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3 Abstract

In this investigation, a generalized computer code for the simula-

tion of fluid transients was assembled, verified, and applied. The

solution method developed for the program was based on a method of

characteristics solution of the equations of motion for one-dimensional

fluid flow in pipelines. The differential equations were solved using a

first-order finite difference technique. Boundary conditions for the

equations of motion were developed or directly included from available

component models. The computer routines were verified by comparison of

results with published results from several sources. The agreement be-

tween the results of this study and the published data was quite good for

a wide range of boundary conditions and pipe systems. Recommendations

were made for improvement of some models and the replacement of others

to further improve the accuracy of the results.
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DYNAMICS OF PROPELLANT FEEDLINE SYSTEMS

I. Introduction

Fluid systems in use by the aerospace industry are often charac-

terized by high volume flow rates or high system pressures. Furthermore,

these operating conditions are coupled with small permissible ranges of

variation from the design flow and pressure operating points (1:1). The

net result of the two factors is a large potential for performance degra-

dation due to fluid transients. Within the space program, a sometimes

spectacular manifestation of this phenomena is combustion instability, a

performance problem frequently caused by wave motion occuring within the

propellant feed system of liquid rocket engines (2:1).

Previous Work. Many attempts have been made to model the dynamics

of liquid propellant feedlines. All of the models developed to date,

however, can be catagorized either as a linearized network model or as a

time-step simulation. The network models achieve a solution by

linearizing the equations of motion, then treating the transient as a

perturbation on some mean flow. Time-step simulations on the other hand

employ nonlinear finite difference forms of the equations of motion,

usually obtained by the method of characteristics (3:1).

One of the first to apply linearized flow equations to feedlines was

Rubin (4). He employed both fluid dynamic theories and electrical cir-

cuit analogies to achieve a solution. Ryan (5) made use of a linearized

model to investigate structural instabilities coupled to fluid transients

in the S-IIc engines of the Saturn V. About that same time Johnson (6)

attempted to produce a generalized computer program based on linear

r4
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equations to predict longitudinal instability in propulsion systems.

More recently, Holster and Astleford (7) developed a general analytical

U model based on the linerized flow equations developed by D'Souza and

Oldenburger (8).

As for time-step simulations, Woods (9) applied the method of

characteristics to a frictionless model to study fluid fluctuations in

feedlines. Wood et al. (1) developed a more general nonlinear distr.-

buted parameter model which the authors named the "wave-plan" method.

The "wave-plan" method was developed to predict unsteady flow in liquid

Cfilled lines and was later used to create a generalized digital computer

program (10) to analyze fluid transients in liquid rocket feedlines.

Fashbaugh and Streeter (11) made use of the method of characteristics to

-. develop their own digital computer program to investigate transients in

propellant feedlines of the Titan II missile. However, one of the most

S recent digital computer programs that made use of the method of charac-

teristics did not arise out of a study of propellant feedlines. During

the Aircraft Hydraulic Systems Dynamic Analysis Project, the McDonnell

Aircraft Company developed four digital computer programs for simulating

a number of different aspects of the dynamics of aircraft hydraulic

systems. One of the four programs, named Hydraulic Transients (HYTRAN)

(12), simulates and predicts the dynamic response of a hydraulic system

to sudden changes in load flow demand. HYTRAN, however, is a very

complex computer program, where the user must be very familiar with tran-

sient phenomena in hydraulic systems and know how to interpret the

results.

Objectives. The time-step simulations which have been encountered

in the literature, so far, tended to be either very complex or overly

2
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Urestrictive. Therefore, the objective of this investigation was to

assemble, verify, and apply a simple but flexible computer program for

the analysis of fluid transients in pipelines. Routines in the program

were adapted from existing code whenever possible. In addition, this

investigation was to provide a source from which future investigators

could draw references on work of a similar nature.

Approach. The approach used in this investigation was not comple-

tely new, rather, it was a variation on the method used in several of

the works presented earliear. The investigation conducted for this the-

sis proceeded through three main steps. Step one was the derivation of

the equations that would form the basis of the computer program. First

the finite difference forms of the equations of motion were derived by

the method of characteristics (13, 14). Then, a number of boundary con-

ditions which commonly occur in propellant feedlines were developed to

provide for a complete solution. The second step of this study was to

present the systems to be modeled. It was at this point, that the input

0S
data for each system was described and the appropriate boundary con-

ditions assigned. And finally, the last step was to analyze the results

obtained by running computer simulations which made use of the systems

modeled in step two. The results of the simulations were compared with

published data when possible.

3
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II. Method of Characteristics

In this section a numerical solution of the equations that were

used to model unsteady flow in pipelines is developed by the method of

characteristics. This technique was used to transform partial differen-

tial equations which had no general solution into particular total dif-

ferential equations that did. The equations that resulted were then

integrated to provide finite difference equations by which the pressure

and flow velocity within a pipeline could be obtained numerically. The

process by which these equations were derived was not new, however the

final form of the finite difference equations used for the calculations

was different. Unlike previous derivations, the final form was in terms

of pressure and volume flow rate, not head or pressure and velocity.

Equations of Motion

In this study, transient fluid flow was represented by a one-

dimensional model with time, t, and distance along the pipe axis, x, as

independent variables, and pressure, P, and mean sectional velocity, V,

IV as dependent varibles. The partial differential equations may be derived

by the application of the momentum and of the continuity principles to a

constant area section of pipe having a length, dx (13:694). The deriva-

tion which follows is similar to derivations presented by Swaffield (13),

Wylie and Streeter (14), and Watters (15).

The eqations of motion:-

Ll=Px/p+gsina+VVx+Vt+fVIVI/2D=O (2.1)

and continuity:

L2=Pt+pa2V x+VPx=O (2.2)

are the equations which will be used in this development.

4
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The method of characteristics proceeds by making a linear corn-

bination of Eq. (2.1) and (2.2) using an unknown multiplier, X.

3 L=Ll+AL 2=[Px/p+gsina+VVx+fV V /2D]+A(Pt+pa
2Vx+VPx]=O (2.3)

Regrouping terms,

X[Px(V+I/XP)+Pt]+[Vx(V+Xpa2)Vt]+gsinafVIV /2D=0 (2.4)

Eq. (2.4) can be simplified by the appropriate selection of the two

particular values of A. Since P and V are functions of x and t, from

calculus

dP/dt=Pxdx/dt+Pt dV/dt=Vxdx/dt+Vt (2.5)

Upon examination of equations (2.4) and (2.5),

dx/dt=V+I/P"=V+Xoa2  (2.6)

Thus, Eq. (2.4) becomes the ordinary differential equation

AdP/dt+dV/dt+gsina+fVIVJ/2D=0 (2.7)
p

Eq. (2.6) can be solved to obtain the two particular values of X,

X -+ /pa (2.8)

Substituting Eq. (2.8) back into Eq. (2.6) produces

dx/dt=V+a (2.9)

To complete the transformation, Eq. (2.8) is substituted into Eq.

(2.7). The characteristic equations which result are:

dV/dt+(l/pa)dP/dt+gsina+fVV/2D=0 (2.10)

dx/dt=V+a (2.11)

- dV/dt-(I/pa)dP/dt+gsina+fVVI/2D=O (2.12)

dx/dt=V-a (2.13)

where Eq. (2.10) and (2.12) are valid only when the respective equations,

Eq. (2.11) and (2.13) are valid.

5



Finite Difference Equations

Due to the nonlinear nature of the characteristic equations, a

finite difference approach is used to obtain a numerical solution. To

this point the derivation has paralleled the development presented by

Watters (15). However, Watters completed his derivation after replacing

pressure by piezometric head, P=pg(H-z). Wylie and Streeter (14) make

the same substitution much earlier in their derivation. This develop-

ment, though, will retain the pressure throughout, in a manner similar to

the development by Swaffield (13).

By multiplying Eq. (2.10) through (2.13) by dt, and integrating the

equations using a first-order approximation, the finite difference forms

are:

Vp-VR+(Pp-PR)/pa+gsina(tp-tR)+fVRIVRI(tp-tR)/2D-0 (2.14)

xp-xR-(VR+a)(tP-tR) (2.15)

Vp-Vs-(Pp-Ps)/pa+gsina(tp-ts)+fVS IVSI(tp-ts)/2D-0 (2.16)

xp-xs(Vs-a)(tp-tS ) (2.17)

Solving for Vp and writing Eq. (2.14) and (2.16) in terms of volume

flow rate in place of velocity

QpCp-BPp (2.18)

Qp=-C+BPP  (2.19)

In which

" Cp-QR-BPR-RR-FFQR QRI ( 2.20 )

CMQs-BP-R-FFQIQSI (2.21)

where B-A/pa, and R-gAatsina, and FF-fat/2DA.

Fig. 2-1, which graphically represents Eq. (2.15) and (2.17), shows

the characteristics in the x-t plane along which Eq. (2.14) and (2.16)

are integrated.

6
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t+At P

A

1 2 ... i- 1 +1 ... N-1 N

Fig. 2-1. x-t grid for a pipe divided into N reaches.

To determine the mesh of the grid the method of specified time

intervals is used. In order to keep the solution numerically stable, the

Courant condition (14:58) must be satisfied

At(V+a)<Ax (2.22)

The method of specified time intervals assumes the conditions are known

at A, B, and C (Fig. 2-1) either from the previous time step or from the

steady solution. Following the usual approach, a linear interpolation is

then made to find the pressure and the volume flow rate at points R and

S. The stability criteria is necessary to insure that points R and S do

not fall outside points A and B, thus maintaining the validity of the

interpolation. From Fig. 2-1

(QR-QA)/(QC-QA)-(xR-xA)/(xC-xA) (2.23)

which becomes,

qtt'qc- (C-qa)( 2.24,)

after approximating V+a by ±a in Eq. (2.15). This approximation is valid

where VWa, which holds for most transient problems in fluid pipelines

(13:58).

7
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By interpolations similar to Eq. (2.23)

QS=QC- (QcQB) (2.25)

PRPC- C(Pc-PA) (2.26)

Ps-Pc-r(PC-PB) (2.27)

where -aat/dx.

To calculate the final solution for volume flow r~ate and pressure at

P it is necessary to solve six equations. The six are Eqs. (2.23)

through (2.27), and Eq. (2.20) and (2.21). The addition of Eq. (2.18)

and (2.19), followed by the solution of the resulting equation for the

flow, Qp, gives:

Qp=(CM+Cp)/2 (2.28)

The flow, Qp, may then be substituted into either Eq. (2.18) or (2.19) to

obtain the pressure at that point.

8



III. Boundary Conditions

The equations developed in the last section allow the calculation of

pressure and volume flow rate at any point P within the pipe. However,

by examining Fig. 2-1, the end points of the grid which correspond to the

pipe under consideration, begin influencing the interior points after the

first time step. Therefore, to have a complete solution for any time J-

after the first time step, the appropriate boundary conditions become

necessary.

For any one pipe, only one characteristic equation is available at

either end, as seen in Fig. 3-1. Referring back to Fig. 2-1 and the

discussion in the last section, Eq. (2.19) is valid at the upstream boun-

dary, while Eq. (2.18) holds at the downstream end. With only the one

characteristic equation available at either end, a second equation is

required to complete the solution. Thus, to find the pressure and the

volume flow rate at the end of a pipe, auxilary equations are needed to

be developed.

C S B AR C

Fig. 3-1. Characteristic lines at the pipe ends

Known End Conditions

If either the pressure or volume flow rate at an end of the pipe is

a known function of time, F(t), this information can be combined with the

appropriate characteristic equation to fix the end point conditions. For

9
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example, if the pressure at the inlet of the pipe changes in a known

manner, say'as a sine wave, the boundary condition is

F(t)=Pp=Po+APsinwt (3.1)

where w is the frequency and 4P is the amplitude of the wave. With the

pressure known at any instant, the flow at the inlet is then determined

by direct solution of Eq. (2.19).

Series Connection

From Fig. 3-2, recalling Figs. 2-1 and 3-1, it can be inferred Eq.

(2.18) is available for pipe 1, and Eq. (2.19) is available for pipe 2.

However, an additional equation is required to solve each characteristic

equation. The continuity expression provides one equation, while a

second equation is obtained by equating the pressure on either side of

the junction after the losses are assumed to be negligible (16:9.2).

QP1QP2 (3.2)

PpI=PP 2  (3.3)

Along with Eq. (2.18) and (2.19), Eq. (3.2) and (3.3) provide four

equations and four unknowns which may then be solved for the pressure at

the junction.

Pp-(Cp-CM)/(BI+B 2) (3.4)

The remaining unknowns are calculated directly from the appropriate

equation.
.C. C"

I I I, I
t!NlII NItI) *1 II 2.1l

Fig. 3-2. Series Connection Fig. 3-3. Valve-in-line

(16:9.3) (16:9.5)
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Valve-in-line

When a valve or orifice is located between two pipes, the necessary

equations are provided in much the same manner as in a series connection.

Respectively, Eq. (2.18) and (2.19) are available where appropriate as

.before, and the continuity expression, Eq. (3.2), is still valid.

However, the fourth equation is supplied by the valve pressure-discharge

characteristic, T (13:695). For positive flow (Fig. 3-3)

7 -(Qp/Qo)[Po/(pp1-pp2)] (3.5)

where Po is the drop in pressure across the fully open valve at the ini-

tial flow Qo, and aPp is the drop in pressure across the partially closed

valve at an instantaneous flow Qp. By solving the above eqations

simultaneously, a quadratic in Qp results which may be solved to yield:

21 / (3.6)

Qp-Cv(1/BI+I/B2)+[Cv2+2Cv(Cp/B1-CM/B2
)] .

where Cv=Qo 2r2 /2Po. If there is flow in the negative direction then Eq.

(3.5) becomes

w, hi-c(Qp/Qo)[Po/(Pp2-PP1)]
4  (3.7) I

which yields the solution

QpfCv(I/BI+I/B2 )+[Cv2(1/BI+I/B2)2+2Cv(Cp/Bl-CM/B2)]
4  (3.8)

Upon examination of the equations, it is only possible to have negative

flow if Cp/Bl-CM/B2 < 0. Hence, Eq. (3.6) is valid when Cp/Bl-CM/B2 > O,

and Eq. (3.8) is used when Cp/Bl-CM/B2 < 0. With the flow now deter-

mined, Eq. (2.18) and (2.19) are used to find the pressure, Pp.

Valve at Downstream End of Pipe. A special case of the valve-in-

line is a valve at the end of a pipeline discharging to ambient con-

ditions. For this situation Eq. (3.5) may be written in the following

manner (14:38)

Ti(Qp/Qo)(Po/PP1)
4  (3.9)
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Thus, only Eq. (2.18), the downstream characteristic equation, is

necessary for a complete solution. This simplification results in Eq.

(3.6) reducing to

Qpf-Cv/B+[(Cv/B)2+2CvCP]i (3.10)

While the corresponding pressure is computed from either Eq. (2.18) or

(3.9).

Cavitation

During transient flows, the pressure may drop below the vapor

pressure of the fluid. When this occurs the fluid undergoes vaporiza-
e5,

tion, causing vapor bubbles to appear in the flow. The phenomena can be

treated in two different manners. The first method is to assume the

vapor bubbles are dispersed homogeneously throughout the liquid. The

effective wave speed resulting from this two-phase flow is then treated

as a function of pressure, temperature, and vapor volume (14:136). The

alternate method, which is used in this study, lumps the free gas at the

computing sections. The liquid in the reaches between the gas volumes is

assumed to be pure liquid without free gas. This assumption allows the

use of a constant wavespeed in the reaches between the cavities (17:49).

When the pressure falls below the vapor pressure, the cavity boun-

dary condition becomes:

PPfPv (3.11)

where Pv is the vapor pressure. The flow upstream of the cavity is then

calculated from Eq. (2.19)

Qpu-Cp-Bp (3.12)

and the flow downstream by Eq. (2.18)
QpinC +BPp ( 3.13 )

U,
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The liquid mass conservation is maintained by applying the local

continuity relation at each gas volume.

dVg/dt=Qd-Qu (3.14)

Integration of Eq. (3.14) gives

Vg'=Vg+ At[(Qp+Q)-(Qpu+Qu)]/2 (3.15)

where Vg is the gas volume at the current time and Vg is the gas volume

from the previous time step (14:137). As long as the cavity size is

positive, vapor pressure persists. Once the volume becomes less than

zero the gas cavity is declared to have collapsed and the flow calcula-

tions proceed as usual for an interior section (17:49).

However, in some instances the system to be analyzed may contain

other gases dissolved in the fluid. This phenomenon is common in rocket

propulsion where fuel and oxidizer tanks are often pressurized with high

pressure helium or nitrogen. Due to the presence of this other gas in

the fluid, the bubbles which occur during cavitation will contain both

the vapor of the fluid and the gas evolved from the fluid. Wylie (17)

developed a method for handling the additional gas release in the

*discrete bubble method. The eqations in terms of the notation of this

study are:

Pp- -B+2(Pv+Pb)+[(BI+2(Pv+Pb) )+ 8 C41' (3.16)

4
where,

.' BI=[,(CM-Cp)+V 9/2At +(1-O) (OQ-OQu) ]/OB,'

C4-ClI2AtBO

Cl=P*aoV ,
r.1

In which ao is the void fraction at some reference pressure, P*, while V

is the volume of the adjacent reach. By choosing the void fraction to be

13



10- 7 or less, .this method is also able to closely approximate the

results obtained for a liquid containing no dissolved gases (17:50).

To find the gas volume, Eq. (3.14) is once again used, however,

Wylie introduced a weighting factor in the time direction. Thus, when

integrated

Vg=V+2A[O(Qp-Qpu)+(I-)(OQ-OQu)] (3.17)

where,

0 At'/2At, 0< 0 <1

In which Vg, OQ, and OQu are values from 24t earlier. By integrating in

this manner, the calculation is spread over two time steps, thereby

introducing numerical damping in the form of 0.

Accumulator

In this study an accumulator is a pressure vessel connected to the

m pipeline. The sealed vessel contains a layer of compressed gas

overlaying the liquid inside. The conditions which exist at this loca-

tion are reminiscent of those around a cavitation bubble. Thus, Eq.

(3.14) is once again used to express the continuity relationship, and Eq.

(2.18) and (2.19) are valid where appropriate. However, the accumulator

pressure is greater than vapor pressure, so a fourth equation is needed

to complete the solution. Dorsch et al. (10:8) obtained the necessary

equation by introducing the compliance, a', of the gas volume.

- a' =dVg/dP (3.18)

Making use of the chain rule from calculus

dVg/dt-(dVg/dP)(dP/dt)-a'dP/dt (3.19)

14
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Therefore

dP/dtu(Qd-Qu)/a' (3.20)

5 Finally, substituting Eq. (2.18) and (2.19) into Eq. (3.20) gives

dP/dt=(CM+B2P-Cp+BlP)/a' (3.21)

The pressure at the accumulator is now a known function of time.

Eq. (3.21) can then be numerically integrated to find pressure at any

time. In this analysis a first order integration is used to give

Pt+ t=Pt +*t(CKavg+B2Pavg-Cpavg+BlPavg)/a' (3.22)

The average values in Eq. (3.22) are determined by iteration (see

Appendix A for a listing of the computer code). The pressure, Pp-Pt+at,

so Qp above and below the accumulator can be found from Eq. (2.18) and

(2.19) respectively.

15
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IV. Systems Analysis

In this section, the equations developed in section II by the method

of characteristics and in section III for the various boundary conditions

were used to model several pipe systems found in the literature. The

systems examined began with a simple one-pipe system and moved on to

systems of greater complexity. The results published about these systems

were then used in section V to verify the accuracy of the digital computer

program written for this study.

0% Single Pipe Models

As mentioned above, the first systems that were modeled center

around a single pipe. The single horizontal pipe was combined with

4 various upstream and downstream boundary conditions to verify the

accuracy of the models used in this study and to examine the effect of

Usuch boundary conditions on a system. Note, in each case the system was

6% assumed to have achieved steady flow before any changes in the boundary

conditions were imposed.

. Valve Closure. Wylie and Streeter (14:39) presented the simple pipe

flow problem of a sudden valve closure at the end of a single pipe. In

this case the system consisted of a single pipe with a reservoir of water

at the upstream end and a valve at the downstream end. The flow in the

pipe was steady until at some time, t-O, the valve began to close such

that the valve pressure-discharge characteristic, Eq. (3.9), followed

the exponential law

t V =(l-t/tc)Em (4.1)

where tc is the time at which the valve is fully closed.

16



The input data taken from Wylie and Streeter for this system were:

D - 0.5 m, L - 600 m, a - 1200 m/s, f - 0.018, Po = 1.4716 MPa, Qo =

0.477 m3/s, tc - 2.1 s, and Em = 1.5. The upstream boundary condition

was modeled as a constant pressure reservoir. With the pressure at the

reservoir a known function of time, the volume flow rate was determined

by Eq. (3.2). At the downstream end the flow was discharging through

the valve to ambient conditions, so the flow through the valve was

calculated by Eq. (3.11). Hence, the pressure at the downstream end

could be computed with either Eq. (3.9) or Eq. (2.18).

In an attempt to discover the effect of several parameters on the

severity of the fluid transients, variations were introduced into the

input data. The variables varied appear in Table I, along with the par-

Table I. Input Variations for Single Pipe Closure

g Run No. tc (s) Em f L (m)

1 2.1 2.0 0.018 600

2 2.1 1.0 0.018 600

3 2.1 0.5 0.018 600

4 1.5 1.5 0.018 600

5 2.5 1.5 0.018 600

6 2.1 1.5 0.036 600

- 7 2.1 1.5 0.072 600

8 2.1 1.5 0.0001 600

9 2.1 1.5 0.018 300

10 2.1 1.5 0.018 150

11 2.1 1.5 0.018 75

12 2.1 1.5 0.018 10

17
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ticular values for each simulation. The remainder of the variables were

kept the same as those presented above.

U Vaporous Cavitation. To demonstrate the cavitation model, a simple

system examined by Wylie (17:50) was analyzed. During his study Wylie

worked with two systems having similar configurations. In each the

pressure at both ends of the pipe was a known function of time. The

downstream end of both systems was connected to a constant pressure

reservoir. At the upstream end both pipes were connected to a pump,

which Wylie represented by the pressure as a given function of time.

However, the two systems differed as to the physical dimensions of the

pipes, as well as to the properties and conditions of the fluids in the

systems.

l For the first of the two examples, the system parameters were:

D - 0.61 m, L - 3048 m, f - 0.02, Qp - 0.89 m3/s, a - 981 m/s, p - 1000

kg/m 3 , and Pv - -98.72 kPa gage. The negative pressure resulted from the

pressure being gage. The pressure at the upstream end of the pipe was

dropped linearly from an initial value of 0.495 MPa gage to zero in 0.2

s, then held there for the remainder of the simulation (17:51). Thus,

the pressure at both ends of the pipe was known for any time, allowing

the volume flow rate to be calculated with either Eq. (2.18) or (2.19).

In the second of the two examples, the system data not included in

Fig. 4-1 were: P- 1000 kg/m 3 , and Pv - -99.11 kPa gage. As in the

first case, the downstream boundary condition was again a constant

pressure reservoir. The upstream conditions however were of a more

complex form as depicted in Fig. 4-1.
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Fig. 4-1. Upstream pressure in simulation 2

In an effort to further verify the model used in study, two addi-

tional cases were constructed by altering the original input data given

for the first simulation. The new hypothetical systems retained the same

input values as before with the exception of the vapor pressure. In the

one case the vapor pressure was set at HIv=-5.03 a, while in the other

case Lv=-1O0 m.

Multipipe Models

Valve-in-line. The next system to be used for comparison was a

system analyzed by Swaffield (13). In the Swaffield system a valve was

closing in the middle of a series of pipes instead of at the end. For

that investigation Swaffield used aviation kerosene as the working fluid

not water. The pipeline itself was modeled as consisting of three pipes

of the equal diamter in series, where both the upstream and the

downstream ends of the system were connected to reservoirs. The valve in

question was situated between the first and second pipe, and as in the ]
previous valve problem, there was steady flow until time, t-0, when the

valve began to close. The parameters which describe the system are given

in Tables II and III.
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Table II. Flow Parameters for Valve-in-line

Density, P=800 kg/m 3  Wave Speed, a=918 m/s

tc  Downstream Pres. Initial flow
Run (s) (kPa) (m3/s)

1 0.081 102 0.00355

2 0.160 222 0.00355

3 0.140 120 0.00541

Table III. Pipeline Parameters for Valve-in-line

Length Diameter
Pipe (m) (m) f

1 5.80 0.0508 0.02

2 3.17 0.0508 0.02

3 6.70 0.0508 0.02

Starting with the upstream end of the pipeline, there was once again

Wa reservoir. The pressure was assumed to be constant, allowing the

volume flow rate to be calculated from Eq. (2.19). Moving downstream,

the next boundary condition encountered was the valve between pipes 1 and

2. Here, as shown in section III, the flow was given by Eq. (3.6), where

the valve pressure-discharge characteristic was assumed to obey Eq.

(4.1). The pressure on the upstream and downstream face of the valve

I. could then be calculated from Eq. (2.18) and (2.19) respectively. At the

junction of pipes 2 and 3, there was a simple series connection. The

pressure was determined by Eq. (3.4) and the flow was then calculated once

again using either Eq. (2.18) or (2.19). The final boundary condition

was the constant pressure reservoir at the downstream end. The con-

ditions here were evaluated by substituting the known pressure once more

into Eq. (2.18).

20
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Valve Closure. A second, more complex downstream valve closure

problem was also presented by Wylie and Streeter (14:60). Like the first

problem, water was once again flowing from a reservoir at the upstream

end through a pipeline to a valve at the downstream end. In this example

though, the pipeline consisted of three pipes of different diameter in

series between the reservoir and the valve. Furthermore, the valve

pressure-discharge characteristic, Eq. (3.9), did not follow an exponen-

tial law, instead, r follows the curve in Fig. 4-2.

I _ _ _ _ * _ _ _ 4
~P

o.s

0 2'

Fig. 4-2. Valve characteristic, r

In this three pipe problem, the initial flow, Qo, was 0.2 m3/s, and

the initial pressure at the valve equaled 981.4 kPa gage. The parameters

for the pipes are given in Table IV.

Table IV. System Data for Series Closure

Pipe Length (i) Dia.(m) f Wave Speed (m/s)

1 351 0.30 0.019 1200

2 483 0.20 0.018 1200
p.

3 115 0.15 0.018 1200

As in the single pipe problem, the reservoir was assumed to be

constant pressure, which allowed the flow to be calculated at that point

with Eq. (2.19). Also, the flow through the valve was again calculated

*21
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using Eq. (3.10). Therefore, the pressure at the valve could be calcu-

lated with either Eq. (2.18) or (3.9). However, in contrast to the ori-

ginal single pipe closure problem there were now two interior boundary

conditions as well. At both of the locations, there were changes in

area. The pressure at such junctions is calculated by Eq. (3.4). The

flow through the junction could then be determined from either Eq. (2.18)

or (2.19).

Since propellant feedline systems are rarely a single pipe or a

constant diameter, this multipipe valve closure problem provided an

NO excellent system to further examine the effect of certain parameters on

the fluid transients. The system was simple enough to require relatively

short run times on the computer, about 10 CPU seconds on the Cyber. Yet,

at the same time, the system contained features that are present in the

final model which is described later.

S As before with the single pipe system, while keeping the other

values the same as in the original system, the variations seen in Table V ,.

were introduced into the input data one at a time.

Table V. Input Variations for Series Closure

Reservoir
Run No. Pressure (m) Closure

1 289 original

2 400 original Q

3 200 original

4 289 hard

5 289 soft

The closure designation indicates the rapidity of the closing of the

valve. The original closure was the valve characteristic in Fig. 4-2.
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During a hard closure, the value of r decreased from 1.0 to 0.1 in the

first 0.6 s, then went to zero in the next 0.6 s. And lastly, in the

soft closure, r dropped from 1.0 to 0.4 during the first 0.6 s, went from

0.4 to 0.15 in the next 0.6 s, then fell to zero during the final 0.6 s.

Thus, the characteristic curve for the hard closure not only had a

steeper slope, but also a cut-off time that was 0.6 s shorter then the

other two curves.

In addition to running each case with water as the working fluid,

runs were also made with rocket fuels RP-l, a fuel very similar to the

aviation kerosene used by Swaffield, and liquid hydrogen. However, in

order to have a complete set of input data for these addition fluids,

several assumptions were made. The first of the assumptions was asso-

ciated with the wave speeds. When a wave speed is not explicitly stated

in the input list, the program calculates the wave speed as follows

(14:58)

a 2 fiK/p( l+DK+Ee) (4.2)

where the bulk modulus, K and the density, p, are fluid properties, while

the Young's modulus, E, the pipe dameter, D, and the pipe thickness, e,

are properties of the pipe.

The wave speed for water was given, along with the diameter of the

7pipes for the series closure by Wylie and Streeter (14:60), but nothing

else. Therefore, the water was assumed to have a density of 1000 kg/m 3

as in the single pipe cavitation problems. Given this density, a bulk

modulus of 2.016x109 N/m2 was obtained from Appendix B of Dehoff (2).

Also, the pipes were assumed to have a Young's modulus of 7.24x10'0 N/m2 ,

the value reported by Swaffield (13:698) for h'is system. With everything

but one variable now known in Eq. (4.2), it was possible to determine a
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thickness for each pipe. Substituting the appropriate values into the

equation gave el-0.021 m, e2-0.014 m, and e3-0.01 m, where ex is the

thickness of pipe x. Thus, a complete description of the pipe system was

produced. As for the fluid properties, they are listed below:

RP-1 LH2

Temperature (*F) 89.10 -423.2

Density (kg/m 3 ) 800.00 72.1

Bulk Modulus (108 Pa) 12.34 0.1

Vapor Pressure (Pa) 700.00 127,000

The second set of assumptions centered around the friction factor.

In equation form the friction factor is given by

.f-2UdfD/LV 2  (4.3)

where APf - pressure loss due to friction, V - mean flow velocity, and

A Lfpipe length. For the simulations where the RP-1 and LH2 replaced water

everthing in Eq. (4.3) but the density remained constant. Thus, a fric-

tion factor for the other two fluids was obtained by multiplying the

Pfriction factor of water by a ratio of the density of the water to the

density of the other fluid. However, this process produced a very high

friction factor for LH2, so a second run with LH2 as the fluid was

included for each case of the simulation. In this second run LH2 was

given the same friction factor as water to determine how strongly the

friction was affecting the transients in the LH2.

Saturn V Feedline. The final system analyzed was chosen in order to

W test the routines developed in this investigation on a real aerospace

system. The system chosen was one that was reported on by Brod (18).

During the Apollo program, Boeing constructed a test installation to
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simulate the LOX suction duct of the Saturn V's F-i engine. In the

course of the testing performed with this apparatus, some experiments

I were conducted which consisted of closing the main drain valve and

observing the fluid transients (18:15). Unfortunately, the results from

these experiments were no longer available from Boeing. Thus, the

qresults of this study for this simulation were of a more qualitative

nature.

Table VI. Feedline Configuration Data

Pipe Length (m) Dia. (m) Wave Speed (m/s)

1 0.25 0.508 770.7

2 7.50 0.508 770.7

3 5.17 0.508 770.7

4 0.32 0.457 862.1

g 5 0.20 0.500 658.4

6 0.80 0.457 862.1

7 0.49 0.457 1165.3

8 0.49 0.457 1165.3

9 0.23 0.457 862.1

10 0.41 0.462 207.8

11 0.43 0.640 177.5

12 0.41 0.462 1 207.8

13 0.43 0.457 800.2

14 0.13 0.457 1330.0

15 1.19 0.457 1330.0
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In general, this problem was related to the multipipe example taken p

from Wylie and Streeter (14). In both, there was a reservoir, a series

of pipes, and a valve at the downstream end. In addition, both were

modeled as horizontal pipelines for this study, however, the similarities

end there. The F-I feedline was comprised of 15 pipes in all. The data

for the pipes was given in Table VI. Furthermore, in addition to more

pipes in the system, there were a few additional interior boundary con-

ditions. In the junction between pipes 7 and 8 was a device called the

prevalve. Initially the prevalve was a simple visor valve. But, as

part of the experiments at the test installation, the valve cavity was

evacuated and pressurized with helium. In this way the engineers hoped

to control the fluid transients by essentially creating an accumulator at

that point. Therefore, for the purposes of this analysis the prevalve

was modeled as an accumulator when there was a volume of gas present.

*The second new boundary condition was the pulser valve between pipes

P% 13 and 14. To model this component an additional boundary condition was

developed. Recalling similar circumstances in Figs. 3-2 and 3-3, it was

apparent from Fig. 4-3 that Eq. (2.18) and (2.19) were again available.

The continuity equation for this junction is of the form

Qpu Q+Qp (4.4)

where the flow out of the pulser valve was assumed to be of the form

Q-Qv Isinwtl (4.5)

The final relationship required to form a closed solution was taken from

a work by Thorley (16:9.3). In that paper, he proposed that in a

branching connection such as this a common pressure could be assigned at

the junction, as long as any losses were neglected as minor. Thus, Eqs.

(2.18), (2.19), and (4.5) were substituted into the continuity equation
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(l,N) (2,2)

(1, NS) (2.*1) .

Fig. 4-3. Pulser Valve

and solved for the pressure to give

Pp= (Cp-Cw-QvJsinwtI )/(Bl+B2 ) (4.6)

The pressure was then substituted back into Eq. (2.18) and (2.19) to find

the flow at those sections.

The remaining interior boundary located between pipes 14 and 15 also

had a boundary condition other than a series connection. In order to

complete the simulation of the LOX suction duct, a second accumulator was

included to approximate cavitation at the inlet of the turbopump.

In this system, the parameters reported by Dehoff (2) and Brod (18)

were as follows: Qo=1.7 m3/s, Po at the valve=621 and 896 kPa, ,=1000

kg/m 3 , w-O to 27 Hz, Qv=O.071 m3/s, Vg of the prevalve accumulator=O,

30, 60, and 90 percent of the total accumulator volume, valve cut-off

times-l.25 to 4.0 a, and Vg=O.O12 9 m3 at the pump inlet when cavitation

jwas included. The specific values arbitrarily chosen for each parameter

which had a range of values is shown in Table VII.

N.,
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Table VII. Input Parameters for F-1 Feedline

Run no. Valve(kPa) tc (s) Em (Hz) Vol.(m 3 ) cav.

1 621 1.5 1.2 0.0 0.000 no h

2 621 3.0 1.2 0.0 0.000 no
3 621 1.5 1.0 0.0 0.000 no-

4 621 1.5 1.5 0.0 0.000 no

4 86 1.5 1.5 0.0 0.000 no

5 896 1.5 1.2 0.0 0.000 no

6 621 1.5 1.2 2.5 0.000 no

7 621 1.5 1.2 10.0 0.000 no

NO,:8 621 1.5 1.2 25.0 0.000 no,,%

9 621 1.5 1.0 2.5 0.000 no .

10 896 1.5 1.2 2.5 0.000 no

1i 896 1.5 1.0 10.0 0.000 no

12 621 1.5 1.0 0.0 0.000 yes

13 621 1.5 1.0 0.0 0.018 yes

14 621 1.5 1.0 0.0 0.036 yes

15 621 1.5 1.0 0.0 0.072 yes

16 896 1.5 1.0 0.0 0.000 yes

17 896 1.5 1.0 0.0 0.054 yes

18 621 1.5 1.0 2.5 0.054 yes

,'.J
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V. Results

Single Pipe Verification for Valve Closure

Some of the published results used for verification were in terms of

piezometric head instead of pressure. Since the program uses equations in

terms of pressure, a conversion was required. To obtain the conversion

the equation, Pipg(H-z), was solved for H. Thus, when necessary, the

resulting conversion was incorporated into the output statement of the

program, making use of FORTRAN's ability to perform mathematical opera-

N tions on the variable to be output.

Simple Valve Closure. The first system to be analyzed was the

single pipe valve closure presented by Wylie and Streeter (14). The

- results published by Wylie and Streeter for this problem appear in Fig.

5-1. The agreement between the published results and the results pre-

dicted by the program, which appear in Fig. 5-2, was very close. For the

pressure, both results depicted the piezometric head increasing to a peak

of about 285 m at the valve as the decreasing area generated compression

waves which traveled upstream. The compression waves reflected from the

constant pressure boundary at the reservoir, becoming expansion waves

4which propagated back toward the valve. Since vapor pressure was not

reached, the expansion waves which returned to the valve in 2L/a-l.0 s

were stronger than the compression waves being generated at the valve,

dropping the head pressure at that point. Here, the strength of a wave

was equated with the pressure difference across a wave. Once the valve

was fully closed, the waves in the pipe simply reflected between the

free boundary at the reservoir and a wall at the valve with a period of

4L/a=2.0 s.
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The predictions of the pressure matched very closely when compared

point by point. So, in order to further explore the effect of certain

system parameters on the resulting fluid transients, the variations

listed in Table I were introduced into the system. The plots of the

results predicted for the various changes appear in Figs. 5-3 through

5-6.

Effects of Closure Curve. The first of the parameters examined was

the valve closure characteristic, r. In Fig. 5-3, appear the results

produced by varying the exponent, Em, from Eq. (4.1), the equation used

to represent the valve closure. Not only did the magnitude of the first

peak change with changes in Em, but the slope of the curve as the peak

was approached changed with Em as well, this was as expected though. The

timing of the reflections should have been and was the same as seen in

Fig. 5-2. The change during these runs was expected in the strength of

the waves at a particular time during the closure. It was anticipated

that when the closure was initially rapid then slowed, that the pressure

would peak more quickly than when the closure was initially slow then

became increasingly quicker. Further, it was anticipated that the peak

magnitude would increase as Em became larger or smaller, since in either

case the closure was approaching an instantaneous cut-off.

Starting with an Em greater than one, the valve closed rapidly at

first but slowed as the cut-off time approached. Consequently, the

strongest compression waves were generated during the start of the clo-

sure, while the weakest occurred at the end. This meant that when the

waves returned from the reservoir at 2L/a-l.O s, the reflected expansion

waves were stronger than the compression waves currently being generated

by the closing valve. So, the pressure began to drop. At 4L/a-2.0 s the
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compression waves which resulted from a second reflection at the reser-

voir began to arrive. This third set of waves combined with the wave

trains already at the valve to decrease the rate at which the pressure

decreased. Then, at t-2.1 s, the valve was totally closed and all that

remained was the interaction of the reflecting wave trains as they travel

back and forth.

When Em was one, the valve closed at a constant rate, generating

compression waves which diminished slightly in strength as the flow went

to zero. Therefore, when the expansion waves began to arrive after the

first reflection, there was essentially a cancellation between them and

the compression waves being generated at that time. This cancellation

resulted in the relatively flat portion of the curve observed between 1.0

and 2.0 s. Then at t-2.0 s the second reflection from the reservoir

arrived, reducing tht rate of the pressure drop. But at t-2.1 s, the

S valve was completely closed, thus compression waves were no longer being

generated. And so, the expansion waves, which had not been as greatly

attenuated by friction as the compression waves, produced a pressure drop

that continued until t-3.1 s, when the last of the wave train from the

first reflection finally passed. Then once more all that remained was

the wave train reflecting back and forth.

Finally, for Em less than one, the valve shut slowly at first then

closed with increasing rapidity as the cut-off time approached.

Consequently, the strength of the compression waves generated at the

valve increased with time. Thus, when the wavefront returned from the

first reflection at 1.0 s, the expansion waves were not as strong as the

compression waves, and the pressure continued to rise, but at a slower

rate. However, at 2.0 s the compression waves from the second reflection
..9
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arrived, further increasing the rate of the pressure 
rise. But, once

more the valve was totally closed at 2.1 a, allowing the expansion waves

from the first reflection to dominate, resulting in a steep pressure

drop. And once more, all that remained after this time was the wave

train repeatedly reflecting within the pipe.

Effects of Valve Cut-off Time. Moving now to the second parameter,

the length of time required for the valve to totally close was examined

for its effect on the transient. In Fig. 5-4, the result of the origi-

nal simulation with a cut-off time of 2.1 s was compared with the results

of a simulation where the cut-off time had been reduced to 1.5 s, as well

as a simulation where the cut-off time was increased to 2.5 s. For the

case of the shorter cut-off time, the valve closed more suddenly than in

the original case. This more sudden closure generated stronger compres-

sion waves, hence produced a steeper pressure rise during the first

second, as seen in Fig. 5-4. Since Em was greater than one, at 2L/a-1.O

s, the expansion waves from the first reflection arrived cauing a drop in

pressure. However, in this case the valve was fully closed by 1.5 s, so,

the expansion waves did not encounter any other waves until t-2.0 s when

the compression waves from the second reflection of the wave train

arrived. This period of pure expansion dropped the pressure near vapor

pressure before the arrival of the second reflection could reverse the

trend. But ultimately, this case settled into the same pattern as before

with pressure oscillations occuring with a period of 4L/a=2.0 s.

In the case of a cut-off time longer than tc- 2 .1 s, the closure was

. more gradual than the original, generating weaker compression waves as a

result. As seen in Fig. 5-4, these weaker waves produced a slower

pressure rise which lasted until the expansion waves from the first
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reflection arrived at 1.0 s. When the compression waves from the

second reflection arrived at 2.0 8 the valve was still closing, thus the

two sets of weaker compression waves combined to reduce the rate of the

pressure decrease produced by the expansion waves. Then at 2.5 s the

valve was totally closed. But, even though compression waves were no

longer generated at the valve, the pressure began to rise due to the

difference in wave strengths caused by the relative difference in times

during the closure at which the waves currently at the valve were

generated. Then, at 3.0 s expansion waves from the third reflection

began to arrive, decreasing the rate at which the pressure increased

Y4 towards the second peak. With the valve closed, all that remained after

this time were the waves reflecting between the valve and the reservoir.

14 Effects of Friction Factor. The next parameter investigated for its

effect on the pressure at the valve during the fluid transient was the

friction factor of the pipe. The results of changing the friction factor

,. are plotted in Fig. 5-5. As the friction factor increased, the

attenuation due to the friction increased. This attenuation was apparent

in several ways. First, the initial pressure at the valve decreased with

increasing values of the friction factor. Second, the rate at which the

pressure oscillations damped out increased as the friction factor

increased. And third, despite an increasing difference between the ini-

tial pressure and the peak pressure, the peak magnitude of the transient

decreased as the friction factor increased.

Structurally, the peak magnitude is the most important factor.

However, in this study the initial valve pressure was of more interest

due to its relationship with the timing of the peak magnitude as well as

the timing and magnitude of the secondary peaks. When the friction fac-
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tor was small there was little attenuation of the flow, so the pressure

gradient between the reservoir and the valve was very slight. Thus, once

the valve began to close, the pressure at the valve rose until the first

reflection arrived at 1.0 s. At this time the returning expansion waves

began to reduce the volume flow rate almost immediately since the

pressure gradient was small. Afterwards, the wave interactions were

like those described in the original case, with waves reflecting back

and forth between the valve and the reservoir.

But, as the friction factor and the attenuation increased, the ini-

.5 tial pressure at the valve decreased, creating a steeper pressure gra-

dient. As the gradient steepened, the strength of the compression at the

valve increased. Hence, the pressure at the valve rose faster initially.

% Also, once the reflection returned, the expansion waves took longer to

reverse the flow, causing what appears as a displacement in time of the

W pressure peaks. For the case of f-0.072, the gradient was such that

despite the arrival of the expansion waves, the pressure continued to

rise significantly before the flow was finally reversed and the pressure

began to drop. Further, since the compression strengthened as the fric-

tion factor increased, the subsequent reflections of the wave train were

stronger as well. This meant that even though the peak magnitude

decreased with increasing friction factor, the increasing aP caused the

the magnitude of the secondary peaks to be greater initially, but damp

out at a higher rate due to the increased friction.

Effects of Pipe Length. The final parameter examined for its effect

on the transient was the actual length of the pipe under consideration.

The results produced by altering the length of the pipe appear in Fig.

5-6. As the pipe becomes shorter, the time required for the waves to
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traverse the length of the pipe decreases. Consequently when Lf300 m,

the first reflection arrived at the valve in 0.5 s, while the system had

a period of 1.0 s. For L=150 m, the reflection arrived in 0.25 s, while

the system period was 0.5 s, and so on as the pipe length decreased.

Moreover, since the expansion waves returned to the valve with increasing

quickness, the pressure had increasingly less time to be influenced by

the compression due to the closure. Thus, the magnitude of the peak

pressure decreased as the pipe length decreased.

Aside from the effects already mentioned, the reduced travel time

had two other effects. First, the relative strength of any two waves was

dependent on the points in time during the closure at which each of the

waves was generated, since the closure characteristic was nonlinear.

1% Again, strength was equated to the pressure difference across a wave.

Therefore, the shorter the travel time, the closer the compression waves

currently generated at the valve were in strength to the reflected expan-

sion waves returning from the reservoir. Second, as the travel time

decreased, the time interval between reflections decreased as well. This

meant the number of reflections occuring before the valve was totally

closed increased.

The significance of these two effects was that the combination of

the two produced the differing responses observed in the time interval

between the arrival of the first reflection and the complete closure of

the valve. When the pipe length was such that 2L/a was a significant

percentage of the closure time, only a few reflections occurred during

closure and the relative strengths of the current and the reflected waves

were very different. Hence, as was seen in Fig. 5-6, for L=300 m the

pressure dropped rather rapidly once the reflection arrived at 0.5 s. In
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addition, it was easy to distinguish the additional reflections every 0.5

a after that point. However, as the pipe became shorter, more reflec-

tions of about the same relative strength began interacting at the valve

more quickly. The result was essentially a cancellation among all of the

reflections, which left the relative difference between the strengths of

the primary compression and the first reflection as the main driving

force of the pressure changes observed during the valve closure.

Single Pipe Verification for Cavitation

First Simulation. In the first of the cavitation simulations the

upstream pressure was dropped from 495 kPa to zero and held there. The

results published by Wylie for this system are shown in Fig. 5-7, while

Fig. 5-8 and 5-9 show the results of the program developed in this study.

In general, all the curves agreed with the expected results. That was,

the pressure downstream of the "pump" dropped to vapor pressure as the
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expansion waves generated by the change in upstream conditions traveled

down the pipe. Further, as was expected, the reflection of those waves Ve

returned at some time greater than 2L/a-4.56 a as indicated by the

location of the major pressure surge. The surge itself was due to the

expansion waves reflecting as compression waves from the constant

pressure boundary at the reservoir, then propagating back upstream. The

delay in the return of the waves seen in the results was introduced by

the formation of vapor within the pipe system. As discussed by Wylie

(14, 17), the effective wave speed is inversely related to the mass of

the vapor present. Thus, as vapor was released the effective wave speed

decreased, creating the delay in the occurrence of the pressure surge at

the station indicated.

Figs. 5-7, 5-8, and 5-9 agreed very closely as to the time and

approximate magnitude of the major events. Unexpectedly, the exact

magnitude of the program results was obscured by numerous pressure spikes

in the solution. The period of the spikes was related to the distance

between the downstream end of the cavitation bubble and the end of the

pipe. The cause of those spikes however, will be discussed later.

Second Simulation. For the second of the cavitation simulations,

the upstream conditions became those seen in the bottom curve in Fig.

5-10. The results Wylie published for this slightly more complex

interaction appear in Fig. 5-10 as the upper two curves. The results of

this study follow in Fig. 5-11 and 5-12. In this case the change in the

lb
upstream boundary condition generated both expansion and compression

.4,"

waves. The comparison of the curves was quite good, considering the

approximation of the upstream pressure that was used for the program

results. Both sets of results agreed that the first peak was delayed due

I..%
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Fig. 5-10. Wylie's results for simulation 2 (Hv=-10.1 m)

to the pressure falling to vapor pressure. Also, both sets indicated the

system had a period of 2.25 s once the cavities had collapsed, a period

N which was half of the expected 4L/a4-.5 s. This anomaly was explainable

by realizing both the expansion and the compression which occurred at the

upstream end were of approximately the same magnitude and were seperated

in time by almost exactly L/a=l.1 s. Thus, the expansion and the

compression seperated by this time interval caused the system to act as

if the pipe was only half of its actual length. But, even though the

magnitude of the peaks agreed well, there were still minor discrepancies

in the exact shape and magnitude.

Further Verification. To verify that the discrete vapor model was

indeed working correctly in light of the unrealistic pressure spikes, the

first cavitation simulation was repeated, but with two different vapor

pressures. Theoretically, if two fluids with different vapor pressures

were exposed to the same drop in pressure, the fluid with the higher
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vapor pressure would release a greater amount of vapor. Further, the

larger mass of vapor would produce a larger decrease in the effective

wave speed, given the same initial wave speed in both fluids. A vapor

pressure of -100 m was first chosen to insure that the fluid remained a

liquid throughout the simulation. This choice of vapor pressure made it

possible to verify that the model was correctly handling the wave propa-

gation and attenuation. For example, the pressure surge at x=813 m

downstream from the inlet should occur 2L/a-4.56 s after the first expan-

sion wave passes that point. That is the time required for a wave tra-

veling 981 m/s to propagate downstream and return. For the results in

Fig. 5-13, the initial wave passed x=813 m at about 0.8 s, the surge

began at 5.4 s. This made a difference of 4.6 s, which is within one

percent of the predicted value. As for the attenuation of the waves, the

decrease in the strength of the waves could be seen by the manner in

which the curves converged towards zero.

For the case of a vapor pressure higher than the original case, the

previous argument was still true. That is to say, the higher the vapor '

pressure, the greater the amount of vapor released, and the lower the

wave speed must be for a given pressure drop. Thus, when the vapor

pressure was raised to -5.03 m gage in the cavitation simulation, the

pressure surge was expected to occur at some later time. A comparison of

Fig. 5-8, the results for Hv=-10.06 m, and Fig. 5-14, the results for

Hv- 5 .03 m, indicated that the pressure surge was indeed delayed,

verifying that much of the model. However, the results were again

plagued by the nonphysical pressure fluctuations.

Pressure Spikes. These fluctuations and spikes were attributed to

the method by which the vapor was accounted for in the flow. By lumping
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the gas bubbles at the computing sections, numerical oscillations in the

magnitude of the pressure occurred. These nonphysical pressure oscilla-

tions arose for several reasons. First when the gas volume was lumped at

a computing section, it effectively produced an internal constant

pressure boundary. Hence, when multiple cavities occurred, there were

multiple reflections of the waves traveling in the pipe. Second, when

multiple cavities were predicted, they did not always physically exist.

Thus, as these nonphysical cavities opened and closed, additional fluc-

tuations were introduced into the solution. And third, mathematical

instabilities could occur when the gas bubbles underwent very large

volume changes during the course of a single time step. So, some caution

is required for the choice of time steps.

In an effort to eliminate the nonphysical oscillations, several

possible solutions were attempted. The first "fix" was drawn from a

paper by Simpson and Wylie (19). They showed that the integration method

used when computing the cavity volumes could introduce some of the error

associated with nonphysical cavities. In the study Simpson and Wylie

demonstrated three different methods by which Eq. (3.14) could be

integrated. The first was Euler's one-step method. This gave AVg=

At(Q-Qu), where Q and Qu were the flow upstream and downstream of the

cavity during the previous time step. The next method was the improved

Euler's method, which was used in this study to obtain Eq. (3.15). Here,

the difference in the flows at the previous and current time steps was

averaged to find the change in volume. The third and last was the for-

ward integration method, which gave aVg At(Qp-Qpu), where Qp and Qpu were

the flows at the current time step.
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The results produced by using the improved Euler's method have

already been presented in Figs. 5-8 and 5-9. Plots of the results

obtained by the other two integration methods appear in Figs. 5-15 and

5-16. A comparison of the results in Figs. 5-8, 5-15, and 5-16 with

Fig. 5-7 showed that for this case the improved Euler's method best

4reproduced the timing of the main surge when only vapor was accounted

for. Both of the other methods underestimated the cavity volumes, so

that the higher effective wave speeds caused the surge to occur sooner

than expected. The Euler's method did succeed in eliminating the fluc-

tuations, but sacrificed any claim to accuracy concerning the timing or

the magnitude of the pressure surge.

Wylie (17) developed another method to reduce the nonphysical

spikes, an air release model, which was presented under Cavitation in

section III, Boundary Conditions. After incorporating Wylie's air

release model into the program developed in this study, the first simula-

tion was repeated. The results of this experiment, at x=813 m only, are

shown in Fig. 5-17. Upon comparison of Figs. 5-8 and 5-17, it was seen

that the air release model did reduce the magnitude of the oscillations

to a small degree, but did not eliminate them. Further, the air release
.4.

model predicted the pressure surge would occur later than indicated in

Fig. 5-7. The small delay came because the air release model slightly

overestimated the amount of gas released. The additional gas was due to

the inclusion of a very small amount of air release from the fluid along

with the usual vapor formation.

The last approach in the attempt to eliminate the numerical oscilla-

tions was to reduce the size of the time step. During all the previous

simulations a time step of 0.05 s was used. For the results seen in Fig.
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5-18, the time step was decreased to 0.01 s. Unfortunately, it was not

possible to futher reduce the time step significantly. The number of

large arrays required to complete the computation with a smaller time

step overflowed the available memory in the computer. However, the trend

observed by comparing Figs. 5-17 and 5-18, indicated that the magnitude

of the oscillations was decreased by reducing the step size. It must be

remembered though, that by reducing the step size, the run time and the

memory required were increased, so a tradeoff between accuracy and cost

must be made.

Multiple Pipe Verification of Valve-in-line

The first of the multipie pipe simulations was taken from a study

by Swaffield (13), who was interested in the flow downstream of a valve.

In essence, since the pipes of Swaffield's system all had the same

diameter, the region downstream of the valve was analogous to the system

in the first cavitation simulation. The disturbance at the valve was

propagated downstream, where it was reflected in the opposite sense from

the constant pressure reservoir at the end. The reflection traveled

back upstream to the closed valve, where it was reflected in the same

sense, propagating once more downstream.

First Simulation. As seen in section IV, the initial conditions

for the first of the three cases were: Pd=10 2 kN/m2 abs, Qo0 0.00355 m3/s,

and the valve cut-off time was 0.081 s. The results published by

Swaffield for this case appear in Fig. 5-19, while the results produced

by the program can be seen in Fig. 5-20. The program accurately pre- el

dicted the magnitude of the first peak, but predicted magnitudes which

were higher than expected for the second and third peaks. Furthermore,

the pulses predicted by the program, Fig. 5-20, occurred between the
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pulses predicted in the two sets of Swaffield's results in Fig. 5-19.

All the results agreed that as the valve closed, a cavity formed on

the downstream side of the valve. The discrepancies past the first peak

resulted from different estimates of the amount of gas generated during

the formation of the initial cavity. The disagreement about the cavity

volume was inferred from the differences in the periods of the oscilla-

tions. The amount of gas predicted by the program was less than the

observed amount, but greater than the amount predicted for pure vapor.

Therefore, the effective wave speed fell in between the two predictions

by Swaffield, causing the pulses also to fall in between the times

predicted in Fig. 5-19. In addition, since the cavity implied by the

program's results was smaller than the cavity implied from the observed

results, the smaller cavity did not provide sufficient damping for the

later pulses. Consequently, there was a digression in magnitude as well

Sas period.

Second Simulation. For the second of the valve-in-line simula-

tions, the downstream pressure was raised to 222 kN/m2 abs and the valve

cut-off time was 0.16 s. A comparison of the published results, Fig.

5-21, with the program results seen in Fig. 5-22 and 5-23, showed

favorable agreement as far as the general shapes and magnitudes of the

curves were concerned. However, the characteristic closure curve used

in the program simulation was not completely accurate. The approximate

curve had a more sudden closure, creating a slightly stronger expansion.

The difference in the closure curves was seen in the rate at which the

pressure initially dropped to vapor pressure. As a result of this clo-

sure the program predicted the peak pressure to occur at 0.24 s, about

0.1 s after the observed peak occurred. This delay implied a slight
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overestimate of the gas released, causing a lover effective wave speed.

Also, it was possible to determine that the gas release was restricted to

the region immediately downstream of the valve. This observation stemmed

from a comparison of the results at 4.04 m downstream of the valve with

the results at 50.8 - downstream of the valve. First, the pressure

4.04 m downstream of the valve never reached vapor pressure during the

time preceeding the first pressure peak. And second, the pressure

oscillations between the first and second large peak in the results at

4.04 m had a period of 0.02 s, very nearly 2L/a for the combined length

of the second and third pipes of the system, even though vapor pressure

was indicated at the valve during this same time interval.
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Fig. 5-23. Program results for case 2, 4.04 m from valve (L2 ,3-9.87 m,
a=918 m/s, D-0.0508 m, Pv=700 Pa, tc=O.16 a)
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were presented by Swaffield. As in the previous simulations the

agreement was good up to that first peak. Unfortunately, none of the

subsequent peaks were presented for this case. So, it was impossible to

determine if the program results for this case were any better than the

previous cases for agreement after the first peak.

Verification of Multiple Pipe Valve Closure

rh The second of the multiple pipe simulations was also the second of

the two valve closure problems taken from Wylie and Streeter (14:60).

Like the previous multipipe simulations, this system was composed of

three pipes in series. For convenience the pipes were labelled as pipes

V
1, 2, and 3 starting at the upstream end of the system. Unlike the other

multipipe system, this one by Wylie and Streeter also contained area

'P changes at each of the internal junctions. Their results for the

q pressure at the valve were tabulated along with the results obtained from

the program and presented in Table VIII. A point by point comparison of

the two sets of results showed a variation of less than 0.1 percent for

the duration of the simulation. However, looking down the columns of

Table VIII or at the appropriate curve in Fig. 5-26, one does not observe

the smooth rise and fall in the pressure seen in the single pipe results,

Fig. 5-1, despite a basic similarity between the two systems. As

expected, in Fig. 5-26, the area changes and the different closure curve

superimposed irregularities over results approaching those in Fig. 5-1.

For the first 0.6 s, the valve closed rather rapidly as the valve

characteristic, r, dropped from 1.0 to 0.2. In turn the hard closure

during this time generated increasingly stronger compression waves, since

the greater diameter columns of water in pipes l and 2 had greater inertia

56

:!4 z



rqwNgwwwwwww

Table VIII. Head at the Valve for Multiple Pipe Closure

Wylie' s Calc. Program Calc.
Time (s) Head (m) Head (m)

0.0 100.00 99.99

0.1 127.65 127.64

0.2 167.51 167.50

0.3 224.67 224.64

0.4 311.71 311.64

0.5 448.71 448.57

0.6 668.70 668.39

0.7 673.58 673.24

0.8 651.84 651.50

0.9 690.25 689.89

1.0 736.11 735.72

1.1 764.86 764.43

1.2 790.15 789.68

1.3 805.23 804.72

1.4 805.76 805.21

. 1.5 773.19 772.64

1.6 684.02 683.51

1.7 683.85 683.32

1.8 686.38 685.81

1.9 570.22 569.71

2.0 407.59 407.18
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than the column in pipe 3. Aside from affecting the compression, the

differences in cross sectional area had a second effect. At each junc-

tion where a pipe was joined to a second pipe of different diameter, a

traveling wave was both transmitted with the same sign and reflected

with an opposite sign. This created multiple wave fronts within the

system. Thus, at junction two between pipes 2 and 3, the compression

waves traveling upstream from the valve were transmitted without

changing sign and reflected as expansion waves. This first reflection,

referred to as the first wave front, arrived back at the valve in about

0.2 s, but was only strong enough to reduce the rate of the pressure

rise. The compression waves generated at the valve were stronger than

the reflected expansion waves due to attenuation from friction and to

the relative difference in time at which each wave was generated.

Starting at 0.4 s, compression waves due to the reflection of the

first wave front from junction two arrived at the valve. Accordingly,

the pressure began to rise more quickly. At 0.6 s the slope of the

valve characteristic decreased such that it took the next 1.2 s for the

valve to completely close. This softer closure generated weaker

compression waves at the valve. Thus, the combination of the expansion

waves from the first wave front with those from the second reflection of

the first wave front was stronger than the combination of the current

compression waves with those of the first reflection of the first wave

front. So, the pressure began to drop as the flow began to reverse.

However, around 0.8 s, the third reflection of the first wave front

arrived about the time the expansion waves resulting from the hard clo-

sure in the first wave front came to an end. Therefore, the compression
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Fig. 5-26. Program results for case I of multipipe closure (LI-351 m,
L2-483 m, L3-115 m, a-1200 m/s, Ho-289 m)

waves dominated once more and the pressure began to rise again.

Beginning at 1.0 s a new factor entered the picture as a second

wave front, consisting of expansion waves due to the reflection of the

original compression waves from the junction 1 between pipes 1 and 2,

arrived at the valve. The arrival of these waves initially caused the

~rate of the pressure to slow. As the strength of the expansion waves

increased, the rate of the prsuerise decreased evnfurther. Bt

before the pressure could start to drop, compression waves due to the

: first reflection from junction 2 of the second wave front arrived at the

~valve around the 1.2 s point. These new waves acted to partially negate%

the expansion waves, slowing the reversal of the flow. However, at 1.4

~s, expansion waves produced by the second reflection of the second wave

front from junction two appeared at the valve causing the pressure to

~finally begin decreasing.

59 %

%

• u0.



DEMOWWW'X UU WWVWWWX 'KU WWWW.

It was at 1.6 s that the third wave front, created by the original

compression waves reflecting from the reservoir, reached the valve. At

this same time two other events occurred. First, the expansion waves in

the first reflection of the second wave front due to the hard closure

came to an end. And second, compression waves due to the third reflec-

tion of the second wave front arrived at the valve. These three events

interacted with the other waves at the valve to produce the nearly

constant pressure seen between 1.6 and 1.8 s.

Another complex interaction occurred at 1.8 s. First, at this time

the valve was completely closed, so no new compression waves were being

generated. Second, the compression waves from the hard closure in the

first reflection of the second wave front ended, leaving the weaker

waves from the soft closure. Third, compression waves due to the first

reflection of the third wave front reached tt.e valve. And fourth, expan-

sion waves due to the fourth reflection of the second wave front arrived

at the valve. The end result of all these events was a steep pressure

drop.

Fig. 5-26 includes a plot of the results from Table VIII as well as

the results obtained for the simulation adapted as described in section

IV for RP-l and LH2 . For all three fluids the timing of the waves was

very similar since the average of the adjusted wave speed for all three

were nearly equal. The wave speeds for water and for LH2 were both

calculated as having an average wave speed of 1175 m/s, while RP-1 was

found to have a wave speed of 1125 m/s. Therefore, since even the wave

speed stayed about the same despite changes in the fluids, the differen-

ces observed in the transients in Fig. 5-26 were due to the only remaining

variables which could change, either the density or the friction factor.
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In the single pipe closure problem, the peak pressure decreased by

about 7 percent when the friction factor was doubled. In the results

for the multipipe closure, the peak pressure for RP-1 was 14 percent

lower than that of water, even though the friction increased by a factor

of 1.25. It would be very easy at this point to reason that the change

in density was the major driver for the significant change in peak

pressure. Unfortunately, it was not that clear cut. The multipipe

system was longer and narrower than the single pipe system, increasing

the frictional effects. So, it was difficult to determine the true

contribution of either the friction factor or the density.

When the results using LH2 were compared with those for water, a

much clearer indication of the effects of density and friction factor

was attained. For the very high friction factor case for LH2 , the atte-

nuation of the reflected expansion waves was very great. Thus, the

compression produced by the valve dominated until the valve was almost

completely closed, only then did the pressure peak. The situation was

very different for the low friction factor case. The pressure peaked

relatively quickly due to the strong influence of the reflected waves on

the pressure at the valve. But even though the time of the peak

pressure was very different, the magnitudes of the peak pressures dif-

fered by less than 10 percent. This small change was in contrast to the

difference of over 100 percent between the peak pressure experienced for

water and the peak pressure for the low friction LH2 . This significant

effect of density was as expected when the relationship of density and

inertia was considered. As the density increased, the mass of fluid

within the pipe at any specified time increased, which in turn increased

tthe inertia of the fluid. Thus, as the inertia increased, the force
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required to bring that mass to rest increased, thereby increasing the

force per area which can be defined as pressure.

Effects of Reservoir Pressure. The discussion above illustrated

the influence of density on the severity of the transients by a com-

parison of the results for the different fluids in Fig. 5-26. In a

similar manner, a comparison of the results for the same fluid in Figs.

5-26, 5-27, and 5-28 provided insight into the effect of different

reservoir pressures on the transient pressures in a multipipe system.

The first and most obvious effect of changing the reservoir

pressure was the corresponding change in the initial pressure at the

valve. Given that the friction remained constant for any particuar

fluid in these simulations, the loss in pressure between the reservoir

and the valve was always a constant for a particular flow rate. So, as

the initial upstream pressure changed, the initial valve pressure also

p. changed.

A second effect of changing the reservoir pressure appeared to be a

change in the strength of the reflections. It was expected that the

strength of the waves generated during the different closures would vary

as a function of the reservoir pressure. However, a comparison of the

results seen in Figs. 5-26, 5-27, and 5-28 indicated that the strength

Aof the reflections was also a function of reservoir pressure. The

results for the different fluids retained the same relationship with

respect to the results for water as seen in the original case for this

simulation. Therefore, the discussion of the second effect will be

restricted only to the results obtained for water.

For the reservoir pressure of the original simulation, the results

contained essentially three peaks, as seen in Fig. 5-26. The first peak fl
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Fig. 5-28. Program results for case 2 of multipipe closure (L~I-351 a,

L2in483 a, L3in115 2, a-1200 mis, HOin200 a)
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occurred when the closure changed from hard to soft. A second peak,

also the highest, occurred just prior to the arrival of the third wave

front. Lastly, a third peak that occurred about the time the valve

finished closing. In the case of the higher reservoir pressure, Fig.

5-27, the first peak occurred much the same as in the original case.

i, However, the second and third peaks were not simply higher magnitude

versions of the peaks in Fig. 5-26. The second peak reached its maximum

as soon as the second wave front arrived, an indication that the

strength of the reflected expansion waves was enhanced. A further

demonstration of the increased strength of the reflections was that the

third peak did not truly exist. There was a leveling of the curve

around the point where the third peak should have been, but the results

were so dominated by the reflected expansion waves that there was only

this change in the slope, not a real peak. In the case of the lower

reservoir pressure, there was only one true peak remaining in the

results in Fig. 5-28. Unlike the high pressure case, the absence of

three distinct peaks was due to the weakness of the reflected expansion

d e waves, they were unable to significantly affect the compression at the

valve. Thus, when each of the first two wave fronts arrived at the

valve, there were only changes in the slope. The only true peak did not

Voccur until the valve was completely closed. At this time compression

waves were no longer generated at the valve, so the expansion waves were I
now sufficient to cause a drop in the pressure. 'a

Effects of Valve Characteristic Curve. Moving now to the results

seen in Fig. 5-29 and 5-30, the effect obtained by changing the shape of

& the closure curve was examined for the multipipe closure. As before,

the comparison of the results concentrated on the results for water.
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Fig. 5-29. Program results for case 4 of multipipe closure (Ll=351 m,
L2-483 m, L3-115 m, a-1200 m/s, Ho-289 m, hard closure)
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Fig. 5-30. Program results for case 5 of multipipe closure (L1=351 m, "

L2-483 m, L3-115 m, a-1200 m/s, Ho-289 m, soft closure)
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Starting with the harder closure, a comparison of Fig. 5-26 and 5-29

indicated two major differences between the results for the hard closure

and those for the original closure. First, since the compression waves

were stronger during the more sudden closure, the first two peaks seen in

the results in Fig. 5-29 were higher in magnitude than the corresponding

peaks in Fig. 5-26. This result paralleled the findings of Fig. 5-4

which was a comparison of different cut-off times for the single pipe

closure. And second, since the valve was completely closed 0.6 s

earlier in the hard closure case, a greater pressure drop occurred after

the second peak than seen in the original closure. In addition, the

change in slope at the break point of the closure curve was more severe

for the hard closure. Therefore, when the expansion waves of the third

wave front arrived at 1.6 s, the relative strengths of the waves were

such that a third peak still occurred, despite the absence of

compression waves generated by the valve.

As for the soft closure case, Fig. 5-30, the changes in the slope

of r were more gradual. During the first 0.6 s, the pressure rose in a

manner similar to that seen in Fig. 5-26. At the 0.6 s point was the

first change in the slope of the closure curve. Since the changes in

slope were more gradual in the soft closure, the actual slope of the

closure curve was much steeper than the corresponding portion of the

curve in the original closure. Hence, the portion of the closure curve

between 0.6 and 1.2 s was steeper than the original curve, and so, the

compression waves generated at the valve were stronger for this period .

of time. Thus, the pressure continued to rise at a rate which was --

reflective of the closure curve. Finally, as in the low reservoir

pressure case, the pressure peaked only after the valve completely
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closed, ending the generation of new compression waves at the valve, and

thereby allowing the expansion waves to finally dominate the solution.

Saturn V Feedline

In this final system an in-depth wave by wave description of the

interactions was not included, as it would quickly become too complex to

follow. Instead, a number of runs were made with only the pipes of the

system in order to establish a baseline. These runs included variations

on the input parameters in much the same manner as were previously

incorporated in the single and multiple valve closure simulations. The

results for the F-l feedline were then analyzed by a comparison with the

trends established by earlier simulations with the simpler systems.

Once the baseline was determined, additional components were added and

"0 analyzed, until finally all the components were included in the final

run .

Baseline Simulations. Beginning the baseline portion of the F-l

feedline analysis, the results from the first run on Table VII appear in

Fig. 5-31. The shape of the curve was surprising until the system was

looked at in terms of the findings of the earlier simulations. First,

in comparison to the earlier simulations, the feedline was a low pressure

system. Furthermore, the changes of diameter at the junctions were

small compared to those in the multipipe closure. The combination of

these two factors meant that any reflections from the internal junctions

would be extremely weak, and hence the system would tend to act as if it

4 was a single pipe. And second, the overall pipe length was such that

the cut-off time for the valve was much greater than the oscillatory

period of the system. So, the system would be expected to behave in a
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manner reminiscent of the short pipe results seen in Fig. 5-6.

The expected results extrapolated from the findings of the earlier

simulations agreed well with the results in Fig. 5-31. The oscillations

once the valve was closed were a smooth sinusoid with a period of 0.182

s, about the same as would be observed in a single pipe having the same

period as the feedline. And, as in the short pipe results for the

single pipe, the pressure at the valve was dominated by the relative

strengths of the compression generated by the valve and the expansion

due to the reflection from the reservoir, creating the large first peak.

Also, as per the description of the single pipe valve closure, the expo-

nential law of the closure curve was reflected in the shape of the first

peak, specifically, in the slope of the curve as the pressure decreased

just after passing the peak magnitude. This lasted up until the time

when the valve was fully closed, at which time the pressure became domi-

nated by the reflections, significantly dropping the pressure.

For the results of the second run which appear in Fig. 5-32, the

only change from the first run was that the cut-off time had been

increased to 3.0 s. As was expected due to Fig. 5-4, the magnitudes of

both the primary and the secondary peaks decreased as a result of the

softer closure produced by an extended cut-off time. Once the valve was

closed the period of the pressure oscillations was still 0.182 s. And

~finally, the changes in the slope of the closure curve were more gradual

for the longer cut-off time. Consequently, the time was longer until

the reflected expansion waves were strong enough, relative to the com-

pression waves at the valve, to begin decelerating the flow and thereby

dropping the pressure. Thus, the pressure rose gradually to a peak and

then gradually decreased, as the relative strengths of the waves slowly
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reversed from the compression being stronger to the expansion being

stronger during the first peak.

b In the third run, Fig. 5-33, the cut-off time was once more 1.5 s,

but Em from Eq. (4.1) was changed to 1.0. This implied that the closure

curve was now linear. Therefore, once the initial reflection returned

from the reservoir, the rate of increase in pressure was reduced since

the compression waves and their reflections were nearly equal in magni-

tude. However, because the closure curve was linear, the closure did

not soften as the cut-off time approached as in the first two runs.

Instead, the flow ended abruptly as indicated by the sharp drop in

pressure seen in Fig. 5-33 at tc=l.5 s. Further, this sharp cut-off

also affected the pressure oscillations after the valve closure. Even

though the oscillations had the same period, the peak magnitudes were

nearly equal to the magnitude of the initial peak. And lastly, when Em

was 1.2, Fig. 5-31, the slope of the closure curve started off steeper

than the linear closure, then gradually decreased until the slope was

less than that for Em-l. Thus, when Fig. 5-31 and 5-33 are compared,

U. the pressure in Fig. 5-31 increased quicker due to the steeper slope of

the closure curve. As the first reflection arrived the pressure rise

slowed in each case. However, in Fig. 5-31, the strength of the

compression decreased as the slope of the closure decreased, causing the

peak and gradual decline in pressure. While in Fig. 5-33, the slope did

not change, so the strength of tha compression remained the same.

Therefore, since the reflections had been attenuated by friction, they

were not as strong as the compression and the pressure continued to

rise, albeit slowly. This rise continued until tcl.5 s, when the valve

closed, ending the generation of compression waves at the valve. Due to
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this continual pressure rise in the results in Fig. 5-33, the peak

pressure was slightly higher than that seen in the results in Fig. 5-31.

The results which appeared in Fig. 5-34 were those for run 4, where

EmMl. 5 . In this case the closure was initially harder, but ended softer

than the closure experienced in Fig. 5-31, producing several effects.

First, the slope of the initial closure was steeper than the previous

runs, hence the peak pressure was higher. Second, in Fig. 5-34, due to

the more radical difference in the slopes of the closure at the

beginning and at the end, the relative strengths of the compression and

its reflections caused the pressure to decrease more rapidly than in

Fig. 5-31. And third, during the final moments of the closure, the

slope of the closure curve more closely approached zero when Em-l.5 than

in the earlier cases. For this reason the magnitude of the pressure

oscillations was small, though the period still remained the same. This

was expected due to the results seen in Fig. 5-3 and 5-6 for the single

pipe. From Fig. 5-3 it was determined that the pressure rose more

quickly and peaked higher as Em increased. And, except for the fact

P. that the cut-off time was decreased to 1.5 s, Fig. 5-34 could almost be

one of the curves in Fig. 5-6, the results agree that well.

Run 5 was the last of the baseline cases. For this case the inputs

had been returned to the original values, except for the initial valve

pressure, which was increased by 40 psi, 2.76x10 5 Pa in metric units.

The results, which appear in Fig. 5-35, were almost an exact duplicate

of those in Fig. 5-31. The only observable differences were the

increases in magnitude of the primary and secondary peak pressures. The

shape of the first peak and the frequency of the pressure oscillations

in Fig. 5-35 remained the same as in Fig. 5-31.

N: 
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Pulser Valve Simulations. The next six runs began the inclusion of

other components into the simulations. For these runs a pulser valve was

included, operating at frequencies of 2.5, 10, and 25 Hz. The first and

third frequencies were chosen to test the frequency response of the

models in use, the frequencies were arbitrarily chosen near two resonant

frequencies reported for this system by Dehoff (2). The last frequency

was chosen as a control to provide a median value which was not iden-

tified as a resonant frequency.

The results for the first of these runs appeared in Fig. 5-36. In

this run the frequency of the pulser was 2.5 Hz. The results seem to

indicate a resonant condition due to the large oscillations that built

up and finally masked the expected response. It should be noted, that

r4 due to the choice of the function to represent the flow out of the

pulser valve, Eq. (4.5), the frequency of the sinusoid was effectively

doubled due to the absolute value being used. Hence, the frequency of

2.5 Hz became 5 Hz for all practical purposes, and very nearly the

nearly the natural frequency observed in the previous runs. Thus, the

qsystem was near resonance, ana the magnitude of the pressure oscilla-

tions became so large that the system began to reach vapor pressure.

Consequently, as with the cavitation simulations, pressure spikes were

introduced into the solution. More important though, the oscillations

remained bounded and finally decreased because the gas released by the

column seperation changed the effective wave speed, thereby changing the

natural frequency of the pipeline.

When the frequency of the pulser was increased to 10 Hz as in Fig.

5-37, the results were not as dramatic as those seen in Fig. 5-36. In

this case the results resembled Fig. 5-31 with a small magnitude
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oscillation superimposed on top of them. At this frequency the oscilla-

tions at the valve started small and built up to a magnitude that was

only a fraction of the magnitude of the oscillations following the valve

closure. Increasing the frequency further to 25 Hz produced the results

seen in Fig. 5-38. Once again, the oscillations were simply superim-

posed over the results of Fig. 5-31. The pulser's effective frequency

of 50 Hz was nearly a harmonic. This was indicated in the results by

the magnitude of the oscillations growing more quickly and to a larger

value than those seen in Fig. 5-37.

The last three runs of this set examined the effect of changes in

some of the system parameters while the pulser was present. In run 9,

E. was changed to 1.0 to see if a change in the closure curve affected

the resonance condition exhibited in Fig. 5-36. As seen by the results

in Fig. 5-39, the change had no significant impact. Jumping from the

Scase with the largest oscillations to the one with the smallest, for run

10, run 7 was repeated with the initial valve pressure increased to 130

psi which is 8.96x105 Pa. Examining the results of run 10 in Fig. 5-40,

qthe curve was little more than a translation in the y-direction of Fig.

5-37. However, as seen by Fig. 5-41, when the system pressure was

increased while keeping Em-1.0, the resonant condition was not as domi-

nant. While still very sizable, in this case the pressure oscillations

after the valve closed were out of phase with the oscillations due to

the pulser. Hence, the erratic pressure response after the valve was

fully closed.

Accumulators and Cavitation Simulations. The next six runs incor-

porated the other system components, the "pump inlet cavitation" and the

prevalve accumulator. Run 12 started things off with cavitation only.
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Fig. 5-39. Results of run 9 for Saturn V feedline (PO-621 kPa, tc-1.5 s,
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Fig. 5-40. Results of run 10 for Saturn V feedline (P0=896 kPa, tc=1.5 s,

EMM1.2, w-2.5 Hz)
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Upon comparison of the run 12 results, Fig. 5-42, with the results in

Fig. 5-33, one major change could be noted. Once the valve was closed,

the results in Fig. 5-42 showed a decrease in the frequency from 5.5 Hz

to 3.2 Hz. This decrease in frequency was to be expected however. In

run 12 there was now vapor present in the form of the turbopump inlet

cavitation which produced a reduction of the effective wave speed in

that region, thereby increasing the travel time of the waves.

In runs 13, 14, and 15 the cavitation was still present, however,

the prevalve accumulator had been included with volumes as seen in Table

VII. Comparing Fig. 5-42 with Figs. 5-43, 5-44, and 5-45 deliniated

several trends. The most notable trend was the increase in the period

of the pressure oscillations as the gas volume in the accumulator

increased. Also, the strength of the reflections from an internal boun-

dary condition increased with increasing gas volume. This aspect was

best demonstrated by the increase in the rippling of the pressure trace

as the accumulator gas volume increased. And finally, there was no

significant decrease in the peak magnitudes as the accumulator volume

Rincreased. Taken together, these trends indicated a problem in the

modeling of an accumulator. Instead of acting as a surge suppressor,

the model developed for this study acted in a manner very similar to a

vapor cavity in the discrete bubble model of cavitation.

This supposition concerning the accumulator model was further

demonstrated by the results of runs 16 and 17. In run 16 the initial

valve pressure was again increased to 896 kPa. In comparison to the

results in Fig. 5-42 the results were as expected. The pressure trace

was essentially the same curve translated in the y-direction. The fre-

quency of the pressure oscillations even stayed the same. However, com-
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Fig. 5-45. Results of run 15 for Saturn V feedline (Po=621 kPa, tcul.5 s,
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paring between the results of run 16 in Fig. 5-46 and those of run 17 in

Fig. 5-47, the period of the oscillation increased significantly when

the accumulator with an initial volume of 0.054 m3 was included.

Furthermore, the existance of relatively strong internal reflections was

once again readily apparent. And, there was still no surge suppression

demonstrated by the accumulator model. Thus, when all the components

were included for run 18, the massive pressure oscillations seen in

Figs. 5-36 and 5-39 were not eliminated from the results seen in Fig.

5-48 by surge suppression. Rather, the inclusion of the accumulator

suppressed the surges by changing the natural frequency of the system
p

such that pressure oscillations caused by the pulser took longer to

build up to the larger magnitudes.
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3 VI. Conclusions

3 In this study a simple but flexible computer program was developed

and used to analyze fluid transients in pipelines. The derivation of

the equations of motion used in the numerical analysis was based on the

method of characteristics. Boundary conditions were obtained from

either published sources or developed mathematically to allow for con-

ditions which commonly occur in propellant feedline systems.

The results of the program were quite good when compared against

published data. Further, a number of trends were observed in the results:

1) The integration method, the inclusion of air release, and the size of

the time step all affected the numerical stability of the discrete

bubble method. 2) The valve characteristic, r, the cut-off time, the

friction factor, and the pipe length strongly influenced the peak magni-

tude of the pressure transient. 3) The density strongly influenced the

peak magnitude of the transient pressure through inertial effects. And

4) The pressure of the system affected the strength of the reflections

from the internal boundary conditions.

It is recomended that a new accumulator model be found or created

to replace the one currently included in this study. Also, even though

the results obtained through the use of this program were good, there is

still room for additional improvements in the modeling and procedures.

One specific area that might be improved is that section of the code

which provides the initial solution for the numerical analysis.

8.
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Appendix A. A User's Guide

Computational Requirements

The program developed during this investigation was written in

FORTRAN 77 and implemented on the ASD CDC-Cyber mainframe computer. The

routine which is detailed later in this Appendix did not require a great

deal of computational power. In the case of the single pipe models, run

times averaged up to 20 CPU's. The Saturn V model usually required

around 200 CPU's due to the small time step required to achieve an

integer number of reaches in the very short pipes.

Program Explanation

Fig. A-1 is a general flow diagram of the routine developed in this

study. The program begins by dimensioning all of the arrays that are

found in the program. Since FORTRAN cannot dimension arrays after

reading in any data, the user must be sure the arrays are large enough

at the start. The next part of the program is the reading of the input

data. The user must pay close attention to the sequence of Read state-

ments in this program (see program listing). The first three Read sta- 46

tements are used only once, the remaining three Reads are repeated

within seperate loops. Thus, the input deck must contain sufficient

data to satisfy the full range of any one Read statement for the length

of its loop before trying to input data for the next Read.

After all the data has been input, if the wave speed has been set

to zero, the program will then calculate a value by Eq. (4.2). Once the -

wave speed is known each pipe must be subdivided into reaches for com-

putational purposes. The routine the program uses to make this calcula-

tion is taken from Wylie and Streeter (14:45). In each pipe of the

87



start Calculate State
at Interior Points

III ig one pi

Integer No.ye

t i re hat Apply Junction
Bsoundary Conditions

u ed tl an t be o
in evyppjue tqion

where i Condition i

Ys Ou uResults a

J Fig. A-1. Program Flow Chart

system it is required that

A t=L/etN (A. 1)

in which N is an inteer. However, for computational purposes the time

step must remain constant for all the pipes in the system. Wylie and

Streeter argued that the wave spend does not need to be known exactly, NF

thus may be adjusted slightly to arrive at an integer number of reaches

~in every pipe. In equation form

At=L/a(l~c)N (A.2)

where c is a constant equal to the permissible variation in the wave

. . speed, which is always less than 0.15.

With the pipes now subdivided for computation, the finite dif-

~ference routine needs an initial condition from which to start. In this
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3 program the steady state pressure at either the upstream or the

downstream end must be known. If the upstream pressure is input, the

program will then use the steady state form of the finite difference

equations to relate the upstream pressure to the pressure at any point

in the flow. However, if the downstream pressure is input, the program

must first work backwards through the steady state solution to find the

pressure at the upstream end. Once the pressure is known at the

upstream end, the pressure may be calculated at any point as before. In

the program listing the loop to work backwards through the solution is

DO 22 etc., so the user must be careful to eliminate this loop if the

upstream pressure is input as an initial condition.

Once the program has the initial condition from which to start, the

transient loop begins. The first part of this loop is the calculation

of the pressure and the volume flow rate at all the interior points of

the pipes. After the values at the interior points have been calcu-

lated, a loop to apply the boundary conditions to any internal junctions

begins. First, the flag, M, is checked to see if there is more than one

pipe. As shown in Fig. A-I, if there is only one pipe the program skips

down to the exterior boundary conditions. However, if there is more

than one pipe, the various flags are then checked to determine which of

the boundary conditions exist at that particular junction. If no other

boundary condition is specified the default boundary condition is a

series connection.

The last section of the program before the next time increment

begins is the exterior boundary conditions of the system being analyzed.

These boundary conditions are not actually exterior to the pipe system,

simply the conditions at the upstream end of the first pipe and the
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downstream end of the last one. The user must make sure the correct end

conditions are being used since a number of different end conditions

have been left in the program as Comment statements.

.Program Variables

A wave speed

AR pipe area

B, FF, R pipeline constants, Eq. (2.20) and (2.21)

BO,Bl,B2,B3 pump constants, Eq. (B.8)

CM, CP constants from Eq. (2.18) and (2.19)

CMI CM for pipe 2 of a branch

CV constant from Eq. (3.6) and (3.8)

CVP initial value of CV

D pipe diameter

DP pressure rise due to pump

DPPO, PPO pump constants

DT time step

E Young's modulus

EM exponent from Eq. (4.1)

F friction factor

G gravitational acceleration

.I counter to indicate which reach within a pipe

ICAV indicator for the existence of cavitation bubbles

IPR constant governing amount of output

J counter to indicate which pipe

JMAX, IMAX location of maximum pressure

J2 counter for branches
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3 K counter used with IPR

KL bulk modulus

I L, LB flags for branches (see top of program listing)

M number of pipes in main line

MB M + NB

N number of reaches in a pipe

NA accumulator flag

NB number of branches

NP pump flag

NPLS pulser flag

NS last computation point in a pipe

NTA number of points if TAU is not exponential

NV valve flag

OLDCM, OLDCP CM and CP from previous time step

P pressure from previous times step

PAO initial pressure of an accumulator

PB barometric pressure

PMAX maximum pressure

PO initial pressure

POR initial pressure at the upstream end

PP pressure for current time increment

PSI adjustment factor for wave speed

PV vapor pressure

Q volume flow rate at previous time step

4 QP volume flow rate at current time increment

QPO initial volume flow rate of a pump

QPU, QU volume flow rate on upstream side of computing location

( 91
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QV volume flow rate through pulser valve

RHO density

T time

TAU closure characteristic, Eq. (3.5)

TC cut-off time for valve at end of the system

TCUT cut-off time for internal valve

TH interpolation factor for nonexponential TAU

TMAX time limit

TMX time of maximum pressure

TOL tolerance for accumulator iteration

TT pipe wall thickness

TX exponent of Eq. (4.1) for valve at end of system

VAO initial volume of accumulator

VCAV volume of a vapor cavity

W frequency of pulser valve

XL pipe length

ZETA interpolation factor from Eq. (2.24)
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U PROGRAM THESIS
REAL A(17),D(17),F(17)PXL(17),3(17),R(17) ,FF(17 ,AR(17)
REAL P(17,150) vPP(17p 150)90( 17,150) vQP(17,150) ,TA(50), ZETA( 17)IREAL TCUT(17),ENK17),TAU(72),CV(17,2),CVP172),TT(17)
REAL WU7t5O) 9PU17 150),VCA(17,150.,E(17) tALpH(17) AKL
REAL O0U(17p 150),0017150) ,RL(17)PV(17)PCI (17)
REAL OLDCP(17),OLDCM(17),TOL(17),PAO(17),VAO(17)

CINTEGER NS(17),N(17),L3(17,tL(17),NV(17)PICAV(17,150),NA(17)

COMMON/DELTAP/ 20,91932983,OPOPPODPPO
COHMON/OLD/ OLDCMrOLDCP

C
C NV INDICATES IF THERE IS A VALVE AT INLET OF PIPE J
C NA INDICATES IF THERE IS AN ACCUMUILATOR AT INLET OF J
C L INDICATES IF THERE IS A DRANCH AT THE OUTLET OF PIPE J

C INEACHCASENOUO AND YESs1
c N3 S THENUMBER OF BRANCHES

C LB INDICATES WHICH JUNCTION IRAN" J OCCURS AT
C NP INDICATES WHICH JUNCTION A PUMP OCCURS AT
C NPLS INDICATES WHERE A PULSING VALVE IS LOCATED
C
C INPUT OF SYSTEM PARAMETERS
C

- READ(27,S)OOPOO,DTPSIMTMAXIPR,TC,NBKL,RHO
READ(27,S)NPOPOPPODPPONTAB0p,B,B3,P3,PV
READ(27,S)GV,WNPLSTX,PHI ,AODESIG

DO 10 IuIMD
READ27,)XL(I)A(I),(I)F(I),L(I),L(I),NA(I),E(I),TT(I)

10 CONTINUEI D0 11 Ju1I9B
READ(27,S)EM(J),TCUT(J) ,NVCJ)PVAO(J),TOL(J)PALPH(J)

11 CONTINUE
DO 12 IlINTA

READ(27,S) TA(I
12 CONTINUE

PORSPO
PNAXBPO
GOREGO
DO 20 J1l,N3

C
C ADJUSTHENT FOR INTEGER No. OF REACHES

IF (A(J)*EO.0) THEN
A(J)=SORT( ((KLIR) / (1 *C(LSD(J) )(E (J)*TT (J))))

EWIF&
NL*XL(J)/( (14PSI)SA(J)*DT)
N(J)=XL(J)/( C1-PSI)*A(J)SDT)
IF (NL.EG.N(J)) GOTO 15
XNBXL(J)/(DT*A(J))
N(J)aXN

IF CXN-N(J).GT..5) THENI

ENDIF
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3 IF (N(J).EO.O) GOTO 16
A(J)nXL(J)/(N(J)gDT)

15 N(J)ON(J)+13 MRITECSts)'j. ',J,' SEClIONSO '114(J)
16 If (N(J).ES.O) THEN

WlITE(SS)'DT TOO 9I0 FOR PIPE 'tj

C
C CALCULATION OF SYSTEM CONSTANTS

POSTEPOtPD
C)(J)uP0STSAOSV(J)
ZETA(J)sN( J)SDTSACJ)/XL(J)
v(J)UAft(J)/(RHOSAU))
R(J)*OSAfR(J)SDT*5IN(ALPH4(j)
FF(J)uV(J)*DT/(D(J)*Aft(J)*2)
NN.NS (J)

20 CONTINUE
0022 Jo I,
POR=PORIFF(J)*N(J)ggM h82/2(j

22 CONTINUE
C WRITE(6,S)BPORPOgODTTNAXIPR

C INITIAL CONDITIONSU C
PRINT SP0l,1)
DO '25 Jultm3

IF.N (JGT THEN

IF (Nt(J):EG.1) THEN

ENDIF
ENDIF
IF (NA(J)*EEOI) THEN

EWIF
D0 25 I-IoN
O( J, I)RP0
QU(J, I) -GPO
OG(JvI)4P0
OOU( JI) -GPO
IF (JoE@.NP.AND.I.EQ.1) THEN
CALL DELP(JFAOPNSDP)
PU, 1)uP(J-INS(J-I) )+DP

ENDIF
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1 25 CONTINUE 5

M1814+115 IF (09.NE.M) THEN
DO 30 JaffiN,

P(Jv1)mP(Ll(J),NSCLl(J))) .

D0 30 Iu1pNN

QU(J:I)=Oo

30 CONTINUE
ENS IF
YAU(N,2)*TA( 1)
CW(9I,2)aQPOSS2/(2$P(M#NS(M)))
TwO
KNO

Do 35 JuiNDs
* CIP(,I) uQPCf2/(O.O1*P(J,D)

IdITE(6,l)JpA(J),F(J) ,ZETA(J)
35 CONTINUE .

WRITE(6t*E'DESI~ 'rESIO .

C WRITE(6t*)'NAX AT 'pTMX,JNAX,IMAXoPMAX
DO 45 Jnl,Ml

C WRITE(6,S)'Jo ',J,P(J,1),O(J,1),P(J,NS(J)),Q(JNS(J)) j

C WRITE(6t$)G(J,1)#12(J,tES(J))

C WRITE(6,*)(Q(J,I),InlpNS(J))
C WRITE(6pl)%J
45 CONTINUE A

C
C TRANSIENT LOOP
C ..

50 TwT4DT
IF (T.OT.TMAX) GOTO 99
KdK+ I

C
C INTERIOR POINTS ..

C
DO 61 JalIDP

IF (T.GE.TCUT(J)) GOTIO 31

OVID 52
51 TMI(Jt1)00
52 CV(Jpl)uCVP(J,1)STAU(Jrl)2

NP'( J)
IF (NN.E0.1) GOTO 61
DO 60 Iw2,NW

CALL FCI(IJ,,U,P3B,RPFFYZETACA)
CALL FCP(IJPQQUPP,RFF,ZETA,CP)e

IF (ICAV(JI).EOI)GOTO 55
'S GP(J,I)*(CP4CN)/2

IF (PP(J,I)+PD.LT.PV) 00,0 55
GOTO 59
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55 CONTINUE
C WRITE(ttS)'CA4JITATIOM IN SECTION 'v1,' OF PIPE ',J3 DBluCPWIS(CN-CP)SVCAV(JI)/(2*DT)+( L-PHI)S(OQ(JIp)

0 -OQUCJI))/ (PHIs (J) )
C4mCl(J)/(2DTP4ISD(J))
PP(JI)a(-3+2(P-P)+SRTU3IG+2P-P):8*28C4))/4

c PP(JvI)=-P3+PV
ICAV(JIl)ol

57 QPU(JI)UCP-PP(JtI)*B(J)
GP(JtI)=CN+PP(JI)*B(J)

C VCAV(JI)CVCAV(JI)+DTS(A4I3(OP(JI)-QPU(JI))

VCAV(JI)sVCAV(JI)+2WDTSCPHI*(QP(JI)-QPU(JI))

VCAV( J, )aO.
QPCJ, I)=(CP9CM)/2

5? PP(JPI)(CP-PJFI))/B(J)
GPIJ( J, I)oP( JI)

60 CONTINUE
61 CONTINUE
C
C PIPE JUNCTIONS
C

IF (M.Ego.) GOTO 75
J2=14
D0 70 J02ANTE

J2=J2+1
ELSE

J2uJ2

CALL FCN(IJOOUP,3,RFFpZETACN)
CM ISCH
CALL FCN(lJ2,OOUtP,3,RFFPZETACN)
JIaJ-1
InNS(JI
CALL FCP(IpJlGOtJvP,3,RFFPZETAtCP)
IF (T.U.DT) THEN

OLXWP(UD)CP
OLDCN(J)nmai

ENSIF
If (N'(J),EO.1) GOTO 43
IF (NM(J)*Eg.1) GOTO 64
IF (L(J-1).EQ.1) GOTO 45
IF (J*EO.NP) GOTO 67
IF (J.E@.NPLS) OY 69

OP(Jv1)uCNI+3(J)SPP(Jt1)

OP(J-1tuP( Jtl)
OPU(J-1I)nOP(J,1)

PP CJ- 1,1) PP CJ, 1
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3 16070 70
43 CALL VALVE(J,3,NSCPCN1,CV,9pPPPGP))
C URITE(SS)'VALVE CALLED'

6010 70U M CALL AiCCW(Jt3,P,0,CPtCN1tDTNStPA0,VAOTOLePP,0PGPU)

65 CALL DRANCH(JJ2,3,NSCPCNCNItOPFPQPU)
C WRITE (SS)'DRANCH CALLED'

CALPUMP(JPBCNCPPDPNPopPPoP)
C WRITE(SS)'PURP CALLED'

0010 70
69 CALL PULSE(JDTUNS,0VCPCN1,PPPPU)
70 CONTINUE
C
C END CONDITIONS
C
75 CONTINUE
C IF (T.LE.0.2) THEN
C POR=4.*944E+5-2,*472E*68T
C ELSK
C PoRwo.
C IF (T.LE*@.?.OR*T.O.1.65) THEN *

C. POA.5.91E*5
C ELUIF (T.ST,0.2.AN9,T.LE.o.5s) THEN

C ELSEIF (T.ST.0.55.ANS.T.LT.I.45) TE
C PORi*374f45-3*246E+4*CT0*55)
C ELK
C P0Rwl,079E4542*414E+&2(T-1.45)IC ENSIF

PP(1,1)nmO

CALL FCN(IpJtOQUtPt3,RPFFpZETACH)
op(l r )nc"4P(l 0 )SS(1)
opI(ll)4P(lrl)
JUN

CALL FCP(IPJP@,6UP,3,RtFFZEYApCP)
C PP(JI)EP(JoI)
C 2W(JI).CP-PP(JpI)S3(J)
C KwlflC+
I
C IF (I.UE.NTA) SOTO 79
C TNE(T-4I-l)STC/TC
C TNI(N,2)uIA(IS(l-TN),TN#TA(I+1)

if (T.ST.TC) 6010 79
TAU(N2)o( l-T/TC)SSTX

79 TMJU(h2)uTA(NTA)
S0 CV(N,2)sCVP(N,2)STAU(N,2)132/3CN). 

%

OP(KJO(N))U-CV(N,2)4SIT( (CV(N,2))822CV(N,2)SCF)
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C xecV(NF2)/2
C PP(NN$(o9)u(SeRT(X)/(+SOT(X+()S(CP+O*SIN(sT)))
C 0 /I(II))4g2
C opNm~))mp~pNMM
C 001 nOOSWOT(PP(HPNS(N))/P0)

IF (Mo.NEN) THEIN
DO 35 JOIPHSN

CALL FCP(!,JvgpgtUIPtB3,PFPZETAPCP)

IF P(JI).OPAX TE

PNAXP(JI
95 CONIN.

ENDIF

D0 CO0TINEps

007040 tm~j
ELSE ~ n(Jl

001050 Uwjvl

QU-v=((Jl EII
1U~ 9, STOPtl

C(t)PPJl
IFC(t)GTPA)TE

C IF6- C ) P(J) PLTP) SAS (S)SO

ELSEpT 5
C

SUM INKFCNIP~QPUPPlp~F~jET98N



ac
C

SUROUTINE FCP(IPJPQGU~P,3,ftFFPZETAPCP)
REAL Cr(17,150),P(l7,l5O),ZETA(17),3(17) ,FF(17)

REAL OU(l7,l50),R(17)

U 0R4(JI)-ZETA(J)S(G(Jtiz-Q(Jpx-l))
PRP(JI)-ZETA(J)*(P(JI)-P(Jit-1))
CFIu0R-R(J)+PR83(J)-FF(J)A3(Q)gft

RETURN
END

SUBROUTINE DELP(JAPPPPNSDp)
REAL OP(17v150),PP(1l7tl5O)vA(17)
INTEGER NS(17)
CONIO/DELTAP/ l0,3l,32,SSQPO#PPOPOM

DPUDPPO-3OS((QP(Jtl)GPO)/A(J))fl2-314(PP(JlI)-PPO)
0 ETR /(3223(PP(Jlpl)-PPO))

END
C

SU3ROUTIME VALE (JlpNSDCPCNPCVIpppu)
REAL 3(17) ,CV( 17) ,GP( 17, 150),PP( 17,150),PIJ( 17,150)I INTEGER NS(17)

C

XUCP/3(J1)-CN/l(j)

# 1/2(Jl)))S*2+2CJ(J)SX)
ELKE

0 *1/3(JI)))832-2*CJ(J)SI)

PP(J1,I)=(CP-OP(J1,1) )/$(Jt)
GU(JII)uOP(JII)

OP(Jo1)-QP(J1,I)
GN(Jt1)ww(Jt1)
PP(Jt1)n(OP(Jp1)-OI)/B(J)

RETURNM
END

C

SU3RUTINE 3RANO(JJ2,3,NSpCPCNCN1,QPPPGPU)
REAL 3(17),GP(17,1S0)tGPU(17,150),PP(17,150)
INTEGER N9(17)
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"(Jt)*(P-C-CM)/(3(J)+3(JI )43(J2))

I.NSj1v~"Jl

IP(Jt1)npp(J1)ss(J)+CN1
GP(J2rD WuP(J291)SD(J2)*CN
OP(J1,I)wCP-PPCJ11)sl(JI

OPI(J,)nP(Jt1)
OPU(J2,1)uO(Jvl)
@PU(J1,!)SPCJ,1)

RETURN

EM

SU3ROUTINE PUHP(Jr,3,~CPiDPrNSGptppGPU)
REAL 3(17),PCP17,15O),OPU(17,150),PP(17,15O)
IMTEOER 0SC17)

C
JINJ-1
IENS(Ji)

PP(J, 1)=(CP-MD4(JI )SU)/(B(J)+3(J1))
OP(J14.P-J)SPP(J1,I)
GP(J1)*P(J1,DI)SH )

GPU(J)nP(Jt1)
QPI(JII)nP(Jp1)

RETURN
ED

SUDROUTINE PULSE(J,3,TWNS0Y1 CPCN.PPGPOPU)
L. REAL 3(17),PP(17,150),gP(17,15)GPU(179150)

INTEGER NS(17)

!WS(J1)
PP(J,1)s(CP-CH-MGYA(SINCW*T)) )/(3(J)$3(J1))
PP(J1,I)EPP(J,1)
oWtJt1)mpptJt1)fl(3)+cm

1j I~p(JIvD).c-PP(JII)*2(JR)

WV(JI)w(J1,)

SU3ROUTIME ACCUN(J,3,POtCPCNDTN,PAOVAOTOLgPPPOPtiP)
REAL 3(17)PTOLCL7),P(l7,1SO),G(l7,15@),PP(17,l5O),GP(17,150)
REAL GPU(17,15O),OLDCP(17),OLDCH(17),PAO(17)PVAO(17)
INTEGER NS(17)
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cW&e4oNOLD/ OmKHPW.DCP
C

cPNID.(OLDCP(Jl)+C)/2

U CALL PME( J,PPIT PPAOAPNCNNIDCPWIDPN01NOOU)

P02OPENUS1 .00001
CALL PNE(J,3,PDTPAOVOp2CMIDCpWIDPNOINOOU)

10 Am(PH1-PM)/(PDI-PD2)
At.PN1-A*PvI
PENDUAZ/(-A)

CALL PNEM(J,329P PDT rMPAOVAOPEND PCHNID CPNIDP PNtOIN P GMT)
IF (AlS(lPM-PEND),OT.Tm.CJ)) THEN

MOMPEN
GOTO 10

ENDIF

OP W(J1) OPJ,1

GPU(JpINS(Jt ) G(I.SJ)

O.DCN( J )MC
CLDCPUIl~CP

RETURN
EM

c SUDROUTINE PNEW(J, 3,Pq DT vPAO vYAOIPENDtCNNIDCPMID tPWN,OU~ GT)
REAL P(l7tl50),S(l7),PAO(17),VAO(17)
INTEOER NOW7)

C

p'ID(p(J,1)+fPEND)/2
GINUMPID-PNIDSI( J)

Pg~(J1)+DTF3TSPIDSl2I(PAO(J)SVAO(J))
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Appendix B: Additional Boundary Conditions

Branch Connection

For the purposes of this work, any branching junctions were

considered to consist of one pipe flowing into two (Fig. B-i). In this

type of connection the continuity equation was used, a comeon head was

assumed after neglecting losses as minor effects, and the characteristic

equations at the pipe ends were needed: Eq. (2.18) for pipe 1, and Eq.

(2.19) for pipes 2 and 3 (14:45). Rewriting the characteristic equations

PpPpI=PP2-Pp3  (B.1)

QPiiCp-BPP1 (B.2)

QP 2 =CMI BPp2  (B.3)

QP 3-CK*BPp 3  (B.4)

V. A summation of Eq. (B.1) through (B.4) provided a simple solution

for the common pressure, Pp:

Pp=(Cp-CNI-CM)/Z B (B.5)

The flow in each pipe would then be found by use of the appropriate

characteristic equation. If required, this method could be expanded to

any other number of pipes by the addition of more characteristic

equations to the summation in Eq. (B.5). %

-'

QP3

Fig. B-1. Branch Connection
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Instantaneous Pressure Rise

The end conditions created by a nonreciprocating pump may be

approximated by a lumped rise in pressure of magnitude, 4P, as long as

the dimensions of the pump are small compared to those of the other

system elements (3:16). The end conditions take the form

QpI=Cp-BIPp1  QP2=CM-B2PP2

Solving simultaneously 
2 : z :CP 2 P -PPI+&P

Ppl=(Cp-CK'-B2 P) / (Bl+B2) (B.6)

Here again the remaining unknowns would be calculated directly from

the appropriate equation. Note, however, that no loss term vas used at

the interface. These losses should be taken into account wihen assigning

the functional form of AP. One such form of aP was given by Fashbaugh

and Streeter (11:1014) as

aP4Po-Bo(Qd-Qdo)/A-[-(Pu-Puo)/(B2+(Pu-Puo)B3)]2  (3.8)

in which Qd is the outlet flow and Pu the pressure at the inlet of the

pump. The constants APo, Be, and Qdo are constants determined from the

steady-state pressure rise versus flow rate curve. While Pus, Bl, B2 ,

and B3 are constants obtained from the steady-state pressure rise versus

inlet pressure curve (11:1014).
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