
RD-A194 661 ARTST: A SILICON ASSEMBLER FOR MESH ARRAYSCU) vi1
PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF
COMPUTER SCIENCE C S FUH ET AL. NOV 66 CS-96-31

7UICLRSSIFIEI) RO-29M.26-EL DRR029-93-K-06 FG 91 M

1111,6

111112_5 L111 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

I mlzI

7j~ UJI CLASSIFIED DIE E .U)P)
_REPORT DOCUMENTATION PAGE

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ARO 20090.26-EL I N/A N/A

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ARTIST: A SILICON ASSEMBLER Internal Technical
FOR MESH ARRAYS

U6. PERFORMING ORG. REPORT NUMBER
N/A

7. AUTHOR(#) 8. CONTRACT/GRANT NUMBER(s)
C-S Fuh, K-Y Pun and R.M. Owens DAAG29-83-K-0126

g. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM WORK UNIT NUMBERS

Department of Computer Science N/A
The Pennsylvania State University
University Park, PA 16802

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Research Office November 1986
Post Office Box 12211
Research Triangle Park, NC 27709 13. NUMBER OF PAGES - 22

14. MONITORING AGENCY NAME & ADDRESS 15. SECURITY CLASS. (of this report)
N/A Unclassified

18. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the Abstract entered in Mock tO)
N/A

18. SUPPLEMENTARY NOTES
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by other
documentation.

19. KEY WORDS

20. ABSTRACT

'This paper describes a VLSI layout assembler, ARTIST, under development at Penn State. ARTIST
performs transistor placement and interconnection within a module. Novel ideas used in the design of the
assembler are described. A modular software design is used so that we can easily try different approxima-
tion algorithms for transistor placement. A comparison between simulated annealing and a totally random
approach is presented. Surprisingly, the random approach is better for realistic running times. Finally, a
hybrid approximation algorithms for transistor palcement is described and is shown to be better than either
of the other two algorithms. -c

SEP 1 8 W7

UNCLASSIFIED "
t ..

N. N- Y

'4#- 0 0

ARTIST: A Silicon Assembler for Mesh Arrays

Chiou Shann Fub, Kong-Yee Pun, and Robert Michael Owens
CS-86-31 November 1986

Department of Computer Science
The Pennsylvania State University

University Park, PA 16802

Ajcmi s F cr~

Ju sti ibuatw .- L

MINI

- b 2

ARTIST: A Silicon Assembler for Mesh Arrays

ABSTRA CT

This paper describes a VLSI layout assembler, ARTIST, under development at
Penn State. ARTIST performs transistor placement and interconnection within a
module. Novel ideas used in the design of the assembler are described. A modular
software design is used so that we can easily try different approximation algorithms for

transistor placement. A comparison between simulated annealing and a totally random
approach is presented. Surprisingly, the random approach is better for realistic running
times. Finally, a hybrid approximation algorithm for transistor placement is described
and is shown to be better than either of the other two algorithms.

CA TEGORIES

4., 11., 3., 8.

I

3

INTRODUCTION

ARTIST is a tool under development at Penn State which generates a layout, in

CMOS mesh array form [Be], for a module from its formal description. The name AR-

TIST, rather than the sometimes overused name "silicon compiler," was chosen due to
the tightness between the formal description and the layout generated by ARTIST from

that description. ARTIST is a key part of a CAD system under development at Penn
State 10111. Other tools in this CAD system include: LOGICIAN, a tool for module

generation which performs multi-level logic reduction [BOI]; COMPOSER, a tool for

module placement within the target architecture; SIMULATE, a simulation tool 10121;
and V, a layout verification tool 1RI].

ARTIST owes its existence to both pragmatic and academic reasons. The academic
reason was to provide a test bed so that different approximation algorithms for

efficiently finding near optimal layouts could be tried. The pragmatic reason was the

growing need to be able to quickly generate layouts for some of the VLSI architecture

projects ongoing at Penn State.

The part of our design system surrounding ARTIST is shown in Figure 1. This pa-

per first introduces the language in which the formal description of the module can be

specified. ARTIST actually accepts only a restricted version of the full language. Thus,
a Parser is used to transform a description which uses the full language into a descrip-

tion using only the language subset. LOGICIAN, the multi-level logic minimization tool
which feeds ARTIST as shown in Figure 1, outputs the module description using this

language subset. The layout program, ARTIST, which performs transistor placement

and interconnect is then discussed. Finally, several layout optimization algorithms and

their performance are presented.

Formal LEd/Magic

LOGICIAN Description ARTIST Layout
of the of the

Module Module

Figure 1. Portion of Design System Surrounding ARTIST

%y**¢, ~ ~ ~ .- -

4

THE LANGUAGE

We wanted the form used to describe the layout to be generated by ARTIST to

satisfy the following.

1) The form should allow a close relationship between a formal description of
a module and the layout generated from that description.

2) The form would not in itself restrict the range of layouts which can be
generated.

3) Descriptions expressed in other forms (i.e., net list) could be easily
translated into descriptions expressed in our form.

To achieve these goals, a procedural based language was developed. We will briefly

describe the language in this paper. A full description can be found in JOw).

The description of a module consists of a set of procedures. Each of the procedures
consists of a set of statements. The primary statement of the language is the assign-

ment statement. Like the assignment statement of other languages, the assignment
statement of our language is used to supply information to determine the value that a

given variable has at any given time. However, the assignment statement of our

language is quite different from the assignment statement of other languages in several
important ways. The syntax of the assignment statement of our language which is

given by

<e >a =b;

where e is a boolean expression and a and b are either variables or boolean constants

(1 for true and 0 for false) is different. A boolean expression is an expression formed us-

ing only 8f (and), I (or), and ! (negation/not). The expression e is the assertion part

and the equality a = b is the equality part of the statement. An assignment state-

ment is interpreted in the following way: if e is true, then a and b have the same

value. An assignment statement for which the assertion part is true is said to be in an

active state. Also, semantics of the assignment of our language which is given by the

following is different.

1) The symbol = in the equality part implies equality, not normal assign-

ment; that is, either variable can be changed so as to make the equality

true. The symbol = was chosen because of the lack of the symbol _ in ON

most text entry character sets.

2) The order of the statements within a procedure has no bearing on the
manner in which they are interpreted including the order in which they

% .,,

are executed.
3) The statements are not executed as the term normally applies. If the

assertion part of the statement is true, the equality part is made and kept
true by possibly changing the value of either variable as long as the asser-
tion part is true. If this condition cannot be obtained, an error is as-
sumed.

4) Unless it is necessary to change the value of a variable to either directly or
indirectly satisfy the equality part of an active assignment statement, the
value of a variable is assumed to remain unchanged.

There are two primitive forms of the assignment statement as shown below.

<q >s =d; <!g >s =d;

T T
g g

N channel P channel

where s, d, and g are variables and I is boolean negation (not). Note that these two
primitive forms correspond to a N channel and a P channel field effect transistor.

Assignment statements can be manipulated in the following ways. The statements

< e>a =b; < C 2 > a = b;

infer the statement

< C 1C 2 >a = b;

and vice-versa. Also, if b is not otherwise used, the statements

<e 1 >a = b; < C 2 > b =c;

infer the statement

<e8 c2 >a =c;

NIV

6

and vice-versa.

Besides the assignment statement, our language also supports a procedure call
statement. The effect of using a procedure call is that normally associated with a textu-
al macro call or an Algol procedure call. Thus, the effect of a procedure call is that ob-
tained by replacing the procedure call by the body of the procedure where formal
parameters have been renamed to their corresponding actual parameters and other vari-
ables renamed as necessary.

The language has also been extended to support loop statements (for which the
range is known). conditional statements (for which the condition can be computed at
compile time), and array variables (bit vectors). To more fully illustrate the language,
the complete formal description of a typical module of modest size, the mcell 1011, 10],
which performs a restricted base 4 signed digit multiplication, is given in Figure 2.

mcdl (m 0, m 1, m 2, z 0, z 1, x 2, r O, r 1, r 2, q 0, q 1)
{

< Z0 & rO > t0=0;
< !z0 !To > t0=1;
< 108 qO > mO=O;
< t1 !q I> M- 01;
< rl O 0> t =0;
< !rl I !XO > t 2 =1;
< rO 0 x1 > t2-- 0;
<!r0 !z 1 > t2 = 1;

<tl > t3 0;
< !tI > t3 1;

<t2 > 14 =0;

< ! 2 > t4 - 1;
<(tl I t4)e8 (t2 I t3)8' qO>ml=O;
< ((!t1 8 !1t4) I (!t2 8 !t3)) 8 !q 1 > m1 = 1;
< (: :1) & r2 > t15 = 0;
<(!xo08 !x1) I 'r2> t5= 1;
< (rO I r1) & :2 > t6 = 0;
< (!rO8 !rl) !:2> t6=1;
< (t I x2) & (161 r2)& qO> m2=0;
< ((!t5 8 !:2) I (!t6 & !r2)) & !ql > m2- 1;

}
Figure 2. Description for mcell ,.

-- - 5 .' . " ? . ..'

7

THE PARSER

To reduce the overall complexity of ARTIST and for reasons which will become
clear later, it was decided that ARTIST itself would only accept a semantic and syntac-
tic subset of our language. Briefly, ARTIST itself does not support procedure calls (or
any other of the extended features of the language). Furthermore, for each defined vari-
able, a , ARTIST requires exactly two consecutive statements of the form

< e, > G 0;

< es > G 1;

Furthermore, variable a may otherwise be used only in the assertion part of an assign-
ment statement. Variables which are not defined variables, referred to as used vari-
ables, may only appear in the assertion part of an assignment statement. Boolean nega-
tion may not be used in expressions ed and e. except that all the variables of e. must
be negated. Note that the description of mcell given in Figure 2 conforms to these res-
trictions.

For the most part, having ARTIST accept only a subset of the language is not
much of a problem for layout descriptions generated by our other CAD tools (e.g., LOG-
ICIAN 1BOI]). It is fairly easy to write these tools so that they produce a description

using only the subset. However, for human generated input or for input translated from

a graphic form (i.e., schematic capture), very often the conditions imposed by the subset
seem unnatural and unduly restrictive. To get around this problem, a standard full
language to sub language translator, Parser, was developed.

As illustrated in the previous section, a statement can be manipulated using a fairly

simple set of rules. For example, it is fairly obvious that the set of statements

< a > t =0; t c cc

c I; I I

< !a > c =1; t
< !b > c -1;

can be transformed into CC

b b

< a & b > c 0;
< !a I !b > c =1;

assuming that variable t is otherwise unused. Note the transformed set of statements is

8

acceptable to ARTIST while the original set is not. At first, it would seem that the

tasks of Parser ean be trivially performed. However, this is not always the case.

The first nontrivial situation encountered by Parser is caused by the use of shared

terms caused b.v bidirectional paths. For example, consider the following set of state-

ments.

< a > V=0;
xI

< b > w 0; dA a

< e > V W= -<---;
< d >z v; b

< e > -

Translating these statements to one of the form

< f > X = 0;

cannot be performed by a simple paIrwise serial or parallel combining of the original set

of statements. Parser handles this case by first replicating the bidirectional path (e.g.,

as implied by t, = w) to produce the following set of statements.

<a >v 0;

< b > u -0;

< c> V =U XC-

< d > z =v;d

w=O; l 1 I
< a > y =0;

< c > w i;

These statements can now be translated using normal series and parallel combinations

to produce

< (a I c 8~ b) e 8 6(b Ijc 8' a) >z = 0;

assuming that variables v, u, w, and y are otherwise unused. An important implica-

tion of Parwr's elimination of shared terms is that descriptions which contain "pass"

transistors am converted to logically equivalent descriptions which do not.

I

9

The second nontrivial situation encountered by the Parser is caused by the use of
boolean negation. The original language allows the free use of negation in the assertion.
However, the subset accepted by ARTIST greatly restricts the.use of negation. Parser
handles this case by first pushing the use of negation to the literals of the expression.
For example,

<' to !c))>X =0;

is translated into

< ! G b 8 c>x =0;

Illegal variable negation is then corrected by introducing a dummy variable. Thus, the
statement

<!a b 8 c>z =0;

is translated into

<d I b 8 c>x =0;
<c > d 0;

<!a> d 1;

The effect of this transformation is that Parser introduces an inverter to generate the
needed form (inverted/noninverted) of a variable. Parser does not attempt to optimize
translation of illegal negations. Optimization is provided by other tools (i.e., LOGI-
CLN).

MESH ARRA YS

Mesh arrays were originally conceived as a structured aid to the hand layout of
multi-level CMOS logic [Be]. It is surprisingly simple and efficient to create the layout
for a mesh array by modifying a single general template. Mesh arrays are, at present,

implemented using a two level metal CMOS process as supported by MOSIS. Physical-
ly, horizontal first level metal segments are used for transistor interconnections, power,
and ground. Hence, logically, row segments of the mesh are allocated to variables.
Physically, consecutive vertical diffusion segments are used to form the pullup (pull the
gate's output toward Vdd) and pulldown (pull the gate's output toward Gnd) part of

S 10

each gate. Hence, logically, columns of the mesh are allocated to statements. Vertical
second level metal segments are used to connect the pullup and pulldown part of each
gate and to distribute module inputs and outputs.

The physical structure of mesh arrays can be described in more detail through a
constructive description. The mesh array for a circuit consisting of a single N channel
transistor is illustrated in Figure 3.

-q-4

<g >8 =d

Figure 3. Single Transistor Mesh Array

A horizontal first level metal segment, which is carrying the signal associated with vari-
able g, is connected to the gate (via a polycontact) of the transistor.

The mesh array for a circuit consisting of a parallel connection of two subcircuits is
illustrated in Figure 4.

I
• , l b "1 ; - - • r-. - , . . ., . -,-, . % ,-.

.

I-

I< C 1 > a -- b; I < e 2 > a b;I
I I I "

< e1 I e 2 > a =b;

Figure 4. Parallel Connected Subcircuits

Since the two subcircuits share the same well, they both must consist of the intercon-

nection of only N channel (P well) transistors or of only P channel (N well) transistors.
Note that, because of conflicts in the allocation of row segments, both subcircuits may
have to be stretched in the vertical direction.

Likewise, the mesh array for a circuit consisting of a series connection of two sub-
circuits is illustrated in Figure 5.

< el> at

<<e2 >t b;

< el e2 > a =b;

Figure 5. Series Connected Subcircuits

Again since the two subcircuits share the same well, they both must consists of the in-

N

" " €" " -d %,''- ' ' "o' " ,.' ,d' "./ ,.€ ' = €'' "€ ,r' ',, '-' " " '..-t' .-
o .

...- - - ". ".. .5.

12

terconnection of only N channel (P well) transistors or of only P channel (N well)

transistors.

Finally, a gate consists of the interconnection of two subcircuits is illustrated in

Figure 6.

_ I

- --C, > aIL.

Elt

i >1I1I O1.

igureh SfinglGte lI
Th ulu icitms cnitofol canl Nwl) rnitosad h uldw0

cici us ossto ny-hne (Pwel trnisos Tocmleeorecipin

temsarafoatwinunogeisiltrednFiue7 -. I

13

Im

j7'

I_ DI or (a, b, C)

<a lb > c =0;

ON < !a ! b > C = I;

Figure 7. Two Input Nor Gate

Now that the physical structure of mesh arrays has been described, the reasons

behind the restricted language accepted by ARTIST should be apprent. The two state-

ments associated with a defined variable describe the pullup and pulidown part of the

CMOS gate which generates that variable. The pullup part of the gate specified by e,
contains only P channel transistors and the pulldown part of the gate specified by ec

contains only N channel transistors. Furthermore, only literals of e. and ed can be

negated. However, a variable which is negated, which would imply a P channel transis-

tor, cannot appear in eC. Also, a variable which is not negated, which would imply a N

channel transistor, cannot appear in e,.

Mesh arrays do not structurely support pass transistors. Hence, bidirectional paths

are not permitted. Defined variables represent the outputs of the gates of the module

and used variables represent inputs supplied to the module. Figure 8 illustrates a hand

generated mesh array layout for the formal description of the mcell module given in Fig-

ure 2.

;I'll,111 P - P . .

I III P11
.ka *

14

Figure 8. Hand Generated mcell Layout

This layout is seventeen columns by twenty four rows and took about twenty four man

hours to create.

ARTIST

Briefly, ARTIST, by reading the description of the module, creates an initial inter-

nal representation of the layout to be generated. It then then manipulates the internal

representation trying to reduce the layout's size. Finally, ARTIST generates the actual

layout in a format compatible to either LEd or Magic from the final internal representa-

tion. ARTIST manipulates the internal representation by performing some number of

trials. For each trial, ARTIST generates a new configuration of the internal representa-

tion, determines the layout size of the new configuration, and then possibly replaces the

old configuration with the new configuration. Different versions of ARTIST can be

characterized by how they generate successive new configurations and how they decide

to replace an old configuration by a new configuration.

One of the most important decisions made during the dc .hn of ARTIST is con-

cerned with how a mesh array is internally represented. It is ge, illy more efficient to

manipulate a high level internal representation (symbolic) that, , low level internal

- - - ' -.. ', N z,',,', -' . .'- " "- ' - ' ,' , , -' ":'7- . .":", ''. " ,-"," " ,? ' ' .i ."" ,

)5

representation (paint rectangles). Hence, using a high level internal representation usu-

ally allows more configurations to be evaluated in a given period of time. However,

since a low level description is usually tighter, it is less likely to hide possible optimiza-

tions and is at the smae time easier to use to determine the layout size of a

configuration. One advantage of our overall approach is that the description itself

(internally the description's parse tree) can be used almost without any information loss

to almost directly represent the mesh array to be generated. This high level internal

representation is particularly easy to manipulate. However, we can still efficiently deter- N

mine the layout size for a given configuration.

One of the principal functions performed by ARTIST is the allocation of rows and

columns of a mesh array to the subcircuits of the module. ARTIST performs this allo-

cation using a module description in the following way. At the gate level, a mesh array

can be view as illustrated in Figure 9.

, !,

X--

-I Lr

Figure 9. Block Diagram of mcell Layout

The pullup and pulldown part of each gate are allocated, respectively, consecutive

columns in upper (N well) and lower (P well) areas of the array. Hence, the pullup

(pulldown) parts of any two gates cannot overlap. Because of the second level metal

wire connecting the two together, the areas allocated to the pullup and pulldown part of

each gate must have at least one common column. These characteristics lead to the fol-

lowing observation. The order of the statement pairs associated with each of the

defined variables can be used to specify the order of the gates and, consequently, the

columns to be allocated to each pullup and pulldown.

AA

'a

16

The order of the operands for each operation supplies most of the remaining infor-

mation needed by ARTIST. In the case of 8', the row segments allocated to the left

operand must precede the row segments allocated to the the right operand. In the case

of , the column segments allocated to the left operand must precede the column seg-

ments allocated to the right operand. The final information needed by ARTIST is how

row segments are to be allocated. This information is not implied by the module

description, layout to be generated.

For each well, ARTIST generates a layout row by row. For each row, row seg-

ments allocation and layout generation is performed as follows (although we have omit-

ed many details, the following overview is conceptually correct.)

1) Initially each of the expressions associated with the pullup part, If the N "-

well area is being generated, or the pulldown part, if the P well area is be- !%

ing generated, of each gate is activated.

2) If the operation I is activated, then both of its operands are activated.

3) If the operation 8 is activated, then its left operand is activated.

4) If a variable is assigned to a segment row, it is deactivated.

5) If the left operand of the operation 8 is deactivated, the the right

operand is activated. .

6) If both operands of an operation is deactivated, then the operation is deac-

tivated.

7) Generation of the layout for that well terminates when all operations and

operands have been deactivated.

Before each row is allocated, ARTIST scans the row for variables which are active.

Based on this information, ARTIST allocates row segments to some of the active vari-

ables, generates the layout for that row, and then deactivates the variables which were

assigned. If an active variable cannot be assign to a row segment, the circuit associated

with that variable is stretched into the next row.

While many row allocation algorithms have been tried (e.g., First Fit, Most Fit,

FIFO), one conclusion seems clear. Any reasonable row allocation algorithm appears to

work as good as any other. This seems to be the result of having to deal with very few

active variables (as compared to the total number of variables) at each row.

ARTIST is being used on a regular basis at Penn State. Figure 10 illustrates the

mesh array layout generated by ARTIST for the formal description of the mcell module

given in Figure 2.

Ns'S "0 '0..\d W . %s % . .

' €c * ' ;" , ~ , . *'.o '. ,S ? ."' --' . - S.-.. -- ''. ''S2 . . i.5°%¢ ** ~ S .. . - .
S

. ' ' 2 '

17

X-3

Figure 10. ARTIST Generated mcell Layout

This layout is seventeen columns by eighteen rows and took about one minute to create.

Note that ARTIST created a smaller layout in far less time than the hand created lay-

out. In creating the layout given in Figure 10, ARTIST performed about forty trials per

second on a 88020 based workstation, a VALID Logic SCALDStar. Hence, the layout

was generated using about two and hair thousand trials. Doubling the complexity of the

layout to be created approximately halfs the number of trials which can be performed

per second and about twice as many trials must be performed to obtain a layout of simi-

lar size optimality.

LA YO UT OPTIMIlZA TIONS

While in a state of constant refinement, ARTIST is in use at Penn State for ongo

ing architecture research and class projects in VLSI courses. However, as pointed out in

the introduction, ARTIST owes its existence to academic reasons as well as pragmatic

reasons. Toward fulfilling the academic reasons, we are experimenting with several

different versions of the approximation algorithms used to manipulate the internal

description. These algorithms generate the new trial configuration by switching the ord-

er of statement and operand pairs. While our results are preliminary, they are interest-

18

ing.

We first wanted to develop a base line approximation algorithm by which other al-

gorithms could be judged. The natural candidate for such an algorithm seemed to us to

be a totally random algorithm. This algorithm, our Monte Carlo algorithm, uses a to-

tally random configuration for each new trial. We then implemented what we thought
would be the tried and true approximation algorithm, simulating annealing. Simulating

annealing generates a new trial configuration by incrementally changing the old

configuration. That is changing the order of only one statement or operand pair. Fig-

ure 11 gives a comparison of the layout obtained by the simulating annealing and Monte

Carlo algorithms for a typical module of two hundred transistors.

............... .

8f.........

- 0 *(*S&IC .c'~

Figure 11. Random v.s. Annealing

Each line of Figure 11 represents the best configuration found using the indicated

number of trials. Much to our surprise, for ten thousand trial configurations the ran-

dom algorithm was better. Furthermore, this result could be consistently reproduced for

different modules and cooling scheduling strategies.

We offer the following analogy as an explanation for this phenomenon. Suppose a
person was standing, blindfolded, in a rectangularly tiled room. The person is trying to

find the smoothest tile in the room. The person may move from tile to tile. After mov-

ing to a tile, the person may reach down and touch the tile to determine it's smooth-

ness.

"J ,.' . , ' 2,% ', ,. .. '.*.'%'-.V .'% .\': '.-\ .'.. .¢-''."".'',''.' -'.-" -] ".'- "..","-. ' ." - ". "-.',.'- '.

-- ' r- I _ r- r r " r - _. ?, . o ' , -',- °o', , "- ", . . '.5

If the smoothness of a given tile is totally Independent of the smoothness of the
other tiles In the room, random walking (each move must be between adjacent tiles) or
random leaps (each move need not be between adjacent tiles) is as good as~ any non-
determistic strategy. Annealing succeeds when the smoothness of a given tile is not in-
dependent of the smoothness of the other tiles in the room. Using annealing, a person
would compare the tile they are standing on with one of the adjacent tiles. They would
then tend to move to the smoother of the two.

However, the very reason (dependence) that seems to make annealing work can pro-
duce very long search times. For example, suppose the tiles in one quadrant of the
room have nearly the same smoothness and that the tiles in the other three quadrants
are all much rougher than the tiles in the first quadrant and that many local optimums
exist. Now start the person searching as far from the smooth quadrant as possible. To

find the smooth quadrant, the person may (and probably does) spend a lot of time stum-
bling around the other three quadrants, since they can in effect see only the smoothness
of the tiles in their immediate vicinity. However, if the person can leap randomly
around the room, he would find one of the tiles in the smooth quadrant after only six-
teen leaps with reasonably high probability. While our example seems contrived, it
reflects to a remarkingly high degree the search space as seen by ARTIST - a few (as

compared to the entire search space) relatively large global optimums (as compared to
the entire search space) surrounded by may small local optimums.

The avocates of annealing would point out that after enough tries, the nonleaping
person would find the smooth quadrant and would then find a solution even better than

the random leaping person would have been able to find after the same number of tries.

While we don't dispute this point, we only offer the observation that many hours of
stumbling around may be necessary to reach this point.

Our first attempt to try to improve the efficiency of annealing was to use random
initial trials and then to switch over to simulating annealing. The problem with this ap-
proach was in developing a good mechanism to determine when the switch between the

two modes should take place. Our second attempt solves this problem. Simulated an-
nealing is used through out-the running of the algorithm. However, at the beginning, to

generate a new configuration ARTIST makes n random incremental changes to the old
configuration. Hence, if n is large enough, ARTIST evaluates almost random

configurations. As ARTIST progresses, n is made smaller until it is only 1 (incremental
configuration changes). Using initial values of 5 and 10 for n , we obtained the results

I..m

20

given in Figure 12 for same module used to obtain the results given in Figure 11.

.

...

L. -

-

Figure 11. Random Annealing.

Again, each line of Figure 11 represents the best configuration found using the indicated
number of trials. The results show that the hybrid algorithm is better than either a
solely random or solely annealing approach. The best results were obtained for n equal
to 10. These results could be consistently reproduced for different modules.

FUTURE DIRECTIONS

Our investigation into this area is actually far from over as we must now deal with
two cooling schedules. However, the control of randomness does appear to be the more
critical issue. We plan to further analyze the behavior of our current hybrid algorithm
and to try other algorithms. We plan to expand ARTIST so that it can handle stacks
of mesh arrays (several mesh arrays stacked one on top of the other) and to improve the
performance of ARTIST so larger layouts can be handled.

At present, ARTIST assumes that logically equivalent circuits are likewise physical-
ly equivalent (produce the same behavior). This is not always the case. Consider, for
example, charge sharing. Because of charge sharing, the following two circuits are not

21 7

physically equivalent because of effects due to the capacitors at A and B.

2 L l

We plan to continue to investigate this problem.

A CKNO WLEDGEMENTS

This work has been supported in part by the Army Research Office under Contract
DAAG29-83-K-0126. The acquisition of two VALID SCALDstar CAD workstations on
which the tools are being developed was made possible by a grant from VALID Logic,

Incorporated.

BIBLIOGRAPHY

Be Beekman, J., "Mesh Arrays for CMOS Circuit Design," Computer Science M.S.
Thesis, PSU, August 1986.

BOI Beekman, J., R.M. Owens, and M.J. Irwin, "Mesh Arrays and LOGICIAN: A
Tool for their Efficient Generation," submitted to DAC 87.

DR Denyer, P. and D. Renshaw, VLSI Signal Processing A Bit-Serial Approach,
Addison-Wesley, 1985.

10 Irwin, M.J. and R.M. Owens, "Digit Pipelined Arithmetic: A Tutorial," to ap-
pear in Computer.

KGV Kirkpatrick, S., C.D. Gelatt, M.P. Vecchi, "Optimization by Simulated Anneal-
ing," Science, Vol. 220, No. 4598, pp. 671-680, May 1983.

* ' ~22

Oil Owens, R.M. and M.J. Irwin, "An Overview of the Penn State Design System,"
submitted to DAC 87.

01 Owens, R.M. and M.J. Irwin, "A System for Designing, Simulating, and Testing
High Performance VLSI Signal Processors," IEEE Trans on CAD, CAD-5(3), pp
420-428, July 1Q86.

Ow Owens, R.M., "YAHDL: Yet Another Hardware Description Language," Depart-
ment of Computer Science Tech Report, Pennsylvania State University, Universi-
ty Park, Pa, 1986. 4.

R12 Reeves, D.S. and M.J. Irwin, "Switch-Level Verification of MOS Signal Processing
Circuits," submitted to DAC 87.

RS Romeo, F. and A. Sangiovanni-Vincentelli, "Probabilistic Hill Climbing Algo-
rithms: Properties and Applications," Proc. of the 1985 Chapel Hill Conf. on
VLSI, pp 393-419, NC, May 1Q85.

U! Ullman, J. D. Computational Aspects of VLSI, Computer Science Press, 1Q84.

,

..Ie

j J-u

V

b

WI.

,00

h . % - -, - . %- o-.-,,.,-,-,
,-.,° .- '.','.._

_.
. . - ..- ' , ,', .. %.,, % ,.. .

-. ,-.- _-o_....

~-~' .~...

4

A

r

-- u- ~- -~ .~ -.w --. ..- - .. - - - - - - -

'ft
~ P*. ad ~ '~% ~ .

Nv a~a'"ftw' #a?~~~

