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ABSTRACT

This paper is a continuation of a preliminary study which investigated the
magnetic field radiated from a charge bunch traveling over a finite path. One of the
recommendations of the preliminary study was to investigate how the magnitude and
shape of the radiated field depends on the location of the observer relative to certain
time boundaries defined by relationships between the arrival times of different parts of
a pulse. This recommendation was followed by studying the signals radiated from
charge bunches with two different ratios of rise time to path length. Within the
Cerenkov cone and near a time boundary, the observed pulses are shaped like spikes.
The time boundaries were found to be hyperbolas in the plane defined by the direction
of travel of the charge bunch and the direction of propagation of radiation.
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I. INTRODUCTION

A. BACKGROUND

The topic of time developement for Cerenkov radiation was introduced by
Buskirk and Neighbours in (Ref. 1] where the concept was applied to an electron beam

with a ramp-front function. Later in [Ref. 21, which was a preliminary study, magnetic

fields were calculated and plotted with respect to time for various locations relative to

the beam. The values of P' and the index of refraction n, were chosen in order to study

the relationship between the time regions relative to the beam and the shape of the

radiated magnetic field curves. The value 3' is equal to v/c, where c is the velocity of

light in the medium. From this preliminary study, one of the recommendations was to

investigate how the magnitude and shape of the radiated field depends on the location

of the observer relative to certain time boundaries defined by relationships between the

arrival times of different parts of a pulse.

The B field calculations in [Ref. 2: pp. 70-79] are theoretical and have assumed a

linear ramp-front charge profile, a one dimensional current distribution, and a rigid

charge shape. In other words, the radiation is produced by a bunch of electrons of

negligible transverse dimension with a longitudinal distribution which does not change

as the bunch travels along the z axis. The radiated power is proportional to the square

of the charge per unit length and therefore to the square of the beam current. The

expressions for B and E in [Ref. 1: p. 3751] are valid and the evaluation is therefore

coherent only insofar as the bunch is not distorted either by the reaction of the

radiation or by the instabilities associated with very high current beams, [Ref. 1: p.

3753]. So far none of the calculations have been compared to experimental results due

to the shortage of suitable data.

Present technology is such that this structure is not observable in the Cerenkov

7r-adc .ion fro.orn 3 r I' band inacs iecause , their :ciativelv high :undanientai

.re uenci'. Howcver. other acccierators ,vich their lonzer elec:ron bunci, structure ,ic

higher currents, should produce observable Cerenkov signals in air for energies greater

than about 25 MeV. [Ref. 1: p. 3753]
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B. OBJECTIVES

The main objective of this work is to investigate the magnitudes, shapes, and
pulse widths of the radiated fields as a function of position in the radiation plane.

More specifically, this thesis follows the recommendation to investigate the influence of

:he :ime boundaries ;n -his piane. Thiese time ' oundaries are known 'o -,en" :r

arrival times of signals from different parts of the charge distribution.

The secondary objectives of this thesis are a result of the main objective. In order

to calculate the B field as a function of time, the FORTRAN program of [Ref. 2: pp.

70-79] needs to be written in a structured format and transfered to the NPS main frame

computer. Appendix A contains this program called "CERENKV" which is written

using the WF77 version of FORTRAN. This program evaluates the integral which
yields the magnitude of the Cerenkov pulse at a given time after an electron beam is

discharged into a medium from an accelerator. The last objective provides yet another

tool needed for studying the characteristics of the radiated magnetic field. This is a

FORTRAN program that will generate the data for the time boundaries which plot the

S/L verses the Z,'L (S-Z plane) graph. In the next chapter. S is defined as the radius

vector and Z is the horizontal distance measured from the beam discharge point along

the beam path length L. The program is found in Appendix B and is available on the

NPS main frame under the filename "TIME".

1
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II. THEORY AND EQUATIONS

A. RADIATION FiELDS

The potentials from a moving charge distribution were determined in [Ref. 1: p,

3750]. The fields (in cgs units) from these potentials are given by Equations 2.1 and

2.2

B =V x A (2.1)

E = - (I c)(OA Bt) (2.2)

The magnetic field B, may be calculated from Equation 2.1 and since A has only a z

component, this approach is easier than finding E. A similar derivation can be made in

order to find the magnitude of the E field. It is also true that, in the Cerenkov case,
E B= c co, which, for plane waves, is the usual relation between the electric and and

magnetic fields. [Ref. 1: p. 37521.

In [Ref. 1: p. 3750], it was assumed that a charge density function p, and a
current density j = pv co moved with velocity v in the plus z direction. The charge and

current are assumed to be concentrated along the z axis such that

Po(r,t) = p(z.t)S(x)&(y). (2.3)

The charge is assumed to move with no change in shape so that the z and t

dependence of the charge is p(z,t) = po(z-vt). The usual charge and current densities

are represented by p, and j,,. while p and p0 are charge per unit length. The velocity of

equations; which become under the assumption of a line distribution of charge

(Equation 2.3),

*.A

A~r,t) v coJ(l R)p(r',t'dz'. (2.4)

_1
,-.
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where R = r - r' and t', the retarded time, is given as t' = t - Ir - r'i/c. Introducing a

- new variable, u(z') = z' - vt' into Equation 2.4 gives

A(r,t) = (v/co)f(I/R)po(u)dz'. (2.5)

Since the charge is confined to the z' axis, the new variable u(z') can be written more

explicitly as

u(z') = z'- vt + (v/c)[x2 + y2 + (z - z,)21'. (2.6)

The potential A, has only a z component, and the B field has only x and y

components, Bx = 8Az//y and By =- OAzix. Carrying out the differentiation for the

x component gives

BX = v/Coj(OR' /y)po(u)dz' + v/cJR' (8po(u)/Oy)dz'. (2.7)

For radiation, the first integral, falling off as R-2 at large distances, will be neglected

and only the second term is considered further. From Equation 2.6, it is seen that u is a

function of x and y so that the second integral can be written

Bx = v2/CCoj(y/ R2)p'o(u)dz', (2.8)

where p'o(u) is the derivative of po with respect to its argument u. The corresponding

expression for By has y replaced by -x. These two components combined give the total

magnetic radiation field B. In the cylindrical coordinates (s,O,z), where s is the radius

vector, s = (x2 + y2)/2, B is tangential (i.e., in the 0 direction) with a magnitude

given by

3 =,,' 2 'cc >f(s R2 ;p', uhlz'.".

Writing Equation 2.9 with the finite limits z'i and z'f with v2/cc o = n3 2 and assuming
p'(u) =pm = constant, the new expression for B is written as

B np 2p'm(s/R2)dz ".  (2.10)

12



Here, s = (x2 + and R- - s' + (z - z) or R' - s' - w-, wherew - (z-z').

Prior to evaluating Equation 2.10, it is necessary to consider the dependence of u

on z' as well as p'o on u. As previously stated, the charge density function, p(z.t)

moves with velocity v in the plus z direction without changing shape. This charge

densi t" mation makes up :ne 'bean :urrent ,,,,,. T*.c .pper dra%%.nz :ri T:,ure 2.

illustrates the charge density, p(z,t). The rise in the charge density is approximated to

be iinear until it reaches a maximum constant value and then declines linearly to zero.

The time it takes for the charge to reach this plateau is referred to as the rise time.

Multiplying the rise time by v yields the value u = (u1  u,) which is used later in

this paper. The lower drawing is the derivative of' the charge density function which is

the constant, p'M in Equation 2.10.

/,,

U

Since u(z) and p'o u) are coupled together by a common axis u. they were closely

compared side by side in [Ref. I: p. 3 51[. Figure 2.2 illustrates this comparison and
aids as a supplement for the discu-;on which follows. The first two terms in Equation

2.6 are a straight line with unit slope and an intercept which changces with time. while

b 13



the third term is a hyperbola opening in the + u direction with asymptotic slopes of

-v c. The sum of these two curves is u(z'). The limiting slopes are 1 v,'c. Here, I +

v c is approximately 2. while I - vc is close to zero. In the Cerenkov case, I - v: c < 0

and all the curves for u(z') for any time t, have a minimim. With v > c, the resultant

u ;z ) is a curve whose ends both point upward as shown. As time increases, the entire

curve will translate downward to smaller u values as a result of the negative term (-vt)

in Equation 2.6. For the purposes of this paper, the u, value will be the zero starting

point and the u, value will be a negative value when entering data in the program of

Appendix A.

''

U U

4.1

Figure 2.2 The Function u(z') and p'o(u).

On!- changing currents (those with a nonzero p"o) will contribute to the magnetic
2:', ,:2; .:]:P. ... . .... .. • ... .u .q; ""n .. ..,,. c: . .2 . , .." "urcn :'UiSc ::i'zrases

,;exr.; upwaru, ce aerivative po u) wiil be a constant valued squared puise of'

magnitude p'm and is also shown in Figure 2.2. The corresponding negative p'o(u)

pulse occuring at the tail of a current pulse is not shown and its effect is considered

separatel.. At a time t. where the u(z') curve is tangent to the upper portion of the
p'o(u) pulse, the B pulse begins. The value of the integral in Equation 2.10 increases as

14



u(z') continues its constant downward motion with increasing time until it becomes
tangent with the lower part of the p o(u) pulse. At this time the nonzero part of the

integral has the largest extent. At later times, the integral will break up into two
regions of the z' axis and if p'o(u) is constant, the value of the integral decreases with
increasing time because the extent of the integral in the two regions continues to
decrease as a result of the upward turn of u(z'). The preceding discussion applies to z'

ranging from .oo to + 00 with ul and u2 serving as the upper and lower bounds in the
integration process, [Ref. 1: p. 3751].

The time structure (shape) of the resulting B pulse can be determined by

integrating Equation 2.10 directly, [Ref. 1: p. 3751]. This is where the limits of

integration must be defined explicitly. The limits in the preceding paragraph are found
with relative ease if the bounds of ul and u2 extend indefinitely along the z' axis and

are the only bounds to consider. However, this is not the case considered in this paper.

Along with the bounds considered above, there is a definite set of boundaries that exist
as a result of using a finite beam path length. Figure 2.3 shows the three examples of
where the finite path may fall in the u-z plane. These three cases will be discussed in

more detail in the next subsection and the limits of integration will be found for each
of the three cases. Before preceding however, it is a good time to evaluate the integral

in Equation 2.10.

Evaluating the integral in Equation 2.10 is easy as long as p'o is flat (or
constant). This assumption was made earlier in Figure 2.1. Using the expression w =
(z - z') in Equation 2.10 and integrating with respect to w, the final expression for B is
found in Equation 2.11.

B = npl2p'm[arctan(wu/s) - arctan(w2/s)] (2.11)

With the expression for B now available, the next step is to find the limits of

integration by finding the values of wI and w2. These limits were carefully derived in
ref. 2: t'. 15-711. However. -he Folloning sections will displav *he key ,, ur.s -nd

etquaactor.s nr etter tarrdlik-rize Cuture thesis students -ith ihe :r Is n n
physical concepts of Cerenkov radiation.

15



U t2 t3

U

-;-
-U 2

Figure 2.3 Function u(z') and Three Finite Paths.

B. FINITE BEAM PATHS

1. Possible Observing Positions P(z,s)

When the path of the beam is infinite, the limits of integration are determined
by the intersection of the u(z') curve with the bounding values ul and u2. In the case of

a path of finite length, the integration limits are determined by these intersections, and
in addition, the intersection of the u(z') curve with the limits of the path length.

Again, Figure 2.3 shows the three possible finite length beam paths, each with
a different orientation with respect to the minimum in u(z'). Path -a" is to the left of

the minimum, path "b" contains the minimum, and path "c- is to the right of the

minimum. These three situations are !abe!ed "rath to *he !eft, "path cenrcred". and" 1'h ".o Sit I; "

a,: :..n: ~cr.1 :sc three situations also ,rres non, :o

three positions of interest relative to the Cerenkov angle O¢ where 0C = arccos(l n').
This relation for O is called the "Cerenkov relation'. It is found by using Huygens
construction found in [Ref. 2: p. 7]. along with basic trigonometry. The actual relation

given was cos 0 = 1, On, where n is the index of refraction and I is the dimensionless

16
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constant v, c. The latter is a function of the energy level and is found by using the
expression for the Lorentz contraction factor. Finally, the product nh is defined as

The three positions of interest are relative to the Cerenkov angle and
subsequently the beam path. The path to the right means the observer is outside the

Cerenkov cone. The path :o -he left means :he observer is within the Cerenkov cone.
and centered means the observer is on the cone. These three possible situations are
shown in Figures 2.4 to 2.6, which were extracted from [Ref. 2: pp. 16,17]. With beam
length L, and the position of the observer P(z,s), Figures 2.4, 2.5, and 2.6 illustrate the

path to the right, to the left, and centered respectively.

P(Z.S)

61 6C

SL Z

Figure 2.4 Path to the Right.

For the path to the right. 01 must be greater than OC; for the path to the left, 0, must

be less than 09; for the path centered about the ninimum, 01 must be less than 0 and

is! :'-C~ ze:cr :zn=2 cu±:

The intera: lon inuts are .eternuncu by he intersections of the ukz ) curve
with the boundaries of the rectangle formed by the beam path and the length of the
pulse rise. Changes in the limits occur when the u(z') curve meets the corners, or when

it becomes tangent to the upper and lower bounds. The latter happens in only the
"centered" case. Labeling the corners of the rectangle as a, b, c, and d, the boundary

17
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8C-e 02

0 L z

Figure 2.5 Path to the Left.

times are found by substituting the appropriate boundary coordinates into Equation
2.6. Different situations arise depending upon whether diagonally opposite or adjacent
corners are simultaneously intersected by the u(z') curve.

Figure 2.7 shows successive intersections of the descending u(z') curve for the
path to the right of the mininium. In this case. ta is always the earliest time and td is
the latest time. The order of the two times depends on the relative size of the beam
path length and the length of the pulse rise. Figure 2.7 is drawn for tC > t .

The boundary times ta, tb, to, and td are given in Equations 2.12 to 2.15 and are found
in [Ref. 2: p. 151.

ta = ['(s2 + - U1] v (2.12)

tb = '(s 2 + z2) 2' Z -u2].v (2.13)

S[L 0t'(s 2 + (z - - u2]v (2.14)
21'

18
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P(Z.S)

&I c ec 2 a

0 L z

Figure 2.6 Path Centered About the Minimum.

td = [L + P'(sz + (z - L) 2) !  - u 2 'v (2.15)

2. Limits of Integration

Using the critical times from the previous subsection, the limits of integration

for Equation 2.11 can now be found. Since this thesis uses the results of [Ref. 2: pp.
15-311. the derivations are omitted. However, for the sake of clarity, Figures 2.8 thru

2.10 from [Ref. 2: pp. 19-211, are shown as a review to the way the magnetic fields are

calculated in Appendix A.

As previously stated, Figure 2.7 illustrates the relationship between the

function u(z') and the finite path which falls to the right of the minimum. More
soecificaWly. Figures 2.8. 2.9. and 2.10 shows how the limits of integration are derived as

,r,.c a.'Lra .rv asses :nrou, ,- "h ..... : m.s t, 'b,, t,. and est' i R2: _ ' ,P.

19-20], the expressions for z'i and z'f were derived with the new variables A1 = u1 + vt

and A, = u2 + vt. Equations 2.16 and 2.17 are the expressions for z'i and z',

respectively.

zi  ((P'z - A2) + fl[(z-A 2)2 - s( "2 l)I/2},(IY 2 - 1) (2.16)
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b / d ________ U2
0 ~ L

Figure 2.7 Path to the Right: t > t .

z = - A,) + 0'[(z - AI)2- s2(1'2 - 1)] } (.2 1 1) (2.17)

In additicn to t > tb, there are two other cases to consider, namely tb > tc and tb =

t.. Figures 2.11 and 2.12 illustrate these cases.

The path to left case is similar to the path to the right case, but now the three
cases are ta > td. ta < td and ta = td. These cases are shown in Figures 2.13. 2.14.

and 2.15. Solving for the limits of integration is similar to the path to the right, but

now the negative part is used due to the position relative to the minimum of u(z'),

[Ref. 2: p. 25]. Equations 2.18 and 2.19 give the "path to the left" version of Equations

2.16 and 2.17.

'I.!z - Z r - S' )~Z- - --- ~.S

Z" {i 2z - A 2 )- [(z - A 2 )2 - s "
- 1)]!2 :,' 2

- I) (2.19)
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Figure 2.8 tc > tb:t a < t < tb .

When centered about the minimum, Figure 2.16 introduces the new variables

t1, t2, z. . and t3 ' Equations 2.20, 2.21, and 2.22 are the expressions for these variables

and are found in [Ref. 2: pp. 2S.74]. In Equation 2.22. f equals tan(O.) and the variable

t, is the larger of tb or td.

t {z' c + p'[s2 + (z - z' )2 u,}'v (.210)

tz') =Z+PI ') (2.21)

o S-. .

In the centered case, the critical times to integrate between are t 1. t,. and ty

The arbitrary' time t, is integrated between t1 and t, and then t2 and t3 . Figures 2.17

and 2.18 illustrate this integration process. The new limits from Figure 2.17 are given

in Equations 2.23 and 2.24.
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tb td-U 2  
1

oi L

Figure 2.9 t C> t b tb <t <t C.

Z'+ (0'2z -A,) + jl'[(z - AI2- S2(p32 1)] "(2.23) 1

= (02 - Al) -P(z- A, ) -
2 (p, 2 _ I /2} ).(p,2 -1) (2.24)

From Figure 2.18, the new variables that must be considered here arc z'-u 1 ). z' + (u1 ),
z _(u,), and z'+(u ). A-. stated in [Ref. 2: p. 31]. z'_u,) is found using Equation 2.24
for the first integral and z'f will always be z'_(u 2 ) where ziu2 )i given by Equation

2.25.

z -u 2 ) =((0'2 z - A,) - A[z-~,)2 S 2(p2 -lI}(0,
2

-1)(.)

A ":q'xUal 'ro

Sim-rilarly, the limits for the second integral, z'+(u,) and z'.(u,) will be the

same as the above equations in which the second term is positive. In this case, z% will
always be equal to z'+(u ). whereas z'. will equal z'- (ul) if the latter is less than L,

otherwise z', will equal L.

2 2
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t

tb U2

0 Z. Z'L

Figure 2.10 t > tb tc < t < td.

3. Normalized Coordinates

As a prelude to the summary of results, it was decided that workin2 in

normal zed time would make the graphs produced by Appendix A easier to study. A

good base time for normalization is the time it takes for an electron bunch to travel the

distance L. To this end, dividing the boundary times (Equations 2.12 to 2.15) by z =

L'v gives the new normalized boundary times. As a reminder, L is the beam length and

v is the particle velocity which is equal to Pc o . The tables at the end of the chapter give

the times in normalized times and are indicated by T (where i ={a,b.c,d,l,2.3, ).

For ease of reference, the above limits are summarized for use in Appendix A.

Tables 1, 2, and 3 from [Ref. 2: pp. 24,25,3 11, give the expressions for z' (in w = z - z')
For the naths to the richt. !eft. and cen,red resectivehv. The exnre.sions tor a and h-

U An .n Tabie I. .:re .:vr: :n E : ns 2. ia and 2. - In Tzic 2. .xmcss:ons

aa and bb are given in Equations 2.18 and 2.19.

The magnetic fields can now be calculated for any location P(z.s). The next

chapter uses Appendix A to generate magnetic field (Cerenkov pulse) graphs for a

couple of illustrative examples. Each case will use a 50 MeV energy level, but will vary

23



t L U2

Figure 2.11 Path to the Right: tc < tb.

the Au L values in order to studv anv differences. Aiso. the developemnent of the S-Z

plane is easier to explain since establishing the origin of the boundary times in
Equations 2.12 through 2.15.
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0 L

Figure 2. 18 t< t <t.

TABLE I

LIMITS OF INTEGRATION: PATH-1 TO THE RIGHT

TIC > T b Ta < T <Tb T b <T <TIC T < T <Td'
zi0 b b

Z'f a a L

Tc<Tb Ta < T c T b T b <T < Td
Z.0 0 b

z I a L L

Tc =T b Ta < T< T b Tb < T <Td

V.'
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TABLE 2

LIMITS OF INTEGRATION: PATH TO THE LEFT

< Td: T < T < Ta  T a T T< T Td < T < T0aTa J

z'i  aa 0 0
Z'f L L bb

Ta> Td: Tc < T < Td Td < T < Ta Ta < T < Tb
Z; aa aa 0
Zf L bb bb

Ta =Tb: Tc < T < Ta Td < T < Tb
z.i  aa 0
Z'f L bb

TABLE 3

LIMITS OF INTEGRATION: CENTERED

T1 <T<T 2  z' 0 z'- > 0 '+ L z'+ < L

zi  0 z

z z'f L z +

T2 <T<T 3

First Integral

z'i  0 z'.(u1 )

z'f = z'.(u 2 )

Second Integral

zi. = z' (u2)

z f L z' + (ul)

29
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III. ANALYSIS OF THE S-Z PLANE

A. S/L VERSES Z/L

After establishing the pertinent variables, relative observing positions, and the
different situations for each observing position in the previous chapter, the SIL vs. Z/L
graph can now be constructed and studied. This particular graph gives some insight to
the integration procedures used in the previous chapter since the limits of integration
change at certain times. The S/L vs. Z/L graph plots out the conditions where the

previously derived boundary times are equal and also presents the plane of radiation
and the beam. Figure 3.1 (page 36) illustrates this graph and was produced using the
following values: 03' = 1.1, n = 1.100057203, L = 150.0 meters, and Au/L = 0.05.

These particular values spread the plotted lines out and allows us to study their true
shapes. The functions that plot these lines are obtained by setting tb = t. (solid line),

ta = td (dashed line), t, = t a or tb = td (chain-dashed line). The FORTRA-XN program

in Appendix B creates the data that plots out each function in Figure 3.1. The

conditions that must exist in order to plot the above functions are expressed in

Equations 3.1 to 3.3 for tb = to ta  td, and ta - t c respectively.

Au = L + 0r[(s 2 + (z - L)2)/' - ( s 2 + z2) "] (tb = to) (3.1)

Au = j3'[(s 2 + Z2 )  - (S2 + (z - L)2)Y2- L (ta = td) (3.2)

L = 3[(s 2 + z2) V2 - (s2 + (z- L)2) 21 (ta = t) (3.3)

Equation 3.3 can also be derived by setting tb= td and is not dependent on Au. Figure

3 is :he ,xoanded version of Figurc 3.1 and is shown n order illustrate where remote

observing positions fail.

To see where the Cerenkov region (marked center) falls on the S-Z plane, the
value ofOC is measured from the horizontal at the beam discharge point (S/L = 0, Z/L

= 0), and the end of the beam (S/L = 0, Z/L = 1). By projecting a line from each

point at the angle 0c to the end of the S-Z plane gives the Cerenkov region. In Figures
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3.1 and 3.2 this region falls between the two dotted parallel lines. The three possible

observer regions are shown in Figure 3.1. From the beam discharge point to the first

encountered Cerenkov boundary, are all points to the right of the path. In the

Cerenkov region, all points are centered about the minimum. From the Cerenkov

region in the increasing Z/L direction are all points which fall to the left of the path.

B. HYPERBOLAS IN THE S-Z PLANE

Inspection of the curves in Figures 3.1 and 3.2 leads one to inquire if they have a

simple mathematical expression. As mentioned in the previous section, particular

boundary times were set equal in order to obtain these three functions of interest. The

initial mathmatical expression that appears after equating these times is given by

Equation 3.4, where y = S/L and x - ZiL.

(x 2 + y2) . ((x- 1)2 + y2)'/ = Q (3.4)

The value of Q is unique to each function and is always a positive constant. Equations

3.5, 3.6, and 3.7 are the three expressions for Q that originate when setting tb = tc

(right), ta = td (left), and ta = tc (center) respectively.

Qr = [1 - Au,'LI]i (3.5)

Q1 = [1 4- Au,'L];'f" (3.6)

Qc = 1/13" (3.7)

Equation 3.4 is the difference between two distances equated to a constant. This

constitutes the standard form of a hyperbola. In order to write a program for plotting

hverbolas. an exnlicit expression for v as a fUnction of x is needed. After some

,;ners;: ,e ,'- Sjuatior .4 be~omes -u',ation 3.).

y = [((x 2 - (x- 1)2 Q2)2/4Q 2) (x - 1)21' /2 (3.8)
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The next step is to take Equation 3.8 and work it into the classical form of a hyperbola
where there is an axis translation. This allows one to find the coordinates (xo,yo) of the

axis translation. Equation 3.9 gives the classical form where the hyperbola is

symmetric about xo and yo.

(x -x 0 )2/a 2 - (y - yo)2/b 2 - 1 (3.9)

The best approach to achieving the classical form is to work with Equation 3.8.

By carrying out the square in the (x - 1)2 term and performing other algebraic

operations, a general form for conical sections is recognized. Equation 3.10 takes on

the formAx2 + Bx + Cy 2 + Dy + E = 0.

Sy2 . (l/,Q2 _ 1)x2 + [2-(1 -+ Q2)/Q 2]x - (I - 2Q 2 + Q4)/4Q 2 = 0 (3.10)

A hyperbola exists if AC is negative. An ellipse or parabola exists if AC is positive or

zero respectively. From Equation 3.4, the only possible shapes that form on the S-Z

plane are hyperbolas. To determine the conditions for the existence of a hyperbola, a

closer look at the coefficient of the x2 term is required.

Since the only true shapes on the S-Z plane are hyperbolas, then the coefficient

of x2 must be positive. In other words the inequality 3.11 must be satisfied.

1/Q > 1 (3.11)

Using the expressions for Q in Equations 3.5, 3.6, and 3.7 with the particular values of

Au, L, and Pi', the inequality is easier to satisfied when considering Equations 3.5 and

3.7. However, when using Equation 3.6, difficulties are more likely to arise in

obtaining the expected hyperbolas. Substituting in Q1 for Q in the inequality 3.11,

allows one to see how the values of P', Au, and L govern the inequality. The inequality
3-!2 is -he result of _his "ubsti,;t1Or.

3' > 1 + AuL (3.12)

If the inequality 3.12 is satisfied, the time equalities which give rise to Equations 3.1 to

3.3 are satisfied. The most common values encountered with the variables 13" and Au L

cause the inequality 3.12 to be unsatisfied.
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In summary, hyperbolic shapes exist in the S-Z plane when the above inequalities
2 2

are satisfied. Without explicitly defining the values of a2 and b-, it can easily be shown

from Equation 3.10 that the hyperbolas take on the form

x- v.)a' :' = \. 3.±-)
x 0.5)Z/a- , b-2 '

The values of a and b depend on the function that is being plotted and are

subsequently functions of the corresponding value of Q.

C. CERENKOV PULSE SHAPES

From Appendix A, Cerenkov pulses are generated from knowing many variables,

particularly the location of the observer with respect to the beam discharge point.

From here, the relationship between the Cerenkov pulse shape and position relative to

time boundaries in the S-Z plane can be studied graphically. The best way to study this

relationship is to methodically choose points on the S-Z plane that cross the critical

time and position boundaries. Other points are also chosen in order to aid in
developing general trends in the way the pulse shape changes as the observing points

move across the S-Z plane. The plus signs in Figures 3.1 and 3.2 indicate the points

where the Cerenkov pulses are calculated. Each observing position is numbered in
order to simplify the discussion in the conclusions. As indicated in the right margin, 0I'

= 1.1, Au.'L = DU/L = 0.05, and L = 150.0 meters. Choosing a constant SiL value

of 0.26 and different Z/L values near a critical boundary, gives a good representation of

how the pulse shape varies. Figures 3.3, 3.4, and 3.5 fall behind the beam discharge

point. The magnitudes have been scaled up by a factor of ten in order to better

examine the shape of the pulse. Figures 3.6 to 3.13 continue to move in the plus Z/L

direction while crossing critical boundaries. Since the magnitude of the Cerenkov pulses

are large enough, their values are not scaled up. By visual inspection, one can observe
that the pulse peaks increase as you approach the Cerenkov region. After the

maximum ' eak occurs, the magnitude of the peaks decrease with increasing Z L. The
...... n -ci -,oes -ccur -i , eined normalized oundarv, neMles

T.1, Tb, TC, ana .

The remote observing points are shown in Figures 3.14 to 3.20. These points are

indicated on Figure 3.2 and are selected to fall around critical boundaries. Figures 3.14

and 3.15 are located to the right of the path. The pulse shapes peak at Tb then
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gradually decreases in magnitude to T before decreasing to zero at Td. Figures 3.18

and 3.19 are points which fall in the Cerenkov region. The pulses begin at time T and

end at time T, with a peak at T2 . The peaks of each of the pulses appear flat, and

show no gradual decline as did the pulses to the right of the path. Figure 3.20 is a

nuse :c the eft of iie iath with shape characteristics -hat are Similar to F!,rres 3.IS

and 3.19.

To continue this study of the relationship between the S-Z plane and the

Cerenkov pulse shapes, the parameter Au/L (DU/L) is changed from 0.05 to 0.15.

rigures 3.21 and 3.22 are shown as were Figures 3.1 and 3.2 with the regions marked

and the points (plus signs) for evaluation indicated. However, the dashed line (where ta
= td) is not present. This is due to the fact that the inequality 3.12 is not satisfied as a

result of the new AuL ratio. Thus, only two hyperbolic shapes exist in Figures 3.21

and 3.22.

Figures 3.23 to 3.34 are the same in shape as Figures 3.3 and 3.13. The

magnitudes are larger even though the points from which these pulses were generated

are a longer distance away from the discharge point. Figures 3.35 through 3.41 are the

pulses at the points indicated on Figure 3.22. The shapes are again somewhat expected

for each case. The points located to the right of the path peak and break at the critical
times, as does the points located to the left and on the center. However, the pulses

located in the Cerenkov region and to the left of the path have flattop peaks. As an

obvious observation, the remote points in each AuL case have later times at which the

pulse is starting to be observed. This is due to the longer distances that the emissions

have to travel in order to get to the observing positions.

The next approach which aids in gaining better insight in the study of the pulse

shapes, is to examine points that are an equal distance from the origin of the beam.

Figures 3.42 and 3.43 originate from generating the S-Z plane using the Au/L ratio of

0.05 as in Figures 3.1 and 3.2. The reason for using this case as an example is because

all three hyperbolic shapes exist. Figures 3.42 and 3.43 represent the close and far

-.bserving lcsition epecivey. The 2xpressions close rind far obser.ing nositions are

ae::nu :fn %e,'-rs )1, :: cr :ative :12:1:,tuCes. C'.ose iimnlv describes in r,,t:z

position that is nearer to the beam. The points where the pulses are calculated are

again indicated by a plus sign. The quarter circle (solid line) has a radius of curvature

pointed toward the beam discharge point. Figures 3.44 to 3.48 are the pulse shapes

from Figure 3.42. Figures 3.44 and 3.45 fall to the right of the path. Figures 3.46 and
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3.47 lie in the Cerenkov region (centered), and Figure 3.48 falls to the left of the path.

Figures 3.49 to 3.57 correspond to the points on Figure 3.43. The arrival time of the

emitted signal is the start of each pulse and is the same when comparing two points in

the same region. The earliest arrival times occur to the left of the path, when

* considering the equal distance criterior, while the latest arrival times occur to 'he right

,* of the path. As a quick observation, the magnitudes of the pulses get larger and the

pulse widths narrower as the Cerenkov region is approached. More detailed

conclusions and observations will follow in the next chapter.

U'.
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Figure 3.1 The S-Z Plane.
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Figure 3.2 The S-Z Plane.



CERENKOV PULSE
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Figure 3.3 From Figure 3.1: Pulse I.
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CERENKOV PULSE
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Fiure 3.4 From Figure 3.1: Pulse 2.
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CERENKOV PULSE
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x
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Figure 3.5 From Figure 3.1: Pulse 3.
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CERENKOV PULSE
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Figure 3.6 From Figure 3.1: Pulse 4.
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CERENKOV PULSE
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0.9

0.8

0.7
S/L - 0.26

0.6 Z/L - 0.40

05 RIGHT

" TC>ITB
0.4 T ,

03-

0 2

01

00 0.5 10 1.5 20 2.5 3.0
TIME (NORMALIZED)

Figure 3.' From Figure 3.1: Pulse 5.
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CERENKOV PULSE
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0.9

0.8

0.7
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Figure 3.8 From Figure 3.1: Pulse 6.
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CERENKOV PULSE
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Figure 3.9 From Figure 3.1: Pulse 7.

44

-4 '" " .. .. '"'% " " ' ) - " 1

_ ! :2 .- . . .. ' . - -"'



CERENKOV PULSE
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Figure 3.10 From Figure 3.1: Pulse S.
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Figure 3.11 From Figure 3. 1: Pulse 9.
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Figure 3.12 From Figure 3.1: Pulse 10.
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Figure 3.13 From Figure 3.1: Pulse 11.
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Figure 3.14 From Figure 3.2: Pulse 12.

49



CERENKOV PULSE

1.0 ,

0.9

0.8

0.7
S/L - 3.3

0

C 0.6 Z/L - 4.0

0.5 RIGHT

TC > TB
S0.4

0.3

0.2

0.1

3.0
5.0 5.5 6.0 8.5 7.0 7.5 8.0

TIME (NORMALIZED)

Figure 3.15 From Figure 3.2: Pulse 13.

50



CERENKOV PULSE

1.0 I

0.9

0.8

0.7
S/L - 3.3

a
. 0. Z/L - 5.5

x
0.5 RIGHT

z TC > TB
S0.4

0.3

0.2

0.1

0
.. -o5.0 5.5 6.0 8.5 7.0 7.5 8.0

TIME (NORMALIZED)

Figure 3.16 From Figure 3.2: Pulse 14.
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Figure 3.23 From Figure 3.21: Pulse 19.
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Figure 3.24 From Figure 3.21: Pulse 20.
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Figure 3.27 From Figure 3.21: Pulse 23.
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Figure 3.28 From Figure 3.21: Pulse 24.
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Figure 3.29 From Figure 3.21: Pulse 25.
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Figure 3.30 From Figure 3.21: Pulse 26.
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Figure 3.32 From Figure 3.21: Pulse 28.
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Figure 3.33 From Figure 3.21: Pulse 29
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ul] The shape of the B :eJ Cerek,' piOe ,, &n:'k0 t: ,e p :-, , .

position reiati e to the rrummum of the function utz, Howe~er. based ton "he

conclusions in fRef 2: p -.. it wa% suspected "hat the pulie share :- i&so reaeJ "

position relative to the time boundarx regior.s. Again. tnese reg:ons are whrc :-t =
t a- td' and to= ta The recommendations that followed from this ,usricion were o

use different values for Au. L and to generate Cerenkov pulses at points close :C these

time boundaries. In the previous chapter. Figu;res ".1 to '.i7 allows one to compare

.various shapes for different sauations and Au L ' ues. These eures aiso a.i

drawing conclusions about the pulse shapes and sizes.

B. OBSERVATIONS

-. 1. General Trends

So far only a few brief remarks have been made with regard to the shapes and
magnitudes of the Cerenkov pulses in the previous chapter. Here, more specific

conclusions are drawn and some general observations are discussed. To make this

easier, a useful way to study and compare the pulse shapes, and at the same time see

where they fall with respect to the critical boundaries is to use Figures 4.1 to 4.4. The

pulses are numbered in ascending order from left to right starting with the position

closest to the origin and then moving out to greater distances. Figures 4.1 and 4.2

represent the close and far field regions respectively and correspond to the Au;'L value

of 0.05. TI.y are simply Figures 3.1 and 3.2 with the Cerenkov pulses superimposed.

The pulses are sketched to show relative magnitudes, shapes, and pulse widths. Figures

4.3 and 4.4 correspond to Figures 3.21 and 3.22. The pulse numbering continues where

the last pulse number stops in Figure -. 2.

Starting vizh the tnuise on the "ar ieft ,,number 1 i in Figure 4. 1 .ind -. roceedin

in the positive Z/L direction, the pulses have the same basic shape. This means that the

magnitude of the pulse goes from zero to a peak value, then declines to a smaller value

before falling off to zero. Pulses 1 to 5 fall to the right of the path and do not cross a

critical boundary. Each pulse begins at time ta and then increases to a peak value at tb .

From here, the pulse declines in a non-linear fashion to a smaller value at tc before
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. a 7

r ~ ~ ~ ~ ~ ' . e& ci:escc:. r. .h Te a ei az :cx a
r e~a:' m,.reje .indA ,tar :\ kend u:: :he de .ne from the peak magnitude to the

ent , the pWi.,e S:nce the orservmg pos-tin is approaching the tb = t. boundary

.. 7, c .' r r:-er:7 .ce , p.,se lorresponds :c Figure '.4. Crossing the

=•oundar :o po'se S, sho%% at the 11 value has vanished and the shape takes

.,e to C f a spike. Puses 'q. 10, and i1 on Figure .1. cross two time boundaries

before leaving the Cerenkrv r-e",-n. The lat pulse falls to the left of the path. There is

no cnange in snape: the last three pulses are spikes. Their magnitudes decrease and the

pulse widths increase with increasing Z L. Pulses S to 11 correspond to Figures 3. 10 to

The above discussion considered Figure .4.1 and moved from left to ,ight

S.exarrning each pulse. Comments were made when a critical boundary was crossed and

two pulses were compared when they were positioned on opposite sides of a boundary.

This procedure for examining Figure 4.1 was necessary but, will not be repeated for

Figures 4.2 to 4.4. Instead, only the general trends in shapes, magnitudes, and pulse

widths will be noted.

Figure 4.2 illustrates the pulses that were generated at larger distances from
the beam discharge point. The maximum value of the pulse increases from left to right

up to pulse number 15 (Figure 3.17), and from there a decline begins. The pulse

widths decrease and then increase in the same manner that the magnitudes increase and

decrease. The shapes are similar to the close field observations with the exception of

one minor difference. The smaller value at tc is almost as large as the peak magnitude

r' ,e -ulse. ALter -he lighth. rounded sike " uisef 15' occurs. ,he remaining nuises

ire :Iattops is one proceuds -o arger distances. From -he maximum neaR :naamluie.

the rest of the shapes show decreasing magnitudes and increasing pulse widths with

increasing Z/L.

Figures 4.3 and 4.4 also show the close and far fields respectively. They are

similar to Figures 4.1 and 4.2 with the exception that the value for Au,'L is 0.15 vice
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0.05. Again, the general trends in magnitudes and pulse widths are the same. However,

the pulses further to the right take on flattop peaks where spikes were observed in the

Previous two ,igures. Other than this, analyzing Figures 4.3 and 4.4 would be repeating

what was done earlier in Figures 4.1 and 4.2.

2 Specific Analysis

,- .- At this point, observations have been made by holding S/L constant and
varying Z,'L. This means that the distance from the beam discharge point is changing

from one pulse to the next. Figures 3.42 and 3.43 illustrate the close and far observing

positions respectively where the distance from the discharge point is constant. This

allows one to see how the pulses change with respect to location in the S-Z plane

without the effects of a varying range from the emission source. For reference, Figures

3.44 to 3.48 correspond to pulses 38 to 42 in the close positions, while Figures 3.49 to

3.57 correspond to pulses 43 to 51 in the far positions.

The pulses from Figures 3.42 and 3.43 yield no new information with regard to

shape, but it is obvious that the peak magnitude occurs in the middle of the Cerenkov

region as does the minimum pulse width. Without the aid of the equal distance

analysis, this observation would be only a safe assumption. Figures 4.5 and -4.6 are

plots of the peak magnitude and pulse width verses the angle measured from the

vertical axis S/L. They both show that the angle at which the peak magnitude and

minimum pulse width occur is the compliment of the Cerenkov angle. In other wo-ds.

measuring the angle from the horizontal axis, would yield the peak magnitude and e
minimum pulse width at the Cerenkov angle. This is consistent with CerenLk.-

radiation theory.

C. SUMMARY

One conclusion in [Ref. 2: p. 45], that can be reinforced after ana~y:::-

pulse shapes in this paper, is that a smaller Au.'L value will yield more 7.--

shapes. Still, there are some other points that need to be brough, c,- ,

pointed pulse shapes. fall cloer to a time bcundarv -,- .

S-Z 'iane. -igures -iii -tui~ c . -,,.. _ -,

are specilic exampies o mis ooser~atici; a;c ai,c"

exception to some of the cases invol\ i:.te , .

sense because on the boundarv there "re :

through during the inegrat:cn roc -,

rise to a peak at ta fro rn ,., .. -

L& ud.a
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move away from the time boundary, there is enough distinction between the two times

for the computer to notice two distinct magnitudes. This explains why the value at t
continues to approach the magnitude of tb, when the observing positions change from

left to right on the S-Z plane when starting to the right of the path. In other words, if

an observing position falls on a time boundary where two critical times are equal, then

there exists a unique value for the magnitude of the pulse. In short, all this means that

the general shape of the Cerenkov pulse depends on the location of the observer
relative to a time boundary. In particular, for positions near or on a time boundary,

the observed pulses are more spike-like. However, the magnitude and the pulse width

are dependent on the observer's position relative to the Cerenkov region.
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APPENDIX A

CERENKOV PULSE PROGRAM

C
C *THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME UNDER THE FILENAME *
C *ICERENKV' AND IS WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN *
C *VALUES, DATA FOR THE MAGNITUDE OF THE CERENKOV PULSE IS GENERATED*
C *AND IS THEN PLOTTED BY ANY PLOTTING ROUTINE. THESE MAGNITUDES ARE*
C *PLOTTED AGAINST NORMALIZED TIME AND WHEN MULTIPLIED BY A CONSTANT*
C *YOU CAN GET ACTUAL B-FIELD OR E-FIELD. *

DOUBLE PRECISION N, Ul, U2, BETA, CO, ROE, A, G, CE, BPRME, POSZ
DOUBLE PRECISION Ri, R2, Al, RSETME, SRTEl, SRTE2, A2, D, E, DD
DOUBLE PRECISION EE, Q, TA, TB, TC, TD, F, ZPI, ZPF, WPI, WPF
DOUBLE PRECISION Wl, W2, ZC, RC, ZPC, Ti, T2, T3, DELR, ZPM, B
DOUBLE PRECISION B2, El, E2, Sl, XX, YY, S, L, Z, TPRME, B, BMAX
DOUBLE PRECISION TMAX, TMIN, GPRME, THETA, THETA2, TINC, TAU
DIMENSION TPRME(9000), B(9000)
INTEGER I, J, IMAX

C *******************************************************************
C * ALL THE PERTINENT VARIABLES ARE ENTERED HERE AND SELF-EXPLAINS *
C * THE NEED FOR THE VARIABLE WITH TERMINAL INTERACTION. ONE POINT *
C * THAT NEEDS TO BE CLARIFIED, IS HOW TO ENTER Ul AND U2. Ul WILL *
C * BE ZERO AND U2 WILL BE A NEGATIVE VALUE. *C *******************,************************************************

1 PRINT * 'ENTER N'
READ* N
PRINT ' 'ENTER ROE'
READ * ROE
PRINT ' 'ENTER BETA'
READ * BETA
PRINT ' 'ENTER BEAMLENGTH'
READ * L
PRINT , 'ENTER Ul SHOULD USUALLY BE ZERO'
READ* Ul
PRINT ' 'ENTER U2'
READ* 'U2
PRINT ' 'ENTER S POSITION'
READ * S
PRINT 'ENTER Z POSITION'
READ * Z
PRINT ' 'ENTER CO IN M/NSEC'
READ *,'CO
V = BETA*CO
BPRME = N*BETA

= (BPRME**2.0) - 1.0
1 = SQRT(S**2.0) + Z**2.0))

R2 = SRT S**2.0 + Z L)*2.0)
S1 = (S*2.0)*Q
-AU L,V

C
C *THE BOUNDARY TIMES ARE COMPUTED AND USED THROUGHOUT THE PROGRAM *
C *DURING THE INTEGRATION PROCESS FOR CALCULATING THE MAGNITUDE OF *
C *THE CERENKOV PULSE. THE WRITE STATEMENT DISPLAYS THE NORIALIZED *
C *TIMES WHICH SERVES AS AN AID WHEN USING VARIOUS GRAPHICS ROUTINES*
C *FOR PLOTTING THE PULSES. *C *******************************************************************

TA = BPRME*Rl - Ul)IV)
TB = BPRME*R1 - U2) /V)
TC + (BPRME*R2) - Ul) /V)
TD L + (BPRME*R2) - U2)/V)
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WRITE (6,110) TA/TAU, TB/TAU, TC/TAU, TD/TAU
110 FORMAT 4F1O. 5

C *********************************
C *INITIALIZE THE DIMENSIONED VARIABLES FOR TIME AND MAGNITUDE - B*
C

DO 10 I = 1,200
TPRME(I) = 0.0

B~,)= 0.0
10 CONTINUE

C *********************************

C *THE CERENKOV ANGLE CE IS CALCULATED AND BASED ON THE OBSERVING*
C *POSITIONS, THE VALUES OF THETAl AND THETA2 ARE CALCULATED. FROM*
C *HR WE CHECK TO SEE IF WE ARE TO THE LEFT RIGHT OR CENTER. *
C

CE = DACOS(1.0/BPRME)
IF (Z .LE. 0.0)O THEN

POSZ =ABS(Z
A = POSZ/S
THETA1 = DATAN(A)
THETAl = THETAl + 1.570796327

ELSE
A = S/Z
THETAl = DATAN(A)

END IF
IF (Z .LT. L) THEN

GPRME =(L - Z) /S
THETA2 =DATAN(GPRME) + 1.570796327

END IF
IF (Z .EQ. L) THEN

THETA2 = 1.570796327
END IF
IF (Z .GT. L) THEN

GPRME S/(Z - L)
THETA2 =DATAN(GPRME)

END IF
C *********************************

C *THE CERENKOV ANGLE IS COMPARED TO THETAl. THE IF STATEMENT CHECKS*
C *TO SEE IF WE ARE TO THE RIGHT AND THUS DISPLAYS ON THE SCREEN.*
C *******x*************************

IF (THETAl .GT. CE) THEN
WRITE(6 ,l11)

ill FORMAT('PATH TO THE RIGHT')
TINC = (TD - TA)/200.0
DO 20 I = 1,200

IF (I .EQ. 1.0) THEN
TPRME(I) = TA
B(I) = 0.0

ELSE
TPRNE(I) =TA + (REAL(I)*TINC)

END IF
IF (T(PRPME(I) .GE. TD) THEN

B(I 0.0
GO TO 100

7=2 U2 +
D ((BPRME-~2.O)-~Z) - Al
DD = (BPRME**2.0)*Z) -A2

El (Z -Al) **2.0) - 51
E2 = (Z - A2 )**2.0) - 51
IF (El .LT. 0.0) THEN

El =0.0

END IF
IF (E2 .LT. 0.0) THEN

E2 =0.0

END IF
SRTEl SQRT(El)
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SRTE2 = S QRT(E2)
E B BRME *SRTE1.
EE =BPRME*SRTE2

ZPI =DD + EE)/Q
ZPF =D -E)/Q
IF (P .LT. 0.0 ) THEN

ZPI =0.0
END IF

F P 0.0) HE

END IF

C *TO CHECK FOR AND THEN CARRY OUT THE INTEGRATION.*

IF (TC .GT. TB) THEN
IF (TPRME(I) .GT. TA .AND. TPRNE(I) .LT. TB) THEN

WPI = Z - 0.0
WPF = Z - ZPF
W1 = WPI/S
W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (W2)
B(I) = (R0E*NI~(BETA**2.0))*(YY-XX)

END IF
IF (TPRNE(I) .GT. TB .AND. TPRME(I) .LT. TC) THEN

WPI = Z - ZPI
WPF = Z - ZPF
Wi = WPI/S
W2 = WPF/S
YYf = DA:AN (W1.
XX = DATANi(W2
B(I) = RCE Nf*P(BET **2.0)*(YY -XX)

END IF
IF (TPRME(I) .GT. TC .AND. TPRMiE(I) .LT. TD) THEN

WrI = Z - ZPI
WPF = Z - L
Wi = WPI/S
W2 = WPF/S
YY =DATAN (Wi)
XX = DATAN (W2).

A B(I) = ROE*N*(BETA**2.0)*(YY - XX)
END IF

END IF
C *********************************

C *ANOTHER CASE FOR THE PATH TO THE RIGHT IS TC LESS THAN TB.*
C **********************************

* -~IF (TC .LT. TB) THEN
IF (TPRME(I) .GT. TA .AND. TPRNE(I) .LT. TC) THEN

WPI=Z - 0.0
WPF = Z - ZPF
W1 = WPM/
W2 = WPF/S
YY = DATAN(WI)
XX = DATANtW2)

I(TPRIIE(I) .GT. TC .AND. IPPJ4E(l) .LT. TB) THEN11
WPI = Z - 0.0
WPF = Z - L
W1 = WPI/S
W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (Wfl)
B(I) = ROE*N*(BETA**2.0)*(YY - XX)

END IF
IF (TPRME(I) .GT. TB .AND. TPRNE(I) .LT. TD) THEN

wPI Z z-ZPI
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WPF = Z - L
Wi = WPI/S
W2 WPF/S
YY DATAN(W1)
XX DA,.N XW2)
B(I) = ROE*N*(BETA**2.0)*(YY - XX)

END IF
END IF

C *FINALLY THE THIRD CASE FOR THE PATH TO THE RIGHT, TC = TB

IF (TB .EQ. TC) THEN
IF (TPRME(I) .GT. TA .AND. TPRME(I) .LT. TB) THEN

WPI = Z - 0.0
WPF = Z - ZPF
Wi = WPI/S
W2 WPF/S
YY DATAN(WI)
XX DATAN(W2)
B(I) = ROE*N*(BETA**2.0)*(YY - XX)

END IF
IF (TPRME(I) .GT. TB .AND. TPRME(I) .LT. TD) THEN

WPI = Z - ZPI
WPF = Z - L
W1 = WPI/S
W2 WPF/S
YY = DATAN(WI)
XX DATAN(W2)
B(I) = ROE*N*(BETA**2.0)*(YY - XX)

END IF
END TF

20 CONTINUE
END IF

C* 

*

C *THE CERENKOV ANGLE IS COMPARED TO THETA2 TO SEE IF WE ARE TO THE *
C *LEFT OF THE PATH. THE 'WRITE' WILL INDICATE THIS ON THE SCREEN. *
C *******************************************************************

IF (THETA2 .LT. CE) THEN
WRITE(6,112)

112 FORNAT('PATH TO THE LEFT')
TINC = (TB - TC)/200.0
DO 25 I = 1,200

IF (I .EQ. 1.0) THEN
TPRME(I) = TC
B(I) = 0.0

ELSE
TPRME(I) = TC + (REAL(I)*TINC)

END IF
IF (TPRME(I) GE. TB) THEN

B(I) = 0.0
GO TO 100

END IF

Al = U (V*TPRME(I))

E= (Z S1
IF (El .LT. 0.0) THEN

El = 0.0
END IF
IF (E2 .LT. 0.0) THEN

E2 = 0.0
END IF
SRTE1 = SQRT(El
SRTE2 = SQRT(E2)
E BPRME*SRTEI
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EE = BPRME*SRTE2
ZPI = (D - E)/Q
ZPF = (DD - EE)/Q
IF (ZPI .LT. 0.) THEN

ZPI = 0.0
END IF
IF (ZPF .LT. 0.0) THEN

ZPF = 0.0END :F

C
C *CHECK FOR ONE OF THREE CASES THAT ONE CAN RUNINTO WHEN TO THE
C *LEFT OF THE PATH. THIS PARTICULAR CASE IS TA < TD. *
C *******************************************************************

IF (TA .LT. TD) THEN
IF (TPRME(I) .GT. TC .AND. TPRME(I) .LT. TA) THEN

WPI = Z - ZPI
WPF = Z - L
WI = WPI/S
W2 = WPF/S
YY = DATAN(Wi
XX = DATAN(W2)
B(I) = ROE*N*(BETA**2.0)*(YY - XX)

END IF
IF (TPRME(1) .GT. TA .AND. TPRME(:) .LT. TD) THEN

%, WPI = Z - 0.0
I WPF = Z - L

Wi = WPI/S
W2 WPF/SYY = DATAN(WI)

XX = DATAN(W2)
EDB(:) = R0E N (BETA**2.)*( , Z - XX)
END IF
IF (TPRME(I) .GT. TD .AND. TPRME(I) .LT. TB) THEN

WPI = Z - 0.0
WPF = Z - ZPF
Wi = WPI/S
W2 = WPF/S
YY = DATAN (Wl)
XX = DATAN(W2)
B() ROE*N*(BETA**2.0)*(YY - XX)

END IF
END IF

~C *******************************************************************

C *THE SECOND CASE FOR THE PATH TO THE LEFT IS TA > TD. *

IF (TA .GT. TD) THEN
IF (TPRME(I) .GT. TC .AND. TPRME(I) .LT. TD) THEN

WPI = Z - ZPI
WPF = Z - L
Wi = WPI/S
W2 = WPF/S
YY = DATAN(Wi)
XX = DATAN W2
(I) = ROE **(BETA**2.0)*(Y! - XX)

"'" "Rv -E - .;: D .: ~ . ..... - .-. -A :E

Wi = WPI/S
W2 = WPF/S

SYY = DATAN(W1)
XX = DATAN W2
B(I) ROE*N*(BETA**2.0)*(YY - XX)

END IF
IF (TPRME(I) .GT. TA .AND. TPRME(I) .LT. TB) THEN

WPI = Z - 0.0
WPF = Z - ZPF
W1 WPI/S
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W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (W2)
B(I) = ROE*N*(BETA**2.0)*(YY -XX)

END IF
END IF

C *********************************
C *THETHIRD CASE FOR THE PATH TO THE LEFT IS TA TD.*
C

IF (TA .EQ. TD) THEN
IF (TPRME(I) .GT. TC .AND. TPRNE(I) .LT. TA) THEN

WP I = Z - ZPI
WPF = Z - L
Wi = WPI/s
W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (W2)

END = ROE N*(BETA**2.0)*(YY - XX)
EIF TPEI).T TDAN.TREI .T.T)TE
IFWPIM(I GT TD AND 0.0( T B)TE
WPF Z - ZPF
WiF = WP-I/S
W2 = WPF/S
YY = WATA(W1
YX = DATAN (Wl)
B(I = ROEN(BEA*20*(Y-

END ) IF O**BEA*.)*Y
END IF

25 CONTINIE

.ND IF

C *STATEMENT COMPARES CE WITH THETAl AND THETA2 TOGETHER. THE WRITE*
C *STATEMENT INDICATES CENTER ON THE SCREEN.*
C *********************************

IF (THETAl .LT. CE .AND. THETA2 .GE. CE) THEN
-~ WRITE(6,113)

113 FORNAT('PATH ON CENTER-)
F = DTAN(CE)
ZPCZ2- (S/F)
RC SQRT(S**2.O + ((Z - ZPC)**2.0))

C *****+***************************

C *THE NEW VARIABLES Ti AND T2 ARE INTRODUCED. Ti IS WIHERE THE*
C *MINIMUMl. OF THE U(Z') CURVE JUST TOUCHES THE TOP BOUNDARY OF THE *
C *Ui LINE. T2 CORRESPONDS TO THE U2 LINE. TI IS WRITTEN ON THE *
C *SCREEN BY THE WRITE STATEMENT.*

Ti ((ZPC + BPRME*RC - Ul )
T2 ZPC BPRME*RC)-U V
WRITE(6,.333) Tl/TAU

333 FORIIAT(F1O.4)
DELR =Ri- R2

-PRME'DELR .;T. -) THEN

END I
IF (BPRME*DELR .LE. L) THEN

T3 = TD
END IF
TINC = (13 - Ti)/200.0
DO 30 I1 1,200

IF (q.EQ. 1.0) THEN
TP al (1) = Ti
B(I) = 0.0

ELSE
TPRME(I) = Ti + (REAL(I)*TINC)
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END IF
IF (TPRME(l) .GE. T3) THEN

B(I) = 0.0
GO TO 100

END IF
Al = Ul + (V*TPRHE (I)
AZ = U2 + (V*TPRME (I))
D = (BPRME**2. 0)*Z -Al
DD = SPM**;-O)*Z A2

IF (El .LT. 0.0) THEN
El =0.0

END IF
IF (E2 .LT. 0.0) THEN

E2 =0.0
END :._
SRTE1 = RRT(l)
SRTE2 S SQT(HE2
E =BPRME SRTE1
EE =BPRME*SRTEZ
IF (TPRIME(I) .GT. Ti .AND. TPRME(I) .LT. TZ) THEN

ZPM = (D - EM/
ZPF(;? (D. E)/Q
IF (M LE. 0.0) THEN

ZPM = 0.0
ZPI = Z?m

END IF
IF (ZPH .GT. 0.0) THEN

ZPI =ZPM
END IF
:AF (z-?F -GE. L) THEN

ZPF L
END IF
IF (ZPF .LT. L) THEN

ZPF ( D + E)/Q
END IF
WPI = Z -ZPI

WPF = - UP
Wi = WPI/S
W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (WZ)
B(I) = ROE*N*(BETA**2.0)*(YY -X

END IF
IF (TPRME(I) .GT. T2 .AND. TPRME(I) .LT. T3) THEN

ZPM =(D - E)/Q
ZPMZ = DD - EEQ
IF (ZPM2 .LE. 0.0) THEN

ZPF = 0.0
END IF
IF (ZPM2 .GT. 0.0) THEN

ZPF = ZPM2
END IF
IF (ZPM .LE. 0.0) THEN

ZPI =0.0
END :F
:F 'ZP%4 -~T )~ HEN

TND :F
WPI = Z -ZPI

W4PF = Z -ZPF

Wi = WPI/S
W2 = WPF/S
YY = DATAN (Wi)
XX = DATAN (W2)
Bi = ROE*N~ (BETA**2.0)*(YY -XX)

ZPI = (DD + EE)/Q
ZPF = (D+ E) /Q
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IF (ZPI .GE. L) THEN
ZPI = L

A END IF
IF (ZPF .GE. L) THEN

ZPF = L
END IF
IF (ZPF .LT. L) THEN

ZPF =(D + E)/Q
END7r
WPI = z -zpi

WPF = Z -ZPF

Wi = WPI IS
W2 = WPF IS
YY = DATA(W1
XX =DATA~(W2)l
B2 = ROE*N~ (BETA**2.0)*(YY x
B(I) = 31 + B2

END IF
30 CONTINUE

END IF
C *********************************
C *ALL THROUGH THE PROGRAM THE VALUE 200 FOR THE DIMENSIONALIZED *
C *VARIABLES TPRI4E AND B WAS USED BECAUSE IT BEST SUITED THE ROUTINE*
C *~USED BY THE GRAPHICS PROGRAM 'PLOT'. THIS GRAPHICS ROUTINE CAN BE*
C *O0BTAINED FROM PROFESSOR GLASS IN THE PHYSICS DEPARTMENT.
C ********************~***********

100 DO 50 I = 1,200
TPRME (I) = TPRME(I)/TAU
WRITEi(26,500)TPRME(I),B(I)

500 FORMAT(F1O.5,F1O.5)
30 CONTINUE

STOP
END
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APPENDIX B
S-Z PLANE PROGRAM

C *THIS PROGRAM TAKES THE DIFFERENT VARIABLES AVAILABLE SUCH AS BETA*
C *AND THE INDEX OF REFRACTION ETC. AND PRODUCES A S/L VS ZIL GRAPH*
C *( S-Z PLANE). AGAIN AS IN APPENDIX A, THE GRAPHICS ROUTINE USED *
C *CAN BE OBTAINED BY PROFESSOR GLASS OF THE PHYSICS DEPARTMENT. *
C *********************************

DOUBLE PRECISION YL, YC, YR, X, Z, BETA, N, CO, RSETME, BPRME
DOUBLE PRECISION DELU, L, QR, QL, QC, A, BR, BL, BC, C, ER, EL
DOUBLE PRECISION EC, FR, FL, FC, HR, HL, HC, ZDIVL, MIN, INC
DOUBLE PRECISION ONEMIN, ONEPLS
INTEGER I
DIMENSION X(200), YL(200), Yc(200), YR(200)

C *********************************

C *THE VARIABLES FOR INPUT ARE DESCRIBED IN ORDER TO BETTER UNDER- *
C *STAND THIS PROGRAM. N IS THE INDEX OF REFRACTION. BETA IS EQUAL *
C *TO V/C AND IS DETERMINED FROM THE LORENTZ CONTRACTION FACT0OR
C *BASED ON THE ENERGY LEVEL OF THE BEAM. L IS THE APPROXIMATED BEAM*
C *LENGTH. ZDIVL IS THE MAXIMUM VALUE OF THE X AXIS AND MIN IS THE *
C *MINIMUM OF THE X AXIS. RSETME IS THE TIME IT TAKES FOR THE
C *CURRENT TO REACH THE MAXIMUM LEVEL.*
C *********************************

?RINT ~,'ENTER N'
READ* N
PRINT 'ENTER BETA'
READ *BETA
PRINT -, ENTER BEAMLENGTH'
READ *L
PRINT 'ENTER MAX ZDIVL'
READ *ZDIVL
PRINT ~,'ENTER MIN ZDIVL'
READ *MIN
PRINT ~,'ENTER RISETIME IN NSEC'
READ ~,RSETME
INC = (ZDIVL - MIN~)/200.0
DO 40 I= 1,200

IF (I .EQ. 1.0) THEN
X(I) = MIN-

ELSE
X(I) = MIN + REAL(I)*INC

END IF
YR()=.
YL(I =0.0 3
YC (I = 0.0

40 CONTINUE
BPRME = N*BETA
DELU = RSETME*0.29979250*BETA
ON'EMIIN 1.0 (DELU/L)
ONEPLIS = .. (DE-lU<Z
OR =1.0 - (DET T/L )BR

A- (10 DELU/L))/SPRME
QC =1.0/BPRME
DO 70 I = 1,200

A X(I)**2.0
BR QR*~*2.0
BL=QL*0
BC = C**2.0
C = (1) - 1.0)**2.0
ER R ( - BR - C)**2.0
EL = A - BL - C)**2.0



EC = (A - BC - C)**2.0
FR = ER! 40*BR)
FL = ELI4'OB
FC = ECd 4.0*BC
HR = FR - C
HL = FL - C
HC = FC - C
IF (HR .LT. 0.0) THEN

H.R = 0.0
END 1F
IF .ILT., 0.0) THEN

END IF-0.
IF ( HC .LT. 0.0) THEN

END IF
IF (BPRME .GT. ONEMIN) THEN

YR(I) = SQRT(HR)
ELSE

YR(I) = 0.0
END IF
IF (BPRME .GT. ONEPLS) THEN

YL(I) = SQRT(HL)
ELSE

YL(I) = 0.0
END IF
IF (BPRME .GT. 1.0) THEN

YC(I) = SQRT(HC)
ELSE

EN YC(I) = 0.0
70 CONTINUE

C *THE DIMENSIONALIZED VARIABLES ARE USED AS FOLLOWS: X IS THE Z/L*
C *AXIS; YR IS OBTAINED FROM SETTING TB = TC; YL IS FROM TA =TD;
C *YC ISFROMTA TC ORTB =TD.
C *********************************

DO 80 I = 1,200
WRITE(22,200) X(I), YR(I), YL(I), YC(I)

200 FORMAT(4F10.5)
80 CONTINUE

STOP
END
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