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ABSTRACT

A first order perturbation theory for treatment of the

diffraction of light with surface polariton resonances on a

bigrating has previously been developed and implemented. A

modification has since been developed to include

simultaneous resonant coupling to four surface polaritons.

This work implements the modification and compares the

results against exact theory.

Results for reflectance versus angle of incidence were

obtained for a sinusoidal bigrating of silver with a period

of 615.47 nm and an incident wavelength of 633.00 nm. The

perturbation theory is found to be valid at off-normal

incidence for grating height to period ratios of 0.024 and

less. For the geometry investigated, second order effects

strongly influence the reflectance versus incidence angle

near normal incidence, and the perturbation theory thus has

only limited usefulness. Results for reflectance versus

incident frequency at normal incidence, however, are

reliably predicted by the perturbation theory.
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I. INTRODUCTION

A. BACKGROUND

Interest in the enhanced absorption of light by a rough

metallic surface can be traced back to 1902 when Wood first

noted abrupt losses of approximately 90% in the intensity of

light reflected from a metallic grating for a narrow band of

frequencies at a given angle of incidence [Ref. 1:p. 661].

These reflectance 'dips' were unexplained by contemporary

theories and came to be known as Wood's anomalies. In his

paper to the Journal of the Optical Society of America in

1941 [Ref. 2], Fano first postulated the theory that the

loss in the energy of the beam during reflection was due to

the generation of what he termed "polarized quasi-stationary

waves" which propagated along the surface of the metal. In

1976 Maystre and Petit presented theoretical arguments that

total absorption of the incident electromagnetic energy was

possible with metallic gratings [Ref. 3]. Hutley and

Maystre presented experimental evidence of such total

absorption later that same year [Ref. 4].

Concurrent with the more recent work Ln he absorntion

of electromagnetic energy by metallic gratings, there has

been a great deal of interest and investigation of surface

electromagnetic enhancement phenomena such as surface

enhanced Raman scattering and enhanced second harmonic
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generation [Ref. 5:p. 1240; Ref. 6:pp. 366-367]. Electric

field enhancements on the order of 102 have been noted in

the literature [Ref. 5:pp. 1244-1247]. The increases in

field enhancement occur under the same conditions as the

increases in absorption for metallic gratings [Ref. 5:p.

1241].

This phenomenon of energy absorption and electromagnetic

field enhancement is due mainly to the coupling of the

incident electromagnetic waves into surface electromagnetic

waves in the electron plasma of the metal in the form of

surface plasmon polaritons propagating parallel to the

interface of the media [Ref. 1:p. 683; Ref. 6:pp. 362-368].

A surface electromagnetic wave is characterized by the

exponential decay of its associated fields in the directions

normal to the surface of the medium. Since the electron

plasma on the surface of a metal constitutes a polarizable

medium against the background of the lattice ions, an

electromagnetic wave incident on the surface will induce a

polarization in the medium and will in turn be modified by

1the polarization . In such a medium, this coupled

excitation mode is termed a surface plasmon polariton

[Ref. 7:p. 1]. Under certain conditions of grating surface

orofile and incident frequency and polarization geometry,

1The details of this mechanism and the role played by
the grating in causing resonance coupling are explained more
fully in the following chapter on theory.
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the coupling is resonant and a significant fraction of the

incident energy is transferred to surface plasmon

polaritons. This interpretation of the electromagnetic

interactions at the grating surface has much theoretical and

experimental support [Ref. 8:pp. 69-73].

Besides its obvious use in surface science in the study

of surface electromagnetic interactions, the capability of

the grating to couple an incident bulk light wave into a

surface wave has given rise to a host of practical

applications [Ref. 8:pp. 74-75]. Grating couplers can be

used to couple a light wave into a surface wave or a guided

wave in electro-optical devices. The dependence of the

resonant coupling condition on the frequency of the incident

light and on the periodicity of the grating corrugations

also make grating couplers useful elements in filters and

reflectors for solid state lasers and other integrated

optics applications. These couplers can couple a laser beam

into and out of an optical waveguide (as a guided wave)

[Ref. 1:pp. 701-702]. This capability could conceivably be

exploited for high efficiency coupling in optical

communications systems, some of which are presently under

development for use as military communications systems. The

enhancement effects availabie with gratings find application

in surface catalysis in electrochemistry, in advanced

dielectric breakdown due to surface roughness in high energy

lasers, and in the production of radiation from a

15
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non-relativistic charged particle beam interacting with a

surface grating [Ref. 8:pp. 72-73; Ref. 9:p. 3; Ref. 10;

Ref. 11].

Until the middle 1970's investigations in this area

focused almost exclusively on classical gratings, i.e.

gratings with periodic corrugations along a single

dimension. The most significant absorption and enhancement

effects have been observed using gratings of highly

conducting materials such as gold, silver and copper with

periods on the order of the incident wavelength and

corrugation depths on the order of one to fifty nanometers

[Ref. 8:pp. 88-89]. These effects are highly dependent on

the orientation of the incident electromagnetic field. For

total absorption in classical metallic gratings, it is

necessary for the plane of incidence to be perpendicular to

the grating corrugations and for the incident wave to be

linearly polarized with the magnetic field vector transverse

to the plane of incidence.

The dependence of the grating coupler efficiency upon

the polarization and orientation of the incident light can

theoretically be reduced through the use of bigratings, i.e.

gratings with periodic corrugations along both surface

dimensions [Ref 9:p. 21. Within the last decade there ftas

been a significant amount of theoretical work with

bigratings [Ref. 12:pp. 227, 275-276, 279]. In comparison

to that accomplished for classical gratings, experimental

16
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investigations of absorption and enhancement using

bigratings is as yet somewhat scarce.

Although the degree of coupling is generally very

sensitive to the angle of incidence, even in bigratings, the

restriction on the incident polarization would effectively

be removed. The use of bigratings, then, would allow many

applications to be pursued in which the requirement for

linear polarization would be impractical, such as the

absorption and storage of sunlight as an energy source

[Ref. 9:p. 2].

B. PROBLEM STATEMENT

Analysis of electromagnetic interactions at the

interface of a grating with an air or vacuum medium is

extremely complicated due to the geometry of the grating.

The analysis is performed for the purpose of investigating

surface excitations and for designing gratings. The

approaches taken to perform the analysis nonperturbatively

have taken two basic forms, differential and integral

[Ref. 13:pp. 15-40]. Both use the complex dielectric

function as a frequency dependent quantity allowing

extension of the theory to any dielectric medium. The

differential approaches numerically integrate Maxwells

equations across the grating surface boundary. The integral

approaches use the Rayleigh method or Green's theorem.

17



The one common factor in all of these approaches is

that, though they give results which accurately conform to

the observed experimental results, they are extremely

lengthy and can only be accomplished through the use of

considerable amounts of computer resources [Ref. 9:pp. 3-4].

The nonperturbative analysis of the bigrating is even more

complex than for the classical grating due to the added

dimension of the boundary conditions. For this reason

several schemes have been proposed for perturbative analysis

of the interface problem for a classical grating to provide

more readily realizable results. Among these are the

methods developed by KrUger and Kretschmann [Ref. 143, Toigo

et at. [Ref. 15)i Mills [Ref. 16], Elson and Sung [Ref. 173,

and Glass, Weber and Mills [Ref. 18].

The perturbative technique advanced by Glass, Weber and

Mills used an approximation to first order in the surface

profile amplitude. The perturbation results for the

dispersion curve were compared favorably to that obtained

using an integral method of nonperturbative analysis

employed by Toigo et at. Glass, Maradudin and Celli

extended the nonperturbative analysis method for application

to bigratings [Ref. 51. Glass and Maradudin [Ref. 191
compared results from this nonperturbative technique to the

experimental results of Inagaki et at. [Ref. 20] for total

absorption on a bigrating with favorable conclusions. Glass

[Ref. 21] modified and extended the perturbation technique

18
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of Glass, Weber and Mills for use with a bigrating, allowing

for arbitrary polarization, plane of incidence, and

simultaneous stimulation of two surface polaritons

propagating in non-collinear directions. The results from

this perturbation theory for reflectance and enhancment

versus angle of incidence were compared with results from

the nonperturbative analysis technique of Glass, Maradudin,

and Celli for bigratings. The results compared favorably

within the limits of the approximations upon which the

2theory was based

Glass further modified his perturbation technique to

allow for the simultaneous excitation of four surface

polaritons and to increase its facility in treating cases of

normal incidence on a bigrating [Ref. 9]. The

generalization also allows for determination of the complex

dispersion relation for surface polaritons in cases where

there may be wavevectors at the intersection of two

Brillouin zone boundaries. The implementation of the latest

perturbation theory advanced by Glass and comparison with

results from the nonperturbative analysis technique of

Glass, Maradudin and Celli is the present concern.

2The approximations and their limits are discussed in
more detail in the following chapter on theory.
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II. THEORY

A. MECHANISMS

The conduction electrons near the surface of a good

conductor, such as silver or gold, may be considered as a

plasma of nearly free electrons [Ref. 22:pp. 160-161].

Wave-like longitudinal oscillations in the charge density of

the electron gas exist as normal modes of the classical

system or as elementary excitations in the quantum

mechanical system [Ref. 22:pp. 260-262; Ref. 23:pp.

200-202]. Such quanta, consisting of a coupled longitudinal

charge oscillation and electric wave, are termed bulk

plasmons, or simply plasmons. When localized to a surface,

as an evanescent wave, the charge density oscillation, with

its accompanying macroscopic polarization and

electromagnetic wave, has a component transverse to the

direction of propagation (and hence, transverse to the

surface). Such a surface electromagnetic wave coupled to

collective oscillations of the conduction electrons is

called a surface plasmon polariton. Henceforth, the use of

the term surface poiariton will be understood to mean

surface plasmon polariton.

Surface electromagnetic waves may be stimulated by

incident electromagnetic radiation in the form of a bulk

light wave only in the presence of a grating. Consideration

20



here is restricted to the case of a linearly polarized

incident light wave. The periodicity of the grating surface

profile defines a reciprocal lattice [Ref. 21:p 2648]. As

a consequence of the Bloch theorem, a grating reciprocal

lattice vector may add to the component of the incident

wavevector parallel to the surface to equal the wavevector

of the evanescent wave at a given frequency (Ref. 22:pp.

163-164; Ref. 24:pp. 2-26; Ref. 5:p. 1241]. The resonance

condition is acheived when the frequency of the evanescent

wave and that of the incident light wave are equal. The

amount of energy transferred to the surface polariton

through this coupling can reach significant proportions.

B. ANALYTICAL METHODS

Since the wavelength of the surface polariton in the

optical region is much greater than the Fermi wavelength for

the materials of interest, the surface waves may be treated

by classical, macroscopic, electromagnetic theory.

The term exact theory will be used henceforth in lieu of

the term nonperturbative analysis. The development and the

equations used in both the exact theory and in the

perturbation theory are taken directly from the paper by

,lass, Maradudin, and Celli [Ref. 3] and, to a greater

extent, from the paper [Ref. 21] and the technical report

[Ref. 9] by Glass. The exact theory is well summarized in

Maradudin's review article [Ref. 25:pp. 423-469]. Although

21



the developments in both of the following subsections

(II.B.1. and II.B.2.) should be taken as summaries of the

analyses given in these papers, the references will not be

explicitly cited within the subsections to avoid excessive

repetition.

The overwhelming majority of the literature in this area

employs the Gaussian, or CGS, system of units. This

convention will be adhered to for uniformity and comparison.

1. Exact Theory

A schematic representation of the physical geometry

is shown in Figure 1. The coordinate system, shown elevated

in the figure for clarity, is located with the x3 = 0

plane as the average position of the surface in the vertical

direction. The x1 and x2 axes are coincident with the

orthogonal dimensions of periodicity of the bigrating

surface. The surface profile is defined by

x =(Xll) where x =x x +x2 2

The region above the bigrating, x3 > C(XIl), is a vacuum and

the region x3 < C(Xll) is the dielectric characterized by

the frequency dependent complex dielectric function

E() - R() + t I(w).

The oeriodicity of the bigrating is described by the lattice

vectors a 1 a1 x1  and a2 = a2 x2 where a1 and a2 are

the periods of the grating corrugations along each of the

two surface dimensions. The surface profile function is

periodic in two directions and one may therefore write

22



Figure 1. Schematic of Bigrating
and Incidence Geometry.
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C(Xll) - C(Xll + n a, + m a 2 ),

where n and m are integers. The restriction to the specific

case of the square bigrating, where a1 = a2 = a, will be

imposed later.

Light of angular frequency w is incident on the

bigrating from the vacuum with wavevector It at an angle 0

from the normal. The plane of incidence is rotated from the

axis x1 by the azimuthal angle 0 and contains the unit

normal x3. The projection of the incident wavevector It onto

the x3 = 0 plane is given by

[sine coso xl + sin8 sinO x2], (1)

since Pi - C"

It is convenient at this point to define some terms

for use in describing the polarization of the incident

electromagnetic wave, in referring to specific regions in

the area of the grating surface, and in characterizing the

grating surface. The case of the linearly polarized

incident wave with the electric field vector perpendicular

or transverse to the plane of incidence (TE) will be denoted

by the term s polarized. The case of the linearly polarized

incident wave with the magnetic field vector transverse to

:-he plane of incidence (TM) will be denoted by the term

p polarized. The ratio of the maximum height of the surface

profile above the x3 - 0 plane, Cmax I to the period of

the grating corrugations, a, (in either direction for the

24
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square bigrating) is defined as the corrugation strength of

the grating. The region between the maximum and minimum

heights of the surface profile, min x3  Cmax where

Cm max ' is termed the selvedge region.

The cornerstone of the analysis is the use of the

Rayleigh hypothesis. The assumption here is that

expressions for the fields that are valid above the selvedge

region in the vacuum and those that are valid below the

selvedge region in the dielectric medium may be extended

into the surface itself. This assumption places a

limitation on the validity of the analysis and this

limitation applies to the perturbative analysis as well. If

the corrugation strength becomes large enough, field

components backscattered from the sides of the corrugations

down into the corrugation troughs become significant and the

analysis breaks down. As noted by Glass, Maradudin and

Celli, however, the hypothesis has been shown to be valid

outside its normal limits for periodic surface profiles

which are analytic.

In the Rayleigh method, an exact expression is

written for the electric field above the selvedge region

'which satisfies Maxwell's equations in the vacuum and

satis:ies the Bloch condition for the Joubly periodic

geometry of the bigrating. This expression is written as a

Rayleigh expansion in terms of the incident and scattered

fields. Through the use of the vectorial equivalent of the
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Kirchoff Integral for diffraction, coupled with the

extinction theorem, the expression for the field in the

dielectric medium below the selvedge region is eliminated by

rewriting it in terms of that above the selvedge region.

This halves the number of unknowns in the problem and is

termed the reduced Rayleigh method. The boundary conditions

associated with Maxwell's equations are then applied at the

interface using the expression for the fields above the

selvedge region, which is an implicit application of the

Rayleigh hypothesis. The results are two sets of linear

algebraic equations, of infinite extent, with the Rayleigh

coefficients as the unknowns. The Rayleigh coefficients

determine the magnitudes of the scattered field components

for both the diffracted waves and the evanescent waves.

To solve these equations numerically, the matrices

must of course be truncated to some degree. The procedure

in the calculations is to truncate the equations to a given

finite dimension and solve them numerically. The equations

are then truncated to some larger finite dimension and the

numerical solution is repeated. Iterations of this

procedure are carried out until convergence of results is

either confirmed, in which case the validity of the Rayleigh

hnypothesis for -he particuiar zase being investigated is

taken to be established, or until divergence becomes

apparent. In the latter instance some other analysis

technique must be attempted in order to investigate the case
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of interest. For cases where convergence is apparent, a

suitable dimension for the matrix equations is chosen

dependent upon the degree of accuracy required.

The quantitative analysis is initiated by writing

the electric field in the vacuum above the selvedge region

in the form

- (WI, 1 ) expt 11  Xl - tao(w,k11 ) X3]

+ ? 9s(W,;) exp[tI5 1II + tao(w,K ) x 3 ]. (2)

The summation in the second term is over all the translation

vectors, , of the reciprocal to the lattice defined by the

geometry of the square bigrating. The reciprocal lattice

vector, then, can be obtained with the expression

a (1 + m 2x2 ) for m 0 0, ±1, k2,... (3)

In equation (2), the wavevectors for the incident wave, I,

and for each of the scattered waves, , are used in the

forms given by

- II - aco(w,kl), (4a)

and

-, + ao(wK), (4b)

where

The quantity ao(w,K5) is then given by the expression

-W2/ A" for KA< w2/c2, (5a)

c- {j, ) ( :2/c2]II, for KA> W2 /C 2 , (5b)

ao (2,K7
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and the quantity ao(o,kll) may be obtained by evaluating

equation (5) for the case where - 0 and "

ao(w,kl) - ao(w, ) case (6)

The quantities 9i and 9s in equation (2) denote the vector

amplitudes of the incident and scattered fields,

respectively. The vector amplitude of the incident field is

given by

) = 1  + x 3 ao( ,k) B3 + x k11J B1, (7)

where B and B determine the magnitudes of the p and s

components of the incident field, respectively. The vector

amplitude of the scattered field is given by

(W , = I - X 3 ao(wK] All (c,g)

+ x3 ' K Al (,& , (8)

where the Al and A, determine the magnitudes of the p and s

components of the scattered field, respectively. These are

the Rayleigh coefficients which are the unknowns in the

problem. Each term in the summation in equation (2), t. e.

each scattered field, represents either a diffracted beam,

when K- < . or an evanescent wave, when K- >

Glass, Maradudin and Celli are quite detailed in

their method of quantitative elimination of the expression

for the field within the dielectric medium and derivation of

the final set of linear equations for the Rayleigh
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coefficients. The vectorial Kirchoff integral provides an

effective boundary condition for the field in the vacuum.

As an application of the Rayleigh hypothesis, the expression

for the field above the selvedge region, equation (2), is

then used in the boundary condition equation.

At this point Fourier expansiokns in terms of the

surface profile are introduced with the intention of

rewriting the vector integral as a set of linear equations.

One of these expansions is critical to the development of

the perturbation theory and is therefore stated here:

exp[-ta (Xll) 0 (al) exp[t ' l1 . (9)

In this expansion, J1 is defined by the integral expression

S(a) a dx dx 2 exp[-t(! l + a,(,l) }] (10)

where a c is the area of a unit cell of the bigrating

surface. The quantity a inside the dielectric must be

distinguished from the quantity ao in the vacuum, due to the

complex dielectric function, e(w), of the medium, and is

given by

a (w,Ki!) - E(W) W2 _K .ll

Glass, Maradudin and Celli use the Fourier

expansions to write the Kirchoff integral equation as a

doubly infinite set of simultaneous, linear, inhomogeneous

equations for A11 (,) and AI(w,!). Using the

abbreviations of All( ) for All(,!) and AI ( ) for AI (w, ) ,
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the linear equations are given by

[aW, A1 () + b&, .

-- [aC B1 + b~0 B.jL (12a)

and

.t aMt i, [cM, All~' - aM, A I'

[e B,, aj0 B1 ] , (12b)

with the following definitions of terms:

ai S a~,- aO(6i,Kj,) ,(13a)

135m S , + ao(w,kil) p(13b)

ajZ * K; X j (13c)

bW *j KC (13d)

b + KC Kjj, (13e)

and

A KK k1

-a(w,K ) ao(w,k,,)

2. Perturbation Theory

The essence of the oerturbation tZheory is to reduce

all expressions to first order results in terms of the

surface profile C. This process is begun by expanding the

integral $~ to first order in C yielding the result
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11(a Z 6 ,o  - t a-() (14)

where
() - dx 2 I(xll) exp -t ' X Xl. (15)

05 a f ~~ 1  2 11'c

The use of the Kronecker delta function is introduced into

the notation in equation (14). With the assumption that the

dimensionless parameter aC is small, the expression for -

given by equation (14) may be used in the equations (12) for

the Rayleigh coefficients. With the further assumption that

C(O) - 0, the resulting first order approximations for All

and A, are given by

Al()= C !- ) )Cj GAII(1') - aiZ,A_±( ')]

c [ )][e- B,, - aj 0 B], (16a

and

,( taW a , , ,  b..,A (

_ 6 ,o - ()
a [C [a? 0 B11 + b&o B1 ]. (16b)

The assumption is then made that the Rayleigh

coefficients of the specularly diffracted beam, A11(0) and

A, O), are of a magnitude sucn that the amplitude of the

specular beam is much greater than any other diffracted

beam. The second assumption made here is that there is a

possibility of up to four evanescent waves in a condition of
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resonance corresponding to four resonantly stimulated

surface polaritons. The amplitudes of a resonant evanescent

wave will be much greater than that of any of the

nonresonant terms. The wavevector for such an evanescent

wave is given by

9 " -l + r = isp (c) for r - 1,2,3,4 • (17)r rssp

where p (w) is the wavevector of the resonantly excited

surface polariton of frequency w, and where w is equal to

the frequency of the incident light.

Since treatment is limited to only small deviations

from the flat surface 3, it is beneficial to discuss the

limiting case of C(Xll) = 0 to gain some insights to the

physical situation. In the flat surface limit, which is

zeroth order in the surface profile, the dispersion relation

for the surface polariton is given by

a( ,Ksp) + a(w) ao(w,Ksp) - 0. (18)

The dielectric medium is assumed to be isotropic so that to

zeroth order in C, the dispersion relation depends only on

the magnitude of the surface polariton wavevector, K sp. For

a given frequency, then, Ksp will describe a circle in

k-space on the k3 - 0 plane. Figure 2 is a schematic of

S situation with the solid circle representing 3 ZlrC~ e

of radius K sp. The wavevector, , of a resonantly
r

3This limitation has been imposed with the use of the
Rayleigh hypothesis. See pages 25 and 26 in the exact
theory section for a dicussion of this limitation.
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excited evanescent wave will have its tip at this circle and

will satisfy the dispersion relation given by

a(w,K r ) + e(w) ao(w,Kr ) - 0. (19)

The present formulation allows for the possibility of four

different reciprocal lattice vectors (Cl through i4 in

Figure 2) coupling to I1 with the resulting evanescent waves

satisfying equation (19). The particular situation depicted

in Figure 2 shows a case where only one of the resulting

evanescent waves, 9 , satisfies the resonance condition.
4

The limitation of this schematic representation is that the

reciprocal lattice vectors for the bigrating exist only if

the surface is not flat, in which case the constant

frequency circle for Ksp is distorted to some extent by the

bigrating corrugations.

Since surface polaritons on a flat surface are p

polarized, only the All coefficients (not the A1

coefficients) of the resonant evanescent waves need be

considered as large with respect to the nonresonant terms.

Thus the assumption is that the Rayleigh coefficients A00 ),

AI (O), AII(5 1 ), A1 ( 2), Ajj( 3 ), and A11(i4 ), may be larger

than all others and should therefore be treated differently.

-his treatment must allow for the possibility that there may

be no resonantly excited evanescent waves and the

corresponding Rayleigh coefficients would then be of the

same magnitude for the specially treated terms as for all

the others.
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Figure 2. Schematic of Wavevector Coupling.

Havi.ng reviewed the basic -remise of the

perturbation theory, a descriptive summary of the rest of

the development advanced by Glass will now be employed. A

statement of the final results will be given at the end of

this summary.
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A further abbreviation is introduced into the

notation at this point and mention is made of it here since

it is used in the statement of the final results. In this

abbreviation, is replaced everywhere with its subscript

alone, so that a 1 2 is now written as a12  A11(13 ) as

A,,(3 ), and so forth.

Equation (16) is used to write an explicit

expression for each of the six important terms. Each

important term is thus written in terms of the other five

and also of a sum over the nonresonant terms. Each given

nonresonant coefficient can in turn be expressed, by

equation (16), in terms of the six important coefficients

and all the other nonresonant coefficients, The latter are

dropped: each given nonresonant coefficient is expressed

only in terms of the six important coefficients. These

equations for the nonresonant coefficients are then

substituted into the expressions for the resonant and

specular beam coefficients.

Within the development of the perturbation theory,

an equation arises for the frequency of the surface

polariton to zeroth order in C. This expression, which is

the solution of equation (18), will be useful Ln later

discussions and is stated here as

2 [ e c2 K (20)
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The final result is a set of six linear algebraic

equations for the resonant and specular beam coefficients in

terms of the amplitude coefficients, B 1 and B1,. of the

incident beam. These equations are given in matrix form as

2--2LLMN(12 171)12 L 13L 14 1N 1 A 11(1)

2 -2LMNL 21  (Cl -( ) L2 24 M2 N2 A 11(2)

L L (f2 2- 2 L3  3 3
31323) 3433 11(3

4L42L 43 C2 4). N 4  A11(4)

01 0 03 04 (1+P) Q A11(0)3 2 3 4

R1 R R S (1-1T) A(0

(U 1-M 1)B 11  - N 1BI

(U 2-M 2)BI, - N2 1B

(U 3-M 3)BI, - N3 B_

(U 4-M 4)B 11  - N 4B 1  .(21)

(W+V-P)B - QB1

(X-S)B11 - (TMa00

P0

It should be noted that the quantity n2, defined by

12 W a~ca. (22)

4s me-eiy the incident wave frequency expressed as a

dimensionless quantity. Also note that the quantity 12 is

defined by

--- - (23)
r 27rc/a
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where wr is just the surface polariton frequency for the

flat surface, wr from equation (20), renormalized by the

nonresonant terms, which were kept in the theory. An

explicit definition for w is given in equation A.1 of'L r

Appendix A. The other terms appearing here are defined

explicitly in Appendix A taken from the technical report by

Glass.

The procedure of calculation, then, is to solve this

set of six equations numerically for the resonant and

specular beam coefficients. These results are then used in

the equations for the nonresonant coefficients to obtain

their values.
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III. NUMERICAL IMPLEMENTATION

The numerical implementations here are, for purposes of

comparison, exactly analogous to those performed by Glass

[Ref. 21] in instituting the perturbation theory with

simultaneous excitation of two resonant surface polaritons.

In his quantitative evaluations employing the exact theory,

Glass parallels those conducted by Glass, Maradudin and

Celli [Ref. 5]. The exact method here duplicates that

employed by Glass but for a somewhat different geometry.

The implementation of the four-polariton perturbation theory

will parallel the method used by Glass in the implementation

of his original perturbation theory.

A. QUANTITIES AND GEOMETRY INVESTIGATED

In the numerical investigation of the theory, normalized

values are chosen for the incident amplitude coefficients,

BI and B In the cases investigated, either total p

polarization, = 1 and = 0, or total s polarization,

BII , 0 and B - 1, was chosen for the incident beam. The

resulting Rayleigh coefficients, then, wiU' be some frac:icn

of unity indicating the magnitudes of the p and s components

of the evanescent waves and the diffracted beams relative to

the magnitude of the incident beam.
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The surface profile used for the investigations

duplicates the one employed by Glass [Ref. 21]. It

describes a square sinusoidal bigrating with a profile

symmetric along x1 and x2 with periodicity a. The bigrating

surface is depicted schematically in Figure 1 in Chapter II.

The surface profile function is given by

Ck'XII ) - h, cosj xI  + cos - x 2

+ h2 cosI a X1) + cos I a 2 ]}

The reciprocal lattice vectors for this square bigrating are

given by

I 2 X + M2J' 1,m = 0,±,±2 (25)-Lm a 1 1 2

Thus one may refer to i(l,m) as the (1,m) reciprocal lattice

vector. Similarly, a particular scattered beam,

corresponding to the (1,m) lattice vector, may be referred

to as the (1,m) diffracted beam or the (1,m) evanescent

wave. With this reference scheme, the wavevector of a

scattered beam projected onto the surface is written as

m) + ( m) a + 2a + 2 X2(26)

' nce numericai resul-s for the Rayleigf coefficien-s are

obtained, equation (8) is used to find the amplitude of the

scattered field. The amplitude of the incident field is

obtained with equation (7) using the known amplitude

coefficients BII and B±. The reflectance of the (1,m)
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diffracted beam [Ref. 21:p. 2653] is then given by

jg(L(~m~ m= 12aw Im (27a)

with the total reflectance given by the expression

= (27b)

where the primes on the indices indicate summations are

carried out only for t' and m' such that K2 (t',m') < w2/c

thereby excluding evanescent wave terms. Using the

amplitudes of the scattered and incident fields, the

amplitude for the total field may be obtained by evaluating

equation (2). The electric field enhancement is defined

[Ref. 21:p. 2653] as

82 = (28)

3 max

where C + indicates a point just above the selvedge region.
max

B. EXACT THEORY IMPLEMENTATION

The method of exact theory implementation described here

-s a summary of the procedure outlined by Glass Ref. 2!;pp.

2653-2654j. This reference will not be cited further within

this section.

In determining the Rayleigh coefficient values using the

exact analysis, the integral f given in equation (10) must
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be evaluated for all possible reciprocal lattice vectors.

There is, in general, no analytic expression for s and

numerical calculations thus require performance of a fast

Fourier transform (FFT) for each possible . The surface

profile function term with the height coefficient hll, the

cross term, would require the use of a two dimensional

Fourier transform in direct application. Expansion of the

exponential of the cross term may be-used to circumvent the

use of a two dimensional Fourier transform. With this

method the expression for the integral s for the cross term

case may be rewritten as

( I -- iah ,(n) (alGl) t(n 2), (29a)

n-0O !

where

G1 x 1 + G2 x2 , (29b)

and •T +a 1 2
-a/2

+ exp[I- hi 1Cos !ajx- +h 2 Cos~~Jjd. (29c)

This integral can then be evaluated using a one dimensional

FFT and a numerical result may be obtained for Pfaj ) by

truncating the summation in equation (29a) to as many terms

as is required to acheive the desired degree of accuracy.

Using this numerical result for $(aj), equation (9) is

then solved as a set of linear equations in matrix form in
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order to determine the values for the Rayleigh coefficients.

To do this, as previously indicated, the resulting doubly

infinite matrix equation must be truncated to some degree.

The dimensions of the matrix determine the reciprocal

lattice vectors that are retained in the numerical

calculation. For truncation to a matrix of dimensions

2 2
2N x 2N , the lattice vectors (L,m) retained in the

calculation are those where t and n satisfy the condition
N-i1 N-i (30
N 2 1 ' + 2 1 (30)

Thus the diffracted beams and evanescent waves corresponding

to reciprocal lattice vectors with either index outside

these limits is ignored in determination of numerical

results. For the limitation of both t and m to the range

from -2 to +2, the resulting N is 5 and the matrix to be

solved is then of 50 x 50 dimension; for the range -3 to +3,

N - 7 and the matrix is 98 x 98; for -4 to +4, N - 9 with a

162 x 162 matrix to be solved. Should accuracy require

extension of the limits for L and m to -5 to +5, N is then

ii and the matrix dimensions are 242 x 242.

The elements of the matrix are complex, as are the

required FFT's. Using the full (double) precision available

w4tfn a 32 bit machine 4 is desirable to obtain the necessary

accuracy, particularly in the larger matrix calculations.

4The machine employed here was an IBM 3033 system and a
32 point mesh was used in the FFT's for the exact
calculations.
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With such requirements in computational resources for

numerical determinations based on the exact analysis, the

need for reliable perturbation schemes is clearly evident.

The Fortran code employed in calculations here is the

same as that used by Glass in his exact calculations for

comparison with the two-polariton perturbation theory.

C. PERTURBATION THEORY IMPLEMENTATION

Since the integral .(alZ) has been eliminated from the

calculations in the perturbative analysis, no FFT's need be

performed. The quantity j( ), defined by equation (15), is

all that is required and, for the surface profile defined by

equation (24), is written [Ref. 21:p.2654] as

1 1 [h 1 
6 1m1, + h 2 61.1,2]

+1 [ h1t, + h2]2 M'0 1 , 2 , alt ,21

+ 1 (31)

4 11 6111,1 {.{,1

The set of linear equations defined by the 6 x 6 matrix

equation (21) are then solved to determine the values for

the Rayleigh coefficients.

The numerical calculations here still involve complex

quantities and full (double) precision was also employed.

The calculations, however, by excluding FFT's and reducing

the linear equation solution to a 6 x 6 problem, require
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computational resources that are orders of magnitude less

than the exact calculation requirements.

The Fortran code employed for the perturbation

calculations is a modification to that used by Glass for the

two polariton perturbation code. Necessary changes were

carried out and the results tested against exact results for

identical cases in order to correct program errors.

D. SELECTION OF PARAMETERS

To conform with the experimental work of Inagaki et at.

[Ref. 20] and with the theoretical work of Glass and

Maradudin [Ref. 19] and that of Glass [Ref. 21], the

wavelength of the incident light was chosen as 633.0 nm. In

order to test the possibility of four-fold resonance

advanced by Glass [Ref. 9:p. 13], it was desirable to choose

the geometry so as to have resonant absorption at normal

incidence. In this manner, resonance effects would be

dramatic, t. e., approximately total absorption of light at

normal incidence, and any qualitative trends in resonance

conditions would be readily apparent.

For normal incidence, the projection of the incident

wavevector .s zero and the resonance condition, from

equation (17), is then

r = 0 + (c). (32)~r sp

Choosing the (1,0) lattice point for convenience, the
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resulting reciprocal lattice vector from equation (25) is

given by

Z!(1,0) 2 X (33)

Combining these, the resulting resonance condition is

SK 2 = G2 (1,0) -[2.]2 (34)

sp r "

Using a zeroth order approximation in C, equation (20) may

be employed with the result from equation (34) yielding

2= [ e ] (35)

Assuming that the frequency of the incident light equals the

frequency of the surface polariton at Ksp - 2w/a, and

assuming that this surface polariton frequency is

approximately equal to the flat surface polariton frequency,

then Wr can be replaced by o in equation (35). Then one may

write

= [.]2 1 1 (36)

Substituting the wavelength of the incident light in vacuum,

No, into this equation, the final result is obtained for the

approximate periodicity for resonance at normal incidence as

a - X. a 6 1%A (37)

As in the work of Inagaki et at., Glass and Maradudin, and

Glass, the material chosen for the bigrating was silver.

Interpolating from the data measured by Johnson and Christy

[Ref. 26] for Ag, the value of the dielectric function at
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the incident wavelength of 633.0 nm is e - - 18.3 + t 0.479.

Taking the real part of this value the resulting value for a

from equation (37) is 615.47 nm.

Although the projection of the incident wavevector onto

the surface is zero for the case of normal incidence, some

finite non-zero value must be used for ItIII in the numerical

calculations in order to define the unit vectors in equation

(17). In executing a computational run, the value for k 1 is

not defined as an explicit input parameter but is derived

from the specification of the angle of incidence, 8. For

this reason 0 was specified as 10-5 degrees for

computational runs in cases of normal incidence.

Taking the values of a - 614.47 nm and X. - 633.00 rim,

numerical calculations of exact theory were performed for p

polarized light at normal incidence and zero azimuth with

the surface profile height coefficients h2 and h11 as zero.

This case was repeated for several choices of h in order to

establish an optimum value for maximum absorptance at normal

incidence. This resulted in the choice for the optimum

coupling value of h as 7.4 nm. The results of these

calculations are not formally presented here as their sole

ournose was to establish this optimum coupling :aiue.
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IV. VALIDATION AT OFF-NORMAL INCIDENCE

Within the literature there has been considerable use of

two types of scans in the numerical search for the resonance

condition of a particular case [Ref. 27]. In the first

method the reflectance is scanned for a resonance dip by

variation of the angle of incidence, 0. Referring to Figure

1 in subsection B.1 of Chapter II, it is apparent that this

is an implicit variation of the value of k As the value

of k1 is changed, the resonant coupling condition is

approached, met, and then passed and the reflectance is

scanned through the resonance dip. A second method is to

vary the incident frequency. Referring to Figure 2 in

subsection B.2 of Chapter II, this has the effect of

changing the radius of the constant frequency circle at the

tip of the resonant surface polariton. Here, I is held

fixed and the resonant coupling condition changes, thereby

scanning the reflectance as a function of frequency. For

cases of off-normal incidence, only scans versus the angle

of incidence have been executed.

A'long with he scans for reflec:ance, ne concomitant

enhancement peaks were also obtained. These results are not

5See equation (1) in subsection II.B.1.
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central to the present discussions and are therefore

relegated to Appendix B as Figures 28 through 46.

A. RESULTS AT OFF-NORMAL INCIDENCE

As discussed in section D of Chapter III, the values of

X - 633.00 nm and a = 615.47 nrm were chosen for the

incident wavelength and bigrating period and then the

optimum coupling value of 7.4 nm for h1 was established at

normal incidence. A value of 5 degrees was arbitrarily

chosen for the azimuthal angle, A, and scans of reflectance

versus the angle of incidence, 0, were carried out for

several values of hI . The primary purpose in these

calculations was to establish the limits of validity for the

perturbation theory in cases of off-normal incidence. The

values of h used were multiplicative factors of the

baseline value: one-third, 2.5 nm; one-half, 3.7 rnm; unity,

7.4 nm; and twice, 14.8 rim. For all of these calculations,

the values of h2 and h11 were held at zero. From equation

(24), the resulting values for rmax may be calculated and
mag 6

the corresponding corrugation strengths are 0.008, 0.012,

0.024, and 0.048, respectively. The incident light was

spec'fied as s poiarized for all cases, with the h, = 7.4 nm

case repeated using p polarization. The results of the

scans for reflectance for each of these cases are

6See equations (34) and (36) in section III.D.
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graphically depicted in Figures 3 through 7 on the following

five pages. Within these figures, as with all of the

figures to be presented, the results for exact theory

calculations are shown as a dashed curve and the results for

perturbation calculations are shown as a solid curve.

As can be seen from a comparison of the figures, the

perturbation theory is the most reliable at the weakest

corrugation. Minimum reflectance for this case is

approximately 0.8. Fair agreement is held between exact and

perturbation results for increases in h1 to 3.7 nm and

7.4 nm as shown in Figures 4 , 5 and 7. In the latter case,

the reflectance minimum falls to approximately 0.13 for s

polarization. With the increase in h1 to 14.8 nm, the

pertubation theory breaks down and is unable to predict the

results, as can be seen in Figure 6.

Some definitions for use in quantitative comparison of

exact theory and perturbation theory results need to be

established at this point. The departures which are to be

quantitatively characterized are the difference in the

magnitude of the reflectance dip and the difference in the 8

location of the dip. The differences should be normalized

with an appropriate quantity so that they may be considered

as a type of percentage error.

For the reflectance minimum, the difference in the

maximum absorptances for exact and perturbation results will

be used. This quantity will then be normalized with the
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maximum absorptance of the exact theory results. To avoid

introduction of another quantity, this error quantity will

be defined in terms of reflectance minima. The reflectance

minimum for the exact theory results is denoted as 9. and

for the perturbation results as g. With this notation, the

difference as a percentage, Ag, is defined as

I(1go) - Igo - 1

1 - go - X 100% 100%. (38)

Characterization of the difference in the 8 location of

the reflectance minima will be accomplished through the use

of the differences in the magnitudes of the corresponding

wavevectors. From equations (17) and (26), it can be
sp
readily seen that this is identical to the differences in

the magnitudes of the corresponding I wavevectors. This

difference, AKsp. will be normalized with the calculated

value of the surface polariton wavevector magnitude. This

value of Ksp may be taken directly from equation (34) as

2w/a. It can be readily determined from equation (1) for

that

AKsp - k1 o - kio - (sineo - sinoo), (39)

where, as before, the subscript naughts indicate values at

Minimum refeczance and -he )rime indicates -he -er-urbation

theory value. Dividing by the normalization factor, Ksp,

and using the relations in equations (36) and (37) to

rewrite the multiplicative constant, the normalized
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wavevector difference as a percentage, which will be denoted

as Ak, can be defined as

Ak = Isineo - sino'I x 100% , (40)

where Xo is the wavelength of the incident light in the

vacuum.

Similar definitions may be obtained for the differences

in peak enhancement magnitudes and the peak enhancement

locations. Although presentation of these curves is

confined to Appendix B to promote continuity, the

quantitative comparisons will be included in tabulated

results within the text of the chapters for completeness.

For the percentage difference in enhancement peaks, the

definition employed is

Io- 101
As £ go x 100% . (41)

The definition of the angular error, expressed as a

percentage in wavevector form, is exactly analogous to

equation (40) and will be denoted by Ak for the enhancement

values.

The values for the percentage differences for the five

cases at the azimuthal angle of 0 = 50 are given in Table 1,

on the following page. Note from these results that the

reflectance from exact calculations for the h1 value of

14.8 nm is less than 0.1 with an enhancement of over 400.

The perturbation theory, however, predicts a reflectance dip

down to 0.800 with an enhancement of only 99.1 for this
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case. The position errors are an order of magnitude greater

than the others noted in Table 1 but are still less than

five percent.

TABLE 1

PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS FOR * - 50 AZIMUTH

h1 (nm) Pol. go to A9 A& Al Ak9

2.5 s 0.808 65.0 3.5% 0.10% 2.9% 0.12%

3.7 s 0.634 132. 7.0% 0.23% 5.5% 0.23%

7.4 s 0.153 342. 9.2% 0.77% 2.9% 0.84%

14.8 s 0.095 437. 77.% 3.1% 77.% 2.0%

7.4 p 0.981 3.35 6.4% 0.23% 10.% 0.17%

This breakdown supports the explanation offered by Glass

[Ref. 21:p. 2654] for the limitation of his perturbation

theory using two resonant polaritons. Briefly, the argument

is as follows. The basis of the perturbation theory is the

expansicn of the quantity exp[-tar]. At resonance, the

approximation may be made that

, 2 J ej Jmax

Ia[K(l,m)1lm~ax - I max (42)

When armax exceeds one, the expansion series does not

converge rapidly and truncation to a few terms is no longer

a good approximation of its value. Thus the perturbation

theory breaks down.
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For the h - 14.8 nrm case, evaluation of equation (42)

yields a value of 1.3 for aCmax . At the 7.4 nm height, the

value is aCmax z 0.65. Thus the perturbation theory using

four polariton resonance appears to follow the breakdown

pattern of the two polariton theory in cases of off-normal

incidence.

A comparison of the results for h - 7.4 nm with s and p

polarization of incident light illustrates an important

point. Note in Table 1 that the reflectance minimum for the

s polarized case is 0.15, while the minimum for the p

polarized case is only down to 0.98. Figure 8 is a

schematic of the wavevector coupling with an azimuth of 50.

In this schematic., unlike Figure 2, the two dimensional

Brillouin zone boundary is shown, represented by the solid

square surrounding the constant frequency circle. Also,

this circle is pictured with the gaps which are present at

the intersections with the zone boundary. The directions of

the incident fields for the cases of s and p polarization

are shown projected onto the k3 - 0 plane. The wavevector

of the resonant evanescent wave is represented by the dashed

vector with the open arrowhead (not labeled).

The surface ooiariton has both a transverse field

component normal to the surface and longitudinal field

component parallel to the surface and in the direction of

polariton propagation. An incident wave of s polarization

has its electric field vector perpendicular to the plane of
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incidence and, therefore, has no field component normal to

the surface. An incident wave of p polarization, however,

does have an electric field component normal to the surface.

The magnitude of this normal component is proportional to

the angle of incidence.
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Referring to Figure 8, it can be seen that with s

polarization, the incident field is almost collinear with

the direction of propagation of the surface polariton and

thus with its longitudinal field component. whereas with p

polarization, the incident field projection is nearly

perpendicular to the surface polariton wavevector. Since

the angle of incidence in these cases is very shallow,

approximately 10 to 110, the incident field component normal

to the surface in the p polarized case is a very small

fraction of the total. Thus the coupling is mainly

dependent upon the collinearity of the incident field

component parallel to the surface and that of the

longitudinal component of the surface polariton field. As

can be seen from the schematic, this collinearity is almost

nonexistent with an azimuth of 0 - 50. Hence, the large

differences in the reflectance minimums for the s and p

polarizations of incident fields.

At an angle of incidence of 8 - 900, the projection of

the incident wavevector, kVl, would reach the light line,

- ck. This extremum cannot, of course, be reached in

practicality but may only be approached. The azimuthal

angle can be made large enough so that 'he -esonant

condition cannot be met at any angle of incidence. In these

cases, k cannot be made large enough to position any of the

reciprocal lattice vectors such that the coupling produces a

resonant evanescent wave.
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In the geometry under investigation, this limiting case

occurs at approximately 290 of azimuth. In order to

validate the perturbation theory more fully, reflectance was

scanned versus the angle of incidence at an angle of azimuth

of 250 for the single case of h1 - 7.4 nm . These

calculations were performed using both s and p polarization

for the incident light. The results from these calculations

are presented graphically in Figures 9 and 10 on the

following two pages. The numerical comparisons of the exact

TABLE 2

PERCENTAGE DI-FERENCES OF EXACT AND PERTURBATION

RESULTS FOR 0 - 250 AZIMUTH

h1 (nm) Pol. !0 go AS A& A5 Ak8

7.4 s 0.739 45.7 1.3% 0.45% 2.2% 0.45%

7.4 p 0.776 41.5 9.1% 0.03% 19.% 0.05%

and perturbation results are given in Table 2. Although the

percentage errors for the reflectance minimum and

enhancement peak are somewhat large for the case of p

polarized incidence, the perturbation predictions have

angular errors that are less than 0.1%.

Figure 11 is a schematic of the wavevector coupling for

the 250 azimuth geometry. The magnitude of the reflectance

minima are very nearly the same for the s and p incident

polarization cases. Unlike the So azimuth cases, the angle
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the smaller reflectance minimum with p polarized incidence

at an azimuth of 250 vice 50. The s polarized incident

wave, totally dependent for resonant coupling on

collinearity with the longitudinal surface polariton field

component, has a significantly larger reflectance minimum at

250 azimuth than at 50 azimuth. Hence, the rather small

differences in reflectance minimums for the s and p incident

polarizations in the 0 = 250 case.

B. CONVERGENCE OF EXACT THEORY CALCULATIONS

As discussed in section B of Chapter III, the numeLical

implementation of the exact theory requires truncation of

the infinite series of equations (9) and (29a) in

calculating the values of the Rayleigh coefficients and

1(alI). If the height coefficient in the surface profile

function for the cross term, hll, is sufficiently small,

then retention of a single term of the series in equation

(29a) will suffice. In all of the cases presented within

this chapter, the cross term is absent, hll = 0, and

truncation of this series was not a factor in convergence of

the calculations.

Convergence of the calculations with the exact theory

here, then, is solely dependent upon the validity of the

Rayleigh Hypothesis for the cases treated. The validity of

the Rayleigh Hypothesis is, in turn, dependent upon the

corrugation strength. Convergence checks were conducted for
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the maximum corrugation strengths used in each case of

polarization and azimuth combination to ensure the validity

of the exact calculations.

As discussed in section B of Chapter III, truncation of

the doubly infinite set of linear equations from equation

(9) results in elimination of reciprocal lattice vectors

outside a chosen range of indices. Recalling the notational

definitions from this discussion, the truncation, with the

linear equations in matrix form, results in a matrix of

2 2dimensions 2N x 2N and the reciprocal lattice vectors

retained have indices given by equation (30).

All results presented are for N - 7. Convergence checks

were conducted by using N as 5, 7, 9, and 11 in successive

TABLE 3

SUMMARY OF CONVERGENCE CHECK RESULTS FOR

REFLECTANCES AT OFF-NORMAL INCIDENCE

hl(nm) Pol. * A95, 7  A97,9  A3911

14.8 s 50 4.9 x 10- 3  3.9 x 10- 5  1.0 x lo- 6

7.4 p 50 3.5 x 10-6  2.1 x 10- 8 0 x 10-9

7.4 s 250 5.2 x 10-5  2.9 x 10- 7  1.0 x 10-9

7.4 p 250 5.2 x 10-5  1 - 7 2.0 x - 9

calculations of the resonant case, t. e., at the reflectance

minimum. Table 3 is a summary of the differences in the

minimum reflectances. The subscripts on the labels indicate
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the successive values of N used in the calculations. Since

the reflectance values are already normalized with respect

to unity, the accuracies acheived may be read directly from

the table. From the values in the table it can be seen that

truncation to a matrix of dimensions 98 x 98 with N = 7

gives accuracies to at least one part in two thousand for

the reflectance minimum.

TABLE 4

SUMMARY OF CONVERGENCE CHECK RESULTS FOR
ENHANCEMENTS AT OFF-NORMAL INCIDENCE

h1(nm ) Pol. 0 As5, 7  As7, 9  A99,1 1  ZOl1

14.8 s 13.723 1.846 0.308 439.4

7.4 P 50 2.4x10- 2  2.1x10 -3  I.8X10 - 4  3.350

7.4 s 250 0.339 2.8x10-2  2.4x10 -3  45.65

7.4 p 250 0.175 2.3x10-2 2.0x10- 3  39.18

Table 4 is a summary of the differences in enhancement

peaks in the convergence checks. Since these are not

normalized differences, the peak enhancement value for the

N - 11 calculation is included in the table for each case.

Using this value for a normalization factor, the accuracles

acheived for the enhancements with N = 7 are at least to one

part in fifteen hundred.

67

~' T-w



V. VALIDATION NEAR NORMAL INCIDENCE

In comparing the results of perturbation theory

calculations around normal incidence with those of the exact

theory, several cases of incidence geometry were

investigated. Scans of reflectance versus angle of

incidence were performed for various surface profiles in

attempting to obtain agreement between perturbation and

exact results. Although the perturbation theory was unable

to predict both reflectance and enhancement versus angle of

incidence with an acceptable degree of accuracy for any

single case, some utility in predicting bigrating

efficiencies was established for limited cases of surface

profile and incidence geometry. Additionally, a scan versus

incident frequency was performed for a single bigrating

profile.

A. RESULTS NEAR NORMAL INCIDENCE VERSUS ANGLE OF INCIDENCE

As before, the values of X - 633.00 nm and a - 615.47 nm

were held fixed and investigations around normal incidence

were commenced using the optimum coupling value of

hI - 7.4 rim with h2 and h both at zero. Since the

perturbation theory gave reliable results at off-normal

incidence for this geometry, it was expected that some

degree of reliability could be expected near normal
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incidence as a benchmark for validation. This was not found

to be the case. For this reason, changes in calculation

parameters for the perturbation theory which might improve

agreement with exact calculations were sought.

In all previous perturbation calculations, the four

Rayleigh coefficients which were taken to be the most

significant evanescent wave amplitude coefficients were

A11(1,0), A11(0,1), A,,(-1,0), and A1 (0,-1). This set of

evanescent wave Rayleigh coefficients will henceforth be

referred to as the canonical coefficients. These

coefficients, along with the specular beam coefficients

A1 (0,0) and Au(O,O), constitute the six important terms

referred to in the development of the perturbation theory in

subsection B.2 of Chapter II. Inspections of printouts for

the Rayleigh coefficients from exact theory calculations

revealed that several evanescent amplitudes other than the

canonical coefficients were of significant magnitude. In

order to obtain better prediction behaviour from the

pertubation theory, the choice of which four evanescent wave

coefficients are included in the six important terms was

modified. The choices for the four termis included was

Jependent on :he particicar :ase ')f .nc-dence ,eometr/. The

specific choices made for these terms, which will henceforth

be termed the corrected choice of coefficients, will be

discussed later.
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Figures 12 through 15 on the following four pages are

graphical representations of the reflectance versus angle of

incidence for the perturbation and exact theory calculations

for s and p polarization at azimuths of 4 - 00 and 0 - 900.

Table 5 below is a quantitative comparison of these results

using the same parameters for comparison as developed in the

preceeding chapter. In this table, the different choices

TABLE 5

PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS FOR h - 7.4 nm NEAR NORMAL INCIDENCE
1

0 Pol. Pert. SI go A9 Ak As Ak5
00 s canon. 0.003 40.4 .53% 3.4% 34.% 3.3%

00 s corr. 0.003 40.4 1.3% 3.1% 11.% 3.4%

00 p canon. 0.050 273. 11.% 0.17% 68.% 0.12%

00 p corr. 0.050 273. 47.% 0.02% 50.% 0.09%

900 s canon. 0.003 40.4 .63% 2.5% 6.4% 2.6%

900 s corr. 0.003 40.4 1.3% 3.1% 11.% 3.4%

90 p canon. 0.050 273. 12.% 0.15% 80.% 0.07%

900 p corr. 0.050 273. 47.% 0.02% 50.% 0.09%

.Zr :h.e evanescent wave Rayieign coefficients are Indicated

in the column headed Pert., for perturbation, as either

canonical or corrected. From this table and from Figures 12

through 15, it can be seen that the perturbation theory is

unable to reliably predict results for this bigrating
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geometry. In particular it should be noted in the figures

that the magnitude of the reflectance dip at zero degrees

(a = 0.000010) incidence is quite different in the

perturbation and the exact theory curves. Although the

errors in the angular location of the dip expressed in

wavevector form are all less than 4%, reliance on the

perturbation theory as a predictor of bigrating performance

at normal incidence could lead to misconceptions of the

pattern of bigrating efficiency around normal incidence.

In discussing the corrected choices of the evanescent

wave Rayleigh coefficients, it is helpful to once again

consider a schematic of the wavevector coupling. Figure 16

is such a schematic for the case of near normal incidence

with s polarization. The wavevectors of the two resonantly

stimulated evanescent waves are again depicted as dashed

vectors without labels. As the angle of incidence is varied

near 8 - 00, the wavevector 1 + i can be thought to move

across the gap induced by the Brioullin zone boundary. The

resonant condition is met when the reciprocal lattice

vectors touch the constant frequency circle. At an azimuth

of 0 - 00 with s polarization, there is no incident electric

field :omDonent .n :he ':,) and (-1,J) directions. Thus,

the surface waves at d1 and C3 are not directly excited.
Moreover, there is no first order coupling of the excited

waves at Z2 and 4 to the degenerate waves at C and Z3

since the coupling coefficients C(±1,±1) (proportional to

75



G 2

s II

Fiur 16. Sceai.fWvve rCuln o

cice Tu aloia chiefrtecr cedseto

* 76



evanescent wave Rayleigh coefficients for this case is

A11(0,1), A1 (0,-1), Al(0,2), and All(0,-2). With s

polarization at an azimuth of 0 = 900, the incident field

vector lies wholly along the (1,0), (-1,0) axis and the

choice for the corrected coefficients in this case is

A11(1,0), A11 (-1,0), A,,(2,0), and Ai(-2,0).

It is obvious that the two cases of 0 - 00 and 0 - 900

azimuth are identical for either polarization. with s

polarization, for example, the incidence geometry pictured

in Figure 16 is merely rotated 900 for the latter case.

Indeed, a close comparison of the exact results for the two

azimuth cases for either polarization showed that the

reflectance curves are identical. There are, however,

slight differences in perturbation theory results for each

of the two azimuth cases for both s and p polarization. It

is for this reason that the two azimuth cases were examined.

validity of the exact calculations has thus been reaffirmed

and a further test of the perturbation theory has been

acheived.

Figure 17 on the following page is a schematic of the

wavevector coupling with p polarized incidence. At this

zoint Jt -s necessary to note that the resonance condition

is not sharp. As can be seen in all the reflectance curves,

there is a degree of broadening around the theoretical

matching condition. The breaks in the constant frequency

circle are narrow enough in this geometry that the resonant
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polarized geometry at normal incidence. The exact curves

for the s polarized cases graphically indicate this overlap

characterisic. Referring to the schematic for the s

polarized case in Figure 16, as the angle of incidence is

increased from zero, the Brioullin zone boundary is scanned

from the center of the break in the constant frequency

circle (0 - 00 on Figures 12 and 14), where the tails of the

polaritons strongly overlap, to the edge of the break

(6 - 1.50 on Figures 12 and 14), where the resonance

condition is fully met. Thus, there is very low reflectance

at 9 - 00 but the minimum reflectance occurs at 8 - 1.50.

Returning to the schematic in Figure 17 for p polarized

incidence, as the angle of incidence is increased from zero,

the scan passes right through the center of the break in the

constant frequency circle and thus crosses the center of the

polariton tail overlap. Therefore there is a minimum

reflectance condition at 8 - 00 in Figures 13 and 15. Note

that the reflectance at 6 - 00 for s polarization (Figures

12 and 14) is tdenttcal to that at a - 00 for p polarization

(Figures 13 and 15): both correspond to exactly the same

excitation at the center of the break in the constant

frequency circle.

At 0 - 00 azimuth with p polarization, the incident

electric field vector lies along the (1,0), (-1,0) axis of

the lattice. Consequently, there is no first order coupling

of the incident wave into a surface polariton with the
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(0•I) and the 5(0,-1) reciprocal lattice vectors. A

corrected choice for the set of evanescent wave Rayleigh

coefficients in this case, then, is identical to that for

the 0 = 900, s polarized case, i. e., All(1,0), All(-1,0),

Al(2,0) and All(-2,0). Similarly, the corrected choice for

the set of coefficients for 0 = 900 azimuth with p

polarization is identical to that for the 0 - 00, s

polarized case. -

The preceding discussion has served to illustrate much

of the physics involved in the coupling mechanisms for cases

near normal incidence. However, as can be seen from the

reflectance curve comparisons and from Table 5, there is

very little improvement in the perturbation theory

predictions with the corrected choice of coefficients over

those with the canonical coefficients.

There are three basic assumptions in the foundation of

the perturbation theory. The first is the validity of the

Rayleigh hypothesis in the particular cases being

investigated. This assumption is also inherent in the exact

theory and is taken to be valid on the strength of the rapid

convergence of the exact calculations. The second

assumption is tnat a first order truncation of the expansion

for exp(-taC] yields a valid approximation for the

expansion. As discussed in the previous chapter, this

assumption is taken to be valid for values of aCmax < 1, as

evidenced by the results for calculations at off-normal
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incidence. The third assumption of the first order

perturbation theory is that the most important evanescent

waves in the Bloch sum for the surface polariton are the

four which are, on the flat surface, degenerate and whose

wavevectors are connected by reciprocal lattice vectors;

t. e., those evanescent terms whose wavevectors are at the

intersection of two Brillouin zone boundaries. In the

bigrating profiles considered up to this point, the values

for h2 and h11 have been held at zero. The reason for the

poor performance of the perturbation theory near normal

incidence with such a surface profile, even when a=max is

less than one, is due to the fact that these terms are not

present in the surface profile. For these cases, the third

premise of the perturbation theory is not valid, since the

coupling coefficients actually vanish among the four

evanescent waves considered as important. Thus, there are

other terms in the Bloch sum that are of the same order of

magnitude as these four. In these cases, the gaps in the

dispersion curves, at the Brillouin zone boundaries at 1 =

i" i2"' 3P and 4 and the breaks in the constant frequency

circle are due to second order coupling of the four zone

-cundary waves '3. Thus, :ne -,se of a first order

8The breaks in the constant frequency circle, depicted
schematically in the wavevector coupling figures, are
responsible for the shift of the reflectance minimum from
0 - 00 to 6 - 1.50 in Figures 12 and 14.
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approximation for treating the resonant excitation of modes

near the gap at i' 2' V and 4 in such cases is

inappropriate. An increase in the h11 cross term, then,

would allow first order coupling between these four terms.

In this manner, the magnitudes of the four evanescent waves

considered as important in the perturbation theory, and

which are retained in all portions of the perturbation

calculations, could be increased over those of all the other

terms in the Bloch wave sum. Furthermore, the gaps at

C20" i" and 4 could become first order effects. Thus, by

increasing the cross term, the basic premises of the

perturbation theory might once again be valid.

Cases of surface profiles with the hll cross term

increased from zero to 2.5 nm were investigated for

comparisons between exact and perturbation results. The h

term was decreased to 6.0 nm to avoid making a max greater

than one, and calculations for s and p polarized incidence

with 0 = 00 azimuth were executed. The reflectance curves

for these calculations are presented in Figures 18 through

23 on the following six pages. Table 6 on the seventh page

following is a listing of the quantitative comparisons of

,he oer-urbation and exact resuits for these cases.

A definite trend of improvement for the perturbation

theory predictions can be noted in these results.

Particularly in a comparison of the results for the surface

profiles of h1 = 4.5 nm with and without the cross term
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TABLE 6

PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS FOR CROSS TERM RUNS AT 0 - 00 AZIMUTH

h hl1 Pol. 9o go A9 A& As A&5

6.Onm 2.5nm s 0.057 37.6 .40% 1.6% 146.% 2.1%

6.0nm 2.5nm p 0.113 276. 11.% .00% 104.% .31%

4.5nm 2.Snm s 0.235 29.7 2.7% .92% 28.% .56%

4.5nm 2.5nm p 0.265 192. 4.8% .00% 42.% .17%

4.5nm 0.0nm s 0.245 28.9 4.3% 1.8% 31.% 1.9%

4.5nm 0.0nm p 0.254 179. 7.6% .00% 56.% .03%

present. Though further investigations were not carried out

in this area, one may surmise that the perturbation theory

would yield more accurate predictions for surface profiles

in which the cross term was an increasingly important

factor.

B. RESULTS AT NORMAL INCIDENCE VERSUS FREQUENCY

The surface profile for which the reflectance versus

angle of incidence near normal incidence were predicted most

reliably by the perturbation theory, t. e., h1 = 4.5 nm,

=0 nm, and h =2.5 nm, was used to test the

perturbation theory predictions for reflectance and

enhancement versus incident frequency. Equivalently, this

is a scan of the reflectance and enhancement versus incident

photon energy, hw. -The reflectance curves for these

89



calculations are presented in Figures 24 and 25 on the

following two pages. Table 7 is a listing of the

quantitative comparisons of the perturbation and exact

theory results. The quantites used here for the reflectance

TABLE 7

PERCENTAGE DIFFERENCES OF EXACT AND PERTURBATION

RESULTS VERSUS INCIDENT PHOTON ENERGY

h I hl1 Pol. 9o go A9 AE Ag AE5

4.5nm 2.5nm s 0.234 29.8 2.0% .02% 31.% .04%

4.5nm 2.5nm p 0.234 29.8 1.4% .01% 14.% .01%

and enhancement percentage differences are the same as those

used in comparisons of the results versus angle of

incidence. The differences for the incident photon energies

at which minimum reflectance and maximum enhancement occur

are expressed as simple percentage errors. The percentage

error in the energies for the reflectance minima are denoted

by AE and for the enhancement peaks by AE1 . From this table

and from Figures 24 and 25, it can be seen that the

perturbation theory results versus incident photon energy

are appreciably better than those versus angle of incidence

for the normal incidence cases.

The results versus incident photon energy are somewhat

surprising in that the dispersion curve gap does not appear.
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Since there are gaps in the dispersion curve at the

Brioullin zone boundaries of the grating lattice, t. e. at

k - nT/a, n - ±1,±2,..., one would expect to see a pair of

dips in the reflectance at such a boundary rather than the

single dip in evidence in Figures 24 and 25. In the cases

investigated here, n . 2 and the gap concerned lies at the

second Brioullin zone boundary. The reason for this

apparent single dip in reflectance at the second Brioullin

zone boundary is that the energy gap in the cases

investigated is narrower than the width of the states on

either side of the gap; t. e., the overlap of the

neighboring states has completely bridged the gap.

C. CONVERGENCE OF EXACT THEORY CALCULATIONS

For the cases treated here, the maximum value of the

cross term was h11 = 2.5 nm and this value is sufficiently

small that the use of a single term in equation (29a) was

effective in obtaining accurate results.

The truncation of the infinite series of equation (9) to

the value of N - 7 was all that was required for excellent

9degrees of accuracy9 . Convergence checks were performed

-or rhe max'mum corrugation strengths for each poiariza::on.

Although the profile with h = 6.0 nm and h = 2.5 nm has a

9See section IV.B on convergence in off-normal
calculations for a detailed discussion of the truncations
implied here and their effect on accuracy of calculations.
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slightly smaller corrugation strength than the h1 = 7.4 nm,

h11 - 0 nm profile, convergence checks were conducted for

the s and p polarizations of the profile with the non-zero

cross term to ensure validity of the calculations.

Table 8, below, is a summary of the differences in the

reflectance minima for the convergence checks. As with the

off-normal convergence checks, the differences are

subscripted with the two N values used in the calculations.

TABLE 8

SUMMARY OF CONVERGENCE CHECK RESULTS FOR

REFLECTANCES NEAR NORMAL INCIDENCE

hl(nm) hll(nm) Pol. Al5,7  Ag7,9  Ai9,11

7.4 0.0 s 5.5 x 10-5  2.1 x 10-8  2.5 x 10- 10

7.4 0.0 p 3.0 x 10- 3  2.1 x 10-5  1.3 x 10-7

6.0 2.5 s 9.3 x 10-5  4.8 x 10-7  3.4 x 10- 9

6.0 2.5 p 2.4 x 10- 3  1.6 x 10- 5  1.0 x lo- 7

From the values listed in the table, it can be seen that the

use of the 98 x 98 matrix in exact calculations resulted in

accuracies to at least one part in forty-five hundred and in

one case :o bet-:er than one oart _n 10

Table 9, on the following page, is a summary of the

differences in enhancements for the convergence checks. As

with the off-normal convergence checks, the accuracy figure

is obtained by normalizing the differences using the
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TABLE 9
SUMMARY OF CONVERGENCE CHECK RESULTS FOR

ENHANCEMENTS NEAR NORMAL INCIDENCE
Li Li POl. • AL AL 9 , i1 i
h h11 Al5,7 7,9

7.4nm 0.0nm s 1.105 9.5x10 -2  8.5x10 - 3  40.241

7.4nm 0.0nm p 0.945 9.3x10 - 2 8.2x10 - 3  39.510

6.Onm 2.5nm s 1.170 9.7x10- 2  8.0x10- 3  37.517

6.0nm 2.5nm p 1.020 9.4x10 - 2  7.7x10 - 3  36.683

enhancement value obtained in the N = 11 calculation. The

accuracies acheived here are at least to one part in three

hundred fiffty.
.J9

mi
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VI. CONCLUSIONS AND RECOMMENDATIONS

The perturbation theory has been validated to yield

reliable results at off-normal incidence for corrugation

strengths of 0.024 and less. Its performance in predicting

bigrating absorptance efficiencies and enhancement

capabilities is limited by the quantity armax which must be

less than one. Thus, Glass's modification to his

perturbation theory to include simultaneous excitation of

four resonant surface polaritons, rather than only two, has

not altered its performance in cases of off-normal

incidence. This may be verified by comparison of the

results contained in this work with those presented by Glass

[Ref. 21] for the two resonant surface polariton

perturbation theory.

Use of the perturbation theory at normal incidence will

yield results for reflectance and enhancement versus angle

of incidence to at least within an order of magnitude of the

exact theory values. The degree of accuracy acheived is

dependent upon the amount of cross coupling present for the

particular surface profile being investigated. From the

results presented here, the perturbation theory appears to

perform best when the surface profile induces appreciable

degrees of coupling through cross terms. It is recommended

that further investigations be conducted in this area by
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performing comparison calculations using the perturbative

and nonperturbative analysis techniques with surface profile

functions of more evenly distributed values for the height

coefficients. Based on the results obtained in this work,

it is believed that a marked improvement in the performance

of the perturbation theory would be acheived for such

surface profiles. There has been considerable work using

sawtooth type diffraction grating profiles [Ref. 28]. A

bigrating with this type of surface profile may well be

treated using the perturbation theory with much greater

accuracy near normal incidence than has been found with the

surface profiles dealt with here.

In frequency scans at normal incidence the perturbation

theory may be employed with considerably more confidence.

Reflectance magnitudes may be relied upon to be within

approximately 5% of the exact theory values and the

predictions for optimum coupling frequency can be taken as

accurate to within approximately 2%. The enhancement

magnitudes in such scans, however, may still only be taken

as accurate to within an order of magnitude.

A final observation is made here that the reflectance

value for a given surface profile at exactly normal

incidence on a bigrating is independent of the incident

polarization. Figures 26 and 27, on the following two

pages, illustrate this fact graphically for the surface

profile of hI - 4.5 rnm and hll - 2.5 nm. Note in Figure 26
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that the magnitude of the reflectance curves for s and p

polarization are identical at e - 00. The curves for the

reflectance of the two incident polarizations in Figure 27

are identical for all incident photon energies. The data

from other calculations also show that the magnitudes of the

reflectance minima for exactly normal incidence are

numerically identical for s and p polarizations to the full

accuracies of the exact calculations.
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APPENDIX A

DEFINITIONS OF PERTURBATION MATRIX ELEMENTS

Equation (21), which is stated as the final result of

the perturbation theory (subsection II.B.2), contains

several elements whose definitions are not given in the

text. The equations which define these terms are quoted

here (taken from Glass (Ref. 9]). The prime on the

summations indicate the specified sum is taken over all J

except the specular (J - 0) and resonant wave (J - 1,2,3,

and 4) terms.

c'2 a 1
22 rp ppr

rrrr [ (1 )rp) p
r p.1

+ Z ~rj (J-r) a,, + a ri] (A.1)

where

IF a (r) cz0(r) (cz(r) ao(r) - K] 2) (A.2)

L p h Ct(r-p)cp~ ?(r-JiriJp) rcjp-arajpaj (A.3)

where

hr r rr C4  aT j2 (A.4)

and
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cA5

rr
pi

4

mr ahr (r) crO + 1(1- rp (r-p) (p) a pp arp ap0
pi

rjjorj j o jjj A

r4
00 C-r [t (-) a) C(p-) C(p) a a1 a

rr r0 0  (1 rp p p pOp
pi

-C ri-r) -C() (fra o + ra rjb o) a,,]. (A-8,

a I..Q L (P) c(P

0+ ooO I~j (-6r CCf01  C(-+ ) a] (pa.a)O

afjc a~ aj)a A8

p~ ab0

pm 1

+ -C(J) rC-I) (f01 - +10 a ajJ (A.9O)
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4

Rr a00 (-)aOr (1- ~ rp~ C(p-) C(-p) a pp a pr b po
p-i

-(jr)CCi)~~raoj + ar bj0 ) ajj]. (A.1.1)

+ CC)C-)(f 1 0 - b j a01 ajl] (A.12)

4

2
Td a a0-I() E 1 b all]

U r = hr[t C(r) (Cr0 e er) - (r-I) C(J) Ti Cr1  (A.14)

where

a i a, e1] (A.15)

V aOO T[ ?u (-) C 1Jj. (A. 16)
c00

Wa00 e 0 (A-17)

X -aOO~~i I TI a0  . (A.18)
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APPENDIX B

ENHANCEMENT CURVES FOR CASES INVESTIGATED

This appendix is a collection of the curves for

enhancement versus angle of incidence and versus incident

photon energy. The figures are are presented here in the

same order in which the correspond~ig reflectance curves

appear within the text of Chapters IV and V.
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