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BENDING OF A BONDED BEAM AS A TEST
METHOD FOR ADHESIVE PROPERTIES

Abstract

A strength-of-materials type solution is obtained for the shear stress state in the adhesive layer
of a bonded cantilever beam subjected to an end load.

The shear stress is constant through the thickness of the adhesive layer and varies from zero
at the fixed end to a maximum value at the free end. This maximum vaiue can, under certain
conditions, be calculated from knowledge of the load and the beam geometry only. The adhesive’s

shear modulus can thez, oe determined from a measurement of the shear strain in the adhesive layer.

An expression for the beam deflection ie aleo obtained. It contains a cocfficicat of adhiesion
which is potentiaily useful 10 evaluating surface treatments or other factors leading to different states

of adhesion.

Fracture mechanics applica‘ion of the specinien, nonlinear and viscoelastic adhesive behavior

are briefly mentioned.
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1.0 INTRODUCTION

In the last decade, adhesives have increasingly been used in structural bonds, e5peciall§ in
high-performance sectors like the acronautical industry. Advantages of adhesive bonding are
manyfold: fatigue behavier of adhesively bonded joints is better than for the traditional bolted,
welded, or rivé_tm l;ads are more vniformly transferred from oue adherend to the other; there
is no ‘ocal weakening of the adherends due to bolt holes; weight of the actual bonding alma is re-
duced; joint susfaces are smoother; etc. However, there are disadvantages, and at least two major
probiems arise when adhesives are used to bond structural parts. First, the stress state is usually
compiex and noi accurately known; and, secoud, environmental effects can seriously alter joint

performauce to the extoot that long-term integrity is not predictable.

Numericai technigues, mostly finite clesient analyses, give good understanding of the first

[T SO

protlem, providing materic! propertics are known. Because of the variety of material properties,
as well as the effect of environment on propertics, & great variety of test geometries and test speci-

mens has resulted. The reason there is no single generally accepted tesy is that each has its

short-

.
e rcily =21 3 IS 2

=]

comings in various degrees. Some are reasonably well analyzed bui requirc costly machining and
fabrication while others are simple to make but give cnly average or over-simplificd mosuli.
Moreover, many adhesives exhibit complex material characteristics such as nonlinear and/or timne-
dependent behavior. In addition, the chemical or mechanica. bonding between adherends and ad-

hesives is not well understood. The interface or interphase laye: between adherend and adhesive

is not well defined, especially in regard to the r asuremeni of mechanical properties. There is aiso
some question as to whether the properties of the bulk adhesive differ from those of ihe thin film

oi adhesive in an actual joint.
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The Short Beam Shear Test (SBST) is an ASTM Standard Test {!), used to obtain the
interlaminar shear sirength of composite materials (1-11). In this test a short composite beam is
— e ——
loaded to failure in three-point bending (Figure 1). Span-to-thickness ratios may vary from 4 to 7
depending on the fiber type in the composite (1). In elastic beam theory, the maximum shear siress,
at the midplane, in three-point bending is given by equation [1.1), in which b is the width of the

tmax = :;; (1.1}

At failure, P = P, the interlaminar shear strength Sy is then given by

3

Sy = ok 112

IP

P s

fs— ¥

. 1

Figare 1.  Short beam shear test for composties.

Because the beam is short, Saint-Venaut effects cannot be neglected as they are in the elastic
beam theory leading to expression {1.1}, which assumes a constant shcar state. Thus the
interlaminar shear strength, as obtained m the SBST, will only be an “apparent” interlaminar shear
strength. Therefore ASTM advises that this value be used only for quality control and noi for de-

sign 1)




Whitney and Browning (2,3} raised another point of caution about the SBST, stating that
very often fiber buckiing in the neighborhood of the load leads to failure at the midsurface prior to
that predicted by theory. Browning, Abrams and Whitaey (4) proposed to replace the SBST by a
test using four-point bending that, in their experiments, routinely produced the desired interlaminar

shear failure mode.

Stinchcomb, Henneke and Price (5) went even further and completely rejected the SBST for
quality control of advanced composites. They observed experimentally that for graplite-polyimide

laminates, only those which were poorly manufactured failed in shcar

Notwithstanding the above objectives to the SBST for composites, the question arose as to
whether such a simple test geometry of 2 beam in three-point-bending, or a cantilever beam loaded
at the end, could be used to measure the shear properties of an adhesive iayer bonded to two
adherends (Figure 2). To obtain properties it is necessary to calculate or know a priori the stress
staie at a maierial point and to relate this known stress to measurable shear deformation in the
adhesive layer, or even easier, at the midpoint defiection of the heamn_ It is the purpose of this study
to obtain a closed-form analytical solution to a beam composed of two adherends bonded together
with an adhesive. The finite element mecthod will also be used to obtain a numerical solution. The
two solutions will be compared. The intent is to provide a basis for the mecasurement of shear
properties with this technique. As a result, optimum features of geometry and properties of

adherends and adhesives will be identified to maximize achieving accurate measurements.




)
Figure 2. Three-point bending of 2 tonded beam. =




2.0 STRESSES AND DISPLACEMENTS IN AN ADHESIVELY BONDED
CANTILEVER BEAM SUBJECTED TO AN END LOAD
2.1 Introduction " :

In this chapter a solution will be presented for tie state of stress and for wne displacements in
an adhesively bonced cantilever beam subjected to an endload. More particularly, the shear (tress
distribution along the length of the adhesive layer will be examined. Also, the experimental use of

this test geometry will be extensively discussed.

The idea of the method of analysis is to subject the caniiiever beam i0 an endioad and to cut
the adhesive layer along its midplane, thus freeing the shear stresses in this layer. Expressing con-
tinuity cf displacements along both sides of the cut, together with the deflection equations for the
adherends, will result in 4 differential equation in the unknown shear stress. This equation will

eventually be solved using the proper boundary conditions.

an article in which the author

similar method was first used 1n 1962 by Hubert Reck (12), 1

4B wArpIAsias siiwead: Sv e a - awrrray

cxamined the shear forces in zonnecting floors between tvwo shear walls of a high-rise building.

Three basic assumptions are made in the present analysis:
- the adhesive layer is in a state of pure shear,
- the adherends obzy the Euler-Bemoulli beam theory.
- both adhesive and adherends are linear elastic.
The validity of the first assumption will depend upon the thickness and stiffness of the adhesive
layer and how the load is transferred to the beam. This Jast point will be discussed in @ later section.

For thick and stiff adhesive layers, normal stresses are likcly to develop as they do in a monolithic

beam. A consequence of the second assumption is that the adherends may not be “short beams,”

5




which ig, in fart, an ill-defined term. Usually a beam is called “short” when its length-to-thickness

ratic is less than ten.

The solutior; wiil be valid for both a beam in three-point bending and a cantilever beamn
subjected to an endload, assuming the laiier to be perfectly clamped. Due to symmetry, the
midsection of the beam in three-point-bending will undergo no rotation, nor will the fixed end of
the cantilever beam. If the load on the cantilever beam equals the support reactions of the three-
point-bending beam, then the vertical displacement of the midsection of the single beam will be

equal to the end deflection of the cantilever (Figure 3).

N \\? N
l
|
|
{
|
|
|
|

Figure 3. Three-point bending - cantilever beam analogy.
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Figure 4. Geometry of the cantilever beam.
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2.2 Geometry and Notations

The following symbols will be used in the remainder of this chapter (Figure 4). The cantilever

"
beam is symmetrical with respect to its midplane.
(Geometry ' Material Properties

I length of the cantilever E: Young's modulus of the adherends

h: thickness of an adherend G: shear modulus of the adherends

t: half the thickness of the G,: shear mogulus of the adhesive

adhicsive layer

b: width of the beam

&
The vertical deflection v is chosen positive for downward motion. Trunsverse deformations

. due 1o Poisson effects are neglected.

To complete the symmetry ard to avoid compressive stresses in the adhesive layer, half of the

load P is applied to the upper z4herend, half to the lower adhercnd.

i

#




2.3 Shear Stress Distribution in the Adhesive Layer

£.3.1 Deflection and Continuity Equations

The adhesive layer of the loaded beam is cut along its midplane (Figure 5). On both sides
of the cut, the unknown shear stress in thc adhesive layer, 7,,(x), is then exposed. The direction
of the shear stress will be s0 that it counteracts the relative motion of the surfaces along the cut,

due to the bending of the adher:nds caused by theii end loads.

ASOOONNANNL

A ARG GOA Y

Figure §. Cantilever beam cut along the midplanc of the adhesive lzyer.

In the aszumption that Euler-Bernoulli beam theosy is valid for the adherends, the deflection

equation for the upper adherend is given by:

2

in which v is the deflcction of the adherend, M is the applied mome . on the adherend with respect

to its midplane, and I is the moment of incrtia of the adherend, again with respect to the midplane.

8
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-3 .
I = -‘"-l"—z— 2.2

M is taken to be positive when the lowest fiber of the adherend is stretched.

The applicd moment has a negative component due 10 the applied load P/2 and a positive
component duc to the unknown shear stress t,, acting at a disiance h/2+t away from the midplane

of the adherend.
Mix)y = - —‘;L(c —x) + b(-g— + :) Sy dn 123]

Combining equations [2.1] and [2.3] resulis in the deflection equation:

2 £
B4 = Le-x - pBL2 (s myan (24}

If ne. shear stress acted along the exposed adhesive surface, two neighboring points on each
side of the cut {Figure 5) would move apart due to the individual bending deformations of both

adhcrends, It is to prevent this motion that shear stresses must exist in the adhesive layer.

To assure continuity, it i3 then necessary that the total relative displacement, due 10 internai -

and external loads, of those two originally neighbonng points be set at zero. Tius relative J's-
placement has three disiinct components: one due to bending of the adherends, the second dve to
alian

— £ oha ndbimaivim Tne mimed dhim dhied dion b cemmnnnd Balmnmaf e AL Sl o Al ).
shear deformation of UiC AGZICSIYU 1Ay T, alit wan wiii's Oul WO 1iUinaal GCiUkiiiaiivin U1 Uic auncivad

caused by the integrated shear stress. Only the horizontal componeuts will be considered.

The rclative displacenient component duc to bending of the adherends, 5,(x) , can e readily
obtained from Figurc 6 and is arbitrarily taken positive.

a



2
dv/dx
Figure 6. Reiative displacement due to bending.
=2 At 4 dv.
8,0 2 3 b (h+ 20 e {2.5]

The relative displacement component due to shear deformation of the adhesive, 8,(x), is de-

termined from Figure 7.

10




A
— r— — \—- — _+- '
Ty bei— Sp(x)
ey [T . .;— el Ry

Figure 7. Relative displacement due to shear deformation of the adhesive.

Try(X)

) = = 2rgl) = - A

[2.6]
Because the rclative displacement ¢! each point is in the opposite direction to the bending compo-
nent, 8;(x) must be negative. The minus sign is necessary because §;(x) is negative and 1,, is taken

positive as shown. The adhesive is assumed to be linear elastic to obtain equation [2.6].

In addition to contributing io bending stresses in the adherends, the shear stress in the adhe-
sive layer wili induce a net axial force in both adherends, tensile in the upper aad compressive in
the lower. These normal forces will cause a third displacement component for points along the
exposed middle surface of the adhesive.

In 2 beam loaded by nommal stresses only, the displacements are found by integrating the B
normal strains (Figure 8),

i1




AL LALLLRAY

Figure 8. Normal deformation of a beam in tensicn,

M) = Femdn = 22 i 27

This nozmal stress, 0,(n), in the bonded cantilever is the total force obtained by integratic . of the
shear stresses from point 1 to the end of the beam, divided by the iransversal arca of the adherend,

o = - 5: brg(A) dh (28]
Substitution of equation [2.8} into equation [2.7] leads to,
¢ 8 Ty(d)
A = fo fn —%I“ d\ d [2.9]

The relative displacement component of the two points along ihe adhesive surface, §;(x), is

then obtaincd from Figure 9. Like the second component, 8,(x) is negative also.

12
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Figure 9. Relative displacement due to normal deformation of the adherends.

Byx) = - EZ;T & 5,? t(h) dh dn [2.10]

The continuity equation finally is,

B,(x) + 8y(x) + By(x) = 0 [2.11]

or,
dv fiy_ - 2 xL = 1
(h+ 2 G = 2T = 2ol fyoW dhdn = 0 [2.12]

In the next section the dcflection equation [2.6] and the continuity equation [2.12] will be

combined and will L:ad to a differential equation in the unknown shear stress 1,(x).

13
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2.3.2 Differential Equation for the Shear Stress

In the previous section, the basic equations governing the shear stress state in the beam were
developed. These equations need now to be combined and integrated to lead to the actual shear

stress distribution in the adhesive layer.

First, the continuity equation is to be differentiated twice with respect to x. Some theorems

concerning integral calculus have to be used to take the derivative of the integral term. These are,
d .x - 2
L fmydn = £ [2.134)

and

fEAmdy = = (fn)dn [2.136)

Taking the first derivative of equation [2.12] leads to,

(h+ 20

2 dt .
&2ty 2w e1s
a

and taking the second derivative, to,

dv 2t dz‘xr 2
(h + Zt)_d-x—s - F—gx—’- + ﬁ-—tn(x) = { [2.15}
a

Differentiating the deflection equation [2.4) once with respect to x gives,

3
El ;‘x‘; = —.gi + b[";zt]txy(x) [2.16]

Elimination of the deflection term from equations [2.15] and {2.16}, and some rcarrangement,

Icads 10 the diffcrential equation in the unknown shear stress,

G + 20
4E!

d? ;
o [("’b th+ 2% + -99-]10 = [2.17]

dx? 4En Eth

14



Introducing t/h as a dimensionless adhesive thickness and £/h as a slendemness ratio and using

the expression for the inertia moment 1, equation [2.17] can be rewritten as,

2
d*t,, _3_(‘:_@_[_3_]2 (1+2:/h)’_1_[l N 1 ]t
e E L& h g2 A+ 2umr ] (218
.- ___;;___3-91[£]zg,+_.2_f@i
bh+ 2002 E LA t/h
Now the following parameters are defined,
2 _ 1G4 [e]z (1 + 20m)
of = 321 T [2.19)
P14l [2.20)
3(1 + 2t/h)
o= ay [2.21)
Substitution of these in equation [2.18] results in,
dz‘xy a2 P a |2
-z = - P |@a 2.22
R [c]”‘y b(h+2e)[v€] 1222

To obtain the final form of the second order ditferential equation, x is replaced by a dimensionlezs

coordinate &.
i2.23]

d'io(®)

2 e . _ P Tah
= 62 1,8 ——-[ﬂ (2.24]

2.3.3 Shear Stress Distribution

The general solution of a second order differential equation with constant coefficients, consists

of a homogeneous part and & particular part.

Ty = Ty * [2.25]

15



By inspection, the particular solution can be found to be,

P

S A TR c— [2.26)
T e+ 20
The homogeneous solution for an equation of form [2.24] is,
tzy = ¢, cosh a§ + ¢, sinh G§ [2.271
The complete solution is given by,
P - . -— -~
1, T ———— + ¢, cosh@f + ¢, sinhaf [2.28]
¥ e+ 2y “

in which the integration constants C, and C are to be found using the boundary conditions. At

the fixed end, for § = Jand x = 0,
av _ 0 2
dx [ '29]

Setting dv/dx equal to zero in the continuity equation {2.12] and considering that an integral with

equal integration limits vanishes, leads to,

1, E =0 =0 [2.30]
and

- =P 231

T Rk + 2) 1231]

At the loaded end, the applied moment, and thus the curvature, is zero.

Forx = |

2
T -‘%}u—%=o [2.32)

Taking the derivative of the continuity equation |2.12] and evaluating the resulting equation for x

= { leads to:




&

=0 .
di,, :
-a;* (2.320]
x=4£
or,
=0
diy,
2.32b
& {2.32]
£E=1
and,
cgasinhd + acoshda = 0 12.32¢]
so that,
g = P tanh @ [2.33]

o 2.0 . oa
oy L)
Fi:ally, expression [2.34] is obtained for the shear stress distribution in the adhesive layer,

P

Ty T o
by'(h + 2¢

Xy (1 — cosh @& + tanh @ sinh G&) [2.34]

Stresses and displacements in the adhcrends can be computed using Euler-Bernouilii beam

theory for a cantilever loaded by a shear stress as given in [2.34] and a cantilever loaded by an end

load P/2.
2.3.4 Limit Cases

In this section the two limit cases of “perfect adhesion” and “no adhesion” will be investigated.

Perfect adhesion is assumed to be obtained when the bonded beam behaves like a monolithic
beam with no adbesive layer. This condition is met when the thickness of the adhesive layer ap-
proaches zero. Therefore the limits for vanishing t have to be examined for @, y, @ and 1, .

17




. The perfect adhesion ¢ssc is not defined as the limit case for which the adhesive’s shear
modulus approaches the adherend’s shear modulus, since this definition would violate the puis

shear assumption in the adhesive layer,

. Ge [0 (1 + 20k
ime® = ki 3,._.[_.] LT V- w 235
1=>0 r—bx:) { £ LA Lk 1233
fim v = i {4 ol —- 4 = 4 [2.36}
=0 =0 31 + k) 3
i = L foy] = ® (2.37]
-0 -=+0
P - sinh o
_ M‘g’;{' (1 costlx Dt o sinh 0)
lim T ~ - osh? @ ~ sinh? ©
= it T oo (eosh sk o) [2.38)
=3P, - __1 ] o
4bh cosh o
3P
abk

This shear stress is exactly the marimnm shear stress in a monolithic und homogencous cautilever

beam of tnickness 2h, subjected to an cndload P.

Foy the case of "no aduesion,” the adhesize has {0 be infinitely deformable, of, in other words,
the adhesive’s shear modutus G has to approach zero. Taking again the necessary limits, it is clear

that the shear stress goes, logically, to zero in the "adhesive” layer.

2
N S 3;6_9_[.&]2 A 20 Y 2 [2.39)
G, =50 G, =D 1 E Lk th
lim 15 = lin § ——F—~(1 = cosh 0 + tanh 0-cish ) { = 0 [2.40]
G,—0 G,—0 { &y'th+ 20

In the following the shear stress distribution will be analyzed for the whole range of adhesives

between these limit cases.
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2.3.5 Discussion of the Shear Stress in the Adhesive Layer

The variaiion of the shear stress in the adhesive layer along he length of the cuntilever is given

by equation [2.34],

t(§) = ——L——(1 = cosh @, + tanh @+ sinh @) [2.34
by“(h + 20)

From this expression it’s seen that the spatial dependence of the shear stress is governed by
the parameter @, which is in turn related to @ and y. To enhance the following discussion, equations

on these quantities are repeated below,

G 1+ 2th)*
o = 3_1:;[_%]4___‘/}1/_)_ [2.19]

1

—_— [2.20}
31+ 2u/h)

a = ay [2.21]

The quantity @ contains ali beam characteristics, both geo etrical and material. Generally,
3 will increase wiih adhesive stiffness and beam length and decrease with adhesive thickness. The
exact variatior of @ as a function of adhesive deformability, E/G,, is given in Figure 10 for various
adhesive thicknesses and slenderness ratios. For aluminum adherends bonded with ar cpoay ad-
hesive, for example, E/G, will be somewhere beiween !00 and 1000, leading to values of a in the

neighborhood of 10 or less for comunon geometries.
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For a cantilever beam, loaded at the end by a force P, the external shear force diagram is
constant, cquélling P. In a monolithic homogeneous beam the shear stress state is directly related
to the external shear force, resulting in a constant shear stress distribution along the length of the
beam. From the elementary strength of materials, the variation over the thickness of the beam 1s

known to be parabolic (Figure 11).
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Figure 11. Shear stress in an isotropic cantilever beam subjected to an end load.

In a bonded cantilever beam, however, the shear stress in the adhesive is not directly related
1o the external shear force, but to the relative displacciaents of the adherends on cach side of the
adhesive layer. This relative motion of the adherends induces shear deformations in the adhesive
layer and therefore also shear stresses. At the fixed end of the cantilever, although axial stresses and
strains in the adherends are highest due to the maximum bending moment, there 33 no relative
displacement between the adherends, because the displacement at the fixed support is zero. Thus,
shear strains and shear stresses are zero in the adhesive layer at the fixed end. Further away from
the clamped end, relative motion of the adherends begins to develop, thus building up shear stresses

in the adhesive, until, in most cases, a stable value is reached.

This shear stress variation frowx the fixed end (§ = 0) to the frce end (§ = 1) is shown in
Figure 12, for various values of paramcter @. It is scen in this figure that, for increasing @, more
and more a constant shear state is approached as @ is increased. A high @ means a thin or stiff
adhesive layer or a long beam. For low @, the shear stress varies along most of the length of the
beam. A rough physical explanation for these facts is that it takes “longer” for the adherends to
develop the relative displacements corresponding to a stabilized shear state as the adhesive layer gets

thicker or morse deformable.
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Figure 12. Shear stress variation in the adhesive layer glong the length of the beam.

The maxunuin shear stress is always encountered at the free end of the cantilever. An ex-

pression for this maximum shear stress is obtained by setting & = 1 in equation [2.34].

Ty = I = cosh @ + -8PhE gGop
Yo e+ 2 ( cosha )
max _ P _ 1
"oy by*(h + 20) [1 cosh E] 241

In scction 2.3.4, the limits for the shear stress in the cases of perfect adhesion and no adhesion W

were cxamined. Figurce 13 shows how the maximum shear stress varics for a total range of geom-

cirics and adhesive propertics. A logarithmic scale is used to allow a complete representation, from
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very stiff to very deformable adhesives. Both graphs show thre. distinct zones. For very stif) ad-
hesives, the maximum shear stress has a constant value, depending only on the thickness of ihe
adhesive layer. The shear stress is a maaimum in the zone of higher @ values, so that the sccond
term in parentheses in equation {2.41] vanishes, leaving only the component dependent on the ad-
hesive thickness. For very deformable adhesives, approaching the case of no adhesion, shear

stresses drop to zero. The middle zone, approximately two decades wide, can be seen as an inter-

action zone, where both geometrical and adhesive properties are impcrtant.
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Figure 13. Maximum shear stress in the adhesive layer as a function of adhesive deformabiity.
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A noteworthy feature of these curves is that they can be “shifted” by 2 mere change of ge-
ometrical parameters. For example, making the beam longet, or the adhesive layer thinner, will

extend the constant shear zone.

2.3.6 Experimental Aspects

The constant maximum shear zone as discussed in the previous section is particularly inter-
esting when it comes to using the bonded cantilever beam as a test device for measuring adhesive

properties.

For this range of “stiffer” adhesives, it is possible to calculate the maximum shear siress in the
adhesive layer from geometrical characteristics only. If a measurement of the shear strain in the
adhesive can be obtained at the place of maxiraum stress, the shear modulus can be easily found,
assuming lincar elastic adhesive behavior. Such a measurement could, for example, be done by
tracking the displacements of some points on each side cf the adhesive layer using rnodem optical

devices.

The maximum shear strain, Y2, in the adhesive layer may be expressed as,

o G, Ebh 72(1 + 2uk) cosh o

The maximum shear strain is represented graphically in Figure 14 as a funcuon of geometry and

properties.
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Figure 14. Maximum sheor strain in the adhesive iayer as a function of adhesive deformabitity.
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Due to the constant maximum shear stress, the shear strain varies linearly in the zone of the
“stiffer” adhesives. For the very deformable adhesives an asymptotic value is reached. Here, the
adhesive is so deformable that both adherends can develop their full deformation, as if they were
individually loaded, without being restricted by the adhesive layer. The value of that y&™* corre-

s;onds to the relative displacements between the adherends at the loaded end.

Frora Figures 13 and 14 it is seen that the constant shear siress zone and the linearly varying
shear strain zone can be extended by making the beam longer and the adhesive layer thinner.
Therefore, for somc adhesives, for which a rough estimate of the shear modulus is available, a test

geometry can be “tailored” to make sure to be in the linear maximum shear strain zone.

~

Moreover, making the adhesive layer thinner sr.c the beam longer increases the value of @,
thus leading to a constant shea: state over a large part cf the beam (Figure 12). As a result, shear
strain measurements need not be performed at the loaded vad of the beam. Moving away from the
end wiil not only make it easier to install the measuring device, but will also eliminate possible end

effects.

2.4 Defiection o the Bonded Cantilever Bean

'2.4.1 Integration of the Deflection Equation

In the following section equations will be derived to relate the end deflection of the cantilever
or the mid-point deflection of the beam in three-point-bending to ths shear modulus of the adhe-

sive. Therefore the deflection equation [2.4),

2
+ 2t £

El—ddx—; = -gi € - x) - bﬁ—{?‘“ ¢ Tay(m) d [2.4]

must be integrated, using the proper boundary conditions. Substituting the expression for the shear

siress in the integral leads to,
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_Zx_;, = b e - _{H gf[x ~ cosh &1L + tanhiisinh&c'l-]dn

=ﬁ7(e— x) = L n—%sixﬂlgtn--#%tanhacosh—a—gl-]f (2.43)

27 El

L - x-—L e+ Lgnpx — £ a _E_x_]
2El(t x) 2y2El-c x Esxnhe _&tanhacoshe

r L

Integration of equation |2.43] results in,

v o P oy _xt P

dx 2EI 2 27251
2 — -
[cx - X+ (—-_é—)zcosh-n% - (%)%nhasinhﬂg«] +¢

in which C, is an integration constant to be found using boundary conditions. As shown from

[2.44)

theory of elasticity (13) or clementary sirength of materials (14) approaches, the total deflection of
a beam under any kind of loading consists of thres terms: a bending term, which is always the

A Sam abhnna dnmen that b oot
\J\’.‘lﬁ‘mlaﬁi t\'-llll. a 35iCal Sl lddy uxnl. nas onic uuywlva:‘n'e CK‘J“ ‘CI Shuﬂ I\\nr\'\.’ an

which is usually two or more orders of magnitude smaller than the dominant one and which de-
pends upon position rather than thickness of the beam. The shear term is due to nonuniform shear
i stress over the thickness of the adherends, and wili be included here.

For a homogeneous monolithic beam, under some unspecified loading resuiting in a shear
= force V, the shear deflection v, is given in differential form by,

RN
¥

de
2S5 e 2V 45
_ | T G [2.45)
& where A is the cross-sectional arca of the beam (14, pp. 170-175). In the present case, where the
i shear force is constant, the shear deflection of the adherends will vary linearly with x, so that its
sccond derivative will be zero. For the bonded cantilever where each adherend is subjected to a load

P/2 and was a cross-scctional area of bh, equation [Z.45] becomes,

dv, ip

- —

dx  4bhG 298]
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This extra term affects by no means the previously derived deflection equation, since the latter
contained only the second derivative of the deflection. However, a note should be made here.
Rigorously, this term should also have been included when the boundary condition was used to
evaluate the integration constants for the shear stress distribution in the adhesive laver. There, in
the first condition, dv/dx was sct to zero at the fixed end, resuiting in a vanishing 1,, at that end.
Later, in section 2.3.5, the physical correctness of that condition was proved. If, on the other hand,
the shear term had been included, a singu'ar, and thus physically unacceptable, shear stress in the
adhesive layer, at the fixed end, would have been the result; therefore, this sccondary deflection term

was omitted in the analysis of the shear stress distribution.

The boundary condition for the derivative of the deflection at the fixed end then becomes,

.% oo = .@3{5_ [247]
Resulting in,
e -é—)z + b |2.48)
ang,
Fo TZ{("‘ - xTz) * kG
[2.49)

" 2[“ B ‘xzi ¥ (‘é‘)z coth 55~ ()" - (_g')%anhamh%{]
Ly

Integrate equation [2.49) to find the deflection C;, a second integration constant to be found from

the boundary condition.

Plext _ X1, 3P«
E . v= ———— | ——— A t—
3 2EI| 2 6 | abnG

12.50]

2 3 — i —
- —-L[!ﬁ— -X 4 ("&‘)3 sinh &% — (é—)% - (—E—)J tanh @ cosh M] + ¢
2E1¥2 2 6 u £ a a £

Expressing that the deflection is zero at the fixed end, leads to C,,
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Q= - —P—z(—é-)J tanh & L sy

2Fly
and finally to v,
,,-_f_[;uf__x; + 3Px __P
2UI| 2 6 4hG gl

2 3 — —
£ X + (i)3 sinh &% - (é)zx - (L_)3 tanh @ cosh 2% + ('7_8‘)3 tanh o [2.52]
2 6 a £ a a £ a

Equating x to £ and including the current value for the moment of inertia 1 of an adherend, the end
deflection 3 of the bonded cantilever beam is obtained. This expression is also the midpoint de-
flection of a beam in three-point-bending,

2Pe® . 3pe _ 6P [1 , siph@ _ 1, .- taha ]
5= + _ 1, L .
Ebh3 4bhG Ebh372 L 3 a3 63 tanhacosh @ 63

pe3 1 3E(h)2 12( 1 1 ~)
=20 taf ) - Yy4 3 a2 1201 1 oG
ZEbh[ ( yz) 2G \ ¢ P\@ @ ‘

The factor in front of the parenthesis is exactly the bending term of the deflection of an isotropic
cantilever beam of thickness 2h, loaded at the end by a force P. Expression j2.53] will be slightly
modified to have a premultiplier equalling the bending deflection of a cantilever of thickness (2h
+ Zt), so that the term in parenthesis will approach one, if the shear term is not considered, in the

case of perfect adhesion,

pe3 3 1 3ELAN2, 12( 1 1 -
&= -—L (14 yrlaf1--L +-__(_) + A2 1 Lana)|i2s4
2Eb(h+l)( ”l( 72) 26 \ ¢ y2(;,;2 & )J' !
Equation [2.54] can be rewritten as,

3
5 = pe

Y < S 2.55
4 2EBh + 1)° 1253

with,

. 1 3EL AN, 12f 1 1 —~
B = (1+un 4(1 - -) + ———(——) +A201 -——tan.hu) (2.56]
72 2G £ 72 62 —&3
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The factor B can be seen as a dirnensionless end deflection for a bonded cantilever beam,
loaded at the end by a force P. The dependence of this B on the adhesive propertics and the sig-

nificance of each term in the square brackets wiil be discussed in the next scction.
24.2  Analpsis of the End Deflection Expression

In the previous section, an expression was obtained for the end deflection of a bonded
cantilever beam subjected to an endload. Each of the three terms in the square brackets in equation
[2.54] or in the definition of P in [2.56] has a distinct physical meaning. The first term is related to
the bending of the adherends and is dependent only on geometry. The second is the shear deflection
term, and also an adherend- and geometry-related term which is, at most, except for very short
beams, a few percent of the bending term. The third and last term is to our purpose the most im-
portant because it contains the adbesive properties through parameter @. The magnitude of this
term ranges from almost zero for very stiff adhesives to about 4 times the bending term for very

deformable adhesives,
= 3 -l 3E (hY2 4 12 (1 _ tavha
B = (1+ t/h) [4(1 72) + 3L (e) + ; (&2 = )] [2.56]

The variation of coefficient B as a function of the adhesive deformatility is shown in Figures
15 and 16 as a function of adhesive thickness and length of the cantilever. A value of 2.6 is taken

for E/G, assuming a Poisson coeflicient of 0.2 for the adherends.
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As for the maximum shear stress curves, three zones can be distinguished. For very stiil ad- :
hesives, a small zone will exist in which the beam deforms like an isotropic beamn which could be ) é
referred to as the “perfect adhesion” zone. Here, B is approximately one, if the shear term is not n
taken into account. On the other side of the graph, for very defounable adhesives, the deflection ,‘
of twu separate beams of thickness h, eacl loaded by 2 force P/2, is retrieved. For an adhcsive ..v-:-

thickness of zcro, the valuc of B would be 4 in this zone, because the stiffness of half a beam is an

KX}




cighth of the stiffuess of the total beam and the load is half the load that is acting on the total beam.
That the asymptotic values for B in the graphs are higher than 4 is due to the fact that the isotropic

beam is referred to having a thickness 2(h + t) instead of 2h.

These two zones are connected by a high sensitivity zone that is approximately two decades
wide. In this middle zone the end deflection is extremely sensitive to the adhesive’s shear modulus.
Again, the curves can be shifted by changing the geometry of the beam, so that, if a rough estimate
of G, is available, a specimen can be “tailored” to obtain a deflection in the steep part of the curve,
However, as will be discussed below, when it comes to optimizing the specimen for deflection
m.easurcments, this shifting doesn’t work as well as it did for the shear strain mcasurements in the

adhesive layer itself,
2.4.3 Experimental Aspects

The pros and cons of using measurements of the end deflection to obtain the adhesive’s shear

1ecad 111 thic nantnn
A IWE AAL VAW N LAV AN

To give an idea of which adhesive property interval will be of interest for testing purposes,
Table 1 gives the E/G, ratios for some common adhesives. Generally the adhzsives are situated in
the “stiff” adhesive zone of Figure 33. Because adhesive layers are usually thin, on the order of 0.005
inch (1.27 mza), t/h ratics ranging from 1/20 to 1/50 are common values, meaning that for “fairly
long” beams (I/h rangiag from 10 to 20) the beam will be situated in a low sensitivity part of the

curve. At most 5 to 10 percent of the total deflection can be related to the adhesive property.
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Table 1. Common E/Ga values for aluminum sdherends.

Adhesive G, ksi (MPa) E|G,
Epoxy rcsins 80-180 55-125
(550-1350) '
Polyimides 170 60
- (1200)
Phenoxy resing 115-145 70-90
(800-1000)
Rubber polyrners* 0.1-1 3104 - 3.10°
. (1I-7

* bonded to steel

The sensitivity can be increased in two ways, by making the beam shorter or the adhesive

layer thicker both of which can serioudy endanger the validity of the underlving theory. For a
thick (t/h > 1/5) and stiff adhesive layer, the assumption of purc shear in the adhesive should be
questioned; for very short beams (I/h 8 or 10), the Euler-Bernoulli beamn theory is no longer ap-

propiate,

Assuming that an optimized cantilcver has an adhesive-adherend thickness ratio of 0.1, and
a length to thickness of adherend ratio of 10, the absolute value of the thickness of the adhesive
layer becomes important. For a thickaess 2t of the adhesive layer of 0.005 inch (0.127 mm), the
total thickness of the cantilever would be 0.055 inch (1.40 mm) and its length 0.25 inch (6.35 mm),
but these are unrealistic specimen dimensions (Figure 17a). Better dimensions are obtained for an
adhesive thickness of 0.04 inch (1.016 mm) (Figure 17b), but still the specimen is small. Therefore,
a thick adhesive layer, in absolute value, not in ratio, is crucial to obtain tes specimens of reason-

able dimensions and good sensitivity.
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Figure 17, Deperdence of the dimensions of a tezt beam on the absolute value of the thickuess of the

adhesive layer (scale 1/1).

No single formula is available to obtain the shear modulus G, once a measurement of the

deflection is made and all geometrical parameters are known. Note that especially the thickness

=~
]

Py VU | TN SO PR cune Y 1. M Thaea
the adhcsive layer maust be known with cxtreme accuracy. There ars two possible ways to got

to G, . The first is to solve equation (2.54) nuinerically for @ and then calculaie G, using the defi-

nition of @,

= —-—L-—-(l 1)
2EB(h + 1)’
[2.54]
h N @
[( PR R R G)}
VI A AN R e ____) 257
E (.h) 7ael 1+ 2k’ 1251

The sccond and probabiy the betier way, since it gives a visual idea of accuracy, is a graphical
solution for G,. From the measured value of 3, f can be caiculated. The corresponding part of the

(F/G, ) curve can be magnified for higher accuracy and E/G, casi be read from the graph (Figure
18).
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Figure 18. Graphical solution for Ga from a deflection measurement

The deflection test can also be used {0 evaluate different ,pes of surface treatments or other
factors that influence the state of adhesives. Therefore a coefficient of adhesion is introduced. The
deflection of a bonded beam 13 known 1o be somewhere between the deflection of a monolithic
beam of height 2(h + 2) loaded by a force P, and the deflection of a single adherend of height h
loaded by half that force. ‘These deflections, in their nondimensional form, are shown in Figure 19,
The nondimensional end deflection of the bonded cantilever, B, can be seen as the coeflicient of
adhesion. For p going o unity, the bonded team will defonn in 4 manner simnilar to a monelithic
beam, thus approaching perfect adhesion. High values cf B, on the other hand, mean poor adhe-

sion since the adhierends are less restrained in their individual defoimation by the preseace of the

adhesive laycr.
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Figure 19. Coefficient of adhesion P

Tests to measure P are as easy to perform as the single lap tests that are usually used for
quality control. Moreover, this cantilever beam test, provided that it’s equally icaded at both
adherends, has the advantage over the single Iap test in that the adhesive layer really acts in a staie

of pui shear.

2.5 Concludons

For the adhesively bonded cantilever beam, loaded at the free end, the shear stress in the ad-
hesive layer is not dirzrtly related to the extemally applied shear force, but to the relative displace-
ments of the adlierends on each side of the adhesive layer. The shear stress in the adhesive will
always be zero a: the fixed end, and for most beams will reach a constant value at some distance

away from that end. The magnitude of this shear stress is dependent only on the load and the ge-

omctry of the bearn for a range of adhesives that were called “stiff” adhesives. This range can be
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expanded by making the beam longer and the adhesive layer thinner, thus also approaching a state
of constant shear for the whole length of the beam.

For a large part of the beam an almost ideal state of pure and constant shear, the magnitude
of which can be calculaied from geomeiry and loading alone, is thexn obtained. An accurate meas-
urement of the shear strain in the adhesive layer, perhaps with modermn optical devices, will easily
allow the determination of the adhesive’s shear modulus for the assumption of lincar elastic adhe-

sive behavior.

The use of deflection measurements to obtain adhesive propertics seems less promising, al-
though the test would be easy to perform. Short beams and their adhesive layers are necessary to
obtain some sensitivity of the deflection to the adhesive’s shear modulus, thus restraining the basic
assumptions of the underlying theory and making the shcar stress highly dependent on position
aleng the length of the beam. A graphical method was presented to obtain the shear modulus di-

rectly from the measurement of the end deflection of the beam.
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3.0 STRESS-FUNCTION SOLUTION

3.1 Introduction

A stress-function approach to a solution for the stress-state in a bonded cantilever beain,
ioaded at the end, is taken in this chapter. The solution of the previous chapter will be referred to
as the strength-of-materials solution. To the three basic assumptions of this strength-of-materials
solution -- Euler-Bernouilli beam theory, linear elastic material behavior, and pure shear in the

adhesive layer -- a fourth is added. It is assumed that the shear stress in the adhesive layer is con-
stant along the length of the beam.

From the strength-of-matcrials solution. 1., is known to vary along the lengih of the beam,
going from zero at the fixed end to usw._ly a stable value some distance away. It was also seen that
the higher the joint parameter @, the more a state of constant shear for the whole beam is approx-
imated, a high & meaning relatively long beams and thin adhesive layers. For those higii @ beams,
the constant shear assumption may be a rcasonable approximation. The consequences of this

consiani shear assumption are siudied in the present chapter.

According to the basic assumption, polynomial stress functions will be proposed for the three
layzrs of the bzam. The constants in these stress functions are then to be evaluated using the
boundary conditions. Diflerentiation of the stress-functions twice leads to the siresses in the beam;
strains are found using Hooke’s law and displacements by integration of the strain expressions.

Finally a comparison of both solutions will be made.

A slightly different notation will be used for this stress-function analysis: h will now be half
the thickness of the total beam, including the adhesive layer, whereas h was the thickness of an
adherend only in the strength of materials solution (Figure 20). This change was made not to
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confuse the reader, but to obtain the simplest possible expressions in both solution  "he cantilever
is symmetsic with respect to the x-axis, which has its origin at the fixed end. Sub- and superscripts
1, 0 and 2 on siress, strain, aond displacernent symbols, will refer respectively to the lower adherend,
the adhesive layer and the upper adherend respectively (Figure 21). G, is the adhesive’s shear
inodulus; the maierial properties of the adherends carry no subscripts.
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Figure 20, Definition of h for both methods,
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Figure 21. Geometry of the bonded beam for the stress function solution.

3.2 Stress State ih the Beam

3.2.1 Stress Function Analysis (i13)

In an elasticity problem, in this case a two-dimensional plane stress problem, three families

of equations need to be solved simultaneously subject to the boundary conditions. These are the

equilibdum squaticns, the ¢ nd the constitutive equation

- o 3 Sma

¢
P
¥
»
13
£
i

The stresses existing on a small element of dimension dx and dy in a state of plane stress is

shown in Figure 22, Al stresses are shown in their positive direction. Assuming body forces are

zero, the equilibrium equations for this stress state are,
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Figure 22. Stresses in a two-dimensiona) problem.
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5 p 0 (3.2)
@ In order 1o solve these equations, subject to boundary conditions, the elastic deformation of the
body needs to be considercd. If u and v are the displacc.nent components of somne part in the body
in the x and y direciions, respectively, then the three strain compopents for twc dimensional A
i problems are given by,
g, = -% [3.39)
=
g = %}V)_ [3.38)
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These three equations can be combined into one which the strain components must obey and
which is called the compatibility equation,

2 a* &
d Ex + 5‘{, = ‘ny [34}
ay* ax? axady
Using Hookz's law,
£ = —1‘5-(cx ~ vay) (3.54)
5 = (0, = v3y) [3.56]
T +
ty = 2= ALEY) [3.5¢]
v (¥4 L

and assuming a plane stress state, the compatibility equation can be expressed in terms of the stress

components, resulting in the equation

& &
[—a—;—z- + -ay—a"jl[ox + Uy] = 0 [3.6]

To find the stresses, equations [3.1], [3.2] and [3.6] must be solved taking into account the
boundary conditions. All this can be done numerically, or agalytically by introducing the so-called

stress-function, ¢, defined as:

2
o, = L9 3.74]

2
g, = L2 [3.7]

2
= - .99 13.7¢]




The equilibrium equation [3.1] and [3.2] are then satisfied by definition, so that the stress function

only needs to fulfill the compatibility condition, leading to,

64(p+2 &o +.¢74(p__0

= 13.8]
ax* éxoy’ ay*

As stated by Timoshenko and Geodier (13), solutions of [3.8] in the form of polynomials are
of interest in the case of “long” rectangular beams, “long” meaning a length-to-stress ratio of 10 or

more. How to choose a “suitable” polynomial is the subject of the next section.
3.2.2 Choice of the Stress Function Considering the Basic Assumptions

Both adherends and adhesives must be linear elastic; otherwise the siress function method,
\‘vhich explicitly uses Hooke’s law, would not be valid. Constant and puse shear is assumed in the
adhesive layer. To obtain a state of pure shear, the adhesive layer must be thin and deforinable as
compared to the adherends. The normal siresses, o, in the adherends are, according to the Euier-
Bernculli beam theory, assumed to vaty linearly over the adherend’s thicknesses. Also, in the

Euler-Bernoulli beamn theory there are no transverse normal stresses o,

Three different stress functions, ¢;, ¢, and ¢, for each layer of the beam, will be “tailored”
to the aforementioned basic assumptions. The coefficients of the terms in the resulting polynomials
will have to be found using the boundary conditions on outer surfaces and adherend-adhesive

interfaces.

The stress function for the adhesive layer, @, is the easiest to obtain. Because of the constant
and pure shear assumption, and the definition of the stress function in equation [3.7), o will con-

tain only one term and is given as,
Qo = epxy [3.9]

Lower order terms arz useless since they will always be differentiated away. The shear stress in the
adhesive layer is then given by,
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In simple beam theory, the normal stress o, is linearly dependent on the applied moment at a cer-
tain point along the longitudinal axis. Because the moment in our cantilever beam is a lincar
function of x, ¢, will also be lincarly dependent on x. Moreover, g, will be linear in y. Thus, the

proper functional form of g, is,
oy = (ox + )y + &) [3-11]

Integrating equation [3.11] twice with respect to y leads to the general form of the stress function

in the adherends,
= 2 3 2 3 .
e=cxp'+dxp texy+ fy+ gy [3.12]

where ¢, d, ¢, {, and g are constants to be determined.

No quadratic or higher order terms in x are present because of the condition 6, = 0. Con-

stant terms or terms linear in X or y only are omitted because they do not lead to stresses.

For the lower and upper adherend and for the adhesive layer, respectively, the following stress
functions will be used:

¢ = ey’ + di’ + ey + )t + gyd [2.13q]
. 2 3 2 3

9: = oxp° + dyxy’ + exy + Lyt + gy (3.138)

9o = exy [3.13¢]

Using the definition of the stress function, the stresses in the beam are given by,

Ox = 2cx + 6dixy + 2f] + 6gyy [3.144]
ol = 2ex + 6dyxy + 2, + 6gyp [3.148)
T;y = - 2C1y - 3d1yz - € l3l4C]
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‘tiy = - 29 — Bd«‘yz - € [3.144)
T =~ g [3.14¢]
where ¢, d, ¢, f;, and g, are the constants to be evaluated using the boundary conditions.

3.2.3 Boundary Conditions

In this section boundary conditions on stresses and displacements wil! be 2xpressed in terms

of the stress funciion constants leading to a set of linear algebraic equations for which only the re-

sults will be given.

"The shear stresses along the upper and lower outer surfaces of the adherends are zeru:
y=h -+ 1, =0 = = 2k = 3dh - ¢ =0 [3.15)
y= —kh = Ty =0 o 20k = 3k ~ ¢ = 0 (3.16}

Shear stresses at both side of the adherend-adhesive interface must be equal:

y=1 - ‘rzy = tl.y - g = 2t t+ 3d1¢2 + e 13.17}
y= =t o 1 =1 o g = —2t + 30+ g [3.18)

Normal stresses on the free ends of the adherends are zero for all values of y:

x=£_,ol=0—b261c+6dl{y+2f1+6g]}’=0

= ol [3.19]
2 = - dlf, ‘3.20}

02 = 0 = 208 + 6dyly + 26, + by = 0
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A= = ot [3.21]
g = — dt [3.22)

The integral of the shear stresses over the thickness of the beam is equal to the externally applied
shear force per unit width of the beam, for each value of x. In the case of the cantilever loaded at
the end, this shear force is constant and equal to P. Because of the symmetry of the beam about
its mid-surface, the integral can be split into two parts, one for the upper and one for the lower half,
cach equalling haif of the applicd load.

h
faah = L

- 0
I_,:tiydy + I_’tgydy = L2

2%
Sy + [t dy = L
i
teg + ¢(h = ) + di(h® ~ ) + eh - o) = -5 (3.23)
tey + o — B + dy(hi® - Py + oh — ) = _"z% [3.24]

Equations [3.15] to {3.24] now provide tcn equations in the eleven unknown constants. Those
ten conditions are all stress-related, none of them containing maierial properties. The last condition
will have to express compatibility of displacements on each side of the adhesive layer. The relative
displacements of opposite points on the adhesive-adherend interfaces must be related to the shear
strain in the adhesive layer (Figure 23). Obtaining this condition will require elaborate calculations.
and it will even be proved to be impossible to satisfy such a continuity condition for the whole
length of the beam due to the constant shear stress assumption. By definition, tle engineering shear

strain in the adhesive layer v9), is given by,
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Figure 23. Deformation of an element of adhesive in the adhesive layer.

Ty = 6, + 6, [3.25)
or, assuming small angles,
aV2
+ — —
N VI Tk, (3.26]
T = Ax '

where Au is the horizontal component of the relative displacement of two opposing points on cither
side of the adhesive layer, and v; is the vertical displacement of the interface point on the upper

adberend.




du=w@=0-wmy= -1 [3.27)

The compatibility condition is then,

0 Au oy
[u . 72
Yo 2% Ox

[3.28]
" Using the expressions for the stresses in the adherends and equations [3.14), together with Hooke's
law and considering that there are no vertical normal stresses, the displacement fields in the

adherends can be obtained by integration of the normal strains. Equations [3.21] and [3.22] are also

used.
v, = jsyzdy = — %J[Zq(x— £) + 6dyy(x — £)]dy 3.29)
= o Qo+ 3dy)x = ) + Vo) ’
Similarly,
v = - —E— 2y + 3dpHix — O + Vi) [3.30]
The horizontal displacémcms are obtained by integration of €,
w = feldx = -I!S-(c:,x2 + 3dixYy - 2fx — 6ditxy) + Uy(y) [3.31]
= jeidx = —Hox) + 30’y - Ztx = Shix) + ) i3.32]

Ui(y), Uz(y), Vi(x) and V,(x) ase to be evaluated using compatibility equations [3.33] within each
adherend, togethier with the boundary condition on the displacements (i = 1 or 2).
!
o4 LM _ Ty

LA . A 3
y T WG 13:33]

Substitution of the displacement expressions in this equation results, for the Jower adherend, in,

Fx) + Go) = - i(‘;- [3.34]
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where

_dUG) | 2ep | 3dyt 2 .
G(y) & + G + e 3 (2cy + 3diy?) = Kk (3.36]

The right-hand side of equation [3.34] is a constant and, because the sum of the independent
functions F(x) and (G(x) is a constant, each function must be a constant also. Equations {3.35] and
[3.36] are then integrated to f_md U;(y) and V,;{x), in which expressions four integration constants,
K, to K4, remain to be evaluated. Replacing U,(y) and V;(x) in equation [3.30] and [3.3}] results

in the following displacements,

u = Tl:,—(c,x2 + 3dlx2y = 2c{x — bdibxy) + ky + kg +
3 [3.37]

Usually, for isotropic beams, boundary conditions for displacements are cvaluated at the
midsurface of the becam or, for simple beuding, the neutral axis, which position is an unknown in
the case of the bonded cantilever. What is known is that the neutral surface must lie somewhere
between the midsurface of each adherend and the midsurface of the bonded beam. In order to re-
tricve the deflection of an isotropic beam in the perfect adhesion case, the boundary conditions are
expressed for x and y equal to zero. This is an artificial choice since the origin is ro part of the

adhecrends if an adhesive layer is present, but leading to acceptable results.

The boundary conditions are that there is no vertical or horizontal displacement at the origin
and that a vertical element should stay vertical after deformation. The latter condition nplies that

the derivative of the horizontal displacement with respect to y must be zero ((13), pp. 41-46).
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--“ =0
x =0
at +|lv=0 13.39}
y=20
.Elil_ = ()
dy
.
The resulting integration constants are,
k2=k3=k4=0andk1=—% [3.40)

which when substituted in equations [3.37) and [3.38] givc the following displaccments in the lower
adherend,

3

d
u = Lex? + 3dixYy — 2¢8x — 6dyfxy) + HHey? + dy’) - Ly - pay
E E G G
v = = ey + Mp’x - 8 - S — Hdx® - 3dytx) [3.42]
Similarly for the upper adherend,

= lepx” + 3dix’y ~ 2opbx ~ bdbey) + ey’ + dy’)

_an_d [3:43)
G G

n =~ 2oy + 3y - 0 - —eé-x - —};—(dgxz — 3dytx) [3.44]

Using these displacements, the right-hand side of the compatibility condition [3.28] will be an ex-

pression containing terms in x and x; as well as constants.

wy=0-mp=-n
2 ox

= -0 =z x', xH [3.45]

If compatibility is satisfied everywhere along the length, this function f should equal y?, for
each valuc of x, an impossible result because of the assumption of constant shear stress (and hence
constant shear strain) in the adhesive layer. Thus, the price paic for the constant shear stress as-

sumption is that compatibility of displacements through the adhesive thickness will not be satisfied
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everywhere. In fact the condition can only be satisfied in one poiat, or at most two, since equation

{3.46] is a quadratic one.

0
R ) =y = 2 13.46)
qa

From the strength-of-materials solution the shear stress is known to be constant, in most
cases, for a part of the beam near the loaded end. Therefore the one point, for which the condition
will be assumed to be satisfied, will be the end point, x = £, Equation [3.46] expressed at x = £,

will then provide the eleventh and last equation in the eleven unknown stress-function constants,

2 3
L met? = 38 + e ? + dydy - Al - AL
E 1 1 E 1 i G G
2 . d,r’
_[%_( _ol€2+3d2(,2¢)+-2—(c21 —dqta)-'%lz-!-—-—i; ] [3.47]
34,82 2t
+ U4 - Y=y~ 2 4+ 22 | = &
2:[ -E-( 20t + 34d,t%) G 3 ] G,
Solutien of the set of lincar algebraic equations results in,
d = dy = 2; o [3.48)
. Pt 1 2N 2
fi= —fi= —¢ql = ¢ = —————-[I-———(l—m)] 3.49
1 2 1 2 i 1o D [3-49]
a=n= -Io% [3.50]
= — £ 1 2N~ - 3 £ N
‘@ T a W] — o [1’ U ‘”)] 20k D 3:51)
or frisli- Ba-e]- 3ha-nk ea
in which,
t
o = 'y [3.53]




Elth] Elal 2A A2
a ] + 2-518 -o) ~ =& -w) + 2 :
No=1 zo,[e]“’“ @) G[e]“"z ®) “"[e] B354
D=2~ m)+0[ ]co(l o

e [3.55)

- g[ ]a)(l"(o)(l—m+3(o2*-m)+2v[£] A1 - o)

To each term in both N and D, a pliysical meaning can be attached. The first term is related

to bending deformation of the adherends, the second to the presence of the adhesive layer, the third
10 the shear deformation of the adherends, and the last to Poisson effects. In the case of relatively
stifl adhesives, such as epoxies, there is roughly an order-of-magnitude-difference between any two
consecutive terms, decreasing from the bending to the Poisson term. This difference is for beams

that are not too long.

ressee and displacemente in adherends and

adhesive can be obtained by simple substitution in the appropriate aforementioned expressions.

Note again that this solution is an approximate solution, satisfying all equilibrium conditions,
satisfying compatibility within each layer separately, but satisfying compatibility of displacements
on both sides of the adhesive layer in only one point. Increasing the order of the polynomial for
ihc siress funcuon, y,, could accouni for a vaiying sncar stiess in ihe adhcsive layer that would
immediately imply that the dependence of the nonmal stresses on X in the adherends would no
longer be linear, thus requiring higher order polynomials for the adherend’s stress functions. The
only result would be for the analysis to become more laborious and expressing the through-the-
adhesive-compatibility would lead 1o a higher order equation than quadratic in x. These resulis

would mean that compatibility could never be completely satisfied using polynornial stress func-

tions.
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3.24 Shear Stress in ihe Adhesive Layer

Because the shear stress in the adhesive equals minus ¢, 19, is found immediatcly to be,

P 1 - 2N . _ 13 P 4. 2N
bhl+m[l p U “’)]+2bh(l *rp 13.56]

0
Ty

In section 4 of this chapter, the shear stress given by equation [3.56] will be compared to the
maximum shear stress in the adhesive layer as obtained in the strength-of-materials solution. It
will also be determined whether expression [3.56] can be related to the simple cases of perfect ad-

hesion and no adhesion.

Hypothetically, the case of perfect adhesion is encountered when the thickness of the adhesive

lzyer, or its dimensioniess form, ®, approaches zero, as shown below.

N 15040650 1
Im = 2% o0+0+0 " 2 3-57)
o _ P 3P _ 3P

= . -— 4 e 22 . A
fim % = DY GE T dm 13.58)

@-+0

Obvicusly, after taking the necassary limits, the maximum shear stress at the midsurface of an

isotropic cantilever iz retrieved, For the case of no adhesion, €, approaches 2erc, making the ssc-

ond term in N and D the dominant one. Taking the double limit for both G, and o going to zero,

%3, is logically found to be vanishing.

. N . a
lim = = lim = 2 3.59
G Bo D G.—o _E |h] 4 13-59]
a L —_— ol - ©)
w—0 w0 Ga £
0 P P
Jim Ty = g [l=41+ 3Lx2 =0 [3.60]
[ Radi}
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3.3 Deflection of the Cantilever

Replacing the stress function constants by their solution in equations [3.42] or [3.44] results
in the wanted deflection ¢quation. If transverse effects are ignored, each point of the beam for a

certain x moves dowaward the same amount.

S IOV TP S
v G~ E(x 3ix) [3.61)
- Px 1 [_ZN,,3]+1_P_x__M___P N (x? - 3exY) [3.62
Ve ol T DU Tt YD T S b ) B
The end deflection, 3, is then,
Pe N L o PEY 1 _ 2N 1-& | 3N
Eb3 D ¥ Gb"{l—m’ D -4 2D B

Like for the strength-of-materials solution, graphs can be made of 3 as a function of the adhesives
deformability for various adhesjve thicknesses and bear.: lengths. Because the strength of materials
approach is obviously the more accepiable solution, only one case will be examined for comparison

in the next section.

3 can also be written as a bending deflection factor multiplied by a dimeasioaiess coeflicient,

B, as in the carlier solution.

3
5=B,_P_£_3.. [3’64]

2Ebh
= _ 2N 2F h]z ] 2N 1-a IN '
= &0 4 L | o1 - ey 2 8 4 =1 .65
B D G[£ [x—a# D |- 2 20] 363}

3.4 Comparison of the Two Solutions

A graphical comparison of the dependence cn the adhesive’s deformability of the shear stress

in the adhesive and the end deflection of the beam wiil be made for a beam of & given geometry.

Expressed in the notations of this chapter, its characteristics will be: t/h = 0.1 and I/h = 10.
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In order 10 compare equivalent quantitics, the dimensiosnless shear stresses Tt and the
dimensionless end deflections f§ have to be expressed for an identical definition of h. In Chapter
2, the maximum shear stress in the adhesive layer, T, and the end deflection, §, were found to

be,

max _ P 1 _ 1
et bhy? (1 + 24h) [l cosh a] [241])

5= 8 PE’ " [2.56]

2EBR(1 + 4R’

In these expressions, all parameters containing h need to be transformed to the definition of
h in this chapter, which are half the thickness of the total beam. This process is cumbersome and

not too relevant and leads to,

ol g o [3.66]
and
5 = B.;;:tjb_h? [3.67)

In equations [3.65] and [3.67), t* and B* are the transformed dirnensionless maximum shear stress
in the adhesive and the transformed dimensionless end defiection of the beam. They are compared,

in Figures 24 and 25, to their equivalents, T and P, as obtained in the stress function solution.

0 P 1 2N 3 ap 2 N
" e - LIV — + =2 - AN )
o bhl+co[l D ‘°)] TR 13:56]
-1y = T [3.65]
and

= Pt

= 5Pt [3.69!
20}
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Figure 24. Comparison of the shear stress in the adhesive for the two solutions.
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Figure 25, Comparison of the end deflection of the heam for both solutions,

Generally, both solutions show good agreement, cup-aally for the end deflection values in
Figure 25. In each figure, identical asympiotic values are reached and major changes occur for the
same interval of adhesive deformability £/G,. To obtain an estiraate of the end deflection or the
maximum shear sirain in ihe adhesive Iayer of a bonded cantiiever, i>oth solutions can be used.
When it comes to using these quantities to actually calculate the adhesive shear modulus, slight
changes in shear stress or deflection can lead to huge differences in adbesive properties. Therefore,
the solution based on the less restraining assnmption- the strength-of-materials solution, in wther

words - should be preferred over the other.

Otlier geometries such as those used for this comparison lead to similar graphs. They will

be only somewhat shifted along the horizontal axis, like the curves presented inn Chapter 2.




35 Condusions

In this chapter, a stress function solution, based on a hypothetical constant shear state in the
adhesive layer, was presented. That restraining assumption led to incomplete satisfaction of the
compatibility condition or. displacements on both sides of the adhcsive layer. Therefore this sol-

ution should be handled with sone caution.

When compared to the strength-of-materials solution, both solutions showed good general
agreement. The differences that were noted, however, proved too important to enable use of the
stress function solution to calculate the adhesives’ shear modulus. The strength-of-materials sol-

ution is to be preferred over the stress-function solution because of its less restraining assumptions.
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4.0 NUMERICAL EVALUATION OF THE STRENGTH OF MATERIALS
SOLUTION

4.1 Introduction

The strength of materials solution as presented in Chapter 2 will be evaluated using the finite
clement code VISTA. The elements used are 8-node isoparametric quadrilateral elements. Hor-
izontally the cantilever is subdivided into 16 elements with refinements 1o »ards both the loaded and

the fixed eads; vertically the adherends and adhesive layer each contain 4 elements (Figure 26).

Figure 26. Discretization of the beam.
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For a number of geometries the shear stress distribution in the adhesive layer ana the end
deflection are analyzed, and the results are summarized in Table 2. Starting from a “standard beam.”
{(case 3 in the table) for cach run one of the beam characteristics, either the slenderness of the beam,

the thickness of the adhesive layer, or the stiffness of the adhesive, was changed.

4.2 Shear Stress in the Adhesive Layer (Table 2)

Three features of the shear stress distribution in the adhesive layer will be discussed: its var-

iation along the length and over the thickness of the adhesive layer, and its dependence on ge-

oractrical and adhesive parameters.

For cases 1, 3 and 4 in Table 2, the shear stress in the middie of the adhesive layer as obtained
using finite elements is compared to the analytical solution in Figure 27. In this figure, two features
catch the eye: first and most important, the excellent agreement between numerical and theoretical
values; and, sccond that something happens to the numerical shear stress a: the loaded end of the
beam. The reason for this numerical instability is the very high stress gradient at the extreme end
of the adhesive layer. Since the outer surface of the adhesive laycr is free of stresses, the shear stress
in the adhesive layer should drop “instantly,” meaning over a very short distance, from its maximum
value to zero, for x is equal to £. This end effect cannot be included in the strength-of-materials

solution and can only be accurately evaluated with a highly refined element mesh in the neighbor-

hood of the singularity.
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Figure 27. Comparison of numerically and theoretically cbtained shear stress.
. One of the bas'c assumptions of the sir. ngth-of-materials solution was that the adhesive acis
J in a state of pure shear; in other words that the shear stress does not vary over the adhesive thick-
ness, This assumption is numerically confirmed in Figure 28. In this figure, the “vanation” of the
9 shear stress over the adhesive thickness for various positions along the length of the beam is pic-
ke
i tured, showing only a very slight change in magnitude near the loaded end.
k. l‘_ﬁ-.
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Figure 28. Variation of shear stresses ovir the thickness of the adhesive layer for various positions

along the x-axis,
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A limited numesical parametric study of the maximum shear stress in the adhesive layer is also
conducted. Because of the numerical problem near the end of the beam, the values 1™~ -fin.el., as
they are given in Table 2, are obtained by extrapolation of the undisturbed shear stress curves.
Divided by P/bh, these maximnum shear stresses can be compared to those obtained by the the-
oretical solution, for example by superposing them on Figure 31, resulting in Figure 29. Again, very
good agreement between numerical and theoretical values is noted.
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Figure 29. Comparison of numerically and thegcctically oltained maximum sh:zar stress values in the

adhicsive leyer,

It can thus be concluded that the shear stress distribution in the adhesive layer can accurately

be described by ity strength-of-marcrials solution.




4.3 Effect of the Loading Mode

N ) In Chapter 2, the load was assumed to be applied half at the upper adherend, half at the
lower, for reasons of symmetry and to avoid introducing additionzl normal stresses in the adhesive

layer. When the beam is loaded so that it moves downwards, compressive stresses will evelop in

p ® the adhesive layer if the load is applied at the upper adherend, and will deveiop in th< tensile stresses
5 if ihe load is applied at the lower adherend (Figure 30).
i ®
., Ip
: 7
7/ e
.: a) s —]) COMPRESSIVE ZONE
/ — o
/
2 /
7 y
- ‘,-"' ~~
; b) Y 1" TENSILE ZONE
/ w-
/ P
fe |
py Jpr2
3 c) ; PURE SHEAR
& @ / a3
" Figure 30. Effect of loading mode.
X
The stresses in the adhesive layer for a cantilever loaded at the lower adherend (Figure 30b)
are numerically obtained and compared to the siresses for a beain equally loaded at the upper and

lower adherend (Figure 31). The shcar stress distributions for both cases are perfectly equal, whereas

large normal stresses occur in the case of one-sided loading, compared to no normal stresses at all
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for the other. This normal stress distribution is very similar to the one obtained near the ends of

the overlap in lap joints, where these large tensile stresses are called peel stresses.

Because of the linearity assumption, the normal stresses in Figure 31 change signs only when
the cantilever is loaded at the upper adherend and large compressive stresses are induced. As a
matter of fact, the stresses as shown in Figure 31 are those that are obtained, except for the sign
of the normal stresses g,, at the supported ends of a beam in three-point bending. In the middle

of such a beam, where the load is applied, an additional compressive zone exists.
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Figure 31. Shear stresses end normal vertical stresses in the adhesive layer for one-sided loading.




4.4 Deflection of the Beam

The end deflections obtained by finite clement analysis are compared to the theoretical values
in Table 2 and Figure 32. Rather large differences are hereby noted, the theoretically obtained de-
flections being systematically 8 to 10 percent larger than the numerical ones. The reason the nu-
merically obtained deflections are smaller is that they are computed for a plane strain assumption
whereas Euler-Bernouilli beam theory is based on a plane stress situation, an option which is nci
provided in vista. A plane strain situation is found in bending of plates where transversal etfects
increase the ber.ding stiflness by a factor 1/1-v? (13, pp. 288-290). For metals this increase means
that the bending stiffness in the case of plane strain will be about 10 percent larger than for a plane
stress case, which increase accounts for the 10 percent difference that was noticed between numer-

ical and theoretical values.
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Figure 32, Comparison of the end deflection of the beam obtained by finite ¢lement analysis and by the

strength-of-maierials solution.
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e o7

In Figure 33 the vertical displacements of the cantilever as obtained from finite element
analysis and from the strength-of-materials solution are shown. In Figures 34 and 35, the de-

flections are depicted for twe typical metal-adhesive combinations: steel adherends bonded by a

o

rubber adhesive and aluminum adherends bonded by an epoxy adhesive, respectively used in the

W TN P

automotive and acrospace industrics. They are compared to the deflections in the cases of “no
adhesion” and “perfect adhesion.” It is seen that for the rubber-steel beam, because of the very
deformable adhesive layer, a very thin layer of the beam already leads to a large difference in the

case of perfect adhesion, in contrast to the epoxy-aluminum beam where a third adhesive layer is

necessaty to obiain some sensitivity of the deflection to the presence of the adhesive layer.

*v(lO‘3 inch)

6 j0.5
FINITE ELEMENTS V7
= = =STRENGTH OF MATERIALS SOLUTION 7/
WITHQUT SHEAR TERM y
—--— STRENGTH OF MATERIALS SQLUTION
ar 40.10

P=1004b(445N)

E/G, =260
1=2.5inch(63.5mm)
h=0.251Inch(6.35mm)

t 20.02%5inch (0.635mm)

40.05

a3

Figure 33. Comparisen of the deflection of the cantilever beam obtained by finite elements and by the

strength-of-materials solution.
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Figure 34, Deflection of a stecl-rubber bexm, compared to the cases of “perfect adhesion™ and *no ad-
hesion”:  (E = 30 msi (207 GPa), G, = 357 psi (2.46 MPa), p!n.ne lines: theoretical

values; slashed line: finite element valucs).
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Figure 35. Deflection of an aluminvm-epoxy beam, compared t¢ the cases of “perfect acéhesion” and

“no adhesion™ (E = 10 msi (69 GPa), G, = 38.5 ksi (0.265 GPa); plane lines: the-

oretical values; slashed line: finite element values).

4.5 Conclusions

From this numerical analysis three major conclusions can be drawn. The first is that the
adhesive layer behaves indeed in a state of pure shear when the beam is equally loaded at both
adherends, and that large normal stresses arc induced in the adhesive layer near the loaded end when
the beam is not so loaded. Second, there is excellent agreement for the shear stress distribution in
the adhesive layer between numerical and theoretical results. And finally, although large differences
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E were noted for the deflection values, the agreement beiween theoretical and numerical results is

fairly good considering tie latter are based on a plare strain instead of a plane stress assumption.
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5.0 RECOMMENDATIONS FOR FUTURE WORK

£.1 Introduction

Some ideas are presented in this chapter on how nonlinear elastic or viscoelastic behavior can
be ouilt into the strength-of-matenials solution. Both material characteristics are in principle easily

accounted for, but lead analytically to huge problems.

Also a possible use of the bended cantilever in the field of fracture mechanics is mertioned.

8.2 DNonlinear Adhesive Behavior

In the strength-of-materials solution of Chapter 2, adhesive behavior was introduced only in
the continuity equation [2.12]. A linear elastic shear characteristic for the adhesive layes was as-

sumed there, replacing the shear strain v,, in the adhesive by,

The same deflection equation [2.4] and centinuity equation [2.12) will be the starting point in
this section, except that the shear strain in the adhesive will be induced as some nonlinear function

of the shear stress,

2
€
El.__:x; = L-x - pBEE L e [24;
e
(h + 2‘)“5,:}"" 2y (1) — 'E%?fﬁn to(Mdhdy = 0 5.1]
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In cxactly the same way as in Chapter 2, the differential equation will be derived for .,: first by
dc ible differentiation of the continuity 2quation, then by single differentiation of the deflection

equaiion, and finally by combining both resulting equations.

Double derivation of the continuity egnation with respect to x,

3 d2y T,
(+ 2092 — “Lyx(z" + —£Z1Xy(x) =9 15.2]
ax L “

Derivation of the deflection eguation with respect 1o x,

3
.’,
El :x} = - i;_ + b'l-z—zt—t..g, (53]

Elimninztion of the deflection term out of equations {5.2] and [5.3] and some rcarrangement

leads 10 the <licrential equation in 1., and Tryr

Pyglrg) [b(h+2t)2 ¢ Lo = - PAE2
dc 4tk1 Ehi | '@ ME]

{54]
This equation is idesitical to the une obtained fo. linear elastic behavior except for the first
term wlich coatains all the difficulty, sirce v, is an implicit function of x. Usinp some advanced

calculus theorems, ve can develop that term,

d. . Ny oy (5.5]
dx 1% 01,y dx '
- ) .
_Cﬁ._ = ...d_ ﬂfy-. dtxy -l =3 any (I~TX} 4 62’yxy dey l IS 6]
d? Ty dx | drg, dx | Iy dx? Oty | dx j '

These equatiovs finally lead te a nonlinear second order differcntial equation with varying cocffi-
cicnis, No analytical solutions exist for that kind of differeniial equation so that an exact solution
can ouly be ¢btained by numerial mreans.
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7] 2 .
OYyy dtyy . "Yyxy [dtw]z

0ty dx? 0ty | dx (57
U T ) = - PB20
l 4El Emt]™ 4EI

A fiequently vsed nonlinear characteristic is the power iow, usually expressing «,, as a power func-
ticn of y,,. Considering the form of equation [5.7], the inverse relaticn will be used here, expressing
Y,y as a power function of 1, ,, (equation [5.8]), although t is possible, but laborious, to express the

difizrential equation in terms of v,,. k, £ and n are material constants.

Yoy = KTy + 1) {5.8]
Y xy -
=k + tnt 7! 9
a1, Nty [5.9]
~2
ay -
- );v = knin — 1)z, 2 {5.10]
0ty

Eventually the diffzrential equation for the shear stress in the adhesive in the case of a
power-law-material-behavior 1s obtained.

2

dt de,,’
3 n-—1 Xy o n-—-2 xy |2
k + (mxy ) dx2 + tn(n l)TV [WJ IS "
b(h + 26)° L ] )
[ Azl Eht 1'% P T

5.3 Viscoelastic Material Behavior

The correspondence principle (15) for problenus in which one of the constituent materials
shows time-dependent behavior, and for which an analgtical sclution is available, is used in this
section. Swce the strenght-of-materials solution is a linear one, the behavior is restricted to lincar

viscoclasticity.

In the strength-of-materials solution for the bonded cantilever subjected to an end load, the
shear stress in the adhesive layer, the maximum shear stress and shear strain in the same layer, and
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the end deflection of the beam were respectively given by equations [2.34], {2.41], {2.42] and [2.53}. .

These equations are repeated here. The adhesive behavior was contained in parameter @ only

® (equation {2.21)).
1,5(E) —L (1 ~ cosh G& + tanh @ sinh &) [2.34)
by*(h + 20
L .
max P i : \
= —- -1 - - 4 1
Yy Mz(h +20) [l cosh ?‘] (244
P 1
& Yo = -~———[l - _~-] 2.42)
» G by Yk + 20) cosh@
E <3 1
P tanh o
= —Ltaf - &4 - Ashe 12:53]
2Ebh3[ ( ’) 26 ) ( 3 )]
®
in which,
2 1 R
, v =1+ — - [2.20} »
e 31 + 2ti)*
_ G, [f] 2 (1 + 20R)
a Y«/S 517 h [2.21) iy
@
According to the correspondence principle, all time-dependent guantities have to be replaced
by their Laplace transforns, s being the Laplace parameter. o
e P - Ps) [5.124]
Gy~ &) [5.128)
o ) TP ga(s)[ ] (1+21/h) 51
. a — uls) 5 \/3 7| ——-—-—-—t/ P [5.12¢]

This lcads - for example, for the maximum shear stress - 10,

734)(() - P;;(S) [1 _ _____l" ]
84(5) by (h + 210) cosh a(s)
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Then, the Laplace transforms have to be written in their explicit forms, assuming some
viscoelatic model, Kelvin or Maxwell behavior for example, and some specific tvpe of loading

(creep loading, for exampie) (Figure 36).

P(t)

>

- {

Figure 36. Creep loading.

For a creep test,

A
Py = £ [5.14)

Finally, to retumn to the time domain, the inverse Laplace transform of the equation under

consideration needs to be taken, a proceduye that, for the present problem, is easier said than done.
5.4 Fracture Mcchanics Application

The Double Cantidever Beam or DCB test is a known fracture test for adhesives (16). In this

test the adherends in a bonded caniilever are palled away from each other so that a crack in the

adhesive layer will propagate in modc I (Figure 37).




5
B tp
/]
r'd
/
I
/]
“ / 1 P
]
A Figure 37. Double cantilever beam test. .\t
A
In the case of a bonded cantilover bearu Inaded at the end by two equal forces in the same
disection, the adhesive is now known to be in a state of pure shear, for which a solution is available.
A crack in the adhesive layer will thus propagate in Mode 11, so that this test gecometry (Figure 38)
can be used to obtain Mode II fractur: energics.
" y [pra
i .
/] i
/ ﬁ 3
/] . :
b / IP/& :
4
7 Figure 38. Bonded cantilever subjected to an end load. ‘:
Moreover, by making the end loads uncqual, a mixed mode that can be seen as a superposi- -"‘:
A tion of modes I and Il is obtaned (Figurc 39).
:"4}'
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258 Conclusions

Introduction of nonlinear adbesive behavior in the strepgth-of-materials analysis leads to a
nonlinear, second order differential equation with varying cocfficients in the shear stress in the ad-
besive layer, for which o analyiical solutior sasis. Numeiical analysis is thus nccossary for tic

casc of nowinear adkesive behavior,

Application of the superposition principle for linear viscoelastic adhesive behavior results in

cquations in the Laplace domain that are very dulicult to transforn te the time-domain.

The cantilever beam subjected to an end load can be used to obtain Mode 1l fractixre char-

acteristics and can be combined with the DCB Test te obtain mixed mode loading.
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6.0 CONCLUSIONS

Use of a bonded cantilever beam specimen for the measurement of adhesive shear properties
has been investigated. A strength of materials type solution is obtained for the shear stress state in

the adhesive layer, sharing good agreement with finite element results.

Governed by the relative displacement of the adherends ou both sides of the adhesive layer,
the shear stress is shown to vary from zero at the fixed ¢nd to a maximum value at the frec end.
For relatively long beams and thin adhesive layers, a constant shear zone exists in the neighborhood
o1 the fice end. Under those conditions, that maximum shear stress can be calculated from a
knowledge of the load and the beam geometry only. Therefore, by measuring the relative dis-
placement between the adherends or the shear strain in the adhesive layer, the shear modulus can

be determined. Nuwmerically the shear stress is shown to be uniform through the thickness of the

adhesive layer.

An expression for the beam deflection was obtamed and related to the adhesive’s shear
moduius. A graphicai meihod 1s presenied {0 deivnone ihe modulus froi deficction incasuie-
ments. These deflection tests are also a simple way to compare surface {rcatments or different types
of adhesives. To that purpose a coefficient of adhesion is inivoduced. For good sensitivity, rela-

tivel: 1t beams and thick adhesive layers are recommended. N

With the adhesive layer acting in a state of purc shear, the cantilever beam specimen can be
uscful to obtain mode 11 fracture energies. Implementation of nonlincar and viscoclastic adbesive

behavior into the strength-of-materials sclution is briefly mentioned.
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