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~ coupled, research topics were posed, centering on the usage of Signed-Digit

(SD? arithmetic to solve mult/acc intensive signal processing tasks (streaming

data). Efficient implementations for signed-digit arithmetic were sought for

systolic arrays. Connectivity and control were investigated for innherent

. fault-tolerance. Lastly, multiple-valued logic for the Signed Binary Number

£ Representations (SBNR) was studied for both fault-tolerance and array

4, regularity. The dominant and focused application of this research was
efficient solutions of specific signal processing algorithms.
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SBNR DIGITAL SIGNAL PROCESSOR ARCHITECTURE
1.0 Scope of Work

"There is a great deal of innovation for new complex special-purpose
signal processing integrated circuits...often yielding well over a factor of a
thousand improvement over even the fastest general-purpose machines,”
Jonathan Allen, Fellow IEEE, in "Computer Architecture for Digital Signal
Processing,” Proc. IEEE, Volume 73, Number 5, pp. 852-973, May 1985.

The following research was proposed in a three-year period. This
constitutes significantly distinct efforts which complement the existing
efforts in current adaptive signal processor architecture research. Briefly,
these tasks comprised a study of non-conventional number system
implementations focusing on VLSI enhancements attributable to redundant number
systems. This increased practical knowledge should add impetus to many
potential signal processing tasks (target trackers, beamformers,
communication, receivers, spread spectrum). Three diverse, yet tightly
coupled, research topics were posed, centering on the usage of Signed-Digit
(SD) arithmetic to solve mult/acc intensive signal processing tasks (streaming
data). Efficient implementations for signed-digit arithmetic were sought for
systolic arrays. Connectivity and control were investigated for inherent
fault-tolerance. Lastly, multiple-valued 1logic for the_Signed Binary Number
Representations (SBNR) was studied for both fault-tolerance and—array
“fegularity. The dominant and focused application of +this research was
efficient solutions of specific signal processing algorithms.

Tl e .

2.0 Conventional Number Systems Drawbacks

e om

"t

The most serious objection to using the conventional number
representations (the sign magnitude, the radix complement and the diminished
radix complement representations) for a signal processor cell is that addition
in these representations cannot be truly parallel. A computing cell designed
for such representations cannot be easily connected to run in parallel with
identical cells in such a way that the microsteps involving additions can be
carried out in time independent of tne number of cells. For signed-digit
representations, the number of cells and the precision of the operands will
not affect tne time of such microsteps. The time needed will only depend on
the structure of an adder position.

o

Another convenience in designing arithmetic modules with signed digits
is that no special treatment is required for the most-significant position.
For radix complement or diminisned radix complement notation, special
attention is needed to handle the arithmetic shifts, the sign of multipliers
and/or the end-around carries. For the sign magnitude notation, tne sign of
the result of an addition or subtraction requires dedicated circuitry. All of
these little problems do not exist for the signed-digit notation. The shift
input for any arithmetic shifts is always zero. The indicator digit (the sign
digit) can be treated just like all other digits.

-
- ."A .

-

=

The serial mode of processing has to proceed from the least-significant
end to the most-significant end if the conventional number representations are
used. The overflow condition or tne leading zeros can be detected only after
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the last segment of the result has been generated. For the signed-digit
notations, serial operations can proceed from the most-significant end.
Processing may be stopped by an end symbol in the operands such as the space
zero discussed by Avizienis [1]. This can 1lead to a more efficient serial
processing procedure if the allowed precision is an excess of <the needed
precision. Since the most significant digits of the result can be generated
first, the overflow condition or the leading zeros can be detected at the
beginning of an operation. Result digits may be stored away in their final
positions without subsequent corrective shifts which is not necessarily
trivial in a multi-precision environment.

For the signed-digit notations, the basic arithmetic algorithms for each
digit position are essentially invariant with the position of the operand
digits. Each result digit is dependent only on the operand digits in a fixed
number of digit positions. Because of this the detection and the correction
of hardware errors can be independently implemented for each digit position as
suggested by Avizienis [1]. The "round-off" error resulting from simple
truncation is without bias. For a mantissa of m fractional digits, the
maximum absolute truncation error in the mantissa is less than one mantissa
bit!

Besides the conventional number representations, there are a few other
novel number representations which have advantages in special situations but
are not suitable for this variable precision module. Examples are the residue
number representation and the negative base representation. The residue
number system developed from 1linear congruences does not require carry
propagation. The multiplication of two numbers needs as little time as the
addition. The main difficulties of the residue number representation pertain
to the determination of the relative magnitudes of the two numbers and to the
division process. The negative base number system, on the other hand, is not
easily implemented in negative bases. The sign of a number in a negative base
depends on whether the most significant digit is an even or odd position.
This complicates the division process since the signs of the operands and the
signs of the intermediate results are essential in any division algorithm.

In short, the signed-digit systems provide two dimensions of freedom:
the number of processor modules and the precision of operands. These allow a
variable length operation to be practicable in a processor with a variable
number of digit positionsa. The signed-digit systems are natural choices for
the present module which 1is required to process operands with a variable
precision either by itself or in parallel with a variable number of identical
modules.

2.1 Task Summaries

1. We studied the impact of signed-digit number systems for signal
processor implementations. Specifically, we proposed to implement new ALU
structures within the context of recursive algorithms (LMS, LS, SVD, Givens
Rotations, ...) focusing on fault-tolerant architectures.

2. We analyzed at least four architectures: fully-parallel multiple
adder/mult. structures, distributed arithmetic structures, multiple operand
adder structures, and ROM/adder structures making maximal use of pipelining
and parallel mechanisms.
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3. We studied engineering trade-offs among conventional, 2's complement
arithmetic and signed-digit arithmetic to reduce pin count and develop more
functionally robust devices for signal processors. Multi-valued 1logic
circuits were considered.

2.2 Synopsis of Proposed Method

Classical techniques were applied to these tasks. Namely, VLSI
floorplans were produced and area/time figure of merits generated. Analytical
comparisons were then established using popular benchmarks as the LMS
algorithm and least-squares algorithms applied to signal processing of radar,
sonar, and communications tasks.,

2.3 Objectives Summary

We sought to demonstrate the effectiveness of each implementation
towards design goals such as speed, power, weight, and size. Additionally, we
intended to demonstrate the efficiencies of signed-digit implementations which
supposedly have minimal interconnects between adjacent digit positions. We
demonstrated the superior modular features of signed-digit for ALU's 1in
adaptive signal processors.

3.0 Identification and Significance of Opportunity

This focused architecture study exploited promising memory-oriented
structures common to distributed arithmetic organizations because the costly
multiply/accumulate cycle (typical in signal processing) reduces <to fast
shift/add cycles. Secondly, signed binary number representations (SBNR), a
subset of redundant number codes, were realized with higher information per
wire ratios, thus reducing intercell connections (a relatively high VLSI cost
in current conventional number systems). Thirdly, multi-valued-logic
(although slow) maps SBNR representation one-to-one. Hence, its effectiveness
was studied.

As a result, digital signal processing applications such as FFT's,
convolutions, Hartley transforms, beanforming, coding, communications
receivers, target <trackers, and antenna arrays stand to achieve lower power
requirements and higher microminiaturization levels. There is a great need
for ultra-fast FFT's in spread spectrum. Because no architecture research
operates in a vacuum, we collaborated with NCR, TRW, and RCA foundries to
eventually test/develop actual devices. NCR 1is particularly interested in
this study because its local R & D facility designs systolic array devices
(notably the NCR 45CG72, the GAPP 6x12 PE chip, for which Space Tech has been
writing signal processing algorithms). This is the one of the few available
true systolic array chips, and an excellent testbed for our studies.

[A difficulty in terminology now arises. In this research, we studied
redundant number systems (sometimes called redundart coding, SDNR, SBNR, and
mistakenly called negabinary and/or mirror numbers). We also investigated
fault-tolerant properties of this number system partially with redundant
circuits (here, “redundancy” refers to more than one circuit)., We hope the
reader can determine the meaning from its context.]
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3.1 Multi-Valued-Logic and Systolic Arrays

In recent papers by Hurst [2] and this Principal Investigator (see
Appendix), it is noted that multi-valued logic (MVL) may show great promise in
the future for VISI. At present, binary systems are facing interconnect
problems which appear to be insurmountable. Silicon areas devoted to
intrachip connections now consume twice the area of active logic elements on
the chip [3]. Array implementations whether data-flow, systolic, or otherwise
cause a severe escalation of interconnect area thus rendering lower siliccn
area efficiencies. Likewise, off chip connections are generating new and
complex problems for the board designer. These packaging solutions are not
without concomitant thermal and mechanical constraints. Such factors cause us
to reflect upon denser information content to interconnection ratios. A
solution using higher radix arithmetic is proposed and coupled with MVL
promises to relieve some of the silicon area inefficiencies when conventional
binary arithmetic is used. Even for tne regular architectures of systolic
arrays, Moraga [4] has shown the effectiveness of such MVL implementations.

3.2 Computational Model

R SR X M %N Wl 2 S

Our VISI model of computation to derive complexity measures was based on
the following generally accepted assumptions [5—7 :

2

y*r:gr;'

a. Wires have minimal widtn W=A(const); hence W
the area.

b. The area required to store one bit of information is A(W)2); the distance
between parallel wires is A(W).

c. Double layer metalization is allowed.

d. Wires run only horizontally and vertically.

e. Each transistor needs a minimal transition time, Y=A(k) (k is a constant),
to change its state. Thus Y is the unit execution time.

f. A binary signal propagates along a wire in time A(W). Any long wires of
length, L, require respective buffer/drivers with area A=A(W) x O(L).

is the unit of measure for

R W

3.3 Signed-Digit Number Representation

In the most general sense, a redundant number system allows both an
increase in the number of positive digits and negative digits as follows.

(n,m)
LRSS RxRx ... xR --> Q (1)

28 25

-
7

o1 85 eee 8_p =) T a4, (2)

S where tne digits d. € R : = {-rﬁ,-r1~1,...,O,1,...,r2-1,rz} (3)
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The representation described by Eqs. (1-3) is called redundant notation with
base 4. The above mapping of the number representation (or notation), w >
assigns to a sequence 8y 8_p of digits a value from a range Q where Q
may be an integer, the rea?s, or zero.

The general redundant representation does not lead to efficiencies in
algorithm computations or implementations. If subsequent restrictions (Sec
3.4) are placed upon the general redundant notation, very attractive
properties support efficient implementations. However, the basic properties
of Signed-Digit Number Representations (SDNR) are:

a. The radix, 4, is a positive integer.
b. The SDNR of the algebraic quantity, zero, is unique if
m=n, (d-1) > m and m-1 > d-1)/2 (4)
c. Transformations between conventional representations and SDNR exist.
d. Totally parallel addition/subtraction are possible.
e. Addition and subtraction of two numbers are free of serial propagations of
carry/borrows.
f. SDNR numbers are positionally weighted.
8+ The polarity of an SDNR number is given by the polarity of its most
significant non-zero digit.
h. No special treatment is needed for the most-significant position.
i. Addition/subtraction time is independent of operand length.

Avizienis [1], Atkins [8], Tung [9], Ercegovac [10], and Robertson [11]
have shown that SDNR can effectively operate in a general purpose digital
computer for the following reasons.

1. Redundancy introduced into the adder-subtracter structure reduces (but
does not entirely eliminate) carry-borrow propagation leading to rapid
multiplication.

2. Full precision comparison of the divisor and partial remainder in division
algorithms is not required because quotient digits can be determined from
relatively few high order bits.

3. Negation is a simple logical complementing of the sign bits (e.g., unlike
two's complement notation which requires an additional step, adding an LSB
"one"). As was seen in the ILLIAC III [8)], such negation expedites execution
of floating-point addition and subtraction. .

4. Variable 1lengtn operand formats and parallel vector arithmetic are
facilitated by basic properties of SDNR's. First and foremost, operations can
proceed from left-to-right (rather than right-to-left as required in 1's, 2's
complement representations). Secondly, if appropriately implemented, the
position of the least-significant digit need not be known for adders and
subtracters.

S. Because a signed-digit combination adder/subtracter needs no carry/borrow
in the LSD, the ALU can be partitioned into identical and cascadable single
digit adder/subtracters. VLSI implementations tend to become highly regular.
6. Multiplication with SDNR tends to automatically produce rounded results
(of great importance in computationally intensive signal processing
applications). In fact, Robertson, based on worx by Rohatsch [12], has shown
that the probability of obtaining a rounded result is 5/6.

7. SDNR allows unusual algorithms such as wired-in significant-digit
aritnmetic [13] and dual notation algorithms capable of accepting both SDNR
and conventional operands (1's, 2's complement) to produce SDHR results [14].
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A These observations lead to tne implementation of a universal Arithmetic
ot Building Element (ABE) capturing not only the preceding algorithms but also
‘l efficiently separating functions of logic designs and arithmetic design [15].
%‘ ‘ 8. Overflow detection can occur immediately following the production of most-
51 g significant result digits (unlike conventional notation).
ey .
Cu,
xg‘ 5 3.4 Efficient SDNR Realization
W
B Several implementations based on the SDNR have already been investigated
‘53 g! [11,16,17,18]. All of these, however, sought to satisfy general data
,?, ' processing requirements of a mainframe computer. In contrast, signal
m§k< . processing applications are generally multiplication/addition intensive. (Of
:Q&P N late, the wutility of distributed arithmetic [19,20,21] has shed new light on
by S bit-wise algorithms, also essentially partial product and accumulation
intensive.)
i 3?‘
(N An allowed digit set (-1,0,1) which is a subset of the SDNR is assumed.
B2 A redundant Signed Binary Number Representation (SBNR):
D) \".v
e i X Xpoq+++Xy ==> X; in (~1,0,1) (5)
§4} ) represents a number whose value is expressed as
W ~'5{
AN n
Pl i1
e sun %, . 2 ©)
A ﬁ i=1
B The importance of SBNR is as follows:
>
.&'. e
”_} e a. Conversion of wunsigned binary numbers to SBNR is unnecessary as they are
X ﬁ -~ identical.,
X b. Since a two's complement binary representation (ann_1...x1)2 expresses
' ‘; the number
g
’ﬁ# n-1 n-1 o1
A _ - i-
;l » '.I': an + sEm Xl-2 (7)
': ¥ '.'-‘ i=1
3 s
. T, .
o this same number can be expressed in SBNR by
7oA el E
-‘ . 'JI
e I SPP S (®)
A .
O because the sign bit X in 2's complement representation is considered to have
.J¢; ™ weight =2n=t, Hence, conversion from signed Dbinary 2's complement
= . representation to SBNR is simply an inversion of the sign bit alone!
0w R
.;u) }: Avizienis [1] further demonstrated that the SBNR (radix d=2 with digit
445: oA values -1,0,1) with a decreased redundancy requirement (invoking a two-step
: ’ﬁ addition by =allowing the propagation of <the transfer digit over two digital
fe o positions to +the left) requires only d+1 sum digits. In general, he showed
' that the lower limit of required redundancy of one digit depends on the number
s el of digital positions tne transfer digits propagate as follows.
.
-'I
)
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If GIVEN:
' a. no redundancy utilized
3 b. $;, sum digit {d values only}
,,: ﬁ THEN:
K 8, = f(z WVirZ54q0 02V ) (9)
o z; = ith adéen& &1glt

y; = ith augend digit

If, however, s, in {d+1 values}, then Eq. (9) becomes

si = f(zi,yi,zi+1 'yi*1,zi+2’yi+2) (10)

S

and if s, in {d+2 values or more}, then Eq. (9) becomes

s, = i(zl,y ,le,ylH) (11)

- i~
A NS

OBy &3

Using these observations, a single cell can implement the one digit
adder/subtracter if certain choices for a redundant digit are always made.
Specifically, let any redundant binary digit be represented by two bits X and
Xd as follows where 1 = -1,

w su >

m
- .

. i
LT, e S

Table 1. Redundant Digit Selection Rule

Redundant Representation
aj Digit Sign Digit
§ X Xs xd
N .
S 0 0 0
A g
fy
h 1 0 1

Invoking this TRIT realization for our SBNR further gsimplifies the cell
implementation without sacrificing the <transfer digit propagation advantage.
Using this subset allows six types of intermediate results in the first of two
addition steps as defined in Table 2,

!! T 1 1
3
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Table 2. Intermediate Addition Step Classes

' Next Lower Intermed.
e Type Augend Addend Position Carry Sum
:52; (x,) (y)  (xy_qv5_)  (ey) (s,)
e ﬁ 1 1 1 — 1 0
Bl :
;E‘.
Both are _
- g 1 0 positive 1 1
g; 2 At least one
5y 0 1 is negative 0 1
ol
B @ 3 0 0 -— 0 0
n @ 1 1T - 0 0
ok 4 _
1}; 1 1 -—- 0 0]
' @ _ Both are _
- 0] 1 positive 0 1
e {.‘j 5 _ At least one _
}: % 1 0 is negative 1 1
e - - _
i ii 6 1 1 -— 1 0
. The second step in an addition cycle adds s. and c. from the next lower
,}: , position to obtain a sum digit z; with no carry}borrow Zeneration required.
l.s'
h; §§ If we allow any redundant binary digit to be represented as X X. with
‘i the redundant digit selection rule as prescribed in Table 1, the ~Bdolean
equations which govern selection and addition per Table 2 produce two critical
s !i observations. The ith SBNR carries, C_ and C,, depend only upon the ith, i-1
Q: digits and i-1 carries. Hence, carry propagation extends only into the next
:Q. adjacent digit column. SBNR addition does not require full-word carry
ﬁ{ ga propagation as in binary addition. SBNR addition makes systolic array
p& implementations straightforward. Pre-acrambling bits or words is not
' required.
A -
ah gf A primitive cell suitable for large VLSI arrays and especially for
f@ adaptive signal processors must have few interconnections beyond its nearest
SIS neighbors and must have very simple controls. VLSI arrays effectively
Y ﬁé function in a data-flow manner. Fortunately, many signal processing
- > algorithms can be implemented with distributed or bit-serial arithmetic.
Y Mactaggart and Jack [22], and others have shown that bit-serial
Ay 3; implementations offer a highly regular desi and lower power consumption than
ﬁh P conventional arithmetic. One such cell 16] is depicted in Figure 1. This '

Y cell implements the basic addition/subtraction steps of Table 2 using the SBNR
" of (-1,0,1) and the redundant digit selection rule of Table 1.

&
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Figure 1. Primitive Bit-Serial Cell [16]

3.5 Matrix X Matrix Multiplication

Most of the computational effort expended by a digital signal processor
is devoted to matrix x matrix multiplication. Such matrix operations may be
either sums of word level products or sums of bit level products. We now know
that a strong relationship exista between word and bit level systolic arrays

23]. If we treat such computational problems from the outset as bit level
manipulations, fast area efficient VLSI arrays are possible [24,25]. In our
implementations, a systolic-like bit 1level approach 1is assumed where each
processing cell is a multiplier and gated full adder. However, the multiplier
and adder wutilize SBNR rather than 2's complement arithmetic for reasons
discussed earlier. '

-, S

L

Another advantage to SBNR is the absence of special circuitry and
algorithms to handle signal operands. In 2's complement arithmetic, the Baugh
Wooley algoritnm can be used (with an attendant high latency cost). In this
procedure, 2's complement words are treated as positive numbers if:

1. A fixed correction term 1is added to the result for each word level
multiplication.
2. All partial products normally with a negative weighting are complemented.

Two's complement implementations on a systolic array require a negative
weighting flag or a tag on the partial products which must propagate
vertically down through the array. Hence, another latch and control line is
required for each columnar path. Furtnermore, final addition of correction

B
4
A
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:
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terms requires an initialization of the accumulators in tne adder trees to a
value, which is generally
(2% - 2281y ¢ o (12)
In general, the number of systolic array cells required to multiply two

nxm matrices witn elements m bits long in & fully parallel fasnaion is a total
of

nx {2m + logzn) , (13)

cells where word growth is taken into account. However, McCanny and McWhirter
[26] have identified a procedure to halve the number of cells by removing
intermediate zero bits. The procedure is to permit only one set of words
within a given row to move at any time slot, keeping the other set of words
within the row at fixed sites. Then, in the next time slot, move the fixed
set of words and keep the previously moved set fixed. This alternation of
left/right moves can be maintained by latching bits using half the system

clock speeds. Successive rows in the array must move in anti-phase relative
to each other.

3.6 Device Redundancy and Fault-Tolerance

P

Any practical architectures designed today should be highly fault-
tolerant. Circuit redundancy and built-in-self-test are theoretically
achievable. Redundancy (of elements, not aritnmetic codes) does offer one
additional advantage to the chip builder. The system designer can run models
long before production of the new system starts. But, reliably high-yield
logic chips for these machines are often difficult to achieve because the
system designer always wants the very latest in technology. Redundancy in the
basic logic design can enhance the yield by a significant amount and greatly
reduce the wafer start requirements. When the yield increases and production
starts, this same redundancy is now available to improve reliability.

The model in Section 5.7 demonstrates the dependence of yield on the
nature of the defects and, together with gross yield estimates and the
appropriate nonredundant yield factor, it will serve as a reasonable starting
point to model actual yield data. The existence of complex local correlations
and some non-point-like defects will clearly complicate matters, slthough, in
many cases, Aa perturbative approach will be adequate to model the situation.
Understanding yield issues is important to architecture design.

X

1 4
"~

P |

3.7 Redundancy, Fault-Tolerance and Testing

!

Achieving high reliability in & complex device or system is a difficult

but critical task. The investigations for this project have included a
careful consideration of reliability and testability considerations. It is
now challenging for manufacturers to maintain a compound growth rate in per-
circuit reliability of 60%. Pagst methods are no longer valid. Tne
verification of machine reliability due to electronic components poses a
significant challenge to tne future, For example, consider two realistic
examples. Assume a computer with 1,000 circuits/chip. Suppose that a
manufacturer builis 1,000 macnines to acnhieve 5CK user power-on hours per

§§ machine a%t the usua. !,C0C nour MTTF for tne electronics. This corresponds to
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a 50 PPM cumulative fraction fail for the chips. To verify this failure rate
at a 90 percent confidence level, a manufacturer would have to teat 80,000
chips to allow for one failure during testing. For an overall production,
this represents eight percent of a production run. Historical trends indicate
that the overall reliability rate improvement is approximately 2X each year.
By 1994, if we consider the constraints of the first example, the reliability
must be theoretically improved by 1,000 times. Verifying reliability to thne
! same confidence level would require 80M chips, or 80 times the number of the
actual production run. Clearly, reliability, testing, and redundancy are
intimately coupled.

g il mm R

..

The following aspects of reliability were considered:

1+« A major problem with all complex, newly designed devices which use a
sufficiently large chip area is poor yield. The yield can be significantly
improved by using redundancy. During the final manufacturing stages, devices
with only & few "bad"” cells can be reconfigured to leave out bad cells.

AT I

2. A similar approach for fault-tolerance can be used for hard failures
in the field. In this case, reconfiguration has to be dynamic. This means
that after a cell had been detected to be faulty, the array configuration has
“ to be altered under program control.

A
2

T
»

-

3. To study the effectiveness of fault-tolerance and for optimizing
such designs, estimation of hard and soft failure rates is required. Because

o the handling strategies can be different, hard and soft failures often have to
ﬁi be considered separately. Preliminary estimates are based on empirical

Wy techniques. Such estimates are not very accurate, but are still indispensable

:' “ when evaluating different design options.

. 2y

fh Ry Consideration of soft failures is especially important for Multi-Valued

‘ﬁk Logic (MVL) devices. Because the voltage range is divided into more than two
!z regions, it will take much less energy (from electromagnetic noise or alpha-

v particles, etc.) to cause an extraneous transition.

4. Testing, both by the manufacturer and in the field, is an integral
part of reliability strategy. It is now recognized that testing must be
considered during <the design pnase itself. Two aspects of testing will be
considered. Design-For-Testability (DFT) is to be used for easier and faster

iy
e e
o)

R !; test-pattern generation and applications. The other is Built-In-Self-Test
i A (BIST), which allows a system to exercise itself and verify correctly
:r operating hardware.

' | .

W ﬁ' 4.0 Technical Objectives

Succinctly, the technical objectives of this effort were:

. '
A
‘e

&
MV
<

a. Determine intrinsic properties of SBNR embedded as PE's in a systolic
array via distributed arithmetic cells. Capitalize on the inherent modular
properties of residue numbers to be implemented in SBNR engines.

j &

AN b. Establish highly modularized architectures using SBNR arithmetic engines
to increase information per wire ratios.
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c. Determine engineering trade-offs of power, weight, and size for SBNR array
architectures to help a system designer and silicon floorplanner lay out
competitive VLSI devices.

4.1 Higher Radix Implementations

We considered at least one implementation of higher radix aritametic,
namely ternary, which when viewed as a redundant or signed-digit number system
held promise for signal processing applications in which division-sparse
operations occur. We studied signed-digit number representations and basic
properties attractive to signal processing applications which manipulate
sequential data streams.

4.2 Systolic Array PE

We identified a realization of TRITS (ternary digits) which serves as
the primitive VISI cell. The regular nature of this cell enhances systolic
array architectures. Multiple-valued encoding affords us the opportunity to
reduce ripple-through carries. Ternary arithmetic may have a balanced as well
a3 an unbalanced coding. Balanced encoding requires less gates when compared
to binary and unbalanced encodings. Unfortunately, logic delay increases
[27]. However, in the TRIT realizations utilized herein, a balanced encoding

coupled with redundancy in the encoding improves both logic delay and gate
count.

This Principal Investigator has considerable design experience with
systolic array PE's. He has designed control units for the first systolic
array (NCR 45CG72) and generated several signal processing algorithms for it
in conjunction with NCR (including LMS, LS and SVD for adaptive beamformer
applications). From the experiences, a basis for new and faster circuits can
be identified. One such candidate, SBNR PE suitable for a systolic array, is
shown in Figure 2. This is a derivative of tne NCR cell with several critical
differences. First, additional latches and data paths exist. Second, RAM is
much larger at each cell. Third, internal cell pipelining is used to speed
effective instruction execution (not easily shown in a block diagram).
Fourth, the cell implements signed-digit arithmetic with fewer intracell
connections. Lastly, this single cell can do multiply, add, and subtract in
fewer steps. A systolic array module (SAM) of this PE is depicted in the
floorplan of Figure 3.

Lt W
e — |
[ 1) R ; ; | S— V1]
S .
L. .
|

FPigure 2. An SBNR Data Flow Cell
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4.3 Signal Processing Algorithm

There is an intimate coupling between word and bit level matrix x matrix
multiplication. A systolic implementation of comm.n algorithms invoking a
digit subset of redundant number representations, Signed Binary Number
Representations (SBNR) is easily realized with TRIT MVL. A significant
property of redundant number systems supports the production of left-to-right
(most-sigrificant-digit to least-significant-digit) algorithms. Sips [28] has
demonstrated the utility of left-to-right algorithms for a general purpose
computer. We found this RTL property extremely beneficial for the ADC and DAC
interface.

We analyzed appropriate ADC and DAC SBNR realizations. It is important
to note that the realizations directly carry over from a property of redundant
numbers. This is vital for real-time signal processing (which 1is
predominantly analog sourced). -

4.4 Fault-Tolerant Properties

It is important to identify PE's that are highly regular, have minimal
I1/0 pinout requirements, have minimal gate count, inter- and intra-circuit
connectivities and low power requirements that support a high degree of fault-
tolerance. VISI technologists are fast developing wafer scale-integration. A
major problem with such assemblies is that some cells are likely to be
defective. Hence, a major objective was to determine optimal reconfigurable
networks "around” such faults for our SBNR PE systolic arrays. The procedure
¥as to minimize the length of the longest wire in the system, thus minimizing
the communication time between cells. Channel width was also a major
consideration. The procedure assumed a probabilistic model of cell failure
since Leighton and Leiserson [29] have demonstrated many positive results. In
many ways this problem is similar to the graph-theoretic models used in the
bottleneck traveling salesman problem. Leiserson has already derived bounds
on wire length and channel width for two-dimensional arrays. We compared our
results with these bounds. Leiserson nicely provides us witn results [293
that show there is a simple, linear-time algorithm to connect most of the live
cells on an N-cell wafer into a linear array using wires of unit length 1,2,
or 3 channels of unit width 2.

5.0 Research Metnodology
5.1 Optimized Fault-Tolerant Designs

A four-step procedure is used from the top-level down. At the first and
highest step, use of an SBNR allows parallel and modularized operation of MVL

aritnhmetic processors for fast execution of full precision, fixed-point
arithmetic.

Second, a memory-intensive arithmetic algcrithm 18 employel wni:n
capitalizes on tne snort internal word lengins of SBNR processors. RCM-dasel
structures have been shown by Peled and Liu ~303 to be extremely effective for
FIR filters. Tnis PI has made the same discovery for adaptive filters us:i:ng
combinations of ROM's and RAM's. Third, memory accesses within processors can
be pipelined. Fourth, <ransistor-level simulation too.s can be employed to2
design the nigh-speei memory «cirzuits. The capability of 1dentifying fa:iled
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processor bits and maintaining correct DSP output in the presence of errors
arises from our use of an extensible algorithm for incorporating redundant
processor chips.

| =R B

'}i o 5.1.1 Reliability Models

I" By

:0 éi Reliability models to evaluate computer systems must estimate multiple

t system parameters (e.g., failure rate). The quality of the prediction model
QF rests on the estimates of its input parameters. In practice, extensive

» IR testing and burn-in procedures produce a best point estimate with measures of

:5‘ dispersion. In a crude way, we_employ only a point estimate; e.g., the mean

or an upper or lower bound [31]. Depending on the dispersion in its input
parameters, a reliability estimate may or may not be acceptable. For many
types of computer components, where reliability is high and failures are low,
the uncertainty involved in determining a parameter in question such as the

.
. - -
- -

&,

v gﬁ failure rate may Dbe large. A ultrareliability system necessitates
,@ o investigating the ensuing uncertainty in system reliability. Unfortunately,
(X this problem has not been well studied. Few available reliability evaluation

programs offer such sensitivity estimates.

- e
-

Our model was as follows (see [32]). Assume that system lifetimes are
exponentially distributed. To consider the dispersion in parameter
estimation, stipulate tnat the failure rate L is a random variable. It is
) doubly stochastic [33]. The system reliability at a givem time, t, also
] referred to here as time point reliadbility, is then a random variable R (%)
[with a particular value rL(t)], with the distribution in L. The variance of
R/ (t) is crude but an effective dispersion measure to the random nature of L.
We now can exploit the model with variations in failure rate for useful

properties of exponential distributions. Use two approaches, an exact model

' -
- e
m iJ;4

L]
‘i zi based on the complete distribution of L and an approximation of employs only
g Rl tne first and second parameter distribution moments.
%
!ﬁ Iyer [32] has shown feasible exact and approximate models. The exact
model is based on a gamma distribution and 1is easily extended to fault-
. tolerant redundancy configurations, such as TMR, by substituting the
}' o appropriate value for system reliability. Iyer develops first and second
"t h; moments for time point reliabilities.
5 5.2 Hypergrapn Models for Fault-Tolerant Systolic Arrays
“. ~
$~ _ We proposed and used a graph theoretic procedure similaer to [34] to
.ﬂ measure tne VLSI effectiveness of our design strategy by the area required to
:% ) lay out the fault-tglerant processor arrays. We repeat the completeness here
. in tne procedure in L34]. Three design strategies are described briefly.
o '. Embed the desired array in a simple graph to model tecnniques that build a
P 5: fault-tolerant array. Each PE must contain a robust switching mechanism to
e configure the good PE's into an array of the desired structure using nearest-
. neignbor coannections.
f 2. Embed the desired array in a grapn with nultipoint edges to build a robus:

"

array by running buses adjacent to the PE's and interconnecting the fault-free
PE's 1nto tne bank of buses [say, via laser-welding,. Use eacn array link via
a Jjistinct bus.
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3. Embed the desired array into a ‘"switched" graph, whose vertices are
partitioned into PE vertices ard switch vertices. Try to realize inter-PE
connections through a switching network external to the PE's thereby allowing
one to bypass faulty PE's. In comparison studies by [35,36], no single design
strategy as yet appears to be uniformly superior to any other.

Because of the multi-faceted nature, a firm understanding of all thrge
strategies is vital. Methods 1 and 3 have been deepl studied [36-43;.
Method 2 was proposed [37] and tangentially studied in [36 .

5.2.1 The Design Strategy

As in [34], we followed the same procedures. Assume a target array
structure. Construct a fault-tolerant array to simulate this structure. PE's
are represented by squares, and both wires and buses are represented by lines
as in Figure 4 [34]. Now construct some number of identical PE's that are
precisely the PE's that one would design for the ideal array, with the same
I1/0 interfaces. Next, lay the PE's out in a (logical, if not physical) row,
with lines coming out of their I/0 ports running perpendicular to the row of
PE's. Then run some number of buses above the row of PE's. We are told (via
some unspecified mechanism) which of the PE's are faulty and which are fault-
free. Now use laser welding to connect I/0 lines to buses in a way that
configures the fault-free PE's into an array of the desired structure.

Use the following area definition of [34]
area{array) = (PE-number) X (PE-width) X (Bus-depth)

Let Bus-depth be the maximum number of buses passing over any point in the
layout. (Ignore the contribution of the separate PE's.)

A solution array has two components: specification of the structure of
the array and of the configuration procedure. The procedure is an assignment
operation mapping ideal-array PE's onto actual PE's, as well as a mapping of
ideal-array edges/communication links to the buses that will simulate them.

5.3 Comparison of Error Detecting Codes

Several techniques to obtain fault tolerance through error detection
have been studied. Most of these schemes can be categorized as being hardware
redundant or time redundant. The hardware redundant systems (for example,
Triple Modular Redundancy [44] and quadded 1logic [45]) typically require
arithmetic to be computed in more than one processor. A checker compares tne
results to detect errors. These schemes require a factor of at least 2 or 3
in hardware redundancy.

The time redundant scheme requires that each result be calculated twice,
with the two answers compared to find errors. Two examples of this approach
are alternating logic [46] and recomputing with shifted operands [47]. In the
alternating logic technique, the result is recomputed from inverted operands
and should be the inverse of the original result. Recomputing with shifted
operands verifies that, when the operands are shifted, the result contains a
snifted version of the original bit pattern. Both of these systems are
effective primarily for stuck-at faults.
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A more general approach than hardware or time redundancy is that of
algorithm-based fault-tolerance (information redundancy) [48]. The central
idea in this technique is that the data are encoded at the system level in the
fcrm of some error-correcting or error-detecting code, and the algorithms are
designed to operate on encoded input data and produce encoded output data.
The result is real-time error detection without a duplication of arithmetic
processors or a doubled processing cycle time. The primary entrants in tnis
category are the low-cost residue and inverse residue codes [49.50,51], the
checksum code [48,52,53], and tne weighted checksum code [54].

5.3.1 Residue Codes

Residue encoding is based on finding the remainder of a sum of operand
digits evaluated modulo N, where N is a predetermined Dbase. The Dbinary
operand is broken into sections of a bits; each section is considered a
digit. The base of the operand is found from the digit size: N = 2%-1. For
a k-b%1t number, all k/a digits are added together, and the sum is evaluated
mod N. The remainder of this calculation is the residue code for tne
operand. The simple residue code will detect a fault in one bit, even after a
repetitive calculation 1like multiplication. It will also detect an error if
up to a consecutive bits are faulty [49].

Avizienis devised a scheme in which two or more residue digits are used
to detect and then 1locate an error [49]. Furthermore, the digits also check
each other--if only one residue digit indicates an error, then that residue is
incorrect--only if both show an error will a fault in the number be corrected.

5311 Signed-Digit Residue Code

The residue code has been extended ¢to include numbers expressed in
signed-digit number representation [50]. When a single digit of an SDNR
number is faulty, any number of (not necessarily consecutive) bits within that
digit may bYe in error, and the fault will still be detected. The only
exceptions to this rule are errors which add or subtract the base N from tne
digit. For example, if a=4, and the signed digit is changed from (9) to (-
6), the error will go undetected. However, only a very specific change in the
bit pattern will camouflage the fault, so detection is highly probable.
Furthermore, if the number is encoded in signed binary number representation,
more bits must be changed, and they must be changed to specific values of (1,
0,-1) to hide the error. The combination of SBNR and residue
encoding thus appears to have great fault-tolerance potential.

5.3.2 Checksum Codes

Unlike the research into residue codes, Abraham's studies of checksums
have been directed specifically at matrix encoding [48]. The checksums
approach attaches one or more checksums to the end of a row or column of a
matrix. These numbers then participate in all calculations as if they were
just data. The net effect on a systolic processor is simply an increase in
the size of each dimension of one or two rows. No special algorithms are
needed to take care of the error codea. Unfortunately, cnhnecksum coding was
introduced in the context of floating point computers. Fixed-point
calculations [like tnose prevalent in nigh-speed dedicated signal processors,




require a slightly more difficult coding scheme, because a full-precision

cnecksum would overflow a fixed-point system. In situations where the
. implementation depends on the number system, this report assumes fixed-point
operations.
is 5.3.2.1 Unweighted Checksums
¥
Y Y

In the simplest checksum code, an unweighted checksum is formed by

adding together all elements in a row or column of a matrix. Overflow bits

!! from this addition are ignored. Depending on the applications, just row or

column encoding may be sufficient, or both may be needed. The unweighted

checksum will detect a single error in the row or column. It is effective in

1 LU decomposition, matrix inversion, matrix-vector multiplication, matrix-
ég scalar multiplication and singular value decomposition [48] {53].

5+:3.2.2 Weighted Checksums

gg To achieve error correcting capability, the checksum must positionally
weight the addends. The result is the weighted checksum [54]. In this system
as each element of a vector within the matrix is multiplied by a different
weighting factor before being added to form the checksum. The simplest
weighting scheme consigts of powers of 2--tne elements e(i) would be
» multiplied by weight 21 (left-shifted i bit positions), for example. For a
,Q fixed-point system with numbers of length k bits, the sum would quickly
* overflow, so it is added modulo a specific base. Unlike the residue c?de, the
” base for weighted checksums is the largest prime number less than 2k+ . For
i 16-bit systems, this number is 131 059, and for 32-bit, it is 8 589 934 583.

To allow correction of errors, the weighted checksum vector must be

7:, augmented with a vector of unweighted checksums. Thus, as witsh residue

[1 encoding, if one checksum detects an error, the checksum is incorrect; if they
both do, the error in the data may be located and corrected. The weighted
checksums technique can correct errors in matrix multiplication with a matrix,

B vector or scalar, matrix inversion, and LU decomposition (by Gaussian
elimination).

38 5.3.3 Comparison of Fault-Tolerant Implementations

To compute any of the error-detecting codes described requires adder

ﬂ' trees to sum tne digits or elements. In residue encoding, an end-around-carry

\ﬁ is generated within the adders. In checksum encoding, the overflow carries

are thrown away. In weighted checksum encoding, each level of addition is

performed modulo the prime base. Thus, for residue and unweighted checksum,

aa the areas are almost the same for a length-n column of additions--0(n)--and

the add time 1is identical--0(log,n). For weighted checksum, each adder must

compare its sum to the base, and subtract the base if necessary. The adder

g} can also be wused for this subtraction, so the area remains O(n), but the
b: double add cycle means that the relative time is O(2logzn).

- In an nxn matrix with row Snd column encoding, the area-time complexity
ii for the first two cases is O0Ofn log.n). For the weighted checksums, 1t 1is
0(2n“log Keep in mind that for error correcting capability, the A-T

a).
product gf the residue is doubled, while tnose of the weighted and unweigh<ted
A cnecksums are added :ogether.

S SRR
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Another consideration is the ease with which algorithms may be adapted
to allow fault-tolerance. In the case of residue encoding, the residue digits

ke i o= R

¥ must be handled separately, which increases algorithm complexity. The
: checksums system, however, merely increases slightly the size of the input to
A the algorithm, with no special treatment given the checksums themselves.
"
"
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¢ i; Figure 4. The Fault-Tolerant Line Hypergraph [34]
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5.4 Systolic Array PE Study

* ;f Systolic arrays may be configured as shown in Figure 4. They include
} b rectangular, hexagonal, or linear systolic arrays. The most likely use for
? each configuration is indicated. In the application domain of beamformers for
K . towed arrays (for example) it is suggested by many researchers that a

a triangular array is preferable, Unfortunately. all currently available
¥ systolic arrays including the NCR GAPP (Geometric Arithmetic Parallel
2 . Processor), incorporating 72 PE's are configurable in rectilinear (6 X 12

A . . . . . .
o of units) not triangular fashion. Hence, a triangular array configuration
K Y although optimal from an algorithmic standpoint (e.g., recursive LS) does not

efficiently utilize commercial arrays.

MATRIX-VECTOR MULTIPLICATION
SOLUTION OF TRIANGULAR LINEAR SYSTEMS

w3

sl DENSE MATRIX-MATRIX
JEEE S MULTIPLICATION/ADDITION

LEAST SQUARES SOLUTION VIA
OATHOGONAL TRIANGULARIZATION

,51

1 N

N LU FACTORIZATION OF
e MULTIPLICATION-ADOITION ORIZATION

RS OF BANDED MATRICES SANOED

),

- Figure 5. Systolic Array Solutions
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ag - Our methodology was to map & class of algorithms onto & non-existing
i machine. To do so, we must first specify the design constraints such as
i circuit switching speed, propagation delay throughput, maximum number of
uh‘ gates, etc. Next, we must bound the algorithm classes. Within each class we
2. . should first determine the greatest common denominator or building block. In
N E} adaptive signal processors, the inner product processor appears to be a
5' O suitable common denominator and starting point. Our strategy then 1is to
My derive near optimal algorithms invoking this Dbasic signal processing
operation, and <then map the fast algorithms onto new VISI c¢ircuits. of
da g% course, not every algorithm may be based on this sole operation.

.. The methodology 1is a <two-step process. In the first step, we want %o
e obtain fast adaptive signal processing algorithms. Here we will bound the
i} problem to study recursive and non-recursive adaptive algorithms. During tnis
step, we will be sensitive to the computational processes which are expensive,
bt} such as matrix manipulations. Realizing that recursive algorithms contain
» basic computational tasks, identical to non-recursive algorithms, we will
begin with non-recursive algorithms. Here, we want to identify inherent
parallelism possible with adaptive signal processing algorithms.
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The inherent oparallel nature of an algorithm is then displayed by
mapping the initial adaptive algorithm into &a sequential aset of tasks
<, (commonly called "straight-line" algorithms) to be represented by a directed
- acyclic flow graph (DAG), each node being a task (multiply, divide, etc.) and
each edge or vertex representing a data dependency relation. That is,
briefly, predecessor nodes compute data needed by their successor nodes. From
this grapnical setting, we can reduce the longest or critical path by hand (if
obvious) or by computer (using well-knmown graph reduction algorithms, c.f.
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5} . Chapter 6 of [55]). Any concurrency so identified will provide us with speed-
R~ jg up via parallelism. One method to obtain concurrency is to use the adjacency
:‘: " matrix of the flowgraph to compute the earliest and latest precedence
3.- relationships. Map these onto a resource matrix (machine environment such as
) l: number of adders, subtracters, multipliers, convolvers, etc.) to identify
v " concurrency. Another method is the divide-and-conquer scheme proved
'2 B successfully in polynomial multiplication.
o ;2 To date, the complexity of most signal processing algorithms has been
?’ A estimated from their number of multiplications and sometimes from their number
£ of additions. This 1is not always prudent. In fact, we should say =an
A 5% algorithm is deemed to be efficient if its final implemented form takes
r~; v minimal time. The execution time consists of data snuffling operations as
L well as arithmetic operationsa. Hence, algorithms with fewer mathematical
$j - operations alone may not always be the best in its final implemented form.
2 te Fast algorithms identified in this step will most likely be modified later to
By - insure optimal implementation. However, these initial results will serve as a
" good starting ©point. The best approach seems to be to first design an
-F algorithm which is efficient in terms of the number of mathematical
i} operations, and then modify it to take full advantage of VLSI characteristics.
N As Lamagna |[56] has pointed out, "The straight-line algorithm paradign
2 C; neglects the cost of the overhead associated with loop control and testing
e operations, as well as the time required to fatcn and store information inside
' . a computer's memory. These costs can vary greatly from computer to computer
;i :3 and will not even be the same for two programming language compilers
% ro
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implemented on the same machine. Fortunately, the overall times of tne
algorithms studied are driven primarily by the underlying structure of the
arithmetic operations performed, rather than such overhead considerations, so
the results obtained are generally accurate to within a small constant factor
for actual implementations.”

A second step is to organize the VLSI for the fast adaptive algorithms.
One basic building block is the inner product processor. Rectangular and
hexagonal geometries can be incorporated. We intend to organize the inner
product processor as efficiently as possible in array structures in order to
capture the inherent pipelining, parallelism, and recursive nature of the
adaptive signal algorithms. We anticipate that cyclic convolution and a
cyclic convolver may be quite beneficial in casting the algorithms into VLSI.

The basic multiplication step itself was examined. The employment of
distributed arithmetic implementation [30,57,58] successful for fixed-point
digital filters was evaluated on an area x time basis for adaptive algorithms.
Because adaptive algorithms, like filter algorithms, are essentially finite
state machines, the multiplication and addition steps can be replaced by a
partial table 1look-up of precalculated products. The analysis is, then, a
trade-off between multipliers and memory space on the chip. This comparative
analysis is not trivial since the recursive nature of IIR adaptive algorithms
forces us to compute an entire result before reloading data registers
(temporary scratcnpad space) to generate the next table look-up entry.
However, some pipelining is possible and can be exploited as much as possible.

A tentative method to wire up the algorithms is to use the “evaluation-
interpolation"” method successfully employed in [59] to obtain (area X time)
optimal convolvers by observing the necessary algebraic steps and polynomial
evaluations that can be cast directly into a parallel computational process.
These algebraic steps, as organized, nicely prescribe optimal VLSI structures.
Computational tasks can be divided into those circuits which are amenable to
regular and simple interconnections and those which are not. Matrix
multiplication tasks obviously can be regularized. ADC, DAC, and other analog
computational tasks are not amenable to regular structures as we presently
know them. The control circuits (such as found in firmware-oriented
architectures) are amenable to regular implementations.

5.5 Error Tolerant Design with Multi-Valued Logic (MVL) Circuits

In this research, the effectiveness of MVL circuits realizing signed
binary number arithmetic must be considered with respect to the inherent
fault-tolerance of MVL circuits. Polylogic logic circuits, of which MVL is
one case, have been studied by Porter [60] for intrinsic error tolerance. Our
work plan is to wuse his technique to prove out low rejection rate and/or
reduced component strirgency requirements. Here, logic circuit failures (such
as "stuck-at faults”) and the effects of resistor, capacitor, and inductor
error values (necessary for hybrid signal processors which incorporate ADC's
and DAC's) should be studied. Note tnat ©possibly small fluctuations in
component values are not appropriate for binary circuits; however, they are
quite relevant and natural in MVL. Polylogic families include binary, multi-
value, and threshold logic.
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“ The procedure is to define a finite alphabet (R) and identify the set of
all possible values of switching tuplets (RP). Then, multilinear mappings
onto the finite R are sought which eventually produce polynomic realizations
of tne desired switching function. The major question is, "Does any mapping

- -
I

:‘ .- exist, if component errors are modeled and included in our polylogic MVL
s: }Q subset?" Porter has already shown that such mappings exist and, in fact,
:' N several do. Hence, a circuit designer can choose among the more optimal
N circuits, performing engineering trade-offs as needed. This 1is the

flexibility possible 1in this research to obtain fault-tolerant MVL circuits
that are optimal in tne sense of circuit complexity, power, and speed.
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y 5.6 Design for Testability
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Efficient test generation for logic circuits is a matter of prime
importance [61-63]. Yet most major fault detection problems are to be NP-
complete, generally. MVL is no exception. Hence, design for testability is
necessary. Built-In-Test (BIT) circuits are highly desired. The study by
Fujiwara and Toida [64] can be used to compare our fault-tolerant "testable”
a W2 designs with their benchmark complexities. They also provided clever
h g procedures to insert a few additional test-points into an arbitrary circuit to
. make it easily testable. Heavy use of PLA's is made. Their studies show that
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I some circuits (linear circuits, decoders, parallel adders, ...) can be
VIS "tested” in polynomial time.
Y | )
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5.7 Redundancy for Increased Yield

‘5

i Typically, for a new and complex device, most of the chips from a
manufacturing batch contain defects. The yield is quite low. This can affect
both cost and reliability.

S

During the fabrication process, defects that can result in faults can
occur at any time during processing. For a chip at N circuits, there will be
'5 1. fault-causing defects introduced during fabrication process step i. In
5 all we can expect to find L= I 1_; fault-causing defects (14). If all these
defects are Poisson distributed, then the yield will be given by

* w

' Y = b (14)

oy b

assuming random point defects are our only yield detractors. In general,
N §; fault-causing defects will not be randomly distributed but will be clustered.
f i Furtnermore, the clustering nature will vary from step to step. Nonetheless,
i the assumption of gamma distributed defects, where the same clustering
g N parameter, a, characterizes all the defects, leads to the following yield
¥, -: formula (15) that has been successfully used to model a large body of data.
. Y = (1 +1,/a)7" (15)
L] h_

& s where L, is the average number of fault-causing defects per chip. In the
N limit that a--> oo , (15) reduces to (14). 1In actual situations, a is
. typically in the range 1/2 - 4, and the yield can be appreciably better than
* ii predicted by (14). In tne case of redundant designs as may be required for
" Wafer Scale Integration (WSI), the calculation of yield becomes more complex,
:’ e and the role of <clustering and correlation of defects becomes even more
v ':.‘: important.
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Yield projections are a primary consideration in wafer scale
integration. Ketchen [65] develops a point defect yield model for a two-way
s redundancy scheme appropriate for random logic. The model assumes that the
fault-causing defects are randomly distributed locally but that the defect
density can vary across a wafer as well as from one wafer to another. Tne
importance of the distinction Dbetween on-wafer and wafer-to-wafer variations
in defect density is demonstrated. This model demonstrates tne dependence of
yield on the nature of the defects, and, together with gross yield estimates
and the appropriate nonredundant yield factor, it will serve as a good
starting point to model actual yield data. The existence of complex local
correlations and some non-point-like detects will clearly complicate matters;
although, in many cases, a perturbative approach is adequate to model the
situation.

-,-
-~ -

h ! %

=

ZF.
e <A

Redundancy can be used to improve the yield significantly. Such methods
are commonly wused for memory chips. Faulty components are left out of final
interconnection. The strategies used include eliminating affected row and
column, or eliminating the affected half. A processor array can be
reconfigured in more complex arrays [66-68]. To obtain an array of specified
dimensions, one would then start with a larger and thus redundant array.
Redundancy does not always increase the yield, because the larger chip area
required tends to decrease the yield. Using Koren and Breuer's approach [66],
expressions for yields for both simple and fault-tolerant arrays can be
obtained, and optimal designs which maximize yield can be obtained. Faults
affecting both PE's and interconnections have to be considered.
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5.8 Fault-Tolerance for Higher Reliability

o«

ﬂ
Dynamic reconfiguration can be used to overcome hard faults occurring in

amanze
‘a"

= the field. Before any PE's are removed from active configuration, it would be
oy necessary to detect such failures. To control error propagation, such
!5 detection should have low latency (time between error occurrence and externmal
o 3 fault manifestation). For concurrent testing, duplication is the most
;'- effective technique; however, it can significantly reduce yield. It has been

2

shown that some self-checking with 1limited redundancy can significantly

}‘,‘ bt improve yield [66].

Dynamic reconfiguration in processor arrays can be done in different
B 3! ways [67]. Because reconfiguration results in fewer PE's, there is sonme
LN degradation in performance. The effectiveness of different schemes depends on
W efficiency of partitioning of algorithms for execution on reduced size arrays.
~"_ ~ Trade-offs between reconfiguration strategies must consider optimizing,
e jb reliability, coverage, performability [69] and computational availability.
§§ Processor arrays can support a special form of fault-tolerance. in
d‘ real-time applications, successive data points can exhibit considerable
3$ W correlation. A sudden and significant change in a point array may suggest the

onset of a soft (temporary) or hard fault. Correctness of the value can be
confirmed by recomputation (which is a form of time redundancy); however, tre
same faulty hardware, because of a hard or a long soft fault, is likely to

-

KK generate the same incorrect result. However, 1in a processed array,
s. a recomputation can be done by mapping the process to a shifted set of PE's. In
sb' ﬁg this case, a faulty PE will almost always generate a different result.
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' A considerable degree of fault-tolerance can be achieved by encoding
l information. Kuang and Abraham have doscribed a scheme for matrix

N multiplication with processor arrays whicn requires only limited hardware and

time redundancy [52]. Suitable SDNR arrays are available.

%
s

Y 5.9 Hard/Soft Errors

Reliability with respect to hard and soft faults will be considered
separately. While methods exist which use the same measure to include effects
o of both types of faults, such a measure can be hard to interpret.

-~
(3
- -

For binary devices, the failure rate 1is generally estimated by using
techniques in MIL-HDBK 217 and its wupdates. The fact that the learning and
the quality factors alone can change the result drastically suggests that

)
e -
"
559

K SR exact results can not be expected. By characterizing L (see Section 5.1.1)
o itself by a statistical distribution, these limitations can be taken into

. account.

'.'

It can be expected that the failure rate data for binary devices 1is not
directly applicable to ternary devices. The physical degradation, that will
- not cause a logical failure in a binary device, may cause a failure in a

o
[ 2

K }: ternary device. On the other hand, a ternary device uses fewer logical nodes,
! g interconnections and specialty pins, which can significantly enhance
'$$ reliability. How the available data on failure rates for binary devices can
\':f. i be adapted for ternary devices will be a problem to be examined.
. The alpha-particles have been a major cause of soft failures. However,
25- - now they can be very effectively combated by proper cnoice of encapsulating
SN material and by coating. Also, the new CHMOS technology is remarkably robust
%; oz against alpha-particles. Various types of noise [70] remain a problem. Here
Wy reduced noise immunity makes noise an important consideration. Soft failure
‘: rates due to such causes can be estimated satisfactorily, but assumptions
nt R remain to be examined.
M
).’ :ﬁ 5.10 Design-For-Testability and Built-In-Self-Testing
f » fad]
45, A Efficient test generation for 1logic circuits is now recognized to be a
. matter of prime importance [61-63]. Yet most major fault detection problems
‘$' ;! are generally NP-complete. The proposed MVL PE array is no exception.
. LS
iﬁﬁ In a regular array, there are two major testing considerations. One is
t . how to test a single PE element, assuming its inputs and outputs can be
}n, i: directly accessed. Next, part of the problem is how to exercise each PE
' element when they form a regular array. Some arrays possess a special feature
v, ~ called C-testability [71]. A C-testable array can be tested by wiring a fixed
'i} 2- number of tests, regardless of the dimensions of the array. It has shown that
e . often arrays yhigh are not C-testable, can be made so by using only minor
9 t modifications _[72;.
PRl

"

Several scan-path techniques like L3SD have been suggested. These
reduce the problems of testing sequential circuits to that of testing purely

» NS o
- combinational circuirts. This enormously siaplifies test-pa<ttern generation.
'QQ :i The scan-path techniques are also applicable for PE arrays. An implementation
4. n. ‘e
o
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has been described for a CMOS, two's complement serial convolver chip [73].
Applicability of Ternary-Scan-Design, as proposed in [74], for our propoaed
scheme is relevant.

The study of Fujiwara and Tioda _64) compares fault-tolerant "testable"”
design with benchmark complexities., They also provide clever procedures to
insert a few additional test-points into an arbitrary circuit to make it
easily testable. Heavy use of PLA's is made. Their studies show that some
circuits, decoders, parallel adders, ... can be "tested” in polynomial time.

Built-In-Self-Test circuitry allows a device to test itself without
using expensive test equipment. It is also valuable for assuring device
integrity in the field. For a PE array, BIST must be incorporated within each
element. it is also necessary to have the necessary circuits to support BIST
globally so that the interconnections are tested, and also the go/no go
information is routed to some external output Or outputs.

5.11 Information Redundancy

Low cost residue and 1inverse residue codes for error detection in
signed-digit arithmetic were proposed for this project. These codes
capitalize on the fact that they can be used to check storage, transmission,
and computing functions using the same checking algorithms. These algorithms
compute the module: a residue of messages, operands, and results in a serial
or parallel fashion. The residue digits are then tested to indicate whether
or not an error exists [50].

As noted by Avizienis [50], the effectiveness of Signed Digit Resadue
Codes (SDRC) can be assessed by obaerving that undetectable errors are caused
only by faults th%t change the value of the signed-digit number by a multiple
of 2°-1 (where 2° is the radix). Such changes are highly unlikely. A
detailed study of effectiveness requires the full xnowledge of tne internal
representation of digit values and an analysis of the effects of repeated-use
faults when they may affect the operands or the result.

The algorithms proposed in [50] only employ one residue digit for an
entire K digit SD operand. While this minimizes the cost of encoding, it may
be inconvenient in variable-precision operations that generate the most-
significant-digits of tne results first and that are ‘"chained”, executing
further operations on high-significance-digits of an intermediate result X
even before the lower-significance-digits become available. The Serial
Checking Algorithm is completed only after all digits of X have been obtained,
tne residue digit X is tnem computed and compared to test for the presence of
an error.

An error indication requires the cancellation of all results that have
used at least one digit of X. The cancellation must reach k+3 digit levels
downstream in the chain and 1dentify all potentially erroneous results. Two
solutions may be applied to shorten the "sapan” of the cancellation that must
follow an error indication: {(a) the segmentation of orerands into check
segments, and (b) single-digit encoding that employs a checking element
within eacn aritnmetic unit that performs single-digit operations.
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Segmentation divides the k-digit operand 1into check segments of p
digits length each and attaches one residue digit to the rignt end of eazh
check segment, vrather than using one residue digit at the end of the entire
operand. The cancellation span is reduced to p+3 digit levels downstream in
the chain. Furthermore, error detection effectiveness in the case of
repeated-use faults may be 1increased because of the snorter lengtn of tne
segment being checked. The cost of segmentation consists of the extra time
and storage required by the proliferation of residue digits.

Single-Digit Encoding appears most suitable for VLSI-implemented
arithmetic units that can execute the algorithms gor d}sits o} S-C
representations with relatively large radices, such as r=2~, r=2 °, r=10", or
even greater values. Here each individual S-D representation digit carries
its residue digit modulo (r°-1), where

r* = 29 yhen r = 2b. and b = kq (q>2) (16)
r* = 109 when r - 10%, and ¢ = kq (1) (17

The single-digit encoding approach _ is an extension of the segmentation
concept. Each digit of the radix r = 2~ is treated similarly to a k digits
long segment of the radix 24 representation that is checked by one modulo 24.
1 residue digit. The evident advantage of this approach is the pinpointing of
the error to the single arithmetic unit.

5.12 Hardware Redundancy

Some drawbacks of aritnmetic codes are their inability to detect errors
in logical operations, and single errors in group carry-lookahead structures
[47]. Th2 latter is not a problem if SBNR is used. Tris, hardware redundancy
has been recognized as the most effective technique to identify faults in
logical operations. In [47], Patel and Fung describe a technique in which
coding and decoding functions (in the form of shift left and shift right) are
employed. Here, the arithmetic/logic operation is performed twice. The first
time it is performed without shifting, and the results are stored in a general
register. The second time, the inverse shift operation is executed and tnen
compared with the contents of the storage register. A mismatch indicates an
error in computation.

The hardware redundancy technique described has been implemented in
binary number systems. Nevertheless, it is prudent to assume that 1t, or any
other binary technique, can be adapted to SBNR architectures. Of course, a
trade-off study of cost versus circuit complexity should also be completed.

The binary fault-tolerant ALU implemented by Patel and Fung can be
constructed using a CMOS family of ternary logic circuits. These circuits,
proposed by Mouftan and Heung L”Sj, use two power supplies, eacn below tne
transistors threshold voltage, and do not include resistors. All transistors
are 5 microm x 5 microm. Tne tnresnoid voltages for the p-channel and n-
channel enhancement-type transistors are =1v and +1v. They have opposite
poiarity for tne depletion-type devices. Witn the use of voltage gpower
supplies below the transistors turn-on voltage and the exclusion of resistors,
it is possible to implement tnis circuitry in VLI, Added features include
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‘ low power consumption, high speed, and comparatle perforzante to tn2.ir b.nary
. counterparts.
For tne ALU proposed in :4”3 to be fault-tolerant, tne encoder, dezoier,

and comparator circuitry must be Totally Self-Checking (TSC). They zan bte
. implemented with PLA's. One advantage of using PLA's 1s tnat treir regular
structure simplifies analysis of the effects of faults on their output ani
tnerefore facilitates test vector generation ani determination of faul=®

! coverage.
U

N . “
¢ The most elementary fault model used for PLA's includes tnree types of
" - faults:
' SRA
»
o’ 1. Stuck-at faults on an input line, product term line, or Output line.

2. A short between two adjacent or crossing lines that forces both of tnem <o
;; gc the same logic value.
&- 3. A missing or extra crosspoint device in tne AND array or in the 0JR array.

Since breaks in lines (that are not equivalent to stuck-at faults) are

. . r a N - N
one of tne main causes of failures in VLSI circuits . 76-77., it is clear that®

the above simple fault model does not accurately reflect the possible physical
defects in an MOS PLA. A more complete fault model is given in 78 .
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. 6.0 Research Results of Current Period
b
X i 6.1 SBNR Arcnitectures
0 This PI has been investigating the Least-Mean-Square (LMS) adaptive
A r
SR filter algorithm for signal processors k79—81]. Recently, these studies have
! S focused on redundant arithmetic implementations in distributed and syst>lic

. array architectures [20,82,83}. It has been discovered that some of the
; inherent borrow/carry propagation properties tend to make implementations very
compact and modular. This tends to suggest that fault-tolerant properties
abound for SBNR realizations. As early as the ILLIAC III, Atkins _8_ snowed
that higher radix implementations (of which SBNR 1s a reduced yet very
powerful subset) produced superior fault-tolerant arithmetic engines wnen

- e
-

¥ "..
f :: using redundant or signed number codes.
.
The papers in tne Appendix by corporate perscnnel nave demonstrated scme
« E: of the advantages to SBNR. Note particularly that others are identifying
j 4 similar advantages. Sicuranza and Ramponi _24  a&also exploit memory-orienced
- structures properly matching the characteristics of distributed arithme<tic for
MRS adaptive nonlinear filters described Dby truncated discrete Volterra series.
{ = Their use of offset binary code (a form of SBNR) ard address splitting
(available to SBNR) establisned efticient, altnough dedicated, architectures,
- . They, as well as us, show that the memory dimension is not (2”)‘ words
’J - because of the dramatic reductions possible with SBNR and syEEEtry.
3 Anotner promising approach to erficient 1mplemenzations of redunian<
RN nunber realizations is described by Cwens and Irwin :85:. Here, a primitive
i' cell, 1including 1ts operacion suite, are used 1n a DFT apglicat:ion
L demonstrating the highly regular array structures acnieving go20d AT" tounis,
{: . They partitioned functions 1ato “interface, 3%torage, or ar:ithmetiz’ %o
o impiement ii1git-on-line a.gorichas. We can  extlisit tne 3ame digit-cn-line
L
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ij * properties for wultra-fast processing of analdg 3s:1gnals. For example,

“ digital signal processing can begin as soon as the MSB (which is

‘ the first bit) is conve.ted by the ADC! For b:it serial distributed
'ﬂq arithmetic scnemes, andgrmgn CSG, has snown now clock rates of "C Mkz are
oY ossible here. Dgnygr .87 ,, Denyer and Rensnaw 3¢ _, Jaggernautn, 2%, a.,
{{ b# ."2., and otners 89  make similar promising 3discoveries about bit-ser:a.
’3' 0 imp.ementations. Particulariy encouraging_ 1s tne CUSP (digital signa.
T processor, VLSI, of Linderman, et. al. _3C_, since this de.1ce 13 a sixteen
2C-bit serial multiplier by 24 serial adder/subtracter, driven by a S. VHz

-‘-
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two-phase non-overlapping <clock. This device again exemp.1fies <ne power of
oy birt-serial approaches.

! Design of SBNR Array Multiplier

el
>
L~3
[ 4
L]
"

Tre need for nign-speed computation nas spurred much Tregearcn
various forms of parallel prccessing. The two most common of these
2

A
s

- arcthitectures in signal processing appllca*tions are tne plpe.ined pricessor
o and the array processor. Developments 1n para.i.elism nave Dbecome quite
St popular witn tne revival of interest 1n tne Signed-Digit Number Representa<ion
Y ii (SDNR) characterized by Avizienis ' .. Implementation of the faster
architectures in VL3I is a concern for devices needing powerful processing 1in
2 gl limited space [e.g., mobile, self-contained and space-based venicl.es.
. g
“f o The design described below, and snown in Figure 6, 1s a sys*o.1: array
I for‘matrix multiplication which is compatible with digit online arcnitectures
?. - 9. This array 1is similar to one described by Irwin 32, in whicn *wo
'I vectors to ope multiplied enter the array most-significant-bit-first--the
o distinguisning cnaracteristic of online networks. The array uses trne
45 i Processing Element (PE), diagrammed 1in Figure 7, and shown scnematically 1in
ar ﬁ- Figures 8 and 3, *o perform bitwise vector multiplication. For matrix «x
'?" e matrix multiplication a parallel multiply/accunulate element may be
Wy substituted for the bit-level PE. In such a large scalie system, asynchronous
;; operation may be faster than the clccked method shown.
:(9 If the array is used for vector multiplication, it performs <ne
.t , operation
0‘:,' na
g« "&, a 1
s L_’ 2 se- AEJ .
o iRA % . o )
- BN = C, ownere T = ALE, ¢ ASB, ... F
N - . + A 3,
R : w
i X Em
=~ L=
)': r: Tacn vectsr elem=nt 13 A word conaisting of n osigned-tinary bits, Wwhere ea-r
{ﬁ; A c1t  may be a -, > or - ‘. Wren *tne  vettir  e_eTents
.
.

e
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Figure 6. Systolic Array Multiplier
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Figure 7. Functional Diagram of Array Cell
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- Figure 9. Carry Generation Circuit
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are expanded

into bat

representation, one can see tnat tne systolic array 1is

actually performing matrix multiplication on tne bits of the vectors:

The bits

A

of tne
right diagonals:

answer are

VRN AR B Y Rl e

A A
A ;A,_Jtt..nm Y _‘a'l‘.A"l

W 1,n=1 * *° B1.1
Ban1 * 0 Bap
En.n-1 e Bm.1

1,2 * *° i,n
2,2+ Cn

Cn.z e o o Cn.nJ

found by adding C along the lower-left-to-upper-

‘.J._.J!hA.L.A

(19)
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I c
c = c1 .1 C1'2 C1 .3 e« o ® C1 ’n Cz'n n-1 ’n n.n
+ 021 C2.2 e 8 @ . ) s e ® cn.n-.‘ (20)
* c3.1 e * Cn.z
+ c

To see how this happens, refer to Figure 6. On the first clock cycle, A

and B (tne MSBs of A, and By, respectively) are shifted into the bottdm

cell, hiltiplied, and added to ¢, 1 (initially zero). All the otner MSV's are

shifted into their first cells.’ On the next cycle, C1 1 shifts up, and adds

to the product of A, , and B, ,. The products C, , and 02 y are formed to the

right and left, respectively,” of C The entry Cg 5 i3 started just below
§74

C1 . Subsequent clock cycles shift’Lhe multiplican n, and the answer out
in’%he order shown in Figure 6.

The total time for this calculation is given by
T= (2n + m -1)t, (21)

where t 1s the time for each clock cycle. Since this 1is a digit online
network, calculation is started on the MSB's before the LSB's are needed.
Another significant measure of performance is the time between the entry into

the array of the MSB's, and the exit from the array of the answer MSB. This
time may be calculated by

TMSB = (n + m - 1)t. (22)

In VISI applications, the number of elements and the number of
interconnections are botn significant. These values are given by

2

N, -n° -2n + 2nm = m + 1 (23)
J o
and
NI = 5p° - 18n + 1Cnm - 9m + 12, (24)

Note that all of the equations are also true for the matrix x matrix

multiplication, in the fully digit online case. If the data are shifted in
parallel, more interconnections will be needed.
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6.1.1.1 Observations

Reports by Mouftah [93} and Aytac [94}, on which much of the PE is
based, indicate that the addition logic may be too slow for many applications.
The speed 1is not known absolutely, however, because tne logic gates presensed
in the reports are based on use of 5 um line widths. Implementation of the
array multiplier would be in 2 or 1 micron technology, which could result in a
significant speed increase.

Another possible problem is the transmission of two control signals,
carry and neg, through the array. Though these signals should be local, they
are not synchronized with tne clock, and may not be nearest-neighbor
transmittable, Further research into this problem will probably yield a
satisfactory local-communication solution.

Future work in tnis area could include a comparison between tnis network
and alternative matrix multipliers, including pipelined parallel or digit
online multipliers, binary and higher-radix implementations, and different
array configurations. In addition, the PE cell should be simulated using a
MOS simulation program, and characterized in terms of speed and area. Using
this data, or making logical assumptions about it, the speed and area of the
entire network will be calculated from the formulas presented earlier. In

addition, the speed and area of alternative PE's should be investigated and
compared.

6.1.2 Digit Online Vector Multiplier Using SBNR Adder Tree

In pipelined signal processing systems, the maximum rate of data flow
through the pipe is determined by the slowest element. Traditional pipelined
systems consist of a few slow elements, connected by parallel data paths. In
digit online systems [91], a redundant number system is used to allow data to
flow as a stream of bits, with the most-significant-bit leading the stream.

Irwin and Owens have identified many advantages to this mode of
operation. The first is that <the bit-stream approach allows the system to

perform bit-level operations on the data. Since the slowest of these
operations is much faster than the slowest word parallel computation, a much
faster clock rate may be used, possibly increasing data throughput. Tne

second advantage of digit online architectures is that result bits can begin
streaming out of a processor after only a small online delay from the start of
the input data. The result can then be used in the next processor. This
effect allows several links in the processing chain to operate simultaneously
on results generated from a single data word. Thus, the effective throughput
of an element is determined more by its online delay (latency) than the total
time of computation. The third advantage of digit online systems is that of
cnip pinout. Since the data are transmitted in bit-gerial mode, the number of
pins on a chip does not depend on the length of the data words.

Space Tecn has investigated a digit online multiplier that computes tne
fixed-point inner product of two vectors. The vector elements arrive
simultaneously on separate data patns in bit-serial format. The multiplier
can accept either the most- or least~significant-bit-~-first with no change in
calculation time. The answer bits appear in tne same order as tne input. The
multiplier uses Signed Binary lumber Bepresentation (S3NR) to allow fully
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parailel addition internally and to make it compatible with digit online
systems.

Inner Products

In many digital signal processing applications, the pr&mary function of
the processor is finding the inner product of two vectors: & b = c.
For two vectors a and b, each composed of m elements, a., and b., tne inner
product is defined as: . t

c= % a, b, (25)

When each element is defined by an n-bit signed binary word, the vector
multiplication can be decomposed into a matrix inner product on the bits of
the vectors. Thus, if each element 8, is represented as

a, = £ 2%a,, k (26)

then the inner product of the vectors can be rewritten as

n-1 n-1 K
I 29% &,k by, (27)
i=1 k=0 j=0

It is this function that the vector multiplier implements.
6.1.2.1 Vector Multiplier Structure

Figure 10 shows the architecture of the vector multiplier. The bits of
vector A appear on the m-wide bus at the top. When the first bit appears, the
MSB line is brought high, thus latching the MSB's of A into the first partial
product cell. At tne same time, the first bits of B éSpear at the cell (AB1),
and are multiplied by the corresponding bits oflé.'_The results are added, and

tne sum appears at the bottom of AB,. The architecture for this operation is
similar to the Takagi multiplier [951.

In the next clock cycle, the MSB signal is latched to the right, thus
latching the bits on the A bus into the second cell. The MSB's of vector B
also latch into the second cell, and the next bits of B appear at AB1. Thus,
AB, contains A and B , while AB, contains A and B . These partial
préducts are Haf calcuTBild.  The product from” the fiTat cycle is latched
into the top of the adder tree.

On the third cycle, the two second-level partial products from AB1 and
AB, are added together in the m-wide parallel adder. The B bits are righ:-
snifted, and the thiru bits of A are latched into AB,, The MS3B partial
product moves down to the next-level adder.

3
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Similarly, each subsequent clock cycle generates tne next-lower b
position of the product. Each of these cascades through the adder tree unt
it hits the data skew block.

-
9
«

1
1

The function of this element is to shift tne incoming words %o tne:ir
proper bit position in the result. The skewed word is then added o the
cumulative sum to produce the final sum. The result is shifted out of tre
bit-select latch.

6.1.2.2 Area and Time Complexities

The area and time factors of this multiplier age excellent for single-
chip implementation. The area complexity is O(mn+m“), whicn is better than
that of the bit-level systolic array [96]. The time for calculation is 2n
clock cycles, but the latency is just n+log,n, and is not dependent on m. For
the case of m=16 and n=16, this multiplier takes 76,600 transistors, which is
half tne number needed for 16 paralleled Takagi multipliers. If tne latency
were reduced to something less than n, the next stage of the pipeline could
operate on the inner product as it was being calculated. This reduction may
or may not be possible, however.

In addition, the architecture seems too hardware intensive for a
pipelined systen. Further research should be done to try and use recursive
properties to reduce or eliminate the full-parallel elements and/or tne adder
tree. The next step is investigation into alternatives, specifically, a
structure lixe that proposed by Rhyne and Strader [97]. Any alternatives
found should be characterized with respect to this and other architectures.
If none are found to be better, more comparisons should be made between this
multiplier and the alternatives.

6.1.3 Systolic LMS Architecture

Recursive least-mean-square algoritnms have wide application in many
types of estimation problems. One such application is adaptive beamforming.
Beamforming is commonly used in radar and sonar applications, both in
transmitting directed wavefronts and receiving from selected directions.

A trade-off exists between the speed of adaptation and the stability of
the formed beanm [98]. In general, the more recursions needed for adaptation,
the more stable is the steady-state performance. However, an increase in
system throughput will speed up the adaptation without affecting the steady-
state stability. The architecture proposed by Space Tech provides tne
increased throughput needed for high bandwidth communications.

f.1.3.1 Recursive LMS Algorithm

Widrow's LMS algoritnm consists of an adaptively weignted input stage
gnd’a weight update stage. We m:-uified the algorithm to allow pipelining
.37 ,, but the archnitecture included two systolic array processors. An
alternative design wuses a pip:linable algorithm, but only a single systolic
array. To see how tne algorithm works, define the following variables:

KA .
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= gystem word length in bits

= number of receiving antennas

= k x n bit matrix of input samples

= Kk x n bit matrix of weighting coefficients
bit vector of filter output

= bit vector of input reference signal

=d -y = bit vector of filter error

= convergence rate factor

iclo ok = n = %
[ ]

(The value of a bit vector is just the vector multiplied by powers of two:
y o= Dokt k=2 ot 0T g

The output of tne filter is given by
y=stw (28)

The filter weights, W, are determined by iteratively comparing tne filter
output to the training signal, d. This difference, when multiplied by the
input matrix, gives the line of steepest descent toward convergence [984. Tne
equation to calculate the new filter weights is

wJ = WJ_1 + 2uej_1Sj_1. (29)
Left multiplying this equation by the current input gives

s.Tw. = 5.Tw. . .s.0s
i "3 ™S5 Myt 2uey S

If we assume that the inputs are uncorrelated (i.e.
E [Sj S‘j*1] = Q), then we can make the following approximation:

51

T T T
S. W, = . . . .°S..
3 W5 = STy Wiy + 2uey ,S47Sy (30)
Andrews implemented a similar function using two systolic arrays, one to
calculate y. for S., and one to update W. .. The architecture below uses a

—— ’ -
single systalic arrﬂy, combined with a smali Aumber of latches, serial adders,
and serial multipliers. Also, since the weights have been removed in Equation
3, no weight-update pnase is required.

6.1.3.2 Architecture Details

The arrangement shown in Figure 11 implements the LMS algorithm of {30..
The systolic array multiplies the input by itself, S°S. The outpu®t from tne
array is on K parallel lines, all of equal significance. Thus, at any clock
cycle, each line carries a value in the same bit position as all the otner
lines.
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These wires are fed 1into a synchronous, bit-serial adder tree tnat
accumulates all of ghe partial products. The result of this accumulation :s
the inner product 5SS, which is fed into a bit-serial multiplier Zt tne sarme
time as tnhe product ue. The x2 factor results from bringing S*S into tne
multiplier one clock cycle ahead of ue, thus performing a left shift on the
product. The resulting value is the steepest-descent gradient of the error
surface. The new output is formed by adding the error value to the old
output.

If all arithmetic is performed with length-K operands and results, the
latency of the architecture is

latency = N + log2K + 1 (31)

and a new sample may be entered every K clock cycles. The clock period is
determined by the speed of the serial multiplier. If Signed Binary Number
Representation is wused, all arithmetic inside the multiplier may be done in
parallel, with a total delay of 35t, regardless of word lengtn (t = delay of
one transistor). Total device count for the circuit is:

KxN Multiply - accumulators
K+1 Serial adders
2 Seriel multipliers

Kx(N+2) Latches
Thus, the device-latency product is O(NZK + NKlog2K).
6.1.3.3 An Adaptive Beamformer Application

Digital adaptive beamforming is commonly applied in communications.
Applications range from voice communication over VHF/HF bands in the tens of
kHz u to secure spread-spectrum data links with RF bandwidths in the 10 MHz
area 699]. The latter case places strict requirements on the throughput of
the processor. To allow sampling at the Nyquist rate each link in the pipe
must have a bit delay no greater than 50/K nsec. For a 16-bit word length,
eacn Processing Element must accept a new bit every 3 nsec, corresponding to a
clock rate of 333 MHz.

This rate would be extremely difficult <to sustain if the circuit were
spread over a large board. Fortunately, the proposed architecture is
primarily a systolic array with an adder tree, so the interconnections are
regular and nearest-neighbor. Thus, most, if not all, of the circuit may be
implemented on a single VLSI chip.
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6.1.4 Time and Area Calculations for SBNR Array Multiplier
‘ This section describes Space Tech's studies of a systolic array

architecture which wuses MVL and a 3BNR to multiply two vectors. Tne
. architecture is compatible with digit online pipelined networks _3' :in wnicn
Q§ data are transmitted serially and moat-significant-bit-first. Tne array
L structure makes chip layout easy, and the local communication paths reduce

interconnection area. Therefore, tnis systolic array snou.d bte easy =
! implement in VISI.
’.

6.'.4.1 Array Structure
.
y: The fundamental operation performed by tne processor 1s tne ~veliorT
> multiplication
r_ LA, A~ ses A 1
>* 172 m 1
A B2

. = C = A B, -+ * ... * AB 1z
- 149 A282 n'm s

2 B
L
7> maximize speed, one can use A& 8ystolic array of PE's in which many bit-

level calculations occur simultaneously. Such a structure is shown in Figure
12. In tnis case, tne vectors are four words long, and tne words are tnree

i bits long.

Vectors a and b are shifted in from the bottom, most-significant-bit-
first. The result ¢ comes out the top, as snown. All carries from additions
are transmitted asynchronously to tne upper right of each cell. Tre PE to the
upper right always holds one portion of the next-higher bit. The "horn"” that
extends up and to the right from the central multiplying core ia present %o
'! add up the carries from lower-order bits. (Since the array uses SDNR
J arithmetic, a cell's carry depends only on its operands and the neg control

signal from the lower cell, and not on the carry coming in to the cell. This
y limits carry propagation t0o & single cell, .nd gives signed binary a
significant speed advantage over conventional binary.) As the answer 1is
shifted out of the top, an adder tree adds up the bits that occupy each
position of significance. The final result is then snirted out of tne adder

W

Y

tree.
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The method of operation £ trhe array is srown 1n Figure 13. Cn <ne
first clock cycle <(Figure '3a;, tne MSB's of A, and B, are snifted intu tne
bottom <cell and wmultiplied together. The result is added to C, (initially
zero), and the carry travels up and to the right wnere it is added to C_
(also zero,. A control signal neg is also propagated to C_ to be used in the’

ddltlon. At tne same time, all the otner bits in ta first row (A, .,

ees and B , ...) are shifted into their first cells aAd

32 5
ﬁ'%lplled by ze2 3.2

o,

On tne second clock cycle {(shown in Figure 13b), the new C, ani C are
snifted up, C, is added to x B , and that carry is addeé to C

K

before. Any carry generated %tom the“term (C5 + 0) propagates up and %o tne
right into C6' In addition, the terms

C, = A x B {37)

~ = I I
Cs A1,2 x B1’1 (34

are generated just below, and on either side of, C,. The shift registers a-<
tne top of the array ensure <that all bits of a given significance arrive
simultaneously.

The equations Dbelow give the number of different cells required tc
construct a systolic array that will multiply two m-word vectors, where eacn
word is n bits long and is represented in S3NR. The number of zmultiply-
accumulate PE's (hexagons in Figure 12) is given by

PE = 0 + (2n-1)(m-1); (35)
the number of adders (diamonds) is
Add = 1/2 [ n(n-1) + (n+m-1)(n+m-2) - 1 ]; (%6)
and the number of shift registers (squares) is
Reg = (3n+a-4)2 + (n+m-2). (37)
The total multiplication time for the array is
T = (2n+m)t, where t = clock period. z8)
In pipelined systems, another important measure is the latency--tne time

from the start of <the incoming data to the start of the outgoing. For <tne
array tnis number is

\()

(n‘m)t- <3

Thus, the MSB's of the vectors are clocked 1in, and  n+*m) cycles later, the
answer MSB 13 cliocked ou*t. Every cycle after <hat, two more bits can te zaie
available, or they can be buffered and streazmed out. The latter metnoi gives
a tctal mulsiply tide of Zn+m. cyc.es.
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6.1.4.2 Processing Element Circuit

The tnree types of cells needed, tneir functions, and their I/C patns
are shown 1n Figure 14, Figure Y4a 18 the Ternary Multiply-Accumulate Cell
(TMAC), which forms tne core of tne array. Part b is a PE which does nc:
multiply any numbers, it simply adds the previous sum to zerc and generates a
new sum and carry. The shift register in Figure 3¢ is used to align carries
with new rows, or to align the answer bits at the output.

The TMAC in Figure 14a multiplies the incoming A and B bits, and adds
them to the incoming sum C. The output signals, carry and neg, are
generated from AB and T for use in the PE to the upper right. The next C is a
function of AB, C and the carry and neg signals from the lower-left PE. Or

the next clock cycle, the sum and two multiplicands are shifted to the next
higner cells.

The ternary adder cell in Figure 14b adds tne incoming C to zero, since
there is no AB term. In SDNR, wunlike binary, this addition can generate a
carry. So the adder cell operation is the same as tnat of the TMAC, except
that no multiplication is necessary. As a secondary function, if the adder PE
is 1n tne patn of the B coefficients, it acts as a shift register for them,

The ternary latch cells (Figure 14c) act as one-cycle delays for
wnatever they are latching. Scmetimes a latch cell will transmit a C value
vertically. Sometimes it will take a carry from one column, and turn it into
a sum, C, in the next column. The latches that are in the path of the B
coefficients will also shift them.

Figure !5 summarizes the ternary CMOS logic gates developed by Mouftah
:93:, Huertas [100], and Balla [101] that were used in the design of the PE's.
Also shown 1is an S-gate (switch gate) which is a pair of transmission gates
that pass one of two inputs based on the control signal.

The circuit wused to implement the TMAC, and its truth tables, are shown
in Figure 16. The inputs are latched into the flip-flops at the bottom. From
there, A and B are multiplied and tne neg signal is generated. Using A, B
and C, the TMAC generates the carry, and with the carry coming up from the
next lower cell, it generates the sum. The total time, from thne rising edge
of the <clock to the stable sum, is no longer than 17 transistor delays. This
amounts to about 17 ns in 5 micron technology. During the low phase of the
clock cycle, A and B are latched into the outputs. The sum is not latched
because it will stay stable for much longer tnan tnhe latches of tne next cell
require to shift it. The TMAC uses 212 transistors.

The circuit for the adder (not snown) is simiiar to the TMAC, except
that the circuitry which multiplies A and B is gone, and all inputs with A, B,
or AB are grounded. Some of tne combinational logic is also simplified. The
adder uses 98 transistors.

The latch circuit consists only of two flip-flops. One latches a value
in on the positive clock level, and the other latches it out when the clock is
negative. The latch circuit requires 32 transistors.
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6.1.4.3 Observations

One can calculate the number of transistors needed to implement a
specific array using the equations of Section 6.!'.4.!'. The total number is
given by

transistors = (PE)(trans. per PE) + (Add)(trans. per Add) (40)
+ (Reg)(trans. per Reg)

Table 3 gives the number of CMOS transistors in the array for different vector
sizes and word lengths. Those readers who are familiar with current VLSI
capability will recognize that, despite a highly regular structure and low
interconnection area, most of the numbers given are larger than can be
implemented on a single chip. Even among those that are small enough, tnough,
tne chip yield will be rather low.




Table 3. Area and Time Data for Systolic Array

i Word [Vector; Sys. Array,Time, 1Sys. Array Multiplier,
| Length)Lengtn| Number of | to,|Tota}|Area-Time |Area-Time |
| _n__ | m _{Transistors,MSB (Time ; Product, | Product |
A T 16 | 130,933, 24 32 | 4.20x1OZ T 1.45x1og‘T
| P32 275,205] 40, 48 | 13.2x100 | 2.90x107 |
' 8 ! 64! 688,165] 72! 80 ! 55.1x10% ! 5.80x102 !
' vits | 128 | 2,011,749 136! 144 | 290.x10% | 11.6x10% !
! I 256 | 6,649,573 264! 272 | 1.81x10? | 23.2x1og !
! | 512 | 23,887,845! 520! 528 ! 12.6x109 | 46.4x10° !
? E 16 i 172,597{ 26! 36 E 6.21x1OZ ; T
( i 32 339,717, 42, 52 | t7.7x10. , i
b oso Y sat 798,3730 74! 84 ) 67.1x10% ! !
| bits | 128 | 2,213,349 138} 148 | 328.1108 | |
: } 256 : 7,0339957} 266: 276 = 1-94X109 } :
i | 512 ;) 24,637,797, 532, 542 | 13.4x107 | i
; E 16 E 219,0455 28{ 40 j 8.76x10§ i ;
{ ‘ 32 : 409,013= 44‘ 56 : 22.9x106 } :
: 12 : 64 : 913s365: 76; 88 { 80-4!106 ; :
| bits | 128 i 2,419,733| 140[ 152 | 368.](10 | |
: ! 256 | 7,423,125! 268! 280 | 2.08x10? ! !
| | 512 | 25,392,533} 534, 546 | 13.9x107 | :
5 E 16 [" 270,2775 3oi 44 ; 11.9x10§'f* j
: ‘ 32 : 483,093{ 46; 60 { 29.01106 } {
! 14 | 64 | 1,033,141| 78‘ 92 | 95.11(10 \ |
| bits | 128 | 2,630,901} 142] 156 | 41o.x1og | |
I { 256 = 7,817,077: 270‘ 284 } 2.22)(109 || I|
| | 512 | 26,152,053} 536! 550 | 14.4x109 | !
T 16 326,293, 32, 48 | 15.7x10° | 10.0x1OZ |
I | 32|  561,957! 48! 64 ! 36.0x10% | 20.0x10% !
I 16 | 64! 1,157,701 80! 96 ! 111.x108 | 40.0x106 !
| bits | 128] 2,846,853! 144! 160 | 455.x10% | 80.0x102 !
i i 256! 8,215,813 272! 288 | 2.37x10? ! 16O.x106 '
. | 5121 26,916,357! 538! 554 ! 14,9x10% | 320.x10° |
*

in clock cycles.

Unfortunately, thnis extra space does not buy a faster processor. The
time for a 16-bit multiply of length-16 vectors is 48 clock cycles. That
amounts to about 816 ns. The time for the same multiply implemented with 15
parallelled 16-bit multipliers [95] is 120 ns. That multiplier setup requires
only 350,000 transistors, a 3size increase of 10 percent over the array. Ten
percent is a small price in area for a seven-fold speedup.

To compare area and time trade-offs, one uses the area-time product.
The second column from the rignt in Table 3 contains the area-time products
for tne systolic array. The last column represents the comparative numbers
from the Takagi multiplier. Note that at the closest, these numbers are
separated by a factor of 1.5, and that that distance increases with vector
length.
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o This relationship is easily seen from co%p letles of the two
E architectures. The area of the_systolic array is O n“+m“), while the area of

-
L J

the parallel multiplier is O0(mn“log,n). From this, one can see that the area
of the multiplier increases faster with n than the area of the systolic array.

-

£ . Unfortunately, the array starts out so much bigger, and the multiplier cannot
;} N easily catch up. The time complexity of the array is O(n+m). Since tne PE's
{ 3‘ in the parallel multiplier operate simultaneously, the multiply time is
? independent of m, and furtner, the multiply time is not strongly dependent on
. n, being only O(logzn).
AR
;b i S multiplier actually has %ghgr -order area-time complexity,
YN O(n mlog<n), than the systolic array, O(n +m However, the basic cell in
a' \j the systolic array is more complex than its counterpart in the multiplier.
1y L Since the array is clocked, each cell must contain a latch for each data bit
going in. In addition, many of the ternary logic gates in the array use more
K gﬁ transistors than tne binary gates in the multiplier, which adds even more
' S area. The result of these factors is that the area-time product remains lower

K] for the multiplier than for the array as long as the word length is less than
) 97 bits.
k §
Figure 17 compares the area-time products for the systolic array and the
;; , parallel multiplier for n<128 and m<n. The objective of a lower area-time
. e product for the systolic array is achleved, but only over a limited range.
oo The curves show that wnen m=0.5n, and n>97, the area-time product of the
’; systolic array is lower than that of the parallel multiplier. One can also

see how the stronger dependence on n is causing a sharper upward slope in the
multiplier curves, relative to those of the array. In fact, for n>128, the
area-time product of the array is lower than that of the multiplier for values
of m as high as 0.75n. The other two curves will also catch up if n is made

e
up 8

-
s W’

o larger.
Y
: Unfortunately, word lengths of 100 bits or more are very rare. This
fact limits the applicability of the array architecture described to extremely
& high precision operations. To make the systolic array competitive for shorter
ﬂ words, its hardware must be simplified. A two-fold reduction in the number of
3 v transistors in each cell would halve the area-time product at every point,
K 5% placing the systolic array significantly lower than the multiplier on the
.4 ® area-time graph. Tnis reduction would allow the systolic array to outperform
‘ the parallel multiplier on word lengths as low as 26 bits. For maximum
lE benefit, the vector length should be kept to around half the word length.
-
d -
o 6.1.4.4 Recommendations For Future Research
S .
. :g Optimization of the PE circuit is essential for implementation as a

vector amultiplier. As was snown in Section 6.1.4.3, a two-fold reduction in
PE nardware would make the systolic array useful for much smaller word lengths
S (such as 32 bits). For that reason, future research should concentrate on
SN characterizing various cell configurations such as signed binary logic, ECL,
jx I°L and CCD gates. The design in another technology might yield significant

2 L savings in hardware.

X ’,

“ The results suggest that this architecture might be Ybetter suited to

* . word-level multiplication of matrices, using constant precision operands and

Y :j results. Such a setup would eliminate the extensive hardware otherwise needed
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to handle carries out of the multiplication core. Data transmissiosn between
the cells could be pipelined or paralliel. If it is deemed necessary to obtaxn
a higher-precision product, either more time could be allowed for the serial
transmission of the extra bits, or additional lines could be added between
cells for parallel communication.

To augment the streamlining of the systolic array, research shouli
continue in alternative architectures, bYboth pipeline and parallel. Tne
objective is a vector multiplier that can operate on long vectors (>32 words)
composed of short words (8 - 16 bits). The best multiplier would be atle to
handle variable-length operands without any serious slowing. Included in this
investigation should be other forms of systolic arrays, and combinations of
parallel and pipeline structures.
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6.2 Fault-Tolerant Architectures
6.2.1 Residue Number Systems (RNS)

A major competitive number system offering high reliability modularity
and thus capable of fault-tolerance is the Residue Number System (RNS). As
sumnarized by Jenkins [102], an RNS is defined by a set of moduli, M =
{m1’,,.,m } which are pairwise relatively prime integers (i.e., no pair from
the set contains a common non-unity factor). Natural numbers in the range R =
[O,M-1], with M =m.m «eeD;, are encoded by L residue digits x,x,...X,, where
x;, = (X)mod my, i = 1,...,L, wnere X in R. Residue arithmetic i1s defified by

(X1x2...xL) * (y1y2...yL) = (2122"'ZL) (44)

the z, = (x, * y )mod m,, where * is one of addition, subtraction, or
multiplication. Note that RNS arithmetic has a natural modular structure that
leads to modularity and parallelism in tne hardware.

The lack of communication among digits in residue arithmetic suggests
that if an error occurs in one digit it cannot be propagated into otner digit
positions during subsequent operations involving addition, subtraction, or
multiplication. This property provides a basis for fault-tolerance that is
inherent in the basic algebraic structure, and which can be used to obtain
fault-tolerant hardware architectures. During some of the more difficult RNS
operations such as scaling, division, or magnitude comparison, there 1is
interaction between residue digits and this error isolation property is no:
preserved. Therefore, the fault-tolerant properties of RNS arithmetic are
particularly useful for certain types of signal processing applications where
most of the computation consists of addition, subtraction, and multiplication.
Two-dimensional digital filtering used in image ennhancement and feature
extraction is an example of a computation intensive operation that is ideally
suited for RNS techniques.

The nonweighted structure of tne RNS code is another basic property tnat
makes residue arithmetic useful in the design of fault-tolerant hardware
structurer. If a particular residue digit is consistently erroneous, the
corresponding faulty module can be identified by RNS error checking techniques
and disconnected without affecting tne other modules. If the original RIS
contains enough dynamic range, the reduced processor can continue functioning
with a reduced dynamic range. This concept is called soft failure because the
processor does not catastrophically fail when a hardware failure occurs, but
ratner tne faulty module 1is disabled, and the remaining modules continue
functioning in a useful although restricted manner. If desiradble, error
correction can be used to replace the function of the faulty module provided
enough redundancy is designed into the code.

6.2.1.1 Residue Number Implementations

Applications of RNS tneory to general purpose computers, as well as tne
use of redundant residue digits to provide error detection/correction in RNS
structures, has been researched for a number of years. More recently,
advances in VLSI circuit technoleogy have renewed interest in RNS applications
to Tigital Signal Proceasing D8P . Altnough some problems still exis<t with
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‘ ’ magnitude comparison, division, scaling, and related operations, tecnnological
) improvements nave provided economical ways to work around tnese snortcomings.
' Paul [103: recently examined sucn implementations and nas shown remarkable
fault-tolerant capabilities for the realization of high-perfcrmance DS°P

systems. He showed how system reliability can be enhanced by a parallel

- processor structure partitioning word lengtn among processors (just as  we
: propose to do for S3BNR). His implementations of Redundant Residue XNumber
) Systems [RRENS) ennanced identitication of faulty processors and modular systen
degradation. As we also propose, he showed the efficacy of short word length

!! of the residues. 4 clue to his gracefully degradable design 1is tne

- incorporation of ©pipelined memory accesses optimized for speed. SBNR
real:zation nandily captures tnhe same pipelined enhancements. ZSven more so,

. since S3NR has elements in (-1,0,1) instead of several primed modules as found

- in RNS. We Dbelieve that tne use of rﬂdundancy residue codes for fault-
tslerance capability already examined by _104-107 carry over directly to 3BLE

r reall1zatlons.

‘.

te §.2.2 Graceful Degradation _1C2]

}: Mgpplng algoritnms 0Onto processor arrays has been widely inves<tigazed
todate L67,1O9-113]. Some general observations can be made form these
efforts. Zven tnough the dynamic reallocazion of data/instructions is

) complicated and relatively slow, dynamic array configuration 1is just as

o injurious 1n tne graceful degrada%tion issue. Even an array witn complete

’ reconfigurability is difficult. In our architectural studies proposed nerein,
tne large array configurations exacerbate tnese issues. Hence, greater

'i concern for graceful degradation issues are necessary.

Tnere exist alterrative solutions, device redundancy being one of tnez.

- Another is to attempt to map smaller algorithms onto the same configuration

:j Size, assuming that spare processors are freed up for fault-tolerant purposes.
‘1’4} provides a critical assessment. As Fortes notes, when we examine
c.as8sic architectures such as the MPP, ILLIAC \115 CH1P, Diogenes arrays,

. NCR 45CG72, PC Systolic machines, turbo boards, and hardware accelerators, a

- consensus draws tne conclusion that, unless a functioning vreplica of tne

criginal array 1is up, graceful degradation is impossible. Other solutions to
- graceful degradation encompass algorithm rescheduling methods [ 163 ani
. classic error detection correction gchemes T52]_ Also, [117] reports on a

C.ever connectivity preservation scheme for VL3I multiprocessor systems.

5.7 Wafer Scale Integration

Packagel integrated device reliability is improved witn less pin out
» . o . s <
.i 181, z ut/output pads are susceptible to electrostatic discharge,
“a especlai.y on MOS circuits. Also, relative I/C pad area in small-scale Il's
18 nign. Driver area is high and they are power hogs. Finally, I/C pins are
~ mecnanical failure prone.
u'_
Pin estimates for each package i3 providei ty Rern*t's Rule. Rent's Jule
applies esypeciall o small sub-modules embedded 1n larger systems. When <he
‘. Fr F £ Y
ii package ccntains a3 major subsystem or tne entire system, Rent's Fula 13
overbiased. “onsequently, WSI is particulariy atiractive for a complete

2Ce8380Tr 1n%tegraTtion,.
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integrating tnese cnlps on one warer 1is space erricient because Of
X inter-package ccnnections. Shorter lines nave less self-capacitance. This
. reiuces tne 3size and power consumption of line drivers. Since conneciions
dominate most circuit layouts, WSI can substantially speed systems, reduce
total 1nternal power requirements and improve density. Nevertheless, cauticn

T is advised because the interconnections have not disappeared altogether.

Board-level system designers address signal quality, noise, and power-
distribution problems. In the dense layout found in VISI or WSI they beconme
Just as acute at even lower frequencies, The increase 1in interconnection
density also produces interline coupling problems caused by mutual
capacitance. Interline coupling can arise between adjacent lines on a given
layer as well as between lines on overlapping layers (most dangerous on long
runs of parallel lines). The decreased separation between lines in WSI,
compared with that in other packaging arrangements, plagues designers. Hence,

af

.
r.

'

v

vy

= long parallel runs are to be avoided in layout. To fabricate a WSI system tne

- size of a full wafer demands either a repair capability, a tolerance for

=7 failure, or a combination of both. (Consider the HP RISC chip set.)
Tolerance for failure implies redundancy in some form, while repair capability

:;: implies interveution 1in the fabrication process. Yet, the wafer-yield

¥ enhancement resulting from this redundancy or intervention is still the most
attractive benefit of WSI.

e’

»E 6.4 Reliable MVL Systolic Arrays

. Some very complex algoritnms have already been implemented on systolic
ii arrays by Kung, Leiserson, and Andrews. Only recently have MVL systolic array

implementations been studied. Andrews has established the efficacy of MVL
arrays for <tne least-mean-square algorithm which 1is much simpler than the
proposed applications to be studied herein. However, Moraga [119] has
demonstrated MVL array effectiveness for Christenson transforms (a Walsh
transform is a subset) computations. He shows how a Christenson spectrum of
n-ary, n-place, p-valued functions are configured in a MVL systolic system.
(¥ote, these are complex valued functions.)

l‘ “.!

L s

His VLSI PE's behave as an MIMD machine, unlike all other array studies
which are 3IMD. Tnis userul study provides us with important clues to develop
our algorithms and some very important preliminary results as discussed next.
Moraga conveniently provides us with an algorithm to generate a complete test
set for detecting stuck-type MVL faults.

. N
L{A.‘.A.

S

In a binary solution, 32 b1t ALU's generate 32 bit additions and complex
mul*tiplications, producing 22 it truncated results. 32 bit data and
intermediate results would nave to be stored/transferred between celils (nence,
t least 32 wires are needed for cell intercornnections). In an MVL design,
raga ‘"9, 3nows tna®t we can use ' digit arguments and tne most complex

r n is a ' Jigit subtraction mod p. Txact results for the spectral

cv

'.
LI

L)

sined a3 p . n digit woris. Hence, even for a €-place, 5-
unction, we require less tnan 32 3digits. JCne-out-of-p coding
tiating of coun%ers is trhen rea.ized 1n a snorter %tinme tnan tnass
tne multiplication of two 16 x ‘£ b1t ‘complex) numbers. 7
are now eviient wisn ¥VL 1n 8ys=oclic arrays. Firs:, f
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update counter scheme i3 another realization of distributed arithmetic., We

. can incorporate tnese same promising contribuctions witnin our S3NF  PI's.
.' Reliable MVL circuits can then be analyzed using the M-difference calculus
proposed by Lu and Lee _12C_ for fault-detection of single and multiple stuck-

at faults in MVL, based on earlier work C121,122].

- -
.

- 6.5 Ternary Logic

Three-valued or ternary logic may have an edge on binary logic [12?_.

!! The information per wire ratio is higher; the complexity of interconnections
- can be reduced; chip area reductions appear likely; and efficient error-
detection and error-correction codes can be employed. Serial arithmetic

:ﬁ Ooperations are faster. As such, these advantages encouraged study. (123-129_
“~ offer several realizazions, Given a dynamic range, the ternary circuit
complexity [101] is ~omparable to that of corresponding binary circuits.

by Nevertheless, the 1issociated reduction in the word length tends to ameliorate

tne pin-limitation problems.

A new family of ternary logic «circuits based on botn depletion and
enhancement types of complementary MOS transistors (DECMOS) has been shown to
be useful in the design of ternary digital systems. Witnh tne use of voltage
power supplies below the transistors tnreshold voltage and the exclusiocn of

T3

r res:1stors, it 1is possible to implement tnis circuitry in VLSI. Also tnis

2 offers a low power consumption, high speed and comparable performance to the

) binary counterpart circuitry. New ternary logic circuits based on the use of

. Depletion/Enhancement Complementary Metal-Oxide-Semiconductor ( DECMOS)

{ Integrated Circuits has been demonstrated. The circuits use two power
supplies each below the transistors threshold voltage and do not include any
resistor, The circurt design of basic ternary operators (inverters, YAND,

oY NOR) and an example on the use of these basic ternary operators as buildin

33 blocks in the design of a ternary full adder is now available [757 In L751
the Simple Ternary Inverter (STI), the Positive Ternary Inverter (PTI) and the

! Negative Ternary Inverter (NTI) are tnree possible ternary operators.

d 6.6 Taxonomy of Fault-Tolerant Schemes 78]

' x: 6.56.1 Fault-Tolerant Nodes
N

In tnis scheme, spare PE's are placed at each array node. The spare
PE's may be arranged in a number of different ways. Figure 18 illustrates tne
33 case wnere tnree PE's and a checker are placed at each node.

b.0.2 Temporal Redundancy

o~
Je
. In many systolic arrays, the PE's are idle for a large percentage of tn
time, The basis of the temporal redundancy scheme is to replace a faulty PZT
- by an idle neighbor, on a cyclic basis [13u].
b
: ' Alternatively, this 1idle time can be created by setting up each PE wizn
- two serarate inputs and forcing the PE to devote half of 1ts cycles to esch of
ii these inputs z131]. Appropriate steering circuits must also be provided as
1llustrated in Figure *'73.
%a

-
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Temporal Redundancy

Figure 19.

Figure 8. Node Redundancy : |
] Scheme _13%

Scheme _78)

row=orisntated, L] columns

row orientated, GI columas

Row-Oriented Schemes {137

Figure 21.

Figure 2C. Row Bypass Scheme [133]

Figure 22.

Two-D Perturbation

Figure 23.
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.2 Interconnection Reconfigurazion

Witn interconnection recontiguration, fault-tolerance 13 providei by
rerouting inter-PE connections, thereby bypassing faulty cells. The
programmable invterconnect required can be provided by a wire Jjoining ant

fusing process or by using active switches.

Tne fuse and join technologies require extra processing steps for tneir
implementation. However, area overhead is reduced. Furthermore, since no
switcnes a.e 1involved, propaga*tion delays may be smaller. On the other hand,
using active switcnes to provide the reconfigurable routing does not involve
ary spec:ial ©processing steps. It also offers tne potential for reliability
ennancement wnich is absent in other technologies.

5.0.4 Switch Types
5
Three types of switcnes can be used in tnese schemes [132}:

t. Using the PE as a Connecting Element (CE) only, thereby bypassing
1¢s norma. func+tion.

2. Multiplexing PE I/0 ports so tnat PE's can communicate with a fixed
cnoice of near-neighbor PE's (LI = Local Interconnections).

3. Using external switches that can be as flexible as desired (GI =
Jeneral Interconnection).

Wi<rn these tnree switch types the area overnead, programming difficulty and
reconfiguration flexibility increase from the CE to the GI switch.

5.0.5 Row 2ypass

In tne row bypass scheme [133], a complete row of PE's is bypassed,
using 31 switches. An example of such a scheme is illustrated in Figure 20.

7ni3 scneme 1s suiltable to situations witn high PE yield, such as bit-serial
arrays.

£

n the row oriented schemes, columns are organized tnrough tne rows,
ng one and only one column element from each and every row. The unused
ents in each row are tnen bypassed using GI switches. Schemes wnere
mns are organized through LI switches are described in [134,135,136].
1 of tnese papers describes simple circuits which enable tne
i ation around faulty PE's to be carried out completely internally and
»

~-

s where the columns are organized tnrough GI switches can be founi
ne simplest of wnich 13 illustrated in Figure 21. Because GI
are used, no simple in%sernal reconfiguration scheme has been found.
crnesa must be progranmed externally.




6.6.7 2D Perturbation

In tnis scheme, the PE's are “perturbed", in both directions, but by
only a small number of PE sites. A scheme described in [138] using CE and LI
switches only is illustrated in Figure 22.

$.6.83 Interstitial Redundancy

In an interstitial scheme, as illustrated in Figure 23, spare PE's are
provided between node sites [139]. The spare PE's are switched into the array
as required, wusing LI type switches. With similar complexity to the row LI
column schemes, this scheme performs slightly Dbetter than those when the PE
yields are between 65% and 80%.

6.6.9 Hierarchical Scheme

In :140], a GI switched scheme 1is described. Here PE's are organized
into blocks of 12 of which only 4 are required. If 4 good PE's could not be
organized from the block then the whole column of blocks would be bypassed.
For PE yields between 40% and 60% this scheme performs best out of all the
schemes presented. In fact, Hedlund intended the scheme to be used for an
array where 33% of the PE's were faulty on the average.

On comparison of tne schemes, temporal redundancy appears to be
efficient only in situations where PE idle time already exists. Interstitial
redundancy has applicat:ion for certain yield classes. For tne reconfiguration
schemes, the more complex the switch type, the greater the flexibility
afforded Lut also tne greater the area overhead. In fact, tne more complex
and flexible scnemes only become useful for lower yields.
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A Systolic SBNR Adaptive Signal Processor

MICHAEL ANDREWS

4bstract — A new reslizanon for adapnve signal processing units 1s
proposed which uses s special subset of signed digit number representa-
noms (SDNR's). This ugned binary number representsiiona (SBNR) cap-
rures all of the efficiencies of SDNR arithmetic but also makes circuit
reslizsions less compiex. Furthermore, a natursl interface between analog
and digiial numbers s provided. The senial on-line processing nature of
SBNR unlizes the VISB firsi. An aren/time complexity lor VLS] imple-
meniahions in comparable sysiolic array architectures contrasts the ef-
fectiveness of (ive different primunve VLSI cells and orgamuzations.

1. INTRODUCTION

URST [1} has noted that multi-valued logic (MVL)

may show promuse in the future for VLSI. At present,
binary systems are facing interconnect probiems which
appear 10 be insurmountable. Silicon areas devoted to
intrachip connections now consume 1wice the area of active
logic elements on the chup {2]. Array implemeniations
cause a severe escalation of interconnect area. Likewise. off
chip connections are generaung new and complex thermal
and mechanical problems for the board designer. Such
factors seek denser information content (o interconnection
ratos. In this paper. a redundant anthmetic solution is
proposed and coupled with MVL reheves some of the
sithicon area 1nefficiencies with convenuonal binary anth-
metic.

We examine one implementation of ternary anthmetc
which when viewed as redundant numbers holds promuse
for division-sparse signal processing applications. Section
II briefly describes basic digit number properuies attracuve
10 signal processing which manipulate sequenual data
streams. Section 11l discloses an efficient TRIT ternary
digits realization which serves as the pnmiuve VLSI cell.
The realization uuilizes a balanced encoding coupled with
encoded redundancy to improve both logic delay and gate
count.

Section [V idenufies the inumate coupling between word
and bit level matnx x matnx muluphcation. Section V de-
scribes a systolic implementauon of the least mean square
(LMS) algonthm invokung signed binary number represen-
tations (SBNR's), whuch is easily realized with MVL. The
LMS algonthm s a difficult adaptive signal processing
benchmark because in-place coeflficient methods do not
applv Section VI idenufies appropnate ADC and DAC
SBNR realizauons. Section VII contrasts comparable real-
1Zations.

Manuscnpt received March | 1985 revised September 0. 1985 Thus
work way sponsored by the US Army Research Office under Grant
DAAGI9-AY.C J02S

The author :s with Space Tech Corporaton. Fort Collins. CO #0526

IEEE Log Number 340048¢

11. SiIGNED DiIGIT NUMBER REPRESENTATIONS
(SDNR)

In the most general sense, a redundant number system
allows both an increase in the number of positive and
negative digits as follows.

Definition 1.

Wy ™ RXRX - - xR=Q (1)
n -1
a,_ " "a@_ @, a_,, - Z ad’ (2)
where the digits
d€R={(~-r.=r+1 01 rn=-1l.r}.

(3)

The representation described by (1), (2). and (3) s called
redundant notation with base d. The basic properties of
general SDNR are identified in Table 1. Aviziems [3].
Atkins (4], Tung [5]. Ercegovac [6]. and Robertson (7} have
shown that SDNR can effecuvely operate in a general
purpose digitai computer for the reasons noted. However.
the general redundant representation does not lead to
efficient 1mplementations unless restrictions are placed
upon the number set.

rl‘r:>0

111.  EFFICIENT SDNR REALIZATION

Several implementations based on the SDNR have al-
ready been invesugated [8]-[11]. all of which sought to
sausly general data processing requirements of a mainframe
computer. In contrast. signal processing applications are
muluplication,/addition intensive. An efficient SDNR
realization is possible if we select the foilowing redundant
signed binary number representation (SBNR).

oxae

-

Xe(-10.+1 (4)
with the notation .?, for = X (1 for = 1). The redundant
representation for 1 1s 01 or 17 whale for - 11115 01 or 11

If we assume a two digit SBNR. nine states are possible
covening the range -3 to +3 with all representations
unique except for 1 and -1 which are (01 or 1y and 0l or
11}, respectively Of the 27-state inputs for a fuil adder
truth 1able (1.e.. three states each for the wo digits to be
added x, and » and the carrv out from the previous
column (¢, ). only six distinct cases descnbed in Table 11
are necessarv if we always represent 1 as 01 and ! as 11
Furthermore. in four entnes (1. 3. 4. and 6) the carmy out i
completely determined by x and v Hence. an adder need
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TABLE |
SDNR Prorenriies
Parumerer Property

Zcron SDNR Unique il m=n.(d 1 >m and

molaid L2

Totallv parallcl with mimmal carn
borrow propagation und operahion
ume independeni of word lengih

Addinon  subtrdction

Mosi uigmlicant digit No spevial treatment

Dgits Pomtionaily weighted with sign
Nogation Simple logical compivmentanon of
“ wgn bils
;“' Vanabic length operands Handled  camly by  nghtao-kfi
ALY methods
- Mulupiation Tends 10 produce rounded reswlts
r\'- Orverflow detection Immediately follows production of
LN moat igmificant digit
End-around carry None hence single digit ALU shices
R are idenucal making VLSI highly
.::' regular
-
7 only consider carry in for cases 2 and 5 1n order 10 generate
Sv carry out. For these two cases, carry out depends on
whether the previous x, |, or v, 1s negative. From these
considerations. the VLSI circuit proposed by Takags er ul
i (9] 0 Fig. 1 suffices.

A pnmuve cell suitable for large VLSI arrays and
~ especially for adapuve signal processors must have few
;: interconnecuions beyond its nearest neighbors and very
A simple controls. Fortunately. many <ignal processing

algorithms can be implemented with bit-senal anthmetc.
L PR P P . TR ST ST SN R PR PR P I R L P I B R
NN AONDIEN N RN M AN A AT

1

|
€yl . 'l
[—r“’r"J““’TT°
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Fig. 2. Pnmiuve cell (iniernal data flow)

TABLE Il
INTERMEDIATE ADITION STEP CLASSES
Next Lower Intermed
Augend  Addend Position Carry Sum
Tvpe (\,) () (5, o8 ) (¢) (s,)
| | I - I 0
| Both are positive | -
1
hJ
2 0 | At lcast one 0 .
15 negalive
1 1] 0 - 0 0
1 1 - ] 0
4 i I - 0 0
. Both are postive -
(V] | 0 1
S i 0 At lcast one i "
i N is negative _
[ 1 1 — 1 V]

Fig. 2 represents the cell conceptually with dashed Iines
indicating the “data flow™ internal o the cell where North,
South. East. and West (N, S, E, W) data paths are available.
Intercell connections shall only be to the nearest neighbors.
Furthermore, latches on the north and east are incorpo-
rated 1n the cell to aid systohc latching of operand buts
The cell 1s now utihized in a systolic array where the
dominant operation of axn matnx muluphcauon 1s
invoked.

IV, MATRIX X MATRIX MULTIPLICATION

Matnx operations may be either sums of word levei
products or sums of bit level products. Furthermore. a
strong relauonship exists between word and bit level svs-
tolic arrays [12]. Treated as bit level manipulations. fast
area efficient VLSI arrays are possible [13], [14]. In our
SBNR implementations, a systolic-like bit level approach is
assumed where each processing cell 1s a2 mulupher and
gated full adder.

To understand this word /bit dualism, we consider the
implementations at the word level and show how bit level
similanties apply. Multiplication of two n x 2 matnces.
$=(s5,) and H=(h, ) 1o form the matnx product
Y= (v.,) becomes
v, = Es,,h./. (. y=12.-".n {S)

k=)
Without any loss of generality, ¥ may be considered as
independent vectors y. The aggregate of n matnx x vector
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a

’ product evaluations, each of the type in (6) compnses the

. matnx Y.
% ;

yl - Z ‘,:hbl . (6)
k=l
oy However, each of (6) i1s also an aggregate of n nner

L ¥ 2K
[ QY

Of |

%

|

product evaluations of the type
L]
= Z s, A, (N
hel
Muluplication of two matnices now becomes a series of
unit multiplications of (7) and an accumulation of relevant
product terms. For this reason. systolic arrays use a multi-
pher s accumulator PE. Equation (7) can be partitoned
further into a senes of bit level sum of products. The
coelhicient of each power of two in the result now becomes
a convolution of the coefficients in the two operands. This
important discovery allows us to organmize the input signal
streams so that operations at the bit level ure pipelined
onto our drray, as in Fig. 3. The tantamount constraint is
thut the physical significance position in the array must be
static so that parual products are accumulated correctly.
W e Jdo not require the complicated carry /borrow strategies
found 1n two’s complement systems because our SBNR has
4 minimal carry /borrow distance.

Counwider the muitiphcation of 1two 4 x4 matrices as In
Fig. 3. This diagram portrays the interaction of the bits of
two sets of words, 5|, and A,,. which compute v,,. Each
wjudre is & gated full adder unut of cells in Fig. 2. The data
words :n Fig. 3 have been expanded into their respective
individual bits and the kth row is associated with the kth
set of words. Words s,, enter from the nght while words
n, . enter from the left in a bit senal manner. Although we
show the least significant bits (s,. A),) entering ahead of
the next significant bits (sy,. ). the MSB’s can also enter
first 1n SBNR. Upon formung partial products. the inter-
mediate results, v . are passed verucally downward.

On a larger scale, the parual products v, are generated
a> 1n Fig. 4 1n the shaded areas. Dashed lines adjacent 10
the paruiletogram edges are guardbands to allow for growth
generated by carry bits. For m-bit operands. m «+
1.2 log,.] bits are necessary These guard bands are

L3

Fig. 4 Paruul product generauon of matnx x matnx muluphcation.

equivalent to spacing input parallelograms with guard-
bands filled in with zero bits.

The shaded areas which move down verucally generate
partial products such that successive cells at a given loca-
tion 1n the shaded diamond area accumulate all terms in

LJ
GALIDNIA L (8
A=}

The full sum of products is formed by the accumulation of
diamonds emerging from the bottom. A pipelined tree of
adder cells connected to the bottom edge generates the l(uil
sum which can be clocked out least significant bit first or
most significant bit first (SBNR only). The full sum is then
computed every 2m + 1 clock cycles.

It 1s important to note that the symmetry of diamonds 1n
Fig. 4 carries over directly into regular VLSI cells with few
intercell connections, resulting 1n an extremely efficient
VLSI computauional array. [f SBNR numbers are not used.
carry /borrow logic and intercell data paths would be
complicated by the same level of complexity necessaryv (0
fabncate full carry lookahead adders (where carrv propa-
gate logic grows as a function of wordlength). In an SBNR
implementation. only nearest neighbor cell paths and same
cell replication are required.

Another advantage to SBNR is the absence of special
arcuitry and algonthms to handle signed operands. In
iwo’'s complement anthmetic. the Baugh Wooley algonthm
can be used [15]. In thus procedure, two's complement
words are treated as positive numbers if 1) a fixed correc-
uon term 1s added to the result for each word level mulu-
plicauon, and 2) all partual products normally with a
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Fig . Adaptive signal processor.

negative weighting are complemented. Two's complement
unmplementauons on a systolic array require a negative
weighting flag or a tag on the partial products which must
propagate vertically down through the array. Hence,
another latch and control line is required for each col-
umnar path. Furthermore, final addition of correction terms
requires an initialization of the accumulators in the adder
trees.

V. AN IMPLEMENTATION OF THE LMS ALGORITHM

An N-sampled LMS adapuve filter as depicted in Fig. §
captures a signal, §, into a transversal filter whose scalar
output, y, is obtained by convolving § with adapting
coefficients H. An error signal, e, derived from the filter
output and a training signal, d, drives the LMS weight
update algonthm. The transversal filter has a set of N
registers, each of length K bits which provides storage for
the N x K array of bit values, B, for the signal §. Bold-
faced characters are vectors or matrices. The independent
time vanable, ¢, is omitted, but is implicit to discussions.
Necessary filter scalars and matrices are defined in Tables
II1 and IV.

The signal vector, §, can be partitioned into the 8N x K
array as in (9).

- -

R 5o
st st
5

B=s) .
Se
[siosd ot s

suchthats/: 1< J< N, 0<i<k (9)

where a superscnpt denotes a sampling moment and a
subscript denotes a bit position in a K-bit word. The signal
vector can be expressed as

S =BX.
The output of the filter 1s given by the convolution
y=S'H (11)

where the column vector H represents the set of N filter
coefficients.

(10)

Laad ol Bal Rat ot Aoy dei jat e dei sak Sai der Ball fa: Sa= o Sat fai Sai Sa. ihe < g
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TABLE 11
ADAPTIVE FILTER SCALERS

Al odlat SRR AS- e Jia =

h(n) =nth coefficient of an ¥-point digital adapuve filter.
(k) =kth partual product used in the output accumulauon.

1(n) = K-bit input signal sample present at pownt # of an V-pouwnt digital filter.

y =digital filter output.
d = input training signal to digital adapuve filter.
e=d - y = error ;ample generated by digital adapuve filter

TABLE IV
ADAPTIVE FILTER MATRICES

ST (3(1), 22 2(n) - (N )
HTa(A(1),AQ).- - A(n). - A(N))
Fla(fil), fQ) - f(k). - fK))
XTea(274,27%,..274), e, the set of the first K negauve
integer powers of 2.
8 =the N x K array of bit values which results when a K-bit
input signal vector is stored 1a an N-point digical [ilter.

Define the column vector F as
F=B"H (12)

and substituting (10) in (11), using the property of matrix
transposition, we have

y=XTF (13)

where the filter coefficients, F, is a set of partial products.
The LMS algorithm updates

F'=F+2ueB"BX (14)

where u is a convergence rate factor. Equations (13) and
(14) form the iterative computational tasks of the filter.

Cowan et al. {16] have observed that the output filter
formulation of (13) when compared with (11) reveals the
essential elements of the distributed arithmetic architecture
of the LMS algorithm depicted in Fig. 6. The input (ana-
log-to-digital converter) signals are presented senally to a
set of N cascaded K-bit shift registers. As this serial bit
stream enters the shift registers, the shift register parallel
outputs generate K N-bit address words on the RAM
address bus. Each RAM datum is then right-shifted X bits
and accumulated. The accumulation is complete after X
memory accesses. Finally, an output sample is converted to
an output analog signal. As in our implementation, the
distnibuted arithmetic architecture uses no hardware multi-
pliers. Using (14) in a matrix by matrix muitiplication
scheme naturally captures the bit-senial word-paralle! power
of systolic arrays behaving as SIMD data-flow engines.

An additional circuit reduction is possible when we
utilize the latches in the primitive cells of Fig. 2 to store the
input signal, S. Now, external RAM is no longer required.
As a result, the VLS] implementation is more compact.
Furthermore, vector and matnx transposition operations
are casily accomplished by routing signals in the orthogo-
nal direction since the primitive cells have NS and EW
bidirectional ports saving considerable time. A circuit 10
implement the LMS algorithm is shown in Fig. 7.

This architecture utilizes two n X m cell systolic arrays
and an adder tree. The upper array computes the filter
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output y = XTF while the lower array updates the filter
coefficients. With two systolic array«, as configured in Fig.
7. filter output and weight update can be pipelined so that
the totai computational delay from signal input sample, §,
to output signal sample, y, is no greater than one-bit
conversion of the ADC. An expensive ADC flash con-
version is not necessary.

V1. ADC anp DAC MEeTHODS

It is easily seen that a balanced recundant encoded
number, A, can be represented by a “ positive” part and a
*“negative” part, A* and A, respectively, as in (15).

A=A+ A" (15)
where the operator “+™ is the normal arithmetic oper-

ation. For example, the signed digit number, 1101, is the
sum of

1101 = (22) + (=2 -29)
“4-9m= -5 (16)

Thus property makes digital-to-analog conversion trivial.
The circuit of Fig. 8 dispiays the essential components [17].

Separating A4 as above then permits us to simply add
the parts together in a conventional adder whose result is
represented 1n the number system compatible with the
interconnected DAC as in Fig. $.

a(t)

vy

“positive” . .
biaary logic |- 'y
. N “sagative’
x| # . | vinary logic {: a7
tersary japuts
Fig. 8. 3-valued circwt.

Fig. 9. Signed digit digital-to-analog converter.

The ADC realization is greatly simplified by noting that
our TRIT representations require no positive number re-
coding. Negative numbers nced only change the represen-
tation of the leading “one” to “1” |3]. Two's complement
binary numbers carry straight across to SBNR except for
the leading digit and only if the number is negative. As a
result, any ADC can be directly used which generates
binary numbers (biased, offset, one’s or two’s complement,
sign-magnitude). It is noteworthy to observe that these
ADC/DAC efficiencies do not carry over for SDNR num-
bers.

VII. COMPARATIVE PERFORMANCE

In this section, the LMS systolic SBNR architecture is
compared to four other architactures. These cases are: 1)
conventional 2's complement binary full-pcrallel
adder /multipliers, 2) distributed anthmeuc vanation of (1)
using bit-wise adders across the filter taps, 3) . :dundant
an:hmetic cells replacing the adders/multpliers of (1), and
4) bit-sequential arithme! : cells replacing the adders/mul-
tipliers of (1).

The LMS algorithm can be impiemented in any of these
architectures with either sparse or fully parallel /pipelined
hardware. When implemented with 2N mulupliers and 2N
adders, as in Case 1 above, no faster implementation is
possible. However, for most applications, 2N multipliers
are overwhelmingly expensive in VLS real estate.
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N I1NPUT SAMPLES

[T 77 Comparable architectures are depicted in Fig. 10. Case 1
L e 9 (Fig. 10(a)) utilizes the most hardware (2N multipliers and
¥ - - 2N adders) in the conventional (ully parallel sense. Case 2

K ADOER Tasg is essentially the Cowan architecture of Fig. 6. Case 3 (Fig.
N r_*—ﬁ 10(c)) is a redundant arithmetic cell proposed by Chow [10]
. ! > where an SDNR implementation is assumed. Here, each

L 18

FV cell incorporates two signed-digit adders and one signed-
g; digit multiplier where signed-digits obey the properties of
= ‘A ven (1)-(4). Case 4 (Fig. 10(b)) is a bit-sequential cell approach
e L . also replacing the adders/multipliers of Case 1. This
§ arrangement proposed by Sips [18] makes use of redundant
arithmetic but not as efficiently as SBNR implementations
JAVAVANA . because higher radices require more wire interconnect space.
| sarrr mcisra —] The Sips bit-sequential cell can be configured in a linear
/ CORFFICIENT m" two-dimensional array for +, —, X, and + operations.
N~ Fig. 10(b) depicts the individual full adder (FA) cell with a
v a St ‘, D flip-flop for latching operands, a 3-input AND gate, and
. ; — " a 2-input XOR gate. If east/west as well as north/south
™ ._ ~=-{luw.  paths are necessary, an additional flip-flop is required. The
a XOR gate obtains the complemented operand (for aegative
values). Control lines XTL and XTL’ load successively new
L operand bits into the adjacent column for systolic addition

as shown in the lower portion of the figure.

Y The SDNR cell depicted in Fig. 10(c) has been proposed
l
B J

- a
2 [
w
-
[ 1

o~
v
£
<
©
r 3

=

by Chow for radix 16 members of the set
(-10,-9,---,0,1,2,---, +9). The cell operations are
described in Appendix A. Similar to the Sips cell, it uses
Sout redundant numbers, but in a two-level adder scheme. The
second adder converts signed-digit numbers to conven-
tional binary. Irwin and Owens {19} show that a systolic
array of such cells can perform digit addition/subtraction
in four gate delays, multiplication in six gate delays and
shifting in zero gate delays. This systolic array has one
severe drawback. Owens [20] shows that the redundant
number set must be symmetnic (i.c., |r,| = |r,| in (3)) and
multiplication operand digits must be fractions. As yet, no
rapid integer, nonsymmetric multiplication algonthms exist
for SDNR.

- \ CAARY PROPAGATION muu Gate costs listed in Table V for MOS realizations for
- ! ® each primitive logic element are used to derive the relative
i . area/time complexities of typical CAD library cells needed
! - || ' for each architecture contrasted. We assume that the full
. adder (FA) circuits require 18 MOSFET's, 4 cells, 3 levels,
SR * and 11 intraconnections. Latches are fabricated from D-
wr type flip-flops each requiring 16 MOSFET's, 8 cells, 7
levels, and 9 intraconnections (21, p. 207). Dynamic shift
registers require 8 MOSFET's, 4 cells, 2 levels, and 9
intraconnections per bit (21, p. 222]. Suatic MOS RAM
cells each use 6 MOSFET's, 4 cells, 1 level, and 10
intraconnections {21, p. 249]. An N-input NAND (N < 4)
gate requires ¥ +1 MOSFET's, N +1 cells, 1 level, and

N + 2 intraconnections (21, p. 144}].
A E Any VLSI chip is composed of interconnection area,
effective chip area occupied by library cells, and an over-
B v head area. Assuming then that a silicon compiler is used,
" : Y ' © the area and time complexities for common library cells of
» Fig 10 (a) A fully parallel conveational architecture. (b) Sips bir.  KFomlof {22] are relevant here. Table VI in conjunction
sequenual architecture. (¢) Redundant anthmeuc ceil archtecture. with Table V relates the wordlength X to the L successive
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TABLE Y
\% MOS REALIZATIONS OF BOOLEAN FUNCTIONS
“
Y Function #MOSFETs Cells Levels I[nuaconnecuons
Inverter 2 1 1 2
- NAND N+l N+1 1 N+2
Buffered NAND N+S§ N+§ 3 N+S§
NOR N=+1 N+l 1 N+2
XOR IN+3 IN+3 3 IN+6
X 2-Bit Half Adder 1S 4 k| 9
n 2-Bit Full Adder 18 4 3 11
. 1-Bit RAM (Stauic) 6 4 1 10
1-Bit ROM b) 1 1 b
1-Bit Shift Register 8 4 2 9
! D-Flip Flop 16 8 7 9
4 D-Flip- Flop (Master Slave) 32 16 14 20
i S-R Laich 6 4 2 6
5
L Y
2 TABLE VI
. LiBRARY CELL RELATIVE AREA/TIME COMPLEXITIES
[8d
Component Type Area Compl. Time Compl.
C] Parallel Multiplier (8 x 8) B? B
J Accumulator (K = LB +2)
—adder (Brent-Kung) Klog K +1 logK+1
—shifter. e.g. K 1
= Adders (Brent- Kung) BlogB+1 log 8 +1
r Coefficient Memory 8L 1
Pipeline Register 8L 1
Register, Ports. e.3. B 1
LB out of 2B switch (MUX's) LB(L+28) 1
Iteration Control (Counter) LlogL 1
Queue Elements BL 1
Systolic Cells
Chow (SDNR) 2
Sips 1 1
S3NR 1 1
TABLE Vi1
COMPARISON OF ARCHITECTURAL COMPLEXITY SYSTOLIC ARRAY
Conventonal Redundant Redundant
Binary Distnbuted Bit-Sequential Anth. Anth.
(2N mulupliers) Anthmetc Cells Cells Cells
(2N adders) (Cowan) (Sips) (Chow) (SBNR)
Gate Complexsty A2mN) O(kN) O(km) OCkm) O(kN)
Latency N+l kN bit 8 +one one ADC one ADC
memory shilts ADC bit digit but
writes conversion conversion coaversion
VLSI Amenable structure irregular moderate yes yes yes
Estimated not appropnate not appropriate 40° 10m 10
Pin Count/Cell
Area Complexaty > 2N(B82+ KlogK+1 2KlogK +1+2K KlogK +1 2A8/m)? Klog K +1
+ K+ 8L) +28L+28 +8log8+1+28 +48BlogB8+1) +Blog8+1
Time Complexity > max(8 orlog K +1) log 8 +1 log8+1+2logKk +1 mB 8

*Assumes cach ceil 1s 2 4-bit slice.

m = number of digits in 2 word.

k = number of bits in each shult register (k < m).

N = number of filter coefficients.

3 = small posive constant (3 or 4) less than the ume to complete a full bit-parallel operation.
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bat fields of B where

B = |K/L|bits. (17)

For two's complement numbers in binary fixed-point rep-
resentauon, the real value, X, can be represented by an
unsigned binary integer value, X,, and the MSB bu, X, as
um

X=X,/249-1 22X, (18)

Hence, a wordlength X has L8 bits. The area penalty of
wires is proporuonal to B and to the square root of the
effective chup area. Power distnbution lines and bonding
pads constitute the overhead area. An SBNR cell is as-
sumed to have unity area and ume complexity because
each cell is basically a “one-bit” device. The Chow cell
essentially has an area complexity four times the SBNR
because its SDNR realization basically assumes 4 bits per
digit on a radix 16 representation. The time complexity is
double because another level of logic depth is required.

Using Table VI, the area/time complexities of each of
the five architectures can be compared. Table VI also lists
the gate complexity latency, VLSI-suitability, and pin
count/cell.

VIII. CONCLUSIONS

The conventional binary architecture is hardware inten-
sive yet is ultimately the fastest. The distributed arithmetic
is a compromise between speed and silicon space. How-
ever, a regular design for VLSI is not easily achieved since
no repetitive cell is utilized as in the three systolic imple-
mentauons. Of these, the SBNR systolic implementation is
highly regular, possessing very short signailing wires. Fur-
thermore, local control in this self-timed synchronous sys-
tem eliminates the need for global control lines which
degrade performance of synchronous systems as in the
convenuonal binary architecture.

A number sysiem entirely composed of signed-bits
(-1,0,1) amenable to ternary valued circuits has been
proposed for signal processing units where add/multiply
cycles dominate. Such SBNR implementations can be con-
figured as a systolic array to perform n X n matrix oper-
ations. Because the carry/borrow distance is minimal for
SBNR, intercell communication is reduced. As a result,
extensive carry-propagation, lookahead hardware is no
longer required and mathematical operations are no longer
dependent on wordlength as in conventional two’s comple-
ment binary systems. Thus synchrony so vital to systolic
arrays is more easily achieved and true data-flow SIMD
machines result.

Although the area and time complexities of the three
systolic arrays are comparable, the latency (time interval
from input signal 10 output signal) is smallest for the
SBNR array. Furthermore, the SBNR offers a successful
fauit tolerant impiementation (4], {10]. The estimated pin
count/cell is smallest for the SBNR array. This is because
the left-to-right (MSB-t0-LSB) computing property of
SBNR numbers allows us to begin computations upon
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receipt of the MSB from the ADC. In view of these
properties, we conclude that the SBNR systolic array 1s a
competitive if not superior alternative to other implemen-
tations. We anticipate future signal processing architec-
tures will take advantage of SBNR.

APPENDIX A
SDNR CHOw CELL OPERATIONS

The SDNR cell of Fig. 10(c) is capable of addition,
subtraction, muluplicauon, and assimulauon (which assists
data conversion). All operands are assumed to be normal-
ized floating-point numbers of the form

X=rfo. ¥ xr!
1=Q

where E, is an integer with an e-bit two’s complement
representation. In the following operauons, ¢’ and w’ are
transfer digits which perform the same intermediate
carry/borrow functions as our SBNR Z,, Z,,, and C,,.
C,, bits except that ¢* and w’ digits each require multiple
lines (e.g., a radix 16 SDNR digit can be represented with §
bits, one for sign and four for magnitude).

Definitions

Woa =Kr —1)/2]

las =Kr =1)/2) if p=Kr—=1)/2|is even,

=|r —=1)/2|+1, otherwise.

U ax = KO = Wit )/ 71

X max ‘KP + U + Woex = Imu)/”'

D, contains digits from Q to r — 1.

D,,_,;, + conmains digits from 0 to 7 - 1.

D,u D, _,,+ contains digits from p to r - 1.

Input Digits

The input digits a, b, and ¢ belong to the digit sets
D,uD,_,,+. D, and D, respectively.

The transfer digits +' and w’ belong to the digit sets
D,_ma, and D, respectively.

The borrow B8’ is either 0 or 1.

Functions of the Three Levels

(A-1)

(M] If M-MULT =1
then ru+we bc with u In D(,__., and w in
D(l-v...)'
else ue—b and w« 0.
(S1] 1f S1-ADD =1
then rx +t1e—=a+w +u,
elserx+i1—a—w -u.
In either case, x isin D, ,,and 1 isin D, _,
[S2] If ASSIM =1
then -8 +s«a-B' withsin D,_,, + and B
is0orl,

else s—1'+x.
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ABSTRACT W >
A compurative study of various number systems 1- Q<°§»x' e ¢
the relutive merits for real-time signal processiny Q@” ‘53 .Ty,
signed digit, redundant number, and 4 new rupr e° ignud-
binary number representation (SENH) are contrastec circuit
complexity. [t is shown that the SBNR system h dpeed, gute
complexity and regularity attributes amenable to V. .vorpluns aru
proposed for minimal intercell connectivitivs, u prere itte for uystolic

array 1mplementations. A test cuse realizing the least-squares ulgorithm
in A aystolic urruy for aduptive beumforming applications indicates
compurutive ditfterences. Executing a square-root free Givens rotation
matrix operation 1terutively 1n a two systolic array configuration
demonstrates real time signal proceusing for beamforming.

INTRODUCTION

A comparative architecture study waus performed in order to implement
the sculed Givens rotation solution to the least-squares minimization
problem. Three architectures are examined: a) Conventional Systolic
Array, b) Distributed Arithmetic Arramy, and c) SBNR Systolic Array.
Inportunt cunsiderations in adaptive beamaforming algurithm to architecture
myupping include gute count estimutes for some of the architecturwy and
tables tor performing these estimutes. A systolic architecture tor aun
aduptive beumformer trucking system is developed for performing recursive
least-squares minimization.

The purpose of this project is to identify engineering trade-offs and
interconnection strutegies cupable of achieving real-time implementation
of signul processing algorithms via limited user-programmable mechanisms
(u.g., rirmware). Flexible tiermwarc-=orivnted architectures dedicated to
S1gnual processing can then be 1dentified. The specitic test algorithn
pertorms an orthogonal triangularization of the duta matrix using a
pipelined sequence of Givens rotations and generates the required residual
without huviug to solve the ussociated triungular lineuar sysiem by back-
substitution.

Array Architectures

Systolic uarruy architectures reumain diverse. At the extreme ends are
the WARP arruy und the GAPP array. WARP utilizes 68000 microprocessors in
euch processing vliement (PE). CAPP uses a 1 bit ALU with 128 bit RAM us
each PE. Although more primitive (68000 is a 1nh it parullel engine),
GAPP is a single chip of 72 PE's. Because of its high speed and
8availability, GAPP is viable. Between these outlying architectures lie
conventional and distributed arithmetic processing cell compositions.

This work wus sponsored in part by Army Research .Office Contract #DAAG2y-
83-C-002%. The views, opinicns, and findings contained in this report ate
those of the author and should not be construed as an official Depurtment
of the Army position, policy or decision, unlcss so designuted by other
documentation.
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::J,, A study of basic PE's was made. A new PE utilizing a primitive cell
b is proposed for a systolic arruy PE. Anotner alternative PE based on a
distributed arithmetic cell was studied. This cell incrvases computation
i speed by reducing multiplication to table-lookup of partial products and a
series of snift/add operations.
o Beamforming Architectures
o~ An antenna beum 13 a collection of point sources or receptors where
~ guometry governs the characteristic equations of the system. For u
uniformly spaced line array as depicted in Figure 1, the following form
R applies:
&
N~1 _
v, Gla) = L gne'Jz 7 (ndcos(a)/2) (1)
. n=0

- Equation ' nus the basic form of a DFT. when we consider that cos a =
Vo (k/N) (A/d), the beamformer output at angles a, is computablc by the gr"l‘
aa follows.

E'E N-1 ,
v Gk - I snu-az " nk/N (2)
n=Q

'::'. From this we can easily see that a 2-D temporal-spatial Fourier trunsform
: can torm beams in the nonuniformly spuced look directions. Adaptive
- beamforming must then cause the beam pattern to favor certain spatial or
.' spectral purumeters.
.Jﬂ
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(o Figure 1 Line Array Beamtorming

Feintuch, et. al.', investiguted an adaptive tracking system which
employed the LM5 algorithm to minimize thu error between two beums of a
split arruy. The weights generatod are analyzed to determine the max

ﬁ Adaptive Beumformer and Tracker Jystem
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weight. It roughly corresponds to the delay between the phase centers of
the two beams. The pnase or time-delay 1S then used tOo provide a bearing
estimate (for adaptive nulling, etc.).

et N
L 2>

e 3

We consider a least-square implementation of the adaptive tracker to
construct a completuly systoiic adaptive beamformer/tracker from tne
systolic Givens rotation, DFT, and backsubstitution architectures.
Feintuch provides & suitable starting point for incorporating
aduptability. OSimply stated, we use the peuks between weights to
electronicully steer the beam to force nulls at jummer angles. A time-
domain leust-squuares adaptive trucking eystem can be configured as shown
R in Figure 2. Two inputs are requlred for the adaptive trucker. Mult.ple
time "snapshots” of these sumples are collected to form thne y(r) and X(n)
and computes the weight vector i(u) which minimizes the leust-squarcs

ey
b

PR RIS

."‘.

o
- norm:
| E(n) = {le(n)ii = 1 X{(n)¥(n)+y(n)}] (3)
o
v’ The largest tap of the weight vector is then found and provides the phase
) bearing estimate.
v,
T
. pu—
S = -
&, - =
P :1". pume Lot ad )4
K <+, - -
P =) p— Least-
f . Squares
' Function
: 3 Block
)
: ] . B
v:.- : =
._. — : E
K b Gair ras  [———— P
;=
) - wacsy [0

Figure 2 Least-Squares Time Domain Adaptive Tracker

In the frequency domain solution, shown in Figure 2, domain inputs
. undergo a Fourier transform. Multiple time "snapshots” of one half the
: , arrany are tuken to produce a matrix of frequency componeuts for the LS
algorithm. The largest tap over the frequency weights is selected and the

o phase provides a bearing estimate which i3 used to steer the beum.
*, ) -
S
: Systolic Adaptive Beamformer and Tracking System
.{ - Figure 5 shows a complete frequency-domain adaptive beamformer and
. ii tracking system. The computational intensive components of the system are
systolic array modules.
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Figure 3 Frequency Domain Adaptive Beumformer and Trucker

The K-point DFT modules of the system perform u Fourier transform of
the time domuain input data. A system consideration ut this point is the
Fourier traansform throughput. The phase shift multiply is driven by the
phuse estimate from the adaptive trucker. Each frequency component from
the Pourier transform is multiplied by the term

e~ivpTy

where T i3 a function of the steering angle. A multiplier array operates
at this function block. A conventional distributed arithmetic engine or
SBNR distributed arithmetic engine muy be itdeal for this Array since Hm 18
only position dependent and the stecr asngle is the only variable and non-
position dependent quuntity in the computution of T qu 4 fixed sensor
arruy. Hence, un ultru fast table look-up of e ™ ¥uTy

solely on the steering angle.

cdan occur bused
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An adder array is used to form the frequency bins of the beam. Since
the bewam i3 ulresay 1n the frequency domain after the summing operation,
the bins can be fed directly to the L3 algorithm. The LS block consists
of a Givens rotation systolic arruy and a backsubstitution array to
compute the welghts. .The peak of tne weight vector can be found using a
quadratic 1nterpoiator. The interpolator performs a quadratic fit to tne
largest weight element and the two adjacent weights in tne frequency
domain.

Systolic Arruy lLeast Squares Solution

McWhirteré proposcvs u set of 35 primitive cells arrunged in &
triangular systolic urray wnich performs recursive least-squares
minimization. OQOrthogonal triungularization of the data matrix is
performed using a pipelined sequence of square-root free Civens rotations.
The squuare-root fruu (ivens rotation triangular systollc arruy 13 shown in
Pigure 4. The ussocirated primitive cells are given in Figure L., To
provide ua common performunce testbed, the conventional binary, SBNR-, and
distributed arithmetic arcnitucturvs were studied based on un
implementation of this systolic array.

Barlow and Ispen4 developed a scaled Givens rotation systolic
algoritha. The scaled Givens rotation algorithm operates on bunded
matrices of width w = p + q + | where p is the number of superdiagonals
and q 1s the number of subdiagonals. Assuming ® rows in the banded
matrix and s right hand side vectors, the number of computation steps are
given by:

2m + 3(q+1) + z + 1 (4)

The individual cell complexity (the number of equations solved at each
cell) 13 approximautely the Same aus those for the square-root free Civens
rotation. Only one division operation id required in the dcaled Givens
rotation and many of the multiplies ure reduced to shift operations. Both
scaled Givens rotations and squure-root {ree Givens rotations have
processor utilizations of approximately 50%.

Conventional Binary Implementution

The GAPPIT™ 13 & commercially available gystolic array device
providing 72 conventional binary processing vlements, dimensioned a3 4 6 X
12 rectilinesr array. The square-root free or scaled Givens rotution 13
vasi1ly implemented on this device. 1In order to obtain realistic speed
estimutes for a conventional binary implementstion of the square-root free
Givens rotution, code for the GAPP device has been written 1n a C-like
language known as caL™™,

The GAL square-root free Givens rotation code requires approximately

(2r + ¢ + 1)(83n2 + 224n + 156) (5)
instruction cycles where m is the bit length of-tue input operands, r i3
the number of matrix rows, and ¢ i3 the number of matrix columas. The

latency from first input to first residual output is

(c + r *» 1)(83n° +224n + 156) (6)
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The time to complete the entuire matrix reductlon increagses linearly
with the size of the array. The number of elements processed, however,
lncreagses a3 the square of the arruay size. 7O estimate tne precesaing
power of the GAPP solution, compute the nuaber of array elements processed
pe.s 1n3truction cycle. © Assuming a fixed word lengtin, tne word lengtin
dependent term 13 a constant K = 3%n° ¢« 2.4n + 150. The number of array
elements processed per cycle 13:

re/(2r + ¢ + 1)k elements/cycle (7,
It cun be seun thut for squure matrices (r = ¢) the number of elements
procesuvd per cycle increascs quadriatically us the array s.ize incresseus.
Improvenments in speed muy b obtulned 1f concurrency can be dchieved in
the operation of the three cell types of Mcwhirter's algorithm. A
promising solution 13 to use thrve Scpurate arruys (one for vach cell
type), and caretully synchronize data flow butween the urruys.

SBNR Implementation

A mesh connected systolic array of SBHR cells 1s used to implement
Mcwhirter's algorithm. A single SBNR cell is shown in PFigure 6. [t
consists of an appropriate set of registers which act as input to an
intermediate SBNR ALU and a final SBNR ALU.

It i3 possible to derive the minimum execution speed and latency for
this particular SBNR implementation of McwWhirter's systolic uarray by
considering the datu dependencies in the equations. The muximum data
dependency patnh length for the boundary, internal, and finul cells are S,
2, and YU, respectively. Using the 2N+1 foruwula for latency, we can
compute latencies and speed estimates for each cell.

The maximum boundary cell latency is 11 cycles. At the internal
cell, the maximum latency 18 5 cycles. At the final cell, the maximum
latency 13 3 cycles. If r 1s the number of rows and ¢ 18 the number of
columns, then the maximum latency to the first residual 1is:

Lic,r) = 11(c + r + 1) (a)
The execution time for the entire Givens rotation 1is:
S(ec,r,n) = (2r + ¢ + 1)(11 +# n =~ 1) (9)

where n is the bit length of the operands. Notice that the execution time
is linearly dependent (O(n)) on the bit length of the operands where the
CAPP arrauy execution time 1s quadratically dupendent (0(n)). This is a
result of the reduction of multiplication complexity in SBNR arithmetic.

Distributed Arithmetic Implementation

The pgoal in distributed aritnmetic architectures is to reduce
computation time by performing table look-up to produce partial
computation results. For exumple, multiplication can be reduced to a
table look-up of partial products followed by a series of shit't and adds
to obtain the final result. In an N bit by N bit multiply, it is possible
to divide euch operund into k segments. By cumbining wach segment of one
operand with every other segment of the other operand, an address in RAN
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_.: of each partisl product 13 formed. The partial products are locked up
LN and, througn & 8¢ries ot snifts and adda, accumuiated to form the {ihal
product. Tuble ' suows u compurison of u typical N b1t multiply us:ng
'l conventional binary versus distributed arithmet.c.
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Table 1 N Bit By N Bit Multiply Comparison

Conventional Distributed
Binary Arithmetic

Operations Operations

n shifts k%=1 shifts

n_adds k2-1 adds

n° ands (bit-wise) k° table look~ups

If RAM access speed is greuter than the computation time for n? AND
operations, then distributed arithmetic provides better performunce than
conventional arithmetic for k < n. There id a trude-of! between table
s1ze and computatlon/speed. The table size for any distributed arithmetac
multiplier 13 290/ K yords. While computdtion time is directly
proportional to k, the tuble is indirectly proportional to k (i.e., large
k implies lurger computation time but smaller table s1ze).

An n bit distributed arithmetic computational element is shown in
Figure 7. This computational element 1S a single bit ALU with the special
feature that a table address register can be louded and a partial product
retrieved for further computation.

x(t)
k
\
x .
L
* . r —~e{ RAM -.SB{FT - % »>
. . I ADD c
J B
- '
A BUFFER
K-BIT SHIFT T . |
REGISTERS c SUM SRIFT
H

Figure 7 Distributed Arithmetic Primitive blement Ar.n. te-2.-

This cell can be incorporated in & mesh-connecte: sya-
perform the Civens rotation by McwWhirter's algo~itnm. ~
ussumed to operate like the bit-sequen;;alqcell of wtne
thut the wmultiplication is no longer C . n~, bul LA
latency and execution time can Ye made by CoemoSv i
estimates made for GAPP. Thus the latency
arithmeti. implementation of McWhirter's algori: =

(c + r +1)(224n + 156)
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and the execution time is approximately
(2r + ¢ + 1)(224n + 156) (11)

COMPARATIVE ANALYSIS

A comparison of systolic primitive elements is presented in Table 2.
Five architectures are examined.

a. Conventional binary bit sequential cell (GAPP)

b. Conventional binary (complex cell)

c. Distributed arithmetic

d. Signed binary number representstion (complex cell)

e. Signed binary number representation (mesh-connected PE's)
The architectures were contrasted assuming a8 square-root free Givens
rotation implementation to obtain speed and latency estimates. The
conventionsl binary (complex cell) und SENR (complex cell) are both
algorithm dedicated architectures. As u result, they huve irregular
structures iand are not VLSI amenauble. The conventionul binary (complex
cell) architecture hus O(1) speed and latency. The SBNR (complex cell)
and the 3BNR (meshe.connected PE), which, by the way, is VLS amenable,
have O(n) and 0(1) speed and latency, respectively. The distributed
arithmetic architecture exhibita O(n) speed and latency.

The conventional binary (complex cell) is superior in terms of speed
and latency only. The distributed arithmetic and SBNR (mesh-connected PE)
architectures have excellent speed and latency and both are VLSI amenable.
Distributed arithmetic bandwidth is smaller than SBNR (mesh-connected PE)
bandwidth, however, SBNR (mesh-connected PE) has a superior latency. For
adaptive beanformer implementation, both architectures are viable.

Table 2 Comparison of Systolic Array°Architectures

Complexity and Performance Cell Type

Conventional Conventional Distributed
Binary Binary Arithmetic
Bit Seq. Cell (1 Adders)’
(GAPP) (4 Multipliers)
Speed  (2r+c+1)(83n2+224n+156)  3(2r+c+1) (2r+c+1)(2240+156)
Latency (r+ce+1)(835n2+224n+1) 3(r+cet) (rec+1)(224n+1)
Cell Siaple Complex Simple
Complexity
1/0 Bandwidth ¢ en c
VISI Amenable Yes structure Yes
irregular
Algorithm No Yes . No
Dedicated
Gate Counts - - -
1Q
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1. For Boundary Cell. Internal cell requires 2 Adders, 2 Multipliers.
Final cell requires 1 Multiplier.

SBNR SBNR
(Complex cell) (mesh-connected PE's)
Speed (2r+c+1)(20+n) 0(n)
Latency 20(rec+1) o(1)
Cell Complex Simple
Complexity (multiple SBNR PE's)
I/0 Bandwidth 2c 2¢
VLSI Amenable structure Yes
irregular
Algorithm Yes No
Dedicated
Gate Count rc(2768 + Tlog.w rc(187 + log,w
+ 42w + 64n3 + 6w)

Table 2 Notation:

r - rows of rectilinear matrix
¢ - columns of rectilinear matrix
n - word length
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To meet the demands of high-speed si 4¢ within
the s8ize conatraints of VLSI implementati .rithmetic
processing element is deacribed. This elemen .gned Binary
Number Representation (SBNR) to acnieve fully +el addition.

The result is an adder, suitable for use in Vv . applications,
whose throughput is independent of word length. Use of SBNR also
reduces intrachip connection area, thus allowing a higher device
density to give each <chip correspondingly greater processing
powver.

INTRODUCTION

While the demand for faster, more powerful signal processors
has increased, the space allotted them has decreased. A need
exists, therefore;, for very fast arithmetic circuits that can be
very densely integrated. This requires that the <circuits
designed consume little- power and require little area for devices
and interconnections. In addition, a system should be found that
allows fast arithmetic processing with little added chip area.

Conventional adders add two numbers from lowest digit-place
to highest, propagating carry down the 1length of <the number.
Thus, the length of time for the addition depends on the word
length. This paper describes an adder that meets the
requirements for VLSI implementation. The adder uses signed
binary number representation (SBNR) to achieve totally parallel,
carry-free addition. The logic circuits used were developed to
allow VLSI implementation of multiple valued logic. The adder is
compared to conventional designs to show a speed increase for
various operand lengths.

ADDITION IN SIGNED BINARY NUMBER REPRESENTATION

A redundant number representation is one in which seversal
different digit combinations can represent the same number. The

Tnis work was sponsored in part by Army Research Office Contract
#DAAG29-83-C-0025. The viewa, opinions, and findings contained
in this report are those of the author and should not be
construed as an official Department of the Army position, policy
or decision, unless so designated by other documentation.
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signed digit number Trepresentation (sDNR)'! uses positive and
negative digits to represent a number. This special coding allows
faster arithmetic, because the carry propagation distance 1is
limited to one digit position. Standard aumber systems requaire
that the carry into a digit be known before the carry out can be
generated. SDNR does not require such foreknowledge, s0
arithmetic is performed in parallel. A signed digit number set
of radix r would consist of the digits

x, € {k-1,k-2,°"",1,0,-1,""",-(k=-2),-(k=1)}, where k < r.

This digit set represents a redundant number

- n-1 n-z LA )
XK=z Y Xp T *

* Iyr o+ ox,.

WVhen <this type of number system is used in an arithmetic unit,
propagation of carry is limited to two digit places. Since the
carry does not propagate down the entire length of the number, an
addition is done in constant time, independent of the length of

the operands, n.

The radix-two sw?set of SDNR is called signed binary number
representation--SBNR. (It 4is also referred to as redundant
binary representation.) The digits of SBNR belong to the set

x, € {1,0,1]

where 1 represents -1, For example, the DdYinary number 1011 =
1(23)+0(22)+1(2")+1(29) = 11,0 can be represented in SBNR as

1011=1171=1107

Though circuit implementations of SBNR are not, in general,
as simple as those of binary, they are much simpler than
implementations of the higher radices. Therefore, SBNR provides
a reasonable compromise between the parallel arithmetic
advantages of SDNR, and the simpler structure of binary circuits.

In addition, conversions between binary and SBNR are simple.
For 4instance, two's complement numbers are converted to SBNR
merely by changing the sign of the most significant bit. Numbers
in SBNR are recoded into binary by asubtracting the negative bits
from the positive in a conventional binary adder. The system
should be designed such that any slowdown caused by the binary
adder is offset by the speedup offered by using SBNR arithmetic.

Table 1 shows the addition rules for . derived
from Avizienis. Six types ot input bit patte: .dentitied.
Notice that in all cases, the carry out is independent of tnhe
carry 1in. In most cases, the carry 1is independent of the
previous bits. In the rest, the carry depends only upon the

signs of the next-lower operand bits. If both bits are negative
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(Neg.=1), the carry out is the lesser of the two operand bits;
otherwise, it is the greater.

' For example, to add two SBNR numbers -- 10102 = 1010 and
11412 ®= -9,0 == first the adder generates the carries, tnen uses
g the carry to find the final sum:
operandt 1010 = 1010
operand2 TTY1 = -%0
& carry 00110
@ sunm 0001t =’ 110
@ i i H Neg i Carry l| Final Tl
i | | (Signs o next- i Out | Sum |
i | : 1 | |
ﬁ Type Ay B, lower digits) C¥ieq | Cy |
]
) !
; 1 1 1 TP 1 ey
- _ |
! Y 1 1 1 1+Cy, i
! (both previous i
I L <2 bits nonnegative) 1
| |
‘ 1 | 0 1 0 | 1+Cy, i
E : (one previous | [
bit negative) | :
| |
' <3 0 0 cccvcecean I= i
| | |
- T o ooy |
A B B B
B o 5 | % |
‘ ! et | !
[} ] |
] T T
@ { - - ! T ]
0 i 1 1 | 0 i 1+Cyy |
' (both previous . .
& <5> :r bits nonnegative) ;L 4
- -— ]
b 0 1 T ) 1sCy, |
| i (one previous ! ! ;
& ' 0 1 bit negative) ' 1 1
| | | i i
| < | - - e ccmm—en | - | 1
a = 6> || 1 1 || 1 '| Cyi ,
1 { { { t
Table 1. Truth table for SBRR addition.
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When the input is (0,1) or (0,1), however, the signs of the
next-lower bits must be known to generate sum and carry. Since
the sum of the next-higher bit depends on the carry, and the
carry depends on the next-lower bits (and not on the next-lower
carry), one can see that signal propagation is limited to two bit
places. This eliminates the delays of carry-ripple adders and
the interconnection complexities of carry look-ahead adders.

MULTIPLE VALUED LOGIC

Tne 1last decade has seen a growing interesgt in the
computational applications of multivalued logic (MVL). =10 Much
-f the motivation for this research stems from the reduction in
area and pinout offered by MVL. An increase in the number of
logic levels on a single wire causes a decrease in the number of
wires. This decrease reduces both the interconnection area on a
chip and the number of pins required to transfer data to the rest
of the MVL system.

Since there are three logic levels in SBNR (1,0,7), the best
MVL system to use should have three states. Those Eecnnologies
in which logic levels are represented by current (I“L, ECL) or
charge (CCD) hold the greatest promise for radices higher than
four. Voltage-mode iogics (cMOS, NMOS, TTL) seem better suited
to the lower radices.

VLSI IMPLENMENTATION OF MVL

Only the low-power families (CMOS, NMOS, CCD) will allow a
great enough packing density for VLSI. 0f these families, CMOS
circuits have received the most attention. Unfortunately, it is
difficult to transfer the advantages of binary CMOS--high speed
and low static power dissipation--to MVL implementations. Early
designs required resistors to generate the center voltage, which
slowed down the gates and increased ??213power dissipated.
However, some of the more recent research has succeeded in

creating low-power all-transistor designs, at the cost of higher
gate complexity. The circuits operate on voltages of (+5, 0, -5)
volts to achieve logic levels (1, 0, 1).
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These gates, and their ¢truth tables, are summarized in
Figure 1. Thne circuit coanfigurations of the ternary NAND, NOR
and inverter are all identical to their binary counterparts.
Their functional difference is a resuls of changing the
parameters of the transistors. The T-gate (transmission gate)
selects one of three inputs based on a control signal. The S-
gate (switch gate) consists of two pass-transistor pairs and an
inverter: when the control signal goes low, one input is passed
through its shorted pass transistors to the output; when the
control is high, the second set of pass transistors shorts to
allow the other input through. The X' and X" gates add one and
subtract -one, respectively, mod 3.

These gates are combined to form a ternary adder cell which
uses SBNR to perform the function

Ci'Ai*Bi.

The state signal.NEGi tells the cell when one of the next-lower
digits is negative. It is the negative ternary NAND of Ai and
Bi' Thus, when an operand is negative, NEGi+1-1, otherwvise,
NEG1’1-1. This signal controls the sum and carry, as shown in
Table 1. The logic diagram of the arithmetic cell is pictured in

Figure 2.
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Figure 2. Ternary adder cell
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The implementation of the cell requires 112 transistors witn
*5 V power supplies, and the longest signal path is 11 transistor
delays, t, 1long. The ternary gates used have been tested using
four micron design rules. In that case, egach transistor delay
was about 1.5 nsec. If the gates could be implemented using a
gate "id¥% of one micron, each <transistor delay would bYe about

0.1 nsec “. Thus the total ¢time from the appearance of the
operands to the appearance of the answer could be as low as 1.1
nsec. Since the addition is totally parallel, a row of these

cells operating simultaneously could add two n-width words in the
same 1.1 nsec as a single bit.

Conventional ripple-carry adders (length n) consist of n
full-adder cells connected in parallel. Carry from tne addition
of the first bit moves to the second, where it is used to find
the carry to the third. The minimun ceﬁ% for this operation has
a gate delay of two transistor delays. Thus, the total add
time is 2nt. The SBNR adder is a factor 0.18n faster than the
ripple-carry adder, for n>5.

Brent and Kung16 considered a scheme for implementing carry
lookahead adders in VLSI. In this paper, they demonstrated a
network that computed a length-n sum in (4¢t)log,n seconds. This
setup is faster than the carry-ripple circuit, but slower than
the SBNR adder by (0.36)10g2n for n>6.

The area complexities of both the SBNR adder and the ripple
carry adder are 0(n) (though the SBNR adder requires about three
times the area of the ripple carry adder). The area of the
carry-lookanead adder is o(n logzn). Thus, the area-time
complexities for the adders are:

SBNR = = = - - - O(ng,
Ripple-carry - - 0(n¢),
Carry-lookahead~- 0(n log,n).

The lowest of these is the SBNR, making it the logical choice for
implementation in VLSI. Furtner satudy is needed to determine
whether the three-level aystem is desirable. A binary-encoded
SBNR system might provide the same area-time advantages as
ternary while eliminating the negative power supply.

SUMMARY AND CONCLUSIONS

Use of SBNR to eliminate carry propagation has resulted in a
totally parallel adder. The adder has been shown to be faster
than conventional binary implementations. A comparison of the
speed increase provided is given in Table 2. In high-precision
systems, wuse ot SBNR can provide a significant increase 1in
processor speed and system throughput.
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{ Word i i Ripple Carry |
| Length | SBNR i Carry Lookahead i
! n |  Adder |  Adder ' Adder :
? 8 E 11 i 16 E 12 i
: 16 : 11 , 32 : 16 ,
: 32 = 11 | 64 { 20 |
i 64 | 11 1 128 i 24 i

Table 2. Number of gate delays for various word lengths.

One disadvantage of SBNR is the added complexity of the bit-
level adder circuits. Another problem 1is conversion back to
binary. The usual method is to separate the poitive digits from
the negative, and then add the two numbers in a conventional
adder. This brings back the old proglfm of carry propagation.
However, a new method proposed by Chen converts an SBNR number
to binary in a time ©proportional <to the 1longest string of
consecutive zeros in the number. This method could make the SBNR
adder viable for a larger class of problems.

In a system thdat uses SBNR exclusively, of course, Bno
conversion need take place. In most systems, however, custom-
designing all components to operate under SBNR is too expensive.
Thus, SBNR should be wused only in applications where the
conversion overhead is negligible compared to thé computation
time saved.

Sucn18an application 1is an adder tree for multioperand
addition. In this case, a 1large number of operands can be
added together in SBNR, converting only <the final result to
binary. A similar application 1is parallﬂg multiplication, witn
parallel accumulation of partial products. In this case, bit-
level multiplications are performed on the operands, the partial
products are added in an SBNR adder tree, and the result is
converted using one carry lookahead adder.
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Processor capability for hardware implementation of Kalman filters*

A Kalman filter is a set of nxm
matrices and n vectors that compute
equations similar to those in the first six
equations below.

2U+1)=AR() + KDy (1) =C2(N))
+Bu(t) X(H) =%

where K'(¢) is the filter gain given by
Ky =[AZ()CT+S)[CC(1)CT+R)-!

L (#) is the state error covariance, that
is,
L) 2 ElR () ~x (DR ~x()]T |
yUu=1),y(1=2), ....ytf)|

L (1) satisfies the following Riccati dif-
ference equation:

Z(r+1)=AZ(NAT+Q-K(1)
[CC(OHCT+RIK(NTE() =E,

Several published papers imply that
these equations can be computed in
nlogn time using array processors. !:2-3.4
Such works present only a partial pic-
ture. The larger question is, ‘*‘How many
processors are needed?’’ The most
serious concern is, **What is the com-
plexity of each processor?”’

A reasonable figure-of-merit (FOM)
should be

n =
[number of compu- *{number of *([processor
1ational steps) processors] complexity]

This treatise only addresses the processor
complexity issue, since other papers have
sufficiently studied the remaining two
factors. Claims made for an O[nlogn)
bound to the number of computational
steps assume a large array of processing
elements, or PEs. In fact, mxm PEs are
required as a minimum. This reputed
bound does not take into account the at-
tendant communications and control cir-
cuitry of the array processor.

The complexity of these O[nlogn] type
PEs is equivalent to that of a 68000 mi-
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croprocessor, which has 70K transistors,
multiplies (16 x 16) in 6.75 micro-
seconds and adds in 1 microsecond. No
conventionai processor has several 68000
chips on a single substrate; such devices
are optimistically forecasted for 1995. At
present, only one commercial array
processor chip is available (NCR’s
GAPP, #NCR45CG72). This state-of-
the-art array is a 6 x 12 set of PEs with
one-bit (not eight or 16) ALUs. As an
algorithm designer for this chip, this
writer has found no software tools
available, no test circuits, and no
emulators. A study of support tools
(software and hardware) for any array
processor and a thorough comparison of
SIMD (single instruction multiple data),
MIMD, array processors and data flow
machines (which are SIMD-like) are
desperately needed.

The brief comparison herein shows
that the current multiprocessor architec-
tures (¢. g., the WSMR-DCM ) are still
superior. This is primarily because hard-
ware mult/div/add cycles are 400 times
faster than any available or conjectured
array processor PE. The DCM performs
a 16 x 16 multiplication in 220 nsec
(compared to 6.75 microseconds re-
quired by the equivalent PEs necessary
to do Kalman filtering). Futhermore, a
support environment with hardware/
software already exists. An nxm Kalman
filter would be executable in approx-
imately n2logn steps in an architecture
such as the DCM. Assuming, then, that
the processor complexity is equivalent,
the FOM for each approach (systolic ar-
ray versus DCM) is

FOM pem = (n2logn(1](1]

while the systolic approach reported by
Kailath, Kung, and others is

FOM array = ["108"][”2 1)

Hence,
FOM array = 1 imes FOM ey

™ S S P

Since no software environment exists for
any array processor, the DCM-like ar-
chitectures remain clearly superior.
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Concurrency and Parallelism - Future of Computing

M. Andrews and J. S. Walicki *

Abstract: Thia paper discusees paeallelism and con-
currency in the light of current computing practices.
A special case of SIMD machines, also known as
systolic arrays, is analysed. A new architectural
engine, the GAPP systolic array, is atudied in the
application domains of signal and image procese-
ing. Also included are dstabase and associative pro-
cessing cases. Some interesting conclusions can be
drewn from s PE which can also be viewed as an
intelligent memory.

1 Introduction

The computer age is very short but rather turbulent. No other B

field of technology has been changing so dramatically. Increases
in speed and efficiency of computing are unprecedented. Com-
puters of the first two generations of computer evolution (1940’s
to early 1960's) were primarily used for data processing. Com-
puting strategies applied to that type of processing were simply
extensions of traditional human processing of dats. That is, the
processing was sequential in nature, but relatively fast due to
increases in speed of execution. This human oriented model of
computing was clearly reflected in Von Neumann's definition
of a digital computer.

However, data intensive applications, like weather analy-
sis/prediction and various aspects of signal processing, pushed
the classical computer architecture to speed limita imposed by
an existing technology.

*M. Andrews is with Space Tech Corp., Fort Colline, CO 80526. J.
Walicki is with Computer Science Dept., Colorado State Univer-
sity, Fort Collins, CO 805283.

This study was sponsored by the U.S. Army Research Office un-
der grant DAAG29-83-C-0025. The U.S. Government assumes no
responsibility for the information presented.

Permission 10 copy without fee all or part of this material 1s granted
provided that the copies are not made or disiributed for direct
commercial advantage, the ACM copyright notice and the nitle of the
publication and its date appear, and notice 1s given that copying 1s by
permission of the Association for Computing Machinery. To copy
otherwise, or (o republish, requires a fee and, or specific permission

Therefore, it is not surprising that the future of computing
lies in increased exploitation of concurrency in computing tasks.
Concurrent computation implies these, not necessarily disjoint,
classes of activities:

parallel ocurring in different resources in the same time inter-
val,

ssmultaneous taking place at the same moment,

pipelined activated in overlapped time frames.

The highest level of parallel activities takes place among
multiple tasks/programs. This level requires the development
of parallel processable slgorithms which depends on the effi-
cient allocation of limited resources to individual tasks. The
next level of parallelism may occur among procedures or pro-
gram segments within the same program which requires de-
composition of a program into multiple tasks. The next lower
level exploits concurrency among multiple instructions. Such
a concuzrency is revealed by data dependency analysis. Ad-
ditionally, vectorization of sufficiently large scalar operationa
can be performed. These three levels of parallelism are most
often dealt with in software. The last and the lowest level of
parallelism is concerned with concurrency of operations within
each instruction, and it is usually implemented in hardware
We can identify several kinds of parsilelism even in single pro-
cessor systerns. Parallelism can be exploited, or induced, by
using multiple functional units. For example, CDC-6600
has 10 functional units performing arithmetic and logic oper-
ations. The units are independent and can operate in par-
allel (Baer80, Hwan84). Parallelism within the CPU i»
achieved, in both large processors and modern microproces
sors, by overiapping (pipelining) the fetch, decode and execute
phases. Finally, Overlapping of CPU and I/0 operations
can be performed by using separate I/O controllers.

In this paper we want to examine an SIMD architectur:
which holds promise of & new threshold of computer architec
tures which will impact the matrketplace for some time. Thi:
architecture is configured about a VLSI primitive cell of 72 pro
cessing elements regularly organized. The term ‘primitive cell
is a misnomer since the PE contains 72 individual ALU's. W:
conjecture that this VLSI cell is the forerunner of numerou:
offspring with even greater singularized computational power
Before we can place this novel device in the spectrum of mod
ern processors it is necessary Lo present existing taxonomies o
digital processors.
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.1 Parallel architectures

‘he basic architectural classes of pazaliel machines are

o pipeline camputers
® array procemsors

o multiprocessar systeme

\ pipeline computer performa overlapped computations o ex-
{uit temporal parallellsm. An arrsy processor achieves
patial parallelism by using syachronised arithmetic logic
«nits. A multiprocessor system achieves asynchronous par-
JJlelism in a set of interacting processors with shared resources
Hwani4). The sbove classification is by no mesns perfect.
Vew developments in the area of systolic systems blur distinc-
100 among all three types of parallel systems.

Different taxonomies arise depending on the primary fes-
ure chosen to distinguish among d:fferent architectures. Three
najor classifications are those of Flynn (Flyn66), Feng (Feng77)
ind Handler (Hind77).

1.1.1 Flynn's classification

This historically first classification is based on the interaction
of instruction and data streams. The stream is & ssquence of
items (data or instructions) operated upon by a single pro-
cessor. This leads to classes of structures determined by the
multiplicity of the functional units devoted to servicing the in-
struction and data streama. Fiynn identifies the following four
types of machines:

SISD single instruction stream-single data stream
SIMD single instruction stream-multiple data stream
MISD multiple instruction stream-single data stream

MIMD multiple instruction stream-multiple data stream

SISD architecture is the simplest, composed of a single
processing unit (PE), s control unit (CU) and a memory mod-
ule (MM). This is also the structurs of the large percantage
of the existing machines. Many of the uniprocessors (SISD
machines) are pipelined, that is, instructions are averlapped
in their sequential execution. Exemplary machines with one
functional unit are: IBM 7090, PDP VAX11/780. Examples
of existing SISD machines with multiple functional units are:
1HM 360/V1, IBM370/168UP, CDC 6600, CDC Star-100, FPS

AP-1208, Cray-1, CUC Cyber-205.

SIMD machines have muitiple processing elements gov-
erned by the same control unit. The processors respond to the
same instruction strean but usually operate on different data
subsets. The memory s shared and usually contains several
memory modules. This class of machines is e;emphﬁegl by ar-
tay processors snd systolic arrays. The following machines be-
long to this class: Burroughe’ Hiliac-1V and BSP, Staran, MPP

(massively parallel processot by Goodyear Aetospace).

Kadh, 3%
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The MISD organisation has not besn implemanted in prac-
tice and it is included in this classification for the sake of com-
pletenses. 1o the MISD concept n procassors, controlied by
distinct instruction streams, operate on the same dats stream.
The output of one processor becomses the input to the next
processor, and therefors, this schermns can be efficiently realised
in the SISD structure.

Finally, the MIMD organisation is the most challenging
and the most promising in terms of speed and efficiency. The
proper MIMD architecture consista of clasely interacting pro-
cessors which operate on the date streams derived from the
same data space shared by all processors. It is possibie o en-
vision the system in which processors operats on independent
data sets. This type of organisation is called multiple SISD
since it ia & set of independent SISD machines. Examples of
closely coupled machines of this kind are: C.mmp, Cray-2 and
Cray XMP, Denelcor HEP, Burroughs D-825.

1.1.2 Feng's classification

The clasaification proposed by Feng is based on the degree of
parallelism. If P, is the number of bits processed within the ith
cycle of total T processor cycles, then the aversge paraliciiam
degree is 1'
P>

Since, ia general, aa average parallelism degree is less then the
hypothetical maximum paralleliam degree P, the ultlizetion rate
o can be defined as

g=-F—‘=£‘r‘lP'
P TP

The maximum degree of parallelism P is equal to the prod-
uct of the wordlength w aad the bit-slice length m. A size
of the bit-slice is determined by the number of bits that can
be processed by a system in the same instance. For example,
s processing unit has two four-stage pipelines, which yields
8 bit-slice. In Feng's taxonomy the relationship between the
wordlength and size of the bit-slice determines a machine class.
Machines like Staran and MPP bave a short wordlength and
very long bit-slices. On the other side of the spectrum are
machines with & relatively long wordlength and short bit-slice.
1BM 370/168, PDP-11 and Cray-1 belong to this class. Accord-
ing to Feng's classification particular mixtures of the bit-slice
size and the wordlength give rise to four classes of processing
methods, which are listed below.

WSBS word-serial, bit-serial
WPBS word-parallel, bit-serial
WSBP wotd-serial, bit-parallel
WPDBP word-parallel, bit-parallel

The Girst category {WSDS) includes the fiest generation com-
puters with bit-serial arithmetic. Most contemporary muhq-
are of that kind, also called word-slice computars. WPBP ig-
nifies the fastest, fully paraliel processiog in which whole blocks

of bita are proceased at & tume.
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1.1.8 Hindler's claselfication
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pipelining present in the hardware of & computar. Three hard-
ware subsystems are coasideced:

o coatrol uait (CU)

o srithmetic logic uait (ALU)

o bit-level circuit (BLC - serial combinational circuitry in
ALU)

A computer C can be sasigned the fgure of merit T(C):
) TC)=(Kx XK', DxD.WxW')
whare

K = the sumber of CPU'"s

D = the number of ALUs (oe PEs) under control of & CU
W = the woed leagth of aa ALU

W’ = the sumber of pipeline stages in all ALU"

D' = the number of ALUs that can be pipelined (chaining)

K’ = the number of CUs that can be pipelined (macropipelin-
ing)

The Hindler’s taxonomy can be explained oa the example
of the C.mmp multiprocessor system developed at Carnegie-
Melloa Upiversity. The C.mmp counsists of 16 PDP-11 mini-
computers, shared memory modules and 16 by 18 crombar in-
terconnection network. The system is unique because it can
operats in various configurations. The normal mode of oper-
ation is the MIMD. However, under control of synchronizing
unit it can operate in the SIMD mode, and if all processors
are cascaded so that they operate on the same dats stream
the MISD mode results. All three operating modes can be
characterised in the following way

T(C.mmp) = (16,1,16) + (1 x 18,1,18) + (1,18, 18)

2 Geometric Regularity and Systolic Sys-
tems

Regularity of computer structures is appealing not only for ase-
thetic reascms, but it also has distinct functional advantages.
This fact was recognised early in the computer ers when the
concept of cellular interconnection arrays was developed for the
purpose of data switching. Processing elements of thees arrays
waere relatively primitive and contained on the order of ten ol-
smentary gates. Such limited processing capabilities were not
ovetly restrictive as long as the main goal was switching of data.
Developmenta in the Beld of VLSI and increased interest in net-
working resulted in the new category of systems which combine
concepte of parallelism, pipelining and intercoonection. These
are 30 called systolic systems in which procsssors compute

and transmit dats in the synchronised fashion. Syswolic sys-
tems are mature cellular systems in which elementary process-
ing units | ’E's) are relatively complex. The PE's are ulud‘ly
placed in the nodes of the simple one- or two-dimensional grid.
Tight coupling and pipslining ability of the aystolic systems re-
sult in constaot-time processing. A more rigorous description
of a systolic system follows (Leisd3).

A systolic system is & synchrooous network of processors.
Each processor is compoased of & constant number of Moore ma-
chines (state-output FSMs) which are defined by the quintuple
(Q.1,0,0,5) where

Q - sst of internal states

] - vet of input symbols

O - wst of output symbols

# - state transition function

# - output fumction: oft + 1) = p(g(t + 1))

In pure systolic systerms only Moore machines are allowed. In-
clusion of Mealy machines produces semi-systolic systems. If
Mealy machines were included and connected together, then
logic signals could ripple through several machines in one clock
period. The exclusion of Mealy machines is important because
it guarantees that the clock period does not grow with system
size. Thus a clock period becomes & measure of time which is
independent of systemn sise. The structure of a systolic aystem
S is given by a machine graph G = (V,E), whete V is s set of
Moore machines and E is a set of edges linking the machines.
The neighborhood of a machine v € V is the set of machines
with which it communicates:

Neigh(v) = {wi(v,w) € Eor(w,v) € E}

For S to be systolic, it it required that the Moore machines be
small in the sense that Q,, /,,0, and Neigh(v) are bounded,
which implies that the system S may grow, but individual pro-
cessors may not! It s important to preserve inequality between
s propagation delay between processors and a processor delay.
For that reason the systolic systems with only nearest neigh-
bor connections are especiaily attractive since a propagation
delay is insignificant. Therefore, the global communication in
systolic systems should be avoided as it imposes difficult tim-
ing restrictions and contributes to additional circuit complexity
and area.

On the other band, the global communication is convenient
because it provides an efficient way for initialising PEs (brod-
casting) and gathering status information. Fortunately, tAe
systolic converson lemmae due to Leiserscn allows one to de-
sign semi-systolic systema (with broadcasting) and impiement
equivalent systolic structures.

3.1 Application of Systolic Systems

Computational tasks are usually are compute-bound or 1/0-
bound. In general, if the total number of operations is larger
than the total aumber of input and output elements, then the




computation is compute-bound. The systolic systems solve of
ficieatly compute-bound problems. A large spectrum of prob-
lems hes been attacked using the systolic approach. The fol-
b-iuilubriolliuolmqjottyp-olapplimiou:

Matrix arithmetic:

¢ matrix-vector multiplication

® matrix-matrix multiplication

o matrix trisagulisation (solution of linear systama)

* QR decompasition (eigenvaluss, least-aquare computs
tions)

* solution of trisngular linear systems.
Noa-numeric spplications:

o data structures (stacks, queues, priority queuss, ssarching
and sorting)

o graph algorithme

® language processing (string matching, regular expressions)

¢ dynamic programming

® encoders (polynomial division)

o relaticnal data-bass operations.

Finally, enarmously important class of real-time applice-
tions contains primasily digital signal processing tasks. [t is
worth noting that the systolic systems allow real-time (or near
that) implementations of powsrful aignal processing algorithms
(LMS and Kaiman adaptive filtering). Some of the signal pro-
cessing applications are (Urqusd, Cann84, Wardse, Speisd):

o FIR, IIR filtering

e 1D and 2D PFT

e 1D and 2D convolution and corrslation

o median filtering

« adaptive Bltering

The next section presents the existing 72-processor systolic
array and discusses practical aspects of its utilisation.

3 GAPP - bit-level systolic array

The GAPP - Geomatric Arithmatic Parallel Procsssor (NCR45¢C
may be conmdersd to be the forerunner of many new systolic
processing elements. However, it is the first device Lo recognise
the value of bit-level implementations. Any syetolic array, in
order to be effective, shouid have

o complete and very regular PE's
o as many PE's on a chip as possible

o call arithmetic functions which can be performed in one
cycle

o nearest neighbor communications oaly

The GAPP is just such s chip. Its cell features are ilius-
trated in Pig. 1. Here , we ooe 4 PE's with nearest neighbor
coupling and o single global broadcast line. These lines reduce
the VLSI intercounect space to a reelistic amoust.

Of particular note is tbe ability of thea GAPP device to be
cascaded. That alone makes the GAPP significantly power-
ful. Several GAPP applications have been reported which cas-
cade multiple GAPP devices in image signal,and data pracese-
ing tasks. Purthermore, sach PE bas an autcaomous 128-bit
RAM. If cascaded properiy, s GAPP array can not caly pro-
cess, but also perform frame buffaring possibly at video rates.
This is important to many image processing spplications where
frame buffering is required. In that case, the cascaded GAPPs
store as well as process,both simultaneously. In practice, » de-
signer should visw a GAPP array as intelligent memory. This
then opens the design space to even larger opportunities.

Each processing element in the GAPP array consists of a
bit-serial ALU, 128 x 1 individually addressable RAM and ¢
single bit latches. The 1/0 latch allows communicatioa through
the PE without interrupting the ALU, and the remaining latches
bold inputs 1o the ALU. The GAPP operates as & SIMD ma-
chine, that is instructions are broadcast o each cell from an
external control store, loaded ia turn from the bost computer.
Proper address sequencing can be provided by any general ad-
dreas ssquencer. The instructions directed to the processing
slements consist of a 13-bit coatrol fleld which specifies the ar-
ray coanectivity snod arithmetic/logic operations, and a 7-bit
RAM address. These instructions can be sent to the GAPP
array ot the rate of 10 MIPS. The whole array bas a global
broadcast of input data and s global output. Ope GAPP ar-
rey device can function as & modular component in & larger
arcay, thua enabling word or bit-length growth of an array as
needed. Computations are performed in bit-serial arithmetic.
All primitive azithmetic operstions executs ia a single proces-
sor cycle. Each processor accepts data from RAM, from sach
of its four nearest peighbars, or from constant data provided by
the instruction. A carry latch allows the extension of bit-esrial
computatioa 0 user defined fxed length words (Gapplda).

From the point of view of the intercoanection network tax-
onomy the GAPP device can be described as baving the syn-
chronous operation mode, centralised control strategy, circuit
switching methodology, and regular and static network topol-
ogy. In Fiyan’s classification it is & SIMD device. It can be clas-
sified as & word-parallel, bit-eerial (WPBS) machine according
to Feng's taxonomy, snd the Hindler’s figure of maerit ia

T(GAPP)= (12x1,13x 13,1 x 1)
3.1 Applications of GAPP Processor
$.1.1 Adaptive Flltering
Classical techniques simed at incressing s signal-to-noise ratio

(SNR) usually employ information derived from a single sig-
oal ssnsor. No additional information is provided, other than
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the signal and perhape statistical proparties of both signal and
noise. However, chances for the restoration of the original sig-
oal can be increased if multiple measurements of the signal
wave are available. An array of ssnsors provides such an op-
portunity. The array generates parallel streams of data and
the information in this form can be processed using the GAPP
arrays. Proceesing of signals arriving from the sensor array
can be accomplished most efficiently if processing method is
adaptive in nature. The least mean square (LMS) algorithm ie
such & method. It is possible to partition the LMS adaptation
rule into the basic operations suitable for the processor array
implementation (Andr8Sc).

Operation 1: weight input vector wix
Operstion £2: sum partial products to get y(k)
Operstion 3: compute error ¢(k)

Operation J: scale error 20,¢(k) =C
Operstion 5: update weights w — w + Cw

It can be seen from the sbove list of operations that they
can be grouped into two distinct phases - compute and update.

The basic processing stepe listed sbove require s variety
of slementary matrix operations. Operation 1 requires multi-
plication of two vectors. Operation 5 calls for multiplication
of a vector by scalar and for addition of two vectors. Oper-
ations 2, 3 and 4 require operations on scalars. The values
to be operated on are represented by k-bit words. Existing
processor (systolic) arrays posses s serial architecture, mainly
because it is still prohibitively expensive to build fully parallel
single-wafer muliti-processor srray. Therefore, the operations
mentioaed above have to be performed at the bit level.

Efficient use of the processor array is important in order to
maks up for losses caused by the use of serial arithmetic. As
Urquhart and Wood (Urqu84) show the array utilization de-
pends oa properly feeding the elements to be processed. Par-
ticularly, if one matrix of arguments is kept static on the pro-
cessor array and the other matrix is entered properly skewed,
then the array is 100% efficient. In our case it is quite natural
to keep the coefficients w fixed in the arrsy, while bit-streams of
input samples x march in from the array sensors. The arrange-
ment described above is a basis for the implementation of the
first operation, namely formation of the inner product w'x. In
the next step partial products are summed yielding an output
sample y. In the third step the error sample is generated by
subtracting (in a single adder) the y stream from the d stream.
The d stream is & serialised sample of & reference signal. The
obtained value of the error is scaled in the next operation (4).
This is accomplished easily by properly shifting (k). The last
step involves muitiplying s vector by s scalar and addition of
vectors (bit matrices). The Brst operation in this step is the
multiplication of the weight vector w by the scaled error o(k).
Since all weighta are scaled by the same scaler value it te
to shifting original weights by a number of places determined
by the value of 24,¢(k). The last step requires adding the old
weights to the scaled valuss obtained ia the previous operation.
These stepe complete the update phass and a new input sample
is processed s in the first step.

If the least significant bits of x and w interact first then
partial products of equal significance leave the edge of the srray
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at the same time. These partial products can be accumulated
using the adder tree constructed from MSI| adders. If, however,
the least significant bit 2 interacts with the most significant
bit of w then the partial products of equal significance appear
skewed and then the linear chain of full adders can be used
to accumulate the final output. If the second option is chosen
then a single row of PE’s of & second processing array can be
used to accumulate partial products.

The second array implements operations 2, 3 and 4, that is
the computations of the output sample y(k) and the scaled er-
ror 24,e(k). These partial products are accumulated in the ele-
ments of the first row. Because of the additional skewing of the
partial products leaving the first array, the delay is needed be-
tween the accumulating PE’s. In the GAPP device thus can be
easily accomplished by storing the elementary sums in the local
RAM locations. An error value e(k) is computed by subtract-
ing the output sample from the reference sample d(k) which
is shifted into the fourth row of the array simultaneously with
the loading operation of the third row. The result of this oper-
stion remains in the fourth row and is shifted according to the
value of 24,. The quantity obtained in this step is the scaled
error value and it is sent to the host controller. The controller
uses this value to scale (shift) the original coefficients residing
in the main array. However, before this operstion is per{ormed
the original weights must be saved in the RAM locations. The
scaled weights are also uploaded into the local RAM, and then
both quantities are summed (w — w+ 24 ,w) yielding the new
updated coefficients, which are used to compute a new output
sample and the process is repeated.

3.1.2 Hardware Database Machine

A database machine should have the ability to:

e support simple and complex queries
e provide JOIN and SEMI-JOIN macroe
o order data rapidly

e invoke fixed and variable length record format

If the GAPP is cascaded a8 s set of basic building blocks as
shown in Fig. 2. The aggregate system forms an efficient and
tegular database machine. Much of the normal sofiware opera-
tions are handled directly in hardware. The comparator block
sccepts an input comparand or Record B as 6-bit wide words
on the CMS lines. Input record A is entered on the S (south)
lines. The comparand is stored in EW registers. Any time
the data streamn matches the comparand the GO (global out-
put) line goes high. At $ million characters per second, this
exact match operation searches text files for specific words at
blinding speeds.

3.1.3 GAPP as Assoclative Device

An assoclative memory operates on the bams of matching
the contents not the addrese of the information. The sssocia-
tive search can be accomplished efficiently if all memory cells
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are chacked for a desired information in parellel. The associa-
tive (or content addressable) memory can be built from GAPP
devices (Wallse).

The associative mamory unit consists of an associative arrey
and an associative array controller upit. The sasociative array
is composed of cells, each with a tag bit. If the tag of a call is
set thea the coll is a responder. Each cell holds one enry. The
colls perform specific functions - compare, read and write.
Tbe control unit bas two important registers - comparand

The GAPP devices combined with an appropriate control
structure form a complete associative array. The associstive
array consists of a cascaded array of GAPP devices. Each ele-
ment of GAPP is utilised as & bit-serial associative cell. Since
esach element is serial in nature, multibit woeds are emulated
by using the local 128-bit RAM which also serves as storage
for an intermediate operations. The NS (north-south) register
performs various data functions and stores the tag bit. The
tags are combined and form the Global Output signal provid-
ing a responder signal to the control unit. 1/O functions are
performed through the CM bus. Input dats is usually loaded
as word-serial, bit-parallel but operation of the array is word-
parallel, bit-ssrial, therefore, the corner turasng operation on
dats must be performed which could be done using GAPP de-
vices or specialised circuitry. Global input w0 every cell in the
array is sasily accominplished by using the op code lines to
command the C register to load 1/0.

Coantrol routines for basic functions (compare, write, read)
are written in the register-transfer like language. From these
basic function more complex operations can be build, like ‘exact
match’, ‘limit ssarch’ and ‘maximum value ssarch’. In this
specific implementation, as 8 bit ‘exact match’ ssarch of eatire
areay is performed ia 4.4 micraseconds, and 8 bit read of s
respoader cas be accomplisbed in 3.2 microssconds.

3.1.4 Image Manipulation

The GAPP device was ariginally conceived for the purpose of
image processing 8o it is aot surpeising that the most succes
ful applications of the GAPP are in that domain (Gappseb).
The GAPP architecture is radically different from convential
image processing structures. These systems required a frame
buffer t0 store an image, s high speed image processor, and
another frame buffer for storing the processed imags. The
memory-procesaos Lranamission bandwidth limite throughput
of conventional systems. GAPP deals with this problem by
providing one processor per pixel. Thus, all pixels can be pro-
ceased in parallel. The local processor RAM olfers the possi-
bility of eliminating frame buffers entirely, instead, sufficiently
long serial-to-paraliel shift registers on input end output sides
of the processing arrsy can be used. The SIPO registers may
be aleo built from & row of GAPPa. The ahift registers are
long enough to coatain one full video line which is ehifted into
the GAPP array during the borisontal retrace. Biwa of esch
pixel are stored during sach cycle in the local RAM cells. Each
processor location is read into the CM register prior (o each
CM=CMS shift s0 thas the firet video line is shifted up and
written iato the next bigher row of PEs as each new video line
if fod into the bottom row of processing siements. The GAPP

based imaging systems bave as sbility to process informaticn
in real time.

4 Future of SIMD Processing - Conclu-
sions

We have presented both theorstical and practical sspects of
pazallsl computing, specifically computiog bassd oo SIMD struc-
tures. As technology reaches its physical reduction limits, ‘he
structural changes in computing become more and more cru-
cial. It is obvious by now that real-time processing of images
sad other complex signals cannot be accomplished without
structural concurrency and parallelism.

SIMD machines of the future will have many bit-intensive
like features. However these features will remain transparent
to the user. We are just now discovering the rich coupling
amoag matrix-manipulation for multiplication sspecially when
we examine the word- and bit-level operations. McCanny et al
(Cann83) bave reported that most of the current ressarch sffort
has been expended at the word and system level for systolic ar-
rays. However, they show that the systolic array spproach at
the bit level is nearly identical to that at the word level. Most
importantly, they show that many important signal process-
ing and data processing applications can be implemented using
the regular structure of oae or two primitive cells. Andrews
(Andr8Sa,b) has further shown that such similarities between
the bit- and word-levels make carry/borrow distances short-
saed if special number representations are invoked.

The thrust of these studies show that we can trest such
mathematical intensive spplications at the bit-level, captur-
ing the power of VLSI along the way. Thus mainteining dats
Bows at the bit-level have no significant impediments if noa-
conventional number systems are realised. This obeervation
may even pave the way for TRIT's or ternary valued logic. ln s
recent paper by Hurst (Hurs84), such muliti-valued logic (MVL)
shows great promise for VLSI. His arguments correctly identify
the present limitations of coaventional biary logic. First, we
are backing into the packaging thermal limits of VLSI. Second,
s severe escalation of chip intercoanection space is occurring.
Some recent estimates indicate that silicon real estate just for
on-chip wiring consumes more than half of the available die.
As & result, we are now judiciously examining the denser infor-
mation coatent to interconnection ratios afforded by MVL.

Although at first we are inclived to dismise bit-level research
a8 & backwards step, current studies now show that maay me-
trix manipulations make word-level operations nearly identical
to bit-level operations. From this basic obeervation, many re-
searchers bave concluded that systolic arrays may have practi-
cal implications sooner than expected. It was surmised that the
primitive cell ia the array must be very power{ul. Hence, one
immediately aaticipates a VLSI structure with several hundred
68000's (or equivalent). Now, we can see Lbas effective pipslin-
ing at the bit level permits us to bit-level primitive cells in
s computationally powerful machine. The NCR GAPP (Geo-
metric Arithmetic Parallel Processor) is one such realization.
Wae contend that it holds promise of many new commarcially
available systolic devices to come.
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Therefore, multi-valued logic may support new and denser
VLSI structures. If we continue to explore the other number
systems, even greater information densities may be passible.
We can only conclude that the Illiac 11l may have been way
shead of its time (it ueed redundant numbers in the ALU').

Finally, it can be noted that the existing aystolic systems
(like the GAPP) are really the first generation of many new gen-
srations of parallel devices. Additionally to obvious increases in
density (number of PEs per waler) and in computational power,
we can also expect distribution of control functions which are
now bhandled by one master controller. This distribution of
control will result in systolic devices crossing the line between
SIMD and MIMD concepts, which is also to be expected as the
creation of ‘intelligent’ MIMD structure is probably one of the
major goals in the design of computing systems.
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Abstract—A study ot available hardware algorithms was made 1n order 1o design adaptive signal :!:
processors with VLSI. A swituble model invoking synchrony. topology. and grunulanty has =
been chosen toainvestigate design tigures-ol-merit for each impiementation. At present. redun- ™
dant arithmetic is being contrasted. basically because carry-free vperations are possible resulting :,;-
in o speed up. This paper focuses on models and primitise computational elements {or the Jeast- o
meun-squate (LMS) algonthm embedded in cunventional twos conplement, bit-sertal or dis- :ﬁ"
tributed anthmenc. and redundant anthmetic processors. N
[
' <
.t,
1. INTRODUCTION -
A technology-independent architectural study for adaptive signal processors is being T
pursued. The basic approach is 1o analyze the hardware/software trade-ofts ot con- :(f
ventional (von Neumann) and nonconventional (parallel. pipcline, vector, array. und :‘
custom processors) in an attempt to identify optimal structures (of order arca x ume) ‘;g
. which are computationally fast. yet flexible. Regular and simple interconnections and "
geometries among high-performance parallel structures are sought. A two-step process
is assumed: first the scquential algorithms are (o be speeded up (seching inherent par- ;‘
| : allelism) and second, fast algorithms are to be mapped onto new VLSI architecuires Y
(via recursion and pipelining). The purpose of this research is to provide theoretical 1‘
design tools and interconnection strategies capable of achieving real-ime implemen- !Qc
tation of adaptive algorithms via limited user progrummauable mechunisms (c.g. &
firmware).
In this effort. design rules tor establishing implementation techniques which ey- 3
ecute nonrecursive and recursive adaptive algorithms must be stated. The design rules o
should identify structures suitable for VLSL. Trude-offs between various huardwaie hY
techniques are then possible. This study has particular relevance 1o the problem of w
. realizing a minimized system architecture for monolithic adaptive signal processors. o
VLSI devices capuble of being organized by the proposed rules could possess high [
bandwidth. low power attributes in a microminiature configuration to enhance per- s
formance of aduptive antennac arrays, spectrum analyzers. acoustics. cryptography e,
tadaptive keys). image processing., and communications. :&:
N
1.1 Opportunity and the challenges 'q:,
VLSI technology opens unprecedented opportunities for synthesizing compley n
computational algorithms trom various tields of engineering. It is now possible to in- "
tegrate a huge amount of hurdware on a small silicon area. However. many traditional el
computer design concepts are no longer justified technologically. and this lcads to the '.
formulation ot new and challenging problems. A distinct characteristic of VLSI devices iyt
. . , . . 3
15 that the data communication and its VLSI interconnect area dominate the cost and L
performance. In contrast, traditional parallel processing finds memories and the pro- "
. . . . e
cessors dominating other design factors. m
y
3 DESIGNING WITH VLS| . :ﬁ
'
- B . . .. . L]
VLSI has now circumscribed classical methodologies of digital system design. The .l:
traditional cniternia of component count. whether applied to processors or to simpler A
»
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devices, are no longer adequate to establish a scale of compurison among various
solutions to a given problem. Indeed. number-of-clements criteria are substantially
based on the fact that processing elements and their interconnections are realizcd by
different media. This difference disappears in VLSI. which ““integrates™ both pro-
cessing elements and their interconnection in a two-dimensional geometry, the surfuce
of the silicon chip. A meaningful tigure-of-merit is represented by the arca occupicd
by the total system, thus capturing the complexity of both computation and data com-
munication(!]. As aresult, the VLSI solution to a given computational problem involves
the conception of an interconnection architecture, its luyout, and the design of an
algorithm for that architecture. For any given problem. it is of great interest to explore
the trade-offs between the production cost (area) and the incremental cost (time) of a
dedicated circuit develop. .1 1o solve that problem. The area of a chip can be partitioned
into interconnect or wire area A(w), gate area A(g). and wire pad area A(p). And it
appears, so far, that wire arca dominates gate area. At least for the class of trunsitive
functions (cyclic shifts, matrix product, integer product. and linear transforms). Vuil-
lemin[2] has shown such VLSI circuits must satisfy

A > A(g)N + A(p)B + A(w)B,

where A is the chip area. N is the number of inputs. and B is the average bandwidth
(bits per second passing through the chip pins). Interestingly. Rent’s rule[3-5] is par-
tially substantiated here. (A Rent's rule relation states that bandwidth is an increasing
function of area.) Vuillemin’s result substantially supports claims that interconnect arca
is VLSI expensive. Furthermore. circuits based on a recursive construction are par-
ticularly well suited to automated design.

2.1 The set of VLSI design goals

This research is concerned with the study of algorithms for VLSI arrays. and
focuses on the transformation of sequential/quasirecursive programs into VLSI algo-
rithms. To do so, it is necessary to define a set of objectives. Although only a partial
list, the following objectives are considered to be important:

. Correciness and accuracy of the algorithm.

2. Small computation time: computation time includes processing time and commu-

nication time, but not necessarily control time (which should be transparent).
3. Smalil number and size of interprocessor communication links attempting to min-
imize the excessive interconnect arca on current VLSI.

4. Modularity and simplicity of cells, hopefully very similar.

S. Small number of processing cells which may achicve regularity.
Of course. for specific applications the relative weights of these objectives do vary
depending on many factors including technology. yields. manufucturing imits. die size.
power, and speed. Obviously. the accuracy of the result is a prime concern of the
design. The processing time results from the requirements of the algorithm. Here.
architects often seek trade-offs. In VLSI systems, the communication time 1s at least
as important as the processing time, becausc physical distance is relatively long. De-
signers, therefore, search for algorithms which arc neither computationally nor com-
munication saturated. Many researchers contend that ““bulanced™” algorithms can be
mapped more easily onto high-performance VLSI architectures. For instance. Kung|6]
has indicated that interprocessor communication links consume a great deal of silicon
area. time. and energy. In that event. it is desirabie to have as few links as possible.
and moreover, to restrict the data communication only to adjacent cells which may be
achieved by adequate transformations of algorithms. This goal. however. places u heavy
constraint on the architecture. A higher modularity as well as the simplicity of the vells
lead to a smaller design cost.

A hardware model (G. F, T). Transformation of algorithms can proceed when a
hardware model is specified. A model proposed by Moldovan{7) is usctul to trunsform
the abstract features of the algorithm into the hardware. We assume the following
features for VLSI networks.
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1. The network consists of a planar mesh connected network of processing cells.
Nonplanar meshes are still academic matters.
. The cells can be of different types and perform different tunctions. but a minimal
set is desirable.
3. The interconnections between cells are buses which transter parallel words and
represent a topology.
4. The timing operation of the network is synchronous.
Moldovan proposes an organization and operation for VLSI arrays which can be for-
mally described by a set of 3-tuples (G, F, T). This set appears (0 be a promising
starting point because it takes into consideration the three dominant design factors
(topology, granularity. and synchrony).

The network geometry G refers to the topology. The position of each processing
cell in a plane is to be described by its Cartesian coordinates. Arbitrarily choosing a
small enough grid makes it feasible 10 represent these coordinates by integers. Inter-
connections between cells is now a matter reasonably described by the position of
terminal cells. These interconnections support the flow of data through a network of
links. As with all current VLSI structures, a simple and regular geometry is desirable.

The functions F associated with each processing cell represent the granularity of
arithmetic/logic expressions of a cell. Most VLSI implementations assume that each
cell consists of a small number of registers, ALU. and control logic. Several ditferent
types of processing cells might be implemented in the same topology: however, onc
reasonable design goal is to reduce the number of cell types and. hence. their
granulanty.

The network timing T specifies the processing instant of a cell. As a matter of
synchrony, obviously, a correct timing means that the appropriate data arrives at des-
tination cells at the correct time. The data stream speeds through a network defined
as the ratio between the distance of a communication link over the communication
time. Often, networks with constant data speeds are preferable solely because they
require less control logic.

(8]

2.2 VLSI Figure-of-merit

To provide a meaningful gauge for the evaluation of a given design, a computational
model of VLSI has been developed through the initial efforts of Mead and Conway/(8]|
and Thompson(Y]; later refinements have been proposed by Brent und Kung| 10} and
Vuillemin{2]. We briefly recall the model with amendments.

A circuit is a graph whose nodes are 1/0 ports or gates connected by wires. A wire
has minimal width g and, at most. L wires overlap at any point (planarity); a gate has
minimal area and computes a Boolean function of two inputs: an /O port has some
minimal area and each input bit i+ available just once. As regards computation time.
the combined gate computation and result transmission (on a wire between two nodes)
takes some ime R dependent upon the technology. One relevant global time parameter
is the output period P of the circuit, defined as the maximum time between two suc-
cessive data passages at any output port when the circuit is used in a pipelined fushion
at the highest data rate. Another measure is the time T which elapsed between the
beginning and the end of one computation by the chip for one instance (rather than
repeated instances) of a given problem. On the basis of arguments on the informution
transfer inside the VLSI chip of area A reulizing the circuit. natural measures of com-
plexity in the given module are the area-time products AP" and AP

If we define the problem size as the larger of the total number of bits used to
specify either the input or the output. a simple argument by Vuillemin|2] shows that
the circuit arca A, period P, and problem size NV satisfy the relationships

AP > N

and

AP > N

\
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b
for such fundamental problems as integer multiplication. merging. cyclic shift. cyclic ;«“
l and open convolution. and linear transform. Computing time 7" and period P are ob- ~
viously related to T > P so the above inequalitics imply AT? > Nund AT > N. Several tj‘
\ of the above mentioned problems have been considered elsewhere{10. 12, 13]. and
circuits have been proposed which are optimal with respect to the AP? or AP measure. ]
This study is devoted to seeking design rules implementing adaptive signal processors \
which are optimal with respect to area x time. ’E:
: 3
3. THE ALGORITHM SPACE )
3.1 Adaptive algorithms =
The theory of adaptive algorithms is relatively well developed and many algorithms .
have been proposed|14-35]. However. many of these algorithms arc computationully R
complex and are really only suitable for non-reul-time implementation on digital com- ',::j
puters. In our study. the algorithms to be used should be as simple as possible (10 K
reduce user-programmability requirements) and also be tolerant of device noises (1o o
help increase computational speed). This background material i~ given as a guide to e
the eventual selection of a class of adaptive algorithms suitable tor real-time processor 9 -
implementation. o
In general, as a filter, an elemental adaptive signal processor may be viewed as a tﬁi'
system supplied with two inputs, a signal input and a desired output. The signal is 0,5}
applied to the input of a FIR (finite impulse response) filter with a programmable ttime :éfj
variable) impulse response. The impulse response of this filter is adjusted in such a e
way that the filter output approximates the desired output as closely as possibie. IR -
(infinite impulse response) realizations are also possible where internul feedtorward as d,
well as feedback signal paths exist. For discussion purposes. we loosely classity the -..
former as nonrecursive algorithms and the latter as recursive algorithms. d

3.1.1 Nonrecursive algorithms. In the elementary case described now. a popular
updating algorithm used is the Widrow least-mear-square (LMS) algorithm which up-
dates the weight vector W to minimize the mean-square error between some desired
signal d(r) and the filter output y(r). A derivation of the algorithm may be found in ot

Ref. [16). Briefly stated, the updated weight vector H' is givenby H' = H = 2uc(n)§ ‘;:
where H is the previous value of the weight vector. S is the signal vector. u is a ‘;:.:
convergence factor, e(f) = d(r) — y(1) is the error output. and d(r} is the desired or .::
training signal. Proofs of the convergence of this algorithm assuming perfect device L
parameters may also be found in Ref. [36]. A nonrecursive adaptive filter structure is g
displayed in Fig. 1. :,
Currently, the *'sliding window '’ exact least-squares algorithms (also known as a :n\
sliding window covariance) has more superior tracking properties thun the LMS (gra- .;:'.*
dient) algorithm[37]. Hence. our studics on nonrecursive algorithms 1o be cast into ,:a:
VLSI schemes shall include those from LMS to the sliding window formulations. D

3.1.2 Recursive algorithms. The previously described algorithm is one of many
"
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nonrecursive algorithms. Adaptive IR or recursive adaptive formulations also enjoy
a wide selection of algorithms. Popular among these are the:

1. Stearns-White recursive gradient algorithm.

2. Feintuch gradient approximation algorithm.

3. Soderstrand-Gitlin recursivelike echo canceler algorithm.
As with many recursive structures. due to the presence of poles, maintaining stability
during adaptation becomes crucial(27]. In addition, the LMS error surface is nicely
quadratic with respect to the weights. The 1IR algorithms” corresponding performance
surface is nonquadratic and may contain multiple minima(34].

Let us formulate a system identification problem as in Fig. 2. The transfer functions

are defined as ’

n

Al ap + 2™ + o+ a,z”
HiZ) = — = . (1)
) B(2) Il —biz' = = b,
. A2 o+ dyz o+ e+ G
H(;) = — = x - . 2)
B(:’ l - bl:‘I - = bm:._m

This adaptive processor attempts to adjust the coefficients of H(z) so that the minimum
mean-square output error E(c°) is obtained.
Update algorithms for the weights take on the form

Hi.. = Hi+ MR ' (-V;), (3
where
H is an adaptive weight vector,
V. is the performance surface gradient vector,
M s a diagonal matrix of convergence factors,

R is a correlation matrix (elements determined by sclected adaptive algorithm).

The weight vector and gradient vector are, respectively,

HL = I [N 6I I b‘m lTv (4)
N 2 . 2 2 T

v, = dl?((’ ) _ dE'(‘e ) aé(‘e ) . (5)
(’HL ()Uu dblli

The Stearns—White algorithm first proposed in 1975{32] is a gradient algorithm
similar to the LMS techniqguc. However, the parametcr update method uses d recursive
calculation of the gradient. This approach is computationally expensive because of the
complicated nature of the error tunction ¢(1)in recursive filters. Here, the instantancous
output error is usced as a local estimate of its own mean vaulue. The adaptive updates

MODEL y
A(z)
+*
[]
u b
ADAPTIVE ¥
H(z)

Fig. 2. A system denufication problem
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are expressed as

de(k oy
ank) = - ‘.’(. . wk = n + > blkaatk ~ i), (6)
ddn Ll
u gelk) - _ .
b.k) = - < = ¥k = m) + 3 blkb,(k - i), (7)
m 1= |

where the instantaneous output error is

e(k) = y(k) = y(k) (8)

and the matrices of convergence factors, correlation matrix, and gradient vector
become

E: M = diag| uo =+ w.P, -+ P, |. (9)
‘ R =1 = Identity matrix, (10)
Vi = e(k) | ao(k) -+ an(k)br(k) - bmik) [T, (n

A
)

Feintuch(35] proposes a greater simplification to reduce computations per iteration

\ with a gross approximation of the gradient. This algorithm is based on the assumption
@ that the covariance terms which arise in taking the expected vaiue of the squared output
error are constants when differentiated with respect 1o the coefficient vector H. As a
result, the gradient vector can be estimated as

'
& Vi = e(0)XT(N, (1)

XDk = | ta  tk=—n¥i-1 t Yi-n . (13)

The third algorithm is a modification of the Gitlin algorithm{33]. A new error func-
tion is defined to which the LMS algorithm is applied. In all IIR cases. we must rec-
ognize that we are incurring much larger computational costs than with the simple LMS
structure alone. But there are strong results that suggest that fewer filter coefficients
are needed for [IRs. Therefore, fewer multipliers may be necessary, thus reducing the
computational costs somewhat.

Soderstrand(17] makes a revealing comparison among these choices based on equal
cost implementation. Here. he assumes that the multiplier is the overwhelmingiy ex-
pensive element in any physical realization, so his comparisons rest on cach imple-
mentation with identical numbers of multipliers. Although the results are qualitative.
we can make the following observations on the relative merits of the LMS nonrecursive
algorithm and the three identified above. For 63 multiplier realizations. the LMS al-
gorithm performs as well as the best recursive choice (Soderstrand-Gitlin). Unfortu-
nately, we cannot unreservedly choose an LMS over recursive methods based on Sod-
erstrand’s work. Even though he measures performance of the algorithm by how c¢lose
their respective filter parameters converge to the least-mean-square approximalions (o
five test cases. he has offered no quantitative measures.

3.2 Effectiveness of redundant arithmetic

Ercegovac[38] has proposed fast computational methods amenable for efficient
hardware level implementation as viable alternatives to parallel algorithms implemented
and to implementation-dependent algorithms, primarily operating in a fixed-point num-
ber representation system. We can generally classify fast methods as: (1) those imple-
mented with multiple general purpose processors and with the corresponding algo-
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rithms, and (2) those implemented with special purpose processors with algorithms v
embedded in the hardware (operation) level.

When considering a computational method for possible impiementation, we are
concerned with: (1) the application domain, (2) the required set of algorithms, and (3)
the required set of primitive operators. With these. we can then associate a set of
desired or required properties: for instance, the speed, the complexity, and the cost
of implementation, the fault tolerance capability, numerical characteristics of the al- ‘e

. gorithms, etc. The objective of this study is to define a method that would have a
sufficient generality to adaptive signal processor applications and such functional prop-
erties in order to justify a hardware level implementation. ¢

Ercegovac's method is compatible in many respects with the method invoking
multiple processors because the computational algorithm is simple and problem in-
variant. There is no shift operator, which in the previously proposed methods must t
have a variable shift capability (e.g. distributed arithmetic schema of Peled and Liu[39].

R

T

' Roberts(40}, Cowan er al.(41]. and others[42-44]). When a redundant representation f
¢ is introduced in order to increase the speed of computation, a variable shift operator B
v can considerably affect the complexity of implementation. A\
It can be demonstrated that certain arithmetic expressions. multiple products and =3

. sums, inner products, integral powers, and solving of systems of linear equations under ,;'.
certain conditions are among the possible applications. Basic arithmetics. in particular. .:

multiplication and division, can be performed by this method. Furthermore, it has a ;:.

useful functional property in that the results are generated in a digit-by-digit fashion i

with the most significant digits appearing first so that an overlap of computations can "

be utilized. Equally noteworthy is the fact that AD conversion gives the most significant -

digit first so overlapped signal processing is possible. .

o

9

» R
o

3.3 Basic divisionimultiplication in redundant arithmetic
Let us consider problems of division and multiplication in a computational envi- P!
ronment whereby basic arithmetic algorithms satisfy an ‘‘on-line"” property. In other Y
words, to generate the jth digit of the result. it will be necessary and sufficient to have
the operands available up to the (j + 8)th digit, where the index difference 3 is a small s
v positive constant. At first, we will accumulate & initial digits of the operands before
F we can produce the first digit of the result. Subsequently, one digit of the result is
produced upon receiving one digit of each of the operands. Remarkably, 3 is the on-
line delay which can be arbitrarily small. Such algorithms are attractive because of the

inherent speed up due to their potential to perform an overlapped sequence of oper- 4

ations. Fast variable precision arithmetic is also possible. The on-line property will :-‘

implement a left-to-right digit-by-digit type of algorithm using a redundant represen- v

: tation for the results. 43
t Consider an m-digit radix r number N = XL, n,r~'. In the conventional repre- O
) sentation, each digit n; can take any value from the digit set {0. 1, ..., r — 1}. Such '
representations, which allow only values in the digit set, ure nonredundant since there k

is a unique representation for each (representable) number. By contrast, number sys- "

tems that allow more than r values in the digit set are redundant, and often speed up

arithmetic operations{45, 46]. Note that a redundant number representation may be e

, required for on-line algorithms. In a nonredundant number system. addition and sub- i
% traction incur a carry propagation penalty. Redundancy limits the carry propagation '
to one digital position [cf. Ref. (45], an on-line algorithm for addition (and subtraction) e

with & = 1, and an on-line algorithm for multiplication with = 1]. :

0
3.4 The computational algorithm using redundant urithmetic :EE

Suppose a linear system of L equations is given. An algorithm for solving a system N

! L is desired whereby an iterative. digit-by-digit method occurs. That is. the algorithm

generates one digit of each of the elements of the solution vector in one step. Some Be
redundant number representation definitions are now appropriate. o)
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DEFINITION |
An m-digit radix r representation of a number x, | x | < l.is a polynomiul expansion

m

x=sgnx > xr’', (14)

1=

where x, € D V i, and D is a digit set.

DEFINITION 2

Given the radix r, a set of consecutive integers D including zero is
(1) nonredundant if its cardinality satisfies | D | = r.

!
i
i
f
¥
i
B
i

DEFINITION 3
A symmetric redundant digit set is defined as

D,={-p,.=(p=1.....=1,0.1..... p — L. ph (15)
where
irspsr-| (16)
DEerFINITION 4
A symmetric redundant digit set D, is said to be
(1) mimimally redundant if
ID,|=r+ 1. (17
, i.e. p = 4r (assuming an even radix r):
[Dy| = 2r - 1. (18)

R (2) maximally redundant if

i.e. p = r — 1. Let D and D, denote nonredundant and redundant digit sets.
respectively. Then the representation of a number x is nonredundant or redundant
depending on whether x, € Dor x, € D,,.

4. ON-LINE MULTIPLICATION

The following describes an on-line algorithm for muhtiplication which can be mude
compatible with on-line division. It is a type of incremental multiplication (using digital
differential analyzers[d47. 48], combined with the redundant numbers).

Let

g X=3 xr .

a9
t= |
1‘) n
i?. y=3 vr (20
* 1w ]
- be the radix r representations of the positive multiplicand and the multiplier, respec-
% tively. Define
a 7
ﬁ X =2 xr ' =X_, +xr (20
r-]
/
=2 v = Y, - (22)

A " Ay
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to be the j-digit representations of the operands X and Y, available at the jth step by
definition of an on-line algorithm. The corresponding partial product is then

XY, =X,_Y .y +(X;y, + Y,_x)r 7. {23)
Let P, be the scaled partial product. i.e.

P o=XYr, 24
so that the recursion of the multiplication algorithm can be expressed as
P=rP_ .+ Xy, + Y, _)x,. (25

Let Py = 0. Then the scaled product P,, = XYr™ can be generated in m steps of eqn
(25). Note that it a nonredundant number system is used in representing the partal
products. the digits of the desired product appear in a right-to-left fushion. as determined
by the conventional carry propagation requirements. However, for a redundant number
representation. left-to-right generation of the product digits is possible and desirable.
Furthermore. the execution time to perform a recursive step will be independent of
the operand precision because carry-free addition is possible. We now essentially de-
scribe the applicability of Ref. [49] 1o our current work.
We will use a symmetric redundant digit set which 1s

D,={-p.-(p-1,....=-10.1.....p-1.ph (26)
where
lrspsyr -1, 27

According to the general computational method of Ref. [50], the basic recursion (25)
for the multiplication is

w, = rlw,o —d )+ Xy, + Y orx, (28)
where the digits d, € D,, are determined by the selection function
d, = Slw,) = sgnwl||w| + 4] (29

Then, from (25) and (28). the following relation can be obtained by induction:

1=\
w,o= Po= S dert (30)

1=

Substituting ; = m in (30) and rearranging. we obtain

m- |

Pm = X Y'I"" = ’.m z (J,I'MI + W (3‘)

or

"

XY= dr™ '+ (wa — dar™ " {32)

1=

According to the selection function S(w,) where | w,, = do, | S 5 DL, dr ™' is now
the redundant representation of the most significant half of the product X-Y. Conver-
gence of the algorithm is now guaranteed.
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| Let us assume that the selection function (29) can produce the digit d, such that
B | d, | < p. This condition is satisfied provided that
[w | <p + 4, (33)
' wherej = 1.2, ..., m. We next bound M on the values of the operands X and Y to
ensure that (32) holds. Let X ., ¥ < M Notingthat . w,_, - d ., | <4{and y,
fx, | = p, from(33) we obtain
-
B w, i S br - 2Mp. (34)
B Rearranging (32) we obtain
lr -1
A < - (35
f AIKY))

Notice that in a munimally redundant system tp = r2), the required operand bound

must be
1’.' I
b X, Y <—. (36)
2r
iy .
‘ :, whereas 1n g mavmalhy redundant system (p = r — 1), the required operand bound
must be
Xy <i (37
. These bounds are not tight In binary sudix. X 0 ¥ < §suffices.
, The time required for the computation of w. s made independent of the precision
" of the corresponding operands by allowing
oo, = do < I, (18)
4,
N which implements a carryv-propagation-free addition per (29). This lust observation is
most cntical to the redundant anthmetic LMS implementation.
L 4.1 LMS signal comentions
In subsequent discussions. all one-dimensional matrices are represented by column
M vectors, Boldtuced characters are vectors or matnices. As usual. the supersenipt [ refers
A to the transpose of a column vector or matnx, and pninted vectors represent updated
vectors. (The variable r, denoting ume. s omitted from subsequent expressions. bul
1s implicit to discussions.) The necessary scalars are defined as.
l. ity = ath coetficient of an N-point digital transversal filter
frhv = Ath partial product used 1n the output aceumulation of a Jdistributed anthmetie filter
st = A-titanput signal sample present gt point 1 ol an N -pont digital Bilter
3 vo= dagital filter output
;:' d = anput trainig signal to digital adaptisve filter
e = Jd - v = error sample generated by digital adupuinve filter

These scalars form the following matrices:

taly, A2y, St LA

thety 2y, L, I\

). HZL .My CHA R

22 .2 i e the set of the first A negutive integer powers af 2

the Vv « I\ array of bit values whicn results when o A-prtinput signal veutor is stared in an \V-point
dugrtal filter B s merely S decompuosed into component hits

PR A 4,
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Consider a set of N registers, each of length K bits which provides storage for the
N x K array of bit values. This array is represented by the N x K matrix of binary
values B. We then view a classical N-point transversal filter as capturing signal vector
S containing N K-bit components. The signal vector can be expressed as

S = BX, 3%

where it is assumed that the signal is coded in offset binary, wherein logical 0 takes
the value — 1. The output of the filter is given by the convolution

e

'y = §TH, (40)

where the column vector H represents the set of V filter coefficients. Define the column
vector F as

F = B'H. (41)

and substituting (39) in (40), using the property of matrix transposition we have

£ ]

y = X’F, 42)

where F is a set of partial products.

Cowan ¢r ul.|41] has observed that the output filter formulation of (42) when com-
pared with (40) reveals the essential elements of the distributed arithmetic architecture
of the LMS algorith~ depicted in Fig. 3. Simply stated. Fig. 3 is a summation over K-

&

«
B bit planes rather th. ver N filter points. Only the basic hardware configuration for
o a fixed-response distributed arithmetic filter is depicted in Fig. 3. The input ADC (an-

. alog-to-digital converter) signals are presented serially to a set of N cascaded K-bit

Y shift registers. As this serial bit strecam enters the shift registers, the shift register parallel
ﬁ outputs generate K N-bit address words on the RAM address bus. Each RAM datum

is then right shifted A bits and accumulated. The accumulation is complete after K
memory accesses. Finally, an output sample is converted to an output analog signal.

Cal
[“‘ Since the filter coefficients F are adaptable, the buffer/sum block will generate the
- coefficient updates to the RAM.
4.2 Conventional binary ALU
The LMS algorithm can be implemented in conventional twos complement arith-
metic architectures using hardware intensively or sparsely. Obviously. if the algonthm
o 1s implemented with 2V multipliers and 2V adders (very intensive), no faster com-
;—; putation speeds can be achieved. The on-line delay is approximately equal to that of
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130 M. ANDREWS

the slowest computational element (adder, multiplier. ADC). In practice. we realisti-
cally expect a trade-off between computation speed and the amount of hardware.

Two cases are considered: case | with a one adder and one multiplier element and
case 2 with 2N adders and 2N multipliers (where NV is the number of filter coefficients).
In both cases, multipliers and adders process twos complement numbers in parallel m-
bit fashion. The architecture of Fig. 4 is assumed in either case, except that the udders
and multipliers are replicated 2,V umes for case 2.

Of great interest is the minimum sampling time T of each implementation. This
figure-of-merit is a function of the following processing element periods:

T. = m-bit, twos complement addition cycle,
T. = memory write cycle time,

T. = memory read cycle time,

T, = one-bit shift,

T.. = m-bit multiplication of two operands.

Assume that the LMS algorithm invokes the equations

y = STH (filter output), (43)
e=d -y (filter error), (44)
H = H + ueS (weight update). (45)

where upper case and lower case denote vectors and scalars. respectively. The filter
convergence rate is determined by the scalar «. In practice. « is simplified to 2% . K €
{0. -1, =2, =3,...}. We make the assumptions that analog-to-digital conversion time
T e and digital-to-analog conversion time Ty,4¢ are relatively short:

Toac. Tapc <€ processing time of slowest computational element. (46)
RAM
S
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Fig 4 Consentional binary architecture
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Let A,, A... and A, represent the chip area for the m-bit parallel adder. muitiplier.
and memory.
Case 1: One twos complement m-bit parallel adder and one m-bit muluplier.

T=2NT,+ T +T,+ T, + uNT, + T,. (47
The area x time figure of merit, FOM, can be no better than
FOM =2 (A, + A, + AM)2N(T., + T, + T, + T,) + uNT, + T,]. (48)

Case 2: 2N multipliers and m-bit parallel adders. After an initial delay (V + |
samplings to fill the memory). it is possible to produce a filter output at every sampling
instant. Here, eqn (46) may no longer apply. Even so. signal conversion cun be pipelined
with data processing causing only a slight penalty:

r=7,+7T,+3T,+1T,. (49)
FOM = 2N(A,, + A, + A (T, + T, + 3T, + T,). (50)
The FOMs in both cases arc lower limits because no interconnect area is considered.

However, the bound in eqn (48) is much tighter than the bound in eqn (50), simply
because case 2 utilizes 2(N — 1) more computational elements than case 1.

4.3 Bit-sequential cell
Sips{44] has proposed a primitive bit-sequential cell and a linear two-dimensional
processing element for addition. subtraction, multiplication. and division as shown in
Fig. 5. Multiplication is based on the well-known technique of incrementul multipli-
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132 M. ANDREWS

cation[49] in which the MSB is produced first. Figure S depicts an individual full adder
(FA) cell and a bitwise floor plan to execute the basic algonthms of the product pairs
AB and CD, essentially using a systolic array with one-bit full adders. Processing begins
in the upper right corner and proceeds downward through the array.

Each cell is comprised of a D flip-flop, 3-input AND gate, 2-input XOR gate. and
a full adder. The XOR gate is provided for obtaining the complemented operand «if the
operand has a ne-.tive weight). Two operands are provided to each cell via the "¢
and *'b" lines. Control lines XTL and XTL' load successively each new bit of the
operand in the next column (to perform the systoliclike addition).

The basic feature of this architecture configured with the bit-sequential cell 1s that
all operations have the same operation time and that the operation time is linearly
dependent on the number of bits of the operands. The hardware complexity described
in Ref. (51] has been shown to be of O(m) complexity.

4.4 Redundant arithmetic cell

A digit slice proposed in Ref. [51] can be used as the basic computational redundant
arithmetic cell. The cell is a three-level digit slice capable of implementing addition,
subtraction, multiplication [using eqn (32)], and division. A restriction on the dign
ranges per (36) applies here. It is important to note that the basic LMS algorithm
implemented with these cells can operate on the most significant digit first. Hence. this
computational feature makes best use of an analog-to-digital converter which first pro-
duces the most significant digit. In this case, processing and conversion can be
overlapped.

The cell depicted in Fig. 6 assumes that the input digits a, b. and ¢ € D belong
and that the data outputs consist of a result digit s and three transters w. 7. and y.

Primed digits are intermediate transfers between cells. The cell performs the following
functions.

1. Product of b and «:

ru + w e« hc where r 15 the radix. (5hH

2. Muludigit addition of a. w', u:

rx +te—a+w + U (5
a b <
1
MULT
W' u L’H
M-adder
X x o
y —— M-adder v’

S

Fig 6 Redundunt arithmetic cell architecture
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Table |. Comparison of archuectural complexity

% Conventional
. binary
(2N muluphers) Distributed Redundant
(2N adders) anthmetic artthmetic cell Bit-sequential cell
Gate compleuty O mN) QAN Otm) Oim)
Latency N+ | memory AN bt shfts one ADC but & - 1 ADC but
- writes conversion conversion
! VL.SI amenable structure irregular  yes yes yes
! Estimated pin technology technology 10m 0t
! count/cell sensitive sensilive

t Assumes each cell 1s a 4-bit slice.
m = number of digits in a word.
o L = number of bits in each shitt register (A < m)
N = number of filter coefticients
5 = small posiive constant (3 or 4) less than Tu, the ime to complete u full bit-parallel operation

’ 3. Multidigit subtraction:
rx +te—ag-w +u (53)
4. Assimilation (maintenance of signed digit code):
-+ s5ea-y where ¥ € (0, I). (54)

The digit slice is configured in a linear one-dimensional array. In left-to-right fashion.
any intercell transfers propagate via the w', r’, and y' lines. Results appear at the bottom
of each cell. With the floor plan for the basic adder/multiplier unit, few bridges or vias
. are anticipated. Thus. *'stray’’ transistors caused by metallic bridges can be minimized.

5. SUMMARY

Four architectures are compared for their suitability for VLSI implementation of

¥ the LMS algorithm:

1. Conventional twos complement binary full-parallei adder/multipliers.
2. Distnbuted anthmetic vanation of (1) using bitwise adders across the filter taps.
3. Redundant arithmetic cells replacing the adders/multipliers of (1).

4. Bit-sequenual arithmetic cells replacing the adders/multipliers of (1).
Table 1 lists the relative complexity of each architecture. The conventional architecture
has the overwhelmingly highest gate complexity. but also a very short laten:y. Latency
R in the waiting interval before actual computced results appear at the output. The con-
ventional architecture 1s also very gencral purpose and can support other algorithms
much more conveniently. As expected. increasing hardware tends to expand the ap-
phecaton base of an architecture. However. no analysis of control unit requirements
] has been made. A future paper will compare control. communications, and data trans-

port requirements.

It 1s iImportant to note that the area time figure-of-merit for ali architectures applicd
to the LMS algorithm comply with either egns (48) or (50). Only the individual valies
of 4, and T, will change dependent on the particular technology. Each FOM 1s very
opuimistic since the interconnection area between the PEs has not been considered.

D Such important factors ai> being studied and will be reported in a future paper.

Achnowiedeemett =This work has been supported in part by ARO Research Grant # DAA29-83-C.002¢
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Parallel Implementation of the LMS Algorithm

M. Andrews and J. S. Walicki!

Abstract: Fast and accurate adaptive filtering implemented in the digital hardware is
necessary in many areas of communication and general signal processing. This paper
discusses the realization of the least mean square algorithm for adaptive filtering on
a rectangular systolic array. Two such arrays are needed for six coefficient, twelve-bit
adaptive filter. Extension to a larger filter, or higher resolution can be easily accom-
plished by cascading processing arrays. The implementation proposed here is oriented
towards the 72-processor array manufactured by the NCR Corporation. Efficient uti-
lization of the processing array is accomplished by proper feeding of input data arriving
from a sensor array. Processing is performed at the bit level and the vector operations
of the original LMS algorithm become matrix operations. The processing is divided
into two phases - compute and update. In the first phase a new output of the filter
is computed, and filter cofficients are updated according to the LMS rule in the next
phase. Effects of the finite-word length are discussed but with 12-bit representation of
signals these effects are not severe.

22 58
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1 Introduction
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1.1 Adaptive Filtering and the LMS Algorithm

It is well known that any transmission of information is vulnerable to degradation caused by
various types of interferences (noises). These noises may be accidental like the RF interference or
intentional like electronic countermeasures. In any case, the reduction of interference is important.

.

Classical techniques aimed at increasing a signal-to-noise ratio (SNR) usually employ informa-
tion derived from a single signal sensor. No additional information is provided, other than the signal
ﬁ and perhaps statistical properties of both signal and noise. However, chances for the restoration
- of original signal can be increased if multiple measurements of the signal wave are available. An

array of sensors provides such an opportunity. Such a sensor array attracted our interests because
e it generates a vector of signal components which can be processed in parallel.

1J. Walicki is with Computer Science Department, Colorado State University, Fort Collins, CO 80523;
M. Andrews is with Space Tech Corp., Fort Collins, CO 80526

This study was sponsored by the U.S. Army Research Office under grant DAAG29-83-C-0025.
The U.S. Government assumes no responsibility for the information presented
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The goal of such processing is well defined - produce a signal as close the original signal as
possible (allowing for the least mean square error, for example) without prior knowledge of the
signal/noise properties. This goal can be achieved if the processing is self-optimizing, that is,
if processing parameters are continuously modified so that the error criterion mentioned above
is satisfied. An adaptive array is therefore an array of sensor elements plus an adaptive control
algorithm.

The implementation of the adaptive control algorithm can be viewed as a problem of realizing
a normal digital filter with changing filter weights. Several performance measures exist and the
nature of the adaptive algorithm depends on the selection of particular measure. Adoption of the

mean square error for the criterion of optimality leads to the elegant Wiener solution for optimal
welghts.

If an array produces output y(t) which is obtained by weighing input vector x(t) then an error
signal is a difference between a reference signal d(t) and the output y(t):

e(t) = d(t) — wTx(t) (1)
The expected value of the squared error is then:
E(&(t)) = d*(t) — 2w Tr 4+ W R..w (2)

where R, is the autocorrelation matrix of input signal, and r. 4 is the correlation vector of input

and reference signals. If d(t) = s(t) then d?(t) = S which is a signal power. It can be shown that
the value of w which minimizes E(e?(t)) must satisfy the Wiener-Hopf equation:

Wopt = Ror.4 (3)

For the adaptive array described above the performance measure (MSE) is a quadratic function
of the weights. Therefore the performance measure is a bowl-shaped surface and the goal of the
adaptive processor is to find a bottom of that bowl. It can be accomplished by any ‘hill climbing’
method. The idealized version of the ‘hill climbing’ is the method of steepest descent which assumes
that the statistics of the signal environment are perfectly known. In many practical situations,
however, the signal statistics are stationary but unknown. For such problems the Widrow’s Least
Mean Square (LMS) algorithm described in the next section is particularly useful (Monz80).

1.2 Implementations of Digital Filters and the LMS algorithm

Filtering by means of digital hardware offers many advantages such as repeatability and con-
trolability, but also presents a problem of fast and efficient execution, especially if implemented on
a classical SISD digital processor. Attempts at speeding-up the processing had been directed at
improving the execution efficiency via nontraditional arithmetic such as the residue number system
or the distributed arithmetic (Pele74,Cowa81,Cowa83).

Efficient realization of digital filters aimed at increasing speed and reducing power consumption
has been investigated by Peled (Pele74). He proposed storing a finite number of results of interme-
diate arithmetic operations of a filter, and using them to obtain output samples. In that scheme
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only additions and shifts are necessary. Elimination of multipliers speeds up and simplifies the
execution. The intermediate results are stored in ROM which is addressed by proper combination
of bits of the digitized input signal. Cowan and others (Cowa81,83) proposed implementation of
an adaptive filter using the distributed arithmetic. Again the major increase in execution speed
is obtained by prestoring all possible intermediate results, and the ROM is substituted by RAM
since updated weights of the adaptive filter affect the prestored intermediate results. Both Peled
and Cowan deal with single input stream.

w o
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Ercegovac (Erce77)proposed a fast computational method which exploits the redundant num-
ber representation system. The method utilizes only fixed-point additions without overflow, and
therefore, no roundoff errors occur. However, errors due to the finite precision representation have
to be handled by extending the working precision. The E-method, as it is called, generates one
| digit of each of the elements of the solution vector in one step, starting with the most significant
digits. The main feature of this method is fast evaluation of polynomials, rational functions and
arithmetic expressions in a fixed-point number representation system. The redundant arithmetic
has been used in the digit slice proposed in (Chow83). The cell is a three-level digit slice capable of
implementing basic arithmetic operations. The digit slice is configured as a linear one-dimensional
array. Results appear at the bottom of each cell. It is worth noting that the basic LMS algorithm
implemented with these cells can operate on the most significant digit first. Hence , this computa-
tional feature makes best use of an analog-to-digital converter which produces the most significant
digit first.

il -{L E_‘
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In what follows we propose a fully parallel (SIIMD) architecture for realization of an adaptive
filter array which processes multiple input streams. This approach became feasible with advent of
processor arrays (also called systolic arrays). This presentation describes a proposed architecture
in general terms. However, the 72 processor array manufactured by NCR directly realizes the
structure presented here.

Section 2 describes the discrete LMS algorithm from the point of view of processor array imple-
mentation, and proposes basic phases of processing. In the section 3 implementation of the basic
operation phases is discussed. Section 4 deals with effects of the finite wordlength. Section 5 offers
a summary and conclusions.
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2 Parallel LMS algorithm
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An array of sensors generates vectors of samples in response to a signal wavefront entering the
array. This input vector is then fed into the pattern forming array where every input sample is
scaled by the appropriate weight factor. Contributions of individual weighted samples are summed
yielding the single output sample:

AR |

y(k) = 3 wiai (k) (4)

i=1

'.il l;l

The error sample e(k) is then obtained:

{
!

NN

e(k) = d(k) - y(k) ()
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The error value is scaled by the convergence factor and the resulting value is used in the LMS rule
of coefficients update:

w(k +1) = w(k) + 28, e(k)x (k) (6)

where A, is a scalar constant controlling rate of convergence and stability. The equation above
offers a simple prescription for the weight adjustment - the new weight vector is determined by
adding the input signal vector scaled by the error value to the old weight vector. It can be shown
that after a sufficient number of iterations the LMS solution converges to the Wiener solution.

It is possible to partition the LMS adaptation rule into the basic operations suitable for the
processor array implementation.

Operation 1: weight input vector wfx
Operation 2: sum partial products to get y(k)
Operation 3: compute error e(k)

Operation 4: scale error 20 ,e(k) =C

Operation 5: update weights w «— w + Cw

It can be seen from the above list of operations that they can be grouped into two distinct phases
- compute and update. It is worth noting that this grouping is not only a matter of convenience but
also that there exists an underlying reason for such an arrangement. The operation of weighting the
input vector is a convolution like operation. This fact places specific restrictions upon the system
under consideration. Namely, the system has to be linear and shift(time)-invariant. In practice it
means that the weight coefficients must not change once filter convergence is reached. Therefore,
the computations are performed with constant coefficients which change only during the update
phase,

The basic processing steps listed above require a variety of elementary matrix operations. Op-
eration 1 requires multiplication of two vectors. Operation 5 calls for multiplication of a vector by
scalar and for addition of two vectors. Operations 2, 3 and 4 require operations on scalars. The val-
ues to be operated on are represented by k-bit words. Existing processor (systolic) arrays are serial
architectures, mainly because it is still prohibitively expensive to build a fully parallel single-wafer
multi-processor arrays. Therefore, the operations mentioned above have to be performed at the bit
level. As the result the vector operations become operations on matrices of binary representations
of signal samples!

Efficient use of a processor array is thus important in order to make up for losses caused by
the use of serial arithmetic. As Urquhart and Wood (Urqu84) show, array utilization depends
on properly feeding in samples to be processed. Particularly, if one matrix of arguments is kept
static on the processor array and the other matrix is entered properly skewed, then the array is
100% efficient. In our case it is quite natural to keep the coefficients w fixed in the array, while
bit-streams of input samples x march in from array sensors. The arrangement described above is
a basis for the implementation of the first operation, namely formation of the inner product w¥x.

The second operation, that of summing partial products in order to obtain a value of the output
sample y(t), is accomplished by using an adder tree. If weight coefficients and input samples interact
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in such a way that the least significant bits are processed first, then the output from the adder tree
is a serial stream of bits with the least significant bit leading.

In the third step, the error sample is generated by subtracting the y stream from the d stream.
The d stream is a serialized sample of a reference signal.

The computed value of the error is scaled in the next operation (4). This is accomplished easily
by properly shifting the e(k).

The remaining fifth step is the most complex, since it involves multiplying a vector by a scalar
and addition of vectors (bit matrices). The first operation in this step multiplies the weight vector
w by the scaled error e(k). Since all weights are scaled by the same scalar value it merely requires
a simple shifting of old weights by a number of places prescribed by the value of 2A,e(k). This
operation can be performed in a separate processor array with original weights doubled just for
the purpose of that processing. Or, given a sufficiently powerful processing element (as we will see
in the next section), it is possible to scale weights in situ. The last step requires us to add the
old weights to the scaled values obtained in the previous operation. Again, given an appropriate
processing element (like the processor array mentioned in the introduction), this operation can
be done in the original array. These steps complete the update phase and a new input sample is
processed as in the first step.
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The next section contains a detailed description of the architecture of the LMS adaptor. This
implementation is general but can be easily implemented in the NCR’s 72 processor array.

re
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3 Architecture of the LMS Processor

-»

5

This section describes the overall architecture of the LMS processor. The heart of the system
is a processor array whose main functions are: the storage of adaptive coefficients (weights) and
generation of an output sample y(k).

&2

Without loss of generality let us assume that the input vector is generated by a six-element sen-
sor array, and that both input samples and weight coefficients are represented as 12-bit quantities.
It can also be assumed that these quantities are positive and less then 1.0. Extension to the two’s
complement representation is rather straightforward (Cowa81,McCa84).

_

These assumptions allow direct implementation of the 72-processor (6 x 12) array manufactured
by the NCR Corp. The Geometric Arithmetic Parallel Processor (GAPP-II) is a rectangular systolic
array processor chip which can be cascaded in both north/south and east/west orientations. Each
1-bit processor element (PE) can communicate with its four neighbors. Each PE consists of a
bit-serial ALU, 128 x 1 individually addressable RAM and 4 single bit latches. The I/O latch
allows communication through the PE without interrupting the ALU, the remaining latches hold
inputs to the ALU. The GAPP operates as a SIIMD machine. That is, instructions are broadcast
to each cell from an external control store, loaded in turn from the host computer. Proper address
sequencing can be provided by any general address sequencer like the microprogrammable AMD
2910 sequencer. The instructions directed to the processing elements consist of a 13-bit control
field which specifies the array connectivity and arithmetic/logic operations, and 7-bit RAM address.
These instructions can be sent to the GAPP array at the rate of 10 MIPS. The array has a global
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broadcast of input data and a global output. One GAPP array device can function as a modular
component in a larger array, thus enabling word or bit-length growth of an array as needed. In LMS
applications it may be desirable to increase the number of coefficients, which can be achieved by
simply cascading another array expanding a filter to 12 coefficients. Likewise, cascading one array
in the direction of input stream, increases the wordlength from 12 to 24 bits. (Davi84,Gapp84).

The following diagram schematically shows operation of the first processor array which contains
coefficients in RAM locations and computes w¥x.

w) wl wd wl wl® wi! ! ¢, 2 .. 3 ) 2
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The w;’s are bits of a digital representation of the weight coefficient w,; which are stored in the
RAM locations of the individual processing elements. Partial products appear on the bottom edge
of the array, represented here by w} bits. Every processing element performs the following basic
operations:

Zwestt Zeast

Yeouth*™ Ynorth * TeastZaccumulated

If the least significant bits of x and w interact first, then partial products of equal significance
leave the edge of the array at the same time. These partial products can be accumulated using
the adder tree constructed from MSI adders. If, however, the least significant bit z? interacts with
the most significant bit of w then, the partial products of equal significance appear skewed and
the linear chain of full adders can be used to accumulate the final output. If the second option is
chosen then a single row of PE’s of a second processing array can be used to accumulate partial
products. In order to handle properly the operations in the main array guard bands of logan bits
are appended to the input parallelogram.

The second array implements operations 2, 3 and 4. That is, the computations of the output
sample y(k) and the scaled error 24,e(k). Asit was mentioned above, the first step is to sum partial
products arriving from the main processing array. These partial products are accumulated in the
elements of the first row. Because of the additional skewing of the partial products leaving the first
array, the delay is needed between the accumulating PE’s. In the GAPP device this can be easily
accomplished by storing the elementary sums in the local RAM locations. Properly accumulated
result y(k) leaves the east processing element and is fed into the third row of processing elements
of the second array (see Fig.1). This is the end of the compute phase. The remaining processing is
devoted to updating the coefficient weights.

An error value e(k) is computed by subtracting the output sample from the reference sample
d(k) which is shifted into the fourth row of the array simultaneously with the loading operation of
the third row. The resuit of this operation remains in the fourth row and is shifted according to




F.-‘ the value of 24,. The quaatity obtained in this step is the scaled error value and it is sent to the
\: host controller.

The controller uses this value to scale (shift) the original coefficients residing in the main
. array. However, before this operation is performed the original weights must be saved in the RAM

locations. The scaled weights are also uploaded into the local RAM, and then both quantities are
summed (W — w +2A,w) yielding the new updated coefficients, which are used to compute a new
output sample, and the computation processes is repeated.

-r-r
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4 Effects of the Finite Wordlength

The derivation of the LMS algorithm presented in the previous sections assumes the infinite
precision arithmetic. Under this assumption the only source of inaccuracy is the fundamental prin-
ciple of the algorithm. That is, the fact that the gradient which steers towards the optimal solution
cannot be computed accurately, but it has to be estimated. However, practical implementations

have to deal with effects of the limited wordlength, especially those that use relatively few bits
(8-16).

>

Effects of the finite wordlength manifest themselves in various stages of processing, or even
before the actual processing begins as is the case with the quantization noise. Assuming the 12-bit
representation, it can be shown that the input signal-to-noise ratio is around 70 dB. If the noise is
white and the processing is realized without an error, then the mean and the variance of output

e BN

noise are: -
=ms 3 A 7
i my,=m ,.;w (n) (7)
ot =g > | h(n)? (8)

where h(n) is the impulse response of the linear filter (Oppe75).

In the real implementation of the LMS algorithm there exist two types of noise. The gradient
noise caused by estimating the gradient with a finite amount of input data, and noise caused by
imprecise resuits of intermediate processing operatious due to the finite wordlength. The operations
of addition and multiplication at each weight adaptation cycle are affected by random errors e, and
em- Additionally, the iterative nature of the algorithm causes noise errors to accumulate during
every compute/update cycle:
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e Wit 1= W, + 2Aae(1’)x1 + Z em , + Z €a, (9)
=1 1=1
E} Let’s define '
- J
wi=w;+) (em,+€a) (10)
(v( i=1
c;' Then
w;’+l=w;+em,+ vt €a, 4+ L*ZAle(J')xJ' (11)
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It can be safely assumed that the errors ¢, and e, are uncorrelated (Andr77,Andr83). The
computation noise causes deviation of updated weights from the optimal values w,p, resulting in
the difference

V=W —wop (12)
The ; = 1 difference is then
v;*lzw,-+2A,e(j)x,-+em,+ 7t e, ~ Wopt (13)
And finally from 12:
Vi 1= Vi 20,e(0)x tem, e, (14)

Equation 14 accounts for both the gradient estimation noise and the computational noise.
Computer simulations based on the presented model lead to the following conclusions (Andr78).
The LMS algorithm can be successfully implemented in a short digital word (8-12 bits) but large
values of the convergence factor 24\, are needed to ensure convergence and unbiased behavior of the
adaptive filter. The testbed realization of the 8-bit adaptive filter by Cowan and others {Cowa83)
also confirms these conclusions. Therefore the 12-bit realization of the LMS on the systolic array
should not suffer from the relatively short wordlength.

5 Summary and Conclusions

We have presented the systolic implementation of the LMS algorithm. The proposed architec-
ture is fully parallel and operates on the bit level which efficiently exploits the serial representation
of data. Even in the basic structure of two elementary arrays (GAPP devices) the relatively high
resolution of 12 bits is achieved. Cascading more devices allows for increase in the resolution and
a filter size. Fast and accurate adaptive filtering by means of the digital hardware becomes more
important as the communication and intelligence needs increase. For example the array processor
like the one described here may digitally control individual radiating elements of large phased ar-
ray radars and the same time digitally enhance desired signals by eliminating clutter and jamming
signals.

The GAPP architecture is ideally suited to distributed arithmetic implementations of many
signal processing algorithms. Qur LMS filter is more demanding than fixed-coefficient filters because
weights change with each iteration. The local memory of the GAPP array allows storing and
updating the filter coefficients. In conclusion, GAPP devices add a new dimension to parallel
implementations.
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COMPABATIVE VLSI IMPLEMENTATIONS OF THE LMS ALGORITHM
Dr. Michael Andrews
Space Tech Corporation
2324 Manchester Court
Fort Collins, Colorado 80526
303-484-9903

Alternative arithmetic engines are being analysed to determine applicability to
adaptive signal procesaors. Synchromy, topology, and granularity are important
design figures of merit for any VLSI implementation. In this paper, redundant
arithmetic is considered with the desirable attributes, basically because carry-free
operations are possible resulting in a speed-up. A primitive computational element
is discusased for the least-mean-square (LMS) algorithm embedded in redundant
arithmetic processors.

The basic approach has been to analyze the hardware/software trade-offs of
conventional (von Neumann) and non-conventional (parallel, pipeline, vector, array,
and custom processors) in an attempt to identify optimal structures (of order area x
time) which are computationally fast yet flexible. Regular and simple
interconnections and geometries among high-performance parallel structures were
sought. A two step process can be assumed; first the sequential algorithms are
speeded up (seeking inherent parallelism) and second, faat algorithms are to be
mapped onto new VLSI architecturea (via recursion and pipelining). The current
research is to provide theoretical design tools and interconmection strategies
capable of achieving real-time implementation of adaptive algorithms via limited
user-progransable mechanisms (e.g., firmware).

The traditional criteria of component count, whether applied to processors or
to simpler devices, are no longer adequate to establiash a scale of coaparison among
various solutions to a given VLSI problem. Indeed, number-of-elementa criteria are
substantially based on the fact that processing elemeats and their interconnection
are realized by different media. This difference disappears inm VLSI, which
“integrates™ both processing elements and their interconnections io a two-
dimensional geometry. As a result, the VLSI solution to a given computational
probles involves the conception of an interconnection architecture, its layout, and
the design of an algorithm for that architecture. It is useful to examine the
trade-offs between the production cost (area) and the incremental coat (time) of a
dedicated circuit developed to solve that problem. The area of a chip cano be
partitioned into interconnect or wire area, A(v). gate area, A(g). and wire pad
area, A(p). At least for the class of transitive functioms (cyclic shifts, matrix
product, integer product, and linear transforms), Vuillemin has shown such VLSI
circuits satisfy

A > A(g) + A(p)B + A(¥)B vhere in practice A(w)>>A(g),A(p)

where A is the chip area, N is the number of inputs, and B is the average bandwidth
(bits per second passing through the chip pins).

A good arithmetic unit for digital signal proc ssing, in addition to the above,
should have the following:
1. As modules, the ALU number of modules and the precisiomn of the operands should
not affect the time to perform one arithmetic step such as addition, subtraction,
multiplication, and division.
2. Each digit produced should not be dependent on very many adjacent digits to
eliminate excessive carry propagation and hardware error checking. “Coluan”
operations help detect and correct hardware errors independently.
3. Round-off error from truncation should have no bias.
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4. The leading digit or sign bit should be processed just like any other digit.
. 5. Overflow should be detected early. At best, overflow could be detectable whe
. the first few digits or leading digits are generated.
Points two and five shouid not be takem lightly. Signal processing application
frequently require robust implementations which can operate in harsh environments
N Faulty units need to be self-checking and correcting. Furthermore, the wide dynami
E; range of signal inputs as found in radar often causes overflow in conventional two':
complement engines, thereby invoking elaborate dynamic scaling operations
Detecting the overflov at the onset of the most significant digit productio;
!F minimises the acaling overhead and subsequent pipeline flushes.
) The redundant number digit slice proposed in [1] and cascaded as 4-digit slice:
into a module incorporates all of the attributes liated above. Depicted in Fig.

is a 15-digit module with three levels. The function of each level is described i:
Table 1.

220!
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i Pig. ' A 15-Digit Bedundant Number Nodule
Table | Digit Slice Punctions

. Multiplication ru ¢+ vy <= bc

E- Addition rx ¢+t (= a ¢+ w' *+u

% or rx +t <—a-u'-1u

Assimilate -rb" ¢+ 8§ o= a - b’

I; or 8 C¢—=t'+2x

The digit slices can be configured easily into VISI. The inputs are a, b, and c.
The output is s. Interslice transfers include w, t, and b' for eastward direction
Eﬂ and v', t', and b” for westward direction. All of these are intermediate results
used in ad jacent digit positions. The asaimilate function assists in the conversion
from redundant to non-redundant number representation. It has already been shown
that a digit alice with 400 gates constructed with 16 cascaded sum-of-products
circuits can implement redundant arithmetic in radix-16 with 10 as the maximum digit

[I]. Current research is exploring the processing delay, latency, and execution
t: time of the redundant number system processors [2].
<
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