EFFICIENT COMPUTATION OF PERIODIC GREEN’S FUNCTIONS
WITH APPLICATION T0 G . (U) ILLINGIS UNIV AT URBANA
COORDINATED SCIENCE LAB R JORGENSON ET AL. AUG 87

UTLU-ENG-87-2249 NBBB44-84-C-8149 F/G 20/3




el Pl S
=il
el

L
25 s, s

=
@

MICROCOPY RESOLUTION TEST CHART
NATIINAL BUREAL OF STANCARDS 19n4 A

- - vf.ﬁr,‘M .

a
Iy '4“'. :': ““H‘ W\
“::Hs '.e :‘ m‘,‘;. é




= - A
R s

August 1987 nm‘ E“‘E‘mm « y VUILU-ENG-87-2249

o
COORDINATED SCIENCE LABORATORY ’,
College of Engineering @ N
)

AD-A184 853

e bR LA

EFFICIENT COMPUTATION
OF PERIODIC

GREEN’S FUNCTIONS
WITH APPLICATION TO :
GRATING STRUCTURES ;

s 5 5 W B

P
oS

R. Jorgenson
R. Mittra

5&’»:; .

Gy e o ,Y'-*%

5 SEP1 71987 {

) Lo
A

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. 8 7 9 1 4 0 4 2




UNCLASSIFIED
URITY CLASSIAI N HIS PA

APAI24853

REPORT DOCUMENTATION PAGE

). REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

k. SECURITY CLASSIFICATION AUTHORITY

TP T T ot
3. DISTRIBUTION/ AVAILABILITY OF REPOART

OECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

UILU-ENG-87-2249

PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

). NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(if applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research

| ADORESS (Gity, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

800 N. Quincy St.
Arlington, VA 22217

). NAME OF FUNDING / SPONSORING
ORGANIZATION Joint Services

Electronics Program

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NO0014-84-C-0149

L ADORESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

TAS
NO.

800 N. Quincy St. ﬁ%’é’s‘sfgﬂo.

PROGRAM r‘ROOJECT
Arlington, VA 22217 '

ELEMENT NO.

. TITLE (Include Security Classification)
Efficient Computation of Periodic Green's Functions with Application to Grating Structures.

. PERSONAL AUTHOR(S)
Jorgenson, Roy and Mittra, Raj

. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) NS. PAGE COUNT

Technical FROM TO August 1987 38
_—ﬂ —
. SUPPLEMENTARY NOTATION
1 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
[ rewo GROUP SUB-GROUP Grating Structures; Acceleration of Summation;
| Poisson Summation; Periodic Green's Function; Strip Arrays;
F Frequency Selective Surface
P. ABSTRACT (Continue on reverse if necessary and identify by block number)

-1t is shown that electromagnetic scattering from periodic structures may be formulated
in terms of an integral equation that has as its kernel a periodic Green's function. The
periodic Green's function may be derived from two points of view: as a response to an
array of line/point sources (spatial domain) or as a response from a series of current
sheets (spectral domain). These responses are a Fourier transform pairand are slowly
convergent summations. The convergence problems in each domain arise from unavoidable
singularities in the reciprocal domain. A method is discussed to overcome the slow
convergence by using the Poisson summation formula and summing in a combination of spectral
and spatial domains. A parameter study is performed to determine an optimum way to weight
the combination of domains. Simple examples of scattering from a one-dimensional array of
strips and two-dimensional array of plates are used to illustrate the concepts.

A

%)
!

. DISTRIBUTION / AVAILABILITY OF ABSTRACT
X UNCLASSIFIEDAUNUMITED  [C] SAME AS RPT.

21. ABSTRACT SECURITY CLASSIFICATION
CJ oTmic UsERs Unclassified

3. NAME OF RESPONSIBLE INDIVIDUAL J22b. TELEPHONE (Incfudle Area Code) | 22¢. OFFICE SYMBOL

FORM 1473, 34 MaR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
ith -
All other editions are obsolete. UNCLASSIFIED
Y- L R R A N - - a0 PR A \l—"“'\-P" >



EFFICIENT COMPUTATION OF PERIODIC GREEN'S FUNCTIONS

WITH APPLICATION TO GRATING STRUCTURES

By

Roy Jorgenson and Raj Mittra
University of lllinois
Urbana, IL

Q\;AL\TV
\NGPECTE




ABSTRACT

It is shown that electromagnetic scattering from periodic structures may be formu-
lated in terms of an integral equation that has as its kernel a periodic Green's function. The
periodic Green's function may be derived from two points of view: as a response to an
array of line/point sources (spatial domain) or as a response from a series of current sheets

(spectral domain). These responses are a Fourier transform pair and are slowly convergent

summations. The convergence problems in each domain arise from unavoidable singulari-

ties in the reciprocal domain. A method is discussed to overcome the slow convergence by

| S

using the Poisson summation formula and summing in a combination of spectral and spatial

domains. A parameter study is performed to determine an optimum way to weight the

combination of domains. Simple examples of scattering from a one-dimensional array of

strips and two-dimensional array of plates are used 1o illustrate the concepts.
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1. INTRODUCTION

The interaction of electromagnetic fields with periodic structures has always proven

EE difficult to analyze. Some examples of these structures include frequency selective surfaces
" [1]. microstrip arrays [2] and sources inside waveguides [3].. One fruitful approach toward
b, solving periodic problems involves the formulation of an integral equation and its numeri-
f& cal solution via the Method of Moments. The integral equation has as its Kernel a periodic
h Green's function. which is, unfortunately. a slowly convergent summation. Consequently,
Ny the computer time required to solve the problem by the Method of Moments is dominated

by the time needed to compute the impedance matrix elements.

==

In the past. investigators have used various techniques to speed convergence of the

summation. Functions with a wide support in the spatial domain have been used as basis

e

and testing functions to make the summations in the spectral domain more convergent

.

{4.5]. Poisson's summation formula [6] has been used to speed convergence using a spatial

domain approach [3.7] or using a spectral domain approach [2.8.9].

¥ Y

This report investigates the efficient computation of the periodic Green's functions to

tie together the methods discussed in the preceding paragraph. Two examples of periodic
problems are used for illustration. The first example. discussed in Chapter 2, is that of elec-

tromagnetic scattering from a strip grating with the strips arbitrarily rotated with respect

) &S

to the x axis as shown in Figure 2.1. The periodic Green's function for this example

>

',l
-

involves a single summation. This simpler problem will be used to demonstrate the manner

e

in which the periodic Green's function arises in the problem formulation. the slow conver-

gence of the summation and a method of accelerating the convergence through use of

SN

.
§
M

Poisson’s summation formula. Resuits will be presented to clarify specific points of the
problem and to show how optimum parameters are chosen in order to maximize computa-

tional efficiency.
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In Chapter 3, an extension of the techniques developed in Chapter 2 is applied to a

two-dimensional array of plates on a skewed coordinate system as shown in Figure 3.1.

'_. The periodic Green's function arising in the plate array problem involves a double summa-
W%

f( tion and is computationally more intensive than the strip array case. However, the behavior
ey of the two-dimensional summation is similar to the behavior of the one-dimensional
‘E:: periodic Green's function. The conclusions of this study are summarized in Chapter 4.
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2. THE ONE-DIMENSIONAL ARRAY

2.1 Introduction

In this chapter. the integral equation formulation for scattering from the strip grating
shown in Figure 2.1 will be examined. The strips are rotated to make an angle 8 with
respect to the x axis. The strips are perfect electric conductors and are spaced b meters
apart. The incident field is a plane wave where the direction of propagation in the xy plane
makes an angle of 6, with the y axis. The plane wave is either transverse magnetic (TM)

to = or transverse electric (TE) to z .

The case of plane wave incidence is the basis for analyzing all problems involving
scattering from a periodic structure. If an arbitrary field (not a plane wave) is incident on
a periodic structure, no relationship exists between the currents of different unit cells in the
structure. Therefore. the currents on the entire structure must be treated as unknowns in a
Moment Method solution. On the other hand. if the incident field is a plane wave, then a
relationship may be found between currents of different unit cells based on Floquet's
theorem: only the currents in a single unit cell must be treated as unknowns. This is dis-
cussed in more detail in Section 2.3. The response due to an arbitrary source is found by

decomposing the arbitrary source into plane waves and adding the plane wave responses.

2.2 Definitions of Terms

In the remainder of this report. the Fourier transform is used extensively. The

Fourier transform pair for the one-dimensional case is defired as
- 400
F(B,):f/(x de /B dx (2.1a)

4-c0
1 ~ +78, ¢
(x)= —— [ F( d 2.1b)
f )= [FBOe B,
where f(x) is a function in the space domain and F(B,) is the Fourier transform of f(x)

into the spectral domain.
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The Fourier transform defined above is used in this report to transform periodic func-
tions 1n the space domain into their equivalent representations in the speciral domain. A
periodic function may be viewed as a convolution of the function truncated to one period
with a comb function in space [10], i.e..

fo(x)=f(x)* i 8(x—mb) (2.2)

h =

where

f(x)=1,0x) for—% < x <+_;

=0 otherwise .

b is the period of F, (x ) and * denotes the convolution operation defined as

/(x)“g(x)=7/(x')g(x-x’)dx' (2.3)
Since the Fourier transform of a comb function is also a comb function, albeit with a
different period. and the transform of a convolution 1s the product of the transforms. the
Fourier transform of Equation (2.2) is a function sampled at discrete values in the spectral

domain.

k_2-rrm

F,(8)=F(B) L 6 d

m =—oo

2.4)

A concise way to predict the location of the spectral domain comb components of Equation
(2.4) given the location of the spatial domain comb components is through the use of a

reciprocal lattice.

A periodic geometry has associated with it a spatial lattice and a reciprocal lattice [11].
The spatial lattice is a periodic arrangement of points in space and is formed by adding an
integer number (m) of primitive vectors ($,) to a location 7. For the one-dimensional case

under consideration. $| = bx as shown in Figure 2.2.

F'=F +mS, (2.5)

=F + mbx




P

The overall periodic structure is formed when the unit cell, shown in Figure 2.1, is attached
to each lattice point. The unit cell is defined as the smallest part of the structure that,

when repeated. makes up the overall structure. .

g s

The reciprocal lattice is associated with the spectral domain just as the spatial lattice is

B associated with the spatial domain. The reciprocal lattice predicts where the discrete com- :

1 -

N ponents of F (B, ) are located in the spectral domain. In the one-dimensional case under

! [

* consideration. the reciprocal lattice is defined by adding an integer number (n) of primitive

; reciprocal vectors (S,) to a location in the spectral domain (k)

X

i -~

'1 K' =k +nS, (2.6)

‘

1 o - . L. R )

! where § ) is related to the spatial primitive lattice vector by 1

. $,S,=2m (2.7

S Therefore.

'y

Y s
$,=2"% (2.8)

o b

a The reciprocal lattice corresponding to the spatial lattice of Figure 2.2 is shown in Figure .

: 23. '

, The concept of the reciprocal lattice is not too useful for the one-dimensional case. -

\l

A However. for two-dimensional periodicity on skewed coordinates discussed in Chapter 3, it

: d

p provides great insight. Derivation of the two-dimensional reciprocal lattice will be deferred :

t

. until Chapter 3.

%

"

b 2.3 Formulation of G,

: ]

: The electric field integral equation will be used to solve the one-dimensional strip

array problem. Using the fact that the tangential E field is zero on the strip. the following .

equation is obtained: .

R

) nx —jwp.ff(s NG, (s s )ds' + LV‘/‘V“]'(S VG, (s.s)Ms'| == xE,. (s) (2.9)

W ’ j we 4

Y X

y where (5, is the periodic Green's function and J is the surface current density flowing in a !

a

b
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single unit cell.

The periodic Green's function arises from Floquet's theorem which says. given a plane
wave incident upon a periodic structure, all responses will have the same periodicity as the
structure and a phase shift between unit cells which is the same as the phase shift of the
incident plane wave. For example, the current in cell m is related to a corresponding posi-
tion in cell O by

J(F 4+mbz ) = J (7 Je ~Fme mei (2.10)
It is not necessary, therefore. to consider the entire structure in a periodic geometry.

Rather. a single unit cell may be considered along with a Green's function which reflects the

relationship of Equation (2.10). The Green's function in this chapter is defined as the vec-

tor potential response at (x,.y,) due to an array of line sources located at (x'.y‘) within

e

L]
»
K b each unit cell and having a cell-to- cell phase shift of k, & due to the incident plane wave as
%
' ﬁ shown in Figure 2.4.
: ) The response to ar array of line sources may be obtained in two ways. In the spatial
4% ")
. E domain, an array of line sources located at x .y ' in each unit cell may be represented as
iy
. ! L(xy)= T 8(x—x'—mb)e " 8(y—y") (2.11)
m =—co
4
:; 3 Summing the response at (x,.y,) due to each line source. the following expression is
R ]
- .
& obtained:

-8

Py v G,(xpyolx'y)= % T e "™HE lkoxﬁxo-x —mb ) + (yo—y'P| (2.12)

¥ j m =0

R e

:, & In the spectral domain, the Fourier transform pair is used to express the line array of
p @ Equation (2.11) as a series of current sheets. Each current sheet has a period dictated by

O

'

:: & the reciprocal lattice and a cell-to-cell phase shift dictated by the incident field (Equation
L)

Q

o g (2.6)).

b

- Lxy)=L § etBml=g(y 9 (2.13)

\ 3 a Y= F y-y 1

] m ==—co

)

:’f " where

T

)
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Buw = 2™ i,

b
Adding the response at (x.y,) due to each current sheet, the spectral domain Green's func-

- W
- T

tion is obtained

2

e 1 &= ~sB,irg-y'!

v e (4 +/Bim (v g=")
Yolx'y')= — S mito .14
G, (xgyolx'y b,,,gz 378, e (2.14a)

where application of the radiation condition yields

r SZR

k()z—ﬁxzm |fk02 >BZ

wn

. g = VBT kT if B2, >kS (2.14b)
L

::E{:: | To summarize. the solution of plane-wave scattering from periodic structures involves
(h g convolving the current in one unit cell with a periodic Green's function. which may be
:;‘\' i, derived from two points of view. Working in the spatial domain. the response due to an

i A

:‘EE 5: array of line sources is found by summing the response due to each individual line source
t:':" ﬁ as shown in Equation (2.12). Alternatively, the spectral domain representation is obtained
5:;2:‘: by representing the array of line sources as a series of current sheets and summing the
.E:?: response due to each current sheet as shown in Equation (2.14). The two representations of
iy

the Green's function are a Fourier transform pair sampled with a comb function. In the spa-

a2 AN Y

' a,: tial domain, the sampling falls on the spatial lattice, while in the spectral domain. the sam- 1
a’f";

‘?‘,*.: pling falls on the reciprocal lattice. This concept will be expanded further in Section 2.6.

‘”n‘.

G )9 2.4 Convergence Characteristics of G,

LA

l:;:of &

‘:e;'.u In this section. the convergence characteristics of the periodic Green's function are

,‘,.‘

- -

X
.

S s

examined in both the spatial domain (Equation (2.12)) and the spectral domain (Equation

sl (2.14)). Using the asymptotic approximation for the Hankel function in Equation (2.12).
1t S

AN

:»:::c * the spatial domain summation is found to behave as

e

-
.
X
R
=
-2

o0 e—/k\mb e-/k 0\[('0“ ‘=mb )2 + (y,,—,v'))

i Gplxoyolx'y)= L i (2.15)
'.0 m =—co
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for large values of m. This expression is convergent [6] only because of the phase variation
in the numerator of the summand. For certain array spacings it doesn't converge at all and

for ail positions of the basis and testing functions, it converges slowly.

The spectral domain formulation of Equation (2.14a) converges rapidly as long as
v #y". In this report. this is called the "off plane” case since the observation point is located
off the plane of the current sheet. The rapid convergence in the "off plane” case occurs
because as m increases. the plane-wave response to the current sheets changes from pro-
pagating waves to evanescent waves as shown in Equation (2.14b) and the summand decays
exponentially. For the "on plane” case (y =y '), the summand no longer has the exponential
decay 1o aid convergence. It behaves as e /"' /m which converges slowly in most cases. and

for some spacings of the basis and testing functions (i.e. Ax =0), doesn’t converge at all.

A further problem in the spectral formulation is that for certain combinations of
array spacing. incidence angle and summation index (m), 8, =0. which causes isolated terms
of the summation to go to infinity. Since the function is sampled at discrete points, these
singularities may be avoided by changing the angle of incidence slightly. The individual
terms will all be finite. but the overall behavior of the function with respect to convergence

will not change.

The reason that the different domains exhibit the convergence behavior outlined above
can be traced to the existence of singularities in each of the domains. Recall that the
periodic Green's functions are a Fourier transform pair sampled by the comb function in
each domain. In the spectral domain (Equation 2.14a) the function is singular at the point
where B8, = 0 which will inevitably occur for a continuous function representation. This
implies that the Fourier transform (the spatial domain Green's function) is always a func-
tion with a wide support and is. therefore. slowly converging. Conversely. the spatial

domain representation of the Green's function (Equation (2.12)) has a singularity when the

argument of the Hankel function goes to zero. This singularity is inevitable for the continu-

AR A oo (SRR — e SRR e SRR e SRR
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ous function only when y, =y’ (on plane). For this case, the Fourier transform (the spec-
tral domain Green's function) is of wide support and slowly convergent. As the (y,—y")

rtion of the argument becomes larger, moving off plane. the continuous representation of
A po 8 8 g p P
ot

the Hankel function becomes smoother and the convergence of the spectral term becomes

more rapid.

To summarize. a pure spatial domain formulation doesn’'t converge well regardless of
the position of the basis and testing functions. The pure spectral domain formulation
involves a summation that converges well as long as the basis and testing functions are “off

plane.” Unfortunately. the "on plane” case inevitably occurs. For example. it occurs in the

self term when the strips are rotated with respect to x (8 = 0° ) or in all terms when the

strips are flat (6 = 0°).

- r
- -
-
bt

) 2.5 Smoothness of Basis/Test Functions to Help Convergence

The pure spatial formulation will be abandoned at this point due to its convergence

)

f},‘ %’*_ problems that occur regardless of basis/test location. The pure spectral formulation. which
)

?75' l has a convergence problem only in the "on plane” case. will be considered further. It is
‘ﬂ;' ! common. in the pure spectral formulation, to speed convergence in the "on plane” case by
é;; analytically performing the convolution operation using basis and testing functions . ¢
‘.f' % given combined degree of smoothness. To demonstrate this technique consider a TM to 2
" a plane wave incident on an array of flat strips (8 = 0°). The equation for an element of the
:l : Method of Moments' impedance matrix is

Ve

oo +7 B (v —v)
'al scar - 7 w T ' e .
<T —-E > _fT(x),]bﬂfj(x )mz de dx (2.16)

jop <« 1 +/Bm Ny = Bam g
5 Z 375, fT(x)e dxfj(x)e dx

m E=~o0

——

Z m ==—00 2]Bv

J is the Fourier transform of the basis function in the x direction performed analytically.

:
3

2 B =i § Fp)i.,)-]
3
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W
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4 T is the complex conjugate of the Fourier transform of the test function also taken analyt-

ically. B,, is defined in Equation (2.13). If the basis function is a pulse located at the ori-

BRI gin. and the test function is a delta function located at ¢; as shown in Figure 2.5, then

Bim &

3 (2.17a)

J(B.,) = Asinc

o and

“ =~ +jBp
i T (Bu)=e™fimr (2.17)

The summand now behaves as 1/m? which converges regardless of spacing and quicker than

G the convergence of the Green's function alone.
A

o Symbolically. the linearity of the Fourier transform has been used to change

o TR* Jx 1 él 3.18)

tn to

FT j G (2.19)

ﬁ: In Equation (2.18), T®(x ) = T(—x ) is needed to get the testing function inner product into
iy convolutional form. F~! is the inverse Fourier transform and takes the form of a summa-

tion since 8,,, is discrete.

The smoothness of the basis and testing functions becomes essential for convergence
) when differential operators arise in the integral equation. such as a TE to Z plane wave
— incident on an array of flat strips (8 = 0°). In this case the left-hand side of the integral

equation (Equation (2.9)) becomes

+iBiym (v =¥

oy <FBrs=a_l k2lrTe)f7G) ¥ "  dx'dx (2.20)
j web dfreof ,,,g;, 278,

. d d yog R ethetm0
" T 1) T S a—dxdx

',.! m ==—00 2 ﬁy
A In order to transfer the derivatives of the scalar potential term onto the basis and test func-

tions. the functions must have a combined degree of smoothness of at least a triangular

basis and a pulse test for the convolution integrals to make sense. The transfer of a

s
S0 e ‘ ) AN T A e L A G S R R R SR R ERAN
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derivative onto the test function converts the pulse into a set of delta functions while the
transfer of a derivative onto the basis function converts the triangle into a pulse doublet as
shown in Figure 2.6. Performing the convolution of the basis. test and Green's functions
analytically leads to the Fourier transform of a delta function. which behaves as 1. and the
Fourier transform of the pulse doublet which behaves as 1/8, . These terms together with
the 1/B8, behavior of the Green's function yield the same speed of convergence for the scalar
potential term as that of the vector potential term for the TM case (1/m?) discussed above.
The TE vector potential term will converge much faster (1/m* since it has no derivatives

and the functions to be convolved are. therefore. smoother.

If the derivatives are first transferred onto the Green's function in Equation (2.20),
the following equation results:

.___fT(r)fJ(x) )2l k"_ P gy dx 221)

m ==co

The term arising from the vector potential term ko* behaves similarly to the TM case and is
slowiy convergent. The term from the scalar potential (82) doesn't converge at all. In this
case. the smoothness of the basis and testing functions is required to obtain convergence.

Convolving analytically. Equation (2.21) becomes

L k8B g )iB.) (2.22)
jweb o 2] B.v wn xrn .
The level of smoothness needed for the above sum to be convergent is at least that exhibited

by triangular basis and pulse test functions. This is the same level of smoothness needed

when the derivatives were transferred to the basis and testing functions.

In summary. for flat strips (8 = 0°), the derivatives may be transferred onto the
Green's function, and the smoothness of the basis and testing functions may be used to help
convergence. or the derivatives may be transferred onto the basis and testing functions
explicitly and then the convolution may be performed. In either case. the speed of conver-

gence and the level of smoothness required are the same and the order of the operations

T AT T R .. ~ T R T -.‘,'.'_‘.‘n‘;..}:.‘ -
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Figure 2.6 Transfer of scalar potential derivatives onto the basis and test functions
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a0 does not matter.

o In contrast to the flat case. when the strips are rotated (6#0° ) with respect to the x
v

;- axis. the order of operations does matter. If the derivatives are first transferred to the
)

-)

¥ Green's function. the resulting sum will not converge regardless of the level of smoothness
N in the basis and test functions. This is best illustrated by examining the case in which the
s
“‘ strips are rotated 90 degrees to the x axis. With the derivatives transferred to the Green's
N

. function. the expression for the the matrix elements becomes

[1]

t =B Ny =yl
;‘.. <T _E)cul > = __ Z ffJ(B\m )' )T (Bun '- )—_(k (;.’ -3\2)‘1)' 'd_\v' (223)
e jweb 2 0 2/ 8, '
1)
R

f:! If J is a triangular function along the strip and T is a pulse function. which led to con-

vergent terms in the flat case. then for no overlap between the basis and test functions (see

™ Figure 2.7) Equation (2.23) becomes
L)

Y 2 2

aA —)B,v (k(T_B:)
Asinc? A Asinc{i— 5 wir_ - T 2.24

W j&)ﬁbm_z_m 2 28, ( ) -
; Note that the convergence problem arising from the scalar potential term (87?) is mitigated
xl

o

:go by the smoothness of the basis and testing functions and the summand behaves as 1/m?
R
o exactly like the flat case. Also note that since this is an "off plane” case. the exponential
#

tod

2 decay 1s the dominant behavior of the summand.

L4

"

When there is complete overlap between basis and testing functions as shown in Fig-
ure 2.8, Equation (2.23) becomes

-
g
St

! > B,

) oo 2432 - ﬂyA M
.;, _ 1 Z (kn B,v ) 3A + 2e / | —e "'/—2~ (225)

. j(”ébm=-oo 2/B\ |2jB\ /ﬂ\JA

- - E‘A

;J 4 _2e /8,3 l-e_/——z*

b 7875 BB l
c:.; The second and third groups of terms in the braces have the 1/8, behavior dictated by the )
’

2 level of basis/testing smoothness chosen. Additionally. since these terms represent the
.
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Pt contribution of the basis to the parts of the test not on the same plane (labeled 1 and 2 in

Figure 2.8). there is an exponential decay in these terms which also aids convergence. The

first term in the braces does not converge. It represents contributions of the basis functions

S
i)

ot to portions of the test function in the same plane (labeled 3 in Figure 2.8). Consequently.

the first term has no exponential decay. Additionally. it has only a 1/8, behavior rather

-
.
ot~

j;?n*: than the 1/83 behavior expected from the level of smoothness under consideration.
BRKY ns

AN ]

K¢ T In order to understand this problem. the expression

oy ~ It 0, /By Iy -y,
;:::‘: g fT(Btm Yy )fJ(B\m .y )e d ! d_V dy (2.26)
)
:‘ S will be examined for basis and testing functions with various degrees of smoothness. but
A % .
l:‘—-"p: B
S I not necessarily the sufficient degree of smoothness needed to solve the TE case under con-
I sideration. For pulse basis and delta testing functions with no overlap. Equation (2.26)
3
ue becomes
4
& ) “r
A
. h asine |28l 80 (2.27)
E:;‘o 2
0
"' :J. Equation (2.27) behaves as 1/B, as expected from a pulse/delta degree of smoothness. The
s‘. L_?, M
f':?af{ exponential decay arises from the basis and test being "off plane” from one another. With
Bl i
o g complete overlap. the expression becomes
R,
PR ke
vy -0y
RO 2 4 2 2 (2.28)
KN W T - e
ot B, B,
. The second term represents the "off plane” contributions of the basis to the test. It has a
N
, ' ‘..-
! é 1/B, dependence which stems from the smoothness of the basis and testing functions and
An ’
v o
,-' {h an exponential decay which stems from the "off plane” nature of the contributions. The
o first term represents the single "on plane” contribution from the point y=0 on the basis.
e
o N
::.‘:: 4] This term also has a 1/8, dependency which does not arise from the smoothness of the
IOy
LA
" basis and testing function. The important thing to note is that the first term in Equation

<
-t
[ 7

ol (2.28) has the same dependency as the first term in the triangle/pulse case (Equation

(2.25)) even though the triangle/pulse case has a higher degree of smoothness than the

-.-. f.’

o g
a0
2 : 3
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. pulse/delta case.

For pulse basis and pulse testing without overlap, Equation (2.26) becomes

E KTl

Al gy
Alsinc? _5;2_ e =/ Bt (2.29)

- o's

This expression has a 1/87? dependency related to the basis/test smoothness exactly as was
y found in the flat case. The exponential decay arises from the "off plane” nature of the prob-

lem. For complete overlap the expression becomes

B,A

B.A (2.30)

2

; 24 _ 4 sin
iB,  jBS

Again the second term has the expected 1/87 decay from the smoothness and the exponen-

R

tial decay from “off plane” contributions. The first term has a 1/8; decay which is the same

as the "on plane” terms of the previous cases.

K e eu"s a

The pattern that emerges is as follows: when there is no overlap between basis and
testing functions. both exponential decay and degree of smoothness contribute to rapid con-
s vergence. In this case the derivatives may be transferred to the Green's function. For the
case in which there is overlap between the basis and test functions (even touching at one

point), one term arises which behaves as 1/8, regardless of the smoothness of the basis and

testing functions. This term represents the “"on plane” contribution of the basis to the test-

. -

ing function and, therefore. has no exponential decay. For this case. the derivatives may
not be transferred to the Green's function to obtain a convergent summation. Rather, basis

and testing functions must be chosen with a level of smoothness to accept the derivatives,

- o o -

and the derivatives must be explicitly transferred onto the basis and testing functions.

To ensure that the above problem is not unique to the 8 = 90° case. a strip of arbi-
trary rotation 8 will be examined for completely overlapping pulse basis and pulse test

! functions. For this case. the "on plane” contribution of Equation (2.26) becomes

= L "t e “-"_'- “
DO o e e L P e S
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Fl‘.“,

;‘s A -— 4 ( )
(B, cos0 ¥ B,sin®) _ (B, cosd — B, sinB) 231

When 0 = 0° (the flat case). the terms in the braces cancel, but for all other cases, the terms

I o

in the braces remain. leading to nonconvergence of the sum.

To summarize. in the flat case. all derivatives may be transferred onto the Green's

T

;; function. and the smoothness of the basis and testing functions ensures the convergence of

the sum. The degree of smoothness required of the basis and testing functions is the same,

Bam e T
sy
aa ui

whether the derivatives are transferred onto the basis and testing functions or onto the
Green's function. A higher degree of smoothness leads to faster convergence in the sum. In

contrast, in the rotated strip case. the derivatives must be transferred onto the basis and

T
B 883

testing functions explicitly before convolving. To transfer the derivatives onto the Green's

" e
y :f function leads to nonconvergent terms representing "on plane” contributions of the basis to
l" -
A . .
A the test function. Increasing the degree of smoothness has absolutely no effect on the s
« 8 eg y

-

of convergence. Pulse/delta. pulse/pulse and triangle/pulse all have 1/B, terms. Note that

this is sufficient for convergence as long as there are no 8 terms in the numerator represent-

Co Tl
(s ] : ;

ing derivatives transferred to the Green's function.

2.6 Acceleration of Convergence

A result of Section 2.5 showed that it is necessary to transfer all derivatives in the

v R

scalar potential term to the basis and testing functions when computing the matrix ele-

[¥] ] . . . . . . .

s A ments for a strip grating of arbitrary rotation. This operation reduces triangular basis and
a9

oy . . L . . .

:, &~ pulse testing functions to combinations of pulse basis and delta testing functions if both
1 A

=

basis and test take a derivative (Figure 2.6). In this report, the vector potential term calcu-

==
2

lation will be simplified by approximating the triangular basis by a pulse with the same

s

3

o moment and approximating the pulse test by a delta function weighted by the pulse sup-
£

=

port [12] (see Figure 2.9). This approximation can be justified by observing that when the

s

*' 2 test function is near the basis function, the scalar potential term is the dominant contribu-
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tor to the matrix element and the value of the vector potential term is unimportant. As the
distance between basis and testing functions is increased, making the vector potential more
important, the moment of the current is the quantity that determines the value of the vec-
tor potential. The moments are the same for the triangle basis and the approximate pulse
basis. Through the above approximations. all of the integrals are reduced to the same form:
one of finding the response at the test location x; .y, to an array of current pulses of arbi-

trary rotation as shown in Figure 2.10.

In order to accelerate the convergence of the summation. the Poisson summation for-
mula will be used. This method makes use of the fact that a smooth, nonsingular function
with a wide support in one domain (either spatial or spectral) has a narrow support in the

other domain. It also employs Parseval's theorem

<\ [HGF
Jrhi)f (xdx = = [H(BF (BB (2.32)
If h(x) is chosen to be a comb function whose elements fall on the spatial lattice

R(x)= T e ™ 8(x—mb) (2.33a)

"n ==

then its Fourier transform H (B8) is also a comb function whose elements fall on the recipro-

cal lattice.

A ): B 22—, (2.33b)
Thus, using Parseval’s theorem, a series may be represented in either domain by
Z e-/“mbf(mb)=f Z e—/k‘mbs(x_’nb)/ (x)dx (234)

”n =—-o0 m =—co

21rm

F(B) B

Rk

m ==

EI;ZTrm

”n =—oo

—k

\

If f(x) has a wide support and is nonsingular, implying slow convergence, then F(B) will
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have a narrow suppe-t. implying rapid convergence and vice versa.

To demonstrate a fundamental problem with this approach, Equation (2.34) is applied

to the slowly convergent “on plane” case of the pure spectral domain (Equation (2.14a)).

/ﬁ'b’l—t, (=) -
1 & 1 e 21rm 1 e*/BO -
Ry ) AL -3/ 2] kg - (2.35)
) mm
k(? | —— k
b
In terms of Parseval's theorem,
-~ +7B(x =)
FB)=_E

—7—— (2.36a)
Zj k«)z “BZ
+; B g )

__ +ﬁ\
fx)= f“vkz—_E; /Prd B (2.36b)

As discussed previously. the summand in Equation (2.35) is singular when B2, =k . but
since B,,, is discrete in m the singularity is avoidable. In Equation (2.36b). however.8 is
continuous and the singularity cannot be avoided. The integrand is sharply peaked. so it is
expected that application of Poisson acceleration will not help convergence. In spite of this.

if the integration in Equation (2.36b) is performed,

f(x)= 4_1j.H02(kle0—x'—x 1) (2.37)

is obtained. Applying Parseval’'s theorem yields

o[ 1 GOR (o dx = 4L gme—"""bﬂ‘,z (ko1 x o= —mb |) (2.38)
This is the pure spatial formulation of the periodic Green's function which is slowly con-
vergent. If the Poisson summation formula is applied to Equation (2.38), the result is the
pure spectral domain formulation of the Green's function "on plane." The unavoidable
singularity of the Hankel function as the argument approaches zero leads to the slow con-

vergence of the "on plane” sum in the pure spectral domain.

In both spectral and spatial domains. application of the Poisson summation formula

did not speed convergence because it was applied to a peaked function with an unavoidable
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singularity. Thus. a better strategy is to subtract from the singular function an auxiliary,
nonsingular function that is asymptotically equal to the singular function for large m; then
add the nonsingular asymptotic function back in. The Poisson summation formula may be
successfully applied to this smooth, wide, asymptotic function. First, working with the

spectral domain:

= 1 e+jﬂ(,,(xo—x') 3
=Z 37 Jke<pr. (2.39)

o e+JB\m('0_‘ ) 1

2z ; 3 - /—
n =—co 2'I 'Jk(; —B\zln —j +Bll))

oo 1 +j By (vp—¥")

2z —2‘7—"‘8 -
m =—co u?4+B82,

The first summation is done in the spectral domain and converges as 1/82,. The second

+

summation is never singular so the Poisson summation formula can be successfully applied.

The second sum becomes

Z e—’k""bK(,(u fxy—x'—mb |) (2.40)

where K, is the modified Bessel function which exponentially decreases with increasing

argument.

The operations of Equation (2.18) may be rewritten using Equation (2.39) as

TR* J* F(G)=T**j* [F"G-G")+G" (2.41)
The inverse Fourier transform F~! is a summation. The smooth auxiliary function. G°. has
the same asymptotic behavior as the desired function G and is summed in the spatial
domain through use of the Poisson summation formula. In Equation (2.41), the operations

in brackets may be viewed as a way 1o accelerate a slowly convergent summation by break-

ing it up into two rapidly convergent summations.

The convolution operation of Equation (2.41) may be distributed onto each domain

and performed analytically in the spectral domain. according to
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F YT J(G-G°)|+Tk*J*Ga (2.42)

This is equivalent to computing the impedance matrix elements by adding the elements of

R
-

two matrices: one computed in the spectral domain and the other computed in the spatial

domain.

-
R

4 g To accelerate the spatial domain summation successfully for the "on plane® case
oy
"5: (yo=y' = 0) the asymptotic behavior of the Hankel function must be removed by moving
g,

P X
)
- Pl
i"\v"w

the observation point of the auxiliary term off the plane. cb units.

—;—_— z e—j‘\mh]!d‘2 lko V (x()—x '—mb )2] = (2.43)

pire |

) J =
"
'.' 3 1 -« —jk mb /
:t( ; 4—] Z e SR 5 k 0 (x o0X '—”lb )2] - H()z lk ()-J(x 0—X '_mb )2 + Cb2
'
1 ‘7:- - m
i t{- + T:— Z i hH() lk ()-\/(x X ‘—m.b )" + Cbﬁ
£ v J m=—o
}"., - The first summation remains in the spatial domain and converges rapidly because its
b} H
- asymptotic behavior is being subtracted out. The second summation is brought into the
® 8 8
I
)
. spectral domain using the Poisson summation formula. To apply Parseval's theorem to the
2 P pec 8 PP
‘)
‘i
t!:‘ second sum. the following equations are needed:
1]
":; ! f (x)= -lTH(;"Ik()\/(x p—x =X P +chb? (2.44a)
A 4
8 N
[ -~ - vg—u'
'&:2 o F(B)= 217”.3" [k"\/xz +cb2le= i8N gx /B0 (2.44b)
"
- Application of Parseval's theorem yields

L
)

ig? 1 fﬁ(B)};(B)dB= 1 i e—ICvae*’Ime(\o‘v\‘) (2 45)
A 3 2m 5,%.27B '
Ky where
I’ rv
o 2mwm
My . B\/n = —_k\
so b
0
R
R o VEI=BL,  ifkZ>B2,
o B_v - ‘—j anm—k ()2 if Bn:‘m >k(;?
£
» ] . L . " " . . . . .
e N Since this is in the spectral domain for an "off plane” observation point, this sum is rapidly
'.f,
v,
:3‘
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convergent.

As in the acceleration of the spectral domain formulation, the above procedure may be

treated as a way of quickly summing the spatial periodic Green's function,

TR*J*G=TR*J* [(G—G)+F ' G") (2.46)

By distributing the convolution operation of Equation (2.46) onto the different domains and
performing the convolutions analytically in the spectral domain, the following is obtained.

TR*J*(G=G*)+FMT'JG") (2.47)

If ¢b is allowed to equal zero. the asymptotic testing point is moved "on plane." The first

term goes to zero. and the Green's function is summed entirely in the spectral domain.

Since the test point of the asymptotic term is now “on plane.” the summation is the slowly

convergent pure spectral domain approach. The next section will discuss the details of

implementing Equations (2.46) and (2.47).

2.7 Numerical Implementation of the Spatial Domain Acceleration

In this section. the details of implementing the spatial domain acceleration procedure
will be examined. The accelerated periodic Green's function. shown in Equation (2.43)
with y,—y ' # 0. is expressed as a weighted combination of the spatial domain and spectral

domain.

O

G (xoy(,lx y ‘4L Z e_ﬂ‘mb (2.48)
o—X '—mb )2 + ()’ 0y ')2] ‘Hoz |k ()\/(X()—x ‘—mb )2 + ')’0“}' ‘I +cb )2 ]l
oo ~;{lyg=y"l4cb)B

m ==
2 ] \elﬂm('o-")

1
+ - 3
bm:—oo 216\

The factor that determines the weighting given to each domain is ¢, which is a measure of

how far "off plane” the testing point of the asymptotic term in the Green's function is

located.
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"::k Figures 2.11-2.14 show the nature of the real part of the summand versus term
' ' number (m) for various ¢’s. In this report. ¢ is always multiplied by the cell size (b). for
; : example, ¢=0.1 and cell size = 0.7m moves the test point of the asymptotic Green's function
! ‘ o (cb) 0.07 m "off plane.” In Figure 2.11. ¢=0.001 so the terms of the spatial summation are
¢

o § small in magnitude and highly peaked around the m=0 term. The spectral domain has a
p N

22& much larger magnitude which oscillates around zero to term 20 and beyond. For this value

LR
R

of c. the spectral domain makes most of the contribution to the overall sum and converges

slowly. As c is increased. moving further "off plane” (c=0.01 and 0.1), the spatial domain

L3
EY

-

E:‘!:: e becomes larger in magnitude and loses its peaked nature. The spectral domain, on the other
:". g hand. becomes smaller in magnitude and more peaked around m=0. In Figure 2.13. for
-,‘ A example. when c=0.1. the spatial term magnitude is oscillating around zero until outside the
zﬁ , m=-16:16 core while the spectral magnitude is zero outside the m=-4:4 core. When c=1, as
N shown in Figure 2.14, the spectral domain terms are essentially zero and all the weight is on
,: U the spatial domain which, like the spectral domain of Figure 2.11, oscillates around zero to
ESO:: -:\ term 20 and beyond.

AN %

f:':: The shifting of weight from the spectral domain to the spatial domain as ¢ moves "off

B

plane” is also seen in Figures 2.15-2.18. In this set of figures, the value of the sum in each

l,:
‘E:\.{' ‘E-\: domain is observed as the limits of the summation are increased from m=-1:1 to m=-
'n." 100:100. For ¢=0.001, the spectral domain carries all the weight and oscillates about its
:] % true value past the sum limit of m=100. As the asymptotic observation point is moved
-;q . further "off plane” (¢=0.01.0.05 and 0.1). the spectral domain sum converges in a fewer
z b
hY number of terms and becomes smaller while the spatial domain sum requires more terms to
:-;? & converge and makes a larger contribution.
o
:S::: The question that arises is: Can the parameter ¢ be chosen to minimize the time
.‘h. g needed to do the two summations in the spatial and spectral domains? In order to answer
’;.': g this question, a parameter study was performed where the sum limit needed for conver-
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b
S ence 10 a given accuracy in both domains was plotted versus ¢ for various combinations of
L g g y p

- cell size, frequency. incident angle and test position. What emerged from this study is that
L)

]

INK .
i';::' although the number of terms needed for convergence changes with the parameters. the
DO
B

LW
jl‘; general nature of these curves remains essentially constant. Two examples are shown in
474N
R Figures 2.19 and 2.20 for two different sets of parameters. When ¢ is small. the spectral
)
) . . . . .
b j domain needs many terms to converge and the spatial domain converges immediately. Asc¢
Ny Al
tht A .

f{v,‘_o increases. the number of spectral terms needed decreases while the number of spatial terms
e needed increases until at around ¢=0.05. the graphs cross over. The area of cross-over is
<

W *
Ty, relatively flat so ¢ can be picked from the range 0.02-0.1 and both domains will be
2
:\‘ ; weighted approximately the same.

N2 The true test of optimization, however, is not to minimize the total number of terms
,‘.'*
B . .
\'_‘f needed to perform the spectral and spatial summations as was done above. but rather to
o
D o 4 o .
. minimize the computer time needed to perform the calculation in Equation (2.46) or Equa-
7._'1 tion (2.47) applied to the geometry of Figure 2.10. Prior to examining these results. Equa-
[° .

34 . . . .

%\. tions (2.46) and (2.47) must be discussed in greater detail.
b5

) The implementation of Equation (2.46) is subsequently called Method 1. A numerical
i A . . . . .
0" Romberg integration routine is used to integrate the prime coordinates of G, over the one-
:
"_' dimensional pulse in the unit cell. Since the test is a delta function. the convolution with
E)
;‘6‘0

' the test function becomes an evaluation of J* [G,, ] at the point x; vy . For each s’ chosen by
n“' €
* the integration routine along the strip. the spectral and spatial summations of Equation
[ . . .
':::a’ (2.46) are summed to accuracy. First the core (m=-2:2) is summed in each domain to deter-
4

mine which domain is the dominant contributor to the Green's function. The dominant

=

7 contributor establishes an absolute accuracy of the summations to minimize the time spent
:".o
0: . in computing a summation that has an insignificant contribution to the integrand. When
[}
n",c

the test is coincident with the basis function. the singularity is removed from the

*' . .
E. H ik, x—=x'-mb 1) term and computed analytically. The singularity does not occur in
: r‘. "
IH
.
: |
\!Q‘I |
4
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E::'v -
i.f;i
it the asymptotic terms since ¢>0.
Y I The implementation of Equation (2.47) is subsequently termed Method 2. In this
e
W
ft'.::v & method. the basis and testing functions are distributed onto the spatial and spectral domain.
R
.‘s::‘ .
oy 1e.,
u'ﬁg E
it b cx) - m
K fre)-fics )_ e M (2.49)
. ‘_\ I" = —00
.
& 3

IHOZ [k (,\/(: o—x'=mb )2 + (y —~y ')zl —-H¢E lk (,\/(x(,—x —mb >+ (ly,—y'|+cb )2] ds 'ds

—j(lyo—y'|+cb B,

..N
- ”"' -
!
Loy
.
A |

v + — T J dy'd
e 5,2 7616 39— g——dyay
Ry -

':5 § The spatial domain integrals are done numerically. as in Method 1. while the spectral
.:,'.: . domain integrals are performed analytically. When no overlap exists between Jand T in
V. !

‘. \

g - y (see Figure 2.21). the spectral domain sum becomes
h g
'.q::' s

R 8§ in(B,., cosh 2 B, 5ind) 2

sin(8,,, cos@x B, sinf) —

" 151 ™ ’ 2t BBz < (2.50)
t“?‘ . b,==.iB, (B, cosd=B, sind) 7>
%5 ."; 3 - . .

6.:: \ When J and T do overlap in y, the spectral domain summation becomes
b
; A ’r ¥ A
. +iA = -ja -jA -4,2 .

'.'.'--: g 1 E e~ Bvr (€ T e s et/ BT e BB _g T |t BT (5 51
:‘l'.: 2 b "m T=co jA 1 .’A 2 2] By
YO0 A
Zl;‘,' *
iy 3 .

i ;" A, = B, cosb—8, sind
“.:e E A,=8,,,cosb + 8, sind
;‘,".:: Note that when overlap exists between the basis and test functions, certain terms of Equa-

tion (2.51) decay as 1/B;] and have no exponential decay. In order to obtain exponential

b8

-
-

(s

— convergence. therefore, it is necessary to move “off plane” enough so that no overlap occurs

Y
s
«

- e between the basis and test functions. In Method 1. the asymptotic test point
“' ' . . . .
N P (Iy,—y'l+cb) was redefined for every point called by the integration routine because the
e

i spectral and spatial contributions were integrated together. In Method 2. the asymptotic
"‘:: =
) . . . : .
':c;: ﬁ test point must be fixed for the entire calculation because the spectral and spatial contribu-
1'.‘
:A._,j’
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tions are integrated separately. This means that in Method 2, it 1s possible for the asymp-

totic terms to be singular if ¢ is chosen such that \/(x..—x ‘—mb 32+(1y,—y | +cb ) falls on

the basis function as shown in Figure 2.21.

]
L

Method 3 is similar to Method 2 except that the current pulse in the spatial domain

e

integral outside a core region (m=-1:1) is approximated as a delta function weighted by the

A support of the pulse. Inside the core. where the integrand varies quickly. the integration is
N
)
! " performed numerically. Equation (2.49) becomes
=
'l (: B 1 d —~jk b
4 " fT(S‘ )fJ (51 )27 Z e ) (2,52)
Kl m===1
#

o]

‘Hﬂz lk(,\/(x—x —mb )2 + (_v—y')Z] —H.?’k”\/(x —x'=mb ) + (Iy—y'l+ch )2]

~
S
:;: + A z e-jl‘/nh

‘ J m#=1.0.4+1
i lﬂ(f ‘k ().J(x[ —X; -mb )2 + (y( —y[ )2] - H()z [k ()J(.'Ck X —mb )2 + ( '_V‘ -y ( +Cb )2]

; 7:. 1 - ng) g 1 =B (lv~=y'l4ch)

,‘ + — r(\nr')J(ﬂ\'rr") . el\.'

. ) b m=z-oof 6 y f y 2j B,\‘

Figures 2.22-2.26 show the time needed to compute the convolution of basis. test and

periodic Green's functions using Methods 1.2 and 3 when the strips are flat (§ = 0°). Asin

K -
K :E Figures 2.19 and 2.20, although the calculation time changes with parameters such as test
"

location, frequency. array spacing and incident angle. the shape of the curves remains essen-

¥ tially the same. Method 3 is the fastest method regardless of the parameters. but since it

¥ L involves an approximation in the spatial domain, it is not as accurate as Methods 1 and 2.
'

This inaccuracy becomes more pronounced as ¢ increases and the spatial domain gets more
’) .3 weight. Method 1 shows a shape predicted by Figures 2.19 and 2.20. If ¢ is too small
3 o (¢<0.01). too much time is spent summing the spectral domain and the required time for
. the calculation increases. As ¢ increases (0.01 <c<0.08). the time goes t0 a minimum then
)
. ::: slowly increases as the spatial domain becomes over-weighted.
SN
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The time requirements for Method 2 are similar to the requirements for Method 3 for
small ¢ but increase with increasing ¢. crossing over Method 1 at around ¢=0.02. Method 2
time i1s dominated by the time needed to integrate numerically in the spatial domain.
Although Method 2 has a simpler integrand than Method 1. it is difficult to specify an abso-
lute accuracy correctly for the summation in Method 2. The accuracy is overspecified in
Method 2 and. therefore, requires more time than Method 1. In Figure 2.26. at ¢=0.077.
Method 2 exhibits a time spike. This occurs because the real part of the spatial integral is
approximately zero, and the Romberg integration routine calls the integrand many times in
order to get a sufficient degree of relative accuracy. As seen in Figures 2.27 and 2.28. the
integrand itself is very smooth and the large number of calls is unnecessary. An absolute
accuracy parameter could be specified in the integration routine to alleviate this problem.

but this was not done.

The self-term. shown in Figure 2.29, deserves special consideration. Methods 2 and 3
exhibit the same behavior as before. Method 1 takes far more time for ¢ <0.01 than could
be eyplained by saying that the spectral sum is overweighted. The explanation for this
behavior comes from an examination of the integrand. When ¢ is close to the strip, the
integrand is ill-behaved. as shown in Figure 2.30. The singularity has been subtracted only
from the nonasymptotic term in the Green's function. When ¢ is small. however. the
asymptotic terms are also tending to be singular. Moving “off plane” a bit more, as shown

in Figure 2.31, causes the integrand to become better behaved.

When the strip is rotated (8 = 45°). the sum has essentially the same behavior as in
the flat case with the exception of two features (see Figure 2.32). The first feature is that
Method 1 no longer increases in time when ¢ <0.01 because since the strip is rotated. most
of the points called by the integration routine are farther "off plane” than the specified "off
plane” factor. The second feature is the drop in time exhibited by both Methods 2 and 3 at

¢=0.05. This occurs because ¢ has moved from “on plane.” where the spectral convergence
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4
) . . .
! behaves as 1/B7 to "off plane” (¢ X.7>.05sin (45°)) where the convergence is exponential.
. As c approaches zero in Method 2. the accuracy of the sum must be specified more pre-
0
B cisely because the sum is behaving as 1/m? with no exponential decay. To study the region
[3
)
7,' when ¢ approaches zero, Method 2 was summed until four digits of accuracy were obtained
v in the final answer for all c. The result is shown for a flat strip (8 = 0°) case in Figure 2.33
A3
ﬁ* and for a rotated (0 = 45°) case in Figure 2.34. For the flat case. the best choice for ¢ was
¢
i found to be ¢c=0 for the given size of basis and testing functions. No weighting in the spa-
. tial domain is necessary for Method 2. because the smoothness of the basis and testing func-
L
‘ tions help convergence for all combinations of these functions. Since the convolution is
; done analytically in the spectral domain, there is no numerical integration involved. When
o ¢ #0. a numerical integration must be performed which dominates the calculation in time
k! . . . . .
.) even though the contribution from the integration is small. In the rotated case, the best
) choice for ¢ is 0.05 <c<0.15. Here. smoothness of basis and testing functions does not help
& convergence in the spectral domain. In order to get exponential convergence. we must go "off
¥
plane” (c>0.05). In this case the time needed for numerical integration does not outweigh
Ky
L)
.:, the time needed to sum in the spectral domain accurately.
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3. THE TWO-DIMENSIONAL ARRAY

3 1 Introduction

In this chapter. the concepts developed in Chapter 2 will be extended to examine the
formulation of scattering from the two-dimensional array of plates shown in Figure 3.1.
The plates are aligned perpendicularly to the xy plane and rotated to make an angle 8 with
respect to the x axis. The plates are arranged along a skewed axis S‘l and §2. The incident
field 1s a plane wave with a direction of propagation 6, with respect to z and ¢, with

respect Lo 1

32 Definition of Terms

The Fourier transform needed for the two-dimension array is

FB, 8= [[1 (xyre™ B By (3.1a)

1 it +(B  +B.¥)
F(B, B, R B d B, .
m):ff (8, .8, e B.dB (3.1b)

where f(x.v) is the function in the space domain and F (8, B, ) is the Fourier transform of

flxy)=

f(x.y) into the spectral domain.

The spatial lattice for this problem is shown in Figure 3.2 is defined by use of a trans-

lation vector ﬁmn

a' = 5 + 5["" (302)
= 3 + m.§] + ns::
w here Sf, and 53 are the primitive vectors defined as
Sy=cy (3.3a)
S, =dcosQi +dsinQy (3.3b)

Therefore. the translation vector in Cartesian coordinates is

Bn = (ndcosQ)x + (mc + ndsinQ)y (3.4)

The reciprocal lattice is defined through the use of a reciprocal translation vector K

mn °




Figure 3.1 Geometry of two-dimensional arrayv of plates
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K =K +K,,
=K +mS, +nS,
The reciprocal primitive lattice vectors, §, and S.z. are defined such that

%21}

§|'

2=O §2'§2=Z7T

%]}

S‘l-

Therefore.

S, = 27 l_{'cosﬂ — xsinQ)
c cosf)

= 2 -
$2= d cosf) x

and the reciprocal translation vector in Cartesian coordinates becomes

n msin{} |- 2em -
- x 4+ v
d cos) ccosf} c

K, =2n

The reciprocal primitive lattice vectors are shown in relation to the spatial primitive lattice

vectors in Figure 3.3

33 Formulation of G,

The electric field integral equation (Fquation (2 6}) will be used to analvze the doubly

periodic arrav of plates

response to an array of pownt sources. In the spatial domain an array ol point sources

located at x .y .= " in each unit cell ma be represented as

Lxyz)= 3 ¥ 8B—B-B. b bz )

D —gn = —ex

The response at v,,.v,.2., to each point source may he summed to obtain

Iz ‘ar - . .
o - . €
G (R, P = Z Ze A

In this case the Green's function 1s defined as the vector potential

63

(3.5)

(3.6)

(3.7a)

(3 7b)

(38)

t39)

3o

M E A T eea -‘ﬂJ ﬂ.,—ﬂ'—b v T+ (.

In the spectral domain. a point source arrav mayv he expressed as 4 douhle summation

I

. J

ot Current sheets through the use of the Fourier transform pair ifguation '3 1) Fach o {
|

the current sheets has a period dictated hy the reciprocal ldattice and a cell 1o (ell phase

-
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Figure 3.3 Spatial and reciprocal primitive lattice vectors
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shift dictated by the incident field.

Z z e.,,/(xmn—t,m)(p—P)s(._ 9 (3.11)

m =—con =—oo

J,(xy.z)= CA

C.A. is the area of the unit cell, 1?,,,,, is defined in Equation (3.8) above and l?,-,,c is the pro-

R e,

>
e g *

pagation constant of the incident wave. Adding the response at x,.y (.2 of each current

2. sheet the following equation is obtained:
¢
\ 129=2")_ 4 (R —pe ) (Bo=F)
) ] ) =iylzo=z'V  +;(Kp,—kpe Po—F
ot G (Fo\F") = z Z € € (3.12)
I' € —mem——— - -
, C'A m ==con ==—co 2] y
$ where application of the radiation condition yields
N

; VkI-BT-B2  ifk2>B2+B?

L) = . - - (313)
Y BT+ Bi-ki if B+ BI>Kk{

= (R, ~Ko )5 =2 |~ mSNQ |,
B. = Ky ~kine )2 d cosQ ccos{) !

B,\' = (I?mn —k-mc )_"‘: = 21:’” -k

¥

The spatial domain formulation of G, converges slowly as explained in Chapter 2.

L3 o G b Gl S

The spectral formulation converges rapidly when z,#z' (the "off plane” case) and con-
. verges slowly when z,=z' (the "on plane” case). As with the strip array. since the plates are

not flat on the xv plane. the derivatives of the scalar potential term may not be transferred
X onto the Green's function, rather the derivatives must be transferred explicitly onto the

. basis and testing functions. In order for the subsequent integrations to make sense, rooftop

basis and razor testing function order of smoothness is chosen as shown in Figure 3.4. This

is the three-dimensional analogue to the triangle basis and pulse testing functions used in

-

Chapter 2. If both basis and test functions take a derivative. the rooftop/razor reduces to
combinations of two-dimensional pulses and delta testing. For the vector potential. the
. rooftop is approximated as a two-dimensionzl pulse with the same moment as the rooftop
and the razor as a delta function weighted by the support of the razor. All integrals are.

) therefore. reduced to the same form: the response at a point x;.yr .2y due to an array of

s t (AP - ! U ( IO O &E ﬁf ‘)'"" ooy Dt
P AC I T N e SRR T %R Va8 Y ‘x'uf .x‘“,hhu“\‘h v
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ﬁ Figure 3.4 Rooftop basis and razor test tunctions
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' two-dimensional current pulses located on the spatial lattice.
’

3.4 Acceleration of Convergence in Spatial Domain

e In order to accelerate the convergence of the spatial domain sum (Equation (3.10)), the
U

asymptotic behavior of ¢ ~/** /R is added to and subtracted from the periodic Green's func-

) tion by moving off the xy plane cCA units.

-~ . -k o\/lﬁo—fa’-—ﬁ’." 12 4 (z =2 02
~Jhinc Pmn e

\ )3

" =—gon

e

e

- ~tiomc B,
= ¥ e/t fmn (3.14)
4‘”\/ l B()_p'—pum I 2 + (Z 0=z ')2 m =—oon =00

™Ms

J == ; =~ = = ; -
‘:‘ e-/t o\/lpo-—p—pmnﬁ#(:o—: 12 e-/loleo—p-pm?+(lzo—: (A )2
¢

p

2

4#\/' BB =B, 12+ (zy=2") 41r\ﬁp..-b'—p,,,,, 124 (lz,=~2"14+cCA )?

~ )

.. =1k oV Gg=F P 12+ (12 g=2 1 4cCA 2
e -"‘HN Dﬁlﬂ e

¢ +

. -n

o
o

, amw i B—P—B,, 12+ (12,—2"14cCA )7
o The first summation remains in the spatial domain and converges rapidly because the

asymptotic behavior i1s subtracted out. The second summation is smooth, nonsingular and

_ slowlv converging It 1s brought into the spectral domain by means of Poisson summation

@ formula.

For a two-dimensional space. Parseval’'s theorem 1s

l., hi . - 1 7 .
vv)flx vidady = — | [H(B, B ) (B, .8 )B, dB. (3.15)
: [fnis- Ly
L
:f If htxv) s a comb funcuon distributed along the spatial lattice with a cell to cell phase
ot shift
™
“ . . e ;
N hivvr= ¥ F 8p=p., e (3 16a)
i. 0T ewn: T =
- then // 13 B )« alvoa comb function distributed along the reciprocal lattice
<
I. N J') . . - Y .
o HiB B =" F T MAK-K, -k, ) (3 16h)
" cA L
o,
r Apphcation ot Parsesal « theorem to the second sum of Fquation £ 14) vields
£
'~7

. R T T R R S I
R - - R <. P IR A R S o R IO ¢
: v TR AP SR A AR R AP, YN,
A T CUPR St S I R ATt . A . N, nal

G LY y ¢ . 5 s seaibind h .
T A% )  ab E e 2o
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5 §
o
,
N =ik g\ 1Bg=F 12 + (12 gz T4cCA )2
- fxy)= (3.17a)
\ ' amV 1By=P12 + (1z,—z'| +cCA ?
:
! - - ik o 1Bp=P 1+ (1zg=z ' 14cCA )? _ _
o FB 8)=[[—° e Bt axdy  (3.170)
B~ AN 1By=P'12 + (1zy=z "1 +cCA P
Substitution of Equations (3.16) and (3.17) into (3.15) yields
!l q y
y T
Ry 1 ~ ~
& = JAB.8,)F (B, 8,848, (3.18)

—sylz=2'14cCA Ry (A—-mn 'ch ) (Bo=#")

" CA r z

* m =—oonp T—00 2/7

e B~

where y is defined by Equation (3.13).

3.5 Numerical Implementation of the Spatial Domain Acceleration

=

'.:' o As with the strip problem. the time needed to calculate the convolution of a two-
&

‘n‘ l‘. s

dimensional current pulse with the periodic Green's function tested with a delta function

ey

o

was plotted for three different methods. In this section. ¢ is multiplied by the unit cell area

& (C.A)
LS
)
;: ~ Method 1 implements the integration of the periodic Green's function (Equation
L}
¢

' (3.14)) over a two-dimensional patch numerically using a Romberg integration routine. For
.-' every x'v 'z’ chosen by the routine. the spectral and spatial domains of Equation (3.14)
's
L
M ’& are summed to accuracy. When the test is coincident with the basis function. the singular-
LN

ity is removed from the non-asymptotic term and added back in analytically. The singu-

=N

" larity does not occur in the asymptotic lerms since ¢>0. For each x".v .z’ the test point of

.

': ﬁ the asymptotic function moves as shown in Figure 3.5, This is allowed since the summa-
tions in the spectral and spatial domains are being done together. Figure 3.6 shows the time

¥

:.' - hehavior of Method 1 for a Imx Im basis arranged on a regular hexagonal latuice. The

::': time required o calculate the matrix element for a plate array s similar to the time

required tor a strip array. If ¢ 1s too small (¢ <0 02). the spectral domain 1s overweighted,

and 1l 15 too large (¢ >0 12). the spatial domain s overweighted. The time needed to calcu-

ey . A ap -{- "-' N 3 p | '»‘. BRS s
O VB T RRANARIANND ?T""-ihﬂ« DA )

ey s
N MR Ty
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¥, Figure 3.5 Movement of asymptotic test point in Method 1
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Frequency: 3.0e+08 Hz
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Figure 3.6 Time required for Method 1 vs ¢
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W
t
“ late the matrix element for the plate array is approximately the time needed to calculate
' the strip array matrix element raised to the fourth power.
R
) Method 2 involves distributing the basis and testing functions onto the spatial and
[}
!‘. spectral domains.
L] P = - —'Fm( _.mn
i Jref1w:z) L ¥ e7m? (3.19)
' 0 ==-00n ==o0
Y '
B o X oV 1BoF By 17 4 (2g=2 )2 e~ AoV 1B P =By 12+ Uz g2 T4
ATV 1By BB 12+ 2=z AT 1By=F By 12+ (124=2 "1+
| 1 o o - - e—jylzo—z'l+cC.-\
) + T (B..B,.z)|J(B,.B,.z") dz'dz
e} C‘4 m =Z—mn =Z—oof 3 B" f B B 2j 7
£
\ The spatial domain integration is performed numerically. The spectral domain integration
. is performed analytically. When there is no overlap in 7 between J and T . the spectral

" domain contribution becomes

/A s i 4B, vy 4B vp ) +Jy ;—lzr' -/ylfzi*lzr'
K 1 i { e “—e 2 “e ‘_T YT e ‘ —e 3.20a)
" CA e =2 —JjAy 2jy Jy
:: With overlap the spectral domain contribution becomes
X
' ; ; 3 a
X Lf 5 T e gt Boresen) o T TETTH (320w
p cA = S —JjA, 2jy S

) where

A, B, cosf+p, sinf

-

Since the spectral and spatial demain contributions are integrated separately. the test point

of the asymptotic terms must be fixed for the entire calculation. The asymptotic test point

- >

-

must not fall on the basis function since the singularity of the asymptotic term is not taken

' into account. Method 3 is the same as Method 2 with a point approximation for the spatial
L)
‘* domain integral outside the core region (m-1:1.n-1:1).

Figures 3.7-3.10 show the calculation time needed for all three methods for various

: locations of testing functions. In ail cases. Method 3 is fastest at the cost of accuracy.
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Method 1 as most accurate for all values ot ¢ [n Figure 3 7. the situation corresponds to 1
o bogure V11 Methed 1 shows optimum time behavior 1in the 0.01<¢<0 1 range where
arighiing o1 spedtrdgs and spatial domain are approximately equal. Methods 2 and 3 show a
dropo noome gt = O8N ahere the speciral domain test point moves off plane and gets
supenental con.ergence  bigure 34 corresponds to 2 in Figure 3 11 The test point 1s "off
Flane” tomegin witn As g result convergence tor all methods is more rapid than in Figure
Vo bigure 300 0 the selt term corresponding to 3in tigure 311 The large times here arise
fom o anguigrities .o the as .y mptotic terms since until ¢ exceeds () O8. the testing point of the
voompt ot term talis on the hasis tundtion [his can be ~seen more dramatically if Method

Vo wvgm ned aene Fgure 3 10)
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'5, 4. CONCLUSIONS

X This report has investigated the convergence characteristics of the periodic Green's

NI
g

Y
-

function. The characteristics of the periodic Green's function have been discussed in the

framework of two examples: (i) scattering from a one-dimensional array of strips. and (ii)

=8

scattering from a two-dimensional array of plates.

The periodic problem may be formulated in terms of responses to line/point sources

B0

(spatial domain) or in terms of response to current sheets (spectral domain). The spatial
domain is slowly convergent everywhere while the spectral domain is only slowly conver-

gent in the "on plane” case when the testing function is located in the array plane. The slow

2 859

N convergence in one domain stems from an unavoidable singularity in the reciprocal domain.

tig N

S . L . . N
; <. If the basis function is located entirely in the array plane (flat case). the derivatives
1)
‘g.

may be transferred onto the Green’s function and the smoothness of the basis and testing

.
'

td functions may be used to help convergence. If, on the other hand. the basis function is

10X

R

rotated in the array plane, then all derivatives in the expression must be transferred expli-

“ citly onto the basis and testing functions. The transfer of derivatives in the scalar potential

3

term and approximations in the vector potential term simplify the problem to one of

t

)

h .. . . e . .

o W finding the response at a point due to an array of one-dimensional current pulses in the case

?

-’ - . .

& of strips and two-dimensional current pulses in the case of plates.

" n

:: ” In order to quickly do the summation to be computed in 7% * J * G, a combination

)

28

vy SN of both the spectral and spatial domains must be used. Accelerating the spatial domain is

g - |

- shown symbolically as

gy o |
e 78« 7+ lG—Go) + FrGe] (4.1 |
L)

‘4 - The function & is slowly convergent but peaked. A smooth function that asymptotically ‘
- & approaches G (G“) is subtracted from G to render the first two terms in the brackets J

rapidly converging. The function G is then added in the spectral domain using the Poisson

3
Iul

wiad ,'.',ﬂl ‘:’hl:";“:‘."ﬁ |N!§!i O |‘!’.g‘l’|

" .I‘.."i 'I. ‘. Y . " ﬂgsi'“n L
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e summation formula. Since the Poisson summation formula essentially Fourier transforms
a smooth funcuion with wide support. this term is also rapidly convergent. The same pro- l

M)

::0 cedure may be applied to the spectral domain.

n

R TR J* [FTUG—G*)+G® (4.2)

(:: The function G“ in Equation (4.1) was chosen by moving the testing point "off plane”

!

I

through use of a parameter c. In this report. ¢ is multiplied by the area of the unit cell to
get a distance. Numerical experiments were performed to determine the value of ¢ required
W to minimize the time needed 1o calculate Equation (4.1). Three methods were studied:

Equation (4.1) itself (Method 1); distributing the basis and test convolutions onto each
N domain and performing the convolution analytically in the spectral domain (Method 2);
finally, calculating the out of core terms of the spatial portion of Method 2 using a point

$ approximation to the integrals (Method 3).

Method 1 is the most accurate of all the methods for all values of ¢ chosen. The
z optimum value of ¢ for Method 1 is in the range 0.01 <c<0.1. For this range. the spatial
Z and spectral domains are weighted approximately evenly. Method 3 is the least accurate of
P

the methods and its accuracy decreases as ¢ is increased. due to the approximation in the

» spatial domain. Method 3 is also the fastest method of the three for a wide range of c. The
;, optimum value of ¢ for Method 3 du= to the accuracy is 0.001 <c<0.03. Method 2 has
0:: accuracy problems whenever the “on plane” case occurs. It is also the slowest of all the
%E,_ methods due to problems in specifying the absolute accuracy of the summations.

N

’: In summary. Method 1 is recommended when accuracy is the prime concern while
.-;' Method 3 is recommended when speed is desired. In all cases. the choice of ¢ must be made
Ezé to ensure that the asymptotic term test point does not fall on the basis function since the
EE: singularity of the asymptotic term has not been taken into account.

¥ In general. it was found that when the strips or plates are flat in the array plane, the
Iy

*:; smoothness and width of the basis and testing functions help the convergence of the
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spectral domain so much that the spectral domain should get the entire weighuing

Acceleration techniques need not be applied. In the cases where the strips or plates are

v3

. . rotated with respect 10 the array plane. acceleration techniques can be applied which results
“‘. :*r

v I in a substantial time saving when ¢ is selected in the ranges recommended above
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