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ABSTRACT

Image segmentation is an essential preliminary step in
automatic pictorial pattern recognition and scene analysis
problems. The objective of segmentation techniques is to
partition an image into regions or components. The purpose
of this thesis is to analyze a segmentation technique called
gradient relaxation. The gradient relaxation method is a
viable method in segmenting objects within an image. The
gradient relaxation technique is applicable to images having
unimodal distributions. This method is applied to noisy
infrared images in an attempt to detect and classify the
target. The method allows for an easy selection of a
threshold value which may be required for other types of
image processing on the image. The main issue is to examine
the effectiveness of this technique applied to noisy
infrared images from uncooled focal plane array sensor
having unimodal distributions. The technique was able to
extract the target in the image, producing a homogeneous and
uniform region for most of the cases studied. A target
which was fragmented into several parts because of the noise
is not detectable. The technique could be implemented in

hardware and applied to the inputs of a classification

system for detectable objects in noisy infrared images.
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I. INTRODUCTION

A A. IMAGE PROCESSING

‘7 Image processing is concerned with the extraction of
‘ information from natural images which are acquired from
N image sensors. Information extraction involves the
detection and recognition of patterns within the image.

The human eye has an extraordinary pattern recognition

“5% capability, being able to discern approximately one hundred
é*é shades of gray. However, the eye is not always able to
i?i‘ extract all the information from an image due to radiometric
;@i degradation, geometric distortion, and noise introduced
.3% during recording, transmission, and display of the images.
o These factors can severely limit recognition of patterns or
'} objects. One purpose of image processing is to aid the
“wg human eye in extracting the desired image by removing these
;3; distortions.
gﬁ Three methods are available in performing image
jﬁ? processing operations: digital, optical, and photographic.
,$.J Black and white film can retain a limited range of gray
|§3 level intensities (50 or less), whereas digital computers
»ﬁg can represent several hundreds or thousands of gray levels,
:'§£ (Ref. 1] Optical methods are faster, but do not offer the
?.E flexibility of digital methods. Flexibility is limited by
iR
%ﬁl 12
1)
e
:351,*3
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such factors as the compromise between computation time and
the accuracy of the results. [Ref. 2] Computers can be used
to apply various linear and nonlinear transformations to
images which cannot be performed optically. Digital
information extraction techniques can fully exploit the
statistical nature of digital imagery. These techniques can
also be used for analysis based on correlation of image data
with nonimaging data. This includes correlation of remotely
sensed imagery with nonimaging georeferenced cartographical
data bases.

The digital computer, used in numerically oriented
analysis because of its quantitative character and great
speed, has become a key tool. Numerically oriented remote
sensing takes advantage of the computer to emphasize the
inherently quantitative aspects of the image data, dealing
with the data rather abstractly as a collection of
measurements rather than as an image. Tremendous quantities
of data are of real value only when the data can be acquired
and analyzed both rapidly and cost effectively. The growth
of digital computer technology has enabled the development
of digital image processing techniques. Because of faster
and cheaper computational components, large-capacity high-
density digital data storage devices, and improved display

technology, the processing, manipulation, and display of

13




o large volumes of digital imagery has become possible.
?;\".
:ﬁ [Ref. 3]
fy
?7‘13:‘« A digital image processing system contains three main
e elements as shown in Fiqure 1.1 and are defined as follows:
¢
::'9'5'
a':"::
B
e
o
ol
S IMAGE IMAGE IMAGE
ACQUISITION PROCESSING DISPLAY
oo
a -
i
e
o, Figqure 1.1: Image Processing System

;w (1) Image Acquisition. This involves the conversion of a
-;'é scene into a digital representation. This element
g:{: can be performed by a sensor system which is designed
'..:),';‘ to view a scene and provide a digital representation
E::‘!.". of it. The acquisition involves the conversion of an
:g'.::" image from a television signal or film into a digital
‘,q::‘: representation. [Ref. 3] An image sensor can be
‘::::::;?: characterized by a number of features, including:

53:?{ e signal-to-noise ratio - a measure of the useful
- information extracted from the sensor's signal:
B

;':':‘o

'*:0:5\ 14
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* dynamic range - variation in the range of the
response to light energy;

e resolution - measure of the smallest detail in
the image which can be retained by the sensor;

¢ transfer function - relationship between incoming

light spatial frequency and output spatial
frequency;

e integration time -~ the time in which the sensor

accumulates charges generated by the incoming
light;

* reading speed - the scanning time for a given
total spatial resolution and picture size;

* spectral sensitivity - the portion of the
electromagnetic spectrum to be used by the
sensor. [Ref. 4]

The sophistication of the acquisition system
based on the above features and capabilities will
greatly affect the cost, performance, and reliability
of the acquisition system. However, no matter how
sophisticated the system is, certain degradations
will be introduced into the image. These
degradations fall into two categories: radiometric
and geometric distortions. Radiometric degradations
occur from blurring affects of the imaging system,
nonlinear amplitude responses, shading, transmission
noise, atmospheric interference (scattering,
attenuation, haze), variable surface illumination
(differences in terrain slope and orientation), and
change of terrain radiance with viewing angle.

Geometric distortions can be categorized into three

15




categories: sensor-related such as aberrations in
ety the optical system, or nonlinearities and noise in

the scan-deflection system; sensor-platform related
‘53 caused by attitude and altitude of the sensor; and
it object-related distortions caused by Earth rotation
and curvature, and terrain relief. [Ref. 1]

it (2) Image Processing. This element provides the digital

%ﬁ’ processing of the image or images to produce a

desired result (Figure 1.2). This processing can

&J. range from simple enhancement of an image for better
4
”..‘ (]
h&‘ display of scene detail to more complex processing

involving several component images. [Ref. 3] Digital
gﬁx image processing techniques can be divided into two
Pt different groups. The first group includes
quantitative restoration of images to correct for
Sﬁi degradation and noise, registration for overlaying
ey and mosaicing, and subjective enhancement of image

features for interpretation. The second group is

éﬁ% concerned with the extraction of information from the
%ﬁ{ images. This area of analysis includes object
K

ﬁ& detection, segmentation of images into
k&‘ characteristically different regions, and
gﬁ% determination of structural relationships among the
ﬁ;f regions. [Ref. 1] Within these two groups fall two
?;u categories: subjective and quantitative processing.
Wk :;
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DESCRIPTION
IMAGE > IMAGE OF ANALYZED

~»|RESTORATION, | _ ANALYSIS IMAGES
REGISTRATION
CORRECTED
IMAGES
RECORDED
DIGITIZED NCED IMAGES
IMAGES > IMAGE | igg AVI?LZJAL
ENHANCEMENT INTERPRETATION

Figure 1.2: Image Processing Steps. [Ref. 1]
Subjective processing is usually performed in an
adaptive, interactive, and iterative manner. It is a
trial and error process, and success is based on the
ability of the observer to detect information of
interest in the final or enhanced image. The changes
achieved in the 'before' and 'after' versions of the
images processed subjectively are often quite
dramatic, despite the relative computational
simplicity of many of the subjective techniques. A

basic tool which is used in performing subjective

enhancement and image analysis is the histogram. The
histogram reveals the distribution of the intensities
within the image; it is represented graphically as a
plot of the number of picture elements (pixels) at a
given intensity, versus the gray level intensity;

Quantitative techniques are generally performed on an

17
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N image in a nonadaptive, noninteractive manner. The
O processing method is based on a predefined

mathematical algorithm, and success in processing is
e based on the correctness of the model. Examples of
oy qualitative processing is the removal of radiometric

| and geometric distortions. [Ref. 3]

ol This element can reduce some of the requirements
,mz of the image acquisition system, such as signal to

noise ratio, dynamic range, transfer function,

kgs integration time, and reading speed. By reducing
%ﬁg some of the requirements, the cost of the acquisition
gt system can be reduced, and the money saved can be
iﬁ% used to improve the processing capabilities of the
'éé‘ complete imaging system.

(3) Image Display. The final element provides for

é?g generation of an output product that can be seen by a
iﬁ? human observer. This element provides the required
fri conversion of digital data into an analog form.
ﬁﬁy Processed images can be viewed on a volatile display
§§% monitor that presents the digitized data in an analog

form (video signal). The imagery data can be

ot recorded on film or other hard copy format. [Ref. 3]

e B. OVERVIEW

~=3 This thesis is concerned with the image processing step
and specifically with image analysis using segmentation
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:;; techniques. The segmentation technique used here is called
\}'
fx the gradient relaxation method. This method utilized an

iterative probability adjustment process to segment pixels

;N into two regions, 'light' and 'dark'. This method is highly
Eﬂ dependent on the selection of weighting factors. They
-&: . determine the speed at which the segmentation process
§¢ coverages and to regions pixels will be assigned. Analysis
gz is done on noisy infrared images of ships to determine if
i targets can be detected, and/or classified. Detection is
?k the ability of the observer to sense that an object of
Ek interest is in the field of view. Classification is defined
?i (in the military sense) as the ability of the observer to
%t identify the detected object as to its type. For Army
;S operations, classification could be a tank, truck, or
qb helicopter. For Naval operations, a large ship, small ship,
-i; . combatant, or merchant vessel would be typical types. At
tﬂ different steps of engagement, the need to detect or to
ff: classify the object will depend upon the situation.

&é Chapter II is a survey of contemporary image
;JS segmentation techniques. These techniques are classified
“ﬁ into three categories: characteristic feature thresholding,
';' edge detection, and region extraction. The specific
Eg' algorithm which is investigated in this thesis is a
y combination of feature thresholding and region extraction,
,{; using a relaxation or iterative process for the segmentation
00

_.:: 19
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of the image. Chapter III is a discussion on the gradient
\ relaxation algorithm, the particular method used in this
> investigation. This chapter introduces the relaxation
process and develops the gradient relaxation algorithm,.
§§ This algorithm is applied to several noisy infrared images
EQ of ships in Chapter 1IV. An analysis 1is done on how

effective the algorithm is in reducing or eliminating noise,

the ability to detect and classify an object in the field of

view, The final chapter summarized the results, discusses
possible applications, implementation of the algorithm, and

possible future work.
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PO IT. TECHNIQUES USED IN SEGMENTATION
1.7
4‘(0“
3» : A. SEGMENTATION BASICS
"
%\ A major branch of image processing deals with image

analysis or scene analysis, where the input is pictorial,

but the output is a description of the given picture or

Rt

}Vﬁ scene. The following are examples of image analysis
B

h problems:

:éﬁ (1) The input is text and it is desired to read the text:
a8

:Eh here the description of the input consists of a
ok

e sequence characters.

o4, (2) The input is a nuclear bubble chamber picture, and it
lﬁ; is desired to detect and locate certain events (e.g.,
."",!r)

R particle collisions); the description consists of a
Z’&% set of coordinates and names of event types.

) }

Sty . . . . .

|#ﬁ (3) The input is a picture of a miotic cell and the
)

Ut , .

’}' output is a 'map' showing the arrangement of the
~f:i chromosomes in a standard order. This output
!Q )

R requires knowledge of the location and identification
N

L)

o't of the chromosomes.

ﬁ&ﬁ (4) The input is an aerial photograph of terrain with the
o

%:j desired output being a map showing specific types of
o

o terrain feature (vegetation, buildings, ships, roads,
f}d ; etc.). The construction of this output also requires
'

0

o
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:?f the location and identification of the desired
Vg : terrain features. [Ref. 5]
o In all of these examples, the description refers to
?é; specific parts or objects in the picture in terms of their
EE% properties and the relationships between the objects. Image
R analysis consists of four steps:
‘gﬁ Step 1: Segmentation ~ This is the partitioning of an
;&3 image into different regions, each having
)
e different properties.
??‘ Step 2: Regional descriptions - This procedure is used to
g?s characterize the segmented regions by a set of
j*& descriptors which are not sensitive to such
g:z variations as changes in size, rotation, or
523 translation. These descriptors will bring out
e features which will aid in differentiating
:¥§ regions with different attributes.
Y Tu
%ﬁ Step 3: Relational descriptions - This procedure deals
"{ with the organization of these regions into a
E:g meaningful structure.
N\ ﬁ Step 4: Descriptions of similarity - The final step deals
a\i with the problem of establishing measures of
Eﬁﬁ similarity between regions in an image. [Ref. 6]
?:? Image segmentation is a critical step in the image
A analysis process because errors in segmentation might
5:§j propagate through the other processes producing an incorrect
i
22
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?“ description of the scene. The question can then be asked,
2?' what should a good image segmentation be? Regions of an
gﬂs image segmentation should be uniform and homogeneous with
TEﬁ respect to some characteristic such as gray level or
fiﬁ texture. Region interiors should be simple and contain few
W gaps or holes. Adjacent regions of a segmented image should
iﬁ* be significantly different in value with respect to the
;%E characteristic on which the regions are homogeneous.
%& Boundaries of each reqgion should be smooth and spatially
3%% accurate. Achieving these desired properties is difficult
%ﬁ because precisely uniform and homogeneous regions are
‘:i‘ typically full of small holes and have jagged boundaries.
I:g Requiring that adjacent regions have a large difference in
~
Eiﬁ value can cause regions to merge and/or boundaries to be
250 lost. All of these effects introduce errors which are
ﬁ% undesirable. [Ref. 7]
SEE There is neither a standard approach to nor theory for
L of image segmentation. Segmentation techniques are
3?; basically ad-hoc and differ in the way each emphasizes one
&g or more of the properties discussed previously. In the way
kﬁi each strikes a balance between one desired property and
yii another property. T. Pavlidis has commented that an image
f~? segmentation problem is basically one of psychophysical
oo,
b perception and therefore not susceptible to a purely
;;{ ' analytical solution. Any mathematical algorithm must be
o
&0. 23
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supplemented with heuristics, involving semantics about the

bd class of images under consideration. Quite often, simple
e
s heuristics are not enough, and it is essential to introduce
“J a priori knowledge about the image. An example of this is
[ v

:j the dalmatian dog picture (Figure 2.1). Without the priori
i

o
et knowledge that a picture consists of a dalmatian dog, most
3 human observers would perceive the picture as pure noise.
:\§ However, if the observers are told that the image consists
b of a dalmatian dog, most will identify the dog in the H
S picture. [Ref. 8]
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Figure 2.1: This picture is perceived to be random noise.

KR Mention 'dalmatian dog' and that image will be
wﬁ seen., [Ref. 8]
o
" :: .
el Almost all segmentation techniques are based on either
:ﬁﬁ the concept of similarity (e.g., characteristic feature
g

T
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clustering) or discontinuity (e.g., edge detection). These
techniques can be categorized into three areas: (1)
characteristic feature thresholding or clustering, (2) edge
detection, and (3) region extraction. [Ref. 9] These

techniques are discussed in the following sections.

B. CHARACTERISTIC FEATURE THRESHOLDING

Characteristic feature or gray-level thresholding is a
widely used segmentation technique. The general idea is to
divide the gray scale of a histogram into bands of a similar
characteristic, e.g., gray level. 1In general, thresholding
can be described mathematically as

S(x,y)=k if Tk—l < f(x,y) < Ty s k=1,2,...,m

where (x,y) are the x- and y~-coordinate of a pixel; S(x,y)
is the segmented function of (x,y): Tl""'Tm are the
threshold values with T being the minimum and T being the
maximum; m is the total number of distinct bands (or labels)
assigned to the segmented image. The selection of the

threshold value(s) is not a simple task and can be dependent

on several factors. If the threshold depends only on
f(x,y), the gray level, it is called a 'global threshold'.
If the value is dependent on f(x,y) and the average gray
level of the neighborhood around that pixel, it is called a
'local threshold'. If the threshold is based on the gray
level f(x,y), the neighborhood gray 1level, and the
coordinates x and y of the pixel, it is called a 'dynamic

25
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ﬁﬁ threshold'. [Ref. 9] As can be seen, the selection of a
§

%3? threshold value is not an easy task, but the selection of
e the threshold is very important.

}3 There are several methods to select a global threshold.
:Ei Some are based on the gray level histogram, others on local

properties such as the gradient, or Laplacian of an image,

R and others for an image consisting of an object and
jsa background where the percent of the object area in the image
e is known. The 'mode method' is a technique based on the
.tf gray level histogram where the threshold is selected in the
§§£ valley between the peaks (or modes) of the histogram. This
_:i' approach has the advantage that it reduces the probability
;x' of misclassifying an object point as a background point and
;; vice versa.

* % However, there are some disadvantages to this technique.
:}5 Spatial information is not used to arrive at the thresholds
EEB which means there is no assurance that the segmented regions
:)ﬁ are contiguous. The minimum location of the valley may be
f;}. difficult to locate since the valley may be broad and flat.
3 ﬁg Methods have been proposed to sharpen the peaks to more
,.2» clearly define a valley bottom. A. Rosenfeld [Ref. 10]
fifj proposed an iterative method, called relaxation, to sharpen
oo
;3: the peaks in enhancing images and their histograms. [Ref. 9]
A simple example of a bimodal (two peaks) histogram is
shown in Fiqure 2.2. The objective is to select T such that
26
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band Bj contains, as closely as possible, levels associated
with the background, while B contains levels associated
with the object(s). Each band is assigned a single gray
level within that band which will best discriminate the
object from the background. This figure also demonstrates
the case of a broad and flat valley, where many of the
pixels in band B are not part the object but may be noise,
therefore part of the background. The iterative method
mentioned above is a possible solution to enhancing the peak
at the right creating a truer representation of the object.
Using the original threshold value, errors will be
introduced into the scene analysis process, which is
unacceptable as was stated earlier. This thesis looks at
the use of the iterative method in selecting a threshold and

creating a segmented image.

Dark Light t B> 1

Dark T Light

-+

!
1\““) i I.1 | “‘meumumlhi
By

(a) (b)

Figure 2.2: Histogram thresholding [Ref. 6]
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C. EDGE DETECTION

Edge detection is an image segmentation technique based
on the discontinuity of gray levels at the boundary between
different objects. This discontinuity can be any one of
o several geometrical forms:

;,; (1) An edge - The gray level is uniformly consistent in
o each of two adjacent regions, and changes abruptly at
§N the border between the regions.

Bolty (2) A line or curve - The gray level of a thin strip in
Yoty the image differs from the two regions on either side
hak! of the strip.

N .(3) A spot - The gray level is relatively constant except
. at one location in the image. This looks like a
SheY spike in a cross-sectional view (Figure 2.3), but

ftaﬁ appears as a spike from all directions. [Ref. 5]

o (a) (o)

e Figure 2.3: a) Idealized edge cross section.
ool b) Perfect 'spike' line.
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Edge detection schemes consist of three steps:

(1) The use of a gradient or derivative operator to
detect locations where the gray level is changing
rapidly. In the case of digital images, difference
operators are used instead of derivatives.

(2) A threshold operation is performed on the gradient in
order to decide if an edge has been found. The edge
points are assigned a value greater than the
background if the gradient is larger than a certain
threshold. This threshold selection is a key problem
in noisy images. Too high a threshold does not
permit the detection of subtle, low-intensity edges.
A value too low causes noise to be detected as edges.

(3) Pixels which have been determined to be edges must
then be linked to form closed curves surrounding the
regions. [Ref., 11]

Edge detection is of limited value as an approach to

segmentation of noisy remotely sensed images. Often the
edges have gaps at places where the transition between
regions are not sufficiently abrupt. Additional edges may
be detected at points that are not part of region
boundaries, and the detected edges will not form a set of

closed, connected object boundaries. [Ref. 1]
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D. REGION EXTRACTION

R

%m Another way of doing segmentation is to divide the image
}a1 into regions. Region extraction techniques can be divided
~€§ into three categories: (1) region merging, (2) region
:Lﬁ splitting, and (3) combination of region merging and
ol splitting.

§§ Since the goal of segmentation is to partition an image
ﬁg into regions, a direct approach is to attempt a partitioning
0 of the image into regions which satisfy a similarity
éﬁé criterion, i.e., group points into regions. The criteria
;gf which can be used in extracting objects include region
gél homogeneity (in gray level, texture, etc.) and contrast with
& the background, strength of the region's edges, size, shape
%?' simplicity, and conformity to a desired texture or shape.
oy The advantage of this approach is that it results not only
f“; in boundary point of regions but also in satisfying a
:;' similarity criterion for all points within the regions. 1In
;{“ order to group points, three fundamental issues must be
;gﬁ resolved. The first is to determine the number of regions.
5;3 The second is to determine some properties or features which
e distinguish one region from the other regions. The third is
‘ﬁs to specify a suitable similarity criterion which will
;fg produce a 'meaningful' segmentation. A 'meaningful'’
;%; segmentation is a subjective term and is based on subjective
§ ] methods. [Ref. 6]

)

b 30

z{b




o T T T T T Lo Aad Al o FEWE T WMy YRR FTERTWY Ymos T es TR T e s ot e TR /T o, T A |

One method is called region growing. This approach
starts with very small regions with uniform pixel
properties. Growth begins by starting with one of these
regions and merging neighboring regions with it, one at a
time. The choice of which neighbor to merge will depend on
both the similarity of the regions (based on gray level,
texture, etc.) and on the size and shape of the resultant
merged region. Because of the sequential operations
involved, the process is slow.

Another approach is region splitting. This approach
considers the whole image as a single region, and partitions
it by repeated splitting. Two simple approaches of
subdividing an image are bisection and triangulation. In
bisection, if the complete image is not homogeneous, it is
divided into quadrants; if a quadrant is not homogeneous, it
is divided again into quadrants; this process continues
until all of the quadrants are homogeneous. In
triangulation, the image is divided into four triangular
sectors which meet at a point having a gray level farthest
from the mean; if a triangle is not homogeneous, it is

divided into four triangles; this continues in a similar

manner as in the bisection method. There are two serious

problems with this technique. The image could be subdivided

down to the single pixel 1level, which is probably
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unacceptable, or the final partition may contain adjacent
regions with identical characteristics.

A method which is preferable to either merging or
splitting is the combination of the two, or the merge-and-
split method. The general idea is to start with a given
initial partition; the entire image is a region, each pixel
or a small block of pixels is a region. Adjacent regions
are merged if the new region is sufficiently homogeneous,
and a region will be split if it is not considered to meet a
homogeneous criteria. [Ref., 5]

One of the disadvantages of region merging processes is
their inherently sequential nature. The regions produced
depend greatly on the order in which regions are merged
together. Most, if not all region extraction methods rely
heavily on local information. It is difficult to
incorporate global information into an algorithm unless the
category of pictures to be processed is severely limited.
All region extraction techniques process pictures in an
iterative manner which usually involves a large expenditure
of computational time and memory.

A method which takes advantage of both parallel and
sequential methods is called relaxation. 'Parallel' methods
have the classification decision done at each point
independently of the decisions at other points.

'Sequential' methods are those which base their decision on
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previous decisions. 'Sequential' methods are more powerful
than 'parallel' methods because they learn to better define
the region classification as they proceed. However,
'sequential' methods are slower and their results are still
dependent on the order in which the points are processed.
[Ref. 9]

Relaxation is an iterative approach which makes
probabilistic classification decisions at every pixel in
parallel at each iteration. It then adjusts these decisions
at successive iterations based on the decisions made at the
preceding iteration at the neighboring points. The
relaxation method is conducive to the segmentation problem
in noisy infrared images. Noise within or near the target
will be filtered out due to the sequential process involved
when the probability classification of the noise pixel is
adjusted based on its neighbors. The adjustment of the
pixels to a high probability ('light') or a low probability

('dark') will enhance the peaks in the histogram, allowing

for an easy selection of a threshold. The theory for this
method will be discussed more fully in the next chapter.
[Ref. 5] In order to evaluate the usefulness of this
method, experiments are conducted and the results presented

in Chapter IV.
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III. SEGMENTATION BY THE GRADIENT RELAXATION METHOD

Segmentation of an image into regions can be done by
various methods described in the previous chapter. These
techniques fall into several categories: region merging,
region splitting, and a combination of merging and splitting
as mentioned before. A method which provides for an easy
selection of a threshold value and combines the advantages
of sequential and parallel processing techniques is the
relaxation technique. This chapter will discuss the theory
behind the relaxation technique and develop the mathematical
relationships used in the gradient relaxation method, the

segmentation technique used in this work.

A. INTRODUCTION TO RELAXATION PROCESSES

Relaxation, or iterative methods, were originally
developed as a numerical analysis tool to solve a set of
simultaneous equations. In recent years, relaxation methods
have been applied to image analysis. The classification of
parts in an image using relaxation techniques was first
introduced by A. Rosenfeld [Ref. 12] and S. Zucker [Ref.

131]. These methods have been applied to histogram

modification (a peak enhancement scheme), noise cleaning,

VIS edge and curve detection, curve thinning, angle detection,
e

oo

:ﬁﬁ template matching, and region labeling.

‘M)
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Image analysis usually involves the discrimination or
classification of parts within an image. Classification can
be based on gray level intensity by categorizing points as ‘
'light' (object) or ‘'dark' (background), or vice versa, in !
the segmented infrared images. For edge or non-edge point ;
classification, it is based on some local property (e.g., ‘
the magnitude of the gradient) evaluated at that point.
Angles on a curve are classified based on the magnitude of
the curvature of the curve at that point. Classification of
image points based on these properties is error-prone,
because noise in the image may cause the local property to
be misleading. This misclassification can be compounded if
the classification is done in a 'parallel' fashion, i.e.,

each point is classified without reference to any

. classification decisions of is neighboring points. However,
if the classification procedure has sequential operations,
the process takes advantage of previous classification of
the neighbor points. This is the basis of the
classification of objects using relaxation methods. The
iterative approach has two advantages: (1) classification
decisions become better informed as the analysis proceeds
and (2) the method can use fuzzy or probabilistic
classifications rather than making firm decisions
immediately as would be the case in a parallel process.

[Ref. 10]
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ms‘ The iterative probabilistic classification method can be
%)
) .
%& described in the following manner. A set of objects
I‘Q_ {
v (pOintS I3 lineS, regions, etc. ) Al'Az oo 'AN are classified
o, %
4 ﬁ into a set of classes X1, X2,...,\m. Each object has a
N

Sv: neighbor relation, i.e., each Aj has a specified set of Ay's
¥ as neighbors. Each object Aj is associated with a
A
" N v N . .
cﬂﬁ probability vector (Pj3;, Pi2/,...,Pjm) where Pjx is an
ﬁ;’ estimate of the probability that Aj belongs to a certain
class Ag. The initial probability is based on a

R
-&-- conventional type of analysis. For example, a point's
W
éh; probability is based on its gray level, i.e., proportional
"V

L to the distances of that gray level to the maximum values of
K)

ﬁi{ the gray level range. The next step is to define a measure
jii of compatibility between an object A; belonging to Ap, and
Wigt

another object Ay belonging to Ag. If there is a high

[
.’.l - N .
@;3 compatibility (or similarity) between object Aj and object
iyl
Qq? Aj, i.e. (Aj, Ajelyg), object Aj is reinforced by its
K

) neighbors. Thus its probability is increased. However, if
.,‘!-

Ny 9 .
N > the objects are incompatible, the probability remains the
~A
}é& same or decreases. [Ref. 10] This can be expressed
1%

L mathematically as

'-J',‘_c"
oy Pin = (Pjp) (11++th) |
;:ﬁ: v Pin Qih
-{ﬁi

N

\ where q4ip, a compatibility vector, is defined as
.'.‘ \)

.";
. Nm
A Qih = IIc(i,h,3,k)Pik

a:':.'l: jk

s'hq'l’
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:3 where c(i,h,j,k) is the compatibility coefficient between
ié object Aj and Aj, with values between [-1,1] (low
) , compatibility, high compatibility). [Ref. 14]

e

;3 The application of relaxation techniques to segmentation
Ez involves the classification of pixels into 'light' and
; 'dark' classes. The initial probabilities of each pixel in
‘g a certain class is based on its gray level, i.e.,
& proportional to the distances of the gray level to the
o maximum value of the gray level range. These probabilities
N are iteratively adjusted based on the neighborhood
%% probabilities, with 'light' reinforcing 'light' and 'dark'’
:_ reinforcing 'dark'. This is the basic technique used in the
_{ algorithm which will be discussed in the following section.
&

e B. GRADIENT RELAXATION ALGORITHM

" - 1. Gradient Relaxation Basics

i& The segmentation technique which is to be analyzed
L: is a region splitting method using a recursive procedure of
ﬁ; the two-class relaxation technique. The two-class technique
:3 controls the segmentation process and provides for an

B

automatic selection of a threshold. Normally, in the

¢
3

> application of various segmentation techniques based on
&,

A ?. . .

> thresholding, the histogram shows two or more peaks in at
i
') least one of the spectral features corresponding to various
f; homogeneous regions of an image. Very often preprocessing
b is done to alter the histograms and local properties are
‘S
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Ny used to compute the local, global, or dynamic threshold.
~

o However, if the intensity histogram of the image is

unimodal, then the application of thresholding techniques

produces a poor segmentation and does not establish a

o criteria for automatic threshold selection. A unimodal

,?% distribution is typically obtained when the image consists

f:: mostly of a large background area with other small but

Ef; significant objects (or regions) in the image. For example, |
oy in the case of a complex aerial photographs which may have ‘
;ﬁﬁ many objects within the scene, the histogram may have only

i: one broad peak because the restricted range of intensities

%ﬁ for the objects is probably covered by the background. (
v:; 2. Development of the Gradient Relaxation Algorithm 1
'QJ In a paper by B. Bhanu and O. Faugeras [Ref. 15], 1
'ﬁ they proposed a gradient relaxation algorithm for the

?.3 segmentation of images having an unimodal distribution.

iﬁ This algorithm is based on the use of inconsistency and

}é uncertainty to define a global criterion upon the set of

::g pixels. Let X7 and i correspond to two classes, white

T,

;E (gray level = 255) and black (gray level = 0), respectively.

- 'Inconsistency' is defined as the difference between the

:é probability vector P; = [Pj(X1), Pj(x2)], and the

Ei compatibility vector Q; = [Qj(Ax1), Q3(X2)], of the ith

~; pixel. In other words, what is the discrepancy between what

iﬂa every pixel 'thinks' about its own labeling and what its

-

>
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neighbors 'think' about that labeling (Qj). ‘'Uncertainty’,

is measured by the entropy function and is defined to be

—

1 1
Hi (Pj(A1)) = — Pj(x1)ln — + Pj(X2)ln —— (3.1)
In2 Pi(A1) Pi(A2) |
A criterion is defined as
N
C(PI'PZI""PN) = z Pi'Qi (3.2)
i=1

where N is the total number of pixels in the image. The
goal is to maximize this criterion. The relaxation process
is specified by choosing a model of interaction between
pixels and attach to each pixel i the set V; of its eight
nearest neighbors. The idea is to make like pixels
reinforce like pixels by defining a compatibility function

C,

cli,A\p,j,An)=0 m#n, for pixel j in Vi for all i

c{i,A\q,jrApn)=l m=1,2 for pixel j in Vj for all i (3.3)

where i ranges from 1 to N pixels.

The compatibility vector, Qj, for the two class case
is then
2
Qi(km)=l/8 z z C(l Am,] An)P (An) m"'l 2 ’ i=l,...,n

jevVy{ m=1
t (3.4)
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N

i::'g Substituting for ¢, this becomes the mean neighborhood
EE:'E: probability of the ith pixel for the case being considered,
:*{;«"'

b

': Qi Om)=1/8 I Pj(An) (3.5)
B> Jevy

3

.‘ Y

”:‘F The choice of compatibility function in (3.3) will
"'S" provide the desired result in the interior of the region,
-&»l but along the edges of a region the pixel label may be
:ﬁ uncertain because of two different classes of neighbors.
"v‘»; This may cause distortion at the boundary.

~;_ The maximization of the criterion (3.2) means that a
_Eé local maximum has been sought that is close to the initial
’:- i labeling Pi(O). The maximum criterion is achieved by
5' aligning the vectors Pj{ and Q; while turning them into unit
'5§ vectors. This results in increasing the consistency
i?f (reducing the difference) and the certainty between the
:@ vectors Pj and Qi while turning them into unit vectors.
’,‘;: This results in increasing the consistency (reducing the
:« difference) and the certainty between the vectors Pj and Qj.
f:: It is easily seen from the definition of inconsistency that
%‘t the minimum occurs when Pj = Qj. From Figure 3.1, the

maximum entropy, or high uncertainty, occurs when Pj(Ap) =
M 0.5. The maximum certainty occurs when P;j{ip) = 0.0 or 1.0,
N
WY i.e., Py = [0,1] or [1,0], a unit vector.

40

oyt LTI

1
".“ RIS IR LT AES [
"‘

" " -
i i’JI‘a?l‘n’!""’!."AJ", D ol

s 1% W
,
Pear et ,.\

e wtan T 2 T I IR A S A
AR R R N R R A S A U
‘ J. 0. Ll I -.! .f-'-‘!'\"."". 1\\ WA

7
A\

= -
'

TR Ry RS2 SNSRI
’ .:!"Q. W F HIWAYT ,

"



The uncertainty definition clearly shows that the
initial assignment of probabilities is important because it
affects the rate of convergence and the final results of the
relaxation process. The initial probabilities of each pixel

is defined as

Pi(Ap) = I(i)/G (3.6)

Hip) -

1.0 4
0.9
0.8
0.7 4
0.6 4

0.4 4
031

0.24 |

Q\J j

oo T LA T T T T P

01 02 03 04 05 06 07 08 09 1.0

Figure 3.1: Entropy Function [Ref. 16]

where I(i) is the intensity of pixel i in the range 0 < I(i)
< G, and G is the maximum value of the gray levels. This
definition disregards any a priori knowledge that may be
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known about an image. However, a priori knowledge can be

included in the initial probabilities by estimating the

ratio of white pixels, Ny, and the number of black pixels,

Nb. This ratio is

=-§,‘-f Pi(1q1)

%Z Pi(22)
t (3.7)
= I/(G - I)

where I is the mean intensity level of the image. By
knowing this, the distribution of gray levels can be
modified so as to make the ratio r closer to the true ratio,

r . A simple way to do this is to define

I“(1) = (FACT) (I(i) - I) + I, (3.8)

where I is a desired mean and FACT is a parameter which can

be chosen to be

FACT = 1 for I(i) > I

0.7 < FACT < 1.0 for I(i) < I
Substituting I“(i) in (3.8) into I(i) in (3.6),

Pj(x1) = (FACT)(I(i) - I)/G + I /G (3.9)

For the analysis performed in this thesis, the following

.. values were used,

o 42
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FACT = 1.0
G = 255
I./G = 0.5

Pj(A1) = (I(i) - I)/255 + 0.5 (3.10)

When the first term of (3.10) is greater than 0.5 or
less than -0.5, then a value of 1.0 or 0.0 will be assigned
to the probability, respectively. [Ref. 17]

The gradient of the criterion is obtained from (3.2)

i=1
= Pj(X1)Qi (A1) + Pj(22)Qi(X2) + 3 Pi°Q5 + I Px-Qx
jevy kegVvi
ac ac
Ve = —, (3.11)
aP; (X1)

aP; (x2)

Solving for each component of the gradient, we have

aC ]
—— = Qij(A1]) + —— z Py *Qj (3.12a)
3P; (A1) aP; (A1) jevjy

aC 3
——— =0Qj(A2) + —™—— I  P5-Qj (3.12b)
dPj (A 2) dPj (A2) JjeVy

Looking only at (3.12a) and taking the second term only, we

obtain
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d 3
o Eree i

dPj (A1) | . aP; (A1)
jevy jevy' 1ML jevy

2
PiloQs + I Piefl—-—os
J) Qj ( Q
SRR YTV 3)

The first term is zero because the probabilities of the

neighbor pixels, Py's, are independent of the probability of

pixel i, Pji; therefore

3 _ 3
 £'Pie@s = I P'-(———————'Q'>
- j°Q5 j j
R3Oy Jevy 304 (A1)
3 3
= I |Py(ap) 04(A1) + P3(Ag) Q4 (A
. 3 2
jev 3Pi (A1) o TV I

Recall that the compatibility function (3.5) is

: Qj(xk) = 1/8
meVy

where V4 is the set of neighbor points of point
point i is a member as shown in Figure 3.2.

partial derivative, we find

3 3
——— Q5(X1) = 1/8 Pij(A1)
aPj (A1) dPj (A1)
= 1/8
44
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and similarly,

3 .

— 04(12)
BPl(»\l)

]
o

(3.14b)

Substituting (3.14) into (3.13) leads to

3
I Py*Qy=1/8 I P5(A1)
3p; (A1) jevy jevy
= Qi (A1) (3.15)

Substituting (3.15) into (3.12a), results in

aC
——— = Qj (A1) + Qj(Ay)
aPj (A1)

= 20i(x1)
Similarly, the second component is

aC

— = 2Qj(13)
P (13)

In summary, the gradient of the criterion, C, is

aC aC
Ve =

3Pi(A13 ' 3P; (X2)

vC = [?Qi(xl), 2Q1(X2;] (Ref. 18] (3.16)

45

*W' '\l'\’" "

ety ”a\af R R N I AN L PL LY
‘ r’ ""““#5‘[".' " ‘ y \ i \ N' \ 5 »




]
li.

[S9%
@rvccccc@oacccan

Figure 3.2: Set of pixels Vj and V5

An efficient method called the steepest ascent
technique will be utilized to maximize the criterion. This
technique begins with an initial probability, p; (0),
i =1l...,N for each pixel and iteratively adjusts the
probability vector Pj to converge to a local maximum of

criterion (3.2). This is achieved by defining a sequence

Pi(z) as:
p; (P41) = py (8) 4 (2) pRog(2) g (B (3.17)
where p(z) is a positive step size, the vector Gi(l) is the

gradient of the function to be maximized, i.e.,

6 = ve

aC aC

—_—— y  — for the two class case
daPj (A1) 3Pj (A2)
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and PROJ(l) is a projection operator that insures that Pi(g)

is still a probability vector. [Ref. 17]

Based on this technique, the iteration of the

(o)

initial probabilities Pj is defined as

aC
9P (11)
(L+1) (2) (L) (%) ’c
Pj (X2) = Pj (X2) + p PROJ
3P (A2) (3.18)

where p(l)

is a step size which will be developed later.

A method discussed by J. B. Rosen which maximizes a
function while satisfying a constraint or constraints is
called the gradient projection method [Ref. 19]. The

constraint for this case is
pi Ly 4 py (M) (ag) = 1 (3.19)
and

Qi(x1) + Qj(x2) =1
205 (A1) + 2Q4(rp) = 2 (3.20)

but (3.20) is the summation of the components of the
gradient of criterion C, (3.11) and (3.16),

aC acC
+

aPj (A1) 3Pj (A2) (3.21)

]
N
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The projection of the gradient at point Pj; on the closed
convex region, i.e., the constraint (3.19), is defined as

L
z

PROJ*Gj = Gj - - L, (GkV)

[ I

(3.22)

where PROJ is the projection operator, L is the number of

classes, G is the gradient vector, [G;,G2,...,G2], and v is

(1,1,...,1]1. [Ref. 14] This is shown graphically in Figure

3.3. PFor the two class case,

aC aC

G = |—— , f V= [1,1]
aPj (A1) aPj (A1)

and the projection of the gradient (3.22) is a vector with

two components. Substituting (3.16) into (3.22), we find

p—

(2) aC aC oC
PROJ — | = 2Q4(X) -0.5 +
;api(xl) 13Pi (A1) dPj (A2)
(3.23)
(o [ [ ac ac
PROJ' Y | — —— | = 2Q4(1) -0.5 |\ —— + ———
Lipi(xz) 13P3(12) 3Pi(*2ﬁ

During each iteration, the step size pi(z) is normally kept

constant and is the largest possible value such that after

each iteration, the probabilities, Pj's, remain within the

constraint of Pj(A1) + Pj(i2) = 1,Pj(Xkx) > 0.0, k = 1,2 for
all i.
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However, for the two class case, the step size can
be computed for each pixel. Changing the step size each
time will provide for a faster convergence rate to the

maximum criterion. Examples of this convergence will be

shown later.

The maximum value of the step size, o(z) is found by

maximizing the (%+1) iteration of (3.24a) and (3.24b), i.e.,

set pi“+1’(x1) = 1 and Pi(£+l)(lz) = 1, respectively. This

will produce two values for the step size,
1= p; M A +0 40205 (ay) - 1)
1 -0y = 0™ (205001 - 1)

(L)
(L) = l - Py (1)

f1 205 (A1) - 1
and,
1 = pi‘“(xz) + 91(“(2Qi(x2) - 1)
(1) = 1 ~ p; (8 (ay)

20§(x2) -1
Substituting (3.19) and (3.20) to get

Pi(l)(kl)
1 - 20i(a1)

oy (1) =

The step size must be positive, therefore,
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PROJ*G

Py + bR =1

.0 1 p(:\l)

Figure 3.3: Projection of the Gradient, G,
on the constraint
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1 - 2 My
. if Qi()\i) > 0.5 -
p-(l) 205(xy) -1 (3.25)
1 - »
Pi(l)(ll)
L—l = 205 (xy1)

In the algorithm which was used in this thesis, both the
rate of convergence to the criterion and the number of
pixels assigned to each class was controlled by setting the

step size to the following values,

(2)
e1 pimax

Di(l) = (2) (3.26)
a2 p . , 1€ Qj(X2) < 0.5
imax

where aj and ap are constants whose values are less than
cone. The values of aj; and ay are weighting factors which
will bias an image to a class, A} or iz, and will influence
the convergence rate of the criterion.

Figures 3.4(a to ¢) show the change in the criterion

as the number or iterations increases for a cell image which
was studied in the noted reference. Each figure represents
the three cases, ajy = a3, a1 < a2, and a3} > a2, with the
parameter FACT = 1.0 in all cases. These figures show that
by increasing the weighting factors, the rate of convergence

will increase and these factors, a; and a,, will also

control where the criterion will converge,. Thus, the

control of the relaxation process can be done. The
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AlphaZz [Ref. 20]
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" an image at each iteration. Smoothing is defined as the

;EA elimination of a small region or regions of one class within
;ﬁ# a much larger region of the opposite class. As the
;"t . magnitude of each factor, aj and a; increases, the smoothing
;f; effect decreases. This will be demonstrated in the next
": chapter. Also, the ratio of aj and az controls the bias of
f;ﬁ a class. Earlier, the parameter FACT was set equal to one.
BEE The reason for this is shown in Figure 3.5. The effect of
L this parameter on the value of the criterion and the
Eﬂ convergence rate of the criterion is seen to be minimal
o= [Refs. 15, 20]
2;' A major capability of this process is to
&ﬁj automatically select a threshold value. This is a key task
'éil in region segmentation. It is important in image processing
f;: to select an adequate threshold for extracting objects from
‘if their background. In the ideal case, the histogram will
;éi have a deep and sharp valley between two peaks representing |
‘): the object and the background. In a real picture, however, |
fﬁﬁ it is sometimes difficult to detect the valley bottom,
:gi especially when the valley is flat and broad, imbued with
-% noise, or when the peaks have extremely unequal heights
Eiﬁ? producing no discernible valley. [Ref. 21] 1In the case
‘Eﬁ; where the histogram has a flat and broad valley, a threshold
Iii selected too low creates an object (target) which maybe
’kﬁ. larger than it actually is, or if the threshold is selected
"E:i;

n
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too large, most of the actual target maybe segmented into
the background.

In the next chapter, it will be shown that as the
number of iterations increases, the peaks in the histogram
will move farther apart, and the average brightness will
increase. When the peaks are far apart, the mean value of
the original image or the segmented image can be used as the
threshold value. [Ref. 15] This is why the gradient
relaxation is advantageous as compared to other methods in

segmenting infrared images.

rSOc FaCT s 010 ~
E fA:YN.wN/
o s
- ~FLY 1 0.50
o L
130
—r
z
SRS
F120-
-
: L
v
-
-
r
-
IOQ;
%0-
-
S N U S

JTERAT ION NUMNIR

Figure 3.5: Variation of the criterion, C with the
iteration number for 3 values of FACT
[Ref. 14]
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B IV. ANALYSIS OF IMAGES
o
:Q.'* A. IMAGES UNDER ANALYSIS
)'\
'
%’2 The gradient relaxation segmentation method discussed in
's]
» f‘!-
the previous chapter was demonstrated on several infrared
Q'?‘Q
{ﬁ# images. Ten images were used to evaluate the performance of
;\'q’\‘
f&& this segmentation technique. The first image is a still
AN
photo of a ship with low contrast (poor visibility), see
I‘" by
i . . .
.s Figure 4.1(a). The other nine images were obtained from an
15
{&h uncooled focal plane infrared sensor (Figures 4.1(b) - (3)).
ohey
,’l‘u“
s The sensor was placed on a platform on which the sensor was
rre, ,
2 rotated to simulate the situation of a rotating missile.
-g; This is why the targets are seen at different viewing
e
) . angles. The images were recorded on video disc. Using the
S
e EYECOM digitizer, individual frames were extracted from the
). -:.,
::ﬁ ‘ video disk. The video disc contained approximately 20
Wy
‘) minutes of video data of several ships in various contrasts.
3;ys The scenes contained a wide variation of noise within the
a images. Instead of attempting to analyze all of the frames
pA)
M
(approximately 64,000 frames), it was decided to select
17 . )
o images which were representative of most of the frames and
-‘ “\
i'j situations depicted on the video disc. The purpose is to
W€
L determine how effective the relaxation segmentation method
e . .
385 is for these images.
W
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Figure 4.1(a): A ship with low contrast.

Three criteria were used in the selection of the images:

Find images where the target stands out from the
background and is not degraded significantly by noise.
The images which met this criteria are Figures 4.1l(a),
(c), and (4d).

Find target near or within part or all of the
background noise with an intensity level near the
intensity level of the target. This is seen in
Figures 4.1(b), (e), (f), and (g).

Collect a series of frames as the target is rotating,
showing how the noise changes from frame to frame.
The series selected includes targets near noise of
similar intensity (see Figures 4.1(g), (i), and (3)).
It also includes a target which because of the noise
is fragmented into several objects, to the point where

the target itself appears to be background noise (see
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Figure 4.1(b): A medium-size ship
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Figure 4.1(c) A sailboat
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Figure 4.1(d): A large ship
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Figure 4.1(f): Second in a series of six images (Ship B)
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Figure 4.1(g): Third in a series of six images (Ship C)
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Figure 4.1(h): Fourth in a series of six images (Ship D)
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Figure 4.1(i): Fifth in a series of six images (Ship E)

64

T UL e P R AN - -

- PR . S R L T I A P I . .-
IO e, ._ﬂ-“_".._\'., e e LI RNl ol .
AT P AT P ORI AR M AT SV C o V. AU V. EV.V LV VL.V VS W




"Y"\.'I"“"'-vv‘rlvdw:"ﬁ.v.«;'-:- R

wv'.'-.v_v\-.ﬂv‘v\-"‘-gvvw-y-\
S

PR I
.
PR

[

E]

Figure 4.1(j): Sixth in a series of six images
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::2:3: Figure 4.1(h)). The intention is to see if the target
E:i:’: can be segmented from the noise background well enough
: to be able to detect it as a target.
*Eg These cases obviously do not account for all situations, but
:. are representative of the noisy infrared images which were
)_ available for this study.
5‘_5:.; The targeted object was then extracted from the original
: 512 by 512 image to form a smaller 64 by 256 image which
e requires much less time to process. Figures 4.2(a) - (3)
;:.3 depicts each of these images with their associated
&‘?‘:u..,' histograms.
H Noise in the images come from various sources, either
E?.S natural or the sensor. Noise sources include glare off the
: surface of the water, atmospheric interference, such as
_‘ scattering and attenuation of the cloud and haze. Thermal
:;:-Z noise is introduced since the sensor is uncooled.
s:!f'u Transmission noise was introduced when the image w
:~ recorded onto the video disc and when it is digitized usi: 3
1-*;\ the EYECOM digitizing system.
". h.} The COMTAL VISION ONE/20 Image Processing System was
;;;;, used to display the images and to produce the associated
? histogram. COMTAL VISION ONE/20 is a complete image
?;.‘ z processing system with built-in interactive processing and
L control capabilities. The system produces high spatial
f ,,1‘ resolution video images over a range of 256 gray levels.
)
g
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Figure 4.2: Original 64 X 256 images extracted from Figqure 4.1
images with their gray-level histogram
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The distribution of the pixels over the gray level range is
completed by the COMTAL processor in the following manner.
The processor counts all occurrences of each gray level in
the image. This count (the total number of pixels at each
gray level) is divided by the highest count and then
multiplied by 256. This number is subtracted by 1 to yield }
the distribution of that gray level in the figqures. The
highest normalized count is always 255. [Ref. 22]

The points in the original histograms were not
connected. To provide a better feeling for the shape of the
histogram, it was decided to connect those points which
presented a general outline of the gray level distribution.

The points selected are generally the highest point in a
selected neighboring group of points.

The histograms of each of these images generally shows

the distribution between the background and the target. 1In
Figures 4.2(a) and (e) - (j), it is possible to see a
separation between the peak background level and the peak
target level. However, in each of these cases it would be
difficult to select a threshold value which could be used to
perform an effective segmentation as discussed in Chapter
II. By using the gradient relaxation technique, the problem
of determining a critical threshold value is easy.

The selection of the weighing factors, Alphal and

Alpha2, and the number of iterations necessary to perform
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the segmentation is very important, as mentioned in the
previous chapter, The selection of these parameters is
influenced by the detected size of the segmented target, the
needed accuracy of the object outline, and separation of the
gray level peaks. It also determines how quickly the
histogram of the segmented image reaches its widest
separation of the gray peak levels. This was also
demonstrated in the last chapter. The following parameters
were used in performing the experiments on the segmented
images:

Alphal: The weighing factor on pixels with gray
levels greater than the mean.

Alpha2: The weighing factor on pixels with gray
levels less than the mean.

Iter: The number of iterations of the
relaxation routine,

. Threshold (THD): The threshold value is used to determine
which pixels will be part of the labeled
region. Two values were selected in
each image. The first value of 220 was
chosen because it is assumed that the
higher intensities are part of the
target. The second value chosen is the
mean gray level intensity of the
original image.

Region: The total number of labeled regions. A
labeled region is a grouping of pixels
with intensities greater than the
threshold, THD.

Area: The number of pixels in the largest
labeled region.

Perimeter: The number of pixels along the boundary
of the largest labeled region.
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Shape: This is a measure of the relationship
between the area and the perimeter of
the largest labeled region. It is equal
to

Shape = 2*Area/Perimeter
The shape is small for narrow objects.
The shape is large for rounded objects.
B. APPLICATIONS OF THE GRADIENT RELAXATION ROUTINE
The relaxation routine was applied to each of the images
shown in Fiqure 4.2 and are separated into ten separate

cases. The criteria used in the analysis is as follows:

1. Are the regions uniform and homogeneous with respect
to a gray level?

2. Do the regions contain gaps (holes), and if so, can
successive iterations smooth the segmented region?

3. Are the peaks in the histograms more distinct?
4. Does the target conform to a desired shape?
5. Is a target detected?

6. Can the detected object be used in the classification
process?

The general format of the experiment entailed applying
different values of the values Alphal and Alpha2 to the
images for several iterations and to observe the effect on
the original images. The values were subjectively chosen to
test for the cases when Alphal = Alpha2, Alphal < Alpha2,
and Alphal > Alpha2. The maximum number of iterations
selected was based on the theoretical results shown in
Figure 3.4 (Chapter III). These figures consistently showed

that the criterion was saturated after eight or more
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iterations. Using more iterations would not have
significantly improved the segmentation.

Each case includes a discussion on the effect of the
algorithm on that image. A figure of the segmented image
and the corresponding histogram are shown. Also included
is a table summarizing the change in the area, perimeter,
and the shape of the segmented region(s) for the different
settings of the weighing factors, threshold, and number of

iterations.

1. Ship in Low Contrast (Fiqure 4.2(a))

The number of iterations is important in determining
the peak gray level separation of the background and the
target. Figures 4.3(a)-(d) shows how each iteration
increases this separation. In the original image, the
separation is approximately 45 levels; after on iteration it
is almost 135 levels, after four iterations it is almost
225, and after eight iterations, the separation is
approximately 250 levels.

Four cases involving different Alphal, Alpha2
parameters and number of iterations were applied to the
image of Figure 4.2(a). Results of this application are
seen in Fiqure 4.3 and Table 4.1. These parameters
determine the form and gray level intensity of the segmented
scene. Setting the value of Alphal 2 Alpha2 increases the

apparent size of the target. This is seen in Figures
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g TABLE 4.1

& QUANTITATIVE RESULTS OF SHIP WITH LOW CONTRAST

ALPHA1 ALPHA2 ITER THD REGION AREA PERIM SHAPE
0.3 0.3 1 220 1 808 134 12.06
0.3 0.3 1 82 1 15067 607 49.65
0.3 0.3 2 220 1l 904 131 13.80
0.3 0.3 2 82 1 913 131 13.94
0.3 0.3 4 220 1 900 131 13.74
0.3 0.3 4 82 1 905 131 13.82
0.3 0.3 8 220 1 896 131 13.68
0.3 0.3 8 82 1 899 131 13.73
0.6 0.2 2 220 1 912 131 13.92
0.6 0.2 2 82 4 1438 219 13.13
0.6 0.2 8 220 1 1222 146 16.74
0.6 0.2 8 82 1 1222 146 16.74
0.2 0.6 2 220 1 720 121 11.90
0.2 0.6 2 82 1 737 127 11.61
0.2 0.6 8 220 1 541 109 9.93
0.2 0.6 8 82 1 547 109 10.04
0.1 0.4 2 220 1 657 120 10.95
0.1 0.4 2 82 1 912 131 13.92
0.1 0.4 8 220 1 467 96 9.73
0.1 0.4 8 82 1 506 102 9.92
MEAN = 82

4.3(a)-(f). The resultant image looks more like a tank, not

like a ship. By increasing the number of iterations, the
region grows larger as defined by the area. However, in the
cases (Figures 4.3(e)-(3j)) where Alphal < Alpha2, the
segmented region appears to be closer to the true size 1in
the original image, and the region gets smaller as the
number of iterations increase. All of the regions in each
image are uniform and there are no holes within the regions.
The peaks in the histogram are widely separated and

81

. e e e e ettt R et A e L N,
e N ATV ‘ AT T SN S A . ‘J'_‘(_‘.'_ e N
.....................




3 kAo ane fon Sk mah Ao aiA A Ak AL b aid T

.

ot )

- -

-
- -
g -

W
t‘.'
%§; distinct. Results in the table shown that the shape becomes
E&i more clearly defined with more iterations. The table also
ﬁ¥' shows that the mean is a reasonable value to use as a
fk: threshold. It is evident from the result that this type of
%%: scene does allow the relaxation routine to detect a target
;Qf and would allow for the possible classification of the
-E;ﬁ target if the proper weighing factors are selected.
Ko 2. Medium~-size Ship (Figure 4.2(b))
#a( Results of this experiment are seen in Figure 4.4
§§£ and Table 4.2. This is an image which clearly shows the
;;ﬁ effect of the number of iterations imposed on establishing
§§i well defined peaks. Figures 4.4(g)-(j) display the effects
,:;: on the same image with one, two, four, and eight iterations.
;ﬁg After one iteration, a valley between the peaks is better
.‘; defined than the original histogram, and after eight
5;%3 iterations the separation is near a maximum.
?&? The weighing factors have a tremendous affect on the
{éz segmented regions. Figures 4.4(a)-(d) show that if Alphal 2
‘EE% Alpha2 the region increases in area and the target cannot be
2§§ detected. In the case where Alphal < Alpha2 the target is

? detectable. By increasing the number of iterations, the
:j% segmented region develops into a form which can be neither
:é% detected as a ship nor classified as a ship as was seen in
a the result of the first case. Fewer iterations also
'ial produce more segmented regions (Table 4.2) which are small.
s
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TABLE 4.2
QUANTITATIVE RESULTS OF MEDIUM-SIZE SHIP

ALPHAl ALPHA2 1ITER THD REGION AREA PERIM SHAPE

0.3 0.3 2 220 2 1428 403 7.09
0.3 0.3 2 128 2 1428 403 7.09
0.3 0.3 8 220 3 4025 668 12.05
0.3 0.3 8 128 2 4109 732 11.23
0.6 0.2 2 220 4 2209 344 12.84
0.6 0.2 2 128 3 2512 475 10.57
0.6 0.2 8 220 5 5584 1075 10.87
0.6 0.2 8 128 5 5605 1024 10.95
0.2 G.6 2 220 4 1154 376 6.14
0.2 0.6 2 128 3 2883 513 11.24
0.2 0.6 8 220 1 2643 587 9.01
0.2 0.6 8 128 1 2663 553 9.63
0.1 0.2 1 220 1 851 338 5.04
6.1 0.2 1 128 2 988 289 6.84
0.1 0.2 2 220 3 968 396 4.89
0.1 0.2 2 128 2 2732 523 10.45
0.1 0.4 4 220 4 1089 404 5.39
0.1 0.4 4 128 1 2684 561 9.57
0.1 0.4 8 220 2 1437 419 6.86
0.1 0.4 8 128 2 2133 492 8.67
MEAN = 128

But, increasing the number of iterations there are fewer
regions resulting and these regions are larger. With more
iterations, the region becomes more homogeneous, but still
contains gaps. The example of when Alphal > Alpha2,
demonstrates how noise near the target becomes part of the
target. This is because the Alphal weights the higher
intensity, thus causing the growth. This is a good choice

of why Alphal < Alpha2 is chosen. It confines the higher
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gray level intensities to the target and separates it from

the adjacent noise.

3. Sailboat (Fiqure 4.2(c))

The image is a black hot inverted infrared image.
For the relaxation routine to work properly, the object to
be segmented must be lighter than the background.
Therefore, the image must be inverted first. Figures
4.5(a)-(d) show results of segmenting this image. This image
is similar to the first case (ship of low contrast) in that
it provides for a detectable target and as seen in Figures
4.5(c)~{(d), it could be classified as a sailboat. This is
more readily observed in Fiqure 4.5(c). This case shows
that increasing the number of iterations does not
necessarily decrease the size of the region as was seen in
earlier cases (Table 4.3). The images are uniform and
homogeneous and contain no holes; peaks are distinct, sharp,
and widely separated.

4. Large Ship (Figure 4.2(4))

This image is a good example of an object in a noisy
background which can be segmented into an image which is
both detectable and can be classified. Figures 4.6(a)-(d)
depict the effect of relaxation on this image. The best
results are seen in Figures 4.6(a) and (b) where the gray

level peaks are clearly defined and widely separable. These
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ki\" TABLE 4.3
a:::v.' QUANTITATIVE RESULTS ON SAILBOAT
',"5’
! ALPHAL ALPHA2 1ITER THD REGION AREA PERIM SHAPE
S 0.6 0.2 2 220 1 2309 526 8.78
! 0.6 0.2 2 108 1 2724 296 18.41
4 0.6 0.2 8 220 1 2883 301 19.16
?64' 0.6 0.2 8 108 1 2883 301 19.16
W 0.1 0.4 2 220 1 1051 382 5.50
i 0.1 0.4 2 108 1 2042 234 17.45
o&y! 0.1 0.4 8 220 1 1488 366 8.13
MS 0.1 0.4 8 108 1 1801 217 16.60
p
. MEAN = 108
:‘|.l.'
dadt
)
&mﬁ results also allow for the easy selection of a threshold
s}t value. This case, and the previous cases, have demonstrated
%;' that the selection of a threshold to determine the area and
)
‘?f the size of the region can be chosen as the mean value of
..;
- the original image without significantly changing the
i
;g& measured parameters. The images are uniform and homogeneous
>
A% after eight iterations in each case. Gaps are seen in the
’i’ first iteration (Figure 4.6(a)), but are filled in after
e
'é;: eight iterations.
)
TR
Zﬁﬁt 5. Series of Frames of Single Ship
AN
i a. Ship A (Figure 4.2(e))
o o
e This is the first of a series of six images
'vk.‘
Q&Q (Figures 4.2(e)-(j) which depicts a ship at various
478,
- orientations as the camera is rotating. This scene clearly
([rle
}ﬁzj shows the separation between the sky, sea, and target. The
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Figure 4.6: Results of relaxation segmentation on large ship
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:'1" TABLE 4.4

0:\' QUANTITATIVE RESULTS ON LARGE SHIP

oy

bt ALPHAl ALPHA2 ITER THD REGION AREA PERIM SHAPE

et 0.6 0.2 2 220 1 3170 430 14.74
¥ 0.6 0.2 2 111 1 3450 332 20.78

::: 0.6 0.2 8 220 1 3673 308 23.85

3f\ 0.6 0.2 8 111 1 3679 307 23.97

e 0.1 0.4 2 220 1 248 139 3.57

I 0.1 0.4 2 111 3 2924 294 19.89
raS 0.1 0.4 8 220 1 1687 534 6.32
AN 0.1 0.4 8 111 2 2569 260 19.76

-'.

e MEAN = 111
S

‘$% histogram shows three distinct peaks in the gray levels of
5

;‘x Figure 4.2(e). Figure 4.7(a)-(e) shows the effect of the

M

s 2 segmentation on this image. This case demonstrates how a
-~

-ﬁﬁ high threshold and few iterations will segment image into

,.'-

o several regions. When Alphal 2 Alpha2, the target and the
) sky merge into one region after only two iterations. This
4=
) prevents the detection and classification of the target.
s

o The situation becomes worse after eight iterations.

{ )

a{ In the case where Alphal < Alpha2 (Figures

e
o 4.7(d)-(e)), the target is detectable after two iterations,

. .«‘.'

;{ but increasing the number of iterations creates the same
- result as the situation mentioned above; the sky and *°.

é% target merge into one region. In this case, isee F:zx -.

)

Efz 4.2(e)) the peak associated with the sky and the ! e - -
. greater than the mean, therefore these pixels we:.

l.'

?h: together. This explains why these twc arecar .

ey
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(a) Alphal = .3, Alpha2 = .3

(b) Alphal

.6, Alpha2

L}
.
N

(c) Alphal = .4, Alpha2 = .1

(d) Alphal = .2, Alpha2 = .6

(e) Alphal = .1, Alpha2

Figure 4.7: Results of relaxation segmentation on Ship A
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TABLE 4.5
QUANTITATIVE RESULTS OF SHIP A

ALPHAl ALPHA2 ITER THD REGION AREA PERIM SHAPE

0.3 0.3 2 220 6 49 34 2.88
0.3 0.3 2 120 2 6180 663 18.64
0.3 0.3 8 220 1 6139 625 19.64
0.3 0.3 8 120 2 6167 616 20.02
0.6 0.2 2 220 2 6012 7054 17.06
0.6 0.2 2 120 1 6935 768 18.06
0.6 0.2 8 220 1 7329 706 20.76
0.6 0.2 8 120 1 7366 697 21.14
0.4 0.1 2 220 3 3598 1088 6.61
0.4 0.1 2 120 1 7139 844 16.98
0.4 0.1 8 220 1 7475 680 21.99
0.4 0.1 8 120 1 7662 635 24.13
0.2 0.6 2 220 1 191 116 3.29
0.2 0.6 2 120 1 5488 692 15.86
0.2 0.6 8 220 1 5034 688 14.63
0.2 0.6 8 120 1 5069 712 14.24
0.1 0.4 2 220 1 698 189 7.39
0.1 0.4 2 120 1 5513 703 15.68
0.1 0.4 8 220 5 546 366 2.98
0.1 0.4 8 120 1 4749 675 14.07
MEAN = 120

together. If the pixels associated with the sky had been
less than the mean, the target would have been grouped into
its own region, permitting the detection and possible
classification of the target. In general, the target is
uniform and homogeneous, and gaps in the target region are
eliminated. However, the desired shape of a ship does not

occur with more iterations.
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e b. Ship B (Figure 4.2(f))
§$§ This is the second image in the series. The sky
§§E is to the left, the white region to the immediate left of
2%5 the target is caused by glare, and the sea is to the right
;&z‘ of the target. This effect is again due to the rotation of
gﬁi the sensor. Of the series of images seen in Figure 4.8(a)-
zk& (e), Figure 4.8(e) permits for the detection of a target and
$&§ its orientation. The object cannot be classified in any of
;ﬁﬁ. the cases. After eight iterations, the glare and the ship
iﬁa merge into one region as would be expected based on the two
ﬁ;i class segmentation scheme. This is a good example of how
%?; noise of similar intensity near or contained within the
aé} target can become merged as one region. This reduces the
-&;f ability to classify the target. Quantitative results are
gfﬁ shown in Table 4.6.
) c. Ship C (Fiqure 4.2(q))
&%s This image is similar to the previous case in
g;gi that the background immediately surrounding the object has
$&J an intensity closely matching the object of interest.
$&p Figure 4.9 shows results of applying the relaxation
ﬁh& segmentation technique. Figures 4.9(d) and (e) shows the
$§& cases that a target may be located in the area, or that a
{?u tremendous amount of glare from 1light reflected off the
i
e
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(a) Alphal = .3, Alpha2 = .3

(b)

>

[
o)

=2
[

[
)

= .6, Alpha2 = .2

(c) Alphal

.4, Alpha2 = .1

(d) Alphal = .2, Alpha2

.6

o ancm

(e) Alphal = ,1, Alpha2 = .4

Figure 4.8: Results of relaxation segmentation on Ship B
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Figure 4.9:

Iter = 2 Iter = 8

(a) Alphal = .3, Alpha2 = .3

(b) Alphal = .6, Alpha2 = .2

(e) Alphal = .1, Alpha2 = .4

Results of relaxation segmentation on Ship C
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TABLE 4.6
QUANTITATIVE RESULTS OF SHIP B

ALPHA1l ALPHA2 ITER THD REGION AREA PERIM SHAPE

0.3 0.3 2 220 4 2324 476 9.76
0.3 0.3 2 144 1 3583 382 18.76
0.3 0.3 8 220 1 3589 367 19.56
0.3 0.3 8 144 1 3590 366 19.62
0.6 0.2 2 220 1 3568 406 17.58
0.6 0.2 2 144 1 3856 373 20.68
0.6 0.2 8 220 1 4087 349 23.42
0.6 0.2 8 144 1 4091 351 23.31
0.4 0.1 2 220 1 3315 438 15.14
0.4 0.1 2 144 1 3864 368 21.00
0.4 0.1 8 220 1 4199 385 21.81
0.4 0.1 8 144 1 4284 384 22.31
0.2 0.6 2 220 2 1407 402 7.00
0.2 0.6 2 144 1 3319 371 17.89
0.2 0.6 8 220 1 3064 312 19.64
0.2 0.6 8 144 1 3064 312 19.64
0.1 0.4 2 220 2 787 333 4.73
0.1 0.4 2 144 1 3319 382 17.38
0.1 0.4 8 220 1 2647 397 13.36
0.1 0.4 8 144 1 2895 321 18.04
MEAN = 144

the ocean surface (see Figure 4.2(g)). These last two cases
clearly show that glare can have a degrading effect on the
segmentation of the image of interest. Quantitative results
are shown in Table 4.7.
d. Ship D (Figure 4.2(h))

This is a case where noise in the image can
cause the object of interest to be obscured. Attempts to
segment this image were unsuccessful (see Figure 4.10). By
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u? TABLE 4.7 f
QUANTITATIVE RESULTS OF SHIP C

.,‘i”\ ‘
.,“;9 i
%; ALPHA1l ALPHA2 ITER THD REGION AREA PERIM SHAPE }
K\ 0.3 0.3 2 220 1 2021 483 8.37 s
oy 0.3 0.3 2 174 1 2466 432 11.42
0.3 0.3 8 220 1 2558 370 13.83
;$ 0.3 0.3 8 174 1 2563 368 13.93
i
N 0.6 0.2 2 220 1 2495 462 10.80
1&: 0.6 0.2 2 174 2 2917 402 14.51
A 0.6 0.2 8 220 1 3263 425 15.36
0.6 0.2 8 174 1 3265 425 15.36
Aate
er:s.: 0.4 0.1 2 220 1 2466 481  10.25
) 0.4 0.1 2 174 1 2944 431  13.66
A 0.4 0.1 8 220 1 3365 437 15.40
oy 0.4 0.1 8 174 1 3462 426 16.25
A 0.2 0.6 2 220 3 1397 450 6.21
SN 0.2 0.6 2 174 1 2133 403 10.59
Ak; 0.2 0.6 8 220 1 1824 334 10.92
ﬁa' 0.2 0.6 8 174 1 1826 333 10.97
:'?':"
0.1 0.4 2 220 2 967 431 4.49
g 0.1 0.4 2 174 1 2081 431 9.66
povy 0.1 0.4 8 220 1 1567 349 8.98
Q ) 0.1 0.4 8 174 1 1604 335 9.58
g
P MEAN = 174
e
8
Vsn increasing the number of iterations, the routine produced
.‘ )
o only fewer and smaller regions. Thus the algorithm could
M
;m not provide information that an object may be within the
.Q'
3&: frame of interest. This case clearly shows that the
l?:fl’
‘ relaxation method fails in this situation. Quantitative
T
ﬁ& results are shown in Table 4.8.
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Figure 4.10:

Segmentation of Ship D.

TABLE 4.8
QUANTITATIVE RESULTS OF SHIP D

THD

REGION AREA

® NN @O

220
153
220
153

220
153
220
153

SHAPE

oW

2.91
3.28
3.84
3.84

1.75
3.29
2.00
3.44
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e. Ship E (Figure 4.2(i))

This is the fifth image in the series for the
same ship. Figure 4.11 and Table 4.9 shows the results of
segmentation. This is a situation where a possible object
may be in this frame. This case demonstrates that by
increasing the number of iterations, the segmented region is
more clearly defined by eliminating the noise near the
object of interest. Also, more iterations reduces the
number of segmented regions. The target is detected in the
case. However, it does not allow for the classification of

this target.

L}
.
" -

(b) Alphal = .}, Alpha2

Figure 4.11: Segmentation of Ship E
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) TABLE 4.9
KA QUANTITATIVE RESULTS OF SHIP E
o
o ALPHAl ALPHA2 ITER THD REGION AREA PERIM SHAPE
Ky 0.2 0.6 2 220 5 950 241 7.88
o 0.2 0.6 2 189 5 1087 251 8.66
:ﬁ 0.2 0.6 8 220 1 857 190 9.02
Ao 0.2 0.6 8 189 1 857 190 9.02
5& 0.1 0.4 2 220 4 853 278 6.14
gJ‘ 0.1 0.4 2 189 5 1042 249 8.37
}$‘ 0.1 0.4 8 220 1 699 151 9.26
&; 0.1 0.4 8 189 1 727 161 9.03
s,lr
" MEAN = 189
L
LA
s
g f. Ship F (Figure 4.2(3))
g’ The final image which was analyzed shows results
tﬁ (FPigure 4.12 and Table 4.10) which are similar to hose seen
%s in Figures 4.8 and 4.9. The glare which dominates the left
X ’ side of the ship merges into the same region of the ship
§3 after only two iterations, It makes classification
b
% impossible and greatly reduces the possibility of detection.
)
ot This case also demonstrates how several iterations can
i
4§
ak reduce the size of the segmented region. This case also
Y,
¢
ﬂb demonstrates that by having a lower threshold value (i.e.,
2 the mean), there are fewer segmented regions (1 versus 6, or
W
"* 1 versus 3), thus enabling an observer to focus on the one
N ,
O large region. 3
! i ‘
o
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(b) Alphal = .1, Alpha2 = .4

Figure 4.12: Segmentation of Ship F

TABLE 4.10
QUANTITATIVE RESULTS OF SHIP F

ALPHAL ALPHA2 1ITER THD REGION AREA PERIM SHAPE

0.2 0.6 2 220 6 1222 318 7.69
0.2 0.6 2 171 1 2411 437 11.03
0.2 0.6 8 220 1 2055 361 11.39
0.2 0.6 8 171 1 2056 361 11.39
0.1 0.4 2 220 3 794 280 5.67
0.1 0.4 2 171 1 2341 430 10.89
0.1 0.4 8 220 1 1715 324 10.59
0.1 0.4 8 171 1 1797 331 10.86
MEAN = 171
106
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C. SUMMARY OF RESULTS

The results show that for these cases, where the target
has a high gray level and contains noise due to the
. environment and the sensor, it is best to have Alphal <
g Alpha2. This reduces the chance that noise which ahs gray

levels greater than the mean will be included in the desired

N segmented region. Care must betaken to select appropriate
: values for Alphal and Alpha2, otherwise, the region will
c become so small that the object of interest is not
% classifiable. The target may still be detectable however.
5 The result will provide the orientation of the target.

The process works well on an image which is similar to
a*
‘5 Figure 4.2(a). The peaks in the histogram are clearly
.z defined and are sharp, not bell-shaped as in the case of the
" noisy images (Figures 4.1(b)-(j)). The noisy images can be

: segmented and generally identifiable if the target to be i
S segmented is approximately ten percent or more of the frame
; of interest (Figures 4.2(b)-(e)). However, if the object
E occupies less than three percent of the image plane (Figure
N 4.2(h)), it is difficult or impossible, as in this case, to
. segment it by this method.

- The segmented region in all cases was uniform,
- homogeneous, and any holes within the region were eliminated
M after several iterations. These are all desirable
'E properties of in a segmentation routine. In summary, all

; : 107
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but one of the cases (Figure 4.2(h)) provided for the
detection of a possible target, and four of the test images
(Figures 4.3(a), (b), (c), and (d)) could be used as an

input to a classification system.
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V. CONCLUSION

Image segmentation is a critical step in the image
analysis and pattern recognition process. Errors which
occur at this step may propagate through additional stages
of a pattern recognition system producing an incorrect
description of the scene. The gradient relaxation technique
is an iterative probability adjustment technique that can be
used for segmentation. It takes advantage of both
‘parallel' and the 'sequential' processing methods. The
relaxation approach itself has two major advantages: 1) the
classification decisions become better informed as the
analysis proceeds, and 2) the method can use probabilistic
classifications rather than making firm decisions
immediately.

The approach is conducive to the segmentation problem of

noisy infrared images having unimodal distributions. Noise |
near or within the target will be filtered out because each
pixel's probability classification is adjusted based on the
probabilistic classification of its neighbors. The gradient
relaxation technique maximizes the gray level intensity of
the target allowing for easier detection. The weighting
factors must be chosen carefully. These factors are
critical in determining the rate of convergence (length of

109



time to maximize the intensities), the extent that noise is
eliminated from the image and the shape of the segmented
region. The technique is still a subjective process and the
ability of the observer to set the proper values of these
factors is important.

The relaxation method is an ideal technique for region
extraction because of its ability to sharpen the peaks in
the histogram, create homogeneous and uniform regions, and
the detected target conforms well to its original shape,
i.e., a ship. This method is not suitable for edge
detection of objects in noisy infrared images. The noise
causes gaps in the edges at places where the transition
between regions are not abrupt. Additional edges may be
detected at points that are not part of the region
boundaries.

Noisy images are primarily unimodal making the selection
of a threshold difficult. This analysis showed that the
thfeshold can be easily selected as the mean gray level
intensity of the image. This allows for precious
computational time to be spent for segmentation or other
image processing, instead of being spent to search for a
threshold for additional image analysis.

The technique is unable to separate noise of similar
gray-level intensity near or within the target. This

introduces errors into the image segmentation result, making
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" classification of the target difficult, if not impossible.

The technique fails to segment targets which are not
contiguous (i.e., broken up by the noise). The intended

target either is segmented into several small regions or (if

AL RS

the intensity level of the noise is near that of the target)
becomes part of the noise. This makes detection and
classification of the target impossible.

This technique could be implemented in hardware as part

of a signal processor. By implementing the technique as

P s

part of the processor, the requirements for an infrared

" -

- e
PN X

sensor could be reduced. Possible requirements which would
f be reduced or eliminated include signal-to-noise ratio,
detectivity and cooling requirements of the sensor, the
. weight and power for the system would possibly be reduced.

Money saved in the cost of the sensor could be used to

e -

enhance the computing capabilities of the signal processor.

B
!

Possible applications are missiles, remotely piloted
. vehicles (RPV's), aircraft, and remote sensors aboard
¢ spacecraft.

N In summary, the gradient relaxation technique is a
viable method to use in uncooled infrared sensors to detect

targets. The ability of the technique to eliminate or

e -

reduce noise of intensity less than the target, thus
enhancing the target and to provide for detection has been

shown. The technigue could possibly be used as one of the

'-*;‘-"*'
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inputs of a classification process (i.e., shape matching) or
classification system, but only for those images where the
intensity of the target is greater than that of the noise,
or where the target has large spatial separation from the

noise of similar intensity.
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APPENDIX: EXPERIMENTAL PROCEDURE

The infrared images used in this analysis were obtained
from an infrared uncooled focal plane array sensor. The
images were then recorded and stored on a video disc. Using
the EYECOM digitizing system, individual frames were
extracted from the video disc. The EYECOM system creates an
image file of 640 blocks of 512 bytes. This file must be
reduced to 512 blocks of 512 bytes in order to be displayed
on the COMTAL image processing system. This file was
further reduced to 64 blocks of 256 bytes to reduce the
processing time.

The measurements made in Chapter IV of the area and

perimeter were obtained by calling subroutines in the

> Subroutine Package for Image Data Enhancement and
\ Recognition (SPIDER) image processing package. The routines

which were used are:

1. CLAB - The routine assigns labels (serial numbers)
each segmented region. Each pixel in a region is

assigned a label. This routine produces a labeled
image.

2. AREA]l - The routine counts the number of pixels within
every region in a labeled image.

3. PRMT1 - This routine measures the perimeter of every
region in a labeled image. [Ref. 23]
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