
-AiB4 848 SHAPE FROM SHADING OCCLUSION AND TEXTURE(U) t/7MASSACHUSETTS INST OF TECH CRMBRIDGE ARTIFICIAL
INTELLIGENCE LAB A L YUILLE MAY 87 AI-M-885

UNCLASSIFIED N88914-85-K-8124 F/G 23/3E/llllEEElliE
EliEElihElhhhE
illlEEEEEllliE
EEElhhEElhhlhE
Eu.



1 .0 alowE28a LM

I." I 30 I 8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

14,1 p 9 r 1'* "10 W WJ% ~

%~



-INPG READ INSTRUCTIONS
nONPAG BEFORE COMPLETING FORM

gTIIE00"' NSEQ 885 GOVT ACCESSION NO I RECIPIENT'S CATALOG wNMUER

4 i T, E (and S,6mb * S, TYPE OF REPORT & PERIOD COVERED

Shape from Shading, occlusion and
Texture. IAl-Memo.

6 PERFORMING ORG. REPORT NUM@UER

AU T OR(@) S. CONTRACT O0R GRANT NUMUIIERsj

A.L .Yuille
NOQO 14-85-K-O 124

9 PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT PROJECT TASK

Artificial Intelligence Laboratory AREA G WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 021.39
1CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

Advanced Research Projects Agency 19871400 Wilson Blvd. 13. NUNS OrP PAGES

Arlington, VA 22209 55
14 MONITORING AGENCY NAME G AOORESSII diffoeI 1000 ConteIIInd OlD1e.) Is. SECURITY CLASS. (f* thleispoit)

Office of Naval Research UNCLASSIFIED
Information Systems _______________

Arlington, VA 22217 Is&. OECj A558 FICA TION/ DOWNGRADING
SCN DULE

to DISTRIBUTION STATEMENT (0( this Report)

Distribution is unlimited.

17. OIST11RIUUTION STATEMENT (of If. abstract entered In Block 2N, itdlorn frDDoRDm Aspol)

It. SUPPLEMENTARY NO0TES

NoneD

19 KEY I WORDS (Cont"Wo d roRw olemo to,~ Roccesir a"~dee $~Ho by 610* .oihe)

Shape from shading, Shape from Texture.
Shape from Occlusion.

30 AOSTRACT (Coni ain pr* ie Of noo'ff@O an.IDpe.7d IentIifyp 6004 Swomiw.)

Shape from Shading, Occlusion and Texture are
three important sources of depth information. We
review arnd summarize work done on these modules.

DD ~Z,1473 CDI TION oil INovis is oSsoLETt UNC LASSI F IED
S/N 0 !02.0 II.6609

SECURITY CLASSIFICATION OF TNI3 PACE (Wh e ON ROPO



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I.Memo 885 May 1987

Shape from Shading, Occlusion and Texture

A.L. Yuille

Abstract:

Shape from Shading, Occlusion and Texture are three important sources of depth in-
formation. We review and summarize work done on these modules.

© Massachusetts Institute of Technology (1987)

Accesio;i For
NTIS CRA&I

DTIC TAB El

Unannounced U
Justtfic tior,

b y - ------ 
--- -- -

,, ,,Tr[ )AJlb t ,r,,
' s CTE Dist iA -Jr l;

This report describes research done within the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's Artificial Intelligence
research is provided in part by the Advanced Research Projects Agency of the Depart-
ment of Defense under Office of Naval Research contract N00014-85-K-0124 and the System

S Development Foundation.

67 9 14 015



2

1. Introduction

Vision is a highly complex process. There is an important distinction between

those visual processes which involve high level, or semantic, information and

early vision processes which do not use such knowledge. A primary goal of an

early vision system, be it human or mechanical, is to determine and represent

the shape of objects from their image intensities. Marr (1982) calls such

a representation, which makes explicit the distance to, and orientation of,

the visible surfaces from the standpoint of the viewer, a 2 - 1/2D sketch. He

describes several independent processes, or modules, which compute it. Marr's

research focussed on stereopsis and structure from motion. In this chapter

we will consider other modules: shape from shading, shape from occlusion

boundaries and shape from texture.

The image intensities are the basic inputs to any vision system. For a

camera they consist of an array of numbers measured by electronic sensors.

In the human eye these measurements are made by a million neurons that

undergo chemical changes in response to light. Unlike stereopsis, shape from

shading calculates the shape of a surface from a single image. People can

estimate the shape of a face from a single photograph in a magazine. This

suggest that there is enough information in one image, or at least that we

make additiunal assumptions. The key point is that because different parts
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of the surface are oriented differently they appear with different brightnesses

and this can be employed to estimate the surface orientation. By itself this

only provides one constraint for the two degrees of freedom of orientation.

Additional assumptions, such as surface smoothness, are needed.

The light intensity that enters our eyes, or a camera lens, is not di-

rectly related to the structure of the objects being viewed. It depends on the

strength and positions of the light sources and the reflectance functions of

the objects. The reflectance function of an object determines how much light

the object reflects in any given direction. In pioneering work, Horn (1970,

1 1975) showed how to determine shape from shading by modelling the image

formation process with the image irradiance equation. In this equation the re-

flectance functions of objects are written in a simple mathematical form. It is

possible to invert this equation and estimate the shape of the object, provided

the position of the light source and the reflectance function of the object are

known. For this solution to be unique, one needs additional constraints, such

as the directions of the surface normals on the boundary of the object. These

constraints can be imposed as boundary conditions on the image irradiance

equation.

There are two types of object boundaries. The first is due to a discon-

, t:". ~ tinuity in the surface normal, such as the boundary of a knife blade. The

* p -~)S 2.
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second occurs when the surface turns smoothly away from the viewer and'is

called an occlusion boundary (see figure 1.). It is possible to get'a surprisitg

amount of information about an object's shape from occlusion -boundaries.

This knowledge can be used as boundary conditions for a shape from shading

process. It can also strongly constrain the geometrical structure of the object

1. %being viewed.

k

(6) (bINJJL

Figure 1(a) how, an occluding boundary where the light ray grazes the

surface. Figure (b) shows a discontinuity boundary.

Another source of depth information is texture. Gibson (1950) observed

that textured objects with repeating patterns can give a strong impression of

depth. This effect has often been. exploited by artists. In the final section we

briefly review work on this module.

4i~
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2. Setting up Shape from Shading

The human visual system has a weak ability to use shading information to

determine shape. A common example of this is the use of make-up in everyday

life which can have dramatic effects wher. skillfully applied. It seems unlikely,

however, that this ability is highly developed. In most natural situations the

lighting conditions are too complicated and the reflectance properties of the

objects are too varied. Furthermore the existing psychophysical evidence,

though limited, suggests that the information it yields is weak.

Nonetheless shape from shading is one of the most analysed visual mod-

aules. Horn (1975) derived a differential equation, the image irradiance equa-

tion, relating the image intensity to the surface orientation. He assumed the

illumination was simple and the surface reflectance was known. These as-

sumptions limit the domain of this approach. It is impractical to solve these

equations for complex lighting situations, such as most indoor scenes, where

there is mutual reflectance between objects and many light sources. They are

most useful for situations where the lighting can be modelled by a point source

and a diffuse component, such as aerial photography, or in industrial appli-

cations where the lighting can be controlled. Horn and Ikeuchi (Ikeuchi et al

1984, Horn and lkeuchi 1984) describe how shape from shading can enable a

robot to identify an object and extract it from a bin of parts.
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The basic geometry of the situation is shown in figure 2. The fraction of

light reflected from an object depends on the structure of the object and can

usually be described as a function of the directions of the viewer k, source F

and surface orientation i. Let i, e, 9 be the angles between 7i and ii and k,

and Z and .Let S be the position of the point in the image. The reflection

of light by the surface can be described by the image irradiance equation

E(S) = R(k, i, i) (2.1)

where E(:F) is the image intensity grey level measured by the viewer at

point : and R is the reflectance function of the object. Many surfaces can

be modelled as combinations of Larnbertian and specular surfaces. Lamber-

tian, or pure matte, surfaces look equally bright from all directions. Their

reflectance function RL is just the cosine of the angle between the light source

and the surface normal and can be written

RL = i' 6 = cos(i). (2.2)

The ideal specular surface is a mirror. The reflectance function RS is 1

if ;. 7i and Z are coplanar and ". fi = k ii *, and 0 otherwise. However most

specularity in the real world is not pointlike and extensions are needed. One

*Equivalently 2 e and g = i 4- e.
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model smoothes Rs by convolving it with a gaussian. Another approach is

taken by Computer Graphics models. Let K be the unit vector bisecting "and

k as in figure 2. Then perfect specular reflection will only occur when ii. h = 1.

So to model specularity we can use a reflectance function Rs = (h' i)' where

m is a large number, often m = 16. This function has a single maximum at

points where ii h. = 1 and then falls off sharply. The speed of the fall off

increases as n increases.

I#

n n

( J

Figure 2(a) shows a light ray being reflected by an ideal mirror. In figure

(b) the jpecular reflectance ij a function of ii h.

SHorn (1979) gives examples of many different types of reflectance func-

tion. For instance, for fixed g, the rocky surface of the maria of the moon can

be modelled by RM where
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v.:

cos(i)RM - ose (2.3)cose)

This has the interesting property that if the source of illumination is

directly behind the viewer, so that i = e, the surface will be of constant

brightness. This effect is easily observed when the sun, earth and moon are

appropriately aligned.

A crucial problem for shape from shading concerns the uniqueness of the

solution. Even if the light source direction is known there is one equation

for two unknowns, the two independent coefficients of the surface normal, at

each point. Thus simple number counting suggests that more information is

needed to guarantee uniqueness. Uniqueness results are discussed further in

section 5.

There have been disappointingly few psychophysical experiments inves-

tigating shape from shading. In recent work Todd and Mingolla (1983) dis-

played the images of cylindrical surfaces of different radii and asked subjects

to estimate the curvature. They showed that humans were able to get a weak

estimate of the surface shape and were better at finding the light source direc-

tion. Adding some texture patterns, to allow shape from texture, improved

their performance. Specular highlights did not seem to influence these results.

This work is very preliminary and more research is needed in this area.



It has been found empirically (Woodham 1980) that the Lambertian is

a suprisingly good model for many aerial photographs. However there are a

number of atmospheric effects (Sjoberg 1982) which must be taken into ac-

count. A recent report (Woodham and Lee 1984) concludes that atmospheric

effects, such as the scattering of the direct solar beam, are important and

vary locally with elevation. The sky irradiance is also significant and must be

modelled explicitly.

3. Gradient space and characteristic strips

An important issue for all vision problems is the choice of representation.

Workers in shape from shading have often used a representation for surfaces

known as Gradient space. This was developed by Huffman (1971) and Mack-

worth (1973) in another context. It was first used for shape from shading by

Horn (1977).

We choose a coordinate system such that the image lies in the xy plane.

An arbitrary point on a surface z = f(x, y) is given by

(X (.,y,f(x,y)). (3.1)

The surface normal is

~~~~~~~............. .. .. :........... ... .... ............ ,..-..............-...........,..-



10

- 1 (3.2)

where f2 and fl, are the partial derivatives of f with respect to x and y.

They can be denoted by p and q respectively. The coordinate frame based

on (p, q) is Gradient ;pace. In this space a planar surface ax + by + c = z is

represented by a point p = a, q = b, (see figure 3.). Using this notation the

image irradiance equation (Horn 1977) becomes

Figure S. A plane ax + by =c =z is represented by a point (a, b) in

Gradient space.

E(x,y) =R(p,q). (3.3)

The problem now is to recover the surface z f f(z, y) given the image

-k -A .;z.
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intensity E(z, y) and the form of the reflectance function R. Figure 5 shows

contours of constant intensity as a function of p and q for a specific reflectance

function. Many reflectance functions can be expressed simply in terms of

Gradient space. For example it is easy to verify that the reflectance function

of the maria of the moon RM, given by (3.3), is a linear combination of p and

q.

q-q

• .9

i "-..s.0.7

Figure ,4. Contours of constant intensity in Gradient space.

Gradient Space has a serious disadvantage which we will discuss in more

detail in section 4. At occluding boundaries both f. and f, become infinite

and so p and q are undefined although the surface normal is well behaved.

Thus the coordinate system breaks down at occluding boundaries. These

boundaries are often important as boundary conditions for variational shape
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from shading.

The image irradiance equation (3.3) is a non-linear, first-order partial

differential equation. Horn (1975) applies the characteristic strip method to

reformulate the problem. This is illustrated in figure 5. Suppose we know

(p, q) at a point on the surface. We can define the characteristic strip curve

(x(s), y(s), z(s)) by

(%VYO geestrip through
~(Xo9y o)

Figure 5. The characteristic strip through (xo,yo). Its tangent direction,

i. n the (x, y) plane, (dx/d, dy/ds) is along the gradient of the Reflectance

function in Gradient space (8R/8p,8 R/8q).

dx 8R (34)
ds - p (3.4a)
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dy _ Rdy = - (3.4b)
ds aq '

_dz 8R 8R
d=z P + q a. (3.4c)

Note that the dot product of the tangent to this curve with the surface

normal i ,given by (3.2), is zero. Thus the curve lies on the surface. In terms

of p and q this becomes

dx dy dzd- . (3.5)

Differentiating eq. (3.3) with respect to x gives

Ex = RppZ + Rqqz. (3.6)

Since p.=f = q, we find

Ex = Rppz + Rqpy (3.7)

and so, using eq. (3.4), we get

E.= dp. (3.8)
ds

Similarly

iI
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E = ' (3.9)

These equations can be used (Horn 1975) as a basis for an iterative com-

putation. Suppose the surface gradient (p0, qO) is known at a point (xo, yo).

We can find the tangent to the characteristic strip at this point from eq. (3.4).

Using the intensity gradient we can use (3.8) and (3.9) to calculate dp/ds and

dq/ds. Thus we can determine the gradient (pi, qj) at (x1 , yi). Repeating this

procedure we can calculate p and q along the characteristic strip curve. The

set of all characteristic strips will span the surface. So if we know the surface

normal on one point on each characteristic strip we can use this method to

recover the surface.

The characteristic strip method has several disadvantages. It needs the

surface at the initial point to be convex, it is complex to compute and it is

very susceptible to noise. In addition the surface normal at the initial point

for each characteristic strip must be known. Another problem is the possible

non-uniqueness of the inverse shape from shading calculation. It cannot be

guaranteed that the strips method will converge to the right answer. From

the perspective of human vision .the serial nature of the computation makes

it biologically implausible.
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4. Geometric assumptions and Photometric stereo

An alternative approach to shape from shading is to restrict the surface ge-

ometry. The simplest situation is a world of planar surfaces. Horn (1977)

showed that if three planes meet at a point then the orientation of the planes

can be determined locally by shading information.

(a) M

Figures 6(a) and (b) show two developable surfaces.

Woodhar (1981) extends this result to the class of developable surfaces,

which includes cylinders and cones. These surfaces are defined so that for

every point on the surface there is a straight line ruling through it along

which the normal vector is constant, see figure 6. Since the reflection func-

tions depend only on the surface normal the image intensity will therefore be

constant along these rulings. Thus it is straightforward to check directly from
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the image if a surface is developable. For these surfaces the characteristic

strips method, and other more numerically stable techniques, can easily be

applied. Generalized Cylinders are a class of surfaces much studied in Com-

puter Vision (Binford 1971). They consist of a two-dimensional cross-section

which generates a surface as it is moved along a straight axis being allowed to

contract or expand provided it keeps the same shape, see figure 7. Woodham

(1981) shows how to extend his results to generalized cylinders provided the

axis of the cylinder is parallel to the image plane.

,<:J
/ ,

(a) (b) (c)

Figure 7(c) shows a generalized cylinder. Figures (a) and (b) show its

cross-section and its axis.

Pentland (1984) has shown that for Lambertian surfaces at umbilic points,

-y...
where the principal curvatures of the object are equal, the surface can be de-

.J4
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termined locally. This result is limited as the sphere is the only curved surface

which is umbilic everywhere and there is no known method of discovering if

the surface is umbilic or not. Nevertheless Pentland argues that this require-

ment can be relaxed and reports good results from this method even when

the surface is not umbilic.

Perhaps the most elegant method of using shading information is pho-

tometric stereo (Woodham 1978, 1980). Here the direction of incident illu-

mination is varied between two successive views. We denote the two images

by E,(x. y) and E 2(x, y) and let the corresponding reflectance functions be

Ri(p, q) and R 2 (p, q). If the illumination is rotated about the viewing direc-

tion then R 1 and R 2 are simply related. The two views yield the equations

E, (x,y) = R,(p,q) (4.1a)

E 2 (X, Y) = R 2(p,q) (4.1b)

in the two unknowns p and q. These will usually be sufficient to determine the

shape. At any point (x1 , yj) the first image will constrain p and q to lie on the

contour R,(p, q) = E,(x 1 , yj) in Gradient Space. Similarly the second image

will constrain them to lie on the contour R 2 (p, q) = E 2 (zl, Wi). These curves

will usually intersect in two points allowing at most two consistent surface
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gradients. If necessary a third image E3 could be used.

Photometric stereo can be easily implemented (Silver 1980) and is proba-

bly the most practical method of doing shape from shading. It can be speeded

up by using a lookup table to attain real-time performance.

5. Variational Methods

We mentioned earlier the disadvantages of the characteristic strips approach

to solving the image irradiance equation. In this chapter we show how to

formulate shape from shading as a minimization problem which can be solved

by local parallel processors. These methods are numerically stable and only

require a single view. They usually achieve this stability by making smooth-

ness assumptions about the viewed surface. To attain uniqueness they need

to know the surface normals on the boundary of the object, see figure 8. For

occluding boundaries this information can be found directly from the image

(Barrow and Tennenbaum 1981, Ikeuchi 1980). At such boundaries the nor-

mals are perpendicular to the projection direction and hence lie perpendicular

to the projection of the occluding boundary.

V. The first parallel scheme was due to Strat (1979). It used the gradients

p,q to express surface orientation and was therefore i;nable to deal with oc-

.1 .
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cluding boundaries. It was not formulated as a variational problem, but Horn

and Brooks (1985) show that it can be expressed in these terms.

l~ccluding

Boundary
smoothness

Figure 8. Variational methods assume knowledge of the normals on the

boundaries, the image irradiance equation (Lambertian in this case) and sur-

face smoothness.

Ikeuchi and Horn (1981) developed another method using the calculus of

variations and an alternative coordinate system. In terms of Gradient Space

coordinates the surface normal is

(1 + (-p-q, 1), (5.1)

At occluding boundaries p and q become infinite although the normal

itself is well behaved. Ikeuchi and Horn (1981) suggest using coordinates f

L W 4L..



20

and g given by

2p
1 (1 + p2 + q2)1/2  (5.2a)

2q
S +(1 p2 + q2) 2  (5.2b)

These coefficients satisfy f 2 + g2 < 4 for all visible parts of a surface.

This stereographic space corresponds to projecting the Gaussian sphere of all

possible surface orientations onto the plane from its north pole. In contrast

gradient space corresponds to a projection from the centre.

In terms of these coordinates the image irradiance equation becomes

E(x, y) = R(f,g). Let Ql be the region on which the image is defined. We

define a measure of the brightness error by

j(E(xy) - R(f(x,y),g(x, y))) dxdy. (5.3)

The minimization of the brightness error does not constrain the problem

sufficiently. For generic surfaces we expect that neighbouring points will have

similar orientations. To impose this Ikeuchi and Horn (1981) add a smoothness

term given by

J (fi + f 2y -)dzd,.(.)

YI
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"N This smoothness term will be small for a surface with few fluctuations

in f and g. Adding the smoothness error to the brightness error we obtain a

functional

J jE(x, y) - R(f (x, y), g(x, y))) ' + A(f.1 +f2 + g2 + g2)dxdy. (5.5)

This functional is minimized with respect to f and g over the space

Q, subject to the boundary conditions. X is a scalar that assigns a relative

weighting to the terms.

It is a standard result of the Calculus of Variations (Courant and Hilbert

1953) that, in most situations, minimizing the functional (5.5) is equivalent

to solving the associated Euler-Lagrange equations

t (E - R)R! + AV 2f = 0, (5.6a)

(E - R)R, + AV2g = 0. (5.6b)

Here Rf and R. are the partial derivatives of R(f, g) with respect to f

and g and

, ' 8V_0 2

(9X2 OX-2
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is the Laplacian operator. These equations can be solved by a finite difference

approach. The Laplacian is written as

~~~(V f),j = 4(, ,) (5.8)
4-

(V~f ,2 (7 - (5.8)

where E is the grid spacing and the local average f7i is given by

Tj = 1 Y6+1 + fi+i,j + fi,j-. + fi-l,,). (5.9)

We can rewrite the Euler-Lagrange equations in this form

= - E2

+ ¥ (Ei3 - R(f1 j, gi))Rf(f , , g,.7), (5.10a)

9ij= §1+ (Eij - R(fi,gi,))R(fj,gij), (5.10b)

These equations can be solved using an iterative scheme

-- E 2

f,,+' = f + " (E), - R(f,,,g,))R(f,),,1,) (5.11a)
4A

E2
k+ = + (E - R(fI g,,,))R,(fI 3 . g ) (5.11b)

Empirical results demonstrate the effectiveness of this scheme although

there is no proof to guarantee that it will converge to the correct solution. The

iIzZ49,M
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scheme is intrinisically parallelbsable. There are several alternative methods

to minimize the cost functional including the gradient descent technique.

The smoothness term is necessary to ensure a well-defined smooth solu-

tion. However it does tend to bias the resulting surface. For example if the

image corresponds to a sphere the algorithm will yield a distorted sphere. The

amount of this distortion depends on the size of the parameter A. This pa-

rameter must be large enough to make the algorithm stable and small enough"S

'not to distort the surface too much.

A weakness of this scheme is that it treats f and g as being independent

variables and makes no use of the integrability constraint (Brooks 1982). This

constraint '-ises because of the "consistency" of the surface and corresponds

to the condition f., = fy. In terms of gradient space it is expressed as

Py = qX. (5.12)

We can use (5.2) to write this in terms of f,g and their derivatives.

However it is too complicated to be easily used to constrain the solution.

Strat's method (1979) implicity uses this constraint although his method

is based on an integral form. The scheme can be posed in a functional form

(Horn and Brooks 1985) and does not include a smoothing term. Horn and

Brooks 1985) describe his work and provide a summary of other work on

. '"
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variational approaches to shape from shading,

All these approaches assume that the source direction is known accu-

rately, which is unlikely for most realistic situations. To deal with this problem

Brooks and Horn (1985) have proposed an iterative scheme using a variational

principle that estimates the source direction as it determines the slope. There

is no guarantee of convergence of the algorithm but preliminary implementa-

tions are encouraging.

6. Uniqueness

Bruss (19ol) has obtained some results about the uniqueness of the image

irradiance equation. She assumes the light source is known and shows that

boundary information, usually in terms of occluding contours, is almost always

needed. She considers reflectance functions of form f(p 2 +q 2 ), where f is a one-

to-one function. She shows that if the behaviour on the boundary is specified

and Ez, y) has at most one stationary point then the solution is unique up to

inversion. A special case of this reflectance function is a Lambertian surface

with the light source directly behind, or over the shoulder, of the vev;er.

More recently several proofs have been proposed to prove uniqueness Lor

Laiibertian surfaces with general viewpoint (Baddoura 1985, Blake 1965b,

.6



25

Yuille and Brady 1986) assuming the normal vector on the boundaries is

known. Although these proofs are interesting in their own right none of them

suggest new algorithms to calculate shape from shading.

If the direction of the light source is unknown there is additional ambi-

guity (for example see Woodham 1981) and uniqueness results might seem

even harder to obtain. Suprisingly this is usually no: the case (Yuille and

Brady 1986). If the normal to the surface is known then given the form of the

reflectance function it is often straightforward to determine its parameters.

For example, the Lambertian reflectance function is given by

E(x,y) = . ii (6.1)

and is specified by three parameters, the coefficients of i. If the boundary

, is occluding then the surface normal ii is known there. Hence for a typical

object there are an infinite number of equations, although they may not be

independent, from which to determine .1, see figure 9. These may still not give

sufficient information as the surface normals at occluding boundaries generally

are perpendicular to the viewer direction k. In this case two coefficients of

can be found but the coefficient in the k direction is unknown. Suppose,

however, we make the reasonable assumption that there is a point at wh;ch

the surface normal points directly to the light source. This point can be

iia%

-* "e P. e
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easily found since, by (6.1) it will be a global maxima of the image intensity.

Moreover the value of the image intensity at that point will be the modulus

of i. It is now straightforward to determine the third component of i This

argument does not apply to the example of Woodham (1981) which was a

cone and because of its regular structure had no normal pointing towards the

light source. This proof can be extended to more general reflectance functions

and combinations of them (YuiUe and Brady 1986).

".
.'2' I

''

In figure 9(a) there are an infinite number of directions of the surface nor-

mal i and hence an infinite number of equations. However if the reflectance

i i s Lam bertian there will be only two independent equations. In figure (b) there

i s only one equation.

This argument helps for uniqueness proofs but may not yield a stable

S. ).

I-.
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method to determine the source direction for real images. Moreover the ap-

proximations used to model objects as Lambertian surfaces may not hold near

occluding boundaries.

7. The Extended Gaussian Image

- In order to recognize an object and determine its orientation in space it is

necessary to have a way of representing its shape. One such representation

which has been proposed by Horn (1982, 1984) is the extended Gaussian Im-

Aage. Because it explicitly represents shapes by their surface normals it seems

particularly appropriate for describing objects found by a module like shape

from shading which calculates orientation rather than depth. Each point on

the object is represented by a point on the Gaussian sphere corresponding

to the direction of the surface normal, see figure 10. If several points on the

object have the same surface normal then each such point contributes a unit

of "mass". Thus the extended Gaussian sphere representation of an object

consists of a mass distribution on the sphere. The total mass of the sphere

corresponds to the total surface area of the object. It can be shown that this

representation is unique for convex objects. This representation stays invari-

ant under translation of the object and behaves simply under rotation, the

.4 ,,ea . .' . . . ,%,.. e%
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whole sphere rotates by the same amount.

/ z•
/*

,. Figure 10. The unit normal to the surface at a point is parallely trans-

ported so that its base lies at the centre of the Gaussian sphere. The point

i3 represented by the position of the tip of the normal on the surface of the

sphere. Note that the coordinates of the point in Gradient space are given by

the intersection of the line along the normal with the plane z = I at the top

of the sphere.

I
L 8. Applications

In this section we discuss two important uses of shape from shading. We first 'F..

consider using the image irradiance equation to predict the image of a given

lPhi
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screen for aerial photography. Secondly we describe work in which a robot

uses shape from shading to pick an object out of a bin of parts.

The study of aerial photographs is a growing application area of shape

from shading. For example it is important to monitor areas of harvesting

activity. In rugged terrain changes, i.a image irradiation due to the ground

cover are often dominated by chaiges due to variations in the topography. If

the variations in topography can be predicted, then the remaining variations

can be interpreted as changes in ground cover and used to determine the state

of the harvest. For aerial photography the sun is the unique light source and

its exact direction can easily be determined.

The reflectance map can be used to synthesize a model for the variations

4 due to topography. No attempt is made to invert the map. Instead the

surface slope information is used as input to the image irradiance equation

which then predicts the intensity for a given illuminant and viewer. It is

necessary to have good determination of shadow information, which typically

correspond to occluding boundaries. For aerial photographs, and Landsat

images, the primary light source is the sun and its postion must be accurately

known at the time that the satelite takes its pictures.

It has been found empirically (Woodham 1980) that the Lambertian is

a suprisingly good model for many aerial photographs. However there are a

N N I.
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number of atmospheric effects (Sjoberg 1982) which must be taken into ac-

count. A recent report (Woodham and Lee 1984) concludes that atmospheric

effects, such as the scattering of the direct solar beam, are important and

vary locally with elevation. The sky irradiance is also significant and must

be modelled explicitly. This leads to a scene irradiance equation with three

terms

'a. L+ ((g))coS(i)+-) (1 + cos(e)) +'1H

r 7r 2 +Pe'II

(8.1)

where r(z) = re- z/ / . These three terms correspond to solar irradiance,

sky irradiance and path radiance respectively. E, p, r, Eso, Hs, Lpo and H

are constants.

In re'ated work Horn (1981) argues that digital terrain models provide

convenient surface descriptions for use in the study of hill-shading for maps.

They can also be used for the automatic registration of satellite images with

: surface models (Horn and Bachman 1978).

Shape from Shading is a practical tool in industrial situations since it is

often possible to control the lighting. The reflectance characteristics of the

viewed objects are also known. Techniques like photometric stereo can then be

employed to find the orientation values of objects. An example is work done

a,
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by Horn, Ikeuchi et al (Ikeuchi et al 1984, Horn and Ikeuchi 1984) linking a

Puma robot with a vision system which makes use of photometric stereo.

9. Photometric Invariants

Another branch of research tries to find what can be extracted from the in-

tensity without explicit knowledge of the reflectance map but merely its func-

tional form. More precisely use is made of the fact that the reflection function

depends on the geometry of the surface only through the surface normal.

We first need some concepts from differential geometry (Do Carmo 1976).

At every point on a surface there are two orthogonal directions in which the

curvature of the surface changes most. These are called the principal direc-

tions of curvature. The curvatures in these two directions are the principal

curvatures. These properties are independent of the orientation of the surface.

The product of the principal curvatures is the Gaussian curvature, see figure

11. If the principal curvatures are of opposite sign the Gaussian curvature is

negative and the surface is hyperbolic. An example of a hyperbolic surface is

a saddle point. If the principal surfaces have the same sign the Gaussian cur-

vature is positive and the surface is elliptic. Regions of positive and negative

curvature will be seperated by lines with zero Gaussian curvature. These are
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called parabolic lines.

I+

" I
I I

(a) (b)

Figure 11(a) shows a surface with both principal curvatures positive and

hence positive Gaussian curvature. In figure (b) the principal curvatures are

of opposite sign and the Gaussian curvature u negative.

Koenderink and van Doom (1980) investigated photometric invariants,

features of the image that do not vary as the light source is moved. They derive

relations between features in the image intensity and geometric features of the

object being viewed. More precisely they consider the maxima and minima of

the image intensity and show that most of them lie on parabolic lines of the

underlying surface. At these points the Gaussian curvature changes sign and

the surface changes from being hyperbolic to elliptic. Furthermore they show

that the isophotes, the lines of constant image intensity, cut the parabolic lines

'v'p.
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at constant angles, see figu,-e 12. These results were re-derived and extended

by Yuille (1984) who showed that at the parabolic lines the isophotes lay along

the lines of curvature of the object and hence were determined by the surface

geometry independent of the lighting conditions or the reflectance function.

He also investigated the zero crossings of the second directional derivative

and showed that they tended to lie near the extrema of curvature of the

surface. It is an intriging possibility that results of this type combined with the

information available from bounding contours may be able to give a qualitative

description of an object without explicit knowledge of its reflectance function.

J

Angles - independent
of illumination

Figure 12. The isophotes, shown by dajhed lines, cut the line of zero

Gaujsian curvature at constant angles independent of the reflectance function.

* , .At the intersection their tangent lie in the direction of the lines of curvature

" , . . .. . . . . . -- -. - - " . " " " " " " ", " . " ''. u. ' ,' u " ' ." ," ''" ' .'. - ' ""
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of the surface.

10. Computer Graphics

Present theories of shape from shading only work in restricted lighting condi-

tions for objects with simple reflection functions and it is unlikely that they

can work for general scenes. It may, however, be possible to use shading in-

formation to obtain qualatative information about objects. The reflectance

models of Computer Graphics could be the basis for such a theory.

In recent years there has been considerable interest in modelling real

scenes with Computer Graphics. For realistic effects the reflectance functions

of objects must be modelled exactly. Films like "Tron" show how effective

present techniques are.

The reflectance function concept was introduced into Computer Graph-

ics by Phong (1975). He suggested modelling the reflectance function as a

combination of Lambertian and Specular components. This is given by

Rp = Cp(cos(l)(1 - d) + d) + W(i)(cos(s))R (10.1)

where CP is the reflectance coefficient of the object, d the environment diffuse

reflection coefficient and W(i) is a function giving the ratio of the specular

.3 ,dye,



reflected light to the incident light. Blinn (1977) introduced the lighting

models of Torrance and Sparrow (1967) which modelled the surface as a set

of planar facets with specular components and a diffuse component due to

multiple reflections. This work was extended by Cook and Torrance (1982)

!who emphasized the wavelength dependence of reflectance. Intuitively an

object reflects light either at the surface, in which case the reflectance is

, ftspecular and the wavelength is independent of the material, or below the

surface. In this case the reflected light depends on the object and can often

be assumed to be Lambertian. Metals are good conductors of electricity and

so the electromagnetic field of light does not penetrate them far. Thus their

.reflectance functions have mostly specular components.

An important effect described by these models is off-specular reflectance.

This occurs when light is incident from a non normal direction. A maximum

in the distribution of the reflected radiance occurs at an angle larger than the

specular angle.

% The Cook and Torrance model assumes that the reflectance is a sum of

three components: specular, diffuse and ambient. The ambient and diffuse

td .*. components reflect light in all directions equally. The specular reflectance is

lit F DG
R, (10.2)

7 (N. L)(N .V)

I-.
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The geometrical attenuation factor G accounts for the shadowing and

masking of one facet by another (Blinn 1977). The facet slope distibution

function D represents the fraction of facets that are oriented in the direction

H (Blinn 1977).The Fresnel factor F depends on the reflectance spectra of the

material and is a function of wavelength. These functions are complex and

often need to be determined by experiment (see Gubreffet al 1960). In general

F depends on the geometry of reflection and hence the colour varies with

direction. For example for copper the colour of the reflected light approaches

the colour of the light source as the incident angle approaches 7r/2.

A typical plastic has a substrate that is transparent or white, with em-

bedded pigment particles. Thus the light reflected directly from the surface

is only slightly altered in colour from the light source. This is well modelled

by Phong and Blinn. The more complex model of Cook and Torrance is also

suited for modelling plastics. Moreover it also produces realistic metals, unlike

many computer graphics which tend to make everything seem plastic.

Many surface materials in the natural world are anisotropic, for exampte,

cloth is a weave of threads each of which scatters light narrowly in the direc-

tion of the thread and widely in the perpendicular direction. It is relatively

straightforward to generalize the Phong model to get anisotropy.

There has been comparatively little work inverting these models to get
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shape, or other information. An interesting exception is the work of Shafer

(1984) who proposes using colour vision to distinguish between the lambertian

and specular components. He models reflectance by a combination of interface

("specular") and body ("diffuse") reflections. These have different specular

behaviour and he describes a method of using colour to separate the reflection

into its interface and body components. This gives a possible solution to the

old vision problem of extracting the specular components of an image.

11. Occluding Boundary Information

It has long been known that occluding boundaries give a lot of information

about the shape of objects. Picasso's picture "The Rites of Spring" gives a

strong impression of shape despite the paucity of information (Marr 1977), see

figure 13. Marr argued that the visual system needed to make assumptions to

interpret these contours and, in particular, he proposed that the distinction

between convex and concave segments reflected real properties of the viewed

surface. He assumes that there are no invisible occluding edges. He claimedI'

that these assumptions could only be satisfied if the perceived boundary rim

was planar. This is a very strong assumption and recent results by Koenderink

have shown it to be unneccessary. Using it Marr was able to show that if it held

!p

,.1- ;l , :; i i ; ,2. . ?., Z? . : '..-. .' . .-.-.. ,.. . ... .. . ,.......



38

for all views of an object about a given axis then the object was a generalized

cylinder (Binford 1971) about that axis.

Figure 13. The Rites of Spring

The boundary contour, or silhouette, is the projection of the boundary

onto the image plane. The points on the object which give rise to the bounding

contour are called the boundary rim. At these points the light rays just grue

the surface of the objects. If we assume orthographic projection onto a plane

.4- with surface normal i then the equation of the boundary rim is given by

i~i=O0. (11,1)

where ii is the normal to the surface. This equation only holds for occluding

boundaries where the surface turns away smoothly from the viewer. This

. . . . o . . . ...
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can be contrasted with discontinuity boundaries, for example the boundary

of a sharp knife. Barrow and Tennenbaum (1981) observed that for occluding

boundaries the normals at the boundaries can be easily determined. The x, y
-.

components are available directly from the image and from (9.1) we see that

the z component vanishes. This result can be used to get boundary conditins

for shape from shading.

Koenderink and van Doorn (1982) consider the way the projected con-

tours of smooth objects end. They show there are a small number of rules for

the way contours in the image can disappear. These results can be deduced

from a more general theorem proved by Koenderink (1984). This result states

that the sign of the curvature of the projected curve is equal to the sign of

the Gaussian curvature of the object at the boundary rim, see figure 14. This

is true for both orthographic and perspective projection. This result means

that concave and convex segments on the curve do correspond to meaningful
.' .-%

properties of the surface as Marr (1977) claimed, but that the planarity as-

sumption is unneccessary. It is clear that contours can only end when they

correspond to negative curvature of the surface. In this case the projected

curve must be concave at the endpoint.

V4
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of the bounding contour. This is true for both discontinuous and occluding

boundaries. An application is for developable surfaces for which at each point

on the surface there is a straight line ruling through it along which the surface

normal vector is constant. It can be used for looking at developable surfaces

to obtain an estimate of the sign of the non-zero principal curvature.

.180

' II

I, /I,

Figure 14. Points with zero Gaussian curvature, G = 0, are projected to

points with KP = 0. Hence the sign of the Gaussian curvature of the boundary

rim is equal to the sign of the curvature of the projected curve.

An interesting application of these results is the folding hankerchief the-

orem. A hankerchief is a surface which tends not expand or contract locally

as it is folded. Thus its Gaussian curvature remains zero. Therefore

occluding boundary must project to a straight line in the imago
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, ~ Preliminary work by Richards et al (1985) questions how we can predict

what 3D objects correspond to 2D shape. They assume you are given a view

of an object which they call generic; one in which all the significant events

in an object which could cause occluding contours do in fact do so. This

means that some objects do not have generic views. They represent surfaces

by the Gaussian sphere and folds on the Gauss map correspond to the surfaces

7 changes the sign of the Gaussian curvature. They propose rules of preference

for choosing between possible ambiguous interpretations of the Gauss map.

-U.

Figure 15. Dsfferent "fmes" of a cube

The topologial structure of the silhouettes of objects change as they are

viewed from different angles. For example from any given viewpoint at . s'

three sides of a cube are visible. As the viewpoint is changed continuously wr
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switch to seeing three different sides, see figure 15. There are eight possible

sets of three sides that can be seen at the same time. These sets corresplond to

tile eight different Frames of the cube (Minsky 1975). Similarly the bounding

contour of any object will vary with the orientation of the viewer. As the view-

point changes cusps, convexities and concavities can appear and disappear.

As these changes occur the "topology" of the silhouette alters. Koenderink

aiid van Doorn (1985) use catastrophe theory to describe and classify these
¢,

changes. With these techniques an object can be classified by the different

topologies of the silhouettes it displays.

..." 12. Shape frow Texture

4.,
-As

#0i Somne texture pat terns can yield an extremely strong perception of depth. This

5%J

effect has long been known by artists. The phenomenon was investigated

by Gibson (1950) and his school and many striking demonstrations of the

effect were found. Most of the theoretical analyses, however, were limited and

usually restricted to texture gradients on horizontally extended planes.

Most recent work assumes that primitive texture elements can be ex-

tracted from the image. These elements are characterized by a set - )arp'

eters. These parameters can be determined from the image a ,i,, local

'A ', ', . . .... ... -r - '. 2 1... .
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constraints on the surface orientation. For example the elements could be

the small circular holes on a golf ball. see figure 16. In the image these holes

would appear as ellipses whose size and orientation determine the local sur-

face orientation. Once constraints on the local surface normal are known the

surface itself can be constructed by interpolation. Ikeuchi (1980) described

and demonstrated an algorithm of this type. It has many parallels to his work

()., shape from shading.

eo9oooooo
0 0oo0 0 Co-

: ,!i~ 0 0 0°  0 0 0/'ooooo o
:0 000 0

Figure 16. The'regular spacing of the holes of a golf ball give an example
0 %..

of shape from texture.

Ikeuchi makes four assumptions. (1) The surface is covered with a uni-

form texture of repeated texture elements. (2) Each texture element is small,

- "" compared with the distance between the viewer and the viewed surface. (3)

WI,-
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Each texture element is small, compared with the change of surface orientation

there. (4) The original shape of the texture element is known.

~/17

io .
(a) (b)

Fiqur, 17(11; shows the distortions of a squiarc iudcr proJcctioi. Figurc

;b t,,I.% /11, , e ' to, dlstrt., s ,mn m t r axf-s.

He now defines a measure of distortion for regular patterns. Figure 17

shows the distortion of the projection of squares on a plane. This distortion

depends on two factors. The first is the orientation of the surface, which is

to be determined. The other is the orientation of the squares in the plane

of the surface. The goal is to find an intrinsic measurement that depends

only on the surface orientation. Ikeijchi argues that this can be obtained by

considering the distortion of the two axis vectors, for the square these axes

are perpendicular. He shows that the magnitude of the cross product of two
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.. .. ,,, axis vector projections is proportional to cos, and the sum of squares of their

lengths is proportional to 1 4- cos 2 , where , is the angle between the direction

of the viewer and the direction of the surface orientation. These two values

are independent of the rotation angle of the regular pattern. For spherical

projection, see figure 18, these two values will depend on the distance to the

object, but their ratio will not. The ratio is then an intrinsic measurement as

required. Ikeuchi calls this the distortion value I.

-4.

ImageSphere

Figure 18. The geometry of spherical projection. A point in space Is

projected to the unit sphere by the line joining it to the centre of the sphere.

r4.-

-,fgsn(r

f2 + g2

.• where f and g are the observed lengths of the axis vectors on the image

AMN 6-,Q'



46

sphere and T is the angle between the two projected axis vectors. These . A .

qualities f, g and 7 can be directly ineasued fron the image. Ili ternis of

surfaces rotation

COSW, 
(12.2)

where , is the angle between the direction of the viewer and the surface

normal. These equations eliminate one degree of freedom of the surface, in

this sense they are similar to the image irradiance equation in shape from

shading. Several strategies can be used to solve for the final degree of freedom.

One positility is to take two, or more. vie d' t" l" ext Ired surface, this

iz 'ougli.v analog,,us to doing photometric si e,. A.,n)ther appi)ach is to

use a .sil Utlhmiess constraint requiring that igl i boniing 1,,inls lm ave nearly

the same orientation. This is similar in spirit to the variational approach

to shape from shading. Ikeuchi defines an iterative algorithm to solve the

problem. This involves specifying the surface normals at the boundary and

* then using the smoothness constraint to propagate the solution inwards. He

does not explicitly write an energy function and then minimize it, however

his approach can be formulated in this way.

Kender (1980) described another method of this type. He showed that

using perspective, rather than orthographic, projection yielded tighter con-

'p . a.i)
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straints despite the additional complexity. He introduces a set of normalized

texture property maps that provide local constraints on the surface orientation

and can be thought of as a generalization of the image irradiance equation.

A similar method is proposed by Ballard (1981).

Au alternative model based on probabilistic concepts was developed by

Witkin (192). He siggests a model for texture formation involving isotropy

a1f cha,,oses Ole best-fit surface.

Texture can give strong cues for shape but usually only when it consists

of many identical elements, or is isotropic. Most theories assume that the

form of these elements is known in advance and few suggest ways of finding
'p.

'"uclu element- in a nattural image. Witkin's theory Is an interesting exceplion.

13. Conclusion

Shape from shading, shape from occlusion and shape from texture are impor-

"~ tant vision modules and in the last few years considerable progress has been

made towards understanding them. Despite their many successes it seems

unlikely that, except in some limited domains, they will ever seriously rival

stereo or structure from motion as sources of depth information. As yet shape

from shading only works in straightforward lighting situations for objects with
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simple reflectance functions while the assumptions of uniformity of texture are

rarely satisfied in real images.

These modules may, however, be able to supply a lot of qualitative in-

formation about the image. It is suprising how many constraints the shape

of an occluding boundary puts oxi a surface. It will be interesting to see if a

qualatatnc theory of shape from shading can be constructed to complement

these results and to further constrain the surface. Such a qualitative theory

would detect significant events in the surface, for example ridges and troughs.

Perhaps it will be possible to exploit the phenomenological models of Cook

and Torrance (1982) to distinguish between different types of objects, such as

4.-
110 h- -,1~ p~sics. ()1 Ille basIs (4 their refiectance.
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