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19. Abstract (Cont'd):

p--spectral studies were carried out on 02 and N 0 flows alone. These indicated
a resonant formation of a microplasma with a fifetime on the order of 100
nsec. All of these results lead to the conclusion that multiphotan

G photochemical ignition is a phenomenon consisting of three major components:
(1) the multiphoton photochemical formation of oxygen atoms; (2) multiphoton
ionization of these atoms to efficiently form free electrons in the laser
focal volume; (3) the formation of a laser microplasma using the electrons
formed in the previous process as seed electrons.ý.As such, this new laser
ignition source appears to be more efficient and ore controllable than the
well-known laser-produced spark (gas breakdown) p ocess and it thus should be
useful for further ignition studies.
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I. INTRODUCTION

There has been a growing interest recently in the application of lasers

"which operate in the ultraviolet region to the ignition of reactive

mixtures. One such study has described the use of the excimer lasers F

(157 nm) and ArF (193 nm) for the ignition of H2 /0 2 or H 2 /air mixtures

photolysis of 02 into 0 atoms.1 More recently, experiments have been

,undertaken in wtich a KrF (248 nm) excimer laser has been used to photolyze 03
Sinto 0 + 02 in the presence of CH4 and H2 /0 2 . 2  Both of these experiments have
involved single photon photochemistry. Ignition of reactive gas mixtures which

used multipboton photochemistry was first demonstrated in our laboratory on

simple hydrocarbon/air or N2 0 mixtures using the ArF and KrF excimer lasers. 3

Interpretation of those results was based to a large extent on related

experimental work in our and other laboratories which showed that uv laser

(particularly the ArF excimer) multiphoton interaction with small carbon-

containing fuels can be very extensive and can lead to substantial

photofragmentation and fragment excitation. A particularly illustrative case

involves the CH molecule which upon irradiation by the ArF laser yields

Sground and excited state radicals such as C21, C 2 , CH, as well as the 11 and C

atoms and C+ ions. 5  On the basis of these results, it was not surprising to

"find that a C2 H2 /air mixture required only 0.25 mJ of incident laser radiation

to ignite.

In a recent preliminary study we have observed a strong wavelength

dependence in the amount of incident laser energy required •o ignite a H /02

flowing mixture using a tunable laser system near 225.6 nm. Specificaly, we

found that the most efficient ignition wavelength corresponded to the peak of

the two-photon resonance excitation process for oxygen atoms in the J=2 ground

spin-orbit state. The focused ultraviolet laser not only apparently caused

photodissociation of 02 into 0 atoms, but also, when on O-atom resonance,

required the least amount of energy to ignite the gases. Furthermore, a plot

of incident laser energy as a function of equivalence ratio yielded a minimum

at 0.61, far from stoichiometry. This result further reinforced the

"•4 .conclusion that the laser-oxidizer interaction is an important element in the

ignition process of H2 /0 2 mixtures at 225.6 nm.

These preliminary experiments, however, were not detailed enough to

identify the specific mechanism(s) involved in the ignition process. Ini d e nti fy~o x g e tha toii c m ch n s m s 3 p 3 p
particular, laser twy-photon resonant population of the oxygen atom

states at 88,630 cm-r (10.99 e.v.) can lead to a number of processes including

excited state chemistry, heat deposition at the focal volume due to quenching

collisions, and/or the absorption of a third photon leading to the formation

of 0+ ions and free electrons. It is the purpose of this report to describe

an experimental effort aimed at a much more comprehensive characterization of

the multiphoton photochemical ignition phenomenon. The results presented here

indicate that the ion formation channel is a key process since it represents

an efficient and direct route for the production of the initial free electrons

early enough in the laser pulse such that they become the seed material for

- .~the creation of a laser-produced spark, i.e., microplasma. The primary role

of this short-lived microplasma (ca. 100 nsec) apparently is to be a localized

"source of highly reactive chemical intermediates at a very high temperature.

If the spark is intense enough, then the resultant ignition kernel is

lsufficiently strong to permit transition into full combustion.

* A 7



II. EXPERIMENTAL

The experimental schematic ig given in Figure 1. Since it has been
described in detail previously,6,' only the major points will be highlighted.
Tunable uv laser radiation in the 225.6 nm region was focused with a 50 mm
focal length lens at a position 1-2 vm above the burner surface. ippical
laser energies up to I mJ/pulse yielded power densities around 10 W/cm in
the focal volume. The water-jacketed H2/0 2 burner was fabricated from a
stainless steel Swagelock 0.25 in. terminator fitting through which a 0.9 mm
hole was drilled. Matheson (Model 620) flowmeters were calibrated by e GCA
Precision Scientific wet test meter for H2 , ?2, and N20 fiows up to 2 LPM.
This resulted in orifice linear flow velocities in the 10 cm/sec range. The
incident laser energies were always measured just before the focusing lens
with a Scientech (Model 38-0103) disc calorimeter-power/energy meter. The
emission signals were detected, averaged, and processed as described
previously. The excitation wavelength scans were performed manually, and
each emissiun wavelength data point represented the average value for 512
laser shots.

Time-resolved emissions were digitized with a Tektronix 7912AD digitizer
(7A24 a4plifier and 7B9OP timebase) and accumulated in a PDP-11/04 computer.
The response time is ca. 25 nsec FWHM (see Figure 6) due to the relatively
slow response of the EHI 9558QA photomultiplier detector tube. The power
dependence of the O-atom emission intensities at 777.5 nm for 02 and N,0 flows
was measured using a 200 mm focal length lens to avoid the formation o!
microplasmas and only to measure the photon dependence for the photolysis of
those two molecules. For these experimntcs, the Nd:YAG laser amplifier
flashlamp energy was varied, as before, to change the output power at
225.6 um.

111. RESULTS AND DISCUSSION

A. Ignition

Figure 2 shovw the wavelength dependenre of the amount of incident laser
energy necessary to ignite a premixed flow of H 2 /N 2 0. A aimilar type of
behavior has been found for H /02 premixed flows. The curve clearly shows a
strong dependence of the incident laser energy (ILE) on the laser wavelength
with toree prominent features around 225.6, 226.0, and 226.2 nm. The
wavelengths of these three features are exactly the same as the fluorescence
peaks ut'hih result from oxygen atom two-photon excitation of the grmu~d
electronic spin orbit split states Jv2, Jul, and JuO, respectively."- This
result unequivocally indicates that the electronic excitation of oxygen atoms
is an important feature of the ignition mechanism. Also, the spectral widths
of these features are considerably broader than those observed during the
flame 0-atom excitation scans. The reason for this difference will be
discussed in the next section.

The dependence of the ILE on the equivalence ratio for H 2/02 flows is
given in Figure 3. The lover trace results from the laser wavelength set at
the peak of the 0-stom two-photon excitation, while the upper trace is for the
green laser beam, i.e., the second harmonic of the Nd:YAG laser (532 nm). Twn
points relevant to this figure should be discussed. The first is the
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observation that the minimum in the lower trace is far into the fuel-lean

region. A similar type of behavior was noted for H2 /N 20 flows. The reason

for this appears to be the same as before, i.e., the uv laser is clearly

interacting significantly with the oxidizer (02) component of the reactive

flow. Observation of the minimum so far from the stoichiometric point is, of

course, in sharp contrast with the usual behavior found for spark ignition in

a closed bomb. However, the recent report on the excimer laser ignition of

H2 !/ 2 mixtures also noted the most efficient ignition to be in the fuel-lean

region.

The second point relates to the upper trace of Figure 3 where ignition

was caused by the green laser. Not only is the actual value of the ILE much

higher at 532 nm than at 225.6 nm, but also the 532 nm dependence is virtually

flat across a very wide range of equivalence ratios. This type of behavior

has been obsIrved previously in our initial ignition studies involving

hydrocarbons and can be explained by the inherent properties of the laser
"spark" (gas breakdown) process. Specifically, due to the sharp threshold

Q associated with the onset of absorption of laser energy, the spark (plasma)

when produced, ii typically much more energetic than the required ccitical

ignition energy. Furthermore, there is usually a sizable blast wave

associated with the spark.9 As indicated in Figure 3b, the spark intensity is

sufficient to ignite mixtures at either extreme of equivalence ratios, and is

clearly much greater than necessary for near stoichiometric mixtures.

Implicit in our discussions of multiphoton photochemical ignition of

H 2/02 and 112/N 2 0 is the fact that the process firsS has to start with the

photoproductiou of the oxygen atoms in the ground P atate. In order to study

this process, we measured the laser power dependence for the production of the

two-photon excited oxygen 4t=s whose fluorescence was detected at 777.5 mý

The reason for doing this is that frequently such a power dependence study

will indica.tte how many photons are iovolved in the process. Experiments were

undertaken on flows of 01 and N 0 roopectively using a 200 Mm focal length

lens to avoid problems ot microplasms formation. Tlies me asurements indicated

that the photochomita:l formation of ground state oxygen atoms was 0

n ultiphoton process for both 0a anid ?20 requiring tuet photons in each case,

i.e.. fot both cag-s we ra.ured a four photon dependence for the 0-atom

omniss ion, This is consistent with our provious moeasurement for ',iOQ whereas

-k for 02 this quantity had not been measured previously. The imti-ication of
those findings to our ignition studies will bg 4iscussed in tl', next section.

B. Microplasa F.ormation

Duritng the course of our ignition expriments %e began to take note of a

*f-aint source of white light that omani;ted frtom the laser focal volume
region. The intinsity of this light was cleary wavelength dependent with the

brightest enission occuring at the wavelengths corresponding to the peaks of

the 0-atoam two-photon excitation, In order to study this behavior in greater

detail, te initiated both spectral and temporal studies of these •aic€oilasaa

for 02 and N20 flows using the 50 c= focal length lens.

1Figure 4.a shows the excitation curve for ( atOM eMissiOn 4t 777.5 n%

ther. the 0 atoms w.re thesAelve!s generated by the same laser focused into the

0, flow. A similar plot (Figure 4b) is also include. for nattcent 0 ato" two-
photon excitation in a stoichiometric 112/02 flame. Furthermore., twn ignition

12
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plots for fuel-lean and stoichiometric H12/02 mixtures ar, given in Figures 5a
and b, respectively, gith the differences ia th( absolute value of the ILE

explained previously. A number of similarities and diffexmnces can be seen
and discussed. In particular, the spectral width for 0-atoms produced in a 02
flow is much greater than for the nascent flame 0-atoms. The substantial
spectral width in the 02 flow is, however, quite comparable to the ignition
profile in the fuel-lean case, while the sDectral profile for the ignition of
a stoichiometric mixture is somewhat narrower and less efficient than the

fuel-lean case. The explanation for these observations is that the spectral

profile in the ignition case as well as in the cave of the 02 flow, is not
really a representation of an atomic spectral property, but rather an
indication of a much more complex process, i.e., the formation of a

microplasma, which is inherently a highly nonlinear phenomenon. It is well-
established that the laser-produced microplasma (spark) needs seed electrons

in order to grow. In our case it finds them in the spectral wings of the two-

photon resonant, three-photon ionization of oxygen atoms. When these free
electrons are formed in the early part of the laser pulse, then the cascade
plasma formation mechanism is initiated and the plasma is ultimately heated up
to a very high temperature by the inverse brehmsstrahlung effect. 0-12 Thus,
when this occurs, it is no longer valid to consider the 0-atom emission at
777.5 nm as a simple two-photon laser induced fluorescence process. It is
therefore not surprising that the spectral behavior of the ignition of
premixed gases, a process sensitive to microplasma formation, should be
similar to that of the microplasma prodicing precursor alone. This is, in
fact, what is observed for the 02 flow and the fuel-lean reactive mixture in
Figures 4a and 5a. The fact that the stoichiometric ignition curve shows a
narrower width w- '- less efficient as well, it explained by the fact that
the H2 hampers tK.: ;rowth of the microplasma, presumably due to its high
ionization potential (I.P. for 02 - 12.063 e.v. and for H2 - 15.427 e.v.), and
':hus the plasma is relatively less intense. In search for other explanations
for these wide spectral widths, a wavelength dependence of the initial step,
i.e., multiphoton photoehemical production of atoms, should be considered. It
would be most unlikely, houever, for such a dependence to yield the similar
type of spectral profile which is found for all three spin-orbit components
(Figure 2).

An additional parameter that was investigated is the temporal behavior of
the 0-atom emission at 777.5 nm. Figure 6 shows the time-resolved emission
for scattered laser light (Figure 6a), flame 0-atoms (Figure 6b), and 0-atoms
produced in the u2 flow under conditions of microplasma formation (Figure 6c).
Clearly the lifetiste is much longer for the 02 flow case since it actually is
related to the lifetime of the plasma with direct laser produced signals from
simple multiphoton photolysis and the two-photon excitation being a factor
only in the leading edge of the trace.

The role of excited state 0-atom chemistry has not been expliritly
considered so far. The fact that a microplasma exists in multiphoton
photochemical ignition implies that laser-populated excited state chemistry is
probably not important sirce the kinetics of the microplasma process would
appear to overtake other competing processes. Furthermore, we undertook a
series of ignition studies ot H2/O2 flows using longer focal length lenses
(100 rmm, 150 tmm, 200 mm) and found that the ILE required to ignite increased
considerably and ignition did not occur without the formation of the
microplasmas. On the other hand, even though our experiments strongly

14
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implicate the microplasma formati-on process as a key element in ignition, we
cannot discount the possible importance of the photochemical formation of
radicals in the converging laser beam near the microplasma. These radicals
could very well be important in the early stages of ignition kernel growth,
but after the microplasma had decayed. Clearly, future experiments with high
speed photography, as well as in a closed bomb and with other appropriate
optical diagnostic tools, would be very helpful in promoting further
understanding of this phenomenon.

IV. CONCLUSION

Focused ultraviolet laser radiation is capable of activating reactive gas
mixtures through a new, previously unreported mechanism involving multiphoton
photochemistry, ionization, and microplasma formation. The major difference
between this work and previous work on laser spark formation is that
multiphoton photochemical ignition provides a more efficient and controllable
means for liberating the free electrons which then lead to the laser spark
formation process. Due to these virtues, this laser ignition phenomenon
should open up new opportunities in ignition studies. Also, since lasers
possess certain attractive characteristics such as beam propagation through
great distances, as well as excellent time-resolution, there may be new
opportunities for practical applications which require the activation of
reactive systems.
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