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1.0 INTRODUCTION
N
y

Task allocation, the assignment of tasks to processors, I1s an important problem in the
design of distributed real-time systems. A task allocation scheme is required in order
to produce a feasible partition of tasks across processors in the system, and to ensure
high performance. especially for systems with real-time operational requirements. __~

Several researchers have studied the task allocation problem for distributed systems;

)
S

[ChuB0] contains a survey of various approaches.

~- One of the problems of current interest in real-time system design is the development

of real-time Ada software for distributed systems) Several approaches have been
proposed and are being studied; a sf:rﬂvey can be found in [Arm84]. The approaches

can be characterized as either ﬁ»/)’ Aol Aoy N\

o e

N
. source code allocation, the development of multitasking Ada software, which is

then partitioned ; this approach allows development and testing of the software

2
as a whole before allocation” , e

¢ target-code allocation, where a compiler is responsible for performing task

allocation, perhaps with some user-imposed contraints; or

* separate program development, where allocation decisions are made early in

the development phase, and separate programs are developed.

The traditional approach of developing separate source programs for each processor
in the distributed system requires the system designer to make early decisions on
allocation, taking into account resource and performance constraints. This approach,

however, increases the difficulty of software reallocation in later phases of the
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software lfe cycle. Target code allocation schemes require a distributed target «
ot
compiler that is used to generate separate object code files in allocating target code '
W,
for each processor. There are (wo ways that the compiler can partition Ada o
.‘l
application software: (1) being informed via pragmas about a predetermined partition 2:
',I
scheme; or (2) analyzing the application software, and then applying a partiioning 3;
N
algorithm. The compiler required for this allocation scheme is complex, difficult to :::
design. and presently not available. ::::
5 | | r
The source code allocation approach has a number of important advantages. In an
allocation scheme, it is preferable to place minimum design restrictions on software [
“
development, especially since the target architecture may, in most cases. not be .
known. it is also preferable to minimize the burden on the compiler. Additionally, ;’,
5 i
“g
since the underlying system constraints may vary, a good partition can be achieved ,‘
"
only through iteration, and therefore, creating new partitions should be inexpensive.r/ L
ba
A source code allocation approach that meets the above objectives was adopted by :',;
&
GTE Strategic Systems Division in its muiticomputer software technology for Ada. This !::
approach allows an application to be developed and tested as a singie multitasking "
[0
'3
Ada program on the APSE (Ada Programming Support Environment), and then :
partitions and distributes the tested software to the distributed targets. Program ::"
partiioning is done at the source level, and the distributed software modules are 3
P
compiied on the target machines. w2y
J‘u
pS
GTE Laboratories researched the development of a methodology for partitioning Ada '
*
source code to execute in a distributed environment. Two major tasks were involved §
vt
in the development of such a methodology: ..‘
1. the formulation and selection of parameters that can be derived from the Ada "
b..
source code, to be used in the partitioning process; and ::
A
o*
N
o
i.\
'
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2. the development of an efficient partitioning aigorithm.

The approach taken closely follows that described in a previous report (GTEBS]. The
basic goal of the approach 1s tv transform a given Ada program into a graph based
representation, and then to apply a partitioning algorithm for task allocation The
graph based representation is similar to the specification schemes being investigated

at the University of Texas at Austin [Mok84, Mok8S).

In this paper. we describe the research efforts towards achieving the above tasks. In
section 2. we describe the parhition problem and describe an algorithm for it. In
section 3, we define partitionable units in Ada software. in section 4, we enumerate
parameters derivable from Ada source code to be used in partitioning. in section 5,

we present an Ada example. Section 6 concludes the report with a suggestion for a

future research direction.

-----
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2.0 PARTITIONING PROBLEM AND ALGORITHMS 1:','
The problem of aliocating Ada source over distributed targets can be formulated as a i:f

LN

graph partitioning problem. For purposes of task allocation, an Ada program can be 5‘0'

represented by a graph G = (V,E) as follows:

-

’

® the vertices of the graph G, i.e., the set V, represents the partitionable Ada £
program units; and :?'
¥

® the communication or dependency between units is represented by the edge set

E.
Given this representation of the Ada program, weights are assigned to the vertices “'('
o
and edges; a weight w(v) for vertex v € V represents execution characteristics of the %
Ada partitionable unit, obtained from such parameters as computation , memory and -
similar resource requirements. The weight ‘”(ei,‘) assigned to the edge between unit N
A
>
(vertex) v, and unit (vertex) v] represents the total communication cost between the i,
v
I
two units; this weight 1s obtained from such parameters as the number of data 0L
elements transferred 1n a communication, and the number of messages required per :'
el
R,
transaction. -f_
‘;.-
%1,
The partitioning problem for graph G =(V,E) can be formulated as follows: determine a i
» ]
o
partition of V into m disjoint subsets Vi. V...V such that o
Ny
Ny
(1)J £ £ w(v) €K, 1S i S m, for some constants J and K a
vev. :
] DA
"
and -
-
..I‘
(2)NV,.V.)) = I wie) S L. for some constant L, E, < E and oy
") U] L.
eeE, L
J
)
(v,v)eEii=>veVi,v erandViaij. ,-.'.-.
-
)
o
.'\
K
N O A A P PO RO PN AL W R AN AT IO




The partitioning problem, as formulated. aims at reducing the communication cost

s o o -

I(Vi. V]-) between the partitioned clusters, and places a load balancing constraint on

the clusters. These objectives are appropriate for the Ada partitioning problem as "u.
system performance is affected by factors such as interprocessor communication X

delays. processor load. and the amount of parallelism that can be exploited.

Ph
A
The partitioning problem as formulated has been shown to be NP-complete (Gar79]; 23
&
-

however, there are partitioning algorithms that use heuristics to obtain close to

A

optimal results with acceptable algorithm performance [Pri84,Ker69].

e
1)
The heuristic techniques reported in the literature can be classified into three : :
\,
Vot
categories [Lin81): (1) constructive initial assignment, (2) iterative assignment- :
b
improvement, and (3) branch and bound technique. \
Y
The constructive initial assignment techniques are based on the concept of assigning '\
one unit at a time to a particular processor until all the units are assigned. Algorithms -
)
vary on the order in which the units are assigned and the criteria used to select the v
A
processor. :
-
The iterative assignment-improvement techniques stait with an initial assignment of e
.
l’-
units to processors and generate the next assignment by making a small improvement ;:
»?
to the initial assignment [Ker69]. The algorithms terminate when no improvement can
be discovered or after a predetermined number of iterations. o
r-
N
The branch and bound methods are based on the concept of doing an implicit search n
S
of a decision tree. Algorithms use different heuristic methods for deciding which b
branch in the decision tree to follow and for pruning possible solutions. r"
\
N
N
~
5 3
t‘:’
ABE IS 3% N I D L % ) h P LR Y B 6P A AR I RS YR L T VO S N PO T L L T )
R s N B B A e O A K N N A SR AT I S NN I SENENT SN NN




dg A T4 de .- Lt g a0 it g et et g P 0 g g st By e b 8 4"e 8% 0% 4% 8% " 80 By BT, U

The iterative assignment-improvement algorithms are used more than the other two
techniques. In general. the branch and bound algorithms are too slow for large
applications and the constructive initial assignment algorithms do not generate

partitions that are as good as the other two techniques.

It is expected that the number of vertices in a graph obtained from Ada source will be
large. and therefore heuristics will need to be developed not only for creating good

partitions, but also for partitioning in an acceptable amount of time.

In the remainder of this section, we describe an algorithm based on a weil-known
graph partitioning algorithm by Kernighan and Lin (Ker69]. The algorithm uses the

iterative assignment-improvement techniques.

The main i1dea of the algorithm is to start with an initial partitioning into m subsets and
by repeated application of iterative-assignment-improvement techniques to pairs of

subsets. to achieve a near-pairwise-optimal state.

To obtain the initial partition, the units are assigned, one by one, to the subset with
least weight first, provided the balancing inequalities are satisfied. Next. the
interactive assignment-improvement algorithm is applied to every pair of subsets and

it works as follows:

Let A, B be two arbitrary subsets. the algorithm identifies X and Y, subsets of A and B
respectively, such that interchanging X and Y produces A* (= A -X +Y)and B" (= B
-Y +X) that satisfy the following conditions:
(1)J S L wv) <K,
VEA®

J £ § w(v) < K, and
veB’

(2) I (A°, B*) < I(A, B).
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The algorithm finds X and Y by sequentially identifying their elements without
considering all possible choices. A pair of units (a. b), where a € A and b € B. are
selected to yield the largest possible reduction in the interprocessor communication
cost from a single interchange. We refer to this reduction in the communication cost
as the gain from interchanging a and b, and we denote this gain g(a.b).

Mathematically, the gain g(a.b) is

(L w((a, y)- I w((a.x))) + (I w((b.x))- I wi(b,y))) where
yeB’ X€A’ X€A’ yeB’

A’ = A-{a}and B" = B - {b).

YR SR SR N
Y

AT

The gain g(x.y) is defined to be zero if interchanging x and y upsets the balancing

o

inequalities. The elements a and b are interchanged to form A (= A - {a} + {b}) and

[N
“h YN Yy

B: (= B - {b} + {(a}). The elements a and b are then eliminated from further

.
a
‘e '

consideration for exchange. The exchange procedure continues until all units have

been exhausted, or there 1s no further possible exchange that will yield a positive

gain.
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3.0 PARTITIONABLE UNITS

% N ¥
g -..‘ ¥

In our framework of source code partitioning. we discuss what constitutes a
partitionable unit of an Ada program. Since the partitioned software has to be
compiled on each processor, the partitioned units must be separately compiiable In
Ada. there are four kinds of program unils that can be separately compiled. They are

tasks, subprograms, packages, and generic units.

Subprograms are the basic executable units of Ada programs. They can be
procedures or functions. A subprogram communicates with outside entities via global

declarations or parameter passing upon its invocation and termination.

In Ada. a collection of logically related entities can be encapsulated in a package. A
package allows its entities to communicate with an entity outside the package via

global declaration or by the import and export mechanism. The entities declared in

the visible part of the package specification may be used outside the package. And‘

entities 1n another package may be used by establishing the visibility through the with

clause.

Unlike subprograms and packages. tasks operate in parallel with other program units.
The main program unit is implicitly considered tc be a task. In Ada. task interaction is
handled by treating each task as a communicating sequential process [Hoa78] The
tasks are synchronized in hrme when they communicate. The explicit synchronization
1S known as a rendezvous. Similar to package specification, a task specification

defines the communication entries available to other tasks.

These three kinds of program units can be introduced in the declarative part of any
unit. This makes the communication among units non-trivial. We discuss this in a

later section.

‘. \’\ \ '-“-'\f\.‘\;b'l.'.'..";‘"J\:-";,\‘..‘..\.-.'..\'. - o '_..,‘-'_ '.’_‘J‘" ‘.---_ A "’.-_ ,..'_..
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Some distributed Ada systems allow partitioning on task boundaries or'y “rg' s -

approach appears to have achieved a synergy between Ada's units o' ror Lrre s, 4
the underlying system’s unit of concurrency, the processor However s 47 -

requires all code being partiioned to be encapsulated by a task. This reql cis s,
partiioning to make sure that tasks are designed at the appropriate place 7= © Zoes
not meet our objective of making minimum design restrictions. In some agp' ca’ ~7¢
hhmiting interprocessor interface to only task rendezvous may be unnatura ‘m»
interprocessor interface may be better represented as a call to a procedure ~s ze 3

package and not a call to an entry for a task.

We propose that partiioning be allowed on these three kinds of program un:
boundaries. We do not explicitly include generic umits as partitionable units  We can
view generic packages/subprograms and their instantiations as
packages/subprograms in the partihioning scheme. Since the partitioned units have to
be compiled on the target machines, we may require the partitionable units 1o be
designed as Ada compilation units for distribution purposes. This does not mpose
any syntactic restriction or any design restrictions since Ada program uynits can be
submitted as separate comptiation units or as one compilation. However. it must be
understood that a compilation umit does not have to be a partitionabie unit. In Ada,.
each compilation unit specifies the separate compilation of a construct that can be a
subprogram declaration or body, a package declaration or body. a generic declaration

or body, or a generic instantiation. A compilation unit can also be the body of a task

unit.




4.0 PARTITION MODEL

We have discussed the general partition problem and our proposed partitionable units
in Ada in previous sections. We now propose a model for partitioning an Ada program

for distributed targets.

The first step in our modeling is to represent the interunit communication as a graph
G = (V.A), where V is the set of vertices representing the partitionable units of an
application, and A is the set of arcs representing the communication. Our next steps

will be examining how to assign weights to the vertices and the arcs.

4.1 INTERUNIT COMMUNICATION

A unit can be a subprogram, a task, or a package of data objects. There are four kinds

of communication among these units.

The first 1s subprogram invocation. A subprogram’s execution s invoked by a
subprogram call from another subprogram or a task. After the association between
formal parameters and actual parameters is established. execution control is passed
to the called subprogram. Upon completion, control is returned to the caller. The
subprogram invocation follows a single thread of control. The communication cost is

incurred at invocation and completion.

The second kind of interunmt communication is task rendezvous. Dfferent tasks
execute independently, except when they communicate. A task entry can be calied by
another task. Communication 1s established when the called task accepts the call. |
the entry has parameters, values are communicated between th.. tasks. After this
synchronization, the task issuing the entry call and the task accepting the call continue

their execution independently.

10
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Task activation/termination s another kind of communication related to tasks This i1s
an implicit communication in the contro! flow of the task dynamics The initial part of
task execution is called activation. A task s activated as a result of the elaboration
(execution) of the declarative part of its parent task or as a result of the allocation of a
new task. A task is said to be terminated when it i1s completed (it fimshes its las!
executable statement) and all its dependents are terminated. Therefore. upon
termination, a dependent task needs to communicate its state to its parent This kind
of activation/termination communication occurs between a task and any other hind of

partitionable unit.

Data reference/modification 1s a different kind of interunit communication that 1s not
exphcit. A partitionable unit can reference any visible data defined in other units. A
data definihon in 3 unmit 1s made visible to another unit either by scope rules or with
clauses. Data reference/modification i1s purely data flow; there 1s no control flow

involved.

Two units with any of these four kinds of communication will experience some
network delay when they are allocated to different processors. Over the same
network, different kinds of communication take different amounts of ime. We discuss

the weights on these kinds of communication in more detail below.

Although commumcation 1s bidirectional, we like to assign direction to 1t for analysis
purposes. We say a communication is from unit A to unit B f unit A 1nitiates the

communication.

We assign a weight to every communication from umt A to unit B if they are assigned
to different processors. The weight of an interprocessor communication depends on

the number of n.essages required for such a communication. In the case of




subprogram invocation and task rendezvous, the number of arguments in the call has

to be taken into account for the weight of the communication.

For a call to a subprogram on a different processor, two messages are needed. 3
-call” message contairing the IN parameters, if there are any. and a “return” message

containing any OUT parameters:

subprogram call

s_call requesting unit | subprogram id | input parameters

subprogram return

$_return requesting unit outpul parameters

We assign a weight of
3 + number of input parameters
to a subprogram “call” message and a weight of
2 + number of output parameters
to a subprogram “return” message. Thus a subprogram invocation type of
communication 1s assigned a weight of

5 + number of input parameters + number of output parameters.

In addition to the “call” and “return” messages, there are two more messages needed
for each normal task rendezvous [WeaB4). After a “call” message Is sent to the
accepting task and when the accepting task is ready to accept the task, it returns an
“accept” message to the calling task. If the calling task still desires rendezvous. it
returns a "confirm” message to the accepting task. The message passing required for
task rendezvous is dipicted in figure 1. The "accept” and “confirm” messages are less

complex than the “call” and “return” messages that contain IN and OUT parameters:

.’.'(_-‘ [ -4

DA



calling task accepting task

*call” message

accept” message

“confirm® message

*return® message

Figure 1. Messages Required for Task Rendezvous

entry call

e_call requesting unit entry id | input parameters
accept

accept requesting unit
confirm

conlirm | requesting unit

return

return requesting unit output parameters

Weights are assigned to each of these four messages in the same manner as for
subprogram invocation messages. The weight assigned to a task rendezvous type of

communication is

9 + number of input parameters + number of output parameters.

'\\‘

A



in the event of elaboration, a taskh sends an “elaborate” message to all its dependent
tashs and waits for an "active” message from each of them. When a task compleles
its last executable statement. it waits for a “terminate” message from each of its
dependents before it terminates. Therefore, there are totally three messages between

a parent and each of its dependents required for activation and termination:

task activation

activation | requesting unit task id

task activation return

a_return requesting unit

task termination

termination parent unit

A task activation/termination type of communication is thus assigned a constant

weight of 7.

For data reference/modification between two units on different processors, a “request”

1 message is sent from the initiator and a "response” message is returned:

14

‘ ,:.'_'r 'f_;.' 'J'_;-",:d'_:-“:q'.:-r_:.'\’)_" Lo



2T jarany

and ‘20
read requesting unit object id c
2,
read return 2
A
r_return requesting unit object value .
A
~
write by
-~
write requesting unit object id object value R
write return .
L]
iyt
write requesting unit :
2
%
A data reference/modification type of communication is assigned a weight of o
. t
5 + size of the data object. -
‘Al
Knowing the weight of each kind of communication, the weight of an edge from unit A i
v
to unit B 1s computed as the sum of the weights of aif communication from A to B. ¥
E
4.2 COMPUTATIONAL COMPLEXITY OF THE UNITS “
-
Several program complexity metrics have been developed for various purposes such :::
f‘
N
as maintainability and understandability. For partitioning purposes, we are interested ,:
v
w in the computational complexity of a unit. The complexity measure includes the unit's
| ?
: time and space requirements. Knowing the complexity of each unit, we may be able ;
o
to achieve better load balancing for the processors in the system. We use a simple )
definition of load balancing. Load balancing is an assignment of units to processors <
3
such that the time and space requirements are evenly distributed to each processor in s
~
N

the system, \
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N A unit, except a package of data. contains a code portion and a data portion A

suitable metric for measuring the space requirements of the code portion of a uni
’, might be the number of machine instructions. However, the number of machine
: instructions generated from Ada source iIs compiler dependent. In general, the

expansion ratio of the number of machine instructions per line achieved by a compiier

.
-
- .

B

‘\' .

,:’ is not known. GTE-GS SSD has done some work in measuring empirically the
"_J expansion ratio of a group of compilers [Che86). Since we are using a less strict
¥ definition of load balancing: that is, we are not aiming at an optimal assignment, the

number of source lines could be a good estimate of the space requirement for a unit's

-
i

code portion. Similar to code space requirements, a unit’s data storage requirement

i1s compiler dependent. At this point, we are going to use a set of assumptions about

b ,
;; Ada data type storage requirements.
£
b

The time complexily of a task or subprogram unit that does not contain a loop
'l
W statement can be measured by the number of machine instructions generated for the
D) R . .
» unit. To analyze a unit with loop statements is nontrivial. A loop statement without an
’

teration scheme can be repeatedly executed until a transfer of control occurs. In
»
v, . . .
o most cases, the number of times a loop is going to be executed cannot be predicted
f,
; until the transfer of control occurs. Even for a loop statement with a “while” iteration
. scheme, it is difficult to estimate the number of iterations. We can only be certain of
Myl
o the number of iterations in a loop statement with a “for” iteration scheme. We can
f', view all loop statements with or without iteration schemes as a sequence of code to
. be executed periodically. Therefore, the time requirement of a unit can be estimated
. by the number of source lines without regard to loop statements.
)
!
.
‘a
N
N
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5.0 AN EXAMPLE

in this section we examine an Ada embedded system for monitoring temperatures as
described in [Boo83]. In the appendix, we include the program that was taken in s
entirety from chapter 18 of [Boo83]. We formuiate the partitioning probiem and apg'y

the partitioning aigorithm described in section 3 to it.

The Ada program consists of the main program, four major tasks and a number of {-Q
packages. We center our partitioning problem on the main program and the four
tasks, and ignore the 1/0 packages to simplify the discussion. The partitioning

problem we are addressing is as follows:

Find a partition of the five Ada units: TIMER, ALARM, COLLECTION_OF_SENSORS.
RECORDING_DEVICE, and MONITOR_TEMPERATURES into two subsets V, and V: such
that
(1) 36 < I w(v) s 190
veVj

where (I w(v))/2 - max (w(v)) = 36
veV veV

and (I w(v))/2 + max (w(v1)) = 190
veV veV

(2) V4, Vi), the interprocessor comrmunication cost is near-minimal.

The complexities of the units are

Unit Source line of code
TIMER 48
ALARM 30
COLLECTION_OF_SENSORS 53
RECORDING_DEVICE 19
MONITOR_TEMPERATURES 77
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post_faull_in_sensor 9

N

post_out_of_limit

force_record

7
: 1
disable g !/ MONITOR._
enable 1 TEMPERATURES
force record 10 \
set the limits \

—b task rendezvous

> task activation/
termination

Figure 2. Interunit Communication

We sum up the interunit communications and produce the graph representation of the

program as shown in figure 3.
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MONITOR_
TEMPERATURES

19

Figure 3. Graph representation of the program for partitioning

In total, there are sixteen ways to partition five units. Three of these partitions are not

qualified as they fail to satisly the balancing constraints. The thirteen possibie

partitions and their corresponding communication costs are
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Vi V: (V1. Va)
T ACRM 26
T.A C.RM 34
T.R ACM 45
TCM AR 52
T.AR cM 53
T.ACR M 70
TARM C 81
™™ ACR 82
T.AC R.M 82
T.CR AM 82
T.C ARM 87
T.RM AC 87
T.AM CR 88
Where,
T = TIMER
A = ALARM
C = COLLECTION_OF_SENSORS

R

RECORDING_DEVICE

M = MONITOR_TEMPERATURES

We obtain an initial partition by assigning units to V. or Vi, depending which has less
weight. So Vi = {TIMER, RECORDING_DEVICE, MONITORING_TEMPERATURE} and V;
= {ALARM, COLLECTION_OF_SENSORS}. This initial partition has a cost of {(Vy, Va)
= 87. We are searching for the first interchange that will yield a positive reduction in

cost. There are six possible pairwise interchanges, and their corresponding gains are
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TIMER < e > COLLECTION_OF _SENSORS 53
RECORDING_DEVICE < oeee > COLLECTION_OF SENSORS 42
MONITOR_TEMPERATURES < -----> ALLARM 34
RECORDING_DEVICE < oeeen > ALARM 11
MONITOR_TEMPERATURES < —---> COLLECTION_OF_SENSORS 5
TIMER < o > ALARM 0

We pick the pair TIMER and COLLECTION_OF_SENSORS for interchange to give a

maximum positive reduction in cost and form V' and V), where V,
{MONITORING_TEMPERATURE. ALARM, RECORDING DEVICE}, and Vi =
{COLLECTION_OF_SENSORS. TIMER}. Next, we exclude ALARM and TIMER from
consideration for exchange. There are then two pairs of units to be considered:
(MONITOR_TEMPERATURES, ALARM) and (RECORDING_DEVICE, ALARM). Both pairs
yreld negative gains. We stop the interchange process. The final partition is thus {V,',

V:'} which has an interprocessor communication cost of 34; that is the second best

partition.
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6.0 CONCLUSION oy
in this paper, we have discussed the probiem of partitioning real-time Ada software for t
s

'l

distributed targets and adopted source code aliocation as an approach to the problem.
In this approach, code for an application is developed and tested as a single Ada

by

program, and then partitioned and distributed to distributed targets, where compilation -;
-

takes place at each location. A partitioning methodology for Ada programs has been :
outlined. i
The example we presented favorably shows the effectiveness of the partitioning
=

methodology. However, its performance has not been assessed formaily. ¥
We have used a simple definition of load balancing. This definition is acceptable only ::‘
-~

for O(n) type programs. It is necessary to provide a more accurate measure of load ;
'S

balancing for other types of programs. %
in this report, we have considered the complexities of the partitionable units and :::
e

message complexities of interunit communications. We did not consider parameters iy
such as channel capacities nor complexities of the processors. We feel that there is a N \
0:

need to research in identify:ng important parameters for partitioning. ::
N
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APPENDIX A

with TEXT_IO. SYSTEM.
use TEXT_IO:
procedure MONITOR_TEMPERATURES is

type COMMAND is (DISABLE. ENABLE.

RECORD._STATUS. SET_LIMITS):
- 4
type SENSORLNAME is (L0BBY. MAIN_OFFICE. WAREHOUSE,

STOCK_ROOM. TERMINAL_ROOM. LIBRARY.

COMPUTER_ROOM. LOUNGE. LOADING..DOCK,

CLEAN_ROOM).

type SENSOR_STATE is (DISABLED. ENABLED):

type SENSOR_VALUE is deita 05 range 0.0  100.0:

package COMMAND_IO is new ENUMERATION_IO(COMMAND),

use COMMAND_IO:

package SENSOR_NAME_IO is new ENUMERATION_IO(SENSOR_NAME);
use SENSOR_NAME_IO:

package SENSOR_VALUE_IO Is new FIXED_IO(SENSOR_VALUE);

use SENSOR_VALUE.IO:

entry POST_FAULT_IN_SENSOR:
entry POST_OUT_OF _LIMITS{ON_SENSOR : in SENSOR_NAME).

end ALARM;

1 task ALARM is

task RECORDING_DEVICE is
‘ entry LOG_THE_STATUS(OF_SENSOR _ in SENSOR_NAME:
WITH_VALUE In SENSOR_VALUE:
WITH_STATE in SENSOR_STATE).
end RECORDING_DEVICE:
task COLLECTION_OF _SENSORS is
entry DISABLE (SENSOR in SENSOR_NAME);
entry ENABLE (SENSOR in SENSOR_NAME);
entry FORCE_RECORD(OF_SENSOR in SENSOR_NAME).
entry SET_THE_LIMITS(FOR_SENSOR in SENSOR_NAME.
LOW_LIMIT in SENSOR_VALUE,
HIGH_LIMIT in SENSOR_VALUE).
end COLLECTION_OF_SENSORS.
task TIMER is
entry INTERRUPT:
for INTERRUPT use at 16#8E#:
end TIMER;

HIGH_BOUND SENSOR_VALUE:

LOW_BOUND SENSOR_VALUE,

NAME SENSOR_NAME;

USER_COMMAND - COMMAND:

VALUE SENSOR_VALUE.

task body ALARM is separate;

task body RECORDING_DEVICE is separate;

task body COLLECTION_OF_SENSORS is separate:

task body TIMER is separate;
23
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begin r
loop 3
begin - start of a local block with exception handler .
PUT("Enter your command:”), ‘

GET(USER_COMMAND): ::
NEW_LINE: ¢
PUT_LINE("Command accepted”). .

case USER_COMMAND Iis

when DISABLE =>
PUT("Enter sensor name:"); ’
GET(NAME); A
NEW_LINE;
COLLECTION_OF_SENSORS.DISABLE(SENSOR => NAME): )
PUT_LINE("Sensor disabled”);

when ENABLE =>
PUT("Enter sensor name:"); )
GET(NAME);
NEW_LINE; ‘
COLLECTION_OF_SENSORS.ENABLE(SENSOR => NAME): )
PUT_LINE("Sensor enabled”), h

when RECORD_STATUS => ¢
PUT("Enter sensor name:"); by
GET(NAME):
NEW_LINE; ’
COLLECTION_OF_SENSORS.FORCE_RECORD j:

(OF_SENSOR => NAME). A

PUT_LINE("Sensor status set”);

when SET_LIMITS =>
PUT("Enter sensor name:"); ;‘

GET(NAME): !
NEW_LINE:

PUT ("Enter lower imit:"); ;
GET (LOW_BOUND).

NEW_LINE, )

PUT_LINE("Lower limit accepted”):
PUT("Enter upper limit:"); .
GET(HIGH.BOUND): *
NEW_LINE; <]
PUT_LINE{"Upper limit accepted”).
COLLECTION_OF_SENSORS.SET_THE_LIMITS
(FOR_SENSOR => NAME,
LOW_LIMIT => LOW_BOUND.
HIGH_LIMIT => HIGH_BOUND).

PUT_LINE{"Limits set");
end case;
r
”
exception
when DATA_ERROR = > p
PUT_LINE("lllegal entry. . .try again”) ) =)
ond;
end loop; !
end MONITOR_TEMPERATURES: 3 :
o
\ v
>
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separate (MONITOR_TEMPERATURES) o
task body TIMER is .‘-'?
MINUTES constant = 1: Iy
type INTERVAL is range 8 18.
TICKS INTERVAL = 0.
L d
- p
i -
begin :
loop -,
accept INTERRUPT do he
TICKS = TICKS « 1. A
it TICKS = 15 « MINUTES then E.
for | in SENSOR_NAME b
loop ~
select :\
COLLECTION-OF_SENSORS.FORCE.RECORD(OF_SENSOR => ), Iy
or 7
delay 50 i
ALARM.POST_FAULT_IN_SENSOR. 2
end select; -
end 100p; .,..:
TICKS = 0. ¢
ond if: b
end INTERRUPT,
end loop: A
and TIMER, -
R
X
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o
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with SYSTEM:
separate (MONITOR_TEMPERATURES)
task body ALARM is

BITS “constant = 1.
WORDS : constant .= 16 « BITS.

type LIGHT is (OFF. ON):

for LIGHT'SIZE use ! « WORDS:

for LIGHT use (OFF => 16#0000#, ON => 16#FFFF#);
FAULT_LIGHT - LIGHT = OFF;

tor FAULT_LIGHT use at 16#0010#;

type LIMIT_CHECK is array (SENSOR_NAME) of LIGHT.

for ULIMIT_.CHECK'SIZE use (SENSOR_NAME POS(SENSOR_NAME LAST)
- 1) » WORDS.

QUT_OF_LIMITS_LIGHT LIMIT.CHECK = LIMIT_CHECK'( others => QOFF);

for OUT_OF_LIMITS_LIGHT use at 16#0011#;

begin
loop
select
accept POST_FAULT_IN_SENSOR do
FAULT_LIGHT = ON:
end POST_FAULT_IN_SENSOR;
or
accept POST_OUT_OF_LIMITS(ON_SENSOR ' in SENSOR_NAME) do
OUT_OF_LIMITS_LIGHT(ON..SENSOR) .= ON;
end POST_OUT_OF_LIMITS:
end select;
end loop;
end ALARM:




with DEVICE_IO:

separate (MONITOR_TEMPERATURES)
task body RECORDING_DEVICE is
begin
loop
accopt LOG_THE_STATUS(OF_SENSOR : in SENSOR_NAME:
WITH_VALUE : In SENSOR_VALUE;
WITH_STATE : in SENSOR_STATE) do
DEVICE_IO PUT(OF_SENSOR):
DEVICE_IO.PUT(WITH_VALUE):
DEVICE_IO.PUT(WITH_STATE):
end LOG..THE_STATUS:
1 end loop;
end RECORDING_DEVICE:

27
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with SET_PACKAGE. SYSTEM:
separate (MONITOR_TEMPERATURES)
task body COLLECTION_OF_SENSORS |s

8ITS - constant = 1;

WORDS : constant = 16 « BITS:

type SENSOR_RECORD is record
HIGH_LIMIT - SENSOR_VALUE = SENSOR_VALUE LAST.
LOW_LIMIT : SENSOR_VALUE = SENSOR_VALUE FIRST.

VALUE . SENSOR_VALUE = SENSOR_VALUE'FIRST,
end record;
type SENSOR_GROUP is array (SENSOR_NAME) of SENSOR_RECORD:
SENSOR - SENSOR_GROUP;

package SENSOR_SET is new SET_PACKAGE(UNIVERSE => SENSOR_NAME);
use SENSOR_SET:

ACTIVE_SENSORS . SET .= NULL_SET;

type SENSOR_PORT  isrange @ . . (2 «» WORDS - 1);

for SENSOR_PORT'SIZE use 1 « WORDS;

type SENSOR_LIST is array (SENSOR_NAME) of SENSOR_PORT:

for SENSOR_LIST'SIZE use (SENSOR.NAME POS(SENSOR_NAME LAST) ~ 1)

* WORDS;
SENSOR_MAP . SENSORL_LIST,
for SENSOR_MAP use at 16#0100#;
begin
loop
select

accept DISABLE(SENSOR : in SENSOR_NAME) do
ACTIVE_SENSORS = ACTIVE_SENSORS - SENSOR:
end DISABLE:
or

sccept ENABLE(SENSOR : in SENSOR_NAME) do

ACTIVE_SENSORS ‘= ACTIVE_SENSORS -~ SENSOR;
end ENABLE:
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or

accept FORCE_RECORD(OF_SENSOR in SENSOR _NAME do
it IS_LA_MEMBER(OF_SENSOR. OF_SET = > ACTIVE_SENSORS) then
RECORDING_DEVICE LOG_THE_STATUS(OF_SENSOR
SENSOR(OF__SENSOR! VALUE
WITH_STATE = - ENABLED)

oise
RECORDING_DEVICE LOG_THE_STATUS(OF_.SENSOR.
WITH_VALUE => SENSOR_VALUE FIRST.
WITH_STATE => DISABLED):
end if;
end FORCE_RECORD:
or
accept SET_THE_LIMITS(FOR_SENSOR . in SENSOR_NAME
LOW_LIMIT in SENSOR_VALUE:
HIGH_LIMIT in SENSOR_VALUE) do
SENSOR(FOR_SENSOR).LOW_LIMIT = LOW_LIMIT;
SENSOR(FOR_SENSOR). HIGH..LIMIT = HIGH_LIMIT,
end SET_THE_LIMITS.
eise
for | in SENSOR_NAME
loop
it IS_LALMEMBER(!. OF_SET => ACTIVE_SENSORS) then
SENSOR(l) VALUE =
(SENSOR_MAP(l) « SENSOR_VALUE(0.9)).
if (SENSOR()).VALUE < SENSOR(l) LOW_LIMIT) or
(SENSOR(1) VALUE > SENSOR(I).HIGH_LIMIT) then
ALARM.POST_QUT_OF_LIMITS()):
end if;
end if ;
end loop ;
end select ;
end loop;
end COLLECTION_QOF_SENSORS.
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