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ABSTRACT

The gehavior of monostatic backscatter from Arctic open

wﬁ',\
leads and pressure ridgesﬁhas'beeﬁ?studied by}asing scale

gxperiments were performed in an anechoic tank using pulsed
transmissions from underwater point sources to measure the
backscatter from several different floating acrylic plate
models. The physical properties of Arctic ice were modeled
by the selection of the acrylic material, and the geometri-
cal properties of the ice in features were accurately scaled
in the laboratorf)by maintaining the appropriate dimension-
to-wavelength ratios. The characteristic behavior of the
backscatter was explained using both diffraction theory and
mode~conversion concepts. It was generally observed that a
significant amount of the incident acoustic energy resulted
in solidborne vibrations and propagating waves within the
floating plate. The ability of those vibrations to
reradiate energy into the water resulted in greater back-
scatter than predicted from the trailing edge of an open
lead and piston-like radiation from &h%’pressure ridge
models.
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I. INTRODUCTION

K The purpose of this thesis is to examine two particular
aspects of underwater acoustic scatter from the Arctic ice
canopy. The motivation for this study came from previous
laboratory experiments during which some unexplained
phenomena were observed.

The method used in this research is to supplement

P available theory of scatter by the use of scale models

constructed of a material that effectively represents the

known physical properties of Arctic ice. Understanding
sound propagation in the Arctic is important for naval
applications. In a recent Naval Postgraduate School thesis
by Denny and Johnson (1986), a study of broad scope was made
W to determine the importance of various characteristics of

the ice canopy on the overall level of low frequency

backscatter from the ice. In the case of ice ridges and the

e

ice edge at an open lead (or polynyas), the Biot-Tolstoy !

Tm o opw -
W

theory for diffraction from an infinite, rigid wedge was
applied in an attempt to predict the amount of energy which
would be backscattered from these acoustically significant
features of the ice.

The first series of experiments in the present work
e explore the sound backscattered from the edge of an ice floe
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at a polynya. An open lead or polynya in the ice cover is
an area where there is no ice. Although definitions vary,
leads are generally cracks in the ice of length much greater
ﬁq than the width of the crack, and polynyas are vast areas of
:&: open water beyond the edge of an ice floe.
| Experiments performed by Denny and Johnson (1986), and
! independent measurements performed for the purpose of this
thesis, have shown that more energy than predicted by the
Biot-Tolstoy theory may be backscattered from the ice edge
DR of the laboratory model of a polynya. Evidence will be
o presented to show Arctic ice and the acrylic ice model are
acoustically non-rigid, so some of the sound energy incident
0l on the plate generates solid-borne compressional and shear
N : waves which propagate along the plate and radiate energy
back into the water when they reach a discontinuity, such as
Vi the end of an ice floe at a polynva. This reradiated
o energy, when superimposed with the actual diffraction, is
the cause of the received backscattered signals being larger
than that predicted by theory alone.
R The second set of experiments considers the sound

backscattered from acrylic models of an ice ridge. The

ﬁf interaction of adjacent ice floes forms pressure ridges in
KR
;ﬁ: the ice canopy. The thickness of the interacting ice and

the magnitude of the compressive and shear forces exerted on

K - the ice floes will determine the size of the keel depth

f." 15
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(below the ice canopy) and the sail height (above the ice
canopy). For the laboratory model, the ice ridge is assumed
to be a wedge of triangular cross section mounted below an
acrylic plate. The sound energy backscattered from a wedge,
as described by the Biot-Tolstoy theory, is the superposi-
tion of the reradiated enerqgy from each line along the crest
of the wedge. The experiments were designed to determine
what part of the wedge contributes the predominant backscat-
tered enerqgy, how the size and orientation of the wedge
affects the amount of energy which is reradiated, and how
reflection, diffraction, and mode-converted energy share in

the total backscatter over a range of sound frequencies and

incident angles.
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II. RESEARCH FACILITIES AND EQUIPMENT

M A. OCEAN ACOUSTICS WAVE FACILITY TANK AND LABORATORY

"y The Ocean Acoustics Wave Facility at the Naval
" Postgraduate School, previously used in the study of
air-water interactions on the ocean surface, contains an
i anechoic tank in which this experiment was conducted. The
tank was large enough to facilitate the use of sinuscidal
ht pulses of energy to measure diffraction without interference
from reflections due to the sides or bottom of the tank.
The dimensions of the tank are 10 feet in length and width,
-%' 9.5 feet in depth. The bottom of the tank and all four
W sides are lined with redwood absorbing wedges which result
) . in a low noise environment and less reverberation of sound
o in the tank. Signal averaging was performed using a very
" short pulse repetition time in order to eliminate the
. effects of random background noise.

W The equipment used in the laboratory is listed in Table
K I. Figure 2.1 illustrates the equipment set-up used during

B the performance of both experiments. All of the equipment

.# used is available on the commercial market with the excep-
tion of the 12 element polyvinylidene fluoride (PVDF) planar
- transducer which was designed for future wavegqguide experi-
N ments, but found some application here. The design
“ . and operation for the PVDF transducer is described in

17
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’ TABLE I )

EQUIPMENT LIST

Abbreviation Nomenclature

Timing Simulator Interface Technology Timing
Simulator/Word Generator, Model RS-
648

Function Generator Hewlett Packard Function Generator,

Model HP-3314A

Power Amplifier Hewlett Packard Power Amplifier,
Model HP-467A

0 Source or Receiver Celesco LC-10 Hydrophone
Pre-Amplifier Ithaco Low Noise Pre-Amplifier, Model ‘
C 1201
!
N Nicolet Nicolet Dual Channel FFT Analyzer,
)] Model HP-465A
Voltage Amplifier Hewlett Packard Voltage Amplifier,
Model HP-465A
: Signal Processor IBM PC/XT with Computerscope
. ISC-16 Data Acquisition and Analysis
. Package
Scope Kikusui Oscilloscope, Model C0OS 5060
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Appendix A. Additional information concerning the equipment
used for transmitting and receiving acoustic signals, and
for performance of the signal processing are described in

Sections B and C of this chapter.

B. TRANSMIT AND RECEIVE SYSTEMS

1. Hewlett Packard Function Generator, Model 3314A

The 3314A function generator is a digital, multimode,
programmable signal generator with preset Sine, Triangle,
and Squarewave functions and programmable arbitrary
g waveforms. The frequency range is from 1 mHz to 19.99 MHz,

and the maximum output voltage is 10 volts Zzero-to-peak.

While using repeated bursts of sound energy for the purpose

-

of signal averaging, the function generator was operated in -

o ee
- -

the N CYCLE MODE, in which N complete cycles of the
: designated waveform were generated by the function generator
‘ at the start of each pulse repetition period.

2. Nicolet FFT Wave Analyzer, Model 660 B

The Nicolet wave analyzer is a self-contained,

RPN

programmable signal processing system which performs analog

-
-

i -

to digital conversion internally. The display screen allows
real-time observation of either the received time signal or
its frequency spectrum. The Nicolet wave analyzer 1is
limited to a sampling frequency of 250 kHz and a time window

of 4 msec. When utilized in parallel with the IBM signal

- e -

Processing equipment, the Nicolet was useful for initial

o -
R

detection of the signal of interest.
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3. Interface Technology Timing Simulator, Model RS-648

The timing simulator was used to establish the pulse

repetition rate used for signal averaging by triggering the
function generator, the Nicolet, the Ithaco pre-amplifier,
and the signal processing equipment in the proper sequence.
The timing simulator has the ability to produce TTL pulses
sufficient for a 50 nanosecond timing resolution.

4. 1Ithaco Low Noise Pre-Amplifier, Model 1201

The Ithaco pre-amplifier provided the filtering and
amplification necessary to detect the small magnitude,
coherent transient signals backscattered from different
features of the acrylic ice model. Signal filtering in the
bandpass range of 3 kHz to 100 kHz helped to reduce the
level of background noise, and signal amplification at gains
ranging from 100 to 10,000 times magnification permitted
detection of even the smallest signals which were reradiated
from the model.

5. Celesco LC-10 Hydrophone

Celesco LC-10 hydrophones were used both as
transmitters and receivers. The LC-10 hydrophone is small
enough to simulate a point source of sound, in which ka << 1
(where k = wave number, a = linear dimension of the
transducer). The LC-10 hydrophone has a fast response;
transducer rise and decay times are short enough to permit
detection of short pulsed signals free of transducer

reverberation or ringing. Short duration pulses were used

21
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to ensure that received signals from propagation paths of
similar length would be separable in time and free of
unwanted interference. The LC-10 also has the advantage of
a flat free-field voltage response and an omnidirectional
directivity pattern within +2 4B over a frequency range of
30 kHz to 100 kHz. When measuring the relative amplitude of
different signals at a given frequency, it was not
necessary to know the absolute calibration of the
hydrophone. The LC-10 does have low output power, but this
disadvantage was not a limitation because the hydrophone was

used at short ranges in a low ambient noise environment.

C. SIGNAL PROCESSING EQUIPMENT

The primary signal processing for the experiment was
performed on an IBM PC/XT personal computer using a
Computerscope Model ISC-16 Signal Processing system. The
Computerscope ISC-16 system is a fully integrated hardware
and software package designed to permit the IBM PC to
perform as a data acquisition and analysis laboratory
instrument. The ISC-16 system contains a 16 channel analog
to digital converter, an external instrument interface, and
the Scope Driver software. The system can receive 16
channels of data input at an aggregate sampling rate of 1
MHz,. Digital conversion with 12 bit accuracy is achieved
over an input range of :t10 volts. The Scope Driver software

permits the IBM PC to operate like a digital storage

22




oscilloscope with the ability to obtain graphical output on

a dot matrix printer or an X/Y plotter.
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ITI. DESCRIPTION OF PHYSICAL MODELS

In order to accurately model the way sound in the Arctic
Ocean interacts with the ice cover, it was necessary to know
the physical properties of the ice and to find a material
with similar properties to use in the laboratory. Since
information available from the literature of Arctic
scientists is extensive (but sometimes conflicting since
conditions in the Arctic are so variable) it was possible to
compile data for the average material properties in the
Arctic. For a model designed to simulate the scattering
properties of low frequency sound from the ice canopy, the
typical values of the characteristic properties of sea ice
are sufficient to acoustically model the backscattering from
Arctic ice, since local variations in the ice properties
typically extend over lengths small in comparison to a
wavelength.

Acrylic was chosen as the material for the model because
most of its bulk properties fall within the range of
physical properties measured in Arctic sea ice. The
longitudinal wave speed and flexural wave speed (scaled for
the appropriate thickness), the Poisson ratio, and the
characteristic impedance (oc) for acrylic are all very
similar to ice. The acrylic plate density is about 25% too
high, and compressional and shear wave attenuations in the

24
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~b acrylic are higher than in ice, but these differences are
B
;ﬁ acceptable. Table II summarizes the comparison between

Arctic ice conditions and the laboratory model of an acrylic

ﬁﬁ sheet floating in a fresh water tank. 1
)

i

oy ) A. MODELS OF SMOOTH ICE AND ARCTIC POLYNYAS. 1
ﬁs For a scale model to accurately represent the real
iﬁ; physical situation, there must exist physical and geometric
;ﬁ' similarity between the two situations. Physical similarity
;¢: was assured when acrylic was chosen as the modeling
%&f material, since its bulk properties closely resemble those
é% of Arctic ice, as described in the last section. Geometric
:$! similarity is achieved by maintaining a constant ratio of
g§‘ wavelengths to thicknesses and distances between the Arctic
gﬁ and the laboratory situations. Medwin et al. (1984)
a{ successfully demonstrated the accuracy of this modeling
E? technique, and similarly in this experiment, the ratio of
?} the acoustic wavelength ()) to the ice thickness (h) must be
0 the same for the Arctic and the laboratory situations.

3% The low frequency range of interest for sound propaga-
'§ tion in the Arctic ocean is 50 to 400 Hz. Assuming a
ﬁa typical Arctic level ice thickness of 2 m, then the 3/8"
gs acrylic plate (9.5 mm) used as a model of smooth ice
§§ corresponds to a scale ratio of approximately 200:1.
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Consequently, for the 9.5 mm plate, the following frequency

ratios apply:

Arctic frequency (Hz) Lab frequency (kHz)
‘ 50 Hz 10 kHz
400 Hz 80 kHz

For the 1/8" (3.175 mm) acrylic plate, a similar corre-
spondence results. Also, the scaled wavelength to thick-
ness ratio will be met for the two situations since the
speed of sound, c, in water agrees within 2% between Arctic

ocean conditions and the fresh water in the laboratory.

Then,
wavelength (\) = speed of sound (c) / frequency (f)
and C(arctic) © c(laboratory)
‘ so

[h/A](ice) = [h/x](laboratory)

since the frequency and thickness were scaled by the same
factor.

In the low frequency regime, if the roughness elements
on the smooth Arctic ice are small compared to a wavelength,
they are not acoustically significant and can be ignored.
For the same reason, it was not necessary to introduce
roughness elements on the acrylic model of smooth ice. The

Arctic polynya, the large expanse of open water beyond the

edge of an ice flow, was modeled by a single edge of a large

acrylic plate. The length of the plate edge was 1.5 m (10

to 80 acoustic wavelengths, depending on the frequency used)




. so that the ends of the plate would not interfere with the
‘ diffraction from the edge of interest.

Finally, since the density of the acrylic is greater

. than the density of water, it was necessary to build-up the

) edge of the plate to keep it afloat. By gluing a 3/8" high

lip around the outside edge of the acrylic sheet, the plate

resembled a flat-bottomed boat floating on the water. Since

. -
-, .

the lip was glued to the top side of the plate, the edge of
the plate which caused the incident sound to be diffracted

was undisturbed.

- 4
- - -

-~ -

B. MODEL OF A PRESSURE RIDGE
. When pressure ridges are formed by the interaction of
adjacent ice floes, the keel depth will naturally be a

function of the ice thickness which formed the ridge. The

« data compiled by Hibler et al. (1972) from visual measure- i
ﬁ; ments above the ice, and the submarine underice profiles

i |

by

% from below, resulted in a statistical model of pressure

ridge keel depths and ice keel spatial density. To ensure
that only pressure ridges are considered in the profiles,
the data distribution only included pressure ridges which
" were greater than a predetermined cutoff height or depth.
X The average pressure ridge keel depth reported, from the set

i of all ridges greater than 6.1 m, was 9.6 m in the Central

" Arctic and 11.4 m in the Canadian Archipelago. The average
N reported spatial distribution of pressure ridges was 4.3
N ridges/km in the Central Arctic and 9.6 ridges/km in the

32

’ ' ; it ionle e AR NN NIRRT NN
BOGLOCOOOUON A ARTCA "’a‘-t“'}'ﬁ.’,g'a’z’r AL, DX X N GO WARRLEL,



[t Canadian Archipelago. Unfortunately, no data were reported
“ﬁ; for the average length of an ice keel. This type of data is
) not available from submarine underice profiles.

A For the purposes of this experiment, three different
pressure ridges were built to study the effects of height
and slope on the amount of energy backscattered from the
qﬁ ridge. Figure 3.1 shows a cross sectional view of the model
Ey¢ for the "typical"” pressure ridge, including the significant

dimensions and the scaled dimension. It is the same ridge

ﬂ{a used by Denny and Johnson in their study of the backscatter
&3 from a ridge. The dimensional data for all these pressure

) ridges are presented in Table III. With the "typical"
%ﬁ pressure ridge as a reference, the "large" ridge was made
e

with the same slope but twice the height, while the "steep"

ridge was made with the same height but twice the slope.

ﬁk‘ The scaled dimensions of the "typical" pressure ridge
aly
emﬁ were designed to match those of a typical multi-year

pressure ridge, while the "steep" and "large" ridges

&:. represent possible ridges specifically designed to study the
ar dependence of backscatter on height and slope. Each keel
i was manufactured by gluing flat strips of acrylic together,
%g then machining the entire piece to the specified dimensions.
?g The ridges were glued to a smooth acrylic sheet using an
= acrylic solvent (K-Lux™ solvent cement for acrylic).

iji‘ ) It is noteworthy that the fabrication of the "steep" and
n;? - the "large" ridges did not include a ridge sail above the

W 33
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e TABLE III
COMPARISON OF THE DIMENSIONS
OF THE THREE PRESSURE RIDGE MODELS
FOR A 1/8" PLATE THICKNESS

e RIDGES

Ot

i TYPICAL LARGE STEEP

T DIMENSION RIDGE RIDGE RIDGE

. Keel Base 2-3/8" (36.2 m) 4-3/4" (72.4 m) 27/32" (18.1 m)
a‘:‘\:

Ry Height 5/8" (9.5 m) 1-1/4" (19.0 m) 5/8" (9.5 m)
N Angle 28° 28° 56°

. \;;

L Sail Base 3/4" (11.4 m) (N/A) (N/A)

s Height 3/16" (2.9 m) (N/B) (N/A)

o

SAN

R Angle 26° (N/A) (N/A)

Vo (Dimensions in parentheses are scaled to the Arctic model
fh assuming a frequency ratio of 600:1.)

e

L300
R (11 4m)

‘ 5, - 3, - (1.9m)

o, / 4 1, " acrylic
- (29 '6) N\ “_ A1 s plate

A cm 4 I/\

A | P2 P

.‘j NG ARG T

Srg (9.5m)

‘oge:‘

e |
o (36.2m) g

1

G Figure 3.1: Cross section of the pressure ridge model used
N to measure forward and back scatter from a
K ridge keel. Dimensions in parentheses are
) scaled to the Arctic model. All materials are
* acrylic.
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08 plate. Although the sail is a visually predominant feature
. in the Arctic (and on the "typical" ridge), it is assumed to
| be acoustically insignificant for the purpose of diffraction
oy and backscatter from the ice keel. Additionally, it was not
.3 7 necessary to place roughness elements on the faces of the
pressure ridges since, for low frequency propagation of
\ sound in the Arctic, the roughness elements are small
s compared to a wavelength and, therefore, are also assumed
| acoustically insignificant. This may not be the case and

al will be examined in future experiments.
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Iv. THEORY

A. DIFFRACTION THEORY

A physical explanation for the mechanism which causes

diffraction is best described using Huygens' principle, as

described by Clay and Medwin (1977). Huygens' principle

N Pt

states that each point of an advancing wavefront is a source
of secondary waves which move forward as spherical wavelets
R in an isotropic medium, and the outer surface enveloped by
g all of the wavelets defines the new wavefront. Consequently,
when an acoustic wave interacts with an object in the
o medium, every point on the object will be the site of an
: expanding spherical Huygens' wavelet. The wave front that -
e envelopes all of the wavelets spreading from the object is
‘ called the diffracted wave.
N Biot and Tolstoy (1957) derived a closed-form solution
to predict the maximum value of the diffracted energy from
: an infinite rigid wedge due to an impulse point source of
a known strength. The expression was simplified by Medwin
2y

(1981) to consider a point source delta function turned on

“ at time t = 0, and to account for the finite size of the
¢

i wedge using digital techniques. The result is the
simplified expression in cylindrical co-ordinates for the

diffracted pressure from a wedge, Equation 4.1: -

- 36
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oy

> p(t) = [-(Soc/4amey){8iexp(-my/e,)]/(rry sinh y) (4.1)

' (4.2)
Cal sin{(r/€y,)(nteze,)]
{8} =

1 - 2 exp(-ny/€y) cos{n/g,)(n828265)] + exp(-2my/8,)]

[.c’t’ - (r? + r,? + z?)
oy y = cosh~!

g 2rry

(4.3)

ﬂﬂ The diffracted pressure at time t is p(t), p is the density
i of the medium, c is the sound speed in the medium, S is the
iy source strength. The angle of the wedge measured in the
mﬁ _ fluid reaion is €y, the source coordinates are (ry, fo, 0)

Sy anc the receiver cocrdinates are (r, ¢, z). The term for

R

g

Y { is written for simplicity as (m*8:€,), and actually
s represents the sum cf the four possible combinations of @
e and *f,, Fiqure 4.1 shows the geometrv for the wedge.

. For a point source turned on at time t = 0, the sound
i%‘ diverges spherically and intersects the ridge first at the
R least time path, then along the crest of the ridge as the
wave diverges. Sound energy diffracts all along the crest
ﬁ? of the ridge and propagates to the receiver according to

L Huygens' principle. The earliest arrival occurs at the

v, . least time, 1o, given by

';:;'I 2 2 Li
et To = [(r + 15)° + 2] /c
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Fiaqure 4.1: a) Wedge aeometry for equations 4.1 through

(a)
4.3. (b) Unfolded geometry.
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The maximum pressure is received at this least time, while
pressure received from other paths falls off exponentially
with time corresponding to the greater path length and
weaker diffraction at oblique angles.

Novarini and Medwin (1985) demonstrated the use of the
"wedge assemblage" method as an accurate way of modeling the
diffraction from a conjoint assemblage of rigid or pressure-
release crests and troughs. Similarly, ﬁhe total response
for the diffracted pressure from the three Biot-Tolstoy
wedges which form the ice keel in the acrylic model will be
the linear superposition of three properly timed wedge
‘impulse responses (assuming for simplicity that the wedges
are rigid or pressure-release). Figure 4.2 shows the
pressure due to three rigid wedges which form the model of
the ice keel. The wedges are also assumed to be
sufficiently spaced to permit superposition of the
individual responses.

In the case of backscatter, the geometry is simplified

since r = rgo, 6 = €5, and z = 0, In this case, from

Equation (4.3),

(r + r)?* - 2r? :
cosh-! - = cosh-!(1) = 0
2r

ylt = 15)
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Fiqure 4.2:

(2)
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-12C0

-0 0 63 120 180 240 3CO -
Time (psec

(a) Diagram showing the three Biot-Tolstoy
wedaes that make up the model of the ridge
keel. (b) Time domain impulse response
calculated using Biot-Tolstoy theory and
superposition. Relative times cof arrival for a
backscattering geometry.
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K Since p(t) =[sinh (y)]-!, p(t) + = at t = 15, as expected.
. Since digital signal processing is used, Medwin (1982) has
shown that, in many cases, the initial impulse can be
o approximated by a large finite value corresponding to the
- . adjacent sampling interval, At:

p(t = 14)

. = 1.366
‘ plt = 15 + At)

Finally, in spite of the fact that the Biot-Tolstoy
2 theory predicts the diffracted energy from a wedge due to an
impulse of sound, the theory can be used to predict the

diffracted energy when the input is not an impulse Dby

) .
gg relying on linear systems theory. If the ice keel is
e, .
m considered to be a linear system whose output is the
X
diffracted pressure, then for an impulse source §(t), the
iy
EN ] .
% . diffracted pressure given by the Biot-Tolstoy theory is the
._';;l
x‘ impulse response h(t). The transfer function of the filter,
H(f), is the fourier transform of h{(t).
.\:;‘
i §(t) hit)
e H(f) >
! x(t) y(t)
)
k? In the experiments, a pulsed sinuscid x(t) is used as the
k‘ input instead of an impulse source, so the output diffracted
-"
_ pressure response is the convolution of x(t) with h(t).
."?‘

p(t) = x(t) * h(t)
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Converting to the frequency domain by the convolution

theorem:

P(f) = X(f) H(f)

As shown by Denny and Johnson (1986), the pressure
response in the frequency domain relative to the direct

free-field transmission at a reference range R is the filter

transfer function times the reference range:

Pg(f) X(E)H(E)

Popp(£)

= H(£)R,
Prpp(£) X(£)/Rq

- P o

Consequently, for a known input signal to the linear filter
H(f), the output response can be obtained relative to the
i response over a reference distance even if the input was not

an impulse,

? B. MODE CONVERSION THEORY

When a sound wave interacts with a solid structure, some
, of the energy may be transmitted from one medium to the
other causing longitudinal and transverse vibrations in the
solid, and this process is sometimes called mode conversion.

As described by Beranek (1971), when steady state is

o - .
-~

reached, the vibration field will build up to a level at

[y

which the power from the source balances the power losses in

the system. If a burst of sound interacts with a solid, a

o
- -

similar energy balance can be performed to account for the

. - 3.
X
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disposition of the incident energy which gets reflected,
transmitted, or causes vibration in the solid.

For a wave to propagate in a solid, liquid, or a gas,
the medium must be capable of alternately storing energy in
kinetic and potential forms. Potential energy is stored
when part of the medium has undergone elastic deformation:
kinetic energy is stored in the movement of particles which
have mass. A fluid does not support shear motion, but can
undergo compression, so only compressional waves exist in a
fluid.

A solid can store energy in both compression and shear,
so many different types of waves (representing various
combinations of compression and shear) can propagate in a
solid. For the flat plate used in the model of the Arctic
ice, the solid or body waves of interest are compressional,
shear, and flexural waves. A compressional wave is a
longitudinal wave in the solid, such that deformations occur
parallel to the direction of propagation of the wave, and
the potential energy is only stored in compression. A shear
wave 1is a transverse wave in the solid, such that
deformations occur perpendicular to the direction of
propagation of the wave, and the potential energy is only
stored in shear., A flexural wave is a bending wave in which
the potential energy is stored in a combination of
compression and shear as the plate bends about its neutral

axis (where there is no deformation).
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l. Compressional Waves

When a compressional wave propagates in a solid body
whose dimensions are large compared to a wavelength, the
wave will travel at the bulk speed of sound which is

dependent only on the material properties of that solid:

ks
Y(l - o)
Cp =
p(l + o)(l - 20)
where Y = Young's Modulus (N/m?), ¢ = Poisson's ratio, p =

density of the material (kg/m®). For the acrylic, using the
values from Table II, cg = 2545 m/sec. By Snell's Law, an
incident plane wave at the boundary of the ice-water
interface will be refracted into the second medium according
tc the ratio cf the sound speeds. Assuming that Huvcens'
principle applies, the wavelet initially produced at the
acrylic boundary from the incident plane wave in the water
responds to the bulk speed in the acrylic since it is
unaware of the finite plate thickness, as shown in Figure

4.3. In this case, the critical angle 6. is

c, o Cw - 37°
fo = sin-! —_ = sin e =3
c CB

(gqrazina angle = 53°)

At this critical angle, the enerqgy transmitted into the
acrylic is parallel to the surface, and will propagate as a

lonjitudinal wave at the plate speed given by:
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Cp = —_— = 2257 m/sec

Similar results occur in an Arctic ice sheet at angles and
speeds which maybe determined for the wide range of physical

parameters that characterize Arctic ice (see Table 1I).

| et

' Cg(a) < ¢,y
YLIC (A) Cpth) > Cy :
ggaxgs (1) E;Zi:; Cp(1) > C1 ) CglI) > &

———————— s +
WATER /-: c A

0i
{compression) ({shear)

Figure 4.3: Transmission from one medium to another at
oblique incidence.

c, = speed of sound in water

cp = compressional wave speed in a plate
cg = shear wave speed in a plate

8i = angle of incidence

8¢ = angle of transmission

(NOTE: Reflected rays, which occur in all cases, are not
shown for simplicity.)
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2. Shear Waves

A shear wave will be generated in a solid in the
same manner described above for compressional waves if the
shear speed is greater than the speed of sound in the
adjacent medium, which is the case for shear waves in much
of the Arctic ice. In the acrylic model, the shear wave
speed is less than the speed of sound in water, so
refraction into the plate occurs at angles less than the
incident angle. (Figure 4.3) Since a shear wave is a
transverse wave, optimum excitation of shear waves will
occur when the acoustic energy in the water interacts with
the floating ice plate or acrylic sheet at normal incidence.

Considering Huygens' principle, for a plane wave in
water at normal incidence, the wavelets transmitted into the
acrylic cause vibrations perpendicular to the plate surface,
resulting in transverse waves that propagate along the plate
at the shear wave speed, cg = 1373 m/sec. In the Arctic,
the typical shear wave speed is greater than or equal to the
speed of sound in water, so shear waves in the ice plate
will be excited by the same method described for
compressional waves.,

3. Flexural Waves

The theory of flexural waves and the derivation of
flexural wave phase and group speeds are presented in
Appendix B. A few points are in order here pertinent to the

study of mode conversion.

A R) L ] (AP U ) (]
;"6‘1.'\“}"‘ "”.0’:.‘5“‘;“".klslfl'.‘)‘u.ﬂ"‘. - @‘3.5

’5

R
L




£y When an incident acoustic wave strikes the plate
P
BN causing vibrations, flexural waves may begin to propagate,

in addition to the waves described above. The boundary

ﬁg condition for sound transmission between two media is that
1
!’(
ﬁ% the horizontal wave numbers, k¢ in the plate, and ko in the

fluid, must be equal to satisfy Snell's Law. When k¢ = kor
the compressional wave sound speed in water equals the
B flexural wave speed in the ice, and the situation is called

* coincidence. 1In the case of an acrylic plate or Arctic ice
*ﬁ floating on water, the flexural wave speed is always less
'ﬂ than the speed of sound in water, so the coincidence

condition is never satisfied. Consequently, flexural waves

a8 cannot be efficiently generated by an incident acoustic
teg)

L . .

:y ) plane wave. However, a source of diverging waves near a
N

plate containing surface roughness elements can generate

ﬁﬁ flexural waves (Denny and Johnson, 1986). As an additional
s; ot

DL

ﬁ& consequence, if a flexural wave is generated in an acrylic
"

or Arctic ice plate, it cannot reradiate energy efficiently
N back into the water in the form of compressional waves

e (except perhaps at a discontinuity) since the horizontal

wave numbers cannot be matched.
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V. FLEXURAL WAVE ATTENUATION

The ineffective transfer of acoustic energy from the
waterborne compressional wave to the ice medium in the form
of plate flexural waves was studied by Denny and Johnson
(1986). They-showed that flexural waves could be driven in
the plate and could radiate energy back into the water only
when the source was very close to the plate. The flexural
wave speed was effectively measured in that experiment, but
no attenuation measurements were possible. The purpose of

this experiment was to measure the flexural wave

attenuation.

A. EXPERIMENTAL PROCEDURE

These measurements were made with the smooth floating
plate in the anechoic tank to simulate the level ice model.
In the flexural wave speed measurements made by Denny and
Johnson (1986), an accelerometer mounted on a small square
of plexiglass and bonded to the plate using Tackiwax"™
provided an effective means of measuring flexural wave
speed. While using the accelerometer, the plate-to-receiver
efficiency depended on the quality of the bond. 1In order to
measure attenuation, the receiver had to be constantly
repositioned to find the decay of the propagating flexural
wave over increasing distances. Since the method of using
Tackiwax to stick the accelerometer to the plate could not
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be duplicated from range to range with a measurable

e,

gg precision, the accelerometer could no longer be used as a
a receiver.

%% ) The receiver used for the attenuation measurements was a
S? _ Bruel and Kjaer 1/2" condenser microphone. The source used
ii to excite the flexural waves was a 1" cylindrical hydrophone
g{ taken from a sonobuoy, and chosen for use because of its
%@ flat face which provided an efficient bond with the
" underside of the plate. The electrical input to the source
%$ was 3 cycles of a 200 volt peak-to-peak sinusoid. The
ﬁg frequency range was limited between 10 kHz and 20 kHz: the
i lower limit was determined by the maximum allowable pulse
f% length for separating signals in time, while the upper
ax ‘ frequency was limited by the microphone frequency response
W roll-off.

f%? The microphone was suspended from a metal rod spanning
iﬁ the plate and was slid across the plate at a height of 2 mm.
g: Three data runs were conducted, one each at 10, 15, and 20
ﬁg kHz. For the data collected at 10 and 15 Khz, the receiver
3& was positioned at 10 cm intervals between 1.0 and 1.5 m from
N

" the source. At receiver ranges less than 1.0 m, the time of
‘ﬁﬁ arrival of the airborne sound wave generated by the source
BEY

g& (travelling at 343 m/sec) interfered with the plate flexural
K wave (travelling at speeds less than 650 m/sec) for
%%' frequencies less than 15 kHz. At 20 kHz, the attenuation
ﬁf _ was too great for measurements to begin at 1.0 m from the
LA
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source, but the faster flexural wave speed (750 m/sec)
provided sufficient signal separation to collect data
between 0.5 to 1.0 m. Since the measurements were made in
air, it was necessary to collect the data at night when the
ambient noise conditions were low. The data were collected
and processed using a Hewlett Packard 356l1A Dynamic Signal

Analyzer, by rms time averaging 1000 sample points to

determine the received signal level.

B. RESULTS AND DISCUSSION

As revealed by the experiments of Denny and Johnson
(1986), the condition for efficient mode conversion between
compressional waves in the water and flexural waves in the
acrylic plate (or Arctic ice) is never satisfied. For
efficient mode conversion, the horizontal component of the
wave number must be matched between the plate and the water,
but the condition cannot be met since the flexural wave
speed is significantly lower than the speed of sound in
water at all freguencies. Nevertheless, by using the
transverse accelerometer, it is possible to excite flexural
waves in the plate, albeit not efficiently.

Figure 5.1 shows the measured flexural wave group speed
based on the pulse time of arrival for the three frequencies
tested. The measured wave speeds are less than the
theoretical flexural wave group speed due to the mass
loading effects of the water on the plate, which is
unaccounted for on the theoretical curve.
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A Figure 5.1: Flexural wave speed measured in a 1/8"
K acrylic plate floating on water.
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3 The attenuation characteristic of the plexiglass was
‘s determined by measuring the largest peak-to-peak amplitude
of the flexural wave signal, which corresponded to the
maximum strength of the flexural wave at that frequency and
range from the source. The attenuation (dB/m) for a

particular frequency was determined from semi-log plots of

* received magnitudes versus range, such as in Figure 5.2.
i *
g Data at longer ranges (e.g., 1.3 m in Figure 5.2) were
affected by the noise level and were not considered in the
Y
ﬂ determination of attenuation values. The data obtained at
3
s 10, 15, and 20 kHz are plotted on Figures 5.2, 5.3, and 5.4.
)
The cumulative results of those three figures form the
R attenuation versus frequency curve, Figure 5.5.
kY. The average attenuation of the flexural wave in the
&
acrylic plate was measured to be 1.5 4B/m times the .
i
' . . . .
M frequency in kHz. Comparison with sea ice values could not
N
N
sﬂ be made as no attenuation values could be found in the
N
available literature for Arctic ice flexural waves.
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Figure 5.2: Attenuation Characteristic for 10 kHz.
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Figure 5.3: Attenuation Characteristic for 15 kHz.

RN
A
.

54

N e

" 3 3 V. ¥ q W O (WS "\ AN
AN g 'd‘?glﬁ"‘,’"»;”yfziklcxfﬁ’}'B“lKQ. . ".“.l:v;“_‘ l‘:i":ﬁ'l':‘i“'v" A 1 ,i?sr‘\';“\.‘_l-f,lg..:‘li., f‘t’l ‘5._,‘!‘(‘&‘ k‘:‘l!’”“;iﬁ ~“’: Df‘ 5?

KRN KN

Iy
R



S
(o]
~
1
: LEGEND
) S o = FREQ = 20KHZ
£
<)
= T N -
=
-3
> <
. S '
s | NOISE. LEVEL
g e o
<
<
W
c
S -
0.4 0.5 0.6 0.7 0.8 0.9 1.0 T.1 1.2
DISTANCE, L (M)
Figure 5.4: Attenuation Characteristic for 20 kHz.
wu
::;?n
g
)
:fif'
e 55
o
"“i‘
%
2

At By 5.9 148 % e ';
RS il‘-‘b_‘a,“tg § ﬁl‘g.‘i?y!l’gf‘? :“q,,l’gg



-~ - .-

35

30

(DB/M)
35

20

ALTENUATION,

RN / GEND
4

N
1 n . .. e e = ATTEN 'Aflo\. Y FREQ

15 20 25
FREQUENCY, F (KH2)

_ Figure 5.5: Attenuation as a function of frequency for

e flexural waves in a 1/8" acrylic sheet floating ¥
- on water.
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VI. BACKSCATTER AT A RIGHT ANGLE WEDGE
(ARCTIC OPEN LEAD)

2y A, BACKSCATTER FROM AN UNDERWATER WEDGE

‘ The objective of this experiment was to measure the
’& backscatter from the corner of an acoustically non-rigid,
D submerged, finite plexiglass wedge, and compare the results
: with the predictions of the Biot-Tolstoy impulse solution
0 for diffraction of point radiation by an infinite, rigid
At wedge. Measurements of backscatter from a floating acrylic

wedge made by Denny and Johnson (1986) indicated that the

}V Biot-Tolstoy diffraction theory does not accurately predict
L
K
5% . the amount of backscattered energy. In fact, in some

directions more energy was received than predicted, but due
7 to the fact that the acrylic was floating, the effects of
RIN the air/water interface near the diffracting corner were
unclear. By completely submerging a plexiglass wedge and
repeating the measurements, the interactions with the water

o surface were eliminated so diffraction alone could be
¢

¥

§

measured.

i 1. Experimental Procedure

o The laboratory measurements of the backscatter from
Ty
Fid

. the corner of the wedge were performed in the Ocean Acous-
;f. . tics Wave Facility tank described in Chapter II. The wedge
]
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was fabricated out of two pieces of 1/8" plexiglass (70 x 83
cm). Liquid acrylic plastic cement was used to bond the
corner of the wedge at a 90° angle; support pieces were
cemented to the top and bottom (Figure 6.1). The wedge was
suspended vertically in the anechoic tank by four ropes
above and was held stationary by two side strings to prevent
rotation.

The LC-10 source and receiver were attached to an
aluminum rod which was held vertically near the wedge by an
extending arm from the side of the tank. Positioning of the
source and receiver was accomplished using a 25 cm radius
compass marked in 15 increments and centered above the
corner of the wedge. The geometry for source/receiver
positions was chosen to eliminate interference from

undesired edges, since the objective was to measure diffrac-

_§ tion only from the wedge corner, The input electrical
:%2 signal used was 2 cycles of either a 90 or 100 kHz sinusoid.
! The received diffraction was identified both by its time of
% arrival and by disturbing the diffracted signal by means of
%; an aluminum sphere placed at the edge. Figure 6.2 shows a

.
o %

typical received waveform, including the direct source-to-
receiver path, the specular reflection from the plexiglass
plate, and the backscattered signal from the corner of the

wedge. Figure 6.3 represents the same geometry with the

exception that an aluminum ball has been placed at the edge,
and the diffracted signal can be identified by the
additional response preceding the diffracted wedge signal.
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Figure 6.1: Experimental set-up for the underwater wedge.
Source/Receiver positioned for monostatic
backscatter, (r = ry), (6 = 85). Angle of %
wedge measured in the fluid region, 6, = 270°. ‘
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= Figure 6.2: Backscattered waveform from an underwater
y b
M wedge.
”i
Ed (1) = Direct path between source and receiver
“ (2) = Specular reflection from the side of the
N wedge
" (3) = Diffraction from the edge of interest
.",

: '“u%.

:V'v ”".ﬁ'""vv

- ’. ‘!
’ il
Ef Figure 6.3: Backscattered waveform from an underwater
) wedge.
. (1) = Direct path between source and receiver
(2) = Specular reflection from the side of the 4
o - wedge
& (3) = Diffraction from the edge of interest
o (4) = Diffraction distorted by the aluminum )
N sphere
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2. Results and Discussion

Once the backscattered signal was identified, its
measurement was simply the maximum peak-to-peak amplitude of
the received signal. Backscatter was measured at angles
8 = 6o = 15°, 30°, 45°, 105°, 120°, 135°., It was impossible
to measure the diffraction between 50° and 95° because the
desired signal was hidden by the stronger specular reflec-
tion from the plexiglass plate. It was unnecessary to
measure the backscatter for angles greater than 135° because
of the symmetric geometry. The backscattered signal was
identified using the aluminum sphere for each repositioning
of the source/receiver.

The results of the measured backscatter are plotted
in terms of diffraction loss in dB referenced to spherical
divergence over the same (r + ry) range as a function of
angle from the side of the wedge (Figure 6.4). A single
theoretical curve for the Biot-Tolstoy predicted diffraction
loss from a rigid wedge is plotted for comparison. (A
single theoretical curve is sufficient because the predicted
diffraction loss at 90 and 100 kHz are almost identical).
Notice that the measured backscattered amplitude is greater
than predicted for angles corresponding to backscatter from
the trailing edge of an ice lead (6 = 65 = 15°, 30°, 45°).
Also note that the measured signal is less than predicted
for those angles corresponding to large backscatter from the
leading edge of an ice lead (6 = 6, = 105°, 120°, 135°),
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; The experimental results shown in Figure 6.4 can be
explained by the penetrability of the wedge causing mode con-
version. For the angles corresponding to backscatter from the
K ' trailing edge of an ice lead (6 = 65 = 15°, 30°, 45°), some of
' the acoustic energy incident on the plate face is mode-
converted and causes both longitudinal and transverse
vibrations in the plexiglass. Compressional and shear waves
propagate in the plate and radiate energy back into the water
upon reaching the corner of the wedge. The speeds of propaga-
tion are such that compressional wave reradiation occurs at
. nearly the same time as diffraction from the corner, so a
superimposed signal is received which is larger than that

predicted by rigid impenetrable diffraction theory alone.

™

For angles corresponding to backscatter from the
leading edge of an ice lead (8 = 65 = 105°, 120°, 135°), some
> of the incident acoustic energy is again mode-converted into

R vibrations of the plexiglass wedge. As above, from an energy

conservation point of view, less energy is available to be

Pt

diffracted since mode conversion has occurred. However, in

.

) this case, compressional and shear waves propagate along the

plexiglass sheets away from the corner, and hence there is no
i opportunity for reradiation from a discontinuity to be
superimposed with the diffraction. Consequently, the measured

diffraction is less than predicted.

. The finite size of the source and receiver may be one
N possible explanation for the excess diffraction measured at
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8 = 8o = 120°, 135°. A true point source/receiver would be
able to measure the actual diffracted pressure in the trough
of the theoretical curve, whereas the finite LC-10 source/
receiver mounting was 2.3 cm wide at a range of 25 cm, so
the acoustic signal was measured over a 5.3° sector centered

at 6 = 6o = 135°, and not at a point.

B. BACKSCATTER FROM THE ARCTIC LEAD

The experiments performed on the underwater 270° acrylic
wedge (Chapter VI, Part A) and measurements made by Denny
and Johnson (1986), indicated that during lagging edge
backscatter, more energy was received from the edge of an
acrylic wedge than was predicted by the Biot-Tolstoy
diffraction theory. The difference is due to the mode
converted enerqgy which reradiates from discontinuities into
the water (in some cases at the same time as diffraction
from the plate edge).

The objective of this experiment was to obtain
backscatter measurements from the edge of the floating
acrylic plate which models a smooth Arctic plate for a point
source and receiver positioned monostatically beneath the
plate. It is a repeat of one experiment performed by Denny
and Johnson (1986), but by judicious choice of source/
receiver positions, taking into consideration the theoreti-
cal paths and speeds of propacation for the different types

of waves, it was possible to separate in time the received
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signals corresponding to the diffraction, compressional, and
shear waves which radiated from the plate edge back into the
water for certain geometries. At the remaining angles,
complex phasor subtraction provided the separation.

1. Experimental Procedure

The laboratory measurements of the plate edge
diffraction, and of the plate compressional and shear waves
which reradiate from the plate edge were made in the Ocean
Acoustics Wave Facility tank described in Chapter II. The
source and receiver were mounted together on nylon strings
threaded through a series of eye screws forming a pulley
arrangement. One end of the pulley was fixed at the surface
of the water near the center of the tank, while the other
end was attached to the bottom of a pole positioned in a
vertical guide along one side of the tank. Source/receiver
positioning was then accomplished by setting the depth of
the pole at one end, and adjusting the pulley mechanism to
move the hydrophones along line AB, as shown in Figure 6.5.

The floating acrylic plate was positioned above the
source/receiver without disturbing the pulley arrangement,
and was held in a fixed position by clamping its outer edges

to the sides of the tank. The source/receiver was posi-

tioned 60 cm from the plate edge, and subsequent positions

were chosen along the same arc of 60 cm radius. The exact
" position relative to the diffracting edge was determined
acoustically by measuring the travel time of the vertically
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Figure 6.5: Experimental set-up for the Arctic open lead.
Source/Receiver positioned for monostatic

backscatter, (r = ry), (8 = 65). Two positions
are shown.
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propagating reflection from the plate and the travel time of
the signal which diffracted from the edge of the plate.
Once positioned, the source and receiver remained fixed
while data were collected for all frequencies of interest.
Since diffraction occurred not only from the plate
edge of interest shown in Figure 6.5, but also from the two
sides and the back edge of the floating plate, it was
necessary to subtract the effects of the three unwanted
edges which interfered with the diffraction of interest. By
clamping a second, identical plate to the edge of interest,
the measurement for the same source/receiver position was
repeated without disturbing the first plate. The received
signal then obtained contained no diffraction from the edge
of interest, and diffraction from the three interfering
edges was identical to the initial measurement. By a point-
by-point computer subtraction of the two signals (one from
the single plate, and one from the plates clamped together),
the effect of the three interfering edges was eliminated,
and only the diffraction and reradiation from the edge of
interest remained. The quality of the computer subtraction
depended on two crucial points:
(a) If the original plate was disturbed during the
clamping process, the position of the three inter-

fering edges would be slightly altered, and an
imperfect subtraction would result.

(b) If the two plates were not clamped with the same
depth of immersion, a discontinuity would be present
at that joint, resulting in a small amount of
diffraction and reradiation from the discontinuity.
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,: In this case, subtraction would not provide an
R accurate indication of the diffraction from the edge
" of the original plate.

» Figure 6.6 shows a sample waveform for position Rl and the
Ny effectiveness of subtraction for removing reflection and
W unwanted edge interference from the signals of interest.

The frequencies chosen for this experiment were
¥ those which provided a measurable diffraction from the plate

4 edge, and allowed for simplified signal processing: 3 cycles

of a 46.9 kHz sinusoid, 4 cycles of 62.5 kHz, and 5 cycles

of 78.1 kHz. The received signal was amplified 100 times

PR -
> T AT

and filtered from 3 to 100 kHz by the Ithaco Low Noise

Preamplifier, amplified an additional 20 4B, and sent to the

analecg to digital converter and signal processor. The

s p v e ¥

E received time-domain signal was averaged 500 times to
. eliminate random background noise, and subtracted, as
&

g described above, to eliminate the coherent "noise" due to
§ the other three edges. The transient signals of interest

N were then transformed to the frequency domain using a 64
W pysec time window and a 32-point FFT to obtain their
! magnitude, since the sampling frequency was 500 kHz.

2. Results and Discussion

N Figure 6.7 and Table IV show the geometry and the
? individual legs of the propagation paths for six source/
: receiver positions. Using the appropriate values for the
speed of sound in water (cy, = 1481 m/sec), compressional
P wave speed in the plate (cp = 2257 m/sec), and the shear
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Figure 6.6: Sample waveform for the Arctic lead experiment
for £ = 46.9 kHz. Top picture shows the signal
return from the single plate: specular reflection to
the left of the cursor, edge diffraction plus
interference to the right. Bottom picture shows the
subtracted signal after clamping the second plate:
specular reflection is eliminated by subtraction,
interference is eliminated from the three unwanted
edges leaving reradiated signal from the edge of
interest,

(1) = compressional wave reradiation (t = 680 usec)
(2) = plate edge diffraction (t = 740 usec)
(3) = plate shear wave reradiation (t = 830 usec)
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Figure 6.7:

Geometry for the Arctic open lead experiment.
Source/receiver monostatic backscatter posi-
tions R1 - R6.

8¢ = critical angle for generation of plate
compressional waves

-+«- = path for optimum reradiation of plate
compressional wave

-x- = path for optimum reradiation of plate
shear wave
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TABLE IV

SOURCE/RECEIVER POSITIONS FOR
o THE ARCTIC OPEN LEAD EXPERIMENT

POSITION
By R1 R2 R3 R4 RS R6
tp (usec) 366 460 540 628 665 693
N dj (m) 0.271 0.341 0.400 0.465 0.493 0.513
K toop (HSec) - 838 836 834 - -
- te (usec) 842 - - - - -
;ﬁ tq (usec) 911 - - - 825 821
W Ri (m) 0.675 0.621 0.619 0.618 0.611 0.608
ri (m) 0.618 0.519 0.472 0.407 0.361  0.326

8 (degq) 23.7 33.3 40.3 48 .8 53.8 57.5

‘e hy (m) 0.335 0.422 0.494 0.575 0.609 0.634
1; (m) 0.421 0.271 0.181 0.069 - -
NOTES:

o (1) A "total" signal is present at positions R2, R3, R4
where the compressional reradiation and diffraction
overlap.

' (2) By Snell's Law, compressional signals in the plate
. can only be generated at positions R1 - R4. |

(3) The diffraction from the plate edge can be measured
- at position Rl where there is separation from
N . compression, and at R5, R6 where there is no
- compressional interference.
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wave speed (cg = 1373 m/sec), the predicted arrival times
for the various propagation paths were calculated using

Equations 6.10, 6.11, and 6.12:

(Diffracted path) tp

2R /cy (6.10)

(Optimum path te
for compression)

+

[(hy + Rj)/cw] + [1i/cpl (6.11)

(Optimum path tg
for shear)

+

[(di + Ri)/cg]l + [ri/cg] (6.12)

A sample waveform with the different separated
arrivals is shown in Figure 6.8 where the signals due to the
various propagation paths are identified.

For receiver positions R2, R3, and R4 (shown in
Figure 6.7), the diffracted energy and the energy reradiated
from the plate edge due to the compressional wave were
received at nearly the same time, since the higher speed of
propagation for the compressional wave offset its greater
path length. By expressing each path length in terms of the
number of wavelengths travelled by the pulse sound, the path
difference corresponded to the relative phase shift between

the overlapping arrivals (one wavelength is equivalent to

360° of phase shift). Consequently, the magnitude of the




262 300 366

TIME, t (usec)

Figure 6.8: Sample waveform at 78 kHz for the Arctic open
lead experiment (corresponding to position Rl
of Figure 6.7) Starting times are:

t = 262 usec ==> Compressional wave reradiation
from plate edge
t = 300 usec ==> diffraction from plate edge
t = 366 usec ==> reradiation from plate edge due |

to plate shear wave.

(Waveform at the right-hand side of the figure
represents interfering noise from a different path.)
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compressional wave reradiation could be inferred from a
vector addition of signals as shown in Figure 6.9. The
phase difference between diffraction and compression was
calculated from the difference in path lengths, the magni-
tude of the diffracted signal was approximated by using the
Biot-Tolstoy theory for a single rigid wedge, and the
magnitude of the total signal was obtained by transforming
the total received transient signal to the frequency domain.
The results of these calculations are plotted on the polar
diagrams of Figures 6.10 , 6.11, and 6.12. The notes
associated with Table IV explain the presence or absence of
experimental data points for each source/receiver position.
For comparison, the theoretical curve plotted on each figure
represents the Biot-Tolstoy predicted diffraction from a
rigid wedge,

Observation of the geometries shows that for shallow
grazing angles for trailing edge backscatter, it is the
compressional path which becomes superimposed with the
diffraction; the shear path interferes with diffraction for
trailing edge backscatter at nearly normal incidence.
Figures 6.10, 6.11, and 6.12 clearly indicate that the Biot-
Tolstoy rigid wedge theory, which yields the maximum energy
for diffraction, does not account for all of the energy
backscattered from the trailing edge of an acoustically non-

rigid wedge.
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Figure 6.9:

Vector subtraction of diffraction from the
total signal backscattered from the edge of the
floating plate.

T = Total (measured) backscattered signal from
the plate edge when compression and
diffraction overlap (Positions R2, R3, R4)

C = Compressional signal reradiated from plate
edge

D = Theoretical Biot-Tolstoy Diffraction from
the plate edge

¢ = Phase difference between C and D due to
path length difference.




ACRYLIC

AIR !
T WATER |
-40 dB -30 dB -20dB
> ' r 1
5,23 6 = 0°
N

i ,
/
6 = 90° \ "

Figure 6.10: BSS due to compressional and shear waves
reradiated from an acrylic plate floating on
water compared to Biot-Tolstoy predicted
diffraction from a single rigid 270° wedge.
Frequency, f = 46.9 kHz. Diffraction in 4B ref
spherical spreading over (r = ro = 0.6 m).

1 = TOTAL (compression + diffraction)

0 = measured compressional wave reradiation

e = calculated compressional wave reradiation
(vector subtraction)

A = measured shear wave reradiation

x = measured diffraction

Biot-Tolstoy Theory
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hd Figure 6.11: BSS due to compressional and shear waves
o) reradiated from an acrylic plate floating on
B water compared to Biot-Tolstoy predicted
diffraction from a single rigid 270° wedge.
Frequency, f = 62.5 kHz. Diffraction in dB ref
ey spherical spreading over (r = ry = 0.6 m).

e o
::s' 0

n",' L]

TOTAL (compression + diffraction)

measured compressional wave reradiation
calculated compressional wave reradiation
(vector subtraction)

i measured shear wave reradiation
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Fiqure 6.12: BSS due to compressional and shear waves
reradiated from an acrylic plate floating on
water compared to Biot-Tolstoy predicted
diffraction from a single rigid 270° wedge.
Frequency, f = 78,1 kHz. Diffraction in 4B ref
spherical spreading over (r ro = 0.6 m).

]

0 = TOTAL (compression + diffraction)

0 = measured compressional wave reradiation

* = calculated compressional wave reradiation
(vector subtraction)

A = measured shear wave reradiation

x = measured diffraction

Biot-Tolstoy Theory
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C. MODE CONVERSION STUDY OF A FLOATING PLATE

After the experiment described in Section B successfully
generated compressional and shear waves in the floating
plate which reradiated from the plate edge separately from
the diffraction, the following experiment was devised to
study the effects of plate compressional wave reradiation
alone. Recall that, for some source/receiver positions in
the previous experiment, the compressional reradiation and
diffraction overlapped, and the magnitudes of each were
identified by the vector subtraction of the arrivals.

1. Experimental Procedure

Figure 6.13 shows the experimental set-up. The
source used was the PVDF plane wave transducer described in
Appendix A, suspended beneath the floating plate at
different angles of incidence with the acrylic surface. The
receiver was an LC-10 hydrophone positioned beneath the
opposite edge of the plate by an extending arm from the side
of the tank. Diffraction from the receiver end of the plate
was prevented by inserting a sound reflecting barrier in the
direct path between the source and the receiver. The
barrier was a 1" thick sheet of Celotex™, covered by a thin
sheet of plastic to prevent water penetration and weighted
down with 50 pounds of lead to achieve slight negative
buoyancy. Celotex, a semi-rigid polyisocyanurate foam-board
insulation, has closed pores filled with air, and provided a
vertical "pressure-releacse"” boundary beneath the center of
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study.

Source = P.DF planar transducer driven with all
12 elements driven with equal amplitude and
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B Receiver = LC-10 hydroprhone at positiens § = |
- 14 (distance from plate edge = r ; depth = '

(NOTE: predicted paths for generation and reradiatien f
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the plate., With this barrier in position, the direct water
path from the source to the receiver was attenuated in
excess of 50 dB, and the interfering direct and direct/
diffracted signals were effectively eliminated.

The source was driven with equal amplitude elements
to produce an early uniform plane wave. For two different
orientations of the source, the acrylic plate was excited at
each of the four (4) frequencies of interest, and reradia-
tion from the plate on the opposite side of the barrier was
measured at 14 different receiver positions, varied in both
range and depth from the plate edge. The frequencies chosen
were 15.6, 23.4, 31.3, and 39.1 kHz, using a burst of 2, 3,
4, ocr 5 cycles, respectively. They were chosen both for the
fact that the signal processing was simplified and for the
efficiency of the plate compressional wave excitation at
those frequencies. The angle of incidence 65 = 37° was
chosen as one source orientation because that is the
critical angle for generation of compressional waves in the
acrvlic plate. The angle of incidence 8; = 61° was chosen
as a compromise between a shallow grazing angle to model
ccnvergence zone propagation in the Arctic Ocean and the
firite length of the acrylic plate which precluded very
shallcw grazing angles.

~

<. Results and Discussion

Figqure 6.13 shows a simplified schematic diagram of
*he scurce plate receiver orientation with the dotted lines
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representing the various path lengths of interest. Accurate

P W e
PR

knowledge of the path lengths was essential to predict the

received signal arrival time,

-

P

To find the effective starting point of the
compressional wave in the plate, the pressure profile was N
measured above the source at a depth of 1/4" below the
X plate. The 19 cm high source produced a narrow beam which
interacted along the bottom of the plate over a 25 to 35 cm
. length, depending on the source orientation. Figure 6.14
shows the measured pressure profile for the two source
2 orientations. Since the pressure peaked at a specific
location beneath the plate, shown on Figure 6.14, that

oy
™ distance from the plate edge was assumed to be the point of

)

. maximum excitation of the plate compressional wave, shown as

point B on Figure 6.13.

At the receiver end of the plate, it was predicted

iSO

that the presence of the plate compressional wave would be
observed either by reradiation from the edge of the plate as

¢ in the previous experiment, or as head wave radiation. Head

waves are described by Clay and Medwin (1977) and are well
known by geophysicists for a thick, high-speed bottom
" underlaying the lower speed ocean water. A similar situa-
tion appears to exist for the high speed compressional wave
in the Arctic ice overlaying the lower speed ocean water,
N Head waves are generated when a sound signal travelling in
one medium refracts into a second, higher speed medium by :
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Figure 6.14: Source pressure vs., position.
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the critical ray path, causing bulk waves to propagate along
the interface at the higher sound speed. The presence of
these "lateral waves” is indicated by their reradiation at
the critical angle back into the lower speed medium.

Table V lists the predicted arrival times for the
head wave and for compressional wave reradiation at the
plate edge, as shown in Figure 6.13. The measured arrival
times agreed with the path for plate edge reradiation for
receiver positions 2, 7, 13, and 14, since those positions
were outside the cone of head wave reradiation. All other
arrival times agreed more closely with the path for head
wave reradiation, and the plate edge radiation was masked by
the stronger head wave. Consequently, it was impossible to
obtain the desired radiation pattern from the plate edge for
which this experiment was designed. However, valuable
information was obtained by discovering the presence of the
head wave.

Figure 6.15 shows a plot of the head wave spectral
density amplitudes in the relative receiver positions for
each of the three socurce frequencies with the source
oriented at A; = 61°. Although the measured amplitude of
the head waves do not precisely agree with the theoretical
behavior described in Clay and Medwin (1977) given as
32

amplitude of head wave = X% 1L k!,

the character of the reradiation is correct since the

A
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TABLE V

PREDICTED AND MEASURED ARRIVAL TIMES
FOR PLATE COMPRESSIONAL WAVE RERADIATION

Source Angle 85 = 37°

Arrival time (usec)

4
Receiver Predicted Predicted Actual i
l

Position d(m) rim) Head Wave Plate edge
1 0.05 0.02 716 728 710
2 0.05 0.10 762 767 761
3 0.11 -0.10 707 792 675
4 0.11 -0.05 711 773 705
5 0.11 0.00 725 766 729
6 0.11 0.05 755 773 757
7 0.11 0.10 787 792 780
8 0.16 -0.20 709 864 664
9 0.16 -0.14 717 835 690
10 0.16 -0.07 722 810 718
11 0.16 0.00 743 800 757
12 0.16 0.07 786 810 800
13 0.16 0.14 830 835 826
14 0.16 0.20 859 864 867

Source Angle 6; = 61°

Arrival time (usec)

Receiver Predicted Predicted Actual
Position d(m) r(m) Head Wave Plate edge
1 0.05 0.02 747 767 719
2 0.05 0.10 794 809 785
3 0.11 -0.10 721 837 691
4 0.11 -0.05 743 821 720
5 0.11 0.00 759 810 743
6 0.11 0.05 796 821 772
7 0.11 0.10 811 837 796
8 0.16 -0.20 733 909 680
9 0.16 -0.14 751 880 704
10 0.16 -0.07 756 854 741
11 0.16 0.00 777 844 768
12 0.16 0.07 818 854 802
13 0.16 0.14 864 880 844
14 0.16 0.20 894 909 879

(NOTE: Actual arrival times represent the average arrival
time at that receiver position for the four frequencies of
interest.)
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amplitudes approximately follow lines of constant pressure.
For the parameters given above, x is the horizontal distance

. between source and receiver, L is the distance that the head

K wave travels in the plate, and k is the wave number.

» The source was oriented to correspond with the :
critical angle ray path (6 = 37°), as well as a shallower

é angle (6 = 61°) at which total internal reflection would

: also take place, to simulate how sound propagating over long

ranges in the Arctic will interact with the ice cover (such

as for convergence zones). Mode conversion of the compres-

s s .
JERN
A LI

sional wave in water to the compressional (or lateral) wave

in the plate was 40% more efficient when the source was

;- oriented at the critical angle, as indicated by the head )
e

i wave magnitudes for 15.6 kHz in Table VI. The behavior of

. the head waves was similar for the other frequencies, -
N

? suggesting that for convergence zone propagation in the

)

M

i Arctic, both mode conversion and reflection may occur at

B each interaction with the undersurface of the ice, since

% head waves were also effectively generated at shallow

& :

N grazing angles.,
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S integer) for mode-conversion experiment at each
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TABLE VI

MEASURED HEAD WAVE AMPLITUDES
(for frequency, f = 15.6 kHz)

Receiver Source Angle 9; = 37° Source Angle 68; = 61°
Position Amplitude, (V pp) _ Amplitude, (V pp)
1 28.30 15.83
2 9.99 7.49
3 27.00 17.27
4 32.50 20.67
5 18.43 11.02 4
6 23.68 14.15
7 18.86 10.65
8 40.54 25.03 -
9 40.91 19.42
10 34.19 19.14
11 22.48 18.18
12 22.39 14.07
13 19.93 9.72
14 13.34 7.52




VII. ELEVATION ANGLE DEPENDENCE OF
BACKSCATTER FROM A RIDGE

The obijective of this experiment was to obtain backscat-
ter measurements from the three acrylic models of different
size ice keels in order to determine how the level and the
character of backscatter depend on the height and slope of
the keel. Measurements were made to show the characteristic
behavior of backscatter for grazing and normal incidence, as

well as the dependence on frequency and elevation angle.

A. EXPERIMENTAL PROCEDURE

The laboratory measurements of backscatter from the ice
pressure ridge models were performed in the Ocean Acoustics
Wave Facility tank described in Chapter II. The fabrication
process and dimensions of the three pressure ridges are
described in Chapter III.

Two LC-10 hydrophones were mounted for monostatic
backscatter by extending a single, thin stainless steel rod
from the side of the tank. Typical measurements were made
with the source/receiver positioned 50 cm from the "ice
keel"”, which prevented plate side diffraction from interfer-
ing with the backscattered signal of interest, and also
allowed the strong direct signal between source and receiver

to decay prior to receiving the backscattered signal.
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At shallow grazing angles, the reflection from the
overhead plate was well isolated and could be windowed out
from the ridge scatter. At steep grazing angles (greater

) than 50°), the surface reflected signal from the smooth
plate directly above the source/receiver, overlapped the
backscattered signal of interest. Figqure 7.1 illustrates
the technique used to overcome this difficulty. Figure 7.1
(a) is a typical waveform for an incident angle of 50°, and
shows the strong surface reflection immediately followed by

the signal backscattered from the ridge. Moving the plate

P e

-

to increase the propagation path to the ridge results in

Figure 7.1 (b), where the backscattered signal has been

shifted out of the time window and only overhead reflection

-
RS

remains. Figure 7.1 (c) is an ineffective point-by-point

" T

computer subtraction of Figures 7.1 (a) and 7.1 (b); .
however, to obtain backscatter only, a slightly different
“ depth of plate immersion resulted in a measurable time shift
in the reflected arrival sufficient to prevent clean

t subtraction, Figure 7.1 (d) is the resulting subtracted
waveform when the time shift was corrected prior to subtrac-
tion, and only the backscattered signal remains.

Four experiments were performed on each of the three
%; pressure ridges:
(1) A horizontal probe (at the depth of the ridge crest)

of the backscattered pressure field due to the ridge
at grazing over the range r = rg5 = 20 to 70 cm.

P
N N

~

90

OHRL S e SATI U D




7.1 (¢)

e | e IS

Figure 7.1:

7.1

(b)

7.1 (d)

Subtraction technique used in backscat-
ter measurements. Grazing angle = 50°,
frequency = 62 kHz.

(a)

(b)
(c)

(d)

Plate reflection (1) plus total
backscatter (2).

Flate reflection alone.
Subtraction of (a) - (b) without
time shift to account for the
variation in plate immersion depth.
Subtraction of (a) - (b) using a 4
usec time shift to account for the
difference in plate immersion
depth. The major signal is due to
ridge backscatter
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(2) A vertical probe of the backscattered pressure field
below the ridge for normal incidence over a depth
range d = dg = 10 to 70 cm.

(3) A frequency dependence experiment for which the back-
scatter was measured for nine frequencies at grazing
angles 6 = 10° and 8 = 20° from the horizontal.

(4) An experiment to determine the dependence of back-
scatter on elevation angle, by holding the source/
receiver at a fixed radius r = r4, = 50 cm and probing

in elevation angle from 6 = 0° to 85 = 90° to find
the "directivity pattern" of the sound scattered from
the ridge.

Figure 7.2 shows the source/receiver geometry with
respect to the ridge for each of the four experiments.
Typical measurements were made driving the source with a 20
volt peak-to-peak pulsed sinusoid of 1, 2 or 3 cycles and 32
usec duration. Although the electrical input signal was 32
usec, the received acoustic signal was much longer due to
mode-converted reverberation in the ridge, and backscatter
from different parts of the ridge.

The analysis window chosen was sufficiently long to
include all of the backscattered energy, then "zero-padded"
with as few extra zero points as possible in order to obtain
a power of two (2N total points, n = any integer) to allow
the received signal to be transformed using a Discrete
Fourier Transform (DFT) algorithm. The source frequencies
used coincided with the bin frequencies from the DFT to
minimize the Gibbs' effect (Clay and Medwin, 1977). The
backscattered spectral pressure from the ridge was propor-

tional to the magnitude of the response from the DFT, and
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Fiqure 7.2:

Source/Receiver qeometry with respect to
the pressure ridge model for four
experiments:

o = horizontal probe positions
(r = 30 to 70 cm)
G = vertical probe positions
(d = 20 to 70 cm)
x = frequency dependence positions
(r = 50 cm, 6 = 10°, 20°)
4 = elevation angle dependence posi-
tions (r = 50 cm, A6 = 10°)
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I all received signals are expressed 1n decibels, using the

i backscattering strength (BSS) definition:

a;'|“ F 2 RN + 2
vh BS

" BSS (d8) = 10log,, :

o 3 Po?-RoN-A .

In this equation, P, is the reference pressure at range R,
fﬁt PpS is the received backscatter pressure at range R, A is
v the surface area over which the scattering is measured, and

N is the degree of geometrical divergence of the backscatter

i (0 s N s 2).

t‘l:

14

53 The Biot-Tolstoy theory of diffraction predicts the

maximum amount of energy which will diffract from an
infinite, rigid wedge. When digital signal processing
. technigues are used, the wedge need not be infinite in
length if the analysis time window is closed before sound
reaches the ends of the finite wedge. Naturally, if the
wedge is not infinite in length, something less than the

maximum amount of enerqgy will be diffracted. The cal-

it culation of data for Figure 7.3 was provided by Mr. Ken
K] Reitzel and shows the amount of energy which will diffract
from various length finite wedges in comparison to the
i infinite wedge, where the wedge length is 2Y, centered about
he the least time point. Notice that only a fraction of the
maximum possible energy is diffracted when 2Y is less than

R an acoustic wavelength, and nearly all of the energy is
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diffracted when 2Y is greater than a wavelength. A finite
wedge whose length equals one acoustic wavelength will
diffract 96% of the maximum possible energy. From another
point of view, 96% of the diffracted energy comes from one
acoustic wavelength of the ridge in the least time region,
and the remainder of the ridge contributes only 4% of the
energy. For backscatter at long ranges, a pressure ridge
should effectively behave as a point scatterer (since the
majority of the enerqgy is diffracted from the least time
region), and spherical divergence would be expected. Then,
the equation for backscattering strength becomes:
P..? R"

BSS (dB) = 10log,, BS
pcl‘ ROZ Al

-

(7.1)

Ir the case of the vertical probe experiments, the
backscattered signal was essentially a reflection from the
smooth plate, slightly altered by the presence of the
ridges. In that case, the backscatter can also be calcu-

lated in terms of dB referenced to a mirror (i.e., perfect

reflection):

i
dB (ref mirror) = 20log,, [—————— (7.2)

96

At ‘»" i ‘u,>,‘5i@ig'l,')géah_\a. e




If the backscatter comes from a point, then experimental
agreement with theory will be better when Equation (7.1) is
used; if the backscatter more closely resembles a reflec-
tion, then Equation (7.2) yields the best agreement with

theory.

B. "TYPICAL" RIDGE RESULTS

The "typical" ridge used for this experiment was
designed to model the typical pressure ridge found in the
Central Arctic basin as described in Chapter III. It served
as the standard against which the "large" ridge (twice the
height) and the "steep" ridge (twice the slope) were
compared.

1. Horizontal Probe

For the horizontal probe using the "typical" ridge,
the source/receiver were positioned 1.6 cm below the ice
plate to correspond with the depth of the ridge crest.
Figure 7.4 shows a typical received waveform. The received
signals in all cases were composed of the two parts shown:
an initial arrival which agreed in time with diffraction
from the ridge crest (corresponding to point B) and a second
arrival which agreed with the propagation time required for
an acoustic signal to be mode-converted into the ridge,
reflect from the back facet of the ridge (at point C), and
return by the reverse path. There was no measurable

backscatter observed from point A of the ridge.
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Figure 7.4: Typical received waveform for horizontal

probe using the "typical" ridge.

(f = 62.5 kHz, N = 2 cycles, r = 40 cm,
500 mV scale)

(1) = diffraction from the ridge crest at
point B

(2) =

reflection of mode-converted energy
from point C




Figure 7.5 shows the divergence characteristic for
the horizontal probe from the "typical"” ridge. Equation
(7.1) was used to calculate the BSS, assuming the
N ) backscatter from the ridge diverged spherically. Except for
oscillations, the BSS is virtually constant with increasing
range, suggesting the ridge must have produced the backscat-
ter from an effective point (corresponding to the least time
j region on the ridge) for spherical divergence. Since the
source/receiver were quite close to the plate, the
oscillations of BSS with increasing range are probably due

to surface interference of the backscattered sound.

2. Vertical Probe

L“ In the vertical probe experiment on th. "typical"
o ridge, certain effects of the characteristic behavior of the
backscatter were apparent, but could only be analyzed

qualitatively. It was more obvious in the vertical probe

experiment for the "large" ridge, (where signal separation
in time was improved due to the larger dimensions), what the
various parts of the backscattered signal were due to.

W Figure 7.6 shows a typical received waveform for the
| case where 2 cycles of a 62 kHz sinusoid are used. The
R direct signal is slightly more than 2 cycles due to hydro-
R phone ringing. There appeared to be three distinct com-
ponents to each backscattered waveform. The first arrival

in time agreed with the path length for diffraction from the

w4 N 99
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Figure 7.5: Plot of BSS versus range, r (cm), for the
horizontal probe experiment using the "typical"
ridge. (mean value of BSS in parentheses) *
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Figure 7.6:

o s/R

Typical received waveform for vertical

probe experiment using the "typical"
ridge.

(f = 62.5 kHz, N = 2 cycles, d = 40 cm,
2.0 Vv scale)

(1) = diffraction from crest of ridge
(path S-A-R)

(2) = reflection from ice-air interface
(path S-A-B-A-R)

(3) = reradiation of ridge reverberation
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crest of the ridge. The second, much larger arrival agreed
in time with the path 1length for an acoustic signal
(13 usec later) which reflected from the "ice"-air interface
before returning by the reverse path. Finally, there
appeared to be some energy arriving after the reflection,
due to the reverberation of mode-converted sound within the
ridge which was then reradiated into the water.

Figure 7.7 is a plot of the BSS versus depth below
the ridge for the vertical probe, calculated using Equation
(7.1). Since the 31 kHz BSS was nearly independent of depth
for range greater than 35 cm, the assumption of spherical
divergence from a point on the ridge is evidently valid. At
62 and 93 kHz, the variations of the backscatter about the
average value is assumed to be due to interference of the
spatially-extended ridge reverberation and reflection from
the acrylic-air interface. When the scattering is plotted
in terms of dB (ref mirror) as in Figure 7.8, the results
were also nearly linear, which implies that the effects of
the plate reflection were just as important as the backscat-
ter from the ridge since the experimental agreement with
theory is about the same when using either definition.

3. Frequency Dependence

The frequency dependence experiment using the

"typical” ridge produced no meaningful results.
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i Figure 7.7: Plot of BSS versus depth, d(cm), for the
- vertical probe experiment using the "typical"
ridge. (mean value of BSS in parentheses)
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4. Elevation Angle Dependence

The source and receiver were positioned for monos-
tatic backscatter at a fixed distance r = ro = 50 cm from
the ridge for grazing angles ranging from 0° to 90°. Two
source frequencies were used, £ = 62.5 kHz and f = 93,9 kHz,
corresponding to Al = 2,37 cm and X\, = 1.58 cm.

Assuming that the ridge reverberation would radiate
from the facets, the ridge was modelled as a finite reflec-
tor or aperture, similar to a rectangular piston, infinite
in one direction. 1In the case of the "typical" ridge, the
"active" piston face, corresponding to the slant face
height, was H = 3.41 cm so that

H/Xl = 1,44 H/A2 = 2.16,.

The directivity pattern for the equivalent rectangular

piston transducer is given by:

il Deine]  sin|(Daima]

-

-—

D(¢,X) = . .
(Jg)sin¢

(&%) sinX

where ¢ and x are the angles shown in Figure 7.9, and W and
H are the width and height of the piston. All measurements
were taken for source/receiver positions normal to the
ridge, so that ¢ = 0° and 0° £ x s 90°., The magnitude of
the backscattering strength was plotted as a function of
angle and compared to the theoretical directivity pattern

which was adjusted to a level for best fit as shown in

105




(—:l:——)l

R

)

. Figure 7.9:

Geometry for radiation from a rectangular
piston. (Clay and Medwin, 1977)
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Figure 7.10. The piston axis, x = 0, was set to be perpen-
dicular to the facet.

The backscattered data were straightforward to
analyze. Backscatter measurements for grazing angles 6 = 0°
to 50° could be analyzed directly since there were no
interfering signals. For grazing angles, 6 = 60°, 70°, and
80°, the specular reflection from the overhead plate
interfered with the backscattered signal and was subtracted
out using the technique described in the experimental
procedure section. At normal incidence (6 = 90°), the plate
reflection and backscatter completely overlapped (as in the
vertical probe experiment), resulting in a measured value
much larger than predicted. It would be meaningless to
subtract the reflected portion of the backscattered signal
at normal incidence because it is an important part of the
scattering characteristic for that geometry, as shown in
Figure 7.10.

There was fair agreement between the theoretical
curve and the measured backscattering strength as a function
of angle for the "typical" ridge. The BSS measurement has
two components: the Biot-Tolstoy diffraction from the three
corners of the ridge, as well as the radiation from the
rectangular apertures. Since the characteristic dimension
of the piston was on the same order of magnitude as an

acoustic wavelength, the rectangular aperture was not an
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efficient projector, so neither effect dominated. Conse-
quently, the comparison with the equivalent piston radiation
pattern was incomplete, since diffraction from the corners

also represented a significant contribution to the BSS.

C. "LARGE" RIDGE RESULTS

W The "large" ridge was twice the height but the same
fﬁi slope as the "typical" ridge (see Fiqure 3.1 and Table III
for the dimensions). The experiments using the "large"
ridge provided keen insight into the response of an ice keel
to an incident acoustic wave; since the dimensions provided
greater separation in time of the signals backscattered from
various parts of the ridge, and therefore, allowed each
o effect to be analyzed individually.

1. Horizontal Probe

For the "large" ridge, the source/receiver were

Vit positioned 3.2 cm beneath the plate to correspond with the
depth of the ridge crest.

Figure 7.11 shows a typical received waveform and
o the probable paths which combined to yield those results.
L Notice that diffraction from the crest of the ridge repre-
sented the largest contribution to the backscattered signal.
}1 When the incident acoustic energy struck the front facet of
the ridge, a small amount of energy was diffracted from the
N discontinuity at point A, Then, the incident wave reached

n; the ridge crest (point B) and a larger amount of energy was
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Figure 7.11: Typical received waveform for the

horizontal probe experiment using the
"large™ ridge.

(f = 62.5 kHz, N = 2 cycles, r = 40 cm,
2.0 V scale)

1 = ridge diffraction from point A

2 = diffraction from the ridge crest at
point B

3 = reflection of mode-converted energy
from point C.
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diffracted. Finally, some of the energy incident on the
front facet was mode-converted into compressional waves in
the ridge, propagated through and reflected from the back
side of the ridge (point C), and returned to the receiver by
the same path to complete the backscatter. Each of the
paths described above has been verified by the arrival time
using the specific path lengths and appropriate speeds of
propagation.

Figure 7.12 shows a typical divergence characteris-
tic for a horizontal probe from the ridge. For spherical
divergence of sound from the point source, and spherically
diverging backscatter from the ridge, overall divergence of
pressure proportional to the inverse square of the range was
expected. BSS was calculated using Equation (7.1), where
spherical divergence was assumed. The experimental results
were in excellent agreement with the inverse square be-
havior, indicating that the majority of the backscatter
occurred from the region on the ridge near the least time,
and that the backscattered divergence was spherical.

2. Vertical Probe

In the vertical probe experiment on the "large"
ridge, the size again provided relatively long time separ-
ations between the different propagation paths to allow each
portion of the total backscattered signal to be analyzed

individually.
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Figure 7.12: Plot of BSS versus range, r (cm), for the
horizontal probe experiment using the
"large” ridge. (mean value of BSS shown
in parentheses)




Figure 7.13 shows a typical received waveform and
the probable paths which combined to yield those results.
The total backscattered signal is the composite of three
distinct contributions: (1) diffraction from the crest of
the ridge at point A; (2) reflection from the "ice"-air
interface due to the energy which was mode-converted into
the ridge, reflected from the surface, and reradiated back
into the water (path ABA); and (3) mode-conversion induced
reverberation in the ridge, which is seen in the waveform as
the decaying energy after the surface reflection and
includes the "double reflection” within the ridge (path
ABABA).

Figure 7.14 is a plot of the divergence characteris-
tic due to the diffraction from the ridge crest (correspond-
ing to the energy arriving prior to the reflection in Figure
7.13). Since the diffracted signal experiences no inter-
ference from other paths, the expected spherical divergence
was obtained, and is shown as the inverse square behavior
for the round trip energy.

When the total backscattered signal (diffraction plus
reflection plus reverberation) is plotted as a function of
position, as in Figure 7.15, the inverse square dependence
is not obtained due to interference effects. For example,
the large difference in the magnitude of the received

pressure for a frequency of 93 kHz at 30 and 35 cm below the
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Figure 7.13:

Typical received waveform for the
vertical probe experiment using the
"large"” ridge.

(f = 93.9 kHz, N = 3 cycles, d = 30 cm,
200 mV scale)

1 = diffraction from ridge crest
(path S-A-R)

2 = reflection from ice-air interface
(path S-A~B-A-R)

3 = double reflection and reradiation
(path S-A-B-A-B-A-R)
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7.14: Plot of the divergence characteristic due
to diffraction from the crest of the
"large" ridge as a function of source/
receiver depth. (The measured values
correspond to energy received prior to
the reflection in Figure 7.13.) (mean
value of BSS in parentheses)
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Figure 7.15: Plot of BSS versus depth, 4 (cm), for the
vertical probe experiment using the
"large" ridgqge. (Accounts for all of the
backscattered energy.) (mean value of BSS
in parentheses)
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. ridge is made understandable by Figure 7.17, in which the

upper waveform is the received signal for 4 = 45 = 30

cm, and the lower waveform for d = dy = 35 cm. The charac-
Py .
Q$ ter of the diffraction and the double reflection are nearly
Lk
41;,. ]
:% identical, but the reflected signal is superimposed with the

ridge reverberation and can result in constructive or

destructive interference. Figure 7.16 shows the backscatter

T

plotted as dB (ref mirror) for the "large" ridge, and the
results are not significantly different than in Figure 7.15.
&ﬁ At 31 kHz, Figure 7.16 is nearly flat at long ranges
i implying that reflection is the dominant effect at low

frequency, while at 62 and 93 kHz, the curves are not
X linear, which implies that backscatter from the ridge is
e ' just as important as reflection from the smooth plate at
higher frequency.

) 3. Frequency Dependence

e

%g The frequency dependence experiment using the "“large"
. ridge produced the only meaningful results. The backscatter
gg was measured for nine frequencies at grazing angles 6 = 10°
%g and & = 20° from the horizontal. Typical received wave-
" forms had the same characteristics as the horizontal probe
s& measurements using the "large" ridge (Figure 7.18).

§ Since the source and receiver were at shallow grazing
i angles and a range of 50 cm from the ridge crest, the back
}g' ' corner of the ridge (point C on Figure 7.18) was in the
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Figure 7.16: Plot of 4B (ref mirror) versus depth, 4
(cm), for the vertical probe experiment
using the "large™ ridge. (mean value
shown in parentheses)
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Figure 7.17: Comparison of two waveforms for the
5 vertical probe using the "large" ridge.
B The upper figure is the same as Figure
ey 7.13, 4 = 30 cm. The lower figure (d =
Sy 35 cm) shows how the ridge reverberation
destructively interferes with the "ice"-
N air reflection.
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~_ ACRYLIC

Figure 7.18:

Typical received waveform for the
frequency dependence experiment using the
"large" ridge.

(f = 93 XxHz, N = 6 cycles, r = 50 cm,
8 = 10°, 200 mV scale)

(1) = diffraction from the ridge crest
at point B

(2) = reflection of mode-converted energy
from point C

120



Wmn- V= BT TERm TR TE—T
—T

h geometrical shadow. The backscatter consisted primarily of
diffraction from points A and B, and the plot of BSS versus
frequency, Figure 7.19, showed an interference pattern due
to those two backscattered components. For this source/
receiver geometry, the behavior of the BSS can be explained
by accounting for the phase difference between the two
contributions:

phase difference = kH/cos6 = n7,

where k is the wave number, H = the difference in path
length from the source/receiver to point A or B, and 6 is
the grazing angle. Figure 7.20 shows a plot of BSS versus
phase difference, kH/(mcosf), and it becomes apparent that
the peaks occur approximately for even multiples of
(constructive interference), while the troughs occur at odd
multiples of T (destructive interference).

4. Elevation Angle Dependence

The geometry, source frequencies and modelling

technique for the "large" ridge were exactly the same as

those described for the "typical" ridge. In this case,
however, the height of the ridge facet, H = 6.82 cm, ?
resulted in height to wavelength ratios of:

H/A, = 2.9 H/X, = 4.32.

The magnitude of the backscattering strength was again plot-

ted as a function of angle and compared to the theoretical
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122

QIO A TS
i n_tazttg’ﬁtﬁﬁf-v‘l%z St

t

uuuuuuuu

''''''



BSS (dB) (6 = 10°)

G -30

o -35

-40 7
ok

e -45

[ S S S

L BSS (dB) (6 = 20°)
'0"’5!' -20 ‘ ‘

.
RN -25 ——t
i

— .t NF -
=

:'):g -30

ey -35 — =

l -
b~
I
1
|

oy -40

,:’-.'0 -45 ’ : v 1
LI

Figure 7.20 (b)

[}

j;{ Fiqure 7.20: Plot of BSS versus phase difference ‘
h' - kH |
{ i
W |

n =
T e L"Cose_, i
0y - for the frequency dependence experiment
s using the "large" ridge.

123 |




directivity pattern for the facet acting as a rectangular
piston transducer, as shown in Figure 7.21.

Since the height of the piston face was relatively
large compared to a wavelength for the frequencies used, the
experimental results were in excellent agreement with the
theoretical directivity pattern. Biot-Tolstoy diffraction
occurred from the three corners of the ridge, but was small
in comparison to the radiation of mode-converted reverbera-
tion from the larger rectangular apertures. For the "large"
ridge, note that the value of backscatter for 6 = 90° shows
good agreement: since the ridge was large in width, it
scattered effectively so that the measured backscatter can
be attributed primarily to the ridge diffraction instead of

reflection from the ice sheet behind the ridge.

D. "STEEP" RIDGE RESULTS

The "steep" ridge used for this experiment was designed
to model a possible pressure ridge which could be found in
the Central Arctic basin. It was the same height, but twice
the slope as the typical ridge, so it was designed to show
the dependence of backscatter on ridge slope.

1. Horizontal Probe

For the horizontal probe using the "steep" ridge,
thesource/receiver were positioned 1.6 cm below the ice
plate to correspond with the depth of the ridge crest.
Figure 7.22 shows a typical received waveform. The received

124

O I
‘;‘s"gﬁ\'i;




("wd 05 = 1 ‘umoys a1e sartousnbary oml) -390e3 abpra yoes
I03 sTxe uolstd ay3l smoys morre oyl -uolstd Ieynbuejosax juatearnbs ue
Wwoxy uorjerpexr 3adey jo uislzed KX3TAaTioarTp 8y o3 paiedwoo abpra ,abaer,
9yl 193 y3lbusils 1333eOSYORQq [ERIO] BYI Jo 9duspuadap aybue uorieASTd :71Z*,L °2INbTg

09:87\ \ 066 09:0

(-4

(]
> ‘p :
. o~
05:8 -
Op=
/’ - # oe=e
U
ZHY ¢6 O / _
\4 ZHM 29
)
mv O1- ONl o¢- [e) X X Om - ON - O_ -
Iﬂﬂﬂﬂd%ﬂ/%ﬂﬂﬂ%ﬂ?%VV/Vwalﬁi
3 . " * )
. Tamome i DL LN RERERLT  oRingA ST IR EEEERED S0
5 . e e T N PR D o ~ -



v ! 2
AR JZIACRYUC .
: A /“  C
i WATER
' %/R D — — —
g
? Fiqure 7.22: Typical received waveform for the
horizontal probe experiment using the
| "steep" ridge.
(f = 62.5 kHz, N = 2 cycles, r = 40 cm,
500 mV scale)
(1) = Backscatter from front facet (AB)
N - (2) = Mode conversion and reflection from
X back facet (BC)
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signals in all cases were composed of the two parts shown:
an initial arrival which agreed in time with reflection or
diffraction from the ridge facet closest to the source/
receiver; and a second arrival which agreed with the
propagation time required for an acoustic signal to be mode-
converted into the ridge, reflect from the back facet of the
ridge, and return by the reverse path. Due to the small
dimensions of the "steep" ridge and the positioning error of
the source/receiver, it was impossible to positively
identify which part of the ridge caused each backscattered
component, so the backscatter was generalized to the front
facet and the back facet contributions. The signals had
similar characteristics to those for the horizontal probe
from the "typical"™ ridge, with the difference that the
backscatter from the near and far facets were separated by a
smaller time interval in the case of the "steep" ridge.
Fiqure 7.23 shows the divergence characteristic for
the horizontal probe from the "steep" ridge. Equation (7.1)
was used to calculate the BSS, assuming the backscatter from
the ridge diverged spherically. The curve of BSS versus
range shows oscillating and decreasing BSS with increasing
range for the "steep" ridge. The source/receiver was the
same depth below the plate as for the "typical” ridge

horizontal probe, so both show similar surface interference
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Figure 7.23: Plot of BSS versus range, r (cm), for the
horizontal probe experiment using the

"steep" ridge. (mean value of BSS in
parentheses)
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i effects. The average values of BSS are lowest for the
o *“steep" ridge and highest for the "large" ridge.

2. Vertical Probe

< In the vertical probe experiment on the “steep"
R ridge, fewer effects of the characteristic behavior of the
backscatter were apparent than for the "typical" and the

*large" ridge vertical probes. Figure 7.24 shows a received

- a,’ﬁ'«\ Ca

waveform. Notice that the majority of the signal appeared
to be reflection from the ice plate. There was no
o measurable diffraction from the crest of the ridge, and
+ there was significantly less reverberation from the ridge
reradiating after the reflected signal.
Figure 7.25 is a plot of the BSS versus depth below
D the ridge for the vertical probe, calculated using Equation
(7.1). Since the BSS was nearly independent of depth, the
oy assumption of spherical divergence from a point on the ridge
must have been valid. 1In this case, since reverberation was
not significant, there was less variation of the backscat-
tered values about the mean than was observed for the
¢ "typical" ridge. It is noteworthy that the plot of BSS

versus depth decreases for shallow depths. Using Equation

-

? (7.1) to calculate BSS presupposed that the divergence would
‘i be spherical. BSS values less than the average for the
- shallow depths indicates that the divergence was over-
3  compensated for, and that the actual divergence for the
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Figure 7.24: Typical received waveform for the
vertical probe experiment using the
"steep" ridge.
(f = 62.5 kHz, N = 2 cycles, d = 40 cm,
2.0 V scale)

l = reflection form "ice"-air interface
(path S-A-B-~A-R)

2 = reradiation of ridge reverberation
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“steep" ridge was probably dominated by reflection. When the
scattering was calculated using Equation (7.2) and plotted
in terms of dB (ref mirror) as in Figure 7.26, experimental
agreement with theory was excellent: the small size of the
"steep" ridge resulted in scattering that was dominated by
the reflection from the smooth plate.

3. Frequency Dependence

The frequency dependence experiment using the
"steep" ridge produced no meaningful results.

4, Elevation Angle Dependence

The geometry, source frequencies and modelling
technique were exactly the same as those described for the
"typical®” ridge. 1In this case, however, the height of the
ridge facet, H = 1.92 cm, resulted in height to wavelength
ratios of:

H/A = 0.81 H/A

. = 1.21.

2
The magnitude of the backscattering strength was again
plotted as a function of angle and compared to the theoreti-
cal directivity pattern for the facet as a rectangular
piston transducer, shown in Figure 7.27.

The theoretical directivity pattern and the measured
backscattering strength as a function of angle had their
poorest agreement in this case of the "steep" ridge. The

characteristic dimension of the piston transducer was

approximately equal to the wavelength, so the piston behaved
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in a highly non-directional manner. The radiation from the
small rectangular apertures was inefficient, and Biot-
Tolstoy diffraction which was not accounted for in the
theoretical comparison was probably significant.

The backscattered data were analyzed as before, with
interfering reflections subtracted at nearly normal grazing
angles. At normal incidence (6 = 90°), the plate reflection
and ridge backscatter again overlapped, resulting in a
measured value much larger than predicted. Just as in the
vertical probe experiment for the "steep" ridge, the
effective backscatter at normal incidence is insignificant

compared to the plate reflection.

E. SUMMARY OF RIDGE RESULTS

Based on the results of the backscatter measurements for
the four experiments on each of the three ridges, the
following generalizations can be made.

1. Horizontal Probe

For all three ridges, the plot of BSS versus range
generally obeyed a spherical divergence characteristic,
which indicated that the majority of the backscatter

occurred from an effective point on the ridge in the least

time region. The "large" ridge produced the highest BSS and
the best agreement with spherical divergence. The "typical"

and "steep" ridges were both half the height of the "large"

ridge, so the source/receiver was positioned closer to the
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plate for their horizontal probes, and surface interference
problems degraded the agreement with the spherical diver-
gence characteristic in those cases.

2. Vertical Probe

Received waveforms for vertical probe experiments
typically consisted of three components: Biot-Tolstoy
diffraction from the ridge crest; mode-conversion and
reflection from the "ice"-air interface; and a double
reflection within the ridge prior to reradiation. The
"large" ridge resulted in the greatest separation in time
between those three components, so each could be analyzed
individually; the "typical" ridge showed evidence of each
component, although not well separated in time; and the
"steep" ridge only showed signs of reflection, since the
size of the diffracted and double reflected signals were
negligible. The backscatter from all three ridges generally
obeyed a spherical divergence characteristic beyond some
critical depth below the ridge. Variation in the divergence
characteristic at different source/receiver depths was
explained by the destructive interference of the reradiation
of mode-conversion induced ridge reverberation with the
reflected portion of the backscatter, as shown in Figure
7.17.

With the source/receiver positioned below the ridge,

the received signals were a combination of sound scattered
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t, from the ridge, as well as the reflection from the smooth
" plate. When scattering from the ridge is most important,

Equation (7.1) for the backscattering strength is a more

‘%, appropriate comparison with theory; when reflection from the
% smooth plate is important, Equation (7.2) for dB referenced
{ to a mirror should be used. In the case of the "large"
o’

5 ridge, scattering was just as important as reflection, so
? experimental agreement with theory was nearly the same when
‘ using either Equation (7.1) or Equation (7.2). At the other
_g extreme, the small size of the "steep" ridge meant that
i% reflection was much more important than backscatter. As a
.f result, experimental agreement with theory was better when
ﬁ: plotted in terms of dB ref. mirror.

%{ ’ 3. Frequency Dependence

); The frequency dependence measurement of the "“large"
2? ridge produced the only meaningful results. For the shallow
% grazing angles of this experiment, diffraction occurred from
AN

1‘ two corners of the ridge which produced an interference
tg‘ effect due to their slightly different path lengths in
% comparison to a wavelength. The "typical" and "“steep"
j ridges produced inconsistent results, possibly due to the
‘2 increased surface interference problems associated with
55 those two ridges for their smaller height.
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4, Elevation Angle Dependence

Each of the ridges was modelled as a finite reflec-
tor or aperture with a height corresponding to the ridge
slant face. The backscatter consisted of the reflection and
reradiation of sound energy from the rectangular aperture,
as well as diffraction from the corners of the ridge. The
BSS was compared to the directivity pattern for an
equivalent rectangular piston. Experimental agreement with
theory was good for the "large" ridge because radiation from
its large aperture (in comparison to a wavelength) dominated
the diffraction from the ridge corners. Agreement with
theory in the case of the "typical" or "steep" ridge was not
as good since the diffraction increased in relative impor-
tance as the radiation became less efficient for these
smaller rectangqular apertures. The BfS was greater for
larger ridges: doubling the slope of the "typical" ridge
reduced the BSS by 10 dB, while doubling the height of the
"typical" ridge increased the BSS by 5 dB.

Finally, it was observed that diffraction theory did

not account for all of the energy backscattered from a
ridge. During the frequency dependence experiment for a
grazing angle of 20°, there were no surface interference
effects and no interference of specular reflection from the
smooth plate, so the geometry was optimized to measure

Wl diffraction alone. The additional enerqgy was due to the
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reradiation of mode-conversion induced reverberation from

the ridge, as shown in Figure 7.28.
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VIII., CONCLUSIONS

Due to the physical characteristics of the laboratory
acrylic model and the ability to scale the laboratory
dimension-to-wavelength ratio to match typical Arctic
dimension-to-wavelength ratios, it is possible to study the
low frequency scattering properties of the Arctic ice canopy
under controlled laboratory conditions. These experiments
were designed to study the behavior of two particular
scattering features of the Arctic: the backscatter from the
trailing edge of an open Arctic lead and the backscatter
from Arctic pressure ridges.

The results of these experiments can be summarized as
follows:

1. The Arctic ice canopy and the laboratory model are
acoustically non-rigid, since they do not have an
infinite specific acoustic impedance mismatch with
water. The consequence is that a significant amount
of acoustic energy incident upon such a surface will
penetrate and be mode-converted to solid-borne
vibrations within the solid material.

2. Due to the effects of mode-~conversion, diffraction
theory alone is not sufficient to predict the amount
of energy which will be backscattered from the
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trailing edge of an open lead. Some of the acoustic
energy incident on the underside of the Arctic ice
canopy will generate solid-borne compressional and
shear waves which propagate along the plate and
: reradiate energy back into the water upon reaching a .
discontinuity. When superimposed with the
diffraction, this reradiated energy results in
backscattered signals larger than predicted by
diffraction theory alone. Individual components of
the backscattered signal were identified by
i establishing a source/receiver geometry which
separated them by time of arrival. Additionally, the
presence of head wave radiation from a smooth floating
plate was discovered and measured.
3. The backscatter from Arctic pressure ridges is

affected by the amount of mode-conversion. Diffraction

S T em -

occurs from the corners of the ridge, but a signifi-
cant amount of the incident acoustic energy also
produces mode-conversion induced reverberation within
the ridge which reradiates energy. The majority of
the backscatter occurs in the least time region of the
ridge. Also, for ridges large compared to an acoustic
wavelength, reflection and the reradiation of ridge
reverberation dominate the diffracted portion of the

backscatter. Consequently, the characteristic

- e e~
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behavior of the backscatter resembles the directivity
pattern for rectangular piston radiation from the

slant face of the ridge that is ensonified.
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APPENDIX A: PLANAR TRANSDUCER FOR MODE CONVERSION STUDY

v

-

When the scattering characteristics of sound from the

acoustically significant features of the acrylic Arctic ice

f model are well understood, many of the same experiments will
be repeated in a layered waveguide to study the propagation
and scattering of sound in a shallow water "Arctic"
environment. In preparation for those experiments, it was
necessary to build a planar transducer capable of effective
‘ transmission of normal modes of vibration in a waveguide.

There was also an application for this transducer in the

mode conversion study experiment.
S A layered waveguide is a water layer which is bounded on
{’.

-

the bottom by a half space of sediment, and by a half space
of air on top, with the characteristics described by Clay
and Medwin (1977). Effective transmission of a single mode

in a waveguide is possible if the driving elements are

oo
. e s~

located to reinforce the mode pressure maxima, and if the

phase between adjacent maxima is shifted 180°. Typical

.

o -

vertical pressure profiles for the first three normal modes
in a layered waveguide are shown in Figure A.l. Since a
" greater number of transducer elements will provide better

! control of the pressure profile, a twelve channel amplifier

was designed to provide twelve independent channels with

separate phase and amplitude control from a single input.

N 144

. A - AT PR
o W WAL L RO O R A S Tl &ﬁ!’
b i e I LA B e A RN WERY T 2l



; - ‘1

: o Z;(z) r o 22(2) r o Zj3(z) r
b ~N
7 el P
q
R <
(A‘!‘
h h— h

o Vv AV J/

& z z z

K}

.

Figure A.l: Vertical pressure profiles, Zph(z), for the

o first three normal modes in a layered
e waveguide. (m is the mode number)
Yy

;5

0 The term "phase"” is loosely applied, since only a 180° phase
. shift is required between elements to produce the necessary
<
;% ) excitation. Figure A.2 is an electrical schematic of the
M3

v amplifier design. The amplifier uses 324C general purpose
o operational amplifiers (with four opamps per chip). The
c.‘l!

jﬁ first chip uses only two of its opamps, and provides the
e

;f signal to the inverted and non-inverted buses of the
R amplifier. The 100K potentiometer is used to ensure the
) voltage on each electrical bus is identical. The second
S stage amplifiers provide amplitude control via the 250K
L potentiometer, and phase contrel via the toggle switch for
e each channel.

i,
;; Construction of the transducer was made possible by
z;_ . materials provided by the Raytheon Corporation. The active
'ﬂ material for each element is the semicrystalline polymer
L)
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v
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"
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. WIDTH = 23.0"
- .
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08 Figqure A.2: Planar Transucer Design
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polyvinylidene fluoride (PVDF). It was chosen for its
flexibility and toughness, its good acoustic impedance match
with water, and for the ease with which it can be cut and
handled. Each element was constructed by gluing two strips
(3/8" x 24" x 0.022") of the copper-plated PVDF material to
a 3/8" brass bar to increase the volume displacement, and
therefore the projecting power, of each element. The twelve
elements were stacked and glued in an aluminum casing with
cork strips positioned to physically isolate elements from
the casing and from each other to damp vibrations which
might be transmitted between elements. Finally, the entire
transducer was sealed with Emerson and Cummings Eccothane
7534, a low viscosity, medium hardness encapsulant to
waterproof the transducer. A schematic of the transducer
design is shown in Figure A.3.

The performance of the transducer was tested by making
near-field pressure response measurements in air, applying
the theory of complex apertures described by Ziomek (1985).
The complex frequency response in the near-field was
measured by positioning a 1/2" Bruel and Kjaer condenser
microphone at a height of 1/2" over 276 uniformly spaced
positions across the active face of the transducer. The
measurements were repeated for three different frequencies
of interest and with various amplifier configurations. The

transducer response at 20 kHz for a mode 1 and mode 2
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ooy excitation is shown in Figures A.4 and A.5. By the theory
it
1,
=$: of complex apertures, if the frequency response can be
i)
Yoot
o measured for a given electrical input, then the acoustic
')ﬂ‘l .
,g* ‘ response of the transducer is known.
N
$§= The PVDF transducer was used for an application in the
le|’!
o mode conversion study experiment. With all of the elements
"y . . .
} : in phase and equally amplitude weighted, the transducer was
_ W
'm? positioned below the smooth acrylic plate at the critical
R
* angle for compressional wave excitation in the plate. With
;&x compressional waves efficiently excited by the plane waves
*
§;§ of the source, it was possible to effectively measure the
lit‘g
;4 plate compressional wave reradiation into the water from the
g@ end of the plate and as head waves from the water-acrylic
2, .’
oo interface.
o
)
kY
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APPENDIX B: FLEXURAL WAVE THEQORY

Flexural waves in a plate propagate by a bending motion
about the neutral, undistorted axis. Portions of the plate
above and below the neutral axis undergo a combination of
compressional and shear deformation as the wave propagates.
Flexural waves are also known as bending waves. Different
frequencies will travel at different speeds, so propagation
of flexural waves in a plate is dispersive, and a waveform
will change its shape with distance of travel. Flexural
waves in a plate will be generated for frequencies kh < 1,
where k = horizontal wavenumber and h = plate thickness.

According to Ross (1976), when classical elastic theory

is applied to solid plates, longitudinal waves have a phase
speed given by: ¢ .

- p(l - o?)
The plate longitudinal phase speed depends only on
properties of the materjial. Vibrations in a thick plate are
quite complicated, but if frequencies are restricted to the
small kh criterion, then the analysis of thin plate

vibrations is possible. For a harmonic disturbance in the

plate, the Timoshenko equation for beams is used to describe

the flexural motion:

152

AUR SIS ",: g .:E{ﬁ" ‘5‘ i z«k‘A}‘ RS '5' "‘ "! AR Y
S - B .




32y  cp’h? (Irp, + 1)h? 3%y [ph? 'y
+ P V'y - P ey2 + P .
at? 12 12 at* 12 cp*  at*

=0

where h is the plate thickness (meters), ¢ is the
longitudinal or compressional wave speed in the plate, y is
the plate displacement perpendicular to the surface, and Pp

is the shear parameter for the plate. The shear parameter,

i’

rp—

KG(1 - o?)

is a non-dimensional number which relates Young's Modulus
(Y) to the Shear Modulus (G). The constant of
proportionality for a plate, Kp = 0.76 (1 + 2/50), accounts
for physical distortions in the plate due to the effects of
shear. There are four solutions to the Timoshenko equation,
two of which are imaginary, and the general solution can be

expressed as (Ross 1976):

y = [Ae-lkx + Beikx o~1dx

+ De

where w = 27f, k is the flexural wave number w/vg, vg is the
flexural wave phase speed, j =ik, i = (-1)%, and A, B, C,
and D are the complex coefficients found from the boundary
conditions.

The flexural wave group and phase speeds for harmonic
excitations of a thin plate can be found by substituting the

general harmonic solution into the Timoshenko equation for
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thin plates. The resulting equation, when rearranged to

form a quadratic equation in terms of radian frequency, w,

is

Tp h? h? h?

—_— w* = {Tp + 1) |— k* +1 w? + cpz — ] k* =0
cp2 1 12 12 .

Solving the quadratic equation for the flexural wave phase

speed results in

1 r*——————_
sz = e [_ B + Bz - 4AC] (B.l)

2A
2
1 Iph
A = — - .
B = (Tp+ 1)h?/12
2.2
C = —Cph/IZn

It has been shown theoretically by Ross (1976) and
experimentally by Denny and Johnson (1986), that in the 1low
frequency limit, the flexural wave phase speed is

proportional to the square root of the frequency:

woph
J12

Vg =




Also, at high frequencies the flexural wave speed becomes

constant, so flexural waves are then non-dispersive:

c
. vfz = -_p._ > 0.92 cg
Tp
where ¢cg = the shear wave speed in the plate. Similarly,
when Equation B.l is solved for the flexural wave group
speed,

it is seen that the group speed is twice the phase
speed at low frequencies:

(UCPh &

12~

vg=2¢

and that group and phase speeds are equal at high
frequencies,
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