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19. Abstract {(Cont'd):

;-8spectral studies were carried out on O, and N,O flows alone. These indicated
a resonant formation of a microplasma wlth a %1fetime on the order of 100
nsec. All of these results lead to the conclusion that multiphoton
photochemical ignition is a phenomenon consisting of three major components:
(1) the multiphoton photochemical formation of oxygen atoms; (2) multiphoton
ionization of these atoms to efficiently form free electrons in the laser
focal volume; (3) the formation of a laser microplasma using the electrons
formed in the previous process as seed electrons.h As such, this new laser
ignition source appears to be more efficient and gore controllable than the
well-known laser-produced spark (gas breakdown) process and it thus should be
useful for further ignition studies.
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I. INTRODUCTION

whiChTZEZiazzsi:eigeauiiizigglzttizéét recently‘in‘t§e applicati9n of lasers
: %1on to the ignition of reactive
(157 ) and Ak (193 nmy for the. ignicion of My/0y or Aejete miureres”

. ( 2/09 or Hy/air mixtures %y
photolysis of 0, into O atoms. More recently, experiments have been
undertaken in which a KrF (248 nm) excimer lager has been used to photolyze O
into 0 + 0, in the presence of CH, and H2/02.2 Both of these experiments have
involved single photon photochemistry. Ignition of reactive gas mixtures which
used multiphoton photochemistry was first demonstrated in our laboratory on
simple hydrocarbon/air or N,0 mixtures using the ArF and KrF excimer lasers.>
Interpretation of those results was based to a large extent on related
experimental work in our and other laboratories which showed that uv laser
(particularly the ArF excimer) multiphoton interaction with small carbon-
containing fuels can be very extensive and can lead to substantial
photofragmentation and fragment excitation. A particularly illustrative case
involves the C,H, molecule which upon irradiation by the ArF laser yields
ground and excited_state radicals such as C,H, CZ' CH, as well as the H and C
atoms and c* ions. On the basis of these results, it was not surprising to

find that a Czﬂzlair mixture required only 0.25 mJ of incident laser radiation
to ignite.

In a recent preliminary study we have observed a strong wavelength
dependence in the amount of incident laser energy required go ignite a H /O2
flowing mixture using a tunable laser system near 225.6 nm. Specifical%y, we
found that the most efficient ignition wavelength corresponded to the peak of
the two-photon resonance excitation process for oxygen atoms in the J=2 ground
spin-orbit state. The focused ultraviolet laser nct only apparently caused
photodissociation of 0, into O atoms, but also, when on O-atom resonance,
required the least amount of energy to ignite the gases. Furthermore, a plot
of incident laser energy as a function of equivalence ratio yielded a minimum
at 0.61, far from stoichiometry. This result further reinforced the
conclusion that the laser—oxidizer interaction is an important element in the
ignition process of H2/02 mixtures at 225.6 nm.

These preliminary experiments, however, were not detailed enough to
identify the specific mechanism(s) involved in the ignition process. In
particular, laser th-photon resonant population of the oxygen atom 3p “P
states at 88,630 cm * (10.99 e.v.) can lead to a number of processes including
excited state chemistry, heat deposition at the focal volume due to quenching
collisions, and/or the absorption of a third photon leading to the formation
of 0% ions and free clectrons. It is the purpose of this report to describe
an cxperimental effort aimed at a much more comprehensive characterization of
the multiphoton photochemical ignition phenomenon. The results presented here
indicate that the ion formation channel is a key process since it represents
an cfficient and direct route for the production of the initial free electrons
early enough in the laser pulse such that they become the seed material for
the creation of a laser-produced spark, i.e., microplasma. The primary role
of this short-lived microplasma (ca. 100 nsec) apparently is to be a localized
source of highly reactive chemical intermediates at a very high temperature.
If the spark is intense enough, then the resultant ignition kernel is
sufficiently strong to permit transition into full combustion.




II. EXPERIMENTAL

The experlmental schematic xg given in Figure I. Since it has been
described in detail prev1ou81y, only the maJOt points will be highlighted.
Tunable uv laser radiation in the 225.6 nm region was focused with a 50 mm
focal length lens at a position 1-2 sm above the burner surface. Typlc&
laser energies up to 1 mJ/pulse yielded power densities around 10°' W/ em® in
the focal volume. The water-jacketed H,/0, burner was fabricated from a
stainless steel Swagelock 0.25 in. terminator fitting through which a 0.9 mm
hole was drilled. Matheson (Model 620) flowmeters were calibrated by 2 GCA
Precision Scientific wet test meter for HZ’ 0y, and N,0 f&ows up to 2 LPM.
This resulted in orifice linear flow velocxtles in the 10° cm/sec range. The
incident laser energies were always measured just before the focusing lens
with a Scientech (Model 38-0103) disc calorimeter—power/energy meker. The
emission aisnals were detected, averaged, and processed as described
previously.” The excitation wavelength scans were performed manually, and
each emissiun wavelength data point represented the average value for 512
laser shots.

Time-reaolved emigsions were digitized with a Tektronix 7912AD digitizer
(7A24 awplifier and 7B90P timebase) and accumulated in a PDP-11/04 computer.
The response time is ca. 25 nsec FWHM (see Figure 6) due to the relatively
slow response of the EMI 9358QA photomultiplier detector tube. The power
dependence of the O-atom emission intensities at 777.5 um for 0, and N,0 flows
was measured using & 200 mn focal length lens to avoid the formation o%
microplasmas and only to messure the photon dependence for the photolysis of
those two moleculea. For these experimgnes, the Nd:YAG laser amplifier
flashlamp energy vas varied, as before,” to change the output power at
225.6 na.

IIl. RESULTS AND DISCUSSION

A. Ignition

Figure 2 shows the wavelength dependenre of the amount of incident laser
energy necessary to ignite a premised flow of W /N0, A similar type of
bebavior has been found for H {04 premixed flows., The curve clearly shows a
strong dependence of the xnc;gent laser energy (ILE) on the laser wavelength
with three prominent features around 225.6, 226.0, and 226.2 nm. The
vavelengths of these three fcatures are exactly the same as the fluorescence
peaks which result from oxygen atom two-photon oxcitation of the grsugd
electronic spin orbit split states J=2, J=l, and J=0, respectively.’ ® This
vesult unequivocally indicates that the electronic excitation of oxygen atoms
is an important feature of the ignition mechanism. Also, the spectral widths
of these featurecs are considerably broader than those observed during the
flaze O-atom excitation scans. The reason for this difference will be
discussed in the next section.

The dependence of the ILE on the equivalence ratio for H,/0, flows is
given in Figure 3. The lower trace rcsults from the laser wavelength set at
the peak of the O-atom two-photon excitation, while the upper trace is for the
green laser heam, i.e., the second harmonic of the Nd:YAG laser {532 nm). Twc
poiuts relevaut to this figure should be discussed. The first is the
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observation that the minimum in the lower trace is far into the fuel-lean
region. A similar type of behavior was noted for HZ/NZO flows. The reasocn
for this appears to be the same as before, i.e., the uv laser is clearly
interacting significantly with the oxidizer (02) component of the reactive
flow. Observation of the minimum so far from the stoichiometric point is, of
course, in sharp contrast with the usual behavior found for spark ignitiom in
a closed bomb. However, the recent report on the excimer laser ignition of
H2/02 mixtures also noted the most efficient ignition to be in the fuel-lean
region.

The second poiant velates to the upper trace of Figure 3 where ignition
was caused by the green laser. Yot only is the actual value of the ILE much
higher at 532 nm than at 225.6 nm, but also the 532 nm dependence is virtually
flat across a very wide range of equivalence ratios. This type of behavior
has been obssrved previously in our initial ignition studies involviag
hydrocarbons” and can be explained by the inherent properties of the laser
"spark" (gas breakdown) process. Specifically, due to the sharp threshold
associated with the onset of absorption of laser energy, the spark (plasma)
when produced, ig typically much more energetic than the required ccitical
ignition energy.’ Furtherpore, there is usually a sizable blast wave
agssociated with the spark.9 As indicated in Figure 3b, the spark intensity is
sufficient to ignite mixtures at either extreme of equivalence ratios, and is
¢learly amuech greater than necessary for aear stoichiometric mistures.

Implicit in our discussions of multiphoton photochemical ignition of
82/02 and uz/uzo is the fact that the process Eirsg has to start with the
photoproduction of the oxygen atoms {n the ground “P state. la order to atady
this process, ve measured the laser power dependence for the production of the
tuo-photon excited oxygen stoms whose fluoroscence was detected at 777.5 na.’
the reason for doing this is that frequently such a power depandence study
will indicate how many photons are iavolved in the process. Experimenls ware
undertaken on flovws of 0, and N,0 respectively using a 200 mm focal langth
lens to avoid prohlems of wicroplasea formation. These aeasuraments indicated
that the photochamical formation of ground state oxygen atoms was a
multiphaton process for both 0, and N,0 tequiring tuo photons in each case,
{.a., for doth cascs va maasuved a four photon depeadence for the O-atom
anission., This is consistent with our proavious measucament for ',0,7 wherzas
far O, this quantity had not been wmeasured previously. The {mr Lication of
these findings to our ignitios studies will be Jiscussed ia the next section.

#. Hicroplasma Formation

During the course of our ignition esxperiments e began to take note of a
faint source of white light that emanuted from the laser focel volume
region. The intansity of this light was clearly vaveleagth dependent with the
brightest emission occuring at the vavelengths corresponding to the peaks of
the O-atom two-photon excitation, In ovder to study this behavior in greater
detail, we initiated both spectral and temporal studies of these wicroplasmas
for 0y and N,0 flovs using the 50 =a focal leagth leas.

Pigure 4a shows the excitation curve for 0O atom emission at 777.5 nw
wher : the O atoms wore themselvas penerated by the same laser focused into the
0, flow. A similar plot {Figure 4b) s also include. for nascent 0 atom two-
p%otou excitation in a stoichiocmetric H,/0; flame. Furthermore, tun ignition

12
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plots for fuel-lean and stoichiometric H,/0, mixtures ar- given in Figures 5a
and b, respectively, gith the differences ia the absolute vatue of the ILE
explained previously.” A number of similarities and differsnces can be seen
and discussed. In particular, the spectral width for O-atoms produced in a 0,
flow is much greater than for the nascent flame O-atoms. The substantial
spectral width in the 04 flow is, however, quite comparable to the ignition
profile in the fuel-lean case, while the spectral profile for the ignition of
a stoichiometric mixture is somewhat narrower and less efficient than the
fuel-lean case. The explanation for these observations is that the spectral
profile in the ignition case as well as in the case of the 0, flow, is not
really s representation of an atomic spectral property, but rather an
indication of a much more complex process, i.e., the formation of a
microplasma, which is inherently a highly nonlinear phenomenon. It is well-
established that the laser-produced microplasma (spark) needs seed electrons
in order to grow. In our case it finds them in the spectral wings of the two-
photon resonant, three-pnoton ionization of oxygen atoms. When these free
electrons are formed in the early part of the laser pulse, then the cascade
plasma formation mechanism is initiated and the plasma is ulcimatiéylgeated up
to a very high temperature by the inverse brehmsstrghlung effect.'™ Thus,
when this occurs, it is no lecager valid to consider the O-atom emission at
777.5 nm as & simple two-photon laser induced fluorescence process. It is
therefore not surprising that the gpectral behavior of the ignition of
premixed gases, a process sensitive to wicroplasma formation, should be
gimilar to that of the microplasma procicing precursor alone. This iz, in
fact, what is observed for the 0, flow and the fuel-lean reactive mixture in
Figures %a and 5s. The fact that the stoichiometric ignition curve shows &
narrower width 8- °- less efficient as well, ir explained by the fact that
the H, hampers ti. growth of the microplasma, presumably due to its high
ionization potential (I.P. for 0, = 12,063 e.v. end for Hy = 15.427 e.v.), and
*hus the plasma is relatively less inteanse. In search for other explanations
for these wide spectral widths, a wavelength dependence of the initial satep,
i.e,, multiphoton photorhemical production of atoms, should be considered. It
would be most unlikely, however, for asuch a dependence to yield the similar
type of spectral profile which is found for all three spin-orbit compouents
(Figure 2).

An additional parameter that was investigated is the temporal behavior of
the O-atom emission at 777.5 nm. Figure 6 shows the time-resolved emission
for scattered lagser light (Figure 6a), flame O-atoms {(Figure 6b), and O-atoms
produced in the U4 flow under conditions of microplasma formation (Figure 6¢).
Clearly the lifetime is much longer for the 0, flow case since it actually is
related to the liferime of the plasma with direct laser produced signals from
simple multiphoton photclysis and the two-photon excitation being a factor
only ia the leading edge of the trace,

The role of excited state O-atom chemistry has not bdeen explicitly
considered sc far. The fact that a microplasma exists in multiphoton
photochemical ignition implies that laser~populated excited state chemistry is
probably not important since the kinetics of the microplasma process would
appear to overtake other competing processes. Furthermore, we undertook a
series of ignition studies of H,/0, flows using longer focal length lenses
(100 mm, 150 mm, 200 mm) and found that the ILE required to ignite increased
congiderably and ignition did not occur without the formation of the
microplasmas. On the other hand, even though our experiments strongly

14
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implicate the microplasma formation process as a key element in ignition, we
cannot discount the possible importance of the photochemical formation of
radicals in the converging laser beam near the microplasma. These radicals
could very well be important in the early stages of ignition kernel growth,
but after the microplasma had decayed. Clearly, future experiments with high
speed photography, as well as in a closed bomb and with other appropriate
optical diagnostic tools, would be very helpful in promoting further
understanding of this phenomenon.

IV, CONCLUSION

Focused ultraviolet laser radiation is capable of activating reactive gas
mixtures through a new, previously unreported mechanism involving multiphoton
photochemistry, ionization, and wicroplasma formation. The major difference
between this work and previous work on laser spark formation is that
multiphoton photochemical ignition provides a more efficient and controllable
means for liberating the free electrons which then lead to the laser spark
formation process. Due to these virtues, this laser ignition phenomenon
should open up new opportunities in ignition studies. Also, since lasers
possess certain attractive characteristics such as beam propagation through
great distances, as well as excellent time-resolution, there may be new
opportunities for practical applications which require the activation of
reactive systems.
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