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ABSTRACT

It is shown that electromagnetic scattering from periodic structures may be formu-

lated in terms of an integral equation that has as its kernel a periodic Green's function. The

periodic Green's function may be derived from two points of view: as a response to an

array of line/point sources (spatial domain) or as a response from a series of current sheets

(spectral domain). These responses are a Fourier transform pair and are slowly convergent

summations. The convergence problems in each domain arise from unavoidable singulari-

ties in the reciprocal domain. A method is discussed to overcome the slow convergence by

using the Poisson summation formula and summing in a combination of spectral and spatial

domains. A parameter study is performed to determine an optimum way to weight the

combination of domains. Simple examples of scattering from a one-dimensional array of

strips and two-dimensional array of plates are used to illustrate the concepts.
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1. INTRODUCTON

The interaction of electromagnetic fields with periodic structures has always proven

difficult to analyze. Some examples of these structures include frequency selective surfaces

1]. microstrip arrays [2] and sources inside waveguides: [31.. One f ruitf ul approach toward

solving periodic problems involves the formulation of an integral equation and its numeri-

cal solution via the Method of Moments. The integral equation has as its kernel a periodic

Green's function. which is. unfortunately. a slowly convergent summation. Consequently.

the computer time required to solve the problem by the Method of Moments is dominated

by the time needed to compute the impedance matrix elements.

In the past. investigators have used various techniques to speed convergence of the

summation. Functions with a wide support in the spatial domain have been used as basis

and testing functions to make the summations in the spectral domain more convergent

[4.51. Poisson's summation formula [61 has been used to speed convergence using a spatial

domain approach [3.71 or using a spectral domain approach [2,8.9].

This report investigates the efficient computation of the periodic Green's functions to

tie together the methods discussed in the preceding paragraph. Two examples of periodic

problems are used for illustration. The first example. discussed in Chapter 2, is that of elec-

tromagnetic scattering from a strip grating with the strips arbitrarily rotated with respect

F to the ;axis as shown in Figure 2.1. The periodic Green's function for this example

involves a single summation. This simpler problem will be used to demonstrate the manner

in which the periodic Green's function arises in the problem formulation. the slow conver-

gence of the summation and a method of accelerating the convergence through use of

Poisson's summation formula. Results will be presented to clarify specific points of the

problem and to show how optimum parameters are chosen in order to maximize computa-

tional efficiency.



2

In Chapter 3. an extension of the techniques developed in Chapter 2 is applied to a

two-dimensional array of plates on a skewed coordinate system as shown in Figure 3.1.

The periodic Green's function arising in the plate array problem involves a double summa-

tion and is computationally more intensive than the strip array case. However. the behavior

of the two-dimensional summation is similar to the behavior of the one-dimensional

periodic Green's function. The conclusions of this study are summarized in Chapter 4.
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2. THE ONE-DIMENSIONAL ARRAY

2.1 Introduction

In this chapter. the integral equation formulation for scattering from the strip grating

shown in Figure 2.1 will be examined. The strips are rotated to make an angle 0 with

respect to the ; axis. The strips are perfect electric conductors and are spaced b meters

apart. The incident field is a plane wave where the direction of propagation in the xy plane

makes an angle of 0, with the j9 axis. The plane wave is either transverse magnetic (TM)

to :or transverse electric (TE) to z

The case of plane wave incidence is the basis for analyzing all problems involving

scattering from a periodic structure. If an arbitrary field (not a plane wave) is incident on

a periodic structure, no relationship exists between the currents of different unit cells in the

structure. Therefore, the currents on the entire structure must be treated as unknowns in a

Moment Method solution. On the other hand, if the incident field is a plane wave, then a

relationship may be found between currents of different unit cells based on Floquet's

theorem: only the currents in a single unit cell must be treated as unknowns. This is dis-

cussed in more detail in Section 2.3. The response due to an arbitrary source is found by

decomposing the arbitrary source into plane waves and adding the plane wave responses.

2.2 Definitions of Terms

In the remainder of this report. the Fourier transform is used extensively. The

Fourier transform pair for the one-dimensional case is dlefined as

f (f (x )e . (2.1a)

where f(x) is a function in the space domain and Fij3 ) is the Fourier transform of f(x)

into the spectral domain.
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35
The Fourier transform defined above is used in this report to transform periodic func-

3 tions in the space domain into their equiv alent representations in the spectral domain. A

periodic function may be viewed as a convolution of the function truncated to one period

with a comb function in space [10]. i.e..

/,,(x) f (x E 8(, -mb) (2.2)

w here

I~)I(x) for--b < x <+-b
2 2

-0 otherwise

b is the period of F,,(x ) and * denotes the convolution operation defined as

f (X*g (x=fJf(x ')g(x -x )dx (2.3)

Since the Fourier transform of a comb function is also a comb function, albeit with a

different period, and the transform of a convolution is the product of the transforms, the

Fourier transform of Equation (2.2) is a function sampled at discrete values in the spectral

domain.

81k 2r (2.4)

A concise way to predict the location of the spectral domain comb components of Equation

(2.4) given the location of the spatial domain comb components is through the use of a

reciprocal lattice.

A periodic geometry has associated with it a spatial lattice and a reciprocal lattice [11].

The spatial lattice is a periodic arrangement of points in space and is formed by adding an

integer number (in) of primitive vectors (S)to a location F. For the one-dimensional case

under consideration.,~ b.i as shown in Figure 2.2.

P" = F + inS1  (2.5)

=r + mb;
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The overall periodic structure is formed when the unit cell, shown in Figure 2.1. is attached

to each lattice point. The unit cell is defined as the smallest part of the structure that.

when repeated. makes up the overall structure.

The reciprocal lattice is associated with the spectral domain just as the spatial lattice is

associated with the spatial domain. The reciprocal lattice predicts where the discrete com-

ponents of i (0, ) are located in the spectral domain. In the one-dimensional case under

consideration, the reciprocal lattice is defined by adding an integer number (n) of primitive

reciprocal vectors (S 1 ) to a location in the spectral domain()

R-= F + nil (2.6)

where S1I is related to the spatial primitive lattice vector by

=27r (2.7)

Therefore,

S,= 2n'__ (2.8)

The reciprocal lattice corresponding to the spatial lattice of Figure 2.2 is shown in Figure

2.3.

The concept of the reciprocal lattice is not too useful for the one-dimensional case.

However, for two-dimensional periodicity on skewed coordinates discussed in Chapter 3. it

provides great insight. Derivation of the two-dimensional reciprocal lattice will be deferred

until Chapter 3.

2.3 Formulation of G

The electric field integral equation will be used to solve the one-dimensional strip

array problem. Using the fact that the tangential E field is zero on the strip, the follo'wing

equation is obtained:

rx -j if 7 (s *.,,(s s )ds + VfV 7(s )Gp (s s)ds' X-i,% (S ) (2.9)

where G,. is the periodic Green's function and .7 is the surface current density flowing in a
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Figure 2.3 One-dimensional reciprocal lattice
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single unit cell.

The periodic Green's function arises from Floquet's theorem which says. given a plane

wave incident upon a periodic structure, all responses will have the same periodicity as the

structure and a phase shift between unit cells which is the same as the phase shift of the

incident plane wave. For example, the current in cell m is related to a corresponding posi-

tion in cellO by

J (P +mbi) = J (F")e-Jj ,,,b1 (2.10)

It is not necessary, therefore. to consider the entire structure in a periodic geometry.

Rather, a single unit cell may be considered along with a Green's function which reflects the

relationship of Equation (2.10). The Green's function in this chapter is defined as the vec-

tor potential response at (x o.Y o) due to an array of line sources located at (x '.y I within

each unit cell and having a cell-to- cell phase shift of k, b due to the incident plane wave as

* shown in Figure 2.4.

The response to an array of line sources may be obtained in two ways. In the spatial

domain, an array of line sources located at x '.y' in each unit cell may be represented as

J",(x.y )= 8(x-x-Mb)e-"'"8(y-y ')  (2.11)

Summing the response at (x).y) due to each line source. the following expression is

obtained:

1 ,b 2o'(- '-mo b )2 + (yo-y ,)2 (
G, (x).yox .Y')I x . eJr bH'  ) X0  (2.12)

4j , =-,

,"p In the spectral domain, the Fourier transform pair is used to express the line array of

Equation (2.11) as a series of current sheets. Each current sheet has a period dictated by

the reciprocal lattice and a cell-to-cell phase shift dictated by the incident field (Equation

(2.6)).

, . -Y (2.13)

where



10

AA

yx

Fiur 2.4 Arr, of -ine bource b



I
2irm 11

3 ddngth rspns a (( 1 y~ de o ac crrntshet te petrl ominGren fbc:: ! Adding the response at (x o.Y o) due to each current sheet. the spectral domain Green's func-

tion is obtained

Oh 2j AY

where application of the radiation condition yields

0 if %, i (2 .14 b )

To summarize, the solution of plane-wave scattering from periodic structures involves

convolving the current in one unit cell with a periodic Green's function, which may be

derived from two points of view. Working in the spatial domain, the response due to an

array of line sources is found by summing the response due to each individual line source

as shown in Equation (2.12). Alternatively, the spectral domain representation is obtained

by representing the array of line sources as a series of current sheets and summing the

response due to each current sheet as shown in Equation (2.14). The two representations of

the Green's function are a Fourier transform pair sampled with a comb function. In the spa-

tial domain, the sampling falls on the spatial lattice, while in the spectral domain, the sam-

pling falls on the reciprocal lattice. This concept will be expanded further in Section 2.6.

2.4 Convergence Characteristics of G,

In this section. the convergence characteristics of the periodic Green's function are

examined in both the spatial domain (Equation (2.12)) and the spectral domain (Equation

(2.14)). Using the asymptotic approximation for the Hankel function in Equation (2.12).

the spatial domain summation is found to behave as

G e(x o.yox .y ')k V b,

GP ((X--x 0-o 0 1 X(Y-Y:I= (2.15)

I(X OX -Mb )2 + (y 0-y .)2
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for large values of m. This expression is convergent [6] only because of the phase variation

in the numerator of the summand. For certain array spacings it doesn't converge at all and

for ail positions of the basis and testing functions, it converges slowly.

The spectral domain formulation of Equation (2.14a) converges rapidly as long as

y ;dy'. In this report. this is called the "off plane" case since the observation point is located

off the plane of the current sheet. The rapid convergence in the "off plane" case occurs

because as m increases, the plane-wave response to the current sheets changes from pro-

pagating waves to evanescent waves as shown in Equation (2.14b) and the summand decays

exponentially. For the "on plane" case (y =y '). the summand no longer has the exponential

decay to aid convergence. It behaves as e "-I' /m which converges slowly in most cases, and

for some spacings of the basis and testing functions (i.e. Ax =0). doesn't converge at all.

A further problem in the spectral formulation is that for certain combinations of

array spacing. incidence angle and summation index (m). : =0. which causes isolated terms

of the summation to go to infinity. Since the function is sampled at discrete points, these

singularities may be avoided by changing the angle of incidence slightly. The individual

terms will all be finite, but the overall behavior of the function with respect to convergence

will not change.

The reason that the different domains exhibit the convergence behavior outlined above

can be traced to the existence of singularities in each of the domains. Recall that the

periodic Green's functions are a Fourier transform pair sampled by the comb function in

each domain. In the spectral domain (Equation 2.14a) the function is singular at the point

where f3. = 0 which will inevitably occur for a continuous function representation. This

implies that the Fourier transform (the spatial domain Green's function) is always a func-

tion with a wide support and is. therefore, slowly converging. Conversely. the spatial

domain representation of the Green's function (Equation (2.12)) has a singularity when the

argument of the Hankel function goes to zero. This singularity is inevitable for the continu-
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ous function only when Yo = y' (on plane). For this case, the Fourier transform (the spec-

3 tral domain Green's function) is of wide support and slowly convergent. As the (yo-Y')

portion of the argument becomes larger. moving off plane. the continuous representation of

the Hankel function becomes smoother and the convergence of the spectral term becomes

3 more rapid.

To summarize, a pure spatial domain formulation doesn't converge well regardless of

the position of the basis and testing functions. The pure spectral domain formulation

involves a summation that converges well as long as the basis and testing functions are "off

plane." Unfortunately, the "on plane" case inevitably occurs. For example. it occurs in the

self term when the strips are rotated with respect to d ( 00 ) or in all terms when the

strips are flat ( = 00).

2.5 Smoothness of Basis/Test Functions to Help Convergence

i The pure spatial formulation will be abandoned at this point due to its convergence

problems that occur regardless of basis/test location. The pure spectral formulation. which

has a convergence problem only in the "on plane" case, will be considered further. It is

3 common, in the pure spectral formulation, to speed convergence in the "on plane" case by

analytically performing the convolution operation using basis and testing functions L..

given combined degree of smoothness. To demonstrate this technique consider a TM to z

plane wave incident on an array of flat strips (0 = 00). The equation for an element of the

Method of Moments* impedance matrix is

-- f:Fx o, f"' x'dx (2.16)... 2j13y

fT(x)e"' dxfJ(x,)e- ' dxb 2.. j)

-0 --- -,=. ]
j T(',,)J1

2j1

I is the Fourier transform of the basis function in the direction performed analytically.

&l
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T is the complex conjugate of the Fourier transform of the test function also taken analyt-

ically. 0,,, is defined in Equation (2.13). If the basis function is a pulse located at the ori-

gin. and the test function is a delta function located at :r as shown in Figure 2.5. then

J(I3°, ) = Asinc 2-- , J (2.17a)

and

T" (/3,,,) = e j '' %r (2.17b)

The summand now behaves as I/m2 which converges regardless of spacing and quicker than

the convergence of the Green's function alone.

Symbolically. the linearity of the Fourier transform has been used to change

TR * J * F- 1 G '2.18)

to

F.-'IJ 16 (2.19)
In Equation (2.18). TR (x) = T(-x ) is needed to get the testing function inner product into

convolutional form. F - 1 is the inverse Fourier transform and takes the form of a summa-

tion since 0,,.. is discrete.

The smoothness of the basis and testing functions becomes essential for convergence

when differential operators arise in the integral equation. such as a TE to ^ plane wave

incident on an array of flat strips (0 = 0" ). In this case the left-hand side of the integral

equation (Equation (2.9)) becomes

"- .2 f T. (x-)fJ_(x Edx'dx (2.20)

- ..fTjx )fJIx'),2')3]

+ dfr(x)f-dJ(x') e+' dx'dx
,,, = T 2 j y

In order to transfer the derivatives of the scalar potential term onto the basis and test func-

tions, the functions must have a combined degree of smoothness of at least a triangular

basis and a pulse test for the convolution integrals to make sense. The transfer of a
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derivative onto the test function converts the pulse into a set of delta functions while the

transfer of a derivative onto the basis function converts the triangle into a pulse doublet as

shown in Figure 2.6. Performing the convolution of the basis, test and Green's functions

analytically leads to the Fourier transform of a delta function, which behaves as 1. and the

Fourier transform of the pulse doublet which behaves as I/$3, . These terms together with

the 1/0., behavior of the Green's function yield the same speed of convergence for the scalar

potential term as that of the vector potential term for the TIM case (1/rn2 ) discussed above.

The TE vector potential term will converge much faster (1/M 4
) since it has no derivatives

and the functions to be convolved are. therefore, smoother.

If the derivatives are first transferred onto the Green's function in Equation (2.20).

the following equation results:

-. 6 ,JTx)-0x 1 ' + (2.21)
(.jJ3 )f Xe dx 'dx

The term arising from the vector potential term k2 behaves similarly to the TM case and is

slowly convergent. The term from the scalar potential (0'~) doesn't converge at all. In this

case. the smoothness of the basis and testing functions is required to obtain convergence.

Convolving analytically. Equation (2.21) becomes

E j 13 T' J(2.22)

The level of smoothness needed for the above sum to be convergent is at least that exhibited

by triangular basis and pulse test functions. This is the same level of smoothness needed

when the derivatives were transferred to the basis and testing functions.

In summary. for flat strips (0 = (Y ). the derivatives may be transferred onto the

G;reen's function, and the smoothness of the basis and testing functions may be used to help

convergence, or the derivatives may be transferred onto the basis and testing functions

explicitly and then the convolution may be performed. In either case, the speed of conver-

gence and the level of smoothness required are the same and the order of the operations
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does not matter.

In contrast to the flat case. when the strips are rotated (O;e0" ) with respect to the

axis. the order of operations does matter. If the derivatives are first transferred to the

Green's function, the resulting sum will not converge regardless of the level of smoothness

in the basis and test functions. This is best illustrated by examining the case in which the

strips are rotated 90 degrees to the i axis. With the derivatives transferred to the Green's

function, the expression for the the matrix elements becomes

I W_ ff (O .....y)i, (0 ' .... .) e ' ly-y l

<T.Ec > = .... ,.. " 2 , (k , -O')dv 'dv (2.23)

If J is a triangular function along the strip and T is a pulse function, which led to con-

vergent terms in the flat case. then for no overlap between the basis and test functions (see

Figure 2.7) Equation (2.23) becomes

_ 1 Asinc 2  Asinc -e - j ,:r (Ij (2.24)
M2,, 2j . 2.

Note that the convergence problem arising from the scalar potential term (:2) is mitigated

by the smoothness of the basis and testing functions and the summand behaves as 1/m 2

exactly like the flat case. Also note that since this is an "off plane" case. the exponential

decay is the dominant behavior of the summand.

When there is complete overlap between basis and testing functions as shown in Fig-

ure 2.8. Equation (2.23) becomes

_ I1 (k 3A + 2e-' - (2.25)
_-_ I -- e-

+ 4 2e'~'

The second and third groups of terms in the braces have the l/ . behavior dictated by the

level of basis/testing smoothness thosen. Additionally, since these terms represent the
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contribution of the basis to the parts of the test not on the same plane (labeled I and 2 in

Figure 2.8). there is an exponential decay in these terms which also aids convergence. The

first term in the braces does not converge. It represents contributions of the basis functions

Itc to portiors of the test function in the same plane (labeled 3 in Figure 2.8). Consequently.

the first term has no exponential decay. Additionally. it has only a 1/0 behavior rather

than the I/p 3 behavior expected from the level of smoothness under consideration.

In order to understand this problem. the expression

fiefy .. e ) 0 .y - "-Y 'dy (2.26)

will be examined for basis and testing functions with various degrees of smoothnes. but

not necessarily the sufficient degree of smoothness needed to solve the TE case under con-

sideration. For pulse basis and delta testing functions with no overlap, Equation (2.26)

becomes

Asinc (..±A f -.1 isYT (2.27)
Equation (2.27) behaves as 1/0., as expected from a pulse/delta degree of smoothness. The

exponential decay arises from the basis and test being "off plane" from one another. With

complete overlap, the expression becomes

lOva

2 2 ---e2 (2.28)

The second term represents the "off plane" contributions of the basis to the test. It has a

1/0, dependence which stems from the smoothness of the basis and testing functions and

an exponential decay which stems from the "off plane" nature of the contributions. The

first term represents the single "on plane" contribution from the point y-O on the basis.

This term also has a 1/(Y dependency which does not arise from the smoothness of the

basis and testing function. The important thing to note is that the first term in Equation

(2.28) has the same dependency as the first term in the triangle/pulse case (Equation

(2.25)) even though the triangle/pulse case has a higher degree of smoothness than the

1,2)

A N N "",7, ,..,... •.. -•., ." ". " .. '. . . .' .,. "-"..-., . , . . ,, . -, -
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pulse/delta case.

For pulse basis and pulse testing without overlap. Equation (2.26) becomes

AzISinC 2LP e j Y1. (2.29)

This expression has a I(3<2 dependency related to the basis/test smoothness exactly as was

found in the flat case. The exponential decay arises from the "off plane" nature of the prob-

lem. For complete overlap the expression becomes

sA 4 in I ., (2.30)

Again the second term has the expected 1/0 2 decay from the smoothness and the exponen-

tial decay from "off plane" contributions. The first term has a 1/03, decay which is the same

as the "on plane* terms of the previous cases.

The pattern that emerges is as follows: when there is no overlap between basis and

testing functions. both exponential decay and degree of smoothness contribute to rapid con-

vergence. In this case the derivatives may be transferred to the Green's function. For the

case in which there is overlap between the basis and test functions (even touching at one

point), one term arises which behaves as 110y~ regardless of the smoothness of the basis and

testing functions. This term represents the *on plane" contribution of the basis to the test-

ing function and. therefore. has no exponential decay. For this case, the derivatives may

not be transferred to the Green's function to obtain a convergent summation. Rather, basis

and testing functions must be chosen with a level of smoothness to accept the derivatives.

and the derivatives must be explicitly transferred onto the basis and testing functions.

To ensure that the above problem is not unique to the 0=900 case. a strip of arbi-

trary rotation 0 will be examined for completely overlapping pulse basis and pulse test

functions. For this case. the "on plane" contribution of Equation (2.26) becomes
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A A (2.31)j(, cosR+ Br sinO) j(, coso-- -,sinG)

When 6 = O° (the flat case), the terms in the braces cancel, but for all other cases, the terms

in the braces remain, leading to nonconvergence of the sum.

To summarize, in the flat case. all derivatives may be transferred onto the Green's

function, and the smoothness of the basis and testing functions ensures the convergence of

the sum. The degree of smoothness required of the basis and testing functions is the same.

whether the derivatives are transferred onto the basis and testing functions or onto the

Green's function. A higher degree of smoothness leads to faster convergence in the sum. In

contrast. in the rotated strip case. the derivatives must be transferred onto the basis and

testing functions explicitly before convolving. To transfer the derivatives onto the Green's

function leads to nonconvergent terms representing "on plane" contributions of the basis to

the test function. Increasing the degree of smoothness has absolutely no effect on the speed

of convergence. Pulse/delta. pulse/pulse and triangle/pulse all have 1/y terms. Note that

this is sufficient for convergence as long as there are no 0 terms in the numerator represent-

ing derivatives transferred to the Green's function.

2.6 Acceleration of Convergence

A result of Section 2.5 showed that it is necessary to transfer all derivatives in the

scalar potential term to the basis and testing functions when computing the matrix ele-

ments for a strip grating of arbitrary rotation. This operation reduces triangular basis and

pulse testing functions to combinations of pulse basis and delta testing functions if both

basis and test take a derivative (Figure 2.6). In this report. the vector potential term calcu-

lation will be simplified by approximating the triangular basis by a pulse with the same

moment and approximating the pulse test by a delta function weighted by the pulse sup-

port [121 (see Figure 2.9). This approximation can be justified by observing that when the

test function is near the basis function, the scalar potential term is the dominant contribu-
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tor to the matrix element and the value of the vector potential term is unimportant. As the

distance between basis and testing functions is increased, making the vector potential more

important. the moment of the current is the quantity that determines the value of the vec-

tor potential. The moments are the same for the triangle basis and the approximate pulse

basis. Through the above approximations. all of the integrals are reduced to the same form:

one of finding the response at the test location xT .yr to an array of current pulses of arbi-

trary rotation as shown in Figure 2.10.

In order to accelerate the convergence of the summation. the Poisson summation for-

mula will be used. This method makes use of the fact that a smooth. nonsingular function

with a wide support in one domain (either spatial or spectral) has a narrow support in the

other domain. It also employs Parseval's theoremV)S-

fh(x ) f(x)dx = -- fi (AF(3)d 3 (2.32)

If h(x) is chosen to be a comb function whose elements fall on the spatial lattice

,,.~ h(x) " e-s , 8(x -mb) (2.33a)
"k m =_P

then its Fourier transform/H (0) is also a comb function whose elements fall on the recipro-

cal lattice.

-- = ESP- 2 mk, (2.33b)
b M K0 1b II

Thus, using Parseval's theorem, a series may be represented in either domain by

/ e= e-A 'b fIe 8(x -mb )f (x )dx (2.34)
S, =--W 'n =-o

if s ak sla, I s o()d
b

E F 2 1rm kI

If f(x) has a wide support and is nonsingular. implying slow convergence, then F()will
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have a narrow suppe-t. implying rapid convergence and vice versa.

To demonstrate a fundamental problem with this approach, Equation (2.34) is applied

to the slowly convergent "on plane" case of the pure spectral domain (Equation (2.14a)).

1''I e Iw e~J'I'.,,.~ ~~ T,7 2] _p. 
- c  o-2 (2.35)

Ik  2im Jk !
In terms of Parseval's theorem.

F (") _(2.36a)
2i ' o- )

(x) f .. '-f 2) k e d 0 (2.36b)

As discussed previously, the summand in Equation (2.35) is singular when ,=k but

since 0, is discrete in m the singularity is avoidable. In Equation (2.36b). however.$ is

continuous and the singularity cannot be avoided. The integrand is sharply peaked, so it is

expected that application of Poisson acceleration will not help convergence. In spite of this.

if the integration in Equation (2.36b) is performed.

f (x)=-H 02(kIxo-x'-x ) (2.37)

is obtained. Applying Parseval's theorem yields

f f (x )h(x )dx = - " I') (k,,Ix,,-.x'-,, 1 (2.38)
24 ,,-

This is the pure spatial formulation of the periodic Green's function which is slowly con-

vergent. If the Poisson summation formula is applied to Equation (2.38). the result is the

pure spectral domain formulation of the Green's function "on plane." The unavoidable

singularity of the Hankel function as the argument approaches zero leads to the slow con-

. vergence of the "on plane" sum in the pure spectral domain.

In both spectral and spatial domains, application of the Poisson summation formula

did not speed convergence because it was applied to a peaked function with an unavoidable

' - - -
•

-

, 4- * ~ r " f . ~ ' I
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singularity. Thus. a better strategy is to subtract from the singular function an auxiliary.

nonsingular function that is asymptotically equal to the singular function for large m; then

add the nonsingular asymptotic function back in. The Poisson summation formula may be

successfully applied to this smooth. wide. asymptotic function. First. working with the

spectral domain:

Io e _ ' Xo . (2 39)
2

.... 2j 1  2 2 _j __2g2

1

+ I e
+ .. 2 .fV u 2+0 2,

The first summation is done in the spectral domain and converges as 110,2M. The second

summation is never singular so the Poisson summation formula can be successfully applied.

The second sum becomes

00

E e-1' K,(u lx-x'-mb I) (2.40)

where K,, is the modified Bessel function which exponentially decreases with increasing

argument.

The operations of Equation (2.18) may be rewritten using Equation (2.39) as

TR * J * F-(G ) = TR . * IF1(G,-Ga) +G' 1 (2.41)

The inverse Fourier transform F - 1 is a summation. The smooth auxiliary function. G5. has

the same asymptotic behavior as the desired function G and is summed in the spatial

domain through use of the Poisson summation formula. In Equation (2.41). the operations

in brackets may be viewed as a way to accelerate a slowly convergent summation by break-

ing it up into two rapidly convergent summations.

The convolution operation of Equation (2.41) may be distributed onto each domain

and performed analytically in the spectral domain, according to

.= . . . , . ... . . _ . , . . . -.- .-.- "- ,,/ %,- . ,...?-: .--. ,., :2,::v,.., - . . ,.



29

F-1 + TR - I G (2.42)

This is equivalent to computing the impedance matrix elements by adding the elements of

two matrices: one computed in the spectral domain and the other computed in the spatial

domain.

To accelerate the spatial domain summation successfully for the "on plane case

(y,-y' = 0) the asymptotic behavior of the Hankel function must be removed by moving

the observation point of the auxiliary term off the plane, cb units.

e- -j H tk ) (Xo-x '-mb)J = (2.43)T-7....

-- jk , mb 2 k-. 21 -H 2Ik V X) X' m 2+ c1 n e - H, k (21 x,)-x '-b )2 +H1 ) ko I(x,1-x -m)2+cb 2

+-.... e flHi k Ixwx )+cb

The first summation remains in the spatial domain and converges rapidly because its

asymptotic behavior is being subtracted out. The second summation is brought into the

spectral domain using the Poisson summation formula. To apply Parseval's theorem to the

second sum. the following equations are needed:

1(x) = 'H)-x -X) +cb (2.44a)

f 4jH,, + b2e-1 AXdX (2.44b)

Application of Parseval's theorem yields

r. f~~~ ~ i O , e 
- l c hb 

0 +j A'. 6 o-,') (.5

( 2w 2j03(245

where

: .?." ::: ,,, = 2 rm - ,
b b

f/k) -.. if k 2 >02,

j -,,t-2 k (2 if 0 ,,>k,

S e tl i' Since this is in the spectral domain for an "off plane" observation point, this sum is rapidly

* .. ,: f... - . -. -. -. . ". ... . ,.;. .: . . ' ,,. .
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convergent.

As in the acceleration of the spectral domain formulation, the above procedure may be

treated as a way of quickly summing the spatial periodic Green's function.

T R * J* G =TR * J * 1(G -Ga)+F-1(6 )J (2.46)

By distributing the convolution operation of Equation (2.46) onto the different domains and

performing the convolutions analytically in the spectral domain, the following is obtained.

T R 
* J * (G -Ga)+F- I(T " J G) (2.47)

If cb is allowed to equal zero. the asymptotic testing point is moved "on plane." The first

term goes to zero. and the Green's function is summed entirely in the spectral domain.

Since the test point of the asymptotic term is now "on plane." the summation is the slowly

convergent pure spectral domain approach. The next section will discuss the details of

implementing Equations (2.46) and (2.47).4I

2.7 Numerical Implementation of the Spatial Domain Acceleration

In this section. the details of implementing the spatial domain acceleration procedure

will be examined. The accelerated periodic Green's function, shown in Equation (2.43)

with y 1)-y' ;, 0. is expressed as a weighted combination of the spatial domain and spectral

domain.

GP (x 'y Ix 'Y')-' , e - (2.48)

02 Ik,,Vx) -., 2 + (, -2I-H,2, Iko Va(x (,x n-mb )2 + I y~ I77 +Cb )2J

1 -j (I I O-
Y I 4Cb) eJ, m("o-')

+~ 2 j e
3

The factor that determines the weighting given to each domain is c. which is a measure of

how far "off plane" the testing point of the asymptotic term in the Green's function is

located.



31

Figures 2.11-2.14 show the nature of the real part of the summand versus term

number (m) for various c's. In this report. c is always multiplied by the cell size (b). for

* example. c=0. I and cell size - 0. 7m moves the test point of the asymptotic Green's function

(cb) 0.07 m "off plane." In Figure 2.11. c-0.001 so the terms of the spatial summation are

small in magnitude and highly peaked around the m=0 term. The spectral domain has a

much larger magnitude which oscillates around zero to term 20 and beyond. For this value

of c. the spectral domain makes most of the contribution to the overall sum and converges

slowly. As c is increased, moving further "off plane" (c=0.01 and 0.1). the spatial domain

becomes larger in magnitude and loses its peaked nature. The spectral domain, on the other

hand, becomes smaller in magnitude and more peaked around m-0. In Figure 2.13. for

example. when c=0.1. the spatial term magnitude is oscillating around zero until outside the

m=-16.-16 core while the spectral magnitude is zero outside the m=-4:4 core. When c=1, as

shown in Figure 2.14. the spectral domain terms are essentially zero and all the weight is on

the spatial domain which, like the spectral domain of Figure 2.11. oscillates around zero to

term 20 and beyond.

Fl The shifting of weight from the spectral domain to the spatial domain as c moves "off

plane" is also seen in Figures 2.15-2.18. In this set of figures. the value of the sum in each

domain is observed as the limits of the summation are increased from m--1:1 to m=-

100:100. For c-0.001, the spectral domain carries all the weight and oscillates about its

.,,* ., ~true value past the sum limit of m=100. As the asymptotic observation point is moved

further "off plane" (c=0.01,0.05 and 0.1). the spectral domain sum converges in a fewer

number of terms and becomes smaller while the spatial domain sum requires more terms to

converge and makes a larger contribution.

The question that arises is:- Can the parameter c be chosen to minimize the time

needed to do the two summations in the spatial and spectral domains? In order to answer

this question. a parameter study was performed where the sum limit needed for conver-
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gence to a given accuracy in both domains was plotted versus c for various combinations of

cell size, frequency, incident angle and test position. What emerged from this study is that

although the number of terms needed for convergence changes with the parameters. the

general nature of these curves remains essentially constant. Two examples are shown in

Figures 2.19 and 2.20 for two different sets of parameters. When c is small, the spectral

domain needs many terms to converge and the spatial domain converges immediately. As c

increases, the number of spectral terms needed decreases while the number of spatial terms

needed increases until at around c=0.05, the graphs cross over. The area of cross-over is

relatively flat so c can be picked from the range 0.02-0.1 and both domains will be

weighted approximately the same.

The true test of optimization. however, is not to minimize the total number of terms

needed to perform the spectral and spatial summations as was done above, but rather to

minimize the computer time needed to perform the calculation in Equation (2.46) or Equa-

tion (2.47) applied to the geometry of Figure 2.10. Prior to examining these results. Equa-

tions (2.46) and (2.47) must be discussed in greater detail.

The implementation of Equation (2.46) is subsequently called Method 1. A numerical

Rcornberg integration routine is used to integrate the prime coordinates of G3, over the one-

dimensional pulse in the unit cell. Since the test is a delta function, the convolution with

the test function becomes an evaluation of .P [G,, I at the point XT- . For each s chosen by

the integration routine along the strip, the spectral and spatial summations of Equation

(2.46) are summed to accuracy. First the core (m--2:2) is summed in each domain to deter-

mine which domain is the dominant contributor to the Green's function. The dominant

contributor establishes an absolute accuracy of the summations to minimize the time spent

in computing a summation that has an insignificant contribution to the integrand. When

the test is coincident with the basis function. the singularity is removed from the

H,20 (k, I x -x -nb I) term and computed analytically. The singularity does not occur in
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the asymptotic terms since c > 0.

The implementation of Equation (2.47) is subsequently termed Method 2. In this

method, the basis and testing functions are distributed onto the spatial and spectral domain,

i.e..

fT(s )fj,(s ) e (2.49)

1k~ ) V(X -X '-Mb )2 + (y,,-y )2] - H? I/1) (x-'m )2 + ( Iy~y +c i2ds V
~~-) ( l~o-Y' +cb )

+ f .Y ,,)f(,y)e dy'dy

The spatial domain integrals are done numerically, as in Method 1. while the spectral

domain integrals are performed analytically. When no overlap exists between J and T ' in

y (see Figure 2.21). the spectral domain sum becomes

sin(.,,, cosO:tO3 sin0)-_e+B (,i 'r-, ''T yr(.1b 1( m 0 Y < (2.50 )
,,, _ j/3. (13 .... cos0 ±!:3y sinO)

When J and T do overlap in y, the spectral domain summation becomes

b -. - s y r ,-_ -~a s-iY+sry e- r. A e S - Jm

e T _e . + e -jA . e -9 _f e +  (2.51)
I, jA1  jA 2j Py

A 0 r3l,,, cosO-03, sinO

A =0 coso + Py sinO

Note that when overlap exists between the basis and test functions, certain terms of Equa-

tion (2.51) decay as 1/32 and have no exponential decay. In order to obtain exponential

convergence, therefore, it is necessary to move "off plane" enough so that no overlap occurs

between the basis and test functions. In Method 1. the asymptotic test point

( I y,-y'l +cb ) was redefined for every point called by the integration routine because the

spectral and spatial contributions were integrated together. In Method 2. the asymptotic

test point must be fixed for the entire calculation because the spectral and spatial contribu-



44

AA

yvra

no overaip

Figure 2.21 ()elpand no ove, lap regions for rotated strips



45

tions are integrated separately. This means that in Method 2. it is possible for the asymp-

S totic terms to be singular if c is chosen such that -(x,,-x '-mb )2+( I y.-v 'I +cb )2 falls on

the basis function as shown in Figure 2.21.

Method 3 is similar to Method 2 except that the current pulse in the spatial domain

integral outside a core region (m=-1:1) is approximated as a delta function weighted by the

support of the pulse. Inside the core. where the integrand varies quickly, the integration is

performed numerically. Equation (2.49) becomes

+1

4j ,,,4j,-,.0.+

74j ,

~HkV(xx-b)2 + (V-Y )21J -H k,,V X-- -- Mb )2 + I yy, I +Cb)J

+ - e

Ik (X _X1 -Mb )2 + (y, _.y, )2] - HO Ik O(Xk -x 1 -mb )2 + (-Y/ I +Cb )21~

+ " f (Oi,Y)fj(O3,,, 1 -j ON( I Y-J.'l +cb)

Figures 2.22-2.26 show the time needed to compute the convolution of basis. test and

periodic Green's functions using Methods 1.2 and 3 when the strips are flat (0 = 0 ). As in

Figures 2.19 and 2.20. although the calculation time changes with parameters such as test

location, frequency, array spacing and incident angle. the shape of the curves remains essen-

tially the same. Method 3 is the fastest method regardless of the parameters. but since it

involves an approximation in the spatial domain, it is not as accurate as Methods I and 2.

This inaccuracy becomes more pronounced as c increases and the spatial domain gets more

weight. Method I shows a shape predicted by Figures 2.19 and 2.20. If c is too small

(c<0.01). too much time is spent summing the spectral domain and the required time for

the calculation increases. As c increases (0.01 <c<0.08). the time goes to a minimum then

slowly increases as the spatial domain becomes over-weighted.
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The time requirements for Method 2 are similar to the requirements for Method 3 for

small c but increase with increasing c. crossing over Method I at around c-0.02. Method 2

time is dominated by the time needed to integrate numerically in the spatial domain.

Although Method 2 has a simpler integrand than Method 1. it is difficult to specify an abso-

lute accuracy correctly for the summation in Method 2. The accuracy is overspecified in

Method 2 and. therefore, requires more time than Method 1. In Figure 2.26. at c-0.077.

Method 2 exhibits a time spike. This occurs because the real part of the spatial integral is

approximately zero, and the Romberg integration routine calls the integrand many times in

order to get a sufficient degree of relative accuracy. As seen in Figures 2.27 and 2.28. the

integrand itself is very smooth and the large number of calls is unnecessary. An absolute

accuracy parameter could be specified in the integration routine to alleviate this problem.

but this was not done.

The self-term, shown in Figure 2.29, deserves special consideration. Methods 2 and 3

exhibit the same behavior as before. Method 1 takes far more time for c<0.01 than could

be explained by saying that the spectral sum is overweighted. The explanation for this

behavior comes from an examination of the integrand. When c is close to the strip, the

integrand is ill-behaved, as shown in Figure 2.30. The singularity has been subtracted only

from the nonasymptotic term in the Green's function. When c is small. however, the

asymptotic terms are also tending to be singular. Moving "off plane" a bit more, as shown

in Figure 2.31, causes the integrand to become better behaved.

When the strip is rotated (0 = 45" ), the sum has essentially the same behavior as in

the flat case with the exception of two features (see Figure 2.32). The first feature is that

Method 1 no longer increases in time when c <0.01 because since the strip is rotated, most

of the points called by the integration routine are farther "off plane" than the specified "off

plane" factor. The second feature is the drop in time exhibited by both Methods 2 and 3 at

c=0.05. This occurs because c has moved from "on plane," where the spectral convergence

am
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behaves as 1/0.2 to "off plane" (c x.7> .05sin (45')) where the convergence is exponential.

As c approaches zero in Method 2. the accuracy of the sum must be specified more pre-

cisely because the sum is behaving as 1/m 2 with no exponential decay. To study the region

when c approaches zero. Method 2 was summed until four digits of accuracy were obtained

in the final answer for all c. The result is shown for a flat strip (0 = 0 ) case in Figure 2.33

and for a rotated (0 = 45" ) case in Figure 2.34. For the flat case. the best choice for c was

found to be c=O for the given size of basis and testing functions. No weighting in the spa-

tial domain is necessary for Method 2. because the smoothness of the basis and testing func-

tions help convergence for all combinations of these functions. Since the convolution is

done analytically in the spectral domain, there is no numerical integration involved. When

c 0. a numerical integration must be performed which dominates the calculation in time

even though the contribution from the integration is small. In the rotated case. the best

choice for c is 0.05 <c<0.15. Here, smoothness of basis and testing functions does not help

convergence in the spectral domain. In order to get exponential convergence, we must go "off

plane" (c>0.05). In this case the time needed for numerical integration does not outweigh

the time needed to sum in the spectral domain accurately.

]I
S.

-N

I
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3. THE TWO-DIMENSIONAL ARRAYw
3 1 Introduction

In this chapter, the concepts developed in Chapter 2 will be extended to examine the

formulation of scattering from the two-dimensional array of plates shown in Figure 3.1.

The plates are aligned perpendicularly to the xy plane and rotated to make an angle 0 with

respect to the x axis. The plates are arranged along a skewed axis SI and S2. The incident

field is a plane wave with a direction of propagation 0, with respect to 2 and , with

respect to x

3.2 Definition of Terms

The Fourier transform needed for the two-dimension array is

F(/, ,Y) =f ff (x .v )e Y 'dxdy (3.1a)

i f (x .y ) f fF )e d /, d (.b
(2r)2

. where f(x.v) is the function in the space domain and F((, .0, ) is the Fourier transform of

f(x.y) into the spectral domain.

The spatial lattice for this problem is shown in Figure 3.2 is defined by use of a trans-

lation vector n,,...

= + 0,. (3.2)

P+mS + nS,

where-{i and 2 are the primitive vectors defined as

S=c (3.3a)

SSdcosl. + dsinfl. (3.3b)
Therefore. the translation vector in Cartesian coordinates is

AI.. = (nd cosfl).i + (mc + ndsin fl (3.4)

The reciprocal lattice is defined through the use of a reciprocal translation vector /,,,

iw. ,D"%' "(,% % ". % ". % - -. ., -. .. -,. . .. % % ", - % ". -. . . - -. , % -. - . . . A. N., ". A
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Figure 3.1 Geometr of two-dimensional array of plates
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k k+k,~ (3.5)

The reciprocal primitive lattice vectors. S Iand S2. are defined such that

S I S 1 =2w S-S I=O0 (3.6)

Theref ore. 
S= 222

Iy-Ofj cos lsin 0 (3.7a)

2 w x (3 7b)
dW Cosf I

and the reciprocal translation vector in Cartesian coordinates becomes

K~ 2w n__ T msin (I 2wm Y (3 8)
d cos 0 c Cosf Q c

The reciprocal primitive lattice vectors are shown in relation to the spatial primitive lattice

vectors in Figure 3 3

3 3 Formulation of GQ

The electric field integral equation (Equation (2 (0) u. ill be used to analyze the doubly~

periodic array of plate% In this case the Gireen's function is defined as the vector potential

response to an array of point source%. In the spatial domain an array ol point sourct-s

S located at x .,v'.z' in each unit cell may be represented as

Fhe response at .. 2,to each po~int source ma,. be summedJ it)ohiain

A

In the spectral domain, a point source array may he ex pre%%eti 4% a double summaiion

A .urreni. sheets through the use oft the Fourier transl orm pair iI Lqual ion' I V at h .11

the current sheets has a period khictated hv, the reclipro.ail Iatii~e Ind a cell 11I phas

L
]it ~ pVa
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shift dictated by the incident field.

Jx (nw = - (Z-Z') (3.11)
,=- n =- 0

C.A. is the area of the unit cell. K,,,, is defined in Equation (3.8) above and kic is the pro-

pagation constant of the incident wave. Adding the response at xo.yo,.zo of each current

sheet the following equation is obtained:

GP (F I F') = - e e +j 2 (3.12)
., 2j-

where application of the radiation condition yields

k , - O - Y- if k,2,> ?+ (3.13)

j - + 0,2-k,2 if OF + 0!>k(2
JY

0,= (K,. -k,,c ).; = 2r n-_ msinfQ k
Id cosf) CCos0

0 -= 21rm k
C

The spatial domain formulation of G. converges slowly as explained in Chapter 2.

The spectral formulation converges rapidly when Z,*z' (the "off plane" case) and con-

verges slowly when :,=z' (the "on plane" case). As with the strip array. since the plates are

not flat on the xv plane. the derivatives of the scalar potential term may not be transferred

onto the Green's function. rather the derivatives must be transferred explicitly onto the

basis and testing functions. In order for the subsequent integrations to make sense. rooftop

basis and razor testing function order of smoothness is chosen as shown in Figure 3.4. This

is the three-dimensional analogue to the triangle basis and pulse testing functions used in

Chapter 2. If both basis and test functions take a derivative, the rooftop/razor reduces to

combinations of two-dimensional pulses and delta testing. For the vector potential. the

rooftop is approximated as a two-dimensional pulse with the same moment as the rooftop

and the razor as a delta function weighted by the support of the razor. All integrals are.

therefore. reduced to the same form: the response at a point xr .YT .-ZT due to an array of

"J WL
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two-dimensional current pulses located on the spatial lattice.

3.4 Acceleration of Convergence in Spatial Domain

In order to accelerate the convergence of the spatial domain sum (Equation (3.10)). the

asymptotic behavior of e -14'p IR is added to and subtracted from the periodic Green's func-

tion by moving off the xy plane cCA units.

0 -jA - 4-F-4 + (- W)2Tee= E e- e -EPE (3.14)
...m =--ao 4rV 1 -- --... 12 + (Z - Z ,)2 =,On..

e J' - + o:4-: 712 e - 4 1 2 + ( I- - +c .- )2

4rVf, 1 2 + (:,-Z )2 4r' i . 12 + ( I - ' +cCA )2

*_#j !)#_ _, 2 + :0 -oz ' + -C.4 )2

+ E 2' -
....... - 47r , - - 2 + I:,- I +cCA )2

The first summation remains in the spatial domain and converges rapidly because the

asymptotic behavior is subtracted out. The second summation is smooth, nonsingular and

slowly converging It is brought into the spectral domain by means of Poisson summation

formula.

For a two-dimensional space. Parseval's theorem is

f f h ( x. )/ v x Y )d.x .d-v = -. f fH (03, .3, )F(0, .0, )d 1, d 0, (3.15)

It hIix.' is a comb I unction distributed along the spatial lattice with a cell to cell phase

shift

hl, ) =8( )-p .... "" "'"(3 16a)

(hen 1/ 13 3 I ,ilo a ormh f unction di',tributed ailong the reciprocal lattice
I

C A .i ., 7 1"a -. -),=8 / - .. € ) 3 ] b

rp nr1 .i , n it Pjr.e'.aii , heu)rem to the %f.ond sum of i quation 1 3 14) vields

-* . .,.,-- -,- + .v... .... .. v . .'....,. .' ... -:""-
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f (x.y) = 4 ,+ (I,- +CA )2 (3.17a)I4r~v/I ~Pot2 + (1:4-:l l+cCA )2

e - 1 + ( I )z +A e -J (0 , +P," )dxdy (3.17b)
47rv I p 12 +(Izo- +cCA )2

Substitution of Equations (3.16) and (3.17) into (3.15) yields

I 2fH (0 . , )F(0, .O )d 0, d 0, (3.18)

- I e~~1, -zzi+cCA + (p-o

C.A. , E 2j e

where vy is defined by Equation (3.13).

3.5 Numerical Implementation of the Spatial Domain Acceleration

As with the strip problem. the time needed to calculate the convolution of a two-

dimensional current pulse with the periodic Green's function tested with a delta function

was plotted for three different methods. In this section. c is multiplied by the unit cell area

(C.A ).

Method I implements the integration of the periodic Green's function (Equation

3 (3.14)) over a two-dimensional patch numerically using a Romberg integration routine. For

every x '.v'.:' chosen by the routine, the spectral and spatial domains of Equation (3.14)

are summed to accuracy. When the test is coincident with the basis function. the singular-

ity is removed from the non-asymptotic term and added back in analytically. The singu-

larity does not occur in the asymptotic terms since c>O. For each x '.v'.:'. the test point of

the asymptotic function moves as shown in Figure 3.5. This is allowed since the summa-

tions in the spectral and spatial domains are being done together. Figure 3.6 shows the time

* heha',ior ol Method I for a lmx Im basis arranged on a regular hexagonal lattice. The

timre required to calculate the matrix element tor a plate array is similar to the time

required Lor a strip array. If c is too small ( <() 02). the spettral domain is overweighted.

.L and i, is too large (c >0 12). the spatial domain is overweighted 'he time needed to calcu-

. ...... ,P **(............... . 'd .
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late the matrix element for the plate array is approximately the time needed to calculate

the strip array matrix element raised to the fourth power.

Method 2 involves distributing the basis and testing functions onto the spatial and

spectral domains.

fT(p.z )fJ(P'.z) E E e -
Aw 4n (3.19)

in =.-n =-.

e e

4r " 2 + (Z - )2 47v\ I P0 -- A-,,n 12 + ( I Z '1 +C )2

+ I ze'Ye -I z -Z d +c '
C.A. ,,, 2j y

The spatial domain integration is performed numerically. The spectral domain integration

is performed analytically. When there is no overlap in z: between J and T . the spectral

domain contribution becomes

E y e --e e - e -- 13.20a)
CA. -jA I 2jy j I

With overlap the spectral domain contribution becomes

,4d

-e e'' 2 -e r 2-e (3.20b)

CA -j-I 2j!y fY

where

A 1 0, cosO+O,. sinO

Since the spectral and spatial domain contributions are integrated separately, the test point

of the asymptotic terms must be fixed for the entire calculation. The asymptotic test point

must not fall on the basis function since the singularity of the asymptotic term is not taken

into account. Method 3 is the same as Method 2 with a point approximation for the spatial

domain integral outside the core region (m-l:l.n-1:1 ).

Figures 3.7-3.10 show the calculation time needed for all three methods for various

locations of testing functions. In all cases. Method 3 is fastest at the cost of accuracy.
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* ei~hijr, ! retlra, and spatial domain are aipproximatelv equal. Methods 2 and 3 show a

Ar 1, r me .it Il A here the spot tral domain test point move% off plane and gets

O'k i. neaI , er~en~e F igure 3 N .orresp%)nds io 2 in Figure 3 11 The test point is "off

* [ar n lin e .1 res~ult on.ergence for all methods is more rapid than in Figure

I ure I i ti he l '.eterm crrrespvntfing toI in I igure 3 11 Fhe large times here arise

* m uidrit rs I tie -is. mriotit terms 'sante until t. exceeds () Oh, the testing point of the

'!i t,1 I ,e,' I: n Ihe t1i&.is I u nt In I his ain he seen more dramatically if Method

t~ T nseir fie urp 10)



79

4. CONCLUSIONS

This report has investigated the convergence characteristics of the periodic Green's

function. The characteristics of the periodic Green's function have been discussed in the

framework of two examples: (i) scattering from a one-dimensional array of strips, and (ii)

scattering from a two-dimensional array of plates.

The periodic problem may be formulated in terms of responses to line/point sources

(spatial domain) or in terms of response to current sheets (spectral domain). The spatial

domain is slowly convergent everywhere while the spectral domain is only slowly conver-

gent in the "on plane" case when the testing function is located in the array plane. The slow

convergence in one domain stems from an unavoidable singularity in the reciprocal domain.

-. If the basis function is located entirely in the array plane (flat case). the derivatives

may be transferred onto the Green's function and the smoothness of the basis and testing

functions may be used to help convergence. If. on the other hand. the basis function is

-. rotated in the array plane, then all derivatives in the expression must be transferred expli-

citly onto the basis and testing functions. The transfer of derivatives in the scalar potential

term and approximations in the vector potential term simplify the problem to one of

finding the response at a point due to an array of one-dimensional current pulses in the case
44

of strips and two-dimensional current pulses in the case of plates.

In order to quickly do the summation to be computed in TR * J * G. a combination

of both the spectral and spatial domains must be used. Accelerating the spatial domain is

shown symbolically as

TR * J * I(G--G )+F-ntGa] (4.1)

The function G is slowly convergent but peaked. A smooth function that asymptotically

, approaches G (G") is subtracted from G to render the first two terms in the brackets

rapidly converging. The function G" is then added in the spectral domain using the Poisson
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summation formula. Since the Poisson summation formula essentially Fourier transforms

a smooth function %ith wide support, this term is also rapidly convergent. The same pro-

cedure may be applied to the spectral domain.

TR * y* IF1((;d)+G (4.2)

The function G' in Equation (4+1) was chosen by moving the testing point "off plane,

through use of a parameter c. In this report. c is multiplied by the area of the unit cell to

get a distance. Numerical experiments were performed to determine the value of c required

to minimize the time needed to calculate Equation (4.1). Three methods were studied:

Equation (4.1) itself (Method 1): distributing the basis and test convolutions onto each

domain and performing the convolution analytically in the spectral domain (Method 2);

finally, calculating the out of core terms of the spatial portion of Method 2 using a point

approximation to the integrals (Method 3).

Method I is the most accurate of all the methods for all values of c chosen. The

optimum value of c for Method I is in the range 0.01 <c<0. 1. For this range. the spatial

and spectral domains are weighted approximately evenly. Method 3 is the least accurate of

the methods and its accuracy decreases as c is increased, due to the approximation in the

spatial domain. Method 3 is also the fastest method of the three for a wide range of c. The

optimum value of c for Method 3 due to the accuracy is O.(X)1 <c<0.03. Method 2 has

accuracy problems whenever the won plane" case occurs. It is also the slowest of all the

methods due to problems in specifying the absolute accuracy of the summations.

In summary. Method 1 is recommended when accuracy is the prime concern while

Method 3 is recommended when speed is desired. In all cases. the choice of c must be made

to ensure that the asymptotic term test point does not fall on the basis function since the

singularity of the asymptotic term has not been taken into account.

In general. it was found that when the strips or plates are flat in the array plane. the

smoothness and width of the basis and testing functions help the convergence of the

I



spectral domain so much that the spectral domain should get the entire 4reighting

3 Acceleration technique% need not be applied. In the case% where the strips or plates are

rotated with respect to the array plane. acceleration technique% can he applied which results

in a substantial time saving when c is selected in the ranges recommended Ox),r

4h.
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