INEXPENSIVE REAL-TIME INTERACTIVE

EREY CR D B SNITH ET AL. JUN 87

433 3
ddaa

E&E&Luu.:.m

1.4 1.6

1.25

1UHAR!

L

MICROCOPY PESOLUTION

Y ¢ AN ARG

NA N NAL

AD-A184 868

NAVAL POSTGRADUATE SGHO

Monterey, California

THESIS

0L

DTIC &

ELECTE &

AN INEXPENSIVE REAL-TIME
INTERACTIVE THREE-DIMENSIONAL
FLIGHT SIMULATION SYSTEM

by

Douglas Bernard Smith
Dale Gerard Streyle

June 1987

Thesis Advisor: M. J. Zyda

r v vy
XA ARAS

. e 200 B 2y J

Approved for public release; distribution is unlimited.

i

i W

PaE)

L #
PP

| ER)

3

(9
vy i
il -z

;‘:
d 4
s
%

unclassified ﬁpﬁ /X#Xég/ '

URITY CLANSIFICATION (21 a '
REPORT DOCUMENTATION PAGE :
s REPORT SECURITY CLASSIFICATION 0 RESTRICTIVE MARKINGS .

classified -

28 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
v 120 OECLASSIFICATION DOWNGRADING SCHEDULE Apprm_red f.or pUbllc .re.lea,se; :'
distribution is unlimited. 7
3 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S) :
)
Y]
6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL | ’8 NAME OF MONITORING ORGANIZATION .
(it spplicabie) "
aval Postgraduate School 52 Naval Postgraduate School ’

6c ADDRESS (City. State, and 21 Code) 7b ADORESS (City, State, and 2IP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000 u
8a NAME OF FUNDING / SPONSORING 80 OFFCE SYMBOL 9 PROCUREMENT INSTRUMENT lOﬁNT:Fl(AHON MUMBER \
ORGANIZATION (1 applicabie)
8¢ ADDRESS (City, State. and 2iP Code) 10 SOURCE OF FUNDING NUMBERS :
PROGRAM PROJECT TasK WORK UNIT 1y
ELEMENT NO [NO NO ACCESSION NO

‘..

VO TITLE (include Secunity Classification) [

AN INEXPENSIVE REAL-TIME INTERACTIVE THREE- :
DIMENSIONAL FLIGHT SIMULATION SYSTEM M

1o PERIONAL AUTHOR(S)

Smith, Douglas Bernard and Streyle, Dale Gerard o

‘s TYPE OF REPQRT | 136 T'ME COVERED 14 DATE OF REPORT (Year. Month Day) ['S PAGE COUNT ;
Mister's Thesis £20M o 1687 °5dne y 237 k
‘6 SLPPLEMENTARY NOTATION X
'Y COSATI CODES 18 SUBIECT TERMS (Continue on reverse if necessary and identify by block number) &

) ROUP -GRQUP

ij‘ GROY Su8 GROY flight simulation; DMA terrain data, computer .

1 graphic terrain display "
GPLBSTRACT (Continue on reverse if necessary and identify by block number) ':
A prototype flight simulator for the Fiber-Optically Guided Missile A

(FOG-M) is presented. This prototype demonstrates the practicability and
feasibility of using low-cost graphics hardware to produce acceptable "
simulation of flight over terrain generated from Defense Mapping Agency
i COMAY digital =2levation data. The fiight simulator lisvlavs 1 ivanamic,

>
three-dimensional, >ut-the-window view >C the terriin in veal-Time wnlile
cesponding to operator control inputs. The total system Zost (sottware
and hardware) of the simulator is an order of magnitude less than most
flight simulation systems in current use.

—

0 OS5 RIUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
£ ovceassipeonunumten [same as et [Jonic users unclassified <
224 NA OF RESPONSIBLE NDIVIQUA 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL ':'
T . a . c'ia .
bro ichael 11"y (408) 646-2305 Code 527k N
OD FORM 1473, 3amar 33 aPRedition may be used unti exPausted CECURITY FLakSid ATION 36~y 2a00E o
All Other editions arg OBIOIete Gnclassiried RY
4
1 N
.‘!
~, ™ ‘-‘

SIS TS YR ~ ! L L e T R P I N : .
2O NN SRR O AT A B T A I T A el

>
a

i
5

"*ﬁ‘zl:': I{'l{

TSRS R O O OO T T OO T O O N S T O RO OO

A4
7

Approved for public release; distribution is unlimited.)

An Inexpensive Real-Time. .
Interactive Three—Dimensional
Flight Simulation System
by
Douglas Bernard Smith

Captain, United States Marine Corps J
B. S., Duke University, 1981 .

and
Dale Gerard Streyle)

Lieutenant, United States Coast Guard 3
B. S., United States Coast Guard Academy, 1980 ¥
&

Submitted in partial fulfillment of the)
requirements for the degree of o

MASTER OF SCIENCE IN COMPUTER SCIENCE b

from the
NAVAL POSTGRADUATE SCHOOL
June 1987 Y

Authors: _-D . e
Dougla.s B. Smith

ph
DA .

- Streyle B n,

' 4

Approved by: :
esig Advisor 0

\Y
w % 2
Robert B. McGhee, Sechnd %:ader g

Vincent Y. Ldm, Chairman,
Department gt Computer Science

i LT Mo N

Kneale T. Marshall, .
Dean of Information and Policy Sciences

AN - -

R %

2

~
N
l"
=~
[t
-
3
N

RS L PR N & " - o n 'y W . .-j'fh'.'(-"i A 'W' v, o
t‘l‘.l.!‘!“'-‘ A QOO ARG l." N I?.‘b b 9 o e T » So g AN RN

..........

ABSTRACT

A prototype flight simulator for the Fiber-Optically Guided Missile (FOG-M)
is presented. This prototype demonstrates the practicability and feasibility of
using low-cost graphics hardware to produce acceptable simulation of ﬂight over
terrain generated from Defense Mapping Agency (DMA) digital elevation data.
The flight simulator displays a dynamic, three-dimensional, out-the-window view
of the terrain in real-time while responding to operator control inputs. The total
system cost (software and hardware) of the simulator is an order of magnitude

less than most flight simulation systems in current use.

F\‘VCC i :_r-r"—"' N J
MTIS Lantd d !
!

o |

[YC 8
Lo e,

L..—-—-—-LA.-_. b e e

II1.

TABLE OF CONTENTS

--

1. Backgroundoooiiriiiiiiiiiee et

2. DeSCrIPtION ...covveeeinieiieriieciriiirncren it ctreerrnete st e reresaeneaaens

B. ASPECTS

1. Realism

OF FLIGHT SIMULATIONcccccimriiiiiininenen.

2. Frame Update Speedccccoeveeveimniiieeeneiieeiec e iniceneenee.

C. ORGANIZATION ..ottt

COMPUTER SYSTEM ...ccooeiviiiiitiiieeninicinennncccinnnccce e

A. HARDWA

RE AND SYSTEM OVERVIEW ...

B. SOFTWAREcoiiiiiiiiienennee e

DIGITAL ELAVATION TERRAIN DATAX

Y

A. INTRODUCTIONcccocuee. S pleesern st

B. COVERAGE ...ttt e e aeseeee

C. STRUCTURE it e

D. LOCATIO

TWO-DIMEN

A. COLORS

N ...

SIONAL TERRAIN MAP PORTRAYAL

...

10

10

10

11

12

16

16

18

20

20

20

22

25

25

- -'*
A A

B. UPDATING THE MISSILE'S POSITION

B. DRAWINGcciiriiiiiiiiiinecccnincennnne
C. WRITEMASKSccccotiivrviiriinneieeccrnniene.
. 1. Color Tableccccoceveeeiiiiiiiiiiiiiiiiin.
2. Bitplanescccccveiiiiiiiiinenniineniiiniennnne.

3. Writemask Example ...,

4. Writemasks in FOG-Mccovvvivveiunnnne

A. REPRESENTATION DECISIONS
1. Polygons versus Patchesc..c.......

2. Resolutioncccccccciiceiiciiiniiiiinniiiinininnn,

3. Elevation Scalingcccccoeeeviiirinrniennnn.

4. Shading and Texturingcccccceeveneenn.

a. Elevation Based Shading

b. Lambert’s Cosine Law Shading

¢. Gouraud Shadingc.cccoevvvriieeenne

d. Adding Texturecccceeeerirunnanncn.

B. INTERNAL DATA STRUCTURES
VI. FLIGHT SIMULATIONcccccoiiiiininnnnnnncnnns

A. OVERVIEW ...,

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

...........................

..........................

28

29

29

29

30

32

34

34

36

36

38

38

39

41

43

14

46

46

46

£
-

-,

1. Case 1 - Operator Controlcooeeveevmeeevencciireiennenneennenne. 47

2. Case 2 - Locked Onto a Targetccccccceeeereciciinnnciinieieannn. 48

C. DETERMINING THE LINE OF SIGHTcccoevnnnnnnaeen 50

D. DISPLAYING THE SCENEcccccvvvvnmmiiriiiniiccnnneenecnae. 52

1. Viewing Transformationsc.cccceermueminvnereniiiecciinnneennnn. 52

2. Determining Which Polygons to Drawcueuuuee..e. 58

3. Hidden Surface Removalcccccecrcevmnninnicciiinnecciiencnnnn. 60

E. SIMULATOR PERFORMANCEccccciiiiiniiieinicnneen 65

VII. TARGET INTEGRATIONcccovimiiriiiiitireniteeeeccecsnneneeeee 71
A. GENERAL oottt ceceee et e e e e 71

B. TARGET CREATIONcccoivitiirinniirinricninnnneencccsssnanene 72

1. The System MatriXcccoceeeveiiiernirnnnesiicenreneencreesennnenseenns 72

2. Target Transformationscccccceeueeeeerreeniencesneennunceenenens 74

C. ANIMATION ..ot ecite e ce e rire e e 75

D. DISPLAY .coiieeinereceteeessinretesssesaseeee s ses e sensateesenes 76

VIII. CULTURAL FEATURE INTEGRATIONccccccoivvninrnnnnen. 82
A. EXTERNAL DATA FILE FORMAT ... 32

B. CONSTRUCTION OF THE ROAD POLYGONS 83

C. INTERNAL ROAD-POLYGON STORAGEccceeuee. 87

IX. FOG-M SIMULATOR USER’'S GUIDEccccoeviiiiviiiiinen. 89

6
DR 2 o O £ o AT AN 5 o Fn 2T <

-
R

-
'

1
"

e

PR R
L b

XA A

4 4

3

7
A. OVERVIEW ...cooovriiriiirerietevesresesseseesenesessessssssssenssnnes 89 ':;
B. STARTING THE SIMULATIONc.ccccevvimirireeiiinnnenannn. 89 g
C. PRELAUNCH CONTROLScociiiiiiiiriieecccceiiiceeee e 91 '
. 1. The Prelaunch Displ;a.y ... 91 .
2. Selecting the Launch Positi;n ... 95 "
A
3. Selecting the Target Positionccccoveueieriiiiievecciierenennnen. 95 :
4. Launching the Missile .. 26 T:
O
D. IN-FLIGHT CONTROLS ...cccootiiiiiiiirinieree e ecae 96 ' ':
By
1. The In-Flight Displaycccceeiiiiririiccrriiece s 96 ..
2. Controlling the Cameraccccoceciiiirieciniicirincniineeeeennes 99 g
3. Controlling the Missile Flight ...ccooeeeiriiiiiiiiiiniiniiiienens 99 ’
4. Designating and Rejecting Targetsccccceverveeenneenenn. 101 &
X. CONCLUSIONS AND RECOMMENDATIONSccccccevvnneeen. 103
A. LIMITATIONS ...ooomrnrcriereeseeenesesssessessesse e s eseeans 103
B. FUTURE RESEARCH AREASccccciviiiiiiiiiciiiinenn. 104 ? :
C. SUMMARY AND CONCLUSIONS ...coocciririiiecncceneceeennns 104 ‘j
APPENDIX A - MODULE DESCRIPTIONS ...t 106 ":
APPENDIX B - SOURCE LISTINGSccccoiiiiiiiieitieenreereer e e 128 5
LIST OF REFERENCESoocoviiiiiiiiiiinicci e 233 :
-
INITIAL DISTRIBUTION LISTccoociiiiiiiniiiiireciininine e e e 235 \
, s
N
R
¥

y

SRS
B! s } i}

S S e T S oy W AR VAT W Y Ay ARV \\
N T A N T A A A T T T R T T g T R T

............

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to a number of people who
supported this study. To our advisor, Dr. Michael Zyda, who provided us with
the knowledge and insight necessary to complete the project, and then stepped
back, allowing us the freedom to learn through exploration.

To the following people who provided programs and subroutines which were

incorporated into the project:

- MAJ Ron Ross, USA, for the original versions of the preiaunch &
make —database—e routines.

- LCDR Mike Oliver, USN, for enhancements to the tank image.
- Dr. Michael Zyda for the original version of the gammaramp routine.

- CAPT Gary W. Taylor, USMC, for the original version of the lightorient
routine.

- LCDR James Manley, USN, for the netV networking routines.

The authors would also like to note that the order of the names on the cover
is alphabetic, and has no other significance.

LT Streyle would like to personally thank his wife, Robin, for the tremendous
amount of patience and support provided during all phases of the project. By
taking care of the myriad of details involved in running a home with two children
and shutfling her and :he family’s schedule around the times [absoluteiy had ro
work, she provided me the time necessary to fully pursue the project. I would
also like to thank my lovely daughter Sarah and son Timothy, who both let me

know when I had worked enough to ‘“‘earn’ another trip to the park to play.

CAPT Smith would like to thank his wife, Becky, and son, Timothy, for the
generous amounts of time and pleasures foregone in their support of this work.
Thanks also to my friend and co-author, who made this and many other projects

much easier and more enjoyable than they would otherwise have been.

R W Y I TS T T DA O T R T N TR RS T T T T AT e
v A R D A - AT NN
o G N A R A N N S A A AL T R

R)

SRR

~ .
RS

~

AR T

5"

RSP

(Y

‘(‘ ‘-.,

_w
"'

TR A
,.‘l\)d « L)
A AN

W

* - >

XA XY 1

N& 7/ 7

e YN

. INTRODUCTION

Flight simulation has been an important computer graphics application, :
embracing a range of systems from a $32.00 program for a personal computer
[Ref. 1] to special purpose machines costing millions of dollars [Ref. 2]. The

capabilities of these systems are spread across a range nearly as wide as their

costs, with great variances in speed fframes displayed per second). realism. .

r

’

flexibility, and area of flight. We present here a system that is relatively y

inexpensive. vet still fast enough o present a real-time three-dimensional view of A
digitized terrain. We built this system on a commercially available. high-
performance graphics workstation, the Silicon Graphics, Incorporated IRIS-2400

Turbo. The IRIS system was selected because of its local availability and its

<

performance capabilities. The flight simulator presented here does not use the .

natural color and shape of individual terrain elements (in order to achieve real- -

X

time performance), but it is sufficiently realistic to provide the feeling of flight X

and allow identification of the displayed terrain and targets.)

A FOG-M :

1. Background

The project presented here was built in response to the United States -1

. . . . "

Army Combat Developments Experimentation Center's need to simulate the -

10 o

o

’

.,0 “ o -.‘\ s‘\.'\‘ o .'-." o .--",-.",-."\" \‘-,.-._';.'-:.'-:.'-:.'-;.~'.'~}"-’.'-'.~‘,‘-'.;.'_~,:;.;_._.-:,-_ ~ ,.__’-‘ e .- YTy \:,,'r Nl :,

P T O R O O R R P W VR U U RN AR, N8 Ha8 a8 €28 Vot Vol gt) vl el tabe ATy Ris S im g e et Ad ANGLTAN A ade ne 202 oRa et ol Lat Bt Al g

operation of the Fiber-Optically Guided Missile (FOG-M) [Ref. 3|, but this missile

h
p] is also being considered for use by the United States Marine Corps [Ref. 4.
v, Simulation is necessary in order to test and evaluate the tactics, doctrine and
]
)
1
" - . .
M training requirements associated with the missile without the expense and danger
D
of actual firings during simulated combat field trials. The FOG-M is a generic
A family of remotely-piloted, video-guided munitions, but for the purpose of this
W
o
’ prototype simulator, the weapons are all logically equivalent, and the entire
b family is referred to as ‘‘the missile.” In order to avoid security constraints, the
S
3 parameters and operational characteristics used in this work were not taken from
exact FOG-M specifications. The parameters and technical specifications are all
5 estimates, based on reasonableness and consistency with general, unclassified
e descriptions of the FOG-M.
4 2. Description
14
r4
';’ The actual FOG-M missile is six inches in diameter, five and one-half feet
. high, weighs eighty-three pounds, ard costs about $20,000 [Ref. 4]. It has a video
N camera mounted in its nose, which transmits a black-and-white picture back to
.
the operator’s console (which consists of a television screen, a computer, and a
" jovstick) over the fiber-optic link. (The simulator display offers the user the choice
-«
Y I =iTher COl0T OF Hiack-and-wiite: color s The defauit “or “he simulator despite the
~ operator view of the missile being black-and-white. The color compensates for
-
N some of the loss in realism and identifiability inherent in a polygonal
N
‘ representation of natural objects). Before launch, in normal operation, the missile
L
- 11

- wm

"y OGN A AR N e

f.l'f-l'-_. ._.' .r_-. SN R A SOt N oy - " -
St at LA AR - A‘xf..n.f_A_:~¢4;“1. YOIN! A..rﬁ'.tm.&.ht"j“im. .

is given a general direction to a target and the altitude of the highest point within
its range. The simulator allows values in excess of FOG-M operational
capabilities for speed, range, and altitude above ground level (AGL), but the
default values of two hundred knots, ten kilometers, and one thousand meters are
characteristic of this type of missile. As soon as the missile is in position, it begins
transmitting video images. When launched, the missile rises to approximately
two hundred feet above the highest terrain point, and then levels off in horizontal
flight in the targeted direction. The operator controls the pan and tilt angle of
the camera with the joystick, and can dial in changes to the heading and altitude
of the missile. The operator also has the capability to zoom the camera’s field of
view from eight degrees to fifty-five degrees, and to designate (“‘lock-on” to) a

target for automatic homing by the missile.

B. ASPECTS OF FLIGHT SIMULATION

There are many aspects to flight simulation. Modern commercial simulators
provide sophisticated mock-ups of cockpits and controls and highly detailed out
the window views. By mounting the simulator on a moving platform, a true sense
of the physical feelings of acceleration and roll can be achieved. These systems
aiso cost miilions ot dollars.

One of the first decisions that must be made when designing a flight simulator
is, ‘““For what purpose will the simulator be used?”” The answer to this question

drives most of the design decisions that have to be made. Since the purpose of

12

WP LTty Ay N "J"’" v--\y\x.\'ﬁx"u’_‘."-‘-"._"\"-\\'.'\"",_'..“'. o’ Rt o
G AN a7 St O G ¥ N VAT A A 2 A R R A e A A IS (A o

o T AL

5% % %Y YW

R B Ba R BN BN N

ARy

. s
-
O

e .

g ¢t

AT N

this project is to provide a simulation of the FOG-M missile as viewed from its
operator’s console, it is felt that the most important items to model are the
simulated video display of the terrain and the actual operator controls. The
terrain should appear realistic enough that its major features are recognizable to a
person familiar with the area. The controls should allow for the same
functionality as the actual console. The simulator must, of course, also provide a
feeling that the missile is in motion over the terrain. The effectiveness of the
feeling of motion provided by a flight simulator can be largely measured by two
criteria: the realism of the displayed scene and the update rate of the display.
1. Realism

Many factors contribute to the perceived realism of a displayed natural
scene. Early attempts to quantitatively measure realism consisted of counting the
number of ‘‘edges’ or lines that a scene contained. This later gave way to
counting the number of ‘‘faces’ or polygons in a scene. Since each polygon was
colored in a single shade, it was felt that each polygon represented a single ‘‘bit"
of information in the scene. Therefore, the more polygons the scene contained,
the more “realistic’’ it was felt to be [Ref. 5:pp. 27-28].

The latest advances in computer zraphics have also made -his measure of
effectiveness opsotete. With -he infroducrtion of systems -hat are abie o il
polygons with textured patterns, a single polygon can now contain thousands of
“bits” of information. As a result, a scene drawn with a few textured polygons

can appear more realistic than one with an order of magnitude more untextured

13

ones. Early textures consisted of superimposing things such as mathematical

o e B W

noise functions or stripes on the polygons. More recent advances have allowed the

texture to be derived from digital photographs of a similar scene. For example,

e & o w o - -

polygons representing a part of terrain covering by meadow could be filled with a

digital texture derived from an aerial photograph of a meadow [Ref. 5: p. 28].

r

Since most currently available graphics workstations do not support the
use of texture filled polygons, the use of texture was deemed to be outside the t
scope of the current project. Rather, the project’s work concentrated on
determining how realistically a scene could be rendered in real-time incorporating »
only the use of lighting and shading models along with terrain hidden-surface
algorithms. These topics are covered in more detail in Chapter V.

2. Frame Update Speed

Another important aspect of a flight simulator’s performance is the speed
at which it is capable of displaying successive frames in a scene. The faster the
update rate, the more continuous the motion appears. As a reference, standard
motion picture film is projected at a rate of twenty-four frames per second.

Although the IRIS workstation is capable of displaying up to sixty frames per

second. the amount of computation that must be done hetween successive frames ‘

A

.n the simuiation has imited the update rate to an average of three frames per A
second. While this presents a less than smooth motion, it is felt to be adequate N

“

\

for the purposes of the prototype. N

W~

>

14

N

N A e e Lt A N e e NS N T S T e e e T A Tt T A T e e e N e e T R T S
A ' 3 l- ’, .c, " ' , .l .. * ' " ’-f ¢ ' ’\'-. f.f '- i R I\ ..’- * .'- - T * » A . . y -.\ Rk Thtt Jadi

C. ORGANIZATION

The above sections of this chapter have provided background on flight
simulation in general, and the missile whose flight is specifically being simulated.
Chapter II provides an overview of the hardware used in running the simulation.
The structure and content of the Defense Mapping Agency (DMA) Digital
Terrain Elevation Data (DTED) are discussed in Chapter III. Chapter IV
discusses the motivation behind and creation of the two-dimensional contour map
displays. Chapter V covers the storage and use of the DMA DTED to produce a
lighted and shaded three-dimensional polygonal terrain display. The mathematics
and process involved in simulating flight over the terrain are detailed in Chapter
VI. Chapter VII discusses the creation, insertion, animation, and designation of
targets. Chapter VIII covers the creation and drawing of cultural features.
Chapter IX contains a user’s guide for operation of the FOG-M simulator.
Chapter X concludes with a discussion of limitations, future extensions and
research topics, and summarizes the research conducted. Narrative descriptions of

the modules and listings of the program source code for each of the modules are

included as Appendices A and B respectively.

Pe v it e U s auy €8st B8Rt 0.7 @a¥ B.Y 4™ B1% LW 4.0 3.5 g4 4 0 a4 s pad'ed'ad 2 8 260 82 4'2.8 2 8's 82 8'2 852 8%, 1% 4%2 4'2 &% Y OW I

II. COMPUTER SYSTEM

As discussed in Chapter I, flight simulators are nothing new. The significance
of this work lies in the speed with which it was developed, the display rate
achieved, and the realism and fidelity of the display in comparison to the cost of
the system that supports it. This project was technically feasible only because of
the capabilities. and high performance of the IRIS (Integrated Raster Imaging
System) Turbo 2400 Graphics Workstation, manufactured by Silicon Graphics,
Incorporated. Others have also used the IRIS as a base on which to build flight
simulators [Ref. 6]. This low-cost ($50,000 to $100,00) three-dimensional display

system is summarized in Figure 2.1 and is discussed more fully below.

A. HARDWARE AND SYSTEM OVERVIEW

The IRIS has a conventional Von Neumann type computer architecture but
adds custom-built special purpose VLSI circuits and a pipelined design to provide
the graphics functions that are implemented in software on other comparably-
priced workstations. Conceptually, there three pipelined components in the IRIS
hardware: rthe appilications/graphics processor. the Geometry Pipeiine. and the
raster subsystem [Ref. 7:p. 1-1]. The applications/graphics processor is a
conventional Motorola MC68020 processor running at 16.7 MHz. This processor

runs the applications program(s) within a UNIX System V operating system.

16

L a8 ol ~ab T B0 f'od 2 W9 L

ETHERNET to Vax and other IRIS

e s

32 bit 18.7 MHz Motorola MCB88020 CPU
6 Megabytes of CPU Memory
32 1024x768 bitplanes of Display Memory

Hardware matrix multiplier & floating point accelerator

Hardware Gouraud shading, depth cueing & backface polygon removal

12 pipelined custom VLSI Geometry Engin.-Tu

18-bit Z-buffer for Hidden Surface Elimination
3 73 Megabyte Winchester Disk Drivees

60 Hs non-interlaced 19" RGB high resoclution monitor
83 key up-down encoded keyboard

3 button mouse

33-button and 8-dial valuator boxes

Unix Syetem V

Ethernet zo VAX's

IRIS Graphics Library

Features of the IRIS Turbo 2400 Graphics Workstation
Figure 2.1

17

f

- - WY L et T TR N A Tt
LA B '.;'."-.:’-.‘ -v_'.f' WA ATA ALY : ‘-""v." A WSS 1"\"& SRR TR NN LA A
-. W ¥ o KX N 3 o A o o I A P A

Salal il

Pl A

var

my I o 3

XA AP

PRI

. 1"

XA

Applications either issue graphics commands in immediate mode, in which case
they are sent through the Geometry Pipeline immediately as individual graphics
primitives, or compile graphics commands into graphical objects. in which case
they are sent through the Geometry Pipeline as a single geometric entity when
explicitly called at some later point in time.

The Geometry Pipeline takes commands in terms of the user’s world
coordinates, performs specified matrix transformations on them using the matrix
multiplier and floating point accelerator built into the hardware, and then clips
and scales the transformed coordinates into screen coordinates. The raster

subsystem takes the screen coordinates output by the Geometry Pipeline and

updates the bitplanes (display memory) to contain the lines, polygons, or

characters specified by the input coordinates. The raster subsystem also performs
polygon fill, shading, depth-cueing, and hidden surface removal. A conventional
video controller uses the values in the bitplanes and the color table to produce an

image on the monitor.

B. SOFTWARE

The C programming language is native to UNIX and is the language used for
all of the [RIS system -ottwarc. The [RIS Graphies Library. which provides both
high- and low-level graphics and utility commands, can be called in C,
FORTRAN, Pascal, or LISP. However, due to the built-in bias of UNIX and the

IRIS, plus the local pool of knowledge, the C programming language was the

18

v

pro forma choice for programming all parts of the FOG-M simulator. The IRIS
User’s Guide [Ref. 7| breaks the Graphics Library commands into the following

twelve categories:

- Global State commands initialize the hardware and control global variables,
and are used mostly in FOG-M'’s init_iris routine.

- Drawing Primitives are used throughout FOG-M. They create points. lines.
polygons, circles, arcs, and text strings.

- Coordinate Transformations specify mappings within and between user-
defined world coordinates and screen coordinates. These are used to move
targets and to simulate flight.

- Drawing Attribute commands specify textures and fonts. Although texture
would greatly improve the appearance of the terrain, the IRIS provided
textures are applied in the screen coordinate system, so they do not scale or
tilt to conform to the terrain, and produce a very artificial result.

- Display Mode and Color commands determine how the bitplanes are used
and what colors appear on the screen. These include the commands that set
double-buffering, establish writemasks, and define the color table.

- Input/Output commands initialize and read the dials and mouse.

- Object Creation and Editing commands allow manipulation of complex
displays as a single entity. They are used in all FOG-M displays.

- Picking and Selecting commands are not used in FOG-M.
- Geometry Pipeline Feedback commands are not used in FOG-M.

- Curve and Surface commands draw complex curves and smooth surfaces.
Experiments with these produced more realistic terrain images, but not even
close to real-time, making flight animation impossible.

- Shading and Depth—cueing commands provide Gouraud shading of pclygons
and intensities that vary with distance from the viewer.

- Teztport commands definc an area of the screen for text. They are not used
n FOG-M.

Also available on the system, and used by FOG-M, are the math library with
sine, cosine, arctangent, hypotenuse, and exponentiation functions, and routines

that access the system clock in order to determine elapsed time.

19

[o TR

III. DIGITAL ELEVATION TERRAIN DATA

A. INTRODUCTION

CAL AN A -4

Unlike other flight simulation systems, which may rely on manual creation of

£oa_v,_vw

the terrain [Ref. 8], the source data for the terrain in the FOG-M simulation is a
Defense Mapping Agency (DMA) digital terrain elevation database (DTED) for
Fort Hunter-Liggett, California. The database is not Level 1 DTED, but rather a
DMA special product produced about 1980 at a higher resolution than normal :
Level 1 DTED [Ref. 9]. Level 1 DMA data contains elevation points spaced at
three arc-second intervals;, or approximately every one hundred meters. The Fort

Hunter-Liggett special data contains points at twelve and one-half meter spacing,

PRRSIte {

which is eight times the resolution of Level 1 data.

s & w .

B. COVERAGE

The area covered by the database is thirty-six kilometers wide and thirty-five
kilometers high, with 6400 data points per square kilometer. This area includes
most of Fort Hunter-Liggett plus some surrounding land, and is bounded by

latitudes 26° 05° 00°° (to the north) and 35° 30° 00"~ {south) and longitudes

TR RN VWYY

121° 04 30°" (east) and 121° 20” 30" (west). In terms of Universal Transverse

5=y ¥

Mercator (UTM) coordinates, the area has easting (X) of 10SFQ41000 to

10SFQ77000 and northing (Y) of 10SFQ60000 to 10SFQ95000. The database

20

.
.
Y
.
-
v
T) R i B R R e L AT e A
VA o e g L A N S QS CO N LI R

appears to be based on DMA forty foot interval contour map products, because

peaks tend to have flattened tops. This was confirmed both by a comparison of
surveyed instrumentation sites on or near peaks with their digital terrain values

[Ref. 10: pp. 1-2], and by a Bezier surface patch image of the data created locally.

C. STRUCTURE
The data is stored in an unformatted sequential file that is organized as a
stream of integers. Each integer (sixteen bits) represents both the vegetation code

and bald terrain elevation in feet at one sampling point. as illustrated in Figure

3.1 below.

| Veg. Code | Bald Terrain Elevation |
bit: |15 14 13|12 11 10 9 8 7 6 5 4 3 2 1 0|

Figure 3.1 DTED Data Encoding

The thirteen low-order (rightmost) bits contain the elevation. allowing a range
from /ero to 2191 feer. altnougnh the ‘ugnest point in the arabase 15 3744 ‘eer.
The three high-order (leftmost) bits specify one of eight vegetation codes, which
are given in Table 3.1 below. Vegetation codes are only available for points

within the boundaries of Fort Hunter-Liggett proper. The file is written one

21

G ALY A

LIS A RS N HEY,

T R PR TR e R TN PUR A LR N ¢ g4 942 b t'gtal’ Ny 1 o % 8% A% B%aBta st A gttt et el b.t'-.l.'|.'|l.'

t
y
TABLE 2.1 DTED VEGETATION CODES
Code Description N | .
0 Less than one meter
L One to four meters | ;
;2 Four to eight meters \
3 Eight to twelve meters :
4 Twelve to twenty meters
5 Greater than twenty meters A
6 No data available X
7 Tnused |
square kilometer at a time, beginning with the lower left one kilometer grid square '
(41.60), proceeding up the column to the upper left grid square (41.94). then X
N
.
doing the next column from bottom to top (42,60 to 42,94) and so on; the upper d
right one kilometer grid square (76,94) is the !ast one written. Within each one
kilometer grid square, the individual data points are written in the same pattern,
beginning with the lower left, doing each column from bottom to top, and doing :
the columns from left to right. This file layout is summarized in Figure 3.2. The N
position in the file of the elevation for a point expressed in five digit local UTM X 3
and Y coordinates is found as shown in Equation 3.1. .
position = 35 * (integer(X/1000) ~ 41) + (integer(Y/1000) — 59) (3.1) ¢
D. LOCATION ?
The complete DTED file occupies 16,128,000 bytes of storage. Due to a local .
shortage of available disk space, this file must permanently reside on the UNIX ' :
VAX 11/785 system rather than on the IRIS system. The FOG-M simulator 3
22 3
R S e . e A N N e T

RN N S U VE LYY
L]

i | DU =sad] =ad) =il
== == ==
m

“ <
== ==
=) = m_mu\NWJ
-= :\HMW.M__MW

76

42

41

Figure 3.2 DTED File Layout

23

presently operates on a ten kilometer square extract from this database. A
program on the VAX called make—database—e allows interactive specification
of the area and resolution desired, and produces an extract. This extract is sent
over the Ethernet to the IRIS to serve as the input for a FOG-M run. However, if
the data is sent directly, it is received with each pair of bytes swapped, so another
program, swapdma, is run on the VAX before transmittal. This program swaps
the low- and high-order bytes of each integer so that the swapping during

transmission is cancelled.

24

T N e PR T I I T S I I N D Tt RIS
% Wy, " q.l‘. ﬁ"'{\'.-".' \‘-.'f~' '.-'I.' LY L J-.’ 5"- .-_’~‘ \‘.5’5,' ’\' -i'.v’-“.-'f." \f-.,._ \"d‘(l"‘~(o’ "\ n" " X " . " LR
. A o s A o A Bt o e

Tt T Ny

.,

AN A AR

\. \' ‘- .l‘ s \

" 2R

-~ o .’. .,':,‘:,‘..'.

A

l' .“ .n'-l'—/‘ ~

L
.

any

M a ats 82 4 n Y NIRRT T AW R T ARIE X, ® 42t 0,0 00" bat 4a’ 8ecate” "0 20 28 2 40" a1

IV. TWO-DIMENSIONAL TERRAIN MAP PORTRAYAL

The two-dimensional representation of the terrain was begun as the first
graphics portion of the system, in order to gain familiarity with the IRIS graphics
workstation and the Defense Mapping Agency (DPMA) digital terrain elevation
data (DTED). Contour maps are the traditionai approach to two-dimensional
terrain portrayal. and thus were the basis for the two-dimensional images of the
terrain generated here (Figure 4.1). Although these two-dimensional images are
not *rue contour maps. *hey are still referred ro as such in this study because of
their close relation and common origin. The algerithms for determining and
drawing the forty foot contour lines found on a normal contour map seemed non-
trivial, so a simpler alternative was chosen. Each elevation datum is represented
by a tile, with the implicit X and Z (easting and northing, respectively)

coordinates of the elevation datum being the center of the tile.

A. COLORS

The color of a tile is determined by its vegetation code. and its intensity (or
Jnading) OV s ecrevAUoN. Lhe Nfent was O Clse Jreen Jor ciles vith vegetation
and brown for tiles without vegetation. However, the DTED vegetation codes
lump together both ‘“no vegetation” and ‘‘vegetation less than one meter high.”

Brown :iles thus include both unvegetated areas {e.g. rock slabs, areas above the

25

A e S

P A

1

et L O, |

S

£

A, s

"o
P N

L ST

Er 2P eesred

W d 'l-. '.“(" ’I %

Figure 4.1 Simulator Contour Map Display

26

T N B A N A T T T e e e e
v NG .f N (\’.'J' L __,‘.\.'_\.. AN

et ettty e
RS \.__._‘..'-__. OSCLS

8 e A R

X .

& € s v e . s e

I'. » . .

.
Y

'.TT'T"’ T l‘ =

‘,’l’ .

P R T
N N PR

"'."I'/".". .

. .{ .‘l .‘l 'I ." "t -.

oy

treeline) and grasslands or meadows. This is significant in the Fort Hunter-
Liggett area, because most of the valleys are covered in grass, and all of the high
ground is below the treeline. The result is a mar with brown vallevs and green
ridgelines. While this was readily accepted as natural by most viewers, pilots
with a background in low-level flight found it awkward, and contrary to their
expectations (from flight charts) of green valleys and brown mountains. While
this might be significant in other flight simulation applications (particularly those
designed for pilots), the initial representation was deemed most appropriate for
the target audience of the FOG-M simulator.

A similar initial, intuitive choice was made for the elevation-keyed shading.
High intensity (light) colors were used for higher elevations. and low intensity
(dark) colors for lower elevations. This was accepted as natural by almost all
viewers. The optimum number of intensities (shadings) to use in the map was
experimentally determined to be sixteen. A small power of two was desirable due
to the nature of the writemasks used to improve display speed. A large number of
colors provides greater elevation definition and prevents large masses of the same
color in areas where elevations change gradually. However. having too many
~olors destrovs rhe ~ontour-man effect, since 1diacent colors are <o ~lose “har 1o
ooundary !> distinguisiiavie between them. Eight shades cacn of green and rown
were used initially. The shift to sixteen shades of each produces a better looking
map. Due to the RGB (red. green. blue) nature of color creation on the IRIS. the

greens were still barely differentiable at thirty-two shades. but the browns (a

27

" . - -~ a - . - - - <, - . AP - - . » - .‘1.") "' at. . -_-. . " . . . * et W™ -t .
i "..\' f I..I~J'~J'.‘ -(,‘.. L .,'f P Cal.? .-..f. o RO AN ,.-_a.._.._.,_ B A IR T SEIIC N

PO N s N N NV R NN N O N N A O Y O R N, T U T W T T I VI TN IV AN I WYY B S VRN SV RS %7 W W W~ g

-y v b 8w

s

YN PP, TR ERR PR NN

CERER)

W ate gt tata gt AN R a) el Vg Vb b h ah g ea tad Sa0 R U Vg a0 hal b U Uy ran bl aRTHE #0000 a4 00700 D 0t

combination of mostly red, some green, and, in some shades, a trace of blue)
began to blend together.

To determine the elevations at which color shades should change (in order to
use the full range of shades), the maximum and minimum elevations of the
terrain section in use must be known. Rather than preprocess the data before each
run, these values are coded as constants in a header file. The equation for which
color index to use is straightforward (see Equation 4.1) but takes significant time

when repeated ten thousand times.

elevation - MIN
index = base indez + *# of shades (4.1)
B MAX-MIN -

Therefore, the fifteen points at which the shade changes are precalculated and
stored in an array so that no calculations are needed at each point, just an array

lookup.

B. DRAWING

The map can then be produced by determining the color and shade for each
tile, and drawing it as a filled square. However, an increase in speed can be gained
by exploiting the structure of the data and the line drawing hardware of the IRIS.
The Jdara s <niil processead 4 point at a time within each one xilomerer column.
but no drawing is done until an elevation/shading breakpoint is reached. Then a
single line of one tile's width is drawn to color all tiles since the previous elevation

breakpoint.

AN wrowaw s, @ = "

i MR B I NN

B YT,

T LR AN

7
-
.
[
¢
o
e

FRURUT VYT UY DY UV UN TIPS RANT W W RN *t
{J

C. WRITEMASKS

A more significant speed improvement (on the order of fifty per cent more
frames per second) was achieved with writemasks. Writemasks are a relatively
low-level hardware feature that can be used for many purposes. In the FOG-M
simulator, they are used to prevent the contour map from being overwritten.
This allows the map to be drawn only once into the bitplanes, and have it remain
on the screen without being re-drawn during each frame update. In order to
under. tand how writemasks work, one must understand the layout and use of the
IRIS’s color table and bitplanes.

1. Color Table

The color table associates a particular binary number with a color.
When the display system asks what color some number is, the color table replies
with the intensities for the red, green and blue color guns that will produce the
color defined for the input number. This input number is referred to as a
colorindez. Thus the color displayed on the screen depends on the colorindex
associated with a given pixel, and the color associated with that colorindex in the
color table. Table 4.1 gives the color table entries that are the defaults on the
IRIS workstation.
2. Bitplanes
The colorindex that is associated with each pixel is stored in the display
memory, which is composed of bitplanes. Each bitplane has one bit for each pixel

on the display screen, so a bitplane is 1024 bits wide, 768 bits high and one bit
29

TABLE 4.1 IRIS DEFAULT COLORINDEX DEFINITIONS |

Colorindex :
Color _ - -

Decimal Binary {
Black 0 0000000000000000 Y
Red 1 0000000000000001 v
Green 2 0000000000000010 \

Yellow 3 0000000000000011
Blue 4 0000000000000100 X
Magenta) 0000000000000101 y
Cyan 6 0000000000000110 ,
White 7 0000000000000111 i

deep. When used in double—buffer mode (as in FOG-M), the IRIS uses sixteen
bitplanes (numbered O to 15) for each buffer. The frontbuffer is the one whose $
binary contents define the image being displayed. Whiie the frontbuffer is being
displayed, the next image is created by issuing drawing commands which affect
only the backbuffer. Once a new image is completed in the backbuffer, the
buffers are swapped, so the backbuffer becomes the frontbuffer and is displayed. g
The old frontbuffer becomes the backbuffer, and is then available for update. :

3. Writemask Example :

Consider the pixel at location (0,0) — the lower left corner of the screen.
The colorindex of that pixel is determined by sixteen bits: one from the lower left
corner of each bitplane. The dispiay system reads those sixteen bits as a binary
number (the colorindex), and uses the color table to determine what color to

make that pixel. For example, using the default colors defined in Table 4.1 above, - \

that pixel will be colored black if all sixteen bitplanes have zeroes in their lower- - ::
i:'
30 "

» F% ¥] 3
2 WA
e |1‘ OGN

e

» e 0 RO AN LN 0 T Y Y
K l't.‘. -. N\ o DN it W ""a (Y V'Y

gty s s b g 0a g 83 b e €' fa s % R0.8%s &' Vo gNa @l b it ran cal at gl cat. g¥ el ‘ol gt Sl el <af o8 d.8 -o@ i 8 4 B0 ol o

left corners, since the value of the sixteen bit binary number 0000000000000000, is
zero. If the current color is set to magenta (color five, whose binary value has ones
in bits zero and two) and a drawing command is issued. bitplanes zero and two
are set to one, and all other bitplanes are set to zero, for every pixel covered by
the drawing command. These pixels will now be displayed as magenta, because
the colorindex constructed from the sixteen bitplanes will be 0000000000000101,
(5,0), and the color table tells the display system that color 5, is magenta.

The previous example showed that a drawing command works by
placing ones in certain bitplanes, and zeroes in all of the rest, with the current
color specifying which bitplanes get which. A writemask tells each bitplane ‘o
either allow or ignore the changes a drawing command says to make. In normal
double-buffered usage, the writemask is 1111111111111111,, meaning all sixteen
bitplanes should allow updates. Now suppose there is an image on the screen
which uses just the default eight colors. Bitplanes three through fifteen are all
zeroes, because all of the colors have colorindices with three or less binary digits,
which will be in bitplanes zero, one, and two. If the writemask is changed to
1111111111111000, after drawing the image, those lower three bitplanes are
“frozen' and will not be rnanged bv anv irawing rommand. Setting rhe coior -o
black and clearing the screen wiil not change anything. The upper bitpianes wiil
be set to all zeroes, which they already were. The lower three bitplanes will be
told to reset to zero, but will not do it because they are protected by the

writemask.

31

P J-‘:q .’\‘p A "'.\',. ‘-\.. WAERCAT L ., -"' -J,‘-'\)\.--..\..'I‘.\','-'._’_.)\-.\.."..\..\a\‘."--,'- RS

-

o o

A S |

R LSS S

ALY

oL

%) l._.".{ .(..}‘...'.'. 4 5

R AR

£

«
.

2T ELE S

4

>SS

Now suppose you want to draw a grey line on top of the image. The line
only needs one color, so it can be drawn in one bitplane. (Two bitplanes will allow
three more colors on top of the map, three bitplanes allow seven, etc.) The first
“free” bitplane is number three. Turning on a bit in this plane (and not turning
on any bits in higher planes) requires a colorindex in the range 1000, to 1111, (8,0
to 15,,). Defining color eight in the color table as grey, making color eight the
current color, and then drawing the line is sufficient to get the image into the
bitplanes, but the display will not show the desired effect. If the image
underneath the line is black (i.e. bitplanes zero through two are all zeroes form
some pixels), the line will appear grey. as intended, for those pixels. However. if
the image underneath the line is red (i.e. the lower bitplanes contain 001,), the
composite colorindex retrieved by the display system is 0000000000001001, or 9, /)
and since color nine is not defined in the color table, it appears as black. Thus
every colorindex that has bit three (because the line is in bitplane 3) set to one
(i.e. colorindices 1000, to 1111,, or 8, to 15,,) must be defined as grey in order to
produce the desired image.

4. Writemasks in FOG-M

The map image used in FOG-M is stored ‘n rhe frst six bdirplanes
(numbered U througn 3) of both oburfers, which means sixty-iour coiors are
available: eight are the IRIS defaults, sixteen are shades of brown, sixteen are

shades of green, and twenty-four are unused. The writemask defined as

SAVEMAP (CO,, or 0000000011000000,) allows things to be drawn on top of the
32

BTty

P R LN

)

RpPFLES S

4

Lo

X o, "

map in bitplanes six and seven. Colorindices 64 through 127 are all defined as
blue in the color table, so anything drawn in bitplane six appears on top of the
map in blue. Similarly, bitplane seven is used for red. with colorindices 128

through 255 all correspondingly defined to be red.

The speed improvement due to writemasks in FOG-M comes from not

having to re-draw the map each time the screen is updated. The cost is the use of
many more indices in the color table, which limits the number of colors available
for use on top of the map. For our simulation system, with only two colors
needed on top of the map, there is plenty of room in the color table. Therefore,

the gain in speed comes at no real cost.

33

<L

SaNS LA

>y w r a
-

.....\
v e e e

b PR R
D) DI

N
IRES

~ %
l.{'

('{rt: * o o n o ,","."- s

N

[R T ‘o d ‘a8 2.8 2.9'0.9% $°a.8 '2.8's £'A 82 & Vo gUa @iy aU o AV YL ah Al ¥ 'ab Cub. At at. al. atutaleat. el 'at. tat af.tal.” Sa@."al *ar

V. THREE-DIMENSIONAL TERRAIN CONSTRUCTION

A. REPRESENTATION DECISIONS

1. Polygons versus Patches

Early experiments in the study involved attempting to display the X
terrain using parametriec bi-cubic surface patches. A surface patch is simply a
smooth curved surface fitted to a set of data points. A discussion of the theory
and use of surface patches can be found in the IRIS User’s Guide [Ref. 7:sec. 11-3]
and Hearn and Baker {Ref. 1l:pp. 193-205]. [t was quickly determined that it
would not be possible to use surface patches to represent the terrain and still
maintain a real-time update of the terrain during flight.

An alternate method of displaying a three-dimensional object is through
the use of a set of planar polygon surfaces that join at common edges to form the
terrain object. This method has the advantage of being much simpler, and

therefore faster, to generate and display. For this reason it was chosen for use in

the project. '
Figure 5.1 snows ~he method of constructing tiie rerrain surface as a set .
of triangles. The term gridsquare is used in the remainder of the chapter to refer :
to a set of two triangles with a common hypotenuse that form a square of the
terrain grid.
.
34 .

»

S T TS e e s I LRI I I B T T | T N T T T S S T W S N S LY LS ~ ~ ~°
"“ - ,.J"-' "~J' d'\v" 'h . -'\- NS e - ..-‘ -’\-" ! ‘ '*‘\'.‘." .' - .l' -, .‘ =) -" d‘ ".} " S | 8) '-\.-\"- g) _r_l *‘.-\‘-“_- __.

LA™

-

Pt 4

<.-'

Sm—
L &Ll

td

v e e
LN

)

b,

LR WL Y

North

P‘i'."-

A
"GRID-
SQUARE"

PR LI

Ea,S t . -.‘

View from above looking down on the terrain. S

-Terrain elevation points ire -=zonnected
to form “riangular poiygons Wwith common ?,
edges. ;

Figure 5.1 Polygonal Terrain Construction &

35

ol]

‘l’l

7,
2

v
PR
.
a

Resolution

The special DMA data file used in this project contains elevation data

that is spaced at a twelve and one-half meter interval. One of the first questions

which had to be answered concerning the three-dimensional portrayal of this data
was, “‘In how fine a resolution can the data be displayed, while still allowing for a
sufficient frame update speed?’’ Early test runs showed that using the full twelve
and one-half meter resolution would be much too slow, although it provided an
excellent representation of the terrain. An adequate frame update rate
(approximately three to four frames per second) was achieved with a seventy-five
meter resolution or every sixth data point. Since this was an early test. displaying
terrain without any targets or cultural features, a one hundred meter resolution
was decided upon for use in the remainder of the project. This allowed for an
adequate ‘‘cushion” of processing time to complete the additional computations
that would be needed in the final product, while still providing an adequate
degree of resolution.

3. Elevation Scaling

After viewing the early representations of the terrain, it appeared that
he hills did not zive an appropriate 1ppearance of height. Although this was a
supjective judgement, it was shared by most people who viewed the dispiay and
compared it to aerial photographs of the area. Because of this, it was decided to
scale the elevations of the displayed points upward. Two approaches, linear

scaling and exponential scaling, were examined.

36

(N ‘.‘ '

In the linear scaling approach, each elevation point was simply

multiplied by a scale factor as shown in Equation 5.1.

_ *
Elev"w =0

elev (5.1)

Using this approach, it appeared that a scaling factor between 1.5 and 2.0 was
necessary to achieve the desired effect.
In the exponential approach, the elevation of each point was raised to a

fixed power as shown in Equation 5.2.

g
Elevnm = Elevmd

—
(N1
to

-~

This approach has the effect of exaggerating the higher elevations to a greater
degree than the lower ones. It was chosen as the approach for use in the project
based on subjective observations of the displays produced by the two methods.
The scaling factor, o, was chosen as 1.05. Using this factor produces the
equivalent of a linear scaling of 1.5 for the maximum elevation and 1.4 for the
minimum elevation contained in our area of interest.

Subsequent to the decision to use an exaggerated elevation scale,
research results were discovered which supported it. In a study conducted by the
U.S. Army Research Institute for the Behavioral and Social Sciences. observers
were asked "o dick a compurer zenerated iine drawing rhat Hest matched acruai
terrain. The line drawings had different exaggerations of the vertical (elevation)

scale. The overall ratios chosen by the four observers ranged from 1.25:1 to

37

Tt At At A " e e T A + T e T AT et et e T e e TN AT A Tt et Tt N, T e e e - e v et
e R N e e e A A i T e O e i A O S N
A ‘MM A n v ° .i‘f I.v‘ N -'l Q" -4" e e e .’-' R ST .‘ AR AN ~"‘ Cality

NI

% %5

R REE L)

P AL

e

byws, o

s

LS,

’ &L
v{I““,".l .

a g “‘» ‘{

.
£

A X a3 3 ®n
st

)‘.— ':

T
ol

BRI

RN

AR

i

I\
~

™!

s
-"{*

P

)

-P‘;-" \-'

AN AN N ANV AEARERE Y N " AL RPN TY, oy 18,240 8°¢.8'0. 4008 #2¢ & gy el Vab g¥, 4t

1.50:1. The drawings presented to the observers had exaggeration ratios ranging
from 1:1 to 1.75:1. [Ref. 12]

4. Shading and Texturing

As explained above, each one hundred meter square of the terrain, a
‘‘gridsquare,” is represented by two triangles in three-space thp.t share a common
diagonal edge. The process of applying colors to these polygons, shading, was the
next area of research in the project.

a. Elevation Based Shading

Three different shading algorithms were investigated. The first was
a simple algorithm where the shade of a polvgon was a function of its elevation.
Higher elevations are shaded in lighter shades of green while lower elevations
receive darker shades. Equation 5.3 represents the assignment of a shade from the

color map.

elev — Min Elev
color index = base indez + = *# of shades (5.3)
h - Moz Elev—Min_ Elev -7

The darkest green is stored in the base indez color map location and the lightest
green in the baseindez + # of shades location. Although this approach works
well for two-dimensional contour maps {see Chapter [V). and is currently used in
another “low cost” simulator Ref. 3l. it did not appear to present a realistic view
of the terrain. An advantage of this approach, however, is that the calculation of

the color index is simple enough to be done with no preprocessing.

A Sy I.‘J.;-I‘,;-“.;J' ‘u'.;.-_;.} Sy ;.' -

FRPY, VRIS

.

R

PPERREL SFRRIIIIT

"y

.P_;.'_;:...‘;J’~J'q;{_'f '{.:«‘,Qf,:.’ KA A A

b. Lambert’s Cosine Law Shading
The second method of determining the shade fr a polygon involved
the use of a point light source and Lambert’s cosine law [Ref. 11:p. 278]. Let N
be a unit normal vector to the polygon, and L be a unit vector in the direction of
the light source. The angle between N and L, ®, is the angle of incidence.
Lambert’s Law states that the intensity of the light reflected from the polygon is

proportional to cos ® (Equation 5.4).
I acos ® (5.4)

In order to use this law, the normal vector (), the light source vector (L), and
the angie between them (@) must be known. N can be determined by taking the
cross product of vl and v2, where vl is a unit vector in the direction from vertex
B to vertex C of the polygon, and v2 is a unit vector in the direction from vertex

B to vertex A of the polygon (Equation 5.5 and Figure 5.2).
Vo= vl x 2 (5.5)

With N and L available, cos & can be computed as their dot product (Equation

5.7).

cos ® = VL {(5.7

Since the intensity 1s proportional to cos ¢, the appropnate color index to use can

be computed as

color _index = min inder - (# shades*cos ®) (5.8)

39

ettt
W A e O N
3 B

et e e tataw M L e T e S
‘ - l‘ \ -' -..l‘.p.- -.'\- ~"¢.'§“ I-’ ., \.-.. ..' . \' - " -."-.- . 0-4 « N ‘1

b ANRY ;

“';‘,“.‘»'.

PR AP ALT

A
| W

NIRRT T P
o

; ‘ﬂ.'-".-

o

)

. T RN s - R . * ¥ A LN [A'RE P 4 v 1 . » A 0 e “ph Sal “ml Sal a9 Vol ¥ . ey b ORI ¥ 0" %0 DY KJ 1 . D

Y Light Source
2
x []
] :
s .
P L)
Figure 5.2 Lambert’s Cosine Law ;
§
\J

(
AT N
..hf\.'.-;..x'};'.&

where min indez is the color index of the lowest intensity green and
min_inder + # shades is the color index of the highest intensity green.
c. Gouraud Shading

The final shading model {nvestigated involved the use of Gouraud
shading. The purpose of Gouraud shading is to provide a continuous transition of
shades across a polygon so that the shades at the edges of adjoining polygons
match. This in effect eliminates the visible boundary between polygons and
provides a smooth continuous surface. The Gouraud algorithm involves
interpolating to determine the intensity to be used at each pixel along a scan line.
and is illustrated in Figure 3.3 as reproduced from Hearn and Baker Ref 11p
290|. To use the algorithm. intensity values for each vertex of the polygon must
be known. In the project’s implementation, the intensity at each vertex was
computed as the average of the intensity values for all the polygons meeting at
that vertex, where the individual polygon’s intensity values were calculated using
Lambert’s cosine law.

The use of this model posed two problems. First. even though the
IRIS supports Gouraud shading in its graphics library. its use increased the time
herween frames ‘o an inacceptable rate ‘approximateiv one wnd ne-haf co chree
seeOMls Detween rammes;. Second, “he SmMootiing of THe Ggortam NOrked oo
well. resulting in terrain displays that lacked the necessary position cues to detect
motion. This second problem could be alleviated by adding artificial texture to

the terrain but in light of the speed problem it was not pursued further.

41

. P YRR

.

D R N R LIRS TN
NP S O S AN

N ea v
B AT
"

Scan Line

For interpolated shading, the intensity value
at point 4 is determined from intensity values
at points 1 and 2, intensity at point 6 is
determined from values at points 2 and 3. and
ta%ensities Al otaer sciats o suca 1S 3. 1.0ng
ihe scan ..ne are .aterpoiatea detween e
values at points 4 and 6.

Figure 5.3 The Gouraud Shading Algorithm

42

n

S

Ve a¥t & s a"

-
-

-
Fhgih

- e
2

»

PSP
Ear o O A

S

.

Tar

iy

AR RAN

>
2

Wil

VU MRTER WA TR I TR KN 1a® 04% 820 €1 52 Bat 220 520 S0t b 20 b o %2 8% g% ™ UM UV S Al ataralie "at. "allval Tad "

d. Adding Texture

Lambert’s cosine law was chosen as the shading model for use in the
project, providing the most realistic display within the allowed computation time
constraints. However, a problem with its use is that the flat valleys, with little
variance in the surface normals of their polygons,.produce large geographic areas
having a near constant shade. This results in a lack of motion cues in these areas
similar to that experienced with the Gouraud shading model. To remedy this
situation, a simple artificial texture, in the form of a checker board, was imposed
on the terrain. The checker board effect was implemented as follows. First, the
shades for the two triangles in each gridsquare were averaged, and this average
shade was used for both of them. This of course causes the visible boundary
between the triangles to disappear leaving a square shaded in a single color.
Second, two slightly offset color ramps were used with adjacent grid squares using
different ramps to compute their shades. One ramp is composed of green
intensities ranging from 255 to 50, while the other uses intensities ranging from
245 to 40.* This causes the shades for two adjacent gridsquares with identical

surface normals to vary, providing the necessary texturing.

* A value of 255 is the highest intensity green obtainable, a value of zero indicates the absence
of the color green.

e s
SN IR

£ oA BEX T " 7, ° R R~

“y Y

e T Y T

A.

=}

1 e et e
[N RS)

CERPEL LN

B. INTERNAL DATA STRUCTURES

Two global arrays are maintained which store the information necessary to
display the terrain. The first is a five-dimensional array. savetriangle. that stores
the values of the coordinates for each triangle making up the terrain structure.
The second is a two-dimensional array ;‘mvecolor that stores the color map indices
for each of the terrain’s grid squares. The purpose and range of each of
savetriangle’s indices is shown in Table 5.1. For example,
savetriangle[3][5](1]{1][2] would contain the value of the Y coordinate (fifth
dimension = 2), of the second vertex (fourth dimension = 1), of the northern
triangle (third dimension = 1), of the grid square with X index five and Z index

three (second dimension = five and first dimension = three).

TABLE 5.1 LAYOUT OF THE SAVETRIANGLE ARRAY

Index Range
Start | End |
First 0 98 Grid square index in the Z direction. 0
is the southern most square, 98 is the
northern most.

Second 0 98 Grid square index in the X direction. 0

is the western most, 98 is the eastern
most.

Dimension

Purpose

Triangle identifier within a grid square.
| 0 is the southern triangle. 1 is the
northern.

Vertex number of the triangle. U is the
first vertex, 2 is the last.

Coordinate identifier of the vertex. O is
the X coordinate, 1 the Y coordinate
and 2 the Z coordinate.

44

-
Y

UL L LA S LT AFV Y O I IR R R RN AN KA AN EN AN AN AN I N A RN UEN AN ENE LN TR T ., .0 Yol Yab 0ol Yal ‘of Cat 'Caf S0 T.8 %2l *af ‘ab Y2R Vb tak Yoo 4

Table 5.2 lists the purpose and ranges of each of savecolor’s indices. For

example, savecolor[30][10] contains the color map index to be used for the grid

square with a Z index of thirty and an X index of ten.)
K
A
TABLE 5.2 LAYOUT OF THE SAVECOLOR ARRAY /
. X Index Range ﬂ ..
Dimension }— Purpose . y
Start | End b

First 0 98 Grid square index in the Z direction. 0 .
is the southern most square, 98 is the N,

northern most.

Second 0 98 Grid square index in the X direction. 0 :

I is the western most, 98 is the eastern :
| | most.] 5
]

These two arravs contain all the information necessary to construct an image h

of the terrain. The following chapter provides the details of using their data to '
create a real-time, updated image of the terrain as it is seen from the FOG-M’s 3
camera. ,
’

7

-

-~

[

,.:,

N

Y

)

~

45

a

»

]

VI. FLIGHT SIMULATION

A. OVERVIEW

The previous chapter discussed the methodology of constructing the three-
dimensional terrain from the provided elevation data. This chapter’s purpose is
to explain the details of displaying this terrain in real time as it is seen through
the missile’s camera.

The high level pseudocode for the main program’s terrain display loop is
shown in Figure 6.1. Chapter VII explains the details of‘step two. The details of
steps one and six are explained in Appendix B under the procedures readcontrols
(for step one) and edit navboz and edit_indboz (for step two). The remainder of

this chapter discusses the details, considerations, and results of implementing

steps three through five.

B. UPDATING THE MISSILE’S POSITION

Determining the missile’s new position can be broken into two cases:

[1] the missile is under operator control and its new position is a function of the
old position. the commanded direction of flight. the commanded altitude.
and "he commanded speed.

2] :he :inissile is locked onto a target and its new position is a function of its oid
position, the position of the desired target, and the commanded speed.

In both cases, a very large simplifying assumption is made to ignore the

dynamics of the missile’s flight. This means that the missile is able to

46

TR S

TLRARID

'Pff'fffl"s-..

LA

FEP AT

S, A

\

. T e T P,

~ S T g By 3
s

3 g 4 g 0 2.t « E.% g.n bad B2t 1’ fat Bat $a% 82" " pas L e 1) TR) N

While missile is flying do
1) Read the values from the operator’s controls
2) Determine new positions for all the targets
3) Determine the new position for the missile
4) Determine the position of where the camera is looking
5) Display the terrain as seen by the camera
6) Update the operator’s control indicators
End while

Figure 6.1 Main Display Loop Pseudocode

instantaneously change heading, speed, and altitude. This assumption was made
only because of development time constraints. It is felt that the computations
necessary to more realistically model the dynamics of the flight can be done
without a serious degradation of the simulator’s performance.

1. Case 1l - Operator Control

Under this case the missile’s X,Y, and Z coordinates are computed as

~hown Helow.

ADist = Speed*A Time (6.1)

47

e a e AN r_‘.'--r!'r Wyw, of o
e e ey g N Y

R T O R B LAy AN

"l'(

o

s

N .l. .j. .l- "- .. ,. qL

PRI S

y

_“s‘\ "-‘ ..D\'.‘-

A N SRR 5

L}

>

Where

- ADist is the distance traveled over the ground since the last position was
calculated.

- Speed is the missile’s speed in feet per second and

- ATime is the elapsed time since the last position was calculated
Having calculated the distance the missile must move during this frame the

missile’s new coordinates (MX, MY ,MZ) can be calculated as

MX,, = MX +[cos(Dir_) *ADist] (6.2)

lwznew = MZold—[sz.n(Dircmd) *ADist] (63)

MYy, = (Alt,)] (6.4)
Where

- Dir_ . is the commanded heading in radians
- Alt_ . is the commanded altitude in feet

- o is the altitude scaling factor (see Chapter V, Section A.3).

2. Case 2 - Locked Onto a Target

In the case where the missile is locked onto a target, the missile’s new
position is computed as follows. A Dist is computed as in Equation 6.1. Next the
missile’s heading is computed so as to steer it directly toward the target’s

position:

Dir, = arctan2(-1 TZ-MZ! | TX -MX') ‘6.

(9]]

gt

48

N T I e

W P L :/"I_;I,;f.:r"\'n',‘-":f.'-',;I,:.";.'.'i‘..'r‘\I‘,_(..c"f._(\4‘ r._‘-~ -"'N':.'\-"ﬂ-'.“-"'~' B TR LY U IR

=]
=4

AT

s

RS-

~

RI ‘,'t ': _'l

p JRE)

e Y <

“ f?'.;' ..'¢ “A"...l. 3 h -

AT u]

L 4

ok 8,

.......
Rt e
L

st 1 . 9 v Nt g vy .ia® 02t LW . * 9@ . () » A LR) s ae'a D ('R 0 v - ') \J (] 0@t "at ‘a®_ ‘a8 “al_*

Where

Dir, gt is the direction from the missile’s position to the target’s position

TX is the X coordinate of the target’s position

+

TZ is the Z coordinate of the target’s position

MX is the X coordinate of the missile’s position

MZ is the Z coordinate of the missile’s position

b

a
arctan2(a,b) is a function which returns the arctan(—) in the range
0 to 211, based on the sign of a and b.

Once Dir, ot is known, the missile’s new X and Z coordinates can be calculated as

MX,, = MXo,d+[cos(Dirtgt) *ADist| (6.6)
MZ,, = MZold—[sin(Dirtgt) *A Dist] (6.7)

Next the missile’s altitude (MY) is adjusted a proportion of the total altitude
difference between it and the target, based on the ratio of ADist to the total

distance (along the horizontal plane) to the target.

Dist, ,=\/(TX-MX)"+(TZ-M2)" (6.8)
. A Dist

MyneuJ:MYold— —TY) . (6.9)
Dzsttgt

Where

- Dist,ql is the distance to the rarget measured along a horizontal plane.

- MY and TY are the Y (altitude) coordinates of the missile and target,
respectively.

ol Vol P8 S8 &

...... . B . agt Y "YU e a¥a b'a.b'a §%: &' ‘a$ N REENN] 1'p. 'y] S ot ful 8ot _Rat a0 ya¢ Lt iy

C. DETERMINING THE LINE OF SIGHT ::
Once the new position of the missile has been calculated, the next step in ;
displaying the terrain is to determine another point along the camera’s line of
sight: the look-at position. This calculation is also broken into two cases based-
on whether the missile is or is not locked onto a target (see Figure 6.2).
The case where the missile is locked on is trivial, the look-at position is s

simply set to the coordinates of the locked-on target. Y

LX=TX (6.10)]

LY=TY (6.11))

LZ=TZ (6.12) A

4

Where LX, LY, and LZ are the X, Y, and Z coordinates of the look-at position. '

This centers the target in the displayed three-dimensional scene.
When the missile is not locked onto a target, the camera’s look-at position is
13
a function of the missile’s position, the missile’s heading, and the pan and tilt -

angles of the camera. It is determined as follows

'r

Dir,, . = Head_ + Pan (6.13)
LX = MX+[cos(Dir) * Dist,, .| (6.14) :
v

LZ = MZ-lsin(Dir,)" Dist, | (6.13) ::

LY = MY +(Dist,, “tan(Tilt)] (6.16)

-
|
-

P

F v J

SOV

-
e bl ' 2 35 2

L

A58 MN

A AA NN\

Y XX

-
PRI 4

a5

AN

o B abs o Y 92" ala' ala® PR ., ' 8 ® et 0t S 0g% An® Da*.0a 00" s diat, o . pat
-
LX = TX
LY TY
LZ = TZ
o P A
s b
2egyd] . ﬁ’hn
% iIni 5
& v, s ¢
J 1Ll ¥
O P P D P a T P I

DIR

= Heading + Pan

look

\

Overhead View

AN vy-)

LT LITT

Side View

Case 2 - Missile Not Locked on Target

Figure 6.2 Determining the Camera’s Look-at Position

RO N Ay

s

51

PR T
-l',' N

R S A) Iy

N
“w

.

f'.'- o)

T U R T AR A X TR A R A O N 000 028 g% Bat 0o @0 0000 60.0'0,8 0.0 0 ' ' "0 e 4 s 8% 0,2t <at 2t tab et daq bap t1)

Where

R ‘;\-'n— R AY _

- Dir, . is the direction the camera is looking

- Pan is the pan angle of the camera N

by

- Tilt is the tilt angle of the camera N

- Dust, , is an arbitrary distance over the ground that the camera looks ahead. N
Since the only purpose of LX, LY, and LZ is to determine a point along the X
c¢amera’s line of sight, any positive number will be acceptable. A value of five A
kilometers is currently used. >

A

D. DISPLAYING THE SCENE =
Once a line of sight has been determined, the next steps are to apply the]
appropriate viewing transformations, draw the filled polygons that make up the ;
terrain, and add other items to the scene such as targets and roads. .
1. Viewing Transformations

It is possible to project a three-dimensional object onto a two "
dimensional viewing surface in two basic ways. In one method, the parallel N
N
projection all the points of the object are projected along parallel lines. This has M
the advantage of preserving the relative dimensions and angles within an object
and is used when accurate views of various sides of an object are needed such as o
At

in architectural drawings. In the other method, the perspective projection, all ‘e
*he points of an object are projected along lines that converge at a single point
cailed the Center of Projection. In this method, relative dimensions are not :'_l

o
preserved. Lines closer to the projection plane appear larger than those that are ,,-
F

more distant. The perspective projection provides a view of three-dimensional -
K4

)
\

52 N

i

1

3

L N N W L W A L e e e e e T e N e N TN LT A, e T e T _:

KB&L\'&'{J":& o o, ' - A . .) o . e 1\- &

"at et 2kl ‘al e ot Sad al tut el S ol "o ala aea R0a pla: g0y 284 18, i e g Ol At O * M e B’ e e SRR Al P A S8 A B8 Sl Tah ol

objects that is more realistic, similar to that provided by the human eye or a

camera. Both these projections are illustrated in Figure 6.3. [Ref. 11:pp. 235-241]

. Because of its more realistic presentation of the scene. a perspective
¢
L}
> projection was used for the project’'s three-dimensional scenes. The IRIS's

graphics library provides a procedure called perspective which constructs the

7’

s
- necessary transformation matrix * to obtain a perspective projection. The matrix
.

4
is defined as [Ref. 7:p. C-2]

5 .

s Perspective(fovy.aspect near far) =
“

»

5 fouy

N cot (
' 2
) | 0 0 0

o, ;

A [aspect
L
Cd
’ fovy
v 0 cot(0 (6.17)

2

]

[far +near
’ 0 0 - -1
~, far—near
.‘

L]
= 2x far x near
0 0 -

e far~near
X Where
. - fouvy is the field of view angle

-

" - aspeet s the aspect ratio. a1 fatio of ~he listance v Jewer sees n ~he N
N direction o rhe -listance ne <ees :n “he Y lirection. [t 15 zeneraily ser o be
. the same as the ratio of the width to the height of the viewport.

s - near and far are the distances from the viewer to the near and far clipping
A planes.

'~ *A knowledge of using transformation matrices to perform graphical operations is assumed
b here. Hearn and Baker [Ref. 11:chaps. 11-12] provides excellent coverage of the subject.

) 53

B N N N L LY e L N e e s e N e e e N e e e N et e W aan T AT et S e

.. o.l.. A’tl " \,\)\' Iﬁ"' a7 \f\,'--“\-' e, 5 -, '\'.\"-'.‘.' Wy) T -, \'. . X Nt

YT WY

T

Parallel Projection

Projection

Center
of

Perspect

ive Projection

Perspective
Projection

Projection

Plane

lines of equal length.

Projection

Closer .ines appear larger %“han more iis-an-

Figure 6.3 Parallel and Perspective Projections

“

e N A Y e p sty e A p e
S Aty S e e LN S Ty

54

A AON

Antedndded I At b

AR RN AN AN NN N NUNURU N WU WU IPL PUWUMU P VOUWIWUWR Y ORI U ¢ 4 J

The perspective projection forms a view frustum as shown in Figure 6.4.
Any object. within the frustum between the near and far clipping planes will be
displayed in the scene. Objects outside this view volume are clipped and
discarded.

Next, the frustum formed by the perspective projection must be
positioned along the camera’s line of sight. This is accomplished by another
transformation matrix constructed via a graphics library procedure named lookat.

The lookat procedure takes the following inputs:

-V, Vy, and V_: the X, Y, and Z coordinates of the center of projection.
- P, Py, and Pz: the X, Y, and.Z coordinates of the look-at position.

- Tuist, a right handed rotation of the scene about the line of sight.
The transformation matrix formed by lookat is actually the result of multiplying

four other transformation matrices [Ref. 7:p. C-2]

Lookat(V , Vy, VZ,PI,Py,Pz, Twist) =

6.18
Trans(-V, -V -V,)xRot (©)xRot (®)xRot (- Twist) (6.18)
1 0 0 O
0 1 0 O
Where Trans(-V .-V -V,)) = (6.19)
y ¢ 0 0 i 0
1 '
35

‘o Y

Pyl s X o

T IROIRST YRR

v € 6 a 8. 8

LAy
.

-,. \- ..- ..'..‘ y “f"“:""’-"n a'_‘- r" PN f:'

L

-

Clipping

Planes

dx
dy
The perspective command defines a near and
‘ar :.lpplng p.ane. 1 field >f view. and
an aspect ratio.
Figure 6.4 The Perspective Command
56
B A gt S N L S N S L PR R S S
N U N N A N N I AT S NN N A N N GRS AN

DS YR

L

LR PRI

v

e

g Kas

.

LTS LTS VY DU LT LA oW U L N LN | I L ata¥a¥ “af 'at 'af ‘28 AR *20. "2t "aB ‘a® “ab a8 Va8’V Va@ €ap Caf S0 S0 M og o8 a8 LR a0 WP Wag v op 6.0 S o8 oof Bad .0 B.8 0.8 ¢

¥ cos(®) 0 —sin(©®) O
ot (6) - o 1 0 0 (6.20)
. y 3in(©) 0 cos(®) O
: o o o i

1 0 0 0!

0 cos(®) sin(®) O

ﬂ' Rot (%) = 0 —sin(®) cos(®) O (621)

5 0 o0 0 1
cos(— Twist) sin(—Twist) O O
b —sin{~Twist) cos(—Twist) 0 0
E Rot (- Twist) = (6.22)
! 2 0 0 10
?
0 0 01
4
i - P,-V,]
And © =sin (6.23)
: VETTHETT)
>,
A
!]
V,-P,
v ® = sin- — (6.24)
NI T T O
. As can be seen, this transformation simply translates the center of projection to
"
o
\:: the origin, then rotates the view frustum about X and Y axes to align with the
'
5
2 line of sight. Finally the twist angle is added with a rotation about the Z axis.
h
4
y S7
‘l
%)
&
.

N"at tak el ‘el a8 2.3 <ad Yol ¥ed €4 A 8 8.0 .80 8% '8 2'% £ 8 £'% a8 ath at3 afh ot W WL O R IO e 02 0t et .0 2 f Rl 48 Bt 8.0 R R 8.0 §at R 080 2t bo @t

K.
In the flight simulation, the twist angle is analogous to the “roll”’ angle of an :
e
aircraft or missile. A value of zero is currently used, but other values could be .
used if the roll of the missile during flight was added to the model. . :
2. Determining Which Polygons to Draw E
After the correct viewing transformations have been applied, the ‘.
polygons that comprise the scene must be drawn. Although the IRIS will “clip” :
polygons which lie outside the perspective projection’s view volume, an increase in R
frame update speed can be achieved by not attempting to draw those that -
obviously lie outside. This is discussed further in the following section on :
.
simulator performance. o
The term view—bound is used to describe a north-south oriented é
bounding box around those parts of the scene that are sent to the graphics 4
pipeline. The view-bound is described by the index of the northernmost,
southernmost, easternmost, and westernmost gridsquare to be drawn. It is
'
calculated by extending (if necessary) the line-of-sight vector until it intersects the N
horizontal plane Y = Min_clcv, where Min_elev is the minimum elevation value E
of the terrain. The view—bound is calculated as being 20 gridsquares to the '
north. south. east. and west of this intersection point. If the missile’s X and Z
coordinates are not witnin the calculated iew -hound. *he Hounds are oxtended o :
include them. Figure 6.5 illustrates this construction.

Ve w . B va b g A'a 4t (TR § god pob SN Aot 8N 20

View-bound

South
View-
bou [

to include missile position

Missile Position (MX, MY, MZ)

West

Line of Sight
View-bound

Look-at Position (LX, LY, LZ)

ﬁounds extended

Horizontal Plane: Y = Min_elevation

East View-bound

1)

2)

3)

Line of sight vector is extended down

to intersect the minimum elevation plane.

View bound axtends 20 gridsquares north.

south, east and west of the intersect.:on.

Bound 1s extended, if necessary to
include the missile’s position.

Figure 8.5 Construction of the View-bound

59

LR 8 =«
.

LA

LI

PARAA

»

.
o

s T The U AL

B

[4

"-‘-’

P I

P RS

5

.-\‘.\.'." : .'-.' -

3. Hidden Surface Removal

A final detail that must be taken care of is the removal of hidden
surfaces from the scene. A hidden surface is simply a part of the scene that is
obscured by some object in the foreground, such as a valley that it hidden behind
a large hill. |

The IRIS supports a method in hardware called Z-Buffering. In this
method, a buffer is maintained for each pixel position on the monitor and
contains the ‘‘depth’ (transformed Z coordinate) of the part of the scene that
generated that pixel. Before drawing is started, the buffer is initialized to the
maximum depth value (the value of the far clipping plane) for each pixel position.
Before each new pixel is drawn, its depth is compared to the depth stored in the
buffer. If its depth is greater than the stored depth it is not drawn. If it is less
than the stored depth, it is drawn and its depth value replaces the value in the
buffer. This method could not be used in the project for two reasons. First, with
comparisons having to be made on a pixel-by-pixel basis, it slows down the frame
update rate to an unacceptable level. Second, the IRIS does not allow the use of
Z-buffering and double-buffering at the same time. Double-buffering is necessary
to implement the animation of the scenes.

Anorher common meriiod St adden surtace removai s che osainrer .
algorithm. It derives its name from the way a painter would draw a scene on
canvas, drawing in all the background and then adding foreground objects by

painting over the background objects they obscure. Implementing this algorithm

60

2o da® R Vg et Va0 €00 0o Ba0 S0 K0 €08 $00 .8 40 Nagtag’

.....
.......

o e

"k N

-

KA AR TR) RN ITL WY 4 WL WL W W WS WU WU Y PR WA TUR R R R A U A R oy Ty Y 4% 8% £% 3% @' g% aV2 ah, 4¥

in computer graphics means drawing the scene in an ordered fashion, such that

the most distant objects from the viewer are drawn first and those closest to the ,

viewer are drawn last. Since the gridsquares comprising the terrain form well

defined rows and columns, an efficient implementation of this algorithm is

possible. That implementation is described below.

! The implementation can be thought of on a conceptual level as follows. ,

I A line, perpendicular to the line-of-sight, is constructed to serve as a pseudo-
scanline. Gridsquares within the view-bound are drawn as they are intersected by .

this scanline. The scanline is first positioned along the line-of-si jht vector so that

it intersects the far corner gridsquare of the view-bound. After all the gridsquares
along the scanline have been drawn, it is moved one gridsquare closer to the view
position, along the line-of-sight vector, and the process is repeated. This
continues until all the gridsquares within the view-bound have been drawn.
Figure 6.6 illustrates this process.

From Figure 6.6, notice that each scanline passes through three
gridsquares in a column, shifts over a column, then passes through three
gridsquares in the next column. The number of gridsquares drawn in a column
for row) before advancing to the next column for row) can be determined bv
ompnting Che cangent ot Che seaniine’s direction. f che nagnitude of che
tangent is greater than 1.0, scanlines will run and shift along columns of :
gridsquares If it is less than 10, scanlines will run and shift along rows of .

gridsquares. The term threshold is used in the remainder of the algorithm to

61

-

o |

k!
A
.

Te NI T TN T NN T T
W J!‘E.!' SRS, D‘\EA‘.:.‘(&.J

of
Sight

Last

Sca.n- A N \ \ A

Line \ ‘
\ \

P

S

Y

The Scanlines

First
Scanline

10| 4

3120

11

5

-_H

3221

14 6

33

22

13

34

14

35

)

15

25

37

26

38

27

39

40

Drawing Order of the Gridsquares From

the First 5 Scanlines

Figure 6.6 The Scanline Hidden Surface Algorithm

62

-

VR
N

-

SR ININY
TP ,s.i‘n.

L e

describe the number of gridsquares drawn before a shift of column (or row) takes

place. It is computed as

: ! . '
nearcst_mtegerl tan(Dir

, if Itan(Dir =1.0

stn) .scan)

threshold = (6.25)
(tan(Dir,can))'l~ , if |tan(Dir,, .)| <1.0

nearest integer acan)

The pseudocode for implementing the algorithm is shown in Figure 6.7.

The case shown is for a line-of-sight direction that is in the first octant (between

0 and — radians). The algorithm for the other seven octants is similar, the
4

difference being the direction the scan line advances, and the direction it shifts
when the threshold is reached. Table 6.1 summarizes these parameters for all
eight octants.

TABLE 6.1 VARYING PARAMETERS FOR THE SCANLINE ALGORITHM
BASED ON THE OCTANT OF THE LOOK DIRECTION

Octant Look Directions || Scan Line Advances When Threshold is Reached
From To From To
1 0 I1/4 North South Shift one column East
2 /4 In/2 East West Shift one row North
3 In/2 3I1/2 West East Shift one row North
4 3m/2 I North South Shift one column West
5 4 511/4 South North Shift one column West
) SIT 4 I 2 West, Cast 3 shift one row south
T JIT.2 PR East West ! Shift one row South
8 /4 2N South North Shift one column East

Notice the step draw gridsquarez indez/[z indez] in the algorithm.

Since a gridsquare contains terrain, and can also contain roads and targets, an

63

. __-:\.

- -
. ’
et et ..‘L.&i'k.gh *

LG N o ™ ;I‘J"-"-" *
AT R N N

0

T . =] A ~ - ' 4 g T \ U U 4 g “o0g 4 Vet ! r.w.t’.t! + U A.QA'\ - U AN (X ™ N Y R X N ~|- \‘a %0 0'g.4'2 0" [}

Calculate the threshold value

count — 0
1,
' start x_index < west_view_bound
) start z_index « north_view bound

While start z_index > south view bound do
i_index — start_z_index
x_index « start x_index

A
while (x_index < east_view bound) and (z_index 2 south view bound) do
¢ { traverse a scanline }
y draw gridsquare|z index|[x index|
] z_tndex — z _index - I {move it one gridsquare south}
count « count + 1
if count = threshold then
‘ «_index — x_index + 1 {move it one gridsquare east}
~ count +~ 0 { reset count}
endif
]
¥ end while
{move on to next scanline: start it one gridsquare to the west}
start x < start x-1
: count + 0
‘ if (start x < west_view bound) then
start x « west view bound
s start z « start_z - threshold
endif
endwhile
i : - . : .
t Figure 6.7 Pseudocode for the First Octant Scanline Algorithm

ordering of these parts of the gridsquare must also take place. The two triangles

forming the terrain are drawn first, next any roads are drawn, and finally any)

e Nt e MR
‘.’ ‘,\J_ ('.-"J' A "

- N B)
LA LAY AN AL OO0

X tatatat. gt ety

U UR LA URT LT LA AW LI UL LN U LT L U U T LY OR ST LU U LS LT U UMY U USROS PO e N ey

targets are drawn. The details of integrating the targets and roads into the scene
are covered in the following two chapters.

The resulting scene is shown in Figure 6.8. a photograph of the IRIS
monitor during the flight simulation. Note how the hidden surface removal allows
the foreground hills to naturally obscure the valleys behind them. Also note the

effect of the lighting model and texturing described in Chapter V.

E. SIMULATOR PERFORMANCE

Data collected while running the simulator shows that the average frame
update rate is approximately four frames per second. The Unix profile utility
was used to determine which procedures accounted for the majority of the

simulator's time usage. Table 6.2 shows the results for the top four routines.

TABLE 6.2 FOG-M ROUTINES USING THE MOST CPU TIME

% CPU Time | Routine Name Purpose
16.9 polf Iris graphics library filled polygon routine.

13.7 display terrain | Output 3-D scene with hidden surface removal.

8.7 malloc C language built in routine for dynamic
memory allocation.

4.5 gl findhash Low level Iris graphics library routine, used for
the hash tables associated with graphical
objects (Not user accessible).

The -op two entries in Table 5.2 are directly .nvoived with outputting poivgons ro
build the terrain image. It is therefore reasonable to believe that the frame

update rate depends heavily on the number of polygons that are passed to the

geometry engines.

SXAGGE

Y =
PR

xSy 3

S

R RS,

{._ .\ .l. .l.,-' . =

Y ': ': "':'.-\--" ,5 IS 1:'!‘\’5' \' .'. ." N

" " (‘
o ‘s

'.'/‘ /2

.

.'r".

o
R
Ao

<o, l-": L.

'

e
v 3

Y ."../ ."'- 2

AT

AP
oo

"l‘
N

., LS

Il el _hia ity reaitas MAANAAMS SOMNOES IANOEANY ARl KRGS LSOO

uorjeinwlg AY3i [9Yy JO owuvdy YV 8y sanudiy

\-‘ ‘-'\J'

"t

w’-(..I-‘..,."-."-"'-I.
3 € W Ty

TR TP WP T VIV Wy

Figure 6.9 is a scatterplot showing the frame update speed achieved when
various numbers of polygons were atternpted to be drawn. The data was
generated by reading the system clock before each frame update and calculating
the number of polygons based on the view—-bound that was used during that
frame. The graph clearly shows the effect the view-bound has on the frame
update rate. The next two entries, malloc and gl findhash, are traceable to the
making and deleting of the graphical objects that store the targets (this process is
explained in Chapter VII). As an experiment, the construction and deletion of
the targets’ objects was removed from the simulation and the targets were simply
displayed in stationary positions. The profile results from the simulator run in
this configuration is shown in Table 6.3. Figure 6.10 is another scatterplot,
generated in the same manner as Figure 6.9, except that the simulator was run in
the stationary target configuration. Eliminating the dynamic memory
management associated with the target’s graphical objects increased the average
frame update rate from 2.99 to 3.90 frames per second. Also, the maximum frame
update rate achieved doubled from 7.5 to 15.0 frames per second. This would
suggest that an area for further research is an improved algorithm for target
updating that does not involve dynamically allocating memory.
et Thar TLe Tame 1bedate tate s ~o aeavily dependent on che aumoer of
polygons passed to the geometry engine suggests that a more sophisticated
method of determining the view-bound may pay off in increased performance.

For example. the present method does not take into account the field of view

67

. - D - - - - _ . - FIP PO .t - At et -‘.~__- - '_" ~._~
NG - I\'.F.f g SO < T A ,_l'x_(-_ <

».".. '.‘-"-‘-n'. n...'!
YRR VORISR

e

P AR

PN \

BuoBPA (0o jo dequuy BA vy olepd)) Aejdsi(@g 9 @21nB1y
ANIONA AYLANOED dHL Ol dd4SSYd SNODA'IOd #
000.L 0009 000S 1800,0) 4 000t 0002 0001
- | | L]] | 1]] | | | |
lo . . . - ﬁ
L «® . o eoe®
AT I ol
ey - — 2
“o”uucno” 0” i Ooo- f— ¢
L oo L] . * & o 8
L[] LA R N N J L] LN 4 apes o .. - 6
coe vse o me oo =P
o U S ® o onomm
e [Had
- SUNVHA
662 :puooas gad sowe.rj aBeiaAy =9
2€°1082 :pessed suoBL1od jo # eBrioay -
— L
— 8

Pnal ol ool

s e sa a o
A A A T R Gt

:{"-';" = . ".:

o’

el
als

Ly

Cet
S PRPREYS.

» ..
':LfL'_k st

nag

angle It should be possible to bound the line-of-sight intersection point with less

than twenty grid squares when the fieid of view angle is small However. any new
algorithm deveioped ran no' be so sophisticated that 1t negates the performance

iIncrease by requiring ntensive computations

TABLE 683 FOG-M ROUTINES USING THE MOST ¢ PU TIME
(WITH ~TATIONARY TARGET~.

-

TRy DT T 3 N .
"% CPU Time Routine Name Purpose
b e o mga—eSairer's B e — . *“,*,,;-w«,-;',r-_' - A—p,~-~§".——u_---..-_~.e-.-r- B I e |
239 poif Irie graphics library Glled poivgon routine
.".‘ ¥ M A X Tt g, e Lt Voarere o T Ll e T TR e Tty Ve
5 coor Iris graphies hihrary roatine which «ets the
current drawing coior
) T L LY Lo fe P srpmaaar o et e e e T
reot e) OB R S T TR e fhimal
ML LLE promewa aned Chierefors O medt a4l
ai. 1 "he disp.ay oop
[} + -
40 POy Irin graphies Ghrar cnh ed iy ger routine

Veed liring the disjiac oo o ot e the

PORC WIS

Ay

VAN SO

YA SAS

SASSASSN

) --
: »
- »
~- »
3 4
o A “
M speB8ae] f.1euolqwqlg Yily suodLjog jo 1aquny sA 1wy 21wpd)) Aw(dei 1 0 aanBry
: ANIDNE AMLIANOYD FHL 0L AASSYd SNOODAIOY #
: 000 009 000S 200 ¢ 000€ 0007, 0001 . .
E t‘tt"‘[b ke ‘T Y
- ki X I e e, -
: .do.unuwwﬂu‘. 2 === ..
: ' -
. -_...%_.Ef.: .
y ———eeee — ¢ X
: RN o :

cess o g K
7 ceom - — W :
. UNOOYAS
U Wdd
SANYY 4
08 £ 'pPuovas i1ad seww:; aBwioy
QZ 6FLZ :pessud suoBLjod jo § aPriaay
[‘ R _

K
v
" VII. TARGET INTEGRATION
3
)
’l
% A. GENERAL
" The primary targets of a FOG-M missile are tanks, helicopters, and
W,
)
-, reinforced ground installations. The simulator is designed to handle many types
-

of targets, including various tanks and helicopters, but only a single type of tank
D‘
» is currently implemented. The prototype <imulator provides an Ethernet
o,
'l
) networking capability to allow the input of actual target positions in real-time.
X This simulates the input that would be received by a production simulator during
Y
&3
N computerized mock combat field experiments. In its networking mode. the
i

simulator receives targel position and orientation data from an interactive
Q
. program running on a different IRIS workstation. The target program. still in
K. testing and not detailed in this study, provides the capability to dynamically
‘. insert and delete targets at any location, and to modify their speed and direction.
o
o . .
- In the simulator’s stand-alone mode, there are ten tanks defined by default that
Ca

criss-cross the ten kilometer square terrain area. These tank targets move at a
¢,
A Glistant e Or Sfteen inots amed ceverse hireecoon o vhen chev o ceaeh ope o1 o he
.v edyes ol e el gnoinueter terraill square. No automated path pianning s
L4 . . .
v presently performed in either mode. so the tanks blithely traverse even the
13
B ®
3
) 71
w
o
o
R, »
L.

Al A T T ’."’.."\I.."..t"-‘\4'\""{..1"\.1',;—'«,:-“;4.;1‘\'(.;f.;.";.r

USRI WO WU U U WL IR WU WU W WU W TSR PR R T TR A O O R o oo oo

P

,,<
-
-

steepest terrain. The default targets minimize this problem by traveling the length

¢
5
0, of the valleys for the most part.
b
. B. TARGET CREATION
K)
R T . .
it Target creation is simplified through the use of graphical objects. The actual
L]
N image of a tank is defined initially by the tedious specification of the three
-
. coordinates of each vertex of each of the polygons that comprise the tank (Figure
y
¥

7.1). Using objects, this need only be done once, placed in an object. and then
v
»
S referred *o by a single name within each *arget object. Thus each ‘*arget i

described by an object (the tank object) within another object (the target object).
: In addition *o the rank ohject. the target object also rontains *he *ranstormarion
: commands that move the tank from the origin to its location on the terrain (a

translation), and face it in the direction it is moving (a rotation).

1. The System Matrix
The rotation and translation commands work by modifving the system

N matriz. The system matrix is a global data structure that is used to transform
; coordinates from the three-dimensional world space into the two-dimensional
[}

screen space. Each transformation can be performed as a series of computations
| o nanvidaar XV ana Jooordinates. Hun e Cransiormations oan osso e
N accomplished with a single matrix multiplication The RIS has a matnx
¢
X multiplier built into its hardware, so matrix operations are very efficient At least
X three transformations must be applied to every endpoint on the tank: a coordinate
]
. 72
l'\;"-"-"’:.‘('.‘.,-.;,?';.',*.' o e A N N e e SN

()

w e w

o

.
Q

‘o

B A P N A N N NN N N A N D N N

scaling. a translation, and a rotation. Rather than do three separate wmatrix
multiplications. the three transformation matrices can be combined. so that all of
the transformations are accomphished in a single matrnix multiplication. The
matrices are combined by appiving eacn of rhetn to the svstem matrix Each
point is now completely transformed through a single multiplication with the
systern matrix When a new transtorimation is needea. tne systetn matrix must be
reset by applying the nverses of the old transformations. or by copying the
oniginal contents back into the systern matrnix - Two comman s are provided with
the (RIS 1o support the atrer tnethod Pustumalnr fakes a copy ol the systetn
matnix’'s carrent contents and saves 0 an the aystern stack After the
transforinAations Lasve heel appoed g Che o lrawong o o ised T hose
transfort. 1tions has bheen completed, the <ystenn matnix s resert by calling

popmatriz which retnieves the copy placed on the stack by pashmateo and

restores the contents of the svatemn natrix to the presionshy saved valaes

P Target Tranusformations
The tank o~ mitaly defined with o0 center nterior at the arigan
comrdinates 00 000 Whije ' s nor mportant bl pennt o onoor 1 the CALK s
Slaced g e ey L A I I O R T K LT S PRV Y R PR

direction of the tank i~ sogratoant iy o the et that or arogst e kneea

arder to calcadate the appropriate coration o e hesn o spe tredd bead ot The

tank an OGN faces ro th r;gh' 7t raddiaos roathernate al oy oor o o prass

T4

N
.

4

o C 9 ¥ e W sy

5444545 %

. -

".\'

heading of ninety degrees) initially. During target creation, dummy (zero valued)
rotation and translation commands are placed in the target object, to be updated
for displavy by a l'ater editing of the obiect Since all rotation and translation
commands affect the system matrix (as previously described) and are cumulative,
each target object must apply its transformations, be drawn, and then remove
those transformations so that latter drawing commands are not distorted. Within
each target cbject. the contents of the systemn matrix are saved with a pushmatrix
call. the appropnate rotation and translation command- are applied to the <vstem
matrix (in reverse order. due to the nature of matrix multiplication). the target is
trawn Sy ocailng “he rank obect.and then popmatrixas called 1o reset the <votem

matr:x

O ANIMATION

Anunation of the targets s accomplished using the objects and
transformations described above The targets must be moved slightly before
being redrawn in the next frame This requires new { X. Y. Z) coordinates, from the
network or from local calculations Then a global data structure 1s updated to
indicate when i the display algorithim the rarget should be drawn. and the
R R Y AT e T e e Fov e e e YTl ates
As each frame s displayed, targets appear in shghtly chifted positions. and give

the appearance of animated motion

. * e
.
-—"

Sy

LAY

LI
A%“

A
. AR

0

y ., -, -._ '., '.. “ -

£ L4

The calculation of new coordinates requires the maintenance of position,
speed, and direction data for each target. The total distance traveled between
screen updates is the product of the elapsed time (obtaired from the TRIS's real-
time clock) and the target’'s speed, scaled so the units match. In the networking
version of the simulator this is done remotely: in the stand-alone version
everything must be maintained locally. The target’s direction of travel is stored
in radians, and is measured using the standard mathematical convention as
opposed to a compass heading (Figure 7.2). This allows calculation of the the

appropriate east/west (A.X) and north/south (AZ) movement as follows:

X cos{directiony " ime C iperd Cscaie “aetor Tl

AZ - sin(direction) “time “speed * acale factor (7.2)

The new target (.X.Z) position is the sum of the old position and the offsets
(3X.AZ) from Equations 7.1 and 7.2. Since all of the current targets are tanks,
their Y coordinates (altitude} should be taken from the height of the terrain
underneath the tank. This is obtained from the DTED interpolation routine

gnd level, which is called with the new (X.Z) coordinates as input parameters.

D DISPLAY

LHDTer Cove oD e CNPoric 1o of e strietme b e fana il e
use of the painter’s algorithm to solve the polygon ordering problem without
resorting to slower or more complicated schemes like Z-buffering or Binary Space

Partitioning [Ref 13]. Targets cannot merely be drawn after the terrain because

76

".'.'A..

o
's u“.t

o

l £

L

an)

/2
::::::::::> -

3T/2

Mathematical Convention

{(Radians)

0
(360)

Compass Convention

(Degrees)

Figure 7.2 Direction Conventions

W YA S AN

W7

\.’,\-

N

h,l Mt

O N A AR S R N

FXX A

.

BRI,

R PR

IR T N I

W
' V8%

- q'..d' w®

of the same ordering problem. Otherwise, targets appear in front of everything,
and it is impossible to simulate a target moving out of sight into the distance or
behind some terrain feature. The implementation of the target display algorithm
is greatly facilitated by the use of objects. Objects allow the grouping of drawing
commands into a subroutine-like package. which can be edited (effectively
allowing parameterization) and then displayed with a single command. A two-
dimensional array of object ‘names’ (the object - name - array) is initialized so
each element of the array represents the target object to be drawn in the one
hundred meter square of terrain with the same indices. Since the C programming
langiage recognizes the value integer zero as FALSE. and anyvthing else as TRUE.
this array does doubie duty as an array of booieans indicating the presence or
absence of a target object in a particular one hundred meter grid square (No
target objects are given the ‘'‘name’’ zero. which would indicate FALSE.) A list of
targets is used to reset this array to all zeroes before each screen update (1.e only
those elements that contained targets need to be zeroed) so maintenance overhead
of the array is minimized. The new target positions are received over the
network. or are calculated. based on each target’s position, speed. and direction.
olus the elapsed reai-time ance the ‘ass apdate The adorooneate ohecs natne

ITTAY idices are e hated TROITL TIe % AT oS O alal e 0 et e

array is updated. If this is the first (or only) target in the designated one hundred
meter grid square. the update is accomplished by making a new object, and

setting the object-name-array element equal to the new object’s integer “name

78

PN

NN

T

PR ARG

[TE LN

»

If the array shows that some other target is already in that particular piece of
terrain (i.e. the object-name-array element is non-zero). the current target is just
added to the object specified by the “name’ in the arrav. Once this has been
done for each target, this array is available for the dt’sp.’ayfter-ram module.
Display terrain checks the array as it draws each square of the terrain to see if
any targets should be drawn. If so. it calls the indicated target object just after it
has drawn the one hundred meter grid square on which the target(s) rests. Note
that this causes the targetis) to be drawn at the correct tirme for the painter s
algorithin The correct place to draw the target <till must be specified by the
rransformanion commands within “he targer ooee

In some cases 1t s necessary to draw a targe’ mmore THan ohce argets "hac
straddie a one hundred meter grid square boundany tust be draw: o rop of bharh
cor possihly al four grid squares inoorder co avord beng partia’iv abscared
whichever goid square 1~ drawe «t The target st b drawn cnediaten after

*he grod squame on which 1 rests o ensume that the Sarge wro e ahaoimeel wies

1t shouid e by cerrain drawn o the foregeonind Sce the Al LAt e
hovndary nrersection s olves severa, TTIGe Ittt s AL LR WY

e . -~ e Noee . - + . . 0
enougt too s hoamdary that thHe most sty a0t e R < -
houndary ses canks 4 ant B b e D0 e e N i v

the adjoming cnid sqaare S

.
|
Grid Square with]
(X.2) offeet X
(-1,-1) (0. -1) 1 <1, 1y (
*_ L xb't
*connma® i '

'sxbl'—T *MIDDLE® of gr:id square
St e Y @ T anrs

Re’earer - ¢

Tans

1] - .

e - - o

a

L5 W YN S

- . PR . . W e
R S S N N Y T T L SR T I

The one hundred meter grid square is essentially divided into three areas:
the middle. its sides. and its corners. In the middle, the tank cannot overlap any
other g='d <anuare On the sides. the tank may overlap one adjoining grid square.

and in the corners, the tank may overlap three adjoining grid squares. The

reference point on the tank (the position the X,Y, and Z coordinates refer to) is

located at the very center of the tank. The tank is thirty feet long, so the most
distant parts of the tank are within a fifteen foot radius of the tank’s reference
point The lines that mark the side and corner areas are thus fifteen feet inside the
borders of the grid square. Once the tank’s reference point is within these areas,

~ potentiaily obsenred by the later drawing of the adjacent grid square(s). It
uynt not he obscured if it is paralleling a side. for example, but the overhead of
drawing it twice {or even four times) when it does not need to be is smaller than
the overhead of the calculations to determine if the position and direction of the
tank have 1t actually crossing one or more edges.

The repeated drawing is accomplished by adding a “‘new” target to the array
of rarget objects. The "new™ target object is drawn at the exact same location in
the three-dimensional terrain. but it is drawn after a different one hundred meter

Wil 1ave Jdifferent rarget object arrav indices. and he in a
CTLoven Thonugh o che wo o or jour) targets Jrawn will overwrite

eact other and produce a single image.

VIII. CULTURAL FEATURE INTEGRATION
The addition of cultural features add much to the realism of the displayed _ "'
scene. They also provide valuable landmarks from which a person observing the

scene can geographically orient himself. This chapter covers the addition of one
type of cultural feature, roads, to the FOG-M simulation. Roads were chosen as ‘
+he first feature to add because of the special problems associated with their é
implementation, the ease of extracting their locations from contour maps, and the :
visual impact added to all parts of the scene due to their wide-ranging locations. :
Three areas will be discussed: (1) the format of the external data file that contains _
o

the road’s locations, (2) the process of mapping the roads onto the existing
terrain, and (3) the integration of the roads into the terrain display wop. ‘ ~
A. EXTERNAL DATA FILE FORMAT - :

The data being used in the simulation was obtained by manually extracting

the roads’ positions from a DMA Topographic Center (DMATC) contour map of 2
+he arera. Although this data is available in the DMA’s Digital Feature Analysis \
0 DFAD die. the software necessary ro access it was not available. The road :'

b
iata file’~ format is such that the DFAD data can be easily used when the access ~\
R

wdraare 1= developed N
82 .\

B,

e g o e . - PR T I R N D IR

-..\

\\\\\

Figure 8.1 shows a segment of the file containing data for two roads along
with a diagram showing their locations within the terrain. Each road entry 1s
composed of three parts. The first part is the width of the road in feet. Next is
an integer N, where .V is the number of data points used to digitize the road.
Third is a set N coordinate pairs, where each pair represents the location of a
digitized point along the road’s centerline. The first coordinate of the pair is the
east-west location of the point. It is measured in feet from the western terrain
boundary. The second coordinate of the pair is the north-south location of the
point, measured in feet from the southern terrain boundary. All the data is stored
as ASCII text, which facilitates editing of the data using any text editor. The
DFAD data file also contains road width information (in meters) and stores roads
as a series of digitized points. The major difference is that DFAD’s points are
stored as latitudes and longitudes, which need to be converted before they can be

used in the simulation. [Ref. 9]

B. CONSTRUCTION OF THE ROAD POLYGONS

Knowing the width and centerline locations for the road, the next step is to
construct the polygons which represent it. Although, this seems like a simple
procedure. it is complicated by the fact that rne road must foilow rhe sise and fail
of the terrain. Also, in order for hidden surface elimination to occur, the road
must be divided at the gridsquare boundaries so that each piece can be drawn

along with its corresponding gridsquare. The result is that the road must be

83

“ytp0 e . » A APEPA TR LI, WAL T S L SR T R I M S G PR g
1A AN AN DO NN AN BRGNP NS N SOOI

35 . Ou— Width of Road 1 (feet)
8 # of Data Points
925.0 1100.0
1100.0 2400.0
2150.0 2950.0 .
2510.0 4100.0 8 Data Points
2255.0 4700 O @——— 'easured ia Feev from
1670.0 4850.0 Western and Southern
1300.0 5250.0 Terrain Boundaries)
1490.0 7150.0 0
50.0 .- Width of Road 2
3 - # of Data Points
9300.0 4150.0 ———
5800.0 2100.0
File Format ﬂj
7000 A
FEET Corresponding .
7 Roads
5000 =
L N 4
3000 -
Road 2

1000

1 A Il 1 1 1 1 1 4

1 J | 1 ! ! | 1 |

1000 3000 5000 7000 3000
FEET
b Western Terrain Boundary
Southern Terrain Boundary
Figure 8.1 External Data File Format

P 210 et
EAGI s Xt

R A

')
.

- -
Ful pr 0

LIA

g

>

~r

>rd

rATEE

LA ad A d Ad At A A 4l Al

broken into many planar polygons, where each polygon is a portion of the road
that overlays one of the terrain triangles within a gridsquare. Figure 8.2
illustrates this division and defines some of the terms used in the description that
follows. Tile high level pseudocode for processing the road data and constructing
the planar polygons is shown in Figure 8.3. As the pseudocode shows, each road

is processed a segment at a time. For each segment

- The end points of the segment’s left and right side are calculated. A look-
ahead to the next road segment is done, allowing the ends of adjacent
segments to be calculated so that they meet cleanly.

- A bounding box, which contains all the gridsquares intersected by the
segment, is constructed.

Next, for each gridsquare in the bounding box, the road segment is divided into

the road-polygons at the gridtriangle boundaries. Note that all the vertices of the

road-polygons fall into one of five types:

The intersection of a segment’s left side with the side of a gridtriangle.

The intersection of a segment’s right side with the side of a gridtriangle.

A gridsquare’s cornerpoint that is contained within the road segment.
An endpoint of the left side of the road.
An endpoint of the right side of the road.

The road polygon is constructed by finding all the above vertices which exist, and
ordering them counterclockwise. The counterclockwise ordering is necessary for
backface polygon removai to take place. The intersections only derine the X and
Z coordinates or the vertices. The Y (elevation) coordinate is found by
interpolating between the terrain’s elevation at the three corners of the

corresponding gridtriangle.

85

-

o

;
\
_.RIGHT SIDE ™
o BOPNDING BOX ™.
. ... _FOR_ROAD SEGMENT ™,

Figure 8.2 Constructing the Road Polygons

86

- - -

AT N N AN DTN

» o ¥,

i

s = e =

e ey 2

oA

While more data in the road data file do

read width of road

read number of points

read segment’s start coordinate pair (seq start)
read segment’s end coordinate pair (seg_~nd)

for i = 3 to number of points + 1 do
if i < number_of points then
read the next segment’s end coordinate pair {next_seg end)
else
next seg_end x «— seg end x
next:seg_end_s « seg end 3
endif

calculate the start and end points for the segment’s left and right side
(left _start. left end, right start. right end)

calculate a bounding box around the road segment
for each gridsquare within the bounding box do

Construct the polygon which overlays the gridsquare’s northern triangle
Add the polygon to the road object associated with this gridsquare

Construct the polygon which overlays the gridsquare’s southern triangle

b Add the polygon to the road object associated with this gridsquare
" right_start « right_end
<
3 endwhile
- Figure 8.3 Pseudocode for Constructing Road Polygons
¢
:-‘
C. INTERNAL ROAD-POLYGON STORAGE
N A global, two-dimensional array of graphicalobjects, named road, is used to
)
]
K store the road polygons. Each entry in the array corresponds to the pieces of road
.l
that lie within a gridsquare. An object is created when the first road-polygon is
P constructed for a gridsquare, with subsequent road-polygons being inserted into
)
- the already existing object. Since the roads are static in nature, the use of objects

.:I."l . 0y 'h"l-

P

\f

- - *“a’ . e W D I T P LRI T S ettt
PO ll\rl .' EREAC A LR ‘e X NG o _.f_‘f__.- A .

87

)

T A
", A

does not present the dynamic memory allocation problems associated with their
use in storing targets (see the Simulator Performance Section of Chapter VI). As
each gridsquare of the terrain is drawn, a check is made to see if a road object
exists for that square. If one does exist, the associated road-polygons are drawn
immediately after the terrain. This insures that hidden surface elimination occurs
for the roads as well as the terrain. A photograph of terrain which includes some

sections of roads can be seen in Chapter VII, Figure 7.1).

88

.0y 5N e

ys

&

W

= SR I

LAAANRS

IX. FOG-M SIMULATOR USER’S GUIDE

L

:

A. OVERVIEW A
{

This section of the report is a user’s guide to running the FOG-M simulator. N,

“~

The simulator was built to be largely self documenting. Instructions are clearly ~
displayed on the screen, including diagrams which serve as a reminder of the '
functions of the various controls. A knowledge of the logon procedure for the
IRIS workstation and the basic commands of the UNIX operating system is
(
assumed.) Y,
\

N

B. STARTING THE SIMULATION i
To start the simulation, logon to the IRIS workstation and use the UNIX cd i

f
command to change to the directory containing the simulation. Currently the]
}

simulation is in the directory /work/terrain. Therefore issue the command: .
- .I.

cd /work/terrain

| 2
Next, start execution of the simulation by typing the command fogm. A)
welcome screen will appear on the display as shown in Figure 9.1. Pressing all 3
three of the mouse buttons simuitaneously will stop the program and return
3

to the UNIX command level. This option of pressing all three buttons to exit is
N

Y

available at any time during the execution of the program. Pressing the middle o
1Y
o~
»

mouse button advances the display to the next screen of instructions. When the

89 {

)

» W

H

L]

-,

o

.

ant KR Y, PP I R I ~ et e st N e A P LI R AT N P U NN AL 4
DWW AW \\\ TS .‘ ! " \' ,. ,‘,-.._. R AN AR AN _',' o T

U29I0G SWOOTay 9Y[, 1'6 2an3tyg

"1IX3 01 SNOLLNE ISNON € TR SS3ad 80

* " NIINOD 01 NOLING 35N0H 300IM SS3dd

NOILYWWIS
(H~904)
JUSSIN 0NIND ATWIILI0-4381 4
HL 01

E I RRE)]

s

SNl a4 R AL S N s -...r.;‘.{a- ..-cfnr;j- N

N N AT N SN AL N

..

EACIC AT NN

)

‘(‘f

v
*

.
WG

y
AN AN

user has advanced through the welcome screen and the two instruction screens A

(Figures 9.2 and 9.3) he is presented with a display showing a two-dimensional

contour map. This is the prelaunch phase of the simulation.

e §

C. PRELAUNCH CONTROLS

The purpose of the prelaunch phase is to allow the user to designate a missile

v
launch position and a suspected target location position. In effect, the user *-
describes an initial flight path for the missile. 1

»

1. The Prelaunch Display '

The prelaunch display is divided into three sections as shown in Figure y
9.4. The upper right corner of the display contains an instruction box which
summarizes the functions of the mouse buttons for this phase. The lower right ’
corner contains a prelaunch statistics box. The meanings of the various items i
within the statistics box are explained below. The majority of the display is ;:
occupied by a two-dimensional contour map. Each of the square grids on the
contour map represents a one square kilometer area. The colors on the map can :
be interpreted as follows. Green areas indicate terrain that is covered with "

.
vegetation that is greater than one meter high. Brown areas indicate terrain 4
where the vegetation is less than one meter high. Within each or the color
categories, the elevation of the terrain is indicated by the intensity of the color, j
with the brighter colors representing the higher elevations. E

>

91 .

- v A) NN RN N, ¥,
P\-. Dl NN R - .r---i.tn-!-:n\n.\ﬁ., NI P a

LA AN AADAA MR | T Ao LT RN ERSE AU HaiY Jhiahailet ARSNOrroy

P I
'\- ’

.

U89JIOg UOT}ONIRSUT 38a14 oYL Z°'6 oandTg

.

iI
4
N
n. -
Y
b
.o(
g
‘y
P
>

“1IX3 0L SNOLING 3ISNOW E TR SS3Id A0
“INNIINOD 0L NOLLNE 3SNOW 3N00IK SS3dd

“AS04501 SIIUNIQN00D QIFT (HIN) J0LYIAI ISAINSNUAL WSAININD
Al GILUNTISIO NOII3IA A3LM0TIN 81 U SI U3 1531 I14103dS ML

“ALINIDIA ONY YINNO4IWI
L1939917 A3INNH 14 ST NOTIYWWIS LHIINA SIHL 304 Y3 TBAMNID ML

*ONNOAT 3H1 NG 30SNOT
S.301YA340 3H1 WONJ N3IS SY NIVSIAL FHL 40 MIIA MOONIM-3H1-1N0
ONY HINNYT FTISSIH 031V NMIS Y SI0INA0Sd HOAI0dd H-204 HL

R
-\-‘\I
B 2l

e R RIS
YRSASESLCEN O

U9e.IDG UOTAONISUT pucoag aYy] £'6 o3ty

“LIX3 0 SNOL1INA ISNON € TN SS3dd 80
 ISUHd HINMW - 34d OINI 3A0W 01 NOL11NB ISNOW 3100IH SS3ad

AR A AT N

. .:\.

A
-

“(HI1¥ON 3NG S3IND 9 $SIFAII0 NI

INIGYIH FHSSIW 031NAN0D AYTIISIA TN T3NYd 04IND] SIILSIIVLS

HINMWT JHL ONIOYIH ONY ALID0T3IN INUISNOD U 1Y A4 TTIM JTISSIH

L CHIY 113114 Q31037084 31 SAUWISIA NI 3N8 M1 "NOILYI0)

1FRYL NI XI0) 0 NOLING ISNOM LHIIY SS3d “(SILUNIGN00) aIdD
HIN INREND NITA 01 TINUG 0ALINOD SITLSILVIS HINMYT 01 3343d9)

NOTLYIOT 03N1S0 A0 H0SANT 3A0M “NOTLIYI0T 1331 INT430 0L ° %

"NOILISOd HONMWT NI
A307 01 NOLINE ISNOW 1437 SS33d ~(SIIUNIGAN00D 01D HiN IN33aN]
ML MIIA 01 YINUG WAIINDD SIILSIIULS HONMWT 01 d343d) NOILUIGY
ORIISIA AW A053NI 3A0M “NOILISOd HINWT WILINI 3INI430 0t "E

X
)
o
s
i
s
.-\ 2
o
(-
o
wx

“NOT1YJ07 133301
ONU NOTLISOd HONWT WILINTD ‘W3LSAS T0AINGDI HINNWT 3HL 01 SH3LI
H1Y@ WII1T4) OML 301N0Nd 01 Q34IN033 38 TN J01Ud3d0 ML 2

“G3AYJSIO 38

0S M 1IN SHISTIYLS HINMYY INTAIND ONY SNOILINALSNI HINNY T-38d
ONINIVINGD STINUJG "IDAINDD OML ~30SNOD 30163340 3HL NO Q3AYWISIQ
¥ IN (8504501 HLN) YRM 1531 ML 40 JUH ANDINO] HNOISNMIA-Z
Y ‘SNI938 NOTIYNKHIS W-304 FHI 40 3ISUHD HONWT3Ad L NI °L

NOTLUINITH0 HONWT-38d

GO TR NGY

' ‘.-. B

L)
o~

SN

ferdstiq youmeiard 9y, ¥'6 a3ty

—]
W Gy umap uno h - ‘l ’ -
L

a
Gail M Btse I NISTQ) ! L J
' .
AWK BET CINTQU M '
1089 (AN & .)
Y it GAn) X
rel NGHIY XD b L A . -

“es '
LOESS

el NOTLTSOd HONMY)

LTSI S v - S

P1x 1 01 SNOLINH
Hiner 10 50 jad

N gy
LG VI N

NG 1A] NG - A

2. Selecting the Launch Position

The launch position must be selected first. To select the launch position,
use the mouse to move the red arrow cursor to the desired location on the contour
map. As the cursor is moved, the UTM coordinates of the current cursor location
are shown in the Launch Position field of the statistics box. These coordinates
can be used when a more accurate selection of the launch position is required than
is obtainable from the contour map alone. When the cursor is in the desired
position, press the left mouse button to lock in that position. A blue circle will
appear on the contour map showing the position selected and the workstation will

b

“beep.” confirming the selection. The launch position can be changed any time
before the launching of the missile by simply moving to the new desired location

and pressing the left mouse button.

3. Selecting the Target Position

The target position can only be selected after a launch position has been
set. After the launch position has been selected, moving the cursor over the

contour map produces the following effects:

- The UTM coordinates of the current cursor position are shown in the Targe
Location field of the statistics box.

- A “‘rupber band’ iine is drawn on cle contour ap romn. e g L

]

TO The current cursor !0cation. L AIs LiNe tenresenis qe <o

would take if the current cursor position was <efected as the *arge! v ur

- The direction and length of the flight path represented tv -0 00,
displayed in the statistics box in the Heading and Dictance 0 o0 -0 oo

Once the cursor is at the desired target locatior press o0 might o 0 o0 b

2/3

JUN 87

m
©
m
[
¥
=3
-
(=1
<
&
-
=4
=
-
¥
|
-
w
s
m
¥
Lo

)4
FLIGHT SIMULATION SYSTEMC(U) NAYAL POSTGRADUATE SCHOOL

MONTEREY CR D B SMITH ET AL.

ws Ry

R 2 B ."4-.

., \’.

2

FrEFERE

EEEE

EEFE

)
(8

o

B
=

MICROCOPY RESOLUTION TEST CHARY
NATIONAL BUREAU OF STANDARDS 1963-A

‘.-'.‘W SN
q‘\ﬁ“ \‘ﬁ!. N o “‘ ? ..:1':

.!".\ K ..".v N () "' .o.\. t’\u .o".u 4 .o

,\.ﬁ‘. - ‘&

‘\\\\

NN

e J

NN
..f.,e\a

\.

‘fc

to lock in the position. A red circle will appear on the contour map showing the
selected location and the workstation will ““beep,’’ confirming the selection.

The missile is now ready for launch. The target location can be changed
any time before launch by simply moving the cursor to the desired new location
and pressing the right mouse button.

4. Launching the Missile

Launching can not take place until both a launch and target location
have been selected. If the launch and target locations selected are acceptable, the
missile is “‘launched’ by pressing the middle mouse button.

If this is the initial launch of this execution of the program, a several
(three to four) minute delay will follow during which calculations are done to
construct the upcoming three-dimensional scenes. Again, this delay only occurs
during the first launch of any execution. Subsequent launches proceed with no
delay. During this delay, a countdown will appear in the bottom of the statistics

box. Launch occurs when the countdown reaches zero.

D. IN-FLIGHT CONTROLS

1. The In-Flight Display

After the missile is launched. the display changes to the in-flight display

shown in Figure 9.5. The left side of the display contains:

- A three-dimensional view of the terrain as seen from the missile’s camera.

- A slider bar scale along the bottom edge indicating the camera pan angle.

Yoowara L,

Aerdstq YBTTJ-UL oYL 9'6 onBry

0z - :uEzEmuo

pom ||~
() @) i
® ©

ST041NODD

LY e A B\ VA =l

S
14
400z
1
3 SI9E
WU Y P>
3 ZEVT eZ6Z SV 0
T Y ONIGYM G33dS [

-

4

az-

ANR

Si+

=

- G24

[B

I N T S T SR PR LY
OO L L A A N

A
O

it

DAGSGAN

Wt
1.

_ 5 RPN YR R LY XA R R R AR T R PU YU UL N AR R R RARRA R AR YL I T I YT 00}

A slider bar scale along the left hand edge indicating the camera tilt angle.

A box in the lower left corner containing either the word DESIGNATE or g
REJECT. The word DESIGNATE in this box indicates that the missile is >
not locked on to a target and is waiting for a command to designate one.
{' The wor'1 REJECT indicates that the missile is locked on to a target and is
waiting for a command to reject that target.

-

- Cross hairs used to sight the camera onto a target. 4
The upper right corner of the display contains a scaled copy of the contour map '
¢
seen in the prelaunch phase. The red arrow superimposed on the contour map ‘:
.I
. "
shows the missile’s current position (the tail of the arrow) and its direction of
¢
flight. The red rectangle on the map indicates that area of the terrain that is
'i
currently being shown in the three-dimensional display.)
The middle right section of the display contains four indicators which
o
show the following:
- The speed of the missile in knots. .
- The direction the missile is traveling in degrees. h
- The height of the missile above ground level (AGL) in feet.]
. . . . N
- The height of the missile above mean sea level (MSL) in feet. Y
- A slider bar indicating the zoom setting of the camera in degrees.
The lower right section of the display contains a summary of the functions :
performed by the mouse and dials. These are explained further below. The in- E
flight phase continues until the missile impacts a designated target or all three '.
mouse buttons are pressed simultaneously (to stop the execution of the ,
(]
simulation). K
A
[
\]
"
h
98 P
{-
>
‘A
Y
\ ©

e T ¥ %57 y (T T Pl { Tty e I T P N T P P e L Y S LI Ry
OO L A M M o o why ‘ " R A T L o T, R T T L S, e R R R G Ty LS (S AR "\.‘F

T

P T
T g = e

»

P P

-t -

-
-

-
o

-

.

0,50, 8 1S WIS ST AP I NI N
MOVOG N AN ' o, O,v .

2. Controlling the Camera

The ranges and initial values of the camera’s functions are shown in

Table 9.1. All of the camera’s functions are controlled with the mouse.

- To pan the camera, move the mouse left or right as needed.
- To tilt the camera, move the mouse up or down as needed.
- To zoom in to a tighter field of view, press the left mouse button.

- To zoom out to a wider field of view, press the right mouse button.

3. Controlling the Missile Flight

The missile can be controlled by changing its direction. speed. and
altitude. The ranges and initial values of each of the flight parameters is shown
in Table 9.2. The missile flight parameters are controlled by using the dials on
the IRIS’s button/dial box (see Figure 9.6). Dial zero (lower left) controls the
missile’s direction, dial one (lower right) controls the missile’s altitude, and dial

two (above dial zero) controls the missile’s speed. Refer to the display’s control

TABLE 9.1 CAMERA CONTROL RANGES AND INITIAL VALUES

Control - Range . Initial Value
Maximum Minimum

Pan 25 degrees right | 25 degrees left | O degrees

Tilt 25 degrees down | 15 degrees up 15 degrees down

Zoom 55 degrees 8 degrees 55 degrees

TABLE 9.2 MISSILE CONTROL RANGES AND INITIAL VALUES

— 1

rpre g

Range
Control [nitial Val
ontro Maximum Minimum rutial vafue
Altitude 10,000 MSL 200 AGL 200 AGL
Speed 400 kts 0 kts 200 kts
Direction | 359.9 degrees | O degrees From prelaunch
29

’\f f"’ '\V .-‘ At ol
% 3) -

O
O

S
w
e e

®
®

.
-
o

XY e Y L

p LA

s

Figure 9.6 IRIS Dial Box Fuctions

o)
),'-
’*3

100
-
e
A)
N
'TJ
L
=
\$"

.-..\(.‘\

e
i} -‘.-. ..-

-
L

summary box for a reminder of each dial's purpose and location during flight.

The controls are used as follows:

P TSy

.<

- Direction of flight - Turning dial zero clockwise turns the missile to the
right. Turning it counterclockwise turns it to the left. The missile will move
freely through the 360 degree mark so that, for example, turning the missile
right two degrees from a heading of 359 degrees will produce a heading of
001.

- Altitude - Turning dial one clockwise increases the missile’s altitude up to .
the maximum of 10,000 feet MSL. Turning the dial counterclockwise E
)

- e o

-
e’

decreases the missile’s altitude. The simulator will not allow an altitude to
be selected that is less than 200 feet above ground level.

- Speed - Turning dial two clockwise increases the missile’s speed, while 9
counterclockwise decreases the speed. 5

4. Designating and Rejecting Targets

The middle mouse button is used to designate (lock on to) and reject

4

{release the lock on) targets. When the missile is not locked on to a target the)
word DESIGNATE will appear in the lower left corner of the display. To "
) designate a target, center the target within the cross hairs and press the middle :
mouse button. In order for the missile to lock on, some portion of the target
must be in the center of the cross hairs. If the designation is successful, the i
workstation will ‘““beep” and word REJECT will appear in place of the word !
DESIGNATE on the display. Once a target is designated the missile will
automaticaily adjust irs beading and iititude -o home in on -he selected rarget. .
An explosion is displayed after impact with the target occurs. The user is then .
returned to the prelaunch phase of the simulation to begin another launch. : '

101 o

x

-

A Nt e T A T T A T T A e
4 N, Lo L PO AN .

v

!
.l
lf
A locked on target can be rejected and missile flight control returned to)
¥
4
t! o user by pressing the middle mouse button any time before impact with the)
target occurs. The workstation will respond with a “beep” and the ::
Y
reject/designate box will again show the word DESIGNATE. The missile is now ::
{
U
"
ready to accept the designation of a new target. g
2
o
N
N
3
-'.
:.
A
!
;‘
hl
"
e
o
k
.
t
N
uJ
102 ‘.
'
A
g
¢
.
e A N PR i

I TR 7 I S TS A LR A LS R AN T W K] VoAV 4 A2 d'a h'a A%a At A% Yot v

- - -
-

X. CONCLUSIONS AND RECOMMENDATIONS

A. LIMITATIONS

There are several limitations to the flight simulator presented in this study.
First, a trade-off had to be made between resolution and frame update (display)
speed. Even though data was available at a resolution of twelve and one-half X
meters, the simulator uses one hundred meter resolution in order to achieve an

acceptable frame update rate.

Sceond, the simulator’s flight is confined to a ten kilometer square area. Any
ten kilometer square area of the DTED file can be used during a run of the
simulation, but the simulator must be exited before switching to a new area. This
limitation is not too restrictive for the current range of the FOG-M, but may be ‘
inadequate if the range of the missile is increased as planned.

Third, road data is available in a format usable by the simulator for only one

10 kilometer square area. Since access routines were not developed for the DFAD N
~

data file, roads must be digitized by hand. B

N

Fourth. the simulator does not model any of rhe missile’s light dynamics. As N
stated eariler, this limitation was imposed oniy because of development time >

constraints. It is felt that the dynamics can be acceptably modeled without

adversely affecting the performance.)
!

103 3

\ .

by

~

A - “. -~ e N L SN c e
L T S LA AN ‘.0“0 A A I LAY A A e (L A M

4 PR EREAEARRTAN SRR W R AL RN\ A L T\

B. FUTURE RESEARCH AREAS

A follow-on to this project, which will provide more realistic targets and
allow viewing of the scene as seen from inside any of them, is currently underway
at the Naval Postgraduate School. The project’s plans are to use the Ethernet to
allow several workstations to take part in the simulation simultaneously. Each
workstation will control one weapon (a target or the missile) and its monitor will
display the scene as viewed from that weapon.

Work is also underway at the Naval Postgraduate School in the use of
digitized photographic images on the IRIS. This work could possibly be
incorporated into the FOG-M project through the use of digitized target images.
digitized cultural features, or digitized textures for the terrains.

Another possible research area is the addition of various environmental effects
into the simulation. These include clouds, smoke, and rain, which affect the
camera’s view by reducing visibility, and also dust, which aids the missile
operator in acquiring moving targets.

Much work could be done in the area of the missile’s flight dynamics. The

goal would be to provide an acceptably accurate model without too much of a

sacrifice in speed.

C. SUMMARY AND CONCLUSIONS
The project has proven the practicality and feasibility of building a low-cost

flight simulator with commercial, off-the-shelf hardware. With a relatively small

104

* gyt
- 3

TYUIFURR)

- o N

» oI

LA

LA

.
RARSAl ¥

'

BT
19,705 AV s Ve, W),

investment of time and funds, a simulator with significant capabilities was

developed. As the speed and power of graphics hardware increases, even more

realistic displays at faster update rates will be possible.

105

P ety "t e’ a LT P o T o PO o T I TU P A N SR PR NS S S DT S L T
e N St A e e D0 I R R A 0 L AT A A N

e
L]

B% % ¥ AP Y

I 3% I

o te]

APPENDIX A - MODULE DESCRIPTIONS

BUILD ROAD.C

Input: None.)
Output: None.

Side Effects: Modifies the global array road, an array' of graphical objects, where

each object contains the polygons representing the road in a K
particular gridsquare. 3

Description: Build road reads the file road width and centerline information
from the file Road.data and constructs polygons which represent
the road. The polygons are stored in the array of graphical objects
road. A more detailed discussion of building the roads is contained
in Chapter VIIL

BUILDTERRAIN.C

Input: None.
Output: None.

Side Effects: Buildterrain modifies the global arrays savetriangle and gridcolor.

Description: Buildterrain reads terrain height information from the global array
gridpizel and constructs the terrain as a set of planar triangles. 3
The details of constructing the triangles and the format of the
savetriangle and gridcolor arrays can be found in Chapter VI

COLORRAMP.C

Input: The inputs to colorramp are two booleans, greyscale and init. If
greyscale is TRUE, the terrain, sky, and target colortable entries
are defined in shades of grey to produce a black-and-white image.
If greyscale is FALSE, the terrain colors are green, the sky is blue,
and targets are brown. Init is set to TRUE when this routine is
initiailv called. so that every entry in the colortable is defined.
including those for terrain. skv. rargets. and writemasked iines on ‘
top of the contour maps. should the dispiay be switched between 'y
color and black-and-white, only the terrain, sky, and target entries)
need to be redefined, which is what happens when init is FALSE. C

Output: None. A

Side Effects: Colorramp changes the system’s col ,rtable, and thus determines 3
the colors that appear on the display for the images drawn by
other routines.

e

106

MU O Ol T . .~ - AR - Tt e T e T oYt Y e” e .. -’ a
" NN LS ...\J, __..’.__._.-_._ BT SRR R,

Description: Colorramp is called by the main program fogm as part of the
initialization that takes place before the flying loop is entered. At
that point, greyscale is set to its default value (usuaily FALSE,
indicating color images) and init is TRUE. The readcontrols
routine also calls colorramp to toggle the display image between
color and black-and-white, based on the position of one of the
dials. This call is made with the desired value for greyscale and
with snit FALSE. Colorramp uses the IRIS routine mapecolor to
directly update the colortable for the contour map colors, and calls
the user written routine gammaramp to define approoriately
shaded ranges of the greens and browns (or greys) used for the
terrain and targets.

COMPASS.C R
Input: Compass takes as input a float. direction. which is an angle in d
radians. Y
Output: Compass returns a float which is the compass direction in degrees '
corresponding to the input direction. .
Side Effects: None. iy
Description: The function Compass converts an radian angle measured using y
the standard mathematical convention, and converts it to a degree
angle measured using the standard navigational convention.
DISP TERRAIN.C
Input: Display terrain takes eleven inputs: the X, Y, and Z, coordinates
of the missile position VX, VY, and VZ; the X, Y, and Z 1
coordinates of the camera’s look-at position PX, PY, PZ; the field \
of view angle (camera zoom value), FOVY; and the X and Z
ranges of gridsquares to be displayed, FIRST X, FIRST Z,
LAST X and LAST 2Z.
Output: None. R
side Effects: None. :
Descniprion: Disp ‘er-ain Hufputs a frame of ‘he ‘errain scene o tie monitor o
using a hidden surface algorithm. The scene contains terrain, o
roads, and targets. Details of the hidden surface algorithm can be R
found in Chapter VL "
)
107 :
”
:\
B R R S ot S S A o P o TP o ol R A U S AT

DIST TO LOS.C
Input:

Output:

Side Effects:

Description:

Dist to los takes seven inputs: the X, Y, and Z coordinates of the
start of a line segment; the X, Y, and Z coordinates of the end
point of a line segment; and three dimensional array, pt, which
contains the coordinates of a point.

Dist to los returns a float which is the perpendicular distance
from the input point, pt, to the input line.

None.

Function which computes the perpendicular distance from a point
to a line in three-space.

DO BOUNDARY.C

Input:

Do boundary takes the following inputs:
- An integer Bound_type which is interpreted as:

0 - a diagonal boundary

1 - a horizontal boundary

2 - a vertical boundary
- An integer which triangle that is interpreted as:

0 - the lower triangle of the gridsquare.

1 - the upper triangle of the gridsquare.
- The indices, zgrid and zgrid, of the gridsquare for which the road
is being constructed.
- The coordinates of the start point of the boundary stored in a
three dimensional array, bound_start.
- The coordinates of the end point of the boundary stored in a
three dimensional array, bound end.
- The coordinates of the start point of the left side of the road
stored in a three dimensional array, left start.
- The coordinates of the end point of left side of the road stored in
a three dimensional array, left end.
- The coordinates of the start point of the right side of the road
stored in a three dimensional array, right start.
- The coordinates of the end point of right side of the road stored
‘n a three dimensionai array. right ¢nd.
- A boolean, start_corner_flag, which is TRUE if the gridsquare
corner at the boundary’s start is ALREADY in the road polygon
array, FALSE otherwise.
- A boolean, end corner flag, which is TRUE if the gridsquare
corner at the boundary’s end is ALREADY in the road polygon
array, FALSE otherwise.
- The partially complete road polygon array, road poly.

108

Output:

Side Effects:

Description:

- An integer, vertez cnt. that is the number of vertices currently in
the road poly array.

Do _boundary outputs the following:

- start_corner flag (see Inputs for a description)

- end ?orner_ﬂag (see Inputs for a description)

- roat-i_poly, the road polygon array with the vertices along this
boundary added.

- vertez cnt (see Inputs for a description)

None.

Do _boundary’s purpose is to find all the intersections of the road’s
left and right sides with the input boundary of a gridtriangle. As
an intersection is found the point is put into a temporary array.
After all the intersections are found for the boundary the points in
the temporary array are sorted then added to the existing
road poly array. The order of the sorting is such that the resulting
road_:poly array will be ordered counterciockwise. See Chapter
VIII for a detailed description of building the roads.

EDIT INDBOX.C

Input:

Output:
Side Effects:

Description:

The inputs 1o edit_indboz are the name of the indicator object, the
tags within that object for each of the indicators, and current
values for the following missile parameters: X,Y, and Z position
coordinates, pan, tilt, and zoom angles, and designate/reject
status.

None.

Since edit indboz changes the indicator object, it has the side
effect of changing the display when the indicator object is next
called and displayed.

The indicator object is edited between each display frame so that
the heads-up display and the indicator box indicators show the
current values for the missile’s speed, heading, altitude, camera
pan angle. camera *ilt angle. camera 9eld of view (zoom). and
Jdesignate/reject status. The :nput speed. neading, ana MKSL
altitude Y position -oordinate; are -onverted o strings ‘or
display. AGL altitude is calculated as the difference between MSL
altitude and the elevation of the ground directly below the missile
as obtained from gnd level with the X and Z position coordinates
as input. The boolean designate determines whether
“DESIGNATE" or “REJECT" is printed in the lower left corner
of the terrain display. Finally, the positions of the tilt, pan, and

109

”~

I

Dads

. Y

() ¥ e,)
AN \"‘i .‘l‘, WA,

'i;”h' '\-",, "v W

zoom indicators are calculated from the missile parameters. The
equations in the code have been simplified to avoid excess
computation; the derivations are given below.

The x screen coordinate of the zoom (field of view, or fov) indicator
is fixed. The y screen coordinate varies from 200 (at 8° fov) to 70
(at 33° fov). The input missile parameter zoom is in tenths of
degrees, and thus ranges from 80 to 550. The y coordinate is
determined from Equation A.l.

200 [(zoom gl « 200 - 70]
y: — —_— —————
10 55 — 8

i

zoom * —0.2766 + 222.128

Likewise, the screen x coordinate of the tilt indicator is fixed, while
the y coordinate varies from 680 (at +25° tilt) to 50 (at —25° tilt).
The input missile parameter tilt is in radians, and is converted to
degrees by multiplying it with the RTOD (Radians TO Degrees)
constant from the header file fogm.h. The y coordinate of the tilt
indicator is calculated as shown in Equation A.2.

680 — 50 }
25 — —25

«
]

50 +{[(tslt *DTOR) + 25] *
(A.2)

]

tilt * 721.92682 + 365

The pan slider bar is horizontal, so the y coordinate is fixed, and
the x coordinate ranges from 120 (at —25° pan) to 750 (at +25°
pan). Like tilt, the pan value is in radians and must be converted
to degrees. The pan indicator x coordinate is given by Equation
A.3.

z =750 —{[(pan * DTOR) *-'35] -

i

pan * —721.92682 + 435

110

Ny ".-“'-".-v-‘:- RN .' .r

"-r-" NI ".r.»' " ‘.- . ¢

PR Y RERERNTCE LEARN AN AN LKA IOAN 12 %8 282 '4 o'

\ ™ -

e L e

-
- T

PR

e

K "y ai 'ai. at gt 28 2 cal ‘sl “af Al al + AR AR A AN N R I TN I N T T TN I T I I NN

% EXPLOSION.C

R Input: None.

B Output: None.

5‘, . Side Effects: None.

:E: Description: The ezplosion routine simulates the effect of a missile destroying a
::.] target by rapidly flashing a succession of red, black, and yellow
o screens. One buffer is kept black to pronounce the flash effect, and
B the other buffer is alternately cleared to red, yellow, red, yellow,
{:: and red. A short pause with a cleared, black screen is provided
-:: before the routine exits.

,::

N FOGM.C

) Input: Fogm is the name given to the main program in the simulator. Tt
| has no parameters, but gets data from its header files and through
o the readdata routine. Interactive input is also received vial the

readcontrols routine.

' Output: None.

.';. Side Effects: None.

4

;’é Description: The fogm program consists of global variable declarations, local

variable declarations, system initializations, an active loop, and

’ some exit housekeeping. The initialization portion includes reading
X in the DMA elevation data, making network connection (if in use),

_»f; setting the IRIS display configuration, defining the color table
[}

entries, building all of the graphical objects used in the displays,
~and computing the lighting and position of the polygons used to
N produce the terrain image. Within the active loop is some
' additional initializations and the flying loop. In the active loop
kS
O
s

-

initializations, the dial and mouse controls are reset to their initial
defaults, and the display buffers are loaded with the images that
remain unchanged during flight simulation (the contour map and

:: the legend/instruction box). Control is then passed to the flying
& loop, which produces the flight simulation images until either a
E: target is hit or the simulation exit command is received. If a :arget
K was hit, an expiosion is displayed and the pre-launch phase of

designating launch and target positions is re-entered. If all three
mouse buttons have been pressed, the display is cleared and

e

" various system parameters are reset to provide a graceful exit from
:: the simulator.

'\:..

}: 111

N

- - .'_..

T B T BT T I N W,

a8

"'.,’," ,'-”ir ‘,“)"-‘ —'J.' ',',.',
i a » . Ol Ll

S AASARCRIRCRINL T 1 SN ."’\"u"-." ""-"--"-.’-.'\"s"-.'-."-'
L) . . . 3 o N N

The flying loop contains the subroutine calls that produce the
simulation of flight. First, the mouse and dials are checked for
control input. Then the targets’, missile’s, and lookat reference
point’s positions are all updated based on the elapsed time since
the previous frame and the appropriate speeds. View bounds is
called to determine which one kilometer grid squares are in view,
and then the indicators are all updated to show the new control
values, missile statistics, and view area. The main display routine
then draws the appropriate sections of the terrain, plus cultural
features and targets where appropriate. Finally, the updated
indicator objects are drawn, and the display buffers are swapped to
display the newly created image.

GAMMARAMP.C

Input:

Output:
Side Effects:

Description:

PR I IS I YR) ’ S TR Y U I e NCRE IS) L]
S J-" i‘{ '-f\f -’ q' f\ -({‘- -f‘\(‘d'-_{'. - G‘J\\.fw \"'

The inputs to gammaramp are a correction factor, a color table
starting index, the number of color table entries (shades) to be
defined, red, green, and blue intensities for the brightest color to be
defined, and finally, red, green, and blue intensities for the darkest
color to be defined.

None.

Gammaramp has the side effect of defining entries in the system
color table.

Displayed colors do not correspo.d linearly to the numeric red,
green, and blue intensity values that are used to produce them. If a
range of colors (0 .. #colors-1) is defined in the straiahtforward way
with a uniform increment, the intensity of the n™ color (/) is
given by Equation A.4, and the bright colors will appear more
widely spaced than the dark colors.

. Mazl — Minl

I =n

n

+ Minl (A.4)
#colors

Gammaramp avoids this by using a power function to increase
spacing between the dark colors’ intensity values and ro decrease
the intensity increment as the colors get brighter. The strength of
the correction is determined by a value 5, which is constant for a
given range, but must be experimentally determined for each range
that differs in color or number of colors. FOG-M uses a v value of
1.5. The intensity of the n™ color in a gammaramp created table is
given by Equation A.5.

112

Vo

T_m
-

A G sy

te -

T eA A

-
-’

- -

& an B W

¢ 4y a . 4 44 a8 a8 TR NN S AT IR RN RS R 4 gt pak gt gt

1

n v
L= [—] * (Mazl — Minl) + Minl (A.5)
#colors — 1

GET_TGT_POS.C

Input:

Output:

Side Effects:

Description:

The input to get tgt pos is a socket number for Ethernet
communication (if in use), a boolean indicating designate/reject
status, the index of the currently designated target. and the
“name’’ of the tank object.

Output is the new X,Y,Z position coordinates of the currently
designated target.

Get tgt pos updates several global data structures. It sets the
number of target images, updates the target position arrays, and
updates the array of target object names.

The primary purpose of get tgt pos is to move the targets in the
simulation. If the networking capability is in use, the target
positions for the next {rame are received over the network. When
networking is not in use. targets are moved at a set speed of fifteen
knots, and reverse course when they reach the boundaries of the
ten kilometer square terrain area. As explained in Chapter VII, an
array of graphical objects is defined to match one object per one
hundred meter square of terrain, and this array is also used as
booleans to indicate the presence or absence of targets in the one
hundred meter grid square. Get tgt pos begins by removing each
target from this array. New target positions are calculated or
received over the network. If one of the targets has been ‘‘locked-
onto,” its new position is returned to be used as the current aim
point for the missile. This is easily determined if networking is off
because the designated target’s index remains the same and the
new position can be directly accessed. The index correspondence is
not guaranteed when networking, so the index of the new target
whose coordinates are riosest to the old targeted point is 1sed.

Targets that straddle a one hundred meter qrid square boundary
must be drawn on top of both jor possibiy ail four) grid squares in
order to avoid being partially obscured by whichever square is
drawn last. (The target must be drawn immediately after the grid
square on which it rests to ensure that the target will be obscured
when it should be by terrain drawn in the foreground.) Since the
calculation of boundary intersection requires several trigonometric
functions plus an allowance for the distance between the center of

113

-

o

g~
PR

A L R A

Input:

Output:
Side Effects:

Description:

Input:

Output:

the tank and its boundaries (which varies with the direction of the
tank), a simplifying algorithm is used. If the tank is close enough
to a boundary that the most distant part of the tank might cross
the boundary, the target is also drawn after the adjoining grid
square(s) (see Figure 7.3). This is done by adding a ‘“‘new” target

. to the array of target objects. The “‘new’ target object is drawn at

the exact same location in the three-dimensional terrain, but it is
drawn after a different one hundred meter grid square, so it will
have-different target object array indices, and be in a separate
target object.

After all of the targets (originals and boundary copies) have
updated positions and target object array indices, objects are
added to the target object array as described in Chapter VII. This
array is then used by the terrain display routine to actually draw
the targets.

GND LEVEL.C

Gnd level takes as inputs the X and Z coordinates of the point for
which the elevation is desired.

Gnd_level returns a float which is the elevation at point X and Z.
None.

Gnd level computes, through interpolation, the scaled elevation of
any point within the terrain boundaries. A calculation is done to
determine which gridtriangle contains the point. Then, using the
known elevations at the vertices of the triangle, the elevation of the
point is found.

IN_THIS POLY.C

In_this_poly takes the following inputs:

- An array of points, polygon, which define a polygon. (Note: only
the X and Z coordinates of the points are used, the Y value is
ignored).

- An integer. num wverter. that is the number or vertices in
polygon. -

- A point, pnt, that is to be tested. (Note: only the X and Z
coordinates of the point is used, the Y value is ignored).

In this_poly returns a boolean which is TRUE if pnt is inside the
polygon defined by polygon, FALSE otherwise.

"".‘ l.l"-.l |‘l.

Side Effects: None.

Description: In_this_poly is a function which tests whether a point is inside a
given polygon, where both the point and the polygon are in the X2
plane. The algorithm used constructs a bounding box around the
polygon. If the point lies outside the bounding it obviously can
not be inside the polygon. If the point lies inside the bounding box
a further test is made. A line is constructed from a point outside
the bounding box to the point to be tested. Each of the edges of
the polygons are then tested to see if they intersect the constructed
line and a count is kept of the number that do intersect. The
point lies inside the polygon if and only if the constructed line
intersects an odd number of the polygon’s edges.

INIT CTRLS.C

Input: Imit_ctrls takes as inputs the initial altitude of the missile, in feet;
the initial heading of the missile in degrees; and a boolean,
greyscale, which is TRUE if greyscaled terrain is to be displayed
and FALSE if color terrain is to be displayed.

Output: Init_ctris has as outputs the initial pan angle of the camera in
radians; the initial tilt angle of the camera in radians, and the
initial zoom setting of the camera in tenths of a degree.

Side Effects: The MOUSEX, MOUSEY, DIALO, DIAL1, DIAL2, and DIAL3
valuators are set as a result of calling this routine.

Description: Init_ctrls’s purpose is to initialize the mouse and dial valuators
used for the operator controls. The initial altitude, heading, and
greyscale valuator settings are passed in as inputs. The pan, tilt,
and field of view settings are read from an "include" file and their
values passed back as outputs.

INIT IRIS.C
Input: None.
Output: None.

Side Effects: Cailing rhis rourine sets the [ris attributes and contigures the Iris.

Description: Init iris accomplishes the following: it puts the Iris into
doublebuffer mode, sets the chunksize (the minimum memory
increment used in objects), sets the monitor type to either NTSC
or HZ60, and enables backface polygon removal.

115

AN TS P T T TS T T e N N A L L R O L I TR TIPS
(ll‘Q_.LL\! .u\ \v_. v

INIT TGTS.C
Input: None.
Output: None.

Side Effects: Init tgts always initializes the global target object array to all
zeros. If target data is not being received over the network,
init_tgts also defines ten targets by setting initial values in the
global target counter, target position array, and target direction
array. An auxiliary function init_tgt is used to perform the actual
update of the global arrays.

(am g R

INTERP ELEV.C

Input: Interp elev takes three inputs, each an array of X, Y, and Z
coordinates, representing a point. One array is the start point of a
line. the second array is the end point of a line. and the third array |
is a point along the line.)

Output: Interp elev returns a float that is the elevation value of the point
along the line. .
Side Effects: None. \
t
Description: Interp elev returns a float which is the linear interpolation of the ¢
Y (elevation) coordinate of the point along the line, based on the ¢
elevations at the start and end points of the line. -
LIGHT ORIENT.C :
Input: Light orient takes as inputs the following: -
- An array of coordinates for the polygon. h
- An integer, num coords, the number of coordinates in the
polygon. .
- The X, Y, and Z coordinates of a point that is "behind" the »]
polygon (an interior point). o3
- The X, Y, and Z coordinates of a light source. x
- The minimum and maximum color map indices to be used for g
-his poivgon. :
Output: Light orient returns the coior map index of the coior to use in .
lighting this polygon. It also reorders the polygon array (if
necessary) so that the points are ordered counterclockwise. Sy
Side Effects: None. N
Description: Light orient computes a lighting for a polygon based on Lambert’s o
cosine law, which states that the intensity of the light reflected -
116 -
]
N
-
,.:__.-\.-‘_:\.—‘.' r‘.:\:_..-_'.‘__:_ O T O T R, O AT '»-\'.-,;.-_:.-_\'.-_\'.\'.-:

from an object is proportional to the cos(®), where ® is the angle
B of incidence of the light ray. (see Figure 5.2). Light orient also
! orders the vertices of the polygon in a counterclockwise fashion so
that backface polygon removal can take place (see the module
description for npoly orient).

o

s

L

N

. LINE INTER2.C

. Input: Line_snter2 takes the following inputs:

" - An array containing the X and Z coordinates of the start point of
;e line one is ignored.)

S: - An array containing the X and Z coordinates of the end of
i\ . .

: line_ one. (Note: a three element array is used, but the second, ¥
" coordinate, element is ignored.)

) o . .

< - An array containing the X, Y, and Z coordinates of the start of
A line two. (Note: a three element array is used. but the second. ¥V

" coordinate, element is ignored.)
! - An array containing the X, Y, and Z coordinates of the end of
line_two. (Note: a three element array is used, but the second, ¥
coordinate, element is ignored.)

X Output: Line inter2 returns as outputs:
y - An array containing the X and Z coordinates of the intersection
of line one and line two. If the lines do not intersect these values

4 are undefined not considered in the calculation).

[y - An integer which can be interpreted as follows:

) 0 - the lines do not intersect.

W, 1 - the lines intersect, but the intersection uses an
. extension of at least one of the lines past its start or
. end points.

, 2 - the lines intersect, and the intersection occurs

' between the input start and end points of both lines.

Side Effects: None.

Description: Line inter2 computes the point of intersection between two lines
in the XZ plane. The type of intersection. as explained above in
"Output” is also determined. Throughout the routine. three
i element arrays are used for compatibility with other routines. The
) second, Y, coordinate is not considered in any of the calculations.

Ol

' MAKEINDBOX.C

0

¥ Input: None.

‘

G 117
.

|

»,

L3

\l

R e A A 8 o S oo e

oty gd, te aup g Vs ¥p g’ T Wa' 42° 22 da® Ba® 92" ¥a® Ca' #:° 2’ 02° Bat® fa® B €l 22t 2.0 a0 2l 0.0 20 20 8 00008 0 0 0% 1% 292 4%, 2%2 4% 4% A"
Y
L3
\J

A

Output: Makeindboz returns a graphical object ‘‘name,” tags for editing the
speed, direction, altitude, and designate/reject readouts, and tags
for editing the zoom, pan, and tilt indicators.

Side Effects: None.

Description: Makeindboz generates a graphical object that contains both the T
indicator box in the middle of the displays on the right side of the
screen and the ‘“‘heads-up” display that is superimposed on the
terrain image (Figure 6.8). The object consists almost entirely of

v

straightforward line and character string drawing commands, but "
there are two interesting points. First, within a single object, there ¢
are two different coordinate systems: one for the indicators '_
superimposed on the terrain, and another for the separate indicator ;'
box. This is accomplished with an ortho2 call for each coordinate .
system, and by bracketing each ortho2 with pushmatriz and by
popmatriz commands. Note that the heads-up display is truly X
superimposed; it is specified in two-dimensional screen coordinates 0
as opposed to the three-dimensional terrain coordinates. U
The second interesting aspect is the movement of the slider bar
indicators. Drawing the indicators as polygons would require a -
sequence of pushmatriz, translate, and popmatriz calls for each bt
indicator, with movement achieved by editing the translate call. To ';
avoid all of this matrix movement and multiplication, the ::'
“triangle’’ of the indicator is actually an overlapped line that
“fills” the triangle by spiraling inwards. The line is drawn relative "
to the indicated point, with each segment of the line specified as X
offsets from that initial point, rather than as absolute coordinates Bt
(Figure A.1). Movement of an indicator triangle defined in this e
way is achieved by editing the parameters of a move2 call in the :
object, which sets the current graphics drawing position to the ::
indicated point on the slider bar scale. Makeindboz is called once :::
by fogm before the flying loop is entered, and then the object is -
edited (to update the indicator values) and called (to display it) e
every frame. h
s
MAKEINSTRBOX.C o
Input: None. '.
Output: Makeinstrboz returns the name of an object to fogm. _ .;
Side Effects: None. X
2
118 ;
.
3
o R A S At e S St o N R NN A

(0,+10)

(‘8,‘4)

(0,0

(+8,-3)

r s
»

» 3

-

(+10,-8)

> x_?

(~10,0) (+5,+10)

lTa" € (¥ _8 2 _*

.
T

(+4,-8)

A

(0,0)

.
c e

Figure A.1l

Indicator Fill using Line Segments

vg_‘".. ,. :. \.'I‘

119

L4
L)
L
A
.

-
A
h)
h)

-y i e RS PN) ‘f‘
W l‘..-l’.,!.i’u‘l o. DONOSCALIUN

W W LW LW W TR P N R L T I L U U U I I TR L ORI TP ST N ORI UL A T SR Y
f'ﬂﬁ‘v’ff-?”Jﬁ@'#"'f{ﬁﬁﬁJVVJJfvaVu,

Description: Makeinstrbozr creates the object that produces the display in the
lower right of the screen (Figure 6.8) during flight simulation. This
display contains the legend for the FOG-M controls and the flight
parameters they affect. Makeinstrboz is called once by fogm to
create the object, and then the object is called twice per flight to
put the image into each buffer. Note that writemasks are not
necessary as they are with makemap and makenavboz, because
nothing else writes to the instruction box portion of the screen
during flight. The image thus remains undisturbed in the bitplanes
despite the changes in other screen areas.

MAKEMAP.C

Input: The input to makemap is the globally defined array of elevation
and vegetation values, gridpizel.

Output: The output from makemap is a graphical object ‘‘name.” which is
returned to fogm.

Side Effects: None.

Description: Makemap generates the object containing the contour map and
grid that appear full screen during the pre-iaunch phase, and
appear in the upper right corner of the screen during flight
simulation (Figure 4.1). The map is produced using the
methodology described in Chapter IV. Fogm c=lls the object
returned by drawecontour twice, in order to place the map image in
both buffers. The image is then protected from overwrite by a
writemask. Fogm also passes the object name to prelaunch, which
uses it in much the same way as fogm.

MAKESCREENS.C
Input: None.

Output: Makescreens returns an array of objects: instruction panel,
statistics box, flight path between launch and target endpoints,
and the three welcome screens, plus tags to update the statistics
and dight path.

Side Efects: None.

Description: Makesereens builds all of the objects (mostly screens of text) that
are used by prelaunch.

120

N T N T T N

"y -~ ~y gy

§wy ¥ I

-’n}‘

RRAATUNTES

1Y

-

*eIT Y™ 3 X1 _%X_F

W AW L% LA R T RV AFCARANNEN AN J WPV WU U WO VO W) w J 2% 10" ool b P R ¥y Py P PN ¥R X VYW

. MAKETANK.C
:: Input: None.
E Ouiput: Maketank returns the name of an object containing a single tank,

drawn around the origin.

sSide Effects: None.

Description: Maketank builds a object that consists solely of the drawing

. commands to produce a single tank. The tank is thirty-two feet

long, ten feet high, and ten feet wide. Its center bottom is at the

origin ‘coordinates 0.0.0). with its left side on the plane Z = -5. its

back on the plane X = -15, its bottom on the plane Y = 0, and it

P faces to the right along the positive x axis. For each of the twenty

” polygon faces that make the tank, the X,Y, and Z coordinates of

. each polygon vertex are stored in an array, passed to lightorient,

and then drawn with polf, the filled polygon drawing command.

M Lightorient ensures -he vertices are ordered counter-clockwise in

‘ the array (with respect to an interior point) for backface polygon

removal, and then calculates the appropriate color for the polygon

using the same lighting model that is used for the terrain (see
Chapter V).

LAL L A & A,

Sl

NEAREST TGT.C

Input: Nearest tgt takes as inputs the X, Y, and Z coordinates of the
missile position, and the X, Y, and Z coordinates of the camera’s
look-at position. (The end points of the line of sight vector).

" Output: Nearest_tgt returns as output an integer, tgt i1dr, which is the
target index of the target that is closest to the line of sight vector.

Side Effects: None.

Description: For each of the existing targets, nearest tgt computes the distance
- between the target and the line of sight vector. It returns the
index of the target that was found to be closest. In the case of two
targets which are the same distance apart, the highest index value
will be returned.

R S AN

NPOLY ORIENT.C

Input: Npoly orient takes as input:
. - An integer, num coords, that is the number of vertices in the
) polygon.
’ - An array containing the coordinates of the polygon.
- The X, Y, and Z coordinates of a point that is "behind" the

121

ol e R

S8 pt NaBtog Pab vab aB Sal da9 Go8 Uad val Tl vob Sof Cal bag ta) teg tad el ad. ¢ (9 2 8%a % $%'a & $'2.0°0.0'0.0°8. 4" U S X

olygon (an "interior" point).
polyg p

Output: Npoly orient returns as output an integer which is interpreted as:
1 - the vertices of the polygon are ordered clockwise.
2 - the vertices of the polygon are ordered
counterclockwise.

Side Effects: None.

Description: Npoly orient determines if the polygon is ordered clockwise or
counterclockwise by computing two points: one along the normal
vector and the other, the same distance from the polygon, but
along the vector in the direction opposite the normal. Next the
distance between these points and the "interior" point is
computed. If the "interior" point is closer to the point along the
normal vector, the polygon is ordered clockwise, otherwise the
polygon is ordered counterclockwise.

PRELAUNCH.C

Inpaut: The input to prelaunch is two arrays. The first contains objects.
and the second contains tags for editing those objects.

Output: Prelaunch returns the X,Y. and Z coordinates of the missile'’s
designated launch position, and the initial direction of flight for the
missile. This direction is returned in both radians and compass
degrees (Figure 7.1).

Side Effects: None.

Description: Prelaunch first provides three screens of introductory information.
Each screen is an object defined by makescreens. After those, the
user is presented with a full screen contour map of the ten
kilometer by ten kilometer area available for overflight. Mouse-
selected points define the missile’s initial position and direction of
flight, and are displayed on top of the map. The map is writemask
protected, so it is only drawn twice (once for each buffer) even
though the flight path is repeatedly drawn and erased on top of the
map. The flight path is made to act like a rubber band bhetween
the launch and cursor positions by repeatedly editing of rthe
positions in the object containing the Hight path line drawing
commands. Once the flight path is confirmed, the launch position
and heading are returned to the fogm program.

1o®
v W

¢ ¥ _ o v _v u @&

AT T LR - g m__w

A mle = a a

Co NR MY

¢ oab T, st ah. A AbaTa%e &Y &' < ‘ot T Sae cag af taf A Ak .8 PRI ININY D) DTN EN N

RANDNUM.C
Input: Randnum uses the global random number seed.
Output: Randnum returns a floating point random number.

Side Effects: The global seed value used by randnum is updated during every
invocation.

Description: Randnum is a linear congruential pseudo-random number
generator. The algorithm is a modified version of the one given by
Sedgewick [Ref. 13]. It uses a a special piecewise multiplication
routine mult to preserve the low-order digits of the newly
generated seed even in case of overflow. The value returned is the
new seed, scaled to fall between zero and one, inclusive. The
random numbers are used in fogm to vary the point on the tank
that the missile aims for. This simulates the variance in impact
point that results from the optical homing of the real missile.

RANDSEED.C
Input: Randseed takes a long integer as input.
Output: None.

Side Effects: Randseed updates the global random number seed value.

Description: The pseudo-random number generator implemented in randnum
always returns the same string of numbers when it starts with a
given seed value. Randseed provides the means to change that
initial seed value so that different program runs will have different
strings of ‘‘random’’ numbers.

READCONTROLS.C

Input: The inputs to readcontrols are the global X,Y, and Z random
offset values for the aim point on the target, the current
designate/reject status, and the black-and-white versus color
boolean greyscale.

Outpurt: All of rhe ‘iser-commanded control -~aiues are output ‘om
readcontrois: mussile speed. heading and aititude. camera pan. -iit,
and zoom angles, plus designate/reject status, greyscale status.
Readcontrols also returns values for the booleans that control the
active and flying loops.

Side Effects: When a target is first designated, readcontrols calls randnum and
updates the global target aim offsets randz, randy, and rand:.

123

: .‘I\.-._!' ...-.'1; 21 ‘ . ,;{- ,~', ., .""-"M OIS -’..- . /‘\:":'.\-'f‘:'.‘:".'."":"‘;'.':f':'-\f‘-'-‘."‘\v"'-a'-’ {‘.".‘\(-__._..',-\'.._.‘ .

2
Cad) RalalaldeXety !

L6 5 AN S S . 8 5% %Y

.'.“'f . 4

5 & 44 AN

Py

2.0 v 5.4 *. 2 4 vy W U PO U WUNRT S VU WA TIR LR PO W TORTORTAR KA TATE

Description: Readcontrols checks the status of all of the valuators that provide
input to the FOG-M simulator, and performs scaling, units
conversion, and immediate processing, as appropriate. It
determines whether to accept or reject a ‘designate” command,
based on the color index of the pixel at the center of the screen. (If
a tank is in the crosshairs, the color index will be from the tank's
color ramp, and a designate command will be accepted. Otherwise,
a designate command will be ignored.)

READDATA.C

Input: None.

Output: None.

Side Effects: Readdata fills the global array gridpizel.

Description: Readdata opens and reads the values from the terrain elevation

data file and stores the values in the gridpizel array. Note that the
elevation data file is arranged in a format as discussed in Chapter
III. The gridpizel array is arranged in straight rows and columns
analogous to the geographic positions of the data.

ROAD BOUNDS.C

Input:

Output:

Side Effects:

Description:

Road bounds takes as input the following:

- Three arrays (ptl, pt2 and pt3) containing the X and Z
coordinates of three points along the centerline of the road. The
line segment from ptl to pt2 defines the first segment of the road.
The segment from pt2 to pt3 defines the next segment of the road.
- A float, width, which is the width of the road in feet.

Road bounds returns the following as outputs: - Four arrays
(left_pt1, right pt1, left pt2, and right pt2) which contain the X
and Z coordinates of the first segment’s left and right sides. The
left side runs from left ptl to left pt2 and the right side runs from
*ight ptl to right pt2.

- Four integers. f_z'rst zgrid. [irst cgrid. last zcgrid and last zgrid.
which are the indices of the bounding box surrounding the drst
road segment (see Figure 8.2).

None.

Given three points along the center line of the road, and the road’s
width, road bounds computes the start and end coordinates for the
first segment’s left and right sides. The end coordinates are
computed as the intersection of the first segment’s left (or right)

124

XK AN AR XN

LA

Pl o8 S R

5 % w v

- u_ o g

ﬁ_'i‘l\fl'h\’

PRI W) ———
P, e

side with the second segment’s left (or right) side. This insures
that adjoining segments will meet cleanly. The second function of
road _bounds is to compute a bounding box around the first road
segment. This box is defined as the row indices of the northern
and southern most gridsquares that the road segment intersects,
and the column indices of the eastern and western most gridsquares
that the road segment intersects (See Chapter VIII for a more
detailed discussion).

SORT ARRAY.C

Input: Sort_array takes as inputs:
- An array of points, pnts.
- An integer that is the number of entries in the pnts array.
- A boolean, which is TRUE if the array should be sorted in
descending order, FALSE if the array should be sorted in ascending
order.
- The index number of the -oordinate that is the sort key: O for the
X coordinate, 1 for the Y coordinate, and 2 for the Z coordinate.

Output: Sort_array returns the array pnts with the points sorted according
to the input parameters.

Side Effects: None.

Description: Sort_array performs a simple "bubble-sort" of the input points
according to the input parameters.

UP_LOOK_POS.C

Input: Up look pos takes the following as inputs:
- The heading of the missile in radians.
- The pan angle of the camera in radians.
- The tilt angle of the camera in radians.
- The X, Y, and Z coordinates of the missile’s position.
- The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target.
FALSE otherwise.

Output: Up look pos returns as outputs the X, ¥, and Z coordinates of the
camera’s look-at position.

Side Effects: None.

Description: Up look position computes a point along the camera’s line of

sight. If the missile is locked on a target, the look-at position is the
locked-on target’s position. Otherwise it is any point along the

125

............
............

camera’s line of sight. See Chapter VI and Figure 6.2 for a more
detailed discussion.

UP MSL POSIT.C

Input: Up_msl_posit takes as inputs:
- The heading of the missile in radians.
- The speed of the missile in knots.
- The X, Y, and Z coordinates of the missile’s position.
- The X, Y, and Z coordinates of the locked-on target (if any).
- A boolean which is TRUE if the missile is locked-on a target,
FALSE otherwise.

Output: Up_msl_posit returns as outputs:
- The new heading of the missile in radians, if it was changed to
track a locked-on target.
- The new heading of the missile in degrees measured in the
compass convention.
- A boolean which is TRUE if the missile is still flying (has not hit
a target), and FALSE if the missile has hit the target.

Side Effects: None.

Description: Up msl posit calculates a new missile position for the next frame.
The new position is either based on the commanded direction,
speed, and altitude (when the missile is NOT locked onto a target),
or the commanded speed and the direction to the target (if the
missile is locked onto a target). For a detailed discussion of the
routine, see Chapter VI.

VIEW BOUNDS.C

Input: View bounds takes as inputs the X, ¥, and Z coordinates of the
missile’s position; the X, Y, and Z coordinates of the camera’s
look-at position; and the field of view (zoom) value.

Output: View bounds returns as outputs the row indices of the northern
and southern most gridsquares to be drawn. and the column
indices of the western and eastern most gridsquares to he drawn.

Side Effects: None.

Description: The purpose of view bounds is to construct a bounding box around
the gridsquares which are to be drawn. The box is constructed by
extending the line of sight vector down until it intersects the
minimum elevation plane. The view bounds extends 20
gridsquares north, south, east, and west of this intersection point.

126

If the missile’s position is not within the bounds, the bounds are
extended to include the missile’s position. For a more detailed
discussion, see Chapter VI and Figure 6.5

127

P W Tt T R e M LT T N e e e e N e e N N N S N N B T I N S ST I LI MR LN I e
G A A R £ Sy G N R E S R R Ao VR TRV T AU PR PO T N A

2 d s b ' FRENTYD 6 ad a9 gt Bt a0 $aY 1t Bat Pat

APPENDIX B - SOURCE LISTINGS

BUILD ROAD

#include "stdio.h"

#include "fogm.h"

#include "files.h" -
#include "gl.h"

#include "math.h"

#defineX O
#defineY 1
#defineZ 2

#define DIAGONAL 0
#define HORIZONTAL 1
gdefine VERTICAL 2

#define LOWER 0
#define UPPER 1

build road()
{
extern Object road[99](99|;
extern short gridpixel[100][100];
FILE *fp, *fopen();
float road_width; /* road width if feet */
int num_pts; /* number of data points
for the road seqment */
int segnum = O;
char temp|100;
int cnt, 1, j;
int vertex__tnc, num_duplicates;
float gnd _level();
float elev;
float pt1(3], pt2(3], pt3[3|;
float nw_corner(3|, ne_corner|3], sw_corneri3|, se_corner|3|;
float right _pt1{3], right pt2(3};
float left pt1'3], left pu2'3’;
doat north bound. south hound. 2ast _hound. west bound:
Hoat deita x. eita z:
Hoat seg _dir;]
int ne_flag, nw_flag, se_flag, sw_flag;
int xgrid, zgrid;

P]

int first xgrid, last xgrid, first _zgrid, last z2grid; .

float poly1{10)(3]; X

r

frontbuffer(TRUE};)

fp = fopen(ROAD FILE,"r"); P

128 :

p

e, '-"_'_, \::s.';,-.'-.:}.:',-.::-.:;—.:-.:;-.'}.:}.;-.;-."_-.;_-.:_ KA .;'-;‘-:...“;'.::-.:_'x'_;-.}'.'_s;‘\'--‘.:_\:’\ -.’-. o -."-.'-.’ \\"‘\f\

[ENEANARTR R

L a'A et %2 A% AT a¥8 84 %F o'p 4" 3 . RS WU €3 aRE 62 ats o

while (fscanf(fp, "%e", &road width) != EOF) {
fscanf(fp, "%d", &num _pts);
fscanf(fp, "%e %e", &pt1/X], &pt1{Z});
fscanf(fp, "%e %e", &pt2|X|, &pt2|Z));

delta x = pt2(X] - pt1[X};
deita_z = pt2|Z] - pt1|Z};
seg_« dir = atan2(delta_z, delta x);

left_pt1{X| = pt1[X] + (cos(seg_dir + HALFPI)*road width/2.0);
right_pt1[X] = pt1{X] + (cos(seg_dir - HALFPI)*road_width/2.0);
left_pt1|Z] = pt1{Z] + (sin(seg _dir + HALFPI)"road _width/2.0);
road_width,2.0);

right_pt1iZ| = pul{Z] + (sin(seg dir - HALFPI) *
for (cnt = 3; cnt <= num_pts + 1; ++cnt) {

if (cnt <= num_pts) {
fscanf(fp, "%e %e", &pt3(X|, &pt3(Z]);

else {
pt3{X| = pt2[X];
pt3iZ| = pr21Zl;
}
/* print new road segment number on title screen */
segnum += 1,
pushmatrix();
ortho2(0.0, 1023.0. 0.0, 767.0);
viewport(0,1023.0,767};
sprintf(temp, "Building road segment: %d%", segnum);
color(BLUE};
rectf{780.0, 20.0, 1010.0, 30.0);
color{(CYAN);
cmov2i(780, 20);
charstr{temp);
popm:atrix();
/* determine the boundaries of this road segment */

road_bounds(ptl, pt2, pt3, road width, left_pt1, right ptl,

left_pt2, right _pt2, &first xgrid,
&first zgrid, &last xgrid, &last_zgrid);
for (xgrid = first xgnd xgrid <= last_xgrid; ++xgrid){

for (zgrid = first_zgrid; zgrid <= last_zgrid; ++zgrid){

ne flag = FALSE;

nw_flag = FALSE;

sw_flag = FALSE;

se flag = FALSE:

vertex cnt = -1l;

cast bound = (float)(xgrid - 1} * FT 100M:
west _bound = (float)(xgrid) * FT 100M;

north _bound = (float)(zgrid + 1) * FT 100M;

sout.h_bound = (float)(zgrid) * FT_lOOM

sw_corner|X| = west_bound;

sw_corner|Z| = south_bound;

elev = gndpxxel[zgnd}]xgnd‘ & elev mask;
sw_corner|Y| = pow(elev, ALTSCALE):

129

e 5 5 A

Y

P L £ T ¢ A
"

y

%> & & A T -
ARSI ARNENS

T X F 2N ‘P

2 > 04

R R ARA

"."-; e f, o ".)

‘Ifj"f.f(.‘(' -

YIRS

\’_. “»

.P\f\ ':- .F'.

v

'\-

S N
J"

\v\\ e L
] . “'.'.R.

'J'-f'

TR L U U PR U MU VU S I U OO O OO

se_corner{X! = east bound;

se corner[Z] = south bound;

elev = gridpixel(zgrid|[xgrid+1] & elev _mask;
se_corner(Y| = pow(elev,ALTSCALE);

nw corner/X| = west bound;

nw corner|Z; = north bound;

elev = gndplxel'zgnd+lj[xgnd] & elev_mask;
nw_corner[Y] = pow(elev,ALTSCALE);

ne_corner|X] = east_bound;

ne corner:Z) = north bound;

elev = gridpixel(zgrid+1|[xgrid+1] & elev _mask;
ne_corner|Y| = pow(elev, ALTSCALE});

* determine points of intersection between the left and
P
right sides of the road and the eastern grid boundary
and add these points to the polygon vertex array *

do_boundary(VERTICAL, UPPER, xgrid, zgrid, se_corner, ne_corner,
left _ptl, left pt2, right ptl, right pt2, &se flag,
&ne flag, polyl, &vertex cnt);

/* determine points of intersection between the left and
right sides of the road and the northern grid boundary
and insert these points into the polygon vertex array */
do_boundary(HORIZONTAL, UPPER, xgrid, zgrid, ne_corner,
nw_corner, left_ptl, left_pt2, right ptl,
right_pt2, &ne flag, &nw_flag, polyl, &vertex cnt);

/* determine points of intersection between the left and
right sides of the road and the diagonal and
insert these pointsinto the polygon vertex array */

do_boundary(DIAGONAL, UPPER, xgrid, 2grid, nw_corner, se_corner,
left_ptl, left pt2, right_ptl, right pt2, &nw flag,
&se flag, polyl, &vertex_cnl:)
/* remove duplicate entries from the polygon array *
num_duplicates = 0;
for (i = 1; i <= vertex cnt; ++i) {
if ((polyli 0/ == polyLii-1'0!) &&
{polyl 1 2! == polylli-1!2')) !
for {j = 1) < vertex -nt - num _{upticates: - -j)

poly1{jj[0] = poly1|j+1)(0};

poly1[j]{1] = polyl|j+1]{1];

poly1[j][2] = poly1[j+1][2];

num_duplicates += 1;
}
}

vertex cnt -= num *duplic ates;

130

Y

)

LN

42 8%

W R e

‘w "3 2> ¥ B

I R

:',‘l..‘.;‘l'

T

A LAN

‘*‘\ r

if (vertex_cnt > 0) { /* add polygon to grid_object *
if (road(zgrid|{xgrid; != 0) {
editobj(road(zgrid|{xgrid]);

else {
road|zgrid|[xgrid] = genobj();
makeobj(road|zgrid||xgrid});
}
color(ROADGREY); ~
polf(vertex cnt +1, &poly1(0}[0]);
linewidth(3);
poly(vertex ent — 1. &poly1(01{0});
closeobj();
}
vertex cnt = -1;
ne_flag = FALSE;
nw_flag = FALSE;
sw_flag = FALSE;
se_flag = FALSE;

/* determine points of intersection between the left and
right sides of the road and the southern grid boundary
and insert these points into the polgon vertex array *
do_boundary(HORIZONTAL, LOWER, xgrid, zgrid, sw_corner,
se_corner, left ptl, left pt2, right ptl,
right_pt2, &sw_flag, &se flag, polyl, &vertex cnt);

/* determine points of intersection between the left and
right sides of the road and the diagonal and
add these points to the polygon vertex array */

do_boundary(DIAGONAL, LOWER, xgrid, zgrid, se_corner, nw_corner,
left_ptl, left_pt2, right_ptl, right_pt2, &se flag,
&nw flag, polyl, &vert.ex__cnt)

/* determine points of intersection between the left and
right sides of the road and the western grid bound
and add these points to the polygon vertex array */

do_boundary(VERTICAL, LOWER, xgrid, zgrid, nw_corner, sw_corner,
left_ptl, left pt2, right ptl, right pt2, &nw _flag,
&sw flag, polyl, &vertex cnt);

* remove {unlicate 2ntries trom the polygon array *

num_duplicates = 0;
for (i = 1; i <= vertex cnt; ++i) {
if ((poly 1[i[0] == poly1[i-1][0]) &&
(poly1li}[2] == poly1[i-1]{2]}) {
for (j = i;j < vertex_cnt - num_duplicates; ++j) {
poly1(jj[0] = poly1[j+1[0];
poly1(j][1] = polyl{j+1]1];

131

o
v
-~ ~» T T I R T T L T B i o T e e T N
n..-".‘u oAby h".h‘; ol N LA AR O GAMACR "'.'P WY {""

W, ‘\"u\\'.\- NS

]

poly1(j}[2] = poly1(j+1]2]; :
1
num_duplicates += 1; :
} !
} b
vertex cnt -= num_duplicates: :
if (vertex_cnt > 0) { /* add polygon to grid_object *, i
if (road(zgrid|(xgrid] != 0) { _
editobj(road|zgrid||{xgrid]); .
else { 3
road(zgrid|[xgrid| = genobj(); v
makeobj(road|zgrid|[xgrid]); [!
]
color(ROADGREY); "
polf(vertex _cnt +1, &poly1[0]{0]); o
linewidth(3); &
poly(vertex_cnt + 1, &poly1([0|[0]); .
closeobj(); i
. .
4 A
}
}
right ptl!X]| = right pt2{X};
nght ptliZ! = right _pt2|Z}; ;
left pel!X| = left pt2{X|; -
left_pt1|Z] = left_pt2(Z]; ’
pt1[X| = pt2[X}; :.
ptl{Z] = pt2(Z];
pi2(X] = pt3|X; s
pt2(Z| = pt3(Z]; oA
} N
) 3
fclose(fp); RN
frontbuffer(FALSE); 3
} %
B
Al
Y
ah
¥
-
.
o
132 .:
."‘
: \

PR « Cofo ., ,".‘v’- T N T T T T s S) R L " T a k" WP RN R I R R L R P IS S S '-'

BAY Bat utoBat 9oV g8 §0 fob gd Bab oo% pov 0.V 58 B aoF 8 B.F 2.8 ¢

BUILDTERRAIN

/* buildterrain.c - this function builds objects representing 1km grid squares
in $-D, with each grid square generating 4 objects, identical except for
order of drawing bt

#include "gl.h" /* get the graphics defs */

#include "device.h" /* get the graphics device defs */

#include "fogm.h" /* default constants *

#include "math.h* /* math function declarations */

buildterrain()

{

/* array of data points to build the terrain */
extern short gridpixel{100/[100];

extern float savetrianglie:99:1991{2.131i3;

extern long gridcolor({99]({99];

extern Object target{991/99};

extern float ground planei4|i3};

extern long gnd_plane_color;

float gnd_plane ht;

Coord trianglel(3|[3], triangle2(3|(3]; /* polygon coordinates */
short xgrid, zgrid; /* indexes into the grid object array */

short endrow, endcol; /* miscellaneous indexes etc */
int row, col;

float ax,ay,az; /* interior point for use in the lightpoly function */
float lIx,ly,lz; /* position of light source in lightpoly function */

* min and max colormap indexes for 'ighting the poly *
long colormun. solormax:

/* color index to use returned by the lightpoly function */
long colortouse, colorl, color?;

char temp[50]; /* character string for countdown */
float x,y;
float gammacorr;

long rampamax, rampamin, rampbmax, rampbmin;

133

R N N R N R R B R R T N R N e A A AR SR
l'~ - L) - l' - LY \.'I‘ ¥ - o M ., v
SIS, .!55\ WA RS S R W AR08 N IS

E AR AN

. am, - " LI - -'s
R, _‘J‘\- AT _.'\. _'J'__.'\-',-

int startrow, startcol, coordidx, vertex;

Ix = 500 * FT_100M; ,* direction of light source */
ly = 100000 * FT_100M;
Iz = ly;

frontbuffer(TRUE); /* write to front buffer *

/* compute color for ground _plane polygon */
gnd_plane ht = pow((float)MIN, ALTSCALE);

ground pla—ne'OHOI = -NUMXGRIDS * FEETPERGRID:
ground plane{O][l] = gnd_plane_ht;

ground _planej0}[2} = NUMZGRIDS * FEETPERGRID;

ground plane(1}[0] = 2.0 * NUMXGRIDS * FEETPERGRID;
ground plane|1|{1] = gnd_plane_ht;
ground planei1|[2| = NUMZGRIDS * FEETPERGRID;

ground plane(2|{0| = 2.0 * NUMXGRIDS * FEETPERGRID;
ground plane|2][1] = gnd_plane ht;
ground plane(2|(2] = -2.0 * NUMZGRIDS * FEETPERGRID;

ground piane:3:,0l = -NUMXGRIDS * FEETPERGRID:
ground plane:3;:1} = gnd piane_ht;
ground pianei3{{2| = -2.0 * NUMZGRIDS * FEETPERGRID:

lightorient.(ground_plane,4,0.0,0.0,0.0,lx,ly,lz,256,461, &gnd_plane_color);

/* compute coordinates and colors for triangles and store in global
variable savetriangle for later display */

for (col = 0; col < 99; ++col) {
/* print new countdown number on title screen */
pushmatrix();
ortho2(0.0, 1023.0, 0.0, 767.0);
viewport(0,1023,0,767);
sprintf(temp, "Countdown to launch: %d%", 98 - col);
color(BLUE};
rectf(780.0, 15.0, 1010.0, 30.0};
color(CYAN);
emov2i(788, 20);
‘harsiritemp);
sopmatnx()

for (row = 0; row < 99; ++row) {

/* choose which color ramp to use so that a checker board
effect is acheived */
if ((row+col)%2){
colormin = 258;
colormax = 461;

134

“w

AT DN AP AL AN

X f.l‘
'~ .r.r%-."!f,_

o

]

OIS

3

M S

LS TR ", MR SR N P ..
¥y -. > .' -'(xn'f t"\t' \h' .-'\ Ay x

}

else {
colormin = 462;
colormax = 667,

}

. build the polygon

triangle1/0}|2] = (float)row * (-41.01) * 8.0;

triangle1(0}(0] = (float)col * 41.01 * 8.0;

triangle1(0{1] = pow((float)(gridpixel[row]|col|&elev mask)
, ALTSCALE);

L3

trianglel[1][2] = (foat)row * (-41.01) * 8.0;

trianglel!1]0] = (float)(col+1) * 41.01 * 8.0;

triangle1{1][1] = pow({float)(gridpixel[row]{col+1]&elev_mask)
,ALTSCALE);

trianglel{2||2] = (float)(row+1) * (-41.01) * 8.0;

triangleli2{i01 = (float)col * 41.01 * 3.0:

trianglel|2{[{1| = pow((float)(gridpixel{row+1[col|&elev_mask)
,ALTSCALE);

* copy common vertex values for opposing triangle of grid *.
for {vertex = L; vertex < J; ——vertex) {
triangle2ivertex:{0 = trianglelivertex;[0j;
triangle2{vertex;{1' = trianglel|vertexi{1l];
triangle2(vertex|[2| = trianglel|vertex|[2];

}

/* change corner coordinate to form opposing triangle of grid */

triangle2(0]|2] = (foat){row+1) * (-41.01) * 8.0;

triangle2(0][0] = (float)(col+1) * 41.01 * 8.0;

triangle2[0][1) = pow((float)(gridpixel{row+1][col+1]&elev_mask)
, ALTSCALE) ;

/* compute an interior point for trianglel */
ax = trianglel(0](0] + 15.0;

ay = -10.0;

az = trianglel{0]{2] -15.0;

/* light and orient trianglel */

lightorient{triangle[.3.ax.ay, az.Ix.lv.lz.colormin. colormax. &colorl):

° ‘ompute interior point !or triangle’
ax = triangle2}0),0| - 15.0;
ay = -10.0;
az = triangle2(0]:2] +15.0;

/* compute the light for and orient triangle2 */
lightorient(triangle2,3,ax,ay,az,Ix,ly,lz,colormin,colormax, &color2);

/* compute average color for the square */

135

D I O N P T -.'.‘..’..'..‘.'_."--'.~..--.-_.. .
R S S A AN

*

SR S

RN

&

AT
. X)

colortouse = (colorl + color2) / 2;

/* save this triangles color and orientation */
for (vertex = 0; vertex < 3; ++vertex)
for (coordidx = 0; coordidx < $; ++coordidx) {
savetriangle{row}jcoi|;0f{vertexj{coordidx| =
trianglel|vertex|[coordidx];
savetriangle[row|[col|{1][vertex|[coordidx| =
triangle2{vertex][coordidx];

gridcolor{row]|col| = colortouse;

}

frontbuffer(FALSE);

136

SR

\

£ 50,0

B¢

" .14

COLORRAMP

/* constructs the color ramps to be used for displaying the terrain.
If greyscale is true, constructs greyscale ramps, else it
. constructs green ramps. */

#include "fogm.h" ,* fogm constants */

colorramp(greyscale,init)
int greyscale, init;

(:

nc i; A

/* build two gamma corrected color ramps with slightly offset colors */

if (greyscale) {
gammaramp(1.5,256,205,255,255,255,50,50,50); /* even terrain ramp */
gammaramp{1.5.462,205.245,245,245.40.40,40); - * odd terrain ramp *,
gammaramp(1.5,668,180,235,235,235,30,30,30); /* tank ramp */
mapcolor(SKYBLUE,230,230,230); /* sky color */
mapcolor(ROADGREY,35,85,35);

}

eise {
gammaramp(1.5,256,205.0.255.0,0,50.0); /* even terrain ramp *. .
gammaramp(1.5,462,205,0,245,0.0,40,0); ,* odd terrain ramp *, .
gammaramp(1.5,668,180,255,165,55,75,55,0); /* tank ramp */ .
mapcolor{SKYBLUE,200,200,255); /* sky color */
mapcolor(ROADGREY ,35,35,35);

}

if (init) {
mapcolor(16,0,70,0); /* set up colors for contour map */
mapcolor(17,0,80,0);
mapcolor(18,0,90,0); 3

mapcolor(19,0,100,0);
mapcolor(20,0,110,0);
mapcolor(21,0,120,0);)
mapcolor(22,0,130,0}); v
mapcolor(23,0,140,0); (
mapcolor(24,0,150,0);

maocolor{25.0.165.0);

mapcoiort26.0.180.0);

mapcolor{27.0.190.0}:

mapcolor(28,0,210,0);

mapcolor(29,0,225,0);

mapcolor(30,0,240,0);

mapcolor(31,0,255,0);

mapcolor(32,75,55,0); .
mapcolor(33,95,60,0); K
mapcolor(34,115,70,0); o
mapcolor(35,125,76,0);

Vi e AYS' oAt At At a¥a e s At Rba'Rta 2ty UNPLRLY D U LW U U U U U U DAY UW R W U LT A O S DAV U U TR R R PO RO A OO

mapcolor(36,135,83,0);

mapcolor(37,145,90,0);

mapcolor{38,155,97,0);

mapcolor(39,165,105,0);

mapcolor(40,175,110,0);

mapcolor(41,185,113.0); -
mapcolor(42,190,118,0);

mapcolor{43,200,127,0);

mapcolor{44,210,135,30); .
mapcolor(45,225,145,35);

mapcolor{46,240,155,45); .
mapcolor(47,255,185,55); .
for (i=64; i<128; i++) mapcolor(i,0,0,255); N
for (i=128; 1<256; i++) mapcolor(i,255,0,0);
mapcolor(851,0,150,0); /* set up colors for instruction box */
mapcolor(852,255,165,55);

mapcolor(853,95.60.0);

IR

SARRRRON LoP

..‘... - Y
e e ol i W S

1 X ¥ e

> -u. 'f Al’ Xy

v s

mapcolor{854.0,0,0): /* color for indicator box background*/
} L]
}
138
':‘ A « :r ‘ -g _;_\n »:'\- "N .’- ‘..-'\.','- A A . ."h.. a0 _,.J. , o ,_ % CAON ... N.f'. 7 -r,‘. . -'. e e T T ' 1

_—

NXXS[WA

- . »

-

COMPASS

R
- -

.

/* compute the compass heading in degrees of the input direction. */
. #include "fogm.h" /* fogm constants */

i float compass(direction)
4 double direction;
' {
o float compassdir;
o compassdir = RTOD * direction;
:: if (compassdir <= 90.0)
compassdir = 90.0 - compassdir;
else
compassdir = 450.0 - compassdir;

; return(compassdir);

139

e
¥ S IS NS T ‘e T P Nty T L e
K S e R

LI T s S _"
w u. W

. i <

DISPLAY_TERRAIN

/* Compute which polygons need to be drawn to display the terrain and

output them in an order such that the polygons farthest from the viewer
are drawn first and those closest are drawn last.

Note: Eventhough this seems like a long routine, it is broken into 8

independent cases based on the direction the camera is looking.
If you understand one case the others are merely mirror images of the
algorighm for other octants. */

#include "fogm.h"
#include "math.h"
#include "gl.h"

display terrain(vx, vy, vz, px, py, pz, fovy,
firstxgrid, firstzgrid, lastxgrid, lastzgrid)

Coord vx, vy, vz, px, Py, pz;
int fovy;
short firstxgrid, firstzgrid, lastxgrid, lastzgrid;

{

extern float ground planei4!(3};

extern long gnd_plane_color;

extern Object road(99!(99];

extern Object target[99][99);

extern float savetriangle|99](99](2][3](3];
extern long gridcolor(99](99];

double lookdir;

int threshold, count, startx, startz;
short xgrid, zgrid;

float tanval;

float y;

if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
pushmatrix();

color{SKYBLUE);

“lear();

ortho2(0.0,1023.0,0.0,767.0); '* outline the screen */
color(BLACK);

recti(0,0,1023,767);

popmatrix(};

pushmatrix();
perspective{fovy,1.0,0.0,19500.0);
lookat(vx,vy,vz,px,py,pz,0.0};

140

Aed € 4 LT

TN 4 ' C e ‘Boa B ‘. 4 a'd a” * e o’ - + t 0l 5 acs JUR _(a' - “yte ¢ LW W g TR 14 00° J P T Y ig abg® &, M A TERTVUER

/* determine the direction of the line of sight */
lookdir = (double)atan2((float)(vz - pz), (foat)(-(vx - px)));
if (lookdir < 0.0) lookdir += TWOPI;

/* lay down the ground plane */
color(gnd plane color);
, polf(4, ground plane); -

/* put the grid objects through the geometry engine in an order
based on the lookdir. */

if (lookdir > SEVEN_QTR_PI)

. {

) /* 8th OCTANT */

\ threshold = (int)(tan(lookdir+~HALFPI) + 0.5);

count = 0;
startx = lastxgrid;
\ startz = firstzgrid;

while (startz <= lastzgrid) {
] zgrid = startz;
\ xgrid = startx;

y while {{xgrid <= lastxgrid} && (zgrid <= lastzgrid)) {

color(gridcolorizgrid||xgrid|);
polf(3,&savetrianglezgrid||xgrid}{0{[0](0]);
polf(3,&savetriangle{zgrid|[xgrid|[1][0][0});

if (road|zgrid|(xgrid] != 0) callobj(road|zgrid]|xgrid]);
V if (target{xgrid){zgrid| != 0) callobj(target|xgrid](zgrid]);
‘ /* check if tank should be drawn now */

zgrid += 1;
count += 1;

, if (count >= threshold) {
xgrid += 1;
: count = 0;
! }
}
: startx -= {:
count = 1);

if (startx < firstxgrid) {
startx = firstxgrid;
startz += threshold;

}

else if ((lookdir > THREE_HALVES _PI) && (lookdir <= SEVEN QTR PI))

141

\

‘.,‘.g.g‘g,l'.. 3‘-} BRI NSO J e ,._- ,_r‘;,'.(.- ._.4-.‘ N R L N N A A ST A TS

S5 S - ad fa1 'as sad $ad CopbontuR'Y.a 4 02 h a b s i ath o'8 V8 'R ath &' UV RN

/* Tth OCTANT */
tanval = tan(lookdir+~HALFPI);
if (tanval == 0.0)
threshold = 1000;
else
threshold = (int)((1.0/tanval) + 0.5);

count = O;

startx = lastxgrid;

starts = firstzgrid;

while (startx >= firstxgrid) {
zgrid = startz;
xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid)) {

color(gridcolor|zgrid||xgrid|);
polf(3,&savetriangle{zgrid||xgrid|;0{(0][0});
polf{3.&savetriangleizgridiixgrid! 170i]0i);

of (road|zgrid|{xgrid| != 0) callobj{road|zgnidj|xgrid)});

if (target(xgrid|{zgrid] != 0) callobj(target[xgrid](zgrid]);

xgrid -= I:
count +~=];

if {count >= threshoid) {

zgrid -= 1;
count = 0;
}
}
startz += 1;
count = 0;

if (startz > lastzgrid) {
startz = lastzgrid;
startx -= threshold;

\ }
else if ((lookdir > FIVE QTR _PI) && (lookdir <= THREE_HALVES PI))
{
*oth OCTANT
ranval = -tan{lookdir—HALFPI);
if (tanvai == 0.0)
threshold = 1000;
else
threshold = (int)((1.0/tanval) + G.5};

count = 0;
startx = firstxgrid;
startz = firstzgrid;

142

a® €' £ 0at 02® B2’ 2at Gt 4t

B
‘..o Wl

}

while (startx <= lastxgrid) {
zgrid = startz;
xgrid = startx:

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid)) {

}

}

color(gridcolor|zgrid||xgridi};
polf(3,&savetriangle|zgrid||{xgrid|[0{{0](0]);
polf(3,&savetriangle[sgrid][xgrid]{1][0](0]);

if (road|zgrid)|xgrid] != 0) callobj(road(sgrid|(xgrid]);

if (targetixgrid][zgrid] '= 0) callobj(target|xgrid|izgrid!);
xgrid +=1;

count += 1l;

if (count >= threshold) {
zgrid -= 1;
count = O;

startz += 1,
count = 0

if (startz > lastzgnid) {

startz = lastzgrid;
startx += threshold;

else if {(lookdir > PI) && (lookdir <= FIVE_QTR_PI))

e % 5% e J¥all

ooty "

/* 5th OCTANT */
threshold = (int)(-tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = firstxgrid;

startz = firstzgrid;

while (startz <= lastzgrid) {
zgrid = startz;

xgrid = startx;

(O

while ‘{xgrid - = firstxgrid) k& {zgnd - = lastzgnd)) {

coiorigrideolorzgridi xgridi);
polf(3,&savetriangle|zgrid||xgrid||0](0](0]);
polf(3,&savetriangle|zgrid]|xgrid](1](0][0]);

if (road[2grid|(xgrid] != 0) callobj(road|zgrid][xgrid]);

if (target|xgrid|(zgrid] '= 0) callobj(target{xgrid||zgrid});
agrid += 1,

count += 1,

143

n P P a P) s % P) .] T LR L W L e L T e D S R T Y
") v, W
LA A A A T) " M Lol NN N o L ATy ey Tt

A e

«

R S
S

'l

if (count >= threshold) {
xgrid -= 1;
count = 0;

}

startx —= L;
count = 0;

if (startx > lastxgrid) {
startx = lastxgrid;
startz += threshold;

} }
else if ((lookdir > THREE_QTR _PI) && (lookdir <= PI))
{

/* 4th OCTANT */

threshold = {int){tan(lookdir-HALFPI} - 0.5);

count = O;

startx = firstxgrid;

startz = lastzgrid;

while (startz > = firstzgrid) {
zgrid = startz;
xgrid = startx;

while ((xgrid >= firstxgrid) && (zgrid >= firstzgrid)) {

color(gridcolor{zgrid|{xgrid|);
polf(3,&savetriangle(zgrid]|xgrid](0](0][0] ;
polf(3,&savetriangle(zgrid]{xgrid][1](0][0]);

if (road(zgrid]|{xgrid] != 0) callobj(road|zgrid||xgrid|);

if (target{xgrid|[zgrid] != 0) callobj(target|xgrid|{zgrid]);

zgrid -= 1;
count += 1,

if (count >= threshold) {
xgrid -= 1;
count = 0;
)
1

startx += |,
count = 0;

if (startx > lastxgrid) {

startx = lastxgrid;
startz -= threshold;

144

".h‘!".'!‘:' "{N{;J“ Wod "‘.r" NN Ry '}"Q’:".'(\f- (oA -.."'\,"\'-’- SRR LR "‘V"'-"%"-'.‘-".‘-‘.\’\"'" f"';

1. R U [RPN NX] L1 . [LU UNS I AR A « - MMENRENRETENEA NN L) | N \J VPR PUWLUTIY PN Iy WA W, VWP W L R W TV T

]

h }

b else if ((lookdir > HALFPI) && (lookdir <= THREE QTR _PI))
K /* 8trd OCTANT */

) tanval = tan(lookdir+ HALFPI);

;l' . if (tanval == 0.0)

o threshold = 1000;

h else

o threshold = (int)((1.0/tanval) + 0.5);

t =

“ count = 0O;

:0 startx = firstxgrid;

:: starts = lastzgrid;

[while (startx <= lastxgrid) {

N zgrid = startsz;

" xgrid = startx;

"

o while ({xgrid <= lastxgrid) && (zgrid <= lastzgrid)) {
l‘.
::. color(gridcolor'lzgrid]{xgrid)i '

::: polf(3,&savetr}angle[zgr}d][xgr?d][0] [0][0]);

‘ polf(3,&savetriangle|zgrid|[xgrid]{1]{0}{0]);
Al if (roadizgrid|{xgrid| != 0) cailobj(roadizgridi xgrid!};
. if (targetixgrid||zgrid] != 0} cailobj{target|xgndj;zgrid|);
) xgrid += 1;

" count += 1;

if (count >= threshold) {

) sgrid += 1;

! : count = (;

) }

. }

startz -= 1;
. count = 0;

if (startz < firstzgrid) {
i, startz = firstzgrid;
startx += threshold;

+ W)
» f

! {

. »lse .f {(lookdir - QTR PD && {lookdir < = HALFP1))
" {

W /* 2nd OCTANT */

N tanval = -(tan(lookdir+HALFPI));

) if (tanval == 0.0)

9:; threshold = 1000;

" else

y threshold = (int)((1.0/tanval) + 0.5);
$ 145

i

)

D)
[}
. o < AP fn et at ermnraras e ans

: count = 0;
. startx = lastxgrid;
! startz = lastzgrid:

while (startx >= firstxgrid) {
sgrid = startz;
xgrid = startx;

while ((zgrid <= lastzgrid) && (xgrid >= firstxgrid)) {

color(gridcolor(zgrid|[xgrid]);
polf(3,&savetriangle(zgrid|(xgrid](0][0][0]);
polf(3,&savetriangle(zgrid|[xgrid|[1][0][0});

o >

if (road{zgrid|[xgrid] != 0) callobj(road|zgrid}[xgrid|);

if (target(xgrid|{zgrid] != 0) callobj(target|xgrid|(zgrid|);
xgrid -= 1;
count += 1;

if (count > = threshoid) {
zgrid += 1;
count = 0;

}

startz -= [;
count = 0;

if (startz < firstzgrid) {
startz = firstzgrid;
startx -= threshold;

}
}
else if ((lookdir >= 0.0) && (lookdir <= QTR _PI))

/* 1st OCTANT */
threshold = (int)(-tan(lookdir+HALFPI) + 0.5);

count = 0;

startx = lastxgrid;

startz = lastzgrid;

while (startz >= firstzgrid) {
zgnid = startz:

xgrid = starex:

while ((xgrid <= lastxgrid) && (zgrid >= firstzgrid)) {

; color(gridcolor|zgrid||xgrid});
- polf(3,&savetriangle|zgrid||xgrid][0](0](0]); s
polf(3,&savetriangle|zgrid]|xgrid][1]]0}[0]});

if (road(zgrid|(xgrid] != 0) callobj(road|zgrid||xgrid|);

146

R A S T T o N VT ST QU N N SRS N Y] N A N AT I P N e T PN P T P T el
.I.,.l‘- LAY ALAA L} N e A%y -..1 o 1% ' |.|.o (e .Y (00 Wiy Wy .’O W W M"Y o h ~ e

if (target(xgrid|[zgrid] != 0) callobj(target|xgrid||zgrid});
zgrid -= 1;
count +=1;

if (count >= threshold) {

xgrid += 1;
count = 0;
}
; }
startx -= 1; v

count = O;

if (startx < firstxgrid) {
startx = firstxgrid;
startz -= threshold;

}

N ¢

! ¢
popmatrix(}; '
}
1
\
A\l
]
;
?
]
[]
147 y

“ ¥ \'E:':\‘u\ 5- ."\'ﬂt }\' -

DIST TO LOS

#include "gl.h"

#include "math.h"

float dist to los{vx,vy.vz.px.py,pz.point)

/* compute the distance from the point "point" to the line of sight

Coord vx,vy,vz,px,py,pz;

float point{3[;

{
float a,b,c; /* direction numbers of line of sight */
float d,e,f;
float dist;

a = (float){px - vx);

b = (float)(py - vy);
¢ = {float)(pz - vz);

d = point{0] - (Hoat)vx;
e = point{l] - (foat)vy;
f = point:2| - (float)vz:

Il

dist = sqre((up i(e*c - f*b,2) + up i(f*a- d*c,2) - up i(d*b - e*a,2})/
(up_i(a,2) = up_i(b,2) + up_i{c,2))):

return(dist);

DO _BOUNDARY

v
\

#include "gl.h" N
#include "math.h"
#include "stdio.h" .4
#include "fogm.h" 5
$define X 0 :‘
#define Y 1 ‘
#define 72 2 o
#define DIAGONAL 0 :
#define HORIZONTAL 1 .
#define VERTICAL 2 Y

#define LOWER 0
#define UPPER 1

#define NONE 0
#define INTERSECT 1 K
#define PROPER 2

do boundary(bound type. which triangle. xgrid. 2grid, X

bound_start, bound end, left start,

left end, right start, right end, start _corner_flag,

end_corner_ﬂag, polyl, vertex_cnt)

int bound type, which_triangle, xgrid, zgrid; t

u

float bound_start[3], bound_end|3], left _start[3], left_end|3), N

right_start[3], right _end[3); .

int *start_corner flag, *end corner flag; B

float poly1[10](3];

int *vertex_cnt;

{ -
int test .ndex, °nt, (ndex: N
float bound right(3|, bound _left[3|, bound start edge(3|, .
bound end_edge{3]; p
float vertex array|10](3};
float road poly(10}{3]; i
float grid poly[10}[3]; 0
int intersect cnt; .

149 :
r

i R T S TP e
AP - B P LTI IS AL PR S S DU S SR T e R T S e O T L T
A P P P U S R P N S I I P O N A A A S S ST

int intersect _type, decending_sort;

float upper_bound, lower _bound;

float gnd level();
int in_this_poly();
intersect_cnt = -1;

/* compute the verticies of the road segment currently
being worked on */
for (index = O; index < 3; ~+index) {
road poly(0]{index| = left start[index|;
road poly(l1|{index| = left _end(index]|;
road poly(2|[index| = right_end|index|;
road poly{3|/index| = right_start(index|;
v
s

/* compute the verticies of the grid triangle associated with
this boundary */
grid poly(0t' X! = (float)(xgrid*FT 100M);
gnd polyi0! Zi = (float)({zgrid—1)*FT _100M);
grid_poly|1//X| = (float)((xgrid+1)*FT _100M);
grid_poly[1] Z] = (float)(zgrid*FT_100M);
if (which_triangle == UPPER) {
grid_poly[2}|X] = (float)((xgrid+1)*FT _100M);
grid_poly(2}{Z] = (float){{zgrid+1)*FT _100M);

else {
grid_poly{2|[X] = (float}(xgrid*FT _100M);
grid_poly[2](Z] = (float)(zgrid*FT_100M);

}
if (bound type == HORIZONTAL) {
test_index = X;

}
else if (bound_type == VERTICAL) {
test_index = Z;

else if (bound type == DIAGONAL) {
rest index = Z:

L
i

if (bound _start|test_index| < bound end|test_index)) {
lower _bound = bound _start|test_index|;
upper_bound = bound end|test_index|;

}

else {
lower_bound = bound _end|test_index|;
upper _| " bound = bound sta.rt[test. _index|;

150

......

, ."" o ."'v,-..',.

e a el of

LU SR IR IR N L

1

2 SRR

3

S A e B

% e

oV

DR UL I N LW

}In“-'\vfl'f

/* determine points of intersection between left and right sides
of the road and the boundary */

line_intersect2(bound_start, bound_end, right_start, right end,
bound right, Lintersect _type};
if (mtersect_type = PROPER) {

* intersection lies on road line segment, add intersection
to array */

intersect_cnt += 1;

vertex_array(intersect _cnt](X] = bound _right(X];

vertex_array|intersect_cnt||Z] = bound_right2j;

vertex array|intersect cnt|[Y]| = gnd level(bound _right[X],

-bound _right(Z|);

}

else if ((intersect type == INTERSECT) &&
(in_this_poly(grid poly, 3, right_start)) &&
(bound nght[test mdexl > lower bound) &&
{bound right'test mdex < upper_bound)) {

/* intersection point is beyond the bound of the road’s right
line segment. but the right start point is inside the polygon so
add the road’s right start point to the vertex array *

intersect cnt —= 1;
vertex a.rray{mtersect. _eni X| = nght_start,X;
vertex_array|intersect_cnt||Z] = right_startZ);
vertex_array|intersect_cnt|[Y] = gnd_level(right start|X],
-right_start(Z]);
}
else if ((intersect type == INTERSECT) &&
(in_this_poly(grid_poly, 3, right_end)) &&
(bound nght[test mdex] > lower_bound) &&
(bound _right|test_index| < upper bound)) {

/* intersection point is beyond the bound of the road’s right
line segment, but the right end point is inside the polygon so
add the road’s right end point to the vertex array */

intersect_cnt += 1;
vertex may[mtersect _entl[X] = right _end'X!;
vertex array intersect ~nt. Z! = right ~nd 2"
vertex arravintersect cnt: Y = znd _ewllrnzht ndiX .
-right _»nd-2');)
}
line_intersect2(bound _start, bound _end, left start, left end,
bound left, &intersect _type);
if (mt.ersect_type = PROPER) {
/* intersection lies on road line segment, add intersection
to array */
intersect cnt +=1;
vertex may[m'emct _ent|[X] = bound left | X};

151

PP A A e .‘ -
G SNy -‘_\(_‘-'_'J:-f_'(.-_;. r PRI .- .r N AT

vertex array|intersect cnt[Z| = bound_left|Z|;
vertex_array|intersect_cnt|[Y] = gnd_level(bound left(X],
-bound _left(Z]);

}

else if ((intersect_type == INTERSECT) &&
(in_this_poly(grid_poly, 3, left_start)) &&
(bound leftitest mdexn > lower _bound) &&
(bound left[test. mdex] < upper_bound)) {

/* intersection point is beyond the bound of the road’s left
line segment, but the left start point is inside the polygon so
add the road’s left start point to the vertex array */

intersect_cnt += 1,

vertex_array[intersect_cnt|[X] = left_start[X];
vertex_array(intersect_cnt|[Z] = left_start[Z|;
vertex_array[intersect “cnt|{Y]| = gnd_level(left_start|X],
-left at.art[Z}),

}

eise if ((intersect _type == INTERSECT) &&
(in_this_poly(grid_poly, 3, left_end)) &&
(bound left|test mdex] > lower_bound) &&
(bound leftitest indexj < upper_bound)) {

;* intersection point is beyond the bound of the road’s left
line segment, buc the left end point is inside the poiygon so
add the road’s left end point to the vertex array */

intersect cnt += 1;

vertex may[mtemct _ent][X] = left_end(X]};
vertex_array|intersect_cnt|{Z] = left_end|Z|;
vertex_array|intersect “ent][Y] = gnd_level(left_end[X],
-left_end|Z));

}

/* if either of the bound’s end points fall within the bounds of the
road, add them to the array*/

if (('*start_corner_flag) && (in_this_poly(road poly, 4, bound start))) {
/* put in start bound point */
*start corner flag = TRUE;
intem::t._cnt ¥= 1;
vertex arrayiintersect <nt’ X' = bound start'X};
vertex arrayintersect z'nr_ Z' = bound startiZ::
vertex zxrrayumcerﬁerc ot Y = bouna start Y

if ((!*end_corner flag) && (in_this_poly(road poly, 4, bound end))) {
/* put in end bound point */ -
*end _corner_flag = TRUE;
intersect cnt += 1;
vertex_array[intersect _cnt](X] = bound _end(X|;
vertex array(intersect cnt|(Z| = bound end|Z];
vertex a.rny[mtersect _ent|[Y] = bound _end|Y];

152

B "

T 5T SECLY TEE ST
!."’.l! \"'

}

/* determine the point of intersection between the start and end
bound of the road and the grid boundary */
line_intersect2(bound start, bound _end, left start, right_start,
bound _start_edge, &Lintersect type)
if (mt.ersect _type == PROPER) {
/* intersection lies on road line segment, add intersection
to array */
intersect cnt += 1;
vertex_array|intersect _cnt](X] = bound _start_edge(X]|;
vertex may[mt.ersect _cnt|(Z] = bound start_edge(Z];
vertex_array{intersect_cntj|Y; = gnd level(bound start_edge{X|
-bound start edge(Z]);

H

}

line_intersect2(bound start, bound end, left_end, right_end,
bound_end _edge, Lintersect _type);
if (mt.ersect_type == PROPER) {
/* intersection lies on road line segment. add intersection
to array */
intersect_cnt += 1;
vertex_array|intersect _cnt|[{X| = bound end edge(X];
vertex_arraylintersect_cnt|[Z] = bound end_edge|Zl;
vertex array|intersect cnt;[Y' = gnd level(bound _end _edge X,
-bound _end _edge|Zl);
}
/* put the points from the vertex_array into the polyl array in
the proper order */
decending_sort = (bound start{test_index] != lower_bound);
sort may(vertex _array, intersect _cnt, decendmg sort, test mdex),

for (cnt = 0; cnt <= intersect_cnt; ++cnt) {
*vertex_cnt += I;
polyl[*vertex_cnt|[X] = vertex_array(cnt]{X];
poly1{*vertex_cnt|[Y| = vertex array(cnt|[Y];

polyl{*vertex_cnt|[Z] = -vertex_array|cnt}|Z];
}
153
T R N N A N R T R LS R A0

i IE N

a9, !' ‘

AT AL

\"l

DA

<’ \f\-

S oL L AL,

- Sy % %% X

{ E PRI I
- K

IXTRPEY

AL

.I'-

-
J‘\J‘ o -

SRVIET IR VIV R R IIW U A U T AU K A R R R M A M RN R M0 a0 0 e a1 8 et a e e) % e ale” at ot a2 oY . ¥t b

e e -.

EDIT INDBOX

/* update the control settings of the indicator box */
#include "fogm.h"
#include "glLh"

edit_indbox(indbox, speedtag, headingtag, elevtag, altmsltag, .
soomtag, tilttag, pantag, desigtag, speed, compassdir,
vX, vy, vz, pan, tilt, zoom, designate) oM
Object indbox; y
Tag speedtag, headingtag, elevtag, altmsltag, zoomtag, tilttag, pantag,
desigtag;
float speed, compassdir; :
Coord vx, vy, vz B
’
double pan, tilt; X
-9
int designate; *§
int zoom; E
{ N
char chspeed|(5|, chheading|5), chelev[5], chaltmsl|5]; by
float gnd_level();
float zoomtic, pantic, tilttic; 3
- “
sprintf(chspeed,"%4.0f" speed); /* convert speed to string */ o
sprintf(chheading,"%3.0f" ,compassdir); /* convert heading to str */ ‘
sprintf(chelev,"%4.0f",vy - gnd_level(vx,vz)); /* convert elev AGL to str */ .]
sprintf(chaltmsl,"%4.0f",vy); /* convert alt MSL to str */
/* compute new location for zoom, pan, and tilt indicators */
zoomtic = zoom * -0.2766 + 222.128: K
tilttic = tilt * 721.92682 + 365.0; y
pantic = pan * -721.92682 + 435.0; N
editobj(indbox); /* update the indicator display */ .
objreplace(speedtag); -
charstr(chspeed); .
objreplace{headingtag}; \
charstr(chheading);
objreplace(elevtag); .
charstr(chelev); . “:
objreplace(altmsltag); N
charstr{chaltmsl); 4
objreplace(zoomtag);] !:‘
move2(28.0,z00mtic); 5
objreplace(tilttag); 5
N
154 5
;
> ¥
-

> e R [N . e e e
Pt A N e A e

AAAGAS

W

move2(42.0,tilttic);
objreplace(pantag);
move2(pantic,27.0);
objreplace(desigtag);
cmov2i(designate ? 10 : 19,10);
charstr(designate ? "DESIGNATE"
closeobj();

PR '-\f‘- N \ "\q'\ '1 " ~.
L A N ..

: "REJECT");

155

'1‘-'\

(N(.r..'ff

Y

o

..-...r\-r.r

'\‘-\\

\f$f v -f J‘

-

-

L= Dt o

T

'.'_-'-‘..' p,

AT al i

[AN S)

“a * W R,

. T'fﬁﬁ'ﬁ.'

[P
[Yy 0 s

“ T
.

‘§ pth ath o't ol l.'-'"

EDIT_NAVBOX

#include "fogm.h"
#include "math.h"
#include "glL.h"

edit._navbox(na.vbox, arrowtag, vx, vz, direction,firstxgrid, firstzgrid,
lastxgrid, lastzgrid)

Object navbox;

Tag arrowtag;

Coord vx, vz:

double direction;

short firstxgrid, firstzgrid, lastxgrid, lastzgrid,;

{

Coord arrowx, arrowy, larrowx, larrowy, rarrowx, rarrowy;

/* compute coordinates of arrow line segments for nav control box */
arrowx = vx + cos(direction) * 2.0 * FEETPERGRID;

arrowy = vz - sin{direction) * 2.0 * FEETPERGRID;

larrowx = arrowx + cos(direction - 2.3561945) * FEETPERGRID;
larrowy = arrowy - sin(direction - 2.3561945) * FEETPERGRID;
rarrowx = arrowx + cos{direction + 2.3561954) * FEETPERGRID:;
rarrowy = arrowy - sin{direction — 2.2561945) * FEETPERGRID;
/* update the contour map display with new info */
editobj(navbox);

objreplace(arrowtag);

move2(vx,vz);

draw?2(arrowx, arrowy};

draw2(larrowx, larrowy);

move2(arrowx, arrowy);

draw2(rarrowx, rarrowy);

rect(firstxgrid*FT 100M,-firstzgrid*FT_100M,
(lastxgrid+1)*FT _100M, (-lastzgrid-1)*FT 100M);
closeobj();

156

Ca Wy € TR WA e o’y o [P0 | DAL R R RS U I I
L .n..! SO ATM N "\"'* N .. ey ". o """ R L VRO

.Y F R B s

h Pk

v A....;.:

AN VEF K ES A,

A A

v € e
- W}

[B Th Jag= i g Jug

A e &S

aa

L

B
A

’
o«
[]

A T !

P

RN

s

ll%'

£ o
(ﬁ-..l5~

o n'.: "q ~

h S %

s
‘l

EXPLOSION

#include "gl.h"

explosion()

{

int ij;

pushviewport();
viewport{0,1023,0,767);
color(BLACK);
clear();

- swapbuffers();
color(RED);
clear(};
swapbuffers({);
swapbuffers{);
color(YELLOW);
clear(});
swapbuffers();
swapbuffers();
color(REDY};
clear();
swapbuffers();
swapbuffers();
color(YELLOW);
clear();
swapbuffers();
swapbuffers();
color(RED);
clear();
swapbuffers();
swapbuffers();
for (i = 0; i < 100000; i++)

for (j = 0;) < 10; j++);

popviewport();

157

NIRRT W R AT - gy - A R N e B A N, MG IR R T A R S R ‘-..-'.n'.
o VAN X S N '_'_.g.. T S T T DT s G/

b' i} ‘.t -'

FOGM (MAIN)

/* fogm.c -- an IRIS-2400 program by Doug Smith & Dale Streyle
It reads in a 10km x 10km section of a terrain map, computes a lighting

and shading model for the terrain, and allows overflight */
#include "gl.h" /* get the graphics defs */
#include "device.h" /* get the graphics device defs */
#include "fogm.h" /* constants */
#include "math.h" /* math function declarations */
#include "get.h" /* monitor type include file */

#include "stdio.h"

#include "sys/signal.h" /* used for screen dump utility */
#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

short gridpixel{100][100]; /* DMA elevation and vegatation data */
float savetriangle:99}199}{23{3};

long gridcolor|99}{99};

Object road|99;

Object target[99][99];

float ground planej4/{3};

long gnd _plane color;

float tgt posnM\X _TGTS|[3};

short tgt_grid_idx(MAX TGTS|[2];

short tgt_dirfMAX TGTS), tgt_total = 0;

float randx, randy, randz; /* random offsets from tank reference point */

int framecnt;

float min_elev, max_elev;

Coord tankx, tanky, tankz;

float frames_sec{1000}(2];

main()

{

IR %)

W O A L N R R e A e T A e e L L e M L e e e).
U Ut S AU Ue st e LY } | ()a *V - v 'h)

int greyscale = FALSE; '* FALSE = color, TRUE = greys */

int designace; , * booiean indicating desig, reject status *
int flying = TRUE; /* boolean controlling flying loop */
int active = TRUE; /* boolean controlling main program loop */

int nbyte, socket, connect _client(); /* networking variables & subroutine */

158

TP e 3

Y L o L

L

struct tms timestruct; /* structure for real-time clock calls */

Ao o S N T o

int tgt_idx; /* index of designated target */
) double direction; /* direction of travel in radians */
E: float speed; /™ speed of travel in knots </
)
; float compassdir; /* desired direction of travel in compass deg */
\ int fovy = 550; /* field of view in perspective command */
3: double pan = 0.0,
L tilt = -15.0 * DTOR; /* pan and tilt angles */

/* contour map, indicator, instruction */
1 Object contour, navbox, indbox, instrbox;
Object tank, pre | obj{7|;

) Tag headingtag, elevtag, speedtag, zoomtag, arrowtag, tilttag, pantag;
: Tag desigtag, altmsltag, pre 1 tag{6];
Y Colorindex unmask:
X Coord vx, vy, vz; /* viewer x y and z coordinates */
Coord px, py, pz; /* reference x y z coordinates for lookat */
A Coord tgtx, tgty, tgtz; /* targeted position on tank */
: float randseed(); /* random number generator initialization */
y
1
"
1 int frames = -1;
long seconds, lastseconds, totalseconds = 0;
! int numpolys;
: fioat elapsed;
] int idx;
Y FILE *fopen(), *fp;
/* first and last x and z indexes of the grid objects to draw */
: short firstxgrid, firstzgrid, lastxgrid, lastzgrid;
readdata(); '* read the data file into the gridpixel array *
/™ get socket number for networking */
. /*if (NETWORKING) socket = connect_client("npscs-iris1",3); */
. init_iris(); /* initialize the iris */
‘ unmask = (1<<getplanes()) - 1;
b writemask(unmask);
8
p randseed(times(×truct)); /* seed the random # generator */
g 159

A 3% .] "n %] ' % % B PR
S SR v e

o r R R A A R A N m-ma-
*- ‘. S \- PRSI e

AT AR et AT At et e L o N
NN S

o

init_tgts(); /* define targets */

Screen Dump(SCREENDUMP); /* enable screen dumping */
billboard(}); /* produce intro screen */
colorramp(greyscale, TRUE}); /* build all color ramps */

makescreens(pre | _obj, pre_l_tag); /* build objects for prelaunch */ .
makemap(&contour); /* build map object */
pre_|_obj[CONTOUR]| = contour;

prelaunch(&vx, &vy, &vz, &direction, &compassdir,
&active, pre 1 obj, pre] tag);

if (active) {
maketank(&tank); /* build object for a tank */

build road(); +* build the objects that comprise the roads */

/* process terrain data to build polygons and compute lighting */
buildterrain();

/* build object for the navigation display contour map */
drawnavbox(&navbox, &arrowtag);

/* build an object for the indicator box */
makeindbox(&indbox,& headingtag,&elevtag,&altmsltag,&speedtag,
&zoomtag,&tilttag, & pantag,&desigtag);

makeinstrbox(&instrbox); /* build object for control instruction box */
} /* end of if (active) block */
while (active) {

framecnt = 0;

/* initialize the operator controls (mouse and dials) */
init_controls(&pan, &tilt, &fovy, vy, greyscale, compassdir);

pushviewport();
viewport(0.1023.0.767);
color(SKYBLUE);

clear();

popviewport();
callobj(instrbox);
callobj(indbox);
editobj(contour);
objreplace(STARTTAG);
viewport(768,1023,512,767);

160

AT AT A NS WERTRE 5T S 3t WA N . .r-ﬁ- TR S
"y- o ',_'..‘_ haty ! \1.\\ A

2 T Y . o ¢

Py vV X7 A

-3 3y Y . w B B @

lag S, STy -ty °x 9

X A A A

5.

N \ .'..-.' \‘\
2

%S

PR
-
-,

&

-
-

%

b
D
¥

Pt S A A
& L} < . A ' o

closeobj();
callobj{contour);
swapbuffers();
callobj{instrbox);
callobj(contour);
editobj(contour);
objreplace{STARTTAG);
viewport (0,768,0,768);
closeobj();

flying = TRUE; /* missile is flying */
designate = TRUE; /* a target can be designated */

while(flying) { /* until tgt is hit or 3-button exit */

/* get values from user contols {mouse and dials) */
read controls(&designate, &greyscale, &flying, &active,
&speed, &direction, &compassdir, &vy,

&pan, &tilt, &fovy);

/* calculate which target was closest to the line of
sight */

if {'designate) {
nearest tgt(vx,vy,vz,px,py,pz.&tgt_idx);

}

/* update targets’ positions */
get_tgt posit(socket, designate, tgt_idx, &tgtx, &tgty, &tgtz, tank);

/* update missile position */
update_missile_posit(&direction, &compassdir, speed,
designate, tgtx, tgty, tgtz,

&vx, &vy, &vsz, &flying);

/* update camera lookat position */
update_look_posit(direction, pan, tilt, vx, vy, vz,
tgtx, tgty, tgtz, designate, &px, &py, &pz);

/* determine which polygons need to be drawn */
view bounds(vx, vy, vz, px, py, Pz, tilt, fovy,
&tirstxgrid, &firsczgrid, &lasixgrid. &lastzgrid);

* edit control display vbjects to retlect new values *-
edit_navbox(navbox, arrowtag, vx, vz, direction, firstxgrid,
firstzgrid, lastxgrid, lastzgrid);
edit_indbox(indbox, speedtag, headingtag, elevtag, altmsltag,
zoomtag, tilttag, pantag, desigtag, speed,
compassdir, vx, vy, vz, pan, tilt, fovy, designate);

/* display the 3-D view of the terrain as seen by

161

il s a0 g g A 2 B 822 4% 0% €2 9%2 80 "2 A2 8'2 AVa 82 A% %2 8% 2% 2'atAla AYs U A iad ah hat vah Ogf taf L% "a k. "al tat el tal 404 ¢, Lol Pt Y 4 8 "R

i’
K]
the camera */ ;
display terrain(vx, vy, vz, px, py, pz, fovy, .
firstxgrid, firstagrid. lastxgrid, lastzgrid);
/* display the control boxes */
writemask(SAVEMAP); y
callobj{navbox};
writemnask(unmask}; :-
callobj(indbox});)
.
swapbuffers(); Ry,
F:
seconds = times(×truct); N
numpolys = (lastxgrid - firstxgrid)*(lastzgrid-firstzgrid)*2; ;
elapsed = (float)(seconds - lastseconds)/60.0; ’

-

if ((frames >= 0) && (frames < 1000)){
frames sec|frames)[0] = (float)numpolys; 1
frames_sec|frames|{1| = 1.0/elapsed;

}

totalseconds += (seconds-lastsecondsj;

if (totalseconds > 7200) {

s
D

compactify(); /* do garbage collection every 2 mins */ t j

rotalseconds = 0.0; .

t
lastseconds = seconds; <

frames += 1; o

} /* end of flying loop */ ‘ ,

B

if (active) { /* explode & restart */ 3
explosion(); -
prelaunch(&vx, &vy, &vz, &direction, &compassdir, i’

&active, pre_1 obj, pre 1 tag); "

) A

. ~

} /* end of active loop */ N
/* write out performance stats */ N
fp = fopen("speed.data", "w"); K
if (frames > 999) frames = 999; f
for (idx = 0; idx <= frames; ++idx} { <

fprintf(fp.”%.2f %.2f0. frames seciidx. 0l, frames sec!idxi 1i); N

! N
¥.

-

‘f

bt

-

-

162 A

:‘I

N AN A NN N N AN A N A NN N PR

X Sy

R T P L S T T e Y LIS T TS
S, PN N AN AT AP N

4,-..0_4-_?

/* gracefully exit */
v if (NETWORKING) close(socket);
,5 setmonitor(HZ60);
color(BLACK);

" clear();

> swapbuffers();

: clear(};

e gexit();

b textinit();

) exit();

} /* end of main */

-‘. ‘\'l‘ll -

163

N
L}
L)
L]
-
L]
»

FILES.H

/* These are the files which contain data for the terrain elevations
and roads */

#define TERRAIN FILE "/work /terrain/tenkmsq.dat” ; :

#define ROAD _FILE " work, terrain, Road.data" b

FOGM.H

#define elev_mask Ox 1fff /* mask to obtain elev value from datum *
#define veg _mask 0x0007 /* mask to obtain vegatation value from

shifted 4atum *
#define RD 0 /* code for reading a file in "open" */
#define MAX 2800 /* max elev (ft) in contour map */
#define MIN 967 . * min elev (ft) in contour map ' _
#define SKYBLUE 4095 ,/* color index for sky color * '
#define ROADGREY 850 /™ color index for the road .
#define DELTAFOVY 50 /* field of view (z0om) increment of 5 deg *
#define PI 3.1415927 .
#define TWOPI 6.2831853 -
#define HALFPI 1.5707963

#define THREE HALVES PI 4.7123889

#define QTR _PI 0.7853982

#define THREE QTR PI 2.2561945

=define FIVE TR Pl 53269908

#define SEVEN QTR PI 5.4977871

#define RTOD 57.29578 /* radians to degrees conversion factor *
#define DTOR 0.0174533 /* degrees to radians ¢ ..version factor

#define FPS_TO_KTS 35.525148 /* convert feet per 60th seconds to knots *

164

wmmvv - -

#define PANSENS 300 * scale factors (sensitivity) for
navigaion controls {(mouse and dials)

#define SPEEDSENS 20
#define TILTSENS 50.0
g¢define DIRSENS 200

#define MAXLOOKDIST 32808.0 /°® maximum distance that the camera can
look ahead in feet */

#define FEETPERGRID 32808 '* number of feet in 1000 meters ..

#define ALTSCALE 105 . * altitude expansion factor. altitudes are
raised to this power to give an
exagerrated effect

sdenine NI MXGRIDS 1y * aumber o 'K grid squares 1n he East-

West direction

#define NUMZGRIL s 10 * number of 1k grid squares in the North-

South tirect,on
sdetine FT 10K ML *number FT n lolhm g
sdefine FT 100M 328 UR * number FT in 100m ‘
sdefine GRID FACTOR 1303781 * ronversion factor .
sdefine T g " for SGEmamitor § for TV :
sdefine SCREENDU MP 1 * } to enable screen dumping ' otherwise *

.

edetine NETWORRIN, ' i for rarget networn.ng therwise

sdefine INIT PAN " *inital min and max pan angles in deg
sdetine MIN PAN 25
sdefine MAX PAN 25

edefine INIT TILT 1. ‘pitial mon and mar 0 angies n feg °
ETLICT IS | BT B

e I i

sdehne MAN Al] PTONN S omar M Al itade o o were
sdetine MIN A] . P omramiurr altytate Lo n seie

sdetine INIT ~PR R ' B L I Y (R O N BRI T T S
o trhne MIN ~PHEL
sdetine MAN -PREHT 49

s tehne NI " oy Y A P N | e et e

mmm

#define CONTOUR 0 /* Indicies for array obj */
#define SCREENI1 1

#define SCREEN2 2

#define SCREENS 3

#defne INSTR 4

#define STATS 5

#define FLTPATH 3

#define LAUNCH 0 /* Indicies for array tag */
#define TARGET 1

#define DIR 2

ddefine HEAD M

#define TGT 4
g¢define MISSILE

T}

#define MAX TGT COLOR 847
#define MIN TGT COLOR 668

sdefine MAX TGTS {04

#define SAVEMAP 0x00C0

............

d
b
!
GAMMARAMP ':
hY,
'l
/* This routine puts a gamma-corrected color ramp into the color map. */ ‘f
#include <math.h> ::
4
)
t
gammaramp(gammaconst.firstcolor,ncolors,
brightred,brightgreen,brightblue, :,
darkred,darkgreen,darkblue) ;
"
float gammaconst; * Strength of Gamma correction {try 1.0} */ iy
'
long firstcolor; /* index number of the first color to set */ :
long ncolors; /* the number of colors to set */ .
long brightred,brightgreen. brightblue; /* the bright end of the ramp */ ;
long darkred,darkgreen,darkblue; /* the dark end of the ramp */ '
{ -
long 1; * temp ioop index *
float scl. | * scale factor for gamma correction */ .
long gcred.gcgreen gcblue; /* gamma corrected colors */ ‘
A
,
for(i=0; i < ncolors; 1+~) /* for all colors...*/ ;
{ b,
/* compute the scale factor */
scl = pow((float)i/(float}(ncolors-1) , 1.0/gammaconst);
"
).
/* compute the gamma corrected colors */ \
gered = scl * (brightred - darkred) + darkred; pA
gcgreen = scl * (brightgreen - darkgreen) + darkgreen; $
geblue = scl * (brightblue - darkblue) + darkblue: Ln)
mapcolor(firstcolor+, gcred, gegreen, geblue); /* set the color */ .
"
:
} A
N
~
L
-.
.“
-l
167 .
.
9
N

s » ‘ - “. M "o "a ‘w “w "w - = Ta - c o, T “ - R - e ™= K PR Y “w ~ T
» - P4 - -~ -
Loyl AL L O Sl LSS ALy N E, S AL L B P L A S

P

LRCHTH

KX

GET _TGT _POS

/* get targets’ positions from irisl if networking. Otherwise moves 10 targets
in straight lines, reversing when they hit an edge */

#include "fogm.h"

#include "gl.h"

#include "math.h"

#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

get_tgt_posit(socket,designate,tgt_idx,tgtx,tgty,tgtz,tank)

int socket, designate, tgt_idx;
float *tgtx, *tgty, *tgts;
Object tank;

{
extern float tgt_pos MAX TGTS|(3;
extern float randx, randy, rands;
extern Object target(99](99];
extern short tgt grid idxiMAX TGTSi2i;
extern short tgt_total, tge_dirMAX TGTS
short i, tgt_num;
int nbyte, add1();
float gnd _level(), dir, dx, dz, distance;
long dist, d2;
static long seconds;
static long lastsec = -999; /* -999 is flag to indicate no value */
struct tms timestruct;

seconds = times(×truct);

if (lastsec == -999) /* compute distance targets move ahead */
distance = 0.0;
else
distance = (float){(15.0'FPS_TO_KTS)"*(seconds - lastsec));
lastsec = seconds; /* save for next pass */
for (i = 0: 1 < tgt rotal: i~~) * delete targets from oid positions *
o ‘targevitge grid dxin O tge ynd axa ()
deloby(target tgt grd dx 1. 00 tge grd axa 1
target tgt_grid 1dx|ij|0;j|tgt_gnd dx 1|l | = 0,

}

if (NETWORKING) {
nbyte = read(socket, &tgt total, sizeof(tgt total));
for (i = 0,1 < tgt_total; i++) { -
nbyte = read(socket, &tgt grid idx!i/'0', sizeof(short)).
nbyte = read(socket, > grid idx:i’ 1, sizeof(short)).

168
"'.'- - \‘-\ " .. N e SN N N NN N A ‘.;,:.;_._,-."__-._.\

Lo il

-:'_."', e “‘.

[N

‘.I L l-

| AL

08555 v aliay s s NS

‘.l.l.\

A LA

. -

L]

- -

LA A

S

AZRR I W

3Pl

rrL

R ' 2 a2y "ptat
f..'{-f'r .

nbyte = read(socket, &tgt_pos:il[0, sizeof(float));
nbyte = read(socket, &tgt posli|{1!, sizeof(float));
nbyte = read(socket, &tgt poslil(2!, siseof(float));
nbyte = read(socket, &tgt_dir|ij, sizseof(short));

}
else {
tgt_total = 10;
for (i = 0; i < tgt_total; i++) {
dir = (float)(tgt _dir(i] / 10) * DTOR;
tgt _pos|i][0] += cos(dir) * distance;
tgt:posiii'2f -= sin(dir) * distance:
tgt_grid_idx[i][0] = (short)(tgt_pos|i|{0}/FT 100M);
tge_grid _idx{ij{1] = (short)(-tgt_pos ij;2|,FT 100M);
if ((tgt_pos|i]{0] > FT_10K) || (tgt_pos|i][0] < 0)) {
if (tge_dirfij > 1800) tgt_dir|i] -= 1800;
else tgt diri| ~= 1800;
tgt posiii 1 = 0.0:
f
else if ((tgt _posp| 2| < -FT _10K) || (1gt_posp|[2; > 0)) {
if (tge_dirfi, > 1800) tgt dirfi) -= 1800;
else tgt dir'i| += 1800;
tgt posa L = 0
i
else tgt posi 1 = gnd levelitgt pos 0. tgt posi 2)
}
}
if ('designate) {
if (NETWORKING) { ,* find which target is designated *
dist = up i{(float)(tgt posi0l'0) - *tgix).2} -
up i((float)(tgt posi0| 2 - “tgez).2);
tgt dx = O:
for (i = 1,1 < tgt total; i+ +} {
d2 = up i((float)(tgt pos1 0 - *tgix).2) -
up 1({Roat)(tgt pos1 2 - *rgiz).2).
if (42 - dist) {
dist = d2.
tgt dx = (inth,

}
!

}

R IR QL sos gt TAnY

Ty CAENTEL I te anedy

T [A TR I L R I U “anez
)
tgt num tgt total
for i -~ 0.1 - tgt aum 1+ +) |

dx - tgt poss O - (foat)tgt grd dey 0 FT 100M
ds (flost)(-tgt grnd sdxy 1) * FT 100M (g1 posy 2
if (dx - 150)
if (ds - 150) |
addi{s- 1.0}

169

N oG s ':__‘m LIS L I SN AT N

add1{i,-1,-1);
add1(i,0,-1);

}

eise if (ds > 313.0)
add1(i,0,1);
addifi.-1.1):
addl(1.-1.,0);

}

else add1(i,-1,0);

else if (dx > 313.0)

if (ds < 15.0) {
add1(i.0.-1)
addi(il,-1);
add1(1.1,0);

}

else of (ds > 313.0) {
add1(:.1,0}.
addii1,1).
Add i 0 |

}

else add1(1.1,0).

else f (ds - 150) add1(1.0.-1).

aise A2 3 wid b e

for v b 0 rer total g - * add rargets to new positions
£ target @ grd dx o 0 vgr o grend aday 1

editobj(target tgt grid dxy 0 tgt grnd adxa 1),
pushmatrix()
translate(tgt pos1 O gt post 1 (gt posy 2}
rotate(tge dair e Y)
callobyitank!
popmatrini)
rloseaby()

else |
target tgt gred ade sy 0 rge o grud ol i genoht)
makenbj{target tgt grid dor 0 tge gend adr 1)
pushmatrin(|
transiste{tgt pos i O gt ey §otgr e 20
roaste(tgt iy Y
~allobyitank!

L TR AN}

addtirge nym v
ehiort tgt nam g
{
eutern Roat 1t e MAYL T6, TS 8

170

~.'.' O o "'\ \\ "

CITCALN AR A 2 S R R A RIS G O LR PR

extern short tgt_grid idx(MAX TGTS|(2};
extern short tgt_total, tgt_dirfMAX TGTS5};
short i;

tgt_pos|tgt total|[0] = tgt pos(tgt num|/0]; /* copy pos. for "new" tgt */
tge positgt totallll] = tqt positgt numl'll;
tgt _positgt “otal, {2: = tgt _positgt aum 2
tge “dirtge total = tgt diritgt _num’; /‘ copy dir for "new" tgt *
tgt (nd ldx[tlt t.ot.nl][O] = tgt_grid _idx{tgt _num|{0] + x; /* set poa in */
tgt_gnd_ndx[tgt-t.oul[[l] = tgt_grid_idx(tgt_numj{1] + 3, /* new grid sq */
for (1 =0;1<2;i++){ /* reset if new grid sq outside 10km square */

if ftge grnd wdxtge total 't < 0) tge grid idx tge rotal i = O

if (tgt (nd ndx|tgt t.oulH | > 98) tgt gnd idx tgt _totallfi| = 98;

Al

/
tgt _totd + -+,

17

e

p }

. .-

F

-

PO

GND _LEVEL

#include "math.h"
#include "fogm.h"
#define X 0

#define Y 1

#define Z 2

float gnd_level(vx, vi)

float vx, vs;

{
extern short gridpixel{100}[100};
float interp elev();
float grid_level();

float point:3l. nw _corneri3i, ne_corner'S|, sw _corner(3!, se_corneri3i;

float intersect;3;
doat =jev:
int xgrid, sgrid, intersect type:

/* determine which triangle the point falis in *
agrid = hinti(vx FT 100M)

sgrid = ancleve FT O 100M),

if ixgrid - 1) xgrid = O

f (xgrid -)8) xgnd = I8,

f (sgrid < 0) sgnd = 0,

f (sgrid > 98) 3grid - 98,

point X - vx,

point 7 -vi;

nw orner X - (foat){xgnd FT 100M).

nw corner 2 - (Boat)((sgrid 1)°FT 100M).
elev - gndpixel sgnd + | xgrid’ & elev mask.
nw corner Y - pow(elev. ALTSCALE).

sw corner X - (float)(vgrid"FT 100M)

sw corner - (foat){sgrid*FT 100M)

elev - gridpixel sgrid xgr'd & elev mask

sw corner Y pow(elev ALTSCALE)

ne corner \ (Roat)((xgrid + 1)°FT 100M)
ne corner [(Roat)((sgnd - 1N*FT 100M)
elev - gridpixel agrid+ | wgad 1 & elev mask

e raer wow eley AL TS AL
. reer Y\ foar toagor s L Wiy
- roer 4. .41 '!i’"')"vr L JAY N

elev gridpivel agrnid sgnid - 1 & elev mask
se coener Y powisies ALTSCALE)

v (nw corner /) (vx nw corner X)) |
* peant s in the lower triangle *

* find the point of intersection of & line through vy ve
and the sw corner with the diagonal *

172

oy

AN) C

. Y B %

"

PRARE. .

lof Y

- s e 2 0 b -

-

+ CRAARRRS

TR

R A

.
)
\

A e}

line_intersect2(sw_corner, point, nw_corner, se_corner, intersect,

&intersect _type); .
'
/* find the elevation of the intersection on the diagonal */
intersect[Y] = interp_elev(nw_corner, se_corner, intersect);
/* find the elevation of the point vx, vy */ B
return(interp_elev(sw_corner, intersect, point)); R
. } 4

else {
/* point is in the upper triangle */

/* find the point of intersection of the diagonal with a line

through th ne_corner and the point */
line_intemctz(ne_comer, point, nw_corner, se_corner, intersect, o
&intersect type);

DI

\
/* find the elevation of the ° rsection on the diagonal */ :
intersect: Y' = interp elevinw corner, se corner. intersect}; -~
- - - A
/* find the elevation of the point vx, vz */ ,
return(interp elev(ne corner, intersect, point));
} .

173

IN_THIS POLY

ginclude "gl.h"

#define X 0 .
#define Y 13
#define Z 2
¢#define PROPER 2 .

int in_this_poly(polygon, num_vertex, point)
float polygon{10][$];

int num_vertex;

float point(3;

{

int index;

It pt_in, intersect Llype;

int num_crossings;

float max_x, max_g, min_x, min _s;
float incersect.3 ;

doat oid intersect 3.,

foat start _test _line 2,;

max _x = polygon 0{,X';
min_x = polygon|0i[Xi:
max 3 = polygon/0(Zi;
min 3 = polygon0i:Z;

for (index = 1; index < num vertex: + +index) {
f (polygon;index: X! < min x) min_x = polygon|index| X
if (polygonjindex X > max x) max x = polygon index||X|;
f (polygon'index Z - min 2) min 1 = polygon indexi'Z :
if {polygonindex. 'Z' > max 3} max 1 = polygon.index| Z'.
}

f ((point: X' < max x) && (point X' > min x) && (point.2' < max 1) &&
(pontiZ’ > mun 1)) {

* buint may be polyvgon. “est further by -onstructing a verticai line
Tom che nCInt "o 4 poIRE gtside Che Hotygons Dognds unt o he vyumoer
ot rimes this ine - rosses 1 oade of ihe noivgen i 1 rosses an
vdd numoer of Limes the puint is in Lhe putygon, otherwise it s
outside the polygon *

start test line/X = pownt X,
start test lineZ = max 3 + 10000,

num crossings = O
old intersect X - -9990;

174

et At a® a® a L’ . Ao .
> ‘-"d’~-'\ > ‘.l. -'\fstf 1'\-

old intersect(Z| = -999.0;
for (index = 0; index < num_vertex -1; ++index) {
line_intersect2(start f test _line, point, &polygon'index!f0l,
&polygon|index+1][0], intersect, &intersect type)
/* if a proper intersection exists and it is not the same point
as the previous intersection (i.e it didn’t intersect a vertex).
then add one to the number of crossings *
if ((intersect_type == PROPER) && ((mt.ersect[X] != old_intersect{X])
|| (intersect|Z] != old _intersect(Z}))) rum_crossings += 1;
old_intersect(X| = intersect[X];
old_intersect|Z]| = intersect|Z);
)
line_intersect2(start test line, point, &polygon{num _vertex-1](0},
&polygon{0](0], intersect, &intersect type);
if (intersect_type == PROPER) num _crossings += 1;

/* if the number of crossings is even, the point was outside */
pt in = {{(num crossings % 2) != 0});
return(pt nj:

else {
return(FALSE);
\
175
J‘J‘ A O A A N R R P I AT DAL R SRR A A
Vi e \'\ o \. SRR '\.‘-'-- \ Y “I'-.'.".' A N N T R N AR PRI YRR

WY

i

INIT CTRL>S
;* initialise the operator controis *
#include "fogm.h" '* fogm constants *
sinciude " jevice n” * grapnics levice jefinitions
#include "gl.h" * graphics routine dedinitions *
¢include "math.h" * math function defiaitions

init_controls(pan, tilt. fovy, alt. greyscale, compassdir)

double *pan, * imtial pan angle in radians *

double *uls. ¢ imitial it angle in ~adians *

int *fovy; * intial field of view in tenths of degrees *
Coord alt. * imtial altitude of missile *

Nt greyscale * 1mtial value of greyscale boclean *

foat compassdir * el compass drection ¢

{

*pan = INIT PAN * DTOR
gt ONIT THLTC UTOR
Caan T e

“aet IMITIAL IR AT AN A e c v e A A~
setvaluatori MOUSENX shoet)0 INTT PANTE ANSENS danrr MIN P ANE UNSE S
ishort 1/ MAX PANTPANSENS.

setvaluacor MOUSEY ishoet)t INIT T U THE USBENS wnoee MAN THL 700 0 U Se NS
ishoet)i MAN TILT*TIL TSENS.

setvaluatort DALY (short i cvmpassd s "DERSENS anoee S8 DIERNE N
short i T20°DIRSENS

setvajuaior DEAT 4 snoetcain MIN AL T AMIAN (LT
sety aluator DEALL short INTT SPRRDSER P DSE NS

short MUN SPEFDOSPEEDSE NS
shore MANX SPERDSPRERDSE NS

PP IR A : .J_. Catacat el o

INIT IRIS

* Initialise the graphics environment for the iris workstation *;

#include "gl h" .* graphics definitions */
=inciudge ‘get h” * monicor rype letinitions *
sinciude “fogm h" * fogm constants *.

it s)
{
‘ong ~hunk. * number of bytes be which objects
increment */
gt * initialize the IRIS system *)
doublebuffer(). * put the IRIS into double buffer mode */
chunk = 128,
chunksize(chunk)
gcontgy ;. * (means use the above command settings) */
R
secmonitor N1 34U, * choose tv or 3GI monitor “/
fontdef(1."TV font"),
font(1)}.

“ae secmonitor HEBO,

~ursoff rurn ~ff the “ursor

*/

backface{TRUE): * turn on backface polygon removal

=ofort Bl_ .'\CK)

cmar()

swapbuffersi)

INIT TGTS

#include "fogm.h"
#include "gl.h"

init_tges()

{
extern short tgt_total;
extern Object target99;
short x, y;
int init_tgt();

for (x = 0; x < 99; x++) for (y = 0; y < 99; y++) target,x|[y, = 0;

if {NETWORKING) {
tgt_total = 10;
init_tgt(0,9.8,3.5,1295);
init_tgt(1,9.5,3.5,1295);
niv_tg6(2,9.4.3.1,1295);
init_tgt(3,9.8,0.5,1800);
init_tgt(4,9.5,0.0,1355),
init_tgt(5,8.0,0.0,1445);
tnit_tge{6,4.0.0.0.1450);
init_tge(7,0.0,0.5.450);
init_tgt(8,9.5,9.8,2700);
init_tge(9,9.8,8.5.1800);

init_tgt{tgt num,xoffset,zoffset,direction)

short tgt _num, direction;
float xoffset, zoffset;

{
extern short tgt_dirfMAX TGTS|;
extern float tgt_posiMAX TGTS]|(3};
tgt_pos{tgt_num|[0] = xoffset * FEETPERGRID;
tgt_positgt_num|[2] = -zoffset * FEETPERGRID;
tgt_diritgt num| = direction;
178
e T e e ‘A.“.-_-.'.....-."‘--I‘_._'-(‘-.".._'.._;.._\._\.;_'\.'\‘_'-'_\‘_‘.‘.'...\..\ OGS,
PO IS - . h A)

INTERP ELEV

#incinde ‘math K"

sdefine X n
sdehne i
sdefine / 2

foat interp elev(hine start lLine end point|

ﬂn.l ine «tgry .

{

ine end 3 paamt D

iong float ine deitax, ine deitaz point deitax point deitas
float line length, dist to point
float aterpolation

line deltax = {long float)(line end X - line start X)
‘Ine eitaz iong doat line end [. nne <tart /

point deltax = (loag fBoat}{line start X - pontX).
point deltaz = (long float)({line startiZ. - pant'Z)),

nne length - Joatthypotliine deltax une Jeitaz)
dist to point = (foatihypotipoint deltax. point deltaz)

interpolation = hine start)Y; « ((line end'Y - line start|Y)) *
(dist to point/hine length)).

return(interpolation),

179

Bl

MG, PN 0 N NV AN A

PRI i ~ e Y LW >
AV R e VS WA P A SN,

LIGHTORIENT

this is file hghtorient - ¢

It & routine chat romputes lighting for & polygon based
upon the angle between the Normai vector of Lhe polygon
and the direction to the hight source

lightorient! xv2 necords ax av as Ix ly [2 coloemin colormax colortouse)

xys 3 floating courds of the polygon

ncoords - number of coordinates

ax.ay.az = intesior point of the whole object. Used Lo determine
sitward acing normai of the poiygon This s the same

point ol rejerence tnat wouid pe used for backface
polygon removal.

PRRRY

ix.ly.iz = vector pointing 1n direction Hf the hgnt source

colormun, colormax = indices used for the colors assigned to this ‘
polygon. The user is responsible for setting
up the color ramp .

colortouse = returned color used to light the polygon. :

Note: the routine also puts the polygons out ordered counterclockwise ‘

with respect to the interior point for ease of backface polygon y
removal.

‘/ ‘.
#include <math.h> -~
#include <gl.h>]

#define MAXCOORDS 80

sdefine PIDIV2 1570796327 9
;.

float txyz MAXCOORDS|[3|; /* temp coord hold *; %
lightorient(xyz,ncoords,ax,ay,az,lx,ly,1z,colormin,colormax,colortouse) .

float xyz(|[3]; %

long ncoords; Y

180 o

(St

w\

float ax.ay.as; | °* iaternior point of the whole object *

float Ix.ly.ls; /° direction to the light source *

long colormin,colormax, /* color min/max indices */

ong "-olortouse; * color usea 1o ught the polygun return caiue) *
{

long i,j; /* loop temps */

K long npoly orient(); /* direction test funcuion *;
"

N float v1(3],v2(3|; /* vectors used to compute
),

the polygon's normal */

. float normal|3;; /* the polygon's normal */

)

:E float normaimag; ; * aormal's magnitude *,
Cy

()

' float lightmag; /* magnitude of the light vector */
\

~ double dotprod: , * dot product of N and L *.
%

Ad

~ float radians: .* angle between N and L .

N

~N

e /* check the number of coords in the input array */
:s if(ncoords > MAXCOORDS)

e {

printf("LIGHTORIENT: too many coords passed to me! = %d0,ncoords);
i) . exit(1);

}

-

\
N /* orient the polygon so that its counterclockwise with respect

? to the interior point */

)

5 if(npoly_orient(ncoords,xyz,ax,ay,az) == 1)
7 /* the polygon is clockwise, reverse it. */
3 for(i=0: 1 < ncoords; i=i~1)
b3 J‘

for(j=0;j < 3: j=5+1)

. txyzli)[j] = xyz|ncoords-i-1][j|;

Y
4 ,

N }

W
:|: for(i=0; i < ncoords; ++i)

. for (j=0; j < 3; ++j)
xysiilli] = eyalilfl
0

181
»

ﬁo

)

o

EAT

S TP —ntp - . P .op e - A e A, -
BSOS ".o' 508 . GGG »" . N NN N W _\-\-\-.\\(

}
/* the coordinates are ordered counterclockwise in array xys */

/* compute the normal vector for the polygon using the first
three vertices...*/

/* compute the first vector to use in the computation */
v1[0] = xys(2|(0] - xys{1][0];
vi[1] = xys{2)[1] - xys{1][1};
v1[2] = xys(2](2] - xys(1][2];

/* compute the second vector to use in computing the normal */
v2{0] = xy3{0j[0] - xys{1}0];
v2(1j = xys{0]{1] - xys1][1];
v2(2! = xy3[0}2] - xys[1][2];

/* the normal is vl x v2 %/
normall0i = vLILi*v212: - v1121%v2I1L
normal|l) = v1{2{*v2|0| - v1|0}*v2|2|;
normal(2]| = v1{0]*v2[1] - v1{1]|*v2(0];
* compute the magnitude of the normal *-
normaimag = sqrt{{normail0*normal|0!)~(normaljli*normalil:}~
{normali2!*normali2i)):

/* check the magnitude of the normal */
if(normalmag == 0.0)

{
}

normalmag = 0.00001; /* a small number */
/* compute the light mag */
lightmag = sqrt((1x*1x)+(ly *ly)+(1z*1z));
if(lightmag == 0.0)

lightmag = 0.00001; /* a small number */

}

/* compute N . L (normal dot product with the light source direction) */
dotprod = {normall0| * Ix) ~ (normall1] * ly) ~ (normail2| * lz);

dotprod = dotprod/(lightmag®normalmag);

/* dotprod = cos(theta} of the angle between N and L.
Convert to angle in radians */
radians = acos(dotprod);

/* compute the color we should use */
if(-PIDIV2 <= radians && radians <= PIDIV2)
{

182

J" "u '\{'- ;.{“.‘.\‘.., N,’\"‘v'". . \"‘.{\"\v-' -f\"
+ Wy s e o

N>

™ % "5 3 W _w_"v

W P

AN NS AR E N N

N

~

oy ey

T

/% |f the angle 18 negative, set to positive
f(radians < 0.0)

{ .

radians = -radians,

(]
»
*-olortouse = {{coiormax-colormin) PIDIV2I*IPIDIV 2.radians| - coiormin. f
)
} .
else :
*colortouse = colormin; h

}
'
e . &
/* set the color *, P

color(*colortouse);

/* draw the poly */
/* polf(ncoords,txyz); */

Ll

£

«
. L4

A G 8L

- s
AL PP
-

183

L. .
*

“u ST R ") > N » "o R L P T N I I PR . -
K | ’) LR ~" f'.\ "f .f"\" f\t'- “-'\'.‘ xay IR :‘ : Loy

LINE INTERSECT?

¢include "gi b’

#define X O

sdetine L !

¢define NONE 0
#define INTERSECT 1
#define PROPER 12

line _intersect3(start], endl, start2, end2, intersect,
intersect type)

float startli3], end1{3 , start2(3], end2{3|, intersect|3|;
int “intersect type;

!
/* given two hines of the form s = mx + b and 2 = nx + ¢,
solving for x when the 3’s are equal gives x = (¢-b), (m-n).
Then solve for 3 using x in either of the above equations. */

Hoat m.n.b.c;
float minl x, min2 x, max! x, maxZ x, minl z. min2 3 maxl 3, max2 s

*intersect type = PROPER;

/* slope and 2 intercept of linel */
if (end1(X] != start1{X]) {
m = (end1(Z)] - start1{Z))/(end1|X] - start1{X|);
b = ((start1{Z] - end1|Z})/(end1[X] - start1[X])) * start1{X] + start1|Z];
if (end2(X]| != start2(X|) { /* both lines are non-vertical */
/* slope and 2 intercept of line2 */
n = (end2|Z] - start2{Z])/(end2{X] - start2[X]);
c = ((start2(Z] - end2|Z|)/(end2|X]| - start2{X])) * start2[X| +

start2(2);

if {(m!=n) {
intersect|X| = (c-b)/(m-n);
intersect{Z] = m*intersect|X] + b;

}

vlse { * both lines have »qual slopes *'
“intersect type = NONE:

}

}

else { /* linel is non-vertical, line2 is vertical */
intersect[X| = end2(X];
intersect|Z] = m*intersect|X| + b;

else {

184

f (end2IX '= start2 Xi) { '* linel s vertical, line2 1s non-vertical®
/* siope and 3 intercept of line2 *
n = (end2'Zi - start2°Z1)/(end2/X - start2/X):
¢ = ((start2,Z, - end2|Z), (end2 X. - start2{X }) * start2 X, +

start2(Z:;
» intersect/ X! = end1!X];
; intersect 2 - n*.ntersect X - -
:)
else { /° both lines are vertical */
‘intersect type = NONE;
« }
¢ }
’ if (*intersect type != NONE) {
- /* see if the intersection is proper, or if only the extensions of the
9 line segments intersect */
if (start1{X| < end1(X]) {
minl _x = start1{X];
~ maxl x = end1Xj;
~ } -
£ else {
f" minl_x = end1(X]|;
‘ maxl _x = start1{X];
D) }
if (startl Z] < endl'Z)) {
e minl 2 = startl|Z};
D maxl z = endl'Z};
%
else {
¥ minl 3 = end1{Z};
) max1_s = startl|Z};
' }
o if (start2[X] < end2|X]) {
b min2 _x = start2{X];
max2_x = end2(X|;
' }
. else {
' min2_x = end2{X];
N max2_x = start2(X];
o }
if (start2[Z] < end2(Z]) {
" min2_z = start2(Z|;
;:v max2 z = end2/Z};
K b
|“ alse
W min2_z = end2|Z|;
w } max2 2z = start2{Z};
b
3
R
"
»
M
)
o 185
l’.
,‘I
'.
\
:..:' ‘ . o r\"_ﬁ"y\r’.'-'-' T J: R P O T LI UL I Jr I

f ((intersect(X| < = max1l x) && (intersect X' <= max2 x) &&
(intersect| X! >= munl ‘) L& (intersectiX' >= min2 x) L&
(intersect/Z) <= max] l) && (intersectZ] < - max? 3) &&
(intervect|Z| >= minl n) && (intersect;Z, > = min2 1)) {

‘intersect type = PROPER:
}
else {
*intersect type = INTERSECT,

}

R

R AR AT RN

ARt S

-
Sy

3

Hg

\

MAKENAVBOX

/* drawnavbox.c - this function is called by the FOG-M missile simulator to
build an object on top of the coniour map in the upper right-hand corner
of the screen. Navbox ~ontains the direction arrow and view box in red. */

#include "gl.h"
. #include "fogm.h"
#include "device.h"

drawnavbox(navbox, arrowtag)
Object *navbox;
Tag ‘arrowtag;
{
navbox = genobj(); / create the navigation contol and display object */
makeobj(*navbox);
if (TV) viewport(475,635,323,474);
else viewport(768.1023,512.767); /* upper right hand corner of screen *;
pushmatrix(); /™ draw arrow in feet coordinates */
ortho2(-10.0,10.0 + NUMXGRIDS*FEETPERGRID, -10.0,
-10.0 - NUMZGRIDS*FEETPERGRID);
color(BLACK);
clear();
color(128);
*arrowtag = gentag(};
maketag(®arrowtag);
move2(0.0,0.0);
draw2(0.0,0.0);
draw2(0.0,0.0);
move2(0.0,0.0);
draw2(0.0, 0.0);
rect(0.0,0.0,0.0,0.0}; /* view box */
popmatrix(});
closeobj();

187

MAKEINDBOX

/" makeindbox.c is a function that creates an object that displays the control
idicators for the FOG-M missile simulation ¥/

#include "gi.h"
#include "fogm.h"

makeindbox(indbox,headingtag,elevtag,altmsitag,speedtag,zoomtag,tilttag,pantag,desigtag)
Object *indbox;
Tag *headingtag, *elevtag, *speedtag, *zoomtag, *tilttag, *pantag, *desigtag;
Tag *altmsitag;
{
*indbox = genobj();
makeobj{*indbox);
if (TV) viewport(475,635,162,322);
else viewport(768,1028,256,511); /* middle box on side of screen */
pushmatrix();
ortho2(0.0,255.0,0.0,255.0); /* use screen sized coordinates */

color(854); /* clear the window */
clear();
linewidth(2});

color(BLACK);
recti(0,0,255,255); /* outline box */

color(YELLOW); /* print labels for readouts */
cmov2i(10,240);

charstr("SPEED");

cmov2i(55,225);

charstr("kts");

cmov2i(90,240);

charstr("HEADING");

¢ire(140.0,232.0,3.0); /* "degree" symbol */
cmov2i(180,240);

charstr("Alt AGL"); /* AGL = above ground level */
cmov2i(225,225);

charstr("ft");

cmov2i(180,200);

charstr("Alt MSL"); /* MSL = mean sea level */
cmov2i{225,185);

charste("ft");

cmov2i(50,130);

charstr("ZOOM");

move2i(45,200); /* draw slider bar frame */
draw2i(25,200);

draw2i{25,70);

draw2i(45,70);

cmov2i(15,196);

188

AW > D0 R N G " 2N '«-\ My ~N -~ Y
RIOUOOA LM Ml Wi el S o X -" 2 “" J\ N \f‘\-’ o~ .r\- o J'“ N \‘\ n‘“' N NN

A A
\ .

charstr(""8"); /° label slider bar values *
cmov2i(6,170);
charstr("15");
cmov2i(6,144);
charstr("25"};
cmov?2i(6.118);
charser{"35");
emov2i(8,32);
. charstr("45");
cmov2i(6,68);
charstr("55");

color(WHITE); /* readouts in white... */
c¢mov2i(10,225); /* initialize to dummy values */
*speedtag = gentag();

maketag(*speedtag);

charstr(" 200"); /* speed */

cmov2i{108.225);

*headingtag = gentag();
maketag(*headingtag);

charstr(" 0"); /* heading */

cmov2i(180,225};

*eleviag = gentag();

maketag(*elevtagj;

charstr("1000"); /* altitude above ground leve] */

¢mov2i(180,185);
*altmsltag = gentag();

maketag(*altmsltag);

charstr("1000"); /* altitude from mean sea level */
color{REDY);

z00omtag= gentag(); / indicator for zoom slider bar */
maketag(*zoomtag);

move2(28.0,135.0);
rdr2(10.0,5.0);
rdr2(0.0,-10.0);
rdr2(-10.0,5.0);

popmatrixi();

if (TV) viewport(0,474,0,474); /” reset for heads-up display */
else viewport(0,767,0,767);

pushmatrix();
ortho2{0.0,767.0,0.0,767.0); /* use screen sized coordinates */
color(WHITE);

189

P U
,.w\#.'ﬁ._./__e,:'_'w".'-_.f\f\.-,_.-\. AT A A

- w v

B e dient aar e an

R 3

if (TV) hnewidthi2i,
else linewidth{1)

rectfi{365,370,370.373).

¢ draw center uof crosshairs

rectfi(396,370,401,3735);
rect1365.391 370.396);
rectti| 396,291 U1 2961,

move21{0.383):

draw2i(360,383); . * draw crosshairs *

move2i(406,383);
draw2i{767,333);
move21{383.01,

draw2i(383,365);
move2:{383,401);
draw2i(383,767);

linewidth{2);

move21330.30);
draw2i(40,50);
draw2i(40,680);
draw2i{30,680);
cmov21{0.676);
charstr("+25");
cmov21{0.613);
charstr("+20");
move2i(30,617);
draw2i(40,617);
cmov2i(0,550);
charstr("+15");
move2i(30,554);
draw2i(40,554);
cmov2i(0,487);
charstr("+10");
moveZ2i(30,491);
draw2i(40,491});
cmov2i(0,424);
charstr(" +5");
move2i(30,428);
draw?2i(40,428);
cmov2i(0,361);
charste(" 0",
movelii30.365);
Araw 21(40.265);
cmov2i(0,298);
charstr(" -5");
move2i(30,302);
draw2i(40,302);
¢mov2i(0,235);
charstr("-10");
move2i(30,239);
draw2i(40,239);

* draw TILT slider bar rame

-® label siider bar vaiues

cmov21{0.172);
charstr("-15");
move2i(30,176);
draw2:(40,176),
ecmov2i(0,109);
charstr("-20");
move1(30.113);
draw21{40,113);
cmov2i(0,46);
charstr("-25");

*tilttag = gentag():
maketag(*tilttag);
move2({42.0,365.0);
rdr2(10.0,-5.0):
rdr2(0.0,10.0);
rdr2(-8.0,-4.0);
rdr2(6.0,-3.0);
rdr2{ 1.0, 1.0);
rdr2{-2.0,-1.0);
rdr2(1.0,-1.0);

move2i(120.15);
araw21(120,25};
draw2i(750,25);
draw2i{750,15);
cmov2i(107,3);

* indicator for TILT slider bar */

* draw PAN slider bar frame */

charste("-25"); /* label slider bar values */

emov2i(170,3);
charstr("-20");
move2i(183,15);
draw2i(183,25);
cmov?2i(238,3);
charstr("-15");
move2i(246,15);
draw2i(246,25);
cmov2i{296,3);
charstr("-10");
move2i(309,15);
draw2i(309,25);
¢mov2i(363,3);
charstr{"-3"):
move21i372.15);
draw2i{372.25):
cmov2i{431,3);
charstr("0");
move2i(435,15);
draw2i(435,25);
¢mov2i(494,3):
charstr{"+5"):
move2i(498.15);
draw2:(498.25),

L a0 a N A LN NN N N e
AV AT AN A AP RGO RGO RO RO

191

P

Al e s A

NSIVE REAL-TIME 1 NTERHCTIVE THREE DIMENSIONAL
LATION SYSTEM(U VﬁL POSTORRDURTE SCHOOL
CA D B SHITH ET RL

F/G 5/9

wll B o 5
3320
off o el mm
o ‘0 20 o - %
LEE& Nm
. - § o I
“ELE 3 — £
K EFFEPPIT — 38 []
= 332
nv x I
. -— wnH x -
————— —— —— k3

cmov2i(552,3);

charstr("+10");
move2i(561,15);
draw2i({561,25);
emov2i(615,3);

charstr("+15");
move2i(624,15);
draw2i(624,25);
cmov2i(678,3);

charstr("+20");
move2i(687,15);
draw?i(687,25);
cmov2i(741,3);

charstr("+25");

*pantag = gentag();
maketag(*pantag);
move2(435.0,27.0);

rdr2(35.0,10.0);
rdr2(-10.0, 0.0);
rdr2(4.0,-8.0);
rdr2(3.0, 6.0);
rdr2(-4.0, 0.0);
rdr2(1.0,-2.0);
edr2(1.0, 1.0);

move2i(0,30);
draw2i(100,30);
draw2i(100,0);

*desigtag = gentag();
maketag(*desigtag);

cmov2i(10,10);

/* indicator for PAN slider bar */

/* designate/reject box */

charstr("DESIGNATE");

popmatrix(};
closeobj();

192

R R CROR N N T a7 e S ta T OV

Ca
o

- -
B

1

{

#include "gl.h"
#include "fogm.h"

makeinstrbox(instrbox)

Object *instrbox;

*instrbox = genobj();
makeobj(*instrbox);

if (TV) viewport(475,635,0,161);

else viewport(768,1023,0,255);
pushmatrix();
ortho2(0.0,255.0,0.0,255.0);

color(851); /* use a medium green
clear();

linewidth(2);

color(852); /* use light brown

/* box is in lower right hand corner */

MAKEINSTRBOX

/* makeinstrbox.c - this function builds an object that contains an instruction
summary for the FOG-M missile simulation

/* use screen-sised coordinates

'y
rectfi(10,20,110,195); /* draw the mouse conirol box */

rectfi(135,80,245,195); /* draw the dial control box

color{BLACK);
recti(10,20,110,195);
recti(135,80,245,195);
recti(0,0,255,255);

color{BLACK);
cmov2i(60,230);
charstr("CONTROL S");
cmov2i{37,200);
charstr("MOUSE");
cmov2i(172,200);
charstr("DIALS");

cmov2i(25,60);
charser("TILT™);
move2i{70.62});
draw2i(75,55);
draw2i(75,75);
draw?i(70,68);
move2i(75,75);
draw2i(80,68);
move2i(75,55);
draw2i(80,62);

/* outline controls

/* draw arrow

i/

*/

ettty

cmov2i(25,30);
charstr("PAN");
move2i(67,40);
draw2i(60,35);
draw?2i(80,35);
draw2i(73,40);
move2i(80,35);
draw?i(73,30);
move2i(60,35);
draw?2i(67,30);

color(853);
rectfi(20,85,40,185);
rectfi{50,85,70,185);
rectfi(80,85,100,185);
color(BLACK);
recti(20,85,40,185);
recti(50,85,70,185);
recti(80.85.100,185);

/* dark brown

color(853);
cirefi(160,165,20);
circfi(160,110,20);
cirefi(220,165,20);
cirefi{220,110,20);
color(BLACK});
cirei(160,165,20);
¢irei(160,110,20);
¢irei(220,165,20);
¢irei(220,110,20);
color(WHITE);
cmov2i(147,160);
charstr("SPD"); /* label dials */
cmov2i(147,108);
charstr("DIR");

cmov2i(207,108);
charstr("ALT");
emov2i(207,160);
charstr("CLR");

/* draw dials

/* outline dials

cmov2i(25,170);
charstr("Z"); /* label mouse buttons *
cmov?i{25.158);
charser("O");
cmov2i(25,146);
charstr("O");
cmov2i(25,134);
charstr("M");
cmov2i(25,110);
charstr("I");
cmov2i(25,98);
charstr("N");

/* draw arrow */

*/

/* draw mouse buttons */

/* outline buttons */

*/

/
/

194

|

St) Nar !

T IR

emov?i(55,170);
charstr("D");
emov?2i(55,158);
charstr("E");
cmov?2i(55,1486);
charstr("S");
cmov2i(55,134);
charstr("I");
cmov?2i(55,122);
charstr("G");
cmov2i(85,170);
charstr("Z");
cmov2i(85,158);
charstr("O");
cmov2i(85,148);
charstr("O");
emov2i(85,134);
charstr("M");
emov2i(85,110);
charstr("O");
cmov2i(85,98);
charstr("U");
cmov?2i(85.88);
charstr("T");

popmatrix(});
closeobj();

YO\

195

R A AR N S Ca R e

SN e
LIS IRV VL FONaNA I

NI

GRS

:\..:‘ ':',". N

- S dh ot R s e sl b el el e ad e ad

MAKEMAP

/* makemap.c - this function is called by the FOG-M missile simulator to
build an object containing a contour map. The map is used for the full
screen display in prelaunch, and in the upper right corner of the flight
display in fogm. */

#include "gl.h"
#include "fogm.h"
#include "device.h" ..

makemap(contour)
Object *contour;
{
short i, j, elev, length, lastcolor, breakpt[15];
int colour;
extern short gridpixel{100{[100]; /* terrain elevations & vegetation */

/* compute elevations where color changes should occur */
for (i = 1; i < 16; i++) breakptli-1] = ((MAX - MIN) / 16) * i) + MIN;

contour = genobj(); / create the navigation contol and display object */
makeobj(*contour);

viewport(0,767,0,767};

pushmatrix();

ortho2(0.0,100.0,0.0,100.0); /* use array index space */

color(BLACK);

clear();

lastcolor = BLACK;

linewidth(8);

for (i=0; i < 100; ++i) { /* draw column i */
move2i(i,0); /* start at bottom of column */
length = 0; /* # adjacent points of the same color */

for (j = 0; j < 100; ++j) { /* for each row in columni */
elev = gridpixel(j}(i] & elev_mask; /* mask off veg code */
if (elev < breakpt|0]) colour = 16; /* assign green colors */
else if (elev < breakpt[1]) colour = 17;
else if (elev < breakptj2i) colour = 18;
else if (elev < breakpt/3|) colour = 19:
else if (elev < breakpti4}) colour = 20;
else if (elev < breakpt|5|) colour = 21;
else if (elev < breakpt[6]) colour = 22;
else if (elev < breakpt|7]) colour = 28;
else if (elev < breakpt[8]) colour = 24;
else if (elev < breakpt|9]) colour = 25;
else if (elev < breakpt[10]) colour = 26;
else if (elev < breakpt(11]) colour = 27;
else if (elev < breakpt|12}) colour = 28;

196

(ond Y e

.l
¢
-

'SR

A

else if (elev < breakpt|13|) colour = 29;
else if (elev < breakpt|14]) colour = 30;
else colour = 31;

/* if veg-code = O (i.e. veg < 1 meter) shift to brown colors */
if (Y((gridpixel(j|[i] >> 18) & veg_mask)) colour += 16;

if (colour == lastcolor) length++; /* don’t draw yet */

else { /* draw now that color has changed */
color(lastcolor);
rdr2i(0,length);
lastcolor = colour; /* reset for new draw */
length = 1;

}
} /* end forj*/

color(colour); /* draw last (top) line */
rdr2i(0,length);
} /* end fori*/
if ('TV) {
color(BLACK); /* draw grid on top of map */
linewidth(1);
for (1 = 10; 1 < 100; i—=10) { /* draw interior lines */
move2i(i,0); /* horizontals * ' 4
draw2i(i,100); h
j move2i(0,i); /* verticals */
draw?2i(100,i);
} 3

}

linewidth(2); /* draw exterior border */
rect(0.0,0.0,100.0,100.0);

popmatrix();
closeobj();

[

4

ﬁ

197 %

‘ -c V ‘ . -. . 0)) » - . N } ‘. '.’." ‘.. ‘... ..'

MAKESCREENS

/* makescreens.c - builds graphical objects for prelaunch’s instructional
screens and readout boxes. */

#include "gl.h"
#include "device.h"
#include "fogm.h"

makescreens(obj,tag)
Object obj(7};
Tag tagé);
{
obj{INSTR| = genobj(); /* object for pre-launch instructions */

makeobj(obj INSTR]);

if (TV) viewport(475,635,239,474);
else viewport(767,1023,385,767);
pushmatrix();
ortho2(0.0,255.0,0.0,384.0);
color{CYAN);

clear();

color(BLUE});

rectfi(10,10,245,374);

color(WHITE);

cmov2i(30,340);
charstr("PRE-LAUNCH INSTRUCTIONS");
cmov2i(25,300);

charstr("1. PRESS LEFT MOUSE");
cmov2i(52,285);

charstr("BUTTON TO LOCK IN");
cmov2i(52,270);

charstr("LAUNCH POSITION");
cmov2i(25,220);

charstr("2. PRESS RIGHT MOUSE");
emov2i(52,205);

charstr("BUTTON TO LOCK IN");
cmov2i(52,190);

charstr("TARGET LOCATION");
cmov 21(25,140);

charstri"3. PRESS MIDDLE MOUSE");
cmov2i(52,125);

charstr("BUTTON TO LAUNCH");
cmov2i(25, 75);

charstr("4. PRESS ALL THREE");
cmov2i(52, 60);

charstr("BUTTONS TO EXIT");
popmatrix();

closeobj();

W &

AIrK] $ 4 -

S S v

Ly v 8 _o_*

/* define object for displaying user input for missile launch
position and target location. Also displays computed heading
and distance to target */

obj[STATS] = genobj();
makeobj(obj[STATS]);

if (TV) viewport(475,635,0,238);
else viewport(767,1028,0,384);
pushmatrix();
ortho2(0.0,255.0,0.0,384.0);

. color(CYAN);

clear();

color(BLUE);
rectfi(10,10,245,374);
color(WHITE);

* ¢cmov2i(30,340);
charstr("PRE-LAUNCH STATISTICS");
cmov2i(25,260);
charstr("LAUNCH POSITION: 10SFQ");
cmov2i(70,235);

charstr("X COORD: ");
cmov2i(70,220);

charstr("Y COORD: ");
cmov2i(170,235);
tag[LAUNCH] = gentag();
maketag(tag|LAUNCH]);
charstr(" ");
emov2i(170,220);

charste(" ");
cmov2i(25,180);
charstr("TARGET LOCATION: 10SFQ");
emov2i(70,155);

charstr("X COORD: ");
¢mov2i(70,140);

charstr("Y COORD: ");
emov2i(170,155);
tagTARGET] = gentag();
maketag(tag[TARGET)]);
charstr(" ");
emov2i(170,140);

charstr(" ");
cmov2i(25.100);
charstr{("HEADING: ");
cmov2i(25.60);
charser("DISTANCE: ");
cmov2i(106,100);

tag| HEAD| = gentag();
maketag(tag[HEAD));
charstr(" ");

cmov2i(115,60);

charstr(" "});

popmatrix();

closeobj();
/* define object for lines & circles showing flightpath on contour map */

obj[FLTPATH] = genobj();
makeobj(obj{[FLTPATH]);
pushmatrix();

if (TV) viewport(0,474,0,474);
else viewport(0,767,0,767);
ortho2(0.0,100.0,0.0,100.0);
color(BLACK);

clear();

color(64);

linewidth(3);

tag[MISSILE| = gentag();
maketag(tag[MISSILE]);
ciref(0.0,0.0,0.0);
move2(0.0, 0.0, 0.0);
draw2(0.0, 0.0, 0.0);
color({128);

tag[TGT| = gentag();
maketag(tag[TGT]);
ciref(0.0,0.0,0.0);
popmatrix(});

closeobj();

/* define object for displaying first screen of operator instructions */

obj{SCREEN1| = genobj();

makeobj(obj[SCREEN1]);

color(BLUE); /* set background color */
clear();

color(RED);

linewidth(10);

recti(0,0,1023,767);

linewidth(1);

color(WHITE);

cmov2i(420,500);

charstr("WELCOME");

cmov2i(420,450);

charser("TO THE");

cmov2i(320.400);

charstr{"FIBER-OPTICALLY GUIDED MISSILE");
cmov 21(420.350);

charser("(FOG-M)");

cmov2i(410,300});

charstr("SIMULATION");

¢mov2i(310,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE...");
c¢mov2i(315,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");
closeobj();

200

ﬁt\ﬁ)\\«\-\1»1"-\‘-\\"b".'\}‘\'\\‘&'h'\‘- B T T Y . S)
) L) L)
Al » e L NN %y ‘. W ‘.. ", AT -’ w "\' > >~ -l')

\\\\.\.\.\,._
Po L

Py

I N Y

NN

Wt e .

e A LA AT

é

/* define object for displaying second screen of operator instructions */

obj|[SCREEN2] = genobj();

makeobj{obj[SCREENZ2]);

color(BLUE); /* set background color */

clear();

linewidth(10);

color(RED);

recti(0,0,1028,767);

linewidth(1);

color(WHITE);

¢mov2i(210,600);

charstr("THE FOG-M PROGRAM PROVIDES A SIMULATED MISSILE LAUNCH AND");
emov2i(210,575);

charstr("OUT-THE-WINDOW VIEW OF THE TERRAIN AS SEEN FROM THE OPERATOR'S");
¢mov2i(210,550);

charstr("CONSOLE ON THE GROUND."});

cmov?2i(210,500};

charstr("THE GENERAL AREA FOR THIS FLIGHT SIMULATION IS FT HUNTER LIGGETT");
cmov2i(210,475);

charstr("CALIFORNIA AND VICINITY.");

cmov2i(210,425);

charstr("THE SPECIFIC TEST AREA IS A 10 KILOMETER REGION DESIGNATED BY");
cmov2i(210,400);

charstr("UNIVERSAL TRANSVERSE MERCATOR (UTM) GRID COORDINATES 10SFQ58.");
c¢mov2i(300,100);

charstr("PRESS MIDDLE MOUSE BUTTON TO CONTINUE,");

¢mov2i(305,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobj();

/* define object for displaying third screen of operator instructions */

obj[SCREENS| = genobj();

makeobj(obj|[SCREENS));

color(BLUE); /* set background color */

clear();

linewidth(10);

color(RED);

recti(0,0,1023,767);

linewidth(1);

color(WHITE):

cmov 21(385.850);

charstr("PRE-LAUNCH ORIENTATION"):

cmov2i(200,600);

charstr("1. WHEN THE PRE-LAUNCH PHASE OF THE FOG-M SIMULATION BEGINS, A");
¢mov2i(200,585);

charstr("2-DIMENSIONAL CONTOUR MAP OF THE TEST AREA (UTM 10SFQ58) WILL BE");
cmov2i(200,570);

charstr("DISPLAYED ON THE OPERATOR CONSOLE. TWO CONTROL PANELS CONTAINING");

¢mov2i(200,555);
charstr{"PRE-LAUNCH INSTRUCTIONS AND CURRENT LAUNCH STATISTICS WILL ALSO");

201

R g¥ Cad tat at a2t Taf Vil % PR ¢ ‘alt ¢ Sof gl cat Yon_ Va@ S o ‘2@ "2l 'ax. ‘al? gl ab . g taty gi gty gl gy g, giy gt piy gl gty o'

cmov2i(200,540);

charstr("BE DISPLAYED.");

cmov2i(200,490);

charstr("2. THE OPERATOR WILL BE REQUIRED TO PROVIDE TWO CRITICAL DATA");
cmov2i(200,475);

charstr("ITEMS TO THE LAUNCH CONTROL SYSTEM; INITIAL LAUNCH POSITION AND");
cmov2i(200,460);

charstr("TARGET LOCATION.");

cmov2i{200,410);

charstr("3. TO DEFINE INITIAL LAUNCH POSITION, MOVE CURSOR OVER DESIRED");
cmov2i(200,395);

charstr("LOCATION (REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW THE");
cmov2i(200,380);

charstr("CURRENT UTM GRID COORDINATES). PRESS LEFT MOUSE BUTTON TO LOCK");
cmov2i(200,365);

charstr("IN LAUNCH POSITION.");

cmov2i{200,315);

charstr("4. TO DEFINE TARGET LOCATION, MOVE CURSOR OVER DESIRED LOCATION");
cmov2i(200,300};

charstr("(REFER TO LAUNCH STATISTICS CONTROL PANEL TO VIEW CURRENT UTM");
cmov2i(200,285);

charstr("GRID COORDINATES). PRESS RIGHT MOUSE BUTTON TO LOCK IN TARGET");
cmov2i(200,270);

charstr("LOCATION. THE BLUE LINE DISPLAYS THE PROJECTED FLIGHT PATH. THE");
cmov2i{200,255});

charstr("MISSILE WILL FLY AT A CONSTANT VELOCITY AND HEADING. THE LAUNCH");
cmov2i{200,240);

charstr("STATISTICS CONTROL PANEL WILL DISPLAY COMPUTED MISSILE HEADING");
cmov2i(200,225);

charstr("IN DEGREES (0 DEGREES DUE NORTH).");

c¢mov2i(240,100):

charstr("PRESS MIDDLE MOUSE BUTTON TO MOVE INTO PRE-LAUNCH PHASE,");
cmov?2i(326,85);

charstr("OR PRESS ALL 3 MOUSE BUTTONS TO EXIT.");

closeobj();

202

*

Lo AL AL

.,

7 g LA

) AP RS

L]

o

LT R

P LSS

P

”

Bk st R
. v
-

S ‘1(vt

RN

.
»

MAKETANK

% %

! #include "gl.h" .
- #include "fogm.h" :
7,
maketank(item) Ly
Object *item; :
{
long points = 4, bigpoints = 8; .
float parray|(8|(3]; X
float Ix,ly,lz; :
long cmin = MIN_TGT_COLOR, cmax = MAX TGT_COLOR, cl; A
Ix = 400.0 * 41.01; /* direction of lightsource */ a
ly = 6000.0; Y
lz = 200.0 * (-41.01); y
,
*item=genobj(); . <
makeobj(*item); >
/* draw right side of tank CCW */ N
parray|0]|0] = -10.0; N
parray(0][1] = 6., -
parray(0][2) = -5.0;
parray|[1}{0] = -15.0;
parray{1]j1] = 4.0; 3
parray(1][2] = -5.0; s‘
parray|2|[0] = -15.0;)
parray|2|[1] = 2.0; 4
parray|2][2] = -5. o
parray[3][0] = -10.0; o~
parray(3][1] = 0.0; N
parray[3][2] = -5.0, 2
parray(4][0] = 10.0; ¢

parray|4](1] = 0.0;
parray|4|(2] = -5.0;

parray/'51/0l = 15.0:
parray 5i-1i = 2.0
parray' 52! = -3.0:
parray|6j0] = 15.0;

parray|8][1] = 4.0;

parray|8][2] = -5.

parray|7][0] = 10.0;

parray(7|[1] = 6.0;

parray{7](2] = -5.0;

lightorient{parray bigpoints,0.0,0.0,0.0,1x,ly 1z cmin,cmax,&cl);

color{cl);
203
SRR SRR N PR L A N WA WA U T T NS R UV TR IS T A TR S SRR
Mfmﬁm_ﬁﬂu{h‘mﬁ.{'.‘_}:\ﬁf{:ﬁﬂﬂﬁm e et e e e e e e e e

polf(bigpoints,parray);

/* front of tank CW */
parray|0][0] = 15.0;

parray[0][1] =

parray(0}[2] = -5.0;

parray(1][0] = 15.0;

parray[1][1] =

parray(1][2] = -5.0;

parray(2](0] = 15.0;

parray[2)[1] =

parray(2][2} =

parray(3][0] = 15.0;

parray[3][1] =

parray(3](2] =

hghtonent(pmay pomt.s 0.0,0.0,0.0,Ix,ly,1z,cmin,cmax,&c1);
color(c1});

polf(points, parray);

/* draw left side of tank CW */
parray[0][0] = 10.0;
parray|[0][1] =
parray(0]{ = 5.0;
parray(1][0] = 15.0;
parray(1][1] =
parray(1}[2] = 5.0;
parray(2}[0] = 15.0;
parray[2][1] = 2.0;
parray(2][2] = 5.0;
parray(3j{0] = 10.0;
parray(3][1] = 0.0;
parray(3](2] = 5.0;
parray(4]{0] = -10.0;
parray(4][1] = 0.0;
parray|4](2] = 5.0;
parray(5][0] = -15.0;
parray[s|[1] =
parray(5|[2]| = 5.0;
parray(6][0] = -15.0;
parray(6][1] =
parray|6][2] = 5.0;
parray!|71(01 = -10.0:
parrayiTi/li = $.0:
parray!7.2! = 5.0
lightorient(parray,bigpoints,0.0,0.0,0.0,1x,ly, 1z ,emin,cmax,&cl};
color(cl);

polf(bigpoints,parray);

/* back of tank CCW */
parray(0][0] = -15.0;
parray(0}[1] = 4.0;
parray(0](2] =

204

T .m e .

W

G R S P A A A N N A A SRS AP TR
08 /

U -\A}.‘ "'ﬁ‘p " ‘,'." N _-

.L"‘

AN

-. ‘-‘-
" "‘- CNaNr .'-‘

A.\-‘h_ L L AL T N

parray(1][0] = -15.0;
parray[1][1] = 2.0;
parray(1][2] = 5.0;
parray(2]{0] = -15.0;
parray|2](1] = 2.0;

parray(2|[2] = -5.0;
parray(3][0] = -15.0;

parray(3|[1] = 4.0;

parray(3](2] = -5.0;
lightorient.(pa.rra.y,point.s,0.0,0.0,0.0,lx,ly,lz,cmin,cmu,&cl);
color(c1);

polf(points,parray);

/* top middle of tank body CCW */
parray|0](0] = -10.0;

parray(0|(1] = 6.0;

parray|0}[2] = -5.0;

parray|(1)[0] = -10.0;

parray(1|[1] = 6.0;

parray[1][2] = 5.0;
parray(2|(0] = 10.0;
parray[2|[1] = 6.0;
parray(2/(2] = 5.0;
parray(3|[0] = 10.0;
parray{3[[1] = 6.0

parray(3][2] = -5.0;
lightorient(parray,points,0.0,0.0,0.0,1x,ly,1z,cmin,cmax,&c1)
color(cl);

polf(points, parray);

/* top front of tank body CCW */
parray|[0](0] = 10.0;
parray(0j(1] = 6.0;
parray(0}[2] = -5.0;
parray{1}{0] = 10.0;
parray(1]{1] = 6.0;
parray[1][2] = 5.0,
parray[2][0] = 15.0;
parray(2][1] = 4.0;

parray{2|[2] = 5.0;
parray|(3|{0] = 15.0;
parravi3lit! = 4.0

parrayisi 2! = -5,

lightorient(parray. points..0.0.0.0.0,ix.iv.Iz.cmin.cmax. &c 1):
color(cl);

polf(points,parray);

/* top back of tank body CCW */
parray|[0](0] = -10.0;

parray(0][1] = 6.0;

parray(0][2] = -5.0:

parray[1][0] = -15.0;

205

. A & & 4t L, at . b at \ Yaf ¥ - ‘al al ahe b Nofl a8 A8 b op . 0 .0 ‘.0 D [N I

N}

2

.!

t
parray[1][1] = 4.0; |
parray|(1]{2] = -5.0; X
parray(2][0] = -15.0;)
parray(2][1] = 4.0; !
parray(2](2] = 5.0;
parray|3](0] = -10.0;)
parray(3|[1] = 6.0;
parray(3]{2] = 5.0; n
lightorient(parray,points,0.0,0.0,0.0,lx,ly,lz,cmin,cmax,&c1); 5’
color(c1);) N
polf(points,parray); ,

Y
/* bottom middle of tank CW*/
parray|0][0] = -10.0; ’
parray|[0]{1] = 0.0; A
parray[0][2]| = -5.0; -
parray(1][0] = 10.0; 3
parray|1|[1] = 0.0; B
parray|1}[2] = -5.0; 3
parray(2][0] = 10.0; b
parray|2|[1] = 0.0; b
parray(2][2] = 5.0;
parray{3!(0] = -10.0; :
parray|3j{1! = 0.0; :
parray(3|{2| = 5.0; N
lightorient(parray,points,0.0,0.0,0.0,1x,ly,lz,cmin,cmax,&cl1); .
color(cl); .
polf(points,parray);

by
/* bottom front of tank CW */ '
parray|0}[0] = 10.0; Q:
parray|0][1} = 0.0; by
parray[0](2] = -5.0;
parray(1][{0] = 15.0;
parray|1][1] = 2.0; y
parray|1](2| = -5.0; :-‘
parray|2|[0] = 15.0; ~3
parray(2j[1] = 2.0; -
parray(2][2] = 5.0; !
parray|3|(0] = 10.0; R
parray|3|(1] = 0.0; !
parray'3.'2! = 5.0: t
lightorient{parray.points.0.0.0.0.0.0.1x.ly.lz.cmin.cmax. &ci); “
color{cl); ’
polf(points,parray); (N

/* bottom back of tank CW */ .
parray[0][0] = -10.0; .
parray[0][1] = 0.0; W
parray|0][2] = -5.0;
parray|(1/{0] = -10.0;
parray{1][1] = 0.0;

206

w) ¥ W W, " w e Ty -r."n_"'qq LT ATAN AT LU At Wt W - WL A N T e
D ."v-"f"‘o NN .l,o -' c. 5" .' .bl@. ,u .' \ N 4 3 ".' ».' \'LS' N | "\ > Ar TN # Ly

-
! ' L) I‘\' l‘ »y. . y

L X

o

X
=

L5 5%

- -
-
.-

e al"e

p)

i

parray(1][2] =
parray(2)[0] = -15 o;

parray[2|[1] = 2.0;

parray[2][2] = 5.0;

parray(3][0] = -15.0;

parray|3|[1] = 2.0;

parray(3]2] = -5.0;
lightorient(parray,points,0.0,0.0,0.0,1x,ly,ls,cmin,cmax &cl),
color(c1);

polf(points,parray);

/* right side of gun barrel */
parray[0][0] = 1.6667;
parray(o][1] =

parray(0][2] = -0.5;
parray[1][0] = 2.3333;
parray(1](1] =

parray[1][2] = -0.5;
parray({2|[0] = 17.0;
parray(2|[1] =

parray(2|[2] = -0.5;
parray([8)[0] = 17.0;
parray(3[1] =

parray(3|(2] = -0.5;
lightorient (parray,points,5.0,2.5,0.0,Ix,ly,1z,cmin,cmax,&c1);
color(el);
polf(points,parray);

/* top of gun barrel */
parray(0]{0] = 1.6667;
parray|0][1] =
parray(0|[2] = 0.5;
parray|[1][0] = 1.6667;
parray{1]]1] =
parray(1](2] = -0.5;
parray|2|[0] = 17.0;
parray(2][1] =
parray|(2|(2] = -0.5;
parray(3][0] = 17.0;
parray(3|{1] = 8.0;
parray(3][2] =
lightorient(parray.points,5.0.2.5.0.0.Ix.ly.1z.cmin.cmax.&c1);
coloricl);
polf(points.parray):

/* left side of gun barrel */
parray(0](0] = 17.0;
parray(0](1] =

parray(0](2] =

parray([1]{0] = 17.0;
parray|[1][1] =

parray(1][2] =

207

R e T oy e O N A o o

parray(2](0] = 2.3333;

parray(2|[1] = 7.0;

parray(2](2] = 0.5;

parray(3][0] = 1.6667;

parray|[3][1] = 8.0;

parray(3][2] = 0.5;

lightorient (parray,points,5.0,2.5,0.0,1x,ly,lz,cmin,cmax,&c1);
color(c1);

polf(points, parray);

/* end of gun barrel */
parray[0][0] = 17.0;
parray(0][1] = 8.0;
parray|[0}[2] = -0.5;
parray(1](0] = 17.0;
parray|(1][1] = 7.0;
parray(1][2]| = -0.5;
parray(2{{0] = 17.0;
parray(2|[l] = 7.0;
parray(2][2] = 0.5;
parray|{3][0] = 17.0;
parray(3|(1] = 8.0;
parray(3][2] = 0.5;
lightorient(parray,points,5.0,2.5,0.0,1x,ly lz,cmin,cmax, &c1);
color(cl);
polf(points,parray);

/*bottom of gun barrel */
parray|[0][0] = 2.3333;
parray(0][1] = 7.0;
parray[0][2| = 0.5;
parray(1][0] = 2.3333;
parray(1)[1] = 7.0;
parray|1][2] = -0.5;
parray(2][0] = 17.0;
parray(2|1] = 7.0;
parray(2][2] = -0.5;
parray{3]{0] = 17.0;
parray(3|[1] = 7.0;
parray(3][2] = 0.5;
lightorient(parray,points,5.0,2.5,0.0,1x,ly 1z,cmin,cmax,&c1);
color{c1);

polf(points. parray |;

/" right side of turret */,
parray(0|{0] = -3.0;
parray(0]{1] = 9.0;
parray(0/[2| = -1.0;
parray(1](0] = -5.0;
parray(1][1] = 8.0;
parray(1}(2| = -3.0;
parray(2/[0| = 3.0;

208

2 e

&

= a e

DN AN XXX # FROW Y UWUwWUYy 4

parray(2](1] =

parray(2}[2] = 30

parray(3)[0} = 1.0;

puray(S|[1] = 9.0;

parray(s][2] = -1.0;
hghtonent(pmay,points,-l.0,2.5,0.0,1x,ly,lz,cmin,cmax,&cl);
color(cl);

polf(points,parray);

/* front side of turret */
parray|0][0] = 1.6687;
parray(0][1] =
parray(0}[2] = -1.0;
parray(1}[0] = 3.0;
parray(1](1] = 6.0;
parray[1][2] = -8.0;
parray[2](0] = 3.0;
parray(2][1] = 6.0;
parray(2|[2] =
parray|3][0] = 1.6667;
parray(3][1] = 9.0;
parray(3](2] =

lightorient (parray,points.-1.0,2.5.0.0.1x,ly lz.cmin,cmax.&c1);

color(cl);
polf(points,parray);

/* left side of turret */
parray|0][0] = 1 6667;
parray|[0][1]
parray(0](2]
parray|1](0]
parray(1](1]
parray|1][2]
parray|(2}(0]
parray|2|[1]
parray|2](2]
perray(3][0] = -3 0
parray|3|[1] =

parray(3{(2] = 1.0;

T | I IO A '
amuou.—

lightorient(parray,points,-1.0,2.5,0.0,1x,ly,lz,cmin,cmax,&c1);

color(cl);
polf(points.parray);
* back side of turret * -
parray{0][0] = -3.0;
parray|0](1] = 9 °
parray[0][2] =
parray[1]0] = -5,
parray[1])[1] = 6.0;
parray(1][2] = 3.0;
parray(2)(0] = -5.0;
parray(2]]1] = 6.0;

209

Ny *;‘S. _{\ A {\,\‘,\ *";'\:f:.:‘.t%\ FOAIIS I ~° ‘-

---\\-"'1'\ - "
o AL \-f “&'r-'f*l\‘

P FRPP |y

ey

“

N S LN AT

AL
-) L

s

NARERERA: o

AR LA

‘

s

AT

“ % 5 _‘u R

- P

2

.......

.'\ «'

oW, AT A A Ay S OPLTOP NV Y

parray(2](2] = -3.0;
parray(8][0] = -3.0;

parray($|[1] = 9.0;

parray(8][2] = -1.0;

lightorient(parray,points,-1.0,2.5,0.0,Ix,ly,lz,cmin,cmax,&c1);

color(cl);

polf(points,parray);

/® top of turret */

parray(0][0] = -3.0;

parray{0](1] = 9.0;
parray(0][2] =

parray|1|(0] = -3.0;

parray(l]{1] = 9.0;

parray(1)(2] = -1.0;

parray(2(0] =
parray|2|[1] = 9.0;

parray(2|[2] = -1.0;

parray(3![0] =
parray(3|(1] = 9.0;
parray(3|(2| =

lightorient(parray,points,-1.0,2.5,0.0,1x,ly,!3,cmin,cmax,&c1);

color{cl);

polf(points,parray);

closeobj();

210

..\-‘\

,(J‘J'

qln.-!

N ROAC N SO N AR XY

-I\VI'

PN O 2 2GR

NEAREST TGT

#include "gl.h"

#include "fogm.h"
nearest_tgt(vx,vy,vs,px,py,ps,tgt_idx)
Coord vx, vy, vs, px, py, Ps;

int *tgt_idx;

{
float dist, dist_to_los();
float min_dist;
float num_tgts;
extern float tgt_pos|MAX TGTS|(3};
int index;

num_tgts = 10;
min_dist = dist_to_los(vx,vy,vs,px,py,ps,&tgt_pos(0][0});
‘tgt_idx = 0;

for (index = 1; index < num_tgts; ++index) {
dist = dist_to_los(vx,vy,vs,px,py,ps,&tgt_pos|index|{0});
if (dist < min_dist) {
min_dist = dist;
*tgt_idx = index;

211

NPOLY ORIENT

/* npoly_orient.c */

#include <glh>
#include <math.h>

int npoly_orient(ncoords,xys,xinside,yinside,sinside)
unsigned int ncoords;

Coord xys{|(3];

Coord xinside, yinside, zinside;

{
register unsigned short int i,j; /* loop temps */
Coord center(3]; /* center coordinate of the polygon */

Coord a[3|, b{3}; /* vector hold locations for the vectors that run
from the center coordinate to the points of the

polygon */

Coord xn(3], xmni3]; /* points on line containing normal that are
on opposite sides of the plane containing

the polygon.
*/
float distton; /* distance to point n from pt inside. */
float disttomn; /* distance to point -n from pt inside. */
Coord normal(8|; /* the normal vector computed from a x b */

/* compute the center coordinate of the polygon */
center|0] = 0.0;
center|1] = 0.0;
center|2| = 0.0;

for(i=0; i < ncoords; i++)
for(j=0; j < 3: j++)
)

1

.....

}
}

/* divide out by the number of coordinates */
for(j=0; j < 8; j++)

center(j] = center|j|/(float)ncoords;

212
v LY ™ A% .3 Y R RN T R N T " 2t
DAL AR A S, LEa LA) 3 ¥ o h ¥ & " ¥ ..{

/* check the first 2 coordinates of the polygon for their direction */

/* compute vector a. It runs from the center coordinate to coordinate 0 */
for(j=0; j < 3; j++)

afj] = xys[0](j] - centerlj];

/* compute vector b. It runs from the center coordinate to coordinate 1 */
for(j=0; j <3; j++)

bl = xya[1]li] - centerlj];

/* compute a x b to get the normal vector */
normal(0] = a[1]*b[2] - a[2]*b[1];
normal{1] = a[2]*b[0] - a[0]*b[2|;
normal(2| = a[0]*b(1] - a[1]*b{0];

/* compute point n, offset pt from center in direction of normal */
for(j=0; j < 3; j++)

xn(j| = centerlj| + normalljj;

/* compute point -n, offset pt from center in opposite direction
from normal.
*/
for(j=0; j < 3; j++)

xmn(j| = center(j] - normal(j|;

/* compute the distance the inside pt is from point n */
distton = sqrt((xn|0] - xinside) * (xn[0] - xinside) +
(xn[1] - yinside) * (xn[1] - yinside) +
(xn[2] - sinside) * (xn[2] - zinside));

/* compute the distance the inside pt is from point -n */
disttomn = sqrt({xmn[0] - xinside) * (xmn[0] - xinside) +
(xmn(1] - yinside) * (xmn([1] - yinside) +
(xmn/2! - zinside} * (xmni2] - zinside)});

213

- - e

e -

NS

i Nk g

CH NN S Y e A L i s . -

P

/* if the dist(n) < dist(-n), then n points back towards the
inside point and is on the same side of the plane as inside.
a x b is then clockwise.

*
if(distton < disttomn)
return(1); /* clockwise */

else

return(0); /* counterclockwise */

R I T PO N R R X Y DY N W YUY Y N W OW ORI TR IR RITRITYO umww‘mwwun-nutw

PRELAUNCH

' /* The function prelaunch is the user interface portion of the FOG-M
flight simulation. It allows the operator to interactively enter

‘:) critical data items necessary to simulate the missile in flight.
AR The function returns the initial launch position in the x-2 plane
o and also the direction of flight. */
K
. #include "gl.h"
';l #include "device.h"
) #include "fogm.h"
:'. #include "math.h"
1
" prelaunch(vx, vy, vz, direction, compassdir, active, obj, tag)
.:: Coord *vx, *vy, *v3;
’|: double *direction;
" float *compassdir;
y int *active;
Object obj(7];
Tag tag(6l;
B {
float gnd _level();
b float compass();
’ int screencnt, launchlock, targetlock;
. int xval, yval, xlaunch, ylaunch, xtarget, ytarget, utm_x, utm_y;
YA char xtemp(35|, ytemp|{35], dist{35], heading{35];
2 float distance;
: double xdistance, ydistance;
f:: . Colorindex unmask;
¢ xtemp[0] =’ ’;
: ytempl0] = ;
i, dist[0] ="' ;
'*.': heading(0] =’ ’;
unmask={(1<<getplanes()) -1;
X writemask(unmask);
o if (TV) viewport(0.835.0.474);

»ise viewport{0,1023,0.767):
pushmacrix(}):
ortho2(0.0,1023.0,0.0,767.0);

e e T

.E' *direction = 0.0; /* initialize the direction */

'

:: cursoff(); /* turn the cursor off */

¢

" callobj(obj{SCREEN1]); /* display screen 1 */
swapbuffers();

e

I 215

»

!

o

‘:'\ JON ST ﬂ&ﬁm&'{fﬁm&ﬂdﬁi’;

b
b
3l
)
screencnt = 1; /* initialize counter for screen displays */
while(TRUE) { ‘
frontbuffer(TRUE); .
if (getbutton(MOUSE2) && !(getbutton(MOUSE1}) && !(getbutton(MOUSES))) {
ringbell();)
while (getbutton(MOUSE2)); N
screencnt +=1; i
if (screencnt == 2) callobj(obj[SCREENZ2|); Y
else if (screencnt == 3) callobj(obj|SCREENS|); O
else break; .
} .
if (getbutton(MOUSE1) && (getbutton(MOUSE2)) && (getbutton(MOUSES))) { R
*active = FALSE; .
| goto exit; \
frontbuffer(FALSE); 4
editobj(obj[FLTPATH]); /* erase previous missile path */ y
objreplace(tag|{MISSILE}); '
ciref(0.0, 0.0, 0.0); L4
move2(0.0, 0.0); '
draw2(0.0, 0.0); N
objreplace(tag[TGT]); o
circf(0.0, 0.0, 0.0); -:
closeobj(); N
editobj(obj|STATS)); /* erase previous launch statistics */
objrepiace(tag| HEAD]); ::
charstr(""); -
cmov2i{115,60); o
charstr(""); .o
objreplace(tag| TARGET));
charstr("");
cmov2i(0,0); X
charstr(""}); ‘:
closeobj(); “
~
N
setcursor(0,RED,unmask); /* set up cursor and mouse */ §
attachcursor(MOUSEX ,MOUSEY); ,
setvaluator{ MOUSEX.384.0,767); J
setvaluatort MOUSEY .584.0.767); !
cursony): W
Gl
launchlock = FALSE; '
targetlock = FALSE; “
.
callobj(obj[CONTOUR]); /* load static displays into both buffers */ N
callobj(obj|INSTR|); N
callobj(obj{STATS]}); /* included so swapped buffer doesn’t have "hole" */ TNy
swapbuffers(); :
216 %
N
Y

...... . e R A

AT
I T

SN R
P Sa DY WO T YoV U

i)
st
;!
::‘ callobj(obj CONTOURY]);
A callobj(obj[INSTR]);
G
[
o _ while(TRUE) {
if (getbutton(MOUSE1) & & (getbutton(MOUSE2)) && (getbutton(MOUSES3))) {
‘ *active = FALSE;
. goto exit;
}
¥ xval = getvaluator(MOUSEX); /* read the x and y mouse positions */
yval = getvaluator(MOUSEY);
)
s
> utm_x = (50000 + (int)(xval * GRID_FACTORY)); /* compute grid coordinates */
‘.‘:, utm_y = (80000 + (int){yval * GRID_FACTOR));
o
. sprintf(xtemp,"%4d" utm x); /* store coordinates in temporary buffer */
, sprintf(ytemp,"%4d" ,utm y);
. _
; /* if LEFT MOUSE selected lock in launch position and update control panel */
N if (getbutton(MOUSES3) && (!getbutton(MOUSE2)) & & ('getbutton(MOUSE1))) {
A ringbell();
. xlauach = xval:
- ylaunch = yval;
e launchlock = TRUE;
. *vx = ((float)((xval * FT_10K)/767));
e, *vz = -((float)((yval * FT 10K)/767)):
*vy = gnd_level(*vx, *vz) + 200.0;
editobj{obj{STATS));
:" objreplace(tag{LAUNCH]);
o~ charstr(xtemp};
\ cmov2i(170,220);
N charstr(ytemp);
closeobj();
} /* end of MOUSES hit */
) /* As long as LEFT MOUSE not selected, keep on displaying current UTM
L grid coordinates in control panel area. */
if (launchlock) {
y editobj(obj[STATS]);
"; objreplace(tag' LAUNCH]):
P, ~harstrixtemp;
N cmov 21(170.220);
LS charstr(ytemp);
. closeobj();
4 " }
D)
=. /* if RIGHT MOUSE selected lock in target and update control panel. */
i
it .
' if (getbutton(MOUSE1) && ('getbutton(MOUSE3)) && ('getbutton(MOUSE2))) {
ringbell();
;: 217
»
W
[
e R A 2 L e A i St a6 e o Tl e e

a T 3.0 5 da B'm 8% dia 0 00 87e 800 8% Bl VeV AVt 2V 0 a8 Al el At el al Vat Vel ¥

xtarget = xval;

ytarget = yval;

targetlock = TRUE;
editobj(obj|STATS]);
objreplace(tag[TARGET));
charstr(xtemp);
cmov2i(170,140);
charstr(ytemp);

closeobj();

/* As long as RIGHT MOUSE not selected keep on displaying current UTM

grid coordinates in control panel area. */
if ('targetlock) {
if (launchlock) {
xdistance = ((double)(xval - xlaunch));
ydistance = ({double)(yval - ylaunch));

distance = sqrt((foat)(xdistance * xdistance + ydistance * ydistance));

distance = distance * GRID FACTOR,;
sprintf(dist,"%35.0f METERS", distance);
*direction = atan2(ydistance, xdistance);

if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass(*direction};

sprintf(heading,"%d DEGREES", (int)*compassdir);

editobj(obj{STATS]);
objreplace(tag[TARGET));
charstr(xtemp);
cmov2i(170,140);
charstr(ytemp);
objreplace(tag HEAD));
charstr(heading);
cmov2i(115,60};
charstr(dist);

closeobj();

}

/* if launch position and target location have been selected by the

operator compute the direction of the missile and distance to target. */

if (launchlock && targetlock) {
xdistance = ({double}(xtarget - xlaunchij};
vdistance = ((doublei{ytarger. - yiaunchj};
distance = sqrt((float)((xdistance * xdistance) ~

(ydistance * ydistance)));

distance = distance * GRID FACTOR,;
sprintf{dist,"%5.0f METERS", distance};
*direction = atan2(ydistance, xdistance);
if (*direction < 0.0) *direction += TWOPI;
*compassdir = compass(*direction);

218

L R

..._.. NN ".-"'.n“- .

R

-

¢ w o

R ¢ o A e
- -

Lot R J% X o

X,

A " % s > ¥

R T I)

‘1

et}

[Yt X

Yol A Ate BR. Rl gV, BV A¥a A n d ok A D BB Ial B he Sb di Sl AR AL A L AL A L ol ach old 4Bl ol it Batl Al 'T

sprintf(heading,"%d DEGREES", (int)*compassdir);
editobj(obj(STATS|);

objreplace(tag HEADJ);

charstr(heading);

cmov2i(115,60);

charstr(dist);

closeobj();

}

/* add small red and blue circles to contour map to indicate launch

position and target location. Connect circles to indicate missile
flight path */

if (launchlock)
if (targetlock) {
editobj(obj[FLTPATH]);
objreplace(tag[MISSILE]);
E circf((float)(xlaunch)/767.0*100.0, (foat)(ylaunch)/767.0*100.0, 0.6);
;': move2((float)(xtarget)/767.0*100.0, (float)(ytarget)/767.0*100.0);
draw2((float)(xlaunch)/767.0*100.0, (float)(ylaunch)/767.0*100.0);
objreplace(tag(TGT]));
circf((Roat)(xtarget)/767.0*100.0, (Boat)(ytarget)/767.0*100.0, 0.6);
closeobij();
J

. else {
editobj{obj|[FLTPATH));
objreplace(tag[MISSILE]|);
circf((float)(xlaunch)/767.0*100.0, (foat)(ylaunch)/767.0*100.0, 0.8);
move2((float)(xval)/767.0*100.0, (float)(yval)/767.0°100.0);
b : draw2((float)(xlaunch)/767.0*100.0, (float)(ylaunch)/767.0*100.0);
closeobj();
}

/* if MIDDLE MOUSE selected, launch has occurred and control transfers
back to main portion of FOG-M program displaying out-the-window 3-D
view of the flight area. */

)
E if (getbutton(MOUSE2) && ('getbutton(MOUSEL1)) && (!'getbutton(MOUSES))
) && launchlock &4& targetlock) {

ringbell();
while (getbutton(MOUSE2));
break:

"
writemask(SAVEMAP); b,
callobj(obj|[FLTPATH]); '
writemask(unmask);)
callobj(obj[STATS]); X
swapbuffers(); -

) .
exit: d
cursoff(); o
popmatrix(); , ‘::

. n"i’fu"e ‘Q.

r 2l T

R T e T e T]

LI RXAR

CH

(R4, £, 2 2y T " 'y

220

~f .v"l"‘f :

C ey

RANDNUM 3

/* randnum.c - returns a random float between zero and one */
. static long seed = 1234567;
randseed(newseed) :'
long newseed; * :::
{ =
seed = newseed;

’ A
: } 3
| p
| g
float randnum() R
i)
E long mult(); -
l seed = (mult(seed,31415821) + 1) % 100000000; R
| return(seed / 100000000.0); .
i | ;
| long mult(p,q) .;
} long p.q;
t ¢ o
i long p0, p1, q0, q1; v
pl = p / 10000; N

’ p0 = p % 10000; *
ql = q / 10000; -

q0 = q % 10000; N
. return((((p0*ql + p1*q0) % 10000) * 10000 + p0*q0) % 100000000); -

} \
&

»

N

"
{
‘.;
}..
.

1]
-y YN

-
B

'

221

B TP

oy

f/'/f

..... . ~ ~ NN,
Y A A T e L N AN A e N N A N N R N T A AT A DN T

" S EREREN N AL IR UV I L A UV ¥ Y T VY N W T P NP TR XTI PV IS YN WWOW AR OAK FERMA.

READCONTROLS

/* reads the values from the operator’s controls (mouse and dials) */

#include "gl.h" /* graphics lib defs */ .
#include "fogm.h" /* fogm constants */
#include "device.h" /* device definitions */

i'ead_controls(designate, greyscale, flying, active, speed, direction,
compassdir, alt, pan, tilt, fovy)

int *designate, *greyscale, *flying, *active, *fovy;
float *speed, *compassdir;

double *direction, *pan, *tilt;

Coord *alt;

{

extern float randx, randy, randz;
float randnum();
Colorindex colors|1};

/* quit if all three mouse buttons are pushed */

if(getbutton(MOUSE1) && getbutton(MOUSE2) && getbutton(MOUSES)) {
*flying = FALSE;
*active = FALSE;

else {
if (getbutton(MOUSES3) && !(getbutton(MOUSE2))) { /* Zoom In */
*fovy = (*fovy < (80 + DELTAFOVY)) ? 80 : *fovy - DELTAFOVY;
}

if (getbutton(MOUSEL1) && !(getbutton(MOUSE2))) { /* Zoom Out */
*fovy = (*fovy > (550 - DELTAFOVY)) ? 550 : *fovy + DELTAFOVY;

}
if (getbutton(MOUSE2)) { /* designate/reject target */
if (*designate) { /* see if target in sights */
/*pushmatrix();
pushviewport();
pushattributes();

viewport(0. 1023, 0. 767);
ortho2(0.0, 1023.0, 0.0. 767.0);
cmov2s((Scoord) (768, 2], (Scoord)(768,2)};
readpixels(1,colors);
if ((colors|0] >= MIN _TGT _COLOR) && (colors[0] <= MAX_TGT_COLOR)) {*/
*designate = FALSE;
ringbell();
randx = 30.0 * randnum() - 15.0;
randy = 10.0 * randnum() - 5.0;
randz = 10.0 * randnum();
while (getbutton(MOUSE2)};

222

S g g

A KN A&

eV &

=~ s o
=

oy

o Pn T O
,'o.l(.v.'lo' ";

\7
» l“’..‘ [}

5.'.'

/*}
popattributes();
popviewport();
popmatrix({); */

else { /* reject currently designated target */
ringbell();
*designate = TRUE;
/* re-adjust tilt and pan values appropriately */ ;

}

if (*greyscale != getvaluator(DIALS)) { /* DIALS indicates color change */
*greyscale = !*greyscale;
setvaluator{DIALS,*greyscale,0,1);
colorramp(*greyscale FALSE);

}

speed = (float)(getvaluator(DIAL2) / SPEEDSENS); / get desired speed */
*alt = (Coord)(getvaluator(DIAL4));

*pan = DTOR * (double)(-getvaluator(MOUSEX)) / PANSENS:;
*tilt = DTOR * (double)(getvaluator(MOUSEY)) / TILTSENS:

*compassdir = (float)getvaluator(DiALO) / DIRSENS;

/* keep *direction between O and 360, update valuator if changed */

if (*compassdir >= 360.0) {
*compassdir -= 360.0;
setvaluator(DIALO,(int){*compassdir* DIRSENS), (int)(-360*DIRSENS),
(int)(720*DIRSENS));

if (*compassdir < 0.0) {
*compassdir += 360.0;
setvaluator(DIALO,(int)(*compassdir* DIRSENS), (int)(-360*DIRSENS),
(int)(720*DIRSENS));

/*convert *direction from compass degrees to trigonometric radians */
*direction = (*compassdir <= 90.0) ? DTOR * (90.0 - *compassdir) :
DTOR * (450.0 - *compassdir);

223

LALLM A N YL oA N \'- ot DRI '.r... '.- LT et e e '_"'.'7'.' -
NN AN “on” Y A A I A AN AN AN N T

S gt

- 'l

3\

F WA AN AT A AT N A RN IR TN LN MUY T S Y MWV N UT W UTIN VUYWAY MUY

READDATA

/* reads the raw 16 bit elevation and vegetation code data
from the DMA data file and inserts it into the global
gridpixel array */

#include "“fogm.h"
#include "files.h"

readdata()
int fd; /* file descriptor for the data file */
short row, col, rowoffset, coloffset; /* loop indicies */
extern short gridpixel[100][100]; /* DMA elev and veg. data */

/* read the data from the data file into the gridpixel array */

fd = open(TERRAIN FILE,RD});

Iseek(fd,0,0);

for (coloffset = 0; coloffset < NUMXGRIDS * 10; coloffset += 10) {

for (rowoffset = 0; rowoffset < NUMZGRIDS*10; rowoffset += 10) {
for (col = 0; col < 10; ++col) {
for (row = 0; row < 10; +~+row) {
read(fd,&gridpixel{rowoffset+row|[coloffset +col|,2);

}

27

224

ROAD BCUNDS

#include "math.h"
#include "fogm.h"

#defineX O
#define Y 1
#define Z 2

#define NONE 0

road bounds(ptl, pt2, pt3, road_width, left _ptl, right ptl, left _pt2,
right_pt2, first_xgrid, first_sgrid, last_xgrid, last_sgrid)

float pt1[3], pt2(3], pt3(3], road_width;

float left pti(3], right pt1(S], left pt2(3], right_pt2(3};

int *first_xgrid, *last xgrid, *first _zgrid, *last_zgrid;

{
float delta_x, delta_z, seg_dir, min_x, max_x, min_z, max_z;
float left_end1{3], right_end1{3], left_start2[3], right_start2(3],
left_end2(3], right_end2[3;
int mt.ersectlon__t.ype.

/* determine the corner points of the segment */,

delta x = pt2(X] - pt1[X];

delta 3 = pt2(Z] - pt1{Z};

seg_ dir = atan2(delta z, delta x);

left endl[X] = pt2(X] + (cos(seg_dir + HALFPI)*road_width/2.0);
right_end1[X] = pt2|X] + (cos(seg_dir - HALFPI)*road _width/2.0);
left_end1{Z] = pt2(Z] + (sin(seg dir + HALFPI)*road _width/2.0);
right_end1|Z} = pt2(Z| + (sin(seg_dir - HALFPI)*road_width/2.0);

if ((pt2(X] 1= pt3[X)) || (pt2(2] 1= pt3(Z])) {

/* we are not working with the final segment of this road, find
the intersection of this segment with the next one */

delta_x = pt3[X] - pt2|X];
delta_z = pt3(Z] - pt2|Z);
seg dir = atan2(delta sz, delta x);
left_start2([X] = pt2(X] + (cos(seg_dir + HALFPI)*road width/2.0);
right _start2|X] = pt2[X] + (cos(seg dir - HALFPI)*road_width/2.0);
left start2/Z! = pt2.2! + (sin(seg dlr + HALFPI)*road width/2.0);
rignt start2(Z! = pt2.2) - ‘sm(seg Air - HALFP1)*road width, 2.0};
lett FndZI\ = pt3iX + (cos{seg dlr - HALFPU)*road WIdth 2.0);
right end2[X] = pt3iX, + (cos(seg dir - HALFPI)*road _width,2.0);
left_end2(Z| = pt.3|Z| + (sin(seg_dir + HALFPI)*road wndt.h/? 0);
right_end2(Z] = pt3(Z] + (sm(seg dir - HALFPI)*road width/2.0);

/* find the intersection point of the left hand sides of the
first and second road segments */

line_intersect2(left ptl, left endl, left start2, left end2,

left_pt2, &intersection _type); -

225

AR

" AR

. -\-”-~

L7 AR,

St SN

if (intersection_type == NONE) {
left_pt2(X| = left_end1[X];
lefe_pt2{Z] = left _end1|Z};

/* find the intersection point of the right hand sides of the
first and second road segments */

line_intersect2(right_ptl, right_endl, right_start2, right_end2,

right_pt2, &intersection_type);

if (intersection_type == NONE) {
right_pt2[X] = right_end1(X];
right_pt2{Z] = right_end1(Z};

else {
/* this is the final segment of this road */
left pt2(X]| = left_end1(X]|;
left_pt2{Z] = left_end1(Z|;
right _pt2(X| = right_end1{X];
right_pt2|Z| = right_end1{Z};

}

/* determine the min and max x and z values
min_x = left_pt1{Xj;
max_x = left_pel{X};
min_z = left pt1(Z];
max z = left_pt1(Z];
if {right ptl[X] < min_x) min_x = right_pt1[X|;
if (right_pt1[X] > max_x) max_x = right _pt1[X|;
if (right_pt1{Z] < min_s) min_s = right ptl[Z]
if (right_pt1{Z] > max_s) max_sz = right _pt1[Z};
if (left_pt2(X] < min_x) min_x = left _pt2[X];
if (left_pt2(X] > max_x) max _x = left_pt2(X];
if (left_pt2(Z] < min_z) min_z = left_pt2(Z];
if (left_pt2(Z] > max_z) max_z = left _pt2(Z|;
if (right_pt2{X] < min_x) min_x = right_pt2[X];
if (right_pt2[X] > max_x) max_x = right_pt2(X];
if (right_pt2(Z| < min_3) min_z = right_pt2(Z];
if (right_pt2(Z] > max_3) max_z = right pt2|Z];
*first_xgrid = (mt)(mm_x/FT_lOOM)
*first_zgrid = (int)(min_z/FT_100M);
*last xgrid = (int)(max x/FT 100M);

“last zgrid = (int)(max z/FT “L00M);
f (*frst _xgrnd < 0) *first V(gnd =0
if (*first_zgrid < 0) 'ﬁrst_zgnd = 0;
if (*last_xgrid > 98) *last xgrid = 98;
if (*last_zgrid > 98) *last_zgrid = 98;

*/

226

.....
.............

A Nl [WS

.........

g

FCSTN

SRRNTINIWE " YA X T A miL] JARNDIINW] W)

— re v
e

. ~ 1@,

Pl

A

>
"
)
L~

KH AL LAY N
(»
AN ‘l".b.‘.’) PO M W4 W WOt M e .Q“‘Q

RS AR AR R U U K A T oY T I T UT oY OY oY OO O

SORT_ARRAY

sort_array(array, num_entries, decending, test_index)
float array(10](3];
int num_entries, decending, test_index;
{ - . o
nt 1,j;
fioat temp(3];

for (i = 0;i < num_entries; ++i) {
for (j =i+ 1;j <= num_entries; ++j) {

if (((decending) && (array/j|[test index] > array|i][test index])} ||
(('decending) && (arrayf(j|(test index]| < arrayli}[test_index]))) {

temp|0] = array(i][0};
temp|l| = arrayli}|1};
temp(2| = array(ij[2};
array|ij[0] = array(j|(0];
scrayil[1] = arvayljij1];
array|(i}[2] = array(j](2];
arrayj|[0] = temp{0);
arrayijj{1] = temp(1};
array ji{2! = temp|[2];

il

227

o et A A AT, LY N L L
.“".‘ '.I.F\ 1").-

N LAT

e

R B SN

- -

<\

LRy

~

o

A0

YO

Tl N T AR T E NN A T A U R TR T IR U R UL U W N FANU N AN M AW I AN AN A S VY JY VAV A I VA 4

UP_LOOK POS

/* compute the camera’s lookat position */

#include "fogm.h" /* fogm constants */
#include "math.h" /* math routine definitions */
#include "gl.h" /* graphics definitions */

update look posit(direction, pan, tilt, vx, vy, vz,
tgtx, tgty, tgtz, designate, px, py, ps)

double direction, pan, tilt;
Coord vx, vy, vz, tgtx, tgty, tgtz, *px, *py, *pz;
int designate;

{

extern int framecnt;
double lookdir;

if (designate} { /* missile is not locked on to a target *

/* compute direction camera is looking */
lookdir = direction - pan;

/* compute a coordinate along camera’s line of sight */
*px = vx + cos(lookdir) * MAXLOOKDIST;
*pz = vz - sin(lookdir) * MAXLOOKDIST;

if {frameent < 15) {
*py = 4.0 * vy * (14 - framecnt) / 14.0;

framecnt++;
}
else {
*py = vy + MAXLOOKDIST * tan(tilt);
}
}
else {
*px = tgtx;
*py = tgty;
*pz = tgtz;
}

228

UP_MSL_POSIT

/* Compute new missile position */

#include "gl.h" /* graphics definitions */

#include "device.h" /* graphics device definitions */
#include "fogm.h" /* fogm constants */

#include "math.h" /* math function declarations */

#include <sys/types.h> /* contains the time sturcture tms */
#include <sys/times.h> /* for time calls */

update_missile posit(direction, compassdir, speed, designate,
tgtx, tgty, tgtz, vx, vy, vz, flying)

double *direction;
float *compassdir;
float speed;

int designace;

Coord tgtx, tgty, tgtz;
int *fying;

Coord *vx, *vy, *vz;

{

static long seconds;

static long lastsec = -999; /* -999 is flag to indicate no value */
struct tms timestruct;

float deltadist, gndlevel, gnd level(), compass(), ht_above tank;
long float deltax, deltaz, dist_to_tank;

seconds = times(×truct);

/* compute distance missile must move ahead to maintain speed */
if (lastsec == -999)

deltadist = 0.0;
else

deltadist = (speed/FPS_TO KTS)*(seconds - lastsec);

lastsec = seconds; /* save for next pass */

if (designate) { /* missile under operator contol, not locked on tgt */
*vx += deltadist * cos(*direction);
*vz -= deltadist * sin(*direction);

* keep missile at least 30 ft above ground leve| *
gndlevel = gnd level(*vx, *vz);
if (*vy < (gndlevel + 50.0)) *vy = gndlevel + 50.0;
else {
deltax = *vx - tgtx;
deltaz = *vz - tgts;

dist_to_tank = hypot(deltax, deltaz);

229

-
o'

L PR VL N PR A N " AL F R IR I TP 5 S NS T DA e A e S
ARG NN S R N A R SR SN A

%43 A

[

P W Wy W

eI

N

AN e

W

v
o
e

*

P
l

ECL s

Y

P ey Y v

Vm“wmum“w B A At a b ad ol b alaldada dva hV, AVo it aVa gl "ol ol Al a0 ol Tal ol “al Vol "ol Cal 0o) Q) B0 € .0 L0 S0 S0 Gud Uop ¢ 0 K‘.'q

if {deltadist > (float)dist to tank) { /* hit on target */
deltadist = (float)dist to_tank - 5.0;
*fying = FALSE;
lastsec = -999; /* no value flag for next launch */

}

*direction = {double)atan2((float)deltaz, (float)-deltax);
1 if (*direction < 0.0} *direction += TWOPI;
*compassdir = compass(*direction});

setvaluator(DIALO,(int)(*compassdir*DIRSENS), (int}(-360*DIRSENS),

. (int){720*DIRSENS));
g
‘ *vx += (deltadist * cos{*direction));
*vz -= (deltadist * sin(*direction));
ht _above tank = (float)*vy - gnd level(tgtx,tgtz);
*vy -= (Coord)((ht above tank * deltadist) / (float)dist to tank);
}
}
s
9
p
»
[
, 1
) 1
)
3
f |
h
3
A [
A
3
d [
] L
y |
)
t 230

e

AR R S e A C P L AN A R S
;.n.&...l’;.::.._(m "' Cat o e \L..R_L‘L.‘.l. P (A_‘u. ARG }l YOS o

Y

o' et 4a® gt ¥a' 62" 1o 0a® Bat fad 82 Ha? .U 2.0'8.4% 4% A% 4 A0 4% A% A% 8 A% At 20 a0 et el "l Pal Sat o tad g Sad 8 a-top' s ‘hat

VIEW BOUNDS

#include "fogm.h"
#include "gl.h"
#include "math.h"

view _bounds(vx, vy, vz, px, py, psz, tilt, fovy,
firstxgrid, firstzgrid, lastxgrid, lastzgrid)
Coord vx,vy,vz;
double tilt;
int fovy;
short *firstxgrid, *first2grid, *lastxgrid, *lastzgrid;
{
float ix, iz; /* the intersection points */
float lookdir;
float deltax, deltay, deltaz, delta alt, fx, fy, fz;
float half fovy;
float lower_edge angle;

/* compute the direction the camera is looking */
lookdir = atan2((float)(vz - pz), (float)(-(vx-px)));
if (lookdir < 0.0) lookdir ~+= TWOPI;

if (vy > py) {
/* tilt angle is negative */
deltax = px - vx;
deltay = py - vy;
deltaz = pz - vz;
delta alt = pow((float)MIN, ALTSCALE) - vy;

else {

/* tilt angle is positive, use the lower fustrum edge instead
of the line of sight to compute the view bounds */

/* compute a coordinate along the lower fustrum edge */

half fovy = ((float)fovy/20.0*DTOR});

lower _edge angle = tilt - half fovy;

fx = vx + cos(lookdir)*MAXLOOKDIST;

fz = vz - sin(lookdir)*MAXLOOKDIST;

fy = vy + tan(lower_edge angle)*MAXLOOKDIST;

deltax = fx - vx; B

deltay = fy - vy:

teitaz = {z - vz:

feita ait = pow!(float)MIN. ALTSCALE) - vy

ix = vx + ((deltax/deltay)*delta alt);
iz = vz + ((deltaz/deltay)*delta alt);

/* compute which grid objects should be sent through the geometry
pipeline */

231

-3 »q‘ -‘

NI

S

-u‘\

N

-t

PREXAXAS

AR TARNRIYY

P

LY B

oy & 0"

A SR

)

if (deltay > 0.0) {

/* the fustrum is looking totally skyward, don’

any terrain */
*firstxgrid = 0;
*firstzgrid = 0;
*lastxgrid = 0;
*lastzgrid = 0;

else {

Do B 0, 0 F 6 08 a8 Taf Sab tar i u® At ¢', ¢

t bother doing

/* display 20 grid squares on all sides of the intersection point */

*firstxgrid = (int)(ix/FT_100M) - 20;
*lastxgrid = (int)(ix/FT_100M) + 20;
*firstzgrid = (int)(-iz/FT_100M) - 20;
*lastzgrid = (int)(-iz/FT_100M) + 20;

/* insure that objects drawn include the current missile position */

if ((int)(vx/FT_100M) < *firstxgrid)
*firstxgrid = (int)(vx/FT_100M);

if ((int)(vx/FT_100M) > *lastxgrid)
*lastxgrid = (int)(vx/FT_100M);

if ((int)(-vz/FT_100M) < *firstzgrid)
*firstzgrid = (int)(-vz/FT_100M);

if ((int){(-vz/FT _100M) > *lastzgrid)
*lastzgrid = (int)(-vz/FT _100M);

if (*firstzgrid < 0) *firstzgrid = 0;

if (*firstxgrid < 0} *firstxgrid = 0;

if (*lastzgrid > 98} *lastzgrid = 98;

if (*lastxgrid > 98) *lastxgrid = 98;

232

A -~ W AR O LR NP G Y e
‘-'i’:‘l‘.l..‘,. -"‘a’l -h‘. &.‘ ..0 I‘ Ny 8 0 ‘ S \ ..' ~\" '.f

» -

c.',. 'V'.-J_',-f.' '-";J‘_:.(‘:-';q‘.:f"").'
A Ly L7

A% 3232 ¢'2 2% 2% AVt at et

Fe| "

N oyt &

v

LIST OF REFERENCES

1. PC Connection advertisement, PC Magazine, v. 6, no. 11, p. 241, June 9,
1987.

Frd

2. Orlansky, J. and String, J., "Reaping the Benefits of Flight Simulation,” in
Computer Image Generation, edited by B. Schachter, John Wiley & Sons,
Inc., New York, New York, 1983.

3. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Computer Graphics Fiber Optics Guided Missile Flight
Simulator (FOG-M Simulator) Required Instrumentation Capability (RIC),
Fort Ord, California, 1986.

Mar, Roland K., "FOG-M: Another Army Orphan for the Marines?" U. S.
Naval Institute Proceedings, v. 113/6/1012, pp. 95-97, June 1987.

5. Kotas, Jim, "Computer Image Generation: Realistic Simulation." \National
Defense, v. 70, no. 412, pp. 26-31, November 1985.

XA oy
=

>
g

|

6. Berthiaume, Richard, Karnavas, Gary, and Bernsteen, Stan, "Graphical
Representations of DMA Digital Terrain Data on Low Cost Commercial
Graphics Workstation," Proceedings of the IEEE 1986 National Aerospace
and Electronics Conference, v. 3, pp. 992-996, 1986.

ALY
£
£
e
i 7

vJ,:

[}

h 8. Fox, Teresa A., Clark, Philip D., "Development of Computer-generated
Imagery for a Low-cost Real-time Terrain Imaging System," Proceedings of
the IEEE 1986 National Aerospace and Electronics Conference, v. 3, pp.

" 986-991, 1986.

»

wt

!

Silicon Graphics, Inc., IRIS User’s Guide, Mountain View, California, 1986.

Detense Mapping Agency. Product Spectfications jor Digitai Landmass
System (DLMS) Data Base, 2d ed., April 1983.

10. US Army Combat Developments Experimentation Center (USACDEC)
Technical Report, Fort Hunter Liggett Digital Terrain Database on the VAX
Computer, Fort Ord, California, 1985.

233

11.

12.

13

14.

I KN ENKE ‘s $%a 4 VTV VT USTIY U UNTTANMUN T AT RN U N 9 ok Vol ok $.0 Tab 300 00 00, 0°0 8¢

Hearn, Donald, and Baker, M. Pauline, Computer Graphics, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1986.

McGrew, J. F., "Exaggerated Vertical Scale in CGI Terrain Perspectives,”
Proceedings of the Human Factors Society 27th Annual Meeting, v. 1, pp.
33-35, 1983.

Fuchs, Henry, Abram, Gregory D., and Grant, Eric D., "Near Real-Time
Shaded Display of Rigid Objects," Computer Graphics, v. 17, no. 3, pp. 65-
72, July 1983.

Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Co., Reading,
Massachusetts, 1983.

234

L P
2

I<t~- (-

rra

SN Y

[

s
-

»

‘e
-

-
LY
»
i
’

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Chief of Naval Operations

Director, Information Systems (OP-945)
Navy Department

Washington, DC 20350-2000

Commanant (G-PTE)
United States Coast Guard
2100 Second Street SW
Washington, DC 20593

Superintendent

Attn: Library (Code 0142)
Naval Postgraduate School
Monterey, California 93943-5002

Chairman (Code 52)

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Computer Technology Curricular Officer (Code 37)
Naval Postgraduate School
Monterey, California 93943

Michael J. Zyvda {Code 32Zk)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

235

No. Copies

2

£,

AR WSS

Kl (WA

10.

Robert B. McGhee (Code 52Mz)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Captain Douglas B. Smith

Headquarters, United States Marine Corps
Code CCA

Washington, DC 20380

Lieutenant Dale G. Streyle
CG EECEN (Computer Systems Branch)
Wildwood, New Jersey 08260

236

R AR A A A L AN ASNE R N

a 0a S a BV Y2 AVa R o AV £, A% 2%

W \ e \ \ Y
AN AT AN A N

MU NUAD

O R S e . 4 At < s 472 &
D R R T R T A U I T T 00) YN G T S R O O O I R R O R A R R K YO TR S0 1 0'0 g 076 4 8 gt0 o

3

.

&
S

0

fd_’{t %S
:_ ._.; ,‘

ey) T - - - -
> - ?-- - " :’.":f.
-,s‘&-: Sdde B PP ‘-.-.-':-TS‘:&

s TRt

