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ABSTRACT

ﬁﬁ A first order perturbation theory for treatment of the

I diffraction of light with surface polariton resonances on a

bigrating has previously been developed and implemented. A

e modification has since been developed to include
simultaneous resonant coupling to four surface polaritons.

s This work implements the modification and compares the

gty results against exact theory.

B Results for reflectance versus angle of incidence were

@f obtained for a sinusoidal bigrating of silver with a period
o, of 615.47 nm and an incident wavelength of 633.00 nm. The
M perturbation theory is found to be valid at off-normal

5ﬁy incidence for grating height to period ratios of 0.024 and
gﬁ, less. For the geometry investigated, second order effects
ﬁ% strongly influence the reflectance versus incidence angle
‘$$. near normal incidence, and the perturbation theory thus has
ggg only limited usefulness. Results for reflectance versus
Rﬁﬁ incident frequency at normal incidence, however, are

R reliably predicted by the perturbation theory.
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I. INTRODUCTION

A. BACKGROUND

Interest in the enhanced absorption of light by a rough
metallic surface can be traced back to 1902 when Wood first
noted abrupt losses of approximately 90% in the intensity of
light reflected from a metallic grating for a narrow band of
frequencies at a given angle of incidence [Ref. 1:p. 661].
These reflectance 'dips' were unexplained by contemporary
theories and came to be known as Wood's anomalies. In his
paper to the Journal of the Optical Society of America in
1941 [Ref. 2], Fano first postulated the theory that the
loss in the energy of the beam during reflection was due to
the generation of what he termed "polarized quasi-stationary
waves" which propagated along the surface of the metal. 1In
1976 Maystre and Petit presented theoretical arguments that
total absorption of the incident electromagnetic energy was
possible with metallic gratings [Ref. 3]. Hutley and
Maystre presented experimental evidence of such total
absorption later that same year [Ref. 4].

Zoncurrent with the more recent work in the absorption
of electromagnetic energy by metallic gratings, there has
been a great deal of interest and investigation of surface
electromagnetic enhancement phenomena such as surface

enhanced Raman scattering and enhanced second harmonic

13
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generation [Ref. 5:p. 1240; Ref. 6:pp. 366-367]. Electric
field enhancements on the order of 102 have been noted in
the literature [Ref. 5:pp. 1244-1247]. The increases in
field enhancement occur under the same conditions as the
increases in absorption for metallic gratings [Ref. 5:p.
1241].

This phénomenon of energy absorption and electromagnetic
field enhancement is due mainly to the coupling of the
incident electromagnetic waves into surface electromagnetic
waves in the electron plasma of the metal in the form of
surface plasmon polaritons propagating parallel to the
interface of the media [Ref. 1:p. 683; Ref. 6:pp. 362-368].
A surface electromagnetic wave is characterized by the
exponential decay of its associated fields in the directions
normal to the surface of the medium. Since the electron
plasma on the surface of a metal constitutes a polarizable
medium against the background of the lattice ions, an
electromagnetic wave incident on the surface will induce a
polarization in the medium and will in turn be modified by
the polarizationl. In such a medium, this coupled i
excitation mode is termed a surface plasmon polariton
[Ref. 7:p. 1]. Under certain conditions of grating surface

orofile and incident frequency and polarization geometry,

lrhe details of this mechanism and the role played by
the grating in causing resonance coupling are explained more
fully in the following chapter on theory.

14
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the céupling is resonant and a significant fraction of the
incident energy is transferred to surface plasmon
polaritons. This interpretation of the electromagnetic
interactions at the grating surface has much theoretical and
experimental support [Ref. 8:pp. 69-73].

Besides its obvious use in surface science in the study
of surface electromagnetic interactions, the capability of
the grating to couple an incident bulk light wave into a
surface wave has given rise to a host of practical
applications [Ref. 8:pp. 74-75]. Grating couplers can be
used to couple a light wave into a surface wave or a guided
wave in electro-optical devices. The dependence of the
resonant coupling condition on the frequency of the incident
light and on the periodicity of the grating corrugations
also make grating couplers useful elements in filters and
reflectors for solid state lasers and other integrated
optics applications. These couplers can couple a laser beam
into and out of an optical waveguide (as a guided wave)
[Ref. 1l:pp. 701-702]). This capability could conceivably be
exploited for high efficiency coupling in optical
communications systems, some of which are presently under
development for use as military communications systems. The
enhancement effects available with gratings find application
in surface catalysis in electrochemistry, in advanced
dielectric breakdown due to surface roughness in high energy

lasers, and in the production of radiation from a

15




non-relativistic charged particle beam interacting with a
surface grating [Ref. 8:pp. 72-73; Ref. 9:p. 3; Ref. 10;
Ref. 11].

Until the middle 1970's investigations in this area -

-

focused almost exclusively on classical gratings, i.e.

gratings with periodic corrugations along a single

P

dimension. The most significant absorption and enhancement

P .

effects have been observed using gratings_of highly

conducting materials such as gold, silver and copper with

* periods on the order of the incident wavelength and

o corrugation depths on the order of one to fifty nanometers

[Ref. 8:pp. 88-89]. These effects are highly dependent on

X the orientation of the incident electromagnetic field. For

g total absorption in classical metallic gratings, it is

‘ necessary for the plane of incidence to be perpendicular to

the grating corrugations and for the incident wave to be

linearly polarized with the magnetic field vector transverse

to the plane of incidence.

B The dependence of the grating coupler efficiency upon

o the polarization and orientation of the incident light can
theoretically be reduced through the use of bigratings, i.e.

R gratings with periodic corrugations along both surface

2 dimensions [(Ref 3:2. 2]. Within the last decade there has

veen a significant amount of theoretical work with
bigratings [Ref. 12:pp. 227, 275-276, 279]. In comparison

to that accomplished for classical gratings, experimental

U
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investigations of absorption and‘enhancement using
3} bigratings is as yet somewhat scarce.
K Although the degree of coupling is generally very
g: ) sensitive to the angle of incidence, even in bigratings, the
.ﬁ restriction on the incident polarization would effectively

. be removed. The use of bigratings, then, would allow many
’y applications to be pursued in which the requirement for
] linear polarization would be impractical, such as the
absorption and storage of sunlight as an energy source

[Ref. 9:p. 2].

2

0

:i B. PROBLEM STATEMENT

;} Analysis of electromagnetic interactions at the

; interface of a grating with an air or vacuum medium is

. extremely complicated due to the geometry of the grating.

;% The analysis is performed for the purpose of investigating

g surface excitations and for designing gratings. The

- approaches taken'to perform the analysis nonperturbatively

Eﬁ have taken two basic forms, differential and integral

;ﬁ (Ref. 13:pp. 15-40]. Both usé the complex dielectric

;ﬁ function as a frequency dependent quantity allowing

1& extension of the theory to any dielectric medium. The

ff differential approaches numerically integrate Maxwell's

s equations across the grating surface boundary. The integral

i: approaches use the Rayleigh method or Green's theorem.
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The one common factof in all of these approaches is
that, though they give results which accurately conform to
the observed experimental results, they are extremely
lengthy and can only be accomplished through the use of
considerable amounts of computer resources [Ref. 9:pp. 3-4].
The nonperturbative analysis of the bigrating is even more
complex than for the classical grating due to the added
dimension of the boundary conditions. For this reason
several schemes have been proposed for perturbative analysis
of the interface problem for a classical grating to provide
more readily realizable results. Among these are the
methods developed by Krsger and Kretschmann [Ref. 14], Toigo
et al. [Ref. 15], Mills [Ref. 16], Elson and Sung [Ref. 17],
and Glass, Weber and Mills [Ref. 18].

The perturbative technique advanced by Glass, Weber and
Mills used an approximation to first order in the surface
profile amplitude. The perturbation results for the
dispersion curve were compared favorably to that obtained
using an integral method of nonperturbative analysis
employed by Toigo et ﬁl. Glass, Maradudin and Celli
extended the nonperturbative analysis method for application
to bigratings [(Ref. 5). Glass and Maradudin [Ref. 19]
compared results from this nonperturbative technique to the
experimental results of Inagakli et al. [Ref. 20)] for total
absorption on a bigrating with favorable conclusions. Glass

[Ref. 21] modified and extended the perturbation technique
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ﬁi of Glass, Weber and Mills for use with a bigrating, allowing
g% for arbitrary polarization, plane of incidence, and

: simultaneous stimulation of two surface polaritons

é?i ‘ propagating in non-collinear directions. The results from
§§ this perturbation theory for reflectance and enhancment

" versus angle of incidence were compared with results from
g? the nonperturbative analysis technique of Glass, Maradudin,
E?A and Celli for b;gratings. The results compared favorably

N within the limits of the approximations upon which the

:: theory was based?.

%ﬁ Glass further modified his perturbation technique to

;? allow for the simultaneous excitation of four surface

§‘ polaritons and to increase its facility in treating cases of
%é normal incidence on a bigrating [Ref. 9]. The

:; generalization also allows for determination of the complex
%g dispersion relation for surface polaritons in cases where
i? there may be wavevectors at the intersection of two

% Brillouin zone boundaries. The implementation of the latest
fgg perturbation theory advanced by Glass and comparison with
%& results from the nonperturbative analysis technique of

ﬁ; Glass, Maradudin and Celli is the present concern.

Add

:;‘E:.:

D
e

R

L 2The approximations and their limits are discussed in
more detail in the following chapter on theory.
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II. THEORY

A

‘:: A. MECHANISMS

¥

‘ The conduction electrons near the surface of a good -

conductor, such as silver or gold, may be considered as a

% plasma of nearly free electrons [Ref. 22:pp. 160-161].

;g Wave-like longitudinal oscillations in the charge density of

; the electron gas exist as normal modes of the classical

% system or as elementary excitations in the quantum

2; mechanical system [Ref. 22:pp. 260-262; Ref. 23:pp.

é 200-202]. Such guanta, consisting of a coupled longitudinal

§~ charge oscillation and electric wave, are termed bulk )
?; plasmons, or simply plasmons. When localized to a surface,

) as an evanescent wave, the charge density oscillation, with

x its accompanying macroscopic polarization and

E! electromagnetic wave, has a component transverse to the

5, direction of propagation (and hence, transverse to the

3' surface). Such a surface electromagnetic wave coupled to

i collective oscillations of the conduction electrons is

ii called a surface plasmon polariton. Henceforth, the use of

EE the term surface polariton will be understood to mean

;E surface plasmon polariton.

“ Surface electromagnetic waves may be stimulated by ’
i: incident electromagnetic radiation in the form of a bulk

; light wave only in the presence of a grating. Consideration

2 20
o

AL .-t o wma - - -
. . %7 . (o e \ » N ~" -~ : \* . " o L [ - _‘ $ -
114 e A A LR AT I B R RANCRERE R A IR L R IR ARG W R RS S,




‘ﬁﬁ " here is restricted to the case of a linearly polarized
incident light wave. The periodicity of the grating surface

profile defines a reciprocal lattice [Ref. 21:p 2648]. As

%i: a consequence of the Bloch theorem, a grating reciprocal

ﬁ% . lattice vector may add to the component of the incident

v wavevector parallel to the surface to equal the wavevector
%ﬁ of the evanescent wave at a given frequency [Ref. 22:pp.

%& 163-164; Ref. 24:pp. 2-26; Ref. 5:p. 1241]1 The resonance

’ condition is acheived when the frequency of the evanescent
g} wave and that of the incident light wave are equal. The

5§§ amount of energy transferred to the surface polariton

» through this coupling can reach significant proportions.

g

2}; : B. ANALYTICAL METHODS

i: Since the wavelength of the surface polariton in the

%ﬁ optical region is much greater than the Fermi wavelength for
%E the materials of interest, the surface waves may be treated
;n by classical, macroscopic, electromagnetic theory.

32% The term exact theory will be used henceforth in lieu of
}ﬁg the term nonperturbative analysis. The development and the
;ﬁé equations used in both the exact theory and in the

%&, perturbation theory are taken directly from the paper by

ﬁi. 5lass, Maradudin, and Celli [Ref. 3] and, to a greater

<é; extent, from the paper [Ref. 21] and the technical report !
%ﬁ [Ref. 9] by Glass. The exact theory is well summarized in ‘
?% Maradudin's review article [Ref. 25:pp. 423-469]. Although
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the developments in both of the following subsections
Y, (II.B.l1. and II.B.2.) should be taken as summaries of the

analyses given in these papers, the references will not be
B explicitly cited within the subsections to avoid excessive
W repetition.

The overwhelming majority of the literature in this area

eﬂ employs the Gaussian, or CGS, system of units. This
o convention will be adhered to for uniformity and comparison.

1. Exact Theory

B A schematic representation of the physical geometry

is shown in Figure 1. The coordinate system, shown elevated

_ in the figure for clarity, is located with the X3 = 0

iﬁ plane as the average position of the surface in the vertical

§ direction. The X and X, axes are coincident with the )
: orthogonal dimensions of periodicity of the bigrating

E% surface. The surface profile is defined by 1
i

'g X5 = ((2") where ?" = x, §1 + X, §2

ﬁﬁ The region above the bigrating, X4 > ((?"), is a vacuum and

%: the region X, < 5(2") is the dielectric characterized by

{h the frequency dependent complex dielectric function

¥ e(w) = ¢ (w) + L e (w).

%: The periodicity of the bigrating is described by the lattice

A ~

- -
vectors al = al x1 and a2 2 x2 where al and a, are

RO the periods of the grating corrugations along each of the

= a

3 two surface dimensions. The surface profile function is

periodic in two directions and one may therefore write

o 22
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Figure 1. Schematic of Bigrating
ey and Incidence Geometry.
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B C(X) = (X, +n3

B where n and m are integers. The restriction to the specific
y case of the square bigrating, where a, =a, =a, will be
Wy

ol imposed later.

X Light of angular frequency o is incident on the
= bigrating from the vacuum with waveveétor X at an angle 6
ef. from the normal. The plane of incidence is rotated from the

e axis X, by the azimuthal angle & and contains the unit

e normal §3. The projection of the incident wavevector K onto
?gf the Xg = 0 plane is given by

ﬁﬁ ?“ = % [sinB6 cosé §1 + sin® sind §2], (1)
§§ since |R| = %.

ﬁg It is convenient at this point to define some terms
R for use in describing the polarization of the incident

é? electromagnetic wave, in referring to specific regions in

;§§ the area of the grating surface, and in characterizing the
t: grating surface. The case of the linearly polarized

E? incident wave with the electric field vector perpendicular
-%ﬁ or transverse to the plane of incidence (TE) will be denoted

by the term s polarized. The case of the linearly polarized

incident wave with the magnetic field vector transverse to

ﬂ» the zlane of incidence (TM) will be denoted by the term
; ,
p polarized. The ratio of the maximum height of the surface

.."',

K

ig profile above the x, = 0 plane, { ., to the period of

[} q'.

ii the grating corrugations, a, (in either direction for the

3 24
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square bigrating) is defined as the corrugation strength of
the grating. The region between the maximum and minimum
heights of the surface profile, cmin < X, < gmax , Where

¢ is termed the selvedge region.

min = Cmax -

The cornerstone of the analysis 1s the use of the
Rayleigh hypothesis. The assumption here is that
expressions for the fields that are valid above the selvedge
region in the vacuum and those that are valid below the
selvedge-region in the dielectric medium may be extended
into the surface itself. This assumption places a
limitation on the validity of the analysis and this
limitation applies to the perturbative analysis as well. If
the corrugation strength becomes large enough, field
components backscattered from the sides of the corrugations
down into the corrugation troughs become significant and the
analysis breaks down. As noted by Glass, Maradudin and
Celli, however, the hypothesis has been shown to be valid
outside its normal limits for periodic surface profiles
which are analytic.

In the Rayleigh method, an exact expression is
written for the electric field above the selvedge region
which satisfies Maxwell's equations in the vacuum and
satisfies the 3loch condizion for the Joubly periodic
geometry of the bigrating. This expression is written as a

Rayleigh expansion in terms of the incident and scattered

fields. Through the use of the vectorial equivalent of the

25
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Kirchoff Integral for diffraction, coupled with the
extinction theorem, the expression for the field in the
dielectric medium below the selvedge region is eliminated by
rewriting it in terms of that above the selvedge region.
This halves the number of unknowns in the problem and is
termed the reduced Rayleigh method. The boundary conditions
associated with Maxwell's equations are then applied at the
interface using the expression for the fields above the
éelvedge region, which is an implicit application of the
Rayleigh hypothesis. The results are two sets of linear
algebraic equations, of infinite extent, with the Rayleigh
coefficients as the unknowns. The Rayleigh coefficients
determine the magnitudes of the scattered field components
for both the diffracted waves and the evanescent waves.

To solve these equations numerically, the matrices
must of course be truncated to some degree. The procedure
in the calculations is to truncate the equations to a given
finite dimension and solve them numerically. The equations
are then truncated to some larger finite dimension and the
numerical solution is repeated. Iterations of this
procedure are carried out until convergence of results is
either confirmed, in which case the validity of the Rayleigh
aypothesis IZor the particular case being investigated is
taken to be established, or until divergence becomes
apparent. In the latter instance some other analysis

technique must be attempted in order to investigate the case

26
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of interest. For cases where convergence is apparent, a
suitable dimension for the matrix equations is chosen
dependent upon the degree of accuracy required.

The quantitative analysis is initiated by writing
the electric field in the vacuum above the selvedge region

in the form

B(w,X) = Ei(w,ﬁn) exp[tE" . 2" - tag (k) X5]
+ 26 Es(w,Ra) exp[tﬂa . 2" + tag(w,Kga) X,31. (2)

The summation in the second term is over all the translation
vectors, G, of the reciprocal to the lattice defined by the
geometry of the square bigrating. The reciprocal lattice

vector, then, can be obtained with the expression

aE 2:: (m 1 + mzxz) for mj = 0, 1, £2,... . (3)

In equation (2), the wavevectors for the incident wave, X,

and for each of the scattered waves, Eé, are used in the

forms given by

R = R'" - ao(w,k“), (4a)
and

Eé - Ra + ag(w,Ka), (4b)
where

?3 =R, +C. (ac)

The gquantity ao(w,Ka) is then given by the expression

[wZ/c2 - Ké]”, for Ké < uz/cz, (5a)

ao(w,Ka) =
[xé w/c ] , for k3 > w?/c?, (5b)
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and the quantity ao(w,k") may be obtained by evaluating
' equation (5) for the case where @ =0 and ?a = K“ ’

| ao(w,k“) = ao(w,?a) aao- % cos6 . (6)

& * The quantities 8! anda 85 in equation (2) denote the vector

o amplitudes of the incident and scattered fields,

$ respectively. The vector amplitude of the incident field is
U

% given by

&

' k
i A~ A " ~ A~
B (w,E") = [k" + X, 3:757F]T] B, + [x3 x k”] B, (7)
) where B, and B, determine the magnitudes of the p and s

components of the incident field, respectively. The vector

ﬁ amplitude of the scattered field is given by

.

ud ‘ K

) s R E ~ o] .
& B R - [Ka - % mg] Ay (e kg)

% + [23 x ﬁa] A (0,Ry), (8) 1
i where the A, and A, determine the magnitudes of the p and s

e

components of the scattered field, respectively. These are
) the Rayleigh coefficients which are the unknowns in the
problem. Each term in the summation in equation (2), t. e.

each scattered field, represents either a diffracted beam,

} when K= < % . or an evanescent wave, when K= > % )

1 7

B

»$ Glass, Maradudin and Cell:i are quite detailed in

their method of quantitative elimination of the expression

W

v for the field within the dielectric medium and derivation of

§' the final set of linear equations for the Rayleigh 1
I
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f;: coefficients. The vectorial Kirchoff integral provides an
& effective boundary condition for the field in the wvacuum.

As an application of the Rayleigh hypothesis, the expression

ﬁﬁ. : for the field above the selvedge region, equation (2), is
;éé then used in the boundary condition equation.

a” | At this point Fourier expansions in terms of the
gg surface profile are introduced with the intention of

:ﬂ, rewriting the vector integral as a set of linear equations.

One of these expansions is critical to the development of

the perturbation theory and is therefore stated here:

o 0%
)
e exp[-taf (%,)] = 2‘(3 #(a|B) exp[td o %, 1. (9)
fff In this expansion, # is defined by the integral expression
i
pe _ 1
:%‘ o(ala) = - II dx1 dx2 exp[-t{a ] 2" + ac(?")}], (10)
oy (o4 ac
Ty b )
;§2 where ag is the area of a unit cell of the bigrating
.,g'l'é
Iﬁ% surface. The quantity a inside the dielectric must be
3"@2\
i}‘ distinguished from the quantity a, in the vacuum, due to the
ﬁﬁ' complex dielectric function, e(w), of the medium, and is
W
}m% given by
! 2 %
o W 2
sl a(w,Ke) = [e(m) — - Ka] . (11)
i‘:i: C
D
o Glass, Maradudin and Celli use the Fourier
St
XA expansions to write the Kirchoff integral equation as a
?Tf ’ doubly infinite set of simultaneous, linear, inhomogeneous
KJ equations for A"(w,ﬂa) and Al(w,Ra). Using the

abbreviations of A"(a) for A"(w,?a) and Al(a) for Al(w,?a),

3!‘% 29
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N the linear equations are given by
) axz, A, (3") + ,A(a')]
23' aga, /el bag 2y

§ ’.[ﬁa | 3]

i = - Ba , [aao B" + bao Bl]' (12a)
| and

) 18 -8

) .?[a - ’]

1‘! 68, ’ - I'4

:, Ea, aga. [Caa' All(a ) agad- Al(a )]

o

e ! g

} = [ea B - ag, BL]’ (12b)
E‘ with the following definitions of terms:

aga, = a(0,KQ) - ag(0.X2,) (132)
¥

i Ba = a(w,K3) + aolw k) , (13b)
¢

I\ - P ~

X aga, = X5 ¢ [Ka x Ka,], (13c)
»‘E _ - -~

! g = Fg o Ra 130
v kg g

v &g = baa’ + a(w,Ka) ao(w,Ka,) ’ (13e)
4 and

t

4 = ..t X3 X

¥ 2= ki T TR Gele k) (13£)
é 2. Perturbation Theory

X

) The assence of the perturbation theory is to reduce
3 all expressions to first order results in terms of the

;; surface profile {. This process is begun by expanding the

L/
} integral ¢ to first order in { yielding the result

o
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#(a|d) = 58 o - tal (B), (14)
where
T@ = =+ IJ dx, dx, {(%,) exp[-i B 2"]. (15)
C ac

The use of the Kronecker delta function is introduced into
the notation in equation (14). wWith the assumption that the
dimensionless parameter af is small, the expression for ¢
given by equation (14) may be used in the equations (12) for
the Rayleigh coefficients. With the further assumption that
€(0) = 0, the resulting first order approximations for A,
and A, are given by

a

A8 =t ng 2351'53,3’)[ (G-G’ { cgz-A, (T - aaa,Al(g’)}]

e [ %20 - I®
caa [ 0 Ba ] [ea B“ - ag, BL]’ (l16a)

and
Al(a) - togg Easl—aa'a,)[E(é-a'){aaa,A“(a') - baa,Al(a')}]

58 o - tBa T(®)
- agg [ 0 = ] [aao B, + bg, Bl]. (16b)

The assumption is then made that the Rayleigh

coefficients of the specularly diffracted beam, A, (0) and
A, 19), are of a magnitude such that the amplitude of %the
specular beam is much greater than any other diffracted

beam. The second assumption made here is that there is a

possibility of up to four evanescent waves in a condition of
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) resonance corresponding to four resonantly stimulated
surface polaritons. The amplitudes of a resonant evanescent
wave will be much greater than that of any of the

W nonresonant terms. The wavevector for such an evanescent

wave is given by

Ra =K + 3 =ZR_ () for r = 1,2,3,4 , (17)
: g, 1 r sp
]
:h where ?Sp(w) is the wavevector of the resonantly excited
o‘:'
o surface polariton of frequency w, and where v is equal to i
|
'ﬁ the frequency of the incident light.
. J
&? Since treatment is limited to only small deviations
t.'
b from the flat surface’, it is beneficial to discuss the
i& limiting case of §(§") = 0 to gain some insights to the
K\
h physical situation. 1In the flat surface limit, which is
ks
& zeroth order in the surface profile, the dispersion relation
o for the surface polariton is given by
B
EE;% a(w,Ksp) + e(w) ao(w:Ksp) = 0. (18)
f' The dielectric medium is assumed to be isotropic so that to
;ﬁ' zeroth order in {, the dispersion relation depends only on
1.9
a
}? the magnitude of the surface polariton wavevector, Ksp' For
"
4 a given frequency, then, Ksp will describe a circle in
2? k-space on the k, = 0 plane. Figure 2 is a schematic of
b
ﬁ? “his situation with zthe solid circle representing a circle
.§l|
: of radius Ksp‘ The wavevector, Ra , of a resonantly
-~ r
cg:.v
0 ]
oy This limitation has been imposed with the use of the
e Rayleigh hypothesis. See pages 25 and 26 in the exact
theory section for a dicussion of this limitation.
i
.::;. 32
tkl
l'.;:l
L

PSS T P

AEATE O TR (o (0 A
"-‘..’ x*g:v":"".;'t‘f:; g“r”;s{‘»?'*“.", ' Ay

LN I I

TR
s Ot
“Al"""&!{" "s RO REAAR "‘ LY,

R TG R L N S
- ! nY.e
BedTzpt ot a ?';-. e



excited evanescent wave will have its tip at this circle and
will satisfy the dispersion relation given by

a(w,Ka ) + e(w) ao(w,Ka )y = 0. (19)
r r

The present formulation allows for the possibility of four
'different reciprocal lattice vectors (31 through 34 in
Figure 2) coupling to E" with the resulting evanescent waves
satisfying equation (19). The particular situation depicted
in Figure 2 shows a case where only one of the resulting

evanescent waves, Ra , satisfies the resonance condition.
4

The limitation of this schematic representation is that the
reciprocal lattice vectors for the bigrating exist only if
the surface is not flat, in which case the constant
frequency circle for Ksp is distorted to some extent by the
bigrating corrugations.

Since surface polaritons on a flat surface are p
polarized, only the A, coefficients (not the A
coefficients) of the resonant evanescent waves need be
considered as large with respect to the nonresonant terms.
Thus the assumption is that the Rayleigh coefficients A, (0),
A, (0), A (B)), A (B, A,(8;), and a,(3,), may be larger
than all others and should therefore be treated differently.
This “reatment must allow for the pcssibility cthat there may
be no resonantly excited evanescent waves and the
corresponding Rayleigh coefficients would then be of the
same magnitude for the specially treated terms as for all

the others.
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Figure 2. Schematic of Wavevector Coupling.
Having reviewed the basic zremise of the
perturbaticn theory, a descriptive summary of the rest or
the development advanced by Glass will now be employed. A .

statement of the final results will be given at the end of

this summary.
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ég A further abbreviation is introduced into the

;g notation at this point and mention is made of it here since
i it is used in the statement of the final results. 1In this
?a abbreviation, aj is replaced everywhere with its subscript
éi alone, so that aalaz is now written as @iy v A“(a3) as

;; A"(3), and so forth.

éﬁ Equation (16) is used to write an explicit

;ﬁz expression for each of the six important terms. Each

. important term is thus written in terms of the other five
§£ and also of a sum over the nonresonant terms. Each given
g; nonresonant coefficient can in turn be expressed, by

K equation (16), in terms of the six important coefficients
5‘3 and all the other nonresonant coefficients, The latter are
ﬁg ’ dropped: each given nonresonant coefficient is expressed
A only in terms of the six important coefficients. These

??} equations for the nonresonant coefficients are then

;&; substituted into the expressions for the resonant and

ﬂé; specular beam coefficients.

?% Within the development of the perturbation theory,
xﬁ an equation arises for the frequency of the surface

;5 polariton to zeroth order in {. This expression, which is
‘?ﬁ the solution of aquation (18), will be useful in later

gg discussions and is stated here as

’:'Ef‘é : 0l - [——-—1 te ] c? k2 . (20)
R
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The final result is a set of six linear algebraic
equations for the resonant and specular beam coefficients in

terms of the amplitude coefficients, B, and B of the

Il 1’
incident beam. These equations are given in matrix form as

[ (02-52 L L L M N A (1)] ‘
(Q7-1,) 12 13 14 1 1 (1)
2 x2
Ly (07-05) Las Loy M, Ny Ay (2)
2 x2
Ly Li, (@~-03) Lig M3 N, A, (3)
2 ~2
La L4o Ly3 (Q=-ag) M, N, Ay (4)
0, o, o, 0, (1+P) 0 A, (0)
R, R, R, R, S (1+1) | |a,(0)]
r
(U -M))B8, - NiB)
(Uy-M7)B, - N,B) ,
(U3-M4)B, - N3B,
p— (U,-M,)B, - NB, | . (21)
(W+V-P)B, =- OB,
%00
(X-S)B - (T+—g2)B,
0 )
It should be noted that the quantity 02, defined by
— [A) a
a = 2nc/a N ' (22)

i3 merely the incident wave frequency expressed as a

dimensionless quantity. Also note that the quantity ﬁr is

™ defined by .
' Qr = 2rc/a ' (23)

-':
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;ﬂ' where ;r is just the surface polariton frequency for the

e flat surface, W, from equation (20), renormalized by the
nonresonant terms, which were kept in the theory. An

&f explicit definition for zr is given in equation A.1 of

:b' Appendix A. The other terms appearing here are defined

explicitly in Appendix A taken from the technical report by

-

i, Glass.

The procedure of calculation, then, is to solve this

,
-
”»
o’

set of six equations numerically for the resonant and
o specular beam coefficients. These results are then used in
>

ne the equations for the nonresonant coefficients to obtain

their values.
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III. NUMERICAL IMPLEMENTATION

The numerical implementations here are, for purposes of
comparison, exactly analogous to those performed by Glass
[Ref. 21] in instituting the perturbation theory with
simultaneous excitation of two resonant surface polaritons.
In his quantitative evaluations employing the exact theory,
Glass parallels those conducted by Glass, Maradudin and
Celli [Ref. 5]. The exact method here duplicates that
employed by Glass but for a somewhat different geometry.

The implementation of the four-polariton perturbation theory
will parallel the method used by Glass in the implementation
of his original perturbation theory.

A. QUANTITIES AND GEOMETRY INVESTIGATED

In the numerical investigation of the theory, normalized
values are chosen for the incident amplitude coefficients,
B, and B . In the cases investigated, either total p
polarization, B, =1 and Bl = 0, or total s polarization,
B, =0 and B, = 1, was chosen for the incident beam. The
resulting Rayleigh coefficients. then, will be some frac=ticn
of unity indicating the magnitudes of the p and s components

of the evanescent waves and the diffracted beams relative to

the magnitude of the incident beam.
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OO The surface profile used for the investigations

o
;&ﬁ duplicates the one employed by Glass [Ref. 21]. It

i describes a square sinusoidal bigrating with a profile

o

t
1@% symmetric along X, and X,y with periodicity a. The bigrating
i

‘ﬁg surface is depicted schematically in Figure 1 in Chapter 1II.
s‘: The surface profile function is given by

o)

‘?: - — 27 27
'Qiz g\x") = hl {cos[—;—— xl] + cos[ 2 xz]}

LN .

4w 4T

i + h, {cos[—;—— xl] + cos[ 5 xz]}

s
S 27 2
'ﬁ{ﬂ + hl1 {cos[ m xl] cos[ < xz]} (24)
3’\..'
o3 The reciprocal lattice vectors for this square bigrating are
4o

&; given by
.5"'3 2w 2 2
o S(l,m) = = [1 X, +m xz], l,m = 0,+1,%2,... . (25)
oy Thus one may refer to a(l,m) as the (l,m) reciprocal lattice
W,
? y vector. Similarly, a particular scattered beam,
g; corresponding to the (l1,m) lattice vector, may be referred
5é1 to as the (l,m) diffracted beam or the (l,m) evanescent
S GAE
;é& wave. With this reference scheme, the wavevector of a
o i("\
M&? scattered beam projected onto the surface is written as
WY - - 2wl 2 2rm 2
._: R(l,m) Tc' + G(l,m) Tc’ —a X, + = %, (26)
4391 cnce numerical resul:ts for the Rayleigh coefficients are
vh‘,'s
obtained, equation (8) is used to find the amplitude of the

1‘1 \
f') scattered field. The amplitude of the incident field is
Wy
;.M obtained with equation (7) using the known amplitude

v'l‘.r

.. coefficients B" and BL' The reflectance of the (l,m)
i
A, 39
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diffracted beam [Ref. 21:p. 2653] is then given by

2
|§S{0,K(lrm)]| ao[w,K(Ll,m)]

R(l,m) = 3 (27a)
lﬁi[w,ﬁu]l ao[w,k"]
with the total reflectance given by the expression
=) ) &(1',m%), (27b)
1" “m”’

where the primes on the indices indicate summations are
carried out only for 1’ and m’ such that Kz(l’,m’) < mz/cz,
thereby excluding evanescent wave terms. Using the
amplitudes of the scattered and incident fields, the
amplitude for the total field may be obtained by evaluating

equation (2). The electric field enhancement is defined

[Ref. 21:p. 2653)] as

ORIk
¢ = 5 , (28)
Igi[(.,,z"]l +
X3=Cmax
where c;ax indicates a point just above the selvedge region.

B. EXACT THEORY IMPLEMENTATION

The method of exact theory implementation described here
15 a summary of the procedure outlined by Glass [Ref. 21:pp.
2653-2654). This reference will not be cited further within
this section.

In determining the Rayleigh coefficient values using the

exact analysis, the integral ¢ given in equation (10) must

40




be evaluated for all possible reciprocal lattice vectors.
There 1s, in general, no analytic expression for # and

numerical calculations thus require performance of a fast
Fourier transform (FFT) for each possible 3. The surface

profile function term with the height coefficient h the

11’
cross term, would require the use of a two dimensional
Fourier transform in direct application. Expansion of the

exponential of the cross term may be used to circumvent the
use of a two dimensional Fourier transform. With this

method the expression for the integral ¢ for the cross term

case may be rewritten as

n
[-iah
#(ald) = ) 1] #Male)) #™ale,), (29

n&o n!
where
=G, % +6G,x,, (29b)
and
+a/2
#(alG)) = % J cos" [255] exp[-tGux]

-a/2
+ exp[-ta{hl cos[zgi] + h2 cos[ﬁgi]}] dx. (29c)
This integral can then be evaluated using a one dimensional
TFT and 2 numerical result may be obtained for f(a|3) by
truncating the summation in equation (29a) to as many terms
as is required to acheive the desired degree of accuracy.
Using this numerical result for 9(a|3), equation (9) is

then solved as a set of linear equations in matrix form in
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order to determine the values for the Rayleigh coefficients.
To do this, as previously indicated, the resulting doubly
infinite matrix equation must be truncated to some degree.
The dimensions of the matrix determine the reciprocal
lattice vectors that are retained in the numerical
calculation. For truncation to a matrix of dimensions

2N2x 2N2, the lattice vectors a(L,m) retained in the

calculation are those where 1 and m satisfy the condition

N -1 N -1
ST Sl

(30)
Thus the diffracted beams and evanescent waves corresponding
to reciprocal lattice vectors with either index outside
these limits is ignored in determination of numerical
results. For the limitation of both 1 and m to the range
from -2 to +2, the resulting N is 5 and the matrix to be
solved is then of 50 x 50 dimension; for the range -3 to +3,
N = 7 and the matrix is 98 x 98; for -4 to +4, N = 9 with a
162 x 162 matrix to be solved. Should accuracy require
extension of the limits for 1. and m to -5 to +5, N is then
11 and the matrix dimensions are 242 x 242.

The elements of the matrix are complex, as are the
required FFT's. Using the full (double) precision available

with a 12 bit machine® is desirable to obtain the necessary

accuracy, particularly in the larger matrix calculations.

4The machine employed here was an IBM 3033 system and a
32 point mesh was used in the FFT's for the exact
calculations.
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b
\!'
W With such requirements in computational resources for

SQ numerical determinations based on the exact analysis, the
W need for reliable perturbation schemes is clearly evident.
Eg The Fortran code employed in calculations here is the
fi same as that used by Glass in his exact calculations for

N comparison with the two-polariton perturbation theory.

k)

N

;

a C. PERTURBATION THEORY IMPLEMENTATION

f Since the integral 9(ala) has been eliminated from the
?; calculations in the perturbative analysis, no FFT's need be
F performed. The quantity f(a), defined by equation (15), is
£ all that is required and, for the surface profile defined by
% equation (24), is written [Ref. 21:p.2654] as

‘.I

3 Taamy =3 51,o[h1 Slm|,1 * B2 5|m|,2]

3: 1

0 +E‘Sm,o[hl 5|1|,1+h25|1|,2]

o 1

E. * 2 M1 9,1 %m0 (31)
g The set of linear equations defined by the 6 x 6 matrix

% equation (21) are then solved to determine the values for

. “he Rayleigh coefficients.

% The numerical calculations here still involve complex

i quantities and full (double) precision was also employed.

% The calculations, however, by excluding FFT's and reducing

the linear equation solution to a 6 x 6 problem, require
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computational resources that are orders of magnitude less
than the exact calculation requirements.

The Fortran code employed for the perturbation
calculations is a modification to that used by Glass for the
two polariton perturbation code. Necessary changes were
carried out and the results tested against exact results for

identical cases in order to correct program errors.

D. SELECTION OF PARAMETERS

To conform with the experimental work of Inagaki et al.
[Ref. 20] and with the theoretical work of Glass and
Maradudin [Ref. 19] and that of Glass [Ref. 21], the
wavelength of the incident light was chosen as 633.0 nm. 1In
order to test the possibility of four-fold resonance
advanced by Glass [Ref. 9:p. 13], it was desirable to choose
the geometry so as to have resonant absorption at normal
incidence. 1In this manner, resonance effects would be
dramatic, t. e., approximately total absorption of light at
normal incidence, and any qualitative trends in resonance
conditions would be readily apparent.

For normal incidence, the projection of the incident
wavevector s zero and the resonance condition, from

equation (17), is then
Krs 0 +a=i(sp(m). (32)

Choosing the (1,0) lattice point for convenience, the
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_é% resulting reciprocal lattice vector from equation (25) is
by

:3? - given by
o d(1,0) = 2 x,. (33)
"\
Yy
:hﬁ Combining these, the resulting resonance condition is

?1" 2

T 2 2 2 2r
e KSP = Kr = G"(1,0) = [a—-] . (34)
(:'h’
:%“ Using a zeroth order approximation in {, equation (20) may
.i"'
gﬁg be employed with the result from equation (34) yielding

) 2

. 2 1 + e 2 [2r

. 3 [2re] @ )
el

i Assuming that the frequency of the incident light equals the
St frequency of the surface polariton at Ksp = 2w/a, and
fﬁ assuming that this surface polariton frequency is
t.\_'
§< _ approximately equal to the flat surface polariton frequency,
e then w, can be replaced by w in equation (35). Then one may
E ' write
Doy 2 2re 2 €

:g, a‘[m] [1+e]' (36)
:ﬁx Substituting the wavelength of the incident light in vacuum,
)
;3{ Ao, into this equation, the final result is obtained for the

approximate periodicity for resonance at normal incidence as

oy

3 @ = n [ )% (37)
b |

A As in the work of Inagaki et al., Glass and Maradudin, and
5 Glass, the material chosen for the bigrating was silver.

[ ’I‘; s

ﬂﬁ Interpolating from the data measured by Johnson and Christy
.:.0. P

i [Ref. 26] for Ag, the value of the dielectric function at
o

R *

‘0::0;

i)
.,
,
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the incident wavelength of 633.0 nm is ¢ = - 18.3 + { 0.479.

Taking the real part of this value the resulting value for a
from equation (37) is 615.47 nm.

Although the projection of the incident wavevector onto
the surface is zero for the case of normal incidence, some

finite non-zero value must be used for |ﬁ in the numerical

lll
calculations in order to define the unit vectors in equation
(17). In executing a computational run, the value for k" is
not defined as an explicit input parameter but is derived
from the specification of the angle of incidence, 8. For
this reason 6 was specified as 1073 degrees for
computational runs in cases of normal incidence.

Taking the values of a = 614.47 nm and Ao = 633.00 nm,

numerical calculations of exact theory were performed for p
polarized light at normal incidence and zero azimuth with
the surface profile height coefficients h2 and hll as zero.
This case was repeated for several choices of h1 in order to
establish an optimum value for maximum absorptance at normal
incidence. This resulted in the choice for the optimum
coupling value of h1 as 7.4 nm. The results of these

R calculations are not formally presented here as their sole

Jurpose was to establisn this optimum coupling value.
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IV. VALIDATION AT OFF-NORMAL INCIDENCE

g& within the literature there has been considerable use of
s two types of scans in the numerical search for the resonance
éﬁ condition of a particular case [Ref. 27]. In the first
%& method the reflectance is scanned for a resonance dip by

variation of the angle of incidence, 6. Referring to Figure

ﬁf: 1 in subsection B.l of Chapter II, it is apparent that this
§%, is an implicit variation of the value of kus. As the value
?ﬂf of k“ is changed, the resonant coupling condition is
‘E{ approached, met, and then passed and the reflectance is
,Eﬁ : scanned through the resonance dip. A second method is to
~ vary the incident frequency. Referring to Figure 2 in
;2& | subsection B.2 of Chapter II, this has the effect of
'ﬁ& changing the radius of the constant frequency circle at the
%j‘ tip of the resonant surface polariton. Here, ﬁ" is held
?:é fixed and the resonant coupling condition changes, thereby
é?, scanning the reflectance as a function of frequency. For
}?' cases of off-normal incidence, only scans versus the angle
fﬁ of incidence have been executed.

‘
%& Along with the scans Zor reflectancs, tiae conccmi:cant

il enhancement peaks were also obtained. These results are not

5See equation (1) in subsection II.B.l.
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central to the present discussions and are therefore

relegated to Appendix B as Figures 28 through 46.

A. RESULTS AT OFF-NORMAL INCIDENCE

As discussed in section D of Chapter III, the values of
A =633.00nm and a = 615.47 nm were chosen for the
incident wavelength and bigrating period and then the
optimum coupling value of 7.4 nm for hl was established at
normal incidence. A value of 5 degrees was arbitrarily
chosen for the azimuthal angle, ¢, and scans of reflectance
versus the angle of incidence, 6, were carried out for
several values of hl. éhe primary purpose in these
calculations was to establish the limits of validity for the
perturbation theory in cases of off-normal incidence. The
values of hl used were multiplicative factors of the
baseline value: one-third, 2.5 nm; one-half, 3.7 nm; unity,
7.4 nm; and twice, 14.8 nm. For all of these calculations,
the values of h2 and h11 were held at zero. From equation

(24), the resulting values for ¢ may be calculated and

the corresponding corrugation strengths6 are 0.008, 0.012,

max

0.024, and 0.048, respectively. The incident light was
specified as s polarized for all cases, with the 2., = 7.4 2m

case repeated using p polarization. The results of the

scans for reflectance for each of these cases are

6See equations (34) and (36) in section III.D.
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:g& graphically depicted in Figures 3 through 7 on the following
ﬁ% five pages. Within these figures, as with all of the

- figures to be presented, the results for exact theory

%g calculations are shown as a dashed curve and the results for
kﬁ : perturbation calculations are shown as a solid curve.

o As can be seen from a comparison of the figures, the

‘§: perturbation theory is the most reliable at the weakest

§§ corrugation. Minimum reflectance for this case is

%ﬁ approximately 0.8. Fair agreement is held between exact and
igﬁ perturbation results for increases in hl to 3.7 nm and

Qﬁj 7.4 nm as shown in Figures 4 , 5 and 7. 1In the latter case,
fi: the reflectance minimum falls to approximately 0.13 for s .
‘5 . polarization. With the increase in hl to 14.8 nm, the

%g pertubation theory breaks down and is unable to predict the
;i : results, as can be seen in Figure 6.

;q Some definitions for use in quantitative comparison of
b- exact theory and perturbation theory results need to be

:. established at this point. The departures which are to be
Eg quantitatively characterized are the difference in the

g magnitude of the reflectance dip and the difference in the 6
Aﬁ? location of the dip. The differences should be normalized
%&b Wwith an appropriate quantity so that they may be considered
éi as a type of percentage error.

?ﬁ For the reflectance minimum, the difference in the

gﬁﬂ maximum absorptances for exact and perturbation results will
.l be used. This quantity will then be normalized with the

i;':? 49
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;é maximum absorptance of the exact theory results. To avoid

;f introduction of another quantity, this error quantity will

K be defined in terms of reflectance minima. The reflectance
I minimum for the exact theory results is denoted as %, and

- S for the perturbation results as #;. With this notation, the

2 difference as a percentage, A%, is defined as

gt

gt

::g _1(1-%0) - (1-%4) | |%o - %5

s AR = T x 100% = B x 100% . (38)
KX Characterization of the difference in the 8 location of
R

%z the reflectance minima will be accomplished through the use

of the differences in the magnitudes of the corresponding

g ?sp wavevectors. From equations (17) and (26), it can be

readily seen that this is identical to the differences in

the magnitudes of the corresponding E“ wavevectors. This

Ry difference, AK,,, will be normalized with the calculated

P
" value of the surface polariton wavevector magnitude. This
value of Ksp may be taken directly from equation (34) as

o 2r/a. It can be readily determined from equation (1) for E"

0 that

MKy = Kyo = kjo = % (sing, - sing¢), (39)
o

N where, as before, the subscript naughts indicate values at

:ﬁ mraimum reflectanc2 and the prime indicates the gerturbaticn
;i _ theory value. Dividing by the normalization factor, Ksp’

%& and using the relations in equations (36) and (37) to

;E rewrite the multiplicative constant, the normalized
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ﬁg wavevector difference as a percentage, which will be denoted
'gﬁ as Ak, can be defined as

o Ak = % |sin6e - sineg| x 100% , (40)
§V o

§$ where A, is the wavelength of the incident light in the

%ﬁ vacuum.

éf Similar definitions may be obtained for the differences
2% in peak enhancement magnitudes and the peak enhancement

“ locations. Although presentation of these curves is

gﬁ confined to Appendix B to promote continuity, the

gg quantitative comparisons will be included in tabulated

fﬁ results within the text of the chapters for completeness.

§2 For the percentage difference in enhancement peaks, the

g% definition employed is

N o - 251

% A = ———— x 100% . (41)
ﬁ?! The definition of the angular error, expressed as a

*%; percentage in wavevector form, i1s exactly analogous to

ég equation (40) and will be denoted by Akg for the enhancement
ké values.

g The values for the percentage differences for the five
%r cases at the azimuthal angle of ¢ = 5° are given in Table 1,
.@? on <he following page. Note from these results that the

?y reflectance from exact calculations for the hl value of |
%g 14.8 nm is less than 0.1 with an enhancement of over 400.

ég The perturbation theory, however, predicts a reflectance dip
yl down to 0.800 with an enhancement of only 99.1 for this

;
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case. The position errors are an order of magnitude greater
than the others noted in Table 1 but are still less than

five percent.

TABLE 1
PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS FOR ¢ = 5° AZIMUTH

h (om) Pol. %, &o A% Ak A2 Ak,
2.5 s 0.808 65.0 3.5% 0.10% 2.9% 0.12%
3.7 s 0.634 132. 7.0% 0.23% 5.5% 0.23%
7.4 s 0.153 342. 9.2% 0.77% 2.9% 0.84%

14.8 s 0.095 437. 17.% 3.1% 77.% 2.0%
7.4 P 0.981 3.35 6.4% 0.23% 10.% 0.17%

This breakdown supports the explanation offered by Glass
[Ref. 21:p. 2654] for the limitation of his perturbation
theory using two resonant polaritons. Briefly, the argument
is as follows. The basis of the perturbation theory is the
expansicn of the quantity exp[-ia{]. At resonance, the

approximation may be made that

lafX(1,m)1]C x .
max []e} - 1}6 Ao

When acmax exceeds one, the expansion series does not

27 |e | ] € max

converge rapidly and truncation to a few terms is no longer
a good approximation of its value. Thus the perturbation

theory breaks down.

57

AT AT TR0t AT 0 0y At WY e By B Ty e V1V 1 Tt
B e e e K N D R R

as

LA "'"‘. PR AW
O R



'ty For the hl = 14.8 nm case, evaluation of equation (42)

E% yields a value of 1.3 for al ax ° At the 7.4 nm height, the

ﬁ* value is agmax ¥ 0.65. Thus the perturbation theory using

i% four polariton resonance appears to follow the breakdown

R) pattern of the two polariton theory in cases of off-normal

) incidence.

gi A comparison of the results for h1 = 7.4 nm with s and p

}{ polarization of incident light illustrates an important

N point. Note in Table 1 that the reflectance minimum for the

§§ s polarized case is 0.15, while the minimum for the p

S' polarized case is only down to 0.98. Figure 8 is a

éy schematic of the wavevectcr coupling with an azimuth of 5°.

ii In this schematic., unlike Figure 2, the two dimensional

L, Brillouin zone boundary is shown, represented by the solid

$ square surrounding the constant frequency circle. Also, ¥
g, this circle is pictured with the gaps which are present at

62 the intersections with the zone boundary. The directions of

‘% the incident fields for the cases of s and p polarization

‘3 are shown projected onto the k3 = 0 plane. The wavevector

k} of the resonant evanescent wave is represented by the dashed

é{ vector with the open arrowhead (not labeled).

% The surface polariton has both a transverse field

15 component normal to the surface and longitudinal field

g component parallel to the surface and in the direction of k
g? polariton propagation. An incident wave of s polarization .
'? has its electric field vector perpendicular to the plane of

7
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Figure 8. Schematic of Wavevector Coupling
at 5° Azimuth.

incidence and, therefore, has no field component aormal -o
the surface. An incident wave of p polarization, however,
does have an electric field component normal to the surface.
The magnitude of this normal component is proportional to

the angle of incidence.
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Referring to Figure 8, it can be seen that with s
polarization, the incident field is almost collinear with
the direction of propagation of the surface polariton and
thus with its longitudinal field component. Whereas with p
polarization, the incident field projection is nearly
perpendicular to the surface polariton wavevector. Since
the angle of incidence in these cases is very shallow,
approximately 10 to 11°, the incident field component normal
to the surface in the p polarized case is a very small
fraction of the total. Thus the coupling is mainly
dependent upon the collinearity of the incident field
component parallel to the surface and that of the
longitudinal component of the surface polariton field. As
can be seen from the schematic, this collinearity is almost
nonexistent with an azimuth of ¢ = 5°. Hence, the large
differences in the reflectance minimums for the s and p
polarizations of incident fields.

At an angle of incidence of 6 = 90°, the projection of
the incident wavevector, k", would reach the light line,

w = ck. This extremum cannot, of course, be reached in
practicality but may only be approached. The azimuthal
angle can be made large enough so that the resonant
condition cannot be met at any angle of incidence. 1In these
cases, k“ cannot be made large enough to position any of the
reciprocal lattice vectors such that the coupling produces a

resonant evanescent wave.

60

Y

- - ”~ - .
Ay Y, S W e Y W) v ORI () : "
SRR “f‘ﬂi'h'?ﬂ ;.f—‘;""l"- '.'Lﬁ."q"liﬁte;'!"att“"’-' P il Iéi‘r"lc. s ‘ ) ‘!‘ ‘C',.e’ﬁ#l’q.’,t'l‘.f‘l'p, St ,w.l!g.,')' ‘(' e .i'c .‘ ‘.' "lr‘. ! “*.“

LML LI

O c,‘




In the geometry under investigation, this limiting case
occurs at approximately 29° of azimuth. 1In order to
validate the perturbation theory more fully, reflectance was
scanned versus the angle of incidence at an angle of azimuth
of 25° for the single case of h; = 7.4 nm . These
calculations were performed using both s and p polarization
for the incident light. The results from these calculations
are presented graphically in Figures 9 and 10 on the

following two pages. The numerical comparisons of the exact

TABLE 2
PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS FOR ¢ = 25° AZIMUTH

h, (om) Pol. %, g0 A% Ak AZ Ak,
7.4 s 0.739 45.7 1.3% 0.45% 2.2% 0.45%
7.4 p 0.776 41.5 9.1% 0.03% 19.% 0.05%

and perturbation results are given in Table 2. Although the
percentage errors for the reflectance minimum and
enhancement peak are somewhat large for the case of p
polarized incidence, the perturbation predictions have
angular errors that are less than 0.1%.

Figure 11 is a schematic of the wavevector coupling for
the 25° azimuth geometry. The magnitude of the reflectance
minima are very nearly the same for the s and p incident

polarization cases. Unlike the 5° azimuth cases, the angle
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t
. of incidence in these cases 1is rather large, approximately
't
60.5%°, and the p polarized incident wave has a large field

"
7 component normal to the surface. This, together with the
; increased collinearity of its parallel component with the
, longitudinal surface polariton field component, accounts for
g
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§§ the smaller reflectance minimum with p polarized incidence
%} at an azimuth of 25° vice 5°. The s polarized incident

i wave, totally dependent for resonant coupling on

3;1 collinearity with the longitudinal surface polariton field
s component, has a significantly larger reflectance minimum at
K 25° azimuth than at 5° azimuth. Hence, the rather small

?2 differences in reflectance minimums for the s and p incident
e polarizations in the ¢ = 25° case.

N

# B. CONVERGENCE OF EXACT THEORY CALCULATIONS

%ﬁ As discussed in section B of Chapter III, the numerical
:; implementation of the exact theory requires truncation of .
uﬁ . the infinite series of equations (9) and (29a) in

o calculating the values of the Rayleigh coefficients and

g& : #(a|8). If the height coefficient in the surface profile

s& function for the cross term, hll’ is sufficiently small,

&: then retention of a single term of the series in equation

§$ (29a) will suffice. In all of the cases presented within

%5 this chapter, the cross term is absent, hll = 0, and

L truncation of this series was not a factor in convergence of
%s the calculations.

gﬁ Convergence of the calculations with the exact theorvy

o here, then, is solely dependent upon the validity of the

f{: Rayleigh Hypothesis for the cases treated. The validity of
;é: the Rayleigh Hypothesis is, in turn, dependent upon the

corrugation strength. Convergence checks were conducted for

K 65
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the maximum corrugation strengths used in each case of
by polarization and azimuth combination to ensure the validity

of the exact calculations.

As discussed in section B of Chapter III, truncation of
> the doubly infinite set of linear equaiions from equation
" (9) results in elimination of reciprocal lattice vectors
outside a chosen range of indices. Recalling the notational
" definitions from this discussion, the truncation, with the

linear equations in matrix form, results in a matrix of

Q dimensions 2N2 x 2N2 and the reciprocal lattice vectors
3 retained have indices given by equation (30).

All results presented are for N = 7. Convergence checks

- were conducted by using N as 5, 7, 9, and 11 in successive

TABLE 3
SUMMARY OF CONVERGENCE CHECK RESULTS FOR
REFLECTANCES AT OFF-NORMAL INCIDENCE

h,(om) Pol. & A% . A%, o A% 1)
-3 3.9 x 1072 1.0 x 10°°

2.1 x 1078 0 x 10792

2.9 x 10~ 1.0 x 1072

4.9 X 10
-6

- .-. ’;..’.
[
-8
o]
]
(4]
o

7.4 P 5° 3.5 x 10

2 7.4 s 25° 5.2 x107°

1 7.4 o 25° 5.2 x 10°° 0 x 1077 0 x 107°

(0%}
(o8]

calculations of the resonant case, t. e., at the reflectance

minimum. Table 3 is a summary of the differences in the

P,

minimum reflectances. The subscripts on the labels indicate

-
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\{ the successive values of N used in the calculations. Since
~%ﬁz the reflectance values are already normalized with respect
é ) to unity, the accuracies acheived may be read directly from
%? the table. From the values in the table it can be seen that
%f: : truncation to a matrix of dimensions 98 x 98 with N = 7

~£§ gives accuracies to at least one part in two thousand for
ﬁ%f the reflectance minimum.

e

" TABLE 4

ES SUMMARY OF CONVERGENCE CHECK RESULTS FOR

‘:u' ENHANCEMENTS AT OFF-NORMAL INCIDENCE

:;; hl(nm) Pol. ¢ A£5’74 A87'9 A‘9,11 :°11
2L 14.8 s 5°  13.723 1.846 0.308 439.4
e 7.4 p  5°  2.4x107%2 2.1x107° 1.ex1074 3.350
Lo 7.4 s 25° 0.339 2.8x10"2  2.4x1073 45.65
»s o -2 -3

o 7.4 P 25 0.175 2.3x10 2.0x10 39.18
.;

gi Table 4 is a summary of the differences in enhancement
%g peaks in the convergence checks. Since these are not

if. normalized differences, the peak enhancement value for the
g€j N = 11 calculation is included in the table for each case.
%?; Jsing this value for a normalization factor, the accuracies
": acheived for the enhancements with N = 7 are at least to one
;'» part in fifteen hundred.
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V. VALIDATION NEAR NORMAL INCIDENCE

In comparing the results of perturbation theory
calculations around normal incidence with those of the exact
| theory, several cases of incidence geometry were
v investigated. Scans of reflectance versus angle of

incidence were performed for various surface profiles in
. attempting to obtain agreement between perturbation and
' exact results. Although the perturbation theory was unable
to predict both reflectance and enhancement versus angle of
incidence with an acceptable degree of accuracy for any
single case, some ﬁtility in predicting bigrating
efficiencies was established for limited cases of surface
; profile and incidence geometry. Additionally, a scan versus

if incident frequency was performed for a single bigrating
profile.

A. RESULTS NEAR NORMAL INCIDENCE VERSUS ANGLE OF INCIDENCE
As before, the values of A = 633.00 nm and a = 615.47 nm

. were held fixed and investigations around normal incidence

were commenced using the optimum coupling value of

h1 = 7.4 nm with h2 and hll both at zero. Since the

) perturbation theory gave reliable results at off-normal

! incidence for this geometry, it was expected that some

degree of reliability could be expected near normal
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incidence as a benchmark for validation. This was not found
to be the case. For this reason, changes in calculation
parameters for the perturbation theory which might improve

agreement with exact calculations were sought.

In all previous perturbation calculations, the four
Rayleigh coefficients which were taken to be the most
significant evanescent wave amplitude coefficients were
A"(l,O), A“(O,l), A"(-l,O), and A“(O,—l). This set of
evanescent wave Rayleigh coefficients will henceforth be
referred to as the canonical coefficients. These
coefficients, along with the specular beam coefficients
AL(O,O) and A"(0,0), constitute the six important terms
referred to in the development of the perturbation theory in
subsection B.2 of Chapter II. Inspections of printouts for
the Rayleigh coefficients from exact theory calculations
revealed that several evanescent amplitudes other than the
canonical coefficients were of significant magnitude. 1In
order to obtain better prediction behaviour from the
pertubation theory, the choice of which four evanescent wave
coefficients are included in the six important terms was
modified. The choices for the four terms ‘ncluded was
iepencent con <the par=icular case of .ncidence jeomet:y. The
specific choices made for these terms, which will henceforth
be termed the corrected choice of coefficients, will be

discussed later.
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; Figures 12 through 15 on the following four pages are

S graphical representations of the reflectance versus angle of

‘ incidence for the perturbation and exact theory calculations

g for s and p polarization at azimuths of ¢ = 0° and ¢ = 90°.

i Table 5 below is a quantitative comparison of these results
using the same parameters for comparison as developed in the

§
i preceeding chapter. 1In this table, the different choices
K

TABLE 5

PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

- . o o —
I

s’

RESULTS FOR hl = 7.4 nm NEAR NORMAL INCIDENCE

¢ Pol. Pert. . eo A% Ak Ag Akz
0° s canon. 0.003 40.4 .53%  3.4% 34.%  3.3%
: 0° s corr. 0.003 40.4 1.3% 3.1% 11.%  3.4%
0° p canon. 0.050 273. 11.% 0.17% 68.% 0.12%
« 0° p corr. 0.050 273. 47.% 0.02% 50.% 0.09%
3 90° s canon. 0.003 40.4 .63% 2.5% 6.4% 2.6%
90° s corr. 0.003 40.4 1.3% 3.1% 11.%  3.4%

90° »p canon. 0.050 273. 12.% 0.15% 80.% 0.07%

90° »p corr. 0.050 273. 47.% 0.02% 50.% 0.09%

Ior <ne 2vanescent wave Ravleigh coerfficients are Indicated
f in the column headed Pert., for perturbation, as either

canonical or corrected. From this table and from Figures 12
N through 15, it can be seen that the perturbation theory is

unable to reliably predict results for this bigrating
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Figure 15. Reflectance Curves for h1 = 7.4 nm Near
Normal Incidence with 90° Azimuth and P Polarization.
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$§ geometry. In particular it should be noted in the figures
f‘ that the magnitude of the reflectance dip at zero degrees
’ﬁ‘ (6 = 0.00001°%) incidence is quite different in the

i\ perturbation and the exact theory curves. Although the
- errors in the angular location of the dip expressed in

oy wavevector form are all less than 4%, reliance on the

%: perturbation theory as a predictor of bigrating performance
3; at normal incidence could lead to misconceptions of the

o pattern of bigrating efficiency around normal incidence.

;& In discussing the corrected choices of the evanescent
i{ wave Rayleigh coefficients, it is helpful to once again

& consider a schematic of the wavevector coupling. Figure 16
i is such a schematic for the case of near normal incidence
lf with s polarization. The wavevectors of the two resonantly
fq stimulated evanescent waves are again depicted as dashed

?¢ vectors without labels. As the angle of incidence is varied
f, near 6 = 0°, the wavevector E“ + @ can be thought to move
?i across the gap induced by the Brioullin zone boundary. The
;, resonant condition is met when the reciprocal lattice

'J: vectors touch the constant frequency circle. At an azimuth
i$. of & = 0° with s polarization, there is no incident electric
:g Zield compcnent in the (1,0) and {(-1.,J) directions. Thus,
R the surface waves at al and 33 are not directly excited.

:: Moreover, there is no first order coupling of the excited
%f waves at G, and 54 to the degenerate waves at €, and (e

since the coupling coefficients T(t1,+1) (proportional to

B 75

. . . a- - s . m- TR
! . ATATHEY ‘ > ' AT LT > o W) O JAR RN M
EAENIER ORI AL S a i MY Sy 4 u‘eﬁt.b'u D M DR OL O M SLhEST g RS, t':‘O‘o.-!y- AR N U Doy 3

",




A )
)
]
" —>‘|
4
H.\ Gl':z
r EEme——
s 2
[ ]
)
' H
]

- - -
: --—'-a--"
-

Seqgeencacaaceansenn

-

Figure 16. Schematic of Wavevector Coupling for
S Polarization Near Normal Incidence.

., are al.l :z

-

®

ro Zor this surface prorfile. On the other

hand, the excited waves at 52 and 54 do couple, to first

order, through the reciprocal lattice vectors ai (1 = .
1,2,3,4), to other waves not on the constant frequency

circle. Thus a logical choice for the corrected set of
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BaEs’ evanescent wave Rayleigh coefficients for this case is
R A,(0,1), A (0,-1), A, (0,2), and A, (0,-2). With s

polarization at an azimuth of ¢ = 90°, the incident field

;Q' | vector lies wholly along the (1,0), f—l,O) axis and the

E%; . choice for the corrected coefficients in this case is

522;2 A"(l,O), A“(—l,O), A"(Z,O), and A"(-Z,O). o o
%& It is obvious that the two cases of & = 0° and ¢ = 90
??? azimuth are identical for either polarization. With s

S polarization, for example, the incidence geometry pictured
EQE in Figure 16 is merely rotated 90° for the latter case.

'ﬁg Indeed, a close comparison of the exact results for the two
1?; azimuth cases for either polarization showed that the

%% ’ reflectance curves are identical. There are, however,

e slight differences in perturbation theory results for each
%?: of the two azimuth cases for both s and p polarization. It
?S: is for this reason that the two azimuth cases were examined.
iéé vValidity of the exact calculations has thus been reaffirmed
ig, and a further test of the perturbation theory has been

g% acheived.

i Figure 17 on the following page is a schematic of the
Ef: wavevector coupling with p polarized incidence. At this
%?1 ooint it 1s necessary tc note that the resonance condition
i is not sharp. As can be seen in all the reflectance curves,
.ﬁg : there is a degree of broadening around the theoretical

‘g; . matching condition. The breaks in the constant frequency

circle are narrow enough in this geometry that the resonant

.;x;.‘ 77
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Figure 17. Schematic of Wavevector Coupling for
P Polarization Near Normal Incidence.

reflectance Jips overlap 3cross tihe bDreaks. It Lis

7L L3 zhis

overlap that gives rise to the reflectance dips in the p

7

As discussed earlier, these breaks in the constant
frequency cirlce are caused by the bigrating lattice and
occur at the intersections with the Brioullin zone boundary.
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polarized geometry at normal incidence. The exact curves
for the s polarized cases graphically indicate this overlap
characterisic. Referring to the schematic for the s
polarized case in Figure 16, as the angle of incidence is
increased from zero, the Brioullin zone boundary is scanned
from the center of the break in the constant frequency
circle (6 = 0° on Figures 12 and 14), where the tails of the
polaritons strongly overlap, to the edge of the break
(6 = 1.5° on Figures 12 and 14), where the resonance
condition is fully met. Thus, there is very low reflectance
at 6 = 0° but the minimum reflectance occurs at 8 = 1.5°.
Returning to the schematic in Figure 17 for p polarized
incidence, as thé angle of incidence is increased from zero,
the scan passes right through the center of the break in the
constant frequency circle and thus crosses the center of the
polariton tail overlap. Therefore there is a minimum
reflectance condition at 6 = 0° in Figures 13 and 15. Note
that the reflectance at 6 = 0° for s polarization (Figures
12 and 14) is tdentical to that at 6 = 0° for p polarization
(Figures 13 and 15): both correspond to exactly the same
excitation at the center of the break in the constant
Zraquency circle.

At ¢ = 0° azimuth with p polarization, the incident
electric field vector lies along the (1,0), (-1,0) axis of
the lattice. Consequently, there is no first order coupling

of the incident wave into a surface polariton with the
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3(0,1) and the 3}0,-1) reciprocal lattice vectors. A
corrected choice for the set of evanescent wave Rayleigh
coefficients in this case, then, is identical to that for
the & = 90°, s polarized case, i. e., A (1,0), A,(-1,0),
A,(2,0) and A (-2,0). Similarly, the corrected choice for
the set of coefficients for ¢ = 90° azimuth with p
polarization is identical to that for the ¢ = 0°, s
polarized case.

The preceding discussion has served to illustrate much
of the physics involved in the coupling mechanisms for cases
near normal incidence. However, as can be seen from the
reflectance curve comparisons and from Table 5, there is
very little improvement in the perturbation theory
predictions with the corrected choice of coefficients over
those with the canonical coefficients.

There are three basic assumptions in the foundation of
the perturbation theory. The first is the validity of the
Rayleigh hypothesis in the particular cases being
investigated. This assumption is also inherent in the exact
theory and is taken to be valid on the strength of the rapid
convergence of the exact calculations. The second
assumption is that a f£irst order truncation of the expansion
for exp(-tal] yields a valid approximation for the
expansion. As discussed in the previous chapter, this
assumption is taken to be valid for values of af <1, as

max
evidenced by the results for calculations at off-normal
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y incidence. The third assumption of the first order

- perturbation theory is that the most important evanescent
v waves in the Bloch sum for the surface polariton are the
four which are, on the flat surface, degenerate and whose
wa;evectors are connected by reciprocal lattice vectors;
i. e., those evanescent terms whose wavevectors are at the
intersection of two Brillouin zone boundaries. 1In the

'i bigrating profiles considered up to this point, the values
" for h2 and hll have been held at zero. The reason for the

poor performance of the perturbation theory near normal

e

incidence with such a surface profile, even when acmax is

less than one, is due to the fact that these terms are not

o ) y s

i

present in the surface profile. For these cases, the third

X premise of the perturbation theory is not valid, since the

coupling coefficients actually vanish among the four

PR

evanescent waves considered as important. Thus, there are

b other terms in the Bloch sum that are of the same order of

B magnitude as these four. 1In these cases, the gaps in the

Y dispersion curves, at the Brillouin zone boundaries at K =

N 31, 32, 33, and 84, and the breaks in the constant frequency
K circle are due to second order coupling of the four zone

. . 3 . . -, .
ccundary waves . Thus, zhe use or a1 Iirst order

b 8The breaks in the constant frequency circle, depicted
schematically in the wavevector coupling figures, are

; responsible for the shift of the reflectance minimum from
~ 8 = 0° to 8 = 1.5° in Figures 12 and 14.
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approximation for treating the resonant excitation of modes

S

near the gap at 31, az, 53, and 34 in such cases is

inappropriate. An increase in the hll cross term, then,

would allow first order coupling between these four terms.

¢ . In this manner, the magnitudes of the four evanescent waves '
considered as important in the perturbation theory, and

which are retained in all portions of the perturbation

g o

calculations, could be increased over those of all the other

terms in the Bloch wave sum. Furthermore, the gaps at al,

i g0

62, 33, and 54 could become first order effects. Thus, by

increasing the cross term, the basic premises of the

perturbation theory might once again be valid.

S Cases of surface profiles with the h,, cross term
increased from zero to 2.5 nm were investigated for
comparisons between exact and perturbation results. The hl }
? term was decreased to 6.0 nm to avoid making al ax ;
L than one, and calculations for s and p polarized incidence 1
|

greater
. with ¢ = 0° azimuth were executed. The reflectance curves
o for these calculations are presented in Figures 18 through
23 on the following six pages. Table 6 on the seventh page
following is a listing of the quantitative comparisons of
the perturbation and exact results for these cases.

A definite trend of improvement for the perturbation
o theory predictions can be noted in these results.

5 Particularly in a comparison of the results for the surface

profiles of hl = 4.5 nm with and without the cross term
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' TABLE 6
¥
PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

. RESULTS FOR CROSS TERM RUNS AT ¢ = 0° AZIMUTH

;a‘ h, h), Pol. % 2, A Ak Az Ak,

g 6.0nm 2.5nm s 0.057 37.6  .40% 1.6% 146.%  2.1%
ﬁ; 6.0nm 2.5nom p 0.113 276. 11.% .00% 104.% 31%
ﬁi 4.5nm 2.Snm s 0.235 29.7 2.7%  .92% 28.% 56%
@ 4.5nm 2.5nm p 0.265 192. 4.8%  .00%  42.%  .17%
ég 4.5nm 0.0nm s 0.245 28.9 4.3% 1.8% 31.% 1.9%
“ﬁ. 4.5nm 0.0nm p 0.254 179. 7.6% .00% 56.%  .03%

Y present. Though further investigations were not carried out
Ko in this area, one may surmise that the perturbation theory

would yield more accurate predictions for surface profiles

:5 in which the cross term was an increasingly important

'

$ factor.

ol

EE'::;: B. RESULTS AT NORMAL INCIDENCE VERSUS FREQUENCY

'&ﬂ The surface profile for which the reflectance versus

- angle of incidence near normal incidence were predicted most
Y reliably by the perturbation theory, i. e., hl = 4.5 nm,

;; 1, = 0 am, and h,, = 2.5 nm, was used to test the

_; perturbation theory predictions for reflectance and

%ﬁ - enhancement versus incident frequency. Equivalently, this
:$: is a scan of the reflectance and enhancement versus incident

photon energy, hw. - The reflectance curves for these
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Tl calculations are presented in Figures 24 and 25 on the
KR following two pages. Table 7 is a listing of the

quantitative comparisons of the perturbation and exact

Mgt

§{ theory results. The quantites used here for the reflectance
¥ |

o TABLE 7

‘::‘:Z: PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

;;:‘:.e: RESULTS VERSUS INCIDENT PHOTON ENERGY

";.'::\" hl hll Pol. %, o A% AE Ag AE P
;:";‘ 4.5nm 2.50m s 0.234  29.8  2.0%  .02%  31.%  .04%
51:3;! 4.5nm 2.5nm p 0.234 29.8 1.4%  .0l% 14.%  .0l%
i

lké and enhancement percentage differences are the same as those
'%d used in comparisons of the results versus angle of

%% incidence. The differences for the incident photon energies
i%g at which minimum reflectance and maximum enhancement occur
T! are expressed as simple percentage errors. The percentage
i&i error in the energies for the reflectance minima are denoted
ﬁﬁ by AE and for the enhancement peaks by AEg. From this table
;33 and from Figures 24 and 25, it can be seen that the

;%ﬁ perturbation theory results versus incident photon energy
;%? are appreciebly better than those versus angle of incidence
L for the normal incidence cases.

éé? The results versus incident photon energy are somewhat
Q{ surprising in that the dispersion curve gap does not appear.

;!:a. 90
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Since there are gaps in the dispersion curve at the
Brioullin zone boundaries of the grating lattice, i. e. at
k = nt/a, n = #1,+2,..., one would expect to see a pair of
dips in the reflectance at such a boundary rather than the
single dip in evidence in Figures 24 and 25. 1In the cases
investigated here, n = 2 and the gap concerned lies at the
second Brioullin zone boundary. The reason for this
apparent single dip in reflectance at the second Brioullin
zone boundary is that the energy gap in the cases
investigated is narrower than the width of the states on
either side of the gap; i. e., the overlap of the
neighboring states has completely bridged the gap.

C. CONVERGENCE OF EXACT THEORY CALCULATIONS

For the cases treated here, the maximum value of the
cross term was hll = 2.5 nm and this value is sufficiently
small that the use of a single term in equation (29a) was
effective in obtaining accurate results.

The truncation of the infinite series of equation (9) to
the value of N = 7 was all that was required for excellent
degrees of accuracyg. Convergence checks were performed
Zor the maximum corrugation strengths for =ach polarizat:ion.

Although the profile with hl = 6.0 nm and hll = 2.5 nm has a

9See section IV.B on convergence in off-normal
calculations for a detailed discussion of the truncations
implied here and their effect on accuracy of calculations.

93

A COAOSIGIAGO0 s SRR SOONORARONANN I
O SRR R DN R e R e b




0
:‘
2: slightly smaller corrugation strength than the hl = 7.4 nm,
Yyt
Y hll = 0 nm profile, convergence checks were conducted for
n the s and p polarizations of the profile with the non-zero
e
;? cross term to ensure validity of the calculations.
n’i
ﬁ; Table 8, below, is a summary of the differences in the
) reflectance minima for the convergence checks. As with the
A
b off-normal convergence checks, the differences are
X!
ol subscripted with the two N values used in the calculations.
k)
e TABLE 8
W
ﬁ. SUMMARY OF CONVERGENCE CHECK RESULTS FOR
i REFLECTANCES NEAR NORMAL INCIDENCE
;) hl(nm) hll(nm) Pol. A35'7 A!7'9 A’B,ll .
o 7.4 0.0 s 5.5x10° 2.1x10°% 2.5 x10°%°
oy -3 -5 -7
e 7.4 0.0 P 3.0 x 10 2.1 x 10 1.3 x 10
i 6.0 2.5 s 9.3 x 107> 4.8 x 107/ 3.4 x 10°°
6.0 2.5 p  2.4x10°° 1.6 x 107> 1.0 x 1077
B
&
W
K From the values listed in the table, it can be seen that the
"

use of the 98 x 98 matrix in exact calculations resulted in
}2 accuracies to at least one part in forty-five hundred and in
W one case to detter than one jart 1in 107,

Table 9, on the following page, is a summary of the
differences in enhancements for the convergence checks. As
r with the off-normal convergence checks, the accuracy figure 4
is obtained by normalizing the differences using the
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TABLE 9
3 SUMMARY OF CONVERGENCE CHECK RESULTS FOR
b g ENHANCEMENTS NEAR NORMAL INCIDENCE

! -

it b, hy, Pol. A&, 45,9 A4%9,11 11
nd

2 g.s%10”° 40.241

8.2x10 3 39.510

8.0x10° 3 37.517

7.7x1073 36.683

7.4nm 0.0nm s 1.105 9.5%10

-ﬁﬁ 7.4nm 0.0nm p 0.945 9.3x10 2

~h&f 6.0nm 2.5am s 1.170 9.7x10" 2

6.0nm 2.5am P 1.020 9.4x10 2

:\é k *

&>+ kot

enhancement value obtained in the N = 11 calculation. The

‘4
- P g
5 o

accuracies acheived here are at least to one part in three

T nundred fifty.
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VI. CONCLUSIONS AND RECOMMENDATIONS

The perturbation theory has been validated to yield
reliable results at off-normal incidence for corrugation
strengths of 0.024 and less. Its performance in predicting
bigrating absorptance efficiencies and enhancement
capabilities is limited by the quantity al nax which must be
less than one. Thus, Glass's modification to his
perturbation theory to include simultaneous excitation of
four resonant surface polaritons, rather than only two, has
not altered its performance in cases of off-normal
incidence. This may be verified by comparison of the
results contained in this work with those presented by Glass
[Ref. 21] for the two resonant surface polariton
perturbation theory.

Use of the perturbation theory at normal incidence will
yield results for reflectance and enhancement versus angle
of incidence to at least within an order of magnitude of the
exact theory values. The degree of accuracy acheived is
dependent upon the amount of cross coupling present for the
varticular surface profile being investigated. From the
results presented here, the perturbation theory appears to
perform best when the surface profile induces appreciable
degrees of coupling through cross terms. It is recommended

that further investigations be conducted in this area by
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0 performing comparison calculations using the perturbative
and nonperturbative analysis techniques with surface profile
functions of more evenly distributed values for the height
N coefficients. Based on the results obtained in this work,
it is believed that a marked improvement in the performance
. of the perturbation theory would be acheived for such

§ surface profiles. There has been considerable work using
sawtooth type diffraction grating profiles [Ref. 28]. A
bigrating with this type of surface profile may well be

o treated using the perturbation theory with much greater

i accuracy near normal incidence than has been found with the
o surface profiles dealt with here.

g | In frequency scans at normal incidence the perturbation
' . theory may be employed with considerably more confidence.
v Reflectance magnitudes may be relied upon to be within

.S approximately 5% of the exact theory values and the

; predictions for optimum coupling frequency can be taken as
Sy accurate to within approximately 2%. The enhancement

by magnitudes in such scans, however, may still only be taken
as accurate to within an order of magnitude.

o A final observation is made here that the reflectance

k3 value for a given surface profile at exactly normal

incidence on a bigrating is independent of the incident

polarization. Figures 26 and 27, on the following two

v e -
- T~

pages, illustrate this fact graphically for the surface

-
28

profile of h1 = 4.5 nm and hll = 2.5 nm. Note in Figure 26
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that the magnitude of the reflectance curves for s and p
polarization are identical at 6 = 0°. The curves for the
reflectance of the two incident polarizations in Figure 27
% are identical for all incident photon energies. The data
lﬁ from other calculations also show that the magnitudes of the ’
reflectance minima for exactly normal incidence are
numerically identical for s and p polarizations to the full

N accuracies of the exact calculations.
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APPENDIX A

DEFINITIONS OF PERTURBATION MATRIX ELEMENTS

Equation (21), which is stated as the final result of
the perturbation theory (subsection II.B.2), contains
several elements whose definitions are not given in the
text. The equations which define these terms are quoted
here (taken from Glass [Ref. 9]). The prime on the
summations indicate the specified sum is taken over all j
except the specular (j = 0) and resonant wave (j = 1,2,3,

and 4) terms.

4
Ca Yy
~2 _ 2 rr'r [ ~ 2
w, = w 1l - (1-6__) {(r-p) «a a ]

g d { (1+e)02 Kg pgl P pp rp

’ c c
+ Y Te-3) T(3-r) ay, [—LAE 4 a2 |, (A.1)
where

T Z a(r) ag(r) [a(r) ag(r) - Ki] . (A.2)

Lrp= hr[tur-p)crp-ij ?(r-j)C(j-p)(frjcjp—arjajp)ajj]' (A.3)

where
4
T« c 2
= _ L rr a
hr - 2 [ 2wcC ] ‘ (A.4)
e W
and
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C
fry = —Eii— . (A.5)

4
c=h [t Bn) o + ) (-8 Er-p) Eip) @
p-1

X
]

pp 2rp %po

3 .
O Y ———

- 2; f(r‘j) E(j) (frjcjo-arjajo) ajj]. (A.6)

4
Ny = oh [ B ey - ) (-6, Ber-p) E(R) ap, 8., g
p=1
- 2; E(r—j) f(j) (frjajo + arjbjo) ajj]' (A.7)
a 4
Op = - E%%[i T-r) cop +) (1-6,5) T(p-r) T(-p) apy a . ag,
p=1
- }; T(3-r) T(-3) (£54cq,-a qay)) ajj]. (A.8)
- %00 ~ .
R 2 T f-p) ey, a2,
p=1
+ Ej £3) -3 (£54 40 + agj) ajj]- (A.9)
a 4
Q= -2 [ Y Te) Te-p) agy A, b,
p=1
+ 2; Ca3) T-1 (£04 - Pyg) 359 ajj}' (A.10)
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4

R, = - ay, [t T-r) ag, - ) (1-6,.) Tep-r) T(=p) ayy ay, by
p=1
- 2; T3-r) Ta=3) (fy, agy + 3y, byq) ajj]. (A.11)
4
p=1
+ 2; T fe- (f50 = Pyo) 204 ajj]. (A.12)
4
p=1
: 201, 2
+) T T-1n { +b }a ] (A.13)
zj TS BEE
o, = n e Ty (e - o) - 2; Eir9) B 7y o]+ aa20)
where
211 -
?j = < [ch ej]. (A.15)
33
v - %00 [2 Ty E-1) 7y ¢ ] (A.16)
00 j j 03
%50 %9
W= - (A.17)
€00 Po
X = ag, }j T3y T-3) g ay, (A.18)
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APPENDIX B

ENHANCEMENT CURVES FOR CASES INVESTIGATED

This appendix is a collection of the curves for -
enhancement versus angle of incidence and versus incident
photon energy. The figures are are presented here in the
same order in which the corresponding reflectance curves

appear within the text of Chapters IV and V.
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