
US ANIXPENSIVE REAL-TZNE INTERAiCTIVE THREE DIENSIONAL ' in
FLIGHT SINULNTION SYSTEM(U) NRYRL POSTORAOMTE SCHOOL
NW ONTE CR D SITH ET RL. JN 67UNLSSIFIE F/S S/S N

Ehhhhhhhhlll
IhhEIEEEEEI
IIIIImIIIIIu-E

11.0

I~ m

Mi RX Vi A U I~ IO& N T I , iAk
NA N 'I l Nl I., , A

%"%1' W 1 W W ~ W
wo, %w

~ --- w--

G '01K FILE COPY(

G NAVAL POSTGRADUATE SCHOOLle

G Monterey, California

DTIC
ELECTOCT 0 1 1987

colfD

THESIS
AN INEXPENSIVE REAL-TIME

INTERACTIVE THREE-DIMENSIONAL
FLIGHT SIMULATION SYSTEM

by

Douglas Bernard Smith
Dale Gerard Streyle

June 1987

Thesis Advisor: M. J. Zyda

Approved for public release; distribution is unlimited.

.b°.

.. : . t~ J _'p.

V6111111i

unclassified
IU I Y CLASSIFICATION OF THIS PAGE Ap g~

REPORT DOCUMENTATION PAGE
to REPORT SECURITY CL.ASSIFICATION Ib RESTRICTIVE MARKINGS

un clas si fi e d______________________
Ila SECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION'/AVAILAILITY OF REPORT

2b OECLISSIICATIONOOWNGRAOING SCEDL Approved for public release;
distribut ion is unliit~ed.

4 PERFORMING ORGANIZATION REPORT NUMIER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

G. NAME OF PERFOAMI1NG ORGANIZATION 6b OFFICE SYMBOL ?a NAME OP MONITORING ORGANIZATION

Naval Postgraduate School (fapcl) Naval Postgraduate School
___________________ 52_______________________

6c ADORE SS (City. State. and ZIP Code) 7b ADORE SS (City, State, and ZIP Code)

Monterey, California 93943-SO00 Monterey, California 93943-S000

8a NAME OF FUNDING iSPONSORING O b OFFICE SYMBOL 19 PROCUREMENT INSTRUMENT IDENTIFICATION loUMBeR
ORGANIZATION (it 40kbo

Sc ADDRESS (Cory,. Sfalre. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM IPROjECT ITASK(WORK UNIT
ELEMENT NO INO NO ACCESSION NO

?!E InluE ECrtYC~u~~cro)AN INEXPENSIVE REAL-TIME INTEIRACTIVE THREE-

DIMENSIONAL FLIGHT SIMULATION SYSTEM

~PERSONAL AUTHOR(S) Smith, Douglas Bernard and Streyle, Dale Gerard

a EvPE 0 I 30 TIME COVERED It A I 5 RE PORT (Yea. PAonith. Day) 15 PAGE CO-..Nt

s " ETe sis 7 PFqRM TO____ une 237

6 5LPPLEIVENTARY NOTATION

COSATI CODES 18 SuBjECT TERMS (Connu* O oVn ve if ne0Ceudry and iderif-fy by block number)

ELO ROUP SUUG~uP flight simulation; DMA terrain data, computer
graphic terrain display

* BSRACT(Continue on reve Ic if neceuary and odenotify by block number)

A prototype flight simulator for the Fiber-Optically Guided Missile
(FOG-M) is presented. This prototype demonstrates the practicability and
feasibility of using low-cost graphics hardware to produce acceptable
simulation of flight over terrain generated from Defense Mapping Agency

>9MA ii~ral levat on iata . --he f'!iTht sirniftor iilv iflfl

.iree- limerisLzonii , ut - he -window :;~v)wL' the ter-riLn in eL-re > I
responding to operator control inputs. The total svstem :Jst tt'a
and hardware) of the simulator is an order of magnitude less than most
flight simulation systems in current use.~

;0 S'R,3UTiON oAVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CL.ASSIFICATION

fJ.,.NCLASSIFIEO/1JNLIMITEO 01 SAME AS RPT QCOTIC USERS unclassified
22 AZiEPNA 'II A2b TELEPHONE (include Area Code) 22c OFFICE SYMBOL I

~~ (t~VIL ~408) 646-2305 Code 52Zk
OD FORM 1473. 84 MAR J3 APR vdtom-& oav je umi iopilmausted ,ECURIT~ ~I AT' ,N 4 -

All other et,oms are obsiot unc lass it ed 4

17

J A A.A AA A!~L . a~.A A~.AZLa.L

Approved for public release; distribution is unlimited.

An Inexpensive Real-Time
Interactive Three-Dimensional

Flight Simulation System
by

Douglas Bernard Smith
Captain, United States Marine Corps

B. S., Duke University, 1981

and

Dale Gerard Streyle
Lieutenant, United States Coast Guard

B. S., United States Coast Guard Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

June 1987

Authors: ' j- 4-J

()DouglasB. Sm~ith

Approved by:____

Robert B. McGhee, Sec d ader

Vincent Y. m, Chairman,
Department Computer Science

g .,

Kneale T. Marsha' 1

Dean of Information and Policy Sciences

2
.5

p.

ABSTRACT

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M)

is presented. This prototype demonstrates the practicability and feasibility of

using low-cost graphics hardware to produce acceptable simulation of flight over

terrain generated from Defense Mapping Agency (DMA) digital elevation data.

The flight simulator displays a dynamic, three-dimensional, out-the-window view

of the terrain in real-time while responding to operator control inputs. The total

system cost (software and hardware) of the simulator is an order of magnitude

less than most flight simulation systems in current use.

7 h

Dale

. . .

P IC ; . ,,

-; - .. - --:l-

TABLE OF CONTENTS

1. IN T R O D U CT IO N ... 10

A . FO G -M 10

1. B ackground .. 10

2. D escription 11

B. ASPECTS OF FLIGHT SIMULATION 12

1. R ealismi3

2. Frame Update Speed ... 14

C. O RG A NIZATION ... 15

H1. COMPUTER SYSTEM .. 16

A. HARDWARE AND SYSTEM OVERVIEW 16

B. SO FT W A R E .. 18

II. DIGITAL ELAVATION TERRAIN DAtA 20

A. INTRODUCTION 20

B . C O V ER A G E .. 20

C . ST R U C T UR E .. . 21

D . LO C A T IO N .. 22

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL 25

A. COLORS ... 25

4

k' N' NN

B. DRAW ING .. 28

C. W RITEMASKS .. 29

1. Color Table .. 29

2. Bitplanes .. 29

3. W ritemask Example ... 30

4. W ritemasks in FOG-M ... 32

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION 34

A. REPRESENTATION DECISIONS 34

1. Polygons versus Patches ... 34

2. Resolution .. 36

3. Elevation Scaling .. 36

4. Shading and Texturing .. 38

a. Elevation Based Shading .. 38

b. Lambert's Cosine Law Shading 39

c. Gouraud Shading .. 41

d. Adding Texture .. 43

13. INTERNAL DATA STRUCTURES 44

VI. FLIGHT SIMULATION .. 46

A. OVERVIEW ... 46

B. UPDATING THE MISSILE'S POSITION 46

5

1. Case I - Operator Control 47

2. Case 2 - Locked Onto a Target 48

C. DETERMINING THE LINE OF SIGHT.......................s0

D. DISPLAYING THE SCENE 52

1. Viewing Transformations...................................... 52

2. Determining Which Polygons to Draw 58

3. Hidden Surface Removal....................................... 60

E. SIMULATOR PERFORMANCE 65

VII. TARGET INTEGRATION ... 71

A. GENERAL.. 71

B. TARGET CREATION.. 72

1. The System Matrix... 72

2. Target Transformations.. 74

C. ANIMATION... 75

D. DISPLAY ... 76

VIII. CULTURAL FEATURE INTEGRATION 82

A. EXTERNAL DATA FILE FORMAT 32

B. CONSTRUCTION OF THE ROAD POLYGONS 83

C. INTERNAL ROAD-POLYGON STORAGE 87

IX. FOG-M SIMULATOR USER'S GUIDE............................ 89.

A . O VERV IEW .. 89

B. STARTING THE SIMULATION 89

C. PRELAUNCH CONTROLS ... 91

1. The Prelaunch Display ... 91

2. Selecting the Launch Position ... 95

3. Selecting the Target Position .. 95

4. Launching the Missile ... 96

D. IN-FLIGHT CONTROLS .. 96

1. The In-Flight Display ... 96

2. Controlling the Camera ... 99

3. Controlling the Missile Flight ... 99

4. Designating and Rejecting Targets 101

X. CONCLUSIONS AND RECOMMENDATIONS 103

A . LIM IT ATION S .. 103

B. FUTURE RESEARCH AREAS .. 104

C. SUMMARY AND CONCLUSIONS 104

APPENDIX A - MODULE DESCRIPTIONS 106

APPENDIX B - SOURCE LISTINGS ... 128

LIST OF REFERENCES ... 233

INITIAL DISTRIBUTION LIST .. 235

7

Ii
.?-

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to a number of people who

supported this study. To our advisor, Dr. Michael Zyda, who provided us with

the knowledge and insight necessary to complete the project, and then stepped

back, allowing us the freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:

- MAJ Ron Ross, USA, for the original versions of the prelaunch &
make-database-e routines.

- LCDR Mike Oliver, USN, for enhancements to the tank image.

- Dr. Michael Zyda for the original version of the gammaramp routine.

- CAPT Gary W. Taylor, USMC, for the original version of the lightorient

routine.

- LCDR James Manley, USN, for the netV networking routines.

The authors would also like to note that the order of the names on the cover

is alphabetic, and has no other significance.

LT Streyle would like to personally thank his wife, Robin, for the tremendous

amount of patience and support provided during all phases of the project. By

taking care of the myriad of details involved in running a home with two children

and shuffling her and ,he family', schedule around the -imes I absoluteiy had o

work, she provided me the time necessary to fully pursue the project. I would

also like to thank my lovely daughter Sarah and son Timothy, who both let me

know when I had worked enough to "earn" another trip to the park to play.

8

A

~ ;....:.x..%.v~7 .-

CAPT Smith would like to thank his wife, Becky, and son, Timothy, for the .

generous amounts of time and pleasures foregone in their support of this work.Thanks also to my friend and co-author, who made this and many other projects ,

much easier and more enjoyable than they would otherwise have been.

4.

.J

I"
t • q

U-

I. INTRODUCTION

Flight simulation has been an important computer graphics application,

embracing a range of systems from a $32.00 program for a personal computer

[Ref. 11 to special purpose machines costing millions of dollars [Ref. 2]. The

capabilities of these systems are spread across a range nearly as wide as their

costs, with great variances in speed (frames displayed per second). realism.

flexibility, and area of flight. We present here a system that is relatively

inexpensive. vet still fast enough to present a real-time three-dimensional view of

digitized terrain. We built this system on a commercially available, high-

performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400

Turbo. The IRIS system was selected because of its local availability and its

performance capabilities. The flight simulator presented here does not use the

natural color and shape of individual terrain elements (in order to achieve real- .

time performance), but it is sufficiently realistic to provide the feeling of flight

and allow identification of the displayed terrain and targets.

.A . (;-M ,
ft.

1. Background

The project presented here was built in response to the United States

Army Combat Developments Experimentation Center's need to simulate the

10

'f,

nA

dvlrj RV U' T

operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3], but this missile

is also being considered for use by the United States Marine Corps [Ref. 41.

Simulation is necessary in order to test and evaluate the tactics, doctrine and

training requirements associated with the missile without the expense and danger

of actual firings during simulated combat field trials. The FOG-M is a generic

family of remotely-piloted, video-guided munitions, but for the purpose of this

prototype simulator, the weapons are all logically equivalent, and the entire

family is referred to as "the missile." In order to avoid security constraints, the

parameters and operational characteristics used in this work were not taken from

exact FOG-M specifications. The parameters and technical specifications are all

estimates, based on reasonableness and consistency with general, unclassified

descriptions of the FOG-M.

2. Description

The actual FOG-M missile is six inches in diameter, five and one-half feet

high, weighs eighty-three pounds, and costs about $20,000 [Ref. 4]. It has a video

camera mounted in its nose, which transmits a black-and-white picture back to

the operator's console (which consists of a television screen, a computer, and a

joystick) over the fiber-optic link. (The simulator display offers the user the choice

i .,-..':lr)ior .)r),iacK(-* t 1-wVfite: !oior :s Ihe ,ieiaiit :or -he iruiator despite the

operator view of the missile being black-and-white. The color compensates for

some of the loss in realism and identifiability inherent in a polygonal

representation of natural objects). Before launch, in normal operation, the missile

UNA 11

.

* V-
V

is given a general direction to a target and the altitude of the highest point within

its range. The simulator allows values in excess of FOG-M operational

capabilities for speed, range, and altitude above ground level (AGL), but the

default values of two hundred knots, ten kilometers, and one thousand meters are

characteristic of this type of missile. As soon as the missile is in position, it begins

transmitting video images. When launched, the missile rises to approximately

two hundred feet above the highest terrain point, and then levels off in horizontal

flight in the targeted direction. The operator controls the pan and tilt angle of

the camera with the joystick, and can dial in changes to the heading and altitude

of the missile. The operator also has the capability to 'Loom the camera's field of

view from eight degrees to fifty-five degrees, and to designate ("lock-on" to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators

provide sophisticated mock-ups of cockpits and controls and highly detailed out

the window views. By mounting the simulator on a moving platform, a true sense

of the physical feelings of acceleration and roll can be achieved. These systems

aiso cost milions of dollars.

One of the first decisions that must be made when designing a flight simulator

is, "For what purpose will the simulator be used?" The answer to this question p

C.

drives most of the design decisions that have to be made. Since the purpose of CC

12

7 .n ~ ,~. z W rW 3 ra rW -rw~ WK Wi mnan. Nun WW w- VWV - . im -v kM VV - VWrV -WL . -% -W- -%n PS'-r , xw- ,

this project is to provide a simulation of the FOG-M missile as viewed from its

operator's console, it is felt that the most important items to model are the

simulated video display of the terrain and the actual operator controls. The ,

terrain should appear realistic enough that its major features are recognizable to a

person familiar with the area. The controls should allow for the same

functionality as the actual console. The simulator must, of course, also provide a

feeling that the missile is in motion over the terrain. The effectiveness of the

feeling of motion provided by a flight simulator can be largely measured by two

criteria: the realism of the displayed scene and the update rate of the display.

1. Realism

Many factors contribute to the perceived realism of a displayed natural

scene. Early attempts to quantitatively measure realism consisted of counting the

number of "edges" or lines that a scene contained. This later gave way to

counting the number of "faces" or polygons in a scene. Since each polygon was

colored in a single shade, it was felt that each polygon represented a single "bit"

J.4
of information in the scene. Therefore, the more polygons the scene contained,

the more "realistic" it was felt to be [Ref. 5:pp. 27-28[.

The latest advances ;n computer rraphics have also made -his -iea-sire .)f

,rfVec-iven .)s o% ieTe. 'Xith -he inrrodu r on -)* ,Vsteiiis "hat .irp i e 11

polygons with textured patterns, a single polygon can now contain thousands of

"bits" of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured

13

ones. Early textures consisted of superimposing things such as mathematical

noise functions or stripes on the polygons. More recent advances have allowed the

texture to be derived from digital photographs of a similar scene. For example,

polygons representing a part of terrain covering by meadow could be filled with a

digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

Since most currently available graphics workstations do not support the

use of texture filled polygons, the use of texture was deemed to be outside the

scope of the current project. Rather, the project's work concentrated on

determining how realistically a scene could be rendered in real-time incorporating

only the use of lighting and shading models along with terrain hidden-surface

algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator's performance is the speed

at which it is capable of displaying successive frames in a scene. The faster the

update rate, the more continuous the motion appears. As a reference, standard

motion picture film is projected at a rate of twenty-four frames per second.

Although the IRIS workstation is capable of displaying up to sixty frames per

second. the amount of computation that must be done between successive frames

.n ,he -imuiation has *imitei the uipdate rate to an average of three trames per "

second. While this presents a less than smooth motion, it is felt to be adequate -

for the purposes of the prototype.

14

%':

INA If

C. ORGANIZATION

The above sections of this chapter have provided background on flight

simulation in general, and the missile whose flight is specifically being simulated.

Chapter II provides an overview of the hardware used in running the simulation.

The structure and content of the Defense Mapping Agency (DMA) Digital

Terrain Elevation Data (DTED) are discussed in Chapter III. Chapter IV

discusses the motivation behind and creation of the two-dimensional contour map

displays. Chapter V covers the storage and use of the DMA DTED to produce a

lighted and shaded three-dimensional polygonal terrain display. The mathematics

and process involved in simulating flight over the terrain are detailed in Chapter

VI. Chapter VII discusses the creation, insertion, animation, and designation of

targets. Chapter VIII covers the creation and drawing of cultural features.

Chapter IX contains a user's guide for operation of the FOG-M simulator.

Chapter X concludes with a discussion of limitations, future extensions and

research topics, and summarizes the research conducted. Narrative descriptions of

the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.

15

'op o V Ir . %

II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance

of this work lies in the speed with which it was developed, the display rate

achieved, and the realism and fidelity of the display in comparison to the cost of

the system that supports it. This project was technically feasible only because of

the capabilities and high performance of the IRIS (Integrated Raster Imaging

System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,

Incorporated. Others have also used the IRIS as a base on which to build flight

simulators [Ref. 6]. This low-cost ($50,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but

adds custom-built special purpose VLSI circuits and a pipelined design to provide

the graphics functions that are implemented in software on other comparably-

priced workstations. Conceptually, there three pipelined components in the IRIS

hardware: 'lie appiic ations /graphics processor, the Geometry Pipefine, and the

raster subsystem [Ref. 7:p. 1-1]. The applications/graphics processor is a

conventional Motorola MC68020 processor running at 16.7 MHz. This processor

runs the applications program(s) within a UNIX System V operating system.

16

___________ETHERNET to Vex and other IRIS

* 32 bit 18.7 MRz Motorola MC88020 CPU

* 6 Megabytes of CPU Memory

* 32 1024x768 bitplanes of Display Memory

0 Hardware matrix multiplier A floating point accelerator

* Hardware Gouraud shading, depth cueing A baclcface polygon removal

*12 pipelined custom VLSI Geometry Engines TM

* 16-bit Z-buffer for Hidden Surface Elimination

* 2 72 Megabyte Winchester Disk Driven

60 Hs non-interlaced 19" RGB high resolution monitor

S83 key up-down encoded keyboard

C3 button mouse

S32-button and S-dial valuator boxes

Unix System V

*Ethernet --o VAX's

IRIS Graphics Library

Features of the IRIS Turbo 2400 Graphics Workstation

Figure 2.1

17

Applications either issue graphics commands in immediate mode, in which case

they are sent through the Geometry Pipeline immediately as individual graphics

primitives, or compile graphics commands into graphical objects, in which case

they are sent through the Geometry Pipeline as a single geometric entity when

explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user's world

coordinates, performs specified matrix transformations on them using the matrix

multiplier and floating point accelerator built into the hardware, and then clips

and scales the transformed coordinates into screen coordinates. The raster

subsystem takes the screen coordinates output by the Geometry Pipeline and

updates the bitplanes (display memory) to contain the lines, polygons, or

characters specified by the input coordinates. The raster subsystem also performs

polygon fill, shading, depth-cueing, and hidden surface removal. A conventional

video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for

all of the IRIS system oftwarc. T'h-e IRIS ,raphic. Library. which provides both

high- and low-level graphics and utility commands, can be called in C,

FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the

18

pro forma choice for programming all parts of the FOG-M simulator. The IRIS

User's Guide [Ref. 7] breaks the Graphics Library commands into the following

twelve categories:

- Global State commands initialize the hardware and control global variables,
and are used mostly in FOG-M's init iris routine.

- Drawing Primitives are used throughout FOG-M. They create points, lines.
polygons, circles, arcs, and text strings.

- Coordinate Transformations specify mappings within and between user-
defined world coordinates and screen coordinates. These are used to move
targets and to simulate flight.

- Drawing Attribute commands specify textures and fonts. Although texture
would greatly improve the appearance of the terrain, the IRIS provided
textures are applied in the screen coordinate system, so they do not scale or
tilt to conform to the terrain, and produce a very artificial result.

- Display Mode and Color commands determine how the bitplanes are ulsed
and what colors appear on the screen. These include the commands that set
double-buffering, establish writemasks, and define the color table.

- Input/Output commands initialize and read the dials and mouse.

- Object Creation and Editing commands allow manipulation of complex
displays as a single entity. They are used in all FOG-M displays.

- Picking and Selecting commands are not used in FOG-M.

- Geometry Pipeline Feedback commands are not used in FOG-M.

- Curve and Surface commands draw complex curves and smooth surfaces.
Experiments with these produced more realistic terrain images, but not even
close to real-time, making flight animation impossible.

- Shading and Depth-cueing commands provide Gouraud shading of polygons
and intensities that vary with distance from the viewer.

- Teziport commands definc an area of the screen for text. They are not used
:n FOG-YI.

Also available on the system, and used by FOG-M, are the math library with

sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.

19

III. DIGITAL ELEVATION TERRAIN DATA

A. INTRODUCTION

Unlike other flight simulation systems, which may rely on manual creation of

the terrain [Ref. 8], the source data for the terrain in the FOG-M simulation is a

Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for

Fort Hunter-Liggett, California. The database is not Level 1 DTED, but rather a

DMA special product produced about 1980 at a higher resolution than normal

Level 1 DTED [Ref. 91. Level 1 DMA data contains elevation points spaced at

three arc-second intervals, or approximately every one hundred meters. The Fort

Hunter-Liggett special data contains points at twelve and one-half meter spacing,

which is eight times the resolution of Level 1 data.

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five

kilometers high, with 6400 data points per square kilometer. This area includes

most of Fort Hunter-Liggett plus some surrounding land, and is bounded by

latitudes 36" 05' 00"" I to the north) and 35) 30' 00"" isouth) and iongitudes

1210 04' 30" (east) and 1210 20" 30" (west). In terms of Universal Transverse

Mercator (UTM) coordinates, the area has easting (X) of I0SFQ41000 to

10SFQ77000 and northing (Y) of 10SFQ60000 to 10SFQ95000. The database

20

.11 o I? J"-

appears to be based on DMA forty foot interval contour map products, because

peaks tend to have flattened tops. This was confirmed both by a comparison of

surveyed instrumentation sites on or near peaks with their digital terrain values

[Ref. 10: pp. 1-2], and by a Bezier surface patch image of the data created locally.

C. STRUCTURE

The data is stored in an unformatted sequential file that is organized as a

stream of integers. Each integer (sixteen bits) represents both the vegetation code

and bald terrain elevation in feet at one sampling point, as illustrated in Figure

3.1 below.

Veg. Code Bald Terrain Elevation

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation, allowing a range

:rom ,ero o S19 feet. -iinou~i1 ne 'i -nest :point n he iar abase is :3744 "eeT.

The three high-order (leftmost) bits specify one of eight vegetation codes, which

are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one

21

TABLE 3.1 DTED VEGETATION CODES

Code L Description

0 Less than one meter
SI One to four meters

2 Four to eight meters
3 Eight to twelve meters
4 Twelve to twenty meters

5 Greater than twenty meters
6 No data available
7 Unused

square kilometer at a time, beginning with the lower left one kilometer grid square

(41.60), proceeding up the column to the tipper left grid square (41.94), then

doing the next column from bottom to top (42,60 to 42,94) and so on; the upper

right one kilometer grid square (76,94) is the last one written. Within each one

kilometer grid square, the individual data points are written in the same pattern,

beginning with the lower left, doing each column from bottom to top, and doing

the columns from left to right. This file layout is summarized in Figure 3.2. The

position in the file of the elevation for a point expressed in five digit local UTM X

and Y coordinates is found as shown in Equation 3.1.

position = 35 * (integer(X/1000) - 41) + (integer(Y/1000) - 59) (3.1)

D. LOCATION

The complete DTED file occupies 16,128,000 bytes of storage. Due to a local

shortage of available disk space, this file must permanently reside on the UNIX

VAX 11/785 system rather than on the IRIS system. The FOG-M simulator

22

94 fi ... ~VM

6.1

* 0

62ur 3.2 DY4 Fie ayu

* a23

presently operates on a ten kilometer square extract from this database. A

program on the VAX called make-database-e allows interactive specification

of the area and resolution desired, and produces an extract. This extract is sent

over the Ethernet to the IRIS to serve as the input for a FOG-M run. However, if

the data is sent directly, it is received with each pair of bytes swapped, so another

program, swapdma, is run on the VAX before transmittal. This program swaps

the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.

24,

S .

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL
'i

The two-dimensional representation of the terrain was begun as the first

graphics portion of the system, in order to gain familiarity with the IRIS graphics

workstation and the Defense Mapping Agency (DMA) digital terrain elevation

data (DTED). Contour maps are the traditional approach to two-dimensional

terrain portrayal. and thus were the basis for the two-dimensional images of the

terrain generated here (Figure 4.1). Although these two-dimensional images are

not trie rontour maps. -hey are still referred to as ;uch in this study because of %

their close relation and common origin. The algorithms for determining and

drawing the forty foot contour lines found on a normal contour map seemed non-

trivial, so a simpler alternative was chosen. Each elevation datum is represented

by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code. and its intensity (or

,f3#lLl'()\- .r ,*~'lt' i onT. .,e Intent a" s) 'se .rePn :or riies "vit l. %.P etation

and brown for tiles without vegetation. However, the DTED vegetation codes

lump together both "no vegetation" and "vegetation less than one meter high."

Brown iles thus include both unvegetated areas (e.g. rock slabs, areas above the

25 %

.7

~Y1M L1V ~ IJU LrV WY WY WN WY WY ~ Lf U WY '~/U ~PW itY .~U JU 1r ~ ~ . -~. .~ Uw~....... .. ~

9

I

p

.9

9.

.3 i

m
.9.4

.3

5.4

0

5.40

.3

* p.
.9.4U)

l~*

0
5.4

.9.4

'9

9.

26

.9.

9.

~UN~VUWVUWUWWW~W~W dNWV W'M W WV W V WV V WVV VV VWV- uwU-w R -ssn *IWwUUpu*WJU .

treeline) and grasslands or meadows. This is significant in the Fort Hunter-
p

Liggett area, because most of the valleys are covered in grass, and all of the high

ground is below the treeline. The result is a mar, with brown valleys and green

ridgelines. While this was readily accepted as natural by most viewers, pilots

with a background in low-level flight found it awkward, and contrary to their

expectations (from flight charts) of green valleys and brown mountains. While

this might be significant in other flight simulation applications (particularly those

designed for pilots), the initial representation was deemed most appropriate for .,

the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.

High intensity (light) colors were used for higher elevations, and low intensity

(dark) colors for lower elevations. This was accepted as natural by almost all

viewers. The optimum number of intensities (shadings) to use in the map was
4.

experimentally determined to be sixteen. A small power of two was desirable due

to the nature of the writemasks used to improve display speed. A large number of

colors provides greater elevation definition and prevents large masses of the same

color in areas where elevations change gradually. However. having too many

,'oiors !lesrrovs the 'i-ntour-rnan -ffec-. iince idiacenr .'-oi,)r are -;o " h "rit 1o

Dound~ary :.,in tn~i.}a ')etween :heru. Zigh r hiatie- ,:o ac " A r,, a , r)v

were used initially. The shift to sixteen shades of each produces a better looking

map. Due to the RGB (red, green, blue) nature of color creation on the IRIS, the

greens were still barely differentiable at thirty-two shades, but the browns (a

27

combination of mostly red, some green, and, in some shades, a trace of blue)

began to blend together.

To determine the elevations at which color shades should change (in order to

use the full range of shades), the maximum and minimum elevations of the

terrain section in use must be known. Rather than preprocess the data before each

run, these values are coded as constants in a header file. The equation for which

color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

elevation-MIN
indez = base indez + * # of shades (4.1)

-MAX-MIN -

Therefore, the fifteen points at which the shade changes are precalculated and

stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each

tile, and drawing it as a filled square. However, an increase in speed can be gained

by exploiting the structure of the data and the line drawing hardware of the IRIS.

7!ie lata is -;%il processed a point at a time within each one kiometer ,olumn.

but no drawing is done until an elevation/shading breakpoint is reached. Then a

single line of one tile's width is drawn to color all tiles since the previous elevation

pp

breakpoint.

28

,V

C. WRITEMASKS b

A more significant speed improvement (on the order of fifty per cent more

frames per second) was achieved with writemasks. Writemasks are a relatively

low-level hardware feature that can be used for many purposes. In the FOG-M

simulator, they are used to prevent the contour map from being overwritten.

This allows the map to be drawn only once into the bitplanes, and have it remain

on the screen without being re-drawn during each frame update. In order to

under tand how writemasks work, one must understand the layout and use of the

IRIS's color table and bitplanes.

1. Color Table

The color table associates a particular binary number with a color.

When the display system asks what color some number is, the color table replies

with the intensities for the red, green and blue color guns that will produce the

color defined for the input number. This input number is referred to as a

colorindez. Thus the color displayed on the screen depends on the colorindex

associated with a given pixel, and the color associated with that colorindex in the

color table. Table 4.1 gives the color table entries that are the defaults on the

IRIS workstation.

2. Bitplanes

The colorindex that is associated with each pixel is stored in the display

memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit

29

io

TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS

Colorindex_Color
Decimal Binary

Black 0 0000000000000000
Red 1 0000000000000001
Green 2 0000000000000010
Yellow 3 0000000000000011
Blue 4 0000000000000100
Magenta 5 0000000000000101
Cyan 6 0000000000000110
White 7 0000000000000111

deep. When used in double-buffer mode (as in FOG-M), the IRIS uses sixteen

bitplanes (numbered 0 to 15) for each buffer. The frontbuffer is the one whose

binary contents define the image being displayed. While the frontbuffer is being

displayed, the next image is created by issuing drawing commands which affect

only the backbuffer. Once a new image is completed in the backbuffer, the

buffers are 8wapped, so the backbuffer becomes the frontbuffer and is displayed.

The old frontbuffer becomes the backbuffer, and is then available for update.

3. Writemask Example

Consider the pixel at location (0,0) - the lower left corner of the screen.

The colorindex of that pixel is determined by sixteen bits: one from the lower left

corner of each bitpiane. The display system reads those sixteen bits as a binary

number (the colorindex), and uses the color table to determine what color to

make that pixel. For example, using the default colors defined in Table 4.1 above,

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower-

30

left corners, since the value of the sixteen bit binary number 00000000000000002 is e

zero. If the current color is set to magenta (color five, whose binary value has ones

in bits zero and two) and a drawing command is issued, bitplanes zero and two
%"

ate set to one, and all other bitplanes are set to zero, for every pixel covered by

the drawing command. These pixels will now be displayed as magenta, because

the colorindex constructed from the sixteen bitplanes will be 00000000000001012

(510), and the color table tells the display system that color 510 is magenta.

The previous example showed that a drawing command works by %

placing ones in certain bitplanes, and zeroes in all of the rest, with the current

color specifying which bitplanes get which. A writemask tells each bitplane to

either allow or ignore the changes a drawing command says to make. In normal

double-buffered usage, the writemask is 1111111111111111 , meaning all sixteen

bitplanes should allow updates. Now suppose there is an image on the screen

which uses just the default eight colors. Bitplanes three through fifteen are all

zeroes, because all of the colors have colorindices with three or less binary digits,

which will be in bitplanes zero, one, and two. If the writemask is changed to

11111111111110002 after drawing the image, those lower three bitplanes are

*'frozen" and vill not be -'langed Ib any ,irawing ,eommand. Setting -he color -o

biack and clearing the screen wtil not change anything. The upper bitpianes wil

be set to all zeroes, which they already were. The lower three bitplanes will be %

told to reset to zero, but will not do it because they are protected by the %

writemask.

31"

~ ~ *~ 5 ** ' 'S' 'S 'S 'S* U 5 ~ S S. .

'LIVVTV'JV.. Vk 4'W A ' h W

Now suppose you want to draw a grey line on top of the image. The line

only needs one color, so it can be drawn in one bitplane. (Two bitplanes will allow

three more colors on top of the map, three bitplanes allow seven, etc.) The first

"free" bitplane is number three. Turning on a bit in this plane (and not turning

on any bits in higher planes) requires a colorindex in the range 10002 to 11112 (810

to 1510). Defining color eight in the color table as grey, making color eight the

current color, and then drawing the line is sufficient to get the image into the

bitplanes, but the display will not show the desired effect. If the image

underneath the line is black (i.e. bitplanes zero through two are all zeroes form

some pixels), the line will appear grey. as intended, for those pixels. However, if

the image underneath the line is red (i.e. the lower bitplanes contain 001 the

composite colorindex retrieved by the display system is 00000000000010012 or 910)

and since color nine is not defined in the color table, it appears as black. Thus

every colorindex that has bit three (because the line is in bitplane 3) set to one

(i.e. colorindices 10002 to 11112, or 810 to 1510) must be defined as grey in order to

produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-.I is itored .n the irst ix itplanes

(numbered 0 Lhrough 5) of ooth buffers, whichi means sixty-i our coiors are

available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are

shades of green, and twenty-four are unused. The writemask defined as

SAVEMAP (C0 16 or 00000000110000002) allows things to be drawn on top of the

32

kn'

map in bitplanes six and seven. Colorindices 64 through 127 are all defined as

blue in the color table, so anything drawn in bitplane six appears on top of the

map in blue. Similarly, bitplane seven is used for red, with colorindices 128

through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not

having to re-draw the map each time the screen is updated. The cost is the use of

many more indices in the color table, which limits the number of colors available

for use on top of the map. For our simulation system, with only two colors

needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.

J

33

, ' . * -.- . , - o. . .. , ., , - . • . ,. -. *,

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the

terrain using parametric bi-cubic surface patches. A surface patch is simply a

smooth curved surface fitted to a set of data points. A discussion of the theory

and use of surface patches can be found in the IRIS User's Guide [Ref. 7:sec. 11-3]

and Hearn and Baker [Ref. 11:pp. 193-2051. It was quickly determined that it

would not be possible to use surface patches to represent the terrain and still

maintain a real-time update of the terrain during flight.

An alternate method of displaying a three-dimensional object is through

the use of a set of planar polygon surfaces that join at common edges to form the

terrain object. This method has the advantage of being much simpler, and

therefore faster, to generate and display. For this reason it was chosen for use in

the project.

Figure 5.1 shows -he method of constrlting .he terrain surr'ace as a set

of triangles. The term gridsquare is used in the remainder of the chapter to refer

to a set of two triangles with a common hypotenuse that form a square of the

terrain grid.

34

North

A
"GRID-
SQUARE"

East

View from above looking down on the terrain.

-Terrain elevation points -ire ::onnec,.e(:
to form triangular polygons with common
edges.

Figure 5.1 Polygonal Terrain Construction

35

2. Resolution

The special DMA data file used in this project contains elevation data

that is spaced at a twelve and one-half meter interval. One of the first questions

which had to be answered concerning the three-dimensional portrayal of this data

was, "In how fine a resolution can the data be displayed, while still allowing for a

sufficient frame update speed?" Early test runs showed that using the full twelve

and one-half meter resolution would be much too slow, although it provided an

excellent representation of the terrain. An adequate frame update rate

(approximately three to four frames per second) was achieved with a seventy-five

meter resolution or every sixth data point. Since this was an early test, displaying

terrain without any targets or cultural features, a one hundred meter resolution

was decided upon for use in the remainder of the project. This allowed for an

adequate "cushion" of processing time to complete the additional computations

that would be needed in the final product, while still providing an adequate

degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that

"he hills did not 'ive an appropriate appearance of height. Although this was a

s uojecive ;udgement, it was shared by most people who viewed :he dispiay and

compared it to aerial photographs of the area. Because of this, it was decided to

scale the elevations of the displayed points upward Two approaches, linear

scaling and exponential scaling, were examined.

36

", ,'''202''t2'' _ ,;, ,' ,*I' 3j' ,,,*, ' -' ./ /' ,p. ,' ' .' ' .-. . ..- -, • -

In the linear scaling approach, each elevation point wvas simply %

multiplied by a scale factor as shown in Equation 5.1.

Eleview = (* Ple'oid (5.1)

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was

necessary to achieve the desired effect.

In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.

Ele 7) Ele,)O (5.2) 5

This approach has the effect of exaggerating the higher elevations to a greater

degree than the lower ones. It was chosen as the approach for use in the project
4.

based on subjective observations of the displays produced by the two methods. .5

The scaling factor, a, was chosen as 1.05. Using this factor produces the

equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the

minimum elevation contained in our area of interest.

Subsequent to the decision to use an exaggerated elevation scale,

research results were discovered which supported it. In a study conducted by the

U.S. Army Research Institute for the Behavioral and Social Sciences, observers

were asked -o :)ick a ,ompurer .enerared ine ,irawin,, that :iarched i .ii.

terrain. The line drawings had different exaggerations of the vertical (elevation) -

4-

scale. The overall ratios chosen by the four observers ranged from 1.25:1 to

37 ."

r

u"
'%

1.50:1. The drawings presented to the observers had exaggeration ratios ranging

from 1:1 to 1.75:1. [Ref. 121

4. Shading and Texturing

As explained above, each one hundred meter square of the terrain, a

"gridsquare," is represented by two triangles in three-space that share a common

diagonal edge. The process of applying colors to these polygons, shading, was the

next area of research in the project.

a. Elevation Based Shading

Three different shading algorithms were investigated. The first was

a simple algorithm where the shade of a polygon was a function of its elevation.

Higher elevations are shaded in lighter shades of green while lower elevations

receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

elev- Min Elev
color-index = base-index + - * #_of shades (5.3)

MaxElev - MinElev

The darkest green is stored in the base index color map location and the lightest

green in the baseindex + # of shades location. Although this approach works

well for two-dimensional contour maps (see Chapter IV). and is currently ulsed in

another "-,ow ost" simiilaToI 'Ref. 31. :t did nor appear to present a realistic -.,iew

of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.

38

Pr

b. Lambert's Cosine Law Shading

The second method of determining the shade ft r a polygon involved

the use of a point light source and Lambert's cosine law [Ref. 11:p. 278]. Let N

be a unit normal vector to the polygon, and f be a unit vector in the direction of

the light source. The angle between N and E, 4 , is the angle of incidence.

Lambert's Law states that the intensity of the light reflected from the polygon is

proportional to cos -t (Equation 5.4).

I a Cos (5.4)

In order to use this law, the normal vector (N), the light source vector (f), and

the angie between them ((D) must be k-nown. 'N can :.e determnined by taking -,he

cross product of V1 and 2, where vC. is a unit vector in the direction from vertex

B to vertex C of the polygon, and v2 is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).

N vi1 v 2 (5.5)

With IV and Lavailable, cos Pcan be computed as their dot product (Equation

Since the intensity is proportional to cos 4P, the appropriate color index to use can

be computed as A

color-index min-index (# shades *cos (D) (5.8) .

r

Y Light Source

/

A/
L

I
I
I
Ic
I /

v vi

///

B

z

Figure 5.2 Lambert's Cosine Law

40

MMUM ,. -,rPPFPPL t W,4WWW-VWVWV1P-. WE :WWN WIW IM AW Xr W" XT W IV- F .1. W

where min index is the color index of the lowest intensity green and

min index + # _shades is the color index of the highest intensity green.

c. Gouraud Shading

The final shading model investigated involved the use of Gouraud

shading. The purpose of Gouraud shading is to provide a continuous transition of

shades across a polygon so that the shades at the edges of adjoining polygons

match. This in effect eliminates the visible boundary between polygons and

provides a smooth continuous surface. The Gouraud algorithm involves

interpolating to determine the intensity to be used at each pixel along a scan line.

and is illustrated in Figure 5.3 as reproduced from Hearn and Baker 'Ref. IL:p

2901. To use the algorithm. intensity values for each vertex of the polygon must

be known. In the project's implementation, the intensity at each vertex was

computed as the average of the intensity values for all the polygons meeting at

that vertex, where the individual polygon's intensity values were calculated using

Lambert's cosine law.

The use of this model posed two problems. First. even though the

IRIS supports Gouraud shading in its graphics library, its use increased the time

-e,wepn frames -o an 'inacceptable -ate 'aoproxlmarev)ne in(, mre-ia~f "o "hro

well, resulting in terrain displays that lacked the necessary position cues to detect

motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.

41

",I

3

1

2

For interpolated shading, the intensity value

at point 4 is determined from intensity values

at points 1 and 2, intensity at point 6 is

determined from values at points 2 and 3. and

~4~flL~1 itne~Tr ocilts 3ucn is 3..,flg

.ne Scan -ne are interpoiatea Detween tne

values at points 4 and 6.

Figure 5.3 The Gouraud Shading Algorithm

42

I.

d. Adding Texture

Lambert's cosine law was chosen as the shading model for use in the

project, providing the most realistic display within the allowed computation time

constraints. However, a problem with its use is that the flat valleys, with little

variance in the surface normals of their polygons, produce large geographic areas

having a near constant shade. This results in a lack of motion cues in these areas

similar to that experienced with the Gouraud shading model. To remedy this

situation, a simple artificial texture, in the form of a checker board, was imposed

on the terrain. The checker board effect was implemented as follows. First, the

shades for the two triangles in each gridsquare were averaged, and this average

shade was used for both of them. This of course causes the visible boundary

between the triangles to disappear leaving a square shaded in a single color.

Second, two slightly offset color ramps were used with adjacent grid squares using

different ramps to compute their shades. One ramp is composed of green

intensities ranging from 255 to 50, while the other uses intensities ranging from

245 to 40. * This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

*A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence

of the color green.

43%

A. J& * j,?'~

,ru .,._ LMUU Wu &I .W .WU=; UU ;UVUV ; . , KN P. ¢ U J = m .,; .,m P .mP .m lr..WI~U W~ I~ W UV V ; V '.; a .,;- .. - m . , ~. V ,-~. ~. : y -.y;A

B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to

display the terrain. The first is a five-dimensional array. savetriangle, that stores

the values of the coordinates for each triangle making up the terrain structure.

The second is a two-dimensional array savecolor that stores the color map indices

for each of the terrain's grid squares. The purpose and range of each of

savetriangle's indices is shown in Table 5.1. For example,

savetriangle[3][5][1][1][2] would contain the value of the Y coordinate (fifth

dimension = 2), of the second vertex (fourth dimension = 1), of the northern

triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SA VETRIANGLE ARRAY

Index Range Purpose

Start End P
First 0 98 Grid square index in the Z direction. 0

is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

Third 0 1 Triangle identifier within a grid square.
0 is the southern triangle. I is the
northern.

Fourth 0 Vertex number of the triangle. 0 is the
first vertex, 2 is the last.

Fifth 0 2 Coordinate identifier of the vertex. 0 is

the X coordinate, 1 the Y coordinate
and 2 the Z coordinate.

44

4.,

-. . -..

Table 5.2 lists the purpose and ranges of each of savecolor's indices. For

example, savecolor[30][1O] contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.

TABLE 5.2 LAYOUT OF THE SA VECOLOR ARRAY

Dimension Index Range Purpose

Start End

First 0 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0
is the western most, 98 is the eastern
most.

These two arrays contain all the information necessary to construct an image

of the terrain. The following chapter provides the details of using their data to

create a real-time, updated image of the terrain as it is seen from the FOG-M's

camera.

45
€ ,r: " , ", " ", " '- . ;, -:-: :', ,. - --",- ' -9. x -. . , ;. 2"2-;-;' " - :- -;-" -:. -- : : -: :. -:.;-:- .- :.. :.'C

VI. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-

dimensional terrain from the provided elevation data. This chapter's purpose is

to explain the details of displaying this terrain in real time as it is seen through

the missile's camera.

The high level pseudocode for the main program's terrain display loop is

shown in Figire 6.1. Chapter VII explains the details of step two. The details of

steps one and six are explained in Appendix B under the procedures readcontrols

(for step one) and edit nauboz and edit indboz (for step two). The remainder of

this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE'S POSITION

Determining the missile's new position can be broken into two cases:

[1] the missile is under operator control and its new position is a function of the
old position. the commanded direction of flight, the commanded altitude.
and -he commanded speed.

12] :he missile is locked onto a target and its new position is a function of its oid
position, the position of the desired target, and the commanded speed. v

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile's flight. This means that the missile is able to

46

% % A.- A

• ". .¢ 4'.ff 2 *4g ZC,', ;-%,-"',2,.I-'e'. " -. .*" ." v.'.' ",-'' .: .". , , "'2. , , .2V .,""." ',,".".

.

.

While missile is flying do

1) Read the values from the operator's controls

2) Determine new positions for all the targets

3) Determine the new position for the missile

4) Determine the position of where the camera is looking

5) Display the terrain as seen by the camera

6) Update the operator's control indicators

End while

Figure 6.1 Main Display Loop Pseudocode

instantaneously change heading, speed, and altitude. This assumption was made

only because of development time constraints. It is felt that the computations

necessary to more realistically model the dynamics of the flight can be done

without a serious degradation of the simulator's performance.

1. Case 1 -Operator Control

Under this case the missile's X, Y, and Z coordinates are computed as

-,hOWTI ' IOWV.

A Dist Speed*A Time (6.1)

47

k~v'Y . . " '." " • .'. ,L ."." - .- ... r. '. .- " ,m- r'- ,
"

q'. " , " ." "€ " . ." ' " . 2'".- -"." ".' ". "-' " . '. .,'.'-

Where

- ADist is the distance traveled over the ground since the last position was
calculated.

- Speed is the missile's speed in feet per second and

- A Time is the elapsed time since the last position was calculated

Having calculated the distance the missile must move during this frame the

missile's new coordinates (MX,MY,MZ) can be calculated as

MXneW = MXod+[cos(Diremd) * ADist] (6.2)

Mmfz = MZol d - (sin (Dir cd) *A Distj (6.3)

MY11w = (Altcrd) (6.4)

Where

- Dir cmd is the commanded heading in radians ,'-

- Altemd is the commanded altitude in feet

- a is the altitude scaling factor (see Chapter V, Section A.3).

2. Case 2 - Locked Onto a Target

In the case where the missile is locked onto a target, the missile's new

position is computed as follows. ADist is computed as in Equation 6.1. Next the

missile's heading is computed so as to steer it directly toward the target's

position:

Dirt iretan2(- TZ - MZ.' TX -AIX')

48

~4*4* '44' 444 4 *4 *%4 * % *(,~./ ~ . .

Where

- Dirt is the direction from the missile's position to the target's position

- TX is the X coordinate of the target's position

- TZ is the Z coordinate of the targets position

- MX is the X coordinate of the missile's position

- MZ is the Z coordinate of the missile's position

- arctan2(a,b) is a function which returns the arctan -) in the range
b

0 to 211, based on the sign of a and b.

Once Dirt is known, the missile's new X and Z coordinates can be calculated as

MX ,. = MXoId +[cos(Dirit) *ADistI (6.6)

MZ~ew =MZ old- [sin (Dirt,,) *A Dist] (6.7)

Next the missile's altitude (MY) is adjusted a proportion of the total altitude

difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

Oistto =-/(DTX-MX)Z+(TZ-MZ)Z (6.8)

Mynew=Myo [- TY) * ADist] (6.9)
Dist t

Where

Dist~qt is the distance to the target measured along a horizontal plane.

MY and TY are the Y (altitude) coordinates of the missile and target,
respectively.

49

n N . n N N

C. DETERMINING THE LINE OF SIGHT

Once the new position of the missile has been calculated, the next step in

displaying the terrain is to determine another point along the camera's line of

sight: the look-at position. This calculation is also broken into two cases based-

on whether the missile is or is not locked onto a target (see Figure 6.2).

The case where the missile is locked on is trivial, the look-at position is

simply set to the coordinates of the locked-on target.

LX=TX (6.10)

LY=TY (6.11)

LZ= TZ (6.12)

Where LX, L Y, and LZ are the X, Y, and Z coordinates of the look-at position.

This centers the target in the displayed three-dimensional scene.

When the missile is not locked onto a target, the camera's look-at position is

a function of the missile's position, the missile's heading, and the pan and tilt

angles of the camera. It is determined as follows

Dirlook = Headm.i +Pan (6.13)

LX MX+[cos(Dirook) *Ditook] (6.14)

LZ V Z- in (Dir ,) "Disto t6.15)

L Y = MY+[Dist took *tan(Tilt)] (6.16)

50

'S

Case 1 -Missile Locked on a Target

DIR =Heading + Pan Dist L0ook

II.look do........ --- --

(LXIr LY LZ

~(LX, LY, LZ)

Dist Loo~ Dist *tan(Tilt)

k
Look

Overhead View Side View

Case 2 - Missile Not Locked on Target

Figure 6.2 Determining the Camera's Look-at Position

51

Where

- Dirloo, is the direction the camera is looking

- Pan is the pan angle of the camera

- Tilt is the ilt angle of the camera

- Dist loo is an arbitrary distance over the ground that the camera looks ahead.
Since the only purpose of LX, L Y, and LZ is to determine a point along the
&amera's line of sight, any positive number will be acceptable. A value of five
kilometers is currently used.

D. DISPLAYING THE SCENE

Once a line of sight has been determined, the next steps are to apply the r .

appropriate viewing transformations, draw the filled polygons that make up the

terrain, and add other items to the scene such as targets and roads.

1. Viewing Transformations

It is possible to project a three-dimensional object onto a two

dimensional viewing surface in two basic ways. In one method, the parallel

projection all the points of the object are projected along parallel lines. This has

the advantage of preserving the relative dimensions and angles within an object

and is used when accurate views of various sides of an object are needed such as .'

in architectural drawings. In the other method, the perspective projection, all

-he points of an object are projected along lines that converge at a single noint

cailed the Center of Projection. In this method, relative dimensions are aot
I'

preserved. Lines closer to the projection plane appear larger than those that are

more distant. The perspective projection provides a view of three-dimensional

52 ",,

* .. l

objects that is more realistic, similar to that provided by the human eye or a

camera. Both these projections are illustrated in Figure 6.3. [Ref. ll:pp. 235-2411

Because of its more realistic presentation of the scene. a perspective

projection was used for the project's three-dimensional scenes. The IRIS's

graphics library provides a procedure called perspective which constructs the

necessary transformation matrix ' to obtain a perspective projection. The matrix

is defined as [Ref. 7:p. C-21

Per.qpectie (fovy.aspet .near.far) =

cot(fovy)

dspect
0 cotfovy 0 0 (6.17)

2

0 far + near

far- near

2×xf ar x near

far- near

Where

fovy is the field of view angle

,t.sDert is -he tspe ct rati~o. "lrilo ,)t* -he- .IISTM I({I . "ie..,wer -efs 'n 'hle

'iirf,'-ion "o the iisrance ne siees in "hte '. .iiroc-,ion. [t '.. 4eneraily -wr -o)e
the same as the ratio of the width to the height o0 the viewport.

near and far are the distances from the viewer to the near and far clipping

planes.

*A knowledge of using transformation matrices to perform graphical operations is assumed
here. Hearn and Baker IRef. ll:chaps. 11-121 provides excellent coverage of the subject.

53

N2 ". Na x near

o 0K- A

Center
of

Projection

P2 P2

.....2 .

...P..

Parallel..... Pr.et.n.erpetie .roecio

...... ..P.o..on

Pe.pct v Pl..an...............
Proj....... ection.......

.

r.........Cente

........ *..

*. . - ~

P,"..

The perspective projection forms a view frustum as shown in Figure 6.4.

Any object-within the frustum between the near and far clipping planes will be

displayed in the scene. Objects outside this view volume are clipped and

discarded.

Next, the frustum for:ied by the perspective projection must be

positioned along the camera's line of sight. This is accomplished by another

transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

%o

- V , V, and V : the X, Y, and Z coordinates of the center of projection.

- P, P , and P: the X, Y, and.Z coordinates of the look-at position.

- Twist, a right handed rotation of the scene about the line of sight.

The transformation matrix formed by lookat is actually the result of multiplying %

four other transformation matrices [Ref. 7:p. C-21

Lookat(V, V, V,Pz,Py,P ,Twist) = (6.18)
Trans(- V,- V- V) x Rot (6) x Rot (0) x Rot.(- Twist)

1 0 0 0

0 1 0 0
Where Trans(- V,.- V - V= 0 0 1 (6.19)

55

a,.!'

y

(0,0, -near)

...

..

......

.

Clippi..ng.

ar.p~ n ..ne .. v e
an aspect.

F i g u r e... .. 6 .4 T h.Pe s p c t v e.om a n

................ 56..
.

cos(e) 0 -sin(e) 0

Roto(E) 0 1 0 0 (6.20)
sin(e) 0 cos(E) 0

0 0 0 1

1 0 0 01

0 cos(€) sin(C) 0

0 -sin(C) cos(4) 0

0 0 0 1

cos(-Twist) sin(-Twist) 0 0

-sin(- Twist) cos(-Twist) 0 0
Rot 2(- Twit) = 0 0 10 (6.22)

0 0 0 1

A ndP E)' + (in- P _ V) (6.23)

VPv

A = sin - y (6.24)

('P: - . "-P, -PF, "-P -V

As can be seen, this transformation simply translates the center of projection to

the origin, then rotates the view frustum about X and Y axes to align with the

line of sight. Finally the twist angle is added with a rotation about the Z axis.

57

'I

In the flight simulation, the twist angle is analogous to the "roll" angle of an

aircraft or missile. A value of zero is currently used, but other values could be

used if the roll of the missile during flight was added to the model.

2. Determining Which Polygons to Draw

After the correct viewing transformations have been applied, the

polygons that comprise the scene must be drawn. Although the IRIS will "clip"

polygons which lie outside the perspective projection's view volume, an increase in

frame update speed can be achieved by not attempting to draw those that

obviously lie outside. This is discussed further in the following section on

simulator performance.

The term view-bound is used to describe a north-south oriented

bounding box around those parts of the scene that are sent to the graphics

pipeline. The view-bound is described by the index of the northernmost,

southernmost, easternmost, and westernmost gridsquare to be drawn. It is

calculated by extending (if necessary) the line-of-sight vector until it intersects the

horizontal plane Y = Min elev, where Min elev is the minimum elevation value

of the terrain. The view-bound is calculated as being 20 gridsquares to the

north. south. east. and west of this intersection point. If the missile's X and Z

coordinates are nor itwitin the calculated ,iew -bound, .he)onunts are e:xtended -o

include them. Figure 6.5 illustrates this construction.

58

Missile Position (MX, MY, MZ)

Look-at Position (LX, LY, LZ)

West Line of Sight

View-bound

View-bound _,.2. 0.

1 20
South
View-
bou d ,~f~ 20

-Bounds extended
to include missile position

Horizontal Plane: Y Min _elevation

East View-bound

e

1) Line of sight vector is extended down
to intersect the minimum elevation plane.

2) View bound extends 20 gridsquares north.
south1, ea~t and west of t.he _ntersection.

3) Bound is extended, if necessary to *
include the missile's position.

Figure 8.5 Construction of the View-bound

3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden

surfaces from the scene. A hidden surface is simply a part of the scene that is

obscured by some object in the foreground, such as a valley that it hidden behind

a large hill.

The IRIS supports a method in hardware called Z-Buffering. In this

method, a buffer is maintained for each pixel position on the monitor and

contains the "depth" (transformed Z coordinate) of the part of the scene that

generated that pixel. Before drawing is started, the buffer is initialized to the

maximum depth value (the value of the far clipping plane) for each pixel position.

Before each new pixel is drawn, its depth is compared to the depth stored in the

buffer. If its depth is greater than the stored depth it is not drawn. If it is less

than the stored depth, it is drawn and its depth value replaces the value in the

buffer. This method could not be used in the project for two reasons. First, with

comparisons having to be made on a pixel-by-pixel basis, it slows down the frame

update rate to an unacceptable level. Second, the IRIS does not allow the use of

Z-buffering and double-buffering at the same time. Double-buffering is necessary

to implement the animation of the scenes.

Anotrher ,' niori :l et:) 4i :iidei in - inlac- removai .s it, :,iv a , tr

algorithm. It derives its name from the way a painter would draw a scene on

canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm

60

in computer graphics means drawing the scene in an ordered fashion, such that

the most distant objects from the viewer are drawn first and those closest to the

viewer are drawn last. Since the gridsquares comprising the terrain form well

defined rows and columns, an efficient implementation of this algorithm is

possible. That implementation is described below.

The implementation can be thought of on a conceptual level as follows.

A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-

scanline. Gridsquares within the view-bound are drawn as they are intersected by

this scanline. The scanline is first positioned along the line-of-si ,ht vector so that

it intersects the far corner gridsquare of the view-bound. After all the gridsquares

along the scanline have been drawn, it is moved one gridsquare closer to the view

position, along the line-of-sight vector, and the process is repeated. This

continues until all the gridsquares within the view-bound have been drawn.

Figure 6.6 illustrates this process.

From Figure 6.6, notice that each scanline passes through three

gridsquares in a column, shifts over a column, then passes through three

gridsquares in the next column. The number of gridsquares drawn in a column

(or row) before advancing to the next column (or row) can be determined bv

-,HIPipit % 0 ;MV, lt t .h , 'canine . .iire i r iori. f -"I :i ag xr It I(1' -"ie

tangent is greater than 1.0, scanlines will run and shift along columns of

gridsquares If it is less than 1 0, scanlines will run and shift along rows of

gridsquares. The term threshold is used in the remainder of the algorithm to

61

" ','.," €'. ',,'',"'." "r "- "'- , ". " -'.- .- .." ., " ",--,-'. .-. .- .. "....-..........-...'-'-. -."..",..-.-....'.'.- '.

The Sccnnliee

,T r

Las L L - --- -

3c191 41
3L20n5e

321 63

33213

321 271

372

Drawing Order of the Gridsquares From

the First 5 Scanlines

Figure 6.6 The Scanline Hidden Surface Algorithm

62

describe the number of gridsquares drawn before a shift of column (or row) takes

place. It is computed as

Seger tan(Dir if tan(Dir. 0

threshold(6.2)
nearest-ntegerl (tan(Dir5 ,,))-' I if Itan(Dir) I<1 .0

The pseudocode for implementing the algorithm is shown in Figure 6.7.

The case shown is for a line-of-sight direction that is in the first octant (between

0 and- radians). The algorithm for the other seven octants is similar, the
4

difference being the direction the scan line advances, and the direction it shifts

when the threshold is reached. Table 6.1 summarizes these parameters for all

eight octants.

TABLE 6.1 VARYING PARAMETERS FOR THE SCANLINE ALGORITHM
BASED ON THE OCTANT OF THE LOOK DIRECTION

Look Directions Scan Line Advances
Octant When Threshold is Reached

From To From To

1 0 1"/4 North South Shift one column East
2 11/4 H/2 East West Shift one row North
3 1/2 31/2 West East Shift one row North
4 311/2 i North South Shift one column West
5 T 511/4 South North Shift one column West b9

511 4 :l, 2 West East Shift one row sut,)utht

171 4 East Set---hift one row 'outh I
8 711/4 2H South North Shift one column East II

..%

Notice the step draw gridsquare[z_index][_index] in the algorithm.

Since a gridsquare contains terrain, and can also contain roads and targets, an

63
.%I

S.-.

S.,.. q

Calculate the threshold value

count - 0

start x index - west view bound
start z index - north view bound

While start z index > south view bound do
z index- start z index
x-index 4- start x index

while (x index < east view bound) and (zindex south-viewbound) do

{ traverse a scanline }
draw gridsqurelz indexix index]
z index - z index - 1 {move it one gridsquare south}
count 4- count + I

if count = threshold then
x index - x index - I {move it one gridsquare east}
count - 0 { reset count}

endif

end while

{move on to next scanline: start it one gridsquare to the west}
start x 4- start x - 1
count 4- 0

if (start x < westview-bound) then
start x 4- west view bound
start z - start z - threshold

endif

endwhile

Figure 6.7 Pseudocode for the First Octant Scanline Algorithm

ordering of these parts of the gridsquare must also take place. The two triangles

forming the terrain are drawn first, next any roads are drawn, and finally any

64

% N

targets are drawn. The details of integrating the targets and roads into the scene

are covered in the following two chapters.

The resulting scene is shown in Figure 6.8. a photograph of the IRIS

monitor during the flight simulation. Note how the hidden surface removal allows

the foreground hills to naturally obscure the valleys behind them. Also note the

effect of the lighting model and texturing described in Chapter V.

E. SIMULATOR PERFORMANCE

Data collected while running the simulator shows that the average frame

update rate is approximately four frames per second. The Unix profile utility >

was used to determine which procedures accounted for the majority of the

simulator's time usage. Table 6.2 shows the results for the top four routines.

TABLE 6.2 FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time Routine Name Purpose

16.9 polf Iris graphics library filled polygon routine.
13.7 display terrain Output 3-D scene with hidden surface removal.

8.7 malloc C language built in routine for dynamic
memory allocation.

4.5 glfindhash Low level Iris graphics library routine, used for
the hash tables associated with graphical
objects (Not user accessible).

The 01) two entries in T abie 6.2 are directly Invoivedj with outputting poiygons to

build the terrain image. It is therefore reasonable to believe that the frame

update rate depends heavily on the number of polygons that are passed to the

geometry engines.

65

4.
--,,-,.-.- .-'.- ,'-, -: -.-, ... , :.-..; . ":.: .- : -:- '.- ;-.... .. .;-. .. .- . . . :. . ,.; --. .- i -..

FUNK LPW -0

6D

E.

Figure 6.9 is a scatterplot showing the frame update speed achieved when

various numbers of polygons were attempted to be drawn. The data was

generated by reading the system clock before each frame update and calculating

the number of polygons based on the view-bound that was used during that

frame. The graph clearly shows the effect the view-bound has on the frame

update rate. The next two entries, malloc and gi_findhash, are traceable to the

making and deleting of the graphical objects that store the targets (this process is

explained in Chapter VII). As an experiment, the construction and deletion of

the targets' objects was removed from the simulation and the targets were simply

displayed in stationary positions. The profile results from the simulator run in

this configuration is shown in Table 6.3. Figure 6.10 is another scatterplot,

generated in the same manner as Figure 6.9, except that the simulator was run in -

the stationary target configuration. Eliminating the dynamic memory

management associated with the target's graphical objects increased the average

frame update rate from 2.99 to 3.90 frames per second. Also, the maximum frame

update rate achieved doubled from 7.5 to 15.0 frames per second. This would

suggest that an area for further research is an improved algorithm for target

ui)lating '-hat (ioes not involve dvnamically allocating memory.

t +" " : , C 1 Y ;tn , 1P ,iI r '1 . -0 i vliv 10et1 ient II -he -1itint)er ot

polygons passed to the geometry engine suggests that a more sophisticated

method of determining the view-blound may pay off in increased performance.

For example. the present method does not take into account the field of view

67

• i iC r... ..- - -

000

m 0
*00

C ~..m.
4*

00L1

Cd W
4) 0

o Q00I-

0 z

00 0)

S.
cd .s~ec

a s.~**.. *C4
4) 3 * 1

~ *0660.8

%*6**

angle. It should be possble to bhound !he 1:ne-of-sight intersection Point with J",S

than twenty grid sqiiarrs wflri the tirid of view angle is iniall However. any new

&liorithm derveioped can not w -jo %olhisticated that it neKates The flerformare

increaw by reqtimnng Ititerisi5ve roni1ptdlon,

TABLE 6 3 FOXI.M, ROT*TINE , I(THE MO)-T P1* TIME
OA TH -TATION AR Y TAR(.ET,

"f 'P f Time Rout ine Name Purpose

-'~~ 2 of Iri- graph iir l1)rar, 6. ed p~iygufl rout ine

) .oior Ir'.. xruk;,tnr i ' I ,ran, rwitiro 1) -^w irh '.etp. the

4i, n. he Ii~ Pi~op

4'

WV o

cl d

m od 0

V
d

0 i

c
IV

1 M

A,..

wq
li

. "

VII. TARGET INTEGRATION

A. GENERAL

The primary targets of a FOG-M missile are tanks, helicopters, and

reinforced ground installations. The simulator is designed to handle many types

of targets, including various tanks and helicopters, but only a single type of tank

is currently implemented. The prototype aimulator provides an Ethernet

networking capability to allow the input of actual target positions in real-time.

This simulates the inpnt that would be received by a production simulator duiring

computerized mock combat field experiments. In its networking mode. the

simulator receives target position and orientation data from an interactive

program running on a different IRIS workstation. The target program. still in

testing and not detailed in this study, provides the capability to dynamically

insert and delete targets at any location, and to modify their speed and direction

In the .simulator's stand-alone mode, there are ten tanks defined by default that

criss-cr,ss the ten kilometer square terrain area. These tank targets move at a

viKes ol Me1' te li noeter terrain njuWare. No aut~illitto(ma pattl p)iiiiiing is

presently performed in either mode. so the tanks blithely traverse even the

71

SIr

steepest terrain. The default targets minimize this problem by traveling the length

of the valleys for the most part.

B. TARGET CREATION

Target creation is simplified through the use of graphical objects. The actual

image of a tank is defined initially by the tedious specification of the three

coordinates of each vertex of each of the polygons that comprise the tank (Figure

7.1). Using objects, this need only be done once, placed in an object, and then

referred to by a single name within each 'arget o)bject. Thils Pach target 's

described by an object (the tank object) within another object (the target object).

In addition "o the tank objec,. -he tar,et object also rontainm -he *rant4r'narion

commands that move the tank from the origin to its location on the terrain (a

translation), and face it in the direction it is moving (a rotation).

1. The System Matrix

The rotation and translation commands work by modifying the 8yatern

matriz. The system matrix is a global data structure that is used to transforin

coordinates from the three-dimensional world space into the two-diniennional

screen space. Each transformation can be performed as a series of computations

ill :16l%1il 'l ual X !" flI'l Z "fx)r fldnare* .)11i : ., "rtI.* ,,)rT i-'t ,)ii iof '11.) 1V

accomplished with a single matrix multiplication The IRIS has a matrix

multiplier built into its hardware. so matrix operation% are ery effcietit At least

three transformations must be applied to every endpoint on the tank: a coordtinate

72

,?, : ., .,. ,. i~ ..,. ..., .,.. . -..'.',..¢ .,. % . ., .,..-.**: :., ., .. . ,. ,.*- - t -. , ;;.,..:. :,.

wvwmvwv VWWVWWIPWJWVIPW~r Pwmr - m"-W-Pw wl w- -lp - q Ww-I

-%caling. a translation. and a rotation. R at her than hdo tret' se,,traite iatrix

multilplicat ions. the three tranoiormation iiat rice% can be combined. so) that tAll of

the transformations are accomnplished In a 1izigle matrix mnultiplication The

mat rice" are colii ine' i b%- ft PP i'. IrIK eat- f ,.ierii ,i r :e - vooemni rnjar rix E ar h

po int is now completely transformied through a single muiilt iplicat ion wit h the

oivsteun matrFix %hen a newA t raiit oFniatior~i~ I nerde(i ttie sv%t eml zat Fix mnust toe

reset bN applying the iver-w- of the old t ranifo riliatmin!)r hy) roPY1K Olgte

(iriginal viotiTents hark itil -he %,ftiii !ilatrix T%% ,,iiiin .Art, prwovised A it h

the I V o iipjxorl tit in! 'er izieti~~ 11..IY,)11! ~i 4 O)J)\ ti Ii',te

tit Fi ri i ~rrent "I)Tit ellI% t 11 8io Vte- I')T1 heC AV~IM 41 1Ci. k AfTer t he

rai-fori. it Iii% hi&% bweii 'etiipkteol the oo,%teiii inatFIX is re%et to% c alliing.

p.. prnal ri whiic h re-triti-ve-, the, Cop plac 0.1 4)1 the i ark , p it h ii at ri id

re-fe orv t he - ritent- (f t he -% -tevin i rirI tit t he piv !iIII ,a u %A~ iiie-

2 Target i'razi,firtuii it.

Hi tariI~e iIiii ui t4 A IF t- h iis t 4 e t r' .oiturif r A t ' oe ' i i n

'I ireo, ~'ii of ?he tank I- -g.!i Alit 'Ii I o o ~ kIi* I' "i'A'I

-r ,- Ai 11afte t,, i p Ijr p lff o ~ it I ' I. if 01 0 4 hit-0 t o~ f it0 I ~

'41x i 4\I a. 11 M I it r ghu /0r ro.. !!.tII ;tl -r

74

A J%!.V'n

heading of ninety degrees) initially. During target creation, dummy (zero valued)

rotation and translation commands are placed in the target object, to be updated

for diisplav h% a later 'difing of the ohiec'. qinre all rotation and translation

commands affect the system matrix (as previously described) and are cumulative,

each target object must apply its t ransformat ions, be drawn, and then remove Y

those transformations so that latter drawing commands are not distorted. Within

each target object. the contents of the system matrix are saved with a pushmatrixP

call. the appropriate rotation and translation comimand- are applied to the s;stern

matrix in rever-4e order. due to the nature of inatrix multiplication), the target is

ir-i%-i a-i: "it, ';Arik ohect. aridl fien imprriatr!x is tcailedl t) re-.'t the-\te i

rialr~x

C NMTO

Animirat ion of the targets is accomfplished using the objects and

trlsfqruatoris de-wribedl above The targets imust be moved slightly before

beinri rIrit ii in thc next framre This requires new (. Y.Z) rcxrdjnates, from the

network ()r frImi 1(wa c al iilatloris Then a global dlata %t rilo-tulre is updlat ed to

irljicatV \0vi i tilt' 411- liPlav aLgorithini tq target shouild he (Irawti. and te

A, eAch frittn-- i, dllpa~.'(. tArgets APpeair in hyl~htl\ %hifted lwitioiTis arid give'

the ftppuaraii o4 anliatedl 111(1? ol

The calculation of new coordinates requires the maintenance of position,

speed, and direction data for each target. The total distance traveled between

screen updates is the product of the elapsed time (obtair.ed from the TRIS's real-

time clock) and the target's speed, scaled so the units match. In the networking

version of the simulator this is done remotely; in the stand-alone version

everything must be maintained locally. The target's direction of travel is stored

in radians, and is measured using the standard mathematical convention as

opposed to a compass heading (Figure 7.2). This allows calculation of the the

appropriate east/west (AX) and north/south (AZ) movement as follows:

SX cos(dirrrtior I) " f 'rlto " ;r)r~d ". .ri ircator 7,!

AZ "sin(dirretion) "time 'speed *scale fartor (7.2)

The new target (X,Z) position is the sum of the old position and the offsets

(AX.AZ) from Equations 7.1 and 7.2. Since all of the current targets are tanks,

their Y coordinates (altitude) should be taken from the height of the terrain

underneath the tank. This is obtained from the DTED interpolation routine

grid level, which is called with the new (XZ) coordinates as input parameters.

D DI-PFT.AY

use of the palriter's algorithin to solve the polygon ordering problem without

resorting to slower or inore complicated scheme. like Z-buffering or Binary Space

Partitioning [Ref 13[. Targets cannot merely be drawn after the terrain because

76

. " _' 'e ," "',_' ,,e " '€?," "'"" " '" " " '"" "" " " '

1T/2

3TT/2

Mathematical Convention

(Radians)

0 5

(360)

270 90

Compass Convention

(Degrees)

Figure 7.2 Direction Conventions

77

of the same ordering problem. Otherwise, targets appear in front of everything,

and it is impassible to simulate a target moving out of sight into the distance or

behind some terrain feature. The implementation of the target display algorithm

is greatly facilitated by the use of objects. Objects allow the grouping of drawing

commands into a subroutine-like package, which can be edited (effectively

allowing paramneterization) and then displayed with a single command. A two-

dimensional array of object "names" (the obJect - name - arrayI) is 'Initialized so

each element of the array, represents the target object to be drawn in the one

hundred meter square of terrain with the same indices. Since the C piograrruning

language recognizes the value integer zero a.- FALSE. and anything else as TRUE.

this array doe-z double duty as an array of bhoojeans indicating the presence or

absence of a target object in a particular one hundred mieter grid square (No

target objects are given the "namne" zero, which would indicate FALSE.) A list of

targets is used to reset this array to all zeroes before each screen update (i.e only

those elements that contained targets need to be zeroed) -;(. maintenance overheadf

of the array is nuiinized. The new target positions are received ov-er the

network, or are calculated, based on each target'% pociti. speed, ani direction.

;)I us he ei a D,-'(1 71 A! - 11.1e ~I Ii Ve i hra I' TWt 'I L:tl :,r a " ' ' an

array is updated, If this Is the first (or oinly) target in the dtesignated one hi indred

meter grid square. the update is accomiplished by niaking a new object. awld

setting the object -name- array element equal to the new ohject'- integer -naixie

78

IJWVW' WW% W W, NFU' W UWUW UvU W W'WU W Uc FrW W my A, WUW- 1IW-W XF W- 1r :W" I V W. % %. - q. W_ W "%-

If the array shows that some other target is already in that particular piece of

terrain (i.e. the object-name-array element is non-zero). the current target is just

added to the object specified by the "nanie" in the array. Once this has been

done for each target, this array is available for the diplay terrain module.

Display terrain checks the array as it draws each square of the terrain to see if

any targets should be drawn. If so, it calls the indicated target object just after it

has drawn the one hundred meter grid square on which the targetsi rests Note

that this causes the targetis) to be drawn at the correct timr for rhe painter-

algorithm The correct place to draw the target o,.I inwt he ,;perified h% the

'rarn for~ita - ina) I iIa , w ln -he tari '

In oin (-a-e, it ;s ri< ', to tirav' a "arg , :,p)rt, " T ,,t r - " " "

Otradd le a one h nti~rl mieter grid 4-iarv 1r :1,.1)- e 1rl%' -' ",I of

or ;4 .- ihR a: four Kritt -qmarv, ini order o avoid !eign ;,arfla 1N It6,(-Irv.,i 'IN

wAhichever 471,i 4oiarr' i- Itram-p .,t Thie targt tiri-t ,# ;-itN%% *..::ei Ae' f*

*~ ~ .. 'lr" *f ~h ret.. I I e'll I.r' 'A~ I~ 'A 41 '1?. t 1.,V'~ 1

it -h*,iit. ! ' w " 'rrai n ,Irav t , .,, "i, h,

S''l, ,'lJ It' , ''3li .' '!fl " "!+* W.b "," *." V
+
• , - * " . , - ,

,he

(;Grid
Square

with

(X Z) offeet

Tana

8

'SIDRO IDDLI' of grid equare

ar 6

* Tana

........... ..

* F A---

* . , * t ,

.9

"-4

..\ % % * ,~'* %' i~ % ~ .* - - '

The one hundred meter grid square is essentially divided into three areas:

the middle. its sides, and its corners. In the middle, the tank cannot overlap any

nth er igr"d ,,iare On the tides, the tank may overlap one adjoining grid square.

and in the corners, the tank may overlap three adjoining grid squares. The

reference point on the tank (the position the X, Y, and Z coordinates refer to) is

located at the very center of the tank. The tank is thirty feet long, so the most

distant parts of the tank are within a fifteen foot radius of the tank's reference

poin. The lines that mark the side and corner areas are thus fifteen feet inside the

hor(ers of the grid square. Once the tank's reference point is within these areas,

" 1 : : a ,r',ired by -he :ater drawing of the adjacent grid square(s). It

ini, , ;iot h e obscured if it is paralleling a side. for example, but the overhead of

drawing it twice (or even four times) when it does not need to be is smaller than

t e, overhead of the calculations to determine if the position and direction of the

tank have it actually crossing one or more edges.

The repeated draAing is accomplished by adding a "new" target to the array

,of arget objects. The -new" target object is drawn at the exact same location in

,:l, thr#' ,-, ziensiona] terrain, but it is drawn after a different one hundred meter

- 7 .p vi i;ivt fferot "ar-et object array indices, and he :n a

- 1 . ..' ,,.. ., : i " :e.t) , or :our) :argets dirawr wiil o-erwrit e

.'i c , ofther arid produce a single image.

81

%. -, . . . , ,,... :.:.: ... , . , , , -,- .,. ,,...., ,...- . ,

VIII. CULTURAL FEATURE INTEGRATION

The addition of cultural features add much to the realism of the displayed

scene. They also provide valuable landmarks from which a person observing the

scene can geographically orient himself. This chapter covers the addition of one

type of cultural feature, roads, to the FOG-M simulation. Roads were chosen as

+he first feature to add because of the special problems associated with their

implementation, the ease of extracting their locations from contour maps, and the

.-sual impact added to all parts of the scene due to their wide-ranging locations.

Three areas will be discussed: (1) the format of the external data file that contains

the road's locations, (2) the process of mapping the roads onto the existing

terrain, and (3) the integration of the roads into the terrain display loop.

A. EXTERNAL DATA FILE FORMAT

The data being used in the simillation was obtained by manually extracting

the roads' positions from a DMA Topographic Center (DMATC) contour map of

area. Although this data is available in the DMA's Digital Feature Analysis

. , F . ii . "ie ottware necessary ro access "t was not available. The road
'-

!,t~t~ tic', f' rniat is such that the DFAD data can be easily used when the access

-, 1' i a*' t - 'ov loped

82
'S
*,0

. • ,* ,,. . -".. .F ,'..."J ""j '." "d V "°*. :'. *, .'.,. '.- :,':2'.:, ..- :...2''2 ,

Figure 8.1 shows a segment of the file containing data for two roads alonig

with a diagram showing their locations within the terrain. Each road entry it

composed of three parts. The first part is the width of the road in feet Next i

an integer N, where N is the number of data points used to digitize the road.

Third is a set N coordinate pairs, where each pair represents the location of a

digitized point along the road's centedline. The first coordinate of the pair is the

east-west location of the point. It is measured in feet from the western terrain

boundary. The second coordinate of the pair is the north-south location of the

point, measured in feet from the southern terrain boundary. All the data is stored

as ASCII text, which facilitates editing of the data using any text editor. The

DFAD data file also contains road width information (in meters) and stores roads

as a series of digitized points. The major difference is that DFAD's points are

stored as latitudes and longitudes, which need to be converted before they can be

used in the simulation. [Ref. 9]

B. CONSTRUCTION OF THE ROAD POLYGONS

Knowing the width and centerline locations for the road, the next step is to

construct the polygons which represent it. Although, this seems like a simple

procedure. it is complicated Iy the fact -hat the road nust foilow ,he rise :mod -ai.

of the terrain. Also, in order for hidden surface elimination to occur, the road

must be divided at the gridsquare boundaries so that each piece can be drawn

along with its corresponding gridsquare. The result is that the road must be

83

* ~ ~ U . -, U o .*

35.0 ~Width of Road 1 (feet)

92. 1 0# of Data Points925.0 1100.0
11I00.0 2400.0
2150.0 2950.0 8 Data Points
2510.0 4100.0
2255.0 4700 0 'Measured in Feet; from
1670.0 4850.0 Western and Southern
1300.0 5250.0 Terrain Boundaries)

1490.0 7150.0
50.0 - Width of Road 2
3 -m ff of Data Points
9300.0 4150.0

6495.0 4150.0 1,0- 3 Data Points
5800.0 2100.0

[File Format

8
7000

FEET Corresponding
Roads

7
5000 -5- 7

62 21

4

3000 -3-

2

Road 2
1000 1

Road 1

=I I I I I I I II
1000 3000 5000 7000 9000

FEET
L-Western Terrain Boundary

Southern Terrain Boundary

Figure 8.1 External Data File Format

84

broken into many planar polygons, where each polygon is a portion of the road

that overlays one of the terrain triangles within a gridsquare. Figure 8.2

illustrates this division and defines some of the terms used in the description that

follows. The high level pseudocode for processing the road data and constructing

the planar polygons is shown in Figure 8.3. As the pseudocode shows, each road

is processed a segment at a time. For each segment

- The end points of the segment's left and right side are calculated. A look-
ahead to the next road segment is done, allowing the ends of adjacent
segments to be calculated so that they meet cleanly.

- A bounding box, which contains all the gridsquares intersected by the
segment, is constructed.

Next, for each gridsquare in the bounding box, the road segment is divided into

the road-polygons at the gridtriangle boundaries. Note that all the vertices of the

road-polygons fall into one of five types:

- The intersection of a segment's left side with the side of a gridtriangle.

- The intersection of a segment's right side with the side of a gridtriangle.

- A gridsquare's cornerpoint that is contained within the road segment.

- An endpoint of the left side of the road.

- An endpoint of the right side of the road.

The road polygon is constructed by finding all the above vertices which exist, and

ordering them counterclockwise. The counterclockwise ordering is necessary for

i)ackface polygon remova to take place. The intersections oniy definle -he X and

Z coordinates or the vertices. The Y (elevation) coordinate is found by

interpolating between the terrain's elevation at the three corners of the

corresponding gridtriangle.

85

WIDV

GRIb.:
rRIAN~.J2LEFT",,

GRED .It
SQUARE:

.... RIGWL SIDE

FOR ,ROAD SXMN

--- - -- - -- -- --- -- -- -- -- --
-- - - - - - -N - -- - - - - -- - - - -- - - - - - -- -

ROD

45FG

% .

------------- ~~~~~ -- *------------ -- ---

Figure 8.2 Constructing the Road Polygons

88

Yw %%~~ V%% k% ~%,V %;>*.~..*.*~*. ,. ,*

While more data in the road data file do
read width of road
read number of_points
read stment's itart oordinate pair (seg start)
read iegmenls end coordinaLe pair tseg_-nd)

for i = 3 to numberof_points + 1 do

if i < number of points then
read the next segment's end coordinate pair (nextseg end)

else
next seg end x - seg end x
next seg end s - seg_-end-s

endif

calculate the start and end points for the segment's left and right side
(left _tart. leftend, right_.tart, rightend)

calculate a bounding box around the road segment

for each gridsquare within the bounding box do

Construct the polygon which overlays the gridsquare's northern triangle
Add the polygon to the road object associated with this gridsquare

Construct the polygon which overlays the gridsquare's southern triangle
Add the polygon to the road object associated with this gridsquare

rightstart +- right-end

endwhile

Figure 8.3 Pseudocode for Constructing Road Polygons

C. INTERNAL ROAD-POLYGON STORAGE

A global, two-dimensional array of graphicalobjeet8, named road, is used to

store the road polygons. Each entry in the array corresponds to ,Ihe pjeces of road

that lie within a gridsquare. An object is created when the first road-polygon is

constructed for a gridsquare, with subsequent road-polygons being inserted into

the already existing object. Since the roads are static in nature, the use of objects

87

* V'Xw *"*w~%** :.~ ~ Q ~ -'l.. *~

does not present the dynamic memory allocation problems as.4ociated with their

use in storing targets (see the Simulator Performance Section of Chapter VI). As

each gridsquare of the terrain is drawn, a check is made to see if a road object

exists for that square. If one does exist, the associated road-polygons are drawn

immediately after the terrain. This insures that hidden surface elimination occurs

for the roads as well as the terrain. A photograph of terrain which includes some

sections of roads can be seen in Chapter VII, Figure 7.1).

p

p

.5

88o

p

.AA ~ I 1 ...

IX. FOG-M SIMULATOR USER'S GUIDE
'p.

p

A. OVERVIEW

This section of the report is a user's guide to running the FOG-M simulator.

The simulator was built to be largely self documenting. Instructions are clearly

displayed on the screen, including diagrams which serve as a reminder of the

functions of the various controls. A knowledge of the logon procedure for the

IRIS workstation and the basic commands of the UNIX operating system is

assumed.

B. STARTING THE SIMULATION
*5

To start the simulation, logon to the IRIS workstation and use the UNIX cd

command to change to the directory containing the simulation. Currently the
41

simulation is in the directory /work/terrain. Therefore issue the command:

cd /work/terrain I.

Next, start execution of the simulation by typing the command fogm. A

welcome screen will appear on the display as shown in Figure 9.1. Pressing all -.

three of the mouse buttons simuitaneously will stop the program afnd return

to the UNIX command level. This option of pressing all three buttons to exit is

available at any time during the execution of the program. Pressing the middle

mouse button advances the display to the next screen of instructions. When the

89

%

LS.
i$

IVIP

900

user has advanced through the welcome screen and the two instruction screens %

(Figures 9.2 and 9.3) he is presented with a display showing a two-dimensional

contour map. This is the prelaunch phase of the simulation.

C. PRELAUNCH CONTROLS

The purpose of the prelaunch phase is to allow the user to designate a missile

launch position and a suspected target location position. In effect, the user

describes an initial flight path for the missile.

1. The Prelaunch Display

The prelaunch display is divided into three sections as shown in Figure

9.4. The upper right corner of the display contains an instruction box which

summarizes the functions of the mouse buttons for this phase. The lower right

corner contains a prelaunch statistics box. The meanings of the various items

within the statistics box are explained below. The majority of the display is

occupied by a two-dimensional contour map. Each of the square grids on the

contour map represents a one square kilometer area. The colors on the map can

be interpreted as follows. Green areas indicate terrain that is covered with

vegetation that is greater than one meter high. Brown areas indicate terrain

where ,he vegetation is less than one meter high. Within each of the coior

categories, the elevation of the terrain is indicated by the intensity of the color,

with the brighter colors representing the higher elevations.

91 1

N' 2a h

16

cm.

___61__'

Ena

- J

0 0

Lai.

2 6.

-, - "

4

u ga

X w 0- rx0..

Li -J=.3 LA

0.- Inc

~9 W

6W --JZ 9 iL

r%-4

- --

~ 0*-if

4

4

.33

94

~ ~ - L~.A ~ *~ *~ *.

2. Selecting the Launch Position

The launch position must be selected first. To select the launch position,

use the mouse to move the red arrow cursor to the desired location on the contour

map. As the cursor is moved, the UTM coordinates of the current cursor location

are shown in the Launch Position field of the statistics box. These coordinates

can be used when a more accurate selection of the launch position is required than

is obtainable from the contour map alone. When the cursor is in the desired

position, press the left mouse button to lock in that position. A blue circle will

appear on the contour map showing the position selected and the workstation will

"beep," confirming the selection. The launch position can be changed any time

before the launching of the missile by simply moving to the new desired location

and pressing the left mouse button.

3. Selecting the Target Position

The target position can only be selected after a launch position has been

set. After the launch position has been selected, moving the cursor over the

contour map produces the following effects:

The UTM coordinates of the current cursor position are shown in 0,' Tar4,"
Location field of the statistics box.

.k "r'ubber banu'" .ine is ,lrawvTI , n le -oNo ,r 1,11) '(,Ii :f, I

-o lhe rnrrenr cursor :ocat;on. Thi 'nc ,:"re.,.' " -

would take if the current cursor position was seiected as th, *rg,,..

The direction and length of the flight pat!' representtl t. '
displayed in the statistics box in the Heading an;,i - '.. -.

Once the cursor is at the desired target woiat, ;)r,,-" riL,, ,- .r

U15

MAN INEXPENSIVE REAL-TIME INTERACTIVE THREE O IENSXIONE* 2/3
FLIGHT SIMULATION SYSTEH(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D B SMITH ET AL. JUN 97

UICLRSSIFIE D F/O 5/9

smmohhmhhmhummhhhhmhhhhmhud
IIIIIIIIEEEEI

L

11111L1.25 111 .4 1II1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

~- - - - - -W -W -U - -U -~ -. - - --

to lock in the position. A red circle will appear on the contour map showing the

selected location and the workstation will "beep," confirming the selection.

The missile is now ready for launch. The target location can be changed

any time before launch by simply moving the cursor to the desired new location

and pressing the right mouse button.

4. Launching the Missile

Launching can not take place until both a launch and target location

have been selected. If the launch and target locations selected are acceptable, the

missile is "launched" by pressing the middle mouse button.

If this is the initial launch of this execution of the program, a several

(three to four) minute delay will follow during which calculations are done to

construct the upcoming three-dimensional scenes. Again, this delay only occurs

during the first launch of any execution. Subsequent launches proceed with no

delay. During this delay, a countdown will appear in the bottom of the statistics

box. Launch occurs when the countdown reaches zero.

D. IN-FLIGHT CONTROLS .

1. The In-Flight Display

After the missile is launched, the display changes t o the in-flight fispiay

shown in Figure 9.5. The left side of the display contains:

- A three-dimensional view of the terrain as seen from the missile's camera.

- A slider bar scale along the bottom edge indicating the camera pan angle.

96

w b- f w G • , • • . .. ,~i, . m .. m. • . • q • - . N m • • • * "v ". w . . *0

97

- A slider bar scale along the left hand edge indicating the camera tilt angle.

- A box in the lower left corner containing either the word DESIGNATE or
REJECT. The word DESIGNATE in this box indicates that the missile is
not locked on to a target and is waiting for a command to designate one.
The wor i REJECT indicates that the missile is locked on to a target and is
waiting for a command to reject that target.

- Cross hairs used to sight the camera onto a target.

The upper right corner of the display contains a scaled copy of the contour map

seen in the prelaunch phase. The red arrow superimposed on the contour map

shows the missile's current position (the tail of the arrow) and its direction of

flight. The red rectangle on the map indicates that area of the terrain that is

currently being shown in the three-dimensional display.

The middle right section of the display contains four indicators which

show the following:

- The speed of the missile in knots.

- The direction the missile is traveling in degrees.

- The height of the missile above ground level (AGL) in feet.

- The height of the missile above mean sea level (MSL) in feet.

- A slider bar indicating the zoom setting of the camera in degrees.

The lower right section of the display contains a summary of the functions

performed by the mouse and dials. These are explained further below. The in-

flight phase continues until the missile impacts a designated target or all three

mouse buttons are pressed simultaneously (to .stop the execution of the

simulation).

98

2. Controlling the Camera

The ranges and initial values of the camera's functions are shown in

Table 9.1. All of the camera's functions are controlled with the mouse.

- To pan the camera, move the mouse left or right as needed.

- To tilt the camera, move the mouse up or down as needed.

- To zoom in to a tighter field of view, press the left mouse button.

- To zoom out to a wider field of view, press the right mouse button.

3. Controlling the Missile Flight

The missile can be controlled by changing its direction, speed, and

altitude. The ranges and initial values of each of the flight parameters is shown

in Table 9.2. The missile flight parameters are controlled by using the dials on

the IRIS's button/dial box (see Figure 9.6). Dial zero (lower left) controls the

missile's direction, dial one (lower right) controls the missile's altitude, and dial

two (above dial zero) controls the missile's speed. Refer to the display's control

TABLE 9.1 CAMERA CONTROL RANGES AND INITIAL VALUES

Control Range Initial ValueMaximum Minimum

Pan 25 degrees right 25 degrees left 0 degrees
Tilt 25 degrees down 15 degrees up 15 degrees down
Zoom 55 degrees 8 degrees 55 degrees

TABLE 9.2 MISSILE CONTROL RANGES AND INITIAL VALUES

Range
Control Maximum Minimum Initial Value

Altitude 10,000 MSL 200 AGL 200 AGL

Spee 400 kts 0 kts 200 kts
Direction 359.9 degrees 0 degrees From prelaunch

99

5*

0 0
4 5

@ G
2 3

00 ALT
01

Figure 9.6 IRIS Dial Box Fuctions

100

summary box for a reminder of each dial's purpose and location during flight.

The controls are used as follows:

Direction of flight - Turning dial zero clockwise turns the missile to the
right. Turning it counterclockwise turns it to the left. The missile will move
freely through the 360 degree mark so that, for example, turning the missile
right two degrees from a heading of 359 degrees will produce a heading of
001.

- Altitude - Turning dial one clockwise increases the missile's altitude up to
the maximum of 10,000 feet MSL. Turning the dial counterclockwise
decreases the missile's altitude. The simulator will not allow an altitude to
be selected that is less than 200 feet above ground level.

- Speed - Turning dial two clockwise increases the missile's speed, while
counterclockwise decreases the speed.

4. Designating and Rejecting Targets

The middle mouse button is used to designate (lock on to) and reject

(release the lock on) targets. When the missile is not locked on to a target the

word DESIGNATE will appear in the lower left corner of the display. To

designate a target, center -the target within the cross hairs and press the middle

mouse button. In order for the missile to lock on, some portion of the target

must be in the center of the cross hairs. If the designation is successful, the

workstation will "beep" and word REJECT will appear in place of the word

DESIGNATE on the display. Once a target is designated the missile will

autoniaticailv .djist ri s b5eading and iititude -o home in on -he -e!eced target.

An explosion is displayed after impact with the target occurs. The user is then

returned to the prelaunch phase of the simulation to begin another launch.

101

5.

Fr

Fm.

* -- .%..%(f . .,~(~ ~.s%.>\.\~N*& ' .. ~ .,. *

A locked on target can be rejected and missile flight control returned to

tl - user by pressing the middle mouse button any time before impact with the

target occurs. The workstation will respond with a "beep" and the

reject/designate box will again show the word DESIGNATE. The missile is now

ready to accept the designation of a new target.

102
%

'p

k"

--p.

X. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are several limitations to the flight simulator presented in this study.

First, a trade-off had to be made between resolution and frame update (display)

speed. Even though data was available at a resolution of twelve and one-half

meters, the simulator uses one hundred meter resolution in order to achieve an

acceptable frame update rate.

,)cond, the simulator's flight is confined to a ten kilometer square area. Any

ten kilometer square area of the DTED file can be used during a run of the

simulation, but the simulator must be exited before switching to a new area. This

limitation is not too restrictive for the current range of the FOG-M, but may be

inadequate if the range of the missile is increased as planned.

Third, road data is available in a format usable by the simulator for only one

10 kilometer square area. Since access routines were not developed for the DFAD

data file, roads must be digitized by hand.

Fourth. the simulator ,ioes not miodel an of -he rnissile's flight dynamics. As

stateu eariier, zhis limitation was ;mposed oriiy because of deveiopment time

constraints. It is felt that the dynamics can be acceptably modeled without

adversely affecting the performance.

103 -

V V.

'5

B. FUTURE RESEARCH AREAS

A follow-on to this project, which will provide more realistic targets and

allow viewing of the scene as seen from inside any of them, is currently underway

at the Naval Postgraduate School. The project's plans are to use the Ethernet to

allow several workstations to take part in the simulation simultaneously. Each

workstation will control one weapon (a target or the missile) and its monitor will

display the scene as viewed from that weapon.

Work is also underway at the Naval Postgraduate School in the use of

digitized photographic images on the IRIS. This work could possibly be

incorporated into the FOG-M project through the use of digitized target images,

digitized cultural features, or digitized textures for the terrains.

Another possible research area is the addition of various environmental effects

into the simulation. These include clouds, smoke, and rain, which affect the

camera's view by reducing visibility, and also dust, which aids the missile

operator in acquiring moving targets.

Much work could be done in the area of the missile's flight dynamics. The

goal would be to provide an acceptably accurate model without too much of a

sacrifice in speed.

C. SUMMARY AND CONCLUSIONS

The project has proven the practicality and feasibility of building a low-cost

flight simulator with commercial, off-the-shelf hardware. With a relatively small

104

Xe_

investment of time and funds, a simulator with significant capabilities was

developed. As the speed and power of graphics hardware increases, even more

realistic displays at faster update rates will be possible.

.15

°

105"

.5

u S

APPENDIX A - MODULE DESCRIPTIONS

BUILDROAD.C

Input: None.

Output: None.

Side Effects: Modifies the global array road, an array of graphical objects, where
each object contains the polygons representing the road in a
particular gridsquare.

Description: Build road reads the file road width and centerline information
from the file Road.data and constructs polygons which represent
the road. The polygons are stored in the array of graphical objects
road. A more detailed discussion of building the roads is contained
in Chapter VIII.

BUILDTERRAIN.C

Input: None.

Output: None.

Side Effects: Buildterrain modifies the global arrays iat'etriangle and gridcolor.

Description: Buildterrain reads terrain height information from the global array
gridpizel and constructs the terrain as a set of planar triangles.
The details of constructing the triangles and the format of the
savetriangle and gridcolor arrays can be found in Chapter VI.

COLORRAMP.C

Input: The inputs to colorramp are two booleans, greyscale and init. If
greyscale is TRUE, the terrain, sky, and target colortable entries
are defined in shades of grey to produce a black-and-white image.
If greyscale is FALSE, the terrain colors are green, the sky is blue,
and targets are brown. Init is set to TRUE when this routine is
initially called, ,o that everv entry in the colortable is defined.
including those for terrain. sky. targets, and writemasked ,ines n
cop of the contour maps. liould the display be switched between
color and black-and-white, only the terrain, sky, and target entries
need to be redefined, which is what happens when init is FALSE.

Output: None.

Side Effects: Colorramp changes the system's col)rtable, and thus determines
the colors that appear on the display for the images drawn by
other routines.

106

Description: Colorramp is called by the main program fogm as part of the
initialization that takes place before the flying loop is entered. At
that point, greyscale is set to its default value (usually FALSE,
indicating color images) and init is TRUE. The readcontrols
routine also calls colorramp to toggle the display image between
color and black-and-white, based on the position of one of the
dials. This call is made with the desired value for greyscale and
with init FALSE. Colorramp uses the IRIS routine mapcolor to
directly update the colortable for the contour map colors, and calls
the user written routine gammaramp to define appropriately
shaded ranges of the greens and browns (or greys) used for the
terrain and targets.

COMPASS.C

Input: Cornpa.ss rakes as input a float. dirertion. which is an angle in
radians.

Output: Compass returns a float which is the compass direction in degrees
corresponding to the input direction.

Side Effects: None.

Description: The function Compass converts an radian angle measured using
the standard mathematical convention, and converts it to a degree
angle measured using the standard navigational convention.

DISPTERRAIN.C

Input: Display terrain takes eleven inputs: the X, Y, and Z, coordinates
of the missile position VX, VY, and VZ; the X, Y, and Z
coordinates of the camera's look-at position PX, PY, PZ; the field
of view angle (camera zoom value), FOVY; and the X and Z
ranges of gridsquares to be displayed, FIRSTX, FIRST Z,
LAST_X and LASTZ.

Output: None.

ide Effecs: None.

Descripron: Lisp :er~ufl)utpUts a trane of -he -errain scene 'o -he anonitor ,
using a hidden surface algorithm. The scene contains terrain,
roads, and targets. Details of the hidden surface algorithm can be
found in Chapter VI.

10

107 "
P.

- a ~ A'tLA~' .-.'T

DIST TO LOS.C

Input: Dist to los takes seven inputs: the X, Y, and Z coordinates of the
start of a line segment; the X, Y, and Z coordinates of the end
point of a line segment; and three dimensional array, pt, which
contains the coordinates of a point.

Output: Dist to los returns a float which is the perpendicular distance
from the input point, pt, to the input line.

Side Effects: None.

Description: Function which computes the perpendicular distance from a point
to a line in three-space.

DO BOUNDARY.C

Input: Do-boundary takes the following inputs:
- An integer Bound type which is interpreted as:

0 - a diagonal boundary
1 - a horizontal boundary
2 - a vertical boundary

- An integer which triangle that is interpreted as:
0 - the lower triangle of the gridsquare.
1 - the upper triangle of the gridsquare.

- The indices, zgrid and zgrid, of the gridsquare for which the road
is being constructed.
- The coordinates of the start point of the boundary stored in a
three dimensional array, bound start.
- The coordinates of the end point of the boundary stored in a
three dimensional array, bound end.
- The coordinates of the start point of the left side of the road
stored in a three dimensional array, left start.
- The coordinates of the end point of left side of the road stored in
a three dimensional array, left end.
- The coordinates of the start point of the right side of the road
stored in a three dimensional array, right start.
- The coordinates of the end point of right side of the road stored
;n a three dimensionai array. riyht end.
- A boolean, start corner flag, which is TRUE if the gridsquare
corner at the boundary's start is ALREADY in the road polygon
array, FALSE otherwise.
- A boolean, end corner flag, which is TRUE if the gridsquare
corner at the boundary's end is ALREADY in the road polygon
array, FALSE otherwise.
- The partially complete road polygon array, road-poly.

108

US

' "';'," , ",z.' ;.,- '.. /'.' ,'•.". ". ":".""." ,'..'.."2'2. ".2o' '. .''- "./ 2 -'2 ',eJ,'2.2_ :.r2e,~p .' ".''.'5€ € ' ' :'2,2, ","" '€ S

- An integer, vertex ent. that is the number of vertices currently in
the roadpoly array.

Output: Doboundary outputs the following:
- startcornerflag (see Inputs for a description)
- end corner_flag (see Inputs for a description)
- roadpoil, the road polygon array with the vertices along this

boundary added.
- vertez cnt (see Inputs for a description)

Side Effects: None.

Description: Do boundary's purpose is to find all the intersections of the road's
left and right sides with the input boundary of a gridtriangle. As
an intersection is found the point is put into a temporary array.
After all the intersections are found for the boundary the points in
the temporary array are sorted then added to the existing
road poly array. The order of the sorting is iuch that the resulting
road-poly array will be ordered counterclockwise. See Chapter
VIII for a detailed description of building the roads.

EDITINDBOX.C

Input: The inputs to edit indbor are the name of the indicator object, the
tags within that object for each of the indicators, and current
values for the following missile parameters: X, Y, and Z position
coordinates, pan, tilt, and zoom angles, and designate/reject
status.

Output: None.

Side Effects: Since edit indboz changes the indicator object, it has the side
effect of changing the display when the indicator object is next
called and displayed.

Description: The indicator object is edited between each display frame so that
the heads-up display and the indicator box indicators show the
current values for the missile's speed, heading, altitude, camera
pan angle. camera tilt angle. camera ield of view (zoom). and
designateireject status. The nlD1t pei, neading, an M L
altitucde i Y position -oordinate) *r -onverted o itr'nqs -'or
display. AGL altitude is calculated as the difference between MSL
altitude and the elevation of the ground directly below the missile
as obtained from gnd level with the X and Z position coordinates
as input. The boolean designate determines whether
"DESIGNATE" or "REJECT" is printed in the lower left corner
of the terrain display. Finally, the positions of the tilt, pan, and

109

Iog

% %-"".-, :- . " ' ¢",; "- + .' ' "+ - :"" " , ":"" """+' ' ",-. ¢;,""V" .". '." - :" "" '"" -- "" -"" ,"-

zoom indicators are calculated from the missile parameters. The
equations in the code have been simplified to avoid excess
computation; the derivations are given below.

The x screen coordinate of the zoom (field of view, or fov) indicator
is fixed. The y screen coordinate varies from 200 (at go fov) to 70
(at 550 fov). The input missile parameter zoom is in tenths of
degrees, and thus ranges from 80 to 550. The y coordinate is
determined from Equation A.1.

-- 8-200 - 7-
Y20[zoom) oo

10 55 - 8
(A.1)

zoom * -0.2766 + 222.128

Likewise, the screen x coordinate of the tilt indicator is fixed, while
the y coordinate varies from 680 (at +250 tilt) to 50 (at -25 ° tilt).
The input missile parameter tilt is in radians, and is converted to
degrees by multiplying it with the RTOD (Radians TO Degrees)
constant from the header file fogm.h. The y coordinate of the tilt
indicator is calculated as shown in Equation A.2.

y = 50 + (tilt *DTOR) + 25 680 - 50

25 - -25 J. (A.2

= tilt * 721.92682 + 365

The pan slider bar is horizontal, so the y coordinate is fixed, and
the x coordinate ranges from 120 (at -250 pan) to 750 (at +250
pan). Like tilt, the pan value is in radians and must be converted
to degrees. The pan indicator x coordinate is given by Equation
A.3.

= 750 -{(pan " DTOR) -251 25 -120
25 --251

(A.3)

pan * -721.92682 + 435

110

EXPLOSION.C

Input: None.

Output: None.

Side Effects: None.

Description: The ezplosion routine simulates the effect of a missile destroying a
target by rapidly flashing a succession of red, black, and yellow
screens. One buffer is kept black to pronounce the flash effect, and
the other buffer is alternately cleared to red, yellow, red, yellow,
and red. A short pause with a cleared, black screen is provided
before the routine exits.

FOGM.C

Input: Fogm is the name given to the main program in the simulator. It
has no parameters, but gets data from its header files and through
the readdata routine. Interactive input is also received vial the
readcontrols routine.

Output: None.

Side Effects: None.

Description: The fogm program consists of global variable declarations, local
variable declarations, system initializations, an active loop, and
some exit housekeeping. The initialization portion includes reading
in the DMA elevation data, making network connection (if in use),
setting the IRIS display configuration, defining the color table
entries, building all of the graphical objects used in the displays,
and computing the lighting and position of the polygons used to
produce the terrain image. Within the active loop is some
additional initializations and the flying loop. In the active loop

% initializations, the dial and mouse controls are reset to their initial
defaults, and the display buffers are loaded with the images that
remain unchanged during flight simulation (the contour map and
the legend/instruction box). Control is then passed to the flying
loop, which produces the flight simulation images until either a
target is hit or the simulation exit command is received. If a -target
was hit, an expiosion is displayed and the pre-launch phase of
designating launch and target positions is re-entered. If all three
mouse buttons have been pressed, the display is cleared and
various system parameters are reset to provide a graceful exit from
the simulator.

111

49

The flying loop contains the subroutine calls that produce the
simulation of flight. First, the mouse and dials are checked for
control input. Then the targets', missile's, and lookat reference
point's positions are all updated based on the elapsed time since
the previous frame and the appropriate speeds. View bounds is
called to determine which one kilometer grid squares are in view,
and then the indicators are all updated to show the new control
values, missile statistics, and view area. The main display routine
then draws the appropriate sections of the terrain, plus cultural
features and targets where appropriate. Finally, the updated
indicator objects are drawn, and the display buffers are swapped to
display the newly created image.

GAMMARAMP.C

Input: The inputs to gammaramp are a correction factor, a color table
starting index, the number of color table entries (shades) to be
defined, red, green, and blue intensities for the brightest color to be
defined, and finally, red, green, and blue intensities for the darkest
color to be defined.

Output: None.

Side Effects: Gammaramp has the side effect of defining entries in the system
color table.

Description: Displayed colors do not correspo,,d linearly to the numeric red,
green, and blue intensity values that are used to produce them. If a
range of colors (0 .. #colors-1) is defined in the strai htforward way
with a uniform increment, the intensity of the n color (In) is
given by Equation A.4, and the bright colors will appear more
widely spaced than the dark colors.

MazI - Mini s',

=n * # colors + MinI (A.4)
colors

Gammaramp avoids this by using a power function to increase
spacing between the dark colors' intensity values and To decrease p

the intensity increment as the colors get brighter. The strength of
the correction is determined by a value -y, which is constant for a
given range, but must be experimentally determined for each range
that differs in color or number of colors. FOG-M uses a y value of
1.5. The intensity of the nth color in a gammaramp created table is
given by Equation A.5.

112

- - | -- % % % S * - .'-

In (#colors-I (Ma: - Min) + Mini (A.5)

GETTGTPOS.C

Input: The input to get tgt pos is a socket number for Ethernet
communication (if in use), a boolean indicating designate/reject
status, the index of the currently designated target. and the
"name" of the tank object.

Output: Output is the new X, Y,Z position coordinates of the currently
designated target.

Side Effects: Get tgt pos updates several global data structures. It sets the
number of target images, updates the target position arrays, and
updates the array of target object names.

Description: The primary purpose of get tgt pos is to move the targets in the
simulation. If the networking capability is in lise, the target
positions for the next frame are received over the network. When
networking is not in use. targets are moved at a set speed of fifteen
knots, and reverse course when they reach the boundaries of the
ten kilometer square terrain area. As explained in Chapter VII, an
array of graphical objects is defined to match one object per one
hundred meter square of terrain, and this array is also used as
booleans to indicate the presence or absence of targets in the one
hundred meter grid square. Get tgt_pos begins by removing each
target from this array. New target positions are calculated or
received over the network. If one of the targets has been "locked-
onto," its new position is returned to be used as the current aim
point for the missile. This is easily determined if networking is off
because the designated target's index remains the same and the
new position can be directly accessed. The index correspondence is
not guaranteed when networking, so the index of the new target
whose coordinates are closest to the old targeted point is ised.

Targets that straddle a one hundred meter ,rid square boundary
must be drawn on Lop of both (or possibiy ail four) grid squares in
order to avoid being partially obscured by whichever square is
drawn last. (The target must be drawn immediately after the grid
square on which it rests to ensure that the target will be obscured
when it should be by terrain drawn in the foreground.) Since the
calculation of boundary intersection requires several trigonometric
functions plus an allowance for the distance between the center of

113

vJ .

the tank and its boundaries (which varies with the direction of the
tank), a simplifying algorithm is used. If the tank is close enough
to a boundary that the most distant part of the tank might cross
the boundary, the target is also drawn after the adjoining grid
square(s) (see Figure 7.3). This is done by adding a "new" target
to the array of target objects. The "new" target object is drawn at
the exact same location in the three-dimensional terrain, but it is
drawn after a different one hundred meter grid square, so it will
have-different target object array indices, and be in a separate
target object.

After all of the targets (originals and boundary copies) have
updated positions and target object array indices, objects are
added to the target object array as described in Chapter VII. This
array is then used by the terrain display routine to actually draw
the targets.

GND LEVEL.C
Input: Gnd level takes as inputs the X and Z coordinates of the point for

which the elevation is desired.

Output: Gnd_level returns a float which is the elevation at point X and Z.

Side Effects: None.

Description: Gnd level computes, through interpolation, the scaled elevation of
any point within the terrain boundaries. A calculation is done to
determine which gridtriangle contains the point. Then, using the
known elevations at the vertices of the triangle, the elevation of the
point is found.

IN THIS POLY.C

Input: In thispoly takes the following inputs:
- An array of points, polygon, which define a polygon. (Note: only
the X and Z coordinates of the points are used, the Y value is
ignored). d,
- An integer. num pert z. that, is the number of ,ertices in

polygon.
- A point, pnt, that is to be tested. (Note: only the X and Z
coordinates of the point is used, the Y value is ignored).

Output: In thi8_poly returns a boolean which is TRUE if pnt is inside the
polygon defined by polygon, FALSE otherwise.

114

-,%

- .,.
" ' ' '''i ',', '. t -" A f lA .p .* .-rk p- -. -. , ' €'t he € r € ,~? ~ 2 - . .. - .

Side Effects: None.

Description: In thispoly is a function which tests whether a point is inside a
given polygon, where both the point and the polygon are in the XZ
plane. The algorithm used constructs a bounding box around the
polygon. If the point lies outside the bounding it obviously can
not be inside the polygon. If the point lies inside the bounding box
a further test is made. A line is constructed from a point outside
the bounding box to the point to be tested. Each of the edges of
the polygons are then tested to see if they intersect the constructed
line and a count is kept of the number that do intersect. The
point lies inside the polygon if and only if the constructed line
intersects an odd number of the polygon's edges.

INITCTRLS.C
Input: Init ctrls takes as inputs the initial altitude of the missile, in feet;

the initial heading of the missile in degrees; and a boolean,
greyscale, which is TRUE if greyscaled terrain is to be displayed
and FALSE if color terrain is to be displayed.

Output: Init etris has as outputs the initial pan angle of the camera in
radians; the initial tilt angle of the camera in radians, and the
initial zoom setting of the camera in tenths of a degree.

Side Effects: The MOUSEX, MOUSEY, DIALO, DIAL1, DIAL2, and DIAL3
valuators are set as a result of calling this routine.

Description: Init ctrlu's purpose is to initialize the mouse and dial valuators
used for the operator controls. The initial altitude, heading, and
greyscale valuator settings are passed in as inputs. The pan, tilt,
and field of view settings are read from an "include" file and their
values passed back as outputs.

INITIRIS.C

Input: None.

Output: None.

Side Effects: Cailing this routine sets the iris attributes and configures -he fris.

Description: lnit iris accomplishes the following: it puts the Iris into
doublebuffer mode, sets the chunksize (the minimum memory
increment used in objects), sets the monitor type to either NTSC
or HZ60, and enables backface polygon removal.

115

INITTGTS.C

Input: None.

Output: None.

Side Effects: Init tgts always initializes the global target object array to all
zeros. If target data is not being received over the network,
init-tgts also defines ten targets by setting initial values in the
global target counter, target position array, and target direction
array. An auxiliary function init tgt is used to perform the actual
update of the global arrays.

INTERP ELEV.C

Input: Interpelev takes three inputs, each an array of X, Y, and Z
coordinates, representing a point. One array is the start point of a
line. the second array is the end point of a line. and rhe third array
is a point along the line.

Output: Interp elev returns a float that is the elevation value of the point
along the line.

Side Effects: None.

Description: Interpelev returns a float which is the linear interpolation of the
Y (elevation) coordinate of the point along the line, based on the
elevations at the start and end points of the line.

LIGHT ORIENT.C

Input: Lightorient takes as inputs the following:
- An array of coordinates for the polygon.
- An integer, num coorda, the number of coordinates in the
polygon.
- The X, Y, and Z coordinates of a point that is "behind" the
polygon (an interior point).
- The X, Y, and Z coordinates of a light source.
- The minimum and maximum color map indices to be used for
-his poiygon.

Output: Light orent returns the color map index of the coior to use in
lighting this polygon. It also reorders the polygon array (if
necessary) so that the points are ordered counterclockwise.

Side Effects: None.

Description: Light-orient computes a lighting for a polygon based on Lambert's
cosine law, which states that the intensity of the light reflected

116

" ," % % "4" %
"%' . "°' ' ' . ' ' ' ' , ,%,. *

." -" ,,'" " " *" '""
-=' -

, -"*'=
"°

* *'
' ' ' ' / ' ' *° ,. ' °

. ..",,, .€ d' ,' O .," i" ,€* % " "
.

" " %
M

% ,, 1' ' %) a % %,,== ' ' %* ,

from an object is proportional to the cos(t), where t is the angle
of incidence of the light ray. (see Figure 5.2). Light orient also
orders the vertices of the polygon in a counterclockwise fashion so
that backface polygon removal can take place (see the module
description for npolyorient).

LINE INTER2.C

Input: Line inter2 takes the following inputs:
- An array containing the X and Z coordinates of the start point of
line one is ignored.)
- An array containing the X and Z coordinates of the end of
line one. (Note: a three element array is used, but the second, Y
coordinate, element is ignored.)
- An array containing the X, Y, and Z coordinates of the start of
line two. (Note: a three element array is used. but the second. Y
coordinate, element is ignored.)
- An array containing the X, Y, and Z coordinates of the end of
line two. (Note: a three element arriy is used, but the second, Y
coordinate, element is ignored.)

Output: Line inter2 returns as outputs:
- An array containing the X and Z coordinates of the intersection
of line one and line two. If the lines do not intersect these values
are undefined not considered in the calculation).
- An integer which can be interpreted as follows:

0 - the lines do not intersect.
1 - the lines intersect, but the intersection uses an
extension of at least one of the lines past its start or
end points.
2 - the lines intersect, and the intersection occurs
between the input start and end points of both lines.

Side Effects: None.

Description: Line inter2 computes the point of intersection between two lines
in the XZ plane. The type of intersection, as explained above in
"Output" is also determined. Througnour the routine, three
element arrays are used for compatibility with other routines. The
second, Y, coordinate is not considered in any of the calculations.

MAKEINDBOX.C

Input: None.

117

,%.% y

Output: Makeindboz returns a graphical object "name," tags for editing the
speed, direction, altitude, and designate/reject readouts, and tags
for editing the zoom, pan, and tilt indicators.

Side Effects: None.

Description: Makeindboz generates a graphical object that contains both the
indicator box in the middle of the displays on the right side of the
screen and the "heads-up" display that is superimposed on the
terrain image (Figure 6.8). The object consists almost entirely of
straightforward line and character string drawing commands, but "
there are two interesting points. First, within a single object, there
are two different coordinate systems: one for the indicators
superimposed on the terrain, and another for the separate indicator
box. This is accomplished with an ortho2 call for each coordinate
system, and by bracketing each ortho2 with pushmatriz and
popmatriz commands. Note that the heads-up display is truly
superimposed; it is specified in two-dimensional screen coordinates
as opposed to the three-dimensional terrain coordinates.
The second interesting aspect is the movement of the slider bar
indicators. Drawing the indicators as polygons would require a
sequence of pushmatri:, translate, and popmatriz calls for each
indicator, with movement achieved by editing the translate call. To
avoid all of this matrix movement and multiplication, the
"triangle" of the indicator is actually an overlapped line that
"fills" the triangle by spiraling inwards. The line is drawn relative
to the indicated point, with each segment of the line specified as
offsets from that initial point, rather than as absolute coordinates
(Figure A.1). Movement of an indicator triangle defined in this
way is achieved by editing the parameters of a move2 call in the
object, which sets the current graphics drawing position to the
indicated point on the slider bar scale. Makeindboz is called once
by fogm before the flying loop is entered, and then the object is
edited (to update the indicator values) and called (to display it)
every frame.

MAKEINSTRBOX.C

Input: None.

Output: Makeinstrboz returns the name of an object to fogm.

Side Effects: None.

118

-'' %'. ' % % _% ' -' . ' , ' .% , , % ' % . ". ". . " _' . " - - -" 7- " - % - 7, - " -• "- . ." " "• . -I,

4

(0,00)10)

(0,+4)

(0, 10)

C-S,-43

((,0,0-

A

(-4,0) (+3,+S)

1+1)

(+l,0-2)

(+4,-B)

(0,0)

Figure A.

Indicator Fill using Line Segments

a

'f"

Description: Makeinstrboz creates the object that produces the display in the
lower right of the screen (Figure 6.8) during flight simulation. This
display contains the legend for the FOG-M controls and the flight
parameters they affect. Makeinstrboz is called once by fogm to
create the object, and then the object is called twice per flight to
put the image into each buffer. Note that writemasks are not
necessary as they are with makemap and makenavboz, because
nothing else writes to the instruction box portion of the screen
during flight. The image thus remains undisturbed in the bitplanes
despite the changes in other screen areas.

MAKEMAP.C

Input: The input to makemap is the globally defined array of elevation
and vegetation values, gridpizel.

Output: The output from makernap is a graphical object "name." which is
returned to fogm.

Side Effects: None.

Description: Makemap generates the object containing the contour map and
grid that appear fuil screen during the pre-launch phase, and
appear in the upper right corner of the screen during flight
simulation (Figure 4.1). The map is produced using the
methodology described in Chapter IV. Fogm c.lls the object
returned by drawcontour twice, in order to place the map image in
both buffers. The image is then protected from overwrite by a
writemask. Fogm also passes the object name to prelaunch, which
uses it in much the same way as fogm.

MAKESCREENS.C

Input: None.

Output: Makescreers returns an array of objects: instruction panel,
statistics box, flight path between launch and target endpoints,
and the three welcome screens, plus tags to update the statistics
and iight path.

.I(ie Effects: None.

Description: Makescreens builds all of the objects (mostly screens of text) that
are used by prelaunch.

P

1L20 '

MAKETANK.C

Input: None.

Output: Maketank returns the name of an object containing a single tank,
drawn around the origin.

bide Effects: None.

Description: Maketank builds a object that consists solely of the drawing
commands to produce a single tank. The tank is thirty-two feet
long, ten feet high, and ten feet wide. Its center bottom is at the
origin (coordinates 0.0.0). with its left side on the plane Z = -5. its
back on the plane X = -15, itsz bottom on the plane Y = 0, and it

faces to the right along the positive x axis. For each of the twenty
polygon faces that make the tank, the X, Y, and Z coordinates of
each polygon vertex are stored in an array, passed to lightorient,
and then drawn with polf, the filled polygon drawing command.
Lightorient ensures -he vertices are ordered counter-ciockwise in
the array (with respect to an interior point) for backface polygon
removal, and then calculates the appropriate color for the polygon
using the same lighting model that is used for the terrain (see
Chapter V).

NEARESTTGT.C

Input: Nearest tgt takes as inputs the X, Y, and Z coordinates of the
missile position, and the X, Y, and Z coordinates of the camera's
look-at position. (The end points of the line of sight vector).

Output: Nearest tgt returns as otput an integer, tgt _dz, which is the
target index of the target that is closest to the line of sight vector.

Side Effects: None.

Description: For each of the existing targets, nearest tgt computes the distance
between the target and the line of sight vector. It returns the
index of the target that was found to be closest. In the case of two
targets which are the same distance apart, the highest index value
will be returned.

NPOLY ORIENT.C

Input: Npolyorient takes as input:
- An integer, num coords, that is the number of vertices in the
polygon.
- An array containing the coordinates of the polygon.

- The X, Y, and Z coordinates of a point that is "behind" the

121

.

polygon (an "interior" point).

Output: Npolyorient returns as output an integer which is interpreted as:
1 - the vertices of the polygon are ordered clockwise.
2 - the vertices of the polygon are ordered
counterclockwise.

Side Effects: None.

Description: Npoly orient determines if the polygon is ordered clockwise or
counterclockwise by computing two points: one along the normal
vector and the other, the same distance from the polygon, but
along the vector in the direction opposite the normal. Next the
distance between these points and the "interior" point is
computed. If the "interior" point is closer to the point along the
normal vector, the polygon is ordered clockwise, otherwise the
polygon is ordered counterclockwise.

PRELAUNCH.C

Input: The input to prelaunch is two arrays. The first contains objects.
and the second contains tags for editing those objects.

Output: Prelaunch returns the X, Y. and Z coordinates of the missile's
designated launch position, and the initial direction of flight for the

missile. This direction is returned in both radians and compass
degrees (Figure 7.1).

Side Effects: None.

Description: Prelaunch first provides three screens of introductory information.
Each screen is an object defined by makescreens. After those, the
user is presented with a full screen contour map of the ten
kilometer by ten kilometer area available for overflight. Mouse-
selected points define the missile's initial position and direction of

flight, and are displayed on top of the map. The map is writemask
protected, so it is only drawn twice (once for each buffer) even
though the flight path is repeatedly drawn and erased on top of the
map. The flight path is made to act like a rubber band between
the launch and cursor positions by repeatedly editing of -,he
positions in the object containing the flight path iine drawing
commands. Once the flight path is confirmed, the launch position
and heading are returned to the fogm program.

':

122

% %

RANDNUM.C

Input: Randnum uses the global random number seed.

Output: Randnum returns a floating point random number.

Side Effects: The global seed value used by randnum is updated during every
invocation. -

Description: Randnum is a linear congruential pseudo-random number
generator. The algorithm is a modified version of the one given by
Sedgewick [Ref. 131. It uses a a special piecewise multiplication
routine mut to preserve the low-order digits of the newly 4'

generated seed even in case of overflow. The value returned is the
new seed, scaled to fall between zero and one, inclusive. The
random numbers are used in fogm to vary the point on the tank
that the missile aims for. This simulates the variance in impact
point that results from the optical homing of the real missile.

RANDSEED.C

Input: Randseed takes a long integer as input.

Output: None.

Side Effects: Randseed updates the global random number seed value.

Description: The pseudo-random number generator implemented in randnum
always returns the same string of numbers when it starts with a
given seed value. Randseed provides the means to change that
initial seed value so that different program runs will have different
strings of "random" numbers.

READCONTROLS.C

Input: The inputs to readcontrols are the global X, Y, and Z random
offset values for the aim point on the target, the current
designate/reject status, and the black-and-white versus color
boolean greyscale.

Output: All of the -iser-"ommanded controi .'aiues are output Froin
readcontrois: missile sDeed, heading and aititude. camera pan. -ilt.
and zoom angles, plus designate/reject status, greyscale status.
Readcontrols also returns values for the booleans that control the
active and flying loops.

Side Effects: When a target is first designated, readcontrols calls randnum and
updates the global target aim offsets rand:, randy, and randz.

123

4.

\'v y.'.::L* ~..p .,4 4

Description: Readcontrols checks the status of all of the valuators that provide
input to the FOG-M simulator, and performs scaling, units
conversion, and immediate processing, as appropriate. It
determines whether to accept or reject a "designate" command,
based on the color index of the pixel at the center of the screen. (If
a tank is in the crosshairs, the color index will be from the tank's
color ramp, and a designate command will be accepted. Otherwise,
a designate command will be ignored.)

READDATA.C
Input: None.t

Output: None.

Side Effects: Readdata fills the global array gridpizel.

Description: Readdata opens and reads the values from the terrain elevation
data file and stores the values in the gridpizel array. Note that the
elevation data file is arranged in a format as discussed in Chapter
III. The gridpizel array is arranged in straight rows and columns
analogous to the geographic positions of the data.

ROADBOUNDS.C

Input: Road bounds takes as input the following:
- Three arrays (ptl, pt2 and pt3) containing the X and Z
coordinates of three points along the centerline of the road. The
line segment from ptl to pt2 defines the first segment of the road.
The segment from pt2 to pt3 defines the next segment of the road.
- A float, width, which is the width of the road in feet.

Output: Road bounds returns the following as outputs: - Four arrays
(left ptl, rightptl, leftpt2, and rightpt2) which contain the X
and Z coordinates of the first segment's left and right sides. The
left side runs from leftpt 1 to left pt2 and the right side runs from
right ptl to right pt2.

- Four integers. first zgrid. first :grid. last zgrid and last zqrid.
which are the indices of the bounding box surrounding the airst
road segment (see Figure 8.2).

Side Effects: None.

Description: Given three points along the center line of the road, and the road's
width, road bounds computes the start and end coordinates for the
first segment's left and right sides. The end coordinates are
computed as the intersection of the first segment's left (or right)

124

r.

side with the second segment's left (or right) side. This insures
that adjoining segments will meet cleanly. The second function of
road bounds is to compute a bounding box around the first road
segment. This box is defined as the row indices of the northern
and southern most gridsquares that the road segment intersects,
and the column indices of the eastern and western most gridsquares
that the road segment intersects (See Chapter VIII for a more
detailed discussion).

SORT ARRAY.C

Input: Sort array takes as inputs:
- An array of points, pnt8.
- An integer that is the number of entries in the pnts array.
- A boolean, which is TRUE if the array should be sorted in
descending order, FALSE if the array should be sorted in ascending
order.
- The index number of the :oordinate that is the sort key: 0 for the
X coordinate., 1 for the Y coordinate, and 2 for the Z coordinate.

Output: Sort array returns the array pnts with the points sorted according
to the input parameters.

Side Effects: None.

Description: Sortarray performs a simple "bubble-sort" of the input points
according to the input parameters.

UPLOOKPOS.C

Input: Uplookpos takes the following as inputs:
- The heading of the missile in radians.
- The pan angle of the camera in radians.
- The tilt angle of the camera in radians.
- The X, Y, and Z coordinates of the missile's position.
-The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target.
FALSE otherwise.

Output: Uplookpos returns as outputs the X, Y, and Z coordinates of the
camera's look-at position.

Side Effects: None.

Description: Uplook position computes a point along the camera's line of
sight. If the missile is locked on a target, the look-at position is the
locked-on target's position. Otherwise it is any point along the

125

,, .-. *,- -'- . . . p - " *... , '- ~.- ' ., : ~. - e* 5 5- A M

camera's line of sight. See Chapter VI and Figure 6.2 for a more
detailed discussion.

UPMSL POSIT.C

Input: Upmslposit takes as inputs:
- The heading of the missile in radians.
- The speed of the missile in knots.
- The X, Y, and Z coordinates of the missile's position.
- The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

Output: Up_mol_posit returns as outputs:
- The new heading of the missile in radians, if it was changed to
track a locked-on target.
- The new heading of the missile in degrees measured in the I.

compass convention.
- A boolean which is TRUE if the missile is still flying (has not hit
a target), and FALSE if the missile has hit the target.

Side Effectsi None.

Description: Up msl posit calculates a new missile position for the next frame. N

The new position is either based on the commanded direction,
speed, and altitude (when the missile is NOT locked onto a target),
or the commanded speed and the direction to the target (if the
missile is locked onto a target). For a detailed discussion of the
routine, see Chapter VI.

.1

VIEWBOUNDS.C

Input: View bounds takes as inputs the X, Y, and Z coordinates of the
missile's position; the X, Y, and Z coordinates of the camera's
look-at position; and the field of view (zoom) value.

Output: View bounds returns as outputs the row indices of the northern
and southern most gridsquares to be drawn, and the column
indices of the western and eastern most gridsquares to be drawn.

Side Effects: None.

Description: The purpose of view bounds is to construct a bounding box around
the gridsquares which are to be drawn. The box is constructed by
extending the line of sight vector down until it intersects the
minimum elevation plane. The view bounds extends 20
gridsquares north, south, east, and west of this intersection point.

126

ii ,

If the missile's position is not within the bounds, the bounds are
extended to include the missile's position. For a more detailed
discussion, see Chapter VI and Figure 6.5

127

~ -' ..

APPENDIX B - SOURCE LISTINGS

BUILD-ROAD

#include hstdio.htt

#include "'fogm.h' t

#include "filesh"
#include "gl.h"
#include "math.h"

#define X 0
#define Y 1
#define Z 2

#define DIAGONAL 0
4define HORIZONTAL 1
#define VERTICAL 2

#define LOWER 0
#define UPPER 1

build _road()

extern Object road[99J I99I;
extern short gridpixel[1OO1f 100];
FILE *fp, *fopeno;
float road width; road width if feet
int num-pts; /number of data points

for the road seqment/
int segnum =0;
char temp]1001;
int cnt, i, j;
int vertex-cnt, num _duplicates;
float gnd level();
float elev;
float pt1I31, pt2131, pts33;
float nw _corner[3j, ne-cornerl3], sw corneri3l, se _corner'3];
float right _ptlf31, right _pt2f31;
float left _ptIl3. left pt2'3'-
Ioat riort h - ounn. imuth Jbound. -asc - otnd. -,vsL Jbound:

iioat seg _dir;
mnt ne-flag, nw _ flag, se-flag, sw-flag;
mnt xgrid, zgrid;
int first xgrid, last _xgrid, first _2grid, last zgrid;
float polyl[l01!31;

frontbuffer(TRUE);
fp =fopen(ROADFILE,"r");

128

WV-R~rWV~rUV~rWUW-lr~lrMPUrVUM~a 9Ul%.1

while (fscanf(fp, "'%e"', &road _wvidth) !=EOF){
fscanf(fp, "t%d", &num _pts);
fscanf(fp, "%e %ell, &rptl[X1, &ptlIZI);
fscanf(fp, 11%e %el', &zpt2lj, &pt2tZJ);

delta _x = pt21XI - ptI[XI;
delta z = pt2jZj - ptliLZ;
seg-dir = atan2(delta-z, delta-x);
left ptLXI = ptl[XI + (cos(seg dir + HALFPI)*road width/2.O);
right ptl[Xj= ptl[X] + (cos(segjdir - HALFPI)*road -width/2.O);
left-ptIjZI = pti[ZJ + (sin(seg dir + HALFPI)*road width/2.0);
right -ptlIZI ptl[ZI -(sin(seg _ dir - HALFPI) * road width /'2.0);
for (cnt = 3; cnt <= num pts +i 1; ++cnt){

if (cnt <= num pta)
fscanf(fp, 7'97e %el', &pt3[Xl, &pt3[Zl);

ele(ptSIXI = pt2jXj;

pt.Z1 = pt,2!ZI;

/' print new road segment number on title screen
segnum += 1;
pushmatrixo; -

ortho2(0.0. 1023.0. 0.0, 767.0);
view port (0. 1023.0,76 7);
sprintf(temp, "Building road segment: %d%", segnum);
color(BLUE);
rectf(780.0, 20.0, 1010.0, 30.0);
color(CYAN);
cmov2i(780, 20);
charstr(temp);
poprnarix 0;

/ a determine the boundaries of this road segment ~
road -bounds(ptl, pt2, pt3, road-_Width, left_ptl, right-ptl,
left _ pt2, right _pt2, &first _xgrid,
&first zgrid, Mast xgrid, &Mast zgrid);
for (xgrid = first -xgrid; xgrid <= last xgrid; ++xgrid){

for (zgrid = first zgrid; zgrid <= last zgrid; ++zgi)
ne flag = FALSE;- rd)
nw-flag =FALSE;

sw flag =FALSE;

se flag =FALSE.

vertex cnt = 1:

.s _bound i floatO(xgrid - 1) F~T MOOM:
west bound =(float)(xgrid) aFT lOOM;
north bound =(float)(zgrid + 1) a FT lOOM;

south bound =(float)(zgrid) a FT _lOM-;

aw corner LAI = west bound;
sw -cornerZ] south-_bound;
elev =gridpixeIzgridflxgrid & elev mask;
sw -cornerjYj pow(elev, ALTSCALE);

129

ONO

~~~ NA%



se cornerNX = east bound;
se cornertZl = south-bound;
elev = gridpixe1Izgridlfxgrid~ll & elev mask;
se corner[Y] = pow(elev,ALTSCALE);

nw corner)X) = west -bound,
nw corner.Zl = north _bound;
elev = gridpixellzgrid±1~lxgrid] & elev mask;
nw cornerlYl pow (elev, ALTSCALE);

ne corner[Xl east-bound;
ne corner!~ V north bound;
elev = gridpixe1[zgrid+ll[xgrid+l & elev -mask;
ne-cornerlYj = pow(elev, ALTSCALE);

/ * determine points of intersection between the left and
right sides of the road and the eastern grid boundary
and add these points to the polygon vertex array=

do-boundary (VERTICAL, UPPER, xgrid, zgrid, se-corner, ne corner,
left _ptl, left _pt2, right _ptl, right _pt2, &se _flag,
&ne _hag, polyl. &vertex _cnt);

/determine points of intersection between the left and
right sides of the road and the northern grid boundary
and insert these points into the polygon vertex array

do-boundary(HORIZONTAL, UPPER, xgrid, zgrid, ne corner,
nw corner, left _ptl, left _pt2, right _pti,
right-pt2, &ne-flag, &nw _flag, polyl, &vertex _cnt);

/ * determine points of intersection between the left and
right sides of the road and the diagonal and
insert these pointsinto the polygon vertex array

do-boundary (DIAGONAL, UPPER, xgrid, zgrid, nw -corner, se corner,
left-ptl, left-pt2, right ptl, right-pt2, &nw _flag,
&se-flag, polyl, &vertex-cnt);,

/remove duplicate entries from the polygon array *
num-duplicates = 0;
for (i =1; i <= vertex _cnt; ++i){

f((polv t i ')W polyLi-[' O!i&&
iPolyti. . 2: poiylli-l! 2'))

,or (j i: j 1vprtex -nt - num iuoiicares: --

polylljj10j = poly1ij+1[01;
polyl~il[ll = poly1ij+111;
polylj][2J = polyljj+1j2J;

num-duplicates +=;

vertex cnt -=num duplicates;

130



if (vertex cnt > 0) 1 /* add polygon to grid-object ,

if (road [zgrid I[xgrid '=0){

editobj (road Jzgrid] JxgridJ);

else{
road Izgrid) Ixgridl = genobjfo;
makeo bj (roadlIzgridj 1 xgridi);

color(ROADGREY);
polf(vertex cnt +1, &polyl0IIOI);
linewidth();
poly(vertex _cnt -1. &polyij01101);
closeobjo;

vertex cnt=-1
ne flag =FALSE;

nw-flag =FALSE;

sw flag =FALSE;

se flag =FALSE;%
IN.

/ * determine points of intersection between the left and

right sides of the road and the southern grid boundary
and insert these points into the polgon vertex arrayI

do botindary (HORIZONTAL, LOWER, xgrid, zgrid, sw corner,
se corner, left _pti, left _pt2, right _ptl,
right-pt2, &sw-flag, &se_flag, polyl, &vertex-cnt); J

/* determine points of intersection between the left and
right sides of the road and the diagonal and
add these points to the polygon vertex array

do-boundary (DIAGONAL, LOWER, xgrid, zgrid, se-corner, nw-corner,
left_ptl, left pt2, right ptl, right pt2, &se flag,
&nw flag, polyl, &vertex cnt);

/* determine points of intersection between the left and
right sides of the road and the western grid bound
and add these points to the polygon vertex array ~

do -boundary (VERTIC AL, LOWER, xgrid, zgrid, nw-corner, sw corner, _
left _ptl, left _pt2, right _ptl, right pt2, &nw _flag,
ksw flag, polyl, &vertex cnt);

remove -iuplicate mcnries from the polygon array

num-duplicates = 0;
for (i = 1; i <= vertex cnt; ++i){

if ((polylilfoJ = polyIli-1JJ0J) 8&
(polyl[i][2J = polylIi-II[21)){

for Uj = i; j < vertex cnt - num _duplicates; ++j){
polylIjI(0f = poly1[j+iJ(0J;
polylljil]l = polyllj±1[11;

131

eve W .



poly1~jl 21 = poly1(j+11121;

num-duplicates +i= 1;

vertex cnt - num duplicates:
if (vertex cnt > 0) t "' add polygon to grid-object >

if (road ligridl [xgrid I! 0){
editobj (road Jzgrid~ I xgrid 1);

ele(road lzgridl (xgrid I = genobjo;
makeobj (road Isgrid] Ixgridl);

I
color(ROADGREY);
polf(vertex cnt +1, &polyi[0][O]);
linewidth();
poly(vertex -cnt + 1, &polyllOIIOJ);
c loseo bj()

right pt1!X right _pt2X;
right ptlIZ: = right _pt2lZl;
left _ptl!Xj = left _pt2IXl;
left ptl[Zj' = left _pt2[ZI;
ptl[XI = pt2tX];
ptllZl = pt2JZI;
pt2IX] = pt3IX!;
pt2IZj = pt3[Zj;

fclose(fp);
frontbuffer(FALSE);

132



BUILDTERRAIN

/*buildterrain.c - this function builds objects representing 1km grid squares
in 3-D, with each grid square generating 4 objects, identical except for
order of drawing S

#include "gl.ht' /* get the graphics defs
#include I"device.h" /* get the graphics device defs ~
#include "fogm.h" /* default constants 5

#include "'math.h" /* math function declarations '

buildterrain()

/5array of data points to build the terrain 5

extern short gridpixel1O1[11;

extern Iloat savetriangle99! 991q2;:'13 3;

extern long gridcolor[99199J;

extern Object targeA919;

extern float ground plane4V 31;

extern long gnd plane color;

float gnd-plane-ht;

Coord trianglel1j31131, triangle2f3][3j; /* polygon coordinates *

short xgrid, zgrid; /* indexes into the grid object array 5

short endrow, endcol; /5miscellaneous indexes etc '
in row, col;

float ax,ay,az; /* interior point for use in the lightpoly function 5

float lx,ly,lz; /* position of light source in Iightpoly function 5

*min and max coiormaio indexes for lighting the poly

long :-oiorm in. *:-oiormiax:

/color index to use returned by the lightpoly function 5

long colortouse, colorl, color2;

char temp[501; /* character string for countdown 5

float x'y;
float garnmacorr;
long rampamax, rampamin, rampbmax, rampbmin,

133



int startrow, startcol, coordidx, vertex;

lx = 500 * FT 100M; / direction of light source
ly = 100000 * FTl100M;
lz = ly;

frontbuffer(TRUE); / write to front buffer

/ compute color for ground plane polygon */
gnd plane-ht = pow((float)MN, ALTSCALE);

ground _plane0lIOl = -NUMXGRIDS * FEETPERGRID:

groundplane[OIll = gndplane ht;
ground_plane0! 2 = NUMZGRIDS * FEETPERGRID;

groundplane[ll[01 = 2.0 * NUMXGRIDS * FEETPERGRID;
groundplane[1J[1J = gnd plane ht;
groundplaneill[i2 = NUMZGRIDS * FEETPERGRID;

groundplane2101 = 2.0 * NUMXGRIDS FEETPERGRID;

ground _planeI2] Ili = gnd plane ht;
groundplane[2]I21 = -2.0 * NUMZGRIDS FEETPERGRID;

ground _piane03:, 01 =-NUMXGRIDS ' FEETPERGRID:
ground _plane!3; , ! = gnd _plane _ht;

groundpiane!31'21 = -2.0 NUMZGRIDS ' FEETPERGRID;

lightorient (ground plane,4,0.0,0.0,0.0, lx, ly,1z,256,46 1, &gndplane-color);

/* compute coordinates and colors for triangles and store in global
variable savetriangle for later display */

for (col = 0; col < 99; ++col) {
/* print new countdown number on title screen
pushmatrixo;
ortho2(0.0, 1023.0, 0.0, 767.0);
viewport (0, 1023,0,767);

sprintf(temp, "Countdown to launch: %d%", 98 - col);

color(BLUE);
rectf(780.0, 15.0, 1010.0, 30.0);
color(CYAN);
cmov2i(788. 20);

'narsrLtern p1;
2oDmatrix():

for (row = 0; row < 99; ++row) {

/* choose which color ramp to use so that a checker board
effect is acheived */

if ((row+col)%2){
colormin = 258;
colormax = 461;

134



trianglelflffJ2f = (float)row *(-41.01) * 8.0;
I trianglel[OI[0j = (float)(col-t1 41.01 * 8.0;

triangle if 1ff i = pow ((float) (gridpixelf[row] fcoll &elev msk)
,ALTSC ALE);

triangle1111f2j = (float)row1* (-41.01) 8.0;
triangleli1[01 = (float)(coi) 4101 8.0 ;
triangle1jQ11 = pow ((float) (gridpixelirow fI fcol I&elev _m ask)

,ALTSCALE);

=copy common vertex values for opposing triangle of grid
foi tvertex = 1; vertex <. 3; -- vertex) {

* criangle2 vertexijDi = trianglel! vertex! f0i;
triangle2lvertexlil1 = triangleti vertexi if;

*triangle2ivertex] [21 = triangle I vertexf[2fj;

/ * change corner coordinate to form opposing triangle of grid *

triangle2o!121 = (float)(row+i) *(41.01) *8.0;
triangle2[01[0f = (float)(col+1) 41.01 * 8.0;
triangle2lo][lf = pow ((float) (gridpixellrow+I If fcol+I I& elev_m ask)

ALTSCALE);

/compute an interior point for trianglel ~
ax = triangletfOffOl + 15.0;
ay = -10.0;
az = trianglelofl21 -15.0;

/* light and orient trianglel t
lightorient(trianglel A '.ax.avaz.1x.1v.!z.colormin. colormax. &colorl I:

.OMPI1t0. interior point or iriangie2

ax = triangie210)101 - 15.0;
ay = -10.0;
az = triangl2fof 2f +15.0;

/* compute the light for and orient triangle2 *
Iightorient(triangle2,3,ax,ay,az,Lx,ly,lz,colormjn,colormax, &color2);

/ * compute average color for the square/

135



colortouse (color! + coior2) / 2;

/ * save this triangles color and orientation .
for (vertex = 0; vertex < 3; ++vertex)

for (coordidx =0; coordidx < 3; --- coordidx){
saerinl =rwI ojAjvre codd

triangle 1[vertex] [coordidx[;
savetriaiglelrowj [coil 11] [vertex] [coordidxj

triangle2lvertexi [coordidxj;

gridcolorrowl [coil] colortouse;

frontbuffer(FALSE);

138



COLORRAMP

/'constructs the color ramps to be used for displaying the terrain.
If greyscale is true, constructs greyscale ramps, else it
constructs green ramps. /

#include tlfogm.hH fogm constants '

colorramp(greyscale,init)
int greyscale, init;

in Li;

/* build two gamma corrected color ramps with slightly offset colors/
if (greyscale) (

gammaramp(1.5,256,205,255,25 5 ,255,50 ,50,50); /* even terrain ramp/
gammaramp) I.5.462,205.245.245,245.40.40,40); *odd terrain ramp
gainmaramp(1.5,668,180,235,235,235,30,30,30); /* tank ramp/
mapcolor(SKYBLUE,230,230,230); /* sky color 4

mapcolor(ROADGREY,35,35,35),

else{
gammaramp~l.5,256,205,O.255.0,O,50.0): , even terrain ramp
gammaramp(l.5,462,205,0,245,0O,40,0); ~'odd terrain ramp
gammaramp(1.5,668,180,255,165,55,75,55,0); /* tank ramp
mapcolor(SKYB3LUE,200,200,255); /sky color 4

mapcolor(ROADGREY,35,35,35);

if (init){
mapcolor(16,0,70,0); /4set up colors for contour map 4

mapcolor( 17,0,80,0);
mapcolor( 18,0,90,0);
mapcolor( 19,0, 100,0);
mapcolor(20,0, 110,0);
mapcolor(21,0, 120,0);
mapcolor(22,O,1S0,0);
mapeolor(23,0, 140,0);
mapcolor(24,0, 150,0);
mnaocolor(25.0. 165.0)1
rnapcojorl 26.0.180.0);
rnapcoiort 27.0.190.01:
mapcolor(28,0,2 10,0);
mapcolor(29,0,225,0);
mapcolor(30,0,240,0);
mapcolor(5 1,0,255,0);
mapcolor(32,75,55,0) ,
mapcolor(33,95,60,O);
mapcolor(34 ,1 15,70,0);
mapcolor(35,125,76,0);

137



mapcolor(36,135,83,0);
mapcolor(37 ,145,90,0);
mapcolor(38,155,97,0);
mapcolor(39, 165,105,0);
mapcolor(40,175,110,O);
mapcalor(41 .185.113,0);
mapcolor142, 190,118,0);
mapcolor(43,200,127 ,0);
mapcolor(44,210, 135,30);
mapcolor(45,225, 145,35);
mapcolor(46,240,155,45);
mapcolor(47,255, 163,55);
for (i=64; i<128; i++) mapcolor(i,0,0,255);
for (i=128; i<256; i-t--+) mapcolor(i,255,O,O);
mapcoior(851,0,150,0); /~set up colors for instruction box S

mapcolor(852,255, 165,55);
mapeolor( 853 .95 .60.0);
mapcolor(854.0,0,0); /* color for indicator box background* I

138

W %'



COMPASS

/* compute the compass heading in degrees of the input direction. *

#in~clude ?"fogm.hII /* fogm constants /

float compass (direction)
double direction;

float compassdir;

compassdir = RTOD *direction;
if (compassdir <= 90.0)

compassdir = 90.0 - compassdir;

elecornpassdir = 450.0 - compasadir;

revcurn(cornpassdir);

13



DISPLAYTERRAIN

/* Compute which polygons need to be drawn to display the terrain and
output them in an order such that the polygons farthest from the viewer
are drawn first and those closest are drawn last.

Note: Eventhough this seems like a long routine, it is broken into 8
independent cases based on the direction the camera is looking.
If you understand one case the others are merely mirror images of the
algorighm for other octants. */

#include "fogm.h"
#include "math.h"
#include "gl.h"

displayterrain(vx, vy, vz, px, py, pz, fovy,
firstxgrid, firstzgrid, lastxgrid, lastzgrid)

Coord vx, vy, vz, px, py, pz;
int fovy;
short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

extern float ground _planei4l[31;
extern long gndplane color;
extern Object road[991[99];
extern Object target9911991;
extern float savetrianglel99 ] [991[2][3][31;
extern long gridcolorJ99]]99];

double lookdir;
int threshold, count, startx, startz;
short xgrid, zgrid;
float tanval;
float y;

if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
pushmatrixo;

.0olor(SKYBLUE);
,'tear'(;

ortho2(0.0,1023.0,0.0,767.0); * outline the screen
color(BLACK);
recti(0,0,1023,767);
popmatrixo;

pushmatrixO;
perspective(fovy, 1.0,0.0,19500.0);
lookat (vx,vy,vz,px,py,pz,0.0);

140

, ..,.. .. * - • • . ..- -. .. . . .. . . ". .-, .. - . -. -,- . -. -. .- • - . .% % - '
. 7" . "." . _, , .... .,' , , . , *. . - " , -a. .S " ." ." .. ... A - - . ..a. .. - .o ..- - - a . -



/* determine the direction of the line of sight '

lookdir = (double) atan2 ((float) (vz - pz), (float)(-(vx - p))
if (lookdir < 0.0) lookdir += TWOPI;

/* lay down the ground plane ~
color(gnd _plane color);
poif(4, ground- plane);

/* put the grid objects through the geometry engine in an order
based on the lookdir. */

if (lookdir > SEVEN_QTRP1)

/* 8th OCTANT *
threshold = (int) (tan (lookdiri-H ALFPI) +- 0.5);

count = 0;
startx =Iastxgrid;
startz =firstzgrid;
while (startz <= lastzgrid)J

zgrid =sta~rtz;
xgrid =startx;

while ((xgrid <= lastxgrid) && (zgrid <= lastzgrid))

color( gridcolor'i zgrid Ixgrid 1);
po tf(3, &savetriangle zgridI[Ixgrid Ii0~ 1 [I 0 );
polf(3, &savetrian gle z grid I [ xgridj I11I1101 [01);

if (road [zgridj I xgridl != 0) callobj (road[z grid~ I xgrid 1);
if (target~xgridJ~zgridJ != 0) callobj(targetJxgridJ IzgridJ);
/ * check if tank should be drawn now

zgrid += 1;
count += 1;

if (count >= threshold){
xgrid + = 1;
count = 0;

gta~rtx -~ I;
ount = 0:

if (startx < firstxgrid)
startx = firstxgrid;
startz += threshold;

else if ((lookdir > THREEHALVESP1) &&(Iookdir <= SEVENQTRPI))

141



/*t~hOCTANT/
tanval = tan(lookdir-'HALFPI);
if (tanval == 0.0)

threshold = 1000;
else

threshold = (int)((1.0/tanval) + 0.5);

count = 0;
startx = lastxgrid;
starts = firstagrid;
while (startx >= firstxgrid)

zgrid = !sta~rtz;
xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid)){

color(gridcolor z grid] Ixgrid]1);
polf(3,&savetriangleagridl ixgridj [Oj 101 O0);
polf(", &savetriang lei zgrid 1ixgridY VI 0;O)-

if (roadjzgridjjxgridj != 0) caJlobj (road jzgrzdj jxgrjd 1);
if (target Ixgrid] [zgridj != 0) callobj(ta~rget[xgridj Izgrid]);

xgrId 1;
count = 1;

if (count >= threshold){
zgrid - 1;
count =0,

starts += L;
count = 0;

if (starts > lastzgrid){
starts lastzgrid;
startx -=threshold;

else if ((lookdir > FIVEQTRP1) && (loakdir <= THREE HALVESP1))

'th OC;TANT
,anval =-tandookdir-HALFP)
if (tanvai == 0.0)

threshold = 1000;
else

threshold = (int)((I.0/tanval) + 0.5);

count = 0;
sta.rtx = firstxgrid;
starts = firstzgrid;

142



while (startx <= lastxgrid){
agrid = startz;
xgrid = startx*;

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid)){

coior(gridcolor'zgrid 'xgridli);
polf(3,&savetriangle[zgrid[ [xgrid[ 10110110);
polf(3,&savetriangle[zgrid] Ixgrid] I[11101101);

if (road [zgrid] Ixgrid] != 0) callobj (road jzgrid] [xgrid]);
if (targetlxgridflzgridj '= 0) callobj(targetlxgrid1!zgrid1);
xgrid += 1;
count += 1;

if (count >= threshold){
zgrid =1

count =0;

startz += 1;
count =0-,

if (startz > lastzgrid){
startz = Iastzgrid;
startx += threshold;

else if ((lookdir > P1) && (Iookdir <= FIVEQTRP1))

/ 5th OCTANT *
threshold = (int) (-tan (lookdir+HALFPI) + 0.5);

count = 0;
startx = firstxgrid;
startz = firstzgrid;
while (startz <= lastzgrid){

zgrid =startz;
xgrid = startx;

while -(xgrid = ?rstxgria) ?i& (zgrid [aLzgrid 1)
:'OiorI gricolor zgrid L xgridii);

polf(3,&savetriangle~zgridj xgrid 110101 [0[);
polf(3,&savetriangle[zgridj xgridl[ 11110110;V

if (roadjzgridj [xgrid[ != 0) callobj (road[I:grid[ [ xgrid]);,
if (target~xgridl[zgridI ! 0) callobj (target[xgrid][jzgrid 1);
zgrid += 1;
count += 1;

143 .5

NINO j



if (count >= threshold){
xgrid -- 1;
count =0;

startx I

count =0;

if (startx > lastxgrid){
startx = lastxgrid;
start: ±= threshold;

else if ((lookdir > THREEQTRP1) && (lookdir <= PI))

/* 4thOCTANT *
threshold = (inc) (tan (Iookdir- HALFPI) - 0.5);

count =0;

startx -firstxgrid;

sta.rtz =lastzgrid:

while (startz > = firstzgrid)
zgrid startz;
xgrid startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid))(

color(gridcolor[zgrid] Ixgridl);
polf(3,&savetrianglezgridxgrid[0][l
polf(3,&savetriangle[zgrid] lxgridj [ ij 0[0]~);
if (road [zgrid[ Ixgrid]I != 0) callobj (roadfI grid] [xgridj1);
if (target [xgrid I [zgrid I != 0) callobj (t. Lrget [xgrid I z grid 1);

zgrid - 1;
count += 1;

if (count >= threshold){
xgrid -1;

count =0;

startx +=

count = 0;

if (startx > lastxgrid){
startx =lastxgrid;

start: - threshold;

144



WIfNW'- r MWTRW_~W.RVTT"

else if ((lookdir > HALFPI) && (Iookdir <= THREEQTRP1))

3rd OCTANT 4

tanval = tan(lookdir-tHALFPI);
if (tanval ==0.0)

threshold = 1000;
else

threshold = (int)((1.0/tanval) +I 0.5);

count 0;
startx =firstxgrid;

starts =lastingrid;

while (startx <= lastxgrid){
zgrid = starts;
xgrid = startx;

while ((xgrid <= lastxgrid) && (zgrid <= lastzgrid)){

color(gridcolorjzgridj jxgridj;
polf(3,&savetrianglelzgrid ~xgridJ 1]01101 O);
polf(3,&savetriangle[zgrid] [xgridj ]]101101),

*if (road izgridl [xgrid i' 0) cailobj (road Izgridijxgrid!);,
if (ta~rget~xgridl zgridi != 0) cailo bj (target xgrid 1z grid 1);

count += 1;

if (count >= threshold){
ingrid += 1;
count = 0;

starts =;

count 0;

if (starts < firstingrid){
starts = firstzgrid;
startx += threshold;

I

!.Ise if !(Jookdir -- QTR _PIB && flookdir <= ALFPI))

/*2nd OCTANT 4

tanval = -(tan (lookdir+HALFPI));
if (tanya! == 0.0)

threshold = 1000;
else

threshold = (int)((1.0/tanval) + 0.5);

145



count = 0;
startx = lastxgrid,
starts = lastzgrid:
while (startx >= firstxgrid){

sgrid = starts;
xgrid = startx;

while ((zgrid <= Iastzgrid) && (xgrid >= firstxgrid)){

color(gridcolorlzgrid[[xgridj);
polf(3,&savetrianglelz grid] [xgrid 1 [011[01 [01);
polf( 3,&savetrianglelzgriil [xgridl 11101101);

if (road [zgrid',[xgridJ ! 0) callobj (road [zgridj Ixgridj);
if (target [xgridjI [zgrid[= 0) callobj (target [xgrid[ jzgridl);
xgrid - 1;
count += 1;

if (count >= chreshold){
zgrid -t- 1;
count = 0;

startz ~1
count =0;

if (starts < firstzgrid){
starts firstzgrid;
startx -=threshold;

else if ((lookdir >= 0.0) && (lookdir <= QTRP1))

/ st OCTANT ~
threshold = (int) (-tan(lookdirsHALFPI) + 0.5);

count = 0;
staxtx =lastxgrid;
starts = lastzgrid;
while (Startz >= firstzgrid)

igrid = ;tartz:
xgrid icaxtx:

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid)){

color(gridcolorlzgrid] Ixgridfl;
polf(3, &savetriangle Iz grid] I[xgridj] 101 )101);
polf( 3,&savetrianglelzgrid] {xgridj 11I1101101);

if (road Izgrid[ [xgrid I != 0) callobj (road jzgrid I xgridj);

146



if (taret[xgridjzgridj != 0) callobj(targetixgridlizgridi);
zgrid -= 1,
count 1'= ;

if (count >= threshold){
xgrid += I-,
count = 0;

st&rtx =1

count = 0;

if (sta~rtx < firstxgrid){
startx =firstxgrid;

startz -=threshold;

popmatrixo;

147



DIST TO LOS

#include r"gl.hII
#include "'math h"
float dist -to _los(vx,vy~vz~px.py, pz, point)

c ompute the distance from the point "point" to the line of sight

Coord vxI,yvzIpxIpy,pz;
float point[sj;

float a,b,c; /* direction numbers of line of sight ~
float d,e,f;
float dist;

a =(float)(px - vx);
b =(float)(py - vy);
c =(float)(pz - vz),

d =point[O] - (float)vx;
e = pointill - (float)vy,
f = poinc;21 - (floac~vz:

disc sqrt((up -i(e~c - f*b,2) -+.- up i(fPa - d~c,2) -up i(d~b - e&2)
(up i(a,2) -up i(b,2) + up_i(c,2))):

return(dist);

148

F~~~~~~~~~ ft'* %%**- *- . * .- ... v



DO-BOUNDARY

#include "gl.h"
#include "math.hT '
dkinclude "stdio.h"
#include "fogm.h"

#define X 0
#define Y I
#define Z 2

#define DIAGONAL 0
#define HORIZONTAL I
#define VERTICAL 2

#define LOWER 0
#define UPPER 1

#define NONE 0
#define INTERSECT I
#define PROPER 2

do _boundarv(bound _type. which triangle, xgrid. zgrid,
bound start, bound end, left _start,
left _ en~d, right -start, right _ end, start -corner-flag,
end _cornerjfag, poli, vertex-cnt)

int bound type, which triangle, xgrid, zgrid;

float bound -startl3j, bound-endf3], left-start13], left-end[3],
right-startl3l, right end[3];

int *start corner flag, *end corner flag;

float polyl[101[31;

int *vertex cnt;

tnt !est .ndex. -'nt. index:

float bound _ rightq31, bound _left[31, bound _start _edge[ 3j,
bound -end __edge[31;

float vertex - rrayJ1O][31;
float road -poly[1011131;
float grid polyll31

int intersect cnit;

149



int intersect-type, decending-sort;

float upper-bound, lower-bound;

float gnid _level();

int in this-polyo;

intersect cnt = -1;

/compute the verticies of the road segment currently

being worked on
for (index =0; index < 3I; -- rindex){

roadpoly[1!mndexi = left -st artl[index];
road poly [U findex[ = left -end (index[1;
road -poly[21tindexl = right -end [indexj;
road poly[31[indexl = right startlindexi;

/* compute the verticies of the grid triangle associated with
this boundary */

arid _poly(OIA = (float) (xgrid'FTLOOM);
grid _poiyO&Z Z= (float) ((z grid- 1) FT _1OM);
grid _oly'.,1 =~ (float)( (xgrid--1)IFT lOOM);
gridjplly~IZ =~ (float) (zgrid*FT_OOM);
if (which-triangle == UPPER) f

grid poly[21]XI = (float) ((xgrid+l)*FTlOOM);
grid polyl2flZ] = (float) ((zgrid+l)*FT_OOM);

else{
grid poly[211X] = (float)(xgrid*FTlOOM);
grid poly[]JZI = (float) (zgrid*FT 1OOM);

if (bound type == HORIZONTAL){
test-index = X

else if (bound type ==VERTICAL){
test-index = Z;

else if (bound _type == DIAGONAL){
rest -index =z

if (bound -start[test _index1 < bound -end test -indexj){
lower-bound =bound -start Itest-index];
upper_bound =bound -end Itest -index]1;

else{
lower-bound bound _end [test -index]1;
upper-bound =bound _start]test index]1;

IS

%150



/* determine points of intersection between left and right sides
of the road and the boundary

line-intersect2(bound -start, boundend, rightstart, rightend,
boundright, &intersect._type);
if (intersecttype == PROPER) {

/* intersection lies on road line segment, add intersection

to array */
intersect cnt += 1;
vertex array[intersectcnt] XI = bound right[X];
vertexarray[intersect_cnt Z] = bound rightZj;
vertex array[intersect_cnt] Y] = gnd level(bound right[X1,
-boundrightZl);

}
else if ((intersecttype == INTERSECT) &&

(in thispoly(gridpoly, 3, right _start)) &&
(bound _rightItest index > lowerbound) &&
(bound _right test -index, < upperbound))

/* intersection point is beyond the bound of the road's right
line segment. but the right start point is inside the polygon so
-tdd the road's right start point r.o the vertex array

intersect cnt -= 1;
vertexarraylintersect cntijXj = right_startXJ;
vertex array[intersect _cnt]Z = rightstart[Z];
vertex arrayfintersect cnt][Y] = gndjlevel(right start[X],
-right startIZ]);

else if ((intersecttype == INTERSECT) &&
(in this_poly(gridpoly, 3, rightend)) &&
(bound right[testindex] > lowerbound) &&
(bound-rightItest index] < upperbound)) {

/* intersection point is beyond the bound of the road's right
line segment, but the right end point is inside the polygon so
add the road's right end point to the vertex array

intersect cnt += 1;
vertex _arraylintersect _cntl[X = right endfXl;
vprtex rray intersect !nt, Z, = right .*nd Z'.
,.'prtex srrav intersect_ ,nt, Y = ,nd _ evilright _ndiX
-right _*n&Z ~

}
line intersect2(bound _start, boundend, left-start, left-end,
bound_left, &intersect type);
if (intersecttype == PROPER) {

/* intersection lies on road line segment, add intersection
to array */

intersect cnt += 1;
vertex arrayjint.ersectcnt] Xl - bound_left X';

151



vertex-array [intersect _cnt][JZ] = bound-left[ZJ;
vertex -array jintersect cFnt I[IYJ = gnd -level (bound -left ]Xj,
-bound -left[ ])

else if ((intersect type == INTERSECT) &
(in -this_poly(grid poly, 3, left _tart)) &
(bound -left itest _ndexi > lower-bound) &
(bound -left jtest -indexi < upper_bound))

/* intersection point is beyond the bound of the road's left
line segment, but the left start point is inside the polygon so
add the road's left start point to the vertex array 5

intersect-cnt += 1;
vertex-array[intersect-cnt[X left-start[XI;
vertex-array [intersect _cnt I[ZJ I left start[Z];
vertex-arrayj[intersect cFnt I lY] gnd-level(left -start JXJ,
-left-startIZi);

else if ((intersect type ==INTERSECT) &&
(in this_poly (grid _poly, 3, left end)) &&
(bou nd -left [test -index] > lower bound) &&
(bound left[ test -indexi < upper_bound)) I

/intersection point is beyond the bound of the road's left

line segment, but the left end point is inside the polygon so
add the road's left end point to the vertex array

intersect-cnt += 1;
vertex-arrayjintersect-cotlIX] left end[XI;
vertex-arraylintersect cnt ][Zl left endiZI;
vertex-arraylintersect _cnt]IY] gnd -level (left -end[X 1,
-left _end[Zj);

,' if either of the bound's end points fall within the bounds of the
road, add them to the array*!

if ((!*start-corner_flag) && (in -this poly (road -poly, 4, bound-start))){
/* put in start bound point */I
*start corner flag = TRUE;
interset_cnt += 1;
vertex srray intersect _cnE- bound 21tart'XI;
vertex 4rravylntersect-n Z'n bound -itaru Z!,
vertex trrayintersect _nt Y' iouflOstart Y':

if ((!*end _corner-flag) && (in _this poly (road _poly, 4, bound-end))){
/* put in end bound point */
* end corner flag = TRUE;
intersect cnt += 1;
vertex-arraylinterset cot J[X} = bound-endiXi;
vertex array~intersect cot JIZI = bound _endiZi;
vertex -arrayf[intersect _cntI Yf = bound-eod[YJ;

r.152

%.



}
/* determine the point of intersection between the start and end

bound of the road and the grid boundary */
line intersect2(bound start, boundend, left-start, right-start,
bound_startedge, &intersect type);
if (intersecttype == PROPER) f

/ intersection lies on road line segment. add intersection
to array */ %

intersect cnt += 1;
vertex array [intersectcnt](XI = bound-start edge[X];
vertex array[intersect _cntj{ZI = bound start edge(ZI;
vertex arraytintersect ntj[Y = gnd level(bound start edgeXj,
-bound-start _edge[ZI); -

}
line intersect2(bound start, bound-end, left-end, right-end,
bound end edge, &intersect type);
if (intersecttype == PROPER) {

/* intersection lies on road line segment. add intersection

to array
intersect cnt += 1;
vertex arrayIintersectcntIXl = bound endedge[X];
vertex arraylintersectcntI[ZI = boundend edge Z1;
vertex _arraylintersect _cntiY, = gnd _level(bound end edge]X',
-bound _end _edgeiZ );

/ put the points from the vertex-array into the polyl array in
the proper order */ h

decending-sort = (boundstart[testindex] != lower-bound);
sortarray(vertexarray, intersectcnt, decendingsort, testindex);

for (cnt = 0; cnt <= intersectcnt; ++cnt) {
*vertex cnt += 1; %

polyl[*vertexcnt][XI = vertexarray[cnt][X];
polylf*vertex_.cnt[Yj = vertex array[cntI[Y;
polyl *vertexcntj[Zj = -vertex_&rrayicnt[Z; -,

153

a. a* '



EDITINDBOX

/* update the control settings of the indicator box *
#include "fogm.h"
#include "gl.h"

edit indbox(indbox, speedtag, headingtag, elevtag, altmsltag,
Soomtag, tilttag, pantag, desigtag, speed, compassdir,
vx, vy, vz, pan, tilt, zoom, designate)

Object nd box;

Tag speedtag, headingtag, elevtag, altmsltag, zoomtag, tilttag, pantag,
desigtag;

float speed, compassdir;

Coord vx, vy, vz;,

double pan, tilt;

int designate;

int zoom;

char chspeedlsl, chheadingi5], chelevis], chaltmsl[51;
float gndI evefl(;
float zoomtic, pantic, tilttic;

sprintf(chspeed,"%4.0f",speed); convert speed to string ~
sprintf(chheading,"%3 .Of" ,compassdir); /* convert heading to str /
sprintf(chelev,"%4.0f",vy - gnd -level(vx,vz)); /* convert elev AOL to str ~
sprintf(chaltmsl,"%4.Of",vy); /convert alt MSL to str ~

/compute new location for zoom, pan, and tilt indicators
soomtic = zoom * -0.2786 + 222.128;
tilttic = tilt * 721.92682 + 365.0;
pantic =pan *-721.92682 +i 435.0;

editobj(indbox); /update the indicator display ~
o bjreplace (speedt ag);
rharstr(chspeed);
0 bjrep iace (head ingtag);
charstr(chheading);
objreplace(elevtag);
charstr(chelev);
objreplace(altmsltag);
charstr(chaltmsi);
objreplace(zoom tag);
move2(28.0,zoomtic);
objreplace(tilttag);

154



move2(42.O,tilttic);
objreplace(pantag);
move2(pantic,27.0);
objrepla~ce(desigtag);
cmov2i(designate ? 10 19,10);
charstr(designate? "DESIGNATE" "REJECT");
closeobjo

15



WWWM v *W -U W11W.. . I W -v ,WM W

EDIT NAVBOX

#include "fogm-h"
#include "math.h"
#include "1gl.h"

edit-navbox(navbox, arrowtag, vx, vz, direction,firstxgrid, firstzgrid,
Iastxgrid, lastzgrid)
Object navbox;
Tag arrowtag;
Coord vx, vz;
double direction; %-
short firstxgrid, firstzgrid, lastxgrid, lastzgrid; .

Coord arrowx, arrowy, larrowx, larrowy, rarrowx, rarrowy;

/* compute coordinates of arrow line segments for nay control box ,

arrowx = vx -r cos~direction) '2.0 *FEETPERGRID;
arrowy =vz - sin~direction) *2.0 *FEETPERGRID;

larrwx arowx co~diecton -2.36195) *FEEPERRID

larrowy = arrowy - s(direction - 2.351945) *FEETPERGR[D;
larrowy = arrowy -t cs(direction + 12.55194) * FEETPERGRID,
rarrowy arrowy -r s(direction -- 2.356195) ' FEETPERGRID;

/* update the contour map display with new info 5

editobj (navbox);
objreplace(arrowtag);
move2(vx,vz);
draw2(arrowx, arrowy);
draw2(la&rrowx, larrowy);
move2(arrowx, arrowy);
draw2(rarrowx, rarrowy);
rect (firstxgrid*FT 100OM,-firstzgrid*F _1OOM,
(lastxgrid-t- I)*FT_OOM, (-last zgrid- 1) t FT_OOM); 4

closeobjo;

-C 'r



EXPLOSION

#include "gI.h"

explosion 0

int ij;

pushviewportO;
viewport(O,1023,O,767);
color(BLACK);
clearo;
swapbuffers();
color(RED);
clearo;
swapbufferso;
awapbuffers();
color(YELLOW);
clearo,
swapbufferso;
swapbuffersi);,

* colort RED);
clear9;

s wapbufferso;
swapbufferso;
color(YELLOW);
clearo;
swapbuffers();
swapbuffers();
color(RED);
cicail);
swapbufferso;
swapbufferso;
for (i = 0; i < 100000; i++)

for (j = 0; j < 10; j+-s);
popviewporto.;

157

S.- . -. -. **.



FOGM (MAIN)

fogm.c -- an IRIS-2400 program by Doug Smith & Dale Streyle
It reads in a 10km x 10km section of a terrain map, computes a lighting
and shading model for the terrain, and allows overflight */

#include "gl.h" get the graphics defs
#include "device.h" /* get the graphics device defs */
#include "fogm.h" /* constants 4/

#include "math.h" /* math function declarations */
#include "get.h" /* monitor type include file */
#include "stdio.h"
#include "sys/signal.h" /* used for screen dump utility */
#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

short gridpixel[1001[100]; DMA elevation and vegatation data *'
floas triangle9999][2".
long gridcolorj9911991,
Object road [99] [991;
Object target[991g9];

float groundplanei4JI3:;-'
long gnd _plane color;
float tgtposiMAXTGTSI[.0};
short tgt_grididx[MAXTGTS][21;
short tgt dir[MAXTGTS], tgt total = 0;
float randx, randy, randz; /* random offsets from tank reference point */

int framecnt;

float min elev, max elev; e

Coord tankx, tanky, tankz;

float framessec[O000]12];

main(

int greyscale = FALSE; * FALSE color, TRUE = greys 4/

inm designate; ' boolean indicating desigireject status / .S

int flying = TRUE; /* boolean controlling flying loop */

int active = TRUE; /* boolean controlling main program loop */

int nbyte, socket, connect client() ;/* networking variables & subroutine */

158



struct tins tiinestruct; /* structure for real-time clock calls

int tgt-idx; /* index of designated target

double direction; 1* direction of travel in radians *

float speed-, /* speed of travel in knots

float compassdir; /* desired direction of travel in compass deg ~

it fovy = 550; /* field of view in perspective command

double pan =0.0,

tilt = -15.0 DTOR; /* pan and tilt angles

/* contour map, indicator, instruction */
Object contour, navbox, indbex, instrbox;
Object tank, pre I objt71;

Tag headingtag, elevtag, speedtag, zoomtag, arrowtag, tilttag, pantag;
Tag desigtag, altmsltag, pre-1ltag6];

Colorindex unmask:

Coord vx, vy, vz; *viewer x y and z coordinates/

Coord px, py, pz; /~reference x y z coordinates for lookat *

Coord tgtx, tgty, tgtz; /* targeted position on tank */

float randseedo; /random number generator initialization *

int frames = -1;
long seconds, lastseconds, totalseconds = 0;
int numpolys,
float elapsed;
mnt idx;
FILE *fopeno, *fp;

/* first and last x and z indexes of the grid objects to draw ~
short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

readdata) read the data tile into the gridpixel array

/ * get socket number for networking * /
/*if (NETWORKING) socket = connect -client ('Inpscs- irislV, 3); *

nit iis(); /* initialize the iris ~
unmask = (1«<getplaneso).- 1;
writemask (unmask);

randseed(times(&timestruct)); /* seed the random # generator ~

159

4 -~ -~ -AA



init tgts0; /* define targets */

ScreenDump(SCREENDUMP); /* enable screen dumping */

billboardo; /* produce intro screen

colorramp(greyscale,TRUE); / build all color ramps ,'

makescreens(pre I obj, prel tag); /* build objects for prelaunch */

makemap(&contour); /* build map object */

pre I obj[CONTOUR] = contour;

prelaunch(&vx, &vy, &vz, &direction, &compassdir,

&active, pre1-obj, pre ltag);

if (active) {
maketank(&tank); /* build object for a tank */

build roadf); ,,* build the objects that comprise the roads */

/* process terrain data to build polygons and compute lighting */

buildterrainO;

build object for the navigation display contour map /
drawnavbox(&navbox, &arrowtag); A

/* build an object for the indicator box */

makeindbox (&indbox,&headingtag,&elevtag,&altmsltag,&speedtag,
&zoomtag,&tilttag,&pantag,&desigtag);

makeinstrbox(&instrbox); /* build object for control instruction box S/

} /* end of if (active) block */

while (active) {

framecnt = 0;

/* initialize the operator controls (mouse and dials) */

init-controls(&pan, &tilt, &fovy, vy, greyscale, compassdir);

pushviewport{);
viewport(O. 1023.0.767);
color(SKYBL UE);
clearo;
popviewportO;
callobj (instrbox);

callobj(indbox);
editobj(contour);
objreplace(STARTTAG);
viewport(768, 1023,512,767);

160

U



closeobjo;
callobj (contour);
swapbufferso;
ca~llobj (instrbox);
callobj (contour);
editobj (contour),
objreplace(STARTTAG);
viewport (0, 768 ,0, 768);
closeobjo;

flying = TRUE; /*missile is flying ~
designate =TRUE; /* a target. can be designated *

while(flying) { / * until tgt is hit or 3-button exit ~

/* get values from user contols (mouse and dials) */
read controls(&designate, &greyscale, &flying, &active,
&speed, &direction, &compassdir, &vy,
&pan, &tilt, &fovy);

/calculate *which target was closest to the line of
sight *'

if (!designate)
nearest _tgt(vx,vy,vzI,pyIpz,&tgt _idx);

/*update targets' positions *
get _Itgt _posit (socket, designate, tgt _idx, &tgtx, &tgty, &tgtz, tank);

/ * update missile position */
update-missile-posit (&direction, &compassdir, speed,
designate, tgtx, tgty, tgtz,
&vx, &vy, &vz, &flying);

/* update camera lookat position ~
update-lookjposit (direction, pan, tilt, vx, vy, vz,
tgtx, tgty, tgtz, designate, &zpx, &py, &pz);

/ * determine which polygons need to be drawn
view bounds(vx, vy, vz, px, py, pz, tilt, fovy,
&irstxgrid, &firstzgrid. &lastxgrid. &lastzgrid);

e~dit control display objects to reflect new values
edit -navbox(navbox, arrowtag, vx, vz, direction, firstxgrid,
flrstzgrid, lastxgrid, lastzgrid);
edit -indbox(indbox, speedtag, headingtag, elevtag, altmsltag,
zoomtag, tilttag, pantag, desigtag, speed,
compassdir, vx, vy, vz, pan, tilt, fovy, designate);

/* display the 3-D view of the terrain as seen by

161



6.

the camera 0

display -terrain (vx, vy, vz, px, py, pz, fovy,
flrstxgrid, firstzgrid. lastxgrid, lastzgrid);

/* d"play the control boxes 0

writemask(SAVEMAP);
callobjinavbox);
writemask(unmask);
callobj(indbox);

swapbufferso;

seconds = times(& timestruct);
numpolys =(Iastxgrid - firstxgrid) (lastz grid- firstzgrid) 2; 1

elapsed '= (float) (seconds - lastseconds)/60.0;
if ((frames >= 0) && (frames < 1000) ){

frames -sec [frames] 101 = (float) num polys;
frames secframesilli = 1.0/elapsed;

totalseconds -= (seconds-lastsecondsj;
if (totalseconds > 7200) {

compactifyo; /* do garbage collection every 2 mins 0

totalseconds = 0.0;

lastseconds = seconds;
frames + = 1;

} 0end of flying loop 0

if (active) { /* explode & restart 0

explosiono;
prelaunch(&vx, &vy, &vz, &direction, &compassdir,
&active, pre 1 obj, pre I tag);

) 0end of active loop 0

/write out performance stats ~
fp = fopen ("speed. data"?, "W");
if (frames > 999) frames = 999;
for (idx = 0; idx <= frames; +±idx){

fprintf(fp."c.2f 'o.2ff0. frames sec~idx. 0, frames sec 'dxi 1);

162

%.



/~gracefully exit ~
if (NETWORKING) close(socket);
setmonitor(HZ6OJ;
color(BLACK);
clea~ro;
swapbufferso;
clearo;
gexito:

exito;
)/end of main *

116



FILES.H

/* These are the files which contain data for the terrain elevations
and roads */

#define TERRAIN _FILE "/work /terrain /tenkmsq.dat"
#define ROAD FILE " work,, terrain, Roaddata"

FOGM.H

#define elev mask Oxlfff /* mask to obtain elev value from datum

#define veg -mask 0x0007 /* mask to obtain vegatation value from
shifted datum*

#define RD 0 /* code for reading a file in "open" ,

#define MAX 2800 /* max elev (ft) in contour map

4define MIN 967 ,min eiev ift) in contour map

#define SKYBLUE 4095 '~color index for sky color

#define ROADOREY 850 /* color index for the road

#define DELTAFOVY 50 /* field of view (zoom) increment of 5 deg

#define PI 3.141592T

#define TWOPI 6.2831853

#define HALFPI 1.5707983

#define THREEHALVESP1 4.7123889

#define QTR_P1 0.7853982

4define THREE _QTR -PI 2.3561945

=define FIVE Q.TR PI T~ 269908

#define SEVEN_QTR_P1 5.4977871

#define RTOD 57.29578 /* radians to degrees conversion factor

#define DTOR 0.0174533 /* degrees to radians c, version factor

#define FPSTOKTS 35.525148 /* convert feet per 60th son to knoot

164



#define PANSENS 30.0 scale factors (sensitivity) for
navigaion controls (mouse and dials)

#define SPEEDSENS 20

Adefine TILTSENS .50.0

#define DIRSENS 200 
P

#define MAXLOOKDIST 32808.0 /* maximum distance that the camera can
look ahead in feet

J"
.

#define FEETPERGRID 3280.8 ' number of feet in 1000 meters

#define ALTSCALE 1 05 * altitude expansion factor, altitudes are
raimed to this power to give an
exagerrated effect

sf.' ,nno \1\(%| II) I, * ' Jmnr JI If K.rid , qqar- in he Fast-

West direction

#define NIMZGRILi 10 a number of 1k grid squarm in the North-

&t .pine FT |()K 041M iritmber ] .n lrn

*define FT l(OOM 328 )l * number FT in IX)m 0

*define (,RID F ACTOR I 037si 0 4 ,fnvTrifn fact,.r

*define T'% * i for %(j mnit,,r I for T%

#define S(UREENI)I MP I I it, enable 4-rr.n itirmping iK ,therwise

*,lob no %F. r% t )ii ! , % i (,,r - arte~t not IIIrk.ng ,ho.r% Ise

odefine INIT PA% i ,nult rin ani rviax pai angl ' in ,i!
odefine lI% P4N 2r)
*de.fine MAX PA'% 2S

''I,-*lein.o * I%1A 41 J 7 * ILIiial III " alnd It l

a lob no MI% l I I

&l ,obno I% I l -i P, 1,.. 1.... . . '
i~*tin. %41\, 1F'31i
I# 41no M%41 -tFI

a IslI n f

•; ,.,. . ief I- -,.. .. . .. . . . • . . ..

* * * t . t . a° * - • - •*



#define CONTOUR 0 Indicies for array obj
#define SCREENI I
#defne SCREEN2 2
#define SCREENS 3
#delne INSTR 4
#define STATS 5
#detine FLTPArH

#deAne LAUNCH 0 /* Indicies for array tag
#defae TARGET 1
#define DIR 2
idefine HEAD
#define TGT 4
#deine MISSILE 5

#delne MAX TGT COLOR 847
#define MIN_TGT COLOR 684

I,|ti ne IA \ ;T I cm t)

#define SAVEMAP OxOOCO

da

p'

IfiE
I

I~d f v*,-/.
-. !rn



GAMMARAMP

/* This routine puts a gamma-corrected color ramp into the color map.

Ainclude <rnath.h>

gammararnp(gammaconst.firstcolor,ncolors.
brightred,brightgreen,brightblue,
darkred,darkgreen,darkblue)

float gammaconst; , * Strength of Gamma correction (try 1.0) ~

long firstcolor; /* index number of the first color to set ~

long ncolors; /* the number of colors to set */

long brightred, brig htgreen, bright blue; /* the bright end of the ramp ~

long darkred,darkgreen,dark blue; /*the dark end of the ramp /

long 1; temp ioop index

float scl. *scale factor for gamma correction

long gc redgc green, gcbl ue; /* gamma corrected colors/

for(i=O; i< ncolors; i--) I* for all colors ... /4

/* compute the scale factor/
scd = pow ((float) i/(Bloat) (ncolors- 1) ,1.O/gammaconst);

compute the gamma corrected colors/
gcred = scl * (brightred - darkred) + da~rkred;
Scgreen = cI * (brightgreen - darkgrcen) + darkgreen;
geblue = scl (brightblue - darkblue) + darkblue.

mapcolor(firstcolor-i, gcred, gcgreen, gcblue); 2set the color ~

N

167



GETTGTPOS

/* get targets' positions from irisl if networking. Otherwise moves 10 targets
in straight lines, reversing when they hit an edge

s include 'fogm.h" 5'

#include "gl.h"
#include "'math~ht'
#include <sys/types.h> /* contains the time sturcture tins/
#include <sys/tixnes.h> /* for time calls ~

get tgt posit(socket,designate,tgt _idx, tgtx,tgty, tgtz, tank) .

int socket, designate, tgt idx;
float *tgtx, *tgty, *tgtz;
Object tank;

extern float tgt posIMAX TGTSjJ3J;
extern float ra~dx, randy, rands;
extern Object targetJ99](991;
extern short tgt _grid _idxMAX _TGTSU2';
extern short tgt _total, tgt diriMAX _TGTS';,
short i. tgt _num;
int nbyte, addl();
float gnd -level(), dir, dx, dz, distance;
long dist, d2;
static long seconds;

sttclong lastsec =-999; /* -999 is flag to indicate novalue

struct tins timestruct;

seconds =times(& timestruct);

if (lestsec ==.999) /* compute distance targets move ahead
distance = 0.0;

else
distance =(float) ((15 .0'/FPS_-TOKTS)*(seconds - laatsec));

Iastsec: = seconds; /*save for next pasn

ror (i 0: i , ct total: i----) delete targets From -Ad positions
iffargeti gt irid dxii Oil tt _grid i(ixi I

ielohl(targ.'t tgt g rid ldx i 0V tgt irid ox, i I
targetitgt grid dxiJ01 jtgtgrididx ai~ = 0if

if (NETWORKING)(

nbyte read(socket, ktgt _ total, sizeot(tgt -total)),
for (i =0; i < tgt total;, i++)

nbyte = read(socket, &tgt _grid idx i!0', iizeof((hort)),
nbyte = read(socket, &tgt -grid _idx i'' I. sizeof(short)),

I N!

%-



nbyte =read(socket, &tgt pos ,iI[O!, sizeof(float));
nbyte = read(socket, &tgt_posij I', siseof(float));
nbyte = read(socket, &tgt posiil[21, sizeof(float));
nbyte =read(socket, &tgt _dirji , siseof(short));

else
tgt total = 10;
for (i =0; i < tgt-toWa; i++){

dir = (Bloat) (tgt-dirlil / 10) * DTOR;
tgt -posli][01 -+= cos(dir) * distance;
tgt _posli;12' -~ sin(dir) *distance;

tgt -grid ;idxWi[01 = (short) (tgt-posi JIj/FT_OOM),
cg gid idxij1 = (short)(-tgt povi'jILZ/ FT _10OM),

if ((tgt posjijoj > FT 10K) 11 (tgt._posi[0I < 0)){
if (tgt dirmj > 1800) tgt -dirliJ - 1800;
else tgt dir ij - 1800;

* tgt _Posiii 1I 0.0;

else if ((tgt posjial2j < -FT -10K) 1 (tgtposi 1 21 .> 0))
if (tgt_dir! > 1800) tgt -diii - 1800;
else tgt _dir'il +s= 1800;

*else tgt pos i I grd -lev'olltit posi 0 , tgt pos 2

if ('designate)
if (NETWORKING) 4 ,find which target is designated

dist =up _i((ftoat)(tgt _posOi~0 - *tgtx),2)
up _i((float)(tgt poIl 2 - tgtz).2);

tgt _&dx 0:O
for (i I ; t < tgt _total; i-

d2 = up _;((float)(tgt pos 1 0 - *tgtx).2)

P ~up l((fioa0tgt poS 2 - *LgLZ),2).

1P ~if (d2 - dist)I
d dist = d2.

tgt tdx -(int)i,

JI I

tgt num toll to~tal
for 1i 0. 1a tgt num ;* )

% dx -tgt po* 1 0 -(float)titt prid iiix i o H I(iiAl
ds (floa)(-tgt grid Art i I )*FT iu'U%1 tot 1.,,q I

if (dx - IS)

if(da- ISO)
addlI(i AlU



add 1 (0O,- 1),

else if (ds > 313.0){
add I (i,0,l1);

addI (I. - l'ut;

else add110,-1,0);
else if (dx > 313.0)

if (di < 15.0)4

add 1(i1,0);

else if idsi 313.0)f

add 10a.1,0),
add It(t. 1. 1).

else add 10. 1,0),
es tglids - 150) addI(i.O.I ),

for o i tot t.-t&ij - . Ifd 1" egt.. to tbvW ;M..I(I.IflI

f arget rti crid f%~ (1 t grild e A% I ,

editobj(target tot gritid Axi (i twt grid Alt a I )
pushmatita)

translatel4t ;xis 1)t rga m ilt ;?<A 1 2

rotutolIof dat NI

popm at raitI

target tetI rld i~ Mll I , Ift ril -.1%*h- j
mah4'ohJ~tazg.t ict arvili l t at o~tlA A i II

ormns~ielist pms i il lot a'~..
aol te(Ijgt 'jI I N6

ellffI'M ''6 l t en I..

I TIP



extern short tgt grid idx[MAX TGTSI21;
extern short tgt total tgt dirj MAXTGTSI;
short i;

tgt _ poSjtgt _ totalilol tgt _posjtgtnunI Ol; /* copy pos. for "new" tgt/
egi _polItqt totalIIlI tqt-positqt _numIT;
cgt positgt _£otai I = tgtpos~tgt _.ium 2T:
tgt _dir-tgt -total = tgt _dir igi _num'; ,/ copy dir for "new" tgt e

tg% _grid _idxltt -total] 101 = ittgrid idxjtgt numliOl + x; /* set pa. in/
tgt _ grid idxjtgt totaljjIl = tgt grid idx(tgt numifif + z; /. new grid sq
for (i = 0; i < 2; i +-+) I /* reset if new grid sq outside 10km square/

if ftgt -grid _ tdx tqt _total'ii - 0) tgt grid -Idx tgt -total i' 0.
if jtgt _grid _idxitgt _totailjil > 98) tgt _grid -idx'tgt totaIi = 98;

CgC _total +-*

) N

%a



GND LEVEL

#inclde 'Iath~h

#include "math.h"
#dine Xfom0 h

#define Y 1
#define Z 2
float gnd-level(vx, vs)

Bloat vx, vs;

extern short gridpixcijlOO]IlOOJ,
float interp_elevo;
float grid level();
float pointlSI. nw -corner~i, ne -corner'3!, sw _corneri3i, se-corneri~i;
float intersect3 ;%

loa -ev b

int xgrid. sgrid, intersecttype;

'determine which triangle the point rails in
xird=fnti~vx FT I(XMW

&qi m itil.yx FT iow%fl,
if I itgrid 0I xgrid 0
if 1xgrid W$ xgrid 48,
if (&grid 0) zgnd = 0,
if jagrid 9,M) agrid -98,

point X vx

point Z V2,

flu orflr X (Boat)(.grWdFT IIXdM).
nw co)rner Z - (float)iagrid 1)*FT lOOM),

elev - gridputel agrid -I %grid' & Plev mask.
nflv corner Y pow(ele~v ALTSCALE).
iw corner X jfl')ait (tjrtd'FT ImNJNI)
qw ornor Z (Roat)(agridFT lOOM)

@Iv-gridpaxel sgrid xgr'd & Piev mask
iw corner Y pow(elev' ALTS('4LE)
ne corner X (No&&) (I igrid. 1)FT ilOOM)
no '"mrer I Ifloat)((scrid W FT lOO)M)
P1ev gridpimil sgrid - I xg id -I k el*%iis

rnF -'a viu %I~ P" %~n rIr (

and iii. sw -r'ner with the Aiagnal

172



line -intersect 2(sw -corner, point, nw _corner, se-carrier, intersect,
_ ptrec-yp)

/* find the elevation of the intersection on the diagonal ~
intersect[YJ = interp~elev (nw -corner, se-corner, intersect);

/* find the elevation of the point vx, vy ~
return (interp~elev (sw -corner, intersect, point));

else{
/* point is in the upper triangle ~

/* find the point of intersection of the diagonal with a line
through th ne -corner and the point */

line -intersect2 (ne_.corner, point, nw-corner, se-corner, intersect,
&intersect -type);

/* find the elevation of the esection on the diagonal /I
intersect Y' = interp _elevi nw -corner, se corner. intersect):

/* find the elevation of the point vx, vs
return (interp _elev (ne -corner, intersect, point));

173'

IT%



llNTHISPOLY

#include "IgI.ht'

#define X 0
#define Y I
#define Z 2

#define PROPER 2

int in -this _poly (polygon, num-vertex, point)
float polygon(101131;

int mumvertex;
float powtill;

int index;
in& pt-in, IntersecL type;
mnt nmmcrossings;
80oAt max -x, max - , min x, min a;
float intersect:.
ioat old-intersect3
float start test ikne 3

max x =polygon O!;X'
min x =polygonj0~jx.

max a polygonlOiZ ;
min s polygon'OK;Z,.

for (index = 1; index <num vertex +i.-ndex)
if (polygon; indexiX! min xa) min _x poyo I pejX

if (polygon'index X > max _x) max _x polygon indlexj Xj;
if (polygrnn index Z min z) min I polygon index!'Z
if (polygon index, Z -'max _z) max -a =polygonindex; Z,

if ((point'X < max -x) kk (point X -man at) k& (pointT Z max _a) kk
(polnt~z' man -3))

Dmitt na% ,,,ho.Ron. em rrher !), -onstmructinit a e ilrai :ine

roni he 4.int 1-4 t ~ini -i i,ij !he :iolv9-fls ,mflo mini he miru er

4 t ime,% his ine r''4ses ide 4 . e :wi qn i a~~,i

indd numoer ut Limes the 1xiint is in tne Ixolygon. otherwise )ii s
outside the polygon

start test IaneAX point X
start test lane Z max a * 1QW 0,

num crossings 0.
old-intersect X - -M990;

174~



old intersect(Zl = -999.0;
for (index = 0; index < numvertex -1; ++index) {

line intersect2(starttest line, point, &polygonrindex!fO,
&polygon[index+ 1] 10J, intersect, &intersecttype);
/* if a proper intersection exists and it is not the same point

as the previous intersection (i.e it didn't intersect a vertex).
then add one to the number of crossings *,/

if ((intersecttype == PROPER) && ((intersect X != old intesect(XI)
11 (intersectjZ] != oldintersect[Z]))) r,,m-crossings += 1;

oldintersectIXI = intersect[Xj;
old-intersecttZi = intersetlZ);

}
line-intersect2(start_testline, point, &polygon numvertex-I 101,
&polygon0 ij 0 j, intersect, &intersect _type);
if (intersect-type == PROPER) numcrossings += 1;

/* if the number of crossings is even. the point was outside /
pt -in = ((num crossings % 2) 01;
returnqpt -in):

else{
return(FALSE);

;'q " .:."'. "-V~ '":"'.". .. " ." -""." .. . . . .. ... ." . ...



INIT CTRLS

/*initialize the operator controls

#include "togm.h" *fogm constants
*include levice a" graonics e ieww irtiniioin.
*include "gk.h" graphics routine Jefinitions

#include "math~t" *math function definitions

init controls(pan. tilt, fovy, alt. greyscale, compasadir)

double 'pan, . iiial pan angle in radians
double :l,*iitial .i angle in radians*
int *fovy; initial field of view i tenths of degrees
Coord &It. *initial altitude of missile*
Int greysc ale *initial value of greyscale boioiean
gloat Compass4Iir tfati 7ompasw dwt-ction

*pan INIT PkN *DTOR

*at 'NIT 'ILT
,\a%

wteiator, M(o SIF.VshortINIT P \P 4%. * IlPi\ b

horU'PfAX PjWPASEN'

set%&aat1r.%I4)t slit ihwt~tNIr ) I T . %l' ~I l .,

,etv~latoraa~' Ik L 0) ihorl i, a~~ lIli\,.~- 3$.'MFR1 I N'

wtvaluaor [It IL 4 *t'ti \lI %, I' %I k\ 7

wtv siuai.or N' kL.2 4h.rt i INI I ;Pt P' 14 li1 N-

%I~~ ~ ~ ~ 4t 44I,-~'-



INIT IRIS

Initialize the graphics environment for the iris workstation /

4include "g1h" e graphics definitions */
a,,,c'ude *t n * monitor ype fetinicion!,

sinciude "fogm h" fogm constants

init !ins()

eni -hunk. * number of bytes be which objects
increment */

ginit . initialize the IRIS system
doublebuffero, * put the IRIS into double buffer mode */

chunk = 128,
chunksize(chunk)
gcontgt 1 ' (means use the above command settings) /

setmon|iort.\ 1 SC1 , choose tv or SGI monitor

fontdef( I,"TV font").
font( 1).

-r,,r turn ,tf the .*ursor

backface(TRtT). " turn on backface polygon removal

" kr(BL ACK)

' apbuffersi)

IT7

#' 0-W '.4-.* ".', ,' - % , .-.- , 'F ,% ,, ' " - ',• ," •-•• •,,,,', " , ," "" " -",-, - ," "."



INIT TC.TS

#include "fogm.ht '
#include "~gl.h'"

init _tgts()

extern short tgt total;
extern. Object target[99J1991;
short x, y;
int nit _tgto;

for (x = 0; x < 99; x-i-+) for (y =0; y < 99; y-t--r) target'x'[y 0;
if (!NETWORKING){

tgt _total = 10;
init _tgt(O,9.8,3.5, 1295);
init _tgt(l,9.5,3.5,1295);
miLnt _tgt(2,9.4.3.I,1295);

init-tgt(3,9.8,0.5,1800);
init _tgt(4,9.5,0.0,1355);
init tgt(5,8.0,.O,1445);
init _tgt(6,4.O.0.0,1450);
nit _tgd -j,0.0.0.5,450);

mnit _tgt(8,9.5.9.8,2700);
init _tgt(9,9.8,8.5, 1800);

init _tgt(tgt _num,xoffset,zoffset,direction)

short tgt num, direction;
float xoffset, zoffset;

extern short tgt -dirIMAX TGTSI;
extern float tgt-pos[MAX-TGTSI3J;

tgE-Pes[tgtnumJ10J =xoffset *FEETPERGRID;

tgt _pos~tgt numJJ2] = -zoffset *FEETPERGRID;

tgt dir~tgt nul] = direction;

178



INTIEP ILLIE

ki*4d@ M4 at h h'

isefmne Z 2

lG t tAa~erp vev (list start line pad pcjan

long Bloat iane deitna, line 'leftas poiint dettaxa gxana Jeitat
flotst ts inength. dast to point
Bloat interpolation

line deltax (long float)(line end X line %tart X
ino Iet f ts ,nj 1,,4t line fl'1 I. in- -i Jul I

point _detax = (long loat)(line _start X -point, X
point deltas (long floilt)(line startjZ -pointZ;),

line lenigth - dr1&tlhypotl;ine 'leitax iine 19ittai

efist -to point - (float lhvpotltpoant iltax. point 'leltaizi

interpolation =line -start Y ((lane _end'Y -line start'Y;)
(dist -to -point/lane -length))

return (interpolation ),

179



LIG.H TI) II NT

*this is hit lighiienI

It ts 4 ,)ut .ne 'hat ' mrripuiev iight ingl fr a poi goirt based

upona the agle between the %ormal vvct.o>r of, the polygon

andi the diwrtion to the light oure

iih~in' %. Y nt ,,.,r-l% ax &Y as lx Iy Is rodlrmin r,lorm~ax o.lor -usel'

X~a 3 Iloating ,xrds -o the polygon

ticoordis number of coordinates

ax ay.aS interior point of the whole object. lI Sed to determine I

,ijtwudt ia. n norinai 4 tne pfolygon 1 ie .3 ihe sameyi

point 01 reierence tnat wouil oe used for bacjface

polygon removal.

Ix iy.1z ' ertor pointing in fliroct ion if'he- iignt. source

colormin. colormax = indices used for the c:olors assigned tO this

polygon. The user is respmnsible for !setting
up the color ramp

colortouse = returned color used to light the polygon.

Note: the routine also puts the polygons out ordered counterclockwise
with respect to the interior point for ease of backface polygon
removal.

#include <math.h>

#include <gl.h>

#define MAXCOORDS 80

.*define PTDIV2 1.5707943"27

float txyzjMAXCOORDSJj3j; /* temp coord hold ~

lightorient(xyz,ncoords,x,ay,az,Lx,ly,lz,colormin,colorm~x,colortouse)

float xyzI3];
long ncoord3;

180

%%



BLoat aX.ayU; * interior point of the whole obJect

do" Lxlyls, I* direction to the light source "/

long colormincolormax; /o color min/max indices */

.onc ' ioiortuoise; 'oAor tisei t o ight Lhe poivgjn retuirn ,'aili"

(

long ij; /0 loop temps 0/

long npoly _orientL); /" direction test function "/

float v1j3jv213J; /v vectors used to compute
the polygon's normal ./

float norrnali31; , the polygon's normal

float normalmag; / " normal's magnitude

float lightmag; /* magnitude of the light vector 0/

double dotprod: iot product of N andL 

float radians; 0 angle between N and L "

/* check the number of coords in the input array */

if(ncoords > MAXCOORDS)
{

printf("LIGHTORIENT: too many coords passed to me! = %dO,ncoords);
exit(1);

}

/* orient the polygon so that its counterclockwise with respect

to the interior point */

if(npolyorient(ncoords,xyz,ax,ay,a) == 1)
{

/* the polygon is clockwise, reverse it. */

for(i=O; i < ncoords; i=i-1)

F'ortj--0, j : 3: J =J- 1)dt

txyz[i~jj = xyz~ncoords-i-11j];

}

for(i=O; i < ncoords; ++i)
for (j=O; j < 3; ++j)

xyz[iI[jI = txyzlilljl;

181

is. 'P" , - '- + . -r . -,. -. -. ". -. .,,, € ., "- ,-,. --. - - .. . .



/0 the coordinates are ordered counterclockwise in array xys * /

/* compute the normal vector for the polygon using the first

three vertices...* /

/* compute the first vector to use in the computation /

v11l0 = xys2L101 - xyuIl[O;
vIII] = xys[lJtl - xys[lJfi];
vll21 = xy2112l - xysllff2l; 0

/* compute the second vector to use in computing the normal /
v 2I0 = xysj0jj0j - xysi1j0j]; .

v2t ij = xysiO][l ] - xysIi[1];
v2121 = xysJO)f2) - xyZl11121;

/* the normal is vI x v2 */
normalOi - v [L v2I2. - vt,21v2I : P,

normalllJ v1121*v2Oj - vljOJv2j2J;
normal[2l = vl[Ol*v211 - vlll*v2[01;

C

compute the magnitude of the normal

normalmag = sqrt{ (normail0I*normallO) -(norma1;*normal 1.)-

I normal! 21*normall2i)); .P

/ check the magnitude of the normal "/

if(normalmag == 0.0)
{ .,

normalmag = 0.00001; /* a small number */

/* compute the light mag */

lightmag = sqrt((Ix*Lx)+(ly*ly)+(Iz*lz));

if(lightmag == 0.0)
{

lightmag = 0.00001; /* a small number */

/ compute N . L (normal dot product with the light source direction) */

dotprod = (normall0l * lx) - (normalli, * ly) - (normal12J * Iz);

,lotprod = dotprodi(lightmag*normalmag);

/* dotprod = cos(theta) of the angle between N and L.
Convert to angle in radians */

radians = acos(dotprod);

/* compute the color we should use /

if(-PIDIV2 <= radians && radians <= PIDIV2)
(

182

N.
4 N " , " -' "



/* if the angle is negative, set to positive

if(radisens < 0.0)

radians = -radians;

* 'lortouse Eoiormax-eui')rminj PlDlV2 I* PINl'%2-radian!I -mo.rmin.

else

Ocolortouase =colormin;

Ip

/'set the color ~
color(*colortouse);

/ * draw the poly */
/* polf(ncoords,txyz); .

IJ

183

.JON % %



w. w -- w WW WWWMfl WW W W -K VWMW W

LINE INTERSECT2

6d.Sn.t X (

*delino SONE (
#d.Gne INTERSECT I
#delno PROPER 2

line _in tect&2 startI1, endi, stai't2, end2, intersect,
intersect _type)

Boat startil3j, endI13 u tart2lsl, end21SI, intersect13i;
int *itret-ye

given two lnes othe form s= mx -t- b and snx -t c,
solving for x when the z's are equal gives x =(c-b), (rn-n). .

Then solve for s using x in either of the above equations./

iloaL m.n.b.c:
float mini _x. min2 _x, maxi _x, miax2 x, mini _z. mini z. maui _z, max2 _z:

*intersect-type =PROPER;

/* slope and z intercept of linel/
if (endIjXj != startliXi) I

mn (endi(Zj startllZ!)/(endllXI - startlXi);
b =((startliZi - endliZI)/(endlXI - startliX!)) *startliXi + startliZj;
if (end2fXj != start2[XI) { /' both lines are non-vertical '

/ * slope and z intercept of line2 */
n = (end2 Zj - sta~rt2iZI)/(end2[Xl - start2[X );
c = ((start2IZ] - end2[ZI)/(end2jX! - start2l XJ)) *start2lX! +

if (m !=n){

intersect[Xj (c-b)/(m-n);
intersectIZ] m*intersectlXj + b;

ise both lines have !~qual slopes
intersect type = NONE;

else 4/* linel is non-vertical, line2 is vertical ~
intersect[XI = end2[Xl;S'

intersectIZI= m*intersectXJ + b; .0

else{

184



if (end~iX !=start2 X ) line[ is vertical. Iine2 is non-vertical
/* slope and s intercept of linell
n = (enc!TZI - stawt2T),/(@nd21X start2AX)
c = ((st rt2,Z, end2jZ,), (end2,X - atrt21X,)) 'start2,X

startlZV
interwsctX endlIX!;
intlretL Z n' ntersect X-

else I /* both lines are vertical s
'intersect-type = NONE;

if (*intrect-type != NONE){
see if the intersection is proper, or if only the extensions of the

"ie segments intersect/
if (startI[Xi < endl[Xfl {

mini x =startlIXi;

maxi-x =endi[XI;

else~
mini -x =endl[Xl;

Maxi _x =startIN;

if (startlZi -' endi Z)
mini _a = tartlIZI;

maxl-z =endI'Z;

else{
mini z =endlZ];

maxi _s =startijZ];

if (start2[XI < end2fXj) f
min2_x =start2lXJ;

ma.xfx =end2IXI;

elefmin2_x end2[XI;
maxf x =start2[XJ;

if (start2[Z] < end2[Zfl I
min2 -z start2IZl;
ma~x2 _z -end2 Z 1;

,-Ise
min2 z end2jZj;
max2 z =start2[Z];

185



if ((intersectfi k m~x IX) &&(intersect V <= mWx x) &&
(interscIXI >= mini x) &&(intersectiX >= min2 _X) kk
(intersoctIZI <= maxi z) &&(intersect ZI < mWx _s) &&
(intersoctlZi >= mini _a) kk (IntersectZl >= min2 N)

*intersect -type =PROPER:

ce
* interset type =INTERSECT;

.

186.

0t

% % % .



Wv U WMam W WWWWWww

MAKENAVBOX

/* drawnavbox.c - this function is called by the FOG-M missile simulator to
build an object on top of the contour map in the upper right-hand corner
of the screen. Navbox 7ontains the direction arrow and view box in red. /

#include "gl.h"
#include "fogm.h"
#include "device.h"

drawnavbox(navbox, arrowtag)
Object *navbox;
Tag *anowtag;
{ .

*navbox = genobjo; /* create the navigation contol and display object */
makeobj(*navbox);
if (TV) viewport(475,635,323,474);
else viewport(768.102.,512,767); '* upper right hand corner of screen
pushmatrixo; /* draw arrow in feet coordinates E/

ortho2(-10.0,10.0 + NUMXGRIDS*FEETPERGRID, -10.0,
-10.0 - NUMZGRIDS*FEETPERGRID);
color(BLACK);
clearo;
color(128);
*arrowtag = gentag);

maketag(*arrowtag);
move2(0.0,0.0);
draw2(0.0,0.0);
draw2(0.0,0.0);
move2(0.0,0.0);
draw2(0.0, 0.0);
rect(0.0,0.0,0.0,0.0); /* view box */
popmatrix0;
closeobjO;

187

B

' ' %' ' " '."€'. .. " ' . " . .. " -'.'.-€ .- - - - • .- - .-.- ' '- - . ... - - - r - - -',,-



MAKEINDBOX

/makeindbox.c is a function that creates an object that displays the control
idicators for the FOG-M missile simulation

#include t 'gi.h"
#include "fogm.h"

makeindbox(indbox,headingtag,elevtag,altmsltag,speedtag,zoomtag,tilttag,pantag,desigtag)
Object *indbox;
Tag *headingtag, *elevtag, *speedtag, *zoomtag, Stilttag, *pantag, *desigtag;
Tag *altmsltag;

*indbox = genobjo;
makeobj(*indbox);
if (TV) viewport(475,6S5,162,322);
else viewport(768,1023,256,511); /middle box on side of screen
pushmatrixo;
ortho2(0.0,255.0,0.0,255.0); /* use screen sized coordinates *

color(854); /*clear the window
clearo;
[inewidth(2);

color(BLACK);
recti(0,0,255,255); /outline box

color(YELLOW); /* prit labels for readouts *
cmov2i(iO,240);
charstr("1SPEED");
cmov2i(55,225);
charstr("kts"l);
cmov2i(90,240);
charstr("lHEADING");
circ(140.0,232.0,3.0); /* "degree" symbol
cmov2i( 180,240);
charstr("Alt AOL"); /* AGL = above ground level ~
cmov2i(225,225);
charstr("1ftif);
cmov2i( 180,200);
charstr(" Alt MSL"); 1/* MSL = mean sea level *

"Mov2i(225. 185);
*harstr( "ft');

cmov2i(50, 130);
charstr("ZOOM");
move2i(45,200); /* draw slider bar frame ~
draw2i(25,200);
draw2i(25,70);
draw2i(45,70);
cmov2i(15,196);

188

' -~ ~ -b. N. 1 N ' ~ '\N '' A. S W - ' V



charstr(1 8"); !* label slider bar values *i

cmov2i(6,170);
chazstr("W15);
cmov2i(6,144);
charstr("25");
cmov2i(6.1 18):
charstr("35");

cmov2i(6,92);
charstr("45"1);
cmov2i(6,66);
charstr("55");

color( WHITE); /'readouts in white...
cmov2i(10,225); /* initialize to dummy values ~
speedtag = gentagO,

maketag( *speedtag);
charstr("I 200"1); /*speed ~

cmov2i(108.2251;
*headingtag = gentago;
maketag(*headingtag);
charstr(" 0"); /* heading ~

cmov2i(180,225);
*elevtag =gentago;

maketag(*elevtag);
charstr("1000"); /~altitude above ground level S

cmov2i(180,185);
*altmsltag = gentagO;

maketag(*altmsltag);
charstr("1000"); /*altitude from mean sea level ~

color(RED);

*zoomtag= gentagO; /* indicator for zoom slider bar eV
maketag(*zoomtag);
move2(28.0,135.0);
rdr2( 10.0,5.0);
rdr2(0.0,- 10.0);
rdr2(-10.0,5.0);,

popmacrlxl);

if (TV) viewport(0,474,0,474); /* reset for heads-up display *

else viewport(0,767,0,767);

pushmatrixo;

ortho2(0.0,767.0,0.0,767.0); /* use screen sized coordinates *

color( WHITE);

189



else Lnwidth 1)

rectfi(365,37U.37U.375). dravm center 4, :romshair-s

recifi(396,37O,401,375).

draw2i(360,383); draw crosahunr
move2i(406,383);
draw2i(767,383);
movo2ci383,01.

draw 2i(383,365);
move 21(383,40 1);
draw 2i (383,767);I linewidth(2);

"oeit 30.501. Iraw rILT i'ider bar Crame
draw2i(40,50);
draw2i(40,680);
draw2i(30,680);
cmov21(0,6-j6);
charstr("- +25"); label siider bar values
cmov2i(O.613);
charstr("-20");
move2i(30,617);
draw2i(40,8 17);
cmov2i(O,550);
charstr("+ 15");
move2i(30,554);
draw2i(40,554);
cmov2i(0,487);
charstr("+ 10"1);
move2i(30,491);
draw2i(40,491);
cmov2i(0,424);
charstr(" +5");
move2i(30,428);
draw2i(40,428);,
emov2i(0, 361);
charstr(" 0");
mnove2ii.10.3165);
.1raw2i(40.3651;
cmov2i(0,298);
charstr(" -5");
move2i(30,302);
draw2i(40,302);
cmov2i(0,235);
charstr("-10");
move2i(30,239);
draw2i(40,239);

190



cmov2i(0, 172);

move2i(30,176);
draw21(40,176);
cmov2i(0, 109);

charstr( "-20");

draw 21(40, 113);
cmov2i(O,46);

charstr("1-25");

tilttag =gentago; '~indicator for TILT slider bar ~
m&.ketag( stilttag);
move2(42.O,365.O);
rdr2( 10.0,.5.0);
rdr2( 0.0,10.0);
rdr2(-8.0,-4.O);
rdr2( 6.0,-3.0);
rdr2( 10.0, 4.0);
rdr2(-2.O,-.A);
rdr2( 1.0,-1.0);

move2i(120.15); draw PAN slider bar frame ,

araw2i( 120,25);
draw2i(750,25);
draw2i(750, 15);
crnov2i(107,3);
charstr("I-25"1); /* label slider bar values ~
cmov2i(170,3);
charstr( "-20");
move2i(183,15);
draw2i(183,25);
cmov2i(233,S);
charstr(I- 15");
move2i(246,15);
draw2i(246,25);
cmov2i(296,3);
cbarstr("-10");
move2i(309,15);

draw2i(309,25);
cmov2i(363,3);
1charstr( "-5");
move2ii37 2. 15);
iraw*2i(72.2'5):

cmov2i(431,3);
charstr("0");
move2i(435, 15);
draw2i (435,25);
cmnov2i(494,3)
charstr( " +5");
move2i(498. 15);
draw21(499.25),

% %I



M19~4 S9 AM INEXPENSIVE REAL-TINIE INTEIReACTIVI STHREE DIMENSIONAL 2/3
FLIGHT SIMULATION SYSTEM(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D 3 SMITH ET AL. JUN 87

UCAEDhEFhOh5EEEEE



111111.0 1 0

Illil I-1 .4 111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS163 A

-w-~ W .0" w wu 43 4 3 3 3 '
% %~ .% ~ * * *. .W

% ..-... t..-.'. -



cmov2i(552,3);
charstr("+1O");
move2i(501,15);
draw2i(581,25);
cmov2i(615,S);
charstr("+ 15");
move2i(624, 15);
draw2i(624,25);
cmov2i(678,3);
charutr( "+2011);
move2i(687,15);
draw2i(687,25);
cmov2i(741,S);
charstr("+25"1);

*pantag = gentagO; /* indicator for PAN slider bar/
maketag(*pantag);
move2(435.0,27.0);
rdr2( 3.0,10.0);
rdr2t-10.0, 0.0);
rdr2( 4.0,-8.0);
rdr2( 3.0, 6.0);
rdr2( -4.0. 0.0);
rdr2( 1.0,-2.0);
rdr2( 1.0, 1.0);

move2i(0,30); /* designate/reject box *
draw2i(100,30);
draw2i( 100,0);
*desigtag = gentago;

maketag(*desigtag);
cmov2i(10, 10);
charstr("'DESIGNATE't);

popmatrixco;
closeobjo;

}L

192



MAKEINSTRBOX

/makeinstrbox.c - this function builds an object that contains an instruction
summary for the FOG-M missile simulation .

#include "gl.h"
#include "fogm.h"

makeinstrbox(instrbox)

Object *jnstrbox;

*instrbox = genobjo;

makeobj(*instrbox);
if (TV) viewport(475,635,O,161);
else viewport(768,1023,O,255); /* box is in lower right hand corner
pushmatrixo;
ortho2(O.O,255.0,0.O,255.O); /use screen-sized coordinates /

color(851); use a medium green
clearo;
linewidth(2);

color(852); use light brown
rectfi(1O,20,11O,195); /* draw the mouse control box .
rectfi(135,80,245,195); /* draw the dial control box *
color(BLACK); /* outline controls
recti(1O,20,11O,195);
recti(135,8O,245, 195);
recti(O,O,255,255);

color(BLACK);
cmov2i(60,230);
charstr("1C 0 N T R 0 L S5");
cmov2i(S7,200);
charstr( "MOUSE"l);
cmov2i(172,200);
charstr("'DIALS");

cmov2i( 25.60);
c harstr(" TILT");
move2i(70.62); draw arrow
draw2i(75,55);
draw2i(75,75);
draw2i(70,68);
move2i(75,75);
draw2i(80,88);
move2i(75,55);
draw2i(80,62);

193



cmov2i(25,30);
charstr("PAN"I);
move2i(67,40); /* draw arrow
d~raw2i(60,35);
draw2i(80,35);
draw2i(7S ,40);
move2i(80,35);
draw2i(73,SO);
move2i(60,35);
draw2i(67,SO);

color(853); /* dark brown
rectfi(20,85,40,185); /* draw mouse buttons
rectfi(50,85,70, 185);
rectfi(80,85, 100,185);
color(BLACK); /outline buttons
recti(20,85,40,185);
recti(50,85,70,185);
recti(80.85. 100,185);

color(853);
eirefi(160,165,20); /* draw dials *
cirefi(160.11O,20);
circfi(220, 165,20);
circfi(220,110,20);
color(BLACK); /* outline dials *

circi(160,165,20);
circi( 160,110,20);
circi(220,165,20);
circi(220,110,20);
color(WHITE);
cmov2i( 147,160);
charstr("ISPD"); /* label dials ~
cmov2i( 147,106);
charstr("DIR");
cmov2i(207, 106);
charstr("ALT");
cmov2i(207,160);
charstr("CLR"I);

cmov2i(25,170);
charstr("Z"); /label mouse buLtons
cmov2i(25. 158);
charscr("O");
cmov2i(25, 146);
charstr("O");
cmov2i(25,134);
charstr("'M");
cmov2i(25,110);
charstr( IllI);
cmov2i(25,98);
charstr( "N"I);

194



cmov2i(S5, 170);
churstr("D");
emov2i(55,158);
chautr("Et t );
cmov2i(55,148);
charstr("S");
cmov2i(55, 134);

cmov2i(55,122);
charstr("G");
cmov2i(85,170);
charstr("Z");
cmov2i(85,158);
charutr("O");
emov2i(85, 148);
chwantr(It0tI);
emov2i(85,1S4);
charstr("M");
crnov2i(85,1 10);
charstr(#oll) ;
cmov2i(85,98);
charstr(ItUt);
cmov2i(85,86);
charstr( "T"l);

popmatrixt);
closeobjo;

195



MAKEMAP

/* makemap.c - this function is called by the FOG-M missile simulator to
build an object containing a contour map. The map is used for the full
screen display in prelaunch, and in the upper right corner of the light
display in fogm.

#include "glh"
#include "fogm.h"
#include "device.h"

makemap(contour)
Object *contour;
{

short i, j, elev, length, lastcolor, breakpt[151;
int colour;
extern short gridpixe[100111001; /* terrain elevations & vegetation */

/* compute elevations where color changes should occur
for (i = 1; i < 16; i++) breakptli-1] = (((MAX - MIN) / 16) i) + MIN;

*contour = genobj(; /* create the navigation contol and display object 'I
makeobj (*contour);
viewport(0,767,0,767);
pushmatrixo;
ortho2(0.0,100.0,0.0,100.0); /* use array index space '/

color(BLACK);
clearo;

lastcolor = BLACK;
linewidth(8);

for (i=0; i < 100; ++i) { /* draw column i */
move2i(i,0); /* start at bottom of column */
length = 0; /* # adjacent points of the same color */
for (j = 0; j < 100; ++j) { /* for each row in column i */

elev = gridpixelbilil & elev mask; /* mask off veg code */
if (elev < breakpt(O) colour-- 16; /* assign green colors */
else if (elev < breakptill) colour = 17;
else if (elev < breakpt!21) colour = 18; '.

else if (elev --b reakptl3l) colour = 19;
else if (elev < breakptl41) colour = 20:
else if (elev < breakptll5) colour = 21;
else if (elev < breakpt[61) colour = 22;
else if (elev < breakpt[7l) colour = 23;
else if (elev < breakpt[8J) colour = 24;

else if (elev < breakpt[g]) colour = 25;
else if (elev < breakpt[10j) colour = 26;
else if (elev < breakpt[111) colour = 27;
else if (elev < breakpt[121) colour = 28;

196

U

'p_.



else if (.1ev < breakpti 131) colour 29;
else if (.1ev < breakpti14]) colour 30;
else colour = 31;

/* if veg-code = 0 (i.e. veg < 1 meter) shift to brown colors/
if (!((gridpixeljjjli) >> is) & veg mnask)) colour += 16;

if (colour == lastcolor) length++; /* don't draw yet */
else { / draw now that color has changed ~

color(lastcolor);
rdr2i(0,length);
lastcolor = colour; /* reset for new draw /

length = 1;

}/* end for j

color(colour); /* draw last (top) line ~
rdr2i(0,length);

} end forI

if (!TV) f
color(BLACK); /* draw grid on top of map
linewidth(l);

for (i = 10; i < 100; i-,-10) I /* draw interior lines ~
mnove2i(i,O); /* horizontals
draw2i(i, 100);
move2i(0,i); 1* verticals /
draw2i( 100,i);

linewidth(2); /* draw exterior border/
rect(0.0,0.0,100.O,100.0);

popmatrixo;
closeobjo;

197



MAKESCREENS

/* makescreens.c -builds graphical objects for prelaunchi's instructional
screns and readout boxes.

#include "gl-h"
# include "device. h"
#include "fogm.h"

makescreens(obj tag)

Object obJl71;
Tag tag[61;

obiuINSTRI = genobjo; /object for pre-launch instructions ~
makeobj (obijINSTRI);
if (TV) viewport(475,635,239,474);
else viewport(767,1023,385,767);
pushmatrixo;
ortho2(O.0,255.0,O.O,3P84.O);
color(CYAN);
clearo;
color(BLUE);
rectfi(1O,1O,245,374);
color(WITE);
cmov2i(3O,340);
charstr("PRE-LAUNCH INSTRUCTIONS");
cmov2i(25,300);
charstr("l1. PRESS LEFT MOUSE");
cmov2i(52,285);
charstr("BUTTON TO LOCK IN");
cmov2i(52,270);
charstr("LAUNCH POSITION");
cmov2i(25,220);
charstr("2. PRESS RIGHT MOUSE");
cmov2i(52,205);
charstr("BUTTON TO LOCK IN");
cmov2i(52,190);
c-harstr("TARGET LOCATION");
'Omov2i(25. 140);
rharstr!",. PRESS MIDDLE MOUSE");
cmov2i(52,125);
charstr(" BUTTON TO LAUNCH");
cmnov2i(25, 75);
charstr("4. PRESS ALL THREE");
cmov2i(52, 60);
charstr("BUTTONS TO EXIT");
PopmatrixO;
closeobjo;

198



/* define objet for displaying user input for missile launch
position and target location. Also displays computed heading
and distance to target ~

obj [STATS] = genobjo;
makeobj(obj[STATS J);
if (TV) viewport(475,835,0,238);
else viewport(767,1023,0,384);
pushmatrixO;
ortho2(O.O,255.0,O.0,384.O);
color(CYAN);
clearo;
color(BLUE);
rectfi(10,10,245,374);
color( WHITE);
cmov2i(30,340);
charstr(t"PRE-LAUNCH STATISTICS");
cmov2i(25,260);
charstr("LAUNCH POSITION: 1OSFQ1");
cmov2i(70,235);
charstr("X COORD: "1);
cmov2i(70,220);
charstr("Y COORD: t?);

cmov2i(170,235);
tag[LAUNCHI = gentago;
maketag (tag[ LAUNCH]);
charstr(tf ");
cmov2i(170,220);
charstr(" ");
cmov2i(25 ,180);
charstr("TARGET LOCATION: 1OSFQ");
cmov2i(70,155);
charstr("IX COORD: 1);
cmov2i(70,140);
charstr("1Y COORD: i);
cmov2i(170,155);
tag[TARGET] = gentago;
maketag(tag[TARGETI);
charstr(" ");
cmov2i(170,140);
charstr(" ");
cmov2i(25. 100);
c harstr(" HEADI[NG: )

c.mov2i( 25.60);
ch arstr(" DISTANCE:")
cmov2i(106,I00);
tag[HEADj = gentago;
maketag (tag [HEAD 1);
charstr(" "');
cmov2i(115,60);
charstr(" ff1);
popmatrixo;



closeobjo;

/* define object for lines & circles showing flightpath on contour map

objIFLTPATHI = genobjO);
makeobJ(obJIFLTPATH]);
pushmatrixo;
if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
ortho2(0.0,100.0,0.0,100.0);
color(BLACK);
clearo;
color(64);
linewidth(3);
tag[MISSILEJ= gentago;
maketag(tag [MISSILE]);
circf(0.0,0.0,0.0);
move2(0.0, 0.0, 0.0);
draw2(O.O, 0.0, 0.0);

tag[TGTI = gentago;
maketag(tag[TGTJ),
ciref(0.0,0.0,0.0);
popmatrixo;
closeobjo;

/ * define object for displaying first screen of operator instructions /

objISCREENlI = genobjO);
makeobj (obj (SCREEN 11);
color(BLUE); /~set background color ~
clearo;
color(RED);
linewidth(10);
recti(0,0, 1023,767);
linewidth( 1);
color( WHITE);
cmov2i(420,500);
ch arstr(" WELCOME");
cmov2i(420,450);
charstr("TO THE");
cmov2i(320.400);
,-harstr( "FIBER-OPTICALLY GUIDED MISSILE"): a

':mov2i(20.'50);
charstr("(FOG-M)");
cmov2i(410,300);
charstr("SIMULATION");
cmov2i(310, 100);
charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE...");
emov2i(315,85);
charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeobjo;

200

a~~ % % va va*s.



/* define object for displaying second screen of operator instructions/

obj[SCREEN21 = genobjo;
makeobJ(obj [SCREEN2]);
color(BLUE); /* set background color/
clearo;
finewidth(10);
color(RED);
recti(0,0, 1023,767);
linewidth(1);
color( WHITE);
cmov2i(2 10,600);
charstr("THE FOG-M PROGRAM PROVIDES A SIMULATED MISSILE LAUNCH AND");
cmov2i(210,575);
charstr("OUT-THE- WINDOW VIEW OF THE TERRAIN AS SEEN FROM THE OPERATOR'S");
cmov2i(2 10,550);
charstr(" CONSOLE ON THE GROUND.");
cmov2i(210,500);
charstr("THE GENERAL AREA FOR THIS FLIGHT SIMULATION I5 FT HUNTER LIGGETT");
cmov2i(210,475);
charstr("1CALIFORNIA AND VICINITY.");
cmov2i(210,425);
charstr("THE SPECIFIC TEST AREA IS A 10 KILOMETER REGION DESIGNATED BY");
cmov2i(210,400);
charstr("UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID COORDINATES IOSFQ58.");
cmov2i(300,100);
chazrstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE,");
crnov2i(305,85);
charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeobjo;

/* define object for displaying third screen of operator instructions ~

obiISCREEN31 = genobjo;
makeobj (obj ISCREENS 1);
color(BLUE); /~set background color ~
clearo;
linewidth (10);
color(RED);
recti(0,O, 1023,767);
linewidth( 1);
f-olor( WHITE);
c mov 2i ( 85 .650);
':harstx<'PRE- LAUNCH ORIENTATION");
crnov2i (200,600);
charstr("11. WHEN THE PRE-LAUNCH PHASE OF THE FOG-M SIMULATION BEGINS, A"l);
cmov2i(200,585);
charstr("2-DIMENSIONAL CONTOUR MAP OF THE TEST AREA (UTM 10SFQ58) WILL BE");
cmov2i(200,570);
charstr("DISPLAYED ON THE OPERATOR CONSOLE. TWO CONTROL PANELS CONTAINING");
cmov2i(200,555);
charstr("PRE-LAUNCH INSTRUCTIONS AND CURRENT LAUNCH STATISTICS WILL ALSO");

* 201



cmov2i(200,540);
charntr("BE DISPLAYED.");
cmov2i(200,490);
chanstr("2. THE OPERATOR WILL BE REQUIRED TO PROVIDE TWO CRITICAL DATA");
cmov2i(200,475);
charstr("ITEMS TO THE LAUNCH CONTROL SYSTEM; INITIAL LAUNCH POSITION AND");
cmov2i(200,460);
charstr("TARGET LOCATION.");
cmov2i(200,410);
charstr("S. TO DEFINE INITIAL LAUNCH POSITION, MOVE CURSOR OVER DESIRED");
cmov2i(200,395);
charstr("LOCATION (REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW THE");
cmov2i(200,380);
charstr("CURRENT UTM GRID COORDINATES). PRESS LEFT MOUSE BUTTON TO LOCK");
cmov2i(200,365);
charstr("IN LAUNCH POSITION.");
cmov2i(200,315);
chanstr("4. TO DEFINE TARGET LOCATION, MOVE CURSOR OVER DESIRED LOCATION");
cmov2i(200,300); ,.
charstr("(REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW CURRENT UTM");
cmov2i(200,285); ".
charstr("GRID COORDINATES). PRESS RIGHT MOUSE BUTTON TO LOCK IN TARGET");
cmov2i(200,270);
charstr("LOCATION. THE BLUE LINE DISPLAYS THE PROJECTED FLIGHT PATH. THE");
cmov2i(200,255);
charstr("MISSILE WILL FLY AT A CONSTANT VELOCITY AND HEADING. THE LAUNCH");
cmov2i(200,240);
charstr("STATISTICS CONTROL PANEL WILL DISPLAY COMPUTED MISSILE HEADING");
cmov2i(200,225);
char3str("IN DEGREES (0 DEGREES DUE NORTH).");
cmov2i(240,100):
charstr("PRESS MIDDLE MOUSE BUTTON TO MOVE INTO PRE-LAUNCH PHASE,");
cmov2i(326,85);
charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeobjo;

202

5.

f~v , .i' ", ' " ";, ,% ," -,' •, -.. ', ,- "-", ", .- .- . .. " - "- ". "- . '..'.-". :.-".-'.- .- " .- .- - . . .- .- ". .. .. ". ". .--..- . . ".



MAKETANK

#include "gl.h"
#include "fogm.h"

maketank(item)
Object * item;

long points = 4, bigpoint3 8;
float parray[8jl3l;
float tx,ly,lz,
long cmin =MIN TGTCOLOR, cmax =MAXTGT COLOR, ci;

Ix = 400.0 41.01; /* direction of lightsource ~
ly =6000.0;
lz = 200.0 * (-41.01);

*item=genobjfl;
makeobj ( *ite);

/* draw right side of tank CCW *
parrayo11o] = -10.0;
parrayl011ll = 6. 0;

parray[0lI21 = -5.0;
parray[1110j = -15.0;
parrayJ11111 = 4.0;
parray 111I21 = -5.0;
parrayl2l101 = -15.0;
parrayI2IJlj = 2.0;
parray[2][21 -5.0;
Parray1SJ[0J = -10.0;
parray[3111 = 0.0;
parray[31121 = -5.0;
ParraY[41[01 = 10.0;
parrayI4I1lI = 0.0;
parrayI4II2I = -5.0;
p array f51 101 = 15.0:

pa.rray,5, 2! -5:

parray[6fioj 15.0;
Parray611= 4.0;
parray[61121 = -5.0;
parray7][0I = 10.0;
parray[7I]111 = 6.0;
parrayI7ll2] = -5.0;
Iightorient(parray,bigpoints,0.0,0.0,0.0,x,y,z,cmin,cmax,&c 1);
color(c 1);

203



polf(bigpoints,parray);

/* front of tank CW/
parray01!0) = 15.0;
parray[0I[1I = 5.0;
parray0112] = -5.0;
parray[1l](O = 15.0;
parrayll][l = 3.0;
parray[l][2] = -5.0;
parray21(O1 = 15.0;
parraYl2]IlJ = 3.0;
parray21I2I = 5.0;
paxray(31[0l = 15.0;
parray 1311 = 5. 0;
parraysl[21 = 5.0;
lightorient(parray,points,o.0,0.o,0.0,xlyz,cmincm~x&cl)
color(cl);
polf(points,parray);

/* draw left side of tank CW *
parrayoj[0J = 10.0;
parrayl0J[iJ = 6. 0;
parray[01[2i = 5.0;
parrayfiloj0 = 15.0;
parraylll[11 = 4.0;
parray[1][21 = 5.0;
parray[21[01 = 15.0;
parray[211lJ = 2-0;
parray[2]121 = 5.0;
parray(s](01 = 10.0;
parrayI3J1J1 = 0.0;
parray[31121 = 5.0;
parray[41[01 =-10.0;
parray41[11 = 0. 0;
parray[4[21 = 5. 0;
parray[5]l01 = 4'5.0;
parray[15f1 1 = 2. 0;
parraySJI2I = 5.0;
parray[61[Oj = -15.0;
parray[6J[11 = 4. 0;
parray[6]12] = 5.0;
parray171 f,01 = -10.0:
parrav 7: 11 6 .0:
parray, 7' 2! .5. 0:
Ii g h torie n t parray, big po in ts,0. 0, 0. 0,0.0, Ix, Iy, Iz,c m ncm ax,& c1);
color(cl);
polIf(b ig poi nts, parray);

/* back of tank COW *
parray(0I(0l -15.0;
parrayf 0111] = 4.0;
parray[0[2] = 5.0;

204

-~~ ~ .,S - %;.



Pu~rayllIOI = -15.0;
parraylJlJ = 2.0;
parray [111[21 = 5.0;
parray[21101 = -15.0;
ParrayI21[lI = 2.0;
ParraY[2121 = -5.0;
parrayls)[lO] -15.0;
parraylsilli = 4.0;
parrayI31121 = -5.0;
lightorient(parray,points,0.0,.0,0.0,b,lyhscmincma&cl);
color(cl);
p-olf(points,parray);

/* top middle of tank body COW/
parray[0I[0I -10.0;
parray[0I[1I 6.0;
parray012J = -5.0;
ParrayliJ[0J = -10.0;
parray[l[1J 6.0;
parray1J[21 = 5.0;
parray[2110] = 10.0;
parray[211) = 6.0;
parray[2 1 ,f2l = 5.0;
parray[3i[Oj = 1);0
parray[3j [1] = 6.0;

color(cl);
polf(points,parray);p /* top front of tank body CCW S
parray[O)fOJ = 10.0;
parray[0j[1] = 8.0;

*parray[01[21 =-5.0;
parray[1][0J = 10.0;
parrayf ]11 = 6. 0;
parray[1112J 50
parray[2110J = 15.0;
parray 121 [l1 = 4. 0;Iparray[21I21 = 5.0;
parray[31I = 15.0;
Parr ayiU = 4. 0;

iglorie nt I parray.po in ts. )0. o0. 0. o.0,ix,: v. 1,z i n. c max. c 1:
;:ior(c 1);oftnbdyCW /
polf(points,parray);

parray[OIjOl = -10.0;
parray[Q1l11 = 6.0;
parray(01[2j = -5.0;
parrayfll[0] -15.0;

205



parraylIl[ = 4.0;
parray[lj 121 = -5.0;
parray121[OI = .15.0;
parrLY 121[ 11 = 4.0;
parraY [21121 = 5.0;
parray 131101 = -10.0;
parray 131[I1 = 6.0;
parraySj[21 = 5.0;
hightorient (parray,points,0.0,0.0,0.0,xly,lz,cmin,cmax,&c 1),
color(c 1);
polf(points,parray);

/* bottom middle of tank CW*/
parray 1l [01 =-10.0;P
parraylo][1J = 0.0;
parray101[21 = -5.0;
parraylI][o = 10.0;
parrayjll[11 = 0.0;
parrayi11121 = -5.0;
parray 121 [01 = 10.0;
parrayI121111 = 0.0;
parray[2lI21 = 5.0;
paffay!3101 = -10.0;
parray[3.1ll = 0.0;
parray [ 3121 = 5. 0;
lig htorien t(parray, poin ts, 0. 0, 0. 0,0.0, lx, ly, Iz, c mn, c max, &c 1);
color(c 1);
polf(point3,parray);

/* bottom front of tank CW *
P&"rrYl[0I0 = 10.0;
parrayl01l11l 0.0;
parray10l[21 = -5.0;
parrAY1llI01 = 15.0;
parrayI1J[1J = 2.0;
parrayll]121 = -5.0;
parray121101 = 15.0;
parray 121111 = 2.0;
Pwarry[21[21 =5.0;
parrayf j1 10] 10.0;
P&"&aYI31[1] = 0.0;
parray!31 21 = 5. 0;

Iiig h to rie ntI p arra v. po in t s . .0.0.0. 0. 1x, Iy. Iz.c m in. cm ax.&c I %

colorl c 1);I
polf(points,parray);
/* bottom back of tank CW e
parraylo]10] = -10.0;
ParraylOllij = 0.0;

parray(0]1[21 = -5.0; .
206



paxray[1][2] = 5.0;w

parray[21[0j = -5.0;
parray[2111 = 2.0;

parraYt21121 = 5.0;
parray[31[01 = -15.0;
parray [S3111 = 2.0;
pearray[31121 = -5.0;
lightorient(parray,points,0.0,0.0,0.0,bc,ly,ls,cmin,cmax,&cl);
color(c1);
polf(point3,purray);

/ * right side of gun barrel *
parray[0J0 = 1.6067;
parraytOl[ll = 8.0;
parray[1121 = -0.5;
parray[l][01 = 2.3333;
parray[111l1 = 7.0;
parray(II(21 = -0.5;
paffay[21[Oj = 17.0;
parray[21111 = 7. 0;
parrayf 21121 =-0.5;
parray[3J 101 = 17.0;
parrayrs][iJ = S. 0;
parray[31[21 -0. 5;
ligh torien t parray, po ints, 5.0,2 5, 0 0,lx, ly, Iz, cmin,c max,& c1);
color(cl);
polf(points,parray);

/* top of gun barrel *
parray[0J [0] = 1.6667;
parraylo)[1j = 8. 0;
parray[0l[21 = 0. 5;
parray[1110J = 1.6667;
parraylIlIl = 8.0;
parray[11[2[ = -0.5;
parray[21[OJ = 17.0;
parray 1211 = 8. 0;
parray[21(21 = -0.5;
parray[S]I0] = 17.0;
parray[31J = 8.0;
parray[3[2J 0. 5;
1 igh torie n t(parray ,po in ts, 5.0.2.5 .. bx. lylz. cm in, c max. c 1);

poif(points.parray):

/* left side of gun barrel *
parray[0][0j 17.0;
parraylo[11 8. 0;
parray(0[21 0. 5;
parraylill01 17.0;
parray[1J[1J 7. 0;
parray[11121 = 0. 5;

207



parray2[01 = 2.3333;
parray[2I[lI = 7.0;
parnay21[21 0.5;
parray[3[0] = 1.8887;
pazrayf[]11 = 8.0;
parraY[1121 0. 5;
lig h torien t(p array, poin ts, 5.0,2.5, . ,x,y,lz, cm in, cm ax, &C );
color(cl);
polf(points,parray);

/~end of gun barrel/
parray[I01 = 17.0;
parrayf 01111 = 8.0;
parray[0)[21 = -0.5;
parrayflifo) = 17.0;
parray[11 = 7.0;
parray[1[21 = -0.5;
parrayl2fOl = 11.0;
Parray 12f11 = 7.0;
parray[2]12] = 0.5;
parray[31[01 = 17.0;
parray[3][11J 8.0;
pa-rray(3SH2) = 0. 5;
ligh torien t(parray, poin t3,5.0, 2.5, 0.0, Ix, ly,Ilz, c min, cm&x,&cl1);
color(c1);
polf(points,parray);

/*bottom of gun barrel ~
parray[[0[O = 2.3333;
parray[OJIlJ = 7.0;
parray[0] [21 = 0.5;
parray[l1 = 2.3333;
parrayf 11111 = 7. 0;
parray1J[2) = -0.5;
parray[2[01 = 17.0;
parray[2][11 = 7.0;
pafray[2[21 = -0.5;
parrayf 31101 =17.0;
parray 13111[ = 7. 0;
parray[S1121 = 0. 5;
lightorient (parray, points, 5.0,2.5,0.0, Ix,ly, lz,cm in,c max, &c 1);
color(c 1);
polf(poin ts. parray I;

/* right side of turret '

parrayloj 101 = -3.0;
parray[Of [1] = 9.0;
parray(01[21 -1.0;
parrayliJ[Oj = -5.0;
parray[1[I[ = 8.0;
parray[11[21 = -3.0;
parray[21101 3.0;

208



parray[211lI = 6.0;
parray[2][21 = -3.0;
pazray[sIIOI = 1.0;
parray[31111 = 9.0;
paffay[SI[21 = -1.0;
lightorient(parray,points,-1.0,2.5,0.0,lx,ly,IZ,cmin,cmax,&e 1);
color(cl);
polf(pointa,parray);

/* front side of turret/
parray101I0l = 1.607;
parraylo][11 = 9.0;
parrALY[0fl2] = -1.0;
parrayll][01 = 3.0;
pa~rr&y[1i[1J = 6.0;
parrayf 11121 = -3.0;
parray[2110l = 3.0;
parray(21fll = 8.0;%
ParraY12121 = 3.0;
parrayf 31101 = 1.687;%
parrayf 31111 = 9.0;
paffaySII21 1.0;
lightorient (parray, points,1., 2.5.0.0, lx, ly, Iz.cmin,cm~x.&c 1);
color(cl); "
polf(points,parray);

/* left side of turret ~
parrayOJOJ = 1.6667;
parraylO][1I = 9.0;
parray[O1[2I = 1.0;
parraylil][o = 3.0;
parraYlll[1l = 6.0;
parrayll[21 =3.0;
parray 121101 =-5-0;
parray 121[ 11 = 6.0;
p.rray[21121 = 3.0;
pv~rray[31101 = -3.0;
p..rrayls]I1I = 9.0;
parray[3l(21 = 1.0;
lightorient (parray, points,- 1.0, 2.5,0. 0, Ix,Iy, Iz,cm in,cm &x,&c 1);
color(cl);
polf(points. parray);

*back side of turret

parray!l 101 = -3.0;
parrayIO][ll = 9.0;
parray[OII21 = 1.0;.r
parrayl][1 = -5.0;
parrayll)[l = 6.0;
parrayll][21 = 3.0;
parray21101 = -5.0;
parray[2111l = 6.0;

209



parray[21121 = -3.0;
parrayjl[101 = -3.0;
panay[3[1J = 9.0;
parnay[31121 = -1.0;
lightorient(parray,point,-1.0,2.5,0.0,x,ly,ls,cmin,cnax,&cl);
color(cl);
polf(point3,pa~rray);

/* top of turret */
parray[0II0I = -3.0;
paenay[O]ll = 9.0;
PUT"y[01121 = 1.0;
parray[1illj = -3.0;
Pan&YIliI1I = 9.0;
Parr y[112j = -1.0;
paffay[21101 = 1.0;
parray121[11 = 9.0;
parray12l[21 = -1.0;
parray[3H[Ol = 1. 0;
parray [ 3 [ 1 = 9.0;
parray[3][21 =1.0;
lightorien t(parray, points,- 1.0,2. 5,0.0,lx,y, Iz,cmnin,cmax,kc 1);
color(cl1);
polf(points, parray);

closeobjo;

210



NEARESTTGT

#include "glh"
#include "fogm.h"
nearet -tgt(vx,vy,vn,px,py,ps,tgt idx)
Coord vx, vy, vs, px, py, pm;
int *tgt-i-dx;

float dint, diet to losO);
float min dint;-
float numtgts;
extern float tgt_poe(MAX-TGTS][SJ;
int index;

num-tgts = 10;
min dint = dint -toI os(vx,vy,vn,px,py,pu,&tgtpos[OlfOfl;
*tgt-idx =0;

for (index =1; index < num-tgts; ++index){
dint =dint -toIoe(vx,vy,vs,px, py,ps,&ktgt_poslIindex]it0l);
if (dint < min dist) {

min dist =dint;

*tgt-idx =index;

211



NPOLYORIENT

/* npoly_orient.c /

#include <gl.h>
#include <math.h>

int npoly-orient(ncoords,xys,xinside,yinside,sinside)
unsigned int ncoords;
Coord xyzl]3;
Coord xinside, yinside, zinside;
{

register unsigned short int ij; /* loop temps */

Coord center[S]; /* center coordinate of the polygon

Coord af31, bi$i; /* vector hold locations for the vectors that run
from the center coordinate to the points of the
polygon */

Coord xn[!3, xmn[3!; /* points on line containing normal that are
on opposite sides of the plane containing
the polygon.

,/

float distton; /* distance to point n from pt inside. */

float dsttomn; /* distance to point -n from pt inside. */

Coord normalisi; /* t'~e normal vector computed from a x b */

/* compute the center coordinate of the polygon /
center[Ol = 0.0;
centerIl] = 0.0;
center[2] = 0.0;

for(i=O; i < ncoords; i++)
{

for(j=O; j < 3: j--+)

c*enterrjj -= xyz!ii;i

}
}

/* divide out by the number of coordinates /
for(j=O; j < 3; j++)
{

centerlij] = center[jI/(float)ncoords;

2
212



/* check the first 2 coordinates of the polygon for their direction

/ *compute vector a. It runs from the center coordinate to coordinate 0 ~
forj=0; j < 3; j++)

af]=xyz[OIjUj - center.];

compute vector b. It runs from the center coordinate to coordinate 1
forUj=0; j <3; j+i+)

b~jj = xyz[1J[.j - center[j];

/compute a x b to get the normal vector ~
normal[O] a(1]*b[21 - &12]*b[1i;
normaif 11= a[21*b[0l - a[01*b[21;
normal[21 =a[0I*bj1J - a[11*bjOI;

/ * compute point n, offset pt from center in direction of normal *
forU=0; j < 3; j++-)

xnijJ = centeril -4 normal[j];

/ * compute point -n, offset pt from center in opposite direction
from normal.

fOrU=O; j < 3; j++)

xmn[j] = center] - normallil;

/compute the distance the inside pt is from point n
distton = sqrt((xn[0J - xinside) * (xnfol - xinside) +

(xn~l - insie) *(xn~] - insie)(xn[] - insie) *(xn[] - insie)
(xn[2J - uinside) * (xn[2] - zinside));

/* compute the distance the inside pt is from point -n
disttomn = sqrt((xmn[OJ - xinside) * (xmn[0j - xinside) +

(xmnlJj - yinside) * (xmn]1] - yinside) +s
(xmn'2 1 - sinside) * (xmni2l - zinside));

P
213

%or. r. C.O



/* if the dist(n) < dist(-n), then n points back towards the
inside point and is on the same side of the plane as inside.
a x b is then clockwise.

if(distton < disttomn)
{

return(1); /* clockwise */
}
else
{

return(O); /* counterclockwise */

2.

!

214j

b'",£- £ - .- " .'*. • *'%,4-',,-- ",... .. .. . .... ","• . . "-'-" "- .. .. ' .- "--." -'" ".



PRELAUNCH

/* The function prelaunch is the user interface portion of the FOG-M
flight simulation. It allows the operator to interactively enter
critical data items necessary to simulate the missile in flight.
The function returns the initial launch position in the x-z plane
and also the direction of flight. /

#include "gl.h"
#include "device.h"
#include "fogm.h"
#include "math.h"

prelaunch(vx, vy, vz, direction, compassdir, active, obj, tag)

Coord *vx, *vy, *vs;
double *direction;
float *compassdir;
int *active;
Object obji7];
Tag tag!61;

float gnd-level();
float compasso;
int screencnt, launchlock, targetlock;
int xval, yval, xlaunch, ylaunch, xtarget, ytarget, utm-x, utmy;
char xtempJ35], ytemp35], distI$5l, heading[35];
float distance;
double xdistance, ydistance;
Colorindex unmask;

xtemp[0O = '

ytemp[Ol = '

dist[O = '

heading[O1 =

unmask= (1< <getplanes() -1;
writemask(unmask);
if (TV) viewport(0,635.0.474);
-Ise vlewport0.1023,U.7671:
pushmacrlx [:
ortho2(0.0,1023.0,0.0,767.0);

*direction = 0.0; /* initialize the direction */

cursoffo; /* turn the cursor off */

callobj(objlSCREEN1]); /* display screen I */
swapbufferso;

215

S V



screencnt ; /* initialize counter for screen displays ~

while(TRUE) {
frontbuffer(TRUE);
if (getbutton(MOUSE2) &!(getbutton (MOUSE 1)) &&!(getbutton(\MOUSE3))){

ringbell();
while (getbutton(.MOUSE2));
screencnt += 1;
if (screencnt == 2) callobj(objISCREEN2]);
else if (screencnt == 3) callobj (obj ISCREENSI1);
else break;

if (getbutton (MOUSE 1) && (getbutton(MOUSE2)) && (getbutton(MOUSE3))){
active = FALSE;

goto exit;

front bu ffer(FALSE);

editobj(objjFLTPATH]); /* erase previous missile path 4
objreplace (tag IMISSILE]);
circf(0.0, 0.0, 0.0);
move2(O.0, 0.0);
draw2(0.0, 0.0);
objreplace(tagiTGTI);
circf(0.0, 0.0, 0.0);
closeobjo;

editobj~objISTATS]); /* erase previous launch statistics 4
objreplace(tag IHEAD]);
charstr("");
cmov2i(115,60);
charstr(")
objreplace(tag[TARGETJ);
charstr("");
crnov2i(0,0);
c harstr ("");
closeobjo;

setc ursor(0, RED, u nmask); /* set up cursor and mouse 4
attachcursor(MOUSEX,MQUSEY);
setvaluator( MOUSEX.384.0,767);
,etVailuaLoriMOI01.,EY.:S4.J.7(i7i):
7,uronoj:

launchiock =FALSE;

ta~rgetlock =FALSE;

callobj (obj[ICONTOUR!); /* load static displays into both buffers 4

callobj(obj[ilNSTRI);
callobj(obj[STATS[); /* included so swapped buffer doesn't have "hole"'4
swapbufferso;

216

-41 V -W "



callobj(obj [CONTOUR]);
callobj(obj[INSTR]);

while(TRUE) {
if (getbutton(MOUSE1) && (getbutton(MOUSE2)) && (getbutton(MOUSE3))) {

*active = FALSE;

goto exit;
}

xval = getvaluator(MOUSEX); /* read the x and y mouse positions */
yval = getvaluator(MOUSEY);

utmx = (50000 + (int)(xval * GRIDFACTOR)); /* compute grid coordinates */
utmy = (80000 + (int)(yval * GRIDFACTOR));

sprintf(xtemp,"%4d",utm _x); /* store coordinates in temporary buffer /
sprintf(ytemp,"%4d",utm_y);

/4 if LEFT MOUSE selected lock in launch position and update control panel

if (getbutton(MOUSE3) && (!getbutton(MOUSE2)) && (!getbutton(MOUSE1))) {
ringbell();

xlaunch = xval:
ylaunch = yval;
launchlock = TRUE;
*vx = ((float)((xval * FT 10K)/767));
*vz = -((float)((yval FT_1OK)/767));
*vy = gnd level(*vx, *vz) + 200.0;

editobj(ob-STATS);
objreplace(tag[LAUNCH]);
charstr(xtemp);
cmov2i(170,220);
charstr(ytemp);
closeobjo;

} /* end of MOUSE3 hit */

/* As long as LEFT MOUSE not selected, keep on displaying current UTM
grid coordinates in control panel area. */

if (!launchlock) {
editobj(obj[STATS);
objreplace(tagLAUNCH1):
,'harstrtxtempi:;
cmov2ii 170,220);
charstr(ytemp);
closeobjo;

/* if RIGHT MOUSE selected lock in target and update control panel. */

if (getbutton(MOUSE1) && (!getbutton(MOUSE3)) && (!getbutton(MOUSE2))) {
ringbell();

217



xtarMe = xval;A

xtarget =yval;

targetlock = TRUE;
editobj(obj[STATS]);
objreplace(t~ag[TARGETI);
charstr(xtemp);
cmov2i( 170,140);
charstr(ytemp);
closeobjo;

/* As long as RIGHT MOUSE not selected keep on displaying current UTM
grid coordinates in control panel area.

if (!targetlock) I{
if (launchiock){

xdistance =((double)(xval - xlaunch));
ydistance = ((double)(yval - ylaunch));
distance =sqrt ((float) (xdistance * xdistance + ydistance ydistance));
distance = distance * GRIDFACTOR;
sprintf(dist,"%5.Of METERS"', distance);
*direction = atan2(ydistance, xdistance);
if (*ieto < 0.0) *direction += TWOPI;
* compassdir = compass(* direction);

sprintf(heading, "%d DEGREES", (int) *compassdir);

editobj (obj [STATSI);
objreplace (tag [TARG ET]);
charstr(xtemp);
cmov2i(170, 140);
charstr(ytemp);
obireplace (tagHEAD 1);
ch arstr (heading);
crnov2i(115,60);
charstr(dist);
closeobjo;

/* if launch position and target location have been selected by the
operator compute the direction of the missile and distance to target. *

if (launchlock && targetlock){
xdistance ((double (xtarget - 'claunch));
ydistance =((double) (ytarger. - ylaunch));
distance = sqrt ((float) ((xdistance *xdiscance)-

(ydistance * ydistance)));
distance = distance * GRIDFACTOR;
sprintf(dist, "%5.Of METERS", distance);
*direction = atan2(ydistance, xdistance);
if (*ieto < 0.0) *direction += TWOPI;
* compassdir =compass (*direction);

218



WI~~w."- Y.-- u-v '%M- PLO- WIR~, ' ~~

sprintf(heading,"%d DEGREES", (int)*compasdir);
editobj(obj[STATS]);
objreplace(tag[HEADI);
charstr(heading);
cmov2i(115,60);
charstr(dist);
closeobjo;

/* add small red and blue circles to contour map to indicate launch
position and target location. Connect circles to indicate missile
flight path */

if (launchlock)
if (targetlock) {

editobj (obj [FLTPATH);
objreplace(tag[MISSILE]);
circf( (float) (xlaunch)/767.0* 100.0, (float) (ylaunch)/767.0* 100.0, 0.6);
move2((float) (xtarget)/767.0" 100.0, (float) (ytarget) /767.0' 100.0);
draw2((float) (xlaunch)/767.0* 100.0, (float) (ylaunch)/767.0* 100.0);
objreplace(tag(TGT]);
circf((float) (xtarget)/767.0* 100.0, (float) (ytarget)/767.0* 100.0, 0.6);
closeobjo;

else {
editobj(obj[FLZPATHI);
objreplace(tag[MISSILE]);
circf((float)(xlaunch)/767.0* 100.0, (float) (ylaunch)/767.0* 100.0, 0.6);

move2 ((float) (xval) /767.0" 100.0, (float) (yval)/767.0* 100.0);
draw2 ((float) (xlaunch)/767.0 100.0, (float)(ylaunch)/767.0* 100.0);
closeobjo;

}

/* if MIDDLE MOUSE selected, launch has occurred and control transfers
back to main portion of FOG-M program displaying out-the-window 3-D
view of the flight area. */

if (getbutton(MOUSE2) && (!getbutton(MOUSE1)) && (!getbutton (MOUSES))
&& launchlock && targetlock) {

ringbell();
while (getbutton(MOUSE2));
break:

219



writemask(SAVEMAP);
cailobj(obj [FLTPATHI);
writemaek(unmaak);
callobj(obj(STATS]);
swapbufferso;

exit:
cursoffo;
popmatrixfl;

}I

J,.

220



RANDNUM

/* rsandnum.c - returns a random float between zero and one

static long seed = 1234587;

randseed(newseed)
long newseed;

seed = newseed;

float randnum()

long multO;

seed = (m ult (seed, 3141582 1) +1) %100000000;
return(seed / 100000000.0);

}6

long mult(p,q)
long p,q;

long pO, p1, qO, qI;

p1 = p /10000;
p0 = p % 10000;
q1 = q / 10000;
qO = q % 10000;
return((((pO*ql + pl*qO) %10000) a10000 + pO*qO) %100000000);

221



READCONTROLS

/reads the values from the operator's controls (mouse and dials)/

#include "gl.h" /* graphics lib defs/
#include "fogm.h" /* fogm constants*/
#include ttdevicehf 1* device definitions/

read coutrols(designate, greyscale, flying, active, speed, direction,
compassdir, alt, pan, tilt, fovy)

int *designate, *greyscale, *flying, *active, *fovy;
float *speed, *compasdir;
double *drcin *pan, *tilt;
Coord *alt;

extern float randx, randy, randz;
float randnumo;
Colorindex colors I ];

/* quit if all three mouse buttons are pushed*/
if(getbutton(MOUSEI) && getbutton(MOUSE2) &&get button (MO USE3)){

*flying = FALSE;
*active = FALSE;

I
else{

if (getbutton(MOUSE3) && !(get button (MO USE2))) ( /* Zoom In *
*fovy = (*fovy < (80 + DELTAFOVY)) ? 80: *fovy - DELTAFOVY;

I N

if (getbutton(MOUSE1) && !(getbutton(MOUSE2))) f /* Zoom Out/
*fovy = (*fovy > (550 - DELTAFOVY)) ? 550: *fovy + DELTAFOVY;

if (getbutton(MOUSE2)) {/* design ate/rej ec t target/
if (*desijgnate) { /* see if target in sights ~

/*pushmatixo;
pushview port O;
pushattributesO;
viewport(0. t023. 0. 767);
Ortho2(0.0, 1023.0, 0.0. 767.0);
cmov2s((Scoord)(768, 2). (Scoord)(768,2));
readpixels( i,colors);
if ((colorsOj >= MINTGTCOLOR) && (colorsiol <= MAX TGT COLOR)) {

*designate = FALSE;
ringbell();
randx =30.0 *randnum() - 15.0;
randy =10.0 randnumo - 5.0;
randz = 10.0 randnumo;
while (get button (MOUS E2));

222



popattributesO,
popviewportO;
popmatrixo; '

else { /* reject currently designated target ~
ringbell();
*designate = TRUE;
/* re-adjust tilt and panl values appropriately /

if (*greiyscale != getvaluator(DIALS)) ( /* DIALS indicates color change ~
*greyscale = !*greyscale;

setvaluator(DIAL3,*greyscale,0,1);
colorramp( *greyscLe,FALSE);

*speed = (float) (getvaluator(DIAL2) / SPEEDSENS); /* get desired speed/

*&It (Coord) (getvaluator(DIAL4));

*pan =DTOR *(double) (-getvaluator(MOUSEX)) / PANSENS;
*tilt =DTOR' (double) (getvaluator(MOUSEY)) ' TILTSENS:

*compassdir =(float) getvaluator(L)IAL0) / DIRSENS;,
/* keep *direction between 0 and 360, update valuator if changed*/
if (*compassdir >= 360.0) (

* compassdir - 360.0;
setvaluator(DIALO, (int) (*compa.ssdir* DIRSENS), (int) (.360*DIRSENS),
(int)(720*DIRSENS));

if (*opasi < 0.0){
*compassdir += 360.0;

setvaluator(DIALO, (int) (*compassdir*DIRSENS), (int) (.360*DIRSENS),
(int)(72OtDIRSENS));

/*convert *direction from compass degrees to trigonometric radians *
*djirection = (*compassdir <= 90.0) ? DTOR *(90.0 - *compawdir)

DTOR * (450.0.- *.ompassdir);

223



READDATA

/ reads the raw 16 bit elevation and vegetation code data
from the DMA data file and inserts it into the global
gridpixel array

#include "fogm.h"
#include "files.h"

readdatao
{

int fd; /* file descriptor for the data file */
short row, col, rowoffset, coloffet; /* loop indicies */
extern short gridpixel[1001[1001; /* DMA elev and veg. data /

/* read the data from the data file into the gridpixel array */

fd = open(TERRAIN FILE,RD);
lseek(fd,0,0);
for (coloffset = 0; coloffset < NUMXGRIDS * 10; coloffset += 10) {

for (rowoffset = 0; rowoffset < NUMZGRIDS*10; rowoffset += 10) (
for (col = 0: col < 10; -'-col) {

for (row = 0; row < 10; ++row) {
read(fd,&gridpixelrowoffset +row [coloffset +col] 2);

}

}}

224

N, htA



ROAD BeUNDS

#include "'math.h"
#include "fogm.h"

#define X 0
#define Y I
#define Z 2

#define NONE 0

road _bounds(ptl, pt2, ptS, road width, left_ptl, right ptl, left pt2,
right pt2, first xgrid, first zgrid, last xgrid, last agrid)

gloat ptl[3I, pt2I~i, ptSI31, road width;
float left _ ptl(3], right _ ptII3l, left_pt2[SI, right-pt2[3;
int *first _xgrid, *last _xgrid, *first zgrid, *last zgrid;

float delta x, delta z, seg dir, min x, max x, min z, Max z;9
float left _endlisi, right end1[3j, left _start2[3], right start2[3],
left end2f 3J, right -end23]; 4

int intersection -type;

j* determine the corner points of the segment '

delta -x = pt2[X] - ptlIXI;
delta - = pt2[Zl ptliZ];
seg -dir = atan2(delta -z, delta x);
left -endliX] = pt2tXl + (cos(seg-dir + HALFPI) *road -width /2.0);
right _ endlIXI = pt2IXI + (cos(seg dir - HALFPI) *road width/2.0);
left endlIZI = pt2[Zj + (sin(seg dir +- HALFPI)*road width/2.0);
righitend lIZI = pt2jZj + (sin(se-g-dir - HALFPI)*roadf-width/2.0);

if ((pt2[XI != pt3[Il) 11 (pt2jZj != pt3[ZJ)){
we are not working with the final segment of this road, find

the intersection of this segment with the next one
delta-x = ptS LXI - pt2 [Xj;
delta z = ptSIZI - pt2IZI;
seg 4dir =atan2(delta z, delta x);
left-start2[Xl = pt2[Xj + (cos(seg-dir + HALFPI) *road -width/2.0);
right -start2jXJ = pt2[XJ +s (cos(seg-dir - HALFPI)*road-width/2.0);
left -start2Z = pt2T +~- (sin(seg _dir -- HALFPI) *road -width /2.0);
rigtg -;tarr2Xl= pt2.Z - (sinlseg _Air - [IALFPI)*road -width, 2.0);
eft Pnd2rX. ptO:X .- (ros(seq Air - H~ALFPr) *road -width,,201

right _end21Xi = pt. 1 X, + (cos(seg dir - HALFPI) *road -width , 2. 0);
left end2IZI = pt3IZI + (sin(seg-dir + HALFPI) *road -width /2.0),
right end2jZI ptS[Il + (sin(seg dir - HALFPI) *road -width /2.0);

/* find the intersection point of the left hand sides of the
first and second road segments ~

line _intersect2 (left _ptl1, left _endi, left _start2, left end2,
left-pt2, &intersection -type);

225

P



if (intersection type == NONE){
left -pt2[XI left endl[Xj;
left pt2[Z] left-endl[ZI;

/* find the intersection point of the right hand sides of the
first and second road segments */

line-intersect2(right-ptl, right-endi, right-start2, right-end2,
right_pt2, &intersection-type);
if (intersection -type == NONE)(

right_pt2[XI = right -endl[X];
right-pt2lZl = right-endlZJ;

else{
/* this is the final segment of this road ~
left _Pt2[Xl left endl[Xj;
left pt2iZj left endl[Zl;
right pt2[X' right-endliX];
right-pt2Zj right-endl[Z;

/determine the mini and max x and z values ~

max x left piliXi;
min - left _ptllZl;
Max -z =left_pti[Zl;

if (rightjptIlXl < mini x) min x = rightptX;
if (right_ptl[li > max x) max x = right pt[X;

if(ih_ptlZJ < min -S) min _ z right -ptl[ZI;
if (right ptl[ZJ > max - ) max -z right pti[Z];
if (leftypt2 [Xj < mm _x) miii_x= left pt21XJ;
if (left pt2[XJ > max x) max x =left pt2tXJ;
if (left -pt2[ZI < mm _z mm _a left pt2lZl;

if (left pt2[ZJ > max - ) maxa - left -pt2fZl;
if (right pt2[XJ < minx) mini x =right pt2IXI;
if (right_pt2lXl > max -x) max -x = right -pt2t XI;
if (right_pt2lZl < min - ) mina - right _ pt2IZI;
if (right pt2lZI > max-z) max a right pt2!ZI; '

*first -xgrid = (int) (mun-x/FT_OOM);
*first - grid = (unt)(min-z/FT_lOOM);
*last -xgrid = (int) (max _x/FT _100M;
'!asL _zqrid = Int) (max -z /FT _100M);
if ( irst _wgid O . )*first _'crid =0:

if (*first _azgrid < 0) *first-zgrid =0;

if (*last -xgrid > 98) *last-xgrid =98;

if ('last zgrid > 98) *last zgrid =98;

I0

228



NOW

SORTARRAY

sort -array(array, num-entries, decending, test-index)
float arrayllOlt~l;
int num-entries, decending, test-index;

int ij;
float temp[3);

for (i = 0; i < num entries; ++i){
for =j i + 1; j <= num entries; ++ij){

if (((decending) && (array[jI]test indexi > array~ilitest indexl)) 11
((!decending) 8z& (arrayIj I [test- index] < array III [test index]))){

temp[0] = array[i][O];
temp]1] = arrayliI[1);

*temp[21 = arrayli]]21;
array'il~oi =arrayijifOl;
arraylil]] = arrayljif 1];
arrayl]i[21 array(jji2];
arrayj]]0] = temp];
array~jil[E temp[1';l
&rrayij 21 temp[21;

22



UPLOOKPOS

/* compute the camera's lookat position e/

#include "fogm.h" /* fogm constants */
#include "math.h" /* math routine definitions */
#include "gl.h" /* graphics definitions */

update-look _posit(direction, pan, tilt, vx, vy, vz,
tgtx, tgty, tgtu, designate, px, py, pu)

double direction, pan, tilt;
Coord vx, vy, vz, tgtx, tgty, tgtz, *px, *py, *pz;
int designate;
{

extern int framecnt;
double lookdir;

if (designate) { /* missile is not locked on to a target */

/* compute direction camera is looking */
lookdir = direction - pan;

/* compute a coordinate along camera's line of sight */
*px = vx + cos(lookdir) * MAXLOOKDIST;

*pz = vz - sin(lookdir) * MAXLOOKDIST;

if (framecnt < 15) 1
*py = 4.0 * vy * (14 - framecnt) / 14.0;
framecnt+ ;

}
else {

*py = vy + MAXLOOKDIST * tan(tilt);
}

}
else {

*px = tgtx;
py = tgty;

*pz = tgtz;

228

% 2.

° ' # - ' ,P W" =" d - w # " 4' " - ,' *P " .' " ° " " - " " ". " ' '. .' " ." ." "w ' " - " ' ' " ". '. " ' ' ' - " ' , ' -' - ° - - " - U.



UP MSL POSIT

/* Compute new missile position ~

#include "gl.h" I/* graphics definitions/
#include "device.h"t /* graphics device definitions ~
# include "fogm.h" /* fogm constants */
#include "'math.h"' / *math function declarations ~
#include <sys/types.h> /* contains the time sturcture tins/
#include <sys/times.h> /* for time calls/

update missile posit (direction, compasadir, speed, designate,
tgtx, tgty, tgtz, vx, vy, vz, flying)

double *direction;
float *compassdir;
float speed;
int designate;
Coord tgtx, tgty, tgtz;
mnt *fyig
Cood *v, * vy, *vz;

static long seconds;
static long lastsec = -999; /* -999 is flag to indicate no value /.

struct tins tiinestruct;
float deltadist. gndlevel, gnd -level(), compasso, ht-above-tank;
long float deltax, deltaz, dist to tank;

seconds = times (&timestruct);

/* compute distance missile must move ahead to maintain speed /4
if (lastsec == -999)

deltadist =0.0;

else
deltadist =(speed/ FPS_-TO _KTS) *(seconds - lastsec);%

lastsec = seconds;, / save for next pass ~
if (designate) { /* missile under operator contol, not locked on tgt 8

*vx += deltadist * cos(*direction);
*vz - deltadist * gin (*direction);

keep missile at least 530 ft above ground level
gndlevel = gnd-level('vx, *vz);

if (*vy < (gndlevel + 50.0)) *vy = gndlevel + 50.0;

else{ I

deltax = *vx - tgtx;
deltas = *vz - tgtz;
dist to-tank =hypot(deltax, deltaz);

229J

.AA~ . . . .



Nwwuwwiwvw pwU iDE ri .V VX~~W~~ ll UA1..iEP

if (deltadist > (float)dist _to -tank) { /* hit on target/
deltadist = (float)dist-to-tank - 5.0;
*flying = FALSE;

lastsec = .999; /* no value flag for next launch *

*direction = (double) atan2( (float)deltaz, (float) -deltax);
if (*iretio < 0.0) *direction += TWOPI;
* compassdir = compass(*direction);

setvaluator(DIALO,(int) (*compassdir*DTRSENS), (int) (.360*DIRSENS),
(int) (720*DIRSENS));

*vx += (deltadist * cos(*direction));
*V vs = (deltadist *sin (*direction))-,

ht-above tank = (float)*vy - gnd -level (tgtx,tgtz);
*V vy = (Coord)((ht -above -tank * deltadist) / (float)ciist -to -tank);

230



VIEW BOUNDS

#include "fogm.h"
#include "gl.h"
#include "math.h"

view bounds(vx, vy, vz, px, py, pz, tilt, fovy,
firstxgrid, firstzgrid, lastxgrid, lastzgrid)
Coord vx,vy,vz;
double tilt;
int fovy;
short *firstxgrid, *firstzgrid, *lastxgrid, *lastzgrid;I

float ix, iz; /* the intersection points ~
float lookdir;,
float deltax, deltay, deltaz, delta-alt, fx, fy, fz;
float half fovy;
float lower-edge-angle;

/compute the direction the camera is looking ~
lookdir =atan2 ((float) (vs.- pz), (float) (-(vx-px)));
if (lookdir < 0.0) lookdir ~- TWOPI:

if (vy > py){
/* tilt angle is negative
deltax = px - vx;
deltay =py - vy;
deltaz = Pz - vz;%
delta-alt =pow((float)MIN, ALTSCALE) - vy; :

else{
/* tilt angle is positive, use the lower fustrum edge instead

of the line of sight to compute the view bounds ~
/compute a coordinate along the lower fustrum edge ~

half-fovy = ((float)fovy/20.0*DTOR);
lower -edge-angle = tilt - half fovy;
fx = vx + Cos (lookdir) *MAXLOOKDIST;
fz = vs - sin (lookdir) *MAXLOOKDIST;
fy = vy + tan (lower-edge-angle) *MAXLOOKDIST;
deltax = fx - vx;
deltay = t'v - vy:

leiLaz = 'z- z

ieita 'it pow (floa)MIN. .ALTSCXLE) -y

ix = vx + ((deltax/deltay) *delta alt);
is = vs + ((deltazideltay) *delta alt);,

/* compute which grid objects should be sent through the geometry
pipeline/

2311



if (deltay > 0.0){
/* the fustrum is looking totally skyward, don't bother doing

any terrain ~
*firstxgrid = 0;
*firstzgrid = 0;

*lastxgrid = 0;

els 'astzgrid = 0;

/* display 20 grid squares on all sides of the intersection point ~
*firstxgrid =(int)(ix/FT_10OM) - 20;
5 lastxgrid =(int)(ix/FT IOOM) + 20;
*firstzgrid (int) (-iz/fT lOOM) - 20;

*5astzgrid =(int)(-iz/FT-lOOM) + 20;

*insure that objects drawn include the current missile position ~
if ((int)(vx/FTlOOM) < *firstxgrid)

*firstxgrid = (int)(vx/FT_OOM);
if ((int)(vx/FT lOOM) > *lastxgrid)

*lastxgrid = (int)(vx/FTlOOM);
if ((int)(-vz/FT lOOM) < *firstzgrid)

*firstzgrid =(int)(-vz/FTlOOM);

if ((int)(.vz/FT _lOOM) > *lstzgrid)
*lastzgrid = (int)(-vz/FT_OOM);

if (*firstzgrid < 0) *firstzgrid =0;

if (*firstxgrid < 0) *firstxgrid 0;
if (*lastzgrid > 98) *lastzgrid =98;

if (*Iasxgrid > 98) *lastxgrid =98;

232

Il

Arr



LIST OF REFERENCES

1. PC Connection advertisement, PC Magazine, v. 6, no. 11, p. 241, June 9,
1987.

2. Orlansky, J. and String, J., "Reaping the Benefits of Flight Simulation," in
Computer Image Generation, edited by B. Schachter, John Wiley & Sons,
Inc., New York, New York, 1983.

3. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Computer Graphics Fiber Optics Guided Missile Flight
Simulator (FOG-M Simulator) Required Instrumentation Capability (RIC),
Fort Ord, California, 1986.

4. Mar, Roland K., "FOG-M: Another Army Orphan for the Marines?" U. S.
Naval Institute Proceedings, v. 113/6/1012, pp. 95-97, June 1987.

5. Kotas, Jim, "Computer Image Generation: Realistic Simulation." National
Defense, v. 70, no. 412, pp. 26-31, November 1985.

6. Berthiaume, Richard, Karnavas, Gary, and Bernsteen, Stan, "Graphical
Representations of DMA Digital Terrain Data on Low Cost Commercial
Graphics Workstation," Proceedings of the IEEE 1986 National Aerospace
and Electronics Conference, v. 3, pp. 992-996, 1986.

7. Silicon Graphics, Inc., IRIS User's Guide, Mountain View, California, 1986.

8. Fox, Teresa A., Clark, Philip D., "Development of Computer-generated
Imagery for a Low-cost Real-time Terrain Imaging System," Proceedings of
the IEEE 1986 National Aerospace and Electronics Conference, v. 3, pp.
986-991, 1986.

9. Defense Mapping Agency. P-oduct Specifications for Diyttai Landmass
System (DLMS) Data Base, 2d ed., April 1983.

10. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Fort Hunter Liggett Digital Terrain Database on the VAX
Computer, Fort Ord, California, 1985.

233



11. Hearn, Donald, and Baker, M. Pauline, Computer Graphics, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1986.

12. McGrew, J. F., "Exaggerated Vertical Scale in CGI Terrain Perspectives,"
Proceedings of the Human Factors Society 27th Annual Meeting, v. 1, pp.
33-35, 1983.

13 Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., "Near Real-Time

Shaded Display of Rigid Objects," Computer Graphics, v. 17, no. 3, pp. 65-
72, July 1983.

14. Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1983.

234

0%



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Chief of Naval Operations 2
Director, Information Systems (OP-945)
Navy Department
Washington, DC 20350-2000

3. Commanant (G-PTE) 2
United States Coast Guard
2100 Second Street SW
Washington, DC 20593

4. Superintendent 2

Attn: Library (Code 0142)
Naval Postgraduate School
Monterey, California 93943-5002

P.

5. Chairman (Code 52) 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Computer Technology Curricular Officer (Code 37) 1
Naval Postgraduate School
Monterey, California 93943

Michael J. Zyda Code 32Zk)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

235



F iM~w r Pnm K A NM N NM XN VWMWVXM'XVIKJMNMUIKj~YVV .VC Pill Fqn AnXl~ E

8. Robert B. McGhee (Code 52Mz) 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

9. Captain Douglas B. Smith 5
Headquarters, United States Marine Corps
Code CCA
Washington, DC 20380

10. Lieutenant Dale G. Streyle 3
CG EECEN (Computer Systems Branch)
Wildwood, New Jersey 08260

2.3

p.

236 I



lee

sc NLI


