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ABSTRACT

This study presents a technique for estimating marine boundary layer depth and
relative humudity structure from satellite inferred measurements of aerosol optical
depth, total water vapor and sea-surface temperature. The data originate from
radiance measurements by channels I, 4 and 5 of NOAA's AVHRR instrument. The
technique assumes that the atmospheric optical depth and total water vapor are
primarily confined within the boundary layer, and that the layer is well-mixed. These
inputs are combined through the relative humidity dependent variables of extinction
and vapor density. Relative humidity is parameterized as an increasing linear function
with height, resulting in an equation for the near-surface relative humidity. This
equation is solved, enabling estimation of boundary layer depth and humidity structure.
The technique is iterative in nature, requiring 5 to 10 iterations for convergence.
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I. INTRODUCTION

The applications of metecrological satellites have expanded Jramaticaliv :n the
s last two decades. Starting with simple visible imagery, the list of sateilite rechnigues
now includes soundings, cloud-drift winds and inferred measurements of atmcspheric

constituents. Recentlv, many of these techniques have become multispectral :n nature.
, These techniques can be combined to provide a second-order technique tc accempiish

a specific objective. In this study, techniques for estimaung aerosol optical depth, otai
o atmospheric water vapor and sea-surface temperature are combined to iield a new

. technique for estimating marine boundary layer structure.

. Currently, the marine boundary layer is primarily observed through conventional
X methods. These data originate from shipboard, island and coastal rawinsonde liunches
and near surface weather observations. In recent vears, ground-based scdar ‘Gavror
= and Mandics, 1978) and lidar (Eloranta er al.,, 1975) have been used to remotelv

. observe the boundarv laver. These observations are spatially limuted and rely cn a

:.;:; dense network of measurement sites to provide a complete view of »oundary laier

‘i"‘:: variation in space and ume. Development of reliable boundary layer characterizuzicn

"“:""::. using satellite methods would expand the measurement area and eliminate the (og:stical
, concerns of maintaining a data gathering network.

;;;:i: The marine boundary laver is well-marked beneath strong subsidence inversions

jl"',i‘;e over subtropical oceans. The laver consists of a thin near-surface laver, a well-muxed

laver and the capping subsidence inversion. Boundary layer depth is controlled by a
' balance between free atmosphere subsidence, surface fluxes of heat and moisture, and
v entrainment through the inversion. The degree of boundary laver instability influences
-314 the amount of turbulence available for mixing. Therefore, the degree of vertical
' homogeneity within boundary layers may vary.

Direct boundary laver measurements using satellite sounding are considered

B difficult at best. The spectral weighting functions for temperature retrieval schemes
s g . . R .

ot {Smith and Woolf, 1973) lack required vertical resolution and tend to smooth out
Vb

i ‘:f smaller scale structure. Chesters er al. (1983) conclude that water vapor sounding is

— . more difficult than temperature sounding. Water vapor weighting functions have a

N broad vertical extent, the vapcr is usuallv concentrated just above a relatively high

10
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brightness temperature background and radiance contributions from atmosphere are 4
nonlinear combination of both air temperature and water vapor content.

Observations of the marine boundary layver indicate that both marine aerosol and
moisture are chiefly confined below the marine boundary layer inversion. The
rechnique presented in this study takes advantage of this using satellite estimates of
cpucal depth and total water vapor. These parameters can be estimated on a pixel by
nixel basis with NOAA’s Advanced Very High Resolution Radiometer (AYHRR). It
will be shown that these estimates of optical depth, water vapor and sea-surface
remperature can be combined to gain information about boundary laver depth and
relative humudity. The sea-surface temperature measurement is required to close the set
>t mathematical equations which comprise the technique.

The link berween aeroso! particle size variations within the marine boundary
laver, and satellite measured upwelling radiance was demonstrated by Durkee er al.
-1596). Since marine aerosol particles are generated by evaporating droplets {rom
aurstng seawater bubbles (Woodcock, 1953), they are composed of primarily water
s0.uble mater:al. Hanel (1976) demonstrated that water soluble particle size increases
with :ncreasing relative humudity, particularly at levels higher than about 7075, As
particle size :ncreases, extinction increases, implying that upwelling radiance should
ncrease. Durkee er al, (1986) verified this hypothesis in a case study off ccastal
Calcrna.

Toal water vapor content may be retrieved from radiometric measurements as
shcwn by Prabnakara er al. (1979), and Prabhakara and Dalu (1980). Dalu «[356)
oresented a technique for measurement of total water vapor from AVHRR channels 4
and 3. This method takes advantage of differential water vapor absorption between
he channeis to estimate near surface water vapor.

This thesis will capitalize on these satellite estimates of optical depth and water
vapor. The objectives of this thesis are twofold:

|.  Show that the independent measurements of optical depth and total water
vapor may be combined to yield boundary laver depth and relative hunudity
structure. This will be accomplished by expressing the equations for optical
depth and water vapor in terms of relative humidity.

ro

Develop a parameterization for the vertical relative humidity profile that allows
for reasonable representations of extinction within the laver.

In Chapter II, the theoretical background behind the measurements of optcal

depth and tctal water vapor is presented in terms of the governing radiative transfer

i
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equations. Marine boundary layer structure and dynamics are reviewed and pertinent
; assumptions are stated. The definitions of optical depth and water vapor are presented
in terms of relative humidity. In Chapter III, the measurements of optical depth and
’ water vapor are combined with the sea-surface temperature to yield boundary layer
surface humidity and depth. The relative humidity profile parameterization is
presented and the iterative nature of the technique is discussed. Chapter IV describes a
simulated boundary layer, which was developed to test the technique’s performance for
various depths and surface humidities. Systematic tendencies of the technique are then
identified. In Chapter V, the sensitivity of the technique to errors in the measured
= inputs is discussed. The link between these inputs and the technique estimation of the

surface humidity is examined. The final chapter presents the conclusions drawn from
' u‘ . . 0
this thesis as well as recommendations for future work.
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II. THEORETICAL BACKGROUND

It is proposed that the height of the marine atmospheric boundary laver
"’l e . . . . . . «
o (MABL), and a parameterization of the relative humidity profile within the laver mayv
A be indirectly determined by satellite. The described technique requires that optical
Tt -

Jdepth, total atmospheric water vapor and sea-surface temperature be extracted from
multispectral satellite radiance measurements. The technique utilizes channels |, 4 and

I-, 5 of the Advanced Very High Resolution Radiometer (AVHRR). In addition. an
v 5‘ N . . . . . .
n:y\ estimate of the sea-level pressure is required. In this chapter, basic radiative transfer
e governing the measurements of optical depth and water vapor are reviewed, the
) relationship between optical depth and water vapor within the well-mixed MABL s
by s . .
f,:. developed and assumptions of the technique are presented.
g A
A
13:2; A.  MEASUREMENT OF OPTICAL DEPTH
o In this section, it will be shown that the amount of radiance reflected by the
e . atmosphere measured at the satellite is directly proportional to the amount of optically
oy . ) . -
.':'; acuive scatterers in the atmosphere (optical depth). The ability of aerosol to effectivelv
LY, : . . :
) contribute to scatter is dependent on the composition, number and, most imporantyv,
d size of the aerosol. Variations in aerosol characteristics within the MABL occur due to
,‘:' changes in the prevailing wind speed and variations in the relative humuditv in the
":;: laver. [t will be shown that within the MABL the domunant vanable 1in ettecting
AL . . . . . g
N change in aerosol characteristics is relative humidity.
a 1. Radiative Transfer to Estimate Optical Depth
o, The general form of the radiative transfer equation governing the scattering
&k
--;:‘:: of solar radiation in the atmosphere may be written, after Liou (1980), as:
:P)'i
e
dL(z.Q2)
f — = ()
'\f;Q: de
:“:u
[N 6'
.::‘::: 0]
K, - = L(t.Q)P(Q.Q)dQ
. dr 9n
) (2.0
.’:l;: ’
j:" w
¥ . —2-nF_P(Q.Q. )exp(-t'n) ,
:'l"' an © 0
£

N 13

; ) B
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where:

L = diffuse intensity or radiance,

t = optical depth,

a4 = single scatter albedo,

m = cos 0 (0 is the observation zenith angle), '

Q = solid angle (8,9) (¢ = azimuth angle),

P(Q.Q’) = scattering phase function in scattering from "
| solid angle 2’ to Q and

nFo = incoming radiative flux.

The first term on the right side of the equation describes the intensity absorbed or
scattered from the beam. The second term accounts for the intensity added to the
beam by multiple scattering from all solid angle, €2, while the third term is the
contribution to the beam by singlely scattered photons.

The single scattering approximation simplifies Eq. 2.1. For radiance scattered
once by marine aerosol, the radiative transfer equation becomes:

Leppye UL

(2.2)

[O]
TRF PG00 Exp(-((r-t)m+ i fiden

where:
T = optical depth at any level,
3] = total optical depth for a finite atmosphere and
[T = cos 8, (0, is the solar zenith angle).

The single scattering approximation considers incident solar radiance as the only
intensity source, and the intensity field due to single scatter of the source is calculated.
Assuming that the upward intensities from the ocean surface and subsurface

are negligible, the reflected intensity for a finite atmosphere with total optical depth

(tl) 1s:
o n.F 1 1
L(O:p,@) = —2=2-0 p(@){l-exp[-T (— + —)]} . .
® T Twry) A uo)

(2.3)
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The single scattering approximation applies to atmospheres with small optical
depths. If 7y(1I'p + 1'py)< <1, Eq. 2.3 becomes:

F
LORE) ~ —L2 PO}y
’ 24)

This equation shows that reflected intensities are directly proportional to the single
scattering albedo, the scattering phase function, the satellite viewing geometry and are
a linear function of optical depth.

Optical depth is the integration of the extinction coefficient (B,,) through the
depth of the atmosphere (dz):

t= jg Zpextdz

(2.5)

The extinction coefficient is comprised of extinction due to scattering (Bscat)’ and to
absorption (B,1,). The extinction coefficient, or extinction, has the units of length'l,
and, by convention, is expressed in dimensions of km'l. Consequently, optical depth is
a dimensionless quantity that describes the amount of attenuation within the
atmosphere.

The single scattering albedo is defined as:

o, = Bear
Pext (2.6)

This variable can take on values from 0 to 1. A non-absorbing, scattering medium
would correspond to @, = 1.0, while a completely absorbing medium would have an
©, = 0.0. Shettle and Fenn (1979) observed that @ _ is approximately 1.0 for marine
particles. Variations in @  from 1.0 are important since it is a direct multiplier of
optical depth in Eq. 2.4.

The scattering phase function, P(©), describes the angular distribution of
radiance scattered by particles. P(©) for marine particles at 80% relative humudity




pr—

shows a strong forward peak, indicating that these particles scatter primarily in the
forward direction. [t will be shown that changes in the particle size alter P(O).
Therefore, as particle size changes, variations in the observed radiance are possible

from the changing scattering phase function.

Observed radiance is highly dependent on the earth-satellite-sun geometry.
Koepke and Quenzel (1979) discuss the optimal viewing geometries for observing
atmospheric turbidity or optical depth. The hatched areas of Fig. 2.1 show favorable .
angles for turbidity measurements at given solar zenith distances (05) and azimuths (@).

A favorable area is defined as an area where radiance variations with aerosol type are

smaller than £ 4%. Regions of sunglint and areas close to the horizon are not

suitable for turbidity determination. The dotted areas of Fig. 2.1 indicate regions of

maximum sunglint. Any application of the technique presented in this study must

account for the effects of geometry shifts on the measurement of the reflected radiance.
2. Effect of Radiometric Quantities on Optical Depth

An understanding of the radiometric quantities which effect optical depth are
critical to the determination of how changes in the physical characteristics of the
boundary layer will impact optical depth measurements. Changes in particle .
composition, numbers and size affect optical depth.

The scattering and extinction coefficients are defined as:

20 dN\(r)
= 2
Bscar = % Mr°Qscar(m.r) ar dr
(2.7)
and
0 dN(r)
Bexe = § oszext(m'r) dr,
(2.8)
where, 1r2 is the cross sectional area of a given particle radius, Q.. and Q,, are

scattering and extinction efficiencies respectively (dependent on the complex index of
refraction (m) and the particle radius (r)), and dN(r)/dr describes the distribution of
particles by radius. The index of refraction contains a real part (k) and an imaginary .
part (v). The real part determines the reflection or scattering by a medium and the
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Fig. 2.1 Favorable viewing geometries for atmospheric turbidity
with satellite zenith angles of 12.5° (left), and 57.5° (right).
(Koepke and Quenzel, 1979).

imaginary part describes the amount of absorption by the medium at a given
wavelength. Shettle and Fenn (1979) describe atmosphere aerosol distributions, and
report k ranges from 1.33 for pure water to 1.53 for dust-like substances in visible and
near-infrared wavelengths. For marine particles, v is less than 104 for wavelengths less
than 1.0 microns. Therefore, absorption will be very small and the single scatter
albedo @  for marine particles is about 1.0. Since absorption is small, the scattering
coeflicient is very nearly equal to the extinction coeflicient for marine particles. Thus,
only extinction coeflicient will be used in further discussions.

The extinction coefficient (Eq. 2.8) is the product of three factors summed
over all particle radii. Variations in each of these factors result in changes in
extinction. The three component terms of extinction as a function of radius for a
relative humidity of 80% and a wavelength A = 0.694 pm are shown in Fig. 2.2 from
Durkee (1984). The cross sectional areas and scattering efficiencies as a function of

17




particle size are shown in panels a and b respectively. Shettle and Fenn's mode! of
marine particle size distribution at 80% relative humidity is depicted in panel ¢. The
cumulative product of these three terms is shown in panel d. For smailer radii
particles, i.e. 0.1pm, the cross sectional area and extinction efficiencies are small, while
the number of these small particles is large. Hence, the product of these terms leads to
essentially no extinction. For larger particles, i.e. 10.0um, the cross sectional area is
large, but the number of particles at this radius is small, so the effect on the cumulative
extinction is slight. The portion of the cumulative extinction curve that has slope
delineates those particle sizes which contribute most substantially to extinction. These
particles range in size from 0.5 to 5.0 um.

It can be seen from Eq. 2.8, that the characteristics of aerosol particles mayv
change in three ways to alter extinction, optical depth and ultimately the radiance
measured at the satellite. First, the composition of the particles can change, affecting
the extinction efficiency through the index of refraction. Second, the total number of
particles may change, influencing N(r). Third, a change in particle size may change the
size distribution d\(r)/dr.

a. Variations in Particle Composition

Particle composition changes are reflected in the index of refraction. For
the range in the real part of the index, k= 1.33 to 1.53, a small change in the reflected
radiance occurs. Durkee (1984) showed that variations in upwelled radiance are
negligible when compared to the sensitivity of channel 1 of the AVHRR sensor.
Particle composition changes also alter the imaginary part of the index of refraction.
The absorptive characteristics vary greatly for the different constituents of atmospheric
aerosol. The range of v extends over several orders of magnitude from 0.5 for soot to
10°8 for pure water. Increasing the imaginary part of the index produces a reduction in

®,. Since @, is a direct multiplier of Eq. 2.4, a similar reduction in upwelled radiance

o
occurs.
b. Variations in Particle Numbers
Woodcock (1953) showed that aerosol particles within the MABL are
primarily generated in the surface layer as wind-produced bubbles burst and droplets
evaporate. Therefore, the total number of marine particles is wind speed dependent
Variations in the total number of particles with wind speed lead to

variations in upwelled radiance through Eq. 2.8. Consequently, B, ., t and L are

ext’
functions of the wind speed. Fig. 2.3 from Durkee (1984) shows the effect of changes
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in the prevailing wind speed on upwelled radiance based on particle number variations.
The sensitivity of the AVHRR channel | sensor is shown. This figure shows that
changes in the prevailing wind speed of 4 to 6 knots are sufficient to cause particle
number variations of sufficient magnitude to produce detectable changes in upwelled

radiance.
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Fig. 2.3 Upwelling radiance variation for particle size variations
as a result of wind speed variations. (Durkee, 1984).

¢. Particle Size Changes with Relative Humidity

Hanel (1976) demonstrated that particle size changes significantly with
relative humidity if the particles are composed of water soluble material. Since marine
aerosol particles originate from evaporating sea-water droplets, the particle
composition is mainly water soluble. Fitzgerald (1979) showed by theoretical and
empirical data the relationship between particle size and relative humudity. For
humidities in excess of 80%, particle size changes are strongly dependent on relative
humidity variations. As relative humidity increases, particle size increases, enhancing
the scattering ability of the particle population. This was verified by Fitzgerald et al.
(1982) with nephelometer measurements.

As particles grow with increasing relative humidity, their composition
consists of an increasing amount of liquid water. The real part of the index of
refraction for sea salt and pure water is 1.49 and 1.33 respectively. The real part of the
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index for these particles then decreases as relative humidity increases. As the scattering
efficiency for the medium decreases, the corresponding upwelled radiance should
undergo a similar reduction. However, it has already been shown above that any
change in the real part of the index results in an undetectable change in AVHRR
channel 1 sensor measurements of reflected radiance.

Changes in particle sizes due to changes in relative humidity also have an
impact on the scattering phase function P(®). The effect of relative humidity changes
on the phase function is illustrated in Fig. 2.4 from Durkee (1984). As relative
humidity increases, the phase function becomes more forwardly peaked, while at side
and back angles, the phase function value decreases slightly. As particle sizes decrease
to the point of becoming much smaller relative to the wavelength of visible light, the
scattering characteristics approach Rayleigh scattering behavior. The Rayleigh phase
function is also plotted in Fig. 2.4..

The effects of increasing particle size and decreasing the refractive index
with higher humidities is shown in Fig. 2.5. The sensitivities of channel | and 2 of the
AVHRR sensor are also displayed. Durkee er al. {1986) concluded that radiance
changes brought on by variations in relative humidity can be sufficiently large to be
detected by the AVHRR instrument.

Table 1 indicates the extinction coefficients for various relative humidities
at 0.694 pm, corresponding to channel | of the AVHRR sensor. The table shows that
an increase in relative humidity from 50% to 95% brings about an increase n the
extinction coefficient of nearly an order of magnitude. For side and backscatter angles.
with a similar increase in relative humidity, Fig. 2.4 shows the decrease in P(©) of less
than a factor of 2. It can be concluded that even at angles where an increase in
r:lative humidity causes a decrease in P(@), the effect of the increased extinction
coefficient is dominant and higher relative humidity still results in increased upwelled
radiances.

3. Optical Depth and Relative Humidity

Durkee (1984) used aircraft measurement of extinction within the MABL
offshore southern California to find a relationship between extinction and relative
humidity. The result was consistent with the Fitzgerald (1979) particle size-relative
humidity relationship, and shows that changes in particle sizes are the overwhelming
factor in producing variations in extinction. The data and curve fit to the observations
are shown in Fig. 2.6. The measurements shown in Fig. 2.6 have been fit to a
functional relationship between relative humidity and extinction:
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Fig. 2.4 Single-scattering phase function as a function of
relative humidity. (Durkee, 1984).
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TABLE 1
EXTINCTION COEFFICIENT VERSUS RELATIVE HUMIDITY

| RH(%) 50 80 95 |
B, (km'l) 0.059 0.183 0.379 !
|
!
b=
A(B - RH)
) (2.9)

i where, A = .2998 and B = 99.8999.

Using Eq. 2.5, optical depth may be solved for analytically when substituting
Eq. 2.9 for extinction as a function of relative humidity:

l z
T = -'—A—[A(B- RH(Z)lﬁ) .

(2.10)

o

:.:21 where A and B are defined above, RH(Az) is the relative humidity at the top of the
o MABL, and RH(0) is the surface relative humidity.

N In summary, it has been shown that the optical derth is the verucal integral of
;:;: the extinction coefficient. Under the assumption that the extinction is pnmariy
',‘: resicent only within the MABL, the only contribution to optical depth originates from
U

this portion of the atmosphere. Variations in relative humudity will influence the
magnitude of the extinction coefficient and optical depth through changes in particle
size, and therefore directly effect the radiance measured by the AVHRR sensor.

B. MEASUREMENT OF WATER VAPOR
The second required quantity is water vapor near the earth’s surface. The
Tu multispectral technique is related to a method described by Prabhakara er al. (1974}
for the measurement of sea surface temperature. Prabhakara’s method extracts sea-
;j";" surface temperature from water vapor contaminated brightness temperatures by
eliminating errors due to differential water vapor absorption across the 10 to 13 pm
spectral range. However, instead of correcting for water vapor absorption, as in the

. . ) oy L Wt KNAN ‘C, (A €,
A OO U GOCENLA A O 'S 0
[ "-‘A.?:‘:"“Qi:'i"x"\'hl L ‘Fir ~‘§ . -\5-")‘--.‘ A

L TN



KN

A . A "
L ]
|
2.0+ |
. | )
|
/
]
|
1.5' e ’ -
/
le
*
[
o«
—_ e /
“Z 1.0 / .
= /
/
< le
S /
Z /
x /
/
0.5 // . 4
’ ®
/
e
// o
______,,‘—4"’. ... .
0 [ ]
70 75 80 85 90 95 100

Relative Humidity (%)

Fig. 2.6 Value of extinction versus relative humidity based on MABL
aircraft measurements from Durkee (1984). The functional relationship
between these variables (Eq. 2.9) is also plotted.
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sea-surface temperature measurement, the varying degrees of absorptance mayv be

utilized to provide information about the amount of water vapor present in the MABL.
1. Radiative Transfer and Satellite Techniques to Recover Water Vapor

The form of the solution of the radiative transfer equation governing a non-

scattering, absorbing medium is Schwarzchild's equation. The generalized form
presented by Liou (1980) for radiative transfer over a distance ds, froms = O tos =

s;, 1s given by: ,

L -1(A,1,0)
Sl(}.)e =
(2.11)

+ ga[x,rb(s)]e't(k’l’s) k(Mpds

where:
L, = radiance measured at s = s,
L0 = radiance emitted from s = 0,
B(A, Ty (s)) = blackbody emission from s and
k(M)pds = optical depth berween points s and s,.

Applied to the atmosphere, the radiance measured by a remote sensor is equal to the
emission from the earth’s surface times the transmittance through the earth’s
atmosphere, plus the emission along the pathway from the earth’'s surface to the
receiver times the transmitance from the level of emission to the receiver. For the 10
to 13 pm spectral range, Prabhakara er al. (1974) showed that Schwarzchild’s equation
may be approximated in terms of brightness temperature as:

Tp(,,0) = Tto(M0) + TANL - t,(A0)] .

(2.12)
where
Tb(l,O) = brightness temperature at top of atmosphere,
T, = sea-surface temperature,
& = total transmittance of the atmosphere and

T(M) = mean radiative temperature of atmosphere.




Prabhakara er al. (1974) approximated Eq. 2.12 for the most transpareat
channel in the 10 - 13 um band as:

Tg- Ty ~ (Tg- T )kWsech .

(2.13)

-
Ny Here, Kk is equivalent to an absorption coefficient.
Ot . . . _
) A nonlinear algorithm based on two observing channels within the 10 to 13

um window was presented by Dalu er al. (1981) as a correction for atmospheric
absorption to derive sea-surface temperature:
: TS - Tl = g(W')(Tl - TZ) , (2.14)
;:;:‘} where T, is the brightness temperature of the most transparent channel, T2 is the
KR
<f3?~ brightness temperature of a second channel and g(W) is a function of total water
R vapcr. The function is described by :
e - -t
-".:';;f g(W) = C(ll )J(l
ek -ty) - (1-t
tod 2t (2.26)
o The variables Y and t, are the transmitances of channels 1 and 2, and the coefficient
'?':( t — —
iyé C = (T, - T} (T, - T)) is a constant.
':;: The combinations of Eqs. 2.13 and 2.14 through the term (T - T ) leads to an
g ¥
i expression for total water vapor (W) in terms of the brightness temperature difference
- of the two channels:
X
’e':.‘!-
e k(T.-Ty)
B T| - Ty ~ —S—L-Wsech
¢ g(W)

(2.17)

Prabhakara et al. (1979) verified through a radiative transfer model that the ratio

Ao (Tg - T{)'g(W) remains approximately constant over a typical range of atmospheric
‘\‘ .
water vapor contents.
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The total water vapor content (W) in a column of atmosphere is defined as
the vertical summation of the vapor density, p , within the column. Under the
assumption that the total atmospheric water vapor is confined within the MABL, the
vapor density must also reside in the MABL, and the integration distance (Az)
becomes the depth of the MABL:

Az
W = 50 Pyl2)dz
(2.16)

For AVHRR channels 4 and 5, 4 being most transparent, McMillin and
Crosby (1984) found the atmospheric absorption correction (T, - T,) to be a linear
function of the brightness temperature difference (Ty - To)

T,-T, = a(T,- Tg) + b. (2.18)

S

Eq. 2.18 may be further simplified for these channels as:
W = A(T, - Tj)cosh , (2.19)

where A = g(W)/(K(T, -T)) remains nearly constant for typical atmospheric water
vapor contents.

Dalu (1986) depicts water vapor content versus brightness temperature
differences in Fig. 2.7. The slope of the line defines A to be 19.6 kg,‘(K-mz). The data
for Fig. 2.7 were obtained by applying Dalu’s technique to a radiative transfer model to
a wide range of atmospheric profiles of temperature and relative humidity. Surface
relative humidity for these profiles was held constant at 80%. The correlation
coefTicient for the regression line is R = 0.99 and the error is given as £ 0.15 g.cm?.

A simulation of AVHRR channel 4 and 5 brightness temperatures for satellite
water vapor retrievals was compared with ship measured data by Dalu (1986). An
error increase to * 0.5 g/cm? was observed. The added inaccuracy is due to the
inexact spatial and temporal correlation of the satellite and ship measurements and the
variation in the actual surface relative humidity from the control value of $0%. The
error from the lack of spatial'temporal coincidence is not a factor for technique
application, since ground-truthing of the measurement is unnecessary.
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Fig. 2.7 Total atmospheric water vapor (kg/mz) as a function of
brightness temperature difference (K) from Dalu (1986).

Dalu (1986) points out that errors in retrieved water vapor may also be
minimized by knowledge of the surface relative humidity. A comparison of data from
ship measured and calculated water vapor in which the surface relative humidity varied
from 80% suggests that improvements to the calculated results may be possible if the
near surface relative humidity is known. Fig. 2.8 shows the possible correction that
may be applied, in the form of a regression line drawn to the data points. Knowledge
of the near surface relative humidity would allow a correction to the measurement of
water vapor. The non-requirement of coincident surface data, plus the surface relative
humidity correction would allow the accuracy of the water vapor measurements to
approach £0.15 g/cmz.

2. Total Water Vapor and Relative Humidity

Relative humidity depends on the vapor density and saturation vapor density

of the ambient air within the boundary layer:

RH = LA 100% .
Pws . (2.20)
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Fig. 2.8 Difference between ship measured and calculated water
vapor as a function of relative humidity deviation from 80%
from Dalu (1986).

Total atmospheric water vapor is the integral of the vapor density over the
atmospheric column. Eq. 2.20 can be rewritten and substituted into Eq. 2.17 to obtain:

Az RH(2) * pws(T)

W = .
50 160 a

(2.21)
If the integration extends through the depth of the MABL, consistent with the earlier

assumption concerning W, and a constant mean layer vapor density is chosen, the
integral can be solved such that:

W =

RH(A2/2)*p,,(T(Az/2)) ‘Az
100 0

(2.22)




C. MEASUREMENT OF SEA-SURFACE TEMPERATURE
Schwarzchild's equation (Eq. 2.11) also serves as the governing radiative transfer
equation for sea-surface temperature measurement. Brightness temperatures measured
at the satellite are generally lower than the actual sea-surface temperature because of
water vapor absorption and reemission at lower atmospheric temperatures. Corrected
sea-surface temperature measurements are accomplished by splitting the 10 - 13 pm
window in order to take advantage of differential water vapor absorption across the
. window. The differential absorption is used to correct for water vapor attenuation.
Currently, AVHRR channels 4 and 5 (channel 3 is also used at night) are utilized for
measurement. The rms error from this method reported by McClain (1930) is less than
L.1°C.

D. CHARACTERISTICS OF THE MABL

The MABL exists, and varies in nature and depth, due to a balance of several
processes. The controlling processes will be discussed, and the relationship between
variables within the laver will be addressed.

1. Processes within the MABL

The classical MABL can be stratified into three horizontal lavers (Fig. 2.9).

The layer confined to the first 10 - 20 m above the sea surface is called the surface
laver. Here, stability dependent fluxes of heat and moisture determine the vertical
gradients of wind, temperature and moisture. The majority of the MABL, called the
mixed laver, extends above the surface layer to the base of the subsidence inversion.
This laver is dominated by turbulent eddies which mix temperature and moisture
throughout the vertical extent of the layer. The relatively drier and warmer free
atmosphere is separated from the MABL by an inversion layer. The inversion laver is
typically characterized by strong vertical gradients in potential temperature and mixing

ratio.

Turbulent eddies within the MABL act to entrain the free atmosphere into the
mixed layer, thereby weakening the inversion layer, and warming and drving the
MABL. Subsidence of the free atmosphere continually acts to force the MABL
inversion layer toward the sea surface, strengthening the inversion layer. Herein, the
basic descriptive balance of processes that govern the establishment and evolution of
the MABL can be stated as:

1. Heat and moisture enter the base of the MABL through fluxes into the surface
layer.
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Fig. 2.9 Simplified depiction of humidity mixing ratio Q/p
and potential temperature @ within the MABL.

2. Turbulent eddies in the mixed layer homogenize the layer, transport heat and
moisture upward from the surface layer, and entrain free atmospheric air
through the inversion layer.

3. Subsidence forces the MABL lower and intensifies the inversion layer.
2. Relationship Between Variables within the Well-Mixed MABL

The technique to be developed is based on relationships between temperature
and relative humidity within the well-mixed MABL. The model MABL, developed to
test the validity of the technique, was also constructed from these relationships.
Observational data have substantiated these relationships in well-mixed layers.

Rogers (1979) presents a dctailed discussion of the adiabatic mixing process,
where samples of air from different pressure levels are brought adiabatically to the
same pressure level and mixed. This is an ongoing process within the well-mixed layer
of the MABL, where specific humidity, mixing ratio and vapor pressure tend to be
constant with height. The potential temperature also becomes a constant value within
a completely mixed layer and the temperature lapse rate approaches dry adiabatic.

Relative humidity depends on the vapor density and saturation vapor density
of the ambient air within the boundary layer as shown in Eq. 2.20. The vapor density
is a reflection of the amount of water vapor present within the air and is not

-




temperature dependent. Saturation vapor density has a direct temperature dependence.
Bolton (1980; developed a formulation for saturation vapor density: :

[(7.5*T)AT +237.3)]

11*10
- 6.11 . 104 '

: Pws R, * (T +273.16)

(2.23)

where temperature T is in °C and R, = .461 J/K-g. For T> 0°C, this equation yields
crrors of less than 0.1%. Fig. 2.10 shows a plot of saturation vapor density as a
function of temperature. Since the temperature lapse rate is dry adiabatic, relative
humidity increases with decreasing pressure (increasing height) within the MABL.
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E. TECHNIQUE ASSUMPTIONS
The technique is based on three fundamental assumptions of the atmospheric

structure:
1. Atmospheric optical depth at red-visible and near infrared wavelengths is
confined primarily within the MABL. R
2. The total atmospheric water vapor content is confined primarily within the
MABL.

3. The MABL exists in an unsaturated, well-mixed state.
The validity of each of these assumptions requires some investigation to delineate
conditions under which this technique may be properly applied.
1. Validity of Optical Depth within the MABL
Within this chapter, it has been shown that atmospheric optical depth is

directly proportional to the amount of radiance reflected by the atmosphere.
Scattering of solar radiation toward a satellite sensor results from several mechanisms.
Rayleigh scattering occurs due to molecular constituents of the atmosphere. Away
from strong gradients in temperature and pressure, Rayleigh scattering is nearly
constant. Mie scattering results from atmospheric aerosol particles. In a cloud-free,
marine environment, Mie scattering is primarily the result of marine particles within
the MABL. Aerosols above the boundary layer, advected over water from continental
sources, occasionally also contribute to Mie scattering. The distribution of continental
aerosol, as shown by Pfeil (1986), is generally influenced by the circulation pattern of
the atmosphere. Knowledge of continental aerosol production and transport then
enables spatial prediction of relative concentrations. Finally, reflection of solar
radiation from the ocean surface and from wind-induced whitecaps are a source of
upwelled radiance. Koepke and Quenzel (1981) showed that ocean surface
contributions to reflected solar radiance are minimized at red-visible and near infrared
wavelengths which correspond to AVHRR channel 1.
2. Validity of Total Water Vapor within the MABL
Nieman (1977), and Agarwal and Ashajayanthi (1983) discuss maritime air

masses associated with a strongly subsiding atmosphere. Within these air masses the
subsiding motion of the mid-troposphere dries and warms the air mass. Over oceanic
regions the lower troposphere is moistened by fluxes across the air-sea interface. The
establishment of a moist MABL beneath a dry, free troposphere results. Fig. 2.11
shows a typical atmospheric sounding within this type of air mass. Under these
regimes water vapor above the subsidence inversion is minimized and the assumption

of total water vapor confined within the MABL becomes reasonable. .
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Fig. 2.11 An example of a temperature and relative humidity profile
for a typical subsidence inversion. Modified from Nieman (1977).

e Ortenburger (1978) shows regions of common occurrence of atmospheric

' ducting assaciated with subsidence-capped MABL's over oceanic regions in Fig. 2.12.
_ These areas are geographically tied to the climatological locations of large subtropical
anticyclones. The frequency of occurrence and subsidence inversion strength is
increased in the summer hemisphere where the belt of subtropical anticyclones is
stronger. Regions in which a relatively dry, free troposphere exists above the MABL
may be inferred from the locations in which a high incidence of subsiding air masses

occur. Occasionally, upper-level moisture from low latitude cut-off cyclones or jet
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stream activity would increase the amount of water vapor in the upper troposphere.

-

Detection of these features is possible from geostationary water vapor imagery.
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f

Fig. 2.12 Frequency of atmospheric ducting associated with subsidence inversions
from Ortenburger (1978).

3. Validity of Well-Mixed MABL
The homogeneity of potential temperature and water vapor mixing ratio
within the MABL is produced by turbulent mixing within the layer. Mixing eddies
within the layer are a manifestation of buoyancy and shear effects. The formulation
for buoyancy production, shown in Eq. 2.24, is stability dependent:




. - =

o =
-

-

H P<p = specific temperature flux and

gT = buoyancy factor.
The formulation for the shear production in Eq. 2.25 is dependent on the mean vertical
wind speed gradient:

Tt du
n, = ,
p dz
(2.2%)
where:
TP = local momentum flux and
du'dz = vertical wind shear.

The absence of strong buoyancy production within the subsidence produced MABL is
due to the inability of the sea surface to warm significantly (in comparison to a land
surface) during daylight hours. The lack of radiative cooling of the surface at night
prevents the establishment of a stable layer. Thus, due to buoyancy effects alone, the
MABL often remains ncarly neutral with respect to stability with only slight diumal
variations.

The weakly unstable or neutral MABL is also influenced by wind shear. The
effect of this shear is to increase the production of turbulent eddies which further mix
the MABL. In most cases, the combination of buovancy and shear produced
turbulence can sufficiently mix the MABL.

[n some regions of common subsidence inversions, the MABL is very stable,
and mixing is supressed. These regions would coincide with areas of relatively cold sea-
surface temperatures, such as in coastal upwelling zones along the west coast of
continents. In these regions, vertical distributions of the important state variables in
the MABL deviate from those on which the technique was based. The response of the
technique under these conditions still requires further investigation.

The assumptions required in this technique constrain its applicability. Satellite
techniques for observing optical depth, total water vapor and sea-surface temperature
require a cloud-free atmosphere. This technique has potential application in regions of
subtropical anticyclones where water vapor above the MABL is minimized, away from
continental aerosol above the boundary layer such that optical depth above the MABL
is minimized and within well-mixed MABLs.
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1. ESTIMATION OF MABL DEPTH AND RELATIVE HUMIDITY

This chapter details the technique of retrieving the MABL height and
parameterized relative humidity profile. This technique is based on the theoretical
background presented in the previous chapter. The solution is the result of an iterative
process dependent upon optical depth, total water vapor, sea-surface temperature and
estimated sea-level pressure.

The fundamental assumptions of optical depth and total water vapor confined
within the MABL enable Eqgs. 2.5 and 2.17 to be combined through the common
vertical integration distance (Az). It is first necessary to substitute for the extinction
and vapor density in terms of relative humidity as a function of height. This will allow
the combined equations to be solved for the surface relative humidity.

A. RELATIVE HUMIDITY PARAMETERIZATION

The selection of the following parameterization was based on relative humidity
profiles inherent to the model atmosphere developed for technique validation. This
model is consistent with the previously presented structure of the well-mixed MABL.
The model will be presented in detail in the next chapter. Fig. 3.1 shows the model
generated relative humidity profile for 2 1000 m thick boundary layer. The profile can
be seen to extend nearly linearly with height. As the layer becomes deeper, the simple
linear parameterization becomes less valid. Linear versus model humidity profiles for
various boundary layer depths will be compared in this chapter. The deviation from a
linear profile may be explained using Eq. 2.20 and Fig. 2.10. In deeper layers the
change in temperature through the depth of the layer is significant owing to the dry
adiabatic lapse rate. This change in temperature allows the non-linearity of the
saturation vapor density function, shown in Fig. 2.10 to influence the relative humidity
profile through Eq. 2.20. As the boundary laver becomes thinner, the relative humidity
profile can be approximated by a straight line. Therefore, the parameterization is a
linear function of height:

RH(z) = RH(0) + Cz ,

(3.1)




A

) where RH(z) is the relative humudity at anv height z, RH(0) is the near-surface value
__"‘_i and the factor C describes the change in relative hunudity with height normalized to |
::E}‘ km. The factor C was found in the model atmosphere to be variable with boundary
W layer depth. C will be discussed later in this chapter.

.:;1. . B. INTEGRATED OPTICAL DEPTH AND WATER VAPOR

:::: The boundary laver optical depth was presented in Eq. 2.10. If extinction is
:';i. ) again integrated with RH(z) parameterized by Eq. 3.1, the result is:

4 c= . 1 n AB -ARH(0) - ACAz

,; AC AB - ARH(0) .
2‘ |

“ ) As shown previously, extinction is highly non-linear with higher humidities. This
':.}.',;.:. makes it advantageous to seek an analytical solution (Eq. 3.2) for the integration of
',::;':: extinction, as opposed to a sum of layer averaged extinctions. Fig. 3.2 shows a plot of
:j::i: extinction versus height for the relative humudity profile presented in Fig. 3.1. Laver
_ averaging of extinction would tend to underestimate the value of optical depth,
"i:i: ) particularly in deeper and moister MABLs.
! Total water vapor was found by integrating a mid-laver value of vapor density
:ﬁ":; under the assumption that the value at Az 2 is representative for the MABL. Fig. 3.3
' shows the model atmosphere vapor density profile for a 1000 m thick MABL. This

,;:'. figure shows MABL vapor density to be linear with height, allowing a mud-layer value
52:: 1o be representative of the entire layer. The formulation of the vapor density then, in
S,e{:: terms of relative humudity and saturation vapor density (Eq. 2.20),

must be
accomplished with values of these variables at Az/2

. Total integrated water vapor can
be then written as:

e w o(RH(O) + CAz2)p, (T(Az2),
100

e
—_—
(%)
ey
=

.,;3’:{ C. NEAR-SURFACE RELATIVE HUMIDITY AND MABL THICKNESS
i

Eq. 3.2 and 3.3 may be algebraically manipulated to solve for the laver depth
{Az):

. ‘-
5’4 -
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Fig. 3.1 Model relative humidity profile with RH(0) = 70%
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AB - (AB - ARH(0))exp(-tAC) - ARH(0)

Az =
‘ AC
(3.4)
and
A, = . RHO) # VRH(©O)® + 200CWp, (T} |
C
(3.5)

In Eq. 3.5, the positive root of the radical is always selected to provide the
meteorologically sensible solution. Egs. 3.4 and 3.5 now may be combined through the

common factor, Az. Further manipulation leads to a quadratic equation in near-
surface relative humidity, RH(0): '

[1 . (e~fAC)2] ™ RH(O)2
+ [2Be"TAC (£ TAC | )] * RH(0)

BY1- e TAC)T + 20%103CW py(Tyyy) = 0 a6

Solution of this quadratic formula gives the near-surface relative humidity value, and s
then substituted into either Eq. 3.4 or 3.5 for determination of the MABL thickness.
The technique will fail if measurements of optical depth, total water vapor and
sea-surface temperature are inconsistent. The failure occurs in solving the above
quadratic equation for surface relative humidity, as the equation produces two complex
numbers. [f measurements are consistent, the complex numbers have imaginary parts
equal to zero. Ambiguity does not exist between the two solutions since one is always
obviously too low. If the input measurements are inconsistent, the imaginary portions
of the complex numbers are non-zero and the surface relative humidity is

indeterminate.
D. THE ITERATIVE PROCESS

The technique iterates on Eqs. 3.6 and 3.4, and converges to a near-surface
relative humidity and boundary layer depth, provided that measurements of optical
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depth, water vapor and sea-surface temperature are reasonably consistent. The laver
saturation vapor density and the value of the variable C are redefined with every
iteration of layer thickness. Iteration is necessary due to the initially limited
information available about the MABL. Mid-layer temperature and layer thickness are
unknown at the onset. After a calculation of the near-surface humidity is made, layer
depth and mid-layer temperature can be determined. With these variables, redefined
values of C and the layer saturation vapor density are determined. Since p, and C .
are factors in the quadratic equation for near-surface humidity, iteration is required.
1. Saturation Vapor Density

The initial value of the layer saturation vapor density is found from the sea-
surface temperature. Successive iterated values are the mid-layer values as the
hypsometric formula and Poisson’s equation are applied to the computed laver
thickness and temperature respectively. After the initial MABL height is found, the
layer is subdivided into 4 equal sublayers (Az,), and the hypsometric formula is
employed to determine the pressure at the top of the first sublayer:

P+ = Py exp -(gAz RT,) , (3.7) .
where P, and P, are pressures at the bottom and the top of the sublayer -

respectively, g is the acceleration of gravity and R is the universal gas constant. This
step 1s initiated by an estimate of the surface pressure, the mean laver virtual
temperature (TV) and knowledge of the sublayer thickness (Az.). Poisson’s equation
enables the computation of temperature at the top of the sublayer:

Tirp = Ti(Pi4 /P)280) (3.8)

A second use of the hypsometric formula and Poisson’s equation for the second
sublayer enables computation of the mid-layer temperature. This temperature is then
the basis for the layer saturation vapor density.
The mean sublayer virtual temperature is not actually available due to the lack
of moisture information required for its determination. A reasonable approximation
may be found by using the temperature at the bottom of the sublayer. The error is
minimized, since virtual temperature typically exceeds the ambient air temperature by a -

few degrees Centigrade due to atmospheric moisture, and the temperature at the




bottom of the sublaver exceeds the mud-layer temperature due to the adiabatic lapse
, rate.
2. C - Relative Humidity Variable
4 The variable C in Eq. 3.1 describes the percentage increase in relative humidity
from the near-surface value, to the top of the layer when normalized to 1000 m.
" Computations of C were done for model boundary layers varying in depth from 300 to

N 1500 m. The plotted data and linear fit to the points is shown in Fig. 3.4. The
. equation of the plotted line was found to be:

C = 14.07 + 3.333(A2) , (3.9)

where Az is the layer thickness in km and C is in dimensions of %/km. The initial

value of this variable is chosen as 14.07 %, km with Az = 0.

. The technique is considered to have converged when the change in MABL

B depth between successive iterations reduces to less than | m. The speed of
convergence is dependent on the relative depth of the MABL. For shallower lavers
near 500 m in depth, convergence occurs within 4 to 5 iterations. For boundary layer

W depths near 1500 m, convergence requires 5 to 7 iterations.

The converged values of near-surface relative humidity, MABL thickness and

) the variable C enable the parameterized relative humidity profile to be constructed.

The relative humidity throughout the MABL is found through Eq. 3.1.

) as
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IV. TECHNIQUE RESPONSE TO A SIMULATED BOUNDARY LAYER

A simulated boundary layer was developed in order to test the accuracy of the
technique in determining MABL depth and relative humidity structure. This layer was
modeled after the well-mixed MABL described in Chapter II. The model was extended
to three depths and ranged through three surface relative humidities in order to
examine the technique’s performance for a variety of MABL types.

A. MODEL STRUCTURE

This model is structured after the well-mixed portion of the MABL in which
potential temperature and mixing ratio are conserved. Surface layer gradients of
potential temperature and mixing ratio are not accounted for. The model extends
upward to, but does not include, the subsidence inversion. The following is a
description of how the model boundary layer was developed.

The model MABL is subdivided into 11 vertical levels, creating 10 equal depth
lavers of thickness Az/10 m. Initially provided are the heights at the 11 levels,
extending upward from the sea surface, the total layer thickness and surface values of
pressure, temperature and relative humidity. The pressures and temperatures at each
level are computed from the hypsometric formula and Poisson’s equation in a fashion
simular to that described in Chapter IIl to obtain a representative layer saturation
vapor density. The use of Poisson’s equation invokes the constant potential
temperature assumption. The hypsometric formula initially estimates the mean MABL
virtual temperature as the surface temperature minus 2°C. The first guess pressures
and temperatures for each level are thereby determined. The densities of dry air, p(1).
for each level are computed from the equation of state for dry air:

(4.1)

where P(i) and Ty (i) are pressures and absolute temperatures at level-i. Next, the

assumption of constant mixing ratio is invoked to compute the level vapor densities,
Py{1). Mixing ratio (w), defined as




Pq (4.2)

is known, based on the surface temperature, pressure and relative humidity. The vapor
density at the adjoining upper level is:

Puli)

Puli+ D) = pgliv 1) * 50

(4.3)

where variable subscripts i and i+ 1 refer to lower-and upper-level values respectively.
Virtual temperature now can be computed for each level and averaged between levels
to give layer values. Knowledge of the virtual temperature enables pressures,
temperatures and densities of dry air and vapor to be recomputed.

Saturation vapor densities at each level are determined from the temperature
profile through Eq. 2.23. Relative humidity is determined from Eq. 2.20 with vapor
and saturation vapor densities. Layer values of each of these variables are found by
averaging adjacent upper and lower level values. The layer averaged values of vapor
density are vertically summed to give total water vapor (W).

Layer averaged values of relative humidity lead to layer extinctions through Egq.
2.9, which can be numerically integrated to give the boundary layer optical depth.
However, the exact method of analytical integration of the extinction coefficient is used
instead. This is preferable due to the strong nonlinearity of extinction with higher
relative humidity.

The model atmosphere was developed with a surface temperature of 25°C and a
surface pressure of 1025 mb. These values were chosen as being broadly representative
of conditions under subtropical high pressure systems. A near-surface relative
humidity of 70% was arbitrarily selected.

B. TECHNIQUE PERFORMANCE IN A SIMULATED MABL
The objective of applying the technique to a model boundary layer is to
demonstrate the accuracy of the technique’s estimates, and to observe possible

systematic tendencies.




1. Variations in Layer Depths

‘Shallow’, “intermediate’ and ‘deep” MABLs were modeled corresponding to
depths of 500, 1000 and 1500 m. Figs. 4.1 to 4.3 depict both model and technique-
estimated boundary layver depths and relative humidity profiles for the three MABL
depths.

The technique estimate with the 500 m deep model MABL (Fig. 4.1) shows
the surface relative humidity converged to a value of 69.83%, which is slightly below
the model surface humidity of 70%. The final iterated value of layer thickness was
503 m, or slightly above the model MABL depth. Solution convergence occurred with
4 iterations.

The technique solution with a 1000 m thick MABL (Fig. 4.2) converged to a
surface humidity of 70.24%, slightly exceeding the model value. The resulting layer
thickness of 995 m was shallower than the model MABL depth. Convergence occurred
In 3 iterations.

The estimated MABL structure is compared with the actual 1500 m deep
MABL in Fig. 4.3. Surface relative humidity converged to 70.74% and the depth
converged to 1470 m. Technique behavior was similar to that of the 1000 m deep
MABL case in that the technique overestimated the surface relative humidity while it
underestimated the layer depth. Convergence occurred in 7 iterations.

2. Variations in Surface Relative Humidity

Surface relative humidities of 62%, 70% and 78% for a 1000 m deep laver
were also tested. The technique results, with the model depth and humidity profiles are
shown in Figs. 4.4, 4.2 and 4.5.

The RH(0) = 62% case (Fig. 4.4) converged to a higher surface humidity,
63.44%, resulting in higher humidities throughout the depth of the MABL.
Consequently, estimated layer depth was shallower than the model.

The 70% case is also the second case in the layer depth discussed above
(Fig. 4.2). The converged surface humidity value of 70.24%, and the associated profile
are nearly identical to the model structure as previously discussed.

In the RH(0) = 78% case (Fig. 4.5), the technique converged to a lower
surface humidity, 77.65%, and hence the humidity values in the profile were less than
those for the model profile. The departure increases with height due to the curvature
in the model relative humidity profile. As anticipated, the resulting final MABL depth

exceeded the model depth.
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C. TECHNIQUE SYSTEMATIC ERRORS
The estimated versus actual model comparisons suggest two tendencies which
were verified by additional model testing. The first tendency was seen in the effect of
variations in model depth on the technique's performance. The technique
svstematically converges to higher relative humidities and lower depths for model layers
in excess of 750 m. The second tendency was for the estimated humudity profile to
exceed the model humidity profile for surface humidities less than 70%, and to
decrease, becoming less than the model profile for surface humidities greater than 70%.
Table 2 indicates the percentage deviation of technique laver depth from model
values for the three layer depths. A growing deviation between the model and
technique estimated depth results for deeper boundary layers. The technique begins to
underestimate layer depth for layers deeper than about 750 m. The observed
systematic error with various MABL depths results primarily from the choice of a
linear parameterization of relative humidity with height. Figs. 4.1 to 4.3 help illustrate
the impact of this parameterization. For shallow MABLs, curvature in the actual
relative humidity profile is minimal. With increasing depth, curvature becomes
increasingly important, and the linear profile becomes less valid. Curvature of the
model profile occurs because of the nonlinear relationship between temperature and
saturation vapor density (See Fig. 2.10). The linear vertical temperature profile
translates into a nonlinear saturation vapor density profile. From Eq. 2.20, the
formulation of relative humidity depends on the ratio between vapor density and
saturation vapor density. Fig. 3.3 shows that vapor density vanes linearly with height
in the well-mixed MABL. Therefore, the nonlinearity in saturation vapor density with
neight causes relative humidity as a function of height to vary nonlinearly. The nature
of the relative humidity profile curvature is seen in Fig. 4.2. For deeper boundary
layers (in excess of 750 m), the technique parameterization of humudity leads to
generally higher humidities at all levels, which result in higher extinction values. For a
fixed, measured optical depth, a higher integrated value of extnction leads to a
reduced estimate of MABL depth.
The second systematic tendency is associated with the choice of the vanable C.
This variable not only represents changes in the slope of the relative humdity profile
with changing layer depths, but is also a function of surface relative hunudity. The
departure of the estimated humidity profile from the model's profile occurs around a
surface humdity value of 70% since the equation utilized by the technique to compute
the value of C (Eq. 3.9) was based on RH(0) = 70%.
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TABLE 2
DEVIATION BETWEEN TECHNIQUE AND MODEL LAYER DEPTH

500 1000 1500 ‘

Error in
layer depth +0.6% -0.5% -2.0%

The dependence on surface humidity can be illustrated through the ratio of vapor
density to saturation vapor density in the relative humidity definition. Fig. 4.6 shows
the vapor density varying linearly with height in the model MABL. A change in
surface humidity causes the vapor density curve to shift. Saturation vapor density
undergoes a nonlinear decrease with height (temperature). The effect of a shift in the
vapor density curve has a greater percentage impact on the upper portion of the layer
than the lower portion, in terms of a change in humidity. Hence, the change in relative
humudity from the bottom to the top of the profile is dependent on the surface
humidity. The dependency is nonlinear, and increases more rapidly for higher surface
humidities. Since saturation vapor density as a function of temperature also changes

nonlinearly, the vertical slope in relative humidity is also apparently a function of
temperature.

D. RELATIONSHIP BETWEEN SURFACE RELATIVE HUMIDITY AND
MABL DEPTH

The link between surface relative humidity and MABL depth can be explained

physically and illustrated by an example. The change in surface relative humidity is
translated directly through the depth of the MABL since the slope of the technique
parameterized humidity profile is fixed. Therefore, an increase in surface humidity
leads to an increase in humidity for the layer. The increase in layer humidity results in
an increase in layer extinction. Since optical depth is a fixed measured quantity, the
increase in extinction through higher laver humidities results in a reduced estimate of
MABL depth by the technique.

An alternative explanation can also be given. An increase in layer humudity,
provided temperature is constant, is equivalent to an increase in moisture. Since the
amount of water vapor is fixed by measurement, the laver depth in which it is
contained must decrease because of the increase in moisture. The reilationship between
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technique determined surface humidity and MABL depth can be summarized as

follows. An increase (decrease) in surface humidity brings about a decrease (increase)
in MABL depth.




: V. SENSITIVITY TO UNCERTAINTY IN MEASUREMENTS

" Potentially, the most significant source of error in the relative humidity and depth
) ‘v

:2:: estimates arises from inaccuracies in the measurement of the input quantities of water
l’q

vapor, optical depth, sea surface temperature and sea level pressure. This chapter
investigates the effect of uncertainties in the input variables on the determination of

" surface relative humidity and MABL depth. This type of analysis isolates the variables
¥

,ei;‘s which must be most accurately specified. Also in this chapter, the link between each
:i,z variable and the output of surface relative humidity is discussed.

A. RESULTS OF SENSITIVITY STUDIES

Technique sensitivity is the response of the method to the perturbation of an
input quantity. The response is measured as the resulting change in the final layer
depth. For the sensitivity studies, the amount of input perturbation was limited to the
- anticipated accuracy of the required remote sensing measurement. The relationships

‘;;‘-", y between each variable, and the surface relative humidity are not intuitive, and do not
" . . .

,.ﬁ"’, lend themselves to straight forward physical explanation, but may be seen by
% cal Sensitivi s f " . 4

- T mathematical arguments. Sensitivity studies for shallow, intermediate and deep
(AR

MABLs with a surface relative humidity of 70% are conducted.
1. Uncertainty in Observed Water Vapor
Total water vapor (W) was varied about the depth-dependent model values by
: ) amounts of £0.1, £0.2 and £0.5 g,‘cmz. Obviously, the variations constitute a larger

percentage of the total water vapor for thinner layers. Consequently, these variations
effect the 500 m boundary layer most dramatically.

Table 3 shows the effect of variations in W on the solution for the surface
relative humidity and MABL depth. Actual values, on which the perturbations are
made, are shown for each model depth. Qualitatively, a comparison with technique

vy retrieved values of surface humidity and layer depth may be made with the results
::;: based on the actual value of W. An error in W in excess of the actual value results in
',?i‘if a decrease of the surface relative humidity, and an increase in MABL depth.
o Conversely, an error in W below the actual value cause an increase in surface humidity,
7. ) and a decrease in MABL depth. The technique encounters difficulties in iterating
'}':: toward a solution when errors in W of about 25% or greater occur. In these cases, the
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technique fails when the measured value exceeds the actual value. For the 500 m thick
layer, failure occurs with a variation of +0.2 g,’cmz. Failure occui. in the 1000 m
thick layer when W exceeds the actual value by 0.5 g/cmz. Solutions were attained for
all variations in W for the 1500 m thick layer.

TABLE 3

EFFECT OF VARIATIONS IN W ON SURFACE HUMIDITY AND
MABL DEPTH

T

+0.1 -0.1 +0.2 0.2 +0.5 0.5
| z.= 500m
(W = 0.799)
RH(0) 61.75%  75.65% . 80.41% . 91.44%
Az (m) 635.1 406.5 . 327.5 . 143.0
= 1000
BW = 1.3824)
RH(0) 66.56%  73.40%  62.09%  76.21% . 83.19%
Az (m) 1109.6 895.6 1246.2 805.9 . 57179 |
{
z = 1500m
(W =72.3504)
RH(0) 67.98%  73.19%  64.76%  75.38%  48.01% 80.89%
Az (m) 1582.1 1362.3 1709.2 1273.3 2315.8 1025.9

The link between variations in W and the technique’s solution of surface
relative humidity can be seen in the quadratic formula solution to Eq 3.6:

b= ./bi'Zac

RH(0) = - :
2a
(5.1)
where
a=1- (e-tAC)Z'

b = 2Be "AC(e-TAC | 1) and
¢ = BY(1- ¢ AC) + (20010 CWipy (T=Ty).
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[t has been observed that the meteorologically consistent solution for surface humidity
occurs when the positive root of the radical is selected. The only occurrence of W in’
the quadratic formula for surface relative humidity is in the second term under the
radical in Eq. 5.1. An increase in W decreases the term under the radical. This reduces

the entire numerator and RH(0) correspondingly decreases. Conversely, a decrease in
W translates to an increase in surface humidity.

2. Uncertainty in Observed Optical Depth
Optical depth (t) was varied by 10, 20 and 50% of its actual value. Table 4
shows the results of these variations on technique derived surface humidity and layer
depth. In comparison to model surface humidity and depth values, variations in T in
excess of the actual value cause an increase in surface hurnidity, and a decrease in layer
thickness. An error in T below the actual value leads to a decrease in surface humidity,

and an increase in layer depth. The technique fails for errors in t which were 50%
below the actual values for 500 and 1000 m thick layers.

TABLE 4
EFFECT OF VARIATIONS IN t ON SURFACE HUMIDITY AND
MABL DEPTH
+10% -10% +20% <20% + 50% -50%

z = 500m
(¢t =0.065)
RH(0) 73.54% 64.16% 76.21% 50.46% 81.39% -
Az (m) 478.3 544.6 462.2 678.2 433.6

= 1000m
% t =0.108)
RH(0) 72.94% 66.41% 74.96% 60.23% 78.80% .
Az (m) 962.0 1046.0 938.4 1137.3 896.1 -
z = 1500m
(t =0.549)

RH(0) 71.35%  69.86%  71.78%  68.57%  72.47% 57.07%
Az (m) 1459.0 1485.1 1451.7 1507.9 1440.1 1737.2




The effect of varying t on surface humidity is difficult to demonstrate from a
mathematical standpoint, since it appears as an exponential factor in each term of Eq.
5.1. However, the effect of uncertainties in t does not have the dramatic impact on
estimates of technique layer depth that the W variations produced. This is explained
by examining Eq. 2.5, which shows layer thickness in terms of measured optical depth
and humidity-dependent extinction. As an example, if t is perturbed such that it is less
than the model value, the surface relative humidity is reduced. This leads to lower
relative humidities throughout the MABL and extinction for the layer is reduced. The
coincidently reduced optical depth and layer extinction are related, such that they tend
to minimize the error in the estimate of layer thickness.

3. Uncertainty in Observed Sea-Surface Temperatures

Sea-surface temperature (SST) was varied by 1, £2 and =5 °C. The
surface temperature provides the basis for the layer saturation vapor density by Eq.
2.23. Since surface temperature is not a function of layer depth (as are W and t), a
variation is translated equally to each technique solution for the three MABL depths.

Table 5 indicates the effects of variations in SST on the solutions for surface
relative humidity and MABL depth. Errors in the temperature above the model values
cause surface humidity to increase and layer depth to decrease, whereas the opposite
result occurs with errors in temperature below the actual value. In cases where the
surface temperature was less than the actual by 5°C, the technique did not converge to
a solution.

The response of technique surface humidity to variations in surface
temperature can be explained by the same mathematical reasoning as was used earlier
to explain W variations. As an example, an increase in SST leads to an increase in
layer saturation vapor density. The only occurrence of saturation vapor density in Eq.
5.1 is again in the second term under the radical. As saturation vapor density
increases, the term under the radical increases. The numerator increases, so that the
surface relative humidity also undergoes an increases.

4. Uncertainty in Observed Sea-Level Pressure

Variations in the estimate of the sea-level pressure do not cause any change in
the surface relative humidity, and hence the MABL depth. The estimate is provided to
allow calculations with the hypsometric formula and Poisson’s equation, to determine
the mid-layer temperature. The critical variable here is the layer virtual temperature,
which determines layer thickness. The actual values of pressure at the upper and lower
boundaries of the layer are inconsequential.
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TABLE §
EFFECT OF VARIATIONS IN SST ON SURFACE HUMIDITY AND

MABL DEPTH
+1.0° -1.0° +2.0° 22.0° +5.0° .5.0°
z = 500m
RH(0) 72.56%  66.48%  74.86%  62.05%  80.12% -
Az (m) 457.6 557.7 419.6 630.2 332.4 .
Zz = 1000m
RH(0) 73.04%  66.80%  75.39%  62.37%  80.72% .
Az (m) 907.1 1102.2 832.2 1237.8 6594 -
z = 1500m

RH(0) 73.89%  66.72%  76.46%  61.21%  82.08% -
Az (m) 1337.5 1632.2 1226.1 1845.0 970.2 -

T = 25°C
l |

!

B. COMPARISON OF ERRORS IN INPUT VALUES

The relative importance of errors in technique input variables to estimated
MABL depth is summarized by Fig. 5.1. Each input was varied by the amount of error
that is anticipated from the specific measurement technique. W was varied by
0.15 g,"cmz, 7 by 20% and sea-surface temperature by 1°C. These error bars are based
on accuracies quoted by Dalu (1986), Griggs (1983) and McClain (1980) respectively.
The errors are based on a 1000 m layer. The results indicate that accurate knowledge of
W and t are most critical. In the actual application of this technique, observational
errors in all input variables will occur to some extent. A worst case scenario would
have each error producing the same effect and the summation of the errors causing an
inaccurate or indeterminate surface relative humidity. However, it is most likely that
errors in W and t will tend to counteract, and thereby act to minimize their cumulative
effects. This occurs because of the original assumptions of water vapor and optical
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depth being confined to the boundary layer. In actuality, some of each quantity wil] be
present above the layer. From Tables 3 and 4, overestimates of each quantity will have
compensating effects on the technique estimate of suface relative humidity and layer
depth.
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Fig. 5.1 Effect of input errors on technique MABL depth.
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0 V1. CONCLUSIONS AND RECOMMENDATIONS

A technique for determining MABL depth and relative humidity structure was
presented. The technique relies solely on remotely sensed values of aerosol optical
;’ depth, total water vapor and sea-surface temperature. The remote measurements are
muluspectral, employing channels 1, 4 and § of NOAA’s Advanced Very High

' Resolution Radiometer (AVHRR) instrument. This initial developmental study has
= shown:

' ¢ In theory, estimations of MABL depth and relative humidity profiles can be
L)
2 done remotely.
e Some treatment of the vertical variation of relative humidity with height is
Ly necessary. A linear parameterization of the relative humidity profile is effective
;ii; in accounting for the nonlinearity in the relationship between extinction and
‘o",t. higher values of relative humidity.
"“ ‘ . . s .
:::: ¢ The technique is most sensitive to expected errors in total water vapor
measurements, and to a lesser extent errors in optical depth and sea-surface
o temperature measurements.
R ) . . .. . .
2 ;f Since thus study introduces an original and unconventional method, a significant
1)
WY . . . .
! amount of effort remains to improve, test and validate the technique.
v\l‘ ) .
o Recommendations for future work include:
T o Develop the treatment of the vertical relative humidity profile to account for
:: ‘ the slope of the relative humidity profile due to changes in the surface humudity
‘,'.g' and layer temperature, as well as layer depth.
300 el . . . .. .
’:h e Study the sensitivity of the technique to variations in the extinction - relative
! humidity relationship.
e * Improve the mixed layer sophistication to include varations in MABL stabulity
.“’,--‘ and possible surface layer structure.
ol . .
:',f' ¢ Determine to what extent optical depth and water vapor above the boundary
R layer would produce compensating errors.
P g
— ¢ [nvestigate the technique’s performance with actual experimental data sets.
;;'.:‘;, * Give further consideration to the regions of applicability of the technigue,
AN possibly limiting it to specific air mass types or introducing air mass Jependent
] . .
,«i}’;i' modifications.
e
S ' This study represents a beginning point for the evolution of a method tor
.I,;.; o routinely gathering MABL information from satellite. The large area, high frequency
DI 3 -
:t:{:} coverage of sun-synchronous satellites may allow the mapping of the MABL Such
[
AN
e
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information would allow study of temporal changes in the MABL as well as variations
,"’," in layer structure with respect to the synoptic-scale environment. Boundary layer
B J b
e mapping would also provide data for dynamic numerical weather prediction model

initialization as well as a spatial dimension of duct heights for electromagnetic energy

propagation.
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