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BENDING OF A BONDED BEAM AS A T-PST

METHOD FOR ADHESIVE PROPERTIES

Abstract

A strength-of-materials type solution is obtained for the shear stress state in the adhesive layer

of a bonded cantilever beam subjected to an end load.

The shear stress is constant through the thickness of the adhesive layer and varies from zero

at the fixed end to a maximum value at the free end. This maximum value can, under certain

conditions, be calculated from knowledge of the load and the beam geometry only. The adhesive's

shear modulus can thrc. oe detennined from a measurement of the shear strain in the adhesive layer.

An exDression for the te-am de-flection is also ,baine. It conta: t c ._n .. adh_ i,

which is potentiaily useful m evaluating surface treatments or other factors leading to different states

of adhesion.

Fracture mechanics application of the specimen, nonlinear and viscoelastic adhesive behavior

are briefly mentioned.
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1.0 INTRODUCTION

In the last decade, adhesives have increasingly been used in structural bonds, especially in

high-performance sectors like the aeronautical industry. Advantages of adhesive bonding are

manyfold: fatigue behavior of adhesively bonded joints is better than for the traditional bolted,

welded, or riveted joints; loads are more uniforaly transferred from one adherend to the other; there

is no ýocal w"akening of the adherends due to bolt holes; weight of the actual bonding a~ra is re-

* duced; joint sudaces are smoother; etc. However, there are disadvantages, and at least two major

problems arise when adhesiv.-s axe used to bond structural parts. First, the stress state is usually

compiex and not accurately known; and, second. environmental effects can seriously alter joint

* perfornumce to the extent that long-term integrity is •not predictable.

Numerical techniques, mostly finite clment analyses. give good understanding of the first

* problem, providing materi&l propertiox are known. Because of the variety of mateiial properties,

as well as the effect of environment on properties, a great variety of tct geometriee and test speci-

mew, has re••ited- The re_,vn there is no siw.le generallv ac.ent.id te.t .'!. that e•ach h.s it. shnrt-

* comings in various degrees. Some are. reasonably well analyzed but require costly machining and

fabrication while others are simple to make but give oply average or over-simplified moduli.

Moreover, many adhesives exhibit complex material characteristics such as nonlinezw- and/or time-

0 dependent behavior. In addition, the chemical or mechanica. bonding between adherends and ad-

hesives is not well understood. The interface or interphase laye; between adherend and adhesive

is not well defined, especially in regard to the rr asuremen't of mechanical properties. There is also

some question as to wvhether the properties of the bulk adhesive differ from those of the thin film

of adhesive in an actual joint.

- 1



The Short Beam Shear Test (SBST) is an ASTM Standard Test (I), used to obtain the

interlaminar shear strength of composite materials (1-1 1). In this test a short composite beam is

loaded to failure in three-point bending (Figure 1). Span-to-thickness ratios may vary from 4 to 7

depending on the fiber type in the composite (1). In elastic beam theory, the maximum shear stress,

at the midplane, in three-point bending is given by equation 11.11, in which b is the width of the

beam.

At failure, P = P, the interlaminar shear strength SH, is then given by

S11 Pf4bh

Figure I. Short beam shear test for compo•Itsh

Because the beam is short, Saint-Venaut effects cannot be neglected as they am in the elastic

beam theory leading to expression 11.11, wiuch assumes a constant shear state. Thus the

interlawinar shear strength, as obtained in the SBST, will only be ant 'apparent' interlaminar shear

strength. Therefore ASTM advises that this value be used only for quality control and not for de-

sign (1).

2



Whitney and Browning (2,3) raised another point of caution about the SBST, stating that

very often fiber buckling in the neighborhood of the load leads to failure at the midsurface prior to

* that predicted by theory. Browning, Abrams and Whitney (4) proposed to replace the SBST by a

test using four-point bending that, in their experiments, routinely produced the desired interlaininar

shear failure mode.

Stinchcomb, Henneke and Price (5) went even further and completely rejected the SBST for

quality control of advanced composites. They observed experimentally that for graphite-polyirnide

laminates, only those which were poorly manufactured failed in shear.
0

Notwithstanding the above objectives to the SBST for composites, the question arose as to

whether such a simple test geometry of a beam in three-point-bending, or a cantilevr beam loaded

at the end, could be used to measure the shear properties of an adhesive layer bonded to two

adherends (Figure 2). To obtain properties it is necessary to calculate or know a priori the stress

state at a material point a-nd to relate this known stress to measurable shear deformation in the

adhesive laver, or even easier, at the midtriint dp.f.itinn '-fthp hrnm It f th6 ,-mr,, ,-'th;Is.,U

to obtain a closed-form analytical solution to a beam composed of two adherends bonded together

with an adhesive. The finite element method will also be used to obtain a numerical solution. The

two solutions will be compared. The intent is to provide a basis for the measurement of shear

"* • properties with this technique. As a result, optimum features of geometry and properties of

adherends and adhesives will be identified to maximize achieving accurate measurements.

3
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Figure 2. Three-point bending of a bonded beam.
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2.0 STRESSES AND DISPLACEMENTS IN AN ADHESIVELY BONDED

CANTILEVER BEAM SUBJECTED TO AN END LOAD

2.1 Introduction

In this chapter a solution will be presented for the state of stress and for the displacements in

an adhesively bonded cantilever beam subjected to an endload. More particularly, the shear titress

distribution along the length of the adhesive layer will be examined. Also, the experimental use of

this test geometry will be extensively discussed.

• The idea of the method of analysis is to subject the cantilever beam to an endload and to cut

the adhesive layer along its midplane, thus freeing the shear stresses in this layer. Expressing con-

tinuity of displacements along both sides of the cut, together with the deflection equations for the

adherends, wilt. result in a differential equation in the unknown shear stress. Thkis equation will

evcntualiy be solved using thý proper boundary conditions.

A esrv"lMr ,"P•thAd uatn £rt uiicrI * n I Q4 h,,u ttz•rt TI-. - I 1Q) in qn nflt in iwh;eh the 2!lthnr

examined the shear forces in :onnecting floors between two shear walls of a high-rise building.

Three basic assumptions are made in the present analysis:

- the adhesive layer is in a state of pure shear,

- the adherends obey the Euler-Bernoulli beam theory.

- both adhesive and adherends are linear elastic.

The validity of the first assumption will deplnd upon the thickness and stiffness of the adhesive

layer and how the load is transferred to the beam. This last point will be discussed in a later section.

For thick and stiff adhesive layers, normal stresses are likely to develop as they do in a monolithic

beam. A consequence of the second assumption is that the adherends may not be 'short beams,'

1A.



which is, in fa-t, an ill-defined term. Usually a beam is called *short' when its length-to-thickness

ratio is less than ten.

The solution will be valid for both a beam in three-point bending and a cantilever beam

subjected to an endload, assuming the latter to be perfectly clamped. Due to symmetry, the

midsection of the beam in three-point-bending will undergo no rotation, nor will the fixed end of

the cantilever beam. If the load on the cantilever beam equals the support reactions of the three-

point-bending beam, then the vertical displacement of the mddsection of the single beam will be

equal to the end deflection of the cantilever (Figure 3).

2P

4-.

Figure 3. " hree-point bending - cantilever beam analogy.
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P/2
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E-- ±
,oE,G h •

P/2

Figure 4. Geometry of the cantilever bean.

2.2 Geometry and Notations

The following symbols will be uaed in the remaindtr of this chapter (Figure 4). The cantilever

beam is symmetrical with respect to its midpiane.

Geometry Material Properties

I: length of the cantilever E: Young's modulus of the adherends
h: thickness of an adherend G: shear modulus of the adherends
t: half the thickness of the G.: shear modulus of the adhesive

ULI.OLV 41. - L

b: width of the beam

The vertical deflection v is chosen positivc for downward motion. Trwasverse deformations

due to Poisson effects are neglected.

To complete the symmetry an.d to avoid compressive stresses in the adhesive layer, half of the

load P is applied to the upper utherend, half to the lower adhermnd.

7



2.3 Shear Stress Distribution In the Adhesive Layer

Z.3.1 Deflection and Continuity Equations

'Me adhesive layer of the, loaded beam is cut along its midplane (Figure 5). On bath sides

of the cut, the unknown shear stress in th adhesive layer, r,,(x), is then exposed. The direction

of the shear stress will be so that it counteracts the relative motion 'f the surfaces along the cut,

due to the bending of the adher-,nds caused by thtl` end leads.

u dvd M'2O

Fiur .aticcrbemcu ~ogth iipln o headevv zy"

Ii teasupto tatEle-eroll ba teryi vli orte derrisvtedelcto

toigur mi.lantie m an n cu ison the momen of ncri of the adhesiend againwihres.tt h ipa

Inth a-mpio ha Elr-cmulibe heryi vli orth dhred, hedflc8o



1 2 12.21• 12

M is taken to be positive when the lowest fiber of the adherend is stretched.

The appfied moment has a negative component due to the applied load P/2 and a positive

S•component due to the unknown she.ar stress -,, acting at a distnce h/2 + t away from the midplane

of the adherend.

M(xpcC x + bA+ I).5,1d 23

Combining equations 12.11 and 12.3] results in the deflection equation:

2 - - b[2 .rjg(TI) dlq [2.41
dx 2

If nc shear stress acted along the exposed adhesive surface, two neighboring points on each

* side of th .cut (Figure 5) would move apart due to the individual benoing deformations of both

adherends, I2 is to prevent this motion that shver stresses must exist in the adhesive layer.

To assure continuity, it is then necessary that the total relative displacement, due to intemra

and extera loads, of those two originally neighboring points be set at zero. Th;s relative Cs-

placement has three distinct components: one due to bending of the adherends, the second due to

7*1Ut ý l•'fl •AA58SILtJAA WJA UAW GtM.,a&A- t-, CiU.... A.. 141tv IJUAU UU W 1 %) t . .. .1 Ut16'A1l1 .L1UA .t L1 k W..I I...

*O caused by the integrated shear stress. Only the horizontal components will be considered.

The relative displacement component due to bending of the adhereuds, 81(x), can 1-e readily

obtained from Figure 6 and is arbitrarily taken positive.

9



•dv/d x

dv/d,•

Figure 6. Relative diapacenumt due to bending.

2(x) = 2 h+2t. d (h + 212.51
2 dx c

The relative displacement component due to shear deformation of the adhesive, 8(x), is de-

termined from Figurm 7.

10
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- ~ 1- - 4SO

Yxyx)

- .----. -

*Figure 7. Releive displacement due to ahear defornution of the adhesive.

S* • t-x ) - 21 y, (x) - 2t- 12.61

Because the relative displacement o! each point is in the opposite direction to the bending compo-

nent, 82(X) mtst be negative. The minus sign is necessary because 84(x) is negative and %., is taken

positive as shown. The adhesive is assumed to be linear elastic to obtain equation 12.61.

In addition to contributing to bending. stresses in the adherends, the shear stress in the adhe-

sive layet will induce a net axial force in both adherends, tensile in the upper aad compressive in

the lower. These normal forces will cause a third displacement component foi points along the

exposed middle surface of the adhcsi e .

In a beam loaded by normal stresses only, the displacements arc found by integrating the
sS~normal strains (Figure 8),

11



Mx

Figure S. Normal deformation or a beam in ten&%n.

S) 12.7AWx - •(nI) dq EJ d 27

This normal stress, v,0(), in the bonded cantilever is the total force obtained by integratic,. of the

shear stresses from point T1 to the end of the beam, divided by the transversal area of the adhercnd,

= - .- f X A 12.81

Substitution of equation 12.8] into equation 12.71 leads to,

A(x)-- '.,() Add [2.91Eh

The relative displacement component of the two points along .he adhesive surface, ) is

then obtainid from Figure 9. Like the second component, S%(x) is negative also.

12



*8A( X)

AWx)

Figure 9. Relative displacement due to normal deformation of the adherends.

83(x) = - .,y(X) A 12.101

The continuity equation finally is,

8l(X) + 82(x) + 83(x) = 0 12.11)

or,

(h + 20 02tA 12.121(h2).- Jo-• g ,,z~t t•-
dx Ga Eh J

In the next section the deflection equation [2.61 and the continuity equation 12.121 will be

combined and will !-,-d to a differential equation in the unknown shear stressr..().

13



2.3.2 Differential Equation for the Shear Stress

In the previous section, the basic equations governing the shear stress state in the beam were

developed. These equations need now to be combined and integrated to lead to the actual shear

stress distribution in the adhesive layer.

First, the continuity equation is to be differentiated twice with respect to x. Some theorems

concening8 integral calculus have to be used to take the derivative of the integral term. These are,

l l = x) 12.13a] -

and

fAil) d1 - - ;Aq) d-q 12.13b)

Taking the first derivative of equation [2.121 leads to,

h+20d'v 2t dT XY 2 •

(h + 21)A GagxE yQx) AX O [2.141dx2 Ga dx A••%(,a•:0p.4

and taking the second derivative, to,

(h - 2t) d3v 2t d2j 2 1215dx 3 Ga + h TX

Differentiating the deflection equation 12.4] once with respect to x gives,

El-Iv - + 12.161

Elimination of the deflection term from equations 12.151 and [2.161, and some rearrangement,

leads to the differential equation in the unknown shear stress,

d___y r Gb(h + 212 + Ga]G(h + 2t) P 12.17)

L4EIt +2 4tE P[211

S~14



Introducing t/h as a dimensionless adhesive thickness and t/h as a slenderness ratio and using

the expression for the inertia moment I, equation [2. 171 can be rewritten as,

1x-- - 3 G.[_]2 (I + I 2 /h) l + __(

dx P E hL]2 3(1 + 21/h)2 12.181
P 3 a[•1 (1 + 21/h)2

* b(h + 2t) 2  E " h- tjh

Now the following parameters are defined,

a 2 3 G 3 [ (1 +2t/h) 2  12.19]
E h7~ t~

t 2 -- 1l+ 1 2.0
3(1 + 2t/h)2  

(2.201

ciy 12.21]

Substitution of these in equation 12.18] results in,

d - X ]2,1,y = - P d 12 12.221
d- 2 C b(h + 20 t

To obtain the final form of the second order differential equation, x is replaced by a disnensionles

coordinate ý.

{ = !12.2.51

d , x y ý ) j 2 , P U ] 2 [ 2 .2 4 J42.t 1,Q) - b(h + 20 [

2.3.3 Shear Stress Distribution

The general solution of a second order differential equation with constant coefficients, consists

of a homogeneous part and a particular part.

' .+ '1P 12.251
Xy xy

if:+.15



By inspection, the particular soluLion can be found to be,

2= P 12.261
"&by(h + 2t)

The homogeneous solution for an equation of form [2.24] is,

- c1 cosh U + cý sinh Uý 12.271

The complete solution is given by,

TV ___- P + el cosh Uý + c2 sinh i 12.281by2C• + 2t)

in which the integration constants C1 and C2 are to be found using the boundary conditions. At

the fixed end, for g 0 and x = 0,

----= 0 12.291
dx

Setting dv/dx equal to zero in the continuity equation 12.121 and considering that an integral with

equal integration limits vanishes, leads to,

= 0) - 0 [2.30)

and

= -P 
12.311

S bl(h + 21)

At the loaded end, the applied moment, and thus the curvature, is zero.

For x I1 2dv _ M 0 12.321

Taking the derivative of the continuity equation [2.121 and evaluating the resulting equation for x

C leads to:

16



0

--- 12.32a]

xd.

or,

=0
--•y 12.32b]

41=
B

and,

c1 U sinh U + q U cosh ff 0 12.32c]

so that,

P2 P 2 tanh.. 12.331
yh i+ 2e)

FhUally, expression 12.341 is obtained for the shear stress distribution in the adhesive layer,

11- b2h - (I - cosh Zi + tanhiisinh U) 12.34]
by (h + 2t)

Stresses and displacements in the adhL.rends can be computed using Euler-Bemouilli beam

theory for a cantilever loaded by a shear stress as given in 12.34] and a cauitilever loaded by an endS
load P/2.

2.3.4 Limit Cases

In this section the two linit cases of 'perfect adhesion' and 'no adhesion' will be investigated.

Perfect adhesion is assumed to be obtained when the bonded beam behaves like a monolithic

beam with no adhesive layer. This condition is met when the thiclkness of the adhesive layer ap-

proaches zero. Therefore the limits for vanishing t have to be examined for a, y, i and r,, .
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The perfect adhesion c= is not defined as the lIrit case for which the adhesive'3 shear

modulus approaches the adherend's sheaf modulus, since this definition woild violate the pure

shear assumption in the adhesive layer.

2in ln . 2 (1+ 2(/h)2  02.5
-1im 3 . = cx 12.351

2

lin 2 Y lim I +- 12.361
1-40 1--0 3(l + 2t/h)3 3

himni = Jnim lay) 00 (2.371
1-+0 1-40

0( - cosh 0o + s sinh oo)
_ 4bh cosh oo

limra•x 31-- [1 I -(osh2oo - sinho00)]
1-O 4bh cosh 02

= 4bh[1 Cosh 0.0
3P-

4b6h

"This shear stress is exactly the mwrimum shear stress in a monolithic and homogeneous cantilever

beam of thickness 2h, subjected to an cndload P.

Foi, the case of 'no adhesion," the adhesi 7e bas to be infinitely defornable, or, in other words,

the adhesive's shear modulus G has to approach zero. Taking agaixi the necessary limits, it is cle=r

that the shear stress goes, logically, to zero in the "adhesive' layer.

2 = l f2 3 G [••]2(l+2t/h)2- 03

li -.n lim EY 3 h J t/ ' = [2.391

trm T - hn li, P -0 - cosh0 + tanh0.1A1 0) 0 [2.401
r 2,r . AGo-,O .- €o, 07 (h +r 21)

In the following the shear stress distribution will be analyzed for the whole range of adhesives

between these lirmt cases.
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2.3.5 Discussion of the Shear Stress in the Adhcz•je Layer

"The variation of the shear stress in the adhesive layer along zlhe length of the c1ntilever is given

by equation [2.341,

- I( + 20(l - coshZ + tanhJisinh U4) [2.34]

0 by2(/z + 21)

From this expression it's seen that the spatial dependence of the shear stress is governed by

the parameter E, which is in turn related to a and y. To enhance the following discussion, equations

on these quantities are repeated below,

a2  3 G' [_]2 (1 + 2t/h)2  12.19]E Lh t/h

2 = I + 1 [2.201

S3(1+ 2t/h)

H= ay 12,211

The quantity a contains alZ beam characteristics, both geo etrical and material. Generally,

5 will increase with adhesive stiffness and beam length and decrease with adhesive thickness. The

* exact variation of U as a function of adhesive deformability, E/G., is given in Figure 10 for various

adhesive thicknesses and slenderness ratios. For aluminum adherends bonded with ar epoxy at-

hesive, for example, EIG, will be somewhere between 100 and 1000, leading to values of d in the

neighborhood of 10 or less for cornmon geometries.
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Figure 10. Parameter U,

For a cantilever beam, loaded at the end by a force P, the external shear force diagram is

ii.~ constant, eqw Ving P. In a monolithic homogeneous beam the shear stress state is directly related

to the external shear foxce, resulting in a constant shear stzess distribution along the length of the

beam. Frmn the elementary strength of materials, the variation over the thickness of the beam is

known to be parabolic (Figure 11).
A

;v J

I 1
)•: 20



VI Vmaz2bh

Figure 11. Shear stres in an isotropic cantilever beam su~bjected to an end load.

In a bonded cantilever beam, however, the shear stress in the adhesive is oot directly related

to the external shear force, but to the relative displacem~ents of the adherends on each side of thc

adhesive layer. This relative motion of the adherends induces shear deformations in the adhesive

layer and therefore also shear stresses. At the fixed end of the cantilever, although axial stresses and

strains in the adherends are highest due to the maximumn bending moment, there is no relative

displacement between the adharends, because the displacement at the fixed support is zero. Thus,

shear strains and shear stresses are zero in the adhesive layer at the fixed end. Further away from

ffhc clamped end, relative motion of the adherends begins to develop, thus building up shear stresses

in the adhesive, until, in most cases, a stable value is reached.

This shear stress variation from the fixed end (~=0) to the free end (, 1) is shown in

Figure 12, for various values of paramcter ii. It is seecn in this figure that, for increasing ii, more

and more a constant shear state is approached as U is increased. A high 6 means a thin or stiff

adhesive layer or a long beam. For low Ri, the shear stress varies along most of the length of the

beam. A rough physical explanation for these facts is that it takes longer" for the adhcren'Is to

dcvelop the relative displacement~s corresponding to a stabilized1 shear state as the adhesive layer gets

thicker or more deformable.

21



(bh -CO+t -•W +tanh iihnhi fh) i

0.2 04 0.6------

Figure 12. Shear stress variation in the adhesive layer along the length of the bkaz.

0i

The maximum shear stress is always encountered at the fr'ee end of the cantilever. An~ ex-

pression for this m;,xixnum shear stress is obtained by setting •. I in equation [2.34J.

ma P-sinh asnh•2.4 t P (1 - cosh + sh nha )

try b7(1 + 21)coh

m (h+2t)[1 Y12.411

0x L2h+20cs

In section 2.3.4, thc linits for thc shear stress in the cases of perfect adhesion and no adhesion

werecexamined. Figure 13 shows how the maximum shear stress varies for a total range of geom-

pries and adhesive properties. A logarithmic scale is used to allow a complete representation, from

t mx I 0 - ch U +



very stiff to very deformable adhesives. Both graphs show thre. "istinct zones. For very stil'm ad-

hesives, the maximum shear stress has a constant value, depending only on the thickness of the

adhesive layer. The shear stress is a maximum in the zone of higher U values, so that the second

term in parentheses in equation 12.411 vanishes, leaving only the component dcpcndetnt on tile ad-

hesive thickness. For very defoimable adhesives, approaching the case of no adhesion, shear

stresses drop to zero. The middle zone, approximately two decades wide, can be seen as an inter-

action zone, where b9 th geometrical and adhesive properties are impurtant.
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Figure 13. Maximum sheur stress in the adhesive layer as a Function or adhesive deforrmability.
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A noteworthy feature of these curves is that they can be 'shifted' by a mere change of ge-

ometrical parameters. For example, making the beam longer, or the adhesive layer thinner, will

extend the constant shear zone.

2.3.6 Experirnntal Aspects

The constant maximum shear zone as discussed in the previous section is particularly inter-

esting when it comes to using the bonded cantilever beam as a test device for measuring adhesive

properties.

For this range of 'stiffer' adhesives, it is possible to calculate the maximum shear stress in the

adhesive layer from geometrical characteristics only. If a measurement of the shear strain in the

adhesive can be obtained at the place of maximum stress, the shear modulus can be easily found,

assuming linear elastic adhesive behavior. Such a measurmeut could, for example, be done by

tracking thte displacements of some points on each side of the adhesive layer using modem optical

devices.

The maximum shear strain, 7-, in the adhesive layer may be expressed as,

___ __ __ _ __ __

Xm ~ E ElGa - I
G Ebh 2( +2t/h) (I + 1

Thc maximum shear strain is r'presented graphically in Figure 14 as a function of geometry and

propcrties.
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Figure 14. Maximum shear strain in the adhesive layer as a furction or adhesive defwmabitity.
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Due to the constant maximum shear stress, the shear strain varies linearly in the zone of the

'stiffer" adhesives. For the very deformable adhesives an asymptotic value is reached. Here, the

adhesive is so deformable that both adherends can develop their full deformation, as if they were

individually loaded, without being i-estricted by the adhesive layer. The value of that y11- corre-

sl'onds to the relative displacements between the adherends at the loaded end.

Fromt Figurs 13 and 14 it is seen that the constant shear wtess zone and the linearly varying

shear strain zone can b-. extended by making the beam longer and the adhesive layer thinner.

Therefore, for some adhesives, for which a tough estimate of the shear modulus is available, a test

geometry can be "taiored' to make sure to be in the linear maximum shear strain zone.

Moreover, making the adhesive layer thinner ,2Le the beam longer increases the value of U,

thus leading to a constant shear state over a large part 0! the beam (Figure 12). As a result, shear

strain measurements need not be performed at the loaded vcad of the beam. Muving away from the

end will not only make it easier to install the measuring device, but will also elininate possible end

effects.

2.4 Deflection lT the Bonded Cantilever Beun

"2.4.1 Integration of the Deflection Equation

In the following section equations will be derived to relate the end deflection of the cantilever

or the mid-point deflection of the beam in three-point-bending to th: shear modulus of the adhe-

sive. Therefore the deflection equation [2.41,

El tv-x) - 2 t 1 2.41dx 2 22 S a(1 ~

must be integrated, using the proper boundary conditions. Substituting the expression for the shear

stress in the integral leads to,
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d~v P ( x) - b(h + 2t)P Ix I cosh-(T1 + tanhUsinh dqdx 2E1 2ElbY2(h + 21)

-qx) - [ sinh + 1 tnhUcosh 12.431t - - P•--I :•g ._ a s t -I-2EI 2y2E1 "

M P o-X) - [ - x + --L-sin-h 6x t-•h Ecosh _"2EI - 2y2El a

Integration of equation 12.431 results in,

dv. P ( X _ &_
dx 2El 2 2y2 E[2.44

S- 2- + cosh-- - tanh U sinh Mx + C+

in wich C1 is an integration constant to be found using boundary conditions. As shown from

theory of lasticity (13) or elementary strength of materials (14) approaches, the total deflection of

a beam under any kind of loading consists of three terms: a bending term, which is always the

which is usually two or more orders of magnitude smaller than the dominant one and which de-

pends upon position rather than thickness of the beam. The shear term is due to nonuniform shear

stress over the thickness of the adherends, and will be included here.

For a homogeneous monolithic beam, under some unspecified loading resulting in a shear

force V. the shear deflection v. is given in differential form by.

3 3V 12.451
dx 2AG

where A is the cross-scctional area of the beam (14, pp. 170-175). In the present case, where the

sheai force is constant, the shear deflection of the adherends will vary linearly with x, so that its

second derivative will be zero. For the bonded cantilever where each adherend is subjected to a load

11/2 and was a cross-sectional area of bi, equation 12.45] becomes,

dr. 3Pd-- -M 12.461
dx 4bhG
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This extra term affects by no means the previously derived deflection equation, since the latter

= contained only the second derivative of the deflection. However, a note should be made here.

*O Rigorously, this term should also have been included when the boundary condition was used to

evaluate the integration constants for the shear stress distribution in the adhesive layer. There, in

the first condition, dv/dx was set to zero at the fixed end, resulting in a vanishing T,, at that end.

* Later, in section 2.3.5, the physical correctness of that condition was proved. If, on the other hand,

the shear term had been included, a singular, and thus physically unacceptable, shear stress in the

adhesive layer, at the fixed end, would have been the result; therefore, this secondary deflection term

was omitted in the analysis of the shear stress distribution.

The boundary condition for the derivative of the deflection at the fixed end then becomes,

Sdv_ I - 3P [2.471dxI -o-4bhG

Resulting in,

ci= 2 2 + 3P 12.48)
2EIT 4bhG

and,

dv= P(X + __P_
dx 2E 2 4bhG 1249

__ - _ r _ 2 -sin12491

P [tX2 X- + (_L)2 COSh 11X 12 (. t2 tanh Usi J

Integrate equation 12.491 to find the deflection C2 , a second integration constant to be found from

the boundary condition.
1.

V PPr [ bc2  x 3 1] 3Px

I 2 2 6] 4bhG
[ tcl 3 (_) Ux] +C[2,50]

E+y2 A -2 suuh-•-- - -+ ta)3 i Ecosh-C)2 +:c 2

Expressing that the deflection is zero at the fixed end, leads to C 2,
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C2 P '•) tanh U 12.511

2EMy
2

and finally to v,

4bhG 2Ely2

+ (I._I inh (_ý)2 _ r) tanh ffcosh-~ ax~ \ + 1ah 2.521

Equating x to t and including the current value for the moment of inertia I of an adherend, the end

deflection 8 of the bonded cantilever beam is obtained. This expression is also the midpoint de-

flection of a beam in three-point-bending,

-2PZ0 + 3PN - 6Pt3  1 + sinh__ -_.1tanhUcoshU+ tanha]

Ebb3  4bh-G Ebh3"YL 2  3 a 3

= 3- + EI(A)2 + 2 tanh ]
2Ebh~' Y G f, 72 a i

The factor in front of the parenthesis is exactly the bending term of the deflection of an isotropic

cantilever beam of thickness 2h, loaded at the end by a force P. Expression 12.531 will be slightly

modified to have a premultiplier equalling the bending deflection of a cantilever of thickness (2h

+ 2t), so that the term in parenthesis will approach one, if the shear term is not considered, in the

case of perfect adhesion,

S - -(I + t/h)3 [4(l 3+ E f(h2 12+ 1 tah 12.54]
2Eb(h + I) + 2 Y2 - ii.

Equation [2.54] can be rewritten as,

0- W 1p2.551
2Eb(h + t)

with,

S(1+ t/h)3 4 1 - I + 3E"(I) + (L2 .2 tanh U 12.561
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The factor [1 can be seen as a dimensionless end deflection for a bonded cantilever beam,

loaded at the end by a force P. The dependence of this [1 on the adhesive properties and the sig-

nificance of each term in the square brackets will be discussed in the next section.

2.4.2 Analysis of the End Deflection Expression

In the previous section, an expression was obtained for the end deflection of a bonded

cantilever beam subjected to an endload. Each of the three terms in the square brackets in equation

12.54] or in the definition of [1 in 12.56] has a distinct physical meaning. The first term is related to

the bending of the adherends and is dependent only on geometiy. The second is the shear deflection

term, and also an adherend- and geometry-related term which is, at most, except for very short

beams, a few percent of the bending term. The third and last term is to our purpose the most im-

portant because it contains the adhesive properties through parameter 4. The magnitude of this

term ranges from almost zero for very stiff adhesives to about 4 times the bending term for very

deformable adhesives,

1 [t-(l+t/h)3[4(1 -L) + 3E2 (h)2 + _L12 (1 _ tanh )] 12.561

The variation of coefficient [ as a function of the adhesive deformability is shown in Figures

15 and 16 as a function of adhesive thickness and length of the cantilever. A value of 2.6 is taken

for E/G, assuming a Poisson coefficient of 0.3 foi the adherends.
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As for the nmaximnum sheair stress curves, three zones can be distinguished. For very stiffT ad-

hesives, a small zone will exist in which the beam deforms like an isotropic beam which could be

referred to as the 'perfect adhesion' zone. Here, I0 is approximately one, if the shear term is not

taken into account. On the other side of the gi.'ph, for very defornable adhesives, the deflection

* of two separate beamns of thickness h, ea-ch loaded by a force P/2, is retrieved. For an adhesive

thickness of zero, the value of j3would be 4 in this zone, because the stiffness of half a beam is an
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eighth of the stiffness of the total beam and the load is half the load that is acting on the total beam.

That the asymptotic values for 0 in the graphs are higher than 4 is due to the fact that the isotropic

beam is referred to having a thickness 2(h + t) instead of 2h.

These two zones are connected by a high sensitivity zone that is approximately two decades

wide. In this middle zone the end deflection is extremely sensitive to the adhesive's shear modulus.

Again, the curves can be shifted by changing the geometry of the beam, so that, if a rough estimate

of G. is available, a specimen can be 'tailored' to obtain a deflection in the steep part of 1he cur've.

However, as will be discussed below, when it comes to optimizing the specimen for deflection

rmeasurements, this shifting doesn't work as well as it did for the shear strain measurements in the

adhesii e layer itself.

2.4.3 Experimenta! Aspects

The pros and cons of using measurements of the end deflection to obtain the adhesive's shear

modulus --r ix'us-e --- *.;- -4 -t-Ion.

To give an idea of which adhesive property interval will be of inte,,est for testing purposes,

1'able I gives the E/G, ratios for some cornmon adhesives. Generally the adhesives are situated in

the 'stitl' adhesive zone of Figure 33. Because adhesive layers are usually thin, on the order of 0.005

inch (1.27 mea), t/h ratio, ranging from 1/20 to 1/50 are con'.mon values, meaning that for 'fairly

long' beams (1/h ranging from 10 to 20) the beam will be situated in a low sensitivity part of the

curve. At most 5 to 10 percent of the total deflection can be related to the adhesive property.
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Table I. Common E/Ga values for aluminum adherends.

Adhesive G. ksi (MPa) EIG,

Epoxy resins 80-180 55-125
(550-1350)

Polyimides 170 60
(1200)

Phenoxy resins 115-145 70-90
(800-1000)

Rubber polymers* 0.1-1 3 104 - 3.l0s
(1-7)

bonded to steel

The sensitivity can be increased in two ways, by making the beam shorter or the adhesive

lnyer thic-ker both -%f wh;:-h g-an qprn,,uiv P•y el•nog- the vnliditv nf the imilftrlvina fhe.niru Fnr a

thick (t/h > 1/5) and stiff adhesive layer, the assumption of pure shear in the adhesive should be

questioned; for very short beams (1/h 8 or 10), the Euler-Bernoulli bean theory is no longer ap-

propriate.

Assuming that an optimized cantilever has an adhesive-adherend thickness ratio of 0.1, and

a length to thickness of adherend ratio of 10, the absolute value of the thickness of the adhesive

layer becomes important. For a thickness 2t of the adhesive layer of 0.005 inch (0.127 mm), the

total thickness of the cantilever woudd be 0.055 inch (1.40 mm) and its length 0.25 inch (6.35 run),

but these are unrealistic specimen dimensions (Figure 17a). Better dimensions are obtained for an

adhesive thickness of 0.04 inch (1.016 nun) (Figure 17b), but still the specimen is small. Therefore,

a thick adhesive layer, in absolute value, not in ratio, is crucial to obtain tesi specimens of reason-

able dimensions and good sensitivity.
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a) 2t=0.005" b) 2t=0.04"
(0.12 7mm) (1.016mm)

Figure 17. Deperidence or the dimensions of a teat beam on the absolute value of the thickness of the

adhesive layer (scale I1/).

No single formula is available to obtain the shear modulus G. once a meaturement of the

deflection is made and all geometrical parameters are known. Note that especially the thickness

Ol L' thr iL,~lv~.O ; ULjolJ IAAVOý VW~ ZIAXYJ~ 4 MI~L~tA4 L& Q9 U.AW.,). A1AA, -A ý .'.' . ...."*'7~*

to Go. The first is to solve equation (2.54) numerically for U and then calculate G. using the defi-

nition of U,

S= Pt 3 (1 + t/h)3

2EB(h + 1)

[4(1-i.) + ~4 anii )]12.541
, + 3E (_h_2 +

EIGa (IU + 12.571
E J h(1 + 2teh)J

The second and probably the better way, zirnce it gives a visual idea of accuracy, is a graphical

solution for G.. From the measured value of 5, P can be calculated. The corresponding pact of the

(EIG. ) curve can be magnified for higher accuracy and E/G, caw be read from the graph (Figure

18).
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experimental uncertainty

Erx 1 exp - PA3/2Eb(h+t)

0o I-

E E/Go

0 Figure 18. Graphical solution for Ga from a defection measurement

The deflection. tt can also b, used to evaluate different ypes of surface tr•atment* or other0_-
factors that influence the state of adhesives. Therefore a coefficient of adhesion is introduced. The

deflection of a bonded beam ij known to be somewhere between the deflection of a monolithic

beam of height 2(h + 2) loaded by a force P, and the deflect;on of a single adherend of height h

0 loaded by half that force. T'hese deflections, in their nondimensional form, are shown in Figure 19.

The nondimensional end deflection of the bonded cantilever, •, can be seen as the coefficient of

-Adh1-- .--- r 0 -o--- t . .. kI-.... ....... --- -11 . t. - 41
dUIU MU•1UI. JA'VI IJ 8VU *l ILVU LS411llLp &Ut, VV. A%%AJAl•. I••Lr Vka" L , "A" k Jt•J+,A r W IA LL" ", &J~(•I a, ,• Xe,&.ý *o U •aaVe.,-e.ta

* beam, thus approaching perfect adhesion, iligh values of 10, on the other hand, mean poor adhe-

sion since the adhrends are less restrained in their individual deformation by the presence of the

adhesive layer.
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Figure 19. Coefficient of adhetion

Tests to measure P are as easy to perform as the single lap tests that are usually used for

q'iality control. Moreover, this cantilever beam test, provided that it's equally ioaded at both

adherends, has the advantage over the single lap test in that the adhesive layer really acts in a state

of pul'. sLar.

2.5 Zondu:.ons

For the adhesively bonded cantilever beam, loaded at the free end, the shema stress in the ad-

hesive laypr 13 not diiertly related to the externally applied shear force, but to the relative displace.

ments of the adherends on each side of the adhesive layer. The shear stress in the adhesive will

always be zero a'. the fixed end, and for most beams will reach a constant value at some distance

away from that end. The mnagnitudc of this shear stress is dependent only on the load and the ge-

ometry of the beamn for a range of adhesives that wLre called 'stiff" adhesives. This range can be
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expanded by making the beam longer and the adhesive layer thinner, thus also approaching a state

of constant shear for the wholt length of the beam.

For a large part of the beam an almost ideal state of pure and constant shear, thc magnitude

of which can be calculated from geometry and loading alone, is then obtained. An accurate meas-

urement of the shear strain in the adhesive layer, perhaps with modem optical devices, will easily

allow the determination of the adhesive's shear modulus for the assumption of linear elastic adhe-

sive behavior.

The use of deflection measurements to obtain adhesive properties seems less promnising, al-

though the test would be easy to perform. Short beams and their adhesive layers are necessary to

obtain some sensitivity of the deflection to the adhesive's shear modulus, thus restraining the basic

assumptions of the underlying theory and making the shear stress highly dependent on position

along the length of the beam. A graphical method was presented to obtain the shear modulus di-

rec:tlv from the measurement of the end deflection of the beam.
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3.0 STRESS-FUNCTION SOLUTION

3.1 Introduction

A stress-function approach to a solution for the stress-state in a bonded cantilever beam,

ioaded at the end, is taken in this chapter. The solution of the previous chapter will be referred to

as the strength-of-materials solution. To the three basic assumptions of this strength-of-materials

solution -- Euler-Bemouilli beam theory, linear elastic material behavior, and pure shear in the

adhesive layer -- a fourth is added. It is assumed that the shear stress in the adhesive layer is con-

stant along the length of the beam.

From the strength-of-materials solution, r, i known to vary along the leng1h of the beam,

going from zero at the fixed end to usuly a stable value some distance away. It was also seen that

the higher the joint parameter U, the more a state of constant shear for the whole beam is approx-

imated, a high i meaning relatively long beamis and thin adhesive layers. For those highi ii beams,

the constant shear assumption may be a reasonable approximation. The consequences of this

constant shear assumption are studied in the present chapter.

According to the basic assumption, polynomial stress functions will be proposed for the three

layers of the beam. The constants in thee stress functions are then to be evaluated using the

boundary conditions. Diflirentiation of the stress-functions twice leads to the stresses in the beam;

strains ae found using Ilooke's law and displacements by integration of the strain expressions.

Finally a comparison of both solutions will be made.

A slightly different notation will be used for this stress-function analysis: h will now bc half

the thickness of the total beam, including the adhesive layer, whereas h was the thickness of an

adherend only in the strength of materials solution (Figure 20). This change was made not to
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confuse the teader, but to obtain the simplest possible expressions in both solution 'he cantilever

is symmetric with respect to the x-axis, which has its origin at the fixed end. Sub- and superscripts

1, 0 and 2 on stress, strain, and displacement symbols, will refer respectively to the lower adherend,

the adhesive layer and the upper adherend respectively (Figure 21). G, is the adhesive's shear

modulus; the material properties of the adherends carry no subscripts.

2(h+t) 2t 2h

STRENGTH OF STRESS

SOLUTION SOLUTION

Figurc 20. Definition or h r both methodw.
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Figure 21. Geometry of the bonded beam for the stress function solution.

3.2 Stress State in the Beam 
U

3.2.1 Stress Function Analysis (13)

In an elasticity problem, in this case a two-dimensional plane stresu problem, three families

of equations need to be solved simultaneously subject to the boundary conditions. These are the
eq * 3. 4 U...ýl.I. . .. ý.q - f; - a ft%ý ,.A m,• ~ ii t = at~ rnn u an rl t h e• rn~ qfi h zt~ v e . F.ctn zAt n n~g .

The stresses existing or. a small element of dimension dx and dy in a state of plane stress is

shown in Figure 22, All stresses are shown in their positive direction. Assuming body forces are

zero, the equilibrium equations for this stress state are,
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c-y+ 2 dy

Figure 22. Stresses in a two-dimsiomal problem.

-- X + -- =3.1Ox O

'Oly + 0 13.21
ay Ox

In order to solve these equations, subject to boundary conditions, the elastic deformation of the

body needs to be considered. If u and v arc the displacenent components of some part in the body

in the x and y directions, respectively, then the three strain components for two dimensional

problems are given by,

C= au 13.3a]
Ox

3V [3.3b]
Oy
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ayu+ o+ &3.3c]

These three equations can be combined into one which the strain components must obey and

which is called the compatibility equation,

+ x2 + 02YXy
02:z+ 13.41

Using Hooke's law,

E (ax 13.5a]

Cy= -- (cy - [x) 13.5b1

= = 2(1 + )) [3.5c]
Gy E

and assuming a plane stress state, the compatibility equation can be expressed in terms of the stress

components, resulting in the equation

+ L ++ ci,] = 0 13.61

To frid the stresses, equations [3.11, 13.2j and [3.6] must be solved taking into account the

boundary conditions. All this can be done numerically, or analytically by introducing the so-called

stress-function, p, defined as:

Ox = 2 [3.7a]
ay 2
0•2

ay = .• 13.7b]Ox2

a2

_- 02( 13.7c1
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The equilibrium equation [3.11 and [3.2] are then satisfied by defuintion, so that the stress function

only needs to fulfill the compatibility condition, leading to,

k• + 2 04 + 0-9 - 0 13.81 :
x4 -x2y2 a4 [3.8

Ox 4,xy 2.

-QAs stated by Timoshenko and Goodier (13), solutions of 13.8] in the form of polynomxials are

of interest in the case of long' rectangular beams, "long* meaning a length-to-stress ratio of 10 or

more. How to choose a 'suitable' polynomial is the subject of the next section.

3.2.2 Choice of the Stress Function Considering the Basic Asswnptions

Both adherends and adhesives must be linear elastic; otherwise the stress function method,

which explicitly uses Hooke's law, would not be valid. Constant and pure shear is assumed in the

adhesive layer. To obtain a state of pure shear, the adhesive layer must be thin and deforinable as

cormpared to the adheterids. The normal stresses, ou, in the adherends are, according to the Euier-

Bernoulli beam theory, assumed to vary linearly over the adlherend's thicknesses. Also, in the

Euler-Bernoulli beam theory there are no transverse normal stresses a.

* Three different stress functions, (Pl, 92 and TP, for each layer of the beam, will be 'tailored'

to the aforementioned basic assumptions. The coefficients of the terms in the resulting polynomials

wii have to be found using the boundary conditions on outer suriLces and adherend-adhesive

interfaces.

The stress function for the adhesive layer, gPo, is the easiest to obtain. Because of the constant

and pure shear assumption, and the definition of the stress function in equation [3.71, gPo will con-
rain only one term and is given as,

(po = eoxy 13.91

Lower order terms are useless since they will always be differentiated away. The shear stress in the

adhesive layer is then given by,
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- axay - 13.101

In simple beam theory, the normal stress a. is linearly dependent on the applied moment at a cer-

tain point along the longitudinal axis. Because the moment in our cantilever beam is a linear

function of x, a, will also be linearly dependent on x. Moreover, a, will be linear in y. Thus, the

proper functional form of Y. is,

ol = (rlx + C-)(¢ + 44) 13111

Integrating equation 13.11] twice with respect to y leads to the general form of the stress function

in the adherends,

(p = C xy2 + d xy 3 + e xy + f y2 + g y [3.12]

where c, d, e, f, and g are constants to be determined.

No quadratic or higher order terms in x are present because of the condition OY = 0. Con-

stant terms or terms linear in x or y only are omitted because they do not lead to stresses.

For the lower and upper adherend and for the adhesive layer, respectively, the following stress

functions will be used:

I 1  xY2 + dxy3 + exY + Y2 + glY3  13.13a]

caxy 2 + d2xy3 + e2xy + + gy 3  13.13b]

%po exy 13.13c]

Using the definition of the stress function, the stresses in the beam are given by,

01 = 2"cx + 6dlxy + 2f, + 6gly 13.14u]

2 = 2ctx + 6d2xy + 2f2 + 6ggy 13.14b]

T - 2cry - 3dy _ el 13.14c]
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2 -2vy 3d•'y - e2 [3.14d)

CV, e- [3.14e]

where cq, d,, eJ, and g, are the constants to be evaluated using the boundary conditions.

3,2.3 Boundary Conditions

In this section boundary conditions on stresses and displacements wil' be expressed in terms

* of the stress function constants leading to a set of linear algebraic equations for which only the re-

sults will be given.

The shear stresses along the upper and lower outer surfaces of the adherends are zero:

y h - = 0 2c 1,- 3d1h2 -e 1 = 0 [3.151

-h--T 2 = 0 - 2c 2h -3d 2h-2 c2  0 13.16J

Shear stresses at both side of the adherend-adhesive interface must be equal:

ytt - x x1 -I e = 2ct + 3d,:2 + el1317

- T o = -( 2- = --. e0  -2c 2t + 3d 2t 2 + e2 138

Normal stresses on 'the free ends of the adherends are zero for all values of y:

x = t -+ =0 --* 2c•t + 6d1ly + 2fA + 6gly =0

f "- = t 13.191

g -= dt 13.201

a2 =0 - 2c 2 t + 6d 2 1y + 2f2 + 6g 2,y 0
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12 = -13.21

92 = d2t [3.221

The integral of the shear stresses over the thickness of the beam is equal to the externally applied

shear force per unit width of the beam, for each value of x. In the cast of the cantilever loaded at

the end, this shear force is constant and equal to P. Because of the symmetry of the beam about

its mid-surface, the integral carn be split into two parts, one for the upper and one for the lower half,

each equalling half of the applied load.

I t 2 d I0 C Phsz -ttY + -Y 2b

te0 + c1QO2 ~12 ) + d,9 (h e-t) + e, (h -) [ . 3.231

K.Lte0 + c2(2 - h2) + d2(h3 - I') + 2(h -_iP [3.24]2b

Equations j3.15j to [3.24] now provide ten equations in the eleven unknown constants. Those

ten conditions are all stress-related, none of them containing material properties. The last condition

will have to express compatibility of displacements on each side of the adhesive layer. The relative

displacements of opposite points on the adhesive-adherend interfaces must be related to the shear

strain in the adhesive layer (Figure 23). Obtaining this condition will require elaborate calculations.

and it will even be proved to be impossible to satisfy such a continuity condition for the whole

length of the beam due to the constant shear stress assumption. By definition, tl.e engineering shear

strain in the adhesive layer yu,, is given by,

48



fria

II'

* I

U'

•'---• ]P2a

*Figure 23. Deformation of an element of adhesive in the adhesive layer.

=x 1+ 02 13.251

or, assuming small angles,

0 -- -u+rV 2 + ±AX _- V2o = Au + [3.265

where Au is the horizontal component of the relative displacement of two opposing points on either

side of the adhesive layer, and vz is the vextical displacement of the interface point on the upper

adherend.
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Au u,( ) -u2( -t) 13.271

The compatibility condition is then,

-VO _U+ _ý213.281

Using the expressions for the stresses in the adherends and equations 13.141, together with Hooke's

law and considering that there are no vertical normal stresses, the displacement fields in the

adherends can be obtained by integration of the normal strains. Equations 13.211 and [3.221 are also

used.

V2 ey 2 dy [2 f c2 (x -t) + 6d2y (x - f)Idy .9E 2 13.29]
S(2c 2y + 3d 2y

2)(x - h) 4 V2(x)

Similarly,

V I E (2cly + 3dy2)(x - t) + V1(x) 13.30)

The horizontal displacements are obtained by integration of c,

U1 = C'dx = --'-(qx 2 + 3dix 2y - 2c1*x - 6dtfxy) + UI(y) 13.311

U2 = Jr. aX = -- jC 2X- + a-Pxa2X Y - - 6d2CLXY) +- U2VY)

UI(y), Uj(y), V1 (x) and V2(x) are to be evaluated using compatibility equations [3.331 within each

adherend, together with the boundary condition on the displacements (i = 1 or 2).

- I I XG 13.331

Substitution of the displacement expressions in this equation results, for the lower adhcrcnd, in,

F(x) + Gty) = e13.341
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where

F(x) dV.x) + I (3dx - 6d, UL) k, 13.351

G(Y) = dU ) L +2c 1y + 3d(2y + 3dly.) (3,361

dy G G E

The right-hand side of equation 13.341 is a constant and, because the sunm of the independent

functions F(x) and G(x) is a constant, each function must be a constant also. Equations [3.351 and

13.361 are then integrated to fred U1(y) and VI(x), in which expressions four integration constants,

Ki to K4, remain to be evaluated. Replacing U1(y) and V1(x) in equation 13.301 and 13.311 results

in the following displacements,

1 (clx2 +3djx 2y- 2c-x 6d xy) + ky + k4+

3 [3.371

E-" - G

V21 3

VI - ---- (2cty + 3dty2)(x- ) + kjx + k3 - -- (dix - 3d, c) 13.381

Usually, for isotropic beams, boundary conditions for displacements are evaluated at the

midsurface of the beam or, for simple beading, the neutral axis, which position is an unknown in

the case of the bonded cantilever. What is known is that the neutral surface must lie somewhere

between the inudsurface of each adherend and the midsurface of the bonded beam. In order to re-

trieve the deflection of an isotropic beam in the perfect adhesion case, the boundary conditio'ns are

expressed for x and y equal to zero. This is an artificial choice since the origin is no part of the

adherends if an adhesive layer is present, but leading to acceptable results.

The boundary conditions are that threm is no vertical or horizontal displacement at the origin

and that a vertical element should stay vertical after deformation. The latter condition implies that

the derivative of the horizontal displacement with respect to y must be zero ((13), pp. 41-46).
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U= 0
x- 0

at -- I v 0 13.391
y- 0 Ou--l= 0

Iau1

The resulting integration constants are,

k2  =k=k 4 =o and k,= e 13.401

which when substituted in equations [3.37J and (3.381 give the following displacements in the lower

adherend,

u1 = .L(clx 2 + 3djx 2Y - 2c1  - 6d1fxy) + V.. .y2 + dly3) _--*y2 d 3.411

V -3.(2cy + 3dly2)(x - 1) - e, - djx - 3d, x) 13.421

Similarly for the upper adherend,

t'2 .. (c2 x2 + 3d2x2y - 2c2tx - 6d2txy) + - 2 + d2 3)
C2 2 d2 3 E 13.431

--y -- Ty

2 1_ l~2 3-,x 3.4

v, -= 42cv + 3d~v 2(x - ,) - -4_x _ -AdX - 3dU) 13.441
L . U r- ...

Using these displacements, the right-hand side of the compatibility condition [3.28] will be an ex-

pression containing terms in x and x2 as well as constants.

U2 (Y--- uy (-12 = 1) m- Ax, x1, X2) 13.451
2t ax

If compatibility is satisfied everywhere along the length, this function f should equal y•, for

each value of x, an impossible result because of the assumption of constant shear stress (and hence

constant shear strain) in the adhesive layer. 'ltus, the price paid for the constant shear stress as-

sumption is that compatibility of displacements through the adhesive thickness will not be satisfied
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everywhere. In fact the condition can only be satisfied in one point, or at most two, since equation

13.46J is a quadratic one.

0

](x, J, x2)_ 0-_ 13.461SGa

* From the strength-of-materias solution the shear stress is known to be constant, in most

case=, for a part of the beam near the loaded end. Therefore the one point, for which the condition

will be assumed to be satisfied, will be the end point, x = Z, Equation [3.46] expressed at x = t,

* will then provide the eleventh and last equation in the eleven unknown stress-function constants.

2 3
, t-c'- 3t 2 t) + ct' + ,dt3-'-d -i-

E E G i

- - 3d2 2 t)2 + M2(t - d2t [3.471

E E G

Solulivn of the set of linear algebraic equations results in,

dP = d2 N N 13.481

A C I� = 2 tI 1 [1 -L-i-(I - o2)] [3.49]

2bhI -o 3 L Dj

g21 Pt N 13.50]
* Ebh3 D

_ P 1F 1 .2N 3 3 PN
[h 21 2 -bh

N
_ I •- 2N (1 -0) - P 13.521

bh 1 + D 2 bb D

in which,

3 13.53J
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N- i I + 2. -- A -I 0l]o) "L (2 - (0) + v 2[)I[]2 13.541

D 2(l 3 ) + .l-CO))4
D f - 13.551

EF eji (i)) (1- co + -a2 3 + 2v[A]l0)2N1 _-)
G LtJ/ L

To each term in both N and D, a physical meaning can be attached. The first term is related

to bending deformation of the adherends, the second to the presence of the adhesive layer, the third

to the shear deformation of the adherends, and the last to Poisson effects. In the case of relatively

stiff adhesives, such as epoxies, there is roughly an order-of-magnitude-difference between any two

consecutive term3, decreasing from the bending to the Poisson term, This difference is for beams

that ore not too long.

WY .... *... .. . k..... 1 44,....A o! -.... a.
4 

;e~fr-m e ; a•hrhn~d Atnd

adhesive can be obtained by simple substitution in the appropriate aforementioned expressions.

Note again that this solution is an approximate solution, satisfying all equilibrium conditions,

satisfying compatibility within each layer separately, but satisfying compatibility of displacements

on both sides of the adhesive layer in only one point. Increa.ing the order of the polynomial for
the stress function, y., ould a-m-- ------ -- ------ !--------L - ---- •L-• . ....... 1A

LUISUII lM V1 UQJ MOLI3 Aii 1 UkW WaalI-MVU nu "&--

immediately imply that the dependence of the norminal stresses on x in the adherends would no

longer be linear, thus requiring higher order polynomials for the adherend's stress functions. The

only result would be for the analysis to become more laborious and expressing the through-the-

adhesive-compatibility would lead to a higher order equation than quadratic Li x. These results

would mean that compatibility could never bj completely satisfied using polynomial stress func-

tions.
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3.2.4 Shear Stress ih thd Adhesive Layer

Because the shear stress in the adhesive equals minus e., 0, is found imuncdiatcly to be,

To [ 2 _N 3] + 3P (01- ) _L3.6

" bh 1+ D + ( 2bh D 13.561

In section 4 of this chapter, the shear stress given by equation [3.561 will be compared to the

maximum shear stress in the adhesive layer a. obtained in the strength-of-materials solution. It

will also be determined whether expression 13.561 can be related to the simple cases of perfect ad-

hesion and no adhesion.

Hypothetically, the case of perfect adhesion is encountered when the thickness of the adhesive

layer, or its dimensionless form, oi, approaches zero, as shown below.

lim -N + 0 + 0 + 0. 1_ 13.57]
6)--+0 D 2 + 0 + 0 + 0 2

limra 0  P ( I - 1)+ 3P 3P 13.581
bh0Xy - ýb~h 4bh

Obviously, after taking the necessary limits, the maximum shear stress at the inidsuiface of an

ond term in N and D the dominant one. Taking the double limit for both G, and (o going to zero,

-0 is logically found to be vanishing.

lim .N liur G f = 2 13.591
G. 0o D G.._00 -f.E [ ]2 ( )4

0 P [1 3P
lrn '10 = -'hl -4 + x 2 = 0 13.601

b. -02b
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3.3 Deflection of the Cantilever

Replacing the stress function constants by their solution in equations 13.421 or 13.441 results

in the wanted deflection equation. If trasverse effects are ignored, each point of the beam for a

certain x moves downward the same amount.

V - - -- x -dt-(X3E - 362 13.611 --

Px 1 [-- -- ( 1 -23) +3 Px N P Nx3 _.3 r2) 13.62]

Gbh 1D 2GM D 2Ebh' D

The end deflection, 8, is then,

= Pe3  N + P 1 I 2N I - a)3 + 3N] [3.63]
Ebh 3 D -Gd- 1 - 0 12 L I E2 2D-

Like for the strength-of-materials solution, graphs can be made of 8 as a function of the adhesives

defornability for various adhesive thicknesses and bear. lengths. Because the strength of materials

approach is obviously the more acceptable solution, only one case will be examined for comparison

in the next section.

6 can also be written as a bending deflection factor multiplied by a dimensionless coefficient,

3, as in the earber solution.

8 A pt, 3 13.641
2Ebh3

M + 1L2E [A]2 I 2N - o 3 +3N 13.65]D G --- CT w,o D (-2 2DO-•

3.4 Comparison of the Two Solutions

A graphical comparison of the dependence cn the adhesive's deformability of the shear stress

in the adhesive and the end deflection of the beam will be made for a beam of a given geometry.

Expressed in the notations of this chapter, its characteristics will be: t/h - 0.1 and 11h - 10.
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In order to compare equivalent quantities, the dimensionless shear stresses r and the

dimensionless end deflections j3 have to be expres••d for an identical definition of h. In Chapter

2, the maximum shear stress in the adhesive layer, -cm, and the end deflection, 8, were found to

be,

ma P I 1 12.411
Sbh#2 (I + 2t/h) I cosh H

8 Pt 3 12.56

2Ebh3(1 + 1/h)3  12.56]

In these expressions, all parameters containing h need to be transformed to the definition of

h in this chapter, which are half the thickness of the total beam. This process is cumbersome and

not too relevant and leads to,

max P13.661
bh

and

2 * - 3  13.6712Ebbh

In equations 13.651 and 13.67], t* and P3 are the transformed dimensionless maximum shear stress

in the adhesive and the transformed dimensionless end deflection of the beam. They are compared,

in Figures 24 and 25, to their equivalents, • and ý, as obtained in the stress function solution.

(I -o (I - D' + [3.561"x, bh l+ 1o D 'D

~ •y i- 13.681bh

and

Pt P3.69ý
2Ebh3
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Figure 24. Comparison of the shear strews in the adhesive for the two solutions.
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Ifigure 7-5. Comeis.-an of the en4defete of the berm. for both sahutium.

Generally, both solutions show good agreement, ý.,ý:lally for the end deflection values in

Figure 25. In each figure, identical asymptotic values are reached and major changes occur for the

same interval of adhesive deformability E/G.. To obtain an estiraaw of the end deflection or the

maximum shear stra7m in the adhesive layer of a bonded cantilever, 6oth solutions can be used.

When it comes to using these quantities to actually calculate the adhesive shear maodulus, slight

changes in shear stress or deflection can lead to huge differences in adhesive properf:es. Therefore,

the solution based on the less restraining assumption- the strength-of-materials solution, in other

words - should be preferred over the other.

Other geometries such as those used for this comparison lead to similar graphs. They will

be only somewhat shifted along the horizontal axis, like the curves presented ii, Chapter 2.

59



3.5 Condusions

In this chapter, a stress function solution, based on a hypothetical constant shear state in the

adhesive layer, was pirsented. That restraining assumption led to incomplete satisfaction of the

compatibility condition on displacements on both sides of the adhesive layer. Therefore this sol-

ution should be handled with some caution.

When compared to the strength-of-materials solution, both solutions showed good general

agreement. The differences that were noted, however, proved too important to enable use of the

stress function solution to calculate the adhesives' shear modulus. The strength-of-materials sol-

ution is to be preferred over the stress-function solution because of its less restraining assumptions.

60



4.0 NUMERICAL EVALUATION OF THE STRENGTH OF MATERIALS

SOLUTION

4.1 Introduction

The strength of materials solution as presented in Chapter 2 will be, evaluated using the finite

element code VISTA. The elements used are 8-node isoparametric quadrilateral elements. Hor-

izontally the cantilever is subdivided into 16 elements with refinements to xards both the loaded and

the fixed ends; vertically the adherends and adhesive layer each contain 4 elements (Figre 26).

*I

S- "' - - -- r-- -

Figure 26. Discretization of the beam.
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For a number of geometries the shear stress distribution in the adhesive layer and the end

deflection are analyzed, and the results are summarized in Table 2. Starting from a "standard beam'

(case 3 in the table) for tach run one of the beam characteristics, either the slenderness of the beam,

the thickncss of the adhesive layer, or the stiffness of the adhesive, was changed.

4.2 Shear Stress in the Adhesive Layer (Table 2)

Three features of the shear stress distribution in the adhesive layer will be discussed: its var-

iation along the length and over the thickness of the adhesive layer, and its dependence on ge-

oractrical and adhesive parameters.

For cases 1, 3 and 4 in Table 2, the shear stress in the middle of the adhesive layer as obtained

using finite elements is compared to the analytical solution in Figure 27. In this figure, two features

catch the eye: first and most important, the excellent agreement between numerical and theoretical

values; and, second that something happens to the numerical shear stress a* the loaded end of the

bemm_. The reason for this numerical instability is the very high stress gradient at the extreme end

of the adhesive layer. Since the outer surface of the adhesive layer is free of stresses, the shear stress

in the adhesive layer should drop 'instantly,' meaning over a very short distance, from its maximum

value to zero, for x is equal to C This end effect cmanot be included in the strength-of-materials

solution and can only be accurately evaluated with a highly refined element mesh in the neighbor-

hood of the singularity.
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Figure 27. Compar2.n of numerically and theoretically obtained shear stress.

One of the basic assumptions of the stu: ngth-of-matcials solution was that the. adhesive nas

in a state of pure shear; in other words that the shear stress does not vary over the adhesive t•ick-

ness. This assumption is numerically confirmed in Figure 28. In this figure, the 'variation" of the

shear stress over the adhesive thickness for various positions along the length of the bemn is pic-

tured, showing only a very slight change in magnitude near the loaded end.
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Figure 28. Variation or shear streucs ovccr the thickne-s of the adhesive layer for various positions

along the x-a.'is.
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A limited numeiical parametric study of the maximum shear stress in the adhesive layer is also

conducted. Because of the numerical problem near the end of the beam, the values •no -fin.el., as

they ame given in Table 2, are obtained by extrapolation of the undisturbed shear stress curves.

Divided by Pibh, these maximum shear stresses can be compared to those obtained by the the-

oretical solution, for example by superposing them on Figure 31, resulting in Figure 29. Again, very

good agreement between numerical and theoretical values is noted.

1rMOX/.JL

0.4
--FINITE ELEMENT -~

0.26 ,hRESULTS

0 ..--

10 V2 103 104- IO 106 E/Ga

Fgure 29. Comparion uo numerically and thriWltcaly obtained oauximum sh•ear stress values in the

aihc~• hlyer.

It can thus be concluded that the sheaz streso distribution in the adhesive layer can accurately

be described by its strength-of-maneriads solution.
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4.3 Effect of the Loading Mode

! In Chapter 2, the load was assumed to be applied half at the upper adherend, half at the

lower, for reasons of symmetry and to avoid introducing additional normal stresses in the adhesive

layer- When the beam is loaded so that it moves downwards, compressive stresses will evelop in

the adhesive layer if the load is applied at the upper adherend, and will develop in te-r tensile stresses

if the load is applied at the lower adherend (Figure 30).

I" IP
a) COMPRESSIVE ZONE

A

Sb) • TENSILE ZONE

c)P

'1 TP/2

4IP/2

Figure 30. Effect of loading mode.

The stresses in the adhesive layer for a cantilever loaded at the lower adhercnd (Figure 30b)

axe numerica~ly obtained and compared to the stres.es for a beam equally loaded at the upper and

lower adherend (Figure 31). The shear stress distributions for both cases are perfectly equal, whereas

large normal stresses occur in the case of one-sided loading, compared to no normal stresses at all
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for the other. This normal stress distribution is very similar to the one obtained near the ends of

the overlap in lap joints, where these large tensile stresses are called peel stresses.

Because of the linearity assumption, the normal stresses in Figure 31 change signs only when

the cantilever is loaded at the upper adherend and large compressive stresses are induced. As a

matter of fact, the stresses as shown in Figure 31 are, those that are obtained, except for the sign

of the normal stresses Y,, at the supported ends of a beam in three-point bending. In the middle

of such a beam, where the load is applied, an additional compressive zone exists.

TjY MPo
(r, a (psi)

300-
E/Ga-260 2.0
I -2.5" (63.5 mm)

haO.25" (6.35mm)
t :0.025" (0.635mm) TxY

,~U-i- 'fA^i 3k 1AAW.UJI

200-

S1.0

100/

0.5

0vNPS0.2 .4.6. 1.0 x

Figure 31. Shear stresses and normal vertical stresseA in the adhesive layer for one-sided loading.
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4.4 Deflection of the Beam

The end deflections obtained by finite element analysis are compared to the theoretical values

in Table 2 and Figure 32. Rather large differences are hereby noted, the theoretically obtained de-

flections being systematically 8 to 10 percent larger than the numerical ones. The reason the nu-

merically obtained deflections are smaller is that they are computed for a plane strain assumption

whereas Euler-Bernouilli beam theory is based on a plane stress situation, an option which is not

provided in vista. A plane strain situation is found in bending of plates where transversal elfects

increase the bei.aing stiffness by a factor 1/1-v" (13, pp. 288-290). For metals this increase means

that the bending stiffness in the case of plane strain will be about 10 percent larger than for a plane

stress case, which increase accounts for the 10 percent difference that was noticed between numer-

ical and theoretical values.

6-

5 t/h=I/l0
1/h x 10

4 a FINITE ELEMENT RESULTS

3

21-I P Eb(h~t)
L_ _0 ---- - -- - - - -

1 10 10 I 10" I0, 10 160 E/G 0

Figure 32. Comparison of the end deflection of the beam obtained by finite element anaJysis and by the

strength-of-materials solution.
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In Figure 33 the vertical displacements of the cantilever as obtained from finite element

analysis and from the strength-of-materials solution are shown. In Figures 34 and 35, the de-

flections are depicted for twe typical metal-adhesive combinations: steel adherends bonded by a

rubber adhesive and aluminum adherends bonded by an epoxy adhesive, respectively used in the

automotive and aerospace industries. They are compared to the deflections in the cases of 'no

adhesion' and *perfect adhesion.' It is seen that for the rubber-steel beam, because of the very

deformable adhesive layer, a very thin layer of the beam already leads to a large difference in the

case of perfect adhesion, in contrast to the epoxy-aluminum beam where a third adhesive layer is

necessaiy to obtain some sensitivity of the deflection to the presence of the adhesive layer.

Imm
6inch) 0.15

"- - - STRENGTH OF MATERIALS SOLUTION
WITHOUT SHEAR TERM

--- STRENGTH OF MATERIALS SOLUTION 4,

4- P - IOOib(445N) -.<' 0.10

E/Go =260
I= 2.5 inch (63.5rm)
h = 0.25 Inch (6.35mm)
t =0.025 inch (0.635mm) . I

2- -0.05

1101
0.2 0.4 0.6 0.8 1.0 A

Figure 33. Comparison of the deflection of the cantilever beam obtained by finite elements and by the

streigth-of-materials solution.
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5 t a0.005"(0.127mm) /OA

P-lOOlb (445N)

0.05
PERFECT ADHESION

0.2 0.4 0.6 0.8 1.0 K

Figure 34. Deflection ofa stel-rubber beam, compared to the cases of "perfect adhesion" and "no ad-

hesion": (E - 30 msi (207 GPa), Ga - 357 psi (2.46 MPa); plane lino: theoretical

values; slashed line: finite element values).

•e
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Figure 35. Deflection of an aluminrm-epoxy beam, compared to the casrs of "perrect adhesion" and

"no adhesion"- (E - 10 msi (69 GPa), Ga - 38.5 ksi (0.265 GPa); plane lines: the-

oretical values; slashed line: finite element values).

4.5 Conclusions

From this numerical analysis three major conclusions can be drawn. The first is that the

adhesive layer behaves indeed in a state of pure shear when the beam is equally loaded at both

adherends, and that large normal stresses are induced in the adhesive layer near the loaded end when

the beam is not so loaded. Second, there is excellent agreement for the shear stress distribution in

the adhesive layer between numerical and theoretical results. And finally, although large differences
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were noted for the deflection values, the agreement between theoretical and numerical results is

fairly good considering the latter are based on a plane strain instead of a plane stress assumption.

0

0

0

0

0

0
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5.0 RECOMMENDATIONS FOR FUTURE WORK

S-1 Introduction

Some ideas axe presented in this chapter on how nonlinear elastic or viscoelastic behavior can

be ouilt into the strength-of-materials solution. Both material characteristics are in principle easily

accounted for, but lead analytically to huge problems.

Also a possible use of the bended cantilever in the field of fracture mnechanics is mentioned.

5.2 Nonlnear Adhesive Behavior

In the strength-of-materials solution of Chapter 2, adhesive behavior was introduced only in

the continuity equation 12.121. A linear elastic shear characteristic for the adhesive layeic was as-

sumned there, replacing the shear strain y,,y in the adhesive by,

txs,

The same deflection equation 12.41 and conotinuity equation [2.12J will be the starting point in

ibis section, except that the shear strain in the adhesive will be induced as some nolinear function

of the shear stress,

E - (t -x) b +2*
2 x

(it + 2et)j - 2t yy(z) - JtxQ)Adl 0 15.11

A Eh
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In exactly the same way as in Chapter 2, the differential equation will be derived for ,,: first by

dc ible differentiation of the continuity equation, then by single differentiation of the deflection

equa:ion, and finally by combining both resulting equations.

Double derivation of the continuity eqnation with respect to x,

(it + 2t + -- , 2 + = 0 15.21

, 6Derivation of the deflection equation with respect to x,

EIdv - = b L - 2t
2 2 •' [531

Elimin-.-ion of the deflection term out of equations 15.21 and 15.31 and some rearnangement

leids to the 21ciential equation in ry andy,

d2 [_!/h + 2t)2 + !P(h + 2,)

d, 4tEl Eh .i t (x) 4tEi (5.41

S1: 'Iiiis equation is ideuticad to the ore obtained fo. linear elastic behavior except t'()r the first

term wIl-.ch ccatain-.- all tic dilculty, since y, is an implicit function of x. Using some advanced

calculu3 thcorems, v~c can dcvelop that term,

d y dEy
yy ( -5.51

d2  .. [ -- t 15.61
dx W d T.,, dx j Ox dx2' aFxy x dx .

itiese cquatiot.s firially lead to a noil.iniear second order diffcrcntial equatiun with vArying cocffi..

cientb, No analytical solutions eixist for that kind of dif'crcntial equation ,o that an exact solutio

can only be obtained by numcrik.al weans.
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r b(h + 2t2- P(h + 2t)

A fi-quently Lsed nonlinear characteristic is the power i.,v, usually expressing "c, as a power func-

ti;n of y,. Considering the form of equation [5.71, the inverse relation will be used here, expressing

y, as a power finction of -,,, (equation 15.81), although it is possible, but laborious, to express the

difrrenwial equation in terms of y,,. k, f and n are material constants.

+ Ur k TL+ uJ

, k + txn Ty- 15.91Sxy

-2dYXY n --2 [.0
"2Ocx knkn - 1) 15.10

Eventually the diffirential equation fbr the shear stress in the adhesive in the case of a

power-law-material-bdiavior is obtained,

2 .Y n--2 dxY 2
(k + t --I ) + tn(n x 5

Y dx 2(X d511

+b(h +42t)- ' Q(h+ 2:)

5.3 Viscoclastic Material Behavior

The correspondence principle (15) for problems in which one of the constituent materials

shows tWne-dlependcnt behavior, and for which an analytical solution is available, is used in this

section. Since the strenght-of-materials solution is a linear one, the behavior is restric;ted to linear

visceclasticity.

"K iIn the strength-of-materialh solution for the bonded cantilever subjected to an end load, the

shear stress in the adlesive layer, the maximum shear stress and shear strain in the same layer, and
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the end deflection of the beam were respectively given by equations [2.34], [2.411,12.42) and [2.531.

These equations are rmpeated here. The adhesive behavior was contained in parameter U only

(equation [2.2i]),

P (1 -- cosh U + tanh ii sinh R) 12.341
by (h ( + 2t)

max P 1 .41

P I____ - J - ]--:- 12.421
Gb2(h+ 20L cosh Uj

-2h P-- 4!_•) 3E (__L.),2~h• + 12 (L. tanh[4 +t)• 12,S31

S 2Ebh3[1 ( 7) + 2{T) t 2 _ _a

in. which,

o'2 I+ - 1 I -- 12.201
3(1 4. 2t/h)2

'a 1[f]2 (0 + 21/h) 2  [2.211~E I h€ / LJ tlh

Accordiig to the correspondence principle, all time-dependent quantities have to be replaced

by their Laplace transforns, s being the Laplace parameter.

P--* P(s) [5.12a]

G, -- 4(s) Is..12b]

This leads - for example, for the maximum shear stress., to,

-maxP(s) 1 15.131

:ThX(s) = ga(5) -( + 2t) cosh Qa (s)
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Then, the Laplace transforms have to be written in their explicit forms, assuming some

viscoelatic model, Kelvin or Maxwell behavior for example, and some specific type of loading

(creep loading, for example) (Figure 36).

P t)

AP

Figure 36. Creep loading.

For a creep test,

A

P(s)- PS 5.14]

Finally, to return to the time domain, the inverse Laplace transform of the equation under

consideration needs to be taken, a procedure that, for the prestnt problem, is easier said than done.

5.4 Fracture Mechanics Application

The Double Cantilever Beam or DCB test is a known fracture test for adhesives (16). In this

test the adherends in a bonded cantilever are pulled away from each other so that a crack in the

adhesive layer will propagate in mode I (Figure 37).
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4 2
P

Figure 37. Double cantilever beam test.

In the case of a bonded cantilever bea load'ed at the end by two equal forces in the saWrIC

direction, the adhesive is now known to be in a state of pure shear, for which a solution is available.

A crack in the adhesive layer will thus propagate in Mode II, so that this test geometry (Figure 38)

can be used to obtain Mode II fracture energics.

SAIP/2

I P/2

Figure 38. Bonded cantilever subjected to an end load.

Moreover, by making the end loads unequal, a mixed mode that can be seen as a superposi-

tion of modes I and I1 is obtained (Figure 39).
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5.5 Conclusions

Introduction of nonlinear adhesive behavior in the strength-of-materials analysis leads to a

nonlieifar, second order differential equation vh varying coefficients in the shear stress in the ad -

bczive layer, for which vo analyticum uoluii riuis. Nu•O• ". u c• •. yM42513- 1- .LLcU4 . ,.a o AL."',

casc of noniinear adhesive behavior.

Application of the stopcrposition principle for linear viscoelastic adhesive behavior results in

equations in thv Laplace domain that aie very dilficult to transform tc the time-domain.

The cantilevc: beam subjected to an end load can bc used to obtain Mode II fracture char-

actcrisfics and can be combined with the DCIB Test to obtain mixed mode loading.
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* O6.0 CONCLUSIONS

Use of a bonded cantilever beam specimen for the measurement of adhesive shear properties

has been investigated. A strength of materials type solution is obtained for the shear stress state in

the adhesive layer, sharing good agreement with finite clement results.

tc--i-mrd by the relative displacement of the adherends on. both sides of the adhesive layer,

the shear stress is shown to vwty from zero at thc fixed end to a maxiniurrt value at the free end.

For relatively long beams and thin adhesive layers, a constant shear zone exists in the neighborhood

ol the fice end- Under those conditions, that maximum shear stress can be calculated from a

knowledge of the load and the beam geometry only. Therefore, by measuring the relative dis-

placement between the adherends or the shear strain in the adhesive layer, the shear modulus can

be determined. Numerically the shear stress is shown to be uniform through the thickness of the

adhesive layer.

An expression for the beam deflection was obtained and related to the adhesive's shear

modulus. A graphical meihod is prescnied io uetlti•t-'iie t iiuutluis -Utii Ue'uLXuuu Hletudr.-

iments. These deflection tests are also a simple way to compare surface treatments or dilTerent types

.S of adhcsives. To that purpose a coefficient of adhesion is introduced. For good sansitivity, rela-

tiv'.l. ,t beams and thick adhesive layers are recommended.

With the adhesive layer acting in a state of pure shear, the cantilever beam specimne can bv-

useful to obtain mode II fracture energies. Implementation of nonlin.ear and viscoelastic adhesive

behavior into the strength-of-nmterials solution is briefly mentioned.
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