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ABSTRACT

The intensity coherence function (ICF) of the acoustic wave function from a point

source is derived by the path-integral technique for transmission through internal waves

in the presence of a sound channel. Separations in time are emphasized, although

separations in transverse horizontal position, vertical position, and acoustic frequency

are discussed. Approximate intensity coherence times, lengths, and bandwidths due to

internal-wave fluctuations are derived. Analytic approximations suitable for computer

coding are presented for the micropath focussing parameter % which controls the devia-

tion of higher intensity moments from the Rayleigh-distribution values.
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INTRODUCTION

The intensity coherence function (ICF) contains important statistical information

about the acoustic field that has traversed a medium filled with random fluctuations.

We show in this paper how to derive a number of results about the ICF which were

indicated in our earlier works on the subject. 1"3 In particular, we show how to derive

the ICF from the path-integral technique for transmission in the presence of a deter-

ministic sound channel. The ICF is a fourth moment of the field. This paper follows

logically after our paper 4 on the mutual coherence function (MCF), which is a second

moment. We also present some analytic approximations to the micropath focussing

parameter -y, which controls the deviation of the higher moments of intensity from the

Rayleigh-distribution values. These approximations are suitable for computer coding.

We derive a path-integral expression for the ICF of time, and then give explicit

rules for calculating it in the special case of internal-wave medium fluctuations. We are

able to explicitly evaluate the case of internal waves because the accepted spectrum of

internal waves implies a nearly quadratic structure function and solutions are known

for path integrals with quadratic actions. In our results, the intensity coherence time,

coherent bandwidth, and coherence lengths are determined by weighted averages of the

medium fluctuation spectra. We also indicate already-known general results on the ICF

of space and frequency, and we derive a new result for the relation between the scales

of the ICF of time and MCF of frequency for an internal-wave medium. A companion

paper presents comparisons of these theoretical results with experiment. 5

I. PATH-INTEGRAL EXPRESSION FOR THE ACOUSTIC WAVEFUNC-

TION

We begin with the wave equation for the pressure as a function of space and time

in the presence of a spatially varying wavespeed. We follow the notation of the review

article by Flatte:3 The sound speed can be expressed as

C( 0, t)-=C[1+U(z)+u( z, (1)

where C. is a reference sound speed, U(z) is a dimensionless function of the depth z

representing the deterministic sound channel, and M.( z, t) is a random. zero-mean

represnting
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function of position representing the effect of medium fluctuations such as internal

waves. The wave equation for an acoustic wave is unaffected by the time dependence of

,u because A has only components with very low frequency.

The acoustic pressure 0 obeys the wave equation

ago -C2 V2=0 (2)

The parabolic approximation consists of considering solutions in which waves are

travelling only at small angles to a particular direction; in the ocean this direction is in

the horizontal, labelled by z. Thus we try

4= expji(qz-at)]O( x t) (3)

where q and a are the wavenumber and frequency of an acoustic wave travelling along

the z axis at speed C.: that is, q= a/C. The "reduced" wavefunction ¢, is slowly

varying in space and time compared with q and a, and satisfies a parabolic equation:6

:2iq8a.= {-81F-as+2q 2 [U-h+p } 10 (4)

Equation (4) is a Schrodinger equation, and thus its solution can be directly

expressed in terms of a Feynman path integral7

R

V)=N f Dz expiqS.( z )-iq f IA X, Z (z),tjdx} (5)
0

where the path integration (indicated by D) is over all paths z (x) = [y(x), z(z)] con-

necting the source to the receiver. The phase associated with the path in the absence

of fluctuations is

R

qSo=q f [ ( Y)c n oL(8 Zf)2_ U. (z)Id- (6)
0 2z 2

and N is a normalization factor chosen by convention so that 0~ =1 for p=O.

- %-6 W6-
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I1. PATH-INTEGRAL EXPRESSIONS FOR THE ICF

The ICF is <[(B)I(A)> where the angle brackets indicate averaging over the

ensemble of random u functions. The ICF measures the coherence between the intensi-

ties at two different points, labelled by A and B. These points may be separated in

space, frequency, time, or a combination. Consider spatial separations that lie in the

(y,z) plane. The ICF is a fourth moment of the field; we designate it by:

G 4(B,A) _- <V'(B)VB)i0'(A)1A) >- <N14 f Dzj Dz 2 Dz 3 Dz 4

R

exp iqS. (1)-
i qS. (2)+ iqS ( 3)- iqS. ( 4)-iq f {(z 1)-pz 2)-+p( 3)- } dZ > (7)e(7)

where paths 1 and 2 arrive at point A and paths 3 and 4 at point B. (All paths begin

at one point: the source.) The ensemble average applies only to the p's, so we may write

G4(B,A)>=IN14 f Dzj Dz2 Dz3 Dz4

where

R

M-q2< ff [P4zi)-M(z 2)4PACF 3)-P(_z4)]dx> (9)

and we have used the fact that

<exp (ia)>--exp( <a 2 >) (10)

2

if a is a zero-mean, Gaussian random variable, such as any combination of Mi's is

assumed to be. Even if a is not a Gaussian random variable, (10) can still be true if the

higher moments of a are small.

The problem of finding a useful result for the ICF now reduces to evaluating the

quadruple path integral in (8). We first expand the deterministic sound channel function

to second order in the displacement of the paths away from the equilibrium ray. That

is, we define z,(Z) as the function that satisfies the ray equation (in the parabolic

approximation):

.. .. F . .,/, ...¢ .. . _ . . ... :. .""..:,.,.. .,, ., ...< .',,,F1, a ,,
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with appropriate boundary conditions determined by the initial and final points. We

expand U0 (zi) around the point z,(x). Let vi(z) zi(x) -z, (x); then

U0(z,) ; U.(z,)+(-C, +-L U." ?S (12)

2

where it is understood that U. and U' are evaluated at z,(x). This expression will be

valid as long as the effective bundle of acoustic energy stays well confined around the

unperturbed ray, z-(x). If more than one solution of (11) exists (deterministic mul-

tipath), then we treat one unperturbed ray at a time. Addition of the results depends

on the coherence between deterministic rays, which can often be well estimated. At

caustics our method breaks down.

The quantities vi(z) can be thought of as four new path variables defined as devia-

tions from the equilibrium ray.

We can make a transformation of the four path variables to a new set given by8

2 or V1 +_V2 + V3 + V4

2 Y1+YfiY V

2 Y - --Y 2 -Y3 +Y4 (13)

2 -6 =V -Y2 +_V3 -- 4

The a path-variable integration can be carried out by noting that IM is assumed

to be independent of the centroid of the four paths. The 6 variable is then forced to

be zero for the case of intensity correlations.

We are left with a double path integral over and for the intensity correla-

tion at two nearby points a distance R from a point source. The two points A and B

are separated transversely by z. and in time by t.:

V (_ =INlIf D D
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and

RM=fo[ 2d( -1,0)+2 d(#, t)-d(#+7j,t)-d(0-j,t)]dx (15)

0

where d( z,t) is the phase structure function density defined in Esswein and Flatte.9

The dummy path variables 3 and ' are constrained by the above treatment to have

boundary conditions given by = - =0 at x =0 and ~ z 4 , / =0 at x=R. The $

and -y, are the vertical components of and -1 .

At this point it is worth noting that a number of endpoint terms that resulted

from the integrations by parts have been subsumed in the normalization, which is

required to give unity at zero separation of the two receivers.

II. EVALUATION OF THE MONOCHROMATIC ICF FOR INTERNAL

WAVES

Under the Markov approximation, the phase structure function density can be

expressed as

d(y, z, t) =2q2 <jU2>Lpf(y, z, I) (16)

where <pi2> and Lp have been defined previously 2' 3 and f(y, z, t) is the phase corre-

lation function (PCF) defined by Esswein and Flatte. 9 The PCF has been evaluated for

internal waves by Esswein and Flatte:9 using a combination of analytical and numerical

techniques. Since y and z are both functions of range, z, (16) must in general be

evaluated by a numerical integration code.

At small separations, approximations to the PCF are possible. For example,

f/(0, O, 11) = L - jt 2 17
2

f (0, z, 0) k 2{ 2v} 1n(zo/z) (18)
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where { w2 } is an average internal-wave frequency that is dependent on the local depth

and position of the ray z,(x), and likewise the quantities { k 2} and z0 . All three quanti-

ties are evaluated in Esswein and Flatte. Because (18) is nearly quadratic the loga-

rithm may rather accurately be replaced by a constant. One of our problems will be to

establish the best value of that constant. It will be useful to remember that two impor-

tant quantities defining the type of fluctuations are 4) and A where

4'~=q 2 f d < 2>Lp (19)

and

AV'2 =q f dx <s 2>Lp {kv} jg(z, x)I (20)

_1

where g(z,x) is a Green's function defined in Flatte.3 We also define Lv {k} 2

Evaluations of () and A for some particular examples are given by Easwein and

Flatte. 10

We will now use (16), (17) and (18) to evaluate G4. We need to note that the hor-

izontal (y) dependence of f(y, z, t) is very weak; therefore we will approximate the

PCF as f(z, t) with y set to zero. Then (14) becomes:

R

G 4 (z. , t)=NI f DO D-y exp - iq fo[,,O a -y- U0 /3"yldZ--2M (21)

and

R

0

with endpoint conditions given by -y(O)=-(R) =0 and (0) =0, 2(R)=z.

IV. EVALUATION OF THE ICF OF TIME

Consider the intensity coherence function <1(t)1(0)> that is, set z. = in (21) and

(22). It is not difficult to show that the main contributions to the double path integral

come from two regions, one where 3 < Lv,/4 and the other where 3 < LV1/ . The two

regions are independent, so first consider the region where -1 is small. In that case,
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expansion of the last two f's in M yields

R

M z 2q 2 f <p 2 > LP f('Y,O)dx (23)
0

which is now independent of t. Since we normalize to the answer when t =0, this term

gives unity. Now the term where 3 is small yields

R

M .- 2 f <g 2>Lp [f(y, o)+f(/3, t)-f(-, t)]dx (24)
0

which is separable in 13 and -1. To evaluate (21) we must either do the 13 or -t path

integral first. It is of interest that in the phase-screen case, one does the "7 integral

first, but here we find it necessary to do the 3 integral first. 8 That is

<I(t)I(0)>=+N f D-y exp q2 f <M2>Lp[f(-.,O)_f(-It)]dx
0

•fDo3exp -iq f [a, 308a-- U ." -t]dz - q2 f < 2>Lp, (0, t)dx (25)

We know from the phase-screen example that the 13 integral is cut off by the f(3, t)

term in the exponential, that is when

R

q2 f <, 2> Lpf(3, t)dx 1 (26)
0

but this is approximately

(-J-)2 ln(Lv/3)=1 (27)

Thus the important contributions come when 13 - Lv14 as expected, and the logarithm

may be replaced by In b. Now the 13 integral may be done since it is a quadratic path

integral. Let

q2 <'2> Lpln4
Hq p>(28)

Completing the square and doing the 13 integral, which is now subsumed in the normali-

zation, we are left with the 'y integral:

* * .f
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RR

R~ <2Lp {Jc'} t 2  9n(-)dz (29)q1. q2 fo <,U2> Z-

and again we must ask what value of -y to use in approximating the logarithm by a con-

stant. Again from the phase-screen example we know that the -1 integral is cut off by

the geometric term (the first term) in the exponent. Appendix A shows that the

appropriate value of -t is Lv V2A4(b ( n(I)'] in order to make the geometric term of order

unity. We define

/30 = (30)
2A4 (ln ()3

and we note that we are going to replace In (Lv/y) by In 0,

With that approximation, the -1 integral is a quadratic path integral. Although

quadratic path integrals can be done, the form of (28) is not convenient because of the

appearance of the function H as a coefficient of i, 32', and because of the appearance of

8.," 2. Well-known standard techniques can be employed most easily if we return to

the original double path integral (21), with our new understanding that M can be

expressed in quadratic form. Remembering that we are setting z, =0, we can express

the ICF in terms of a matrix form within the double path integral:
<l(t)I(0)>=<I2> I[I +K (t)] (31)

K (t) N fJD 3D -1exp qf+
,{- 2qo (n i (Jd +(3')2)

qi f0 1I

where

J qi q2 <{2> . {,2} t2 1nO°  (33)
222 L V

)€" W '= " ,%



where N is determined by the requirement that K(t)--. 1 as t -0. The general solu-

tion to this type of path integral is given by solving a set of coupled ordinary

differential equations for a matrix M:

0 M =0 (34)

where the differential matrix operator 0 is given by the expression inside the square

brackets in (31), the initial conditions on Af are M(z=O) =O,M'(z=O)=I, and the solu-

tion is

K(t) det M0 (R) (35)

t det M(R)

where M0 is the solution with t=O.

One can show that the result for K(t) is independent of multiplying the H-J

matrix by any diagonal matrix. In particular, if we multiply by

1 (36)

vc

with

. f lnB30 V'
c - w _ _ (38)

!, 1n4 J

we find our ordinary differential equation is

(0z,+g:')F 0 +q <IM2>".Lp t 0 j 0 (38)

with

a =W i t(ln 4 Vn/. 0 )2  (40)

This is the equation that is used in evaluating K(t).

An important approximation may be made if { .} is not a function of x, which

would happen for a short, horizontal ray, or if the weighting function <'i 2>Lp/LV"2

were strongly peaked around upper turniig points so that only {9} values near



horizontal enter in a significant way. In that case the two equations h.,,' rn .r

to each other, and related to the equation for the micropath bandwidth fr,, .o

derived in Dashen et al. 4 As a result, one can calculate K from the equat ,,ri

K(t) = IQ(.-a)12

where the pseudofrequency a is given by

r 17 -c, 2 ?-'1" 2 In .
CI (D' , J {2In 3  I P

and a is the acoustic frequency.

V. SMALL-TIME APPROXIMATION OF THE ICF

Calculation of K(t) is cumbersome and lengthy. It is useful to have a simpler

approximation based on the limit as t -0. It can be shown that K(t) approaches unity

in a quadratic manner; that is, there exists a constant v' such that

K(t) --* l-v f
2 t 2  (.121

We can obtain an expression for v' immediately in the case that (40) is valid. (that

is, constant {f}) since we have an expression for Q(Aa) as Ao--.0 . From (41) and Eq.

(65) of Dashen et a14 we find

12 In3=4 01 - ?"' 043)
2 In4 )To

If { .2 } is not constant we must treat (38) when or-0. The same technique that led to

Eq. (67) of Dashen et al, 4 only in matrix form, leads to:

R

v,2=q 2 In3oln) f dx <p 2 >Lp{ kV2-.} j -}'
0

R

f dx' <p >LP i k 2

where it is understood that the first <p >Lp{ kv}" is evaluated at x and the second

at x'. In actual numerical evaluation g(xx') can be broken into two factors, one a

function of x and the other a function of x' (with different functions for the two cases

this can speed up the calculation substantially.

. ,
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VI. SEPARATIONS IN FREQUENCY AND SPACE

We collect here results presented in other papers for the intensity correlations

between receivers separated in space or in frequency:

<1 (A)I (O)>= 11 +pI() <1> (46)
{I,0l0)> =[1~ Qj~~ <1> (46)

where D(z) is the phase structure function for transverse separation z The use of

<12> as a normalizing factor avoids problems with the first-order correction discussed

in Flatte', Bernstein, and Dashen.11 The above results imply that the intensity coher-

ence lengths and bandwidths are simply V'2 smaller than the acoustic-field coherence

scales evaluated in Dashen et al. 4

VII. HIGHER ORDER MOMENT CORRECTIONS; THE MICRORAY

FOCUSSING PARAMETER It

We present here some analytical approximations we have used to calculate -Y,

where it is remembered that higher intensity moments are approximately given by11

<IN> N! < I>N [ -N ( N - 1 ) "7 (47)

In terms of internal waves with the spectrum assumed in previous references, the

expression for -1 is: 11

R

-1 -2q 2 f dx <,U2> Lp {P(j,x)} (48)
0

where

, * j2 Lgr g(XX)'I

exp -2q2 fo d' <u>kLpm , I ' j (4)
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- {P~,.r}-M 00' P(j,X) (,50)

E- . .2 2)~

where k, =irn(z)/n0 B, kl, =irn(z')/noB, and Mj and j* are constants defined in

Flatte§
a

In the case of no sound channel, where the rays are straight lines, the contribu-

tions to the z integral are either relatively uniform from 0 to R or are peaked near the

end points. However, for curved rays the contribution may peak at different places

along the ray. To avoid doing a double-integral, double-sum problem, we need approxi-

mations.

First, the summation over J is similar to the summation necessary to calculate the

vertical phase-structure-function density, and yields

I- ig(Z') 2, ))q I L In¢ 4 k jg(x,x') (l
J( f+ji1) 2 q

Then we may express P(jx) much more simply in terms of two functions of x,

called a and 3:

P(jz) = (1 - cosdj 2 ) exp (- aj2) (52)

and

R

oa .'Mln4 k. f dz' <,U2>Lpk2g 'Xz)] (53)
0

3 = k- g(Xz) a5)
q

The integral expression for a is the same that appears as the inner integral in r0

and 
2.4

We still have two integrals and a sum. The sum can be approximated by an

integral and can be done analytically, if a is small:

-Re {e' ' Et- (a-I3)j ]} (55)
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We have found the following empirical rules for evaluating {P(j,z)} : First, for

very small a <10' we may do asymptotic expansions to obtain:

1 2

{P (j,X)} = _ " 

( 6

4 o

Second for 10- <a <10- 1 we use (55) with appropriate expansions of the Ei(x)

function for small argument. We retain terms to z .

Third, for a>10-1 we use the direct sum (50) with a decreasing number of terms as

a becomes large. (The cutoffs we have used for 1 through 6 terms are at values of O

equal to 5., 0.64, 0.33, 0.2, 0.13, and 0.1.)

Thus we have reduced our problem to a double integral, with the inner integral

necessary for the calculations of several interesting quantities: r, the width of the

micropath bandwidth function Q; v1, the time scale of intensity decorrelation; and now

-, the micropath focussing parameter that controls the higher moments of intensity.

VIII. SUMMARY AND CONCLUSIONS

The derivation of the intensity coherence function (ICF) of time by the path-

integral technique has been given. Allowance for a deterministic sound channel and the

presence of reasonable inhomogeneity and anisotropy in the fluctuation field has been

included. The ICF has been evaluated for fluctuations dominated by internal waves,

which have avertical structure function that is nearly quadratic. Reasonably simple

expressions in terms of environmental measurements for acoustic intensity coherence

times and coherent bandwidths have been given.

All of the parameters necessary to approximate the various ICF's can be

evaluated on a mini/micro computer in a few minutes for a typical ocean-acoustic

experiment.

We are grateful for a number of useful conversations with Dennis Creamer and

Frank Henyey of CSND, and for the hospitality of the La Jolla Institute, where some of

this work was done. This work was supported by the Office of Naval Research and the

Defense Advanced Research Projects Agency.
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Appendix A

In order to estimate the appropriate value of -y to insert in the logarithm in (29),

we need to find the typical order of magnitude that -y takes on within the path integral.

We argue that this typical value is that which makes the first integral in the exponen-

tial of order unity. (Larger - would make negligible contribution to the integral

because of the exponential cutoff; smaller -y has smaller phase space. As long as it is

small enough, the second term in the exponential is less important; the crossover time

where the second term will dominate occurs at AV2 times the intensity correlation

time.)

We can express the requirement on -y as

I q 2f [O] dZ p I (A.1)

where

0 - H 2 (8" +U:) H 2 (A.2)

1
O -H 2 -y (A.3)

Thus 0 is an operator and we can imagine its eigenvalues and eigenfunctions, with

tr O-'=f H (z)g(z,z) dz = -i-1 (A.4)

where g(x,x) is the Green's function for the operator 61, +U" defined in Flatte,3 and

the lowest eigenvalue is El.

The definitions3 of the diffraction parameter A and the strength parameter 1 can

be used to estimate C. knowing H from (28):

C 1 ; qA In <D (A.5)

Let us define -y0 as our estimate of the order of magnitude of -. We can make such an

estimate in many different ways; we choose the following:

-.2 . fH(z) dz (A.6)Il(re)dz

which is an estimate with weighting along the ray determined by H(x). Noting that
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0 o (A.7)

we can express (A.1) as

f/H(x) -ydz ;z -I- co- (A.8)

and we can also use the definition of the strength parameter -t to show that

fsH(z) dz - k (A.9)
LV

It follows that

which provides the appropriate expression for the definition of 0 in (30).
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