BIT-SLICE PROCESSOR(U) NARVAL POSTGRADUATE

MONTEREY CR

INPLEMENTATION OF AN FIR BAND PASS FILTER

-R184 693

D W PURDY JUN 87

,t';’"n. :"".‘;'

‘b‘.. g‘ B,

W 't‘

\‘n l.o \.c .n"‘:',‘.'. ‘t‘qi

L
SR Q*

F

CE
Q Wy
”"‘-"’“"’

PEFEEEE
EEEE
Y

EFEP
3
1

B
- 3

;;E:‘._‘Ilbj

i

+

NAVAL POSTGRADUATE SCHOOL

Monterey, California ST TEE GO

L

AD-A184 895

DT~
[H A
oL A

£ -

ELECTZ
0CT 0 7 19g70:4

-

. THESIS

IMPLEMENTATION OF AN FIR BAND PASS FILTER
USING A BIT-SLICE PROCESSOR

by
Darrel Wayne Purdy

June 1987

Thesis Advisor: Chin-Hwa Lee

PE

. Approved for public release; distribution is unlimited

s

------ *"'\"‘ " ri." Cy W g Wy W o
et N e LA A W S

87 9 25 130%

UNCLASSIFIED
YR L IFICAT) IS PA
REPORT DOCUMENTATION PAGE
T2 REPORT SECURITY CLASSIFICATION 0 RESTRICTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION AVAILABILITY OF REPORT
Approved for public release;
b DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
6a NAME OF PERFORMING ORGANIZATION | 6b OFFICE SYMBOL |72 NAME OF MONITORING ORGANIZATION
(! applicabie)
Naval Postgraduate Schoo Code 62 Naval Postgraduate School
6c ADDRESS (Cify. State. and 2IP Code) 7o ADDRESS (City, State, and 2P Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
82 NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
JRGANIZATION (1 applicabie)
8¢ ADORESS (City, State, and Z2iP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TaSK WORK JNIT
ELEMENT NO INO NO ACCESSION NO

1t TTLE (include Security Classification)

IMPLEMENTATION OF AN FIR BAND PASS FILTER USING A BIT-SLICE PROCESSOR

12 PERSONAL AUTMOR(S)
Purdy, Darrel, W.

1 3a 'voi OF REPORT 135 T'ME COVERED 14 DATE OF REPORT (Year. Month. Day) |'S PAGE COUNT
Master's Thesis SROM _ 10 1987, June 164
e

‘6 SULPPLEMENTARY NOTATION

i COSATI CODES 18 SUBIECT TERMS (Continue on reverse /f necessary and dentify Dy block number)
5 EL0 GROUP SUB-GROUP FIR Band Pass Filter; Microprocessor;
Bit-Slice

"9 4BSTRACT (Continue on reverse if necessary and :dentify by block number) . . ,
A 13th order FIR filter for digital image processing is implemented

in microcode using the Am29203 bit-slice evaluation board of ADVANCED
MICRO DEVICES. To meet this requirement, the filter is first implemented
in Fortran. Then the results of both implementations are used for timing
comparisons. Although non-optimal bit-slice devices are used on the
evaluation board, a time of 1l microseconds is achieved, as compared <o
the 100 microseconds achieved in the Fortran implementation. Theoretical
estimates of 2.65 microseconds and 0.78 microseconds are obtained for
high speed Am2900 bit-slice devices and VITESSE's Gallium Arsenide bit-
slice devices respectively. It is shown that, although the initial
learning period for bit-slice devices is high, once learned, a skillful
bit-slice designer can implement a simple filter design in minimal time
with significant results in time savings.

<0 O §TR'IUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECLRITY 8Assmu1l0~
Bl onciassireounumiteo [same as apr O oric users Unclassifie

22a NAME OF RESPONSIBLE INDIVIDUAL 226 TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Prof. Chin-Hwa Lee (408) 646-2190 Code 62Le

DD FORM 1473, 3aMar 8] APR ectition may be used until exhausted CECURITY CLASSIEICATION 3F “ms§ 80F

All other editiOns ar@ Obsolete UNCLAS S IFIED

2887

’ 1"1(]

WY B

NP A R LA A

A G 4G
t:.t‘...'

e e A

LTI
d 57",

LN

Ay

- 13
X S e

..‘ 'J:/ ."‘./.."

S f"

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan Date Enteved)

#19 - ABSTRACT - (CONTINUED)

A brief discussion of bit-slice techniques is
presented and an argument is proposed as to whether
the bit-slice is a methodology or a device. The most
recent introduction of Gallium Arsenide devices is
included in the discussion.

In addition to the implementation of the filter,
its characteristics as well as its equation represen-
tations are presented. A discussion about noise and
quantization effects using this digital filter is also
presented.

Finally, two appendices are included. The first
appendix presents the use of the commercial software
SMARTCOM II with the IBM PC to emulate the user
terminal for the monitor system of the Am29203 evalu-
ation board. The second appendix presents a detailed
look at the bit-slice microcode used to implement the
filter.

L g ap

S N 0102- LF-014-6601

2 UNCLASSIFIED

SRCURITY CLASSIFICATION OF THIS PAGE(When Date Enatered) ?

G e W TR S T T T e L VP TG AN S UL P N N, NN AT A AN AN AT WL SN T AT T AT et
A T N e A N O T N R N O N S NN N S

ey s " et Lt b et adadh adiad s Yy D' a B a i b a ¥ &Y S WV U WANY DNLPW W U Ao Al aty gt gt

I':
Approved for public release; distribution is unlimited B
o
Implementation of an FIR Band Pass Filter @
Using a Bit-Slice Processor M
. by ﬁ
Darrel Wayne Purdy M
Lieutenant, United States Navy :
: B.S.E.E., University of Oklahoma, May 1980 L
e
Submitted in partial fulfillment of the m
requirements for the degree of iy
"
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING \.
~
o
%
from the S
NAVAL POSTGRADUATE SCHOOL -
. June 1987 “n
?
3y
Author: 00044//<Qbéé¢¢qg/;élotdéy/

P

Darrel Wayne Puzux__/

L

Approved by: - b
Chin-Hwa Lee, Thesis Advisor <

Mdikelf K. Lor 1

Mitchell L. Cotton, Second Reader ®

2

QES*Q;;__(::EE;E::;>crxarﬂ-\£:> ti

’ ohn P. Powers, Chairman 4
rtment of Electrical and

Computer Engineering

“

A%—/ 3

)

o)

Gordon E. Schacher sy

v Dean of Science and Engineering W

;-

3 3

.

K
\

AW - y R R e S A AT ,_‘ PG '4'.'!_ """ P S o A
3:?!..‘.-'-,- ?0"'.."!\".\"‘4“‘.0' 1.8 : b} N .‘. Ca e @y) “ ¢ " oy f" S e ~7s " W P

. N .
AR R AR A I T R L YUY UY VRY P BN Y] o 42 S s o Vo WL WY RN BV NI, WO WL T L

ABSTRACT

L
1

S
A 13th order FIR filter for digital image processing is

implemented in microcode wusing the Am29203 bit-slice
evaluation board of ADVANCED MICRO DEVICES. To meet this
requirement, the filter is first implemented in Fortran.
Then the results of both implementations are used for timing
comparisons. Although non-optimal bit-slice devices are
used on the evaluation board, a time of 11 microseconds is
achieved, as compared to the 100 microseconds achieved in
the Fortran implementation. Theoretical estimates of 2.65
microseconds and 0.78 microseconds are obtained for high
speed Am2900 bit-slice devices and VITESSE's Gallium
Arsenide bit-slice devices respectively. It is shown that,
although the initial learning period for bit-slice devices
is high, once learned, a skillful bit-slice designer can
implement a simple filter design in minimal time with
significant results in time savings. 7h/ - //

A brief discussion of bit-slice techniques is presented
and an argument is proposed as to whether the bit-slice is a
methodology or a device. The most recent commercial
introduction of Gallium Arsenide devices is included in the
discussion.

In addition to the implementation of the filter, its

characteristics as well as its equation representations are

_ e q4'e.0' .8 3.070. 8¢ 8"

presented. A discussion about noise and quantization

effects using this digital filter is also presented.
Finally, two appendices are included. The first
appendix presents the use of the commercial software
SMARTCOM IXI with the IBM PC to emulate the user terminal for
the monitor system of the Am29203 evaluation board. The
second appendix presents a detailed look at the bit-slice

microcode used to implement the filter.

} Y A X LN SR T \'.‘.':'-':\:" ._~:..-"\-'._-‘._-‘\I._-'\-'\.' N S RGNS \-:\f_'-‘\-’ s _..-__..-_.. “ws
ot e, . - - A » » » » » a .

5

o o

'.- oI,
A

)

3

g n) ‘l-:'- o l) - ‘,. .

.

- -

T ot Y T T LN R U R U AN Y

IABLE OF CONTENTS

80 00y bt % 9V Ty g tY

$oa t yd gl e 0,8 0 0"

I. INTRODUCTION —-=--=-==—- S — 9
A. GENERAL BACKGROUND —--=====- T — 9
B. METHOD OF IMPLEMENTATION DEVELOPMENT —-----=- 11
C. BENEFIT OF STUDY —=—-====—===-====mc—emeceeaee 12
II. BIT-SLICE METHODOLOGY R —— 14
A. INTRODUCTION —------ S 14
B. BIT-SLICE HISTORY AND BASIC CONCEPT —-------- 14
C. SIMPLE PROCESSOR USING BASIC BIT-SLICE
COMPONENTS —-—-—==—- RO 18
D. TYPICAL MACRO AND MICRO INSTRUCTIONS -----—-- 28
E. BIT-SLICE: METHODOLOGY OR DEVICE —=-—--=—==- 35
III. FORTRAN IMPLEMENTATION OF FIR FILTER -—------—-—-= 39
A. INTRODUCTION OF FIR DIGITAL FILTER —---——-—=n-= 39
B. "DSL" PROGRAM IMPLEMENTATION —--=====-=-—-——-= 40
C. FORTRAN IMPLEMENTATION =-—-==—=====—=—mem—m 50
D. FIXED POINT IMPLEMENTATION AND
QUANTIZATION NOISE EFFECTS —-—=—-—-=-==-=-=mx 55
IV. BIT-SLICE IMPLEMENTATION === -=----=-===-===m-oue 71
A. INTRODUCTION ----- R — 71
B. USE OF EVALUATION BOARD COMPONENTS ===mmmm=mmn 74
C. BIT-SLICE IMPLEMENTATION OF THE
FIP FILTER —-----———- e 77
D. FORTRAN AND BIT-SLICE IMPLEMENTATION
SPEED COMPARISONS —-—-===m———=—mcm==mmmmom— 88
V. CONCLUSIONS ========m=m-mommcmmmmmmmmmmmmmemeee 97 |
s |
1
\
DL PN N SO N ™V YRS e b el D L O LA AL DR S S L D

APPENDIX A: TERMINAL EMULATION USING SMARTCOM II -—--- 100

APPENDIX B: DOCUMENTATION FOR MICROROUTINES —=—====—-- 107

APPENDIX C: FORTRAN PROGRAM OF FIR FILTER WITH :
CPU TIMING ROUTINE ADDED ===--===—m==—=——m 158

LIST OF REFERENCES -—- —————— e 160

BIBLIOGRAPHY —=======mmm——mccccceac o ccccmce e ———eeee 162

INITIAL DISTRIBUTION LIST =-—====-mm-meeeemme———m—— e 163

7

N‘-‘\f‘-“"}
.l .

PR

bl

L
-

-3 S
XL

LR OE
-

>3

AP

I

BT

LRI
"n".’-'. ’

<

. !‘5{4"-..‘--: ‘l‘- . 'l."

T

A}

RAAS
Vs

. »
o

Py
-.'-".'s".'\-_, &

N E

.
AN SR I

s iz N Cat e . atl a8 a i 2%k at S A ' 8 d AR RS BtALR tat Pl o tal v @ bat ta¥ fgVotavg g, gt WY AIRER XV 144874 424

ACKNOWLEDGEMENTS

I wish to gratefully acknowledge by thesis advisor,
Professor Chin-Hwa Lee, who provided assistance and insight
in the completion of this thesis.

) I would also like to express my gratitude to Professor
: Mitchell L. Cotton for his time and input.
Further, I would 1like to thank the Defense Mapping

Agency System Center for sponsoring the use of the Am29203

Evaluation Board and to ADVANCED MICRO DEVICES (AMD) for]
providing an extra copy of the Am29203 evaluation board
user's guide.

Finally, I would like to express my appreciation to my 4
entire family who supported me during this period and |
especially my wife and children without whose 1loving

patience I could not have completed this thesis.

¥ "‘.'(\""V'- AP N

L)
l;l‘u -

A

h a¥h oA oty AR o VR a%E aVh "% ' h <R a'B o'k o™i mih et a%h ath n'h 2% a8 a'i 2"t 4'L &2 atf =R at'h'a¥i’ath o WA W W WU WO WA a0 avp g% .

2

ol

< ';

ol

2,

r')

'

I. INTRODUCTION :

%

A. GENERAL BACKGROUND & i

.ﬂ. y

The bit-slice method of computer processor organization fﬁ
originated in the 1970's as an efficient partitioning of the a
-~

arithmetic and logic unit (ALU) circuitry into convenient =)
B,

LSI components. These components (the "bit-slices") are ﬁ'
o

then applied in a parallel data-path organization to 5,
construct processors having any desired data-path width %

‘f .(

(constrained of course to be a multiple of the basic "bit- 7
-,_,

slice" size). Since the introduction of bit-slice &
'\

components, variations and extensions of the original $:
{'-

methodology have appeared. Generally the methods involved E‘

reflect the following characteristics: ;5
1) circuit technology reflecting an emphasis of speed -

(e.g., bipolar or the most recent introduction of o
Gallium Arsenide devices [Ref. 1]) rather than .
density (e.g., conventional MOS microprocessors), “

f_\. .

2) use of microprogramming to implement either standard -ﬁ‘
or custom instructions (usually facilitated by a o
separate, replaceable ROM control store), and o

-

3) related to 2) above, capability of realizing §
variable instruction set computers. X

’\ i

Y.

As the variety and scope of applications of bit-slice Q‘
'\

devices has evolved, it has become common to refer to the %‘
-

related methodology as simply "bit-slice". Therefore, in 2
this thesis, wherever reference is made to the unqualified Zf
o

o

P

l\

e
3

e e a " at e at, s T s T, “_-'_-‘_._-’_.-'_'- . R . -."._',_,*'-_
! -41.'\. '-‘_\'_'-’.'\(,.,.’.f R R I N A A AR

I - " A9 RS A O W A
" . . RN C et © wa® AN Bt R0 aat @ ‘o’ aal'a o 4% A2 4. a'a "= 8'a; AT L U DA LT R A IO U I Dol 0.8 0o oah 0o 4, \J
y . 4

term bit-slice, it is this general methodology which is
referred to.

Of interest in military applications is the use of bit-
slice in the redesign of older equipment to emulate existing
instruction sets while increasing speed and reliability.
Generally, however, the main use of bit-slice is for speed
and it has emerged as the dominant technology in high-
performance graphics. Because of the complexity of bit- :
slice microprogramming, much time is necessarily spent
toward researching and developing the skills needed in
implementing algorithms using this approach. Chapter 1II
introduces the method of bit-slice and its primary
components and additionally offers some examples of the

recent advances made in this area.

o Ta e s W vt

The main thrust of this study was to implement an image
processing FIR filter using.the methodology of bit-slice.
Image processing has a wide range of military applications
and the filters used in image processing are just a small 3
part of a very broad area of research. The filter, as
presented thoroughly in Chapter III, is a color band pass

filter having a carrier frequency of 3.58 MHz and is defined :

as follows [Ref. 2]:
H(2) = (1-271)2(1-272)2(1+273) (1+27%)

The primary goal of course was to minimize the time used to -

run this filter through standard and bit-slice methods.

10

a
<4
>
'
>
<
-
o
L

Te gt r et DY TR A
RN RN A N A Ay

-

Chapter III presents a standard approach using Fortran

programming. Necessarily, a secondary emphasis was placed

P EBLLLL

on investigating the advantages of using FIR filters and a
special emphasis was placed on the quantization effects t;
produced using these digital filters. . ﬁ:

For the bit-slice implementation, the AM29203 evaluation
board will be used. This tool allows the user to develop and
analyze microprograms through the use of a monitor using a
screen-oriented terminal. A description of this tool as o
well as the implementation of the FIR filter using it is

presented in Chapter IV. The AM29203 evaluation board posed Qs

some limitations due to the fact that high speed was not a "
~.
design objective of the evaluation board. The onboard o
>
memory is slow and the available look-ahead carry generator ﬁ*

for the ALU was not used. However, the theoretical speed
which can be achieved is presented along with the actual

speed achieved and is compared to that of the Fortran

implementation. Finally, the conclusions of this study are o

T
‘1'?-"-

P

L}

presented in Chapter V.

a8

b

B. METHOD OF IMPLEMENTATION DEVELOPMENT

Again, the primary goal was to minimize the time used by
the filter using the bit-slice implementation. The proposed 53
method for achieving this goal was as follows: -

l) Implement the filter in floating point using Fortran
programming methods.

2) Emulate implementation of the filter in fixed point

a 4‘..'-‘, - K
- . A -

using Fortran programming methods.

11 ::.)
h-- 3
LI
r
\:,
S~
o

st
-)
r'~

L.
~
a
L.
P
}'
£
k)
¥ e
A
L
e .
4
S
"
5
s
\,
)
«
P)
P
4'.'-
,:
Y
-“1
»
‘4
<
'.
f
<
~
~
g
s
.
r
I
v
s
‘,
I's
4
r

(P vy g b

3) Implement the filter using 68000 assembly language.

4) Implement the filter using bit-slice methods.
The third step, although 1looked at, was found to be
unnecessary. However, if additional time had been
available(it would have given a more interesting comparison
between the speed of the bit-slice implementation as
compared to other methods. Using the method of approach as
stated above, a better understanding of the algorithm was
achieved, a logical progression of development occurred, and
comparisons in speed of implementation between Fortran and

bit~slice methods then became available.

C. BENEFIT OF STUDY
This study proved to be of great personal benefit in
bringing together and solidifying many areas of study

learned while at the Naval Postgraduate School. A better

understanding was achieved in the areas of filter design and
its associated algorithms and limitations; Fortran, assembly
and micro 1level programming and their interrelationships
were better understood; and finally, a better understanding
was achieved in the application of commercially available
hardware and software. This personal benefit will hopefully
result in some applied benefit to the Navy.

For Dr. C. H. Lee's interests in this area of image
processing, this study achieved two primary goals. First,
the FIR filter was successfully implemented using bit-slice

methodologqgy. Secondly, the Am29203 evaluation board was

12

PR . « e e e e e - S e . P P P TN T S
A . PR U R R A T A A .

AR, A A e T S L

successfully interfaced with an IBM personal computer to

allow for the creating and storing of files and for the easy
transfer of large amounts of data from stored files to the
evaluation board. This last item is documented in Chapter

IV and Appendix A. o

N Y

“x_m

)
r -

RAr AR

LT
-

ooy

Loy oA

Y9 %y

& "s-'%l «

.

P

2%

Y,

AP DY W

13

1 RW

“
Tl

------ AR COT TR TR SR S T o
..".e.‘. ‘.‘ .'I RPN .b " , My S, - B -' "-"\(.

AN LN "'\ N
g o S e N Y N - e

3 . . TN * PV KT ANRERE AR A RANANANAARRKIR U PRV N U P AR Al AN RARN LA U

II. BIT-SLICE METHODOLOGY

A. INTRODUCTION

It has been shown that the bit-slice approach, using the
simplest bit-serial processor, provides the maximum
computational power. [Ref. 3] Commercially, however, when
we speak of bit-slice, we are generally referring to 4-bit
slice processors such as those offered by ADVANCED MICRO
DEVICES (AMD). In this chapter, the bit-slice methodology
will be discussed and an example will be given using basic
bit-slice components to build a simple microprocessor. Then

a typical macro and micro instruction will be introduced

using this simple microprocessor. Finally, an argument as
to whether bit-slice is a methodology or a device will be

presented and discussed.

B. BIT-SLICE HISTORY AND BASIC CONCEPT

In 1974, Monolithic Memories Inc. introduced the first
bit-slice device, marketed as a microcontroller. Several
other companies joined in making bit-slice microprocessor
devices and by 1978, six companies were offering families of
devices classified as bit-slice microprogrammable processor
sets. Of these six, all were 4 bit-slice families with the
one exception of Intel which offered an unsuccessful 2-bit
family. [Ref. 4] During this period, AMD emerged as the

leader in bit-slice technology mainly due the design support

14

AN I R R e e N A

--...’
. I WA n v e e %

P amp Ty » LIS LIV VAN
A A AN LAl b

AW WP LW U U O L LN : at i a0 - vay o 12t ak “af 'al. ‘al.val.’ AN RA RN AN AN AN EN AN AN TN

the manufacturer offered by way of data sheets and
application notes. Because of the critical need for this
type of support in designing with bit-slice components due
to its design complexity, it is apparent why AMD bit-slice
emerged as and is still considered to be the standard of
bit-slice technology. Because of this standard, any further
references in this paper to bit-slice technology will assume
to mean the 4 bit-slice as offered by AMD unless otherwise
noted.

Two important concepts must be understood concerning
bit-slice methods. The basic underlying concept is that in
bit-slice, the data flow is sliced vertically into 4-bit CPU
slices and these slices are then joined together
horizontally to form microprocessors in increments of 4
bits. In the example which will be presented later in this
section, four 4 bit-slices are joined together to form a 16
bit microprocessor. Secondly, the bit-slice technology is
most generally hidden from the end user. This is because
bit-slice is a method for microprogramming machine-level
instructions or macro instructions. As shown in Figure 2.1,
levels A and B, the end user would normally be concerned
with the basic source code or at most, the assembly source
code of a computer. These codes would then be run through
a compiler or assembler program (software) to generate
machine 1level instructions. Figure 2.1, 1level C, then

illustrates how these machine-level instructions (software)

15

v ’)'1\"."-“-\"\-"n‘q‘-“.‘h‘\-\‘\
TR A GO LIRS AR A AN A "

Cs

{". .'\:\n:-;_\;.'-'.'\---:’\..:’- :- N '\'-'

OO

. W
__‘-'a

Y
*y

':‘... ‘\.

P = S XL

CRARS N RS

Y

P
A

s .; 2

1!

{7 AN S
[. 0

«

[N '-, ,‘. "7 'w.:-

$' XAl
* l"‘b’ .-"‘.I

o

.
.
L%

A

BASIC

mre——

BASIC COMPILER

MACHINE-LEVEL
INSTRUCTIONS

.

—e=- SOFTWARE

MACHINE-LEVEL
INSTRUCTIONS

e —

*— SOFTWARE

PHYSICAL CONTROL
SIGNALS TO SYSTEM

HAROWARE

SOURCE CODE PROGRAM
SOFTWARE = SOFTWARE
B
AssemsLy ____ | ASSEMBLER
SOURCE CODE PROGRAM
SOFTWARE SOFTWARE
C
M NTRbCTIONS —— MICROPROGRAM
SOFTWARE FIRMWARE
Figure 2.1 Instruction Levels {Ref. 51
16
T R T T P R R R L e
O N A S T N TR W

AN ALY -..'-'\‘ (RN Sy ‘u‘.\. P .,‘.-"- s =

DX)
"

-

=

P ol AL Ou SR gt

‘" €t B e &

(A

> o g a?
o 8 K B, A]

. i

o>

R 5 P2

"D e AP
., AR

A EWY

- L
»

A A A e e

TxdLA] ¥

are microprogrammed (firmw;re) to enable physical control .
signals to the system (hardware). Therefore, the bit-slice E
design can be microprogrammed to support any instruction set

through the use of hardware and firmware. A good example of

how bit-slice is hidden from the end user was the \
introduction in 1980 by Univac of its model 1100/60 computer
using bit-slice microprocessors in the bentral processing

unit. Despite the major change at the microprogramming

AR AAN

level, the outward appearance and instruction set was the

same as the previous 1100 series. [Ref. 6]

L LC O,

In bit-slice architecture, most of the architecture is

left to the user's definitions through the use of

interconnections and the microprogram. The advantages
offered with bit-slice design are fast complex design
capabilities relative to hardware, documentation is forced,

and upgrades are made easily by simply replacing PROMs. Bit

A5 45D

slice methods are typically used for machines with 1long

kR

words, machines with special instruction sets, and with high

machine speeds. These last two categories make the bit-
slice particularly well suited for military application,

especially in the redesigning or upgrading of older

equipment. Also, because of its speed capabilities, the

bit-slice processor has emerged as the dominant technology

YT TSy

in high-performance graphics.

K55y

17

A S e T
A T

“w
‘o, ‘:Sl'v

T W LW N e T e L LT LT T e ».‘.\ .-., “ ‘.'.'.._\. - .J__.-_'\.'_ St -'”- - ..._ T, S A -‘_ -¢:’
8 L O A R A T R R S (N Tyt a D

C. SIMPLE PROCESSOR USING BASIC BIT-SLICE COMPONENTS

O

The most basic of processors is shown in Figure 2.2. It

&£ &

consists of a data manipulation section, the ALU, and a

control section, otherwise known as the sequencer. This

o s

basic processor will be used in this section as a framework
to build a simple ©processor using basic bit-slice
components. The Am29203 evaluatién board will be used as an
example of a processor using these components and will be

discussed in further detail in Chapter 1IV. The memory

section and any peripherals will be ignored for the time

LA

being.

AT, e, e

Figure 2.3 shows a simplified view of the primary system
architecture of the AM29203 evaluation board divided into

the two basic sections. The ALU section of the evaluation

T T Y W]

board consists of four 4-bit 29203 data manipulation (CPU)

slices to make up a 16 bit processor, and one 2904 status-

Ay 58 o

and-shift control unit which is used for shift register
linkage, status registers, and condition code testing. The
control section of the evaluation board is made up primarily

of the Am2910 and other associated hardware. The Am2910 is

v'f‘.‘.lli'l.l..\ -

a 12 bit sequencer with an instruction-decoding programmed

. v
. T -
A b A

logic array provided on chip.

« r o<

Looking at these basic components now in greater detail,

& .7

Figure 2.4 illustrates the general structure of the

manipulation unit, or the Am29203 in this specific example.

AL

[N

clL Sl

18

F 03

R S ey B N N T VI N SRR RN
A ST, A A 0 v A QNN IR L b

a'

[

; | |
MICRO-

' PROCAAM @ |

| CONTROLLER ARITHMETIC/
(SEQUENCER) LOGIC I

| UNIT ‘

:, |

. I

| MICROCODE |
M e

| MEMORY l

| I

I l

l |

| st

| © |

| : |]

(__ CONTROLSECTION DATA “},‘é’é}'}%h“'““ n

(© CONTROL LINES OR CONDITION INPUTS
@ ADDRESS LINES PERPHETIM .

(0) DATALINES

Figurs 2.2 Basic Processor [Ref. 42

19

LAY S o

.

TG, G S S

" ""\

P N T)

-.

N

.
l..‘ .

ccv | AL '.
{ h
" A : :
w (y
orcoot R LM =
! 1. ~ !
A [] i L4 .
| :
i ’ A s o
e -
PROM | ADOR
Am27829 ' .
next address : :
from pipeline | ! Am29203 v (== .
C | [RasRg
had { |from —1 A .
I |pipeline
Am2910 .
(- -f & ' : ‘
IR . ! et .
. ; ga i -
< : AJ »
M'Q':' 1] l J :.
mu?a) Fed—e o I e ;
ST | :
5
s femee =g ||| :
; Am2n® Amaote Jo— o : : .
—-— r - p - e e e e v @ e e t— l .
{ LY
1 X
PROM | .
OECOOER : .
— I ! 5
H N
| .
|
|
| ~
! :
| ;
|
! >
»
Figure 2.3 Primary System Architecture CRef. B 3
‘
~
20 %

WA % T
‘l " .', .(,..

‘-.,\":u‘r' I“-'\'J‘ -"'.J'_‘q' -’;\-,.-._) (.\-_“ -'.-.'.... = .u‘_q" -...:...;-. ...\ - - -

v

lf-wu s AT CAT
g - LA 35 5 s S0 .G?...\.J Al SRR

X, - ¥ W : ’. ." X) X ! _xw-‘ d -
PN Y 1N SRR A AT Ry A/ IR A AIOEEGGEE [SABRRAAT S ARANEAGE

TSy

“, L

o

X

Ch "J34] EO2B2WY 843 JO 3INJONIYS [RIEUSg §' 2 aanBry

NOLLINYLSNI ==P1 300330

RPN 1n0Viva w

TGN "'."' LS

<o

A
¥3X34ILINNA VIVE LNdLNO —318YN3 1Nd1N0

v
7 3 ’

Al sl

21
'."-:

v b , ™, | v
MOT4Y3A0 4
: 118 N9IS .TJ"_ §
1nd1N0 AUV 43IXIILINN
e nv

d -+
OVIHVI001] -
AHYY) Au . 1 V) 0] v @

ﬂ vivQ 133410
0¥3Z 21901

¥31S1934 0 v RN, | £ IERAE

¥3013
on 1
—I Gwso F—on
1HI1Y ¥ JULIT I 1amswve |—onum

=p
R

LR RN

h)

.'J'

.
~n’

-’v,.-,

]

b
il

AT NI
* «f

od

‘] | g

-
>
-
<
.
v
(3
=
-
-
-
-
-
-

As can be seen, it consists of the ALU, for performing the

required arithmetic or 1logic functions, general purpose

LA AA AN

registers (RAM), a multiplexer for selecting pertinent

general purpose registers and a RAM shifter for performing

data shifting. Of importance is the horizontal connection

L 3

points shown, specifically the carry and carry look-ahead

Aconnections. Figure 2.5 1illustrates how the horizontal §
connections are used to connect four CPU slices in a ripple e
carry mode to form a 16-bit ALU. This is the mode used on i’
the evaluation board due to board space constraints and due %
to the fact that speed was not the primary consideration ii
when designing the evaluation board. Had the P and G :“
signals been connected, the processor would have been in the Ef
carry look-ahead mode, an Am2902 look-ahead carry generator 3
would have been used, and the processor speed could ;
therefore have been increased. This will be an important ;‘
factor when looking at the time considerations later on. ;;
Also shown in Figure 2.4 are specific status conditions such ﬁ‘
as carry, sign, overflow and zero detect which are then used ES
by the Am2904. Figure 2.6 shows the connections used i:
between the Am29203 array and the Am2904 to allow the Am2904 ;
to perform its status, testing and shifting functions. The i:
Am2904 provides carry in from several sources which will Ej
also be discussed later in greater detail. a]
N
™
]
22
:

I P e S e e et L Te T Te e T e e S e LT el . e R e I
PN AT NIRE RS AP AT A% KON RN g ol NN AR
'&iﬁ.ﬁd&(’.‘_\ﬂ.iu}.a‘:..}.a};.‘r TR ™ S »

”.lnlh ..I.I hc‘h 0.\ wfate TN | APRPRPRT RN DS, 52 I M'.“.-"---a %.\.\.\.\.-—-ﬁl VAN \~- st AL T ...JLn.fv - .Hl'll
(8¢ 'd:z '3ay] faaeg srddry yitm Ndld 3ITg-9T1 S°'2 3anbry
'. 'b‘("‘
21 4 2 14
..h—.IL A ™ A M s w4
1} J - 1 2 j— 21) 2 f—d g | - 1 I 7 owsz
b2] j mva 1 Ty ..—-Il'. 2] VAD heee MO1ININD
EO262wy ﬁ EDIco™WY -ﬁ‘ ED2E2wy EO2E2TY N poman IALYOIN
e vy) vesy) Yy “ v l— e
Sors] %ors fous Sors Cors Sors Cors Sors torg [Ron
%o 1 %or0 Sor0 %o too %0 tono %00 . tow = Sion
%0 vo w0 vo %0 vo 0 vo
o* o* c* c* '* v* v\~\ Q*x
1 INAN0 T INAN0 € INA30 ® INAYO
81 |

f

23

-

.,
at e’

., -

SUOT3J8UUODI8IU] E0262WY PU®R HOB2wYy g°'2 aanBry

th'8 'd:z *33y)

TS WS,

e

-1 %10

-1 Oois

AvHyY

E0262WY

HAO

9#—-0

€010 |-

. tolis |-

1NdNI
1531
iy
)
P
e
7
¢>O—
M yoszwy
P B N 4
«~{ Moo : . X
1 %010 . m
Nois
%015 -
oA
o
M
.'l‘.“
“
”
.m
.w‘

The Am2910 as mentioned earlier, is a 12-bit sequencer

used in the control section of the processor. Since it is a
12-bit sequencer, it 1is capable of addressing up to 4096
words of microcode, although the evaluation board only uses
10 of the 12 bits to address up to 1024 words. The function
of the Am2910, put simply, is to control the sequence of
execution of microinstructions. The structure of the Am2910
is as shown in Figure 2.7. From this figure it can be seen
that the next address can come from four possible sources:
the microprogram counter (upc), the LIFO stack (F), the
register/counter (R), or from direct input through a mapping
PROM. The onboard instruction PLA provides the internal
controls which correspond to the next-address control logic.
(Ref. 5]

Putting these Am2900 basic components together, the
architecture of a 16-bit processor is as shown in Figure
2.8. It should be noted in this figure that the processor
is connected in the carry look-ahead mode by interconnecting
the G and P connection points. The addition of the pipeline
register should also be noted. This register permits the
next microinstruction to be in the process of being fetched
while the current microinstruction 1is still executing,
therepy improving the speed of the microinstruction

sequencing.

25

e

(% S

IR

AR

'

PRARAS, WRRRBASN FAARRE

s $.0" 000 3.8°Y,

tA R

D. CPY
12
RLD e
o neqiSTER) - STACK FULL
COUNTER b POINTER —C
[
2£R0
]r—-> DETECTOR
‘S WORD X 12 81T
j - STACK
ouTt
™ ¥
Eg 11 Ve U
el %St o R F o wrC MICROPROGRAM
pet u s e N MULTIPLEXER . COUNTER~
5.: —— REGISTER
wg@ L2
. o . {T
. . : w - 4
[é (o]
INCREMENTER
o1 s [| =
CCEN § PUSH/
& é POP/HOLD/CLEAR
i 4, g CLEAR/COUNT
o€
o— N\
000 . ;
“RE v — p
=8
Figure 2.7

Am2910 Architecture [Ref. 7:p. 2.121]

)

3yl Bursn 31N3033TYOaIY IOESIT0Id ITH-9T

g1 2 d:z " 3ay]1 Arrwey pos2wy

g'2 ainBry

-

1318 81} SN 333900V

it

ir

{r

1t

HWtwy
WD 7v 13 WOOY AwOn In

nRetey

W3ISD 3 $SIW00Y AON IN

it

Aﬂﬁ

A/

M/.

{ 79 'd
ﬁ ¢ & LRLIY:]
.] 13mas
— e —) T_
..u « B i Iv
toatwy Afe wwrrae 0
™) 1 _ Y
AwOoniIn
| AYNDONIOV IR
Je * 1 e ‘' 2 S ~,L1~ « 4 ~1_ ey Mo
v v { v v ™ -ooun 22 ey
rl.-. —{* o _]o o r.o.cs lﬂ.n-_uldu o " og
rovyl ey vyl "vy
A p— stwy o costwy tospwy J
etwy g/ vy ° vy ° va SALVLS WINLO T||L
tors Song %ors Cors ‘o Sors Sors toss
«903.“ .o.o< Yo o (oo oo (oo L
nvd
(D d ¥ NIV
ey .' '
Yo "y
S0 N H %0 vagy
L [fron 2
Heors n p—e
viistwy | o, vosev d ST
vy 39vsudim sne >, 0 O INVISN
A 1S18 911 $N8 V4VO >
P el miee S - - e, s W e e - D WA

27

RS IR
vt o

Ceersle

AT LNt Wt
o -'\f“-'.\-'.

e

Yy
il A3

N o '.‘ I VL W R Y

8,008,849’

10

ALY

s e e mh AaT et 3a” ea bi a%s aY8 a4 a” e b4k R g a8 %2t 4t taty Aot Y A% dtad’e bl B4 ' 282k ald s

o

e

D. TYPICAL MACRO AND MICRO INSTRUCTIONS - :
As stated earlier, the machine 1level or macro 3,
instructions would normally be generated by a basic compiler ?
or assembler program. A typical format for a macro ’:
instruction is as shown in Figure 2.9. 1In the evaluation ,é
board, the address mode is contained in the opcode, followed :
by the source and destination. Suppose as an example, shown %}
in Figure 2.10, a macro instruction mnemonic of ADDRR (e.q., ?.
ADDRR R1 R2) [Ref. 7:p. 2.6] is given, with the opcode given ;%
as A0 and the total macroinstruction being Aa012. This Eé
opcode is then mapped through a mapping PROM to give the :§
micro-address, in this case micro-address 304, to the Am2910 ?s
microprogram sequencer. i
The format of a microinstruction can vary in length from i:

32 to 256 bits in length (or more) depending on the amount {A
of hardware being controlled by the microinstruction and by ﬁj
the presence or absence of overlaid fields. Microprogram :;
memory (word control store-WCS) is therefore made up of fk
relatively long words and most macroinstruction sets can be ;i
implemented in microcode using a small microprogram memory S’
[Ref. 7:p. 2.6]. In the evaluation board, the instruction i:
set and monitor wusing the instruction set are easily ?;
implemented with the 1024 WCS locations addressed by the ?ﬂ
Am2910. A typical format for a microinstruction is given by)
the 48-bit general microinstruction format for the ?;
28 2

R
3

B e e A e ST s S S e e T S v s S S

T T T O R R Y O KR RN RN AN ER DU R I U O IO N RO T RN SO TSV RO OO Y DU U AT FUMUROROT B R ST I o T e et \'

..l

o,

X

o)

~I

:

B

. "
o4

% |

. OPCODE* ADDRESSING SOURCE DESTINATION A
3

* address mode contained in opcode gy
Y

3

P

7

Figure 2.9 Macroinstruction Format for Evaluation Board ﬁ
(Ref. 7:p. 3.51] %
7

1

bt

‘X

7

._‘s

Sample Macroinstrction: AD12 73

Mnemanic=ADORR

A0=opcods to map to 304 ;
l=storage address in R1 K
2=storage address in R2 5

o

Figure 2.10 Sample Macroinstruction {'

%

l'\-
N

o

\¢ h
ol

-:\

'.-r"‘
29 N

L ATET)

. VRCHTT, .
‘:‘u'.’u A |‘f'|'. a"'l'?!‘. o WY, -':A A of\ ALY a':' ATt

N O O R R O O KR RSO MR R W RN

evaluation board as shown in Figure 2.11. The
microinstruction is broken down into fields that control the
various components. For the evaluation board, the
components controlled are the Am29203, Am2904 and the Am2910
which were discussed previously. The microinstruction has
several overlaid fields and even achieves what is referred
to as vertical programming through the use of an overlaid
command field and decoding PROM [Ref. 7:p. 3.10]. These
overlaid fields make microprogramming somewhat more
difficult but are used on less critical or seldom used
instructions to keep the microinstruction length shorter and
thereby decrease the cost of the memory (RAM) used. If
speed and not cost is the primary consideration, some of
these overlaid fields may have to be deleted which would
then increase the word length. The coding for each of the
microinstruction fields is explained in detail in the
evaluation board users guide [(Ref. 7]. A summary of these
codes which are generally given in hexidecimal or octal form
for ease of coding are shown in Figure 2.12. From this
sheet for a simple 48-bit implementation, it is easily seen
why a long learning process is required for complex design
work using bit-slice components.

A specific example of a microinstruction is shown in
Figures 2.13 and 2.14. In this example, the operation to be
performed is RS=2*(R3+R4). The codes for each field are

taken from the microinstruction coding format sheet, Figure

30

" NN

orEd RS M

¢
A

R R o s m & e e o -~ - I o - . LRI R T S U LI IR
AR CL LRV Oy SR -\,' viate, -.."-'-, RO WY \'\ ‘\a N OO AR IR TN
- + A% A) B id A Sat 4 - . Q . »

i)

“

OPERAND ALY CONDITION SHIFT MICRO- NEXT
REGISTER OPERA- CODES & INSTRUCTION ADORESS
AOORESSES TIONS CARRY BRANCH SELECT

- An29203 Am29203 An2904 Am2904 An2910 Am2910

Figure 2.11 General Microinstruction Format for Evaluation
Board (Ref. 7:p. 3.53]

31

“w TR I -

« Wy ¥ (M) P e TR T TR T Y SN e P T) S Tt g Y, LY RIS] fpr, v . L) - .
R R v e P v D A N A 2N QO R RIS 7 AT RSN TG O, SR RN,
" N A i N B o o . » - L2 v . - ° » » L]

e

5’. !gs} §99 35 |g9 23 3¢ ¢
ﬂ
g n,i‘ng,; gi T EEEEEE L EE L1 1 [P
T R P fi5-#4ss
.-..lnnfni-agg ---------------- o
!aia!ln?fiiiﬁiﬁg I, PP PRI POE N
| ecease < assee i |y n !B[L ""E &m i
; [m[z i
":-'::::'::"': ":""" Sl g-
i T (R sttt ertrsssrstent

................................

!n' i
i ! i dﬂ“

| shitln sisi:‘iﬂs-:s. iihi‘!?ig{ ; 5?!, i‘
il) |adithatty HHREHTHB R

s
1
B.--u 2:333333382% ‘ [_; %Sﬂ::i‘gggﬂh:‘a’s&au
| - - s
i
if: - -
N ’ s, | IREeaaetassnnnnsnntttens
N "J ll -.3.
'——i !!guul ‘55"': §§§§§ L EEEER
E::::::: RN |11 [P ——
sl:; g | - i e
.Sl
HFHHHHBHBOE
.................. i if géi’ﬁgi“*“?ssﬁ
: *re H bt b ¥ § zzzEasEse
1:5 8::3::3§=:2:::2::2::252225::
1]
? 1 ’
1 T 1 H
£ } | #
il it 4 L Bt
e i ‘éggiilgéigis HER T T isﬂs! eged
1 il s R t,.i%éi
; ‘ } o I T gilﬂmﬁ jmm!
s

! """ "
] 3?313535 ?zﬁ? } b ‘§§,z B

Figure 2.12 Microinstruction Format CRef. 7:p. K.171]

S

*» bn MO {3} foe

32

------- v Waw TNy e gy s e e
'~ i] a N PR e PR . DA R Y
A, o e Y e N T N NN G X A e A A RN N AT AR T AT

A Y
s

AN YT NSRRI 1YY Yy

I

5oy

.7 P Y XX AP

AR ST RARRIN

v e .
RN

., ..‘ --' / 'J‘ I |..c',‘|"

" vl:..".l k3 "" g

- -

[RAL LA~ F) 4o £ IRV INRL, AL IS LIS SIS _ OCORISIOY | A il 4 SRR AR AAIY
L s Ly - w e - a . ~ e wle¥n b - - .

X

388ys Buipos] 03 sarajul uoT3ionajsu] atdwes E1°2 3anbBry

4 RS ER T |4 o | I € P} o
: T AT [ooC 0 Jol00 00 0|0
o £ te nja anfsifsi §1j0z lezle2 =_.~$3 ez L3 stjor nfcrin
(co2629y 13 #35n) - Mn .o.._“h._m.) M m m ._ m =
[] 1] m 2 e
m&ﬁﬁ.m,”m ! 38
$TINN0S
w01 13y Sut T t] 3
ittt [Lo o v K m...] m f 1 | EhL e i1 Rl L m
1V15%0) (ee1 w5) |E <
1 19 €330) dﬂﬂ m d _
o6y ~ i
$S 00 Kowven oGl AR MARNIV R
0162wy Yo62wy €0262wy

133HS ONI00J -- QYv08 NOILVNIVAI

(o
o

.

7-4
3-0

Resulting Microword:

Perform RS=2#(R3+R4) with sources specified by

EXPLANATION

s T G T D S - — — ———— — W T Y — - - - —— ———— ————————— ———— ———— ———— - ——— ——— o ——

Sources Ra & Rb specified by pipeline,
destination Rc specified by IR

‘Enable Am2S203

Enabla Y output

Opesrand Sourcas from RAM
Destination taoa RAM with arithmaetic
upshift

ADD, Rc=Ra + Rb

No carry in

ALU status to status registers
Don’'t latch micro status

Latch macro status

No command enable

Shift enable

Up shift, zero fill

Don’t set breakpoint
Spare/DOon’t care

Oan’'t care

Ra=R3

Rb=RY4

Conditional Return

8083 10A2 F34A

destination specified by IR

NOTE: B=Binary,

Figure 2.1i4

‘v '\'-"-\

W T NN Y5

Q=0ctal, H=Hexadecimal

Sample Microword With Field Oescript.ans

34

..................

LA LIS I I A e UL PRI I P PR N R) - RN
] ; "t ‘- -~.- «~ \ \.\J‘.] J'\J‘ J~ .. '\'." _-.. \J‘\ \ .‘ \(o> ,\{")"‘.' . "

pipeline and

N O

AN Acs

2.12, and transferred to a blank coding sheet as o
; demonstrated in Figure 2.13. These codes are formed into a ‘
12-element hexadecimal word which is then explained in
Figure 2.14. For instance, the octal code #4 is placed in 53"
bits 47-45 which translates to the sources Ra and Rb being u'
specified by the pipeline and the destination being .
specified by the instruction register (IR). The pipe'line }
field, bits 11-4,then desj.gnates Ra and Rb to be registers ‘2
R3 and R4 respectively. The addition function is performed :
by the ALU by specifying code hexadecimal #3 in the ALU 'E
function field, bits 35-32, while the multiply by 2 is .'
implemented using the AM2904 shifter. The codes for the r\.-
shifting are placed in the Am2904 field and the micro status ?'.E
is latched for possible overflow. The Am2910 instruction in :E
this case is a conditional return (based on the condition of ~..
the status registers) and is performed by placing the ‘?':;
hexidecimal #A in the Am2910 instruction field, bits 3-0. .'
The resulting 12 element hexadecimal microword is as shown. :
Typically, several of these microinstructions would be used E
to implement a single macro instruction. ,-.
E. BIT-SLICE: METHODOLOGY OR DEVICE :-
Some people today believe that bit-slice is an outdated '
device. The argument to be presented here is that a device 5‘
will be outdated as technology improves whereas a method -_;
should be updated with advances in technology. 1Indeed, if Ef',:
bit-slice were associated with a device, then bit-slice ‘4
3
35 N
N

. < -
......

-

ﬁp'ﬂf

Nl 2t et 2 et a? A RS e e dVa A b s d'm s A% A A A A% A a2 a0 Al Al "ab a0 cab ¢af W Sag U p Tod ouh toh) R e pcd Soltfah"

components, which were first conceived in 1974, should have
long been replaced by other devices and components,
considering the rapid developments in recent technology.
However, as technology has increased, bit-slice devices have
continued to improve and the demand for these components has
continued to grow. The following paragraphs will give some
specific examples of recent advances in the bit-slice
method. .

Probably the most widely used application of bit-slice
is that of its use in high-performance graphics, due to the
high speed required to process large amounts of data. An
example of this is found hidden in Ramtek's graphic display
system which uses the Am2910 sequencer for its memory
control processor [Ref. 8]. Although VLSI technology
recently brought about powerful graphic controller chips,
this same technology has also improved the performance of
the bit-slice. While the VLSI chips have the advantage of
low cost for high volume and capabilities for a non-standard
bus, the advantages of the bit-slice over the VLSI chips
are:

- very high writing speeds,
- support of graphics standards, and
- programmability.
This last item may be the distinct advantage in that it:

- permits graphics interface to be tuned to the particular
requirements of the application,
- can be programmed to emulate existing graphics devices,

36

P L ¢

AP L

D

SRR

-
oA A <

IWAARANRRNS - R AA

PO LL

R N g N R e e NN N T S S
- 1%, A 3

PR L R R AR A R A AR RN T S TP UV WU T Py WA RANENY af Sak ol b VR RN R U U

- can easily accommodate field changes or upgrades,

- specialized graphics operations may be microcoded,
moving intensive computational 1loads from the host
processor to the bit-slice, and

- easily adapts to changing graphics standards. [Ref. 9]
Texas Instruments .introduced its STL 8-bit slice

microprocessor parts in 1985 and ECL 8-bit slice
microprocessor parts in 1986 wusing IMPACT (implanted
advanced composed technology). The STL devices enabled STL
circuitry to match conventional ECL gate delays but at a
thirtieth the power while the ECL devices cut ECL gate delay
three to four times with conventional ECL power dissipation.
This architecture raised throughput significantly as the
processor can read an address, perform an ALU operation, and
shift and write all in the period of a single clock cycle.
[Ref. 10]

LSI Logic Corporation has made a recent introduction to
the semi-custom market using on-board bit-slice methods in
its design of structured arrays for microprogrammed systems.
These structured arrays can approach the density of full-
custom design circuits while retaining the quick design
turnaround time of gate arrays. The LSA devices combine up
to eight 2901s, 64K of ROM and 3900 gates of logic array on
a single chip. In a typical application of these devices it
was shown that a single chip could be used to replace 59

discrete 2900-family devices with a power consumption

37

-
:

P

AR LR

LR AL

Ao SN

P DR AR
-

20 s 1

b‘" ". "“l“lh il

e

NP MO l‘ .g‘ PNy

e 2

»
’

! o

TN VEAKLE A NN SR P

]
A .-

-~
“~
-
K
o

reduction from 40 W to 1.5 W and a 50% increase in processor
performance. [Ref. 11]

The final example given is the introduction by VITESSE
Electronic Corporation of 2900 Bit-Slice components offered
in Gallium Arsenide chips. These devices were the first
commercial devices to be offered in Gallium Arsenide. Using
enhancement-depletion mode chips to solve earlier depletion-
mode Gallium Arsenide design problems, VITESSE was able to
achieve 1low cost production of these devices using a
silicon-like fabrication process. With amazing gate delays
in the range of 125 picoseconds (1/8 of a nanosecond),
VITESSE easily achieved speeds of 13-ns for a 4-bit add and
a RAM 3.5-ns cycle time using a conservative design
approach. Compared to AMD's high speed ECL 2900 components,
the Gallium Arsenide components can run at speeds two to
three times faster. This example is probably the most
convincing argument that bit-slice is not an outdated device
but rather a methodology which has continued to improve with

technological advances. [Ref. 1)

38

7

AR RN

%y ">

" .,',-.l J .l‘}II P

-ﬁ‘*.‘ A"“ VSR)‘- '_.’:“'; " l‘j

IR z‘:,.r*- o 5-”._-4. 5

TV U U WU IR AT,

IITI. FORTRAN IMPLEMENTATION OF FIR FILTER

A. INTRODUCTION OF FIR DIGITAL FILTER

The filter chosen to be implemented in bit—sliée was an
FIR (Finite-impulse-response) digital filter. This type of
filter offers many advantages. First, since it is FIR, it
can always be made to bé stable and causal [Ref. 12].
Secondly, since it 1is digital, it possesses the inhefent
advantage of immunity to noise and can be subjected to error
detecting codes, thereby offering a high reliability not
found in analog signals. As will be shown later in this
chapter, the accuracy of a digital signal can be increased
by increasing the number of bits used in the data stream and

software or hardware implementation. Further advantages of

S AR A AR PRy

the digital filter are that it can be easily duplicated for

precise processing, with fine tuning of analog components

s

replaced by data and program manipulation for consistent
output. With this precision, large amounts of data can be
processed with error detecting comparisons possible. The
digital signals used can be stored for long or short periods
of time without loss of accuracy. All of these advantages
come with the price of noise introduced due to quantization,
which will also be discussed in this chapter. Finally, the

cost and size of these highly reliable and accurate digital

39

LRI

PR
LR TGINS,

¢ AW AN Y T R

filters are greatly reduced from their expensive analog
counterparts. [Ref. 12]

The specific filter chosen to be implemented in bit-
'slice was a clever video processor filter as shown in Figure
3.1, with an advertized bandpass color subcarrier frequency
of 3.58MHz and a sampling frequency four - times the
subcarrier freduency, or 14.32MHz. This filter is shown

below in equation (z-domain) form:

H(Z) = (1-272)(1+27%) (1+273) (1-271) (1-271) (1-272)

This filter has the distinct advantage of using only
coefficients of 1 in each of its six stages which allows the
filter to be designed using simple shift and add circuits.
Reference 2 neither states or derives how this 13th order
filter was reduced to its six stages nor does it explain why
the stages were ordered in the manner in which they were
ordered. Mathematically, it does not matter which order the
stages are put in. However, in the real environment, it may
be possible that this particular ordering of the stages
offers some advantage. These issues were looked at only
briefly as will be mentioned in the quantization section of
this chapter, however, a possible follow-on thesis may

explore these issues more fully.

B. "DSL" PROGRAM IMPLEMENTATION
Initially, to obtain a better understanding of this

filter, the six stages were multiplied together to obtain

40

.......
AT Y e e N -t et e

N A o T e PRI N s e e e e e . .
M'i?}}‘\a} C.S > " " RS 'r e N T L T e R RS S AR

e i - " - R - B ; - . TN o
LA NS BT L A S] Moo VR v A NSNS e -SRI 4 AR DO (NP J NIEY

o

NI - e

IR O N AN AT,
3 3 ».

..'.

L2 38y 183774 Te3TBIg d41d4 1°'€E eanBr4

41

1

41

e . ap a%h ita a'h ot 03 at: ovhuW ORI W I IOV T ? WO NS ANV ORI |-0.‘|~ c.'

the rational polynomial form and factored or cascaded form

as shown below:

Rational Polynomial Form:

e

H(2)=2"13(213-2212.211,53210_229_5284+437+426-525-2724+573-

22-22+1)
Factored or Cascaded Form:

H(2)=2"13(2-1)4(2+1)3(2+.707+5.707) (2-.707+7.707)

(2+.707-3.707) (2-.707-3.707) (2-.5+3.866) (Z-.5-J.866) g
These forms were used to obtain the required data entry to A
utilize a student-designed graphing program entitled
"controls," on the IBM mainframe. Although this program
provided the expected magnitude frequency response, it
appeared to be too difficult to use to obtain desired signal
input/output graphs. Another program entitled "psSL")
(Dynamic Simulation Language), as provided by IBM in their :
language reference manual and installed on the mainframe,
was then used. This program provided a more versatile
plotting of the magnitude-frequency response of the filter N
and not only allowed the filter to be entered in its
coefficient form but also in its original six-stage form as
well. The "DSL" program proved to be a very useful tool in ;
the way of a quick visual reference of signal input/output '
to the filter and was used continuously throughout the g

thesis development.

42 >

R o SRR g A

L B'a ata . B ‘a4 % 8o Da' Aa Ba’ % 01 $a" Bat Ag"
< 4 L E PR TSR LN AN 14 .4 g6 5.8 3.9 N o gt qg ¢ LI LY LW 4 pat 2.% S5 At 42t $.0 2. 2t l'

First, "DSL" was used to obtain the magnitude-frequency &
response as shown in Figure 3.2. The procedure and program
for obtaining this graph is shown in Figure 3.3. 1Indeed,
the frequency response for a bandpass filter is obtained as $
expected. With. THETA from the graph equal to PI, the 1)

following is found to be true:

With f=input frequency and Fs=sampling frequency

:r‘? ?'}. .} J -

*

. f=THETA*Fs/2

For Center Frequency of Passband:

f=.575%14.32MHZ/2=4.10MHz

e T'.f‘l' 3

For Subcarrier Frequency of the Passband:

£f=.500%*14.32MHz/2=3.58MHz

Oy

€ ¢ v 8 a
[

Therefore, the center frequency of the passband is found
to be 4.1 MHz and the subcarrier frequency of 3.58 MHz is
slightly below the center of the passband, both as predicted N

by Reference 2. The "DSL" program was then used to obtain

g ..
-

input/output graphs using the rational polynomial form of

)

the filter as shown in Figure 3.4. In this particular

l'.l.l

implementation and throughout the rest of the

Hr '.l. -

implementations, a standard sine function was used for the 7
input to the filter. Figures 3.5, 3.6 and 3.7 show output
responses for inputs below, within, and above the passband E>
respectively as indicated. Again, as expected, the output

was zero (steady state) for an input below the passband. ™3

RO o

The output for the in-band subcarrier frequency of 3.58 MHZ

o)

s
43 .
.
!’
s
[}
- P A T ey '\
N N 3 e T 1S W P T T W) e Y 1-'\ g o™ *..\..--_u -‘,: -..-‘,' "I'.-*'...*.¢-¢' - -‘.'J'V &)
o G i Ty G i ey o o R R I A S A R A L S W D R R T A W Vi G e D

| 3

393174 ¥1d4 30 esundsay fisusnbeaj-epn3itubey 1Sa 2°E aanb1 4

(1d) Wi
s'e

e
i

o 8

e

*
L8/80/50

@
o o
-4
r<
<
add <t
z L)
-2
92

[
A

3
. %0
ALl

o

]
o

NN g

v
N

W
i
d
[
)
yt
b
L]
0
o TITLE DIGITAL FILTER
. wsssvsss TO USE THIS PROGRAM, DO THE FOLLOWING STEPS:
K . 1. BE AT A TEK618 GRAPHICS TERMINAL * (YOU ONLY NEED
- " 2. TYPE "CP DEFINE STORAGE 1500K" * TO DO THESE FOUR
» 3. TYPE "I cMS" * WHEN YOU FIRST
. . 4. TYPE "LINKTO DSL" # LOG ON...)
q *+ RUNNING THE PROGRAM #w#4++
N v 5. GO INTO XEDIT AND MODIFY, IF NECESSARY, YOUR VALUES
' " OF THE FILTER COEFFICIENTS.
' . 6. NOW YOU CAN RUN AS MANY TIMES AS YOU WANT. TO RUN THE
3 L

PROGRAM, TYPE "DSL DIGITA FORTRAN Al (G"
*

" COMPLEX S,H,H1,H2,6H3,H4
b CONST Al=-2.0,A2=-1.0,A3=5,0,A4=-2.0,A5=-5.0,A6=4.0,A7=4.0

! cousr A8=-5,0,A9=-2,.0,A10=5.0,A11=~1.0,A12=-2.0,413=1.0

K=(1. /(1+A1+A2*A3+A4+A5¢A6+A7+A8+A9*A10+A11+A12+A13))
p) THET=THETA*PI
0 S=CMPLX(0. , THET)

' H1=A1*CEXP(~S)+A2%CEXP(~2*S)+A3*CEXP(-3*S) +A4*CEXP(-4*S)
H2=AS5*CEXP(~5+%S)+A6*CEXP(-6*S)+A7*CEXP(-7%S)+A8*CEXP(-8*S)
H3=A9*CEXP(-9*S)¢A10*CEXP(10*S)+A11*CEXP(~11*S)+A12*CEXP(-12*S)

4=A13*CEXP(-~13*S)+CEXP(S*0.)
- n-al+nz+as+a4
A SH1FT=RADEG*PHASE(0. ,H)
“~ MAGH=10**GAIN(H)
D RENAME TIME=THLTA
CONTROL FINTIM=1.00,DELT=. 01
PRINT . 1,MAGH,SHIET

| "¢ SAVE .01,MAGH, SHIFT
4 GRAPH (DE=TEK618) THETA(UN=PI RADIANS),MAGH
¢ GRAPH (DE=TEK618) THETA(UN=PI RADIANS), SHIFT(UN=DEGREES)
4 LABEL FREQUENCY RESPONSE MAGNITUDE OF FIR DIGITAL FILTER
) LABEL PHASE SHIFT PLOT FOR FIR DIGITAL FILTER
' END
STOP
Y
‘.
S
L
N

Figurs 3.3 OSL Prggram Entry Instr-uctions and “Magnitude-
. Frequency Response Program

o g

ot

.
"\A g

45

>

[P N P B e tRt AT, e ATS . -th.--_-__.
.\ffn‘(‘ Lol .4-.-(-.\._-'4'-!'- A

R 4'>'l..-'l‘.-‘.~'-.‘-.‘\ \l‘ .‘-‘.‘
- o, -
-

% .r A AN

TITLE DIGITAL FILTER(REAL TIME RESPONSE)
INITIAL Y=0,
INITIAL X1=0.,bX2=0.,X3=0.,X4=0.,6X5=0. ,X6=0.,X7=0. ,X8=0. ,X9=0.,X10=0.
INITIAL X11=0.,bX12=0.,X13=0.
INITIAL X=O0.
CONST Al=-2.0,A2=-1.0,A3=5,0,A4=-2.0,A5=~5.0,A6=4.0,A7=4.0
CONST A8=-5.0,A9=-2.0,A10=5,0,A11==1,0,A12=-2,0,A13=1,0
CONST B=1.0
CONST F=3.S8E5
CONST FS=1.432E7
DYNAMIC
X13=X12
X12=X11
X11=X10
X10=X9
X9=X8
X8=X7
X7=X6
X6=X5
X5=X4
X4=X3
X3=X2
X2=X1
X1=X
TIME1=K/FS
THETA=2, *PI*F*TIME1
X=B*SIN(THETA)
Y=X+A1*X1+A2%X2+A3*X3+A4*X4+A5*KS+A6*X6+AT*XT+AB*XB+AI*X9I. . .
. +A10*X10+A11*X11+A12#X12+A13*X13
RENAME TIME=K
CONTROL FINTIM=100,DELT=1.
PRINT 1.,TIMEl,X,Y
SAVE 1.,TIMEl,X,Y
GRAPH (DE=TEK618) TIME1(UN=SECS),Y(MA=5)
GRAPH (DE=TEK618) TIME1(UN=SECS),X(MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

Figure 3.4 DSL Program of FIR Filter in
Rational Polynomial Form

46

-

<
L}
L]
-
»
’
r
%

L

PAPAA MU

”e
—!

BELKRAY .f,-l. .-\I.)-lln.,v 5 h_h . Fﬂ\r ..)...n.n..-.vu-un...-hh A ! Pffp,‘cl . LN -'-n«u.-cf-.-... CPEYS

pueqssed 3337174 Y14 mo13d (SOT~J4) fRouasnbaay
3e 3ndul aaem autls Burtsn 3ndang 3o ydeag gg S'E 8anbBr4

1S33S »-08) ML

2'L s 9°S oy [M 4 2°¢ e 8°i 90 0°0
’ L.] L 'l 1 L L1 L
04 -
’)
N A
(-]
al 3
>
0% - ot
k-4
by
G2 -
] $ 80
b
S
. L)
LS8}

'y

L

47

L N

ol

WAL e

.N’

o,

AT
()

%

(4

A\

0

\f~f‘ ¢ I%(‘.l‘

P A
s el A

" AN A

At
Id'f'.f

*o

e ¥
l‘ -y

LN

1

L
L

pueqgssed 383774 dId UT (S01I«BS E=4) fouanbaay
3e jndul aaem aurs Buysn jndyng 3Jo ydeag -1sd g'g aanBr 4

{S33S +-04) ML
¢ s 9°s er ey 2°¢ LA 8°0 0°0
1. 1 '

K Al \
Y »2- 7

9
4 4] 1 | 1 | 2R |
* ot -

A:.;] :) ;1:.::. [E X R R N R R A X X X X X XXX XXXXXXXXX) 1 X {

LAY

L/10/9

r2:8817)

48

.
- ®

W,

Y
-

g

A

.'J‘.. ‘\J,"-
N AR

ASAFAAL

_'-‘.'-.."

>
R

“ -f'-'\"\‘.'i..{

‘f‘f"‘

4

il

"-{.‘. .1*'

RELl b A |

SN

‘ N “\-\l\ \.V

Fn!l-a'..

LR N

s

x

-

P as

-

(Puegssed 183774 Y14 B8A0QE (210T=~4) Aousnbaay

3e 3nduy asnem eurg Bursn 3nd3ng jo ydeag sg Z'E 83nBr 4

(SJ3S +-01) L

.{ _. i :
| _ :_f? | :

48710790

8ysr2irl

-ﬁ- hAV\J.. :

49

-
e

"
o

-

A
L)

- = *,
\. NS

.

AN

e

SR T I Ch

o

'.‘{ -I‘

M e
da L

\‘. \-’ \r Yo
Sal

o Wy W
"a_‘\.'-'_

\'ﬂ"»r...-..'-‘ nT T o f.‘;.'l‘~;.‘1 .

passed through the filter with a gain of approximately 23 as
predicted by the magnitude-frequency response (Figure 3.2).
And finally for an input above the passband, the output
showed aliasing in the computer environment as the sampling

frequency is no longer at least twice the input frequency.

C. FORTRAN IMPLEMENTATION

The next step in preparation for implementing this
filter in bit-slice was to implement the filter in Fortran
on the VAX mainframe. The original concept was that once
the Fortran version of the filter was working, the VAX
command "Fortran/List/Machine_Code 'File Name'" [Ref. 13]
would then be used to obtain the program file in a form
similar to the VAX macro assembly listing. The purpose of
obtaining this assembly code was to implement the filter at
the assembly language level or at least gain some insight as
to how the filter might be better implemented in bit-slice.
These "macro" level commands turned out to be too straight
forward for the "micro" level language of the bit-slice,
especially when considering the use of the registers for the
shifting, as will be demonstrated in the next chapter.

The six stage shift-and-add form of the filter was used
with the variables added to Figure 3.1 as shown in Figure

3.8. The equations for this implementation are as follows:

50

R At Ol

)

AR SRR R Aol AR TR AN &) L APPSR

Vst VIR s L A

2=y
[

@ VT

A X

¥ LS,
S

WY

AR

-

R

peppy saigetien yiTm JIB3TT4 Te3ITBTQ ¥I4 B8°€ 8anbry

»} - " . . -
3 l R i i
: + + -+
: N....N - 1-Z - 4
w CAIA - | 1A EA
v.-r
g v ¢
, s
o C R eV S ol ol) - -,»u.e - o e P e, £ L L 3 L b - A :A » T) -, Tede e e A - 4|M

|. LY '..‘-.‘_v..._.‘. . '\) R NI AP <, .,-.,-'_-__.._ 'I'I-l‘".." e T e

Stage 1 Y1=X(K) -X2 D

X2=X1)
X1=X(K)
Stage 2 Y2=Y1+Y14
¥Y14=Y13
Y13=Y12
Y12=Y11 d
Y1l=Y1 5
Stage 3 Y3=Y2+Y23 4
Y23=Y22 ¥
Y22=Y21
Y21=Y2 \
Stage 4 Y4=Y3-Y31 :
¥31=Y3
Stage 5 Y5=Y4-Y41
Y41=Y4
Stage 6 Y (K)=Y5-Y52
Y52=Y51 .
¥51=Y¥5 .
R
For ease of understanding the equations, each of the six p.
adder stages are printed in bold face type. The equations
which follow the adder equations are used to obtain values g
for the unit-time delay variables. For example, in the ;
Stage 1 adder equation, the variable X2 represents the value '
~
of X(K) delayed two units of time. To obtain the value for S
ANy
X2, the two equations which follow the Stage 1 adder ¥
equation are used, as shown in an example in Figure 3.9. 1In
this example, at time t, X(K) is equal to 5. Two units of ?

time later, at time t+2, the value of 5 has been 'shifted'
to the variable X2 in the adder equation.

A structured Fortran programming approach was used to
implement the filter, at this point in the development, with \
the program as shown in Figure 3.10. This approach offered
many advantages. First, by breaking the different

components of the program into a main calling routine, *

52

<
Y
<

3
Y
“w

L S T S R S N e P NP
I A R A U RNt SRR WL Y __--\,\n’.‘(',_d',‘- e AT T T

RPN AN AN A AV U u T T T T TN VN IW WU OV N TR O N S Fah iaf tad a8 rag ¢ 8 Aah tnd a8 Vol oot i Gud taR Wol St Sal Vol Sol Sl o ate ol A

PR AR,

Data Segquence

time t: X(K)=5
time t+1: X(K)=8
time t+2: X(K)=10

- . o e

-

e

Initial Conditions
X1=0
X2=0

.

ime Sequence

t t+1 E+2
Y1=X (K) -X2 Y1=X(K)-X2 Y1=X(K) -X2
. =5-0 =8-0 =10-5
' X2=X1 X2=X1 X2=X1
) X1=X (K) X1=X(K) X1=X (K)
o =5 =8 =10

Figure 3.9 Example of Stage 1 Equations and Numerical
Representations for Time t Through Time t+2

53

R TR AR AP O -"J “, -'_-/"-‘ .J'-l"f'f'q‘-
."'.‘ "\f“f‘-‘ _- .)‘- ('.".r.‘ L . o R ’ -.‘i\\'ﬁ \‘-

\ R R R 3 2 ab tay o YOW LW LUSTUY M , ¢ g2t da" \ YT WU YUN * fat gat RS’ N R U . - ty B0 §%," ey WA A

[+ THIS PROGRAM IS A REPRESENTATION OF A 13TH ORDER BAND PASS FILTER

REAL *8 X(100),¥(100),T(101)
INTEGER N

[¢]
[)
)
)
[}
[)
)
)
[)
)
)
3
[}
[)
]
[}
1}
)
1
1
[)
[)
)
1
[]
)
1
)
[)
)
[)
[)
)
1
[]
[}
]
]
3
)
)
1
[]
]
[]
[)
)
1)
]
[}
(]
1
]
[}
[}
(]
)
(]
]
[}
[
[)
1
1]
[}
]
]
]
1
(]
]

SUBROUTINE INPUT (N,X,TIMEl) :
REAL *8 X(100),F,FS,TIME1(101) .
INTEGER N,K
N=100
F=3, 58E6
FS=1. 43257
TIMEL(1}=0,
DO 100 K=l N
THETA=2. *3. 1415926 F*TIME1(K))
X(K)=SIN(THETA) .
TIMEL(K+1)=K/FS)
100 CONTINUE
RETURN
END
c amea - o 2 o 0 0 e cmcase
SUBROUTINE FUNCT (X,Y,N)
REAL *8 X(100),Y(100)
REAL *8 X1/0./,X2/0./,Y¥14/0./.Y13/0./,¥12/0./,¥11/0. /,¥23/0. /
REAL *8 Y22/0./,Y¥21/0./,¥31/0./,Y41/0./,¥52/0./,¥51/0./
INTEGER K,N
DO 50 K=1,N
Y1=X(K)-X2
X2=X1
X1=X(K)
Y2=Y1+Y14 .
Y14=Y13 ,
Y13=Y12
Y12=Y11
Y1l=Y1
¥Y3=Y2+Y23
Y23=Y22
¥22=Y21
Y21=Y2
Y4=yY3-¥31
Y31=Y3
YS=Y4-v4l
Y4laye
Y(K)=Y5-Y52
¥52=Y51
¥Y51=Y5
50 CONTINUE
RETURN

L

END)
C Bt mucncnc et an o e n o v n e e e o - o ® - - - - -
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 X(100),Y(100),T(101)
INTEGER I,N
DO 200 I=1,N
WRITE (13,220) I,X(I),I,¥(I),I,T(1)
220 FORMAT (' X',12,1X,'s',D17.10,5X,'Y',12,1X,"'=',D17.10,5
5 ‘T',12,1X,'=',D17.10) _
200 CONT INUE §
RETURN b
END (

Figure 3.10 Fortran Program of FIR Filter in Shift/Add Form

54

‘0
Y

T e T A T A O T AL S N,
(J (3 . . R 3 - . A A .

input, function (the filter), and output, the program was

easier to write and easier to understand. Second, it
allowed the section to be later implemented in the filter
hardware to be separated from the rest of the program.
Finally, it allowed changes to be made easily to the input
and output routines drring the many phases of development
and will be useful for any follow-on work that might be done
with this filter.

After completing and running this version of the filter
implementation, the results were found to be the same as the
rational polynomial form of the filter. In fact, these
equations were transferred to the "DSL" program as shown in
Figure 3.11 and the graphs produced were identical to the
rational polynomial graphs shown earlier. The problem
encountered in running the filter in Fortran on the VAX was
that although a stream of putput data was produced, there
was not the quick visual reference as provided by the "DSL"
program. The Fortran program proved to be useful later on
however, when Root Mean Square (RMS) values were desired and
also when flags were added to the program to determine
overflow conditions as will be shown.

D. FIXED POINT IMPLEMENTATION AND QUANTIZATION NOISE

EFFECTS

The next and final step before being able to implement

the filter at the bit-slice level was to implement the

55

" N

N~

I AN
X WA M i)

Y =

. N N U TN N LN
f\- o [O, 4 .r‘.r L -'_-I'_.F‘.\v‘_‘a‘\- A

., & 4 :' v

", a"

D S

i

. 1% P XA

<y

" .

5 T3 >,

v Aty A S e %o

R S
»

RS 77

U
-

TITLE DIGITAL FILTER(REAL TIME RESPONSE) SN,
INITIAL Y=0. .
INITIAL X1=0.,X2=0.,Y¥14=0.,Y13=0.,Y12=0.,Y¥11=0.,Y23=0,,6¥22=0.,Y21=0. v
INITIAL Y¥31=0.,Y41=0.,Y52=0.,Y51=0. i
INITIAL X=0. - X
CONST B=1.0
CONST F=3.SBE6 7
CONST FS=1.432E7 2
DYNAMIC -
TIME1=K/FS ;
THETA=2. *PI*F*TIME1 ,
X=B*SIN(THETA) ¢
Y1=X-X2
x2=X1 s
X1=X ,
Y2=Y1+Y14 g
¥14=Y13 f
¥13=y12 ’
Y12=Y11 ~
Y11=yl
¥3aY2+Y23
¥23=Y22 5
¥22=Y21 -3
¥21=y2 N
¥4=Y3-¥31 N
¥31=Y3 Coo
¥5=Y4-Y41 ~
Y41=Y4 &
¥Y=Y5-Y52 -
¥52=Y51 X
¥51=Y5 .
RENAME TIME=K ¢
CONTROL FINTIM=100,DELT=1. K
PRINT 1.,TIMEL,X,Y .
SAVE 1.,TIMEL X, Y ’
GRAPH (DE=TEK618) TIME1(UN=SECS),Y(MA=5)
GRAPH (DE=TEK618) TIME1l(UN=SECS),X(MA=4)

LABEL OUTPUT OF DIGITAL FILTER -
LABEL INPUT TO DIGITAL FILTER -
END S
STOP 2

\. U

Figure 3.11 0OSL Program of FIR Filter in Shift/Add Form

]
DR ¥

s

" 0 -
v e 8

4
A A

my

)'}4

R - . w WA ¥ ._',_-_. _‘...-_., RN) N e fe N L -"’-.-.')‘..'_ -".-_ -',--,‘:‘..'_.',. ‘. _--J."_-‘C.- S
R A T o O N I I A T R TSR A N SR D SN I IIAA RS I I s,

"6 e sn 4 L

filter using fixed point precision arithmetic and to observe

the effects of truncation noise introduced. Although the
29203 evaluation board allowed for 16 bit precision in its
ALU processor, Dr. Lee imposed the additional constraint of
implementing the filter in bit-slice using only 8 of the 16
bits on the 29203 evaluation board. The purpose for this
change is to allow for easier implementation in discrete
random logic hardware at a later date.

Up to this point, the computer was assumed to have
infinite precision with no effects due to converting from an
analog signal to a digital signal through sampling. This
conversion from a smooth curve in the ideal case to‘a signal
which has been restricted to a fixed number of signal levels
or quantization levels in the sampled case introduces what
is known as quantization noise. 1In the floating point case
the precision is assumed infinite, but when comparing the
RMS value of the floating point 100KHz 10*sin(Theta) input
signal to the ideal RMS value (0.707 of the magnitude), the
error is found to be 1.087 or approximately 15%. (Note:
The RMS values were obtained by inserting instructions in
the Fortran program to add the squared sampled values over
the period of a complete sine wave, taking the average of
the sum and then taking the square root to obtain the RMS
value.) When comparing the RMS value of a fixed point
100KHz 10*sin(Theta) input signal to that of the ideal

signal, the error was found to be 1.531, a difference of

57

.....................................

. - A] " p s *ate"m a* . u - U R N S S L
T W AN NN "l'.'vl‘" NN O, (L L N R A R R S SRR C O A e
e ! g g™ | . L it - . {3 S Y » » N ., N B

et bl W el Yol “a® Y2t 2l *al “al.fe® "2t "a¥ “at. val Yal Vol tal Hal g8 W0 Tt ¢ Aal Maf ‘ot _‘ay ||I.l.i.\.-.Q'l'l.n.t‘h.-'l.u't.u’x.-‘;',;..'.'
b - y 1 A

only 0.45 from the floating point case. This difference of f
approximately 0.4 did not change significantly as the
magnitude of the input signal was increased. Although this

difference did not appear to be significant, the difference

P A,

between the floating point and fixed point signal input had

a significant effect on the output of the filter as will be

shown in the next paragraph. This data is presented in
Table I and is summarized below.
The major concentration of effort was spent in looking

at how the fixed point output of the filter differed from

'Il‘IJr‘

the floating point case. For the out-of-band floating point
signal, 10*sin(Theta) at 100 KHz, the steady state RMS value
was found to be very nearly zero at 0.391 x 10~3 which is o
shown to be negligible in Figure 3.12. For the same signal R
in fixed point, the noise is found to be significant, with

the steady state signal ranging in value from -9 to +9 and . i
with an RMS value of 3.86 as shown in Figure 3.13. The
noise which is introduced is first due to the limited number
of fixed point quantization levels, with the éignal ranging By

from -10 to +10 in increments of 1, which also causes the

sampled signal to be truncated. To be exact, the signal

Ay -

ranges from -9 to +9 due to the fact that the computer

o

a8, 8

truncates the signal to the next lower number in the

-1-0.

positive case and to the next higher number in the negative

g e IR
P
i

Y

case. It is this truncation of the signal which introduces

~ 2

's s

58

R

}‘

F ALY e e s
0 A BTSRRI
"l'n..‘. M oy

A ~
. e
&

R

LNdINO SWY

6°¥ v°g S°¢ €°¢ 9y INIOd QaxXId

P

oS

INdLNO SWH b

96¥ 1-396¥° Z-496%° c-F9VZT° €~AT6E° INIOd SNILVOI1d
TVIAI 3 ONILVOIJ o
$V°GT $V°ST $V°ST $V°ST V°ST NIIMIAG FONTUTIIIA -
Py,

QIXId 3 ONIIVOTL “
9¢* 8¢ 1ve Iv° Th NIIMIFE FONIWIIJIIA "4

Pd

rYy.
06°9.68 68°L68 6L°68 PSP L0°L ININI SWH IVIAI o m...u
m .

Id QIXId s
15°86SL 0S°6SL 6S°SL 82°LE 6€5°G INANI SW QITIWYS A

Id ONILVOTd
L8°86SL 88°6SL 66°SL 69°LE £€86°S LOINI SWY d31dRNS

I
x
;
5
\nv
Z
&

<

NOILONNJI LOANI

)

o,

SINIVA INdINO ANV ININI SWI

L) \‘,}*‘\‘

I FTIgYL

~4 - o
) -t‘.. ‘u 0

)
e

ZHM00T 3® (BI8UI)IUTSA0T 3JO 3Induj
Y3rm Buraa3lTry 3utod Butjmord 3o ydeag gg 21°E 8anBry

1SS »-01) LB
» oy L ”e ” 8’0 "o

'\ A A

L 2°L ”e 9°s LM

L 4 A ' L

—
-
R
*
SHIS242 L0/50/88

60

-52°8-

N]
50 #
]

-

p

¢
- .
e
(]
&
Ln
[— — g " %
° - — - ‘
—
——
S E - »; -
‘
- N
4 N
——— Y
x [}
< >
M - 4

)
TINE1 (10 SECS!

3.2

*/\

DSL Graph of Fixed Point Filtering With Input

2 s 8

- A 2 g & 4

1.6

|
,'

of 10*Sin(Theta) at 100KHz

|

m
P S g - X
: "
m <

- o

&
® & < N < L 3 o ™ Bd J y
. 1] [] [

o [\
- >3

[-T- '
c W . 1IN 8/50/50 J
¢
"
.
(]
'
-
L]
N
Y
61 S
kY
\
& N Y, A_' A_A_L J__L‘A_'.'A‘A"A.")L \.x.’- m.'f.su& I-‘f.s.p;_:_;__u‘q- it 's._'.'-{' i A A o

- TR T I T . ca' de’ et hat f2' St ¢ aad gat gaf Bat @ @b a8 gt p ¢'e 8 P a e A ts 8ta 4 p 0 ¢t o a0, al, At at APV AR AR Vel tal Sab Vel Tal ‘el To8 Fof

additional noise. As the signal was increased in value, for '
the floating point case, the signal-to-noise ratio remained 4
constant. That is to say, for every 10-fold increase in the
signal level, the output noise level was also increased by
10-fold. Although this is not an analog signal, this seemed P
to correlate with the statement made by Gold [Ref. 14] that

every analog signal will have some finite signal-to-noise

ratio. Therefore, increasing the accuracy by which the by
signal is represented will only increase the accuracy by

which the noise is represented as well. 1In the fixed point | .
case, however, as the accuracy of the signal representation
was increased, the output noise 1level remained fairly
constant with an RMS value ranging approximately between 3)
and 4. As shown in Figures 3.14 and 3.15, this noise
becomes less and less significant as the input signal is
increased and therefore the signal-to-noise ratio is also 4
increasead.

With this information in hand, the next problem was to ‘
determine the'maximum signal which could be used as an input
to the filter without producing an overflow, using the :
available 8 bits of accuracy. Using 8 bits, the integer
signal 1levels could range from =128 to +127 in the two's E
complement representation. This meant however, that with (

the gain of 23 produced by the filter at the subcarrier :.

frequency of 3.58 MHz, the maximum input to the filter would

be approximately 5*sin(Theta). For the maximum gain of the

[N

P

62

----- U L) L R N N N o T W W W P I AR
: e e A A e S D L NN

S N N O
Y N

-t LA e 2aid : 4 ¥
S ool T S R A L A M 2 XD el P a NE X2 E IR SN e .
- e -~ e s ¥ v

P

vy

4.. - o Ve e - o

ZHX00T 3B (B338Yl)UTSe/21 JO
Indup y3Tm Butia3(rd jJutod PaxT4 Jo ydeag qgg h1'E aanBy 4

(S13S o-0L) LIS

..-.[N.-h v..u Q.-m ..-v .'.1 NH Q-.N 0.-— 80 0
i
. 4
4 o m
k 3
- d M
-
it
-9
I o
= # :
: Z
L83

A

ZHMNOOT 3® (e33ay]l)uTS«00.21 JO

3ndur y3tm Burtaslrrd Jurod pext4 go ydeag 15g S{'E 8anBri ..
1S335 +-0L3 LBIL
(Ny] L rs 9°S g 4 o°r 2°C 4 $°s | o] ”0 oy
e Iy A A A ' i - . A L .
e I
L] ﬂ ! - .~
2

-

98-

1
s
WIS B/
=

OO LU R O YO MO ROAOR W WY WY R RN R R Y Nk 0. g VA avh gt st APRS atat R ta0atotat et tutotet ty ™ U

filter of approximately 30, the maximum input signal would
have to be even less. As seen by the previous discussion,
this ,d would not provide the necessary accuracy needed in
quantization levels of the signal. To compensate for this,
the signal was divided by two after each adder in the
filter, as shown in the "DSL" program of Figure 3.16.
Dividing by two allowed implementation at the bit-slice
level using shifters rather than expensive and time-
consuning dividers. Now with these dividers in place, the
maximum input signal to the filter as well as the number of
dividers actually required needed to be determined. To
accomplish this, the Fortran version of the program was used
and a flag was inserted after each adder to determine if an
overflow condition existed with a given input magnitude.
The magnitude was incremented in steps through the use of a
DO LOOP in the main calling program. This program is shown
in Figure 3.17. It had appeared, using "DSL", that a
maximum signal of 127*sin(THETA) could be used with 5 of the
6 dividers in place to produce an output signal of
approximately 91*sin(THETA) without producing an overflow
condition as shown in Figure 3.18. However, using the flag
program on the VAX Fortran, it was found that the first
adder limited the input signal <o a magnitude of
63*sin(THETA). Anything above this magnitude would cause an
overflow condition to occur. This resulted in an output

magnitude of only 45*sin(THETA) which meant that the 8 bit

65

........

A "l‘.-

-
<

LI
- ‘_‘~

P

Bt R LA™ =) N

P AA

o<

Y]

>

>
IR)

v

N b

s

LA

X
[

"1" i, :,/‘-. -

"=

AP e T T e PR L

")

a8 o §.' 8’
ey en b tta b et et et Rt YR OO RO A
T O ORI O ORI DA STV A YO W R I} VS) .

TITLE DIGITAL FILTER(REAL TIME RESPONSE)
FIXED X,Y, X1,X2,6Y14,Y13,6Y¥12,Y11,Y23,Y22,¥21,Y31,Y41,752,Y51
FIXED Y1,Y2,Y3,Y4,Y5 4
INITIAL Y=0 .
INITIAL X1=0,X2=0,Y14=0,Y¥13=0,Y¥12=0,Y11=0,Y23=0,Y22=0,Y21=0)
INITIAL Y31=0,Y41=0,¥52=0,¥51=0
INITIAL X=0 y
CONST B=63.000 Y
CONST F=1.ES
CONST FS=14200000. 0 ,
DYNAMIC
TIME1=K/FS .
THETA=2. *PI*F*TIME1 X
XX=B*SIN(THETA) B
X=INT(XX)
Y1=X-X2 '
Y1=Y1/2
x2=x1
X1=X :
Y2=Y1+Y14 .
¥2=Y2/2)
¥14=Y13 -
Y13=Y12 '
Y12=Y11 ;
Y11=Y1
Y3=Y2+Y23
¥3=Y3/2
¥23aY22
Y22=Y21
¥21=y2
Y4=Y3-Y31
Y4=Y4/2
¥31=Y3
Y5aY4-v4l
Y4laY4
YaY5-Y52
Y52sY51
¥51=Y5S
RENAME TIME=K
CONTROL FINTIM=100,DELT=1.
PRINT 1.,TIME1,X,Y
SAVE 1.,TIME1,X,Y
GRAPH (DE=TEK618) TIME1(UN=SECS),Y(MA=5)
GRAPH (DE=TEK618) TIME1(UN=SECS),X(MA=4)
LABEL OUTPUT OF DIGITAL FILTER
LABEL INPUT TO DIGITAL FILTER
END
STOP

N B

Py 3 X TR e W, W

gra, ", Nyt ey

Yy % % Y

Figure 3.168 DOSL FIR Filter Program in Shift/Add Form With
Dividers Added

N

66

&L EE

{_

L}
.

b g Y
W

PR

vA®

[4.

N

"c\

o

J‘

.’

anag

mis
(NTRQEA X{ 1001}, Y[100}

I-lAL I‘H 1)
WTEOER W, INOVE.KF, 5, BINCA
uuu .
BOMMAT (*1')
0% 40 uCased, 1o
Sesinca
CALL TMPVE (M.X,T.8)
WY

[(&, 0,0, L0OVE, XF)
CALL OUTIVT (X.7.3.0, Ju0VE)

L LU L)
11 { taove. 9. Ol.ﬂﬂ
Do iy

S nss

18 & a82

QM OF A 1ITH OADER SAD PSS FILTIR

190

SUBAOUTIWE SHEVE (M. X, TINEL %
RE(100), F. 06 . TINSL(101), fIlI'A

xnuu 1(100)

1TRGER

TUETAS), 03, ttllill""ﬂ-t(x)
AX| R} o LOAT(ll‘l W THETA)
ER)sIap(RE{ K))
TINEL(Ks])ol/ 08

e

)
x1/9/,)/0/ lll/‘/ ¥11/0/.¥33/0/
'SIM.YI!I?‘.'"/DI Y4120/, ¥83/0/,%81/9/

CALL OV (n 1uove, 18100)
i1 (1w 9.0
o T
no iy
CALL AMITT (¥1)
nen1n

x3
XieK(R¥)
TasxioMre

iTLAGe3
CALL QURILR (T2, IM irtas)
i 4 (lml.ﬂ 0)

D 3
CALL llll‘l i)
Yi4a¥13
Y13sv12
Yilevll
Yiletd
YIeYIeN2Y

1TLAG)
CALL OVArFLO (Y3, xm 10)
114 umo:s) TMEN

o' e [3:1)
Y2dev12
Y32e¥31
vatera
Yeors-y31
1TLAGe4
CALL OVRFLO (Y8, Ivova. 171a3)
I7 (1uova ot o) TuEM
o0 To 60
Ot terr tre)
¥31e73
seri-ve)
S omee 130, Ve, 10040)
¥ (140VA. 0T 0) Tz
90 To 40
el e ()
r(ul-u-vu
IM-

CA
114 (lWI QT
iy

(Ysl.l)- INOVR, 1¥LAG)

no
Y31=¥4)
Y$1a¥S
COMT IS
RETURM
no

120
100

SUBAOUTINE OVTPUT (X.Y,T,8.K7, INOVa)
BEAL T(101)
lmn X{100),¥({100)
MTEOSR 1.K8,8
u U OR .
WRITE (13,230) INovR.»
FoAe | ovnu.m u n.m' 12,1%, ‘WiTH Ba‘,17,
) 3%, 'MD KEe', IS)
DO I¥
00 200 e,
bllﬂ (u no) x lll' 130131 r“;
l { .18, 88, 13.1X,
s 3 u..x.
COMTINUE
ASTURN
oo

Twti8, K,
.n1 u;

SUBROUTINE OVRILO (1IN, luwn.uum
INTSOBR 1IN, lNVl.lﬂ-M
17 (30 07.137) THEN
1MOVRe I FLAD
Bo 1y
ASTURM
[]

SUBROUTING SMIFT (1SMIFT)
INTEGER 1SMINT
10MITTe18uITT/2

ARTURM

Figure 3.17 Fortran Program of FIR Filter
With Dividers and Flags Added

o

PPN N

"

f".

»

67

T NS I NN AT

[P0 P I T I T AN
‘ v, 5\"'.'1.: ', ,,'i o',

in Shift/Add Faorm

:
3
5
5
W

pappy sSJapT1aTQg
anT4 Y3TM WI04 PPY/IITUS UT 33ITTA UITM
asem auTg Jo BurasaTTd jutod PaxTd JO ydeag -1sg 81°€ @inb14

15335 »-01} —.W:M

[N 2°L 2] 9°S ey o'y 2 vwn o..- o.»c 0°¢
[4 i 1 L ! 4 G.vu 4—-A
. , ¢+ 19 { 1 . .
vp.
_ _ i I t t _4 L 1 ! -0G - .ﬁ
4 Il
{ g [| f a2 -
[
. f
! []
’
* [
] ! !
4 _ =
]
¢ 11

i

PR

oo

48/82/%4

0C L3St

.
N

»

e
=

.
<

oA

£

A

e
v e

T I
L0

\
L

M

AR

~

&

o .S

Vet

M

AR AN RIATUY U Sat b » Saf oy b . (RN R Ry 9, 4 (PLAURID U UV T UWL 1, g% e UTVy +,

accuracy of the bit-slice would not be fully utilized. The
dividers were then removed one at a time in a progressive
manner through the filter and it was determined that with
the 1limiting input magnitude of 63*sin(THETA), the fifth
divider was no longer needed in the filter. This meant that
the maximum output magnitude of the filter at the subcarrier
frequency of 3.58 MHz was approximately 91*sin(THETA) as had
been previously predicted by the "DSL" program. This limit
could have been determined by simply adding the magnitude of
63 to itself to realize that it would produce an overflow
condition of 128. It was thought, however, that the adding
and shifting of the filter with the added dividers might
produced some higher limit. Indeed, if the frequency was
varied slightly from that of the in-phase frequency of 3.58
MHz (e.g. 3.5 MHz), it was found that a slightly higher
input magnitude could be used without producing an overflow
condition.

This concluded the necessary implementation of the
filter at the Fortran level and its accompanying analysis.
Without this step in the design process, the implementation
at the lower level language of the bit-slice would certainly
have been more difficult. Before leaving this section, it
should be pointed out that one further step was taken in the
analysis of the quantization noise introduced by the filter.
The rational polynomial form of the filter was changed to

run as fixed point and the output data was compared to the

69

> "f‘f;'.r:.r"f"f"-"f"f,‘f\r;

) g

Ve LAl

e

LA By]
' {—

.- 'l

o d

»’

g 15\":""-..
L A)

shift-and-add fixed point output data. Although it appeared

from [Ref. 34] that the rational polynomial form of the
filter might introduce additional quantization noise, there
was no observable difference in the output data. This may
be attributable to the fact that the coefficients of the

filter are already of integer form.

70

[N PER P N

Iv. T-SLI IMPLEMENTATTON

A. INTRODUCTION

The Am29203 evaluation board was used to investigate the
effectiveness of implementing the FIR filter in a bit-slice
design. The Am29203 evaluation board is a tool whereby a
designer may learn and develop the skills needed to design
with components of the Am2900 family, keeping in mind that
the board would not be used in an actual implementation.
AMD offers excellent documentation of the board through its
Am29203 Evaluation Board User's Guide which offers many
step-by-step examples of using the three major components of
the evaluation board. The function and utility of these
components were briefly introduced in Chapter II. Once the
bit-slice components and the microprogramming of these bit-
slice components are fully understood, the user may then
develop and analyze microprograms through the use of a
monitor using a screen-oriented terminal. The relationship
of the 'monitor' to the system is shown in Figure 4.1. The
'monitor' should be treated as a separate system from the
primary system and except for the terminal commands, its
architecture and details of execution should be transparent
to the user. Using the 'monitor' commands, the user is able
to load and display main memory, micro memory (control

store), and registers and then run a loaded microprogram by

71

U J)

AP AR A AR

Yool

"‘ _‘_JIH.

y ’;5- j' fl-".- 'y

o

LA AT
? I'- 1 F

PAOOEL A

!

l‘i.‘l\'\\‘ -l -

T TN X » - Ao pLA AT “A PP Pl i el « Rplrigam.t TP

v, .y
\’n --. A

T W - - o -
- ORIt

A]
~
" .

[(2°'E *d:z *38y] uocTtieztrueBig paecg uartrienteag T°'H aanbry

\w\-‘\':.'(-,.‘.\ >

e iat alh gt cat, alo ate ghg gln g%s oY

314 L1,

T AT
L . L8 e »

i

=

3
72
s

% I N,
o

WILSAS HOLNOW

8
g
:
)

- "

AR O AP M ar N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
i

Voo 5% Y ¥

T

|ﬂ|-
%

“

R
o n" " s

v -

N

«

.
"!‘A'.‘I‘.‘l‘

T VI T N T L L R T T e ey WY TR WY ‘2 8" AwL. vy, W - AW WY - W

R
A
stepping through it or by using set breakpoints. [Ref. 7:pp. ~f
4.2-4.9] {:
Previous work done in the area of bit-slice at the Naval K
Post Graduate School by Morris Bennett Stewart II [Ref. 15] él
used a dummy terminal for entering and analyzing programs. r‘
The disadvantages to this approach are that programs must be 5‘
entered by hand, greatly reducing the scope of the programs ;;
which can be entered, there is no memory capability for :
retaining programs and there is no method for printing data. ;'
The preliminary work which therefore had to be done before Eﬁ
implementing the FIR filter in bit-slice was to emulate the E‘
dummy terminal using an IBM PC and the commercial software ‘
Smartcom II. This proved to be a somewhat difficult task
due to the lack of documentation provided and the lack of E
expertise in this area given by personal conversation with ;
AMD. Once implemented however, the programs could then be Eé
created using a personal editor to write ASCII files and r:;.
stored to disk. Then these files could be downloaded to the ;;
Am29203 evaluation board using Smartcom II. This greatly R
facilitated the ability to run, analyze and change the FIR {2
filter microprogram. The additional feature was the ability 3
to record a working session or print out data stored in E
micro and macro memory through the use of the printer. A E'
v

brief explanation and documentation of implementing the

2
-

monitor through the use of Smartcom II is provided in

Appendix A.

73

~
~
A
‘ N
R
-
~ -
e
N
S
N

. . 1g 29t 2% 2 vy 1 Pa¥ apaabale v At oy Sotatad 0 8'a §'s 442 'Ata A2 BV Q!.-Qll!v'i

With the above hardware and software in place, the FIR
filter could now be adequately implemented using the Am29203
evaluation board. This chapter will describe the use of the
major components of the evaluation board and then present
the macro and microprogram used to control these components
and thereby implement the FIR filter using bit-slice
methodology. Finally, a time comparison between Fortran

implementation and bit-slice implementation will be given.

B. USE OF EVALUATION BOARD COMPONENTS

Chapter II introduced the basic architecture and
operation of the three major components of the evaluation
board which are directly controlled by the micro word: the
Am2910 12 bit sequencer; the 16 bit ALU consisting of four
4-bit Am29203 CPU slices; and the Am2904 control unit. A
good understanding of these components and the micro fields
used to control them are required before a designer can
write any microprograms using bit-slice. For example, a
simple add at the macro level may take several steps in
microcode. Although a novice designer may be able to "get
the job done", it takes an expert designer to truly optimize
and get the full time saving benefits of the microcode. It
has been estimated that it may take fully two years or more
before a designer will be able to design easily using bit-
slice methodology.

The Am2910 field can be taken as an example of how the

microword controls the components directly. The basic

74

Ry,

-y

AN S NS

LS LS

NN

concept which must be understood about the Am2910 is that it
simply sequences the microinstructions, primarily through
the use of 1loops, counters and stack register. The
communication interface with the Am2904 provides the
necessary condition code status for the conditional
branching. The function of the Am2910 is probably best
understood by studying the sixteen Am2910 instructions shown
in Figure 4.2. These sixteen instructions are represented
by the sixteen hexadecimal values 0-F and in the case of the
Am29203 evaluation board, make up the field of the last 4
bits of the evaluation board's 48 bit microword. Although
it appears to be a fairly simple concept, [Ref. 7:pp.6.1-
6.18) uses an entire chapter to discuss the use of this
field and yet barely even touches on the subject of the
interrelationships required between the Am29203 and Am2904
fields.

As can be seen from the above discussion, it would be
impossible in this format to offer a brief explanation of
each of the fields and overlaid fields of the 48 bit
microword of the evaluation board. It is sufficient to say
here that the Am29203 performs the boolean logic operations
for executing the desired arithmetic or logic functions and

the Am2904 provides the status testing and shifting of the

operations.

75

\
S
\
"
-
t
"

- -

W I AR P

)
.
L4, N

CAZ T

’,
o g I)

PRV RS

e

a
-\.
RS
»
o
f
b

0 JUMP ZERO L2}

1 COND &8 FL (CH)

“ sTACK
[1]

] [od

Pt "

™ 2

Ty (2]

3 JMP MAP {BAP)

3 COND Aiwe PL (CFP}

=

4 PUSH/COND LD CNTR (PUSH)
4

sTack
™
0]
PrY) nECISTERY
° COunTER

G COND JUMP VECTOR ICV)

7 COND JUMP R/PL (IAP)

8 COND &8 N/PL LBRP)

Exees

S REPEAY LOOP, CNTR » 8 (RFCT)

STACK
s
ALGISTEN
COUNTER

® AEPEAT PL,CNTR » 0 (RPCT)

COunTEAR
0 wocn
"
2]
(2]

12 LD CNTA & CONTINUE {LDCT)

o

10 COND RETURN (CATNI

STACK
]
" L]
[*] (]
9 ”
w [}}
L3 ”
[}
.

14 CONTINUE (CONT)

16 THREE-WAY BRANCH ITWSI

sTacK
wusi

AMGISTIAY
COUnTIR
n

2]

13 TEST ENO LOOP ILOOM

SYACK
L1} s
2
[2]
"
L]
"

Figure 4.2 Am2310 Instruction Control Flow CRef. 7:p. 6.71

et et At gt LT AT
A N ST AT A B

N
DA

. . . ‘e Yo Ya' R
. 1 YV AR ER RS AR AN AR AR UV AR R R IR T WU U P 4 g " 80,0 haQ tot Vol valt >t val ot aby)0

- -

WV

LS,

C. BIT-SLICE IMPLEMENTATION OF THE FIR FILTER

l. General Goals

The portion of the Fortran program implementation of

.3

Y L

> ")

the FIR filter to be implemented in bit-slice is repeated
here in Figure 4.3. The DO loop portion of the code may be
somewhat of an artificiality, imposed by subjecting the

filter to a 1limited number of data points for testing

purposes, but was necessary in the testing of the bit-slice 4

code as well.

It was felt that the major goal of implementing this

o P Py By Py]

filter in bit-slice would be to retain as much data in the
sixteen Am29203 general purpose registers as possible. This
would greatly reduce the most time-consuming task of reading -4
and writing required data to be manipulated from RAM. The

ideal situation of course would be to retain all of the 13 A
shifting (delay) data points in the general purpose 5
registers of this 13th order filter. This seemed somewhat i
impossible since generally only 7 of the 16 general purpose

registers are actually available for general data

manipulation. However, by not using the standard macro ;
instructions provided with the evaluation board, it appeared <
potentially possible to free up 15 of the 16 general purpose
registers for this specific application, with the 16th
register needed for the macro program counter. With this in y
mind, the filter is rewritten to use the registers as s

variables in the delay equations as shown in bold type in

77

PP P ST S Yt
~"1“‘-'-" ’\'-\. "

hd . . -A - ~- h * - - e > .-.. .'- ;- -> - TeJT l. -
AN A A SR S
" N

AOACAR N
4

"

a0 a't

LW

14 o

383774 ¥[4 3O 8UTINOY uel3lacy g'H 8anBry

SA=TGA
TSA=ZSA

ZSA-SX=(J)Xx

HA=IVA
IHPX-HA=SX
€XA=TE€X
TEA-€A=PX
ZX=1ZX
TZX=2ZX
ZZR=€ZX
EZR+ZR=ECX
TX=TTX
TTA=21X
ZIX=€1X
ETA=FTX
PIX+TX=CZX
(1)X=TX
TX=ZX
Z/TX=1X
ZX- (I X=1X

N’'T=)d 0S °d

NINLIT
AONIINOD

N’ YIOFINI

/0/TSK'/0/2ZSX'/0/TvX’'/0/T€X'/0/TZA'/0/ZZX ¥ADIINI

/0/€2R’/0/TTA’'/0/ZTR ' /O/E€TR’/O/HTR'/0/ZX’/0/TX YIOHINI

SX'PRAE€X’ZX'TXA' (00T)X’ (00T)X ¥HAOAINI
(N’X’X) IONNd aNIINoOYdans

'I.l'l'nl-"ll""l"l'-"'llll'll-l'-'l—ll"ll-l"l"'-l-l"""'l"'|-I.

PNt ISP § LR

I%

AR 8% 4 G AAAI

78

RS
AR
o 2]

Y
L%

>

BT am et . .
2B e s

o

Aan Buts,

., - . .
e
PPNV S WSS

oY Oy

X

- - . 'e ot * . »
A At A

S a e

[P A

. e
N, PP, 0. SO RPN

St P
RN
Lt

-

el f,_.;__J:_'r,.-' X
20 L 2N 2 NN YO, P L.

f ol Pa
NI IO

%

v
a M,

AR

P S o g

» A A

)
)
)

Figure 4.4. This would then leave two registers available

for incoming and outgoing data from RAM. Now looking at the
implementation of the new version of the filter, it is seen
that 6 variables are still required for each of the six
stages of the filter and one is needed for the input to the
filter. However, it was discovered that by alternating the
names of the variables, the number of variables required
could be reduced from 7 down to 2 as shown in bold type in
Figure 4.5. This meant that an input to the filter could be
read from RAM, then entirely manipulated in the general
purpose registers through the six stages of the filter, with
the output of the filter then written to RAM. These changes
reduced the total number of reads/writes required to RAM
from 38 down to only 2. The specific time savings will be
presented later in this chapter.
2. it-Slice Macro and Mic s tions

In the design of the FIR filter in bit-slice, the
macro instruction and micro instructions were developed
somewhat simultaneously and it is difficult to separate the
two. However, logically the macro instruction for the
filter should be presented first. A typical instruction
sequence, using 30 points of input data to the filter for
testing of the <code, 1is shown in Figure 4.6. This
instruction sequence is shown as printed out by the macro
memory display function of the evaluation board 'monitor’'.

It displays the data in the form of eight memory locations

79

e R e R A N g St e T T

".F"'("J' f'."-'

o BV, (¥ ¥V

R2=R1
R1=X
Y2=Y1+R6
RE=RS
RS=R4
R4=R3
R3~Y1
Y3=Y2+RS
R9=R8
RB8=R7
R7=Y2
Y4=Y3-RA
RA=Y3
YS=Y4-RB
RB=Y't
Y=YS-RE
RE=RD
RD=YS

Figure 4.4 FIR Filter Using 13 Registers of the Am238203

RO=RC-R2
R2=R1
R1=RC
RC=RO+R6
R&=RS
R5=R4
R4=R3
R3=RO
RO=RC+RS
RS=R8B
RB8=R7
R7=RC
RC=RO-RA
RA=RO
RO=RC-RB
RB=RC
RC=RO-RE
RE=RD
RD=RO

Figure 4.5 FIR Filter Using 15 Registers of tha Am23203

» - . -

...............
AP I A L S R TR S S R R RS JPUL I
...............

>DM ADDR:0200

0200 - O1lFO0O OOl1lE 0000 3EOO FFOO €200 0300 3EOO
0208 -~ FBOO C200 0600 3EO0 F800 €200 0900 3EO00
0210 - F500 C300 0ODOO 3DOO F200 C300 1000 3CO0O0

0218 - EEOO C400 1300 3BOO EBOO <C600 1600 3AO00

Figure 4.6 Macrocode for FIRFILT Routine

per line. The first instruction, 01F0, is the actual

"calling" instruction of the filter and as an example, might
be given the macro instruction mnemonic of FIRFILT which
would represent the call for the FIR filter microprogram.
The first two digits, 01, represent the opcode portion of

the instruction and through the mapping PROM, maps to the

micro-address 0004 where the microprogram sequence of

instructions for the filter is located. The second two

digits, FO, represent the source and destination registers,

register F and register 0 respectively, to be used later in

the instruction register in the micro code. The next macro

instruction in the sequence is actually not an instruction

but is the hexadecimal representation of the number of data

points which follow. This number will be fetched to the Q

reglster it <he alcroprogram .evel and will be nused as a

counter for the number of data points to process in the

filter. The next 30 instructions are then the 30 data

points represented in hexadecimal form which will be

processed by the filter at the micro instruction level.

81

La ol LN Tt X

LTI AR ey

KK IRINEA RN) i LTI YOO TPL WP WP WPUT W WA W W T AT S UAP IARTAWN W PR TKIE RN PR B P St a0 gt ind 4 Q U

Now to run this macro instruction, FIRFILT, at the
micro instruction level, the macro instruction must first be
fetched from macro memory into the microprogram instruction
register (IR). The standard instruction fetch [Ref. 7:p.
9.7] is used here and the three micro instructions needed
are shown in Figure 4.7. A detailed explanation of all
micro instructions is provided in Appendix B. Basically,
the first instruction loads the instruction to the IR, the
‘ second instruction updates the PC (macro program counter

located in register F), and the third instruction maps the

instruction to the microroutine which will execute the
instruction. Two notes are made here. First, this standard
instruction fetch also places a copy of the instruction in
register D which may be needed in some microprograms. 1In
this case however, it will be overwritten by the filter
microroutine. Secondly, the Am29203 chip allows the
fetching of an instruction and the updating of the PC to
occur simultaneously, however the architecture of the

evaluation board does not [Ref. 7:p. 9.8].

IFETCH: 0200 - O084F 3FD6 FFDE
0201 - 0044 7FFF FFFE
0202 - FFFF FFFF FFF2

Figure 4.7 Microroutine IFETCH

82

As stated earlier, the instruction is mapped to the
micro address location 0004 and this microroutine is shown
in Figure 4.8. Although these 49 1lines are one
microroutine, it is broken down into several sections and
labeled with mnemonics to break this 1long routine into
easily described sections and to create an easy method for
locating a particular section of the microroutine 1n
Appendix B. This microroutine is described in its mnemonic
labeled sections as follows:

LDCNTR--Loads the Q register with the counter as taken
from macro memory. The PC is not updated here but
put in the loop.

CLREG--Clears 13 registers for the implementation of the
13 delay equations.

LOOPBEG--Marks the beginning of the loop. It updates the
PC and brings in the first data point.

STAGE1--This marks the actual beginning of the filter in
microcode. Address H#014 provides the first adder
stage, H#015 and H#016 provide the call for the
microroutine to divide the result by 2 (shifter
microroutine) depending on whether the result is
positive or negative, and H#018-019 provide the
microcode for the 2 delay equations following the
adder. (Note: H stands for hexadecimal)

STAGE2--Provides the second stage of the filter with
adder, call for divide by 2 microroutine, and 4
delays.

STAGE3--Provides the third stage of the filter with adder,
call for divide by 2 microroutine, and 3 delavs.

STAGE4--Provides <the fourth stage of the filter wi1th
adder, call for divide by 2 microroutine, and 1
delay.

STAGES--Provides the fifth stage of the filter with adder
and one delay.

83

R AN

AT Ny AU N ..{_;-._:4- S .-: .. .n'.."'.:{l

O T PR e O T N T I Y DI A . ..
A T AR T T T e N e S S D
p I‘ﬁiﬂhﬁf&&?&?;ﬁAﬁA A A R W A R A TR S P T %)

° 1'\J' ._'-

LA "y

IR

Onasqnic
LDCNTR: 0004 - OB4F FFO3 FFCE

000S - 0064 3IFFF FFCE N
CLAREG: 0006 - 0248 FFFF FF1E

0007 - 0248 FFFF FF2E F

0008 - 0248 FFFF FF3E .)

0009 -~ 0248 FFFF FF4E ’

000A - 0248 FFFF FFSE)

000B - 0248 FFFF FFGE

000C - 0248 FFFF FF7E ,

000D - 0248 FFFF FFBE A

OOOE -~ 0248 FFFF FF9E

OOOF - 0248 FFFF FFAE

0010 - 0248 FFFF FFBE .

0011 - 0248 FFFF FFDE .

o012 -

0248 FFFF FFEE
LOCPSES: 0013 0044 7FFF FFFE)
0014 - 0B84F FFD3 FFCE

STAGLL ! 0015 ~- 8041 SO7F F2CE
0016 - FFFF FFFF ESOC 3
0017 - FFFF DFDS E?0S K
0018 - 0246 3IFFF F1l2E .
0019 - 0246 3FFF FC1E ’
STAQELR: 001A - 4043 107F FBCE ’
001B - FFFF FFFF El10C
001C - FFFF DFOS E30S g
0010 - 0246 3IFFF FS6E 5
OO1E - 0246 3IFFF F4SE)
CO1F - 0246 3IFFF F34E !
0020 - 0246 3IFFF FO3E .
STAQEI: 0021 - 8043 107F FSCE o
o022 - FFFF FFFF ESOC ’
0023 - FFFF DFD9 E70S P
0024 - 0246 3IFFF FBOSE
oo2s - 0246 3FFF F78E ;
0026 - 0246 3FFF FC7E)
STAGEY: 0027 - 4041 SO7F FACE >
0028 - FFFF FFFF El0C :
0029 - FFFF DFDS E3J0S 0
002a - 0246 3IFFF FOARE :
STAGES: 0028 - B0%1 SO7F FBCE &
002C - 0246 3IFFF FCBE
STAGES: 002D -~ 4041 SO7F FECE X
002E - 10C4 3IFD4 FFCE .
002F ~ 0246 3IFFF FOEE .
003C - 0246 3IFFF FODE -
DECCNTR: 0031 - 8244 3IFFF FFFE g

0032 - 0030 7FFF FFOE
0033 ~ 0064 107F FFOE
0034 - FFFF D4D9 C133

2 ' s

e 0 F

Figure 4.8 HMicrocode for FIR Digital Filter

v;.

»

s

84 .
¢

Tt « v o augy Tyt » R o L I P T T T UL W R UL S} B e R A G
e T '.O‘J.l.'ﬁ ” '.",~' ' K 0."‘. . ' ' o ,|. -'{ . ‘._'.L.o v f b W, \~ (W o, a0, 00T, p- L) Cateal »

LN LPGRIIAT U S IR RN AT AN AT LT W v ‘o a' R oa"t 2P 1% 2"t 2" €' a%4 2¥8 abh’ ab at2’ %8 V2" 02 00" $2° 02° Ga® G’ §2° Sa*
: NRTUR -

STAGE6--Provides the sixth stage of the filter with adder
and 2 delays. This marks the end of the filter in
the microroutine. Address H#02E places the filter
output data back into the macro memory 1location
pointed to by the PC which in doing so, writes
over the ©previous input data given at the
beginning of the loop.

DECCNTR--Decrements the counter and loops back to address
H#013 if the counter is not zero.

The microroutine above called another microroutine
for the dividing by 2, which is actually accomplished by
shifting in the two's complement implementation, without
offering an explanation. It would seem that a shift to
divide a positive or negative number by 2 using two's
complement arithmetic should require only one instruction in
microcode to implement the proper shift. 1Indeed, this would
normally be the case if the sign of the number being shifted
is known ahead of time. 1In fact, as shown in the example of
Chapter II, it is possible to accomplish a shift and add in
a single instruction. Two problems arise in this particular
implementation however. First, it is not known ahead of
time whether or not the operands will be positive or
negative. It should also be kept in mind that some of the
adder stages are actually subtractors. The second and
biggest problem in this case however comes from the
restriction imposed of using only 8 of the 16 bits available
in the ALU. A clearer understanding of two's complement
arithmetic would have saved a great deal of time in this
area. For example, using decimal integer arithmetic, a

three divided by two would result in a one with the 0.5

85

[X, ¥

PEXXAAR, N HERRXD:

°, ‘.“ AN

IV T S R AU AT AP L U U T U O VY D VT U U “ale 4%, 8'2 82 4%2 tia.8'a.8'2 8 2.4 20" o 0%s 8'a 4'0. 8'2.0°8 4 0.0 ad A8 hat A0 00 4.0 0

being truncated. This is also true of two's complement
arithmetic where the divide by 2 is accomplished by shifting
all the bits to the right by one and with a zero fill at the
most significant bit. However, if the eight bits of data

were placed in the upper eight bits as was first done, a

o £ L e s

division by two in this case could cause a one to be
transferred into the upper bit of the lower eight bits. For

example, dividing the hexadecimal #0300 by two would result

WP

in H#0180, which is indeed the correct result but it is not i
-
the desired result of H#0100. To transfer the unwanted one 3
out of the upper bit of the lower eight bits requires eight r
shifts to the right with zero fill to the left and then :
eight shifts back to the left. This would then produce the ;
desired result of #0100. The case of dividing a negative a
number in two's complement arithmetic is a bit more P
complicated. For example, using integer decimal arithmetic, i
dividing the number -3 by 2 would produce a result of -1. §
In two's complement arithmetic however, where the divide by ;
two is accomplished by shifting to the right with a one
being filled in the most significant bit, the result would ,a
be a -2. To account for this difference, a one must be .
added to the operand, before the shifting, to produce a 5
correct result of -1. Therefore, to accomplish the correct E‘
result using only the upper eight bits for entering data, R
the operand must first be shifted to the lower eight bits E'
with ones being filled in the upper eight bits. Then a one 3
.
86 \'f-
¢

P a T PR g P T P] T A A A T S AR TR T e ATRCARRI ST LT RN TR .',_.:‘_..-_.-.‘:_'..-,._- -_.‘;: .
Q'Jl'l U4 ‘.L. ** o ', '. .l“ > P Y .! -"* ¥ R B ~ R ™ h » * T e B Y

..... Lol L »

is added to the operand and the final shift to the right
with one fill in the most significant bit is accomplished.
This places the correct result of dividing the operand by
two in the lower eight bits. The result is then shifted to
the left eight bits to place the result in the upper eight
bits.

A much more straightforward approach is obtained by
placing the incoming data in the lower eight bits. The
problem here, however, is that in the case of incoming
negative data, the upper eight bits must be filled with ones
to make the number in the lower eight bits negative. Again,
the rules for dividing a negative number by two in this case
still apply.

In this particular application, the first approach
presented of placing the data in the upper eight bits was
used, primarily for two reasons. First, the number of
operaticns used here was not of importance since this was an
artificiality which was placed on the problem using the
hardware which was available. With this in mind, the first
solution allowed for the solution of a much more interesting
problem and allowed for a broader knowledge of the bit-slice
to be obtained. Secondly, this approach originally offered
an easlier method for entering the data. This was later
shown not to be valid for entering large amounts of data
through the aid of the computers. A file in Fortran in

hexadecimal form can be created using 'z' in the FORMAT

87

Jfl;/ -,.:’ AT .""Fl;’l:'. --.‘ g :,~~{~{‘ (~(\(~(f‘.f -] ", --V-\'.\f’:p\.."("'l-'
R Ral T RV T Y R 0, » » P s N N g X ol

Lo
-

it

b

NL L L L LA
A

TEAARARTN

LA AU

Ll Ol Cp O

1'_4’!

B

statement when writing to a file. This hexadecimal file
will be in the correct form which can then be downloaded to
a disk. Once on the disk, the file can be transferred to
the bit-slice RAM using Smartcom II.

The set of microprogram routines for accomplishing
the divide by two in the upper eight bits for both the
positive and negative cases is shown in Figure 4.9. This
set is for an operand which is in the RC register. Another
set identical to this, only with '0' specified, was used
when the operand was stored in the RO register. A straight
forward approach was used and the code was not optimized for
time, as was done in the filter microroutine. A detailed
explanation of the micro instructions 1is included in

Appendix B.

D. FORTRAN AND BIT-SLICE IMPLEMENTATION SPEED COMPARISONS
As pointed out in several of the references, including
the evaluation board user's guide [Ref. 7], the objective of
a full timing analysis is to find the longest path and then
use that time to determine the minimum clock period for the
given design. With this in hand, there are several
alternatives to the design. If the time used is acceptable,
sne alternative would be to leave the clock period as it 1is.
If it is not acceptable, there are many alternatives to
improve the overall time used. One method would be to look

for ways to improve the algorithm or code used. Another

88

1044 107F FFCE 000% 3FEl FFCE
FFFF DSDS E233 000t 3FE1 FFCE
0004 3FEQ FFCE 0004 3FE1l FFCE
000 3FEO FFCE 0004 3FEl1 FFCE
000t 3FEO FFCE 0004 3FEl FFCE
0004 3IFEO FFCE 0004 3FEl FFCE
0004 3IFEC FFCE 0004 3FE1 FFCE
0004 3FEQ FFCE 0004 3FE1 FFCE
0004 3IFEQ FFCE 0004 7FE1 FFCE
0004 3FEO FFCE 104 107F FFCE
0004 3FEO FFCE FFFF DSDS E43E
0084 3FEQ FCCE 008't 3FEQ FCCE
0084 3IFEO FCCE 008t 3FEO FCCE
0084 3FEQ FCCE 0084 3IFEO FCCE
0084 3FEO0 FCCE 0608t 3FEQ FCCE
0084 3IFEO FCCE 0084 3FEO FCCE
0084 3FEO FCCE oos4 3IFEO FCCE
0084 3FEO FCCE 0084 3FEO FCCE
0084 3FEQ FCCE 0os4 3FEOC FCCE !
FFFF E4FS FFFA FFFF E4F9 FFFA :
POSITIVE CASE NEGATIVE CASE o

s
Bt

Figure 4.9 Shifting Microroutines

- -\1 . -.‘-/' Tan' a"y o '-‘q_"-"..-‘,
Crt U AT PRI IR NN Y IR

would be to use faster components where needed such as using
faster memories. One faster component which might be used
is a variable clock circuit. It is used to lengthen or
shorten the clock period depending on the length of the
timing path for each instruction. [Ref. 7:p. 6.13]

The primary method used in this study to improve the
overall time was that of seeking ways to improve the
algorithm and code used. Other methods are also considered
in this section and the data obtained is shown in Table II.
The first comparison obtained is that between the Fortran
implementation on the VAX and that of the improved 16
register microcode implementation using the fixed and
extremely slow clock period of the evaluation board.
Improved microcode, here and in Table II, refers to the
microcode which was designed for this special FIR filter
application which takes full advantage of the 16 registers
of the Am29203. The timing of the Fortran was obtained by
using the subroutine "jcput". The code for this subroutine
and its placement in the Fortran program can be found in
Appendix C. The VAX routines LIBSINIT TIMER and
LIB$SHOW_TIMER [Ref. 13] can also be used to obtain
estimates of the time required and is given in increments of
10 milliseconds. The time obtained for 100 iterations of
the filter was found to be 10 milliseconds or 100
microseconds per iteration. Using even the slowest form of

the bit-slice, using the fixed clock period of the

90

L LS

YRR RN

ot

ARRNSYS

A AANCLLS

s s

"

~
>
.
.
N
?
-

b

%)

N

(N

1.8 R
3.4,

TABLE II

TIME COMPARISONS FOR FIR IMPLEMENTATIONS

Method
Fortran Implementation

Evaluation Board Provided
Bit-Slice Code

Improved Bit-Slice Code using
29203 evaluation board

Evaluation Board Provided
Bit-Slice Code with PROM

Improved Bit-Slice Code using
29203 evaluation board with PROM

High speed Am2900 family

Bit-Slice
VITESSE's Gallium Arsenide
Bit-Slice
91
. . . ‘ *‘. .‘ *“n‘ \Q‘{' . '*.?-"f-‘ 3 \r:w'. “w ‘uf'\l ' .-

N
-,

f

Time (microseconds)
100
20

49 inst. * 408ns
11

27 inst. * 408ns
14.85

27 inst. * 408ns

25 inst. * 153ns
4.64

2 inst. * 408ns

25 inst. * 153ns
2.65
.78

ﬁ"."!‘ - .‘\\ R AEIRES
h o ol A

. . N e et 52 abh afB st a's a%t &' 0 a'2 2% .a't
TS R A T T R U U U T IR U VO TPV YU UV W 4 51 JWAJM 14" o W VWL N Ny Py ! ot WX L

evaluation board of 408 nanoseconds, the time was found to
be only 11 microseconds per iteration of the filter, almost
10 times faster than the Fortran implementation. This was
obtained simply by multiplying the 27 instructions of
microcode of the filter, including the instructions for
updating the PC and counter, by the 408 nanosecond clock
period.

Next, a comparison was made between that of the
improved microcode and that of the provided code of the
Am29203 evaluation board. It is somewhat difficult to

determine the exact number of instructions needed using the

provided code without actually writing and testing the

routine, however it 1is estimated that it would take i
approximately 49 instructions for a total time of 20
microseconds using this approach. The improved code
therefore has an approximate time savings of 45% over the N
provided code. ;
One of the goals when improving the microcode was to
minimize the number of instructions which required a read
from RAM, such as those required when inputing data. 1In his "3
study of bit-slice, Morris Stewart [Ref. 15] documents how
the fixed instructions of the microcode could be placed in a
faster PROM to shorten the time path of these instructions.
Then a variable clock generator could be used to shorten the
clock period of these instructions to 153 nanoseconds. The ‘ &

improved microcode can now take advantage of this since only .

.............
''''''''''

......
AT m

) R VLY TR R NI G a8y
R Rt) » O e

Sl tat tab el ‘el

2 of the 27 instructions require an access to RAM. The
total time now required is 4.64 microseconds as shown in
Table II. For the provided code, if it is assumed that the
13 delay variable addresses are in microcode or PROM, this
routine would still require 27 of the 49 instructions to
address the RAM for a total time of 14.85 microseconds. The
improved microcode clearly has an advantage in this case and
results in a time savings of nearly 70% over the provided
code.

Finally, a 1look 1is taken at how new bit-slice
devices presently on the market could be used to improve the
overall time of the filter implementation. Figures 4.10 and
4.11 provide control loop and data loop comparisons of AMD's
high speed versions of the Am2900 family to VITESSE's
Gallium Arsenide 2900 family devices. As can be seen from
these figures, the high speed devices require a minimum
cycle time of 98 nanoseconds while the Gallium Arsenide
devices require a minimum cyvcle time of 29 nanoseconds.
Now, using these speeds, one iteration of the bit-slice
filter will require 2.65 microseconds and 0.78 microseconds
respectively. This is over 100 times faster than the
Fortran implementation and would result in a significant
amount of time savings with the large amount of data
iterations that would be wused in an actual filter
implementation. It should be noted that these 1last

comparisons are made using only a single 1level pipeline,

93

'l ek *ale Nalle el

.....

bl Sl e

o«

LI X N

. 9,0 o &

f ™y

91

LB

autradrd tana arBurg ‘we3sfis 31g g1 30

8wr]l a1oA3 dooq toajucy WNWTUTY 3jo uostJiedwon

33%A30 TDF NO0I I1e 1ty puw XN o

Ol H 3anBr 4y

7 T3 Ui APAY Wnww .
743 11 25 wnwure (B16TWY)
13,0 {ETY) fug dn-1 Rty
sug mding < ¥aayv Wvy simg (SESLINY)
pasnsiay fuge ndinge¥aqyv WOYd
] A< YOID6TIA sugg A<Q) VOISZWNY '
oy MAInQ ¢ 1DWS (€91001) XN sugq Inding 4 13335 (sISY) XN J
sug nAInG < 120D (ye¥DT13A) sugi IndinQ < 1901 (B16ZAV) N
135182y 2unadiyg DPImsay suadiyg '
[[TF] FUTYT] Toiaq wg g B
) o e = K
_71 . v e IA I 9 voinar N .
SI6INY K
too!)
.oww_mﬂuﬂ - 110139y |+ K
) 4 ~
1018330040 14 10553201401\)
1006737 106ZINY [X
n 3_ _|W22< -
it ! 12132y ”.f
K10urapy -
1 weidosdoiny 1 o
R dETY ..toEu—z ...m
weidodosnpy ‘&
§ m) rbm
P
| J 4
lafjonuo?) oD njouo) o
301D £91001 4 —ﬂ-W('N S el
YOIDZIA |- NN L VOI6TNY xaw 1 \J-\u
b 3
] t o

',
>

- -
AN

YW e oY

%Y

Lo

L] » - 2SS -l V WA -..«...-.;*.-- ,i\\.-.‘-\\ K. e, o 8 00 ., hiak
s rrTe e s B T T % . . . PR N]

(ST '394] surTadid 18na7 @1Burs ‘wa3ysfs 31g gt
3o suwtl a1ofg dooq ejeg wnwruty 30 vostaedwo] 1§ 8anBry

su6l AW IHOA wnwtuiw su(g 2w 3K wnwiiw
(051001 103) (816INY)
sug dn-1as 1215182y snieig sug dn-1as 15180y M-:-.m
; > .c._.lm ‘t4 A0=4'¢d
sug UAQ T H+U54uy 10D0673A SUGZ *YAO MU« D106TINY
sug T+U54°d 9 10D673A suL T+Uy4*d "0 YIO6INY
suy| d'Qed'y 10D673A suLg d'D=8'y J106IINY
sug INAIN0 « 1301 (rLrozi3A) sug| IndinQ Y010 (BI6TAY)
315132y aunjadiyg 1315139y Junadty
spd qisgd EETET] {=pqa qisgd Eren g
0. 1906233 RIS NER
101e12U 101833020) |
—| 0§ _o%_“_ Ay 0 15183y r ».:am_v ?
191513 o
ik 200673A 316TNY 06NV
] J
/ 4
r 10s53301d0O NN - 10s53501doINN r 40s552201d0sdpN 10552203d 01NN
10D6T3A 10D6T3A JI06TINY DI06<INY
1 \
»| BI6TNY
—] ssda 1215139y
, el
PLYOTIIA 1D

$01)

WSy -

N

NN NN

.

o,

oo

-

[NS
N\

m-uu 993

UNCLASSIFIED

:llPLEIENTﬁTION OF AN FIR BAND PASS FILTER USING A

CE_PROCESSOR(U) MVM. POSTGRADUATE SCHOOL
REY CA D N PURDY JUN 8

P EFEEEE

(43
3
113

T2z s

A

EEEE,
El

e om e M s ‘.A;

'I:';

—almh

1.6 :
e

O e w1

8 ¥, »
AOAIN A0N ’l W, *0 1N 'l."! q't »

T oy

PR

A0S
",:‘ \}*‘V\ ~

hJ w

i .o".-".' AONIEA A

whereas in earlier comparisons, a three level pipeline is n!

used as delineated by White [Ref. 5]. %

e &

LIRS

]

rYs v »

96 2

O P I T W T NN e T o
.. n’“ l~i.‘. VF\

L) 5

S e e 8

I ORI e e T

=94 s

+ TN T d
TR T LW I3 [TV LIY UY LAY LU L RTINS T s AT IO K LN RN Sty HNERU SR UNUNV U VI U WO ~

V. CON SIONS !

One of the strongest arguments against the use of bit- of
slice designs is the time in which it takes to design with 3
these devices as compared to other methods. The proposed
tradé-off with the longer design time is the ability to
achieve greater speeds thereby producing dividends in
processing large volumes of data over long periods of time.
In this limited study, however, it appeared that most of the
time in designing this simple FIR filter was spent toward
gaining a working knowledge of the bit-slice components and

overcoming the needed skills in working with two's

P gvtn T JUMLT

complement arithmetic. It seemed that once this working

knowledge is obtained, an expert designer should be able to

-
et

easily design such a simple circuit in a small amount of
time. The complexity of the bit-slice language necessarily
prohibits its use as a general design tool but its benefits
in speed have a range of application when left to the expert .
designer. As seen from Chapters II and IV, the bit-slice E'
devices easily approach super-computer speeds and yet at a .
small fraction of the cost. It should be pointed out here E
that only a limited working knowledge was gained during this i‘

study and there are certainly many more aspects and benefits

which could be learned through further study. The microcode =

~
"»
Iy
.
)~. g
~
A

97

- -

implementation presented for the FIR filter probably is not

optimized and could be improved upon.

oy

- -

Oone of the problems of bit-slice methodology is its use
in limited studies such as this. For example, for a follow .

on study in this area, a researcher would have to go through

the same difficult process of learning and obtaining a

working knowledge of the bit-slice language before any

BN Y

further work could be done. This obviously limits the scope
of the study and impedes the progress of research which can
made. The bit-slice evaluation board and accompanying
user's guide is an invaluable tool in 1learning the
application of the bit-slice components and it is difficult
to imagine how this material might be presented in a more)
condensed form in order to achieve a faster learning .
process.

As with any research, an analysis must eventually be | ~
made as to what conclusions can be made and what questions]
were raised during the research which remain unanswered. In
this study, a thirteenth-order FIR filter was successfully
implemented in bit-slice using only shifters and adders.
The two major goals of implementing the filter on the
evaluation board and using a computer to download files to
the evaluation board were achieved. The time savings using
the bit-slice implementation far out-weighed the time spent
in designing it. It was also seen that the implementation

could be 1limited to eight bits of accuracy without - N

98

e e "> i

& X

SCICI AN

b‘-

T W LA L LN U - a¥ . o g i = § . gt o ad ab.'at ‘al N

significantly affecting the results. One question which
came up during this implementation which could have been
further researched was how the limitation to 8 bits of
accuracy on the implementation truly affected the noise,
especially with the introduction of the 5 stages of shifters
or dividers. The main questions which were raised during
research and remain to be answered however, were: why were
the six stages of the filter put in the order in which they
were in; how does this order affect the quantization
effects; and how was this thirteenth order filter reduced to
a filter using six stages with coefficients of one?

In summary, the bit-slice methodology provides extremely
useful devices for achieving increased speeds in specific
applications, especially in those applications of high speed
graphics where large amounts of data to be processed benefit
from the improved processing times. Because of its
versatility in implementing any given instruction set, it
should not be ruled out as a design tool based merely on the

time required to design with it.

99

S e N A vt N S e N e ey

'w.‘- N

......

YT NWA W TATWI AT TR

APPENDIX A

IERMINAL EMULATION USING SMARTCOM II

The commercial software SMARTCOM II by Hayes [Ref. 17]
was used on the IBM PC to emulate the user terminal for the
monitor system of the Am29203 evaluation board. This
appendix will only document the problems encountered in
using SMARTCOM II and the necessary configurations which
must be made to use SMARTCOM II to communicate with the
evaluation board using the IBM PC. It should be noted here
that only the SMARTCOM II software was needed for the
configuration and the SMARTCOM II modem was neither used nor
installed. .

The primary problem encountered in using SMARTCOM II was

not the configuring of the software, although this did prove
to be somewhat time consuming. The major problem was the
interconnection of <the hardware. From the advice of
technicians consulted and two references used, including the
SMARTCOM II manual, it appeared that a null modem would have
to be used between the IBM PC and the evaluation board since
both are computers and have DCE connection ports. 1In fact,
a null modem was constructed with pins 2 and 3 crossed to
ensure that both computers could send and receive properly.
The problem discovered however, was that SMARTCOM II was

changing the signal internally since the DCE port of the IBM

100

RANTR A ™ e e W, et - -

oA AN S LGN T T AR L AL L
A G R N W TR A R A PR A A

PC was behaving as if it were a DTE port. With this
discovery mac the only connection between the two
computers requ. :d was a straight line gender changer.

Once SMARTCOM II has been entered, there are several
screens which can be entered to change the required
parameters. First, the Batch Set Directory, a listing of
all batch sets (communication devices available), must be
entered to list the evaluation board as one of the options

available. This is shown in PFigure A.1l. Next, the

Configuration Screen must be changed to reflect the
equipment being used as shown in Figure A.2. Finally, the
Parameter Screen lists the variables or parameters for each
particular communication environment. Figure A.3 shows the
parameter screen for the Bit-slice evaluation board
environment. These changes do not have to be made for every
entry into the SMARTCOM II software program.

The Menu Screen shown in Figure A.4 1is used to
communicate back and forth between the bit-slice evaluation
board environment and the SMARTCOM II environment. Option 1
is selected to enter the On-Line Screen and in this mode,
the IBM PC monitor and keyboard appear to the evaluation
board and user as if if were an ordinary terminal. To
terminate the session or bring in a data or program file
stored on disk, Fl1 is pressed to return to the SMARTCOM II

menu screen for the appropriate selection.

101

I . . . “ L.
N TR oy N TR AT ARAR T e e e e TR e e ey REAFEI

B2 P IR T A R I i N S e AL SN I T i Rt . B e e e A A A S
\.‘ "-‘ MR J'ﬂ".\’ » .

P

el) e - o

| i O U R Sy B W

> X, Ay TR L ey By
Riojoeartg uotrjledyunuwwo] T°Y 8anByy
(861 ‘Tg fey Repung wd QOE:6
-y TTel 134 - 1
santen pJepuels - 2 _ 13N"0¥39 - O whRl X3aNI 3903 IMONX - H
SSZ00y ajoway - A p3eoq 82718 31Q - d 781 X3IANI J9adIMONX - 9
385 31881 - X I3NINA 333N0S 3H1 - O IANINN d/Nrg -~ 4
oedejeg 3IJANOS JFHL - m 3eusTa]l IJINOS IHL - N Jsuwfl y/Nrag - 3
oedejeg 33 9v0 - n 3083Td JJINOS IHL - W I8U8TaL dy/Nrag - a
ejeg X3IANI J9AIATIMONX - N 13NINN 33 990 - 71 3auwf] anasgndwo) - J
oedejeqg y/Nrd - 1 Jeuwf] 33 9u0 - X jauaie] aaaagndwo] - g
orvdejeg sadagndwo] - § jsustal 33 9¥o - 308a1g enJdegndwo] - o
:ARado0308a7g UOTj3EdTUNWWOY
d :‘18qeq] asjuj
O :e3je)g ‘aemsu)y ‘ejeutBranp 1 :uoT308T1ag aejul

diey 3104 24 ssead

weabBoag/uoyjestunuwo] pul Qg
(440> Raojosarg xsto Rerdstg g uortieanBrjuo)] sBuey] g
(440D S8800y 8j0u8y 30871685 '« B8T11d pPuas ‘=
(440) sn3els aajutad sbBueyy ¢, 817d 9ATBI8Y ‘e

*oul ‘s3onpoad aejndwoooaaty ssfiey

aatag eBueyny - g'y
puswwo]) B8[T4 3ID8T8S '€
385 3TP3 2
uorjestTunuwwo) utbag ° 1

11 woojaews

102

.% h

e tat W
-

\)

L N e W

OO ot o

-, AR

- - - -
AN

A}

.f-

R

7

N o

-
W

-
1y

Tt T A nT a ¥
LR SN I

hl
"y

<,
».

iYW

Ny S S
*

AT AT AW A A 5 2 0 F LA O ANINRE G 7

usaaos uarjeanrjuo] 2y sanbry

,86T ‘1e Rey fAepung wd /LE:B
‘2003 330d 308uun)-~-308aig
Jajnduwo] teRUOsSaed WH] - 11 woojadews :a8bessay uo-BoT
JOLINOW d07102/331d00Y *dS10 °‘HdUaD/d07100 :3eijdepy pue Jojyuoy
gy :S8ATag Xs1ig eT1qQeiiead
d :38S 3TNejeg Y S3NTIYN IY1J3dS
T1ry ‘cadfl »oer suoydats]l

d3T¥AY] TTIINN NO

(spuodes 1°0 hS2-1) £
¢ spuoodss 1'0 SS2-T > 9
(Spuodes S§52-1) OF
¢ sSpuoades 5§g2-2) &2
(spuooes 100°0 S62-0S5) 0L
(Spuod@s §52-0) 2
3sInd
3NON
)
S3A
137198Yd

:snje3ls aayeadg

rewy]l dnBuey o] ssO07 aataie])
:Teudts astaaw) sztuboosy
:TeubByg aetaae) aod 3rem
‘auo] Terg JOo4 3ITEM

:Butwy]l suol-yonol

rgwwo) 304 3wY] @sned
:poyiely Burierq

:330d ! L300W1I¥YUS
(SN PPY

18p8ad 8uT] BJAIXI 8aowsy

cpneg

:700030ad (evaas

:330d P ¥AININD

diaH 104 24 ss81d NOI19dNgI4ANCI

103

ueeJos Jaejsweaed g£°'Y sanbry
48681 ‘TE Rey fepung wd gg:g
330> 0O :aey) jdwoay asquwny suouyd
(330> o0 :aey] 7J03 -Seuy] pueg ‘paomssed © INON :SS303y ajouway
(330> O *aey] jJe3g o] :Buty up asmsuy
(339 © :aey) do3g -3ae3sy/dogg S¥3IIIUYNYd INOHLITIL
S3IAUH :T02030a4 8eaj-i0333z
('aes) Q1 :3INO-swy] puas 1358NS 030IN3 131 :3o3einuwl
('98s) 09 :3ND-BWI]l B8AT8I8Y d0lS T + 3ANON + vlvd B8 :3BWICd J=joedey)
S¥313UvaYd T02010dd ("98s 10°0) OE :Retag eurt
(*988 100°'0) OE :Retag Jsaioeaeyy
(L4) ®ET :Asy 3083014 ON :speagd sur] epnrouj
(°98S 10°'0) SE :y3jBus xesag ON :TEeT3ju.prjuo]
(94) eEet :fey eaag S3IA :S8UTT SN3IE3IG MOYg
(Sd4) 2ET :Aey x1383d OCaoBRYy ON :esned abed
(hd) 1ET :fAey sanide) ON :S8p0J 10J3u0] mMoys
(E4> OET :Mayx Jajuvad GI1IBU04 :Buisssooag asjoeaeyj
(24) 621 :Rey dyay 00he 13331 :edf] uoriosuuog
(14> 821 :Aex edeos3 T1INd :xa1dng
SNOILINIJ3a O¥Y0gAIN S¥I1IUYIYd NOISSIWSNUNL

diay Jo4 24 ssedyd !
SA313UNTAVd

i paeoqTeoT1sT31q - d

1385 JO awep

| AL B

104

A

AL q... ZREN T | O

[-

oL Ll

L S N

uaeJog NuUBY H'Y 8anbBt 4

(861 ‘te Aey Repung wd 62°B

p 4 - v P L . g - Dl X
» _\.1.... -..\- --\-\.---' Wal S \.-».\.P 4 .\-... \. -... -.-..-.. - nn.-f-f..v- ? \- »).v'- J‘ ...\ AL

wapowjlews yitm suoyd sasmsue 30 sTEIg

BUTI-Ug UaN3IBYy O] T4 S883d 1
disy ao04 24 s833d

:uor3yoeres Jsjul

weiBoa4/uctTieatTunwwo] pul ‘0
(440> Rao3oeatg xstg Rerdstg 'g uoT3ieanBrjuoj eBuey) °9
(440> SS890Y @3j0wsy 3I0BTAS ‘e 8174 PUES ‘w
(440> snje3s aejutad sBueyy ‘z BT1Td 8ATE08Y ‘=

antag abueyd - g'y
puewwo) 3it4 308185 '€
3as 31p3 "2
uorjeosyunwwo] utbag T
*oufg

‘s$30npoad Jsjndwoooasty sefiey 11 woojzaews

N

y ‘.Jn.fn I.ln b

105

oo

L

N o'...' .

X _;.'_;-',_'-'\

.--. - .'-‘.'/-
1]

B

o .:4'.

it

e N e

e,

R

Cat vy Ty
LW L

s

ASAN

]
NalX

WA AT Y

D
)

Since the Smartcom program could only communicate up to
a baud rate of 2400, the baud rate of the evaluation board
had to be changed from its standard of 4800 baud rate to
that of 2400. This is done by simply changing a jumper
connection on the evaluation board from W4 to W3.

The use of SMARTCOM II proved to be satisfactory for
this study. The biggest inconvenience was that SMARTCOM II
had to be completely exited to create a file or edit an
exiting file. This proved to be very time consuming when
trouble shooting the microroutine. There are now newer
software programs on the market which solve this problem and
allow the editing of existing files without.exiting the
emulator. The editor which was used to create the ASCII

files was PERSONAL EDITOR 2 by IBM.

106

N

manhe

EL i 8 g S WY

VAL N

R

- S

S R A

/ u“n

ERA A

1

AR

APPENDIX B

9) CROROUTINES

Micro Routine: IFETCH
Micro address: 0200

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#1 Disable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM with parity
35-32 H#X Don't care

31-30 B#00 No carry in

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#6 Instruction fetch

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#D Rb=RD

3-0 H#E Continue

Resulting Microword: 084F 3FD6é FFDE

Purpose: Fetches instruction from macro memory to
instruction register (IR) and register D.

Comments: The Am2904 command, bits 19-16, specify the
instruction to be read from macro memory and loaded into the
instruction register (IR). The macro memory 1location is
designated by bits 11-8, which is RF, the program counter
(PC) . A copy of the instruction is also 1loaded into
register D as indicated by bits 7-4. The Am2910 is
instructed to continue to the next sequential address.

107

SN Y

Bor N0 9!

VoA g
s 4
DA

L
F

A X

V)

LT

3
'r‘.' ?

'.'
»

g :\.(‘-' ‘-'l'-',‘-

"
l’ l"

At et

. b
Y fe e,
-

£ 0

LRI F
N

el

NN A A
' <5

5

7

v At sl Caat agtaf %a Patial el abiial ‘ad Sab a8 Cak Vb 2 tal Vud tiB Vb iim a8 cad hop haR'$90.m e pSat LE'Santiag'ban" tee*)

¢
Micro Routine: IFETCH p
Micro address: 0201 ‘

(]

BITS VALUE EXPLANATION

—— - ——— e c s ce—e——m e e e e m e ———————me— e e ——————— S
47~45 Q#0 Sources Ra & Rb specified by pipeline T
44 B#0 Enable Am29203 -
43 B#0 Enable Y output -
42~40 Q#0 Operand Sources from RAM .
39-36 H#4 Destination to RAM :
35-32 H#4 F=S plus carry in N
31-30 B#01 Carry in equal to one ,
29-24 Q#XX Don't care n
23 B#1 Don't latch micro status 3
22 B#1 Don't latch macro status "
21-20 B#11 No command or shift

19-16 H#X Don't care -
15 B#1 Don't set breakpoint -
14 X Spare/Don't care ;
13-12 B#XX Don't care .
11-8 H#X Don't care A
7-4 H#F Rb=RF .
3-0 H4E Continue :
Resulting Microword: 0044 7FFF FFFE ;
Purpose: Update PC (increment by one) ;

Comments: The function specified by bits 35-32 is F=S+ H
carry in with carry in equal to one. S is specified by bits \
7-4 to be RF, the PC. The destination is RF and therefore
the PC is incremented by one. The Am2910 is instructed to
continue to the next sequential micro instruction. Dy

108

PR 11", A *\l."f\w’,\'-' O ".‘..'l“.v o . ,
D, T TS Al A R

"
'1
N .l
&
0
Micro Routine: IFETCH 3
Micro address: 0202 t,
v,
BITS VALUE EXPLANATION
-- Ny
'- "
47-45 Q#X Don't care s
1."
. 44 B#X Don't care iy
43 B#X Don't care &g
o
42-40 Q#X Don't care ::
39-36 H#X Don't care &
35-32 H#X Don't care :;
l‘t
31-30 B#X Don't care N
\‘]
29-24 Q#X Don't care >4
23 B#X Don't care N
‘N
‘.I
22 B#X Don't care ;{
, (]
21-20 B#X Don't care o
19-16 H#X Don't care ,;
F
15 B#1 Don't set break point o
Y
14 X Spare/don't care S
13-12 B#X Don't care g'
11-8 H#X Don't care ‘ﬁ
7-4 H#X Don't care Q'
3-0 H4E Jump to location mapped by opcode :f
Resulting Microword: FFFF FFFF FFF2)
Purpose: Jump to filter microroutine "BITPRO" -
Comments: The Am2910 instruction maps the opcode stored in E;
the IR to the appropriate microroutine location. o
7
by

XY

109

e .-fl‘ e

TS BTN e -
or 2% o f 2t A atf aiZ adl a%E &'l af 'k ati AVA'a%h o't o* Se aV3 utm 402 a%4 a'h g% af v 5§ ah 3 4 »,

Mnemonic: LDCNTR

MicEs Reubing: Bibere

BITS VALUE EXPLANATION

Sources Ra & Rb specified by pipeline
Enable Am29203

Disable Y output

Operand Sources from RAM

Destination to RAM with parity

42-40 Q#0
39-36 H#4

35-32 H#X Don't care
31-30 B#XX " Don't care
29-24 Q#XX Don't care
23 B#1 Don't latch micro status
22 B#1 Don't latch macro status

21-20 B#01
19-16 H#3

Select command overlay
Read from memory

15 B#1 Don't set breakpoint
14 X Spare/Don't care
13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#C Rb=RC

3-0 H4E Continue

Resulting Microword: 084F FFD3 FFCE
Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, the
destination for the value of the macro address is register
C. The Am2910 1is instructed to continue to the next
sequential instruction.

110

oy

[

e P LT
L
2

=z

. T"" .‘-._.’-'u,-{- 1

&

“
2.7

h 30 T}

‘;:.‘"o:l A % S

PR AT PR
LSy P

<
'y v

AR

F

Q}

N
&

T I I T O I NI N Y T T I Y W T T U T DO D W oW . e g g\ gb b ¢

-

Micro Routine: Bitpro
Micro address: 0005

- 2
- e

BITS VALUE EXPLANATION
i 47-45 Q#0 Sources Ra & Rb specified by pipeline
" - 44 B#0 Enable Am29203
‘. 43 B#0 Enable Y output
A 42-40 Q#0 Operand Sources from RAM
g 39-36 H#6 Destination to Q register with parity
» 35-32 H#4 F=S plus carry in
’ 31-30 B#00 No carry in
\ 29-24 Q#XX Don't care
¥ 23 B#1 Don't latch micro status
L 22 B#1 Don't latch macro status
" 21-20 B#11 No command or shift
N 19-16 H#X Don't care
3 15 B#1 Don't set breakpoint
. 14 X Spare/Don't care
* 13-12 B#XX Don't care
" - 11-8 H#X Don't care
[7~4 H#C Rb=RC
! 3-0 H4E Continue
Aaf
, Resulting Microword: 0064 3FFF FFCE
.
% Purpose: Load Q register with counter from register C
L Comments: Bits 47-45 specify that the sources Ra and Rb are
& to be specified by the pipeline at bits 11-8 and 7-4
. respectively. Since bits 35-30 specify that the function is
N to be equal to the S operand with no carry in, the value in
) register C is moved to the Q register as specified by bits
N 39-36. The Am2910 is instructed to continue to the next

sequential micro instruction.

111

R T

-
- -

I L S g A BRI S PR B PN S T e S B TR S AT SN
'.'."‘?‘.‘J n"‘- V5,48 1. L l.!‘\..‘c’ o..] B Y N T N ALK AN -\‘“l.. RERE, }'{‘ o } AR Cy vy Y "‘(W * ’n "y

),
D)
D)

Mnemonic: CLREG :

Micro Routine: Bitpro
Micro address: 0006-0012

BITS VALUE EXPLANATION :
47-45 Q#0 Sources Ra & Rb specified by pipeline {
44 B#0 Enable Am29203]
43 B#0 Enable Y output ,
42~-40 Q#2 Operand from RAM :
39-36 H#4 Destination to RAM with parity)
35-32 H#8 F=zero

31-30 B#X Don't care ‘
29-24 Q#X Don't care)
23 B#X Don't care 3
22 B#X Don't care)
21-20 B#X Don't care

19-16 H#X Don't care

15 B#1l Don't set break point

14 X Spare/don't care ;
13-12 B#X Don't care p
11-8 H#X Don't care

7-4 H# Specify register to be cleared :
3-0 H4E Continue

Resulting Microword: 0248 FFFF FF_E

Purpose: Clear Registers 1-B, D & E

A RN

Comments: Bits 35-32 specify that the function will be
Zero. Therefore, the register indicated by bits 7-4 will be
cleared. The Am2910 is instructed to continue to the next
address.

112 ‘

N ¥ T I T R I T ’ N e e e Rl T NN, VI S PR -
: g PNt e A ARG A B - - et T E N
AT AR AT e o Nty Lo RN "y » Pty W 3% " il

W
SO ..

e

Mnemonic: LOOPBEG

Micro Routine: Bitpro
Micro address: 0013

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand sources from RAM
39-36 H#4 Destination to RAM

35-32 H#4 F=S+ carry in

31-30 B#01 Carry in =1

29-24 Q#XX Don't care

23 B#1 Don't latch micro

22 B#1 Don't latch macro

21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Don't care

13-12 B#XX Don't care

11-8 H#F Ra=RF

7-4 H#F Rb=RF

3-0 H#E Continue

Resulting Microword: 0044 7FFF FFFE
Purpose: Update PC in register F

Comments: Bits 35-32 specify that the function will be
equal to the value of the register F specified by bits 11-8
plus the carry in, which in this case is equal to one as
specified by bits 31-30. The value is then stored in
register F as indicated by bits 7-4. The Aam2920 is
instructed to continue to the next address.

113

TP N
%]

B PR b L] R % AT TR, P T N TR S T d. ' o '\ o e
...‘“.'.....',..',“. o A R e, .-.(ew.* a.-.-.r-rfr -('vl'-i\

R e

TR TR UL T T I T T L TR T LT T TR PUIN POl K O LU AT PR AT IO TR PUN TN 20008 98 0000, 080 04 *pdd

Micro Routine: Bitpro
Micro address: 0014

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#1 Disable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM with parity
35-32 H#X Don't care

31-30 B#XX Don't care

29-24 Q#XX Don't care

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Select command overlay

19-16 H#3 Read from memory

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H4F Ra=RF

7-4 H#C Rb=RC

3-0 H#E Continue

Resulting Microword: 084F FFD3 FFCE
Purpose: Load counter from macro memory into register C

Comments: Bits 47-45 specify that the sources Ra and Rb are
to be specified by the pipeline at bits 11-8 and 7-4
respectively. Since bits 19-16 specify the command to read
from memory, then Ra=RF specifies a macro address and since
RF is the program counter, the address specified is the next
address in the program. With Rb=RC at bits 7-4, <the
destination for the value of the macro address is register
c. The Am2910 is instructed to continue to the next
sequential instruction.

114

- o GO e et Cete . o w ~ oy pn et e S e e et
"-'D‘J-"_, N "y » r‘w{'\- A e \ LA LA '\' o AR AN NJ".'\ W .‘ " i,"n‘ .I‘J"-'. S o
L) s N . N N A ¥ A . + » o)

A W W T

LIRS
Sty

Ve - -

R gt I N]

PR

2 Mnemonic: STAGEl

Micro Routine: Bitpro
! Micro address: 0015

3 BITS VALUE EXPLANATION

l“ ---

H

: 47-45 Q#4 Sources Ra & Rb specified by pipeline

4 44 B#0 Enable Am29203

» 43 B#0 Enable Y output

i 42-40 Q#0 Operand Sources from RAM

Q 39-36 H#4 Destination to RAM

»

. 35-32 H#l F=S-R-1 plus carry in

, 31-30 B#01 Carry in equal to one

k 29-24 Q#20 ALU status to status registers

-4

4 23 B#0 Latch micro status

[}

" 22 B#1 Don't latch macro status

. 21-20 B#11 No command or shift

g 19-16 H#X Don't care

Y 15 B#1 Don't set breakpoint

; 14 X Spare/Don't care

‘ 13-12 B#XX Don't care

3 11-8 H#2 Ra=R2

3 7-4 H#C Rb=RC

: 3-0 H#E Continue

\ Resulting Microword: 8041 507F F2CE

N,

Y Purpose: RO=RC-R2
Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=R2 as specified by the
pipeline, bits 11-4 and the destination of the result is

[y specified by bits 47-45 to be the register indicated by the

! instruction register. Since the Macro instruction is 01F0,

' the destination register is RO. The Am2910 is instructed to

. continue to the next sequential micro instruction.

4

¢

¥

o 115

1 Lo P PO e > e ‘-'-".\\.‘q’-\'.‘-._ \mu-vvn_.-i'_---‘.;-- {v- "f..'--f‘
DA M R A o 0 W Vi R A AR -"’ it PAST T M A

Micro Routine: Bitpro
Micro address: 0016

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point
14 X Spare/don't care
13-12 B#10 This is now the

i1-8 H#5 address field with
7-4 H#0 address H#250

3-u H#C Load address into R/C register

Resulting Microword: FFFF FFFF ES50C
Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

116

» SVOSAT
.l’ Ly

: : :-\.':-.“',-. o '.'E\;.\ ‘ ' ST N,
(J {)

L gt Y

- - -

> ¥ v _*

PR AR

v O L s

“dL

.l.l/J-T

.’

s B% 4 %0 % b S s e

s Y

.

3
g

Mnemonic: STAGE1l
Micro Routine: Bitpro
Micro address: 0017
BITS VALUE EXPLANATION
. 47-45 Q#X Don't care
44 B#X Don't care
43 B#X Don't care
42-40 Q#X Don't care
39-36 H#X Don't care
35-32 H#X Don't care
31-30 B#11 Use bit 29-24
29-24 Q#1F Test if Micro negative
23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#01 Command overlay
19-16 H#9 Enable true test
15 B#1 Don't set break point
14 X Spare
13-12 B#10 This is the address
11-8 H#7 field with
7-4 H#0 address H#270
3-0 H#5 Conditional jump; True-pipeline address
False-R/C address
Resulting Microword: FFFF DFD9 E705

Purpose: Conditional jump to address H#270 if micro status
is negative (true), jump to address H#250 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

..........
» R -

o e e T et R R T A,

Y ‘-:’\;.‘-;_\;,‘-;.\;.‘-:_\'

!lllllllllIllIllll!HIlmIIHnInnHuIHuIMnHvnn'nHumnn!mnn1mnm1muxmunrnnmxmuwmvmnummumnvnnv

Micro Routine: Bitpro

Micro address: 0018

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra ¢ Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carrf in

31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care

23 B#1 Don't latch micro status
22 B#1l Don't latch macro status
21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#1l Ra=R1l

7-4 H#2 Rb=R2

3-0 H4E Continue

Resulting Microword: 0246 3FFF F12E
Purpose: Place value of Rl into R2

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be Rl and
bits 7-4 specify R2 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

118

A AN - s . o ~ . - ' - - RNt R
*n o, v l.l"\. | ‘.' -""'F‘P'f " c‘f ~ " f X """" y e J‘v -f‘ * "\'r. d W
» v o » B .

‘e et ' Canloa'd 2t A b o0 a%@ a7k o' mbh a¥i ala 4% e, W

Mnemonic: STAGEl

Micro Routine: Bitpro
Micro address: 0019

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42~-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care

23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#C Ra=RC

7-4 H#1 Rb=R1

3-0 HH#E Continue

Resulting Microword: 0246 3FFF FClE
Purpose: Place value of RC into Rl

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RC and
bits 7-4 specify Rl to be the destination. The Am2910 is

instructed to <continue to the next sequential micro
instruction.

119

e rry ¢« v

PNl (L R s,

,..
ot S BE IR U g IO

.‘ ;' T : g

s

"]
-

NRR] W

<N

e 1

v _s_*

............
- .

Mnemonic: STAGE2 3
Micro Routine: Bitpro
Micro address: O001A
BITS VALUE EXPLANATION
47-45 Q#2 Ra source & dest. from pipeline, Rb fm IR 5
44 B#0 Enable Am29203 1
43 B#0 Enable Y output
42-40 Q#0 ‘ Operand Sources from RAM 3
39-36 H#4 Destination to RAM f
35-32 H#3 F=R + S plus carry in A
31-30 B#00 Carry in equal to zero ;
29-24 Q#20 ALU status to status registers 4
23 B#0 Latch micro status 4
22 B#1 Don't latch macro status S
21-20 B#11 No command or shift b
19-16 H#X Don't care 4
15 B#1 Don't set breakpoint . ;
14 X Spare/Don't care :
13-12 B#XX Don't care
11-8 H#6 Ra=R6
7-4 H#C Rb=RC J
3-0 H4E Continue -

Resulting Microword: 4043 107F F6CE

Purpose: RC=RO+R6

Comments: Bits 35-30 specify the function to be F=S+R with
carry in equal to zero. S=R0 as specified by bits 47-45,
and R=R6é and destination = RC as specified by bits 11-4. N
The Am2910 is instructed to continue to the next sequential “
micro instruction. e

Y el IR

Qe ‘a2 a'd 8 a'A b 2Rt 48" ‘8 a'h ath.as .8 t.a0.8'0.0 8.0 04, ‘5.8 '0ad Saf'tal ull 40t C.8 $uB Fof S G UN K

Micro Routine: Bitpro
Micro address: 001B

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point
14 X Spare/don't care
13-12 B#10 This is now the

11-8 H#1 address field with
7-4 H#0 address H#210

3-0 HiC Load address into R/C register

Resulting Microword: FFFF FFFF E10C
Purpose: Load R/C register with addrzss H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

121

EE I N

SR

T,

S A B B O R S S PO AR L ¢
AT A A e AL A R N AT A -
A » n ' A n n

B A

. g

f\,{a.f\r‘,r‘.(‘: Y

. 3 o ’ v.-“. 'f“’ ". .I "’ -.4.:

O A

l,l“ A

ey

x "e
A

 Tr
l.

NN

v

e,
N

A W ".,.'

f‘-": "‘ ‘l- ‘;

-

e

N B 0 Oy TS Y TSR TH [DN~ T Y]
N Nap vk tak Cad vab bab tab taf td ab (a8 sad'Pep f 0l a0 0at’ Uoh 8l 8l S0 0" ¢4 ata a¥f ot VORI - T Wy NN (] TP -

Mnemonic: STAGE2

Micro Routine: Bitpro
Micro address: 001C

BITS VALUE EXPLANATION
.. ,
47-45 Q#X Don't care :
44 B#X Don't care) -)
43 B#X Don't care
42-40 Q#X Don't care
39-36 H#X Don't care
35-32 H#X Don't care
31-30 B#11 Use bit 29-24
29-24 Q#1F Test if Micro negative :
23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#01 Command overlay
19-16 H#9 Enable true test
15 B#1 Don't set break point .
14 X Spare X
13-12 B#10 This is the address J
11-8 H#3 field with A
7-4 H#0 address H#230 R
3-0 H#5 Conditional jump; True-pipeline address

False~R/C address
Resulting Microword: FFFF DFD9 E305 y

Purpose: Conditional jump to address H#230 if micro status
is negative (true), jump to address H#210 if not negative
(false)

Comments: Bits 31-24 specify the Am2904 to test to see if
the micro status bit is negative. The Am2910 then has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

122 N

.
.

L N e S N N R PR T P L RS CLNT IR PRI
R ety e Pl o T A e e L, Ao

AR AR RN
A

<, oy v,
Rt
£y .

Ca
Y. % 17 A

v -‘f'\.\"'
\ » . EVA |

Micro Routine: Bitpro
Micro address: 001D

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39~-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care

23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#5 Ra=R5

7-4 H#6 Rb=R6

3-0 H4E Continue

Resulting Microword: 0246 3FFF FS56E
Purpose: Place value of R5 into R6

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R5 and
bits 7-4 specify R6 to be the destination. The Am2910 is
instructed to «continue to the next sequential micro
instruction.

123

- . - - e - =, " . - L T A P R AR R SR ARG
NN A N A, R P A A 2 A A R A O R S A R R

e X ‘Q .-.‘\“..! ."' U AT M Lot At

DT T N N N

ol 2

R L KL

4

AU

S

A& v s b2

Vo e vr b et ek ath ath '8 ad v 2 I T N I P R R S SO R O YO T OO O R O O O O OO U O

’

Mnemonic: STAGE2 .

h

Micro Routine: Bitpro ¢
Micro address: OOlE 1
BITS VALUE EXPLANATION g
__ by
~

47-45 Q#0 Sources Ra & Rb specified by pipeline N
N

44 B#0 Enable Am29203 ;
43 B#0 Enable Y output >
42-40 Q#2 Operand From RAM N
39-36 H#4 F to RAM J
35-32 H#6 F=R + Carry in -}

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care .
23 B#1l Don't latch micro status g
22 B#1l Don't latch macro status ;
21-20 B#11 No command or shift ;
19-16 H#X Don't care o
15 B#1 Don't set breakpoint S
14 X Spare A
13-12 B#XX Don't care X
11-8 H#4 Ra=R4 Q
7-4 H#5 Rb=R5]
‘\ 3

3-0 H4E Continue -
Resulting Microword: 0246 3FFF F45E ('
3

Purpose: Place value of R4 into RS]
J

Comments: Bits 35-30 specify the function to be F=R with ;5
carry in equal to zero. Bits 11-8 specify R to be R4 and ”
bits 7-4 specify R5 to be the destination. The Am2910 is "
instructed to continue to the next sequential micro -
instruction. "
A

S

~
) L

¢

Py

124

N L R T TN IR TR UY U UY VY UR DWW LN LN W WL UL VY L e U + Cab o wt valatal "af ca taflaad ‘2B Y2l Sal iaf At tap ¢ . g N iat iah &

Micro Routine: Bitpro
: Micro address: O001F

BITS VALUE EXPLANATION
! S TTTTTTTTTTTTTTTT T
K 47-45 Q#0 Sources Ra & Rb specified by pipeline
E N 44 . B#0 Enable Am29203
) 43 B#0 Enable Y output
: 42-40 Q#2 Operand From RAM
: 39-36 H#4 F to RAM
35-32 H#6 F=R + Carry in
31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care
y 23 B#1 Don't latch micro status
i 22 B#1 Don't latch macro status
Y, 21-20 B#11 No command or shift
: 19-16 H#X Don't care
: 15 B#1 Don't set breakpoint
14 X Spare
j 13-12 B#XX Don't care
\ 11~8 H#3 Ra=R3
k 7-4 H#4 Rb=R4
‘ 3-0 H$E Continue

Resulting Microword: 0246 3FFF F34E
Purpose: Place value of R3 into R4

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R3 and
bits 7-4 specify R4 to be the destination. The Am2910 is

. ingstructed to continue ¢to the next sequential micro
instruction.

125

,"\f-. o "\, (;\- T3 ‘,':'_.:,-,-_‘;,;,-;.,-_"f_:,-\-.'s’.- .\",- ‘.-.;J'_;-',C.- > oy .'.-__r‘_.*\-'*f‘ _.

- te vt
LI "] -(

¥
¥
L}
)
B

“ l.}.x'),} l" L)

e g gia gy + T T N R T O O T O O T N DR N ROV O OO
* [} k3 . e WS

Mnemonic: STAGE2 '

Micro Routine: Bitpro
Micro address: 0020

; BITS VALUE EXPLANATION f
1 47-45 Q#0 Sources Ra & Rb specified by pipeline , :
Y B#0 Enable Am29203 :
43 B#0 Enable Y output ?
42-40 Q#2 Operand From RAM {
39-36 H#4 F to RAM b
35-32 H#6 F=R + Carry in
31-30 B#00 Carry in equal to zero §
29-24 Q#XX Don't care by
23 B#1 Don't latch micro status »
22 B#1 Don't latch macro status }
21-20 B#11l No command or shift L
19-16 H#X Don't care a
15 B#1 Don't set breakpoint o
14 X Spare
13-12 B#XX Don't care k.
11-8 H#0 Ra=R0 E
7-4 H¥3 Rb=R3 N
3-0 H4E Continue :
Resulting Microword: 0246 3FFF FO3E if
Purpose: Place value of RO into R3 &
Comnments: Bits 35-30 specify the function to be F=R with :r
carry in equal to zero. Bits 11-8 specify R to be RO and o
bits 7-4 specify R3 to be the destination. The Am2910 is -
instructed to <continue to the next sequential micro N
instruction. ~3
RS
X
ey
4
X
126 -~
.‘\
{Z

NPT \{_._.‘.I{, R R R R I T R LA N C I R S

WA '\ '\. YRS -\.\‘-'
,k *\ W o € 5Jxaj£3u1:’ v N PG

Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0021

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#3 F=R + S plus carry in

31-30 B#01 Carry in equal to zero

29-24 Q#20 ALU status to status registers
23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#9 Ra=R9

7-4 H#cC Rb=RC

3-0 H#E Continue

Resulting Microword: 8043 107F F9CE
Purpose: RO=RC+R9

Comments: Bits 35-30 specify the function to be F=S+R with
carry in equal to zero. S=RC and R=R9 as specified by the
pipeline, bits 11-4 and the destination of the result is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01FO,
the destination register is RO. The Am2910 is instructed to
continue to the next sequential micro instruction.

127

oy s gh o

v

Micro Routine: Bitpro

Micro address: 0022

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19-16 H#X Don't care

15 B#1 Don't set break point
14 X Spare/don't care
13-12 B#10 This is now the
11-8 H#5 address field with
7-4 H#0 address H#250

3-0 H#C Load address into R/C register

Resulting Microword: FFFF FFFF ES0C

Purpose: Load R/C register with address H#250

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0023

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bit 29-24

29-24 Q#1F Test if Micro negative
23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#01 Command overlay

19-16 H#9 Enable true test

15 B#1 Don't set break point

14 X Spare

13-12 B#10 This is the address

11-8 H#7 field with

7-4 H#0 address H#270

3-0 H#5 Conditional jump; True~pipeline address

False-R/C address

Resulting Microword: FFFF DFD9 E705

Purpose: Conditional jump to address H#270 if micro status
is negative (true), jump to address H#250 if not negative
(false)

Comments: Bits 31-24 specify the am2904 to test to see if
the micro status bit 1is negative. The Am291C *hen has a
conditional jump on the results of this test to jump to the
address in register R/C if false and to the address in the
pipeline field if true.

129

,n".‘(._ r'l'f.'f"l.‘-" PP

o) 4 % %

. ot At T AT AT T T T 0 T T AT T T Ve T P A e
e T RN A A o ‘\(\\'\.\ \ J '-.\,\\ N NS TN .

“u W

Y P T Jx)

C ALY

-
>

v,

r RPTV RN T Ly
iy e . .k b bat bR e el .0 a0 e e 03 a%i a'd a8 o'’ 2% %D 2% 2°3 %6 2"8 2’k a'b a'd a8 a'h a%.a' ‘.‘k

0
Micro Routine: Bitpro %
Micro address: 0024 ;
BITS VALUE EXPLANATION 4
47-45 Q#0 Sources Ra & Rb specified by pipeline E
44 B#0 Enable Am29203)
43 B#0 " Enable Y output TN
42-40 Q#2 Operand From RAM N
39-36 H#4 F to RAM N
35-32 H#6 F=R + Carry in S
31-30 B#00 Carry in equal to zero '7
29-24 Q#XX Don't care :
23 B#1 Don't latch micro status .
22 B#1 Don't latch macro status E
21-20 B#11 No command or shift .
19-16 H#X Don't care f
15 B#1 Don't set breakpoint =
14 X Spare ;
13-12 B#XX Don't care
11-8 H#1 Ra=R8 o
7-4 H#2 Rb=R9 -
3-0 H#E Continue ;

Resulting Microword: 0246 3FFF F89E

'\’ ‘-._

Purpose: Place value of R8 into R9

> L
.
5

Y

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R8 and
bits 7-4 specify R9 to be the destination. The Am2910 is
instructed to continue to the next sequential micro
instruction.

R L L

%» L n I

2t A Y)
\

130 te

A N TN N S I NN N NN A R R LRI AR RS .'\' N A T AT L
- . « P, . 'y 1) . ! . o L) B B o g > 0

-

T I T I Y T Y T T e T e e Y

Mnemonic: STAGE3

Micro Routine: Bitpro
Micro address: 0025

BITS VALUE EXPLANATION.

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero
29-24 Q#XX Don't care

23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#7 Ra=R?7

7-4 H#8 Rb=R8

3-0 H4E Continue

Resulting Microword: 0246 3FFF F78E
Purpose: Place value of R7 into RS

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be R7 and
bits 7-4 specify R8 to be the destination. The Am2910 is
instructed to <continue to the next sequential micro
instruction.

131

» -

=

W e e Y gt vt AT R RV ‘ R S I I R N PR G AR W R TR WAL W
R A WG N N QL S R (N R e et ARy O .

e
e

O

C N . PRI

l‘ x‘;‘l’ A.‘]; 2

“,..“l.l

-

Y

! ’{.f" «*

-, {4 ‘4%

4

.f.' S

” o x”
ol

Al

.........
........
......
....

8 2% a'h 0" (. 8'% 478 8'd 8" 007,880 0.0 408" 0ap Sagthng Y 0 Val 209 0ol 0e8 §, A e Sag taf bup b

Micro Routine: Bitpro X

Micro address: 0026 »
BITS VALUE EXPLANATION .
__ 3
47-45 Q#0 Sources Ra & Rb specified by pipeline :
44 B#0 Enable Am29203
43 B#0 Enable Y output -
42~-40 Q#2 Operand From RAM) 3
39-36 H#4 F to RAM by
| 35-32 H#6 F=R + Carry in 3
31-30 B#00 Carry in equal to zero sl
29-24 Q#XX Don't care ;
23 B#1 Don't latch micro status ;
22 B#1 Don't latch macro status -
21-20 B#11 No command or shift .
19-16 H#X Don't care A
15 B#1 Don't set breakpoint
14 X Spare ﬁ
13-12 B#XX Don't care 5
11-8 H#C Ra=RC r'
7-4 H#7 Rb=R7 -
3-0 H4E Continue ?f
Resulting Microword: 0246 3FFF FC7E .
Purpose: Place value of RC into R7 E
Comments: Bits 35-30 specify the function to be F=R with y
carry in equal to zero. Bits 11-8 specify R to be RC and .
bits 7-4 specify R7 to be the destination. The Am2910 is "
instructed to continue to the next sequential micro ~)
instruction. "y

M [RN AR A NN LA NN * Lo gty gl YN Y /YU L L% U LN L M at vkt - +, * N * , »; », & V TN W) 4 Vol o, 3 L2 O D 44

Mnemonic: STAGE4

R AR

Micro Routine: Bitpro
Micro address: 0027

A
’
BITS VALUE EXPLANATION ;
__ -
. . P
47-45 Q#2 Ra source & dest. from pipeline, Rb fm IR :
44 B#0 Enable Am29203 A
43 B#0 Enable Y output N
42-40 Q#0 Operand Sources from RAM N
39-36 H#4 Destination to RAM N
35-32 H#1 F=S-R-1 plus carry in :
31-30 B#01 carry in equal to one -
29-24 Q#20 ALU status to status registers o
23 B#0 Latch micro status ;
22 B#1 Don't latch macro status 3
21-20 B#11 No command or shift o
19-16 H#X Don't care ~3
15 B#1 Don't set breakpoint N
14 X Spare/Don't care R
13-12 B#XX Don't care .
11-8 H#A Ra=RA :
7-4 Hi#C Rb=RC bt
3-0 H#E Continue y
™ q
Resulting Microword: 4041 507F FACE %
Purpose: RC=RO-RA :E
Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=R0 as specified by bits 47-45, 5
and R=RA and destination = RC as specified by bits 11-4. Nt
The Am2910 is instructed to continue to the next sequential ~
micro instruction. p
~
P
R
(~ t
r
133 X

.......

:ﬁ{:"‘f‘t""'-.".‘).‘ e

Micro Routine: Bitpro
Micro address: 0028

BITS VALUE EXPLANATION

47~45 Q#X Don't care

44 . B#X Don't care

43 B#X Don't care

42~40 Q#X Don't care

39-~36 H#X Don't care

35-32 H#X Don't care

31~-30 B#X Don't care

29-24 Q#X Don't care

23 B#X Don't care

22 B#X Don't care

21-20 B#X Don't care

19~16 H#X Don't care

15 B#1 Don't set break point
14 X Spare/don't care
13-12 B#10 This is now the

11-8 H#1 address field with
7-4 H#0 address H#210

3-0 HicC Load address into R/C register

Resulting Microword: FFFF FFFF E10C
Purpose: Load R/C register with address H#210

Comments: The Am2910 is instructed to load the address
specified in the pipeline into the R/C register and continue
to the next address. The address loaded is for the shifting
microroutine for the positive or zero case of the result of
the previous adder stage instruction. The Am2910 also
continues to the next sequential address.

134

108 Yoy Sof Va3 Yok 4.8 g gt 0'.i‘l4‘||q'l!tu"|~ntcll\'|l"lb.‘tqlln-oul(v-\ac-

\ 3

’l

Q

Mnemonic: STAGE4 9

',

Micro Routine: Bitpro {
Micro address: 0029 i
BITS VALUE EXPLANATION -
47-45 Q#X Don't care -
44 B#X Don't care .
43 B#X Don't care -
42-40 o#X Don't care &
39-36 H#X Don't care “
35-32 H#X Don't care [
31-30 B#11 Use bit 29-24 2
-

29-24 Q#1F Test if Micro negative -
23 B#1l Don't latch micro status N,
22 B#1 Don't latch macro status g
21-20 B#01 Command overlay -
19-16 H#9 Enable true test DA
15 B#1 Don't set break point >
14 X Spare kL,
13-12 B#10 This is the address f
11-8 H#3 field with N
7-4 H#0 address H#230 oL
3-0 H#5 Conditional jump; True-pipeline address 1
False~-R/C address "]

7~

N

Resulting Microword: FFFF DFD9 E305 Ry
‘&

Purpose: Conditional jump to address H#230 if micro status ts
is negative (true), jump to address H#210 if not negative ™
(false) 2
Comments: Bits 31-24 specify the Am2904 *to test to see 1f E?
the micro status bit is negative. The Am2910 then has a ..
conditional jump on the results of this test to jump to the o>
address in register R/C if false and to the address in the NG
pipeline field if true. o
a
3

fa
[

v
135 ;.:)

.

Al

“

1

o~

M
Y

\' AN IRN ‘)"-{'_f:l-'__a: }‘1:‘f.-"f¢:'f?'a-".r." 'J‘:f:‘;’:(::f:'.‘rl'l;’f"-I'::-(.d':I:.‘:;-'\l:-:'f.'q:l‘::q':f;:-r:-:’:'.":;f:'."\-'::J‘:J'

T Y T T T WO Uwuow v) U UW RO DV DOV UV A U U OV IS AW oW oY

Micro Routine: Bitpro

Micro address: 002A

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & -Rb specified by pipeline

44 B#0 Enable Am29203 .
43 B#0 Enable Y output .

42-40 Q#2 Operand From RAM :
39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero

29-24 Q#XX Don't care ;
23 B#1 Don't latch micro status

22 B#1 Don't latch macro status ;
21-20 B#11 No command or shift %
19-16 H#X Don't care

15 B#1l Don't set breakpoint \
14 X Spare ‘
13-12 B#XX Don't care)
11-8 H#0 Ra=RO f
7-4 HYA Rb=RA :
3-0 H#E Continue

Resulting Microword: 0246 3FFF FOAE
Purpose: Place value of RO into RA .

Comments: Bits 35-30 specify the function to be F=R with 3
carry in equal to zero. Bits 11-8 specify R to be RO and .
bits 7-4 specify RA to be the destination. The Am2910 is '§
instructed to <continue to the next sequential micro 0
instruction. 5

Mnemonic: STAGES

Micro Routine: Bitpro
Micro address: 002B

BITS VALUE EXPLANATION

47-45 Q#4 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#0 Operand Sources from RAM

39-36 H#4 Destination to RAM

35-32 H#1 F=S-R-1 plus carry in

31-30 B#01 carry in equal to one

29-~24 Q#20 ALU status to status registers
23 B#0 Latch micro status

22 B#1 Don't latch macro status

21-20 B#11 No command or shift

19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare/Don't care

13-12 B#XX Don't care

11-8 H#B Ra=RB

7-4 H#C =RC

3-0 H4E Continue

Resulting Microword: 8041 507F FBCE
Purpose: RO=RC-RB

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=RC and R=RB as specified by the
pipeline, bits 11-4 and the destination of the result 1is
specified by bits 47-45 to be the register indicated by the
instruction register. Since the Macro instruction is 01F0,
the destination register is RO. The Am2910 is instructed to
continue to the next sequential micro instruction.

<t. &-‘.“

. N .
AR ARASIN

LS

Y

-

25

;5-.!.'.95“

?, }_f\:&f‘q‘ '

.
)

TRV ANYLY
\ w'r{._

R NN Y

15
b

-'.' T h 2
Ol

.
0
.

’ o 4
s 's

ok valh Tl el a8 Sal et tal dn® Val Cal Tat "l Yah Pt ‘gt "at %@ Taf gt '
5 " g Vaf a® 1% v ol 1a® a2k %af val 58 ‘% at *a¥ “at “ab *a¥. Vaf.'af t -.-.---'|vq|~|'n~("l~l‘0‘|0!ltlt'l",

Micro Routine: Bitpro ‘
Micro address: 002C

BITS VALUE EXPLANATION
47-45 Q#0 Sources Ra & Rb specified by pipeline . X
44 B#0 Enable Am29203 1
43 B#0 Enable Y output k
42-40 Q#2 Operand From RAM ;
39-36 H#4 F to RAM ¢
35-32 H#6 F=R + Carry in :
31-30 B#00 Carry in equal to zero E
29-24 Q#XX Don't care)
23 B#1 Don't latch micro status ’
22 B#1 Don't latch macro status %
21-20 B#11 No command or shift a
19-16 H#X Don't care <
15 B#1 Don't set breakpoint i
14 X Spare 3
13-12 B#XX Don't care 5
11-8 H#C Ra=RC
7-4 H#B Rb=RB
3-0 H4E Continue 5
Resulting Microword: 0246 3FFF FCBE E
Purpose: Place value of RC into RB .
Comments: Bits 35-30 specify the function to be F=R with :
carry in equal to zero. Bits 11-8 specify R to be RC and R
bits 7-4 specify RB to be the destination. The Am2910 is o
instructed to continue to the next sequential micro Y
instruction. &
138 N

[/

Y
o

A

e YO

Py P
(o a5 0 Y

A f'p"-‘d“f ."x

T A T G A T WIS I R N S MO I A, IR N N R R

3

»

-,

V2

W o w,

P

A a8 e e et t D 0 O \J * ON'Y O DRIOR *

Mnemonic: STAGE6

Micro Routine: Bitpro
Micro address: 002D

BITS VALUE EXPLANATION

Ra source & dest. from pipeline, Rb fm IR
Enable Am29203

Enable Y output

Operand Sources from RAM

Destination to RAM

F=S-R-1 plus carry in

42-40 Q#0
39-36 H#4
35-32 H#1
31-30 B#01
29-24 Q#20
23 B#0
22 B#1
21-20 B#11
19-16 H#X

Carry in equal to one

ALU status to status registers
Latch micro status

Don't latch macro status

No command or shift

Don't care

15 B#1 Don't set breakpoint
14 X Spare/Don't care
13-12 B#XX Don't care

11-8 HYE Ra=RE

7-4 HicC =RC

3-0 H#E Continue

Resulting Microword: 4041 SO07F FECE
Purpose: RC=RO-RE

Comments: Bits 35-32 specify the function to be F=S-R-1
plus carry in. A carry in of one specified by bits 31-30
make the function F=S-R. S=R0 as specified by bits 47-45,
and R=RE and destination = RC as specified by bits 11-4.
The Am2910 is instructed to continue to the next sequential
micro instruction.

139

L LR T . " g ¥ | AT e e S Rt ", LU N S i e PN R S
R LAY ‘.;!_ J, A L T A A PN N N L N AN J'-"'.-\.‘\'c\.'-_ DO

AW

SEANASAN

W b

N

Micro Routine: Bitpro f
Micro address: O002E
BITS VALUE EXPLANATION

x
47-45 Q#0 Sources Ra & Rb specified by pipeline \
44 B#1 Disable 29203 \
43 B#0 Enable Y output |
42-40 Q#0 Operand Sources from RAM
39-36 H#C F to Y only
35-32 H#4 F=S plus carry in -
31-30 B#00 Carry in equal to zero ’
29-24 Q#XX Don't care
23 B#1 Don't latch micro status 3
22 B#1 Don't latch macro status :
21-20 B#01 Command overlay .
19-16 H#4 Write to memory 5
15 B#1 Don't set break point .
14 X Spare :
13-12 B#XX Don't care
11-8 H#F Ra=RF
7-4 H#C Rb=RC
3-0 H#E Continue

Resulting Microword: 10C4 3FD4 FFCE

Purpose: Place result of filter stored in register C into
macro memory address pointed to by the PC

oy Y

Comments: The command field of the Am2904, bits 21-16,
specifies to write to memory. It writes to the location
pointed to by Ra which in this case is RF, the PC. It
places the value from RC into this memory location. The :
Am2910 1is instructed to continue to the next sequential N
address.

w

140

e W Wt e et AW el A e oy ~ AW T T O ST U A e
AT A \vl‘-" .«5‘,\‘ -\.‘. .’?.‘_ . 5‘,\.’\’\{-\ . . WA *::_r\‘,.\ :- e x o AR SN
W8, e A A I8 A Man ol Kotk o R N N A &

a a6 BN

-3
-

TEE v

L3 Y .
LU bt

¥

(B 'y ™ %2

- - e e e -

Mnemonic: STAGE6

Micro Routine: Bitpro
Micro address: O002F

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 B#0 Enable Y output

42-40 Q#2 Operand From RAM

39-36 H#4 F to RAM

35-32 H#6 F=R + Carry in

31-30 B#00 Carry in equal to zero
29~24 Q#XX Don't care

23 B#1 Don't latch micro status
22 B#1 Don't latch macro status
21-20 B#11 No command or shift
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#D Ra=RD

7-4 H4E Rb=RE

3-0 H4E Continue

Resulting Microword: 0246 3FFF FDEE
Purpose: Place value of RD into RE

Comments: Bits 35-30 specify the function to be F=R with
carry in equal to zero. Bits 11-8 specify R to be RD and
bits 7-4 specify RE to be the destination. The Am2910 is
instructed to continue to the next sequential wmicro
instruction.

141

.
Micro Routine: Bitpro \
Micro address: 0030 '
5
BITS VALUE EXPLANATION N
”
47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203 A
43 B#0 Enable Y output
42-40 Q#2 Operand From RAM)
39-36 H#4 F to RAM
35-32 H#6 F=R + Carry in]
31-30 B#00 Carry in equal to zero E
’
29-24 Q#XX Don't care ‘
23 B#1 Don't latch micro status :
22 B#1 Don't latch macro status -
21-20 B#11 No command or shift .
.
19-16 H#X Don't care €
15 B#1 Don't set breakpoint ;
14 X Spare N
13-12 B#XX Don't care Ny
N
11-8 H#0 Ra=R0O N
~
7-4 H#D Rb=RD ~
3-0 H4E Continue {
\
Resulting Microword: 0246 3FFF FODE N,
t
Purpose: Place value of RO into RD N
Comments: Bits 35-30 specify the function to be F=R with s
carry in equal to zero. Bits 11-8 specify R to be RO and -
bits 7-4 specify RD to be the destination. The Am2910 is N
instructed to continue to the next sequential micro N
instruction. ;
142 N
“~
M
o

"o N LW
(w‘f {?

- . . - . Y e e " e O T N R e R R T R S W L T LY N TN t e .\' LN W
A e o o e e A A e NN AN AN A N .
(% N g . 3 R A) » - R a X N e A

S R T R R R R R T O O I T R S W R O OV T LW e TW T Wy e e vy

4,

5

. .

'|

Mnemonic: DECCNTR \

Micro Routine: Bitpro i

Micro address: 0031

. BITS VALUE EXPLANATION :E
47-45 Q#4 Sources Ra & Rb from pipeline, Dest fm IR ~:
44 B#0 Enable Am29203 e
43 B#0 Enabel Y output E;
42-40 Q#2 Operand S from Q register ph
39-36 H#4 Destination to RAM 5
35-32 H#4 F=S plus carry in ;,
31-30 B#00 Carry in equal to zero -
29-24 Q#XX Don't care 4
23 B#1 Don't latch micro status é'
22 B#1 Don't latch macro status :H
21-20 B#11 No command or shift 3
19-16 H#X Don't care N
15 B#1 Don't set breakpoint Sv
14 X Spare o
13-12 B#XX Don't care 3
11-8 H#X Don't care]
7-4 H#X Don't care :'&
3-0 H4E Continue !

Resulting Microword: 8244 3FFF FFFE

-

o
P AL
.

Purpose: Put counter from Q register into register 0 o
Comments: The operand S comes from the Q register as L
specified by bits 42-40 and is placed in register RO since A
bits 47-45 specify the destination to be indicated by the IR x
and the macro instruction in this case is 01F0. The Am2910 N

is instructed to continue to the next sequential address. '

"

S

‘\

Ay t

-\ f

.:' o

J

[} ‘.

L] “

143 A
-

\’
~

]

'.' R -..’;.:,.;.-;.'r:.\-" AT AT A T '-'.‘-:a'-:\\;&\"\ '~;"'-.'-;'_-§‘:\ .";'»i -;:-:"'.."'-.“'x""-:"-'.";-:"-:':-C",-:"-'."-'.':\-'-'-:" A AR AN

Micro Routine: Bitpro
Micro address: 0032 ¢

BITS VALUE EXPLANATION A
47-45 Q#0 Sources Ra & Rb specified by pipeline ?
44 B#0 Enable Am29203 :.:
43 B#0 Enable Y output ‘ 33
42-40 Q#0 Operand Sources from RAM 53
39-36 H#3 SPECIAL FUNCTION: Decrement by 1 ‘
35-32 H#0 ALU special function P
31-30 B#01 One to be decremented (00 would decr 2) E
29-24 Q#XX Don't care E
23 B#1 Don't latch micro status i
22 B#1 Don't latch macro status ’E
21-20 B#11 No command or shift é;
19-16 H#X Don't care i
15 B#1 Don't set breakpoint E’
14 X Spare 5
13-12 B#XX Don't care :;
11-8 H#X Don't care E
7-4 H#0 Rb=RO A
3-0 H#E Continue A

Resulting Microword: 0030 7FFF FFOE

0

-

Purpose: Decrement counter by one ﬁ
1Y
Comments: This instruction is an ALU special function as b
designated by bits 35-32. Bits 39-36 specify the special :ﬁ
function to be a decrement and since bits 31-30 are 01, the)
decrement is to be one. The operand is RO as specified by o
bits 7-4. The Am2910 is instructed to continue to the next k{
sequential address. %

144 -

RN &L oty A s, Co G
- - - »

Ao ca R T T T T U
(% LI Nl T o . T o
2. 0% Py Y 07 W' Py, ¢ A", ™ ' o A

................

Mnemonic: DECCNTR

Micro Routine: Bitpro
Micro address: 0033

BITS VALUE EXPLANATION

47-45 Q#0 Sources Ra & Rb specified by pipeline
44 B#0 Enable Am29203

43 "B#0 Enable Y output

42-40 Q#0 Operand sources from RAM

39-36 H#6 F to Q register

35-32 H#4 F=S plus carry in

31-30 B#00 Carry in equal to zero

29-24 Q#20 ALU status to status registers
23 B#0 Latch micro status

22 B#1 Latch macro status

21-20 B#11l No command or shift

19-16 H#F Dont' care

15 B#1 Don't set breakpoint

14 X Spare

13-12 B#XX Don't care

11-8 H#X Don't care

7-4 H#0 Rb=RO

3-0 H4E Continue

Resulting Microword: 0064 107F FFOE

Purpose: Load counter back into Q register and check if
counter is zero

Comments: Bits 39-36 specify the result destination to the
Q register. Bits 35-30 specify the function to be F=S with
carry in equal to zero and S is designated %o be RO as
specified by bits 7-4. The Am2910 is instructed to continue
to the next sequential address.

145

B L N T T N TR T L S N N S A T I G N I R ICI T IT LG TR
_‘,\ \ ~ BTN v _,*.'. R _\.\. . e AN S s LA e >, .
. -+ o ' 2 B} .

EREWER R K POLS WM B TS W A Y W B Yol Saf Pl S Sad Vo bud ral ‘e v - abo sl Rt pt]

Micro Routine: Bitpro

Micro address: 0034 ’E
BITS VALUE EXPLANATION ¥
et F)
i 47-45 Q#X Don't care \
‘ 44 B#X Don't care y
43 B#X Don't care ya
42-40 Q#X Don't care K
39-36 H#X Don't care .
35-32 H#X Don't care E
31-30 B#11 Use bits 29-24 o4
29-24 Q#14 Test: Micro not zero .
23 B#1 Don't latch micro status L
22 B#1 Don't latch macro status .
21-20 B#01 Command overlay A
19-16 H#9 Allow true test i
15 B#1 Don't set breakpoint ")
14 X Spare A
13-12 B#00 This is now the £
11-8 H#1 address field with i‘
7-4 H#3 address H#013 :
3-0 H#3 Cond. jump to pipeline address if true S
Resulting Microword: FFFF D4D9 C133
Purpose: Jump back to beginning of filter to load new data ¢
point, if counter is not zero 1
Comments: Bits 31-24 test the zero status bit to see if it i?
is not zero. If this test is true, the Am2910 jumps to the ’
address H#013 as specified by bits 3-0 and bits 13-4 -
respectively. Otherwise, the Am2910 would continue to the e
next sequential address which would most likely be a branch -
to the next instruction fetch. i
¥

L

............... Ca \ \-J‘ _l'l', -"\1
A o J'

I NJ.\J‘\. ~

S0 e 3'a e 8'm 8 8 e a8 0y Ba et e 8% a¥a 2 ACa A% A% atataY. aF at at At Vel a8 2l "2l %8 "2 "altat Saf VAU %28 Va0 28 ‘2.8 Sab Yol S R 400 €g8 Sud o8 san A B op Yok ton $a ¢

Micro Routine: POSSHFTC
Micro address: 0210

BITS VALUE EXPLANATION

T e e \
47-45 Q#o0 Sources Ra & Rb from pipeline by
44 B#1 Disable Am29203 :

43 B#0 Enable Y output .

42-40 Q#0 Both Sources from RAM ‘
39-36 H#4 Destination to RAM

35-32 Hi#4 R=S + carry in

31-30 B#00 Carry in equal to zero i

29-24 Q#20 ALU status to status registers i
23 B#0 Latch micro status :
22 B#1 Don't latch macro status .
21-20 B#11 No command or shift E
19-16 H#X Don't care

15 B#1 Don't set breakpoint

14 X Spare R
13-12 B#XX Don't care

11-8 H#X Don't care ?
7-4 H#C =RC]
3-0 H#E Continue ;
Resulting Microword: 1044 107F FFCE ?
Purpose: Latch incoming data to test for zero i
Comments: The purpose of this instruction is merely to test 3

the data point in RC for zero and load the micro status -
registers with the result. Bits 29-23 specify the ALU
status to be loaded and bits 7-4 designate RC to be tested.

147

| a i A% Ra a2 22l AL A Ak £a® b e da 2 AR ARA S MR A AVA ANAY 14t et Bt Bt 0 R B0 A 0 A% 40a 'R L A0 Bts 10y 400 AL a0 M ek Nah inh Al Vo) Sad Sal Sl Bl B 0 BoR Bl Aol Mol ol B ok

NS A T S RN N)
N A
N . - LM

Micro Routine: POSSHFTC
Micro address: 0211

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bits 29-24

29-24 Q#15 Test: Micro Zero

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Allow true status register test
15 B#1 Don‘t set breakpoint

14 X Spare

13-12 B#10 This is the

11-8 H#2 address field for

7-4 H#3 address H#223

3-0 H#3 Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E233

Purpose: Test for zero, if true - go to return,
if false - continue

Comments: This Am2904 command, bits 19-16, orders a true
test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

148

;_\;_'r -.‘__\ \’\;_-."-.;.\._\."'..h\.\"‘-.’;.;_-. -;.‘_-,; :.‘ et L. _\;_. "_.. . _ WAt .

Nt

i [P I)

. 2 r. >

........

: B « ool dall ol tad tal b =Y
¢ Ur tad.at Vet Yal ‘el ‘atotalitatiTatital at al vad t28 tat Sad Sal Y28 a8 vat Y L N @ Haf g N p uo@ sab gl 1a0 igh Tag ot Vag Sak Saf Gof tag S8 ¢ s (O b

ez

Ag
Micro Routine: POSSSHFTC a,
Micro address: 0212-021A N
BITS “JALUE EXPLANATION i
BN
47-45 Q%0 Sources Ra & Rb from pipeline ot
.(:-
44 B#0 Enable Am29203 R
LY -‘v'
43 B#0 Enable Y output
42-40 Q#0 RAM source for operands &?
39-36 H4$0 F to RAM, arithmetic down shift o
e
35-32 H#4 F=S plus carry in ‘s
2o
31-30 B#00 Carry in equal to zero N
o
29-24 Q#XX Don't care 3
23 B#1 Don't latch micro status .
22 B#1 Don't latch macro status -
21-20 B#10 Shift overlay ;Ej
19-16 H#0 Shift right, zero fill N
15 B#1 Don't set breakpoint ;f
14 X Spare R
o
13-12 B#XX Don't care >
11-8 H#X Don't care :
7-4 H#C =RC S
3-0 H4E Continue :
Resulting Microword: 0004 3FEQ FFCE o
Purpose: Shift zero into MSB, shift out LSB ;:
-4
Comments: RC is the source and destination for the shift. a7
Bits 39-36 specify the shift to be downshift and bits 21-16]
specify the shift to be zero fill. The Am2910 continues to et
the next sequential address. .
N)
=
B
o'
!.~:
149 :'.
;«

B
)

"'\.*\‘\ T

H'hﬁ’-'-r'--\-.-.'\--q-"‘-\'\‘"'\ﬁ\\,\v u‘.'l\n".'ff?-l',.-l‘f J'-Fd"\f-/‘-"\q'\-f\-.f-(~
(9% 39 W 0% B Py 0%y, 'y Tty . N

- -

) e -, e 8 dr ks "2 8% A% 4%2 €%2 278 £%x £'x dia 02 272 B%2 Ata 2% AU U LN R “a¥.0ad val val mal tat Al gt el el et Al At Sad tal. U Ca1 40 tat ta N

Micro Routine: POSSHFTC
Micro address: 021B-0222

BITS VALUE EXPLANATION
47-45 Q#0 Sources Ra & Rb from pipeline
44 B#0 Enable Am29203 3
43 B#0 Enable Y output
42-40 Q#0 RAM source for operands R,
39-36 H#8 F to RAM, arithmetic upshift _ X
(X
35-32 H#4 F=S plus carry in i
31-30 B#00 Carry in equal to zero E
29-24 Q#XX Don't care .
23 B#1 Don't latch micro status .
22 - B#1 Don't latch macro status X
>
21-20 B#10 Shift overlay N
19-16 H#0 Shift left, zero fill -
15 B#1 Don't set breakpoint :
14 X Spare
13-12 B#XX Don't care 3
11-8 H#X Don't care N
7-4 H#C Rb=RC h
3-0 H#E Continue
LY
Resulting Microword: 0084 3FEQ FFCE f
‘
Purpose: Shift zero into LSB, shift out MSB -
Comments: RC is the source and destination for the shift. 3
Bits 39-36 specify the shift to be upshift and bits 21-16 <
specify the shift to be zero fill. The Am2910 continues to .
the next sequential address. .
%)
et
.
150 4
)
[,
)
W

% (AT VORI CR T R
D R R A SR

]
-
-
-
&
-
”
-l

et
?

K

Micro Routine: POSSSHFTC E:
Micro address: 0223 A
BITS VALUE EXPLANATION ‘
-- V‘l
* 47-45 Q#X Don't care ?‘1
44 B#X Don't care ﬁ
43 B#X Don't care {‘
42-40 Q#X Don't care E
39-36 H#X Don't care &
35-32 H#X Don't care :;
31-30 B#XX Don't care ¥
29-24 Q#XX Don't care .
23 B#X Don't care -.
22 B#X Don't care :}
21-20 B#XX Don't care {'
19-16 H#9 Forced pass be
15 B#1 ~ Don't set breakpoint]
14 X Spare g
13-12 B#XX Don't care ;
11-8 H#X Don't care E
7-4 H#X Don't care E_
3-0 H#A Conditional return ;;
Resulting Microword: FFFF FFF9 FFFA §
Purpose: Return to calling microroutine E

Comments: With the forced pass on the conditional return, S
the Am2910 returns to the address on the stack which is back o
to the calling microroutine. <)

R
A

151

&
&
&
&
-~

s nag e cad Va® Vap s A O I I O O T N R R O R R O R R R R R T R R R R U R O o S ST U I SO YY)

.

“
Micro Routine: NEGSHFTC
Micro address: 0230-0238
BITS VALUE EXPLANATION
T 13
47-45 Q#0 Sources Ra & Rb from pipeline . ;
44 B#0 Enable Am29203 E
43 B#0 Enable Y output o
42-40 Q#0 RAM source for operands ;;
39-36 H#0 F to RAM, arithmetic down shift 5
35-32 H#4 F=S plus carry in ”
31-30 B#00 Carry in equal to zero E
29-24 Q#XX Don't care E.
23 B#1 Don't latch micro status ;:
22 B#1 Don't latch macro status ?
21-20 B#10 Shift overlay E
19-16 H#l Shift right, one fill ;
15 B#1 Don't set breakpoint ;
14 X Spare f
13-12 B#XX Don't care ‘;
11-8 H#X Don't care i
7-4 H#C Rb=RC ‘
3-0 H#E Continue ?
Resulting Microword: 0004 3FEl1 FFCE g
Purpose: Shift one into MSB, shift out LSB :'
Comments: RC is the source and destination for the shift. -
Bits 39-36 specify the shift to be downshift and bits 21-16 SRS
specify the shift to be one fill. The Am2910 continues to :?

the next sequential address.

152
3
. S
. . _ .t
2 AL T T N S s D e W W a0 R DY > WA NN PO T P e,
"“!"‘\‘! -‘ "tl.l'. 'l’- n‘l . ' i Al|. '-l. Al J" T WS Nt A, \f w “ .. N n., e Lo) LA f

et e ™ faf Rt a4 R TR e §a VA 40 45 8'2 4°2 A% 8'a R'a'AY a0 tat ol al "l "al Ca® tad Tal W0 BB 0B Yop oal sy b g'e gt

% Micro Routine: NEGSHFTC
. Micro address: 0239

% BITS VALUE EXPLANATION

% . 47-45 Q#0 Sources Ra & Rb from pipeline

m 44 B#1 Disable Am29203

g 43 B#0 Enable Y output

? 42-40 Q#0 Both Sources from RAM

% 39-36 H#4 Destination to RAM

“ 35-32 H#4 R=S + carry in

;ﬂ 31-30 B#00 Carry in equal to zero

Ei 29-24 Q#20 ALU status to status registers

t 23 B#0 Latch micro status

; 22 B#1 Don't latch macro status

'j 21-20 B#11 No command or shift

’_ 19-16 H#X Don't care

;. 15 B#1l Don't set breakpoint

;E 14 X Spare

; 13-12 B#xXX Don't care

'3 11-8 H#X Don't care

'a 7-4 H#C Rb=RC

p 3-0 H$E Continue

e, Resulting Microword: 1044 107F FFCE

;ﬁ Purpose: Latch data to test for zero

:' Comments: The purpose of this instruction is merely to test
N : the data point in RC for 2zero and load the micro status
? registers with the result. Bits .29-23 specify the ALU
KX status to be loaded and bits 7-4 designate RC to be tested.
W : The Am2910 continues to the next sequential address.

d 153

Micro Routine: NEGSHFTC
Micro address: 023A

BITS VALUE EXPLANATION

47-45 Q#X Don't care

44 B#X Don't care

43 B#X Don't care

42-40 Q#X Don't care

39-36 H#X Don't care

35-32 H#X Don't care

31-30 B#11 Use bits 29-24

29-24 Q#15 Test: Micro Zero

23 B#1 Don't latch micro status

22 B#1 Don't latch macro status

21-20 B#01 Command overlay

19-16 H#9 Allow true status register test
15 B#1 Don't set breakpoint

14 X Spare

13~-12 B#10 This is the

11-8 H#4 address field for

7-4 H#3 address H#243

3-0 H#3 Jump to pipeline address if test true

Resulting Microword: FFFF D5D5 E433

Purpose: Test for zero, if true - go to return,
if false - continue

Comments: This Am2904 command, bits 19-16, orders a true
test of the status registers for zero. If true, the Am2910
instruction jumps to the pipeline address. If false, the
Am2910 continues to the next sequential address.

154

‘s $'s 42 2'a B

NPT APy

"~y w,

2

2 ‘.'. PP

9’

Al A,

.
)

X7 "{ W

iy '1.:’_3

o2

A

A
!
o

Micro Routine:
Micro address:

43 B#0
42-40 Q#0
39-36 H#8
35-32 H#4
31-30 B#00
29-24 Q#XX
23 B#1
22 B#1
21-20 B#10
19-16 H#0
15 B#1
14 X

13-12 B#XX

11-8 H#X
7-4 H#C
3-0 H4E

NEGSHFTC
023B-0242

EXPLANATION

Sources Ra & Rb from pipeline

Enable Am29203

Enable Y output

RAM source for operands

F to RAM, arithmetic upshift

F=S plus carry in

Carry in equal to zero -
Don't care :
Don't latch micro status .
Don't latch macro status

Shift overlay f
Shift left, zero fill

Don't set breakpoint .
Spare

Don't care

Don't care

Rb=RC

Continue

Resulting Microword: 0084 3FEO FFCE

Purpose: Shift zero into LSB, shift out MSB 3

Comments: RC is the source and destination for the shift.
Bits 39-36 specify the shift to be upshift and bits 21-16
specify the shift to be zero fill. The Am2910 continues to
the next sequential address.

. 0
it a v at ket Bt R Rt A ALt A A8 $'a d'a €' 02 2 h e At catatat tab et o cad ol Taf Cay Yat ‘i tad A W) aap'logte g

X

W

)

Micro Routine: NEGSHFTC X

Micro address: 0243

h’

BITS VALUE EXPLANATION "
47-45 Q#X Don't care E
“ 1

44 B#X Don't care N
43 B#X Don't care _
42-40 Q#X Don't care “J
39-36 H#X Don't care "]
I

35-32 H#X Don't care 4
31-30 B#XX Don't care N
29-24 Q#XX Don't care ;{
23 B#X Don't care . :
22 B#X Don't care N
-3
21-20 B#XX Don't care =4
19-16 H#9 Forced pass 1
15 B#1 Don't set breakpoint =
14 X Spare it
&

x

13-12 B#XX Don't care A
11-8 H#X Don't care =
7-4 H#X Don't care =
3-0 H#A Conditional return :g
&

Resulting Microword: FFFF FFF9 FFFA bt
Purpose: Return to calling microroutine 3‘
Comments: With the forced pass on the conditional return, f;
the Am2910 returns to the address on the stack which is back -
to the calling microroutine. T
S

2

F

156 -

.

S

N

N

e X A AN NN AN A AN A A A A7 N A

.o N

AR EN R TAN LY FUE RS ASVE AN TGO R AR A AR AR N IR UYWL Py P T og§ g B 6.8 9.8 Wad 58 PoF a8 aC gl - TN Y VPyTu

Micro Routine: POSSHFTO
Micro Address: 0250-263

This routine is identical to microroutine POSSHFTC with the
following exceptions:

Replace register C with register 0 in all microcode

Replace address in pipeline with address H#263

Micro Routine: NEGSHFTO
Micro Routine: 0270-0283

This routine is identical to microroutine NEGSHFTC with the
following exceptions:

Replace register C with register 0 in all microcode

Replace address in pipeline with address H#283

157

BRI DI T T I D O TR IR C I TR s T s T D I)
B N R N L L N N A A A AR oy

APPENDIX C

FORTRAN PROGRAM OF FIR FILTER WITH CPU TIMING ROUTINE ADDED

THIS PROGRAM IS A REPRESENTATION OF A 13TH ORDER BAND PASS FILTER

INTEGER X(200),Y(200)
REAL *8 T(201)
INTEGER N
HANDLE=0
PRINT 4
4 FORMAT ('1'

aonon

SUBROUTINE INPUT (N,X,TIMEL)

REAL *8 XX(200),F,FS,TIME1(201),THETA

INTEGER X(200)

INTEGER N,K

N=195

F=3. 58E6

FS=1. 42E7

TIME1(1)=0.

DO 100 K=1,N
THETA=2. #3, 1415926 *F*TIME1(K)
XX(K)=63. *SIN(THETA)

X(K)=INT(XX(K))
TIME1(K+1)=K/FS
100 CONTINUE
RETURN
END
C mmcmacannmnnmem - e m—- - - - —-————————————————— ewmmeceaeaaaa

SUBROUTINE FUNCT (X,Y,N)

REAL *8 TIMER1,TIMER2

INTEGER X(200),Y(200),Y1,Y2,Y3,Y4,YS

INTEGER X1,/0/,X2/0/,Y14/0/,Y13/0/,Y12/0/,¥11/0/,¥23/0/

INTEGER ¥22,/0/,Y21/0/,Y¥31/0/,Y41/0/,¥52/0/,Y51/0/

INTEGER K,N

RMS=0.

CALL JCPUT(TIMER1)

DO 50 K=1,N
Y1=X(K)-X2
Y1=Y1/2
X2=X1
X1=X(K)

Y2=Y1+Y14
Y2=Y2/2
Y14=Y13
Y13=Y12
Y12=Y11
Y1l=Y1

158

A | PR AL ST RN T K AP N SN s
¢ YR A S R I S Y R
M L.

b, e e e 5 Ca W I !

Y3=Y2+Y23 v
¥3=Y3/2 '
¥23=Y22)
Y22=Y¥21 by
Y21ay2 e,
Y4=Y3-Y31
Y4aYq/2
¥31=Y3
¥S=Y4-Y41
Y41=Y4
Y(K)=Y5-¥52
¥52=Y51
YS1=Y5

IF (K.GT.13) THEN
RMS=RMS+Y(K) *¥(K) =
END IF -~
50 CONTINUE -
CALL JCPUT(TIMER2) "3
TOTAL=TIMER2-TIMER] .
WRITE (13,271) TIMER],TIMER2, TOTAL
271 FORMAT (' TIMER1l = ',D17.10,'TIMER2 = ',D17.10, 'TOTAL = ',D17.10)
RETURN
END
C mncnrmaccmcacccccaccrcan n e e e e - m - - v - e - - - — -
SUBROUTINE OUTPUT (X,Y,T,N)
REAL *8 T(201)
INTEGER X(200),¥(200), IHEX(200)
INTEGER I,N
DO 200 I=1,N
IF (Y(1).LT.0) THEN
IHEX(I)=Y(I)+256

(LA g 5 e

"y

'y‘_‘,\-") % M v

s

ELSE
IHEX(I)=Y(1)
END IF
WRITE (13,201) I,IHEX(I),I,Y(1)
201 FORMAT (' HY',I3,' = ',22,5X,'Y',13,' = ',13)
200 CONTINUE
RETURN
END
c --- ---------- - - - - e D ED AR an WD Gh Gb we WD SR Em - -

SUBROUTINE JCPUT(XCPUT)

SR ARIY

c

(o RETURN CPU TIME AS A FLOATING PT VALUE
Cc

'-":' LSS

L

PARAMETER JPI$_CPUTIME = '407'X
INTEGER*2 BUF(8)

INTEGER*4 BUF1(4),CPUT
INTEGER SYS$GETJPI
EQUIVALENCE(BUF(1),BUF1(1))
REAL SCPUT

BUF(1)=4
BUF(2)=JPI§_CPUTIME

BUF1(2)=%LOC(CPUT)
BUF1(3)=0

BUF(4)=0
IRET=SYSSGETJPI(,,,BUF,,,)
ACPUT=FLOAT(CPUT)/100. 0
RETURN

END

NPT AR

?," 2

[3
k §

159

._..“".I./"',

3% 3T BTN A RN L R R Y A o e g PN BT e S e N S Y AN N
'\ll.’“\.t.l':'l.-i\l’. A xS 'h ¥ ol Y A b .. o.o RGN

AN AR OO Ot i (LB

N B . Sal sad e vah tap s 4t el "all.'ata"la’
R O T I R N R R R R R R Y O LR SO IR UV = LY UV NV 4t s v

LIST OF REFERENCES

1. "Bit-Slice ICs KRick Off Era of Commercial GaAs LSI,
Electronics, pp. 83-86, September 18, 1986.

2. Fischer, T., "Digital VLSI Breeds Next-generation TV
Receivers," Electronics, pp. 97-103, August 11, 1981.

3. Hockney, R.W., Jesshope, C.R., Parallel Computers, pp.
146-153, Adam Helger Ltd, Bristol, 1981.

4. Adams, W.T., Smith, S.M., "How Bit-Slice Families

Compare: Part 1, Evaluating Processor Elements,"
Electronics, pp. 91-98, August 3, 1978.

5. White, D.E., Bit-Slice Design: Controllers and ALUs,
pp. 9, 30-42, 70-71, Garland STPM Press, 1981.

6. Wolfe, C.F., "Bit-slice Processors Come To Mainframe
Design," Electronigcs, pp. 118-123, February 28, 1980.

7. Hartrum, T.C., and others, Am29203 Evaluation Board
User's Gujde, Advanced Micro Devices, Inc., 1986.

8. -94 ies G i ispla stem Hardware Reference
Manual, Publication Number 504616, Revision B, Volume 1,
Ramtek Corporation Technical Publications, 1980.

9. Liskear, J., "The Bit-Slice Alternative (Graphics),"
Computer Design, p. 44, January 15, 1985.

10. "Bipolar 8-bit Slice Family Includes PLAs," Computer
Design, p. 105, December 15, 1985.

11. Lobo, K., and others, "Structured Arrays for

Microprogrammed Systems," Semicustom Design Guide,
pp. 44-53, Summer 1986.

12. Chen, C. T., One-Dimensional Digital Signal Processing,
pp. 8-10,191, Marcel Dekker, Inc., 1979.

13. Programming In VAX Fortran, V. AA-D034D-7E, pp. 3.3,
3.12, Digital Equipment Corporation, 1984.

14. Gold, B., Rabiner, L.R., Theory and Application of
igita igna Processing, pp. 295-309, 337-349,

Prentice-Hall, Inc., 1975.

160

wm ! :&}Lm" AN W A N AN A AN NS IR I S

b 2

]

15. Stewart, M.B., The Application of Bit Slice Desian To :5
Digital Image Processing, Masters Thesis, Naval B
Postgraduate School, Monterey, California, September ﬁ

1986.

16. Becker, T.F., GaAs Microprocessors and Memories for High ‘g

‘ Speed System Design, Vitesse Electronics Corporation, !
1986. . 4

=

17. Smartcom II for IBM PC, IBM XT and Compatibles, Hayes
Microcomputer Products, Inc., 1984.

AT e A
' Ty

Iy 8

<
[

LRSI N

X

a

oy

“ e
,‘".'...'

ol g
SN

')

St h..:' '-‘ :' ’.' e

L
e

(2

BT R

161

l. -f:"- \'.;-.‘ww-’\ LT PR/ '-.I*"If{*.-

¥ 6 V¢

o

BIBLTOGRAPHY

Adams, W.T., Smith, S.M., "How Bit-Slice Families Compare:
Part 2, Sizing Up the Microcontroller," Electronics,
August 17, 1978.

Baker, S., "Microslice Family is a Logical Move,"
Electronics Weekly, November 13, 1985.

Brick, J., Mick J., Bit-Slice Microprocessor Design, McGraw-
Hill Book Company, 1980.

DeMonrico, C., Laczko, F., "When Bit-Slices Team Up With
ECL, 32-Bit Computers Rise to Superpower Status,"
Electronic Design, May 15, 1986.

Everett, D., Thorpe, R., "Single Chip Combines Bit-Slice and
EPROM," Computer Design, August 15, 1986.

Frends, M., Kital, R., "Digital Distance Relay mho Elements

Using Bit-Slice Technology," IEEE _Transactions on
Instrumentation and Measurement, Vol. IM-34, Nc. 4,
December 1985.

Kirk, D.E., Strum, R.D., First Principles of Discrete
Systems and Digital Signal Processing, Addison-Wesley
Publishing Co., 1987.

Langdon, G.G., Computer Design, Computeach Press Inc., 1982.

Stone, H.S., Microcomputer Interfacing, Addison-Wesley
Publishing Co., 1982.

162

B B g @' - [
At e At el el VAt T Vet et taf tat al ba YAt Fal €28 Vak T8 an Uan tae Aad 008 Vg oat Reg 4 Nip €t 1ah Vot 4, Rt a0 tak a6 Yol Sall el Sad ot tet a8 Vol tat

B '-“/'f"'."-"' "

.""’4

YR g7
AP

[s

&nfxfiﬁrx

N
~
l\‘
-\ y
A
Y
14
A

DR TS AR AN F UK 2% 0% et 1% 1 et NIATY) FR AR 4 0 8,81,9°0,00.0" W A U W0 T WL WIS W S AL A P N X7 g M 9

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandrea, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 62 1
Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Chin-Hwa Lee, Code 62Le 4
. Department of Electrical and Computer
Engineering

Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Mitchell Cotton, Code 62Cc 1
Department of Electrical and Computer
Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Commander Naval Surface Force 6
U.S. Atlantic Fleet
Norfolk, Virginia 23511-6292
Attention: Lieutenant Darrel W. Purdy

163

..............
,,,,,,,,,,,

e SR

" omae -
. ."::.'
W0

LR I)
&

+ l.ll
-

.. _ . - - - L N S te e R mL Rl e e el e R . - Gt . - .
“‘ % " .. Y . .‘ '\')‘\- D] A Y S Y AN .} AL ..'_\._ '\ .._’.'_'. RIS > AT NS
» &% a BN, 2 A9, W R R, . ' > 5 W "

s WA ATy

l

Je

%
e
s

W0
)
0

N

- -
-
s

A AT

)

