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Abstract

An experimental study of the effects of forced, free-stream unsteadiness on turbu-

lent boundary layers was undertaken in an effort to characterize the nature of such

flows and to provide guidance for turbulence modelers. A turbulent boundary layer,

which had developed under steady, constant-pressure conditions, was locally sub-

jected to a range of frequencies of sinusoidal free-stream unsteadiness. The response

of the boundary layer to these free-stream effects was studied through simultaneous

measurements of the u and v components of the velocity field, using a two-color

laser-Doppler anemometer.

To focus on the distinct behaviors of the deterministic and time-averaged fields of

flow, the equations of fluid motion were reformulated according to a triple decompo-

sition of velocity and pressure into: (i) a time-averaged measure, (ii) a deterministic

or organized, unsteady measure, and (iii) a turbulent measure.

Experimental results of this study confirmed that the time-averaged behavior of

the flow was largely invariant with frequency of forced unsteadiness and similar to

that of steady flow under the corresponding mean conditions. However, the dynamic

responses of the velocity and turbulence fields to forced unsteadiness were strongly

dependent on frequency. While the dynamic response of the streamwise velocity

appeared to be well described in terms of variation between asymptotic high- and

low-frequency forms of the momentum equation, considerations of the unsteady

energy budgets were necessary to characterize the dynamic turbulence response.

Inter-component transfer of turbulent kinetic energy was identified as an important

feature of the dynamic response of the turbulence field. When normalized by the

local anisotropy of the dynamic turbulent stress tensor, the time scale of inter-

component energy transfer was invariant with the frequency of forced unsteadiness

and similar in size to the value expected in steady flow under comparable mean

conditions.
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Nomenclature

Roman Symbols

A Amplitude of oscillation of the free-stream velocity, at the end of

the test section.

a, b General variables of unsteady, turbulent, fluid flow.

C Constant of Coles' mean velocity function.

C, Friction coefficient.

Dc Boundary-layer thickness deduced from fitting Coles' mean velocity

function to a profile (see §5.1).

f General time-dependent variable of turbulent fluid flow (§2.1).

f Frequency.

H Shape factor.

k Turbulent kinetic energy.

L Length of the test section.

t Mixing length.

ts Dimensionless parameter for unsteady flow, representative of the

Stokes-layer thickness. It is defined as: N/iivw.
t+ Dimensionless parameter for unsteady flow, /2u/(i).

N Number of elements, usually in a summation.

n General integer variable.

P Mean pressure.

p Pressure.

p' Turbulent pressure fluctuation.

q 2Twice the turbulent kinetic energy.

Re Reynolds number.

xxiii



Re6 Momentum-thickness Reynolds number.

Sx Strouhal number based on streamwise distance, defined as: wX/U,..

S6  Strouhal number based on local boundary-layer thickness, defined

as: wX/Uo.

t Time.

to Reference time.

U Streamwise mean velocity.

Uc Streamwise mean velocity for convection of eddies.

U0  Mean velocity in the free stream, at the entrance to the test section.

U, Component of the mean velocity vector.

ui  Component of the velocity vector.

uT Friction velocity.

u', v', W1 Streamwise, normal and spanwise components of the turbulent ve-

locity fluctuations.

u Velocity vector.

V Normal mean velocity.

W Spanwise dimension of the test section.

X Streamwise distance along the test section.

X rractional streamwise distance along the test section.

z Streamwise coordinate.

x, y Position vectors.

Y Normal coordinate.

+ Normal coordinate in wall units.

Z Spanwise distance from the centerline of the test section.

Iz Spanwise coordinate.
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I

Greek Symbols

At Time increment.

6 Boundary-layer thickness.

6( ) Estimate of the uncertainty in a quantity (Appendix E).

b, Displacement thickness.

42 Momentum thickness.

e Dissipation of turbulent kinetic energy.

17 Kolmogoroff length scale.

17 General transformation characteristic.

X Von-Karman constant in Coles' mean velocity function.

)c Half angle of intersection of two laser beams.

' Wavelength.

V, Kinematic viscosity.

V, Eddy viscosity.

General transformation characteristic.

p Density.

Period of an organized, unsteady event.

v Kolmogoroff velocity scale.

Phase of the nth Fourier mode of the periodic function f.

Component of the mean vorticity vector.

w Angular velocity.

woi Component of the vorticity vector.

WI Component of the vector of turbulent vorticity fluctuations.

+Dimensionless parameter for unsteady flow, defined as: wi'/ur.
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Other Symbols

Average over time.

( ) Average performed at the same phase in each of a series of periodic

events.
Deterministic or periodic component of an unsteady quantity. i
Amplitude of the nth Fourier mode of a quantity.

Modulus of a quantity.

00 The free-stream value of a quantity, when used as a subscript.

Derivative of a quantity, when used as a superscript (Appendix D).
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1. Introduction

Scientific study of 5Zfluou8 or turbulent fluid mechanics has been actively pur-

sued since the pioneering work of Osborne Reynolds in the 1880's. A century of

experiments and analyses have yielded many laws, revealed new phenomena and for-

mulated engineering techniques with which to attempt prediction of fluid behavior.

Yet the fundamental understanding of turbulence remains incomplete.

The original methods of mathematical analysis and experimental investigation

are now augmented by computational prediction of fluid flow. However, restrictions

on computer size and on the lengths of time required for calculations are such that it

is unlikely that the complete differential equations governing viscous fluid behavior

could be solved, for complex turbulent flows at high Reynolds numbers, for many

years to come. Compromises must therefore be made and solutions are sought to

equations rendered less complex, using techniques of averaging and simplifying as-

sumptions and approximations. Through experimental investigation, information

lost in averaging may be supplied, the validity of assumptions may be tested and the

use of approximation may be substantiated. In this way, interaction between exper-

iment, analysis, and computation leads to better understanding of the phenomenon

of turbulence.

New heights of sophistication in experimental techniques have been brought

about by innovations in instrumentation and by the ease with which computers

may be utilized to perform repetitive functions with great speed. The advent of

the laser-Doppler anemometer has made non-intrusive, instantaneous measurement

of fluid velocities practicable in experiments. Moreover computers may be pro-

grammed to both sample data and actively vary and control the conditions of the

* experiment itself. These developments make possible study of a class of flows for-

merly thought too complex for detailed experimental investigation - organized

unsteady turbulent flows.



1.1 Motivation

Unsteady, turbulent, boundary-layer flows are the class of wall-bounded turbulent

flows in which the bulk fluid undergoes some well-defined, time-dependent motion

relative to the wall. Common examples of organized, unsteady, relative motion

include:

(i) the moving boundary in a nominally stationary bulk fluid, as in Stokes' treatise

on the motion of pendulums in a viscous fluid (Stokes 1851) or the flow of air

over the rotors of a helicopter in forward flight,

(ii) the stationary wall bounding a mainstream undergoing some kind of organized3

unsteadiness - the kind of flow found between stator blades downstream of

a rotary stage in an axial compressor.

In this study, an experimental investigation into the behavior of a turbulent,

boundary-layer flow undergoing sinusoidal mainstream unsteadiness is carried out.

Measurements of the response of the boundary layer to different frequencies of forced

mainstream unsteadiness are made in an effort to provide deeper insights into the

nature of turbulence under unsteady conditions and to generate target data against

which computer-prediction schemes might be compared and refined.

The ultimate goal of this field of research is both understanding of and accurate F

prediction of unsteady flowfields in situations ranging from flow over accelerating

airfoils to blood flow through the heart.

1.2 Experimental Studies

Summaries of experimental studies of unsteady turbulent flow are now presented.

To focus on research most relevant to the present work, the material of this section

is restricted to developing turbulent boundary-layer flows and to fully-developed

turbulent channel and pipe flows. .
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Unsteady Turbulent Boundary-Layer Experiments

The effects of imposed, organized unsteadiness on turbulent boundary layers

have been under experimental and theoretical study for some time. In 1959, Karls-

son reported the results of an experiment conducted under mean, zero-pressure-

, gradient conditions, in which sinusoidal variations in mainstream velocity were

imposed upon a free stream of otherwise constant mean velocity. Through mea-

* surements of streamwise components of velocity, he found that the mean values of

unsteady velocity within the boundary layer were unaffected by either amplitude

or frequency of the imposed perturbation field, although he noted slight differences

between the mean quasi-steady velocity profile and the corresponding steady one.

He also reported that the near-wall perturbation velocity always led the free stream,

in agreement with the laminar analysis of Lighthill (1954).

The imposition of an oscillating core velocity in a diffuser enabled Schachenmann

& Rockwell (1976) to extend experimental study of unsteady turbulent boundary

layers to flows, the mean pressure gradients of which were adverse. In surveys of

the streamwise component of velocity, their hot-wire anemometer measurements

exhibited no effects of unsteadiness in mean unstead) profiles or momentum or

displacement thicknesses over a range of frequencies. Amplitudes and phases of the

fluctuating component of velocity were strongly dependent on the Strouhal number

of the unsteady flow.

Cousteix and his co-workers have studied unsteady flows with a view to devel-

oping prediction methods. Their preliminary results (Cousteix et al. 1977) were

from a wind-tunnel experiment in which oscillation in the main stream was induced

in the form of a travelling wave. Using hot-wire and cross-wire anemometers, they

made measurements at a single frequency of oscillation of streamwise velocity, cor-

relation coefficient, Reynolds stresses and the probability density functions for the
streamwise turbulence measure. At this frequency of imposed unsteadiness, the

correlation coefficient appeared almost constant throughout each unsteady cycle,

~3
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approximately at its expected value in the corresponding steady turbulent bound-

ary layer.

In later experiments, they studied unsteady flows of both mean-zero and mean-

adverse gradients in pressure, with particular emphasis placed on extensive stream-

wise documentation of the flow. In regions where reverse flow was anticipated, a

laser-Doppler anemometer was used for velocity measurements. The mainstream

oscillation was again generated as a travelling wave along the core flow of the wind

tunnel. They reported strong spatial periodicity in the phase and amplitude of in-

tegral parameters such as momentum thickness, displacement thickness and shape

factor. While the mean unsteady flow was in good agreement with the corresponding

steady flow, the phase and amplitude of the unsteady component of velocity under-

went continued development in the streamwise direction and no tendency towards

an asymptotic shape was observed. These results were presented and discussed in

detail in their later review (Cousteix & Houdeville 1983).
-S

A more recent work. (Cousteix & Houdeville 1985) included measurements of skin

friction, and amplitudes and phases of wail -,hear stress in unsteady flow. A heated-

element gauge was used to deduce these measurements, a satisfactory frequency

response having been obtained by the positioning of the element of the gauge above

a cavity in the test surface. They measured advances in phase (relative to the

perturbing flow) significantly greater than the asymptotic value suggested by quasi-

laminar analysis for high frequency unsteadiness. They also reported near-wall data

from different experiments to be well grouped when plotted against an unsteady

dimensionless parameter based on kinematic viscosity, frequency of unsteadiness

and mean friction velocity.

The studies of Patel (1977) and Kenison (1977) concerned wind-tunnel exper-

iments in which low frequencies of unsteadiness were imposed on boundary layer

flows in the form of a longitudinal travelling wave. Hot-wire anemometers were

used to deduce streamwise measures of velocity. In Patel's zero-pressure-gradient

experiment, he reported a welcome insensitivity in measures of the mean flow to

* 4



systematically varied frequencies of unsteadiness. Measurements across the bound-

3 ary layer of phase lag (relative to the wave motion of the main flow) and amplitude

of oscillation in velocity were strongly dependent on the wave's frequency. Peak

amplitude and phase lag grew with increased frequency, but no spatial periodicity

in any measurements was reported. Kenison's study dealt with a flow of mean-

adverse gradient in pressure; his data indicated a monotonic increase in phase lag

across the boundary layer, with increased downstream distance (and static pressure

in the free stream).

In an earlier experiment in the facility used for this study, Jayaraman et al.

(1982) performed a detailed investigation into the effects of locally imposed free-

stream unsteadiness on a turbulent boundary layer. The mainstream condition was

one of a mean-adverse pressure gradient, the strength of which increased with down-

stream distance. Upstream of the region where unsteadiness was imposed, an almost

steady turbulent boundary layer developed under zero-pressure-gradient conditions.

Thus the study was not complicated by history effects due to unsteady laminar

boundary-layer development and unsteady transition. They reported streamwise

velocity measurements made with a laser-Doppler anemometer in a water-tunnel

experiment. Careful validation of the upstream development and spanwise unifor-

mity of the flow was carried out and the measured and prescribed unsteady fields of

flow were in good agreement. Their turbulence measurements over the inner quar-

ter of the flat-plate, constant-pressure boundary layer were somewhat lower than

those of Klebanoff (1955) and this discrepancy was attributed to Reynolds-number

effects. However, the measurements of the present investigation, made under almost

identical conditions, did not suffer from this shortcoming and so it was thought to

be a single anomalous result in their study.

Their experiments covered a wide range of Strouhal number through systematic

variation of the imposed frequency and amplitude. They found an expected insensi-

tivity of the time-averaged flow to imposed unsteadiness and identified two asymp-

totic regimes for the periodic velocity field - an inertial regime at low Strouhal num-

5
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j0
bers and a regime dominated by the pressure gradient for high Strouhal numbers. At

high frequencies, the unsteady velocity field was compared with the quasi-laminar

Stokes solution. While results for the phase were generally in good agreement, the

measur,-d amplitudes of the perturbation velocity were consistently smaller than

the analytic predictions, though of similar shape.

Brereton et al. (1985) investigated the effects of abrupt changes in mainstream

velocity on the same turbulent boundary layer, in a closely related study. In the

facility used by Jayaraman et al. (1982), the response of an initially steady, zero-

pressure-gradient, turbulent boundary layer to an abrupt decrease in free-stream

velocity was monitored through measurements of streamwise components of the

velocity field. When the flow had reached its equilibrium state under the new,

adverse-pressure-gradient conditions, the mainstream velocity underwent a rapid

increase to restore conditions of constant pressure. The complementary response of

the boundary layer to this abrupt change was then recorded. The dynamic response

of streamwise velocity measures to abrupt, ramp-like changes in free-stream velocity

was in good agreement with the analytic solution of the Stokes equation describing

those changes. In the subsequent relaxations to equilibrium states, the changes in

integral parameters such as momentum and displacement thickness decayed almost

exponentially to their asymptotic values, which were reached in about two "times

of flight" of the free stream.

Ramaprian and his co-workers have conducted a wide range of experiments in

unsteady boundary-layer flows and pipe flows. Measurements of streamwise velocity

and Reynolds stresses were made with laser-Doppler anemometers in oil and water

flows. In a time-mean, constant-pressure flow, Menendez & Ramaprian (1983)

studied the development of a periodic turbulent boundary layer. They found that

the imposed unsteadiness accelerated the streamwise spatial development of the

mean condition of the outer part of the boundary layer, while it had little affect on

the inner layer. At large Reynolds numbers, the expected agreement between mean

unsteady values and the corresponding steady ones was approached. The thickness
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of the unsteady layer over which viscous effects were significant was characterized by

the ratio of the mean friction velocity to the frequency of perturbation, in agreement

with the findings of Ramaprian & Tu (1982). Measurements of the shear stress at

the wall were made with a heat-flux gauge and were of similar amplitude to those

measured under the corresponding quasi-steady conditions.

Ramaprian & Menendez (1983) also characterized unsteady turbulent flows by

the sizes of three time scales, corresponding to the frequency of oscillation, an outer

scale based on the friction velocity and boundary-layer thickness, and an inner

scale based on friction velocity and kinematic viscosity. Moreover they found some

agreement between features of unsteady-flow experiments conducted under different

* conditions, when compared within regimes bounded by ranges of these time scales.

Unsteady Turbulent Pipe-Flow Experiments

* In a study of oscillatory, fully-developed pipe flow (Ramaprian & Tu 1979), the

imposed unsteadiness was at a frequency near the estimated turbulent burst fre-

quency in the equivalent steady pipe flow. The authors noted that the turbulence

intensities generally appeared "frozen" at their time-averaged state throughout the

unsteady cycle. They deduced values of shear stress from measured velocity pro-

3 files and found that the shear stress was also "frozen" beyond the equivalent quasi-

laminar Stokes layer. Within this layer, the shear stress followed the mainstream

oscillations, with a lag in phase.

Using an electro-chemical probe, Mao & Hanratty (1985) made measurements of

the wall shear in unsteady turbulent pipe flow. Their measures of the phase and

amplitude of the oscillating wall shear were well grouped when plotted as functions

of the -atio of length scales proposed by Binder and his co-workers. In common with

velocity-field measurements of Binder et al. (1981) and Jayaraman et al. (1982)

near the wall, they reported amplitudes of wall shear which were noticeably lower

than those predicted by quasi-laminar theory for perturbations at high frequencies.

. * .~ * .* . . .. . . . .



Unsteady Turbulent Channel-Flow Experiments

In one of the first efforts directed towards the needs of turbulence modeling

for unsteady flow, Acharya & Reynolds (1975) investigated the effects on fully-

developed channel flow of sinusoidal unsteadiness imposed on the through-flow rate.

A hot-wire anemometer was used to make measurements of mean and fluctuating

components of streamwise velocity and turbulence across the flowfield. Using a

cross-wire, measurements were made of the wall-normal velocity components and

of Reynolds stresses, although the size and orientation of the probe precluded near-

wall measures being taken. Little deviation was found between the mean unsteady

measures of velocity, turbulence and Reynolds stress profiles, and the equivalent

steady flow profiles. Differing thicknesses of Stokes layer - the near-wall region

which accommodates unsteady effects of differing magnitude to the asymptotic un-

steady free-stream values - were reported for the unsteady values of streamwise

velocity and turbulence, and were attributed to effects of turbulence dynamics.

Binder & Kueny (1981) studied the problem of an unsteady, turbulent, fully-

developed channel flow, with particular emphasis placed on taking measurements

in the near-wall region. They used a laser-Doppler anemometer to make measure-

ments of streamwise velocity components in a water flow and achieved extremely

high spatial resolution through beam expansion. At high frequencies of imposed

unsteadiness, the amplitude and phase of the velocity oscillations behaved as in

quasi-laminar Stokes flow. At lower frequencies, this behavior was still observed for 4
the amplitude but not the phase of the unsteady velocity component. The mean

characteristics of the flow were unaffected by the forced oscillation in the through-

flow rate.

They proposed as a characteristic parameter, for unsteady flows in the near-wall

region, the ratio of the Stokes-layer-thickness parameter to the viscous length scale V.

of the mean unsteady flow (the ratio of kinematic viscosity to the deduced friction

velocity). The usefulness for characterization of unsteady flows of a Strouhal number

8
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alone, based on a frequency, and outer length and velocity scales, was discounted;

measurements at the same Strouhal number under varied experimental conditions

may have had markedly different boundary-layer histories.

., Later experiments were conducted at sufficiently large amplitudes of imposed

oscillation in the through-flow rate that reverse flow was encountered at the wall

(Binder et al. 1985). Measurements of the instantaneous wall shear were made

using a hot-film gauge. Because of the directional insensitivity of this device, cor-

rections were applied to deduce the values of wall shear where reverse flow was

suspected (Pedley 1976). They reported measures of mean, oscillating and turbu-

lent components of wall shear for systematic variations in frequency of oscillation,

mean through-flow rate and amplitude of oscillation of through-flow rate. Their

measurements were well grouped when plotted as functions of the ratio of Stokes-

layer-thickness parameter to viscous length scale.

1.3 Computational Predictions

Acharya & Reynolds (1975) tested models for fully-developed turbulent channel

, "flow in parallel with their experimental investigation. They chose to predict the

mean and unsteady fields of flow separately, in the spirit of the commonly used

triple decompositions of unsteady turbulent values of velocity and pressure. In

computing the behavior of the mean flow, the equations were closed by solving the

* turbulent kinetic energy equation, modeling its unknown terms as functions of the
turbulent kinetic energy. The Reynolds-stress tensor was modeled in terms of the

turbulent kinetic energy and the mean strain rate. A formulation of the Prandtl-

energy model was used to deduce the eddy viscosity. While this model predicted

the mean velocity field accurately, discrepancies between computed and measured

turbulence were as high as 20%.

'JI
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In their attempts to calculate the unsteady behavior of the flow, they used a

model which related the unsteady Reynolds stress to the unsteady velocity gradi-

ent through the mean eddy viscosity, and a model which allowed no dissipation of

turbulent kinetic energy in the unsteady field; both performed poorly. Through

decomposition of the turbulent kinetic energy equation into its unsteady counter-

part, the "one equation" approach used to predict the mean flow was adopted and

again the performance was poor. They concluded that a successful model would

have to incorporate the dynamics of the Reynolds stresses, through inclusion of field

equations which adequately represented the pressure-strain terms.

Another parallel study of an unsteady flow and prediction of its behavior was

undertaken by Cook et al. (1985). In predicting their streamwise hot-wire mea-

surements in an unsteady turbulent boundary layer in a wind tunnel, they used two

scalar eddy-viscosity models. The quasi-steady Cebeci-Smith model was algebraic

in form. A mixing-length expression was employed near the wall and Van Driest's

function smoothed the transition to a constant outer value of eddy viscosity. The

Glushko model used a differential equation to describe transport of turbulent ki-

netic energy in conjunction with an algebraic scale equation. It was considered the

simplest model that explicitly included time dependence in the turbulence field, as

distinct from the mean velocity field. The results of the Cebeci-Smith model were

generally in better agreement with measurements than the Glushko model. The au-

thors concluded that, at low frequencies of oscillation, the Cebeci-Smith turbulence

model performed reasonably well.

In common with several other researchers, Menendez & Ramaprian (1982) tested

simple, quasi-steady, turbulence-closure schemes on unsteady boundary-layer data

sets. While their models, based on mixing length and on the Prandtl-energy model

with prescribed length scale, enjoyed reasonable success in low-frequency calcula-

tions, at high frequencies they could not predict the dynamics of turbulence prop-

erties.
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Launder and his co-workers predicted the pipe-flow experiments of Ramaprian

& Tu (1981) using a number of k-E schemes (Kebede et al. 1985). In an effort to

improve upon earlier reliance on Boussinesq stress-strain relations, they proposed a

set of rate equations for the modeling of the Reynolds stresses. Difficulties were en-

countered in achieving results independent of the size of time step, although as many

as 2880 per cycle were tried. The results of this scheme were superior to those of

Tu & Ramaprian (1983), who used an eddy-viscosity model (a phase-averaged form

of the Prandtl-energy model) in a one-equation closure. They were also generally

inferior to the predictions of the k-c scheme used with an eddy-viscosity model. In

conclusion, the authors speculated that the equation for f computed an excessively

varying length scale and so compensated for errors introduced by the Boussinesq

stress-strain relation.

Blondeaux & Colombini (1985) obtained results in good agreement with the data

of Tu & Ramaprian (1983) in their prediction of oscillating pipe flow. They ex-

tended Saffman's turbulence model, based on field equations for pseudo-energy and

pseudo-vorticity, to cope with unsteady flows. The Reynolds stresses were expressed

in terms of the ensemble-averaged strain tensor through an effective viscosity, which

in turn was deduced from the ratio of pseudo-energy to pseudo-vorticity. They re-

U ported that the peak unsteady velocity coincided with the part of the cycle in which

production played a fundamental role. During other parts of the cycle, dissipative

effects, along with convective and diffusive effects, prevailed. They commented that

mixing-length models would generally not be adequate for prediction of unsteady

flows and that, for this particular calculation, the notion of a balance between pro-

duction and dissipation terms did not seem appropriate. They further remarked

that, for their study, the idea of instantaneous logarithmic laws applying to the

unsteady flow seemed unrealistic.

Recently, Wilcox has applied a multi-scale turbulence model (Wilcox 1986) to

the flow investigated in the experiments of Jayaraman et al. (1982) - the bound-

ary layer in a mean-adverse pressure gradient, with an imposed, sinusoidal, free-
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stream disturbance, the amplitude of which increased with streamwise distance.

When compared with results of the low-amplitude experiment, predicted values

of the mean, unsteady velocity and the phase and amplitude of the deterministic,

1 streamwise, fluid velocity were in good agreement for all frequencies of imposed

unsteadiness (Wilcox 1987). However, in attempts to predict the results of the

high-amplitude experiment, separation was predicted prematurely - this short-

coming was thought to be due to the use of boundary-layer approximations in

the prediction program, rather than limitations in the turbulence model. When

the prediction technique was used for a flow, the most adverse condition of which

was slightly less severe than that of Jayaraman's high-amplitude experiments, good

agreement between prediction and experiment was found.

1.4 Objectives

To judge from recent computations of unsteady flows (Kebede et al. 1985, Blon-

deaux & Colombini 1985), progress has been made in extending sophisticated pre-

diction techniques to the most readily modeled of unsteady flows - fully-developed

turbulent pipe flow undergoing sinusoidal variations in through-flow rate. In the

course of this progress, the need for more unsteady turbulent data sets of high

accuracy and detail has been expressed frequently. Measurements of more than

one component of the velocity field are scarce in the variety of experiments which

have been conducted in nominally one- and two-dimensional flows. This shortage

has limited the possibilities of making comparisons between measured and modeled

quantities such as Reynolds stresses and turbulent kinetic energies; often the only

clues to the performance of a scheme are provided by mean and unsteady profiles

of streamnwise velocity and turbulence measures. Therefore reliable experimental

measurements of multiple components of the velocity field in unsteady flows are

needed to provide suitable target data for turbulence modelers.

12
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The unknown effects of different boundary-layer histories on unsteady develop-

ing turbulent flows have both complicated the comparison of results of different

experiments, and hindered correct interpretation of unsteady turbulent behavior.

In unsteady developing turbulent flows, this behavior can only be properly studied

if the influence of upstream effects (for example, unsteady transition to turbulence,

or growth of aboundary layer from aleading edge under unsteady conditions) i

known to be either insignificant or absent. To date, no studies of the influence

of such upstream effects have been reported. Hence experimental studies of flows

7Z with well defined upstream or initial conditions are desirable for the purposes of

comparison with the results of turbulence models.

With the advent of the laser-Doppler anemometer, researchers have the capa-

bility of making non-intrusive, instantaneous measurements of several components

of velocity in a fluid. However, when used for simultaneous measurement of mul-

tiple components of velocity, successful application of this measurement technique

requires careful consideration to be given to the attributes of the particular experi-

ment; it therefore requires thorough qualification in situ to assure accurate results.

This study was undertaken in an effort to fulfill some of these needs and had the

following objectives:

(i) To make accurate measurements of two components of the velocity field, simul-

taneously, in an unsteady flowfield, for the purpose of identifying the influence

on statistical and structural turbulence measures of organized unsteadiness.

(ii) To optimize the performance of a laser-Doppler anemometer for the particular

experimental conditions and test it rigorously to assure the trustworthiness of

subsequent measurements.

(iii) To make these measurements over a wide range of frequencies, in the absence

of upstream effects.

The apparatus of Jayaraman et al. (1982) matched these requirements and the flow

k studied was one of local, sinusoidal, free-stream unsteadiness imposed on a boundary

13
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layer in a mean-adverse pressure gradient. The boundary layer would develop under

steady, constant-pressure conditions. The value of performing experiments in a flow

of mean-adverse pressure gradient is evident through the need to control boundary-

layer separation in decelerating flows. A better understanding of the effects on

turbulence of organized unsteadiness might help to explain the role which imposed

unsteadiness might play.

14



2. Mathematical FoundationsI
The mathematical framework within which the results of this study are to be

examined is presented in this chapter. Although some of the material is found in

, earlier works on periodic turbulent flow (e.g. Hussain & Reynolds 1970), much of

it was developed for the purposes of this particular study and so is included here

in the interests of completeness.

Analysis of turbulent fluid flow is usually carried out through decomposition

of the velocity and pressure into their mean and turbulent components. The well-

known Reynolds-averaging technique is then employed to deduce separate equations

of motion for the mean and turbulent fields; the formation of these equations is a

frequent point of departure for more sophisticated forms of analysis. An unsteady

turbulent flow, the unsteadiness of which is organized, may be analyzed in a sim-

ilar manner through an extra stage of decomposition and an additional averaging

process. These procedures result in equations of fluid motion in mean, turbulent,

and organized unsteady fields and are described in the following sections. A Carte-

sian tensor notation is used in which repeated indices in Roman letters follow the

Einstein summation convention; repeated indices in Greek letters are not intended

to be summed. The meanings of the symbols are given in the nomenclature.

2.1 Decomposition and Averaging

It is useful to decompose a time-dependent, turbulent variable, f(x, t), into three

components (Hussain & Reynolds 1970):

f(x,t) = f(x) + f (x,t) + f'(x, t). (2.1.1)

The quantity f(x) represents the mean or time-averaged value of f(x, t) and f' (x, t)

is its turbulent component. The deterministic component, the contribution at-

tributed to the organized unsteady motion, is f(x, t). This triple decomposition
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has become the norm for anJysis of turbulent flows wi'h an organized kind of

unsteadiness.

Separation of the term f(x, t) into its component parts is achieved through two

averaging procedures. If the unsteady phenomenon is of a periodic nature, the

concept of a phase average is especially helpful; it is the average of the quantity

f (x, t) when taken at the same point, or phase, in a record of many cycles. Formally,

this operation is defined as:

N-1
(f X 0)} = lim f (x,t + nr),

nt=0

where r is the period of the cycle; r may be prescribed or it may be deduced from

a Fourier transformation of f(x, t) - hence the requirement that the unsteadiness

be organized. This operation serves to remove the contributions of the uncorrelated

turbulent component, f'(x, t). It follows that:

(f(x,t)) = f(x) + f(x, t) and f'(x,t) = f(x,t) - (f(x,t)).

The second stage of separation is carried out by the familiar time average: -

N-1
f() = lim N f(x, t0 + nAt) where NAt > r.

Considering the two operations together, it follows that:

(f(x,t)) =f(x) and f(x,t) = (f(x,t)) - (f(x,t)).

This time-averaging procedure removes the contribution of the deterministic com- >4

ponent, f(x,t), which is uncorrelated with the mean value of the variable, 1(x).

Thus the operations of phase averaging and time averaging allow deduction of the O

turbulent component f' (x, t), the deterministic component f (x, t), and the mean

component f(x) from the variable, f(x, t).
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2.2 Basic Equations

The equations of motion for an organized, unsteady, incompressible flow may

be formulated by applying the decomposition and the averaging processes of the

previous section to the equations describing the flow of an incompressible Newtonian

fluid of constant viscosity, namely:

the continuity equation, auk = 0 (2.2.1)
a9xk

and the momentum equation, aui + -(tku)=- 
09-+v . (2.2.2)

at xk P ax1  axkaxk

Following (2.1.1), the velocity and pressure are decomposed such that:

ui = U1 + ii + u and p = P + j+ p', (2.2.3)

where Ui=fi , il 1 =(ui)-ii 1 , P= P  and j'=(p)-P.

After substituting (2.2.3) into (2.2.1), the phase- and time-averaging processes are

performed and yield:

auk = 0, aLuk - 0, a -0 (2.2.4)

axk axk 8xk

These are the equations of continuity for the mean, deterministic, and turbulent

velocity fields respectively.
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The corresponding equations of momentum may be developed in a similar man-

ner. The velocity and pressure are decomposed as in (2.2.3) and substituted into

(2.2.2), yielding:

a ( +a+ Oa [ (uk + ilk + ,,,) (ui + i , + ,,;)]at x
"t,,a (P + + + +' +4 ,-a2 J

" 1 O (p + + p,) (Ui + "i + u') . (2.2 .5a2

Phase averaging (2.2.5), to remove the uncorrelated turbulent quantities, results in

the equation:

auj+ (UkUi + Ukiii + iikUi + aiii + (u' u))-
at +x '

1 a (P+0)+V~ 2

1op + a (U + ii) . (2.2.6)

Time averaging either (2.2.5) or (2.2.6), to remove the quantities uncorrelated with

the mean ones, yields the momentum equation for the mean field:

aI a - 1 i9P - 2U (2.2.7)
ax-(k U + -k(uk u + ilk ii)=---+v

k a, Ip ax.. axkaxk

To deduce the deterministic momentum equation, (2.2.7) is subtracted from

(2.2.6) and the result is:

a..

+ (Ukiis + UkU + u'ktL + ukui) -- -- + L a O . (228)
at axkk
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The expression ( ) has the same meaning as () and denotes the deterministic

measure, (( ) ; thus akiii = 4ktsak- i .

Finally, the turbulent momentum equation may be formulated by subtracting

(2.2.6) from (2.2.5):

aOt ak k k Opai  axkaxk

It is customary to rearrange the mean and deterministic momentum equations,

(2.2.7) and (2.2.8), so that the Reynolds stresses are displayed as terms on the

right-hand side. Their final form is then:

a 1 aP a a2u0(UkU )=- u-. a+ Ukai) + aa (2.2.10)oxk ( k ) - p~z oax i ax +axi)+~ kaxk

- + k) - -(u'u '+Uk)+v (2.2.11)at ak Oa azk akazk (2)

Since the density of the fluid, p, is assumed uniform throughout the field, the term

K Reynolds stress is used somewhat liberally here to describe turbulent inertial tensors
such as u'u or its deterministic counterpart. It would be more correctly used in

reference to apparent turbulent-stress tensors, i.e. -u' u

2.3 Time-Averaged Energy Equations

The dependence of the mean, deterministic, and turbulent fields upon one an-

other may be studied in terms of energy transfer. Although energy equations are
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only manipulations of the equations of momentum and introduce no new informa-

tion, they allow a clearer interpretation of the relationship between the various fields

of flow, in terms of measurable quantities. Therefore sets of kinetic-energy equa-

tions relating these three fields are developed to describe the mean energy-transfer

process. The time-averaged Reynolds-stress equation is closely related to this set

of energy equations and is developed here too.

To determine the set of kinetic-energy equations describing mean energy transfer,

differential equations for the mean squares of Ui , iii and u' are formulated. As it

would not be possible to measure all three components of velocity in this study, the

corresponding equations for the "energy" of each component of the velocity field

are sought. The equation for UcUa is formed by multiplying (2.2.10), with i = a,

by U. and rearranging to give:

___p a '9 (Ua U 8 U c )

+-iTi + J -Ua aU aU2 (2.3.1)+ uka + "ku~a a- - z ~~
axk -5k ax, axk

The mean kinetic-energy equation for aia is found by multiplying (2.2.11),

with i = a, by &a and then time averaging the result. Subsequent !arrangement

yields:

a _'_ 0. __ _ _ _ a.
yx k 2  0xk / 4 axk 8xk 01 /u

+ -a rk  ukua -- aa-v (2.3.2)

Oxk '9xk

Is 20
AI



The ucu' equation which completes this set is formed by multiplying (2.2.9), with

U i = cf, by u. and time averaging the result. The outcome of these operations is the

equation:

afu/u,\a , = \ , api,: o~ vk + k+ C U, 49#- o,
S ' 2 2 O ,p 4u9 ,u'au'

, - .. , ' . (2.3.3)
Y-~k ( 5xk ) k axk a9k aXk

The accompanying mean Reynolds-stress equation is formed by:

(i) multiplying (2.2.9) by u.,

(ii) replacing the subscript i by j in (2.2.9) and multiplying by u ,

(iii) adding the results of (i) and (ii),

(iv) time averaging the result of (iii).

Rearrangement of the resultant expression gives:

a9 a ap 'J 4p'
-okC(Uku;) + .( ku ) + .- (k( U)

x-k (a4)) + - a k a

a__ au' au'.
u U1. u O  - 2v. . (2.3.4)

ka J, k i a k axk a9xk

The production terms in the equations for mean kinetic energies are of particu-

lar interest. Each of the time-averaged equations for the mean, deterministic and

turbulent energies contain two such terms. The term u'k aUa/azk) appears,

with opposite sign, in (2.3.1) and (2.3.3). It serves to exchange kinetic energy be-

tween the mean and turbulent fields, as in the corresponding steady flow (see, for

21
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example, Tennekes & Lumley, §3.2). The Ziki a(aUaIaxk) term represents the

product of mean shear and the mean correlation between components of determin-

istic velocity. Its appearance, with opposite sign, in (2.3.1) and (2.3.2) indicates its

ability to transfer energy between the mean and deterministic fields. Mean kinetic

energy is exchanged between the deterministic and turbulent fields by the quantity

u1u (84ila/9xk) , which is positive in (2.3.2) and negative in (2.3.3). Examination

of the time-averaged Reynolds-stress equation, (2.3.4), reveals terms closely related

to the energy-production terms of (2.3.3). The behavior of these three energy-

production terms may help to explain, in a time-averaged sense, the relationship

between steady or quasi-steady flow, organized (deterministic) unsteadiness and

unorganized unsteadiness (turbulence).

The corresponding equations for the squares of the mean, deterministic and tur-

bulent components of vorticity may be developed using the methods of this section.

They contain a similar system of production terms which relate the equations for

each field. However, because of the appreciable uncertainties involved, deduction of

these quantities from experimental measurements was not attempted in this study

and the presentation of the equations here would serve little purpose.

2.4 Deterministic Energy Equations

Whereas the operations of the previous section resulted in equations for time-

averaged energy transfer, in this section the equations describing periodic exchange

of energy are devised. During an unsteady cycle, this deterministic or organized

component of energy fluctuates about its mean value of zero. Energy associated

with the square of the mean component of velocity clearly plays no part in this

process; it is independent of time. Therefore a set of two kinetic-energy equations

is developed to describe the deterministic energy contents of the turbulent and

deterministic velocity fields. The accompanying Reynolds-stress equation is also

formed.

22
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The equations for the deterministic energy budgets of uaua and u' are

formulated as follows. The energy equation for uiau" is the result of:

(i) multiplying (2.2.11), with i = a, by 9.,

(ii) phase averaging the result,

(iii) subtracting from the result of (ii), the time average of (i), i.e. (2.3.2).

These operations yield the equation:

+ U )+ =I

u ( a g uctkua) +V (a"'i) + qL'cz9a

- ku - - u' u V (2.4.1)
- xk---tkj k Oxk clxk clk

The uu.a equation may be formed by multiplying (2.2.9), with i = cf, by

u,, , phase averaging the result and subtracting from it (2.3.3). The result of these

manipulations is:

+ U + a(kp+-,~

axk 2a2 k ax.

a__(u2ix '2 ,' o ~x ((u.uU o "'

a (u' i, u, au, u,, p'

ax ax' of -ug ", , vg (U a ' (2.4.2)
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Finally, the deterministic Reynolds-stress equation is formed by:

(i) multiplying (2.2.9) by Ws.,

(ii) replacing the subscript i by j in (2.2.9) and multiplying by u,

(iii) adding the results of (i) and (ii),

(iv) subtracting from the phase average of (iii), the time average of (iii), i.e.

(2.3.4).

The resultant expression is:

u(u) a (u , , .+
3"/' J'+ ( Uk u ) + 5-,-(aku, u,") +  -N '--p _L! p %x"

at k xk O P af9Zkxj

a __ u, au ,o aa
+ ok -x 4x x x

UU - U 2. auu (2.4.3)

The organized, unsteady, equations of kinetic energy, (2.4.1) and (2.4.2), have a

common production term, u'ku,(ca4a/azk) ; it appears with opposite sign in each

equation. This term describes the transfer of energy back and forth between the

deterministic and turbulent fields about a mean value of zero. The amplitude of

this quantity, relative to its mean value, u'ku4,(8a/8zk) , is especially interesting.

If it were larger, it would imply that, at times during an unsteady cycle, there is

net energy transfer from the unorganized field to the organized field.

Deterministic equations for the squares of vorticity may also be developed in the

manner outlined in this section. They also reveal a vorticity-production term relat-

ing the w and w,,w' fields. However, the uncertainties involved in deducing

this term from measurements are considerable and this shortcoming detracts from

the usefulness of inclusion of the relevant equations here.
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Development of the equations of fluid motion into these decomposed forms allows

P unsteady, turbulent flow to be studied according to its behavior in each of the

three distinct fields of the decomposition. Time-averaged and dynamic responses

of the boundary-layer flow to forced free-stream unsteadiness may then be deduced

through experimental measurement of pertinent terms of the relevant equations.

Through these measurements, important quantities may be identified, the existence

of asymptotic forms of behavior may be examined and the suitability of turbulence

models may be considered.
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3. Experimental Considerations

Detailed descriptions of the facility and its measurement system are given in

this chapter. The measurement system comprised a two-component laser-Doppler

anemometer which was used to make simultaneous measurements of the u and v

components of the velocity field. This instrument is becoming more widely used

for non-intrusive, instantaneous measurements of fluid velocity and so the rationale

for selection of a reliable, high-resolution measurement system for this study is

given. Careful consideration is also given to the use of a mini-computer for control

of the flow and for data acquisition and processing, as aspects of its performance

influenced the methodologies for making different kinds of measurements under

steady and unsteady conditions.

3.1 Experimental Facility

The experiments were performed in the closed-loop water tunnel used by Jayara-

man et al. (1982). In this facility, organized unsteadiness could be imposed locally

upon a turbulent boundary layer which had developed under steady, zero-pressure-

gradient conditions. This feature was important for several reasons:

* (i) It allowed the conditions upstream of the point of introduction of unsteadiness

to be prescribed and documented (which could then serve as initial conditions

in target-data sets for turbulence modelers).

(ii) It allowed study of the effects of unsteadiness on a turbulent boundary layer,

without regard for any complicating factors due to transition to turbulence

under unsteady conditions.

(iii) It allowed study of the influence of unsteadiness, in isolation from history

effects associated with the initiation of the boundary layer. Had the boundary

layer grown from a leading edge in an already unsteady flow, the unsteady
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leading-edge vorticity would have been convected downstream and interacted

with vorticity generated through local unsteadiness. It would then have been

difficult to separate unsteady effects due to the local unsteadiness from those

related to conditions at the leading edge.

Illustrations of the closed-loop water tunnel are given in Figures 3.1 and 3.2.

The sump was filled with water through filters rated at five microns, to remove any

particles of undesirably large size. Water was pumped from the sump to a constant-

head tank; the water level in the tank was precisely maintained by an overflow weir,

some 3.4 meters above the point of exit from the water tunnel to the sump. From

the tank, water flowed down to the inlet of a two-dimensional contraction, via a

honeycomb section and three taut screens of 70% porosity; the contraction ratio was

20:1. Boundary layers were bled off on all walls at the contraction exit, where it

smoothly joined a horizontal duct of rectangular cross-section (0.15 meters in height

and 0.35 meters in width). This duct was the development section of the tunnel, in
S which a new, turbulent, boundary layer was allowed to develop for 2.0 meters along

the top wall, under steady, constant-pressure conditions; it was tripped by a strip

of sand-paper glued to the top wall.

The bottom wall of the development section contained porous sections at twelve

evenly spaced intervals. Flow through these sections was controlled by valves, which

were set to permit sufficient fluid to be removed so that a constant free-stream ve-

locity was maintained and growth of z. boundary layer on the bottom wall was

prevented. Thus a steady, zero-pressure-gradient, turbulent boundary layer devel-

oped on the top wall. At the end of this section, splitter plates protruded from the

side walls of the tunnel so that boundary layers on these walls would be removed;

the width of the tunnel was then reduced to 0.30 meters, the spacing between the

splitter plates. Here the turbulent boundary layer was characterized by a Reynolds

number (based on momentum thickness) of 3200; it had developed in a flow with a

constant free-stream velocity of 0.74 meters/second.
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The part of the tunnel immediately downstream of the development section was

the test section. Here the free-stream velocity was varied so that unsteady effects on

the top-wall boundary layer could be studied. Water which entered the test section

could exit to the sumnp by either of two routes. Some could be bled off through the

porous bottom wall of the test section and then reach the sump via a gate valve

(Figure 3.3). The remainder passed through to the recovery section and flowed

through its bottom wall and the gate valve before discharge to the sump. The

proportions of the flow which exited by each route were governed by the position

of the gate valve. The sum of the areas presented by the gate valve to the exiting

flows was constant so that, regardless of its position, the through-flow rate and the

pressure drop across the valve would not vary. By design, the pressure drop across

A the gate valve was the primary resistance to flow through the entire apparatus.

Thus, although movement of the gate valve allowed dynamic control of the bleed

rate through the porous bottom wall of the test section, the total through-flow rate,

and hence the development-section flow, was essentially unaffected.

The porosity of the bottom wall of the test section was provided by uniformly

spaced holes over a length of 0.61 meters. The hole size was chosen so that the drop

in pressure across the holes would be large, relative to the change in static pressure

R in the flow along the test section, but small compared to the pressure drop across

the gate valve. Consequently, when the gate valve was positioned to allow flow
%.. through these holes, the result was a nearly linear decrease in free-stream velocity

along the test section. By moving the gate valve back and forth in a sinusoidal

manner, oscillations in free-stream velocity were induced with amplitude increasing

in proportion to distance along the test section. One limiting position of the gate

valve was that at which no flow was allowed through the bottom wall of the test

section - hence no pressure gradient in the test section. The other limiting position

was chosen as that of the greatest desired adverse-pressure gradient. In this way,

with minimal disturbance to the flow in the development section, oscillation of the

gate valve produced sinusoidal unsteadiness in the test section. The amplitude of
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oscillation of the free-stream velocity was almost linearly proportional to distance

along the test section, as was the streamwise decrease in the mean value of free-

stream velocity. In Figure 3.4 the desired distributions in free-stream velocity during

an unsteady cycle is shown. A scotch-yoke mechanism driven by motor (Figure 3.3)

was built onto the gate valve to produce its sinusoidal motion. Frequencies of

unsteadiness as high as 2.0 cycles/second could be imposed on the test-section flow

through precise control of the motor's speed.

The recovery section was smoothly joined to the end of the test section. It

consisted of a channel of rectangular section followed by a tapered duct with a

porous bottom wall, of the same design as the bottom wall of the test section.

All fluid which entered the recovery section passed through its bottom wall and

returned to the sump via the gate valve.

The development, test and recovery sections were constructed from plexiglass
and were transparent. Thus the flow was readily accessible by optical means and

non-intrusive measurements of fluid velocity could be made using a laser-Doppler

anemometer.

3.2 Velocity Measurement System

The velocity data presented in this study were obtained using a three-beam,

two-color, laser-Doppler anernometry system and an overview of this measurement

technique is given in Appendix B. The system was assembled primarily from TSI

modular components mounted on a custom-made optical breadboard, which strad-

dled the water tunnel in the manner shown in Figure 3.5. The breadboard was

attached to a framework which also held the laser, its power supply and some elec-

trical instrumentation. The framework was supported by a trolley, the wheels of

which rested on I-beams running the length of the facility. The linkage between

the framework and the trolley was a pair of linear bearings, which allowed lateral

movement of the framework. Thus the measurement system could be moved along
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the length of the water tunnel and across its span. A third degree of freedom was

S provided in the direction normal to the top wall of the tunnel, the direction in which

boundary-layer profiles would be taken.

Precise controlled movement in the vertical plane of all the optics, the breadboard

and an argon-ion laser was not considered a feasible option. Therefore the degree of

freedom in the wall-normal direction was achieved through simultaneous movement

of both the final mirror and lens of the transmitting optics, and the mirror and

collimating lens of the receiving optics (Figure 3.5); the position of the laser and

the remainder of the transmitting and receiving optics was fixed, relative to the

breadboard. Each mirror-and-lens combination was mounted on a linear slide, the

lead screws of which were linked by shafts and gears, and driven by a small stepping

motor.

I Correct operation of this traversing system required that beams of laser light

travelling from the transmitting optics to the mirror on the right slide (Figure 3.5)

were parallel to the direction of motion of the slide. The same provision applied

to scattered light leaving the lens of the left slide. The location of the slides, in

* precisely spaced holes on the optical breadboard, assured that their motion was

parallel. Careful alignment of the transmitted beams, relative to the holes of the

breadboard, ensured they were parallel to the slides. By selection of a lens of correct
focal length, and by precise placement of this lens on the traversing stage of the

receiving optics, scattered light focused by the lens was collimated. Thus the bulk

of the transmitting and receiving optics remained stationary on the breadboard,

while two traversing stages, each comprising a mirror and lens mounted on a slide,

could be moved to position the measuring volume at the desired location in the

boundary layer. Details of the components of the traversing system are given in

Table 3.1.

A three-beam, laser-Doppler anemometer was assembled, with coincident inter-

N ference patterns of blue and green light aligned with the u and v components of

fluid velocity respectively. The mode of operation was chosen as forward scatter,
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TABLE 3.1

Traversing System Components

Item Specifications No.

Stepping motor Slo-Syn, M093-FC07 1
Translator Slo-Syn, ST101 1
Linear slide Velmex Unislide, A4012B, 20 tpi 2
Gear drive Boston, RA 631 2

150 off axis, to take advantage of the strength of light scattered in this direction

and the reduced requirement for laser power. Off-axis collection of scattered light

also offered the opportunity to improve spatial resolution in velocity measurements

through the use of a small pinhole in the field-stop module, positioned at the front

of the fixed receiving-optics train. Moreover, this field-stop system prevented stray

transmitted light, reflected or scattered from sources other than the measuring vol-

ume, reaching the remainder of the receiving optics. The intensity of power in the

probe volume was increased by expanding the diameter and increasing the separa-

tion of the beams before focusing them; the beams subsequently intersected with

waists of reduced size, concentrating the power in the transmitted beams within a

smaller volume. The optical system comprised the components listed in Table 3.2.

The positions of the components on the optical breadboard are shown in Figure 3.5.

Since the scattered light had to be separated by dichroic means, the risk of cross-

talk was reduced through the inclusion of a frequency-separation scheme. The

Bragg cell, used to shift the blue beam in frequency, was driven at the E!andard

40 megahertz. The cell which shifted the green beam was driven at 38 megahertz;

athis frequency was generated by making a small change in the configuration of the

frequency-selection electronics in the driver module. The bandwidths of the fre-

quency spectra in the u and v components of velocity corresponded to less than 200

kilohertz, for the velocity scales in this flow and the optical parameters of the sys-

tem. Consequently, spurious signals of blue scattered light, which passed through

the color filters of the receiving optics for green scattered light, were around 2
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TABLE 3.2

UOptical Components of the Measurement System

Item Description Specifications

1 Argon-ion laser Lexel series 75, 300 milliwatts
2 Beam collimator TSI 9108

3,4 Mirror Newport 10D10 DM.2
5 Rotating polarization mount TSI 9178-1
6 Beam splitter TSI 9115-1X
7 Dichroic color separator TSI 9112

8,9 Bragg cell TSI 9182-12, 9182-11
10,11 Beam steering module TSI 9175

12 Beam spacer TSI 9114-22
13 Rotating mount TSI 9179
14 Mirror Newport 20D10 DM.2
15 Beam expander TSI 9189
16 Mirror Newport 60D10 DM.2
17 Lens TSI 9169-450
18 Mirror Newport 40D10 DM.2
19 Lens TSI 9167-500
20 Field-stop module TSI 9143
21 Dichroic color separator TSI 9144

22,23 Color filter TSI 9158, 9159
24 Optical breadboard Newport XA-35, custom-made

megahertz higher in frequency; they could then be removed easily through electri-

cal frequency filtering. Similarly, contaminant green light, in the receiving optics

for blue scattered light, was about 2 megahertz lower in frequency and could be

eliminated by band-pass filtering.

After color separation, the scattered light was channeled to photo-multiplier

tubes. The resultant electrical signals were downmixed in frequency, band-pass

filtered and routed to frequency trackers. The effective frequency shift (the differ-

ence between the frequency at which the Bragg cell was driven and the downmix

frequency) was chosen as 200 kilohertz, the frequency at which stationary particles

would then appear to scatter light. The bandwidths of the tracked signals would

then lie between about 200 and 400 kilohertz and the best use would be made of the
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TABLE 3.3

Operational Frequencies in the Measurement System

Green Channel Blue Channel
F.V U

Shift frequency 38.0 megahertz 40.0 megahertz
Downmix frequency 37.8 megahertz 39.8 megahertz
Effective shift frequency 200 kilohertz 200 kilohertz
High-pass filter 100 kilohertz 100 kilohertz
Low-pass filter 500 kilohertz 500 kilohertz
Tracker range 2 --* 500 kilohertz 2 -+ 500 kilohertz

range of operation of the trackers for which their voltage output was most sensitive

to changes in Doppler frequency. The operational frequencies of the measurement

system are presented in Table 3.3.

Given an input signal at some frequency, the output of a tracker is an analog volt-

age. The frequency-voltage characteristic of a tracker is highly linear so that fluid

velocity may be related to voltage through two calibration constants -a voltage

offset, corresponding to zero velocity, and a voltage-velocity slope. By downmixing

the electrical signal generated to drive the Bragg cell, a signal oscillating at the

effective shift frequency was formed. This signal could be tracked perfectly and the

tracker's voltage output at this frequency corresponded to its voltage offset at zero

velocity. The second calibration constant, describing the voltage-velocity slope, was

found from simple optical considerations and from the tracker's frequency-voltage

characteristic and verified by independent measurement with a pitot probe.

The success of trackers as frequency analyzers depends upon the rate at which

data are supplied to them and the rate at which the input frequency changes in mag-

nitude. If the data rate can be considered continuous (i. e. an order of magnitude

greater than the Kolmogoroff frequencies, the highest frequencies of the flow) and

the slew rate of the tracker is fast enough to follow all changes in input frequency,

then the frequency-following electronics should continually track the data signal.

The tracker may then provide a continuous, analog, voltage output, proportional toI
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TABLE 3.4

Signal Conditioning Equipment

Instrument Specifications

Photo-multiplier system TSI 9162, 9165
Frequency-shift system TSI 9186
High-pass filter TSI 10095
Low-pass filter Krohn-Hite 3202
1Irequency tracker TSI 1090-1A

Signal conditioner TSI 1057

the instantaneous fluid velocity. This kind of output signal is most desirable in an

unsteady flow as it greatly simplifies the sampling strategy - data can be sampled

when desired. An alternative scheme, for sparse data, is to wait for it to arrive,

identify it by the time at which it was detected and sort the data accordingly - a

function which digital instruments such as counters are well-equipped to perform.

The signal-processing and frequency-analyzing equipment is specified in Table 3.4.

It is demonstrated in the next chapter that trackers could be used with confidence

in these experiments.

A three-beam system, with coincident measuring volumes of blue and green light,

may be used with several different orientations of its beams. A commonly used ar-

rangement (Figure 3.6) aligns the probe volume of one color to measure the velocity

components (u + v) /V'/- and the other to measure (us - v) /,/'2 (for the idealized case

of perfect beam orientation and alignment); a small contribution of w is necessarily

included in each measure too. If the half angle of the beams is sufficiently small,

so that the w measure is negligible, this arrangement is analogous to the cross-wire

of hot-wire anemometry. Although measurements may be made to within a beam

diameter of the top wall with this method, it has its drawbacks. In shear flows, v

is often much smaller than us. Consequently the deduction of v, as the difference

between two much larger numbers, may suffer from uncertainty through rounding

errors.
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TABLE 3.5

Optical Parameters

Green Channel Blue Channel

Beam wavelength, in air 514.5 rim 488.0 nmn
Beam half angle, in air 3.580 ± 0.060 3.700 ± 0.060
Beam half angle, in water 2.680 ± 0.040 2.760 ± 0.040

Length of probe volume -1.5 rnm -~ 1.5 mm
Diameter of probe volume - 0.15 mm - 0.15 MM
Fringe spacing 4.12 jsm ± 0.07 lim 3.78 urn ± 0.07 ism
Effective frequency shift 200 kilohertz 200 kilohertz
Effective fringe velocity -0.824 rn/s ± 0.014 in/s -0.756 rn/s ± 0.012 rn/s
Velocity equivalent of A/D bit 0.503 mm/s 0.461 mm/s

An alternative orientation requires the interference patterns of each color to be

aligned with the u and v components of velocity respectively (the standard four-

beam system). This arrangement (Figure 3.7) precludes measurements being taken

near the wall; the limiting distance is determined by the span of the tunnel and the

half angle of intersection of the beams . Although the half angle might be reduced, it

would only result in a longer probe volume with a reduced concentration in optical

power and hence scattered light of weaker intensity.

For a nominally two-dimensional flow, in which values of w should be small, the

three-beam system discussed above was adapted to make measurements of u and

v. The arrangement of Figure 3.6 was first rotated through 450. The final mirror

and lens of the transmitting optics were then repositioned so that the two-color

beam travelled through the center of the lens, along its optical axis (in practice this

alignment was easily achieved by adjustment of the mirror so that the reflection

back from the tunnel walls was coincident with the forward path of the beam). The

blue and green beams then formed interference patterns aligned with the velocity

components, u plus a small contribution from w, and v plus some contamination

of w (Figure 3.10). In shear flows, it is far more important that measurements

of v do not include small contributions from us than it is that us measurements
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contain a little of the v component. Therefore alignment of the optics was carried

U out by first ensuring perfect coincidence of the interference patterns, and then by

making slight adjustments in the rotation of the transmitting-optics train, until the

v measurements were correct (i.e. the green interference pattern was insensitive to

any contribution from u). Details of the alignment techniqiue, which were specific

to the components of this system, are presented in Appendix C.

This optical arrangement was considered the best compromise within the con-

straints of the experiment. The _i and _v measures would both contain a small

amount of wi, but, in this nominally two-dimensional flow, w should be negligible.

That measurements of us' and V' would contain contributions from w' was of greater

concern; all these quantities are usually of the same order of magnitude. A further

compromise therefore had to be made between reducing the half angles of the inter-

secting beams, to minimize undesired contributions of w', and keeping the length of

the probe volume sufficiently small, so that scattered light retained an acceptable

level of power. The optical parameters of the operational system are displayed in

Table 3.5. Although perfect measurement of us and v was not possible, this optical

arrangement did allow near-wall measurements to be made where, without com-

promise, they might not be made at all. The accuracy with which measurements

were made with this system, in a steady, zero-pressure-gradient, turbulent boundary

layer, is treated in the next chapter.

3.3 Control, Data Acquisition and Processing

Experiments were conducted under the control of a laboratory mini-computer,

I,. a MINC-11 with an LSI-11/2 processor. It was programmed to acquire data and

perform control functions related to the operation of the experiment through the

interface systems listed in Table 3.6. A limited amount of data processing was also

possible, but all memory-intensive data reduction was carried out after transfer to

a VAX 11/750.
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When experiments were conducted under steady conditions, data from the track-

ers were sampled through the analog input system, at a rate controlled by the

programming of the real-time clock. If time-averaged quantities were desired, run-

ning averages of the sampled data (or of squares or cross products of the sampled

data) were maintained throughout the measurement period. When a record of

instantaneous values of velocity was required (i.e. for subsequent spectral anal-

ysis), this information was transferred to a diskette during the sampling process.

Boundary-layer profiles were taken by programmed movement of the measuring vol-

ume between periods of data acquisition; this movement was achieved by driving a

stepping motor via the parallel digital output system.

Experiments conducted under unsteady conditions required more complex pro-

gramming and more sophisticated equipment - the frequency of oscillation of the

gate valve (Figure 3.3) was to be controlled and data were to be sampled at many

discrete times during each unsteady cycle. To perform these functions, the absolute

position of the gate valve had to be known. Therefore an optical encoder, with

digital output, was fitted to the free end of the d.c. motor shaft, which drove the

scotch-yoke mechanism. By monitoring the parallel digital input system, the an-

gular position of the gate valve could be determined to an accuracy of ten bits at

any instant. The least significant bit was fed to a Schmitt trigger of the real-time

clock; on the rising of this bit (512 times per shaft revolution) the ensuing trigger

was used to initiate a sample of velocity data at 512 discrete times during each

cycle. Synchronization of sampling with the 0' position of the shaft was achieved

by monitoring the parallel digital input from the encoder, until the pre-penultimate

position was reached; the next rise of the least significant bit corresponded to 00.

The controller of the d.c. motor drove it at a speed almost directly proportional

to an analog input voltage. This input voltage was supplied through the analog

output system of the mini-computer; it was systematically varied until monitor-

ing of the shaft-encoder position indicated that the desired frequency of oscillation

had been reached. Thus, through control of the speed of oscillation of the gate
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TABLE 3.6

LSI-11/2 Interface Systems

System Specifications

Programmable real-time clock Data Translation 2769, 2 Schmitt triggers
Analog input system Data Translation 2762-DI-PG, 12 bit, 16 channels
Analog output system Data Translation 2766, 12 bit, 4 channels
Parallel digital input/output Data Translation 2768, 16 bit input, 16 bit output

valve and feedback of its position, unsteady experiments could be performed under

mini-computer control.

The limited memory of this computer (64 kilobytes) placed constraints upon the

size of program which could be executed and the amount of data which could be

retained in memory. To take velocity data while controlling oscillations of the gate

valve, the computer was programmed to:

(i) time the shaft encoder over several revolutions,

(ii) proceed to (iii) if the oscillation frequency was correct; otherwise trim the

voltage output to the motor controller in proportion to the error and return

to Wi)

(iii) synchronize with the position of the shaft encoder,

(iv) sample and store velocity data over four cycles,

(v) time the shaft encoder over a revolution,

(vi) update stored averages of the various velocity measures, at each phase in the

* cycle, and return to (iii) if the frequency of oscillation was correct; otherwise

discard data and return to ()

In a typical experiment, velocity measurements might be made at 512 discrete,

evenly spaced times in an unsteady cycle. To achieve reliable measures of phase-

averaged quantities, data would be ensemble averaged over 500 such cycles. The

range in frequency, attainable with this apparatus, was from 0.1 hertz to 2 hertz

and a thorough investigation into frequency effects could require measurements to
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be made at ten frequencies in this range. These considerations translated to a time

requirement of several hours per data point. A reasonably well resol,,ed profile of

an unsteady boundary layer would require over thirty data points and hence around

a week of continuous data acquisition. To avoid uncertainty due to changing fluid

viscosity over long periods of time, water from the sump was pumped through a

chiller, which was energized whenever the water temperature exceeded its prescribed

value by 0.1C.

A small amount of data processing was necessary before storage. Instantaneous

values of u and v were measured at each of 512 discrete times per cycle and, from

these quantities, their instantaneous squares and cross product, uu, vv and uv, were

calculated. At each discrete phase, averages of u, v, uu, vv and uv were continually

updated in memory throughout the 500 ensembles. On completion of the desired

number of ensembles at a specific frequency of oscillation, at a prescribed position

in the boundary layer, the 512 phase averages for each of (u), (v), (uu), (vv) and

(uv) were transferred from memory to diskette.

Subsequent processing, often after completion of the experiment, was carried out

according to the decomposition of (2.2.3):

u = (-U) (U) - (U), V = 7V, V = (V) - 7V),

(is'') = (UU) - (i)(i) , (Wv'i) = (VV) - (v)(v) , (is'V) = (iV) - (i)(v)

,(is,, ) (,) , u' = (,'u') - (U,,,) , , = (V'i,') , V = ( 'v') - (vv) ,

u' = (,,,v), U'V'= (U'v') - (uv)
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3.4 Experimental Plan

Both the time requirements for making measurements of unsteady profiles and

the constraints on computer memory placed limits upon the scope of these exper-

imeits. As noted in the previous section, measurements would be restricted to

phase-averaged values of (u), (v), (uu), (vv) and (uv) at 512 evenly spaced times

during each unsteady cycle.

To judge from the results of Jayaraman et al. (1982), measures which varied with

the imposed frequency of unsteadiness did so smoothly - when quantities such as

the amplitude of the phase-conditioned displacement thickness were plotted against

Strouhal number, no pronounced peaks or troughs were observed. For this study,

seven frequencies of unsteadiness were considered sufficient and they were chosen

as: 0.1, 0.2, 0.5, 0.8, 1.0, 1.6 and 2.0 hertz.

The time-averaged, free-stream velocity in the test section would decrease linearly

*in proportion to distance along it. The unsteady mainstream flow was to vary in

a sinusoidal manner, with its amplitude increasing with distance along the test

section, as described in §3.1. The test-section flow could then be expressed as:

U,, -- Uo(1 - AX') and ii. = UoAX' coswt, (3.4.1)

where U0 is the steady, free-stream velocity along the development section and A

.b is its amplitude of oscillation at the end of the test section, expressed as a fraction

of U0 . Also, X' is defined as the dimensionless distance along the test section (of
(-

length L).

%;- Measurements were to be taken at one amplitude of unsteadiness and the "high"

amplitude value of A (= 20%), used by Jayaraman et al. (1982), was chosen. At this

amplitude, good signal-to-noise ratio was obtained in deterministic measurements;

when deduced by the phase-conditioning techniques of §2.1, deterministic measures
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were of a large enough size to be discerned clearly. At this value of A, during

the parts of the unsteady cycle when the adverse-pressure gradient was strongest,

separation would take place in the equivalent steady flow (in which the detached

layer would grow to the height of the channel - no longer a wall flow bounded

by a free stream). The imposition of free-stream unsteadiness at frequencies as

low as 0.1 hertz, however, was sufficient to ensure that the flow remained attached

throughout the cycle.

This finding is partly explained by considering the role of the term o9(9k94)/aXk

in the mean z-momentum equation (2.2.10) when applied in the free stream. For

the boundary conditions of this study, forced free-stream oscillation at any non-

zero frequency resulted in a free-stream measure of a(9ki)/8zk, the effect of

which was to reduce the mean-adverse pressure gradient from its truly quasi-steady

value. Therefore, while measurements of the true quasi-steadily-varying flow were

not possible, the dynamic response of the turbulent boundary layer to imposed,

organized unsteadiness could be studied with good signal-to-noise ratio and under

conditions which might help to clarify the role which unsteadiness could play in the

control of boundary-layer separation.

An extensive survey of the streamwise variation of the flow within the test sec-

tion was not considered necessary for the purposes of this study; from the analyses

of Appendix D, it would seem that the spatial periodicity observed by Cousteix &

Houdeville (1983) and Karlsson (1959) would not be expected in this flow. Time-

averaged and phase-conditioned measurements would therefore be made at the be-

ginning of the test section (X' = 0.0) and at two locations within the test section

(, = 0.45 and X' = 0.63). Measurements made at the entrance to the test section

could provide initial conditions, were the downstream results to be used as target

data by turbulence modelers. These measurements, ostensibly taken under steady

inlet conditions, would also be useful for contrasting against those taken further I
downstream in unsteady flow. For reference purposes, parameters describing the
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TABLE 3.7

Steady Flow Conditions at X'= 0.0

Boundary-Layer Parameter Initial Value

Free-stream velocity (U0) 740 mm/sec
Boundary-layer thickness (D,) 39.9 mm
Displacement thickness (6) 6.8 mm
Momentum thickness (62) 4.7 mm
Shape factor (H) 1.44
Momentum-thickness Reynolds number (Re ) 3190
Friction coefficient (C,) 3.02 x i0-

Kinematic viscosity (L,) 1.1 x 10-6 m2 /sec
Temperature 620 F

steady turbulent boundary layer at the entrance to the test section are given in

Table 3.7.

A-
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Figure 3.1 Closed-loop water tunnel.
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Figure 3.2 Tunnel test section.
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"Figure 3.3 Gate valve and scotch-yoke mechanism.
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Figure 3.4 Distribution of free-stream velocity in the apparatus.
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i 4. Qualification of the Facility and its Instrumentation

To make meaningful measurements of velocities in unsteady flows, one must be

confident that the experiment reproduces the prescribed conditions accurately and

* that the measurement system has the necessary speed and resolution to capture

all the features of interest. This confidence was gained through the performance of

qualification exercises on the facility and the measurement equipment.

4.1 Measurement-System Qualification

The spatial resolution and the required sampling frequency of the measurement

system were tested through evaluation of the correlation coefficient, -ii'v/(u'v')

in a steady, flat-plate, turbulent boundary layer. According to Barlow & Johnston

(1985), this quantity was especially sensitive to the spatial resolution of the laser-

Doppler anemometer - inadequate resolution resulted in values of the coefficient

which were substantially lower than expected.

It was desirable to make qualification measurements at the locations at which

data would subsequently be taken - in the test section of the apparatus. The gate

valve was therefore fixed in position so that there was no flow through the porous

PN bottom wall of the test section, and a steady, zero-pressure-gradient, turbulent

boundary layer was formed on the top wall of the tunnel. At this stage of the

qualification, that the boundary layer was a true flat-plate one was not of prime

importance, since a correlation coefficient of about 0.4 would be expected in any

,-. case (Tennekes & Lumley, §2.3).

As a preliminary exercise, a profile of the mean, streamwise component of velocity

was taken, from which the local friction velocity of the boundary layer, u,, was

deduced. This friction velocity was used to scale the results of reference-data sets,

taken in the near-wall region of turbulent boundary layers, so that local estimates

of the Kolmogoroff length and frequency scales could be made for the qualification
.4 . 49
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flow (Appendix A). These estimates were then used to choose the initial size of

pinhole for the receiving optics and the sampling frequency necessary for correct

deduction of -ii 7v/(u'v').

The velocity profile shown in Figure 4.1 was taken about two thirds of the way

along the test section. It was used for the calculations of Appendix A, which

indicated that the orders of magnitude of the Kolmogoroff length and frequency

scales would be 0.1 mm and 100 hertz respectively. If these estimates were to

prove realistic, the lowest rate at which data could be sampled would be 200 hertz

(Bracewell, §10). Now the spatial resolution was determined by the system's limiting

aperture, a pinhole placed in the field-stop system immediately in front of the fixed

receiving-optics train. When projected along the optical path to the probe volume,

the aperture's size was magnified by a factor of around five, a result calculated from

considerations of geometric optics. Collection of scattered light 15' off the optical

axis further lengthened the measuring volume by the cosecant of this angle, an

additional factor of about four. Resolution to the estimated order of the Kolmogoroff

length scale would then require a pinhole of about 5 microns in diameter.

The values of correlation coefficent measured with this level of resolution are

*shown in Figure 4.2. Over the major part of the boundary layer, they just exceeded

0.4 with a peak value of 0.42, in agreement with the expected results. No decrease

in the correlation coefficient was noted when pinholes as large as 25 microns were

0 used although still coarser resolution did produce values which were clearly too low,

as noted by Barlow & Johnston (1985). If this pinhole size is translated back to

multiples of q/, the estimated Kolmogoroff length scale, it corresponds to a value of

,* t1 1 , 7 .

By increasing the pinhole size from 5 to 25 microns, the data were validated by

the trackers at rates between 2000 and 4000 hertz. These rates were an order of

magnitude greater than the sampling frequency and so data acquired at these rates

could be considered continuous. The addition of a little seeding (silicon carbide

particles) had a slightly beneficial effect upon the data rates, but the strongest
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influence was the power of the laser. Through careful tuning, the output of the

laser (with an etalon installed) could be made to reach 200 milliwatts, the operating

condition at which the highest data rates were reached for this optical system.

The frequency trackers used for these experiments validated a signal when it had

been tracked for ten successive Doppler cycles. For example, an ideal sinusoidal

signal, the downmix frequency of 200 kilohertz, was tracked at a validated-data

.* * rate of 20 kilohertz. This explanation of the validated-data rate is given so that

meaningful comparisons may be made with data rates measured with other kinds

of frequency-analysis equipment, which employ different validation techniques.

Eulerian time spectra of the "energy" content of the u, v and uv velocity measures

were also taken in the steady, turbulent boundary layer. These "power" spectra are

presented in Figure 4.3; they are the results of Fourier-transformed records of 32,768

I-.: point data sets, sampled at 400 hertz. The Eulerian time spectrum describes the

temporal changes seen from a fixed point, with respect to the frame of referencr in

which the mean velocity at that point is zero. Consequently, this kind of spectrum

measures the frequency of eddies advected past the observation point by other eddies

(Tennekes & Lumley, §8.5) and may differ from a "true" wave-number spectrum.

However, the shapes of the Eulerian time spectra at high frequencies did indicate an

absence of noise- and ambiguity-broadening effects, since no significant flattening

of the tails of the spectra is observed. Therefore the signal-to-noise ratios of data

taken with this measurement system were considered satisfactory. Their shapes

were similar to those reported by Barlow & Johnston (1985) in their experiments

in parallel-channel flow. The lack of definition at low frequencies was attributed to

the size of the data record; it was not considered sufficiently large to resolve the

spectrum accurately at the lowest frequencies.

The performance of the measurement system, under unsteady conditions, was

tested through Eulerian time spectra taken in the unsteady, turbulent boundary

layer. The gate valve was driven at an oscillation frequency of 0.2 hertz and data

were sampled at the same rate and for the same duration as for steady flow. The
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data-validation rates were unchanged from their steady-flow values and the trackers

showed no tendency to lose track of the unsteady velocity signal at this frequency,

nor at frequencies as high as 2 hertz. The spectra taken in unsteady flow, together

with the steady-flow spectra discussed above, are displayed in Figures 4.4 - 4.6.

Although these spectra contained several interesting features, for the purposes of

qualification, the region of importance was the high-frequency end. The slopes of

the steady spectra and the unsteady spectra at high frequencies (much higher than

the frequency of perturbation of the flow) were almost identical. Since isotropic

behavior in this range of the spectrum was to be expected (Tennekes & Lumley,

§8.3), the excellent agreement between the slopes of the steady and unsteady spectra

implied that the resolution needs for steady-flow measurements were adequate for

measurements in unsteady flow. The absence of significant flattening of the tails of

the spectra indicated that ambiguity effects were again negligible.

4.2 Facility Qualification for Steady Flow

Qualification of steady flow in the facility was casried out through the measure-

ment of velocity profiles in the steady, zero-pressure-gradient, turbulent boundary

layer which developed on the top wall of the tunnel. The gate valve was set so

that constant pressure conditions prevailed in the test section, as well as along the

development section. By taking measurements far downstream in the test section,

the risk that these data might suffer from effects of low Reynolds numbers would

be minimized. Moreover, these measures could be taken in the knowledge that the

spatial resolution of the laser-Doppler anemometer had already been refined, the

required sampling frequency had been deduced and the signal-to-noise ratio of the

system was adequate.

Profiles of U, V, Wu-i, i W and -uIvI were taken, with measurements at some

thirty points in the boundary layer; at each point, 100,000 instantaneous values of

u and v were measured at a sampling rate of 400 hertz, while the frequency trackers
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validated data at rates between 2000 and 4000 hertz. A profile of mean, streamwise

g velocity is shown in Figure 4.1. A least-squares fit of Coles' mean velocity function

was made to this profile - the parameters u, and 6 were varied to achieve the

' best fit within the region limited by y + > 50 and 1b/ < 0.8 (Coles 1968). The

profile, normalized according to this fitted function, is shown in Figure 4.7 - good

agreement with the expected result is evident, even where y + = 2, the nearest point

to wall at which data were taken.

Deduction of the friction velocity, u,, from Coles' mean velocity function, enabled

the near-wall measures of u', v' and -ulv to be plotted in a normalized form,

which allowed comparison with reference-data sets. In Figures 4.8 - 4.10, reduced

measures of u', W' and -uihl are shown for values of y + from 2 to 50. The measures

of U'U7 an -7/ . appeared to match those of Laufer (1954); the values of

~. v'/u, were noticeably higher than those of Laufer, but in good agreement with the
more recent measurements of Barlow & Johnston (1985). The asymptotic behavior

of vW, as the wall was approached, was evidently incorrect. The flattening of the

profile might be attributed to wall vibration in the vertical plane. It might also be

-~ a consequence of the measuring volume interfering with the wall and causing light

scattered at this surface to reach the receiving optics.

The profile of V, the wall-normal component of mean velocity, is shown in Fig-

ure 4.11; it was several orders of magnitude smaller than U throughout the boundary

layer. Although no reference data could be found for the purposes of comparison,

the tendency towards negative values as the wall was approached, rather than zero,

might be attributed to slight curvature in the plexiglass walls of the apparatus. Cur-

vature which varied in the wall-normal direction would cause minor misalignments

of the measuring volume; the shape of the profile might then be due to contami-

nation of V measurements by fractional proportions of U, of sign and magnitude

. which varied according to the local curvature.

The premise that the flow was two-dimensional could be tested by making mea-
surements across the span of the tunnel, at fixed distances below the top wall. The
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variation in mean streamwise velocity across the central 40% of the tunnel was lim-

ited to a small percentage of its average value, as shown in Figure 4.12. Spanwise

variations in V, i' ', v'v' and - u'v are displayed in Figures 4.13 - 4.16; in general,

they too were within a small percentage of their mean values and flat at the center.

There was no evidence of dramatic non-uniformity in the spanwise direction, the

presence of which might indicate strong, local, streamwise vorticity.

4.3 Facility Qualification for Unsteady Flow

The facility was designed so that a turbulent boundary layer, which had devel-

oped under essentially steady, constant-pressure conditions, would be subjected to

well-defined, free-stream unsteadiness in the test section. Here, the locally unsteady

mainstream was to be characterized by:

(i) a linear decrease in time-mean, free-stream velocity in the streamwise direc-

tion,

(ii) a linear increase in the amplitude of its deterministic velocity component, in

the streamwise direction,

(iii) a linear, streamwise variation in free-stream velocity at each discrete phase in

the unsteady cycle.

IMeasurements were made by Jayaraman et al. (1982) to test how well these re-

quirements were met. For the most part, excellent agreement was reached between

the prescribed and measured behavior. At low frequencies of gate-valve oscillation,

however, the streamwise gradient of the time-mean decrease in free-stream veloc-

ity was not as steep its high-frequency counterpart. Phase-averaged measurements

indicated that there was also a slight departure from the third of the above crite-

ria; at phases corresponding to the constant-pressure condition in the test section

(around 00), the streamwise variation in mainstream velocity was not quite linear.

These imperfections were thought to have little effect upon the unsteady, turbulent
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boundary layer. As no changes had been made to the oscillation scheme used by

3 Jayaraman et al. (1982), these qualification measurements were not retaken.

An important aspect of this experiment is the nominally steady development

of the flow, upstream of the test section. That this requirement was met could

be verified by making measurements in the development section, while unsteady

conditions prevailed in the test section. By measuring the velocities, u and v, at

each discrete phase associated with the downstream oscillation, their phase-averaged

values, (u) and (v), could be deduced. The root-mean-square deviations of (u) and

(v) from their mean values during the unsteady cycle then indicated the size of the

upstream disturbance. Normalized plots of this organized disturbance are shown in

Figures 4.17 and 4.18; it was always less than two percent of the mean free-stream

velocity and reached its largest value near the wall, as the frequency of oscillation

increased. Moreover, the peak r.m.s. value of upstream disturbance was an order
of magnitude smaller than its downstream counterpart, which reached 17% of the

mean free-stream velocity in the mainstream in the test section and still larger

values within the unsteady boundary layer there.

The two-dimensionality of the unsteady flow was tested by making measurements

across the span of the tunnel, while unsteady conditions prevailed. Measures of the

time-averaged quantities, U, V, u'u', iv'i and -u'vI were taken in the test section,

over the range of frequencies for which profiles of unsteady velocities were to be

taken. The spanwise variation of U, normalized by the free-stream velocity in the

development section, is shown in Figure 4.19; it was a small percentage of its mean

* value across the central 40% of the tunnel and very flat at the center. Results

are only presented for the case of gate-valve oscillation at 1.0 hertz, although they

were representative of data taken at other frequencies. The spanwise measures of

V, u'u', v'v' and -u'v' are shown in Figures 4.20 - 4.23; they too exhibited a

welcome flatness at the center of the tunnel, with non-uniformities restricted to a

small percentage of their mean values. Since neither the steady nor the unsteady
.55
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flow appeared to suffer from significant spanwise variation in any of the measured

quantities, the two-dimensionality of the flow was considered satisfactory.

Phase-averaged measures of the instantaneous free-stream velocity, taken two

thirds of the way along the test section, are shown in Figure 4.24; these measures

were averaged over 400 ensembles. As a check upon the accuracy with which the

gate-valve oscillation translated to a sinusoidal variation in the mainstream, the

data set was decomposed into its Fourier components - the ratio of the "energy"

at the fundamental frequency to the total "energy" in the phase-averaged flow (not

including the mean flow) was greater than 99.5% for all frequencies shown. For

comparison, the free-stream variation at the beginning of the test section is shown

in Figure 4.25. Ideally, it should not vary with phase angle; however, in actuality,

there was some harmonic content but it was clearly minimal compared to that in

the test section (Figure 4.24).

Thus the qualification procedures described in this chapter indicated that the

measurement system performed adequately and that both steady and unsteady

flow in the facility matched their prescribed forms. The response of the turbulent

* *.~'boundary layer to forced free-stream unsteadiness could then be investigated ac-

cording to the experimental plan of § 3.4, in the knowledge that the results should

be trustworthy.
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Figure 4.15 Spanwise variation of i7 under steady, constant-pressure conditions.
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Figure 4.20 Spanwise variation of V under unsteady conditions.
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5. Time-Averaged Unsteady FlowI
Measurements describing the mean or time-averaged behavior of the organized,

unsteady flow are now presented. Important results are given extra emphasis; brief

summaries of these findings are preceded by a bullet and written in indented itali-

cized text, a format chosen to aid the reader in identifying the key points in chapters

in which experimental results are discussed. The invariance of time-averaged mea-

sures to different frequencies of imposed unsteadiness is examined, together with

the contention that transport of fluid in the mean, unsteady field does not differ

from steady flow at an equivalent mean condition.

The momentum equation for the time-averaged transport of a fluid under un-

steady conditions (2.2.10) takes the form:

9 1 ap a a2 U1
8 zk(UkUi) - _ - ks'U + ikl 1'l) + ±ax P 4xi axk 4X(X

Variation of the time-averaged flow with frequency of imposed unsteadiness is pos-

sible through frequency dependence in:

(i) the time-averaged velocity fields, U1 ,

9 ~ (ii) the pressure gradients, aP/axi,

.(iii) the divergence of time-averaged measures of turbulence, a(u'ku )/axk and

(iv) the divergence of time-averaged products of deterministic components of ve-

locity, a(akai)/xk.

While the mean, streamwise gradient in pressure was prescribed as invariant with

frequency at each x station and qualified through surveys of Uo and iXo. (§4.3),

the behavior of the other velocity terms could be deduced from measurements and

these are examined in the following sections.
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5.1 Measures of Mean Velocity

Profiles of U, normalized by their free-stream values, are shown in Figures 5.1

-5.3; they were measured at X' = 0.0,X' = 0.45 and X' = 0.63 respectively.

In each graph, the abscissa is the distance from the wall, y, divided by Dc ; this

latter quantity is the boundary-layer thickness, found by fitting Coles' mean velocity

y., function to the profile (Coles 1968). The fitting procedure minimized the squares

of deviations between the data and the prescribed function through variation of the

functior's parameters, u, and D,, over part of the profile. This scheme appeared

to give good fits for turbulent boundary layers in constant-pressure and adverse-

pressure-gradient flows. Although a near-wall velocity scale, u,, was evaluated from

this procedure, there is no evidence that it is related to the wall shear in the same

way, or through constants (r. and C) of the same value, as in steady flow (though

comparisons of such a velocity scale with measures of the near-wall velocity gradient

in the time-averaged unsteady flow might clarify this issue). Consequently, in time-

averaged unsteady flows, this fitting scheme was used only as a tool for consistent

evaluation of a boundary-layer thickness which did not require inordinate numbers

of measurements to be made in the outermost parts of the boundary layer.

_ Time-averaged measures of U were invariant with frequency of forced

free-stream unsteadiness throughout the boundary layer.

The profiles of U in Figures 5.1 - 5.3 show no obvious variation with the fre-

quency of imposed unsteadiness. A pronounced log-linear region was evident at

each x location. At X' = 0.45, the near-wall variation was of similar form to

the u+ - y+ relationship observed in steady flow. This effect was more difficult

to detect in measurements at X' = 0.63 - the addition of an extra profile and

the enlarged wake regions, associated with the mean-adverse gradient in pressure,

tended to compress the variation of U near the wall in this graph. The wakes at

X' = 0.45 were a smaller proportion of the profiles than at X' 0.63, as one would

expect with the distribution of mean, free-stream velocity: U.. = Uo(1 - AX'). At
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X'= 0.0 , the wakes were still smaller and the unsteady profiles appeared almost

identical to the one taken at this location under steady conditions, also shown in

Figure 5.1; only minor discrepancies were evident in the curvature of the profile

near the wall.

*Profiles of U appeared comparable to their steady-flow counterparts and

the familiar linear, log-linear and wake regions could be identified clearly.

Profiles of V were also measured; they are shown in Figure 5.4, at X, = 0.63 ,

and did not appear to exhibit any frequency dependence. The profiles seemed to

* contain two almost-linear regions - one represented by the four outermost points,

where the free-stream gradient appeared to prevail, and the other covering the wake

of the boundary layer, descending more steeply towards the boundary condition at

the wall of no normal velocity. Criticism of these observations, through comparison

with measurements in other related experiments, was not possible due to the lack

of any relevant unsteady V data.

* Time-averaged measures of V were invariant with frequency of forced

free-stream unsteadiness throughout the boundary layer.

As measurements of V are difficult to make with any appreciable degree of cer-

tainty, these results must be treated with caution. The near-vwall behavior in Fig-

ure 5.4 did not appear to approach a wall value of zero - possibly an indication

that, through slight misalignments of the measurement system, the true values of

V in this region were buried under fractional measures of U. Measurements of V

in the outer boundary layer seemed less likely to be erroneous. If a consistent inis-

alignment problem, resulting in the interpretation of fractional contributions of U

* as values of V, were significant here, then profiles of V would appear as scaled ver-

sions of their U counterparts rather than taking the shapes of Figure 5.4. Moreover,

the normal gradient of V in the free stream could be tested against the expected

75



-At84 856 EXPERIMENTAL STUDY OF THE FLUID MECHANICS OF UNSTEADY *2~'
TURBULENT BOUNDARY LAYERS(U) STANFORD UNIV CA

THERMOSCIENCES DIV 6 J BRERETON ET AL MAY B7 TF-29

I UNCLASSIFIED ARO-19976 4-EG D AG29-83-K-8856 
F/ 2 9/4 NmohhhmhohmhhhE

smmohhmhhhohhE



1111 E1

III I '* L 10 12.0

111112-5 1111l' .1116

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

% %

,].



I

value obtained via the continuity equation (2.2.4) and the prescribed mean condi-

tions for U.. (3.4.1). This free-stream gradient (when normalized by U./D,) should 5
then be around 0.025, a value which matched the normal variation of the four out-

ermost data points reasonably well. Consequently the outer measures of V were

considered more trustworthy than the near-wall ones. A treatment of the estimated

uncertainties in these data is given in Appendix F. I

5.2 Turbulence Measurements

That profiles of U appeared to be independent of the frequency of unsteadiness is

not an indication that time-averaged turbulence measures would necessarily do so

too, despite their dependence through (2.2.10). Values of U were typically so much I
larger than those of the turbulent quantities, u'ul and -iW, that any frequency

dependence in the turbulence measures might not be noticeable in U profiles. Con-

sequently, direct measurement was necessary for reliable evaluation of the frequency I
dependence of turbulence measures.

Profiles of mean, unsteady values of u'u' are shown in Figures 5.5 and 5.6, at

X' = 0.63 and X' = 0.0 respectively; there was no obvious variation with frequency

in either figure. At X' = 0.63, the profiles appeared typical of steady, adverse-

pressure-gradient ones - the plateau-like appearance, with peaks at its inner and

outer bounds, was comparable in shape and in magnitude to the profile measured

under steady conditions similar to the time-averaged, unsteady ones (i.e. Andersen

1972). Measurements at X' = 0.0 likewise showed no dependence upon frequency.

However, when compared with the steady profile at this location (Figure 5.6), it was

evident that, in both the inner and outer parts of the boundary layer, the mean,

unsteady profiles rose and descended more smoothly than their steady counterpart.

The particular function of u'u' which appears in the z-momentum equation,

(2.2.10) with i = 1, is its gradient in the streamwise direction. If this variation is

smooth and can be approximated by the difference between its values in Figures 5.5

76



and 5.6, divided by their spatial separation, then it is clearly of negligible magnitude

when compared to inertial terms on the left-hand side of the z-momentum equation.

The other time-averaged turbulence term in the z-momentum equation is the

wall-normal gradient of Reynolds stress, - 8 (u'v)/y. Profiles of the time-averaged

Reynolds stress are shown in Figure 5.7, at X' = 0.63; no significant variation in

-u-v was apparent over the range of frequencies of unsteadiness which was inves-

tigated. The profiles appeared to be very similar in size and shape to those taken

under comparable steady conditions (e.g. Andersen 1972). Mean, unsteady data

taken at X' = 0.0 are displayed in Figure 5.8. Although these profiles appeared

to be invariant with frequency, they differed markedly from the profile taken under

steady conditions at this z location (also shown in Figure 5.8); the inner growth

and outer decline in the steady profile were much steeper than in its unsteady coun-

terparts - possibly an indication of the extreme sensitivity of -u'v' to unsteady,

upstream disturbances or to small deviations from the nominally steady conditions

at X' = 0.0.

9 In measurements of -u'v at the inlet to the test section, differences be-

tween the steady and time-averaged unsteady profiles were observed - an

indication that, in computational predictions of these data, initial condi-

tion based on time-averaged unsteady measures would be more appropri-

ate than steady ones.

The streamwise gradient of -Wiv7 contributes to the right-hand side of the y-

momentum equation, (2.2.10) with i = 2. It is likely to be of the same magnitude

as 8(-iiu)/cz and much less significant than the other mean turbulence term of

this equation, a(W-Hv)/ay . Profiles of v'v' are shown in Figure 5.9 at X' = 0.63.

Although the flatness at the wall was suspect, the rest of the profile was as expected

in flow under comparable steady conditions and no variation with frequency was

evident. At X' = 0.0, steady and unsteady profiles could be compared and they are
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both shown in Figure 5.10. Agreement between them was reasonably good and the

differences observed in -uiv7 measurements were not reproduced in the v'v' data.

9 Profiles of iuu', v'v'v and -ii 7 were invariant with frequency and were

similar in appearance to their steady-flow counterparts.

5.3 Products of Periodic Velocities

Just as the mean momentum equations describing steady, turbulent flow (2.2.10)

differ from their laminar counterparts through the inclusion of the 'stress" ten-

sor, a8 (ud~/(Ok, the time-averaged momentum equations of unsteady, turbulent

flow are distinct from the equivalent steady-flow equations because of the addi-

tional tensor of products of periodic velocities, 49(U-i!Xa)/k.- While uW x

is known to reach significant values near the wall, which result in the well-known

differences in shape between laminar and turbulent boundary-layer profiles, the ef-

fects Of a(i4)/ 8zlk have not been a subject of serious study. At a stationary wall

with no transpiration, the tensor is obviously zero. In the free stream, its contri-

bution to the z-momentum equation may be simplified to a(ii,,,,U-,/2)/Caz. Within

the boundary layer, however, the behavior of this term cannot be deduced readily

and so measurements of the pertinent quantities of this tensor are considered next.

In the z-momentum equation, this tensor expands to form the terms c8(ili )/az

and 61(aZv) /61y. The quantity -ii~ is shown in Figure 5. 11, deduced from data taken

at X' = 0.63. Its values at X =0.0 were a small percentage of those at X' = 0.63,

over the entire boundary layer. It is significant that only near the wall did il i! fall

below its free-stream value for all frequencies of imposed unsteadiness. Values of

u- ir are displayed in Figure 5.12 at the same x location, over the range of frequencies

of unsteadiness. That ii Vwas zero at the wall and flat was prescribed through the

boundary conditions at the wall; its gradient in the free stream (displayed with a

linear y axis in Figure 5.13) was also anticipated through the deterministic equation
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of continuity (2.2.4) and closely matched the prescribed value of -81(Ui./2)/az.

What is not known a priori is its distribution between these bounding conditions

- that it would take the form plotted in Figures 5.12 and 5.13.

At the higher frequencies of imposed unsteadiness (0.8 --. 2.0 hertz), measures

of - 9 did not vary from their asymptotic free-stream value except very near the

wall; this behavior is predicted by the analytic solution to the Stokes equation, the

simplified version of the deterministic momentum equation, (2.2.11) with i = 1,

which applies to high-frequency, organized unsteady flows (Appendix E). That it

was followed at these frequencies is demonstrated in the following chapter. When

this asymptotic, high-frequency behavior in u U was observed, the normal gradient

of 9 i', imposed by the free-stream conditions, persisted within the boundary layer

at an almost constant value over a region which corresponded to the entire wake

in profiles of U. This behavior may also be explained in terms of asymptotic,

high-frequency (Stokes) flow, in which the outer part of the flow acts as a slug.

Now, -9 (a) = -+ --a -a 4 + V 9a

In the outer flow, -9= 0 and u =U0.

Consequently, 0i_;r __ a

everywhere except in a thin Stokes layer near the wall, as observed in Figure 5.13

for the higher frequencies of imposed unsteadiness.

* The periodic, wall-normal component of velocity, r, made an important

contribution to the a(U ka)/axk tensor.
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At lower frequencies, where measures of a u within the boundary layer "overshot"

their free-stream values, the normal gradient of a 9' was considerably steeper than

its free-stream value over almost all the outer boundary layer. The term -i! ail/az

clearly exceeded its free-stream value within the boundary layer and contributed to

the steeper, normal gradient of - V-. The role of " aa/ly is not obvious from theory

nor was it calculated explicitly in this study.

. The term a(ik- )/azk played a significant role in the mean z-momentum

equation and its magnitude was dependent on the frequency of forced free-

stream unsteadiness.

In the y-momentum equation, the tensor of mean correlations of periodic veloc-

ity products comprises the quantities, a(i- )/8z and 8(-- )/8y, which may be

expressed as a(I-/2)/ay + a (ailax). Profiles of -V'i are shown in Figure 5.14 at
IIX = 0.63, at the frequencies of unsteadiness for which this study was conducted.

To assess the importance of this quantity, its magnitude was compared to that of

the dominant turbulence measure of the y-momentum equation, 8(v v)/8y. Pro-

files of jjv are shown, with a linear y axis, in Figure 5.15. It is clear from these

figures that the normal gradient of v'vi was much larger than that of V -. Un-

less the tensor's streamwise derivative was significantly greater than 8(--)/8y,

periodic measures would be unlikely to play a dominant role in the time-averaged

y-momentum equation.

As the frequency dependence of the mean of products of periodic velocity has

been established, its significance in the x-momentum equation may now be as-

sessed through comparison with the streamwise gradient in pressure. First, the

z-momentum equation, (2.2.10) with i = 1, for the free stream is written as:

.lB"

pFx axC
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or - - -_ _

where 8(4, /2)/8z is the contribution of the periodic components of velocity. In

this flow, U. = U0(1 - AX') and ii. = UoAX'coswt. It follows that:

1OP U A UAAXI= " (2AX' -2)- (A )
Pz -9 2L 2L

The proportion of the total pressure gradient attributed to the time-averaged cor-

relation of periodic velocities is therefore (-AX')/(2 - 3AX'). At X' = 0.63, for

A = 0.24, this contribution amounts to 10% of the pressure gradient in the free
stream.

From order-of-magnitude analyses of the mean momentum equations, the normal

gradient in pressure in the mean, unsteady, turbulent boundary layer was estimated

as zero (Jayaraman et al., 1982); therefore oP/& !- 8P../z. At the higher fre-

quencies of imposed unsteadiness (0.8 --+ 2.0 hertz), where slug flow was expected,

the proportion of the pressure gradient due to the periodic velocities, (il a/2)/z,

remained at its free-stream value (- 10% at X' = 0.63) over the whole bound-

ary layer except the thin, near-wall Stokes layer. At lower frequencies, values of

i! a within the boundary layer were generally comparable to or greater than high-

frequency ones (Figure 5.11) and so the contribution of O(i i/2)/&z was likely to

be at least a similar proportion of the streamwise pressure gradient.

Given the significance of the mean products of periodic velocities, where, in this

flow, il. - ioo(z),it is doubtful that the mean, unsteady flow could be represented

adequately by steady flow at an equivalent mean condition - the additional periodic

terms, which oppose the prevailing adverse-pressure gradient and reduce its effective

value in the free stream and within the boundary layer (by about 10% at X' = 0.63),
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were too large to be inconsequential. If the mean, unsteady flow is to be represented

by an equivalent steady flow, then the effects of the periodic terms (which obviously

do not exist in steady flow) might be accommodated by a modified or "effective"

pressure gradient. This term would be almost constant across the boundary layer

to satisfy the y-momentum equation. If it is chosen to match the unsteady, free-

stream conditions, it would be 10% too small at the wall where there are no periodic

effects. Conversely, if the periodic terms are ignored so that the pressure gradient

at the wall is properly represented, then the entire outer flow would be inadequately

described by a pressure gradient which was 10% too large.

These conclusions about the importance of deterministic terms in the mean z-

momentum equation have implications concerning the use of information about

steady flows to infer quantities which, at present, cannot be measured reliably in

unsteady flows. The tensor, 9(iki)I/zk, was zero at the wall and significant in

the boundary layer and in the free stream in this flow. In many unsteady flows, its

behavior within the boundary layer is completely unknown. The notion that mean

values of surface friction in the unsteady flow can be deduced by indirect means, such

as fitting against reference functions for steady flow or using steady-flow correlations

based on values of integral parameters, therefore seems to be an unqualified one

unless the a(a k )/ ak tensor is either known to be zero or measured and shown

to play no role of significance anywhere in the flow.

" Computational schemes aimed at the accurate prediction of unsteady

flows in mean, adverse-pressure gradients 6hould make provision for mod-

eling, or preferably direct calculation, of the a(i;)/Oaxk tensor.

" In this adverse-pressure-gradient flow, neglect of the 8(akai)/zk tensor

would lead to inadequate characterization of the boundary layer.
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5.4 Kinetic-Energy Transfer

The apparent invariance of mean velocities and mean turbulence measures to

the frequency of imposed, organized unsteadiness may also be examined through

the time-averaged exchange of kinetic energy between the mean, deterministic and

turbulent fields. In §2.3, the time-averaged energy equations were derived and

three production tensors were revealed. Their dominant terms were selected and

measured throughout the boundary layer, over the range of frequencies from 0.1 to

2.0 hertz.

The quantity u'kua (aUa/axk) serves to transfer kinetic energy from the mean

(UGUa) field to the turbulent (ts~u- ) field when negative, just as in the correspond-

ing steady flow. If the "energy" contents of only the streamwise components of

velocity are considered (UU and uui), order-of-magnitude estimates imply that

the dominant term of the production tensor is ui;,(Ou/ay) ; it is shown in Fig-

j ure 5.16, deduced from measurements made at X' = 0.63 - the normal gradient

of U was found by a piecewise-cubic spline fit. As time-averaged profiles of U and

-u'v' showed no obvious frequency dependence, it is no surprise that this produc-

tion term appeared insensitive to the frequency of imposed, organized unsteadiness.

Time-averaged energy transfer was from the mean field to the turbulent field and
3

its magnitude (when normalized by Uj./D,) reached a peak of about 1% very close

to the wall (in the vicinity of y/Dc - 0.007). The general shape of this production

term was similar to that reported by Klebanoff for a typical (steady) turbulent

boundary layer (in Kline et al. 1967). Its role in transferring energy between the

velocity fields is illustrated in Figure 5.17.
' 4

". . The important production term, which accounted for transfer of turbulent

kinetic energy between the mean and turbulent fields, in a time-averaged

sense, was invariant with frequency - its profile was comparable in shape

to that of the equivalent steady-flow measure.
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In unsteady turbulent flow, the mean (UaUa) field transfers kinetic energy to

both the turbulent (ut4 ) and deterministic (ialaa,) velocity fields; energy transfer

to the latter field is described by the tensor i!ki 1a (I9U,/xk). Considering only the

streamwise component of the veiocity field, the significant term of the production

tensor measured in this study was iiZ(OU/8y) ; measurements of this quantity

are displayed in Figure 5.18 for four frequencies from the range for which data

were taken at X' = 0.63. Frequency dependence was evident at low frequencies

of unsteadiness, where the periodic velocity (-u) overshot its amplitude in the free

stream - this effect was reflected in small transfers of energy (not exceeding 0.5

%) between the mean and deterministic fields in the wake of the boundary layer.

Peak energy transfer appeared to take place very near the wall and was comparable

in magnitude to the energy transferred from the mean to the turbulent field near

the wall (- 1%).

The turbulent field, u'u', receives energy not only fro- i the mean UU field (for

which measurements of the significant production term are plotted in Figure 5.16)

but also from the deterministic field, ii . The significant production term measured

in this study is u'v'(oai/ay) and it is shown in Figure 5.19. The time-averaged

correlation between phase-conditioned values of -u'v' and the deterministic, normal

gradient in streamwise velocity was clearly dependent upon frequency near the wall.

Although the magnitude of mean energy transfer from the organized, unsteady

field to the turbulent one was small in comparison to energy transfer from the

mean field, the decrease in its peak value at the wall, with increasing frequency of

unsteadiness, was notable - presumably ail/ay and -u'v' were only well correlated,

in a time-averaged sense, at low (quasi-steady) frequencies of imposed, organized

unsteadiness.

* Frequency dependence was noted in a small, time-averaged production

term.
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Deduction of 8ai/ay was carried out through a piecewise-cubic spline fit to the

phase-conditioned data. Attempts to fit standard steady-flow functions (such as

Coles' mean velocity profile) to the phase-averaged velocity profiles were not suc-

cessful; in fact, forcing the data to fit a log-linear function resulted in a reversal of

the sign of this production term (when compared to the value inferred using the

spline fit) for all but the lowest frequencies of imposed, organized unsteadiness -

a result in agreement with the conclusion of Blondeaux & Colombini (1985) that

logarithmic laws would not apply instantaneously to the unsteady flow.

, Log-linear descriptions of the instantaneous, phase-averaged profiles of

streamwise velocity were not appropriate for unsteady, turbulent boundary

layers.

I' , From the low-frequency profiles of Figure 5.18, peak production of u'u' in the

* -unsteady, turbulent boundary layer took place in the vicinity of y/Dc L- 0.007.

When profiles of the other production terms for iuu were plotted against a loga-

rithmic abscissa, they peaked around this value too. Now, from the observations

of Binder & Kueny (1981), Cousteix & Houdeville (1983) proposed that when un-

steady effects are confined to a sufficiently thin region near the wall, they cannot

affect the turbulent production process. This proposal may be examined for the

case of production of u'u', via the quantity -u'v'(aaoi/y) , where the necessary in-

formation relating frequency, a measure of the thickness the Stokes layer and D, (at
X' = 0.63) is presented in Table 5.1. From this table, it is clear that the significant,

low-frequency measures of -u'v'(cai/ay) (in Figure 5.18) correspond to values of
,.2v/w/D, which were considerably greater than 0.007. Moreover, at high frequen-

.-: cies, as 2v1w/Dc approached 0.007, the production term became negligible, in

agreement with this proposal.

Unsteady effects, however, manifest themselves in phase-dependent ways which
obviously cannot be accounted for in comparisons of a time-averaged production

term with an order-of-magnitude estimate of a dynamic length scale. Thus, what
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TABLE 5.1

Thickness Scales of the Unsteady Boundary Layer

f V2 1w Dc V2_-/1IDc

sec mm mm

0.1 1.876 62.0 0.0303
0.2 1.326 61.3 0.0216
0.5 0.839 58.9 0.0143
0.8 0.663 58.0 0.0114
1.0 0.593 58.2 0.0102
1.6 0.469 58.6 0.0080
2.0 0.419 58.6 0.0072

is not clear is whether the decrease of this particular production term with growing

frequencies (and decreasing values of v/i -w/Dc) is due to the confinement of

unsteady effects per 8e to increasingly small regions of influence at the wall, or

whether, at high frequencies of mainstream disturbance, the unsteady effects on

production are important but behave in a manner which merely renders - u'v' and

aa/ay poorly correlated, in a time-averaged sense.

If the peak values of these energy-production terms were representative of the

magnitudes of transfer of kinetic energy between velocity fields, then the mean

(UU) field transferred comparable amounts of energy to the deterministic (a u)

and turbulent (u't') fields. Near-wall transfer of energy to the turbulent field in

steady flow is associated with the "bursting" event; that time-averaged, unsteady

flow was dominated by the corresponding production term, u'v'(OU/8y) , which

was insensitive to the frequency of imposed unsteadiness is in agreement with the

observations of Cousteix & Houdeville (1983) that unsteadiness appears to have no

influence on the qualitative description of the bursting process. Although the near-

wall transfer of energy from the mean to the deterministic field appeared to be of

comparable importance (at least quantitatively), it is not thought to be associated

with an organized, structural phenomenon which might play an equivalent role to

the bursting event.
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5.5 Turbulence Structure

Mean turbulence structure in the organized, unsteady flow may be described

in terms of time-averaged turbulence measurements. As these measurements were

restricted in complexity to the squares and cross product of u' and v', the scope of

the structural parameters considered for this study was limited to -uIvI/(u'u' + v'V,')

and the coefficient of correlation between u' and v' , -u'v'/(u'v') . Since the data

sets were saved, other parameters, of this complexity or less, may be computed

in the future if desired. To examine the relationship between Reynolds stress and

normal gradient in streamwise velocity, time-averaged values of mixing length and

eddy viscosity were also deduced for the unsteady flow.

In organized, unsteady flow, mean quantities which are composed of more than

one fundamental measurement may be computed in two different ways. For ex-

ample, the mean value of the quotient of two variables (say a/b) may be formed

from the ratio of the time-averaged values of these quantities, a/ b, or from the time

average of their phase-conditioned ratio, (a/b) or (a/ ) ((1 + a/a)/(1 + b/s)). Dif-

ferences in the results of the two averaging processes would be expected when the

deterministic components were significant proportions of their means and produced

strong negative correlations when time averaged.

SThe parameter -ii'v/(u'u'+ v'v'), is a two-dimensional equivalent to Townsend's

structural parameter, -u'v'/q2 , which is often presumed to be constant in tur-

bulent shear flows (the assumption of structural similarity). The two kinds of

time-averaged structural parameters, -u'vI/(u'u' + ;v- ,) and (-u'v'/(u'u' + v'v'))

measured in this study are displayed in Figures 5.20 and 5.21 respectively; profiles

at each of the frequencies of imposed unsteadiness are presented, deduced from

measurements at X' = 0.63. No frequency dependence was apparent nor was any

" .significant difference between the results of the two time-averaging processes evident

- an indication that the deterministic Reynolds stress did not form a strong nega-

tive correlation with the deterministic component of this two-dimensional measure
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of the turbulent kinetic energy. The values of this structural parameter ( ~ 0.16

over most of the outer boundary layer) were similar to those measured by Cutler &

Johnston (1984) under steady, adverse-pressure-gradient conditions.

* The structural parameters, -ivi/(ii iuu+ iiv-) and (-u'v'/(u'u- + v'v')),

were indistinguishable in value and invariant with frequency.

The coefficient of correlation between u' and v', -uWv'/(u'v'), is useful in most

practical calculation methods involving transport equations and is typically about

0.4 in turbulent shear flows (Tennekes & Lumley, §2.3). Profiles of the time-averaged

measures of this correlation coefficient, - -W/(u'v') and (-u'v'/(u')(v')), are shown

in Figures 5.22 and 5.23 for the range of frequencies of organized unsteadiness over

which data were taken at X' = 0.63. Time-averaged values of the correlation coef-

ficient showed no dependence upon frequency of unsteadiness nor did the results of

the two time-averaging procedures exhibit any noticeable differences. Presumably

there was no significant negative correlation between the deterministic Reynolds

stress and the deterministic component of the phase-conditioned product of u' and

v'. The time-averaged, unsteady value of the correlation coefficient reached a peak

of around 0.36 and exceeded 0.3 over most of the outer boundary layer; this value

was significantly lower than that measured in the constant pressure boundary layer,

though its proportional reduction was comparable with that of the structural pa-

rameter, -ii7W/(u'u' + ii W), which was in good agreement with steady, adverse-

pressure-gradient measurements.

* The correlation coefficients, -ii--W/(u'v') and (-u'v/(u')(v)) , were in-

distinguishable in value and invariant with frequency.

Now in preliminary measurements in the steady, flat-plate, boundary layer, low

values of this correlation coefficient were synonymous with inadequate spatial reso-

lution, insufficient data rates or imperfect alignment of the optical system. However,

measurements made under steady, zero-pressure-gradient conditions, both prior to
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and immediately after the unsteady experiments, yielded correlation coefficients of

around 0.4 over most of the boundary layer with no changes having been made to

the measurement system. Since the spectra for steady and unsteady flow, discussed

in §4.1, indicated that resolution requirements were similar, the "low" measures of

correlation coefficient in unsteady flow were not attributed to inadequacies in the

measurement system. Nor was any minor vibration associated with the generation

of the forced unsteadiness thought to be problematic - it would be surprising if
the same reduction in this coefficient resulted from vibration forced over a range of

different frequencies. Consequently, these measurements of correlation coefficient

were not considered untrustworthy. That they were significantly smaller than the

measurements of Cousteix & Houdeville (1983) (which were about 0.45), in their

measurements of low-amplitude unsteadiness under zero-pressure-gradient condi-

tions, might result from the difference in pressure gradients or from a combina-

tion of the effects of pressure gradients and forced unsteadiness. The equivalent

measurements at X' = 0.0 (where both the amplitude of the forced unsteadiness

i and the pressure gradient were nominally zero) resulted in correlation coefficients,

the peak values of which barely approached 0.4 (Figure 5.24). This profile of

the mean, unsteady correlation coefficient was dissimilar to both the steady, zero-

pressure-gradient one (Figure 4.2) and the unsteady, adverse-pressure gradient one

(Figure 5.22). Therefore the cause of the "low" values of correlation coefficient,

observed at X' = 0.63, was not identified conclusively - it might be due to either

the mean adverse-pressure gradient or the combination of forced unsteadiness and

mean, adverse-pressure-gradient conditions.

The relationship between Reynolds stress and the normal gradient in stream-

wise velocity forms the basis of simple turbulence models such as the "Boussinesq"

or eddy-viscosity model and Prandtl's mixing-length model. Although more so-

phisticated schemes surpass them in performance, they are still useful, practical,

engineering tools whose possible applications in mean, unsteady flow warrants care-

ful attention. The mixing length, t, is defined as t -u'v'/(IOlU y llU/Oy) and
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represents a dispersion length scale for turbulent transport of momentum. Alterna-

tively, the mixing-length relationship may be viewed as a relationship which makes

good dimensional sense in a turbulent shear flow dominated by a single turbulent-

velocity scale, in an environment of scale t (Tennekes & Lumley, §2.3). This latter

description, which implies neither that a fluid element undergoing turbulent mo-

tions conserves its momentum nor that the mechanism which produces the "stress",

-uivi , be necessarily local, is perhaps more useful for this study and avoids some

criticisms commonly leveled at the former, more classical, explanation of the role

of t.

Mixing-length profiles are shown in Figures 5.25 and 5.26 for seven frequencies of

imposed, organized unsteadiness at X' = 0.63. In view of the frequency indepen-

dence of mean measures of -uiNl and U, it is no surprise that t is also invariant with

frequency. There is no discernible difference between the mean evaluation of t by ei-

-3 ther of the two time-averaging procedures. In the inner boundary layer, the relation

used in steady flow, t/y = 0.41 , appears to describe the unsteady flow reasonably

well, with the exception of very-near-wall region where curvature is evident.

Profiles of the eddy viscosity, v, = -i i/ (au/9y) , were deduced from measure-

ments at X' 0.63. Its time-averaged values are displayed in Figures 5.27 and

5.28 and a welcome invariance to different frequencies of unsteadiness is observed.

There was no evidence of strong negative correlation between deterministic values

of Reynolds stress and velocity gradient at any frequency.

e The mixing lengths, t and (t), and the eddy viscosities, _v, a nd (,), were

indistinguishable in value and invariant with frequency.
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6. Phase-Conditioned Unsteady FlowU
The phase-conditioned or organized, unsteady behavior of the flow is considered

in this chapter. Measurements of the response of the turbulent boundary layer to

pdifferent frequencies of imposed free-stream unsteadiness are examined and, when

appropriate, compared with the two asymptotic, unsteady modes of behavior:

(i) low-frequency, quasi-steady flow,

(ii) high-frequency flow, for which the streamwise velocity may be described by

the analytic solution to the unsteady momentum equation.

The measurements are then used to develop some insight into the structure of the

unsteady turbulence field.

6.1 Asymptotic Behavior

The deterministic momentum equation describing transport of a fluid under un-

* steady conditions (2.2.11) is:

P ~+ (UkaiX+ k U = - kt+ tkj)+a t a x _P X~i i xk x k a x k

Its asymptotic, low-frequency form is simply the above equation without the leading

unsteady term:

Ma(Ui + uiUi) = ! 8-- - + + aiii (6.1.1)
pa P dzk k axkaxk

a form which admits only spatial derivatives of these unsteady terms. Now the forc-

ing free-stream perturbation oscillated almost purely at its fundamental frequency,
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as shown in §4.3. If the harmonic content of each of the other dependent variables

of this equation is assumed to comprise only the contribution at the fundamental

frequency of unsteadiness, i.e.

il = lT cos(wt + 0) , u'u' = I cos(Wt + Ouu) , etc.,

and the magnitudes of products of deterministic velocities, 7ki i , (second harmon-

ics) are negligible, then all significant terms of this equation would oscillate at the

fundamental frequency. For the case of asymptotically slow, quasi-steady perturba-

tion, all dependent variables have infinite time to respond to the forcing free-stream

velocity, ii0, and so phase variations should tend to zero. Therefore all dependent

variables which increase as a00 grows should do so in phase with i7 ; those which

decay as ao. increases should respond 1800 out of phase with il 0 , . This behav-

ior characterizes the expected quasi-steady response of measures of velocities and

turbulent quantities to the unsteady free stream.

The asymptotic, high-frequency form of the x-momentum equation is often called

the Stokes equation:

aa 1 ai" 02i i4

at - X ayaiY (6.1.2)

The formulation of this equation and its analytic solution for the boundary condi-

tions of this flow are described in Appendix E. This solution requires that:

(i) the outer flow reacts as a slug, in response to free-stream-velocity perturba-

tions,

(i) unsteady, streamwise velocities of magnitudes which differ from the unsteady,

free-stream ones are accommodated within a thin layer next to the wall (the

Stokes layer),
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(ii) within the Stokes layer, the streamwise velocity leads the perturbing free-

U stream velocity in phase, the phase advance reaching its maximum value of

450 at the wall.

If the premises upon which the Stokes solution is based are met adequately, the

response of the flow to high-frequency perturbations in free-stream velocity should

embody these features.

6.2 Measures of Organized Unsteady Velocity

The response of the velocity fields to the unsteady, free-stream disturbance

was analyzed through Fourier decomposition of ensemble-averaged velocity data,

recorded at 512 discrete, evenly spaced times during each cycle of the disturbance.

.. ~ :KThis decomposition enabled the response to be characterized in terms of amplitudes

and phases corresponding to each of the 256 discernible harmonics. Since the har-

monic content at the fundamental frequency exceeded 97% of the total harmonic

content of u-, Ithroughout the boundary layer at all frequencies at which unsteadi-

v .. ~ ness was imposed, u-, and 0,, (which represented the first harmonic of ii) could be

presumed to characterize the response of i! to free-stream unsteadiness.

Profiles of U-, the amplitude of the first harmonic of the deterministic, streamnwise

velocity, are shown in Figure 6.1 ; they were measured at X' = 0.63 at seven

' frequencies of unsteadiness between 0.1 and 2.0 hertz. The ordinate normalization

is by the magnitude of the first harmonic of the local free-stream disturbance, ul,,

and the abscissa is the distance from the wall, y, divided by D, (defined in §5.1).

The corresponding phase information is displayed in Figure 6.2; it is expressed as

the phase lead of the first harmonic, 01,u , relative to the phase of the free-stream

disturbance, 0,u

*The response of the deterministic streamwise velocity, ii, to forced free-

stream unsteadiness was strongly dependent on frequency.
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For the lowest frequency of imposed unsteadiness at which measurements were

made (0.1 hertz), the phase of the first harmonic of a appeared to be almost constant

throughout the boundary layer; only in the outermost part of the wake was any

phase variation evident (in Figure 6.2). This slight variation in phase constituted

a small lag in the response of the boundary layer to the free-stream oscillations,

of around 100, which might be attributed to viscous, inertial effects. With the

exception of the phase variation in the outer wake, this phase profile matched the

quasi-steady description of the response of i to the forced unsteadiness.

At an imposed unsteadiness of 0.2 hertz, the phase remained constant over the

bulk of the boundary layer. However, the wake layer accommodating phase vari-

ations penetrated further within the boundary layer and the response of the bulk

of the boundary layer lagged further behind the free stream - an effect explained

by the viscous, inertial character of the boundary layer. At higher frequencies of

unsteadiness, phase variation was observed throughout the boundary layer as de-

parture from the quasi-steady asymptote became complete.

The corresponding profiles of amplitudes of i at low frequencies could not be

compared readily with quasi-steady measures. As explained in §3.4, under truly

quasi-steady conditions the boundary layer separated at the most adverse pressure

gradients in the cycle, whereas, at frequencies of unsteadiness as low as 0.1 hertz,

it remained attached. However it would seem, from Figure 6.1, that the approach
Jn

towards the quasi-steady asymptote might correspond to boundary-layer values of

u overshooting their free-stream values by increasingly greater margins. That this

pronounced overshoot is consistent with the approach to a quasi-steady asymptote

is illustrated by the instantaneous and time-averaged velocity profiles of Figure 6.3.

The profiles in this figure at phase angles of 00 and 1800, and at the mean condition

of the flow are comparable to steady velocity profiles in boundary layers at constant

pressure, under strongly adverse pressure gradients and under moderately adverse

pressure gradients respectively (with the exception of the measurements nearest

the wall). Since the profiles at 00 and 1800 represent the maxima and minima
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of (u), their deviations from the mean condition correspond to the amplitude of

r oscillation, U-1 , which overshoots its free-stream value by factors approaching three,

at y/D, - 0.2. Hence the quasi-steady asymptote does appear to be characterized

by a pronounced overshoot of U within the boundary layer. The results displayed

in Figure 6.1 indicated that the magnitude of the overshoot grew with decreasing

frequency, as this asymptote was approached.

The profiles of ' 1 , in Figure 6.1, seemed to take the form anticipated for asymp-

totic, high-frequency behavior at frequencies of 0.8 hertz and higher - U1 prevailed

at its free-stream value over all the boundary layer except in a thin layer at the wall,

which accomodated amplitudes of changing magnitude as the wall was approached

z (shown in Figure E.2). Also, the thickness of this wall layer appeared to decrease

with increasing frequency, an observation which is consistent with the analysis of

Appendix E. If coupled with constant phase in the outer boundary layer, this varia-

tion in il would indicate that the bulk of the flow responded as a slug to the imposed

unsteadiness. As no other development of the shape of the profile was evident as

the frequency of imposed unsteadiness increases above 0.8 hertz, the asymptotic,

high-frequency behavior of u appeared to have been reached at this frequency.

In contrast to the approach of - to its high-frequency asymptote at 0.8 hertz, the

corresponding phase profile of 01,u continued to develop with increasing frequency.

At 2.0 hertz, the highest frequency at which this study was conducted, the phase

profile beyond the Stokes layer was not quite constant - a lag of up to 8* was

evident. Within the Stokes layer, the phase advance approached 300 at the point
closest to the wall at which measurements were made. How well this phase profile

compared with the Stokes solution may be judged from Figure 6.4. As the phase

data of Jayaraman et al. (1982), taken at the same frequency but at greater ampli-

tudes of local unsteadiness, were in very good agreement with the Stokes solution,

the assumptions on which the Stokes solution is based (in Appendix E) may not

have been met adequately at a frequency of 2.0 hertz, at X' = 0.63.
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o The response of the deterministic streamwise velocity, a, to forced free-

stream unsteadiness could be described in terms of variation between:

(i) an asymptotic low-frequency form, which corresponded to the quasi-steady

condition of constant phase across the boundary layer,

(ii) an asymptotic high-frequency form which matched the analytic solution

to the quasi-laminar Stokes equation.

A criterion for determining when agreement with the Stokes solution was to be

expected was deduced in Appendix E. The requirement that the magnitude of the

unsteady term greatly exceed that of the convective terms, in the deterministic x-

momentum equation (2.2.11), translated to the provision that the Strouhal number,

wX/Uo, would greatly exceed one for the boundary conditions of this flow. Here

w is the imposed unsteadiness expressed as an angular velocity, X is the distance

along the test section and U0 is the free-stream velocity at the entrance to the

test section. Plots of U-I/ff,. and 01,u - 0,u. for flow at different values of

this Strouhal number are displayed in Figures 6.5 and 6.6. The Strouhal numbers

correspond to the four highest frequencies for which experiments were conducted

at X' = 0.45 and X = 0.63. In each graph, t>e abscissa is y/V/2- , the

dimensionless, independent variable of the Stokes solution. While good agreement

with the asymptotic amplitude variation is observed for flow at all Strouhal numbers

for which profiles are plotted (in Figurt- 6.5), the phase data of Figure 6.6 are

much more poorly grouped. Although better agreement is observed with increasing

Strouhal number, the highest values are too low to reproduce the desired asymptotic

J. advance in phase near the wall. From the data of Jayaraman et al. (1982), it would

appear that the desired asymptotic behavior was observed only if this Strouhal

number exceeded ten.

Now high-frequency flow can be considered to have reached its asymptotic con-

- dition only if both the phase and amplitude are in good agreement with the asymp-

totic form. From the results of this study it would seen that when the amplitude
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matches the asymptotic form it should not be taken as an indication that the phase

necessarily would do so too.

*As the high-frequency condition was approached, the asymptotic ampli-

tude was matched at lower frequencies than were necessary to satisfy the

corresponding phase requirement.

The response of the wall-normal component of velocity, i', to forced variation in ai

may also be expressed in terms of its phase and amplitude at different frequencies of

imposed, free-stream unsteadiness. As the first harmonic of i ' was always the most

energetic, typically accounting for between 70% and 99% of the total harmonic

content, profiles of V- and 0,, were considered characteristic of ir and are shown in

Figures 6.7 and 6.8 respectively; VV is normalized by the local forcing term, ,0, and

01, is plotted relative to the phase of the perturbation, .In the interests of

'p consistency with the ai measures discussed earlier, the data shown in these figures

were deduced from measurements made at X' = 0.63 , although the equivalent

I results at X' = 0.45 were qualitatively very similar.

A linear abscissa was preferred for graphs of measures of i7 because of the empha-

sis this scaling lent to the behavior of the outer flow. Such emphasis was desirable

as the uncertainty of near-wall measures of (v) was considerably larger than that of

outer values. Now the boundary condition of no transpiration at the wall required

that r was zero there. As measures of (v) generally remained small near the wall,

compared to (u), slight misalignments in the optical system may have introduced

-~ significant uncertainties which might have exceeded the detectable measures of (v)

in this region. While amplitudes remained small (as illustrated by the -V measures,

plotted against a logarithmic abscissa in Figure 6.9), phases of negligibly small

quantities, buried in noise, were typified by large, erratic variations which should

be attributed to the unsuitability of Fourier decomposition for data of such uncer-

tainty in this near-wall region. Hence this abscissa scaling was chosen to focus on

the regions of greater certainty in the data.
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At the lowest frequencies of forced unsteadiness, the response of iU led the forcing

perturbation by about 1700 over the major part of the boundary layer (Figure 6.8).

This response might be interpreted more clearly as variation in the opposite sense to

i, with a lag of around 100. The flatness of the phase profile was consistent with the

description of quasi-steady flow and no departure from the free-stream value was

observed until the near-wall region was approached (where the phase data became

untrustworthy). The sense of the iU data (-- 180' out of phase with i) is consistent

with a quasi-steady model of the flow - as the instantaneous pressure gradient

becomes more adverse and (u) decreases, (v) increases throughout the boundary

layer. This behavior appears to be followed by the profiles of (v) taken at the lowest

frequency of forced unsteadiness, displayed in Figure 6.10. Unfortunately, it was

not possible to criticize or compare the data of Figure 6.10 with values obtained by

other researchers because of the acute shortage of V data in boundary layers under

different pressure gradients, and the apparent absence of any other measurements

of iU.

The sense of the V measures might also be anticipated from the deterministic

continuity equation: ai/ay = -aOl/zx. In the quasi-steady limit, the phase and

sense of ail/8x within the boundary layer are the same as in the free stream. Since

the free-stream velocity took the form: u, = UoAX'cos wt, it follows that U/ay

should take the phase and sense of - cos wt or cos(wt + 7r).

At low frequencies of forced unsteadiness, the normal gradient of -3J appeared to

persist at its free-stream value throughout the boundary layer, at approximately

the value prescribed there by the determiixistic continuity equation (Figure 6.8).

Furthermore, from Figure 6.9, the magnitude of i1, would appear to exceed a small

percentage of the forcing amplitude, E , only in the outer 90% of the boundary

layer, a region which coincided with the one over which a(ilt )/Oy was shown

to be significant in the mean x-momentum equation (in §5.3). This observation

emphasizes the importance of inclusion of t' information in prediction schemes aimed

at accurate representation of the mean field of this flow.

126

I"''



The uncertainties involved in trying to gauge the size of each term in the deter-

ministic y-momentum equation, for a forced perturbation in the x direction, render

the deduction of an asymptotic, high-frequency form an extremely difficult task.

Therefore no analytic description is proposed, although the almost-linear variation

of (v) with y implied that a simple form might exist. The asymptotic, high-frequency

condition which could be devised readily is found from the deterministic equation

of continuity. At high frequencies of imposed unsteadiness, the slug-like response of

i dictates that Ou/dy = -a./axover all the boundary layer but the Stokes layer

(the i! Stokes layer ). In the outer flow, where phase information could be deduced

clearly, the phase implications of this asymptotic behavior are no different from

the quasi-steady ones. The corresponding implications about the magnitude of the

normal gradient of -,, also appear to have been met at all frequencies at which

this study was conducted. To emphasize this point, profiles of (v) at a frequency of

1.6 hertz are shown in Figure 6.11; any differences between (v) at 0.1 and 1.6 hertz

are obviously only slight ones. Therefore it was not possible to conclude whether

Z" followed either a high- or low-frequency, or indeed any, asymptotic form in the

range of frequencies at which forced, free-stream unsteadiness was imposed.

e No asymptotic behavior could be identified in measures of V, the wall-

normal component of deterministic velocity.

6.3 Unsteady Flow Characterization

The success in describing the response of the streamwise, deterministic, velocity

field to free-stream unsteadiness in terms of variation between asymptotic modes

of the deterministic x-momentum equation implies that the dominant terms of this

equation should play an important role in the characterization of organized, un-

steady flows. The apparent invariance of the mean flow to the imposition of orga-

nized unsteadiness (demonstrated in §5), in contrast to the strong dependence on
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TABLE 6.1

Characterizations of the Unsteady Flow

,f V _vlu = 0.45 = 0.63

Hz mm Sx S6  Sx S5 w +

0.1 1.88 0.363 0.059 32.44 .0019
0.2 1.33 0.514 .081 27.72 .0026 0.728 0.116 22.99 .0038

0.5 0.84 1.283 .202 17.64 .0064 1.829 0.280 14.76 .0092
0.8 0.66 2.052 .324 14.02 .0102 2.936 0.443 11.60 .0149

1.0 0.59 2.568 .404 12.50 .0128 3.672 0.556 10.35 .0187
1.6 0.47 4.126 .648 9.81 .0208 5.894 0.899 8.08 .0306

2.0 0.42 5.172 .819 8.73 .0262 7.386 1.126 7.19 .0387

frequency of the behavior of the deterministic velocity field, implies that no more

than a very weak link can exist between the mean and unsteady fields of velocity.

Hence the equations which describe them should be only weakly coupled and so

mean measures per se should be of very little influence in the unsteady velocity

field. Consequently, the influence of the deterministic velocity in organized un-

steady flow might be characterized by this Strouhal number alone, which represents

the ratio between the dominant unsteady and convective terms of the deterministic-

x-momentum equation.

* The ratio of the leading unsteady and convective terms of the u momen-

tum equation was proposed as a parameter for characterizing the response

of a to forced free-stream unsteadiness.

For the particular boundary conditions of this flow, the Strouhal number takes

the form Sx = wX/Uo when this ratio is estimated as its free-stream value (see

Appendix E). While the w dependence is general for any unsteady boundary con-

ditions, the X dependence is a consequence of the design of this experiment. Sim-

ilarly, the dependence on U0 results from its role in the unsteady convective term,
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a(Uil)/ax, which happens to be important for the particular boundary conditions

rU of this experiment, rather than through a general dependence on the mean field.

Several other dimensionless parameters have been suggested for the characteri-

zation of unsteady flows; they include w+ , t + and S6 . The latter quantity is of the

same form as Sx, only the mean boundary-layer thickness and mainstream velocity

are combined as a local time scale for the mean flow. The parameter w + is defined as

the angular velocity, w, scaled by the kinematic viscosity, v, and normalized by the

square of the mean friction velocity, u,; t' is the square root of twice the reciprocal

of w . These parameters were computed for each of the experiments conducted

and their values, together with those of Sx, are shown in Table 6.1. The quantity

ur was estimated by fitting Coles' mean velocity function to time-averaged profiles.

Although there are inaccuracies inherent in the application of such a scheme to this

unsteady flow, described in §5.3, it was considered adequate for rough estimates of

this nature.

If the experiments are arranged according to increasing size of characteristic pa-

rameter, the same order results regardless of the parameter chosen. While, at first

inspection, this invariance might appear to be a vindication of the equal importance

of all these parameters, on closer examination it seems to be the result of a fortu-

itous similarity between the streamwise variations in the local mean and unsteady

conditions, which, once again, appears to be no more than a consequence of the

design of this particular experiment. The X dependence of Sx is imitated by S6

(wS/Uo,) as the conditions of the mean flow happen to correspond to a pressure

gradient which becomes increasingly adverse with downstream distance, and hence

U, decreases with X while 6 increases. Similarly, w' mimics the X dependence

of the unsteady flow through the streamwise decrease of u,, which results from

the streamwise deceleration of the mean flow. Had the experiment been designed

with a different variation in its mean flow, more might have been revealed about

the performance of these parameters in characterizing the influence of deterministic

ri velocity in organized unsteady flow.
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* The performance of the proposed parameter was adequate but barely dis-

tinguishable from that of other parameters, the forms of which were based N
on different premises. This finding was thought to be due to the sim-

ilarity in the streamwise variation in mean and deterministic velocities

which resulted from the design of this particular experiment.

6.4 Measurements of Periodic Turbulence

The response of turbulence measures to forced free-stream unsteadiness may also

be examined in terms of the phase and amplitude of periodic quantities such as u'u',

v'v' and - u'v'. However, profiles of these turbulence terms are not monotonic since

they are required to approach zero both at the wall and in the free stream. Conse-

quently, forms more complicated than the smooth, continuous variations observed

in phase and amplitude profiles of a and V are anticipated and additional references

to phase-conditioned profiles of (u'u'), (v'v'), and (-u'v') are helpful in clarify-

ing the nature of the unsteady turbulence behavior. All data were deduced from

measurements made at X' = 0.63 although the behavior of the boundary layer at
X' 0.45 was qualitatively no different.

The first harmonics of u'u', v'v' and - u'v' were the most energetic for all frequen-

cies of imposed unsteadiness. While u'ul2 characteristically accounted for between

40% and 95% of the total harmonic content of u'u', throughout the boundary layer

at all frequencies of mainstream unsteadiness, the proportional harmonic contents

of vlv2l and -uIv only reached these percentages at the lowest frequencies at which

this study was conducted. As the frequency of perturbation increased, the fractions

of the total harmonic contents due to i'i?' and -U v I decreased. When the free

stream was perturbed at 2.0 hertz, ' and -V_ 1 typically contributed from 5% to

40% of the total harmonic content, but never more than 50%. That a large propor-

tion of the harmonic content of u'u' and - u'v' is at the fundamental frequency, at

the lowest frequencies of forced unsteadiness, supports the assumption of §6.1 that
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these terms of the deterministic z-momentum equation would oscillate primarily at

their first harmonic for the case of quasi-steady perturbation of the mainstream.

e At low frequencies of forced unsteadiness, the deviation of measures of

phase-conditioned turbulence from their mean value was similar to the

expected quasi-steady response.

Profiles of the phase-averaged measures, (u'u'), (v'v') and (-u'v'), together with

their mean values, are shown in Figures 6.12 - 6.14 at 0.1 hertz. It is evident that

both the phase-averaged profiles, at 0* and 1800, intersect the mean profile at almost

coincident points in each graph. Although there is appreciable scatter in these data,

the shapes of the profiles are similar to those reported under comparable steady

conditions by Andersen (1972). The equivalent profiles at 2.0 hertz are shown in

Figures 6.15 - 6.17 and in each case the deviation of the two phase-averaged profiles

from the mean is reduced considerably from its low-frequency values such that their

deviations are barely perceptible from scatter.

o Periodic turbulence measures were strongly dependent on frequency of

forced unsteadiness.

Profiles of the phase and amplitude of UUx, v'v'I and -uvPr are now examined.

The amplitude variations, normalized by the square of the local perturbation ve-

locity, u,.. , are shown in Figures 6.18 - 6.20. The deviations of phase-averaged

measures from their means (in Figures 6.12 - 6.14) are represented by the two

pronounced peaks in the amplitude profiles at low frequencies (in Figures 6.18 -

6.20). Between these peaks, the amplitudes fall almost to zero at the point in the

boundary layer corresponding to the intersection of mean and phase-conditioned

measures. Since the phase-averaged profiles of (u'u'), (v'v') and (-u'v') at 0.1 hertz

i N..~* were comparable to quasi-steady ones, and there was little difference between the

profiles of u , vvi and -uv' at 0.1 and 0.2 hertz, these might be considered
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the asymptotic, quasi-steady forms of the amplitudes of u'u', v'v' and -u'v' for this

flow.

High frequency behavior was characterized by greatly reduced amplitudes

in the periodic measures: u'u," , VI? t and -u'v'.

As the frequency of perturbation in the mainstream increased, the deviations of

(u'u'), (v'v') and (-u'v') from their mean values decreased, as did the corresponding

amplitudes of the periodic quantities. For each measure, the outer peak appeared to

recede more rapidly than the inner one. At 2.0 hertz, the shapes of the outer peaks

seemed to have lost their definition; the low amplitudes of these deterministic tur-

bulence measures might then correspond to an approach to the "frozen" condition

reported by Ramaprian & Tu (1979) in their study of oscillatory pipe flow.

* At the highest frequencies of forced unsteadiness, these amplitudes were

negligible in the outer part of the boundary layer although still significant

in the inner part. 3
If periodic turbulence were considered purely as a shear-related quantity, which

might be described adequately in Boussinesq terms alone, the near-wall peaks of

the amplitudes of these measures would be expected to approach the wall with

increasing frequency of perturbation - i.e. a collapse of amplitude data might

be expected if an abscissa based on a measure of Stokes-layer thickness, such as

y/ V2-vl/, were employed. From Figures 6.18 - 6.20, it is clear that the positions

of the inner peaks in amplitude are independent of forcing frequency and so a

Boussinesq model of deterministic turbulence is not implied by these measurements.

* In contrast to the high-frequency behavior of i! (for which an abscissa scal-

ing on a frequency-dependent length scale was appropriate), an abscissa

incorporating a mean length scale suited profiles of periodic turbulence

measures.
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Phase profiles corresponding to ' v'v 1 and -u' 1 are shown in Figures 6.21

S- 6.23, where the ordinate is the phase lead relative to the forcing function, i.e.

0 ,ulu, - O ,u. . In each graph, phase information is presented at four of the seven
'.

frequencies - attempts to include data at more frequencies in each graph resulted

in overlapping of data from adjacent shifted axes and a subsequent reduction in

clarity. At the lowest frequency of imposed unsteadiness, each deterministic tur-

bulence measure lagged the perturbing mainstream slightly; phase variation within

the profile was limited to the outer part of the wake, as was observed in the response

of il. The dramatic shift in phase, by 1800, corresponded to the point of intersection

between the mean and phase-averaged measures of the turbulent quantities. Since

this intersection need not occur at the same place, at each phase in the unsteady cy-

cle, and since the neighboring region corresponds to small difference between mean

and phase-conditioned quantities, a noisy appearance in the phase measures is to

be expected there. At 0.2 hertz, the phase lag was a little larger. This observation

is again consistent with the response of il and appears to represent departure from

Uthe quasi-steady asymptote.

At higher frequencies of imposed unsteadiness, the behavior of the phases of u'u',

v'v' and -u'v' was more difficult to interpret. The variation in the outer boundary

qlayer (beyond the intersection of mean and phase-conditioned measures) became

%erratic as deterministic measures became smaller and more poorly defined. Near

the wall, however, O1,u'u', 1,v'y' and 0,- u'' each varied in rather different fashions

which are examined in more detail in §6.7.

6.5 Phase-Conditioned Products of Periodic Velocities
..
'SJ

The equation describing unsteady transport of momentum in a fluid with con-

stant properties (2.2.11) includes terms which represent the divergence of products

of periodic velocities, i.e. a(ikui)/axk . Since such terms are the products of two

oscillating components of velocity, they are likely to be typified by a strong response
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at the second harmonic of the forcing frequency in the organized unsteady flow. As

the responses of other quantities of this momentum equation to forced mainstream

unsteadiness were predominantly at the fundamental frequency (§6.2, §6.4), the role

of the tensor, 8( UkJ/aZk, might be presumed to be an uninfluential one in this

flow. The validity of such an assumption is now tested through examination of

measurements of the relevant quantities of this tensor.

In the phase-conditioned x-momentum equation,

aii -1 a _- ) i1aj a2__
-+ -(2UiZ+u'u'+uu )+-(V +vU+v'u'+ )= " --- + Vat ax a9, pa axkaxk

the deterministic products of oscillating velocities are represented by the terms

a(Tu)/az and a(T i')/ay. The limiting values of these quantities, at the wall

and in the mainstream, may be deduced through the boundary conditions of this

flow. As the wall was stationary with no transpiration, ;a u was zero there as was its

streamwise gradient. Likewise, u v and its normal gradient were zero at the wall too.

In the free stream, the contribution of these terms to the deterministic momentum

equation, as second harmonics, may be assessed by substitution of the prescribed

boundary conditions of the experiment. When applied in the mainstream, the x-

momentum equation may be written in the form:

a - ail". a . O ... _
___ = oo + - (2U,. . + U. U.) +g (V E r U .

= + a + + (

at ax 2

In this formulation, a( ( ,,iio/2)/ax is the portion of the phase-conditioned pressure

gradient oscillating at the second harmonic of the disturbance. The conditions at

the free-stream boundary of this flow were:
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U., = Uo(1 - AX') and i = UoAX'coswt

Substitution of these conditions into (6.5.1) yields:

19 , U0A _ , U:A'X

-wUoAX sinwt + - (- 2AX coswt + 02 cos2wt (6.5.2)

The significance of the products of periodic velocities to the x-momentum equa-
tion may now be assessed by considering the ratio of amplitudes of the free-stream

pressure gradient, at its first and second harmonics. This ratio is:

J7 1J2 (-2AX')+ (6.5.3)

from which it may be inferred that second harmonics are most important for the case

of quasi-steady perturbation. For A = 0.24 and X' = 0.45 and 0.63, the ratio of

% amplitudes of first and second harmonics of pressure gradient takes the values 0.05

and 0.08 respectively. Since this ratio decreases in magnitude at higher frequencies

of imposed unsteadiness (with increasing Sx), second harmonics are unlikely to

play an important role within the unsteady boundary layer unless u( I)/dx and

* d(iif)/ay exceed their free-stream values by appreciable margins at the lowest

* "frequencies of imposed unsteadiness.

As the significance of second harmonics in the mainstream has been estimated,

for quasi-steady disturbances, the relative importance of a(u ui)/ax within the

,,. boundary layer may be gauged conveniently from the ratio of 1 ,/i2o to u/u,0.

If streamwise gradients of i! ii do not vary dramatically across the boundary layer,
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the peak values of 8(u )/ax can be considered proportional to the maxima of

u u , which may be deduced from the profiles of -, shown in Figure 6.1. Since

almost all the harmonic content was concentrated at the fundamental frequency, i!

could be assumed to take the form i = ' cos(wt + O,u), from which it follows that

isi' 2 = U'i 1 /2. Now the largest values of iZ, , when normalized by .® , attained

about 2.5 (in Figure 6.1, at 0.1 hertz). Consequently, the corresponding normalized

value of i! a2 would reach around three. Since this boundary-layer ratio of second

harmonics to first harmonics barely exceeded one, as opposed to one half in the

free stream, it corresponded to little more than a local doubling in importance of

second harmonics within the boundary layer, relative to their significance in the

mainstream.

The magnitude of the normal gradient of U V , relative to its free-stream value,

may be deduced from Figure 6.24, in which the ordinate is a;U2 normalized by the

square of the mainstream perturbation. A linear abscissa was employed for ease of

estimation of normal gradients of U V2. At high frequencies of imposed unsteadiness,

the normal gradient within the boundary layer seemed to prevail at its free-stream

value. At low frequencies, however, it appeared to reach from two to three times

its free-stream value over a large portion of the boundary layer. Consequently,

while the significance of second-harmonic terms of the deterministic z-momentum]

equation seemed to be somewhat greater within the boundary layer than in the

free-stream, it was not dramatically so - this observation is consistent with the

findings of §6.2 and §6.4 that, at low frequencies of forced unsteadiness, periodic

measures oscillated almost entirely at the fundamental frequency. Hence, effects at

the second harmonic of the forcing frequency did not appear to play a crucial role

in the x-momentum equation.
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The phase-conditioned y-momentum equation may be written as:

aZi a a - - iaz__+ -(. + U+ + u+ a+5+-y (2 V r+ v'v'+ U ) ... v
at ax p ay axkaxk

where the deterministic products of oscillating velocities are the terms a(ii U)/ax

and a( V ) laOy; these quantities may also be expressed as a( v v/2) /ay + i (ai3/ax).
Since aZ and V" oscillated predominantly at the fundamental frequency, u v and V" V'

would be most energetic at the second harmonic of the forcing frequency. The influ-

ence of these terms could then be assessed through comparisons of their magnitudes
with quantities of the y-momentum equation which were characterized by a strong

first-harmonic response.

The importance of the quantity, a( "V/2)/ay, may be judged from comparisons

with another term of the deterministic y-momentum equation which could be mea-

sured readily, a( vv')/ay. Now just as a u 2 could be estimated as (al1 a,)/2, the

magnitude of ;UX 2 may be evaluated as ( ,)/2. Therefore, from the profiles of -,

shown in Figure 6.7, it is implied that V '2 would vary smoothly between values

. of 0 and 0.02 across the boundary layer, when normalized by the square of -U,00

The normal gradients of v'V2 may be deduced from Figure 6.19. For the case of

low-frequency disturbance, values of d9(v')/dy were much larger than measures

of a( r 2 )/ay. However, at high frequencies of imposed unsteadiness, they were of

similar magnitudes. Therefore, unless the streamwise derivative, u(ai /ax), reached

values comparable to measures of a(v'v')/ay within the boundary layer, products

of oscillating components of velocity might only attain the significance of turbulence

measures in the deterministic y-momentum equation for mainstream disturbance at

S:'1 ~.high frequencies.

Although the contributions of products of periodic velocities could not always

be eliminated from consideration on the grounds of their magnitudes, there was no
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substantial evidence that they played a role of any great significance in this flow.

Therefore it is no surprise that the dominant harmonic of all other velocity mea-

sures is the fundamental frequency of perturbation, as illustrated in §6.2 and §6.4.

Consequently the role of second-harmonic quantities in the deterministic momen-

tum equations would seem to be restricted to the characterization of products of

first harmonics.

9 The role of second-harmonic quantities in the deterministic momentum

equations seemed to be restricted to the characterization of products of

first harmonics. No other measures in this study exhibited any appreciable

response at this harmonic frequency.

6.6 Unsteady Kinetic-Energy Transfer

The phase-conditioned response of turbulence measures to imposed unsteadiness

may be examined through the turbulent kinetic-energy equation. This equation,

which was devised in its phase-conditioned form in §2.4, describes the unsteady

transport of components of turbulent kinetic energy and is written as:

a(t , t4 :) + uk + -a (tk ) + = ap

i-~-~~ -- '
ax.k ' k1 - x k ac axk '9xk axkc

Comparison of this equation with its counterpart describing transport of gajgs

(2.4.1) reveals the periodic production tensor, -u'ku'a(a ,ak), which accuunts
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for transfer of kinetic energy back and forth between the turbulent and determin-

istic energy fields during an unsteady cycle. The above equation was derived in

component form, rather than in summed form like a true energy equation, as only

two of the three components of the turbulent kinetic energy could be measured in

this study.

The equation describing phase-conditioned transport of u'u', (2.4.2) with a = 1,

contains the production terms - u'u'(ii/x) and - u'v'(ii/0y), which appear with

opposite sign in the corresponding equation for u u. It also contains apparent- or

pseudo-production terms - products of mean shear and oscillating turbulence mea-

sures which do not appear in the U U equation, i.e. - u'u'OU/zx and - u'v' OU/y.

Of these quantities, - u'v'(d'I/ay) and - au'v' aU/y could be deduced from mea-

surements made in this study. Furthermore, order-of-magnitude estimates indicated

that, of these four terms, the measurable ones would be the most significant in this

boundary-layer flow. The roles of these production terms are illustrated in Fig-

ure 6.25.

At all frequencies of imposed unsteadiness, the first harmonic of these production

terms was the most energetic; near the wall it typically accounted for between 40%

and 80% of the total harmonic content. No comparable concentrations of energy

were found at other harmonics and so, for want of a better measure, - u'v'(n /ay)
and - u'v' U/Oy were represented by the amplitudes of their first harmonics, which

p. are shown in Figures 6.26 and 6.27 respectively. These measures are plotted at four

representative frequencies of unsteadiness in each figure. The ordinate normaliza-
3

tion was chosen as Us/DC for ease of comparison of these quantities with the mean

production terms discussed in §5.4.

The amplitude of the oscillating production term, - u'v'(Oa/ay), which transfers

kinetic energy back and forth between the u'u' and a a fields, reached a maximum of

about 0.6% near the wall, for all frequencies of imposed unsteadiness (Figure 6.26).

The peak amplitude of this production term for u'u' was considerably greater than

the magnitude of its mean counterpart, -u'v'(di/ay) , shown in Figure 5.18, and
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about half that of the major term for time-averaged production of u'u' , which

was -u'v'aU/fy (in Figure 5.15). Therefore, while the phase-averaged measure

(-u'v'(8!/8y)) should, at times during an unsteady cycle, indicate net transfer of

kinetic energy from the u'u' field to the i il field via this particular production term,

the total production of (u'u') would always be positive.

* Transfer of the streamwise component of the turbulent kinetic energy was

from the organized unsteady field (5 u ) to the unorganized unsteady field

(u'u') for all conditions under which these experiments were conducted.

The frequency invariance of the amplitude of - u'v'(Oil/ay) implied that the

unsteady correlation between the phase-conditioned shear stress, (-u'v'), and the

-periodic velocity gradient, oii/Oy, was unaffected by changes in the forcing fre-

quency. In contrast, the pseudo-production term, - u'v' gu/ay, clearly decreased
in magnitude with increasing frequency (in Figure 6.27) such that, at 2.0 hertz, its

peak value was less than one third of that of - u'v'(a/ay). This behavior was

consistent with the expected frequency invariance of the mean shear (illustrated

in §5.1) coupled with the decrease in amplitude of - u'v' with growing frequency,

observed in §6.4.

The notion that unsteady effects cannot influence turbulence production, for the

case of high-frequency perturbation (when such effects would be confined to thin

layers at the wall), was examined in §5.4, where no conclusive evidence could be

found for or against it. This idea may be re-examined in view of measurements

of the periodic production terms for u'u', presented in this section. Profiles of

- u'v'(aii/ay) are shown in Figure 6.28; they are plotted against a logarithmic

abscissa to accentuate the near-wall behavior. Although there was appreciable

uncertainty in the data, as evidenced by the scatter, the profiles appeared to be

invariant with frequency. Moreover, the peak of the amplitude of this production

term for u' u' was found in the vicinity of y/Dc - 0.007, precisely the position of
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the maxima of uul (in Figure 6.18) and the maxima of the production terms for

I u'u', reported in §5.4.

The invariance of the amplitude of - u'v'(ai/dy) with increasing frequency, and

thc coincidence of its maxima with y/D f- 0.007 (which corresponded to the limit

of Stokes layer at 2.0 Hz, when its thickness was approximated as /-v/w in Table

- ' 5.1), seems to refute the idea that unsteady effects should not play a role in turbu-

lence production when, at high frequencies of imposed unsteadiness, they would be

confined to a thin layer at the wall. However, one should bear in mind that /2L-/w

is no more than an order-of-magnitude estimate of a dynamic length scale and that

extension of this study to much higher frequencies of imposed unsteadiness might
Or be necessary to resolve this issue.

The notion that unsteady effects would not influence turbulence produc-

tion at high frequencies of forced unsteadiness (which corresponded to

thin Stokes layers) was examined but was not supported by the periodic-

production measurements of this study.

The spatial coincidence of the maxima of the mean and periodic production

terms for u'u' has some interesting implications about the possible similarities in

mechanisms of turbulence production for u'u' and u'u'. If periodic turbulence were

strongly linked to mean turbulence, through similar production mechanisms which

resulted in the coincident maxima of their measured production terms, this would

help to explain why the normal variation of profiles of u'u'1 , v'v 1 and -u'v'1 scaled

on an abscissa formed from mean quantities such as y/D,, in stark contrast to

the collapse of the deterministic velocity, ir, on an abscissa scaled according to

a frequency-dependent parameter, y/Vr2-w. However, investigation into mecha-

nisms of unsteady turbulence production was beyond the scope of this study.

The production and pseudo-production terms for v'v' which could be evaluated

from the measurements of this study are - v'v'(O/Oy) and - v'v'8V/ay; profiles

of these measures are displayed in Figures 6.29 and 6.30 respectively. The ordinate
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normalization and its scaling were selected to match those employed in graphs of-
- , -

the production terms for u'u' so that the magnitudes of production of u'u' and v'v'

could be compared readily. From these figures, it would seem that the production

of v'v' was negligible and that the periodic turbulence production was therefore

strongly anisotropic.

* Periodic production of turbulent kinetic energy was found to be strongly

ani8otropic - the energy transfer to u'u' greatly exceeded that to v'v'.

If production was not considered responsible for the presence of v'v' at significant

amplitudes, the possibility arises that the net creation of v'v' was negligible and I,,

that its transport equation might be satisfied by setting the derivative following the

organized motion of v'v' to zero, i.e.

a (VIVI) + a k v2v) + a ( vv' 0 6..1

The plausibility of this idea could be tested through comparison of the estimated .

amplitudes of the terms comprising (6.6.1). However, the leading time derivative

appeared to be much larger than either of the convective terms, rendering the idea

of negligible creation of v'v' rather unlikely. Therefore additional terms, on the

right-hand side of the v'v' equation, would be necessary to describe its behavior

adequately.

Given the strong anisotropy in periodic production of turbulent kinetic energy

and the appreciable magnitudes attained by measures of V-VI, (typically around 10%

of Uu,1 ,, as may be seen in Figures 6.18 and 6.19), one might then speculate that the -I.

periodic energy content of v'v' is the result of inter-component transfer of turbulent

kinetic energy from u'u'. Were this the case, it would support the conclusions of

Acharya & Reynolds (1975) that adequate representation of the periodic pressure-

strain terms should be crucial to successful prediction of unsteady flows.
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- It was proposed that intercomponent transfer of turbulent kinetic energy

1 was an important feature of periodic turbulence in the unsteady boundary

layer.

At high frequencies of imposed unsteadiness, the major production term for u'u'

Iwas - u'v'(ai/Oy) (shown in Figure 6.26). As it reached significant values near the

wall, its phase there could be discerned clearly through Fourier analysis. Profiles

of the phase of this production term, relative to the phase of u'u' , are shown in

Figure 6.31. From this figure, it is clear that u'u' lagged further behind its major

production term with increasing frequency. Alternatively, this trend may be viewed

as the production term leading u'u' by increasing margins with growing frequency

of mainstream perturbation. At 2.0 hertz, this advance in phase peaked at around

900, precisely the phase advance (relative to u'u') of ( u'u')/at, the dominant term

of the left-hand side of the u'u' transport equation.

The close agreement between ,a(u'u)/at and ,uva/ay, at high frequencies

of imposed unsteadiness, raised the possibility that the asymptotic, high-frequency

transport equation for u'u' might take the approximate form:

a , ,aa
_Y -u (6.6.2)

The plausibility of this proposal could be tested through comparisons of the ampli-

tudes of each term. To simplify comparisons, the profiles of - u'v'(aii/dy) , which

were displayed in normalized form in Figure 6.26, were re-normalized by i1o/Dc

and shown in Figure 6.32 - near the wall this dimensionless production term peaked

*at a value slightly greater than one, for high frequencies of mainstream unsteadi-

ness. The magnitude of the right-hand side of (6.6.2) is now estimated. Since u'u'
could be approximated as UuuI cos(wt + 01,u'u'), its amplitude could be represented

by w tu''/2. The near-wall magnitude of u u./ could be gauged from the
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profiles of Figure 6.18, which, at high frequencies of unsteadiness, approached 0.1

near the wall. Multiplication of 0.1 by w, by , (which took the value of 1.57 U

secs - 1 at X' = 0.63) and division by two resulted in a dimensionless amplitude for

a(u'u'/2)/at of just under one - an indication that the magnitudes of the left-

and right-hand sides of the proposed equation were indeed comparable.

The approximate agreement between the phases and amplitudes of the terms of

(6.6.2) indicates that, at high frequencies of imposed unsteadiness, the transport

equation for u'u' might take the form of (6.6.2) near the wall. That the partial

derivative with respect to time of u'u' seems to be matched in phase and ampli-

tude by the major production term does not indicate that other terms, such as

inter-component, energy-transfer terms, are necessarily absent - just that they are

probably small in comparison. It is interesting to note that dissipation does not

appear to play a role in the proposed form of this deterministic equation - the 4

absence of oscillating dissipation terms is consistent with the view of dissipation as

a small-scale, high-wave-number phenomenon, in tune with a completely different

part of the turbulence spectrum to the one at which unsteadiness was excited in

these experiments.

e A simplified high-frequency form of the transport equation for u'u', the

largest of the periodic turbulence components, was proposed - its time

derivative was balanced by its production at the highest frequencies of

forced unsteadiness of this study.

6.7 Structure of Periodic Turbulence

A description of phase-conditioned turbulence within the unsteady bouridar,

layer is now developed using the themes examined in §5.5 for the turbulenw Ctrl,

ture of the mean flow as a starting point. In the time-averaged, unsteady boulrdar

layer, profiles of mean velocies and of u'u', t'v' and u'v' were invariant to diffrill
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frequencies of forced unsteadiness. Consequently, simple structural parameters such

p as correlation coefficients of u' and V, mixing lengths and eddy viscosities could be

deduced and they were very similar to the equivalent measures for steady flow.

Hence, the structure of turbulence in the mean field, according to these parameters,

seemed to be unaffected by the presence of an oscillating unsteady field.

In turbulent flow, the strong correlation between u' and v' is thought to be

maintained by the motions of eddies, the principal axes of which are roughly aligned

with the direction of the mean rate of strain (Tennekes & Lumley, §2.3). Now if

this correlation coefficient prevailed at its time-averaged value, at each instant in

the unsteady cycle, it could imply an instantaneous response to the oscillating

turbulence quantities of the mechanism which causes this strong correlation to be

maintained. The phase-conditioned behavior of -u'v'/(u')(v')) could be examined

• :. . in terms of deviations of its instantaneous values from the mean, u'v'/ W)(w)

which could be expressed conveniently as a root-mean-square deviation, i.e.

* ( uv' (u')v) \'VI (u( (.))

An r.m.s. representation was adopted, in preference to a Fourier one. as any har-

rnonic content which the product of two oscillating quantities, divided by a third.

might contain was not expected to be restricted to one dominant frequency

Profiles of the mean correlation coefficient and its r m s deviation are shown ill

"igures 633 and 6 34. at 0 1 and 20 hertz respectivoly From these figurre". it iSclear

that there is significant deviation from the mean value of the correlatiln roeffi( wir

.,.ring the unsteadv rvrle the loral ratio) of ( u'," u' 1," ) to u' '

rarely fell below 15'; thrf,,ghoit the hwiindarN laver 'I'hese r-sult% Atie )ii g' ..

agreerrent with those of must eix &' f1oi|d%, i.# I'01 which exhihited malter ,
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this result might also have been anticipated from the strong differences in the phase

profiles of u's ,, v'v' 1 and -u'lv't , presented in §6.4.

* Instantaneous correlations between u' and v' were not maintained at their

time-averaged values under organized unsteady conditions.

If correlations of instantaneous values of turbulence quantities provided an in-

adequate description of the turbulence field, then proposals that eddy viscosities

or mixing lengths might relate instantaneous values of the Reynolds stress to the

unsteady, local gradients of velocity would seem equally inappropriate. This point

may be demonstrated by examination of the lag between , and i,ai/ay ,

shown in Figure 6.35, in which this local phase difference is plotted over the in-

ner 10% of the boundary layer (where 0,,9qaY could be discerned most clearly).

While , lagged further behind 0,,a /ay with increasing frequency of forced

unsteadiness, it did not do so in a way which implied that a faithful representation

of u'v' could be proposed in terms of the instantaneous velocity gradient, coupled

with a simple phase-lag relationship. Therefore descriptions of the structure of tur-

bulence, based on simple representions of the oscillating Reynolds stress in terms of

other quantities of the deterministic momentum equation, appear to be inadequate 3
in this unsteady boundary layer. Hence it is necessary to turn to the equai ons of

the next-highest order Reynolds-stress and kinetic-energy equations -- to see if

they allyw a clearer interpretation of the structure of periodic turbulence.

a The vorsalion in phase between deterministic measures of streamunase ve-

locity gradient and shear stress uas not well organized it did not imply

any simple r earou of modeling periodir shear stress

K xarIT Ilation of 'i 'ortiponrent energy eq li a ns (2 4 2) revealed periodic pro-

,ii tion and ;wwiflo - profiuq i ,iii tr ir h 41 rntwiti d for transfer of kinetic en.

- .,rg , aid fr,,tii !h, it it ,eli, whi i A#,re ip,% ,asvi', iii n 46 f; 'or all frequencies of .

'orf-l u;n rimteadiripso he rriaximra of the-se ne'r~fi-li pripilir ti n lermsp or( rirred aroiinil
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YID, - 0.007, a position in the boundary layer coincident with the one at which the

production terms for the time-averaged, unsteady turbulence measure, u'u', were

greatest (discussed in §5.4 and shown in Figure 5.16). The spatial coincidence of

these mean and phase-conditioned maxima implied that periodic production of tur-

bulent kinetic energy could be the result of a modulation effect upon the mechanism

of production of mean turbulent kinetic energy, at the frequency of forced unsteadi-

% ness. This idea is supported by the investigations of Kobashi & Hawakawi (1981)

into the phase dependence of "bursts" in an unsteady, turbulent, boundary layer

-their histograms of the number of detections of bursts at discrete times during

an unsteady cycle indicated a roughly sinusoidal variation at the forcing frequency,

superimposed on the mean detection level.

*The maxima of periodic and time-averaged measures of production were

coincidence in space - this finding raised the possibility that determinis-

tic production might be a result of local modulation of the time-averaged

fi process.

ofIf the phase-conditioned production of u'u' is viewed as an effect of modulation
of the mechanism for the mean production of turbulent kinetic energy, it is no

surprise that the position in the boundary layer of the near-wall maxima of profiles

of u'u'1 scaled on a mean wall-normal measure, y/D, (in Figure 6.18), regardless of

the frequency of forced unsteadiness. That a mean scaling is appropriate for other

periodic turbulent quantities, such as Vv' and -u~?, is evident from Figures 6.19

and 6.20. Since the behavior of the time-averaged field must be influenced by

periodic effects, through their mutual dependence in the equations of fluid motion,

j the apparent coupling of unsteady turbulence production to its mean counterpart

is a welcome reminder of that mutual dependence (in contrast to the absence of

any obvious strong coupling between meisures of U and ii). This coupling between
time-averaged and periodic fields might then justify attempts to infer time-averaged
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quantities such as y + for use in describing profiles of these periodic turbulence

measures in unsteady flow.

Values of u, were then estimated from a fit of Coles' mean velocity function
(Coles 1968) to the time-averaged velocity profiles of U (with careful consideration

given to the uncertainty involved in employing this scheme for time-averaged un-

steady flow, discussed in §5.3). This exercise matched the position corresponding

to YID, = 0.007 in the time-averaged, unsteady boundary layer to one at which y +

was estimated as 8, a value quite close to y + _- 10 at which Laufer (1954) reported

maxima in turbulence-product ion measurements for steady pipe-flow experiments.

While the periodic production terms for u'u' were comparable in size to their

mean counterparts, measurements of the production of v'v' were negligible. YetIVI UIU
the magnitude of VIi was typically around 10% of ii .This disparity in size
of components of the phase-conditioned production tensor, coupled with the more

equal distribution of turbulent kinetic energy, implied that the unsteady turbulence

structure comprised a strongly anisotropic mechanism of production and a means ofj

redistribution of turbulent kinetic energy towards a more isotropic state. One might

then expect to find some evidence to support this notion in the phase-conditioned

measurements of u'ts' and v'v'.

In Figure 6.36, profiles of the local difference in phase between the first-harmonic

oscillations of ts'u' and v'v' are plotted over the innermost 10% of the boundary

layer, at all frequencies of forced unsteadiness for which this study was conducted.

At low frequencies of imposed unsteadiness, there was negligible phase difference

between the two unsteady turbulence measures. However, the local lag of v'v' behind

u'u' became steadily greater with increasing frequency of forced unsteadiness, while

the shapes of each profile seemed to differ from one another only by a scaling

of the ordinate. Moreover, the maximum lead in phase of U'U' over v'v' roughly

coincided with the position of peak production of v'v' in the unsteady boundary1

layer. These observations implied that inter-component transfer of turbulent kinetic

energy between ts't' and v'v' might be the result of a redistribution process with a
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local, characteristic, time scale which was invariant with frequency of unsteadiness.

This proposal is supported by the good collapse of data in Figure 6.37; in this

figure, the phase differences shown in Figure 6.36 were recast as time lags, through

division by the forcing frequency. Now this collapse was appropriate for all but the

two lowest frequencies of mainstream perturbation (which were characterized by

* somewhat larger time scales) - an indication that the local time scale for energy

transfer was not completely invariant with frequency. However, the partial collapse

of this data did raise the hope that a better characterization of -1V

r might be revealed under further normalization by another local, unsteady quantity.

One might view this redistribution of turbulent kinetic energy towards a more

'4 isotropic state as a process associated with the dynamic behavior of eddies, where

the time they take to re-orientate or "turn around" is characterized by the time

V. scale found from Figure 6.37 (around 0.15 seconds at the position of peak turbulence

production). The shape of these time-lag profiles is well defined and bears a strong

resemblance to the profiles of U in the same part of the boundary layer (shown

in Figure 6.18). Now since u'u'l was by far the largest of the measured terms

in the deterministic Reynolds-stress tensor, and thus thought to be representative

of the anisotropy of that tensor, it would seem that the local time for eddy re-

orientation might scale on the local measure of Reynolds-stress anisotropy. This

idea is supported by data shown in Figure 6.38, in which the time-lag measures of

Figure 6.37, in the innermost 10% of the boundary layer do indeed collapse under

normalization by the local value of ti"iil, for all frequencies of imposed unsteadiness.

T If this finding was a general one which also applied to energy transfer between other

components of the fluid's turbulent kinetic energy and other terms of the tensor

of deterministic Reynolds-stress anisotropy, inter-component transfer of turbulent

kinetic energy would seem to be well described in terms of eddies, which re-orientate

themselves over characteristic times proportional to the local anisotropy of u'u'.

This description corresponds> to a periodic corollary to Rotta's well-known tilodul
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for the "slow" pressure-strain rate in steady turbulent flow (see, for example, Hinze

1975).

Since the well organized dependence of the phase lag amounted to a dy-

namic corollary to Rotta's model for the slow pressure-strain terms in the

time-averaged field of flow, it would seem that the equivalent determinis-

tic pressure-strain terms would be important in unsteady boundary-layer

flow.

It is also of interest to examine whether the characteristic time lags shown in Fig-

ure 6.37 are comparable to the equivalent time scales one might anticipate for the

mean turbulent flow. Typically, the quotient k/c is used to form a time scale for tur-

bulent activity in modeling schemes for steady flows. In this experiment, at the posi-

tion in the boundary layer which corresponded to peak production (y/Dc f- 0.007),

k could be approximated as u'u' and t could be assumed to be of the same order

as -u'v't3U/dy. Now from Figures 5.5 and 5.16, k could be taken as 0.01, when
3

scaled by U2, and ( could be estimated as 0.01 multiplied by U,/DC . Thus the

turbulent time scale for the mean unsteady flow would roughly equate to the ra-

tio of boundary-layer thickness to mainstream velocity - a turn-over time for a

large eddy. This time scale took the value of -- 0.1 seconds in these experiments.

Considering the simplicity of the arguments used in its estimation, it was in re-

" markably good agreement with the time lag of v'v' behind u'u' of - 0.15 seconds,

at y/Dc - 0.007.

*.The lag in phase of v'v' behind u'u' was well organized it scaled on a

local, turbulent time scale (of the same order as the local, turbulent tame

4 scale for the time-averaged flow) and a measure of the local, periodic

anisotropy in the Reynolds stress.

• ; One might then speciate that the energy-redr tributi ,ress in os( M latilg,

u nsteady flow is simply a modulated firin of the steadv pro ess, irce t he. appear
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to share the same characteristic time scale. This notion leads to the image of

Ieddies rotating and deforming at a uniform rate to sustain the character of the

time-averaged flow, and possibly those same eddies undertaking a superimposed,

organized, unsteady role in accounting for the periodic behavior of the turbulent

boundary layer.

Since redistribution of turbulent kinetic energy among its components is com-

monly attributed to the "slow" pressure-strain terms of the component energy equa-

tions, it is worth deducing the form of these terms to see if any further insight into

yinter-component transfer of energy is possible. Following Chou (1945), the turbu-

lent component of the pressure may be deduced by taking the divergence of (2.2.9),

yielding a Poisson equation for p'. After time and phase averaging, the deterministic

"slow" pressure-strain terms may be expressed in the form used by Launder et al.

(1975) for a position x in the flow:

I,

"-. : 'OU--- ' l_ = 1 /O{i (2 u U'mn \'t ' F 1 1 1l,!
'. p Ie > Idvol. (6.7.1)

In this expression, y' is the image of the point y and integration is performed over y

* space in the semi-infinite domain in which y, > 0; the large prime denotes a quantity

evaluated at x. Now these terms take the form of a field effect, rather than a purely

local one. However, unless the two-point correlation of the integrand in (6.7.1)

maintains appreciable values at large separations, the factor 1 x y 1 x y"

likely to (diminish the influence of field effects over any significant dist ances so that

a predominantly local effect would not be an implauisibhle result of this integrati(ii

Now if these pressure-stra ii terms are viewed a the agents of red istri)utn( of

'irhiilent kinetic energy, that their influence might he primarily a lo al ont, i,

(4)ni4itent wit h thle collaps, of he time-lag dat a of Figure t.37 tinder n(rrnalilai ior
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by u'u" (in Figure 6.38). It is also consistent with the observations of §6.6 that

profiles of the phase-averaged measure, ('v'l), intersected their mean profiles at the

same position in the boundary layer at which profiles of (u'u') and u'u' crossed.

If the findings of this section on the structure of unsteady turbulence are appli-

cable at higher frequencies of imposed unsteadiness, one might speculate that the

"frozen" turbulence condition, reported by Ramaprian & Tu (1979), would occur

when the unsteadiness imposed on a turbulent boundary layer is of a periodicity

much smaller than the time scales of inter-component energy transfer.
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7. Conclusions and Recommendations

Specific conclusions may be drawn from this study, which focused on new, simul-

taneous measurements of the u and v components of the velocity field in unsteady,

turbulent, boundary layers. Insights concerning: (i) the time-averaged behavior of

these flows (§5), and (i4) their phase-conditioned response and periodic structure

(§6), have been developed and the conclusions reached in earlier chapters are re-

capitulated here. Furthermore, in the course of this study a substantial body of

new data was compiled, which spanned a wide range of frequencies of mainstream

unsteadiness - it should prove useful as target data for turbulence modelers.

Time-Averaged Unsteady Flow:

(i) The velocity measures, U, V, 'u', v'v' and -u'v', which are of importance

in the time-averaged momentum equations, were invariant with frequency of

forced mainstream unsteadiness throughout the boundary layer.

(ii) Profiles of U appeared comparable to their steady-flow counterparts and the fa-

miliar linear, log-linear and wake regions could be identified clearly. Likewise,

profiles of iuiu, v'v' and -u'v' were similar in appearance to their counterparts

in steady flow.

(iii) In measurements of U, u'u', v and -u'v' at the inlet to the test section,

differences between the steady and time-averaged unsteady profiles were evi-

dent, particularly near the wall - in computational predictions of these data,

initial conditions based on time-averaged unsteady measures would be more

appropriate than steady ones.

(iv) The periodic, wall-normal component of velocity, iU, made an important con-

tribution to the a(ilkii)/xk tensor, a term which played a significant role in

the mean x-momentum equation. Furthermore, the i.iagnitude of this tensor

was dependent on the frequency of forced free-stream unsteadiness.
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(v) Computational schemes aimed at the accurate prediction of unsteady flows

in mean, adverse-pressure gradients should make provision for modeling, or j
preferably direct calculation, of the a(iiki!J)/4zk tensor of the z-momentum

equation. In this adverse-pressure-gradient flow, neglect of this tensor would

lead to inadequate characterization of the boundary layer.

(vi) The important production term, which accounted for transfer of turbulent

kinetic energy between the mean and turbulent fields, in a time-averaged sense,

was invariant with frequency - its profile was comparable in shape to that of

the equivalent steady-flow measure.

(vii) While all time-averaged turbulence measures appeared to be invariant with

different frequencies of free-stream unsteadiness, a strong frequency depen-

dence was noted in a small, time-averaged production term.

(viii) Log-linear descriptions of the instantaneous, phase-averaged profiles of stream-

wise velocity were not appropriate for unsteady, turbulent boundary layers.

(ix) The structural parameters, -u'v'/(u'7 + ;7v7), -ii'v/(u'v'), - and _V, were U
invariant with frequency and with different averaging techniques.

Phase-Conditioned Unsteady Flow:

(i) The response of the periodic streamwise velocity, a, to forced free-stream un-

steadiness was strongly dependent on frequency. It could be described in

terms of variation between: (i) an asymptotic low-frequency form, which cor-

responded to the quasi-steady condition of constant phase across the boundary

layer, and (i) an asymptotic high-frequency form which matched the analytic

solution to the quasi-laminar Stokes equation. As the high-frequency condition

was approached, the asymptotic amplitude was matched at lower frequencies

than were necessary to satisfy the corresponding phase requirement.
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(ii) No frequency dependence was obvious in measures of :U, the wall-normal com-

3 ponent of periodic velocity, nor could it be identified with any asymptotic

behavior.

(iii) The ratio of the leading unsteady and convective terms of the ai-momentum

equation was a suitable parameter for characterizing the response of ia to

forced free-stream unsteadiness. While the performance of this parameter was

adequate, it was barely distinguishable from that of other parameters, the

forms of which were based on different premises. This finding was thought to

be due to the similarity in the streamnwise variation in mean and deterministic

velocities which resulted from the design of this particular experiment.

(iv) Periodic turbulence measures were strongly dependent on frequency of forced

unsteadiness and high frequency behavior was characterized by greatly reduced
Ulu vio-V

amplitudes in the deterministic measures: u'',vv 1 and -li. At the high-

est frequencies of forced unsteadiness, these amplitudes were negligible in the

outer part of the boundary layer although still significant in the inner part.

At low frequencies of forced unsteadiness, the deviation of phase-conditioned

turbulence measures from their mean condition appeared similar to the ex-

pected quasi-steady response. In contrast to the high-frequency behavior of

a (for which an abscissa scaling on a frequency-dependent length scale was

appropriate), an abscissa incorporating a mean length scale suited profiles of

periodic turbulence measures.

(v) The role of second-harmonic quantities in the deterministic momentum equa-

tions seemed to be restricted to the characterization of products of first har-

monics. No other measures in this study exhibited any appreciable response

at this second-harmonic frequency.

(vi) Transfer of the streamwise component of the turbulent kinetic energy was from

the organized unsteady field (uiiu) to the unorganized unsteady field (''

for all conditions under which these experiments were conducted.
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(vii) The notion that unsteady effects would not influence turbulence production

at high frequencies of forced unsteadiness (which corresponded to thin Stokes

layers) was examined but was not supported by the deterministic-production

measurements of this study.

(viii) Periodic production of turbulent kinetic energy was found to be strongly

anisotropic - the energy transfer to u'u' greatly exceeded that to v'v'. Inter-

component transfer of turbulent kinetic energy was recognized as an important

feature of periodic turbulence in the unsteady boundary layer.

(ix) A simplified high-frequency form of the transport equation for u'u', the largest

of the periodic turbulence components, was proposed - its time derivative was

balanced by its production at the highest frequencies of forced unsteadiness of

this study.

(x) Instantaneous correlations between u' and v were not maintained at their

time-averaged values under organized unsteady conditions.

(xi) The variation in phase between periodic measures of streamwise velocity gra-

dient and periodic shear stress was not well organized - it implied that simple

modeling of this kind would not be appropriate for organized, unsteady, tur-

bulent flow.

(xii) The spatial coincidence of the maxima of periodic and time-averaged measures

of production implied that these processes might be closely related.

(xiii) The lag in phase of v'v' behind u'u' was well organized - it scaled on a local,

turbulent time scale (of the same order as the local, turbulent time scale for

the time-averaged flow) and a measure of the local, deterministic anisotropy

in the Reynolds stress. Since the well organized dependence of this phase lag

amounted to a dynamic corollary to Rotta's model for the slow pressure-strain

terms in the time-averaged field of flow, the equivalent periodic slow-pressure-

strain terms would be important in unsteady boundary-layer flow.
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Recommendations for Future Research:

There are several avenues for future research closely related to this study and

one leads to investigating the behavior of wall shear in unsteady flow. Although

attempts have been made to measure the dynamic response of wall shear to forced

unsteadiness, there is still a need for a non-intrusive instrument, capable of making

such measurements instantaneously. The time-averaged response is also of consider-

able interest and might be examined more readily. In time-averaged unsteady flow,

the mean shear at the wall might be deduced from near-wall velocity and shear

stress data, if the measurement resolution were sufficient. A critical examination

of its relationship with the near-wall velocity scale (deduced from fitting a mean,

steady velocity profile to the time-averaged profile of streamwise velocity) might

then clarify the usefulness of this velocity scale in unsteady flow. Using available

data sets, a simple study of this relationship might prove fruitful.

If the difficulties of three-component laser-Doppler anemometry are overcome,

there would be considerable scope for extending studies of unsteady flow to include

velocity measurements in three dimensions. Initially, such a study might be carried

out most usefully in the kinds of experiments better suited to turbulence modeling

- fully-developed turbulent channel- or pipe-flow experiments - in order to test

and refine prediction schemes for unsteady turbulent flow.

There are also areas in which the imposition of controlled unsteady flow might

prove useful. The effectiveness of organized unsteady flow in augmenting surface

heat-transfer rates merits careful investigation, as does the notion that boundary-

layer flows on the point of separating might be stabilized through local initiation

of an organized, unsteady event. A thorough understanding of the behavior of

turbulent flow under unsteady conditions would form the basis for such research.
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Appendix A

Estimation of Kolmogoroff Scales

The Kolmogoroff microscales of length, time and velocity are defined as:

7 = =(v/) 1 2  and v=

where v is the kinematic viscosity of the fluid and c represents the viscous dissipation

of turbulent energy (see, for example, Tennekes & Lumley, §1.5). Their sizes may

be estimated by making use of order-of-magnitude assumptions about terms in the

turbulent energy budget, which suggest that the production and dissipation terms

are of comparable magnitude in many shear flows (ibid., §3.2). The size of the

viscous dissipation, E, may then be approximated as -iuv(dU/ay) , which is often

the dominant production term.

j The estimation procedure adopted here was to supply the velocity-gradient data

and a friction-velocity measure from a local profile of the mean streamwise veloc-

- ity; these measurements were usually not difficult to make and they rarely suf-

fered from deficiencies that would cause appreciable errors when used for order-

of-magnitude estimates. The corresponding values of -u'v' were taken from the

flat-plate, boundary-layer measurements of Schubauer (1954), which were rescaled

according to the local value of u,.

In Table A-I, the values of aU/y are for the steady, flat-plate, turbulent bound-
1P.

ary layer measured at X = 0.63 ; the Reynolds number, based on momentum

thickness, was 3115. From a "log-law" fit to the velocity profile (Figure 4.7), Ur

was found to be 28.62 mm/sec. The kinematic viscosity, v, was 1.1 mm 2 /sec. Here

fK is the Kolmogoroff frequency, v/ 2 .
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TABLE A-1

Tabulated Data for Microscale Evaluation

Y+~ __U_____ OlU/y 17 ____

e-1 mm se-

4.7 0.12 715 0.11 82
6.0 0.20 690 0.10 106
7.3 0.28 694 0.09 126
8.7 0.34 510 0.09 118

10.0 0.42 453 0.07 193
11.3 0.50 355 0.09 120
13.3 0.61 337 0.09 129
16.7 0.70 248 0.09 123
20.0 0.78 179 0.10 106
24.6 0.86 119 0.10 100

11
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Appendix BI
Overview of Two-Component Laser-Doppler Anemometry

Laser-Doppler anemometry is a technique for measurement of turbulent fluid

p velocities which is still growing in acceptance and popularity. Therefore background

information on the technique is provided for the interested reader. This information

forms the basis for selection of the particular system used in this study, which is

described in §3.2.

Two-component, laser-Doppler anemometry may be treated as an extension of

its one-component counterpart. The interference pattern of two intersecting beams

of monochromatic light, from a coherent source, is often termed a fringe pattern.

This interference pattern can be thought of as taking the shape of an ellipsoid, in

which wave fronts reinforce and cancel each other to form fringes of alternate strong

and weak light intensity (Figure B.1). If such an interference pattern were projected

in a moving fluid, discrete particles in the fluid would scatte- light of alternating

intensity as they were convected through the interference region.

The frequency of scattered light may be measured by monitoring the strength

of these scattered-light signals with a photo-multiplier tube and a frequency ana-

lyzer; it is directly proportional to the velocity of the particle, which may then be

obtained from the relationship u = fA/(2sin r.). Here A is the wavelength of the

monochromatic light and r. is the half angle of intersection of the beams. This sys-

tem, however, has no directional sensitivity - if it were used in a turbulent reversing

flow, the positive and negative parts of its frequency spectrum would overlap. In

this context, the frequency spectrum means the velocity distribution function scaled

according to the u-f relationship given earlier. It should not be confused with the

power spectrum, in which the energy content at different frequenries is expressed

through Fourier analysis of a sampled record of data.
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The shortcoming in directional sensitivity is resolved by separating the frequency

spectra, increasing the frequency of one beam relative to the other (Figure B.2).

This operation is termed frequency shift and is performed with an acousto-optic

*modulator, or Bragg cell; it typically changes the frequency of one beam by 40 Z

megahertz, a value which assures efficient refraction of the shifted beam when

commercially-available quartz crystals are used in Bragg cells. With the addition of

frequency shift to a two-beam anemometer, a stationary particle would then scatter

light at the shift frequency. The principles underlying the operation of this kind of

dual-beam system are treated rigorously in Durst et al. (1981) and Buchave et al.

(1979).

A one-component system enables velocity measurements to be made in the plane

of the two beams, in the direction normal to the bisector of the beams (Figure B.1).

To extend this method to measure two components of velocity at a point, a second

coincident interference pattern of appropriate orientation must be formed and the

scattered light from each pattern must be distietuished easily. It may be done in C

several ways:

(i) Using a monochromatic light source, two pairs of beams, of orthogonal polarity,

may be focused to intersect at coincident points. If light scattered from the

interference patterns can be assumed to retain its incident polarity, then, by

separating the resultant scattered light according to the original, orthogonal

components of polarity, the signals from the two interference patterns may

be distinguished. The process of light scattering by particles, however, is

extremely complex; light is not necessarily scattered at its incident polarity -
and cross-talk problems may result.

(4i) Light scattered from two coincident interference patterns, of the same color, -

may 'be clearly distinguished by frequency separation if one beam of each

pair is shifted in frequency by a different amount. The difference between

shift frequencies must be considerably greater than the bandwidths of the

200

e 21-



frequency spectra of either scattered-light signal to assure proper separation

of the spectra by electronic filtering. In practice, the unshifted beam in each

pair is replaced by a single beam.

* . (iii) If the light in each interference pattern is of a different color, the resultant

scattered light may be differentiated by color filtering. This technique usually

requires a laser which operates in multi-line mode and optics, for separation

of the transmitted beam into two pairs of beams of different colors. If a multi-

line laser is used, the role of one beam in each pair may be played by a single

beam of both colors (i.e. a multi-line beam, as produced by the laser). If

the separation of light into the desired colors is imperfect, however, cross-talk

problems may result.

Of the options described above, the method of color separation was the most prac-

* :ticable for this study and will be considered in greater detail.

The usual choice of coherent, multi-line, continuous wave, light source is an argon-

ion laser. It produces visible light at high power levels and has up to ten lasing

wavelengths in the blue and green portions of the spectrum. The most prominent

. and most used wavelengths are the 514.5 nm. green line and the 488.0 nm. blue

line. For an argon-ion laser operating in multi-line TEMo0 mode, with a typical set

of reflectors installed, about 50% and 40% of the total power might be produced at

these wavelengths respectively.

.* In the transmitting optics, color separation is commonly achieved either by prisms

or by dichroic mirrors. When performed correctly, the prismatic method should re-

sult in efficient and complete separation of the green and blue lines of the incident

beam into two separate beams of these colors. However, placement of the nec-

essary prisms and mirrors can take up considerable space; where constraints are

made on the size of an optical system, color separation by dichroic mirrors may be
S€.preferred. The components required for this technique can usually be mounted in

line with other optical components and can be much more compact. The levels of
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efficiency and quality of color separation achieved by dichroic means, however, are

not comparable. While about 80% of the incident light is transmitted, typically 1%/

of the green beam is blue and 1% of the blue beam is green. When the operation

of the laser Ls not stable, the power levels of the blue and green lines may vary

considerably; consequently the proportions of contaminant colors in the blue and

green beams may reach disturbingly high values. Highly stable laser performance

is therefore critical to the successful separation oi colors by dichroic means.

Color separation in the receiving optics is usually carried out in two stages. First

a dichroic mirror is employed to transmit most of the scattered green light in one di-

rection and to reflect a large proportion of the blue scattered light in another. Both

colors of scattered light will contain some contamination from the other through

the imperfections of dichroic separation. In the second stage, color filters of narrow

bandwidth are used in an effort to eliminate any cross-talk. If the levels of power in

each color are equal, the band-pass filters characteristically transmit 80% of the de-

sired color and less than 1% of the contaminant color. When the power level of one

color is much higher than the other, a significant amount of the undesired color may

be transmitted and this may cause cross-talk. A disproportionate ratio of power

levels in each color may result from unstable laser operation, poor alignment of the

transmitting optics, unstable Bragg-cell performance, intermittent obstruction of

one beam or from wavelength-dependent reflections or refract ions anywhere along

the entire optical path. It is therefore advisable to take additional precautions to

ensure that the risk of cross-talk is minimized.

A fluid which is perfectly homogeneous in composition will not scatter a sig-r

.d. nificant amount of light as it flows through an optical interference pattern. The

processes of Rayleigh scattering, from molecules, and Thompson scattering, from

free electrons, are too weak to be useful for these measurement purposes; so is Mie

scattering from micron-sized particles. Stronger signals are provided by refraction

and reflection of light by larger, discrete, inhomogeneous particles which are either

naturally present in the fluid or introduced by design (i.e. by seeding). While it
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is desirable for these particles to provide as bold a scattered-light signal as possi-

ble, it is imperative that they faithfully follow the small-scale motions of the fluid.

They must be of sufficiently small size that turbulent forces are not averaged out

on their surfaces. Particles in a fluid will usually have a distribution of sizes and

the effective signal-to-noise ratios of particles of different sizes will depend upon

the signal-processing procedure adopted (Ruck 1984). The suitability of particular

seeding particles should therefore be justified by experiment - comparisons be-

tween measurements in standard flows and reference data may help to establish

whether a particular seeding is satisfactory.

The accuracy with which a laser-Doppler anemometer can make meaningful ve-

locity measurements may depend on the spatial resolution of the system. If the

dimensions of the probe volume (the interference pattern) are too large, measure-

ments may suffer from spatial-averaging effects. Spatial resolution may be improved

in several ways:

I (i) The measuring volume (the image of the probe volume projected through the

receiving optics) may be reduced by judicious placement of a pinhole of the

desired size in the receiving optics. It may be further reduced by positioning

the receiving optics at right angles to the major axis of the probe volume

(i.e. in side scatter), though the intensity of scattered light in this direction

is relatively weak.

(4i) The probe volume may be reduced in size, with a corresponding increase in

concentration of power, by expanding the diameters and separation of the

transmitted beams. When subsequently focused, they will intersect with

smaller waists and thus form a smaller probe volume. This technique is known

as beam expansion.

Barlow & Johnston (1985) reported velocity measurements in turbulent flow for

which agreement with reference data could be reached only when the spatial res-

olution was made comparable to the local Kolmogoroff length scale. Other re-
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quirements which had to be satisfied included a data rate and sampling frequency

significantly greater than the Kolmogoroff frequency, and a sufficiently large number

of samples.

An alternative method for addressing the problem of spatial averaging, without

any change in the resolution of the optics, is to selectively process velocity data.

Velocities, deduced from the scattered light of the two colors, are considered repre-

sentative if and only if the signals are detected by both frequency analyzers at times

coincident to within a small, selectable interval (in an effort to ensure that both

signals are from light scattered by the same particle). If data rates are low, this

technique is useful too. Since frequency analyzers "hold" their outputs at the value

of the last validated signal, until new data is received, a simultaneous sample of the

outputs of two frequency analyzers may not result in simultaneous fluid-velocity

measurements unless the signals were detected at coincident times. However, when
used with large measuring volumes in which many particles are simultaneously

present, signals coincident in time may still be detected from distant particles and

so spatial-averaging effects may prevail (Barlow & Johnston 1985).

A signal-conditioning feature incorporated in most systems with frequency shift

is a downmixer. In the case of turbulent reversing flow, a Bragg cell is often in-

cluded in a measurement system to enable the direction of the flow to be resolved.

The measured frequency spectrum will then usually be centered around the shift

frequency (40 megahertz) with a comparatively narrow bandwidth. Since small

changes in frequency, relative to 40 megahertz, may be difficult for a frequency ana-

lyzer to measure accurately, the frequencies of scattered light are then shifted back

down again, or downmixed, by almost 40 megahertz - the downmix frequency;

mixing is achieved through an analog electronic process. The effective frequency

shift is then the difference between 40 megahertz and the downmix frequency; it

must be large enough to separate the positive and negative parts of the frequency

spectrum.
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To achieve a small, effective shift in frequency, the combination of an acousto-

optical shift with a Bragg cell driven at 40 megahertz and an electronic shift with

downmixing circuitry of almost equal size may not appear to be an elegant choice.

Currently, it is considerably less expensive than other options such as:

(i) using two Bragg cells in series to shift the frequency of a beam first up by 40

megahertz and then down by almost 40 megahertz,

(ii) using two Bragg cells in parallel to shift one beam up in frequency by 40

megahertz and the other up in frequency by almost 40 megahertz,

(iii) using a custom-made Bragg cell which can operate at the desired, effective

frequency shift.

This method is also more efficient in producing the desired frequency-shifted output

than other means such as diffraction gratings.
'-4

Some of the requirements of a reliable, two-component, optical, velocity mea-

surement system may be formulated from these general observations on the art ofa laser-Doppler anemometry. Many optical parameters and instrument settings must

be carefully chosen to suit the individual features of the flow under study. In §3.2

these details are considered and the measurement system is described.
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Figure B.1 Two-beam laser-Doppler anemometry system.
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Figure B.2 Two-beam laser-Doppler anemometry system with frequency shift.
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Appendix C

Optical System Alignment

Alignment details specific to the TSI components employed in the velocity mea-

surement system are considered in this appendix. Most of the techniques are ex-

plained in the manufacturer's manuals, but the particular methods found useful for

this study are presented here for completeness.

The initial alignment of the transmitting optics was carried out as recommended

-the required optical modules were built onto the transmitting-optics train se-

V quentially, moving along the optical axis away from the laser. As each component

was added, the axis of polarization was checked and the power in each beam was

measured and recorded for future reference. After the addition of each component

to the optical train, the alignment was checked and corrected when adjust ment was

j necessary.

To achieve peak power output from the Bragg cells, a power meter was found to

be essential; once all beams but the shifted one had been masked off, the tilt angle

of the plate supporting the cell could be adjusted methodically until the highest

power level was observed - this peak corresponded to the correct orientation of

the cell with respect to the incoming beam. Similarly, the amplitude of the voltage

driving the acousto-optic modulator could be tuned to give optimal performance,

as measured by the power meter. The correct alignment of the output beam (the

rV shifted one) could then be achieved by adjusting the orientation of the steering

wedges in the module.

The remainder of the transmitting optics could then be added in sequence. Two

further beam-steering modules were included to allow minor changes in alignment

to be made without affecting the color-separation or the frequency -shifting optics.

They were positioned to allow steering of the two single-color beams, as the cyan

b beam could be independently steered by a pair of wedges in the color-separating
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module in the optics train. It was necessary to ensure that all components were

secured as tightly as possible to one another and to the breadboard. Otherwise,

they tended to sag between their supports, with an accompanying degradation in

output power as the optimum alignment was disturbed. All exposed mirrors were

cleaned frequently and covered when not in use to prevent their gathering dust,

which inhibited reflective efficiency.

This particular optical system was designed for making non-intrusive measure-

ments in a water tunnel, the inside of which was not readily accessible when water

was flowing. The front lens of the transmitting optics was positioned so that the

focused beams would intersect at the desired point of measurement, in water. How,

then, could one check that the beams intersected at the same point? It was not

practical to maneuver a microscope objective to the point of intersection under

remote control and thus project a magnified image for inspection. An alternative

method was to make any necessary adjustments to the alignment of the transmitted

beams to assure coincidence of the probe volumes in air. This approximation to

the required alignment in water could then be improved upon using the receiving

optics and frequency-analysis equipment. Alignment of an optical system in air for

subsequent use in water can only be an approximation to the desired alignment

in water, in such a two-color system, because of the dependence of the index of

refraction on wavelength (dispersion).

The approximate alignment in air was carried out by placing a mirror just be-

yond the front lens, so that the beams would intersect above the breadboard. The

point of intersection could then easily be magnified with a microscope objective and

projected against a screen, so that coincidence of the beam intersections could be

checked. Lack of coincidence could be remedied by adjustment of the appropriate

pairs of wedges in the beam-steering modules. This alignment in air then served as

a first iteration in the procedure for obtaining coincidence of the probe volumes in

water.
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The second stage of the alignment procedure was based on the premise that

the optimum alignment produced the best scattered-light signal. Hence the data-

validation rate of the frequency trackers could be used as an indication of the

quality of alignment at any instant. The trackers used for these experiments could

be set to display the current data-validation rate on a meter on the front of the

instrument. Once the system was sufficiently well aligned that a Doppler signal

could be continually tracked, an increase in the reading of this meter could be

taken as an indication that an adjustment to the optical system had resulted in

improved alignment.

To meet the requirements of spatial resolution for these experiments, a small

pinhole was placed in the field-stop system in the receiving-optics train. By design,

this pinhole was the limiting aperture in this part of the optical system. The correct

positioning of this component and of the lenses in the receiving optics were then car-

ried out using an alignment eyepiece, according to the manufacturer's instructions.

The eyepiece was used to align one channel of the receiving optics (say, the blue

Ichannel), so that the resultant downmixed voltage signal from the photomultiplier

tube could be tracked. Then adjustments were made methodically to all the align-
ment features of that channel in the receiving optics, until the best data-validation

* rate was achieved.

Having optimized the performance of the receiving optics for blue scattered light,

a second iteration on the alignment of the transmitting optics could now be made.

By careful adjustment of the position of the blue beam, while closely observing the

data-validation rate, this beam could be aligned again to try to attain improved

coincidence at the point of intersection of the beams and hence an enhanced data

rate. The adjustment of the receiving optics could then be refined again and another

iteration made, etc. This procedure should assure excellent alignment of the optical

.: components used to transmit blue light in both the transmitting and receiving

optics.
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The inefficiency of dichroic separation of scattered light could now be used to

advantage, to assure coincident interference patterns of both colors. The procedure

was as follows:

(i) In the transmitting optics, the single-color beam, which had already been fully

aligned (the blue beam), was masked off.

(ii) In the receiving optics of the blue channel, the color filter, which ostensibly

transmitted no green light, was removed. With the equipment used for this

study, it could be removed without disturbing the alignment.

(iii) The fully aligned (blue) channel of the receiving optics was now correctly

positioned to receive only scattered light of the "wrong" color (green), of

rather weak intensity but from the correct place. By careful re-alignment of

the green beam in the transmitting optics only (the scattered light from which

should now be tracked by the tracker for the blue channel), the data rate

could again be optimized. In the absence of pronounced wavelength-dependent

characteristics in the lenses and mirrors of the receiving optics (other than the

color-separation parts), this alignment should correspond to coincidence of the

probe volumes of the two colors, in water.

(iv) The color filter was then replaced in the receiving optics of the blue channel

and a final adjustment was made to the position of the photomultiplier tube

on the green channel of the receiving optics, to optimize the data rate of

the tracked signal from green scattered light. The masked beam was then

unmasked.

In practice, this alignment procedure worked well. Using green and blue light, the

difference in wavelengths was small. The length of the optical path from the mea-

suring volume to the photomultiplier tube was short (less than a meter) so that

even if wavelength-dependent refraction in the lenses of the system was encoun-

tered, its effect might not be noticeable. To judge from the agreement between the
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measurements and reference data presented in §4, this method of alignment was

quite adequate for the purposes of this study.
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Appendix D

Integral Vorticity Analyses for Unsteady Flow

Solutions to approximate forms of the vorticity integral equation may be used

to predict the behavior of unsteady, turbulent, boundary-layer flows, when the

unsteadiness is organized and can be described in analytic form. In this appendix,

the vorticity integral equation is developed for nominally two-dimensional conditions

and applied to the flow in reference experiments and in the experiment conducted

in this study. The method of solution and the first analysis are modifications of an

earlier work by Reynolds (in Reynolds & Carr 1985).

The vorticity equation for an incompressible Newtonian fluid of constant viscosity

is (Tennekes & Lumley, §3.3):

+ a_ (ukO =-(Wkui)+VaxkO i  (D.1)

at axk (uw) axk (ku)+ axkax

For application to organized, unsteady, turbulent flow, it may be decomposed in

the manner of (2.1.1) yielding:

a a2

a (k + Wk + wk,)(Ui + i + U1 ) + Va' ([2j +r, + L,) (D.2)

,t.1
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The deterministic form of this equation is the only one sought and it is found by

subtracting the time average of (D.2) from its phase average (as explained for the

momentum equations in §2.2). The deterministic vorticity equation is then:

t akC- + ik 1 7 + +-uki

a (nii + 1WkUj + 5_~i+7~ +V(D3
axd k+xkaxk

The assumption that the flow is uniform in the spanwise (z) direction is now

made, together with the constraint that 73 and w 3 are the only non-turbulent

vorticity terms of significant size. Setting f23 = 0? and w3 = w, the deterministic

vorticity equation of interest is:

-ukC + ilkn + cukw + u ) ' + V (DA4)

This equation may be recast as the sum of the time derivative of deterministic

vorticity and the divergence of deterministic vorticity flux:

8(Uk +akIikJuk3-ku (D.5)
at dark ukluwuwwU axk)=
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The flux terms represent three kinds of unsteady convection of vorticity, two kinds

U of turbulent transport and unsteady viscous diffusion. Expansion of (D.5) from its

tensorial form yields:

+ u- + Wn+ + Uu0i - W1 W' -V_
at ax 3 axu'w

a- VZ+ + +V - u (D.6)

It is now integrated, term by term, across the boundary layer. For the organized un-

steady flows considered here, the free-stream boundary condition sets all integrated

terms, which were partial derivatives with respect to y in (D.6), to zero (with the

obvious exception of the diffusion term). The term, v(a 2W/xa2), may be neglected

on order-of-magnitude grounds leaving the vorticity integral equation as:

ai~6 6o/ - -)
dy + Ua f (Ua + ff + U'V' - (') dy + 0 . (D.7)

Sat f 63 ax• =
0 0

The turbulent transport terms may be simplified further by writing their vorticity

terms as gradients of velocity:

r ,au' ,aw' a - a( v 'l w,'" ~U' ,3 W1 ' '= '' - ( ,' v') +.
ax a y ax y 2 2 2)
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Integration across the boundary layer removes all the turbulent transport terms

except the streamwise derivative of the perturbation Reynolds stress. The vorticity

integral equation may then be applied to unsteady, boundary-layer flows in the

following form:

0 0

The equation is applied first to the flow in the experiments conducted by Karls-

son (1959) and Cousteix & Houdeville (1983). In both studies, a boundary layer

was formed at a leading edge in an unsteady mainstream; the boundary layer sub-

sequently developed, bounded by this unsteady mainstream, and strong spatial

periodicity in the phase and amplitude of the displacement thickness was observed.

For these experiments, the amplitude of the free-stream perturbation was small

compared to the mean, free-stream velocity. By approximating the convective flux

terms of (D.8) as -U(ai/az) - (8U/Oy) - a(Oa/ay) + ( /ay), the relative

magnitudes of each term may be compared. Assuming the magnitudes of velocity

within the boundary layer are of the same order as their free-stream counterparts,

the third and fourth terms are small compared to the first. The convective flux may

then be represented by the term -O(Uii)/8y. If it is further contended that, over

the bulk of the boundary layer, the convection velocity (U) of organized unsteady

fluid (i) is approximately constant (U,) and that the contribution of the Reynolds

stress is negligible, then the vorticity integral equation takes the form:

6 6

-ft 65dy+V U, f v- : =0 (D.9)
0 0
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where U, is the mean convection velocity of large eddies. Now the diffusion term

U may be evaluated by applying the streamwise momentum equation (2.2.8) at the

wall. In the experiments of Karlsson and Cousteix & Houdeville, the wall was

%. stationary with no transpiration. The simplified momentum equation is then:

S1 - + --- o(D.10)
paz Oye

and obviously V-- ii5
ayay LO - Y=O

The perturbation velocity in the free stream is given as uo, = A sin (2irft) where

A is the amplitude of oscillation and f the frequency. Applying the streamwise

momentum equation (2.2.8) in the free stream yields:

U ai'o _

a..- = 2,rfA cos (2irft), .. a t p a x

6 6

and hence -f -0 dy + U f -6 dy = 27rfA cos (2rft). (D.11)
0 0

IN Application of the vorticity integral equation at the leading edge yields the boundary

condition:
4

Ud - dy =U = AU,,, sin (27rft). (D.12)
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The vorticity integral equation, (D.11), with the boundary condition, (D.12), may

then be solved for f -: dy by the method of characteristics. The solution is: j

f - dy = A [sin (27rft) + (- - 1) sin (2rft - 2_f)z)] . (D.13)

0

Since the strongest measures of boundary-layer vorticity would be expected to

correspond to the greatest values of boundary-layer thickness, the peak amplitudes

of f6 -& dy should correlate with the experimentally measured peaks of boundary-

layer thickness. Assuming that a typical convection velocity, U,, is about 0.8 U".,

the greatest values of f 6 -a dy would occur when:

27rfx 27rfz
= 2nr for n= 0, 1, 2, 3,... or -0, 5, 10, 15,...

Reference to Figure D.1 shows that, in the experiments of Karlsson and Cousteix

& Houdeville, the peaks of 61 and b2 are remarkably close to the values predicted by

this simple analysis - the spatially periodic nature of the boundary-layer thickness

is due to the interaction between the unsteady vorticity convected downstream from

the leading edge and the vorticity generated at the surface by the locally unsteady

mainstream.
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Figure D.1 Normalized spatial variation of the amplitudes of 61 and 62 (from
Cousteix & Houdeville, 1983).
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The flowfield investigated in this study is now considered. This boundary layer

developed under steady conditions and unsteadiness was introduced locally in the

test section of the apparatus, as described in §3.1. The unsteady mainstream flow

is expressed as:

Uo, = Uo(1 - AX') and 9.. = UoAX'cos(27rft), (D.14)

where Uo is the steady, free-stream velocity along the development section and A

is its amplitude of oscillation at the end of the test section, expressed as a fraction

of Uo. Also, X' is defined as the dimensionless distance along the test section (of

length L). Since A was reasonably small (.- 20%), the assumptions which led to

the development of (D.9) from (D.8) are made and boundary conditions are sought

to the equation:

-9 f dy-Uc Jw + dy + i= 0 (D.9)

0 0

The diffusion of vorticity at the wall is equated to the streamwise pressure gradient

(D.10), which is deduced by applying the deterministic momentum equation (2.2.8)

in the free stream. These procedures yield:

=~(2! U.ai. - (ii V. + U.oto )+t 0 V 0 U0 0 V 0 + a. V 0 ).ay ,:o P ax a xa
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After careful consideration of the role of the v terms, via the continuity equation,

(2.2.1), the vorticity-diffusion term is:

-4

+ aU o(.u) + .(D.l15)

Substitution of the free-stream velocities, from (D.14), leads to the partial differen-

tial equation for fo -C dy:

6
a f d _ + - AX') a -dy = -27rfUoAX'Lsin(27rft)

at L ax' .
0 0

+ U A(1 - 2AX') cos(2rft) + U--A X' cos(4rft) , (D.16)UO 2

with the boundary condition" - ] - dy = 0 at X, =0 .
0

This equation may also be solved by the method of characteristics. By setting

5(X', t) = fof -' dy and choosing transformation characteristics:

eAUct/L
=t and J7 e

2 1-AX
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the solution is: G( ,v7 ) = UoLcos(27rfC) - U2A) sin(2?rfC) + (0A) sin(4,rfC)\27rf /\87rf/

+ 2A7cf/L (U(A7rfe* - AU-cos(27rf ))
(27rf)2 + (AU,/L) 2  t- Lrfsin(2rf )

e- AUC/L (27rf UoL AU sin(2rf ) + 27rf cos(2rf ))

(27rf)2 + (AUc/L) 2  L

2 -I AUC/L 2r / (47rfsin(47rfC) - cos(4rf )) +

(4wrf) + (AUc/L) k2 1 7 ) L

Finally F is deduced from the boundary condition that 5 = 0 at X 0.

The amplitude of the function G(X', t) was computed and plotted as a function

of X' for the various frequencies at which this experiment was conducted. The

convection velocity of large eddies, U, , was again assumed to be 0.8 U,,. The

estimated streamwise variation in amplitude of C is shown in Figure D.2. From this

approximate analysis, it would seem that the amplitude of vorticity generated by

oscillation in the local adverse-pressure gradient is much more significant than any

spatial variation produced by interaction between convected and locally generated

vorticity.
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Appendix E

Stokes Solution for the Organized Unsteady Flow
...

A Stokes solution is the name commonly given to a solution of the differential

momentum equation which describes the asymptotic, high-frequency behavior of an

unsteady flow. For simple boundary conditions the solution often takes an analytic

form, from which the high-frequency, organized behavior of the flow may be clearly

discerned.

The asymptotic, high-frequency form is first devised through order-of-magnitude

considerations of terms of the deterministic momentum equation, which is:

ai"s a-. 1T aO . a 4, , ,O2(.ii'" at + - MatU '  + akUi) - -cx ax ( uku, + akai) + v xak'(E.1)
at axk p a; axk ui )+ a

as derived in §2.2. The x-momentum equation is considered first and is written as:

+ a (ki + aku + u' u' + .Uki) - +v
at axk P a axkaxk

For high frequencies of organized unsteadiness, at which the unsteady term, ai/at,

is much greater than the convective terms, :(Ukil + iikU + u'Iu + k )/xk, the

Stokes equation is formed:

r
%

-

- a- (E.3)
at pax ayay
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The streamwise dissipation term is negligible compared to its normal component

and so has been neglected. This problem may also be viewed as one of unsteady

diffusion of vorticity since similar treatment of the deterministic, spanwise, vorticity

equation yields:

t ayay

Before proceeding with the solution to the Stokes equation, the conditions under

which the unsteady term greatly exceeds the convective ones are examined. The

dominant convective terms are first deduced from order-of-magnitude considera-

tions. Of the four tensors in the expression a(Uki + tkU + u' + iki1)/azk, the

turbulent one may be assumed negligible in comparison to the others (although

this assumption might be questionable for a( u'v')/ay near the wall). Since the

amplitude of il was not expected to exceed about 20% of U.. in these experiments,

the unsteady correlation of the deterministic velocities, a( ki )/xk , could be

considered small relative to the remaining convective terms: a(Uk i + ikU)/azk.

These terms may now be compared with the organized unsteady term to establish

a criterion for which the Stokes solution for this flow might be followed.

Although the order-of-magnitude approach may be pursued further for this equa-

tion (see, for example, Jayaraman et al. 1982), there do not seem to be any obvious

ways of estimating characteristic length, velocity or time scales for the unsteady

boundary layer, other than to scale them on free-stream or global measures. Now

in this experiment, many of the free-stream quantities were prescribed so that es-

timation of their size and behavior is unnecessary and might amount to discarding

useful information. It therefore seemed more profitable to compare the free-stream

values of the dominant unsteady and convective terms and to presume that their

ratio was maintained, at least approximately, throughout the boundary layer.
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In the free stream, the unsteady and convective terms are represented by adii/at

and a(Uji,,o)/8x respectively. Since U,. = U0(1 - AX') and -. = UoAX'coswt,

it follows that:

t. = wUoAX and a(U.a) - U0  ( 1 - 2AX), (E.4)
at ax L

where X' is the dimensionless distance along the test section (of length L). The

unsteady term greatly exceeds the convective ones when:

wX ,wX- > 1 - 2AX' , where is the relevant Strouhal number.
U0

Since the X dependence of the right-hand side of the inequality is weak (A C- 20%),

a Stokes solution would be expected when this Strouhal number greatly exceeds

one, or alternatively, for the X locations at which data were taken, frequencies of

imposed, organized unsteadiness are much larger than -- 0.3 hertz. It is significant

that a Strouhal number incorporating as its length scale X, the distance along the

test section, results from this exercise. This dependence on X is a consequence

of the desigr of the experiment such that the amplitude of a,, is proportional to

distance along the test section. As a criterion for determining whether Stokes flow is

to be expected, it obviously has no relevance to flows with dissimilar distributions of

velocity - such flows should be characterized according their particular boundary

conditions. For example, for the case of unsteady, fully-developed, turbulent channel

flow, the ratio of the centerline values of aiiO/t and a( u'v')/Oy might serve as a

suitable characteristic parameter.
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The analytic solution for Stokes flow is now sought. The equation is:

0- 1 0 a2i
at-px + Vayay (E.3)

with boundary conditions: il(y,t) 0 when y = 0 and

a(y,t) = ilo(t) when y = oo. (E.5)

Order-of-magnitude considerations (Jayaraman et al. 1982) require that the deter-

ministic y-momentum equation simplifies to dj/ay = 0 . Therefore, at any given

x location, the pressure-gradient term in (E.3) is a function only of time. More-

over, the free-stream boundary condition dictates that the pressure gradient and the

time-derivative of deterministic velocity share the same variation with time. Given

these restrictions on the pressure-gradient term, a solution may be attempted by

the method of separation of variables.

If the y and t dependence of a are represented by the functions Y(y) and T(t)

respectively, such that il(y, t) = Y(y) T(t) , then in the free stream:

aI - 1a = Y(oo) T (t). (E.6)
at V=00- pax

The Stokes equation (E.3) may then be expressed as:

Y(y) T'(t) = Y(oo) T'(t) + v Y" (y) T(t) . (E.7)

Separation of variables yields the ordinary differential equations:

T'(t) - (y) = constant . (E.8)
T(t) - 'Y(y) - Y(oo)
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As the time dependence may be anticipated as cosinusoidal (from the free-stream

condition that ii(oo,t) = UoAX'coswt ), the constant in (E.8) may be written

in complex form as iw . Since this is a linear problem, the dependent variable,

S, may expressed as the real part of the same complex variable for which these

equations are then solved. The free-stream boundary condition may be written as

ii(o, t) = U3AX'(cos wt + isin wt) and the equation for T may now be integrated,

yielding:

T(t) coe'wC. (E.9)

The ordinary differential equation for Y takes the form:

V Y(y) - iwY(y) = -iWY(oo) , (E.1O)

and may be integrated to give the solution:

) y(y) = Y(0) + c1 // + c -V/,/;/ (E.11)

U where i and V47 are defined as e i /2 and e iw/4 respectively. As the free-stream value

of Y must be finite, the constant of integration, c, , is zero. Furthermore, the

boundary condition at the wall dictates that c2 = -Y(oo) . The constants, co and

Y(oo) , are determined by the free-stream boundary condition so that:

•(yt) is the real part of UoAX'e"' (1 - e. (E.12)

Separation of (E.12) into real and imaginary parts yields the solution:

ii(yt) UoAX' [coswt - e-'/- wt - t - y/ /)] . (E.13)
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Alternatively, (E.13) may be written as the phasor: l= ji cos(wt + 0)

where UOAX /1 - 2e- cos + e- 2 "

e sine .5tan € ="a 1 -e- cos

and is defined as y/V'2-v/w . (E.14)

The phase and amplitude distributions associated with the phasor form of this

Stokes solution are shown in Figures E.1 and E.2. By considering the limiting

value of 4 as the wall is approached, it may be shown to be 450 in advance of its

free-stream value.

The dimensionless, independent variable of this solution, , is the distance from

the wall normalized by the unsteady, viscous length scale; it is useful in estimating

the thickness of the near-wall region which accommodates unsteady effects which

differ in magnitude from their asymptotic free-stream values. For the purposes of

order-of-magnitude estimates, the unsteady, near-wall layer may be considered to

be of the order, V.//w , if unsteady, viscous effects are thought to be important

this far from the wall. This provision is often tested through comparisons of V-/w .. ,

with estimations of the order of the steady, viscous sublayer thickness, V/u .

When convective effects are unimportant relative to unsteady ones, the Stokes

solution may be used to determine the extent of this near-wall layer. If the time

and phase dependence in (E.14) are disregarded, the deterministic velocity may be '

represented by its amplitude alone. If the boundary of this layer is defined as the

wall-normal distance beyond which it differs from its asymptotic, free-stream value

by less than 1%, the layer extends to t- 4.1. For unsteady flows with boundary con-

ditions which result in different Stokes solutions (such as unsteady, fully-developed
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channel flow), the resulting layers are usually of comparable thickness. If a dynamic

3 representation of this layer is sought for asymptotic, high-frequency flow, then the

complete Stokes solution may be used to determine the same thickness estimated

with the amplitude of il, only at each discrete phase of the unsteady event.
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Figure E.1 Variation in velocity phase for the Stokes solution

(of the form 9 ill ~ coe(wt + 0))
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Figure E.2 Variation in velocity amplitude for the Stokes solution

(of the form i = Ul cos(wt + 0))
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Appendix F

Uncertainty Analysis

The uncertainties in selected measurements made in this study are assessed in

this appendix and are reported in terms of the probable error in the measure and

an associated confidence level. Since a detailed analysis of the accuracy of every

quantity of interest, at each measurement location, was not practical, discussion

of additional uncertainties which would be of predominantly local importance is

included.

Estimates of the uncertainties in the time-averaged quantities, U, V, U'u', v'v'

and -u'v' were made using root-sum-square addition of the errors due to individual

effects - a method which has been shown to preserve the statistical probabilities

adequately in error-propagation calculations (Kline & McClintock 1953). Of the

FL many possible causes of uncertainty in the laser-Doppler-anemometer measurements

of this study, the most significant errors were thought to be due to: (i) uncertainty

in the precise value of the half angle of intersection of the laser beams, at any given

measurement location, and (ii) the contribution of electrical and optical noise to

p uncertainty in individual velocity measurements.

Confidence levels for uncertainty estimates in this study were chosen to be 95%

(or 20:1 odds). With this level of confidence, the uncertainty in individual velocity

measurements was estimated to be ± 0.003 U0 or ± 2 mm/s. This value was deduced

from comparisons of the free-stream turbulence measured with the laser-Doppler

anemometer used for this study (- 0.8%) and with the one used by Jayaraman

et al. (1982) of - 0.5%. These measures were then compared with the noise level

detected in measurements of the velocity of a stationary, reflective object positioned

"*' on the top wall of the apparatus, using the same equipment (- 0.4%), so that an

estimate of the order of the noise contribution could be made. The uncertainty in

the half angle of intersecting beams of laser light was estimated from their measured
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TABLE F.1

Uncertainty Estimates for Mean Measures

Measure Typical Estimated Relative
Value Uncertainty Uncertainty

U 300 mm/s ± 3 mm/s ± 1%

V 12 mm/s ± 3 mm/s ± 25%
u'u' 2500 mm2 /s 2  ± 170 mm2/s 2  ± 6%
v' v' 1000 mm 2/s 2  ± 110 mm2/s 2  ± 10%

", - '650 mm2 /s2  ± 9o mm 2/s 2  ± 13%

separation, when projected onto a screen adjacent to the apparatus. Variations in

the beam separations, at different positions in the boundary layer, were assessed as

a relative uncertainty of - 1% of the half angle with 95% confidence (as indicated

in Table 3.5).

In first-moment measures such as U, the effects of noise in individual readings

were rendered negligible by the large numbers of samples taken. Thus a relative

error of ± 1%, attributable to uncertainties in the half angle of beam intersection,

was the most important factor in estimates at this confidence level. Now U was

typically of the order of 30 times larger than V, and slight, local misalignment of

the optical system was thought to contribute most strongly to errors in V. Since

the precision with which the beams used for measurement of the v component of

velocity were perpendicular to the top wall of the apparatus was estimated as ± 10,

uncertainty in V was estimated at ± 0.01 U. Typical values of U, V, tu'u', Fv7 and

-ulvl, together with their estimated uncertainties, are shown in Table F.1.

Uncertainties in measures of second moments such as u'u', v'v' and -u v' were

devised in normalized form, using the estimated uncertainties in individual velocity

measurements (± 0.003 Uo). By applying the root-sum-square addition procedure

to individual measurements (as outlined by Eaton & Johnston 1980), the uncer-

tainties in normalized values of u'u', iv'v and -u'v' could be expressed as their

local, normalized measure multiplied by an error term representing the uncertainty
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TABLE F.2

3 Uncertainty Estimates for Turbulent Stress Measurements

0.01.U 0.000 ± 5
.Ujl /U o bj t3

0.01 0.0005 ± 5%0.005 0.0003 ± 7%
0 .001 0.0001 ± 15%
0.0001 0.00005 ± 50%

in individual measurements. These uncertainties were estimated for a range of nor-

malized values typical of those found throughout the boundary layer and are shown

in Table F.2.

Absolute errors in deterministic measures, such as amplitudes and phases of un-

steady quantities, would, in general, be of the order of the equivalent time-averaged

I. measures. Obviously the uncertainty of measurements taken at one discrete phase

in the cycle would be sensibly larger than that of time-averaged ones, to reflect the

reduced number of samples from which these measures were deduced. Now uncer-

tainties in amplitude measures might be significantly larger than those of the cor-

responding time-averaged quantities if the unsteady component were of sufficiently
small size that rounding errors in the Fourier-transformation algorithms became

appreciable sources of error. Likewise, phase information deduced from measures,

the unsteady components of which were small, would be most untrustworthy. More-

over, the variation of deterministic measures across the boundary layer was such

that they fell to negligibly small values in the vicinity of y/D, n- 0.1. In this region,

relative errors in phase and amplitude results would become extremely large. Con-

sequently, any result which incorporated a deterministic measure would have to be

interpreted with great caution in this region.

In the calculation of production terms, additional uncertainty was introduced

through estimation of a gradient from neighboring measures of mean velocity. Al-

though uncertainties in these terms were not evaluated explicitly, they would be
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sensibly larger than the local turbulent stresses incorporated in these production

terms.

An independent check on measures of the mean, streamwise velocity was carried

out with a constant-head probe positioned in the free stream. Pressure differences

were measured by a transducer which had been calibrated against the differences

in pressure due to two columns of water, the difference in heights of which could be

gauged accurately by micrometer. Since the free-stream velocity deduced by this

Z technique was within a small percentage of that measured with the laser-Doppler

anemometer, the absolute measure of beam half angle (from which the u-f cal-

ibration constant for the laser-Doppler anemometer was devised) was considered

sufficiently accurate. As no independent check on the corresponding calibration

constant for the normal velocity was available, it could only be estimated from

measurements of the half angle of intersection of laser beams.

The accuracy of positioning of the probe volume of the laser-Doppler anemometer

was estimated as:

(i) ±2 mm in the streamwise (x) direction,

(ii) ±2 mm in the spanwise (z) direction,

(iii) ± 0.05 mm in the normal (y,) direction, near the wall, and

* .~ (iv) ± 1 mm in the normal (y) direction, at the measurement locations furthest

* from the wall,

with the same confidence level used earlier. Two uncertainty estimates are given

for the accuracy of the wall-normal position of the probe volume, as only near

the wall could it be checked reliably (in the manner described by Jayaraman et

al. 1982). When measurements were made in the outer parts of the boundary

layer, uncertainty in the absolute distance from the wall might result from slight

differences between the direction of traversing of the measurement system and the

perpendicular to the top wall of the apparatus.
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The diameter of the measuring volume (the portion of the probe volume imaged

by the receiving optics) was - 0.125 mm and this dimension was about 2.5 times

larger than the spacing between the eight points nearest the wall at which data were

taken. This shortcoming would affect estimations of velocity gradients in the near-

wall region. It would also imply that there was interference between the measuring

volume and the wall over at least the first two or three points and, in the event of

imperfect coincidence of the interference patterns of blue and green light, possibly

several more. These uncertainties might provide good grounds for disregarding

some near-wall measurements because of untrustworthiness. To judge from the

qualification data of §4, measures of V, '3-- and -iv7 might have suffered from

this problem in the six or seven data points nearest to the wall, which corresponded

to the region in which y + < 10. However, it was not apparent from the qualification

data that these same shortcomings affected measures of U and u'u'.

i
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Appendix GI
Data

Sets of the phase-averaged raw data of this study have been stored on diskettes

and are available to interested researchers on request. The medium on which these

data are presently available is 5.25 inch floppy diskettes, 40 tracks per side with 48

tracks per inch, formatted on both sides at double density, with a total capacity of

360 Kbytes - the kind of diskette which is currently most widely used for desk-top

computers. This medium was chosen in the hope that no interested researcher would

be denied access to these data through hardware limitations; it was also preferred

for ease of copying and distribution.

Each diskette contained a complete boundary-layer profile of phase-averaged mea-

surements made at one X location, at one frequency of forced, free-stream unsteadi-

ness. A documentation file describing the structure of the data set and a sample

data-reduction program were also included on each diskette.

In the interests of economy of disk space, each boundary-layer profile of phase-

averaged measurements was described by two files:

(i) A sequential-access file of formatted data containing a title, the frequency of

forced unsteadiness, the y locations at which measurements were made and

calibration constants. The name of this file took the form: ... DT1.

(ii) A direct-access file of unformatted integers representing the phase-averaged

values, (u), (v), (uu), (vv) and (uv), at every one of the 512 discrete phases

in each unsteady cycle, for each y location in the profile. The name of this

second file was of the form: .... DT2.

The root names of the files containing these sets of measurements, at each X location

and frequency of forced unsteadiness, are given in Table G.1.
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TABLE G.1

Phase-Averaged Data Files

f(Hz) X' =0.0 X' =0.45 0.63

0.1 UPO130
0.2 UP0225 UP0228 UP0230
0.5 UP0525 UP0528 UP0530

0.8 UP0825 UP0828 UP0830

1.0 UP1025 UP1028 UP1030
1.6 UP1625 UP1628 UP1630

2.0 UP2025 UP2028 UP2030

Selected graphical and tabular information is also available in microfiche form.

For each of the three X stations at which data were taken, profiles of velocity mea-

sures made under unsteady conditions are presented at all frequencies of forced per-

turbation of the free stream. These measures comprise, in part, the time-averaged

quantities: U, V, i'su, v'v' and -u'v°. They also include the amplitudes: U, -,

u'u, v'vo and u'vII, and the phases: O4)U, Ovu, , ,, and 01,vi- The

microfiches of graphs and tables of these quantities are available from the authors

on request.
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