
-f9499 A MTHODOLOGY FOR PATITIONING RE-TIE ON
-

CTRmE~MME) SOFTWARE FOR DIS.. (U) GTE LASS INC WALTHAM
U~ NCLSIIDA COMPUTER AND INTELLIGENT SYSTEMS LA..w .7 INETAL. SEP 96 NON14-85-C-0796 F/G 12/5 N

MENOMONEEh

LOS
11111 ~1 mm I- E.2

'11111 2 . 1 . 1.6 1

' If,

" _ -J I 6

I -" g T,'" '%.]",J"%. = ,,J." •.""-"- -"" - '.,' w%." " W W, . . '," I IF .W"% " "." .. %. % , . '

k'' ';J. ""J'-s ,,r'.'" ."",.-' " "..',:. '- '- ." -"- "'.."-. ,". ""- ""'- '" .''']'.'," *"""-. "-."" -", ."." "."*... *. ." ... ' ,LW] r - ,- ,r mr.• . " '.-I " . " -- . " .o " - " " - -.-. ', " -"-' . " -" * " " " -"P'.A ,, '. A, AP .

GTE Laoatre Incrpoate

0" '
FINAL REPORT

00

00)

...

A METHODOLOGY FOR
PARTITIONING REAL-TIME ADA®'

.cl SOFTWARE FOR DISTRIBUTED TARGETS2

DTIC " "
SEP 8198

SDISTMMXUT!N STAI-hMEll

Approved jor public roleasel ON
Distribution Unrlimitse

Computer and Intelligent Systems Laboratory
GTE Laboratories Incorporated
40 Sylvan Road
Waltham, MA 02254

14 024

NJ

FINAL REPORT
Contract No. N00014-85-C-0796

A METHODOLOGY FOR
PARTITIONING REAL-TIME ADA®1

SOFTWARE FOR DISTRIBUTED TARGETS2

by .

A. Chow DT€
M. Feridun ELECTE

L 1 1987

September 1986

Computer Science Laboratory
GTE LABORATORIES INCORPORATED "

40 Sylvan Road
Waltham, Massachusetts 02254

'Ada is a registered trademark of the U.S. Department of Defense, A.J.P.O.

"This research has been partially supported by the Office of Naval Research under grant
number N00014- 85-C-0796.

II
Appro-.d fur rbi sn; t~IeiC

Distibuton ini. iti

TABLE OF CONTENTS

1.0 Introduction

2.0 Partitioning Problem and Algorithms 4

3.0 Partitionable Units 8

4.0 Partition Model 10
4.1 Interunit Communication 10
4.2 Computational Complexity of the Units 15

5.0 An Example 17

6.0 Conclusion 22

Accesion For

NTIS CRA&I
QUALITY TIC TAR 0

j t i f ,:

D',.4bu ton I p

Av.-iib,;:ty C dI es

Dizit

i "U.............................d

,1.0 INTRODUCTION

Task allocation, the assignment of tasks to processors, is an important problem in the

design of distributed real-time systems. A task allocation scheme is required in order

to produce a feasible partition of tasks across processors in the system, and to ensure

high performance. especially for systems with real-time operational requirements. -

Several researchers have studied the task allocation problem for distributed systems,,

[Chu8O] contains a survey of various approaches.

One of the problems of current interest in real-time system design is the development

of real-time Ada software for distributed systems Several approaches have been

proposed and are being studied, a survey can be found in (Arm84]. The approaches

can be characterized as either 7r/A 5

-'source code allocation, the development of multitasking Ada software, which is

then partitioned ; this approach allows development and testing of the software

as a whole before allocation$'

*target-code allocation, where a compiler is responsible for performing task

allocation, perhaps with some user-imposed contraints; or

*separate program development, where allocation decisions are made early in

the development phase, and separate programs are developed.

The traditional approach of developing separate source programs for each processor

IP'in the distributed system requires the system designer to make early decisions on

allocation, taking into account resource and performance constraints. This approach,

however, increases the difficulty of software reallocation in later phases of the

4 b

software life cycle. Target code allocation schemes require a distributed target

compiler that is used to generate separate object code files in allocating target code

for each processor. There are two ways that the compiler can parlition Ada

application software: (1) being informed via pragmas about a predetermined partition

scheme; or (2) analyzing the application software, and then applying a parlitioning

algorithm. The compiler required for this allocation scheme is complex, difficult to

design. and presently not available.

The source code allocation approach has a number of important advantages. In an

allocation scheme, it is preferable to place minimum design restrictions on software

development, especially since the target architecture may. in most cases. not be

known. It is also preferable to minimize the burden on the compiler. Additionally.

since the underlying system constraints may vary. a good partition can be achieved

only through iteration, and therefore, creating new partitions should be inexpensive.

A source code allocation approach that meets the above objectives was adopted by

GTE Strategic Systems Division in its multicomputer software technology for Ada. This

approach allows an application to be developed and tested as a single multitasking

Ada program on the APSE (Ada Programming Support Environment), and then

partitions and distributes the tested software to the distributed targets. Program

partitioning is done at the source level, and the distributed software modules are

compiled on the target machines.

GTE Laboratories researched the development of a methodology for partitioning Ada

source code to execute in a distributed environment. Two major tasks were involved

in the development of such a methodology:

1. the formulation and selection of parameters that can be derived from the Ada

source code, to be used in the partitioning process; and

2

106 .Ilk N4 .'

OLN N N

2. the development of an efficient partitioning algorithm.

The approach taken closely follows that described in a previous report (GTE85] The

basic goal of the approach is tu transform a given Ada program into a graph based

representation, and then to apply a partitioning algorithm for task allocation The

graph based representation is similar to the specification schemes being investigated

at the University of Texas at Austin [Mok84. Mok85].

In this paper, we describe the research efforts towards achieving the above tasks. In

section 2. we describe the partition problem and describe an algorithm for it. In

section 3, we define partitionable units in Ada software. In section 4, we enumerate

parameters derivable from Ada source code to be used in partitioning. In section 5,

we present an Ada example. Section 6 concludes the report with a suggestion for a

future research direction.

.3

16

3.

s'

2.0 PARTITIONING PROBLEM AND ALGORITHMS

The problem of allocating Ada source over distributed targets can be formulated as a

graph partitioning problem. For purposes of task allocation, an Ada program can be

represented by a graph G = (V.E) as follows:

* the vertices of the graph G. i.e., the set V, represents the partitionable Ada

program units; and

0 the communication or dependency between units is represented by the edge set

E.

Given this representation of the Ada program, weights are assigned to the vertices

and edges: a weight w(v) for vertex v E V represents execution characteristics of the

Ada partitionable unit, obtained from such parameters as computation , memory and

similar resource requirements. The weight w(eij) assigned to the edge between unit

(vertex) v1 and unit (vertex) vi represents the total communication cost between the
%

two units; this weight is obtained from such parameters as the number of data

elements transferred in a communication, and the number of messages required per

transaction.
%'

L

The partitioning problem for graph G =(VE) can be formulated as follows: determine a

partition of V into m disjoint subsets Vi. V...Vm such that

(1)J I I w(v) -' K. 1 i I m, for some constants J and K
vEV

and

(2) I(Vo.Vj) = w(e) I L, for some constant L, Ell C E and
eeEij

(v',v')EE > v'EV i, vEV and Vi #V.

4

The partitioning problem. as formulated. aims at reducing the communication cost

I(Vi . Vj) between the partitioned clusters, and places a load balancing constraint on

the clusters. These objectives are appropriate for the Ada partitioning problem as

system performance is affected by factors such as interprocessor communication

delays, processor load. and the amount of parallelism that can be exploited.

The partitioning problem as formulated has been shown to be NP-complete (Gar79];

however, there are partitioning algorithms that use heuristics to obtain close to

optimal results with acceptable algorithm performance [Pri84.Ker69].

The heuristic techniques reported in the literature can be classified into three

categories [Lin81]: (1) constructive initial assignment, (2) iterative assignment-

improvement, and (3) branch and bound technique.

The constructive initial assignment techniques are based on the concept of assigning

one unit at a time to a particular processor until all the units are assigned. Algorithms

vary on the order in which the units are assigned and the criteria used to select the -

processor.

The iterative assignment-improvement techniques stait with an initial assignment of

units to processors and generate the next assignment by making a small improvement

to the initial assignment (Ker69]. The algorithms terminate when no improvement can

be discovered or after a predetermined number of iterations.

The branch and bound methods are based on the concept of doing an implicit search

of a decision tree. Algorithms use different heuristic methods for deciding which

branch in the decision tree to follow and for pruning possible solutions.

5

The iterative assignment-improvement algorithms are used more than the other two

techniques. In general. the branch and bound algorithms are too slow for large

applications and the constructive initial assignment algorithms do not generate

partitions that are as good as the other two techniques.

It is expected that the number of vertices in a graph obtained from Ada source will be

large. and therefore heuristics will need to be developed not only for creating good

partitions. but also for partitioning in an acceptable amount of time.

p

In the remainder of this section, we describe an algorithm based on a well-known

graph partitioning algorithm by Kernighan and Lin [Ker69]. The algorithm uses the

iterative assignment-improvement techniques.

The main idea of the algorithm is to start with an initial partitioning into m subsets and

by repeated application of iterative-assignment-improvement techniques to pairs of

subsets. to achieve a near-pairwise-optimal state.

To obtain the initial partition, the units are assigned, one by one, to the subset with

least weight first, provided the balancing inequalities are satisfied. Next. the

interactive assignment-improvement algorithm is applied to every pair of subsets and

it works as follows:

Let A. B be two arbitrary subsets, the algorithm identifies X and Y. subsets of A and B

respectively, such that interchanging X and Y produces A (A -X + Y) and B (= B

-Y + X) that satisfy the following conditions:

(1) J < I w(v) S K.
vEA"

J S I w(v) S K, and
veB"

(2) I (A'. B-) < I(A, B).

6
-4
,

2'WW J , 'V ' , ' W' W' V . -;.' ,--, .. , , .- ,,. , ., '/.,-.,.,-. . , -. .-. .

The algorithm finds X and Y by sequentially identifying their elements without R

considering all possible choices. A pair of units (a. b), where a E A and b E B. are

selected to yield the largest possible reduction in the interprocessor communication

cost from a single interchange. We refer to this reduction in the communication cost

as the gain from interchanging a and b, and we denote this gain g(a.b).

Mathematically, the gain g(ab) is

(I w((a, y)) - I w((a, x))) + (I w((b, x)) - I w((b, y))) where
yeB' xeA' xEA' yE-B'

A' = A- {a} and B' = B- {b}.

The gain g(x.y) is defined to be zero if interchanging x and y upsets the balancing

inequalities. The elements a and b are interchanged to form A, (= A - {a} + {bl) and

B, (= B - {b} + {a}). The elements a and b are then eliminated from further

consideration for exchange. The exchange procedure continues until all units have

been exhausted, or there is no further possible exchange that will yield a positive

gain.

',

N

7"

3.0 PARTITIONASLE UNITS

in our framework of source code partitioning, we discuss what constitutles a

partitionable unit of an Ada program. Since the partitioned software has to be

compiled on each processor. the partitioned units must be separately compilable In

Ada. there are four kinds of program units that can be separately compiled. They are

tasks, subprograms. packages, and generic units.

Subprograms are the basic executable units of Ada programs. They can be

procedures or functions. A subprogram communicates with outside entities via global

declarations or parameter passing upon its invocation and termination.

In Ada. a collection of logically related entities can be encapsulated in a package. A

package allows its entities to communicate with an entity outside the package via

global declaration or by the import and export mechanism. The entities declared in

the visible part of the package specification may be used outside the package. And

entities in another package may be used by establishing the visibility through the with

clause.

Unlike subprograms and packages, tasks operate in parallel with other program units.

The main program unit is implicitly considered to be a task. In Ada. task interaction is

handled by treating each task as a communicating sequential process [Hoa78] The

tasks are synchronized in time when they communicate. The explicit synchronization

is known as a rendezvous. Similar to package specification, a task specification

defines the communication entries available to other tasks.

These three kinds of program units can be introduced in the declarative parl of any

unit. This makes the communication among units non-trivial We discuss this in a

later section.


~~~J~W U..*e~ruFig W W VFWPrWX mK SU plnS KYR 1 ,XrV. -Ww.-y -. xr-r .US .

Some distributed Ada systems allow parllitoning on task boundaries or ly

approach appears to have achieved a synergy between Adas units 0' ( " "

the underlying system's unit of concurrency, the processor However r' S d;

requires all code being partitioned to be encapsulated by a task Tht i .,. ,

partitioning to make sure that tasks are designed at the appropriate place T7 .

not meet our objective of making minimum design restrictions. In some al, Cda -'

limiting interprocessor interface to only task rendezvous may be unnarj'a

interprocessor interface may be better represented as a call to a procedure -.s -F.

package and not a call to an entry for a task.

We propose that partitioning be allowed on these three kinds of program J-1

boundaries. We do not explicitly include generic units as partitionable units We can

view generic packages/subprograms and their instantiations as

packages/subprograms in the partitioning scheme. Since the partitioned units have to

be compiled on the target machines, we may require the partitionable units to be

designed as Ada compilation units for distribution purposes. This does not impose

any syntactic restriction or any design restrictions since Ada program units can be

submitted as separate compilation units or as one compilation. However. it must be

understood that a compilation unit does not have to be a partitionable unit. In Ada.

each compilation unit specifies the separate compilation of a construct that can be a

subprogram declaration or body, a package declaration or body. a generic declaration

or body, or a generic instantiation. A compilation unit can also be the body of a task

unit.

% 9

*1 o i, *,.,' ,m . ', '*%" -• .- .. ',. . . . .*. . -, . . . . , . . - -, . . . . . , - - . • ," - ., . - . .



4.0 PARTITION MODEL

We have discussed the general partition problem and our proposed parlitionable units

in Ada in previous sections. We now propose a model for partitioning an Ada program

for distributed targets.

The first step in our modeling is to represent the interunit communication as a graph

G = (V,A). where V is the set of vertices representing the partitionable units of an

application, and A is the set of arcs representing the communication. Our next steps

will be examining how to assign weights to the vertices and the arcs.

4.1 INTERUNIT COMMUNICATION

A unit can be a subprogram, a task, or a package of data objects. There are four kinds

of communication among these units.

The first is subprogram invocation. A subprogram's execution is invoked by a

subprogram call from another subprogram or a task. After the association between

formal parameters and actual parametPrs is established, execution control is passed

to the called subprogram. Upon completion, control is returned to the caller. The

subprogram invocation follows a single thread of control. The communication cost is

incurred at invocation and completion.

The second kind of interunit communication is task rendezvous. Different tasks

execute independently, except when they communicate. A task entry can be called by

another task. Communication is established when the called task accepts the call. If

the entry has parameters, values are communicated between th.. tasks. After this

synchronization, the task issuing the entry call and the task accepting the call continue

their execution independently.

10 W



Task activationlitermination is another kind of communication related to tasks This is

an Implicit communication in the control flow of the task dynamics The initial part of

task execution is called activation. A task is activated as a result of the elaboration

(execution) of the declarative part of its parent task or as a result of the allocation of a

new task. A task is said to be terminated when it is completed (it finishes its last

executable statement) and all its dependents are terminated. Therefore. upon

termination, a dependent task needs to communicate its state to its parent This kind

of activation/termination communication occurs between a task and any other kind of

parlitionable unit.

Data referencelmodification is a different kind of interunit communication that is not

explicit. A partitionable unit can reference any visible data defined in other units. A

data definition in a unit is made visible to another unit either by scope rules or with

clauses. Data reference/modification is purely data flow; there is no control flow

involved.

Two units with any of these four kinds of communication will experience some

network delay when they are allocated to different processors. Over the same

network, different kinds of communication take different amounts of time. We discuss

the weights on these kinds of communication in more detail below.

Although communication is bidirectional, we like to assign direction to it for analysis

purposes. We say a communication is from unit A to unit B if unit A initiates the

communication.

We assign a weight to every communication from unit A to unit B if they are assigned

to different processors. The weight of an interprocessor communication depends on

the number of nessages required for such a communication. In the case of

,
0l

-a.,



subprogram invocation and task rendezvous, the number of arguments in the call has

to be taken into account for the weight of the communication.

For a call to a subprogram on a different processor, two messages are needed: a

"call- message containing the IN parameters, if there are any. and a 'return' message

containing any OUT parameters:

subprogram Call

B-CallI requesting unit subprogram id input parameters

subprogram return

streturn requesting unit output parametersI

We assign a weight of

3 + number of input parameters

to a subprogram 'call- message and a weight of

2 + number of output parameters

to a subprogram 'return" message. Thus a subprogram invocation type of

communication is assigned a weight of

5 + number of input parameters + number of output parameters.

In addition to the "call' and "return' messages, there are two more messages needed

for each normal task rendezvous [Wea84]. After a "call" message is sent to the

accepting task and when the accepting task is ready to accept the task, it returns an

accept" message to the calling task. If the calling task still desires rendezvous, it

returns a confirm' message to the accepting task. The message passing required for

task rendezvous is dipicted in figure 1. The "accept" and 'confirm" messages are less

complex than the 'call" and 'return" messages that contain IN and OUT parameters:

12



calling task accepting task

Ocall" message

*accept- message-

"confirm" message

"return" message

Figure 1. Messages Required for Task Rendezvous

entry call

e-call requesting unit jentry id input parameters

accept

accept requesting unit

confirm

confirm requesting unit

return

return requesting unit output parameters i

Weights are assigned to each of these four messages in the same manner as for

subprogram invocation messages. The weight assigned to a task rendezvous type of

communication is

9 + number of input parameters + number of output parameters.

13



In the event of elaboration, a task scnds an 'elaborate' message to all its dependent

tasks and waits for an 'active- message from each of them. When a task completes

its last executable statement. it waits for a -terminate' message from each of its

dependents before it terminates. Therefore, there are totally three messages between

a parent and each of its dependents required for activation and termination:

task activation

activation Irequesting unit task id

task activation return

&-return requesting unit

task termination

termination parent unit

A task activa tionl termination type of communication is thus assigned a constant

weight of 7.

For data reference/modificat ion between two units on different processors, a "request-

message is sent from the initiator and a "response' message is returned:

14



read

read jrequesting unit object id

road return

r-return requesting unit object value

write

write Irequesting unt ojc d object valuej

write return

writes requesting unit

A data referencel modifica tiofl type of communication is assigned a weight of

5 + size of the data object.

Knowing the weight of each kind of communication, the weight of an edge from unit A

to unit B is computed as the sum of the weights of all communication from A to B.

4.2 COMPUTATIONAL COMPLEXITY OF THE UNITS

Several program complexity metrics have been developed for various purposes such

as maintainability and understandability. For partitioning purposes, we are interested

in the computational complexity of a unit. The complexity measure includes the unit's

time and space requirements. Knowing the complexity of each unit, we may be able

to achieve better load balancing for the processors in the system. We use a simple

definition of load balancing. Load balancing is an assignment of units to processors

such that the time and space requirements are evenly distributed to each processor in f

the system.

15



A unit, except a package of data. contains a code portion and a data portion A

suitable metric for measuring the space requirements of the code portion of a unit

might be the number of machine instructions. However. the number of machine

instructions generated from Ada source is compiler dependent. In general, the

expansion ratio of the number of machine instructions per line achieved by a compiler

is not known. GTE-GS SSD has done some work in measuring empirically the

expansion ratio of a group of compilers [Che86]. Since we are using a less strict

definition of load balancing: that is. we are not aiming at an optimal assignment. the

number of source lines could be a good estimate of the space requirement for a unit's

code portion. Similar to code space requirements, a unit's data storage requirement

is compiler dependent. At this point, we are going to use a set of assumptions about

Ada data type storage requirements.

The time complexity of a task or subprogram unit that does not contain a loop

statement can be measured by the number of machine instructions generated for the

unit To analyze a unit with loop statements is nontrivial. A loop statement without an

iteration scheme can be repeatedly executed until a transfer of control occurs. In

most cases, the number of times a loop is going to be executed cannot be predicted

until the transfer of control occurs. Even for a loop statement with a 'while' iteration

scheme, it is difficult to estimate the number of iterations. We can only be certain of

the number of iterations in a loop statement with a "for" iteration scheme. We can

view all loop statements with or without iteration schemes as a sequence of code to

be executed periodically. Therefore, the time requirement of a unit can be estimated

by the number of source lines without regard to loop statements.

16

N % % %~~.t ,



5.0 AN EXAMPLE

In this section we examine an Ada embedded system for monitoring temperatures as

described in [Boo83]. In the appendix, we include the program that was taken in its

entirety from chapter 18 of [Boo83]. We formulate the partitioning problem and ap!y,

the partitioning algorithm described in section 3 to it.

The Ada program consists of the main program, four major tasks and a number of I'

packages. We center our partitioning problem on the main program and the four

tasks, and ignore the I/O packages to simplify the discussion. The partitioning

problem we are addressing is as follows:

Find a partition of the five Ada units: TIMER, ALARM, COLLECTIONOF_SENSORS,

RECORDINGDEVICE. and MONITOR-TEMPERATURES into two subsets V, and V2 such

that

(1) 36 . w(v) , 190
veV i

where ( I w(v))/2 - max (w(v)) = 36
vEV veV

and ( 7 w(v))/2 + max (w(vl)) = 190
vEV vEV

(2) I(V,, Va), the interprocessor communication cost is near-minimal.

The complexities of the units are

Unit Source line of code

TIMER 48
ALARM 30
COLLECTIONOFSENSORS 53
RECORDING DEVICE 19
MONITOR-TEMPERATURES 77

,

,%"

17
-h



ores-ecord post oul o1 iml!

' 10 10

-*--- tTs rendZ'OU

COLLECTION disabie 10 MNTR
-Q -- onablo 10 TEIMPERATURES

SENSORS lmto-orocord 10

set lhe limits 12

log_the_slatus

-0task rendezvous

- task activtiOn/
termination

Figure 2. Interunit Communication

We sum up the interunit communications and produce the graph representation of the

program as shown in figure 3.

18



"TIMER ALARM

' 49 MONTOR-

OLLECTrION.OF_ TEMPERATUIRES

DEVICE

Figure 3. Graph representation of the program for partitioning

In total, there are sixteen ways to partition five units. Three of these partitions are not

qualified as they fail to satisfy the balancing constraints. The thirteen possible

partitions and their corresponding communication costs are

19

•'S

'S..'



V, V1 I(V,)

T A.C.R,M 26

T.A CR.M 34

T.R A.C.M 45

T.CM A,R 52

T.A.R C.M 53

T.A.C.R M 70

T,A,R.M C 81

TM A.C.R 82

T,A.C R,M 82

TCR A.M 82

T,C AR.M 87

T.RM A,C 87

TAM CR 88

Where,

T = TIMER

A = ALARM

C = COLLECTION OFSENSORS

R = RECORDING DEVICE

M = MONITORTEMPERATURES

We obtain an initial partition by assigning units to V, or V2, depending which has less

weight. So V, = (TIMER, RECORDING DEVICE, MONITORINGTEMPERATURE) and V2

= (ALARM, COLLECTIONOFSENSORS). This initial partition has a cost of I(V,, Vz)

= 87. We are searching for the first interchange that will yield a positive reduction in

cost. There are six possible pairwise interchanges, and their corresponding gains are

20



TIMER < .-.. > COLLECTION OFSENSORS 53

RECORDINGDEVICE > COLLECTION OFSENSORS 42

MONITOR-TEMPERATURES < > ALARM 34

RECORDING-DEVICE < ----- > ALARM 11

MONITORTEMPERATURES < ... > COLLECTIONOF_SENSORS 5

TIMER < -- > ALARM 0

We pick the pair TIMER and COLLECTION OFSENSORS for interchange to give a

maximum positive reduction in cost and form V,' and Va'. where V1  =

(MONITORINGTEMPER ATURE. ALARM. RECORDING-DEVICE}, and Vz' =

(COLLECTIONOFSENSORS. TIMER}. Next, we exclude ALARM and TIMER from

consideration for exchange. There are then two pairs of units to be considered:

(MONITORTEMPERATURES, ALARM) and (RECORDINGDEVICE, ALARM). Both pairs

yield negative gains. We stop the interchange process. The final partition is thus {V,'.

V2 )' which has an interprocessor communication cost of 34; that is the second best

parlition.

2,

21



6.0 CONCLUSION

In this paper, we have discussed the problem of partitioning real-time Ada software for

distributed targets and adopted source code allocation as an approach to the problem.

In this approach, code for an application is developed and tested as a single Ada

program, and then partitioned and distributed to distributed targets, where compilation

takes place at each location. A partitioning methodology for Ada programs has been

outlined.

The example we presented favorably shows the effectiveness of the partitioning

methodology. However, its performance has not been assessed formally.

We have used a simple definition of load balancing. This definition is acceptable only

for 0(n) type programs. It is necessary to provide a more accurate measure of load

balancing for other types of programs.

In this report, we have considered the complexities of the partitionable units and

message complexities of interunit communications. We did not consider parameters -

such as channel capacities nor complexities of the processors. We feel that there is a

need to research in identify:ng important parameters for partitioning.

vr.

22



APPENDIX A

with TEXTIS. SYSTEM.
use TEXT_10:
procedure MONITOR-TEMPERATURES is

type COMMAND is (DISABLE. ENABLE.
RECORD-STATUS SET-LIMITS).

type SENSOR-NAME is (LOBBY. MAIN-OFFICE. WAREHOUSE,
STOCK ROOM. TERMINALROOM. LIBRARY.
COMPUTERROOM. LOUNGE, LOADING-DOCK,
CLEAN-ROOM).

type SENSOR-STATE Is (DISABLED. ENABLED):
type SENSOR-VALUE Is delta 05 range 00 1000:

package COMMAND-10 is new ENUMERATION- IO(COMMAND).
use COMMAND-I:
package SENSOR-NAME-I is new ENUMERATION- IO(SENSOR..NAME):
use SENSOR-NAME-I:
package SENSOR-VALUE-10 Is new FIXEDIO(SENSOR_ VALUE),
use SENSOR-VALUE-I:

task ALARM Is
entry POSTFAULTINSENSOR,
entry POSTOUTOFLIMITS(ONSENSOR in SENSORNAME);

end ALARM:

task RECORDINGDEVICE Is
entry LOGTHE.STATUS(OFSENSOR In SENSOR.NAME:

WTHVALUE In SENSOR-VALUE.
WITH-STATE In SENSORSTATE).

end RECORDING-_DEVICE:

task COLLECTION-OF_-SENSORS is
entry DISABLE (SENSOR in SENSORNAME).
entry ENABLE (SENSOR In SENSOR-NAME).
entry FORCE-RECORD(OF_ SENSOR in SENSOR-NAME),
entry SETTHE-LIMITS(FORSENSOR In SENSOR-NAME.

LOW-LIMIT in SENSOR-VALUE,
HIGH-LIMIT In SENSOR-VALUE).

end COLLECTIONOF_ SENSORS,

task TIMER Is
entry INTERRUPT:
for INTERRUPT use at 16#8E#:

end TIMER:

HIGH-BOUND SENSOR-VALUE.

LOW-BOUND SENSOR-VALUE.
NAME SENSOR-NAME:
USER-COMMAND COMMAND:
VALUE SENSOR-VALUE.

task body ALARM is separate:
task body RECORDING- DEVICE Is separate;
task body COLLECTIONOFSENSORS is separate:
task body TIMER is separate;

23

41; /f4 >K ; Z' :' ' Z: 
' . *: Q



-~.- . -,~ r~,. WU-~ U#WW U WU 'J ", v.. wnJo. r nLM.J idW W WUF. W'FrM

begin
loop

begin - start of a local block with exception handler
PUT('Enter your command:');
GET(USER-.COMMAND):
NEW-.LINE:
PUT-.LINE("Command accepted');
caoe USER-.COMMAND Is

when DISABLE ->
PUTr-Enter sensor name"');
GET(NAME);
NEW-.LINE;
COLLECTION-.OF...SENSORS. DI SABLE (SENSOR => NAME),
PUT.LINE("Sensor disabled").

when ENABLE -=>
PUT('Enter sensor name:'):
GET(NAME);
NEW-.LINE:
COLLECTION..OF..SENSORS. ENABLE(SENSOR => NAME):
PUT-.LINE("Sensor enabled");

when RECORD-STATUS =>
PUT("Enter sensor namre:").
GET(NAME);
NEW-LINE;
COLLECTION...OF..SENSORS. FORCE- RECORD

(OF-.SENSOR => NAME).
PUT..LINE("Sensor status set"),

when SET-.LIMITS ->I
PUT("Enter sensor name:"),
GET(NAME):
NEW-.LINE:
PUT ("Enter lower limit:").
GET (LOW-.BOUND).
NEW-.LINE,
PUT-LINE("Lower limit accepted").
PUT("Enter upper limit:").
GET(HIGH..BOUND):
NEW-..LINE;
PUT-.LINE("Upper limit accepted"),
COLLECTION...F.SENSORS. SETHLE LIMITS

(FOR-.SENSOR = > NAME.
LOW-.LIMIT => LOW-.BOUND.
HIGH-LIMIT => HIGH-LBOUND[).

PU'LLINEI"Limits set"),
end case;

exception
when DATA-..ERROR = >

PUT-.LINE("lllegal entry.. try again"),
end;

end loop;
end MONITOR-.TEMPERATURES;

24



separate (MONITOR-TEMPERATURES)

task body TIMER Is

MINUTES constant = 1

type INTERVAL is range a 15.

TICKS INTERVAL C.

begin
loop

accept INTERRUPT do

TICKS = TICKS - 1.

if TICKS 15 - MINUTES than

for I in SENSOR.NAME
loop

select
COLLECTIONOFSENSORS FORCE-RECORO(OFSENSOR 

= > I).

or
delay 5.
ALARM. POSTFAULT-IN-SENSOR 

-..

end select;
end loop;

TICKS = S,
end If:

end INTERRUPT.
end loop;

and TIMER.

25-

C,.

U.'

C.-°

5'.

C-
.5..

*

25,"

-CS

- ~ JA*'.5 ..- ~ -~~~v:~ ~ v% .;.



with SYSTEM:
separate (MONITOR-TEMPERATURES)
task body ALARM Is

BITS constant : 1.

WORDS : constant - 16 * BITS:

type LIGHT Is (OFF, ON):
for LIGHT'SIZE use 1 * WORDS.
for LIGHT use (OFF => 16#OM#, ON => 16#FFFF#).
FAULT-LIGHT .LIGHT = OFF.
for FAULT-LIGHT use at 16#0d10#:

typo LIMIT-CHECK Is array (SENSOR-NAME) of LIGHT,
for LIMITCHECK'SIZE use (SENSOR-_NAME'POS(SENSOR_ NAME'LAST)

- 1) ' WORDS:

OUT-OF_ LIMITSLIGHT LIMIT-CHECK = LIMITCHECK( others => OFF).
for OUTOFLIMITS-.LIGHT use at 16#0011#:

begin
loop

select
accept POSTFAULTINSENSOR do

FAULT-LIGHT = ON:

end POSTFAULTINSENSOR;
or

accept POSTOUTOFLIMITS(ONSENSOR In SENSOR-NAME) do
OUTOFLIMITSLIGHT(ON-SENSOR) ON:

end POSTOUTOF_ LIMITS.
end select;

end loop;
end ALARM:

26



with DEVICE-1O:
separate (MONITORTEMPERATU RES)
task body RECORDING-DEVICE Is

begin
loop

accept LOGTHESTATUS(OFSENSOR In SENSOILNAME;
WITH-VALUE: In SENSOR-VALUE:
WITHSTATE in SENSORSTATE) do

DEVICE1O PUT(OF_.SENSOR);
DEVICE_.O.PUT(WITH.VALUE);
DEVICEIO.PUT(WITH.STATE);

end LOGTHESTATUS;
end loop;

end RECORDING-_DEVICE:

27

a.J



with SET-PACKAGE. SYSTEM:
separate (MONITORTEMPERATURES)
task body COLLECTIONOFSENSORS is

BITS constant - 1:
WORDS constant - 16 - BITS.

type SENSOR-RECORD Is record
HIGH-LIMIT SENSOR-VALUE = SENSORVALUE'LAST.
LOW-LIMIT SENSORVALUE = SENSORVALUE*FIRST.
VALUE SENSOR-VALUE = SENSOR-VALUE'FIRST,

and record;
type SENSOR..GROUP Is array (SENSOR-NAME) of SENSOR-RECORD:
SENSOR " SENSOR-GROUP:

package SENSOR-SET Is new SET.PACKAGE(UNIVERSE => SENSOR.NAME): F

use SENSOR-SET;
ACTIVE-SENSORS SET NULLSET,

type SENSOR-PORT Is range 0 . (2 - WORDS - 1):

for SENSORPORT'SIZE use 1 * WORDS;
type SENSOR..LIST Is array (SENSOR-NAME) of SENSOR-PORT:
for SENSORLIST'SIZE use (SENSOR-_NAME'POS(SENSOR_ NAME'LAST) - 1)

WORDS,
SENSOR-MAP SENSOR-LIST.
for SENSOR-MAP use at 16#010#:

begin
loop

select

accept DISABLE(SENSOR In SENSOR-NAME) do
ACTIVESENSORS = ACTIVE-SENSORS - SENSOR:

end DISABLE;
or

accept ENABLE(SENSOR in SENSOR-NAME) do
ACTIVE-SENSORS = ACTIVE-SENSORS - SENSOR;

end ENABLE:

28



I
or

accept FORCERECORD(OF SENSOR in SENSOR NAME do

if IS-.A.-MEMBER(OF_SENSOR, OF-SET = ;, ACTIVE-SENSORS) then

RECORDING-DEVICE LOG- THE- STATUS(O F_ SENSOR
SENSOR(OFSENSORI VALUE
WITH-STATE = ENABLED)

else

RECORDING-DEVICE LOGTHE STATUS(OF_ SENSOR.
WITH-VALUE = > SENSOR-VALUE'FIRST
WITH-STATE = > DISABLED):

end if;
end FORCE-RECORD:
or
accept SETTHE-LIMITS(FORSENSOR in SENSORNAME. I

LOW-LIMIT in SENSOR-VALUE:
HIGH-LIMIT in SENSOR-VALUE) do

SENSOR(FORSENSOR) LOW-LIMIT = LOW-LIMIT:
SENSOR(FORSENSOR) HIGH- LIMIT = HIGH-LIMIT,

end SETTHELIMITS
lse

for I in SENSOR-NAME
loop

if ISA.MEMBER(I. OF-SET => ACTIVE-SENSORS) then
SENSOR(I) VALUE =

(SENSORMAP(I) * SENSORVALUE(O 5)),
if (SENSOR(I).VALUE < SENSOR(I) LOW-LIMIT) or

(SENSOR(I) VALUE > SENSOR(I).HIGHLIMIT) then
ALARM POSTOUTOF_ LIMITS(I):

end if;
end if 

;

end loop;
end select

end loop;
end COLLECTIONOF,_SENSORS

I
29

,-,



REFERENCES

[Arm84] Armitage, J. W. and J. V. Chelini. "Ada Software on DistrOuted r- s " -,

of Approaches." GTE Government Systems, Strategic Systems ,Ivsc" -, -

807.6, October 1984.

[8OO83] Booch, G., Software Engineering with Ada, Benjamin/Cummings Publisning

Company, Inc.. Menlo Park, CA, 1983

[Che86] Chelini, J. V., E. B. Hudson and S. M. Reidy, "A Preliminary Study of Ala

Expansion Ratios," ACM Software Engineering Notes, Vol. 11. No. 1, January

1986, pp. 35-46.

[Chu80] Chu, W. W. et al., "Task Allocation in Distributed Data Processing,' IEEE

Computer, Vol. 13. No. 11 (1980), pp. 57-69.

[Gar79] Garey, M. R. and David S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[GTE85] "Task Allocation in Distributed Hard Real-Time Systems," GTE Laboratories

Technical Proposal No. RL 5029 (1985).

[Hoa78] Hoare, C. A. R.. "Communicating Sequence Processes,' Communications of

ACM, Vol. 21, No. 8, August 1978.

(Ker69] Kernighan B. W. and S. Lin, "An Efficient Heuristic Procedure for Partitioning

Graphs," The Bell System Technical Journal, February 1970. pp. 291-307,

[Lin8l] Lint. B. and T. Agerwala, "Communication Issues in the Design and Analysis of

Parallel Algorithms." IEEE Transactions on Software Engineering, Vol. SE-7. No.

2. pp. 174-188.

31

WN5



[Mok84] Mok. A., 'The Decomoosition of Real-Time System Require-re,'!s '

Models.' Proceedings of the 1984 Real- Time Systems Symposium. 2_-

[Mok85] Mok, A.. and S. Sutanthavibul. "Modelling and Scheduling of Dataflo,, e

Systems,' Proceedings of the 1985 Real-Time Systems Symposium. o~ '-

(Pri84] Price, C. C.. and S. Krishnaprasad. "Software Allocation Models for Distribu~ted

Computing Systems." Proceedings of the 1984 Distributed Computing Systems

Conference, pp. 40-18.

[Wea8l] Weatherly. R. M., "A Message-based Kernel to Support Ada Tasking," Gensoft

Corporation. Pittsburgh. PA. 1981.

:41

32



%%*% %%' % % or %


