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INTRODUCTION

This report contains guidelines for using the circular serial

autocorrelation filter (CSAF) program. The CSAF program is a later version

of an algorithm called SFILTR. In the first section basic things the user

of the program should do to run the program are discussed. The requirements

of the program are presented in this first section. Interpretation of

the program's outputs is given in the second section. In the next section,

things which the user should not do are indicated. The fourth section is

a three part discussion. Mathematical theory related to the filter is pre-

sented in the first part; then the program's organization in terms of functions

of its subroutines and main program is discussed in the second part. Follow-

ing this part are listings of important program variable definitions and

the entire program along with a flowchart and sample run streams in the third

part. In essence, this report contains the most detailed description of

the circular serial autocorrelation filtering tool to date.
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1. RUNNING THE CSAF SOURCE PROGRAM

CSAF is a numerical algorithm for filtering serial data utilizing the

circularly defined autocorrelation coefficient. Real data to be filtered must

be stored in an existing external file named "INPUT" to be list-directed read

by the source program. The source program creates an estimate of the input

data and creates a corresponding set of error data. In total before

execution, there must be three existing files: "INPUT", "OUTPUT", and

"FHAT". More discussions of these files are presented in Sections 2 and 3.

CSAF is written in a high level language, FORTRAN. A FORTRAN 77

compatible compiler is needed in forming an executable image. The main

program and several subroutines reference several math functions. Thus, the

following set of math routines also should be available for double precision

applications: sin, cos, arctan, exp, sqrt, and abs. If the above

requirements are met, the program can be executed on good personal computers

and most mainframes.

It is assumed that a set of parameters related to the input signal's

description, the desired error signal statistical test constants, and the

desired estimated signal integration method are known. After the execution

command the user is prompted to enter six parameters: T, NP, GNT, ZC, NDT,

and NFLAG. T is the sampling period of the input signal. NP is the number of

samples of the input signal. GNT is the Gaussian noise test constant; it is

the critical (alpha) region in statistical theory used in testing the Gaussian

nature of the noise signal. ZC is the critical value of the magnitude of the

standard normalized Gaussian random variable; it is used in testing the

randomness of the error signal. NDT is a logical code for straight line
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detrending error signals; its value should be 1 if detrending is desired.

NFLAG is a logical code for fast Fourier transforming (FFT) the estimate

signal in calculating Fourier coefficients: its value should be 1 if an FFT

is desired. (Typical values for GNT and ZC are 0.05 and 1.96,

respectively.) After entering the keyboard input parameters, the program

should produce three sets of outputs, which are discussed in the following

section.

2. INTERPRETING PROGRAM OUTPUTS

Outputs from the source program are written to the terminal screen, into

the OUTPUT data file and into the FHAT data file. The terminal displays a set

of pertinent statements which provide information on the input, estimate, and

error signals. These statements are the following:

1. A statement that the random noise is non-Gaussian at the alpha

level, if the test for normality so indicates;

2. An estimate of the signal-to-noise ratio of the input data;

3. The program determined input data's average value (AO) and

fundamental angular frequency (WO) along with the inputted sampling

period (T), number of data points (NP), remaining keyboard input

data; and

4. The even and odd Fourier coefficients (As and Bs respectively) of

the estimated signal.
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How these printed outputs are calculated is discussed in Section 4. Sampl e

run streams are given on pages 33 through 35.

Real output data are stored in the data files. The OUTPUT data file

contains in its first record in sequential order the slope of the straight

line detrend (BETA), curve fit error (SE), sampling period (T), fundamental

angular frequency (WO), average value (AO) and optimum cutoff harmonic

(L-1). Remaining records of OUTPUT contain the even and odd Fourier

coefficients. FHAT contains the estimated signal. FHAT's records contain a

single value each, and are sequentially ordered from top to bottom, the top of

the data file representing the first data point (initial value of the estimate

signal). In some applications, either mishandling these output files or the

input file presents a problem in running the program. Reads and writes from

and to them are important concerns in all applications.

3. AVOIDING MAJOR PROBLEMS

As written, all external files are direct access and must exist before

attempting to run the program. Do not fail to create the INPUT, OUTPUT and

FHAT files. The program assumes real values. Use of complex data will cause

problems. INPUT must contain data which are formatted according to list-

directed requirements. Do not place more than one entry per record and

neither separate entries by comimas nor spaces. If a subroutine is repeatedly

called in a redesigned version of the CSAF program, do not fail to reset the

associated variables (of the direct access files affected) to the first

records of subroutine files called.

-4-

' -:1



In addition to the above data file handling pitfalls, beware of

attempting to filter long data records greater than 499 points, especially if

it is known that the data have been poorly sampled. The CPU run time

increases with optimum harmonic content of the data, and can be as high as

2-1/2 hours for 300 harmonics of 2000 data point records and as low as 10

seconds for 20 harmonics of 128 data points. Aliasing cannot be completely

removed by the filter. Aliasing produces cyclical components which the

statistical method assumes are not present and the program cannot remove

through the subtraction of only a finite number of harmonics.

Other concerns are the following: 1) the number of input data points

must be greater than 75 for asymptotic characteristics of the correlation

statistics, 2) disk storage for CSAF should accommodate 24 blocks (12288

bits), 3) the Gaussian noise test constant should not be zero because the chi-

square tests for normality will not converge, and 4) the critical z-value

should not be less than 0.1 for most practical problems. More explanations of

how the program works follow, and should give further clarifications of why

the above limits are necessary for good program execution.

4. UNDERSTANDING THE PROGRAM

4.1 BASIC THEORY

Given a set of noise contaminated data, the objective of the filtering

routine is to recover the continuous desired signal without thereby

introducing any jump discontinuities in the recovered signal or its

derivatives. Since the desired signal f(t) often contains useful or
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understandable information, it is often referred to as the intelligence signal

in the sequel. Because of the possible presence of random noise components in

discrete recorded data, it is usually not possible to entirely recover the

' b intelligence, and one must be content with an estimate of the sampled version

of this signal, f k, One can determine an intelligence estimate by many

methods. In this work the estimate signal is determined indirectly by

construction of a simulation model which can be used to produce a sufficiently

continuous signal. The model chosen is a simple truncated Fourier series

whose fundamental frequency and coefficients are determined from the input

data. Assuming that jump discontinuities of the noise contaminated continuous

time domain signal are due to the presence of random noise components, the

filtering objective can be met by utilizing the intelligence estimate to get

rid of most random noise effects. This can be done if one can define and

isolate the noise signal or its estimate.

Assuming that the original input data represents an evenly sampled signal

whose fundamental period is the data length (Np-i) times the sampling period

(T), i.e.,

V (Np-l1) T()

wo -2irv 0(2)

one can write a closed expression (model) for the intelligence estimate for L

harmonics at every data point k as the following summation:
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LA 0
I Ao + I [Ajcos(k.oT)] + BIsin (kw 0T)], 1 S S L 0 (3)

where in the above equation k e 0, ..., N-l, L0 is an optimum harmonic

limit, and the coefficients are given for I e 1, ... , L } through the

discrete integrals

T

Ao  f f(t) dt (4)
o o

T

A1  = f °  f f(t) cos (W 0t) dt, and (5)
T 0oa

B 1  2 f f(t) sin (W. t) dt. (6)
o o

The integrals are evaluated using a fifth degree closed Newton-codes formula

[1, p. 142], [2, eq. 25.4.14]. Alternatively, if the data are sampled fast

enough, the coefficients can be obtained through fast Fourier transformation

[3, pp. 75-76]. Then, one can define the error signal, having produced both
intelligence estimate and original data at each sample point. The error

signal is a set of data values which are the differences between the input

data values and corresponding intelligence estimate values, i.e.,

ekL° f Ikf kk- 0, N-1. (7)

-7-

AQ

-." -", '- 2 " ,'. '.- ,. . , . -,-. ,'- -<. '.. -,-... .. . -..: :..'-:.'-. ,-: -...-..-2.i -? i -,--,i,. .,.-i .'.



Moreover, one can define a family of error signals parametrized by the maximum

harmonic content (L) of the intelligence estimate. Because the error signal

for L tends to become more random as L increases, the estimate of the random

noise component is defined as

k - ekL °  k - 0, ... , N-i. (8)

This noise estimate can be removed, and the resulting signal is fkILo -- as

represented by equation 3 with L - Lo . In addition Xk can be used in

calculation of a signal-to-noise ratio estimate for the contaminated signal.

This figure of merit is given by the following expression:

rms(xk)

SNR - -20 log (9)
rms (fk Lo

where rms means "root mean square value" of the enclosed quantity.

Lo in the above paragraph is the harmonic at which the curve-fit error

signal ekL (as a function of L) becomes random*. In order to test error

signals for randomness, their pertinent statistical characteristics are

utilized. First, their individual means (mL) and standard deviations (SL) are

determined; then each rms (ekL) is found by the formula

rms (ekL) - + S L I S L S L0 . (10)

*L o is defined to be less than N/2 to prevent violation of the Nyquist
sampling rate.
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And from these rms values, curve-fit error norm values defined by

rms (ekL)
EL - (11)rms (fk L

k L

are determined to gauge the "closeness" of the intelligence estimates to the

contaminated signal for each L. Secondly, the circular serial autocorrelation

coefficient R of each error signal and the Gaussian nature of the noise

estimate are determined. For each L-value for cyclically defined N**, R is

given by

N-I
R IL = eN'L eOL I ei L ei+lL (12)

A..O

where the statistic R for large N (N > 75) is normally distributed having

first and second moments respectively given by the following [4]:

I< S1 2  - S 2

L N-i
*4,%

_____ 2 2S 52 2)2

2 S22  -4 S14  4S1
2S2 + 4S1S3 + 2 S4  - S2-,L N-I + (N-i) (N-2) (N-17 - (14)

..
P

where S,(i-1, ..., 4, is the ith moment about the origin of the error

signal. Thus

** N is the number of input data points plus an extra point giving f(NT) -
f(O).
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-I R (15)

is normal with zero mean and unit variance. If the calculated z-value

magnitude for a given L is greater than 1.96, a null hypothesis of randomness

r can be confidently rejected at the 5' level. Though the smaller the value of

Iz! the more confident one can be of randomness, in most practical problems

ZI is not zero; but may be much less than 1.96. Various critical jzj1-values

can be used for various levels of test. 1.96 is simply a popular one

corresponding to a 5, critical region. Having jzj-value for each L, the task

is simply to find a valley turning point on the jzj vs. L curve below the

critical z-value, below which value one cannot reject a hypothesis of

randomness.

Now, assuming that the fist random error has been determined at L - Lo ,

the next thing to do is to determine whether the hypothesis that the resulting

noise is Gaussian is true, statistically. This can be done by performing a

chi-square test for normality (in the Gaussian sense). In this work the

dynamic range of the noise estimate (Xk) is divided into 18 equally spaced

intervals (groups); then the theory of grouping for goodness of fit is applied

.*P [5, pp. 85-90.] The cumulative normal distribution QN for standard normalized

noise (zk)*** is determined using a fifth degree polynomial -- no relationship

*** The z variable is z k<-k. k S o

-10-
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to Newton-Cotes -- approximation [2, eq. 26.2.17] which is accurate to order

10-8 . Theoretical (tf) and observed (Of) frequencies are calculated. The

chi-square statistic is determined by

2 J G (tf - Of) 2  2a G-I- - 1f 0 X ,(16)XQ'G-.2I x f~

X f=1 f
k

where a is the level of significance, G is the number of groups with entries

greater than four, and G-2 is the number of degrees of freedom. One can now

determine the area under a chi-square distribution from X2 to = using the

following relation for v degrees of freedom [6, p. 193]:

S(x 2 1v) _ v/ I f (v/2 -1) e-/ 2 dA. (17)
22r(v/2) X2

However, for large v > 30 it is easier to use the inverse formula

approximation for Xa2 given either the significance level or [2,

eq. 26.4.18]; and to use Q-series expansions for smaller v > 0 [2, eqs. 26.4.4

* and 26.4.5], i.e.,

x 2 . [I - 2 + (W - h )v > 30 (18)

aV FV av-i

Q~xIv - QN4x )+ ZN Jx) vodd (19)
1-1

2-11-
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v-2

21 V) (~~Z XJ7 2)(J(' E X+A2-4 2 (1)] even. (20)
1-I

Xa should be greater than X if the null hypothesis is not to be rejected. The

constant h depends on the value of Wa [2, eq. 26.4.15] and Wa is the value of

the standard normal random variable corresponding to the a critical region.

QN and ZN have usual definitions for normal random variables:

ZN(u) =i e-(u/2) (21)
T12W

QN (u) f ZN(t) dt. (22)
-u

If Q(x2fv) is greater than a, the hypothesis of normality is not rejected.

Otherwise, it is rejected and the non-Gaussian message is printed out in the

computer program.

Finally, trend characteristics of the error signals are treated.

* Straight line trend and critical movements can be reduced. Standard equations

for the abscissa intercept (alpha) and slope (beta) of the data are used and

are not repeated. This average value of the error is used to adjust the mean

of the intelligence estimate. Cyclical movement is minimized by subtracting

from the error signal Fourier harmonics (by design). Thus, the error should

meet the hypotheses of Wald and Waltowitz [4] for most finite data. Having

now presented the essentials of the theory and actual use of the filter

program, its organization and examples of its use are presented next.

-12-
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4.2 PROGRAM ORIENTATION

The circular serial autocorrelation filtering method basically involves

determining the fundamental frequency of noisy data, structuring a Fourier

series estimate of this data using the curve-fit error characteristics in

optimizing the Fourier series estimate and representing the "intelligence" by

a set of Fourier parameters. These basic functions are performed in the main

program of CSAF. In the first part of the program the number of data points

is defined for circular correlation, and the fundamental period and

fundamental angular frequency are computed. Secondly, the Fourier estimate is

computed for each L from the returned values of Fourier coefficients. Next,

the curve-fit error is calculated for each intelligence estimate. Using the

correlation statistic the turning point is then found -- if one exists below

the critical z-value. Finally, the set of Fourier parameters and other

information describing the input data and noise estimate are printed to the

screen. In performing these tasks the main program calls several

subroutines. These subroutines are discussed in the following paragraphs.

To begin the discussion, there are two options as indicated by the values

of the input integers NOT and NFLAG. If NOT is 1, the DETRNO subroutine is

called. This routine performs least squares, straight line detrending of the

error signals before the correlation coefficient of the noise estimate is

calculated. If NFLAG is 1, the FFT subroutine is called and the INTEGR

subroutine is not called. The FFT subroutine is that of Bloomfield [3] with

only minor adjustments; its function is the calculation of the Fourier

coefficients. If NFLAG is not 1, the FFT is not called but the INTEGR is

called. INTEGR performs the ordinary numerical integration of the waveform to

-13-
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compute the Fourier coefficients. The actual integration, however, is

performed through a subsequent call to the QUAD subroutine, which routine is

not discussed. With NDT and NFLAG inputted, the input data are obtained

through a call to the DATAIN subroutine. This routine's function is simply to

read INPUT, set the last data point equal to the first data point and obtain

input data statistics from a call to SERCOR.

The most frequently called subroutine is SERCOR. This subroutine

performs two statistical functions, depending on the value of its fifth

argument. If this argument is 2, the subroutine simply calculates the mean

and standard deviation of the signal appearing as its first argument. If the

fifth argument is not 2, the subroutine also computes the circular serial

autocorrelation of the signal and the standard normalization of this

statistic. There are three other subroutines which calculate statistics of

signals. The GAUSS subroutine finds the complement of the cumulative

probability [QN] of a normal random variable using a polynomial

approximation. The QSEXP subroutine finds the value of the area under a chi-

square probability distribution from the X2 value to infinity [Q(X21V)] using

the proper series expansion for Q(X2 1v). TNORM performs the subgrouping of

the noise estimate and calculates the corresponding chi-square random

variable. Using information from GAUSS and QSEXP, TNORM tests the hypothesis

that the noise estimate is random at the GNT level of significance. Finally,

V the TURN subroutine writes data to OUTPUT and FHAT. More information on how

the program functions can be obtained from the flowcharts of the following

section (Figs. I through 3).

-14-
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4.3 PROGRAM. LISTINGS

Following is a list of important variable definitions of the main

program. Also included in the alphabetical list are important. variables of

the TNORM subroutine, distinguished from the main program variables by

asterisks. This list is not complete but should make reading the source

program easier.

A Even Fourier coefficients, an array.

ALP* Critical region for normality test.

ALPHA Abscissa intercept of straight line fit of error signal.

AVH Average value of input data's estimate.

B Odd Fourier coefficients, an array.

BETA Slope of straight line fit of error signal.

CHIS* Chi-square statistics of noise estimate.

CNP Cumulative normal probability of standard normalized noise

estimate, an array.

CX* Intermediate value of chi-square statistics of noise estimate, an

array.

DOF* Degrees of freedom for noise estimate chi-square statistic.

DX* Width of groups of making up noise estimate signal.

DDX* Discrete boundary of DX groups, an array.

E Error norm, an array.

EAVG Average value of error signal.

ERR Error signal, an array.

ESIG Standard deviation of error signal.



FN Input data, an array.

FH Intelligence (Fourier) estimate, an array.

FQ* Cumulative chi-square probability of noise estimate chi-square

statistic.

GNT Gaussian noise test constant.

LMAX Maximum number of harmonics calculated.

N Number of points in circular data.

ND* Number of sections into which the range of noise signal is

divided.

NOT Logical code for straight line detrending of error signal.

NFLAG Logical code for performing FFT.

NP Number of input data points.

NR Logical code for calculation of correlation coefficient of data.

OF* Observed frequency of values of noise estimate within DX limits,

an array.

Q* Cumulative normal probability of standard normalized noise.

SAH Average value of input data's estimate.

T Sampling period of input data.

TF Theoretical frequency of values of noise estimate within DX

limits, an array.

TRF Theoretical relative frequency of noise estimate values, an array.

WO Fundamental angular frequency of input data.

X Detrended error signal, an array.

X* Noise estimate signal, an array.
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X1 Imaginary part of input data (zero) and odd Fourier coefficient in

FFT return, an array.

XR Real part of input data and even Fourier coefficient in FFT

return, an array.

Z Standard normalized correlation coefficient.

Z* Standard normalized noise estimate values, an array.

ZC Critical magnitude of Z-value.

ZX Z-values of family of error signals, an array.

A copy of the entire source program is given on pages 19 through 26.

Flowcharts for the main program and the SERCOR and TNORM subroutines are given

on pages 27 through 32. Sample run streams are given on pages 33 through 35.

5. CLOSING REMARKS

We have attempted to answer some fundamental questions concerning the

* computer program used to low-pass filter data based on the serial correlation

coefficient of curve-fit error. Though we have addressed the program's

inputs, outputs and principles of operation, there can never be a complete

description of the intricacies of efficient utilization of the program. This

happens after using the program a number of times and applying variations of

the basic theory on which the algorithm is based to practical problems. We

have done this using various experimental and simulated data and we have not

been able to find a case where the program has ndt done what it is designed to

do. We welcome all comments on the performance of the program from all users.
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C THIS PROGRAM USES SERIAL CORRELATOR METHOD TO FILTER INPUT
C DATA. FOURIER COEFFICIENTS OF FILTERED DATA ARE FOUND UP
1 TO AN OPTIMUM NUMBER OF HARMONICS. THE SIGNAL TO NOISE RATIO
C OF THE ORIGINAL INPUT DATA IS APPROXIMATED AND AN ERROR
C ESTIMATION OF THIS METHOD IS COMPUTED.

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(250),B(250),X(500),FN(500),FH(500)
DIMENSION XR(500),XI(500)
DIMENSION ERR(500),ZX(250),E(500)

C THIS SECTION READS THE SET OF INPUT PARAMETERS
C THE INPUT PARAMETERS REQUIRED ARE:
C T : SAMPLING PERIOD.
C NP : NUMBER OF SAMPLED POINTS TO BE USED.
C GNT : GAUSSIAN NOISE TEST CONSTANT.
C ZC : CRITICAL VALUE OF Z.
C NDT : DATA DETRENDING CODE. NDT=l IF DETREND IS TO
C BE USED.
C NFLAG : FFT CODE. IF FFT IS TO BE USED, NFLAG=1.

PI=4.0*DATAN(I.DO)
ZX(1)=O.DO
WRITE(6,245)

10 READ(5,*)T,NP,GNT,ZC,NDT,NFLAG
VRITE(6,260)GNT,ZC,NFLAG,NDT
N=NP+I
IF(N.LE.75)WRITE(6,200)
IF(N.LE.75)GO TO 300
CALL DATAIN(N,FN,AV,SA)
IF(NFLAG.EQ.1) GO TO 50

17 DO 20 I=I,N
20 ERR(I)=FN(I)
50 WO=2.DO*PI/((N-1)*T)

LMAX=(N-1)/2
LTN=O
IF(NFLAG.EQ.1) GO TO 30

C NP=.5DO+2.DO*PI/(T*WO)
C INT=N/NP

GO TO 40

C THIS SECTION DETERMINES THE FOURIER COEFFICIENT OF THE
C INPUT DATA USING FAST FOURIER TRANSFORM (FFT).

30 DO 170 I-1,N
XI(I).O.DO

170 XR(I)-FN(I)
CALL FFT(XR,XI,N-1,O)
AO-XR(1)
DO 180 I-1,LMAX
A(I).2.DO*XR(I+1)

B(I)--2.DO*XI(I+l)
180 CONTINUE

. C THIS SECTION RECONSTRUCTS THE ORIGINAL INPUT DATA USING
C FOURIER COEFFICIENT APPROXIMATION AND ESTIMATES THE
C ERROR VALUES. IF FFT IS NOT USED, A NUMERICAL INTEGRATION
C METHOD IS USED TO DETERMINE THE FOURIER COEFFICIENTS.

40 DO 190 L-1,LMAX
NR-O
IF(NFLAG.EQ.1) GO TO 60
CALL INTEGR(T,N,O,AO,A,B,L,ERR,NP)

60 DO 100 K-1,N

-20-



FE =0 DO
DO 70 I=l, L

* AUG=I*WO*(K-1)*T
70 FE=FE+A(I)*DCOS(AUG),B(I)*DSIN(AUG)

FH (K) FE .'.AO
ERR(K)=FN(K)-FH(K)

100 X(K)=EFRR(K)

C THIS SECTION USES THE SERIAL CORRELATOR METHOD TO FILTER
C THE INPUT DATA AND ESTIMATES THE SIN RATIO. FOURIER
C COEFFICIENTS OF THE FILTERED DATA ARE OUTPUTTED.

CALL SERCOR(FH,N,SAH,AVH,2,AZ)
CALL SERCOR(ERR,N,ESIG,EAVG,2,EAZ)
IF(NDT.EQ. 1)CALL DETRND(X,N-1,ALPHA,BETA)

120 CALL SERCOR(X,N,SIG,AVG,NR,Z)
E(L)=DSQRTL((ESIG**2+EAVG**2)/(SAH**2+AVH**2))
ZX(L+1)=Z
IF(L.LT.3)GO TO 125
IF((ZX(L).GE.ZX(L-1)).OR.(ZX(L).GE.ZX(L+1)))GO TO 125
IF(ZX(L).GE.ZC)GO TO 125
CALL TNORM(GNT,SIG,AVG,N,X,IFLAG)
VRITE(6,*)' SNR <=> ',-2.D1*DLOGlO(E(L)),' DB'
IF(IFLAG.EQ. 1)WRITE(6,290)GNT*100.
CALL TURN(N,L,FH,SEE,T,WO,AO,A,B,ZX,BETA,ALPHA,LTN)
GO TO 195

125 CONTINUE
SEE=E(L)

190 CONTINUE
195 CONTINUE

WRITE(6, 270)SEE
IF(LTN.NE. 1)VRITE(6,275)
VRITE(6,207)
WRITE(6,210)AO,WO,T,N-1
WRITE(6, 215)
DO 160 I=1,L-1

160 WRITE(6,220)I,A(I),B(I)
WRITE(6,250)

300 CONTINUE
310 STOP
200 FORMAT('O','N IS LESS THAN 75. PROGRAM ABORTS.')
207 FORMAT('O',/,6X,'AO',11X,'WO',12X,'T',11X,'N',/)
210 FORMAT(' ',3D13.6,I6,/)
215 FORMAT('O','HARMONIC',1OX,'A',15X,'B',/)
220 FORMAT(' ',3X,I3,5X,D13.6,5X,D13.6)
230 FORMAT(' ',D13.6,12X,D13.6)
245 FORMAT(1X, 'ENTER T,NP,GNT,ZC,D-CODE,FFT-CODE' ,/)
250 FORMAT(//)
260 FORMAT('O','GAUSSIAN NOISE TEST CONSTANT =',F6.4,/,

&1X,'CRITICAL Z-VALUE p',F7.4,/,lX,'FFT-CODE =',12,/,lX,'D-CODE '

&12,/)
270 FORMAT('O','RMS CURVE-FIT ERROR =',E12.5,/)
275 FORMAT('O','TURNING POINT BELOW CRITICAL Z-VALUE WAS NOT FOUND.',

* 290 FORNAT('O','NOISE IS NON-GAUSSIAN AT THE',F4.1,' Z LEVEL.')
END

SUBROUTINE DETD.ND(Z, L,ALPHA,BETA)
IMPLICIT REAL*8(A-H,O-.Z)
DIMENSION Z(0: 499)
REAL*8 A,B,CI,C2,DELTA,T1,T2,S1,S2,TS
REAL*8 X(O:499),Y(O:499)

10 DO 90 K=1,2



S2 =0 DO
S1=O. DO

* Tl=O.DO
T2=..DO
TS=O. DO
DO 20 I=O, L
IF(K.EQ.1)GO TO 15

15 CONTINUE
IF(K.EQ. 1)X(I)=DFLOAT(I+O)
IF(K.EQ.1)Y(I)=Z(I)
T1=T1+X(I)
T2=T2..X(I)**2
TS=TS+Y(I)*X(I)
S1=S1+Y(I)

20 S2=S2+Y(I)**2
DELTA=(L+1)*T2-Tl**2
A=(T2*S1-T1*TS) /DELTA
B=( (L+1)*TS-T1*Sl)/DELTA
VM=S1/(L+l)
SIG=DSQRT( (S2-S1**2/(L+1) )IL)
XTY=(L+1)*A-S1+B*T1
IF(K.NE.1)GO TO 80
C1=DCOS(DATAN(B))
C2=DSIN(DATAN(B))
ALPHA=A
BETA=B
GO TO 90

80 DO 50 I=O,L
Z(I)=Y(I)

50 CONTINUE
90 CONTINUE

100 RETURN
END

C ....
C ....

SUBROUTINE TNORM(ALP,XSIG,XM,N,X,IFLAG)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION DDX(25),Z(25),X(N),CNP(25),CX(25)
DIMENSION TF(25) ,TRF(25)
INTEGER OF(25)
XMAX-X(1)
XlIIN=X(1)
ND-20
IFLAG=O
CHIS=O. DO
CNP(1)-O.DO
CNP (ND+ 1) =1.DO
DDX(1)--10.D36
DDX(ND+1).10.D36

20 DO 30 I-1,N
IF(X(I) .GE.XMAX)XMAX=X(I)
IF(X(I) .LE.XMIN)XIIIN=X(I)

*30 CONTINUE
DX.(XMAX-.XMIN)/(ND-2)

50 DO 100 I-1,ND-1
DDX(I+1)=DX*(I-ND/2)+XM
Z(I)-(DDX(I+1)-XM)/XSIG
A-Z(I)
CALL GAUSS(A,Q,AZ,AS2PI)
CNP(14.1)=1.DO-Q

100 CONTINUE
110 DO 120 J-1,ND
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TRF(J)=CNP(J+1)-CNP(J)
TF(J)=TRF(J)*N
OF(J)=O
DO 118 I=1,N
IF((X(I).GT.DDX(J)) .AiND. (X(I) .LT.DDX(lJ' )))OF(J)=

&1+OF(J)
118 CONTINUE
120 CONTINUE

IC=O
IB=O

*130 DO 200 J=1,ND
132 CONTINUE

IF((OF(J).GE.5).OR.(J..EQ.ND))GO TO 195
* 0 OF(J+1)=OF(J)+OF(J+1)

TF(J+1)=TF(J)+TF(J+1)
IC=IC+1

140 DO 180 K=1,ND+1-IG-J
OF(J+K-1)=OF(K+J)
TF(J+K-1)=TF(K+J)

180 CONTINUE

IF(J.GT.ND-IC)GO To 210
GO TO 132

195 IB=IB+1
*200 CONTINUE

210 DOF=IB-3
220 DO 240 J=1,IB

CX(J)=( (OF(J)-TF(J) )**2)/TF(J)
.1 CHIS=CHIS+CX(J)

240 CONTINUE
CALL QSEXP(DOF,CHIS,FQ)
AT=1. DO-ALP
IF(FQ.GE.AT)IFLAG=1

300 RETURN
END

SUBROUTINE QSEXP(XNU,XO,FQ)
IMPLICIT REAL*8(A-H,O-Z)

10 X=DSQRT(XO)
CALL GAUSS(X,Q,Z,S2PI)
NU=XNU+1.D-9

MUT-IN(XU-2DOJEFF+.5 DO)
QSU=O.DO
ID-i
IF(MUTT.EQ.O)GO TO 140

100 DO 120 I-1,(NU-1)/2

120 QSU.QSU*(X**C2*I-1))/ID
QXN-2.DO*Q+2.DO*Z*QSU
GO TO 160

140 DO 150 IV2,(NU-2)/2
ID-2*I*ID

150 OSU=QSU*(X**(2*I))/ID
QXN-S2PI*Z*(1.DO+QSU)

160 FQ-1.DO-QXN
200 RETURN

END

SUBROUTINE GAUSS(X,Q,Z,S2PI)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION B(5) -23-



DATA (3I,- )/.319381530D0,-.3565-63782D0,1.781477937D0,
&-1.821255978DO .1.330274429D0/
PI=4.DO*DATAkN(l.DO)
S2P1=DSQRTI(2. DO*?PI)
XO=X**2

T=1.DO/(1.DO+XPP*X)
SUM=O.DO

* ~.50 DO 75 I=1,5
75 SUM=SUM 3(I)*(T**(I))
80 Q=Z*SUM
150 RETURN

END
C ..
C ..

SUBROUTINE DATAIN(N, F,AVG, SIG)
IMPLICIT REAL*8(A-HE,O-Z)
DIMENSION F(500)
OPEN (30,FILE='INPUT.DAT',STATUS='OLD')
DO 10 I=1,126

10 READ(30,*) F(I)
CALL SERCOR(F,N,SIG,AVG,2,O.DO)
F(N)=F(1)

80 RETURN
END

C ..
C ..

SUBROUTINE INTEGR(T,N,WO,AO,A,B,NFQ,F,INT)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION F(N),A(NFQ),B(NFQ),D(500),E(500),U(500),V(500)
K=NFO
U(1)-0.DO
V1) =0. DO

D(1)=F(l)
E(1)=O.DO

50 WK=(K)*WO*T
DO 120 L=2,INT+1
AUG=WK*(L-1)
D(L)=F(L)*DCOS(AUG)

90 E(L)=F(L)*DSIN(AUG)
120 CONTINUE

CALL OUAD(IC,INT,T,D,SIA)
U(INT+1>=SIA
CALL QUAD(IC,INT,T,E,SIA)

A(K)=2 .DO*UITs1/TIT
B(K)=2.DO*(INT+,1)/(T*INT)

IF(K.GT.1)GO TO 160

CALL OUAD(IC,INT,T,F,AO)
AO=AO/(INT*T)

160 CONTINUE
210 RETURN

END

SUBROUTINE QUAD(IC,INT,T,Q,SIA)
IMPLICIT REAL*8(A-H,O-~Z)
DIMENSION Q(500)
SIA=0.DO
IC-0O
DO 130 I=1,INT-4,4
IC-!iC+1
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SIA=SIA+2.ODO*T*(7.ODO*Q(I)+32.DO*Q(I+1)#12.DO*Q(I+2)
&+32.DO*Q(I+3) 7 .DO*Q(I#4))/45 .DO

.130 CONTINUE
IH= INT-4*I C-i
IG=1+4*IC
IF(IH.EQ. 3)SIA=SIA+3.DO*T*(Q(IG)+3.DO*Q(IG+1)+3.DO*Q(IG+2)

&+Q(IG+3))/8.DO
IF(IH.EQ. 2)SIA=SIA+T*(Q(IG)+4.DO*Q(IG+1)+Q(IG+2) )13.DO
IF(IH.EQ. 1)SIA=SIA+T*(Q(IG)+Q(IG+1))/2.DO

160 RETURN
END

SUBROUTINE SERCOR(X,N,SIG,AVG,NR,Z)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N) ,S(4)
R=0.DO
DO 10 1-1,4

10 S(I)=O.DO
V DO 40 I=1,4

DO 40 J=1,N
40 S(I)=S(I)+X(J)**I

AVG=S(1)/N
SIG=DSQRT( (S(2)-N*AVG**2)/(N-l))
IF(NR.EQ.2)GO TO 100

VAR=VAR+(S(1)**4-4*S(2)*S(1)**2+4*S(1)*S(3))I( (N-1)*(N-2))
VAR=VAR..(S(2)**2-2*S(4))/((N-1)*(N-2))
DO 70 I=1,N-1

70 R=R+X(I)*X(I+1)
R=R+X(1)*X(N)
Z=DABS(R-EXR)/DSQRT( VAR)
IF(Z.GE. 25.D-4)NR=1

100 RETURN
END

SUBROUTINE FFT(XR,XI,N,INV)
IMPLICIT REAL*8(A-H, 0-Z)
DIMENSION XR(N),XI(N),UR(15),UI(15)
LOGICAL FIRST
DATA FIRST /.TRUE./
IF(.NOT.FIRST)GO TO 120
UR(1)=O.DO
Il() = .DO
DO 110 1=2,15
UR(I)=DSQRT( (1.DO+UR(I-1) )/2.DO)

110 UI(I)=UI(I-1)/(2.DO*JR(I))
FIRST=.FALSE.

120 IF(N.GT.O .AND. N.LE.2**16)GO TO 130
INV=-1
RETURN

130 NO=1
11-0

140 NO-NO+NO
II.I1+1
IF(NO.LT.N)GO TO 140
Ii -NO! 2
13-1
10-11
DO 260 14-1,11
DO 250 K=1,I1
WR.1.DO -25-



WI=O.D0
KK=K-.
DO 230 1=1,10
IF(KK.EQ.O)GO TO 240
IF(MOD(KK,2).EQ.O)GO TO 230
JO=IO-I
'WS=VR*UR(JO)-WI*UI(JO)
WI=WR*UI(JO)AJI*UR(JO)
WR=WS

230 KK=KK/2
240 IF(INV.EQ.0)wI=-wI

L=K
DO 250 J=1,13
L1=L+I1
ZR=XR(L)+XR(LI)
ZI=XI(L)+XI(LI)

XR(Ll)=Z
XCR(L)=ZR
XI(L)=ZI

250 L=L1+I1

13=I3+I3
260 11=11/2

UM=1.DO
IF(IN'V.EQ. O)UM=1 .DO/DFLOAT(NO)
DO 310 J=1,NO
K=O

V.DO 320 1=1,I1
K=2*K+MOD(J1,2)

320 J1=J1/2
K=K+1
IF(K.LT.J)GO TO 310
ZR=XR(J)
ZI=XI(J)
XR(J)=XR(K)*UM
XI(J)=XI(K)*UM
XR(K)=ZR*UM
XI(K)=ZI*UM

310 CONTINUE
400 RETURN

END

SUBROUTINE TURN(N,L,FH,SE,T,WO,AO,A,B,ZX,BETA,ALPHA,LTN)
IMPLICIT RE.AL*8(A-li,O-Z)
DIMENSION FE(N),A(L),B(L),ZX(L.1)
OPEN (20,FILE-'OUTPUT.DAT' ,STATUS='OLD')
OPEN (21,FILE'IFHAT.DAT' ,STATUS-.'OLD')
LTN-1
AO=AO+ALPHA
'JRITE(20,*) BETA,SE,T,WO,AO,L-1
DO 80 I-1,L-1

80 WRITE(20,*)A(I),B(I)

200 RETURN
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Figure 1

CSAF

Circular Serial Autocorrelation Main Program
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* Figure I (Continued)

1,MX CXR(I)=FN(I) E =XR(l)

NR=O =,

IF A(I)=2*XR(I)

T

CALL INTEGR
(A,B,L XNP)

DDOo FH(K)=FE+AO
ERR(K)=FN(k)

K=1, F~z < I1,L-FH (k)
X(k)= ERR (K)

CALL SERCOR AGIW*
(FH,N,SA,AV, *k1

2,AZ)

CALL SERCOR 
CSAG

(ERR;NESIG G()SNAG
E(--EAUGiEj
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E
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FIGURE 2

Subroutine SERCOR
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(X,N,SIG,AUG R,NR,Z)
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FIGURE 3

Subrcutire TNORM
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FIGURE 3 (Continued)
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SAMPLE RUN STREAMS
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ERD131$ RUN CSAF
ENTER T,NP,GNT,ZC,D-CODE,FFT-CODE

1.949147E-10,128,.05,1.96,1,0
GAUSSIAN NOISE TEST CONSTANT -0.0500
CRITICAL Z-VALUE = 1.9600
FFT-CODE = 0
D-CODE = 1

SNR <=> 7.988648453179364 DB
NOISE IS NON-GAUSSIAN AT THE 5.0 % LEVEL.
RMS CURVE-FIT ERROR = 0.40421E+00

AO wo T N

0.135005D+C6 0.251840D+09 0.194915D-09 128

HARMONIC A B

1 -0.196020D+07 -0.437464D+06
2 -0.167392D+07 -0.130978D+07
3 -0.1447920+07 -0.114814D+07
4 -0.2176030+07 -0.238242D+07
5 -0.173992D+07 -0.4022660+07
6 -0.4004720+06 -0.681620D+07
7 0.364314D+07 -0.951500D+07
8 0.112735D+08 -0.298869D+07
9 0.800790D+07 0.190004D+07
1 10 0.526964D+07 0.315966D+07
11 0.3967800+07 0.260917D+07
12 0.309813D+07 0.253083D+07
13 0.300151D+07 0.235267D+07
14 0.237561D07 0.206848D+07
15 0.2134470+07 0.192878D+07
16 0.212799D+07 0.186168D+07
17 0.1890280+07 0.166967D+07
18 0.1991060+07 0.167398D+07
19 0.2014040+07 0.173348D+07
20 0.189510D+07 0.178378D+07
21 0.2065990+07 0.199034D+07
22 0.1967440+07 0.263810D+07
23 0.134900D+07 0.346295D+07

24 -0.605433006 0.3585830+07
25 -0.147068D+07 0.216188D+07

FORTRAN STOP
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ERD131$ RUN CSAF
ENTER T,NP,GNT,ZC,D-CODE,FFT-CODE

1.,128,.05,1.96,1,0
GAUSSIAN NOISE TEST CONSTANT =0.0500
CRITICAL Z-VALUE - 1.9600
FFT-CODE 0
D-CODE - 1

RMS CURVE-FIT ER.ROR = 0.86745E+00

TURNING POINT BELOW CRITICAL Z-VALUE WAS NOT FOUND.

AO WO T N

-0.156881D-01 0.490874D-01 0.I0000D+01 128

HARMONIC A B

1 -0.224400D-01 -0.153470D-01
2 -0.195964D-01 -0.177122D-01
3 -0.108471D-01 -0.267360D-01
4 -0.316106D-02 -0.192921D-01
5 -0.532486D-03 -0.171139D-01
6 0.1739190-02 -0.1405270-01
7 0.490572D-02 -0.124423D-01
8 0.633246D-02 -0.841825D-02
9 0.639562D-02 -0.661888D-02

10 0.745068D-02 -0.545358D-02
11 0.667389D-02 -0.308689D-02
12 0.649423D-02 -0.197764D-02
13 0.4393870-02 -0.128427D-02

A 14 0.506233D-02 0.476519D-04
15 0.437911D-02 0.340898D-03
16 0.2663660-02 0.4421730-03
17 0.2544130-02 0.1160150-02
18 0.103261D-02 0.106905D-02
19 0.255165D-03 0.121604D-02
20 -0.668729D-03 0.852049D-03
21 -0.187593D-02 0.830123D-03
22 -0.337533D-02 -0.139040D-02
23 -0.424310D-02 -0.2272550-02
24 -0.5038190-02 -0.392823D-02
25 -0.349550D-02 -0.570755D-02

p 26 -0.3148270-02 -0.467519D-02
27 -0.580768D-02 -0.502737D-02
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4 .

28 -0.100394D-01 -0.121469D-01
29 -0.494963D-02 -0.1995980-01
30 0.319914D-02 -0.236230D-01
31 0.100948D-01 -0.2115100-01
32 0.153415D-01 -0.220744D-01

33 0.261958D-01 -0.670005D-02

34 0.251788D-01 -0.2384650-02

-' 35 0.246631D-01 0.3064430-02

36 0.166233D-01 0.117785D-01

37 0.699155D-02 0.142741D-01

38 0.674609D-03 0.757396D-02

39 0.100768D-02 0.848510D-03
40 0.373425D-02 -0.343199D-03

41 0.531847D-02 -0.533471D-03

42 0.601553D-02 -0.669413D-03
43 0.623581D-02 0.8843200-03

44 0.625636D-02 0.628263D-03
45 0.603389D-02 0.116271D-02
46 0.649517D-02 0.103042D-02

47 0.6363160-02 0.129542D-02
48 0.6838050-02 0.203499D-02
49 0.599809D-02 0.276188D-02
50 0.566925D-02 0.3563140-02
51 0.4980970-02 0.335197D-02

52 0.355620D-02 0.3278400-02

53 0.282823D-02 0.288759D-02

54 0.204491D-02 0.243424D-02

55 0.811376D-03 0.123426D-02

56 0.9827480-04 -0.186041D-03
57 -0.2970290-03 -0.190078D-02
58 -0.5801230-04 -0.472191D-02

59 0.1964780-02 -0.715446D-02
60 0.503445D-02 -0.936945D-02
61 0.995390D-02 -0.8784760-02
62 0.147201D-01 -0.4411180-02

63 0.12!193D-01 -0.1174080-02

64 0.16277!D-01 -0.142428D-16

FORTRAN STOP
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