04F FF03 FFCE

STASlls 0015 - 80*1 507F F2CE

0016 - FFFF FFFF ESOC
0017 - FFFF 0F09 E705

0018 - 0246 3FFF F12E

0019 - 026 3FFF FC1E

ITAGLE oolA - 403 107F F6CE

0019 - FFFF FFFF E1OC

001C - FFFF 0F9 E30S
0010 - 0286 3FFF FS6E
001E - 028 3FFF F45E

O1F - 02'46 3FFF F34E
0080 - 0286 3FFF F03E

STAUK3 0021 - 903 107F FCE,

0028 - FFFF FFFF ESOC

0023 - FFFF 0F09 E70S
0024 - 0246 3FFF F89E

00n5 - 0146 3FFF F78E
008 - 0286 3FFF FC7E

3TASE'O, 0087 - 4041 507F FACE

008 - FFFF FFFF E1OC
0029 - FFFF 0F09 E30S

002A - 026 3FFF FOAE

STACSs 0028 - 801 507F FBCE

002C - 0286 3FFF FCOE

*TASgIS 0020 - 401 507F FECE

002E - 1OC4 3FO FFCE

002F - 0246 3FFF FOE

0030 - 0246 3FFF FOOE

DEC"CNTR 0031 - 8241 3FFF FFFE

0032 - 0030 7FFF FFOE
0033 - 0064 107F FFOE

0034 - FFFF 04D9 C133

Figure 4.1 Microcode For FIR Digital Filter

84

I v4

STAGE6--Provides the sixth stage of the filter with adder
and 2 delays. This marks the end of the filter in
the microroutine. Address H#02E places the filter
output data back into the macro memory location
pointed to by the PC which in doing so, writes
over the previous input data given at the
beginning of the loop.

DECCNTR.--Decrements the counter and loops back to address

H#013 if the counter is not zero.

The microroutine above called another microroutine

for the dividing by 2, which is actually accomplished by

shifting in the two's complement implementation, without

offering an explanation. It would seem that a shift to

divide a positive or negative number by 2 using two's

complement arithmetic should require only one instruction in

microcode to implement the proper shift. Indeed, this would

normally be the case if the sign of the number being shifted

is known ahead of time. In fact, as shown in the example of

Chapter II, it is possible to accomplish a shift and add in

a single instruction. Two problems arise in this particular

implementation however. First, it is not known ahead of

time whether or not the operands will be positive or

negative. It should also be kept in mind that some of the

adder stages are actually subtractors. The second and

biggest problem in this case however comes from the

restriction imposed of using only 8 of the 16 bits available

in the ALU. A clearer understanding of two's complement

arithmetic would have saved a great deal of time in this

area. For example, using decimal integer arithmetic, a

three divided by two would result in a one with the 0.5

85

VI.

being truncated. This is also true of two's complement

arithmetic where the divide by 2 is accomplished by shifting

all the bits to the right by one and with a zero fill at the

most significant bit. However, if the eight bits of data

were placed in the upper eight bits as was first.. done, a

division by two in this case could cause a one to be

transferred into the upper bit of the lower eight bits. For

example, dividing the hexadecimal #0300 by two would result

in H#0180, which is indeed the correct result but it is not

the desired result of H#0100. To transfer the unwanted one

out of the upper bit of the lower eight bits requires eight

shifts to the right with zero fill to the left and then

eight shifts back to the left. This would then produce the

desired result of #0100. The case of dividing a negative

number in two's complement arithmetic is a bit more

complicated. For example, using integer decimal arithmetic,

dividing the number -3 by 2 would produce a result of -1.

In two's complement arithmetic however, where the divide by

two is accomplished by shifting to the right with a one

being filled in the most significant bit, the result would

be a -2. To account for this difference, a one must be

added to the operand, before the shifting, to produce a

correct result of -1. Therefore, to accomplish the correct

result using only the upper eight bits for entering data,

the operand must first be shifted to the lower eight bits

with ones being filled in the upper eight bits. Then a one

86

.4

is added to the operand and the final shift to the right

with one till in the most significant bit is accomplished.

This places the correct result of dividing the operand by

two in the lower eight bits. The result is then shifted to

the left eight bits to place the result in the upper eight

bits.

A much more straightforward approach is obtained by

placing the incoming data in the lower eight bits. The

problem here, however, is that in the case of incoming

negative data, the upper eight bits must be filled with ones

to make the number in the lower eight bits negative. Again,

the rules for dividing a negative number by two in this case

still apply.

In this particular application, the first approach

presented of placing the data in the upper eight bits was

used, primarily for two reasons. First, the number of

operations used here was not of importance since this was an

artificiality which was placed on the problem using the

hardware which was available. With this in mind, the first

solution allowed for the solution of a much more interesting

problem and allowed for a broader knowledge of the bit-slice

to be obtained. Secondly, this approach originally offered

an easier method for entering the data. This was later

shown not to be valid for entering large amounts of data

through the aid of the computers. A f ile in Fortran in

hexadecimal form can be created using 'z in the FORMAT

87

statement when writing to a file. This hexadecimal file

will be in the correct form which can then be downloaded to

a disk. Once on the disk, the file can be transferred to

the bit-slice RAM using Smartcom II.

The set of microprogram routines for accomplishing

the divide by two in the upper eight bits for both the

positive and negative cases is shown in Figure 4.9. This

set is for an operand which is in the RC register. Another

set identical to this, only with '0' specified, was used

when the operand was stored in the RO register. A straight

forward approach was used and the code was not optimized for

time, as was done in the filter microroutine. A detailed

explanation of the micro instructions is included in

Appendix B.

D. FORTRAN AND BIT-SLICE IMPLEMENTATION SPEED COMPARISONS

As pointed out in several of the references, including

the evaluation board user's guide [Ref. 7], the objective of

a full timing analysis is to find the longest path and then

use that time to determine the minimum clock period for the

given design. With this in hand, there are several

alternatives to the design. If the time used is acceptable,

one alternative would be to leave the clock period as It is.

If it is not acceptable, there are many alternatives to

improve the overall time used. One method would be to look

for ways to improve the algorithm or code used. Another

88

10441 107F FFCE 00011 3FE1 FFCE
FFFF 0509 E233 0004* 3FE1 FFCE
0004* 3FEO FFCE 0004* 3FE1 FFCE .

0004* 3FEO FFCE 0004* 3FE1 FFCE
0004* 3FEO FFCE 0004* 3FE1 FFCE
0004* 3FEO FFCE 0004* 3FE1 FFCE

00043FEOFFCE00043FE1FFC
0004* 3FEO FFCE 0004* 3FE1 FFCE
0004* 3FEO FFCE 0004* 7FE1 FFCE

0004* 3FEO FFCE 10441 107F FFCE
0004* 3FEO FFCE FFFF 0509 E1*3E
008* 3FEO FCCE 008* 3FEO FCCE
0084* 3FEO F'CCE 008* 3FEO FCCE
0084* 3FEO FCCE 0081* 3FEO FCCE
0084* 3FEO FCCE 008* 3FEO FCCE
0081* 3FE0 FCCE 0084* 3FEO FCCE
0084* 3FEO FCCE 0081* 3FEO FCCE
008* 3FEO FCCE 0081* 3FEO FCCE
0084* 3FEO FCCE 008* 3FEO FCCE
FFFF E1*F9 FFFA FFFF E1*F9 FFFA

POSITIVE CASE NEGATIV.E CASE 4

Figure 41.9 Shirtinig Ilicror-outaines

894

NO

would be to use faster components where needed quch as using

faster memories. One faster component which might be used

is a variable clock circuit. It is used to lengthen or

shorten the clock period depending on the length of the

timing path for each instruction. [Ref. 7:p. 6.13]

The primary method used in this study to improve the

overall time was that of seeking ways to improve the

algorithm and code used. Other methods are also considered

in this section and the data obtained is shown in Table II.

The first comparison obtained is that between the Fortran

implementation on the VAX and that of the improved 16

register microcode implementation using the fixed and

extremely slow clock period of the evaluation board.

Improved microcode, here and in Table II, refers to the
microcode which was designed for this special FIR filter

application which takes full advantage of the 16 registers

of the Am29203. The timing of the Fortran was obtained by

using the subroutine "jcput". The code for this subroutine

and its placement in the Fortran program can be found in

Appendix C. The VAX routines LIB$INITTIMER and

LIB$SHOWTIMER (Ref. 13] can also be used to obtain

estimates of the time required and is given in increments of

10 milliseconds. The time obtained for 100 iterations of

the filter was found to be 10 milliseconds or 100

microseconds per iteration. Using even the slowest form of

the bit-slice, using the fixed clock period of the

90

TABLE II

TIME COMPARISONS FOR FIR IMPLEMENTATIONS

MethodI Time (microseconds)

Fortran Implementation 100

Evaluation Board Provided 20
Bit-Slice Code 49 inst. * 408ns

Improved Bit-Slice Code using 11
29203 evaluation board 27 inst. * 408ns

Evaluation Board Provided 14.85
Bit-Slice Code with PROM 27 inst. * 408ns

25 inst. * 153ns

Improved Bit-Slice Code using 4.64
29203 evaluation board with PROM 2 inst. * 408ns

25 inst. * 153ns

High speed Am2900 family 2.65
Bit-Slice

VITESSE's Gallium Arsenide .78
Bit-Slice

91

evaluation board of 408 nanoseconds, the time was found to

be only 11 microseconds per iteration of the filter, almost

10 times f aster than the Fortran implementation. This was

obtained simply by multiplying the 27 instructions of

microcode of the filter, including the instructions for

updating the PC and counter, by the 408 nanosecond clock

period.

Next, a comparison was made between that of the

improved microcode and that of the provided code of the

Am29203 evaluation board. It is somewhat difficult to

determine the exact number of instructions needed using the

provided code without actually writing and testing the

routine, however it is estimated that it would take

approximately 49 instructions for a total time of 20

microseconds using this approach. The improved code

therefore has an approximate time savings of 45% over the

provided code.

One of the goals when improving the microcode was to

minimize the number of instructions which required a read

from RAM, such as those required when inputing data. In his

study of bit-slice, Morris Stewart [Ref. 15) documents how

the fixed instructions of the microcode could be'placed in a

faster PROM to shorten the time path of these instructions.

Then a variable clock generator could be used to shorten the

clock period of these instructions to 153 nanoseconds. The

improved microcode can now take advantage of this since only

92

2 of the 27 instructions require an access to RAM. The

total time now required is 4.64 microseconds as shown in

Table II. For the provided code, if it is assumed that the

13 delay variable addresses are in microcode or PROM, this

routine would still require 27 of the 49 instructions to

address the RAM for a total time of 14.85 microseconds. The

improved microcode clearly has an advantage in this case and

results in a time savings of nearly 70% over the provided

code.

Finally, a look is taken at how new bit-slice

devices presently on the market could be used to improve the

overall time of the filter implementation. Figures 4.10 and

4.11 provide control loop and data loop comparisons of AMD's

high speed versions of the Am2900 family to VITESSE's

Gallium Arsenide 2900 family devices. As can be seen from

these figures, the high speed devices require a minimum

cycle time of 98 nanoseconds while the Gallium Arsenide

devices require a minimum cycle time of 29 nanoseconds.

Now, using these speeds, one iteration of the bit-slice

filter will require 2.65 microseconds and 0.78 microseconds

respectively. This is over 100 times faster than the

Fortran implementation and would result in a significant

amount of time savings with the large amount of data

iterations that would be used in an actual filter

implementation. It should be noted that these last

comparisons are made using only a single level pipeline,

93

li
E

uu

E -4 C
E

LA >

u 2
E m

- Lj

0 5)

w 0

E E'4&
e.00 A E 0 a)

0
t -

I

94

I

.,-'S

OLD

• -- Iz "

0 ' EU .. ,

,-4

r- "- - -6

0 I

..2 a

> > E Q

-4

E0)

44 E
~~~ a)~-~li 4J-.



-MA*4 995 IAPLEENTRTIOU OF AN FIR BAND PASS FILTER USING A 2/2
BIT-SLICE PROCESSOR(U) NAVAL POSTGRADUATE SCHOOL

w U ~NC MONTEREY 
CA 0 Ui PURDY JUN 7

I: SIFIED 

F/0 12/6 Mmmmhhhhhhhla
EIIIIIIIIEIII
IIIIIIIIIIIIII
UIIIIIIIIIIIIII



111Q8= 122 11

11116

11IL125 111 .~4 D .

-,~-W im .w -W W0 -.a -0 W ,-~~W



whereas in earlier comparisons, a three level pipeline is

used as delineated by White [Ref. 5].

96

L



V. CONCLUSIONS

one of the strongest arguments against the use of bit-

slice designs is the time in which it takes to design with

these devices as compared to other methods. The proposed

trade-of f with the longer design time is the ability to

achieve greater speeds thereby producing dividends in

processing large volumes of data over long periods of time.

In this limited study, however, it appeared that most of the

time in designing this simple FIR filter was spent toward

gaining a working knowledge of the bit-slice components and

overcoming the needed skills in working with two's

complement arithmetic. It seemed that once this working

knowledge is obtained, an expert designer should be able to

easily design such a simple circuit in a small amount of

time. The complexity of the bit-slice language necessarily

prohibits its use as a general design tool but its benefits

in speed have a range of application when left to the expert

designer. As seen from Chapters II and IV, the bit-slice

devices easily approach super-computer speeds and yet at a

small fraction of the cost. It should be pointed out here

that only a limited working knowledge was gained during this

study and there are certainly many more aspects and benefits

which could be learned through further study. The microcode

97



implementation presented for the FIR f ilter probably is not

optimized and could be improved upon.

One of the problems of bit-slice methodology is its use

in limited studies such as this. For example, for a follow

on study in this area, a researcher would have to go through

the same difficult process of learning and obtaining a

working knowledge of the bit-slice language before any

further work could be done. This obviously limits the scope

of the study and impedes the progress of research which can

made. The bit-slice evaluation board and accompanying

user'Is guide is an invaluable tool in learning the

application of the bit-slice components and it is difficult

to imagine how this material might be presented in a more

condensed form in order to achieve a faster learning

process.

As with any research, an analysis must eventually be

made as to what conclusions can be made and what questions

were raised during the research which remain unanswered. In

this study, a thirteenth-order FIR f ilter was successfully

implemented in bit-slice using only shifters and adders.

The two major goals of implementing the filter on the

evaluation board and using a computer to download f iles to

the evaluation board were achieved. The time savings using

the bit-slice implementation far out-weighed the time spent

in designing it. It was also seen that the implementation

could be limited to eight bits of accuracy without

98



significantly affecting the results. One question which

came up during this implementation which could have been

further researched was how the limitation to 8 bits of

accuracy on the implementation truly affected the noise,

especially with the introduction of the 5 stages of shifters

or dividers. The main questions which were raised during

research and remain to be answered however, were: why were

the six stages of the filter put in the order in which they

were in; how does this order affect the quantization

effects; and how was this thirteenth order filter reduced to

a filter using six stages with coefficients of one?

In summary, the bit-slice methodology provides extremely

* useful devices for achieving increased speeds in specific

* applications, especially in those applications of high speed

graphics where large amounts of data to be processed benefit

*from the improved processing times. Because of its

versatility in implementing any given instruction set, it

should not be ruled out as a design tool based merely on the

* time required to design with it.

99



APPENDIX A

TERMINAL EMULATION USING SMARTCOM II

The commercial software SMARTCOM II by Hayes [Ref. 17]

was used on the IBM PC to emulate the user terminal for the

monitor system of the Am29203 evaluation board. This

appendix will only document the problems encountered in

using SMARTCOM II and the necessary configurations which

must be made to use SMARTCOM II to communicate with the 1

evaluation board using the IBM PC. It should be noted here

that only the SMARTCOM II software was needed for the

configuration and the SMARTCOM II modem was neither used nor

installed.

The primary problem encountered in using SMARTCOM II was

not the configuring of the software, although this did prove

to be somewhat time consuming. The major problem was the

interconnection of the hardware. From the advice of

technicians consulted and two references used, including the

SMARTCOM II manual, it appeared that a null modem would have

to be used between the IBM PC and the evaluation board since

both are computers and have DCE connection ports. In fact,

a null modem was constructed with pins 2 and 3 crossed to

ensure that both computers could send and receive properly.

The problem discovered however, was that SMARTCOM II was

changing the signal internally since the DCE port of the IBM

100



PC was behaving as if it were a DTE port. With this

discovery mad the only connection between the two

computers requ- td was a straight line gender changer.

Once SMARTCOM II has been entered, there are several

screens which can be entered to change the required

parameters. First, the Batch Set Directory, a listing of

all batch sets (communication devices available), must be

entered to list the evaluation board as one of the options

available. This is shown in Figure A.1. Next, the

Configuration Screen must be changed to reflect the

equipment being used as shown in Figure A.2. Finally, the

Parameter Screen lists the variables or parameters for each

particular communication environment. Figure A.3 shows the

parameter screen for the Bit-slice evaluation board

environment. These changes do not have to be made for every

entry into the SMARTCOM II software program.

The Menu Screen shown in Figure A.4 is used to

communicate back and forth between the bit-slice evaluation

board environment and the SMARTCOM II environment. Option 1

is selected to enter the On-Line Screen and in this mode,

the IBM PC monitor and keyboard appear to the evaluation

board and user as if if were an ordinary terminal. To

terminate the session or bring in a data or program file

stored on disk, F1 is pressed to return to the SMARTCOM II

menu screen for the appropriate selection.

101



000 E
081.1 M C 0
L00 0 0 0

Li 0 X z LC 0 0q
m1i L 00000 11 0
0 0 U ".. 2) 0 41w uD
AWU 13 41 a c 04.W2

1flLi LIM Q :3 0 Lo
La ~ ~ ~ i 04)t In oa111l

0 0 o ~jw in v Ti
4 4)1 x C 1*13 4 a
C 0 0-4 EZ0CDLW 0E

u LID uax F00tu- tzin

tDu -4U (flI-H D3X(>N Li
41 0 4

U -4I C40
o u U) 0 w u
*a
La V.Ui N) L,3-.
La N Ucia 0 14 ) -o-

Li 0) 0 4)134-
C*4 *-4 14--41 -

4) 4J)r a) ~ 1W P - 30 ,4 -.4
3 0 L: .0 c z 41

0. Ll 13 -4 E -1W1W2 W j
E 3i CL3 v :z uU u uau
0 tm -41 LqHHmm 0
U U -4 *0 c M = M 4 W r
a -~ ba:c%J aWlLWODD-4Z
Li -4 r_ wwflwflwfl E
u LL. to0 LA I C 0
-f -4U 0 - cCC C 1w w a T 0

(4 -4 ON flJ 0 U

0 0u.r W m "-Jzzomm

0~ LaMa

41 ~ to :0-i

c 03 La 404)H L
0 a 0 C CD

to4 41 0) 0 c

0 EUI o- 13 -. 4 0)241 00M
U 0 > wa mt-I- MVHZZ

'4 U-i -.4 -4 C G J'-
LA c C 0 131a131c z

E - I 4 0i 13 00 >>>-H'- m-4
E 4 U. ..U 4 -4 v) v)En w w M

o LJ co c a Q 4J D 0 0 Ot w" j4z
u L W41m -4 .13 mU CL L C1,-, N 3 3 CL
V' c u C cu 0 U EEEZZZDD-
a -q V w u .j *-4 000 a .. zz u 0

E 0 z (DI WL0 :3
En w wU) I)4 a 2

- C r 0 CMnUQLJWWX

102 J



0
I-
-4

z

0. 0 a

T* w.- 00N
L, r_ 10 3(z-

o 0 c C w
(1. 00 F- c0

0 00 00 0.
bi UOUU'r U-c
LA w*u* 0 00 i

0.. Lu int n: xIP Li
-n ui UnL n ni

Lwwwwwwcm c
0- 0 I c-

.4 P-4 L- a1
za LDO 1-4N.u

"~ Ca wzn: ,n
H t aZJNO -1- 0 r- (

cC a ~ r-0M m Z", W.DED rL

00 U rd M: Dr. E-- 0C C--44J :nEn> V0 E

UC00M MZEI 4 EF2-4 t 1-4 CL0U~. M C
41 ai. *LUJ-4 -r4 4 4.' w I.IU
0 o r H fi Enfh a u)- j m 4J m

0.. 6c C334LiciMLiU01 c ut
-- 4 '1-4 0 -4 -4 VX 0 4 C0 C

0 1I- Wi &4f 0 r- to0
L,-4 -- 0 OILU L. 0 C L

3 V MF-U U U t-fl C -4 0.J 4J
in x 3.& 4. .0. n i u

Lu 1-4i01 3 0 - -4 6
mI-IIOU. a M -4 L

> 0 _I.- to - C3
a 0.. 4J t
E 0 L, U) c
13 01 m w

LaJ (0 :>C

IK0 .4N

z u mu

103

M Ap



u i I.IL.(L4 w4
*U 0 W 44 W tw~

0 -1 Ix to c

M w IL3.w&.L.L.Ob 134.
-44 3 r4.0 0 0i ig

IaW YMMMMMM c i iouuuu
Li M V -j-4 V44 CL IDM JoE ED 0.jCL 4 34

Cu w0U W J C) 24 0 r
MM. 2- O U V O c n L Li0

in > 0 CL W 0X X 0 .J 0-4 0LW..J 1
i wn - -0 0 L~A --10 -4 f a)u i L.L -La m (a0 13 .00 m m 1 10~ --1 I

.. in *-40.Lm a a GUIw* L0 . M *L, L. V 13
0 mn 1*4 Ul 0tWi 41. Cfl 9 L,U v- 4 I3

ve I- 0
w* Cfl Lo

rr

c ) u wm

V3 0 610 lWi '4V4 Z V a)
to U) IJ 00+C-4 0 LE.0 Ix1 w 0 3

F- H* F-4 0 0 a - U) I-4
o r w w c

-4 nM-oooioomm wwm C LtL. w z z>z z M -4 W
I 0.

-4 z r 0z.0 0 X (D o M ) Ul-WI u 1n41L, (C 0in0.oWinWWV0oo m zI tj4: -,v:3q- V I .4 -, E 41 a

inCLH f U-0IcW i M -44J0)umL M I

U) 0 u Q) a(D .,m E Laz~ E a.z -4 ( C l~i~ 0 --4O C0. Qa] (E 4J U Lo MiV1- 4 x u

a 41 3 J.9 m H Lo 41 c (U U43 0 U4L a] 0o 0E fa0 C~ u L 3 E Z0v UiC (n c a)0 m1a

104



LL. U. 1'

LL. tu t

0 0 0

W.1.1

4J In 4J CL

I aO

C1. 0 9)0

03 V l 0a

to U -4 U
c m~ M E

4J M 4In1 41

V EU-4 0aI .U. 2) U)6
CL m-110 4 -

a to F-4 3 Jc
LU m~1 CM a)LiC

La -J b. -
L 4U 0 a) 12L

0) -4 C 3 3
En .4) -0 c U-.

m m 
0. La u C n

E ) 0)
U 1 *-4 l.1 L4 r
ciI a. 4a~z

-4 -43 0 MD VL
*4 m ~

Su a mc
LIW u -

O ) C3
4- -. 4 --

a l 0) '-a]4

U1 0>UC
t M-4 Li4 l

E -)'0 0 1 L
in m 4 w4.'

40-j A 7-4-A ne j- f-i



Since the Smartcom program could only communicate up to

a baud rate of 2400, the baud rate of the evaluation board

had to be changed from its standard of 4800 baud rate to

that of 2400. This is done by simply changing a jumper

connection on the evaluation board from W4 to W3.

The use of SMARTCOM II proved to be satisfactory for

this study. The biggest inconvenience was that SMARTCOM II

had to be completely exited to create a file or edit an

exiting file. This proved to be very time consuming when

trouble shooting the microroutine. There are now newer

software programs on the market which solve this problem and

allow the editing of existing files without. exiting the

emulator. The editor which was used to create the ASCII

files was PERSONAL EDITOR 2 by IBM.

106

.. ... . . .. . . - - - - -. -. -



APPENDIX B *

DOCUMENTATION FOR MICROROUTINES

Micro Routine: IFETCH .

Micro address: 0200

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#1 Disable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM with parity

35-32 H#X Don't care

31-30 B#00 No carry in

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#6 Instruction fetch

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#D Rb=RD

3-0 H#E Continue

Resulting Microword: 084F 3FD6 FFDE

Purpose: Fetches instruction from macro memory to
instruction register (IR) and register D.

Comments: The Am2904 command, bits 19-16, specify the
instruction to be read from macro memory and loaded into the
instruction register (IR). The macro memory location is
designated by bits 11-8, which is RF, the program counter
(PC). A copy of the instruction is also loaded into
register D as indicated by bits 7-4. The Am2910 is
instructed to continue to the next sequential address.

107

.. .. .. .- - - - .. . . .. - - . - , . -- - - . -.-- -" ." . . . - . " . . ' - . '- -" ' " . .



Micro Routine- IFETCH
Micro address: 0201

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#4 F-S plus carry in

31-30 B#01 Carry in equal to one

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#F Rb-RF

3-0 H#E Continue

Resulting Microword: 0044 7FFF FFFE

Purpose: Update PC (increment by one)

Comments: The function specified by bits 35-32 is F=S+
carry in with carry in equal to one. S is specified by bits
7-4 to be RF, the PC. The destination is RF and therefore
the PC is incremented by one. The Am2910 is instructed to
continue to the next sequential micro instruction.

108

-, -. ,,- -, -. , ,-_.. ,,. ,..._._..- ,j. .,- ., , , ..., ... ... ,.. .....- , .-.-,, ,,



Micro Routine: IFETCH
Micro address: 0202

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care
39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care \-.

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#X Don't care

11-8 H#X Don't care

7-4 H#X Don't care

3-0 H#E Jump to location mapped by opcode

Resulting Kicroword: FFFF FFFF FFF2

Purpose: Jump to filter microroutine "BITPRO"

Comments: The Am2910 instruction maps the opcode stored in
the IR to the appropriate microroutine location.

109

- Pp ~ **dV:*~~**" ;'-'
? ~ * *"p *'p. ~ 's ~ *''N*.'ip- ~ "'K,1



Mnemonic: LDCNTR

M~sfs gg; ~ro
BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#1 Disable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM with parity

35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#3 Read from memory

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#F Ra-RF

7-4 H#C Rb-RC

3-0 H#E Continue

Resulting Microword: 084F FFD3 FFCE

Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, the
destination for the value of the macro address is register
C. The Am2910 is instructed to continue to the next
sequential instruction.

110



Micro Routine: Bitpro
Micro address: 0005

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#6 Destination to Q register with parity

35-32 H#4 F=S plus carry in

31-30 B#00 No carry in

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 0064 3FFF FFCE

Purpose: Load Q register with counter from register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 35-30 specify that the function is
to be equal to the S operand with no carry in, the value in
register C is moved to the Q register as specified by bits
39-36. The Am2910 is instructed to continue to the next
sequential micro instruction.

111

• ' " ' " ' " " " '. '-'.. ' ".2"'.'-- "" ' " ' ' "



Mnemonic: CLREG

Micro Routine: Bitpro
Micro address: 0006-0012

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#O Enable Y output

42-40 Q#2 Operand from RAM

39-36 H#4 Destination to RAM with parity

35-32 H#8 F-zero

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#X Don't care

11-8 H#X Don't care

7-4 H# Specify register to be cleared

3-0 H#E Continue

Resulting Microword: 0248 FFFF FFE

Purpose: Clear Registers 1-B, D & E

Comments: Bits 35-32 specify that the function will be
zero. Therefore, the register indicated by bits 7-4 will be
cleared. The Am2910 is instructed to continue to the next
address.

112



Mnemonic: LOOPBEG

Micro Routine: Bitpro
Micro address: 0013

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#O Enable Y output

42-40 Q#0 Operand sources from RAM

39-36 H#4 Destination to RAM

35-32 H#4 F=S+ carry in

31-30 B#01 Carry in = 1

29-24 Q#XX Don't care

23 B#1 Don't latch micro 4

22 B#1 Don't latch macro

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#F Rb=RF

3-0 H#E Continue

Resulting Microword: 0044 7FFF FFFE

Purpose: Update PC in register F

Comments: Bits 35-32 specify that the function will be
equal to the value of the register F specified by bits 11-8
plus the carry in, which in this case is equal to one as
specified by bits 31-30. The value is then stored in
register F as indicated by bits 7-4. The Am2920 is
instructed to continue to the next address.

113



Micro Routine: Bitpro
Micro address: 0014

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#1 Disable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM with parity

35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#3 Read from memory

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 084F FFD3 FFCE

Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, the
destination for the value of the macro address is register
C. The Am2910 is instructed to continue to the next
sequential instruction.

114

* .5*. % .... . .N.' N.',.%%. ~ %. %'. % .5.%*~% S - 5S. ~ . S.5 5*.*~* *55 *5



Mnemonic: STAGEl

Micro Routine: Bitpro
Micro address: 0015

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#1 F=S-R-1 plus carry in

31-30 B#01 Carry in equal to one

29-24 Q#20 ALU status to status registers

23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#2 Ra-R2

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 8041 507F F2CE

Purpose: RO=RC-R2

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=R2 as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01F0,
the destination register is Ro. The Am2910 is instructed to
continue to the next sequential micro instruction.

115



Micro Routine: Bitpro
Micro address: 0016

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care
2o

22 B#X Don't care
21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#5 address field with

7-4 H#0 address H#250

3-U H#C Load address into R/C register

Resulting Microword: FFFF FFFF E50C

Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

116

'4%.



Mnemonic: STAGE1

Micro Routine: Bitpro
Micro address: 0017

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bit 29-24 .4

29-24 Q#1F Test if Micro negative

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Enable true test

15 B#1 Don't set break point

14 X Spare

13-12 B#10 This is the address

11-8 H#7 field with

7-4 H#0 address H#270

3-0 H#5 Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E705

Purpose: Conditional jump to address H#270 if micro status
is negative (true), jump to address H#250 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

117

%U.

A'



XXX X ;.I RA

Micro Routine: Bitpro I

Micro address: 0018

BITS VALUE EXPLANATION
----------------------------------------------------------------

47-45 Q#0 Sources Ra I Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#1 Ra=R1

7-4 H#2 Rb=R2

3-0 H#E Continue

Resulting Microword: 0246 3FFF F12E

Purpose: Place value of R1 into R2

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R1 and
bits 7-4 specify R2 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

118



Mnemonic: STAGE1

Micro Routine: Bitpro
Micro address: 0019

.

BITS VALUE EXPLANATION
--------------------------------------------------------

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#C Ra=RC

7-4 H#1 Rb=Rl

3-0 H#E Continue

Resulting Microword: 0246 3FFF FC1E

Purpose: Place value of RC into R1

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify R1 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

119

€ 2; , j2 ..'., ° .¢ . ' % - N¢ ' ° < " '.'." ,"."' ..' ' ",-'-.'% ,'',"".-. .' .-.-.



Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001A

BITS VALUE EXPLANATION

47-45 Q#2 Ra source & dest. from pipeline, Rb fm IR

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#3 F=R + S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#20 ALU status to status registers

23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#6 Ra=R6

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 4043 107F F6CE

Purpose: RC=RO+R6

Comments: Bits 35-30 specify the function to be F=S+R with
carry in equal to zero. S=RO as specified by bits 47-45,
and R=R6 and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.

12120-'

05

% % %'%% %% % %% ' %°" % "% "" '%" N %" "'%','% '-' ''" '-' ' '%'.'% %'' %'% ''% % " °' .5 -



Micro Routine: Bitpro
Micro address: 001B

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#1 address field with

7-4 H#0 address H#210

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF E1OC

Purpose: Load R/C register with address H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

12

121"-



Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001C

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bit 29-24

29-24 Q#lF Test if Micro negative

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Enable true test

15 B#1 Don't set break point

14 X Spare

13-12 B#10 This is the address

11-8 H#3 field with

7-4 H#0 address H#230

3-0 H#5 Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E305

Purpose: Conditional jump to address H#230 if micro status
is negative (true), jump to address H#210 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

122

'-. '_A



Micro Routine: Bitpro
Micro address: O01D

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F-R + Carry in

31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint,

14 X Spare

13-12 B#XX Don't care

11-8 H#5 Ra=R5 ,

7-4 H#6 Rb=R6

3-0 H#E Continue '.

Resulting Microword: 0246 3FFF F56E

Purpose: Place value of R5 into R6

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R5 and
bits 7-4 specify R6 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

123

% %



WV

Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001E

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F-R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift
5"

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#4 Ra=R4

7-4 H#5 Rb=R5 -

3-0 H#E Continue

Resulting Microword: 0246 3FFF F45E

Purpose: Place value of R4 into R5

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R4 and
bits 7-4 specify R5 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

124



Micro Routine: Bitpro
Micro address: O01F

BITS VALUE EXPLANATION
-------------------------------------------------------------------

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#O Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#3 Ra=R3

7-4 H#4 Rb=R4

3-0 H#E Continue

Resulting Microword: 0246 3FFF F34E

Purpose: Place value of R3 into R4

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R3 and
bits 7-4 specify R4 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

125



Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 0020

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care
15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#0 Ra=RO

7-4 H#3 Rb=R3
3-0 H#E Continue

Resulting Microword: 0246 3FFF F03E

Purpose: Place value of RO into R3

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RO and
bits 7-4 specify R3 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction. '

126
.4'

.
.5-

126

" ' " -." " -. ." ." " -." v ". ". " " .-. .'. v . '.- '.'< ' " " '< '. -. .. , -" "k " , 'v '- 'v < ." .' "- ' v . . 5



Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0021

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#O Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#3 F=R + S plus carry in

31-30 B#01 Carry in equal to zero

29-24 Q#20 ALU status to status registers

23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#9 Ra-R9

7-4 H#C Rb-RC

3-0 H#E Continue

Resulting Microword: 8043 107F F9CE

Purpose: RO=RC+R9

Comments: Bits 35-30 specify the function to be F=S+R with
carry in equal to zero. S=RC and R=R9 as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is OIFO,
the destination register is RO. The Am2910 is instructed to
continue to the next sequential micro instruction.

127



Micro Routine: Bitpro
Micro address: 0022

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#5 address field with

7-4 H#0 address H#250

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF E50C

Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

128



Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0023

BITS VALUE EXPLANATION

47-45 Q#X Don't care
44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bit 29-24
29-24 Q#lF Test if Micro negative ,
23 B#1 Don't latch micro status
22 B#I Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Enable true test
15 B#l Don't set break point

14 X Spare

13-12 B#10 This is the address

11-8 H#7 field with

7-4 H#0 address H#270
3-0 H#5 Conditional jump; True-pipeline address

False-R/C address

Resulting Microword: FFFF DFD9 E705

Purpose: Conditional jump to address H#270 if micro status
is negative (true), jump to address H#250 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

129



Micro Routine: Bitpro
Micro address: 0024

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#1 Ra=R8

7-4 H#2 Rb=R9

3-0 H#E Continue

Resulting Microword: 0246 3FFF F89E

Purpose: Place value of R8 into R9

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R8 and S.

bits 7-4 specify R9 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction. S

130



Mnemonic: STAGE3 V

Micro Routine: Bitpro ,
Micro address: 0025

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care 4
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#7 Ra=R7

7-4 H#8 Rb=R8

3-0 H#E Continue

Resulting Microword: 0246 3FFF F78E

Purpose: Place value of R7 into R8

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R7 and
bits 7-4 specify R8 to be the destination. The Am2910 is
instructed to continue to the next sequentiai micro
instruction.

1'

131



Micro Routine: Bitpro
Micro address: 0026

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#C Ra=RC

7-4 H#7 Rb=R7

3-0 H#E Continue

Resulting Microword: 0246 3FFF FC7E

Purpose: Place value of RC into R7

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify R7 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

132

.*%



Mnemonic: STAGE4

Micro Routine: Bitpro
Micro address: 0027

BITS VALUE EXPLANATION

47-45 Q#2 Ra source & dest. from pipeline, Rb fm IR

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand Sources from RAM %

39-36 H#4 Destination to RAM

35-32 H#1 F=S-R-I plus carry in

31-30 B#01 Carry in equal to one

29-24 Q#20 ALU status to status registers
."

23 B#O Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care %
11-8 H#A Ra=RA

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 4041 507F FACE

Purpose: RC=RO-RA

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=R0 as specified by bits 47-45,
and R=RA and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.

133

-. .. . . . . . . . . .*. . . . .*.* .. , . _ . . ... _, . .. ,55 , - .5.*



0I

Micro Routine: Bitpro
Micro address: 0028

BITS VALUE EXPLANATION

--------------------------------------------------------

47-45 Q#X Don't care
44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care
29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care
21-20 B#X Don't care

19-16 H#X Don't care
15 B#1 Don't set break point

14 X Spare/don't care

13-12 B#10 This is now the

11-8 H#1 address field with
7-4 H#0 address H#210

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF EIOC

Purpose: Load R/C register with address H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

134

Z-



Mnemonic: STAGE4

Micro Routine: Bitpro
Micro address: 0029

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bit 29-24

29-24 Q#1F Test if Micro negative

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Enable true test

15 B#1 Don't set break point

14 X Spare

13-12 B#10 This is the address

11-8 H#3 field with

7-4 H#0 address H#230

3-0 H#5 Conditional jump; True-pipeline address
False-R/C address

Resulting Microword: FFFF DFD9 E305

Purpose: Conditional jump to address H#230 if micro status
is negative (true), jump to address H#210 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

135

4

.4-



Micro Routine: Bitpro
Micro address: 002A

BITS VALUE EXPLANATION
--------------------------------------------------------

47-45 Q#0 Sources Ra &.Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#0 Ra=RO

7-4 H#A Rb=RA

3-0 H#E Continue

Resulting Microword: 0246 3FFF FOAE

Purpose: Place value of RO into RA

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RO and
bits 7-4 specify RA to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

136

* ~**~*** .'- *'~i'*~V*~**~.* . ? ,



Mnemonic: STAGE5

Micro Routine: Bitpro
Micro address: 002B

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#1 F=S-R-1 plus carry in

31-30 B#01 Carry in equal to one

29-24 Q#20 ALU status to status registers

23 B#O Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#B Ra=RB

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 8041 507F FBCE

Purpose: RO=RC-RB

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=RB as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01FO,
the destination register is RO. The Am2910 is instructed to
continue to the next sequential micro instruction.

137



Micro Routine: Bitpro
Micro address: 002C

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#l Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#C Ra=RC

7-4 H#B Rb=RB

3-0 H#E Continue

Resulting Microword: 0246 3FFF FCBE

Purpose: Place value of RC into RB

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify RB to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

138

N N N N "



Mnemonic: STAGE6

Micro Routine: Bitpro
Micro address: 002D

BITS VALUE EXPLANATION
---- 7----------------------------------------------------

47-45 Q#2 Ra source & dest. from pipeline, Rb fm IR
44 B#Q Enable Am29203

43 B#O Enable Y output

42-40 Q#O Operand Sources from RAM

39-36 H#4 Destination to RAM
35-32 H#1 F-S-R-I plus carry in
31-30 B#01 Carry in equal to one

29-24 Q#20 ALU status to status registers

23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#1l No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care
11-8 H#E Ra=RE

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 4041 507F FECE

Purpose: RC=R0-RE

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RO as specified by bits 47-45,
and R=RE and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.

139

N- N % .%



Micro Routine: Bitpro
Micro address: 002E

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#1 Disable 29203

43 B#O Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#C F to Y only

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#4 Write to memory

15 B#1 Don't set break point

14 X Spare

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 1OC4 3FD4 FFCE

Purpose: Place result of filter stored in register C into
macro memory address pointed to by the PC

Comments: The command field of the Am2904, bits 21-16,
specifies to write to memory. It writes to the location
pointed to by Ra which in this case is RF, the PC. It
places the value from RC into this memory location. The
Am2910 is instructed to continue to the next sequential
address.

140

. - - -,. -- .. . % % -.. ,. - " . * " .. . $-" . ". .- " . ,



Mnemonic: STAGE6

Micro Routine: Bitpro
Micro address: 002F

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#D Ra=RD

7-4 H#E Rb=RE

3-0 H#E Continue

Resulting Microword: 0246 3FFF FDEE

Purpose: Place value of RD into RE

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RD and
bits 7-4 specify RE to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

141

IN; .- % *. , .



Micro Routine: Bitpro

Micro address: 0030

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM "

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#0 Ra=RO

7-4 H#D Rb=RD

3-0 H#E Continue

Resulting Microword: 0246 3FFF FODE

Purpose: Place value of RO into RD

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RO and
bits 7-4 specify RD to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

142
..

I%%%



Mnemonic: DECCNTR

Micro Routine: Bitpro
Micro address: 0031

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb from pipeline, Dest fm IR

44 B#0 Enable Am29203

43 B#O Enabel Y output J-

42-40 Q#2 Operand S from Q register

39-36 H#4 Destination to RAM -.

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#X Don't care

3-0 H#E Continue

Resulting Microword: 8244 3FFF FFFE

Purpose: Put counter from Q register into register 0

Comments: The operand S comes from the Q register as
specified by bits 42-40 and is placed in register RO since
bits 47-45 specify the destination to be indicated by the IR
and the macro instruction in this case is 01FO. The Am2910
is instructed to continue to the next sequential address.

143

...... . ..o ... . ., .-... . . . : v .. . . ..: .. .- . . 0 - ... - .0 " -



Micro Routine: Bitpro
Micro address: 0032

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline

44 B#0 Enable Am29203

43 B#O Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#3 SPECIAL FUNCTION: Decrement by 1

35-32 H#O ALU special function

31-30 B#OI One to be decremented (00 would decr 2) a.

29-24 Q#XX Don't care -

23 B#1 Don't latch micro status
.5

22 B#1 Don't latch macro status .

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare a'

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#0 Rb=RO

3-0 H#E Continue

Resulting Microword: 0030 7FFF FFOE

Purpose: Decrement counter by one

Comments: This instruction is an ALU special function as
designated by bits 35-32. Bits 39-36 specify the special
function to be a decrement and since bits 31-30 are 01, the
decrement is to be one. The operand is RO as specified by
bits 7-4. The Am2910 is instructed to continue to the next
sequential address.

144



Mnemonic: DECCNTR

Micro Routine: Bitpro
Micro address: 0033

BITS VALUE EXPLANATION

47-45 Q#O Sources Ra & Rb specified by pipeline

44 B#O Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand sources from RAM

39-36 H#6 F to Q register .

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#20 ALU status to status registers

23 BO0 Latch micro status

22 B#1 Latch macro status

21-20 B#1 No command or shift

19-16 H#F Dont' care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#0 Rb=RO

3-0 H#E Continue

Resulting Microword: 0064 107F FFOE

Purpose: Load counter back into Q register and check if
counter is zero

Comments: Bits 39-36 specify the result destination to the
Q register. Bits 35-30 specify the function to be F=S with
carry in equal to zero and S is designated to be RO as
specified by bits 7-4. The Am2910 is instructed to continue
to the next sequential address.

N.

I.%

145

N-



Micro Routine: Bitpro
Micro address: 0034

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bits 29-24

29-24 Q#14 Test: Micro not zero
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay st

19-16 H#9 Allow true test

15 B#1 Don't set breakpoint

14 X Spare .

13-12 B#00 This is now the

11-8 H#1 address field with

7-4 H#3 address H#013

3-0 H#3 Cond. jump to pipeline address if true

Resulting Microword: FFFF D4D9 C133

Purpose: Jump back to beginning of filter to load new data
point, if counter is not zero

Comments: Bits 31-24 test the zero status bit to see if it
is not zero. If this test is true, the Am2910 jumps to the
address H#013 as specified by bits 3-0 and bits 13-4
respectively. Otherwise, the Am2910 would continue to the
next sequential address which would most likely be a branch
to the next instruction fetch.

.

146

%. .



Micro Routine: POSSHFTC
Micro address: 0210

BITS VALUE EXPLANATION
-------------------------------------------------------

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#1 Disable Am29203

43 B#0 Enable Y output

42-40 Q#O Both Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#4 R=S + carry in

31-30 B#00 Carry in equal to zero

29-24 Q#20 ALU status to status registers

23 B#O Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 1044 107F FFCE

Purpose: Latch incoming data to test for zero

Comments: The purpose of this instruction is merely to test
the data point in RC for zero and load the micro status
registers with the result. Bits 29-23 specify the ALU
status to be loaded and bits 7-4 designate RC to be tested.

147



Micro Routine: POSSHFTC
Micro address: 0211

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bits 29-24

29-24 Q#15 Test: Micro Zero

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Allow true status register test

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#10 This is the

11-8 H#2 address field for

7-4 H#3 address H#223

3-0 H#3 Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E233

Purpose: Test for zero, if true - go to return,
if false - continue

Comments: This Am2904 command, bits 19-16, orders a true
test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

148



Micro Routine: POSSSHFTC
Micro address: 0212-021A

1.

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#O RAM source for operands

39-36 H#O F to RAM, arithmetic down shift

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#10 Shift overlay

19-16 H#O Shift right, zero fill

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 0004 3FEO FFCE

Purpose: Shift zero into MSB, shift out LSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be downshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

149

N N



U

Micro Routine: POSSHFTC
Micro address: 021B-0222

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#0 Enable Am29203

43 B#O Enable Y output

42-40 Q#0 RAM source for operands

39-36 H#8 F to RAM, arithmetic upshift

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#10 Shift overlay

19-16 H#0 Shift left, zero fill

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 0084 3FEO FFCE

Purpose: Shift zero into LSB, shift out MSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be upshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

150



Micro Routine: POSSSHFTC
Micro address: 0223

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care -"

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#XX Don't care

19-16 H#9 Forced pass

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#X Don't care

3-0 H#A Conditional return

Resulting Microword: FFFF FFF9 FFFA

Purpose: Return to calling microroutine

Comments: With the forced pass on the conditional return,
the Am2910 returns to the address on the stack which is back
to the calling microroutine.

V

151 '.

:;S- j::~~#'~ . '- Iz



Micro Routine: NEGSHFTC
Micro address: 0230-0238

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 RAM source for operands

39-36 H#0 F to RAM, arithmetic down shift
1"

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#10 Shift overlay

19-16 H#1 Shift right, one fill

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 0004 3FEl FFCE

Purpose: Shift one into MSB, shift out LSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be downshift and bits 21-16
specify the shift to be one fill. The Am2910 continues to
the next sequential address.

152



Micro Routine: NEGSHFTC
Micro address: 0239

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#1 Disable Am29203

43 B#0 Enable Y output

42-40 Q#0 Both Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#4 R=S + carry in

31-30 B#00 Carry in equal to zero

29-24 Q#20 ALU status to status registers

23 B#O Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 1044 107F FFCE

Purpose: Latch data to test for zero

Comments: The purpose of this instruction is merely to test
the data point in RC for zero and load the micro status
registers with the result. Bits 29-23 specify the ALU
status to be loaded and bits 7-4 designate RC to be tested.
The Am2910 continues to the next sequential address.

153



Micro Routine: NEGSHFTC
Micro address: 023A

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bits 29-24

29-24 Q#15 Test: Micro Zero

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status .5'

21-20 B#01 Command overlay

19-16 H#9 Allow true status register test

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#10 This is the

11-8 H#4 address field for

7-4 H#3 address H#243 %

3-0 H#3 Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E433

Purpose: Test for zero, if true - go to return,
if false -continue

Comments: This Am2904 command, bits 19-16, orders a true

test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

%0
154 S



Micro Routine: NEGSHFTC
Micro address: 023B-0242

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb from pipeline

44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 RAM source for operands

39-36 H#8 F to RAM, arithmetic upshift

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#10 Shift overlay

19-16 H#0 Shift left, zero fill

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 0084 3FEO FFCE

Purpose: Shift zero into LSB, shift out MSB

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be upshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

155



I,

Micro Routine: NEGSHFTC
Micro address: 0243

BITS VALUE EXPLANATION

47-45 Q#X Don't care
44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#X Don't care
22 B#X Don't care

21-20 B#XX Don't care

19-16 H#9 Forced pass

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#X Don't care

3-0 H#A Conditional return

Resulting Microword: FFFF FFF9 FFFA

lePurpose: Return to calling microroutine

Comments: With the forced pass on the conditional return,
the Am2910 returns to the address on the stack which is back N
to the calling microroutine.

156



Micro Routine: POSSHFTO
Micro Address: 0250-263

This routine is identical to microroutine POSSHFTC with the

following exceptions:

Replace register C with register 0 in all microcode

Replace address in pipeline with address H#263

------------------------------------------------------

Micro Routine: NEGSHFTO
Micro Routine: 0270-0283

This routine is identical to microroutine NEGSHFTC with the
following exceptions:

Replace register C with register 0 in all microcode

Replace address in pipeline with address H#283

157



APPENDIX C

FORTRAN PROGRAM OF FIR FILTER WITH CPU TIMING ROUTINE ADDED

C
C THIS PROGRAM IS A REPRESENTATION OF A 13TH ORDER BAND PASS FILTER
C

INTEGER X(200),Y(200)
REAL *8 T(201)
INTEGER N
HANDLE=O
PRINT 4

4 FORMAT ('1')
CALL INPUT (N,X,T)
CALL FUNCT (X,Y,N)
PRINT 4
STOP
END

C-----------------------------------------------------------------------

SUBROUTINE INPUT (N,X,TIME1)
REAL *8 XX(200), r, FS, TIME1(201), THETA
INTEGER X(200)
INTEGER N,K
N-195
F=3.58E6
FS1. 42E7
TIME1(1)=0.
DO 100 K=1,N

THETA-2. *3. 1415926*F*TIME1(K)
XX(K)=63. *SIN(THETA)
X(K)=INT(XX(K))
TIMEI( K1 )UK/FS

100 CONTINUE
RETURN
END

C-----------------------------------------------------------------------
SUBROUTINE FUNCT (X,YN)
REAL *8 TIMER1,TIMER2
INTEGER X(200),Y(200),Y1,Y2,Y3,Y4,YS
INTEGER X1/O/,X2/O/,YI4/O/,Y13/0/,Y2/O/,Y1l/0/,Y23/0/
INTEGER Y22/0/,Y21/0/, Y31/0/, Y41/0/, Y52/0/, Y51/0/
INTEGER K,N
RMS=O.
CALL JCPUT(TIMER1)
DO 50 K=1,N

Y1=X( K)-X2
YI=Yl/2
X2=X1
XI=X( K)
Y2=YI+YI4
Y2=Y2/2
Y14=Y13
Y13=Y12
Y12=Y11
Yl1=Y1

158



Y3=Y2+Y23
Y3 Y3/2
Y23aY22
Y22mY21
Y21-Y2
Y4-Y3-Y31
Y4=Y4/2
Y3 1-Y3
Y5=Y4-Y41
Y41-Y4
Y( K)Y5-Y52
Y52=Y51

Y51-y5
IF (K.GT. 13) THEN

RMS-RMS*Y(K) *Y(K)
END IF

50 CONTINUE
CALL JCPUT(TIMER2)
TOTAL=T IMER2-TIMER1
WRITE (13,271) TIMERI,TIMER2,TOTAL

271 FORMAT ( ' TIMER1 - ',DI7.10,'TIMER2 ',D17.10,'TOTAL ',D17.10)
RETURN
END

C........................................................................
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 T(201)
INTEGER X(200),Y(200), IHEX(200)
INTEGER IN
DO 200 I-1,N

IF (Y(I).LT.0) THEN
IHEX( I)=Y( I)*256ELSE
IHEX( I)=Y( I)

END IF
WRITE (13,201? 1,IHEX(I),I,Y(I)

201 FORMAT( HY' I3,' - ',Z2,SX,'Y',I3,' - ',13)
200 CONTINUE

RETURN
END

SUBROUTINE JCPUT(XCPUT)
C
C RETURN CPU TIME AS A FLOATING PT VALUE
C

PARAMETER JPI$_CPUTIME - '407'X
INTEGER*2 BU(8)
INTEGER*4 BUF1( 4), CPUT
INTEGER SYS4GETJPI
EQUIVALENCE(BUF( 1),BUFI( 1))
REAL SCPUT
BUF( 1)=4
BUF( 2 )JPrI $_CPUTIME
BUF1( 2) %LOC(CPUT)
BUFI( 3) O 

'0BU¥( 4 )
!RET-SYS$GETJPI( ,, ,BUF,,,)
XCPUT=FLOAT( CPUT)/100.0
RETURN
END

159 5%

' ' " , ". % "w " % ' ' ",, ". " "w % " " " " ', '" " " ' " " " % ' . % .e ' 
"

'% . , .,. . , ". "% ,,. , ..



LIST OF REFERENCES

1. "Bit-Slice ICs Kick Of f Era of Commercial GaAs LSI,"
Electronics, pp. 83-86, September 18, 1986.

2. Fischer, T., "Digital VLSI Breeds Next-generation TV
Receivers," Electronics, pp. 97-103, August 11, 1981.

3. Hockney, R.W., Jesshope, C.R., Parallel Computers, pp.
146-153, Adam Helger Ltd, Bristol, 1981.

4. Adams, W.T., Smith, S.M., "How Bit-Slice Families
Compare: Part 1, Evaluating Processor Elements,"
Electronics, pp. 91-98, August 3, 1978.

5. White, D.E., Bit-Slice Design: Controllers and ALUs,
pp. 9, 30-42, 70-71, Garland STPM Press, 1981.

6. Wolfe, C.F., "Bit-slice Processors Come To Mainframe
Design," Electronics, pp. 118-123, February 28, 1980.

7. Hartrum, T.C., and others, Am29203 Evaluation Board
User's Guide, Advanced Micro Devices, Inc., 1986.

8. RM-9400 Series Graphic Disvlav System Hardware Reference
Manual, Publication Number 504616, Revision B, Volume 1,
Ramtek Corporation Technical Publications, 1980.

9. Liskear, J., "The Bit-Slice Alternative (Graphics),"
Computer Design, p. 44, January 15, 1985.

10. "Bipolar 8-bit Slice Family Includes PLAs," Computer
Design, p. 105, December 15, 1985.

11. Lobo, K., and others, "Structured Arrays for
Microprogrammed Systems," Semicustom Design Guide,
pp. 44-53, Summer 1986.

12. Chen, C. T., One-Dimensional Digital Signal Processing,
pp. 8-10,191, Marcel Dekker, Inc., 1979.

13. Programming In VAX Fortran, V. AA-D034D-7E, pp. 3.3,
3.12, Digital Equipment Corporation, 1984.

14. Gold, B., Rabiner, L.R., Theory and Application of
Digital Signal Processing, pp. 295-309, 337-349,
Prentice-Hall, Inc., 1975.

160

-].



15. Stewart, M.B., The Aplication of Bit Slice Design To
Digital Imaae Processn -, Masters Thesis, Naval
Postgraduate School, Monterey, California, September
1986.

16. Becker, T.F., GaAs Microprocessors and Memories for High
Speed System Design, Vitesse Electronics Corporation,
1986.

17. Smartcom II for IBM PC. IBM XT and Compatibles, Hayes
Microcomputer Products, Inc., 1984.

1.

,°°

161

222:..°



BIBLIOGRAPHY

Adams, W.T., Smith, S.M., "How Bit-Slice Families Compare:
Part 2, Sizing Up the Microcontroller," Electronics, -'

August 17, 1978.

Baker, S., "Microslice Family is a Logical Move,"
Electronics Weekly, November 13, 1985.

Brick, J., Mick J., Bit-Slice Microprocessor Design, McGraw-
Hill Book Company, 1980.

DeMonrico, C., Laczko, F., "When Bit-Slices Team Up With
ECL, 32-Bit Computers Rise to Superpower Status,"
Electronic Design, May 15, 1986.

Everett, D., Thorpe, R., "Single Chip Combines Bit-Slice and
EPROM," Computer Design, August 15, 1986.

Frends, M., Kital, R., "Digital Distance Relay mho Elements

Using Bit-Slice Technology," IEEE Transactions on
Instrumentation and Measurement, Vol. IM-34, No. 4,
December 1985.

Kirk, D.E., Strum, R.D., First Principles of Discrete
Systems and Digital Signal Processing, Addison-Wesley
Publishing Co., 1987.

Langdon, G.G., Computer Design, Computeach Press Inc., 1982.

Stone, H.S., Microcomputer Interfacing, Addison-Wesley
Publishing Co., 1982.

1.'V

"

162

U.



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandrea, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62 1
Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000 '-

4. Professor Chin-Hwa Lee, Code 62Le 4
Department of Electrical and Computer

Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Mitchell Cotton, Code 62Cc 1
Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000

6. Commander Naval Surface Force 6
U.S. Atlantic Fleet
Norfolk, Virginia 23511-6292
Attention: Lieutenant Darrel W. Purdy

163



A
~ '~ -~w'~ 4W~ iw 23 .3 ~W ~3 S U S '5 'V

* ~

SI. % -'
'Si.


