
AD-A184 756 MULTI-CHANNEL COMMUNICATIONS SYSTEM ANALYZER(U) /
STANFORD TELECOMMUNICATIONS INC RESTON VA

R J KLEINHENZ JUN 97 STI/E-TR-876199 RADC-TR-87-74

UNLSS7 E F29682-85-C-6889 F/G 25/5 UEUNCLASSIFEEDEm hhhhr~h



2. 0

1-6II111111.25.--I' 11111
b..

MICROCOPY RESOLUTION TEST CHART

% WSVNL U "i S • . fl - .

A I



* RADC-TR-87-74
Fial Technical Report

T June 1967

MULTI-CHANNEL COMMUNICATIONS DTIC
-~ Iva" SYTEM AAL YZER A L C~

* Stanford Telecommunications, Inc.

Robert J. Klelnhenz

APPROVED FOR PUBLIC RELEWE; DISTRIBUTION UNLIMIED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

709 15 1



This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-87-74 has been reviewed and is approved for publication.

APPROVED:

CHUCK Y. WONG
Project Engineer

APPROVED: _ -

BRUNO BEEK
Technical Director
Directorate of Communications

FOR THE COMMANDER: LA_.

RICHARD W. POULiOT
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DCLD) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

m4

. ....

I.7 -. -



SE5CURITYCSIFITONF THIS PAGE

Form Approved
REPORT DOCUM ENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLAS S IFIED N/(A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

% 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;" ' distribution unlimited
,A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TR870109 RADC-TR-87-74

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Stanford Telecommunications, Ic. Rome Air Development Center (DCLD)

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS'(City, State, and ZIP Code)
1761 Business Center Drive Griffiss AFB NY 13441-5700

Reston VA 22090

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
Rome Air Development Center DCLD F30602-85-C-0089

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Criffiss AFB NY 13441-5700 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

62702F 4519 20 39

11. TITLE (Include Security Classification)

A ULTI-CHANNEL COMMUNICATIONS SYSTEM ANALYZER

12. PERSONAL AUTHOR(S)
Robert J. Kleinhenz

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Oay) 15. PAGE COUNT

Final I FROM AUy 85 TO Jan 87 June 1987 52
16 SUPPLEMENTARY NOTATION

N/A

17, COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Communications Test Bed Controller

25 Multiple Channels
14 02 1Statistical Analyzer

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Multi-Channel Communications System Analyzer (MCCSA) is a computer controller for a
.-i. 'general communications test bed. The MCCSA consists of two or more PC AT style micro-

computers, connected by a Local Area Network (LAN), off-the-shelf interfaces that permit

connections to the test bed, a custom component called the High Speed Serial Data Comparator
(HSSDC) to handle data channels up to 50 Mbps, and a combination of custom and off-the-shelf
software that controls the experiment, aids in experiment definitions, and performs post-
experiment analyses.

The MCCSA is capable of injecting 50 Mbps test data streams onto the test bed, capturing two
". 50 ,rbps data streams from the test bed, aligning the two captured streams, comparing them

for discrepancies (errors), compressing the results of the comparison, and storing the

results on magnetic media for later analyses. The MCCSA also supports a facility that
permits it to respond (in real-time) to events happening on the test bed and to record the
event (and its time of occurrence) for use in creating the post-experiment chronology (over)

20 DOSTRIBUTION, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

U UNCLASSFIED/UNLIMITED [3 SAME AS RPT C: DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Chuck Y. Wong (315) 330-7751 RADC (DCLD)

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

-- UNCLASSIFIED

. . . . ... .

,. ,.-..-.--.-"

? ;I..., -. 'Y, .,',:,-. .. - . '.:,:,...: :. . ',''..- . . -",,,-,-.- -.-. •. ".-.' ',6 '-,-,iC:-;- .,..,
' r}! f~~~~~~~~~~~~~~~~~~~~~l~~.-. . . . . .. . . . . . . ..". .." .... " ,: " " = " , . -".2 /. '. ' , ,.....'. .''"..'.. .A "" "- %A .'. ,.' ." . -



UNCLASSIFIED

and in analyzing the experiment. The MCCSA response to test bed events is user
programmable and can serve as a basis for all types of open-loop/closed-loop experiments.

This document highlights the elements of the design and describes the reasons behind
the design choices. Several problems, and the design solutions are discussed at length
(synchronization, compression, time tagging) to highlight the difficulties involved in
creating the MCCAA. The synchronization and compression algorithms are discussed in
some detail as are the decisions behind these algorithm's selections.

h

L.:_ze-3siof For

-IS CRA&I
TAB 0

,no:r d [--

UNCLASSJ FTEl)

I
L im I N... --.,L



TABLE OF CONTENTS

SECTION PAGE

1.2 ~ ITRDCTO Prjc eiw .................... .. . .. ... .. .. . ................ . 15

2. ESeuiGN Summary . ...... . . .. .. . .. . .. . .. . . ...................... 81
12 Tre t B e view~y . .. .. .. .. . .. .... . .. . .. ... .. .. . . .................. 85
2 REqIreNt uARY...ary........ . ... .. . .... . . . ... ............ 1

* ~~2.1 3es Operaioa Sumary .. .. ... .. . ... .. . .. .. . .. ....................... 0

2.3.1 Experiment Definition................................................ 10

2.3.2 Experiment Phase ................................................ 15

2.3.3 Experiment Analyses.................................................. 16

2.4 ard are Summ ry ... ....... ... ....... .......... ... .-1

*2.4. OfTelfHardware .umir ...................................... 17
2.4.1 CoTh-hfHardware ................................................. 170
2.4.2. Cu st Hardwae......................... . .. ............... 20

2.4.2.1 The Hosret Interface..................................... 202

2.4.2.3 Compare/Compression...................................... ...... .23

2.4.2.4 Transfer Buffers .......................... . .. .. . ............. 24

2.4.2.5 Events Engine.................................................... 24

2.4.2.6 Data Generator .......................................... 25

2.4.2.7 Firmware................................................ 25

2.5 Software Summnary......................................... 26

2.5.1 0ff-The-Shelf Software ................................... 26

2.5.2 Custom Software ......................................... 27

3 DESIGN CONSIDERATIONS.................................... 30

3.1 Summary and Assumptions .................................. 30

3.1.1 Hardware................................................ 32

3.1.2 Software................................................ 33

V..%



TABLE OF CONTENTS (Cont'd)

SECTION PAGE

4 PROBLEMS AND SOLUTIONS ................ . .. .. ..... . .. . . ... ..... .35
4.1 Synchronization. ........................ .. ................ ~4. .~4~ 4~ 35

4.2 Time Stamping ................................................ 36
4.3 Compression ...........................~44**4~*~ 4~ 4~ *. *......37

4.4 Hardware Choice ....................................... 3

4.5 Software Choice ............. 4.. . .. 4. . .. . .. . 4. ... .. . ....... .39

............... ................................................... 41

4...0



LIST OF FIGURES

FIGURE PAGE

1 Multi-Channel Communications System Analyzer.............. 2

2 Monthly Technical Hours........ . ... .. .. .. ............... 6

3 Sample Test Bed .......... ................ ... . .. . ....... ..9

4 High Level Operations................. ... ... .... .. ... . .. .13

5 High Speed Serial Data Comparator .................. 21

N 5.*".



LIST OF TABLES

TABLE PAGE

1 Actual Technical Hours by Month and Skill Level........7

2 Requirements Summuary................................. 11

3 Off-The-Shelf Components List......................... 19

AS.0k



SECTION 1

INTRODUCTION

This report summarizes the design of the Multi-Channel Communications System

Analyzer (MCCSA)accomplished for the Rome Air Development Center (RADC) by

Stanford Telecommunications, Inc.. This project produced a design for a

communications test bed controller capable of:

* Supplying a test bed with 50 Mbps data,

0 Sustaining test bed throughput of 50 Mbps,

* Compressing the output data to a reasonable size,

4

0 Controlling ancillary devices on a test bed,

0 Showing correlations of the data with test bed events, allowing

experiments using multiple communications interfaces,

0 Allowing experiments that have multiple channels, and

* Permitting control of the hardware through easy-to-use software.

The manner in which these features were produced and the reasons behind the

design decisions is the subject of this report.

1.1 EXECUTIVE SUMMARY

Figure 1 gives an overall view of the MCCSA. The first and foremost design

consideration of this project was to exploit the wide variety of off-the-shelf

peripherals that are available for the IBM PC family of microcomputers. This

was accomplished with the addition of only one custom component -- the High

Speed Serial Data Comparator (HSSDC). The need for this custom component

-- 1

¢...'''.'-'-' '- .7 .'-.'"-''h. ' ' _ . '' " ' ' ''' ' ' ' -. g ' ' - '''



C

cci,
9- 0

2 LL2
wasLC

A S

VC



arises from the desire to drive the communications test bed at a top data rate

of 50 Mbps, and the limited bus bandwidth of the PC family of computers.

Typically a PC AT (or equivalent) has a bus bandwidth of approximately 1.5

Mbps spread over 16 data lines for an aggregate bandwidth of about 24 Mbps.

To accommodate 50 Mbps data requires a component that will provide data

buffering and data compression to squeeze the 50 Mbps data onto the computer's

bus.

Another requirement was the desire to recreate an exact error history of the

experiment. To do this necessitates the capture and processing of two data

streams -- a test stream and a reference stream. A compression algorithm was

developed based on a scheme used at RADC in a previous test bed controller.

The algorithm records error patterns when they exist but otherwise records the

number of error-free sections received since the last error. When the bit

error rate is low this scheme is very efficient and can yield tremendous

compression. When the error rate is high the scheme, coupled with large

buffers, reports the exact error pattern until local on-line storage is

exhausted. Typically long duration experiments having bit-error-rates of

about .005 or less can be accommodated by the custom hardware without

exhausting the local on-line storage. At sustained error rates above .005,

experiments may still be done but the risk of exhausting the local storage

increases. To preclude this the HSSDC was designed to capture statistics and

continue running even if the local data store overflows. In these situations

it is not possible to capture exact error data for long periods but meaningful

information can still be gained from the statistics capturing facility that is

built into the hardware itself.

The MCCSA was also designed to control a wide variety of test bed, digital

devices in response to varying test bed conditions. This enables the exper-

imenter to monitor conditions on the test bed for post-experiment analysis.

For example, the MCCSA can be set to read a digital power meter every time the

instantaneous bit error rate exceeds a prespecified value. In this way the

correlation of bit error rate with power at a particular test point can be

determined experimentally.

-3-

,.--.



- - W- - - - V. V Wr'w--r V V -- -

The status of various devices and the occurrence of test bed events can also

be recorded for post-experiment correlations. A chronology of events and

MCCSA actions can be produced to reveal possible causal relationships between

MCCSA gathered data and test bed events. In this way an experimenter can

determine the effects of various algorithms by monitoring the relevant

variables of the algorithm while changing test bed settings. The MCCSA

possesses the ability to carry out actions in response to preprogrammed

conditions -- a crucial ability analyzing the dynamics of a particular test

bed.

The MCCSA is also able to monitor multiple test bed channels through a Local

"; Area Network (LAN) that links the controllinr PCs. Using off-the-shelf

software provided with the LAN, each PC can transmit data or status to other

PCs on the LAN. This allows the experimenter to analyze complicated, high-

speed, communication test beds with a single, integrated controller. In fact,

if the aggregate network data rate is less than about 1.5 Mbps, a small

C' network can be analyzed by a single PC. The size of the network that can be

analyzed is limited only by the number of PCs allowed on the LAN and the

number of peripheral slots available in each PC. Events monitored by one PC

.47 can also trigger actions in another PC through the facilities provided by the

MCCSA and LAN software, allowing the creation of multiple channel correlations

"-'4 at the conclusion of the experiment.

The analysis done at an experiment's conclusion is provided by a combination

of user written software and an off-the-shelf statistical package. The off-

the-shelf statistical software gives the user a set of elementary routines

that can compute many common statistics of interest (bit error rate, corre-

lations, means, variances, etc.) and allows the user the ability to tailor the

experiment data to his own needs. This tailoring process gives the user a way

to convert the experiment data to a format acceptable to the user's custom

routines. The statistical package also supplies the user with both textual

and graphic output and can be the principal means by which a user prints or

plots his results.

-4-
%.

44 "". % ' ' " " " " " " " " " " " " " '" ' " • " " " " "* ' " " " % " " " " ' N



1.2 PROJECT REVIEW

The first output of this project was a Design Plan (I for the MCCSA. This

document served as a guideline for all work that followed and described the

test bed, operations, hardware, and software requirements to be placed on the

MCCSA. The Design Plan also suggested methods by which some of the MCCSA

design problems would eventually be resolved and established the type of

environment that the MCCSA would produce.

After the Design Plan was completed, work commenced on the writing of the two

specifications [2,31 and on the preparation of a set of engineering drawings

[41. The first of these two specifications was a three-part B-1 level,

hardware specification describing both the off-the-shelf and the custom

components of the MCCSA. The second specification was a B-5 level, software

specification detailing the off-the-shelf software to be used on the MCCSA and

providing a description of the custom software required to drive the MCCSA. K-.

The third document, the engineering drawings, showed the functional details of

the custom hardware components and provided a design basis for the

construction of a prototype.

All of the work for this project was completed on time and within budget.

Figure 2 summarizes the effort expended in completing this project. The

figure shows a month-by-month history of planned hours and actual hours used

to complete the work. Table 1 is also included to show the breakdown of labor

by skill categories.

4.,

-5- 2

-* --



-- - -- - ---

0z

40

40

-00

z U

00

-JL

C-4 C-

% %i



00

- an

at N
S4

F44

z e4

NN

en i

Sn N

- zz z
<.<S

rA in W Ww
W 6 6

4. (A



SECTION 2

DESIGN SUMMARY

2.1 TEST BED SUMMARY

To accomplish the design of the MCCSA, some basic assumptions were made about

the test bed. Initially, it was assumed that all interfaces between the MCCSA
and the test bed would be digital. That is, no analog signals would be

processed by the MCCSA without first being converted to a digital format.
This was not regarded as a major restriction because of the wide variety of

analog to digital converters available for the PC family of computers.
Moreover, it was assumed that the reading of data and status, and the

exercising of control over devices would be accomplished through a set of
standard, specified interfaces. Figure 3 gives an example of a one-channel

test bed although more complex test beds can be supported.

No other restrictive assumptions were made about the equipment found on the
test bed. The specification of interf aces allows a large number of different
devices to be connected imumediately to the MCCSA and does not preclude the

addition of future devices that meet the specification. Since both comumercial
and military equipment are to be used in the test bed, four commercial
interfaces and two military interfaces were chosen for the MCCSA. The
interfaces were selected primarily because of the number of different types of

equipment they support.

The requirements set forth by RADC included the need to analyze experiments
* whose data rates may be as large as 50 Mbps or as small as 110 bps. A general

purpose interface was required between the test bed and the MCCSA capable of
spanning this wide range of data rates. A fiber optics interface was chosen
not only because of its ability to meet the data rate requirement but also
because of the wide availability of conmmercial, fiber optic, interface

converters.

-8-



F--i 4
I .iL4

lz la-.00 III!4II
ca

ALS



It was also assumed that each device on the test bed may have a control/status
channel, possibly separate from the data channel, through which the device is
commanded and from which the device is monitored. This control/status channel
was assumed to meet the requirements of a slow (< 1 Mbps) MCCSA standard
interface. This later assumption is a mild one since control channels are

usually slower than the data channels they control.

2.2 REQUIREMENTS SUMMARY

Table 2 gives a functional and performance requirements summary broken down by
the categories of Test Bed, Operations, Hardware, and Software. The table
entries reflect the desires of RADC as well as the limitations placed on the
MCCSA by current technology.

2.3 OPERATIONAL SUMMARY

Since the average user sees the MCCSA primarily from an operational

standpoint, it is important that the user interf ace be easy to understand and
to use. Figure 4 shows the high-level operations that occur during MCCSA
operations. Every experiment is divided into three phases -- the pre-
experiment or definition phase, the experiment phase, and the post-experiment
or analysis phase. In what follows, a description is given of the
interactions that occur between the user and the MCCSA during each phase of

the experiment.

2.3.1 Experiment Definition

During this phase, the user defines all aspects of his experiment to the MCCSA
through the use of a mechanism called a form. A form is a collection of data

that describes the workings of a test bed device, the layout of a screen to be
displayed during the running of the experiment, the actions to be taken in
response to conditions on the test bed, or the totality of forms and other

data that comprise an experiment. A master template for each form is created
R~. initially and modified thereafter by changing the underlying structure of a

-10-

% % N



IA

ii

-o

ro



-4 Lad

ow 4i

LUu

-12-



-j

I
U

I,- I
.4 5201J
4- E

4- 0)

0
4.'

4- -

C.
0
0)

-U

0)
N-

I
4'

4.
0

a
4. 1*
4- ml is

LA

.5

'S

'S -13-
.1
I

I

--1.15-i



copy of the master template or by changing the value of a substitution

parameter. Substitution parameters can be as simple as the value of a device
setting (data rate, power output, etc.) and as complex as a conditional

expression designed to control actions on the test bed. Most of the time,
form modification consists of changing a substitution parameter.

A form is usually created by one experimenter and exists for the life of the
MCCSA, being borrowed and transformed as different experiments are done. For

example, one user may establish a form that describes a particular modem, use

it in an experiment, and pass the form onto the next user for a new
experiment. The later users may only have to change a few substitution
parameters to adapt the modem for use in their work. As time progresses, a
library of forms will develop that make future experiments easy to do. The

most portable forms will undoubtedly be those that describe equipment or
displays, followed by forms governing the actions carried out during the

experiment, followed by forms describing the experiment itself.

As each substitution parameter or field is completed, it is given a quick
syntax check to verify that the substituted value conforms to the predefined
format of the field. That is, if a substitution parameter is defined to be an

integer between 1 and 10, the user's input is checked against this predefined

format and the user alerted if the input is erroneous. All forms that
constitute an experiment need not be completed in one session. Partially

completed forms may be stored for later completion. When all forms are
complete, they are passed onto the system compiler to create the experiment

portion of the MCCSA's real-time executive. Any errors discovered during

compilation are reported to the user; otherwise the compiled experiment may be
linked into the real-time executive in preparation for the actual run. During

the linkage phase of the pre-experiment many routines that control the test

bed are bound together to form the real-time executive. These pieces include

all of the low level device drivers implicitly required by the user to control

the various PC interfaces, special MCCSA programs to perform basic

calculations such as bit error rate, the firmware that is to reside in the

HSSDC custom component, etc. By placing the majority of the system control in

the software, the MCCSA becomes an extremely flexible tool for analyzing

complex commnunications experiments.

-14-



V2.3.2 Experiment Phase

During the Experiment Phase, the MCCSA carries out the task that was described

by the user 1n the Experiment Definition Phase. This phase begins by loading

an MCCSA slave computer with a copy of the real-time executive. Once the load

has been accomplished, the MCCSA waits for an instruction from the operator to

begin. At this point the MCCSA begins to exert control over the test bed,

carrying out the instructions given it by the experimenter. The K4CSA will

feed the data pattern to the test bed if required, collect data from the test

bed, monitor events happening on the test bed, and responds to conditions on

the test bed automatically.

The MCCSA affords three levels of user interaction that enable the user to run

or debug an experiment. The first of these operational modes restricts the

amount of user intervention, allowing the user to start, stop, or continue an

experiment. This mode is primarily designed for automatic, unattended exper-

iments and will be the mode used most often during the running of an actual

experiment. The second mode of operation gives the user a limited

intervention privilege, allowing him to query the MCCSA about the values of

variables, settings of equipment, status of the machine, etc. The third

operational mode gives the experimenter the greatest control over the test

bed. In this mode the MCCSA stops every time an event occurs and asks whether

it should carry out the action associated with the event. The user may then

examine the state of the MCCSA, or continue the experiment by telling the

MCCSA how to proceed. This last mode is provided to give the user a powerful

debugging tool to verify that the operations of the MCCSA are as the user

intended.

The MCCSA has the ability to report the real-time status of the test bed and

the perceived state of the data stream. The user may customize the screen

content during the experiment definition to display the instantaneous values

of different variables. In this way the user can observe the near real-time .

values of Such quantities as the bit error rate, burst error rate, monitoring

equipment reports, etc. This can also aid in debugging experiments where

problems arise only as a result of the real-time operation of test bed

-15-

.. . .. .,. .. .



equipment. This feature can also highlight unexpected events and help the

experimenter in the analysis of the communication equipment and links under

test.

During the experiment different events may occur on the test bed that warrant

observation or demand some action. The MCCSA provides the user with up to 16

ports where one-bit signals can be given to the MCCSA to elicit some action.

Other conditions on the test bed as well as events internal to the MCCSA may
also cause some actions. These conditions and their associated actions can

all be specified during the Experiment Definition Phase. Any reasonable
action may be taken in response to test bed conditions including the reading

of monitoring equipment, the resetting of various, controllable test bed
parameters (power level, data rate, etc.), the recoummanding of test bed

equipment (resynchronize, reacquire, etc.), or the calculation of other
parameters based on current readings.

Some internal events will have automatic responses. These include alert

conditions present in the MCCSA (out of storage, loss of HSSDC
synchronization, etc.) as well as a timer that can be used to perform periodic
actions (read monitoring equipment, calculate parameters such as bit error
rate, etc.).

When events occur, an event token is created in the MCCSA that contains infor-
mation about the nature of the event and the number of the bit that was last

received. This later feature gives the user the ability to mark the time at
which events occur without the need for an extremely accurate, system wide
clock. The time at which events occur is accurate to within one bit after

processing bias has been removed. This method of timekeeping should provide

Sf. the necessary accuracy for any experiment.

2.3.3 Experiment Analyses

After the experiment is concluded, all of the data that has been collected

during the experiment is put onto magnetic media for later processing. The

MCCSA is supplied with a statistics package that lets the user calculate such

-16-



----------------------- ,. -r W w- - y '* .- r--vwv.

-* elementary statistics as bit error rate or burst statistics, and provides a

time history of the experiment showing how the statistics correlate with the

events that occurred on the test bed. This package also gives the user the

ability to filter the data so that only certain records are analyzed by the
statistical package. This can be useful when calculating statistics dependent

on the existence of test bed events or conditions.

The files in which the data is stored can also be processed by a user's

custom, analysis programs. The filtering provided by the statistics package

should free the user from having to perform extensive, data reduction chores

and allow him to produce results quickly and easily.

After the experiment phase concludes, or after the user finishes an analysis

session, the data files generated are catalogued so that they may be easily
retrieved. The MCCSA helps the experimenter keep track of his progress by

providing on-line assistance in locating old experiments similar to his own or

containing related results data. The information stored with each experiment

contains such data as the experiment logistics (who, where, when, etc.), test

bed layout, forms used, location of results; and may be searched by key words

and phrases. In this way the MCCSA functions not only as a device to run an

experiment but also as an experiment management tool as well.

2.4 HARDWARE SUMM4ARY

This section addresses the hardware that was specified as part of the MCCSA.

The two types of hardware components, off-the-shelf and custom-built, are

discussed separately.

2.4.1 Off-The-Shelf Hardware

The MCCSA consists of two or more IBM PC ATs (or equivalent) connected

Ntogether by a Local Area Network (LAN). One AT, called the master, is the

computer on which the experiment is developed. This is the computer on which
the forms are created, and on which the experiment is compiled and linked into

an integral whole. The other computers on the LAN, called slave computers,

* -17-

% %

1-.. ".1..1



have the task of controlling the test bed and reporting status and events to

the other slaves on the LAN and to the master. The master consists entirely

of relatively inexpensive, commercially available equipment. The majority of

the slave hardware is also available commercially but the slave also contains

the custom component called the High Speed Serial Data Comparator (HSSDC).

This custom component will be discussed at some length in the sequel.

Table 3 is a list of all the off-the-shelf hardware required to build the full
*4

MCCSA, (lesser versions can be created from a subset of Table 3).

The master computer contains a fast processor (an Intel 80286 running at 8
Mhz), a numeric co-processor, a hard disk drive(s), floppy disk drives, and a

number of interface cards for connecting printers, plotters, cassette storage,

Atape drives, and the LAN. The master does not connect directly to the test
bed but rather communicates with the test bed through the LAN and the slave

computers. The slave computers, similar in architecture to the master

computer, contain interfaces that permit connection of various test bed

devices. The interfaces that are supported are the current, common, serial

and parallel interfaces (RS-232-C, RS-422, RS-449, IEEE-488) found in many

commercial PC applications as we!; as two standard military interfaces (MIL-

STD-188 and MIL-STD-1553B). With this complement of interfaces, the MCCSA

should be able to talk to any current piece of laboratory or communications

equipment.

The slave computers also support analog to digital converter cards enabling

the slaves to be attached to analog monitoring devices. In this way, some

older types of monitoring equipment may also be attached to the MCCSA. The

A/D cards support multiple channels of analog input so that many different

monitoring devices may be attached to a single card.

Through these interfaces the MCCSA communicates with the test bed, not only

reading test bed status or data, but also sending data and commands onto the

test bed. At low data rates this is all that is needed to conduct an

experiment. It is only when the data rate of a single channel exceeds about

1.5 Mbps that the custom hardware is called upon to control the high speed

channel.

-18-

. .. .. ... .. ....'.'.%'" ' . . . .." ('". 4 
-

. , -... 4 . . . ... . .' .- "-...-.....*-... ". . - .. ".- - ." 4, ---



TABLE 3

OFF-THE-SHELF COMPONENTS LIST

A. 80286 BASED PERSONAL COMPUTER (IBM PC AT OR LOOK ALIKE)

B. RANDOM ACCESS MEMORY (RAN) BOARDS

C. FIXED/FLOPPY DISK DRIVE ADAPTOR

D. FIXED DISK DRIVE(S)

E. FLOPPY DISKETTE DRIVE(S)

F. CASSETTE TAPE CONTROLLER

G. CASSETTE TAPE DRIVE

H. PRINTER ADAPTER

I. PRINTER

J. EXTENDED GRAPHICS ADAPTER (EGA)
OR

HERCULES (OR EQUIVALENT) VIDEO CARD
K. COLOR/MONOCHROME MONITOR

L. LAN ADAPTOR

M EXPANSION CHASSIS

N. REEL-TAPE DRIVE CONTROLLER

0. REEL-TAPE DRIVE

P. AUXILIARY PRINTER ADAPTER

N Q. HIGH SPEED PRINTER

R. SERIAL INTERFACE BOARD(S)

S. ANALOG/DIGITAL. DIGITAL/ANALOG INTERFACE BOARD

T. IEEE-488 INTERFACE BOARD
U. MIL-1553-B INTERFACE BOARD

V. UNINTERRUPTABLE POWER SUPPLY

',p.

-,p

-19-

,--d-.. .- -.-
-- "'n ~ r a". " ' '-' " ' "" "0""' ''' -' "'€ "" €" 

° "
"" -. ' . '. .r"



2.4.2 Custom Hardware

The one piece of custom hardware is the High Speed Serial Data Comparator

(HSSDC). Figure 5 shows a functional view of this machine. The job of this

device is to buffer the data received on a high speed channel against the PC

AT's low speed bus and to compress the received data through the use of an

efficient compression algorithm. The HSSDC consists of six parts:

0 The Host Interface,

0 The Experiment Interface,

0 The Compare/Compression Engine,

0 The Transfer Buffers,

0 The Events Engine, and

* The Data Generator.

I.-.Each of these pieces is a combination of hardware, firmware, and software

designed to keep a 50 Mbps experiment running until all of the available

resources are expended. The microprocessor that controls each of the above

K. six components is an 18 Mhz Motorola 68020 microprocessor. This processor was

determined to have the necessary speed to keep up with a 50 Mbps data channel
(and associated custom hardware) and was chosen solely on that basis. The

68020 processor also contains an internal cache memory that can store a small

program which the processor can execute directly. This saves the processor

from having to fetch its instructions from an external memory and so saves

additional processor execution cycles. All firmware was developed with this

cache memory in mind and so the firmware associated with each HSSDC component

is a small number of instructions.

2.4.2.1 The Host Interface. The host interface is a 68020 board that can

slot into an IBM PC AT and provides a gateway via dual ported memory to the

1: remainder of the HSSDC custom hardware. It is through this interface that the

slave computer can learn about the status of the experiment in progress as

well as issue commnands to the HSSDC that control its configuration and action.

-20-

2P % % %~



I ID

0 CA

4i -

r-f - -- - -



2.4.2.2 The Experiment Interface. The experiment interface is the place

where the HSSDC is connected to the test bed. This module contains a fiber

optic interface that supplies the test bed with 50 Mbps data and captures two

50 Mbps result streams from the test bed. The experiment interface also

contains circuitry to enable the HSSDC to synchronize these two incoming data

streams. The two data streams, called the pure stream and the corrupt stream,

can originate on the test bed, or the pure stream can be supplied directly by

the HSSDC and compared with a corrupt stream extracted from the test bed. It

is important to note that both the pure and the corrupt streams should be

similar. This means that some alignment of the two streams differ only in

those positions where communication's channel errors have occurred.

The synchronization circuit can be programmed to perform two types of

synchronization called cyclic and acyclic. Cyclic synchronization is appro-

priate when the test data stream is a cyclic pattern of bits, and is the

preferred mode of operation since synchronization can be achieved with only a

modicum of buffering. During cyclic synchronization one word (64 bits) is

taken from each of the pure and the corrupt streams and examined for a

matching alignment. If no alignment is found the next word is extracted from

the corrupt stream and compared with the word after next in the pure stream.

By using this technique, two words are drawn from the pure buffer for every

one word taken from the corrupt buffer. This prevents the buffers from

overflowing and guarantees synchronization when there are no errors and the

test data is a periodic bit pattern. After the first alignment is detected

the synchronizer microprocessor sets an internal counter to a user defined

threshold (the acquisition threshold) and begins to monitor the ensuing

S. . comparisons. Every time the alignment is reverified the microprocessor

decrements this counter, and each time a misalignment is perceived the counter

is incremented. If the counter reaches zero, synchronization is declared.

Thereafter, the microprocessor continues to watch the aligned/misaligned

condition decrementing or incrementing this counter as before. If the counter

ever exceeds a second, preset threshold (the tracking threshold), synchron-

ization loss is declared and the whole process begins again.

-22-

-Ado"



Acyclic synchronization is the technique used to align two data streams that
N, are not periodic. The first word of the pure stream is compared with the

words received on the corrupt channel until an alignment is found. At this

stage, the algorithm continues as in the cyclic case with the ensuing compar-

isons of both streams driving the microprocessor's acquisition and tracking

counters. The important fact to observe here is that the synchronizer must

hold the incoming pure stream until the first alignment of the pure and the

* corrupt stream is found. Naturally, this implies the need for a large buffer

on the pure channel to account for the instances where the corrupt stream's

arrival is delayed.

If the user is using a satellite channel simulator (or a real satellite

channel) there can be as much as .25 second delay through the channel. This

translates into a large buffering requirement at high data rates unless cyclic
synchronization is performed. Therefore it is recommiended that the user send

cyclic data patterns over channels where there is the potential for long

delays, unless the user can provide his own buffering of the incoming pure

data stream.

2.4.2.3 Compare/Compression. This process is accomplished by another custom

circuit that tests the two data streams for errors and compresses the

Information to a reasonable size for later study. The compression also helps

match the data rate of the incoming signal with the bus bandwidth of the PC

AT. The synchronized streams are given to the compare/compression engine as
C.. words (64 bit sections), and a word wide exclusive-or operation produces an

error pattern. If this pattern is zero the compression algorithm merely

records this fact by incrementing a 64 bit counter. If errors have occurred,

the error pattern itself is saved. At the appropriate time, the compressions
algorithm alerts the transfer engine that data is ready to be forwarded. When

* this occurs 65 words are given to the transfer engine. These consist of a
header word, whose bits describe whether the ensuing words represent error

patterns or counts of error-free words, and the error patterns and counts

of error-free words themselves.

-23-

>~ .. . . .



During periods of error-free transmission, the compression ratio can be

extremely large. The worst performance occurs when one or more errors occur
approximately every 128 bits. In this case no compression occurs at all and
the user is penalized by the presence of the header word. However, if

anticipated bit error rate is larger than 1/128 the compare/compression engine

can be circumvented and the data streams passed directly to the transfer

engine. During a direct transfer, the PC Al's bus bandwidth will be the

limiting factor in determining the largest, sustainable test bed data rate.

But, it is also possible to discard all of the error pattern data by allowing

the internal buffers in the transfer engine to overflow. The MCCSA can be
programmned to ignore this data and to concentrate on the statistical counters

present in the various engines. Using this tactic the user may run long, high

data rate experiments and still capture the relevant statistics of the

channel. Events can be recorded as before and correlations done at the exper-

iment's conclusion. The one element that is lost through this technique is

the history of error patterns.

2.4.2.4 Transfer Buffers. The HSSDC is provided with 8 MB of storage to

hold the output from the compare and compression engine. This is enough

storage to allow a 50 Mbps experiment to run with error rates in excess of

1/128 for about one or two seconds before a buffer overflow occurs. If,

however, the error rate is less than about 1/256 the HSSDC should be able to

provide ample buffering to allow a 50 Mbps experiment to run until the mass

storage (i.e. disk drives) are exhausted (a 300 MB disk drive will overflow in

about 2 minutes). For experiments with such large error rates it is not

recomm~ended that the user run for a long time unless the MCCSA is set to

capture statistics only. In this latter mode an experiment could be run for

hours and is then limited only by the amount of ancillary data that is being

collected.

72.4.2.5 Events Engine. This component of the HSSDC is perhaps the simplest

of all of the custom components. This circuitry provides 16 channels (8 of
which are bidirectional) through which the MCCSA can read single bit events
occurring on the test bed or conmmand single bit ports on test equipment. For

example, a modem may only be capable of signaling the loss of synchronization

-24-

8%

~IL



by turning on an indicator lamp. A light sensor coupled with a level

converter could be used to signal the MCCSA, through its events engine, that

the modem has lost synchronization. When such an event occurs, the micropro-

cessor on the host interface executes an immiediate interrupt and not only

determines which event is causing the interrupt, but also records the time

that the interrupt occurred. This mechanism creates a time-stamped, event

token that is recorded in the event log, used to create the experiment's time

history, and analyzed by the real-time executive to determine what (if any)

actions to take.

2.4.2.6 Data Generator. The data generator is the custom hardware whose job

is to supply the test bed with test data. The data supplied can be either

cyclic or acyclic. For cyclic data patterns, the user selects a pattern from

a set of prestored patterns or uses a pattern of his own devising. The cyclic
pattern is then loaded into the data generator from the PC AT through the host

interface. The data generator contains a 128 KB buffer that allows cyclic

patterns up to about 130,000 bits to be used. The data generator can also

send acyclic patterns to the test bed. To accomplish this the slave PC AT

generates a pseudo-random sequence of bits and sends these patterns in blocks

of 64 KB (about 65,000 bits) to the data generator through the host

interface. The host interf ace contains status registers that can alert the

slave when one of the data generator's data banks is empty. When this

happens, another 64 KB block of pseudo-random numbers are generated and sent

to the empty data bank. Schemes that are capable of generating long strings

of pseudo-random bits are well-known, easy to implement, and fast (See [51).

2.4.2.7 Firmware. Most of the custom components are driven by micropro-

cessors. The firmware to run these computers may reside, at the user's
option, in two places. Provisions have been made to allow the firmware to

reside in EPROMs on each of the custom engines. This is done so that each

engine will have a default algorithm to run at the time of the experiment.

This also frees the user from the task of having to specify an algorithm for

each of the microprocessors before running an experiment. However, the EPROMs

will always contain a bootstrap loader whose task it is to load the micropro-

cessor code into the 68020 cache memory. This is where custom algorithms can

-25-



be loaded into the HSSDC since the bootstrap loader does not have to load the

prestored algorithm into the processor but can be directed to load a section

of the real-time executive instead (a section that presumably contains the

*user's custom algorithm).

2.5 SOFTWARE SUMMARY

a.* This section addresses the software that was specified as part of the MCCSA.

The two types of software, off-the-shelf and custom written, are described
below.

2.5.1 Off-The-Shelf Software

Many of the tasks that must be done by the MCCSA are tasks routinely performed

everyday by programmers. These include the compilation of programs, the

"" -* linking of separately compiled routines into an integral whole, the editing of

source code, and the overall running of a computer. These functions are all

accomplished by off-the-shelf software packages provided with the MCCSA.

Because of the widespread acceptance and use of the IBM PC, its operating

system (PC DOS) has become an operating system for which much software has

been written. This includes not only a large number of commercially available

software packages but also a vast amount of user supported software (public

domain programs, shareware, etc.) For this reason PC DOS was chosen as the

operating system for the master MCCSA computer. The slave computers run an

operating system called the real-time executive that will be discussed in the

section on custom software.

The IBM PC AT contains an Intel 80286 processor. To maintain compatibility

with the earlier models in the IBM PC family the PC AT runs the 80286

processor in a mode that emulates, albeit at much higher speed, an Intel 8088

processor -- the original processor in the IBM PC. The major implication of

this mode of operation is the maximum amount of Random Access Memory that can

be addressed by the processor (1 MB). To overcome this limitation (especially

'- in the slave computers) a Local Area Network operating system was chosen that

-26-

x .



not only drives the LAN but also provides access to the full memory space for

which the processor was designed (16 MB). This operating system runs PC DOS

as a subprocess so that all programs that run under PC DOS should run in this

environment as well.

Another area where off-the-shelf products were provided for the MCCSA was in

the area of compilers, linkers, and loaders. The C progranmming language was

chosen for its flexibility, power, and currency. Most implementations of C

A also come packaged with a linker, run-time library, library of common

subroutines, and a debugger, while DOS provides the loader function as a

built-in facility. No particular vendor's C package was specified since the

number and quality of different C packages available at the time of implemen-

tation will undoubtedly increase. Information was included, however, that

describes the current market offering.

The final area in which off-the-shelf software may be effectively used is in

the realm of post-experiment statistics. Many packages were surveyed with

respect to the number and type of statistics which they provide. It was also

required that the package be capable of working with strictly binary data

brought into the program through a disk file, that the package have good
graphics and reporting facilities, and that it be executable as a stand alone

* program under DOS. The ASYST package was chosen as the principal statistical

package based on these abilities as well as its ability to create a time

correlation history of events. Several other statistical packages are

described in one of the software specification's appendices. All are

inexpensive and each has its own unique set of features that can free the

experimenter from having to design, test, and code large amounts of custom,

analysis software.

2.5.2 Custom Software

The MCCSA possesses its own special set of customized software to enable the

user to define and run an experiment. The first custom program the user

* encounters is the context editor. This is a full screen editor that displays

* the contents of a form (see Section 2.3.1) and allows the user to enter

-27-

'V.~~ .. . .. . .* .. ..



missing parameters in any order simply by moving the cursor around the

screen. The context editor also checks a particular entry against its form

definition (size, type, range, etc.) every time a field is altered, and

contains an on-line help function to aid the user in understanding the

meanings of the various fields on a given form. The contents of the help

fields are defined by the individual who first establishes a particular form

and serves to reinforce the user's understanding of the device and its corres-

N N ponding MCCSA form. Through the auspices of the context editor, the user can

define the entire experiment's collection of forms (device forms, screen

forms, rules forms, and experiment form) and can create new forms at will.

A second piece of custom software is the source-to-source macroprocessor.

Each form contains fragments of high-level source code as well as values for

the substitution parameters. The source-to-source macroprocessor has the task

of inserting the substitution parameter values into the appropriate lines of

the language fragments, creating appropriate header and trailer lines for the

developing module, and putting the language fragments together in the proper

order. Once this task has been accomplished for each form, the resulting

high-level source code is given to the system compiler for translation into an

intermediate level object code. If errors are discovered at this point, they

are reported to the user and control is returned to the context editor so that

corrections can be made. If no errors are found, the resulting object code is

sent to a linkage editor and combined with the shell of the real-time

executive and other programs to create the operating system that controls the

slave computer at the time the experiment is run.

This real-time executive is also part of the custom software provided with the

MCCSA. Its function is to control the test bed by initializing all of the

equipment under its control, by sending the test data onto the test bed, by

capturing the results data from the test bed and compressing it when

necessary, by controlling other test bed equipment, and by monitoring the

status of the experiment. This is accomplished through a set of interface

device drivers (usually supplied by the manufacturer of each interface) and by

custom software that stores the experiment data on some form of magnetic

media, executes actions in response to events on the test bed or in the MCCSA

itself, and processes commiands received from the LAN.

_ -28-



The final piece of custom software in the MCCSA is the experiment cataloging

routines. These are programs that help the experimenter maintain records of

his work. The catalog that is produced then becomes part of the system wide

records and is available to all other users of the system. In this way, a

history of all experiments performed on the MCCSA is maintained. Current

users may look through these records to determine if similar experiments were

run, and to learn the results of these past experiments. This can be a vital

tool in debugging an experiment. Users can also learn the names of the past

experimenters or can locate document references to aid their study. In short,

this software provides the user conmmunity with an experiment maintenance

facility and an on-line reference library of past work.

-2.

'de



SECTION 3

DESIGN CONSIDERATIONS
-'..

This section contains a description of the limitations and the assumptions

that were made in the design of the MCCSA. These restrictions were produced

as by-products of the attempt to meet the MCCSA design requirements.

3.1 SUMMARY AND ASSUMPTIONS

Cne of the foremost requirements placed on the MCCSA is the 50 Mbps test bed

data rate. While 50 Mbps transmission is well within the grasp of current

satellite communications technology, it is on the frontier of computer

control. The fastest components available today are just able to keep up with

50 Mbps (undoubtedly by the time the MCCSA is implemented technology will have

surpassed this boundary). Hence one assumption made during the design of the

MCCSA was that the data rate would not exceed 50 Mbps. There are also other

problems that plague the designer at these speeds that are outside the realm

of computer control. These include the effects of data distortion (all

electronic components and cables begin to act like filters, distorting square

wave signals into a composite of sinusoids) and data recovery (it becomes very

difficult to recover the data by sampling) to name a few.

Moreover, high error rates at high data rates imply very short duration exper-

iments if an exact error history is required. This may be acceptable for

experiments that stop after a large number of bits have been processed (one
% second of 50 Mbps data may be a large enough sample for some experiments).

While computer (PC) technology today is not fast enough to capture a long

duration, 50 Mbps data stream can capture 25 Mbps with relative ease. With

the development of faster components, 50 Mbps may be easily attainable at the

time the MCCSA is built.

However, the direct capture of 50 Mbps data is not desirable because it

creates large problems in data management. To store one second of 50 Mbps

data requires about 15 of the floppy diskettes in widespread use today. Even

-30-

-~~~~~~~.. .. . . . . . . . . . . ... ......-.-....-............. ,..-.....-- .,,..-.. ..,..., -...- ,



with the advent of the new high density diskettes this number is reduced to

only 5. A long experiment then becomes almost impossible to analyze. Even
magnetic tape cannot help here. Although one reel of tape can hold about 170

MB of data, the time required to write the tape initially would preclude the

running of any high speed experiments (floppy disks suffer from the same

limitation also).

To capture the results of a long, 50 Mbps experiment requires some sort of

data compression. An effective algorithm was produced, based on earlier work

at RADC, and implemented in a combination of hardware and software that

tolerates a 50 Mbps input stream and produces an equivalent, slower output

stream. The algorithm is based on the assumption that long, sustained periods

of high error rate (greater than 1/128) occur infrequently at high data

rates. Specifically, it was assumed that the product of the average error

rate and the data rate is less than about 1/128. This assumption does not

preclude a burst of errors and, in fact, the duration of an error burst (at 50

Mbps) can be as long as about 1.5 seconds before there is a danger of losing

the error history. Moreover, if the user is willing to give up the error

*history during the burst, long bursts can be accommodated and are limited only

by the amount of mass storage available.

One of the MCCSA design considerations is that experiments are not to be time

limited by the computer components used in the design. This means that

* hardware components selected for the MCCSA must be physically able to sustain

a data throughput of 50 Mbps without starting and stopping the flow of test

bed data. Fiber optic interfaces and high speed digital components were
selected for the custom hardware to allow data rates as large as 50 Mbps to

pass through the MCCSA unthrottled.

Another design consideration is that the duration of an experiment should only

* be limited by the amount of storage available at the time the experiment is

run. This goal was achieved by using fast components and by installing large

- buffers .o hold the incoming data. If properly set, the MCCSA should only

* stop receiving and processing data when no room remains on the final storage

-. media. Buffers are allowed to overflow and the experiment may then continue

by recording statistics only.

- -31-

4 ' . 0

% %.N.~*



3.1.1 Hardware

The great range of data rates that must be accommodated forces the use of a

special medium. Fiber optics was chosen because it meets this requirement and

provides a low noise path from the actual channel to the HSSOC experiment

interface. All of the components needed to construct a fiber optic interface

*- . are well-tested and readily available commercially.

*To keep up with a data rate of 50 Mbps requires a good mix of hardware and

software. It is important not to put the algorithm entirely in hardware, for

the design then looses its flexibility. On the other hand, if the algorithm

is completely implemented in software the resulting machine will (probably)

not be able to process incoming data at 50 Mbps. To achieve flexibility in

the design, the MCCSA uses Motorola 68020 microprocessors running at 18 Mhz or

better. Because of the speed differences between the microprocessor and the

data stream, it is important that the microprocessor never try to stop the

hardware intelligently. This is because the time lag between the sensing of

an event, the decision concerning what to do, and the issuing of a stop

command may be so long that the hardware state present when the event was

sensed may be different from the hardware state when stopped. In the design

of the HSSDC components, care was taken to insure that the microprocessor only

ever has to trigger processes in the hardware, wait for the hardware to finish

its job, and read a few status bits. In most cases the microprocessor does

not have to wait since the time required to execute the triggering instruction

is sufficiently long that by the time the next instruction is executed the

hardware has finished its work.

The 68020 microprocessor was also chosen because of its internal cache

memory. This is a small amount of random access memory located inside of the

microprocessor itself. When instructions are loaded into this memory the

microprocessor may execute these instructions without having to perform

instruction fetches from the main memory. This affords the processor a

tremendous advantage in terms of the speed with which it can execute a task.

Moreover, microprocessor instructions that do not cause branching or require

main memory access (usually operations on the microprocessor's internal

s. -32-

S--#.-
.O

N .. P



registers) are executed in parallel with memory access instructions (they are
done at the same time the data is being retrieved from memory). This feature

along with the processor's good execution speed make it an ideal choice for

the HSSDC components.

Another consideration in designing the MCCSA was the speed of the master and
slave computers. The current top speed of an IBM PC AT is 8 Mhz. The speed

at which IBM PC AT compatibles operate vary from manufacturer to manufacturer,

but usually it is possible to find one that operates at speeds in excess of 8

-~ Mhz. In choosing a compatible PC AT consideration must be given to other

factors besides performance. These include such intangibles as the perceived

worth of the equipment (knowledge gathered by reviews or from word of mouth),

the economic health of the manufacturer, the relative ease of obtaining

service when the machine malfunctions, the peripherals supported by the compa-

tible, etc. The PC AT running at 8 Mhz is adequate as a master or slave

computer in the MCCSA system, and all PC AT peripherals are designed with the

IBM system in mind. However, there are other machines that will also work

(for example, Compaq and Sperry are well established companies that

manufacture equivalent machines) so no recommiendation of a specific machine is

made in the hardware specification. To make a specific recommnendation would

date the specification before anything was even built.

3.1.2 Software

Since the cost of training an operator on any piece of equipment can be quite

large, and because personnel turnover is present in any organization, the

software for the MCCSA is designed so that a minimal amount of effort is

required to learn to operate the MCCSA. Moreover, extensive on-line help is

provided with all of the custom software where appropriate (the context editor

is a notable example).

The design of the software is modular and structured so that creation and

maintenance of the custom software can be done with a minimum of difficulty.

Moreover, the forms have been designed to move from experiment to experiment

so that once a form has been established for one piece of equipment, or for a

-33-

......... ........



particular procedure, it need not be reproduced by later users. The

information concerning the library of existing forms is part of the cataloging

procedures built into the conclusion of each experiment. In this way a naive

user may be able to create an entire experiment out of previously created
V...

forms. This aspect of the MCCSA is designed to make the creation of new

experiments as painless as possible.

A prime consideration during the design of the MCCSA was to make this machine

as versatile a tool as possible. This means making as few assumptions as

possible about the test bed equipment and conditions. Initially, the MCCSA

will come with forms that describe the complete, usable set of equipment at

RADC, and some common types of event processing that should happen during a

typical experiment (the calculation of instantaneous bit error rate, for

example). Moreover, some general forms will also be provided so that when new

K. equipment arrives it can be fitted into the MCCSA scheme easily. The forms

... supplied with the MCCSA will not only let experimentation begin immediately

feature that should aid immensely in the creation of new forms.

. -34

-. - -'X

.o

3 4-

[4/,,



- -- - - - l _ - _R W 1W

SECTION 4

PROBLEMS AND SOLUTIONS

This section chronicles some of the problems encountered during the design of

the M4CCSA that were produced by the system requirements. Summnaries are also

given that describe the solutions that were achieved.

4.1 SYNCHRONIZATION

The synchronizer was one of the major challenges of the design of the MCCSA.
4The problem is to align two data streams so that pure bit n and corrupt bit n

are presented at the same time to the circuitry that follows. The solution

consists of analyzing all possible alignments of the two streams until a match

is found. This is achieved in hardware by scanning 64 bit sections of the

* inputs until an alignment is produced. Since the transmitted bit pattern

usually is longer than 64 bits care must be taken so that synchronization is

not declared prematurely. Moreover, errors present in the corrupt stream may

also distort the true alignment.

The solutions to these problems were discovered thanks to many suggestions

made by individuals at RADC. The main portion of the synchronizer consists of

a circuit that sequentially compares a 64 bit portion of the pure stream with

each of the 64 alignments of this data with a 128 bit section of the corrupt

stream. Each of the 64 match patterns (a 64 bit wide exclusive or) is passed

to a set of four Read Only Memories (ROMs) that produce the number of

mismatches present in each 16 bit section of the original 64 bits. These

values are then given to a Random Access Memory (RAM) that reports a one or a

zero depending on the numbers produced from the ROM. The user is free to load

the RAM table in any desired manner. One loading of the RAM may produce a

criteria that declares a match if k or fewer mismatches are found in 64 bits,

but other criteria are possible as well (synchronization based on the parity

of the number of matches, matches if forbidden positions, etc.). The synch-

ronizer then counts the number of times the criteria is met and declares

synchronization when the count exceeds a prechosen value. Loss of

-35-

AN
N %' -' %% -*,...gJ/ .



synchronization is also asserted if a prespecified number of ensuing 64 bit

words fall the synchronization criteria.

The ROM and RAM components were chosen because they provide one of the

fastest, computerized Ways of calculating a function of one variable. Not

only is table look-up generally a fast technique, but the RAM table gives the

user the ability to easily modify the function being calculated. This works

to the user's benefit in the MCCSA since the error rate of the corrupt stream
will vary from experiment to experiment. The microprocessor also contains an

internal counter to prevent false synchronizations and premature loss of

synchronization. This counter also gives the user the ability to run

experiments where the error rate of the corrupt stream temporarily increases
because of error bursts, deep fades on the channel, etc. The synchronizer

will maintain the alignment of the two streams (for a while) even though the

streams repeatedly fail the synchronization criteria.

It was also decided to provide two types of synchronization -- cyclic and

acyclic synchronization. The former is preferred and should be used whenever

an end-to-end test of a channel is being conducted. This form of synchron-

ization allows the synchronizer to work most efficiently and eliminates the
need for a large buffer on the pure channel. However, cyclic synchronization

is not appropriate in all cases, especially when both the pure and the corrupt
stream are taken from test points on the test bed. For example, to determine

the effects of attacking the header information in a protocol packet may
require that the pure stream be a faithful copy of the packet and that the

corrupt stream be a damaged copy. Even if cyclic data is supplied to the
channel there is no guarantee that the output of the protocol encoding device

10 is going to be cyclic. This is a case where acyclic synchronization together

- with adequate pure channel buffering should be used.

4.2 TIME STAMPING

Another problem encountered in the design of the MCCSA was the accurate

recording of events during high data rate experiments so that meaningful
% events histories could be produced at the experiment's conclusion. The pure

-36-

~'O:A.L- N.*N ' -' -

* *NN~2



w- - -,. - o

data stream acts like a natural clock in any experiment so rather than

recording time using a separate clock, which would be acting asynchronously to

both the data and events, the pure data stream is sent to a counter that keeps

a record of the number of bits processed by the HSSDC. When an external event

is sensed by the event engine the first action of the controlling

microprocessor is to read the bit count and then the event status register

itself. In this way a token of the event is created whose age at creation is

a function of the time it took to service the interrupt (a constant since this

is the only interrupt to which this processor must respond) plus the time

required to read the bit count (again a constant). This bias can be easily

determined during implementation of the MCCSA and then removed during the

V post-experiment analysis. Hence the recording accuracy of external events is

quite good.

Internal events (buffer overflow/empty conditions, 10 millisecond clock ticks

* for performing screen updates) were deemed less time-critical than their

*external counterparts. The occurrences of these events are also marked with

the bit count but because these events must be serviced by multi-tasking '

microprocessors the time tags of these events will contain errors of varying,

* small sizes that reflect (for the most part) the interruption priority of the

* event. The errors seen in these events will probably be accurate to about 64

bits.

4.3 COMPRESSION

The compression algorithm incorporated into the MCCSA is a modified version of

a compression algorithm used in the past at RADC. As with most algorithms of

this kind, compression is not guaranteed all of the time. The algorithm

compares two 64 bit sections of the pure and corrupt stream to create an error

pattern. If the error pattern is all zeros then no errors are present,

otherwise errors are present. In the case of errors, the pattern is sent on

for further processing. If no errors occur, a 64 bit counter is incremented

to indicate the number of 64 bit error-free words that have been received

since the last error. While this strategy can provide excellent compression

when the error rate is low, it can actually Cause a slight expansion of the

.4...-37-

'., % % .P

I ?,- p



data stream if the error rate exceeds 1/128 since a header word describing the

type of the words that follow always precedes the actual list of error

patterns or error-free counts. Thus if one error is received every 128 bits,

64 words containing alternating error patterns and error-free counts (of 1)

will be sent on, including a header word of alternating 0 and 1 bits (0 =

error pattern), causing an expansion of about 1.5 percent.

Several alternatives are available to manage this problem. First of all,

provisions have been made in the MCCSA design to bypass the compare/compress

engine. In this case the data is given directly to the transfer engines for

storage and the compression overhead is eliminated. This, of course, implies

that no compression was done and so analysis of the data may be cumbersome.

Since the compare/compression engine is not microprocessor controlled, it is

difficult to change the compression algorithm. Alternate algorithms were

considered during the design of the MCCSA but were equally flawed over some

region of bit error ratE That is, these algorithms worked well at high error

rates but failed in the same or similar ways at moderate or low error rates.

Because the choice of compression algorithm is intimately tied to assumptions

* ~-about the error rate, it was decided to provide a single algorithm for

compression that worked well at all but the largest of error rates and, if

desired, allow the algorithm or be bypassed, or allow the HSSDC to produce

only statistics by discarding the error history.

4.4 HARDWARE CHOICE

-. The choice of the IBM PC AT (or equivalent) was an easy one indeed. This

microcomputer has widespread acceptance in industry and many third-party

vendors have developed a plethora of inexpensive, interfaces for this

machine. The amount of hardware available for the IBM PC is only surpassed by
V ' the amount of software (both commercial and public domain) available for this

machine. Since IBM introduced the machine 5 (or so) years ago, many and

varied software development environments have been produced to aid both users

and developers. Moreover, this line of equipment and its peripherals, are

easy to maintain -- either through service contracts available from most

-38-

~ -.5%



dealers, from third-parties who deal exclusively in the repair of PCs, or by

carrying the malfunctioning equipment directly to the repair facility

itself. Repair is typically inexpensive and can be accomplished usually in a

few days.

5,4.5 SOFTWARE CHOICE

As with the hardware, the choice of software was also an easy task given the

vast offering available for the IBM PC. Since Microsoft's PC DOS has become a

de facto standard, this operating system was chosen to run in the MCCSA to

provide access to all of the software that has been developed for the IBM

PC. However, PC DOS only allows the user access to about 640 KB of memory in

any one machine. This was reasonable in the original PC, which could only

address 1 MB of storage at best, but is quite restrictive in the newer

* machines based on the Intel 80286. This processor can address 16 MB of memory

and so to exploit this feature without having to discard PC DOS, several other

operating systems, which can run PC DOS as a process, were examined. The

final choice, Nouvelle's Netware 286, not only solves the PC DOS problem but

also is capable of driving the inter PC Local Area Network (LAN) as well.

One other problem area lay in the choice of the statistical package. Because

of the binary nature of the output of the HSSDC it is required that the

statistical package be capable of working with both binary files and non-

* binary files alike. A search of the available statistical packages revealed

several that could work with these types of files. The ASYST package was

chosen because of the large number of other features it offers as well (other

statistical tests, types of outputs, etc.).

4.6 CUSTOMIZATION

Even in the custom arena, care was taken to select components (chips and so

forth) well within the confines of current technology. The design of the

MCCSA was accomplished without specifying the fabrication of custom chips,

etc. Custom chips present the implementer with many more problems than would
otherwise be encountered and can considerably delay the appearance of the

-39-S



finished product. The construction of the HSSDC (acquisition of parts, fabri-

cation, testing, etc.) will account for the the majority of its cost. By

specifying only off-the-shelf components be used in the HSSDC the cost of the

parts can be kept to a minimum.

-40

A -40-

. ";' '/ /' '," '"?, >'".".", .. .-"/ . *." * -. '-.. ;. .--.. '.' .. -"- -- .. - ' '- -- " ".- .. .- ' -



1;, 11 71_. 7 _7- NW"_ T- -J, IL vu

JQ. REFERENCES

il1 N14ulti-Channel Communications System Analyzer, Design Plan," Stanford

Telecotmunications, Inc., TR86O100b, 19 September 1986.

121 "Multi-Channel Communications System Analyzer," 81 Hardware Specification,

Stanford Telecommiunications, Inc., SP860100, 9 February 1987.

[3] "Software Requirements Specification for the Multi-Channel Couumunications

System Analyzer," Stanford Teleconmmunications, Inc., SP860102, 4 February

1987.

[41 "Engineering Drawings and Associated Lists for the Multi-Channel

Coimunications System Analyzer," Stanford Telecommuunications, Inc.,
TR860163, 9 February 1987.

15] Knuth, D.E., "The Art of Computer Progranmning", Volume 2, (Seminumerical
Algorithms), Ch 3, Addison-Wesley, 1981.

-41-

*:~~.~.../ ... 4. .A* ,~.**. .*** *-~*.,**%

~~4M



~I.-b

M ISSION
Of

Rome Air Development Center
* ~ ~ RADC ptczns and executes te eatch, dev'etopment, te>5t

'~Zi secctecd acquisition p Licg itarn in suppo Lt o6
Co mmakid, Conttof-, Communi~cations and rnef-,Z-Igence
(C3 1) activtices. Techni~cat and engineeuing
Suppct-t wthitn atcea~s o6 compe~tence is p'Lovided to

ES V Ptog~iam Oj'ices (P0,s) and o-thet ESV etement~
to pect6o'tm e66ectiZve acqui~sition o6 C3 1 sy~sstem~s.
The aeas o6 tecznicaP competence inctude
commnica-C-'ons, command and cokitoZ, baZ.CZe
manlagement, -tn6ot'mation ptoce.s~sng, sutveiLZance
sesos -cnte&CZence data cottection and handting,
so&Ld stCate sciLences, etecttomagnetiLc, and

r-topagaC-ion, and e.Zectton-Lc, maintainab41iity,

an orptbiiy



asflS~~ - p in irwin i~. trw tnt -~ - WUWU WWU'WrWU Wrwu wIrw.u

N

N

N

N

J.

'I-

-. J.
.7%

~. .~
*1*

I.

-itt.

N

3- *u~ ~v 'v -. e q *.~v v w w- ~ . v '~

- ~ -~ - -~**.~** - 1-*. ~


