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coupled, research topics were posed, centering on the usage of Signed-Digit
(SD) arithmetic to solve mult/acc intensive signal processing tasks (streaming
data). Efficient implementations for signed-digit arithmetic were sought for
systolic arrays. Connectivity and control were investigated for innerent
fault-tolerance. Lastly, multiple-valued logic for the Signed Binary Number
Representations (SBNR) was studied for botn fault-tolerance and array
regularity. The dominant and focused application of this research was
efficient solutions of specific signal processing algorithms.
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I
SBNR DIGITAL SIGNAL PROCESSOR ARCHITECTURE

1.0 Scope of Work

"There is a great deal of innovation for new complex special-purpose
signal processing integrated circuits...often yielding well over a factor of a
thousand improvement over even the fastest general-purpose machines,"
Jonathan Allen, Fellow IEEE, in "Computer Architecture for Digital Signal3 Processing," Proc. IEEE, Volume 73, Number 5, Pp. 852-973, May 1985.

The following research was proposed in a three-year period. This
constitutes significantly distinct efforts which complement the existing
efforts in current adaptive signal processor architecture research. Briefly,
these tasks comprised a study of non-conventional number system

implementations focusing on VLSI enhancements attributable to redundant number
systems. This increased practical knowledge should add impetus to many
potential signal processing tasks (target trackers, beamformers,
communication, receivers, spread spectrum). Three diverse, yet tightly
coupled, research topics were posed, centering on the usage of Signed-Digit
(SD) arithmetic to solve mult/acc intensive signal processing tasKs (streaming
data). Efficient implementations for signed-digit arithmetic were sought for
systolic arrays. Connectivity and control were investigated for inherent
fault-tolerance. Lastly, multiple-valued logic for the-$igned Binary Number
Representations (SBNR) was studied for both fault-toleranci and---array
-fregularity. The dominant and focused application of this research was5efficient solutions of specific signal processing algorithms.
2.0 Conventional Number Systems Drawbacks

The most serious objection to using the conventional number
representations (the sign magnitude, the radix complement and the diminished
radix complement representations) for a signal processor cell is tnat addition
in these representations cannot be truly parallel. A computing cell designed
for such representations cannot be easily connected to run in parallel with
identical cells in such a way that the microsteps involving additions can be
carried out in time independent of tne number of cells. For signed-digit
representations, the number of cells and the precision of the operands will
not affect the time of such microsteps. The time needed will only depend on
the structure of an adder position.

Another convenience in designing arithmetic modules with signed digits
is that no special treatment is required for the most-significant position.
For radix complement or diminished radix complement notation, special
attention is needed to handle the arithmetic shifts, the sign of multipliers
and/or the end-around carries. For the sign magnitude notation, the sign of
the result of an addition or subtraction requires dedicated circuitry. All of
these little problems do not exist for tne signed-digit notation. The shift
input for any arithmetic shifts is always zero. The indicator digit (the sign
digit) can be treated just lice all other digits.

The serial mode of processing has to proceed from the least-significant
end to the most-significant end if the conventional number representations are
used. The overflow condition or the leading zeros can be detected only after

' iMill



34
the last segment of the result has been generated. For the signed-digit
notations, serial operations can proceed from the most-significant end.
Processing may be stopped by an end symbol in the operands such as the space
zero discussed by Avizienis I]. This can lead to a more efficient serial
processing procedure if the allowed precision is an excess of the needed
precision. Since the most significant digits of the result can be generated
first, the overflow condition or the leading zeros can be detected at the
beginning of an operation. Result digits may be stored away in their final
positions without subsequent corrective shifts which is not necessarily
trivial in a multi-precision environment.

For the signed-digit notations, the basic arithmetic algorithms for each
digit position are essentially invariant with the position of the operand
digits. Each result digit is dependent only on the operand digits in a fixed
number of digit positions. Because of this the detection and the correction
of hardware errors can be independently implemented for each digit position as
suggested by Avizienis [I]. The "round-off" error resulting from simple
truncation is without bias. For a mantissa of m fractional digits, the
maximum absolute truncation error in the mantissa is less than one mantissa
bit? Besides the conventional number representations, there are a few other
novel number representations which have advantages in special situations but
are not suitable for this variable precision module. Examples are the residue
number representation and the negative base representation. The residue
number system developed from linear congruences does not require carry
propagation. The multiplication of two numbers needs as little time as the
addition. The main difficulties of the residue number representation pertain
to the determination of the relative magnitudes of the two numbers and to the
division process. The negative base number system, on the other hand, is not
easily implemented in negative bases. The sign of a number in a negative base
depends on whether the most significant digit is an even or odd position.
This complicates the division process since the signs of the operands and theg signs of the intermediate results are essential in any division algorithm.

In short, the signed-digit systems provide two dimensions of freedom:
the number of processor modules and the precision of operands. These allow a
variable length operation to be practicable in a processor with a variable
number of digit positions. The signed-digit systems are natural choices for
the present module which is required to process operands with a variable

Mprecision either by itself or in parallel with a variable number of identical
modules.

2.1 Task Summaries

1. We studied the impact of signed-digit number systems for signal
processor implementations. Specifically, we proposed to implement new ALU
structures within the context of recursive algorithms (LMS, LS, SVD, Givens
Rotations, ...) focusing on fault-tolerant architectures.

2. We analyzed at least four architectures: fully-parallel multiple
adder/mult. structures, distributed arithmetic structures, multiple operand
adder structures, and ROM/adder structures making maximal use of pipelining
and parallel mechanisms.
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I
3. We studied engineering trade-offs among conventional, 2's complement

arithmetic and signed-digit arithmetic to reduce pin count and develop more
functionally robust devices for signal processors. Multi-valued logic
circuits were considered.

3 2.2 Synopsis of Proposed Method

Classical techniques were applied to these tasks. Namely, VLSI
floorplans were produced and area/time figure of merits generated. Analytical
comparisons were then established using popular benchmarks as the LMS
algorithm and least-squares algorithms applied to signal processing of radar,
sonar, and communications tasks.

2.3 Objectives Summary

We sought to demonstrate the effectiveness of each implementation
towards design goals such as speed, power, weight, and size. Additionally, we
intended to demonstrate the efficiencies of signed-digit implementations which

supposedly have minimal interconnects between adjacent digit positions. We
demonstrated the superior modular features of signed-digit for ALU's in
adaptive signal processors.

3.0 Identification and Significance of Opportunity

This focused architecture study exploited promising memory-oriente
structures common to distributed arithmetic organizations because the costly
multiply/accumulate cycle (typical in signal processing) reduces to fast
shift/add cycles. Secondly, signed binary number representations (SBNR), a
subset of redundant number codes, were realized with higher information per
wire ratios, thus reducing intercell connections (a relatively high VLSI cost
in current conventional number systems). Thirdly, multi-valued-logic
(although slow) maps SBNR representation one-to-one. Hence, its effectiveness
was studied.

As a result, digital signal processing applications such as FFT's,
convolutions, Hartley transforms, beamforming, coding, communications
receivers, target trackers, and antenna arrays stand to achieve lower power
requirements and higher microminiaturization levels. There is a great need
for ultra-fast FFT's in spread spectrum. Because no architecture research
operates in a vacuum, we collaborated with NCR, TRW, and RCA foundries to
eventually test/develop actual devices. NCR is particularly interested in
this study because its local R & D facility designs systolic array devices
(notably the NCR 45CG72, the GAPP 6x12 PE chip, for which Space Tech has been
writing signal processing algorithms). This is the one of the few available
true systolic array chips, and an excellent testbed for our studies.

[A difficulty in terminology now arises. In this research, we studied
redundant number systems (sometimes called redundant coding, SDNR, SBIR, and
mistakenly called negabinary and/or mirror numbers). We also investigated
fault-tolerant properties of this number system partially with redundant

circuits (here, "redundancy" refers to more than one circuit). We hope the
reader can determine the meaning from its context.'

i
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3.1 Multi-Valued-Logic and Systolic Arrays

In recent papers by Hurst [2] and this Principal Investigator (see
Appendix), it is noted that multi-valued logic (MVL) may show great promise in
the future for VLSI. At present, binary systems are facing interconnect
problems which appear to be insurmountable. Silicon areas devoted to
intrachip connections now consume twice the area of active logic elements on
the chip [3]. Array implementations whether data-flow, systolic, or otherwise
cause a severe escalation of interconnect area thus rendering lower siliccn
area efficiencies. LiKewise, off chip connections are generating new and
complex problems for the board designer. These packaging solutions are not
without concomitant thermal and mechanical constraints. Such factors cause us
to reflect upon denser information content to interconnection ratios. A
solution using higher radix arithmetic is proposed and coupled with MVL
promises to relieve some of the silicon area inefficiencies when conventional
binary arithmetic is used. Even for the regular architectures of systolic
arrays, Moraga [4] has shown the effectiveness of such MVL implementations.

3.2 Computational Model

Our VLSI model of computation to derive complexity measures was based on
the following generally accepted assumptions [5-7j:

a. Wires have minimal width W=A(const); hence W is the unit of measure for
the area.
b. The area required to store one bit of information is A(W)2 ); the distance
between parallel wires is A(W).
c. Double layer metalization is allowed.
d. Wires run only horizontally and vertically.
e. Each transistor needs a minimal transition time, Y=A(K) (k is a constant),
to change its state. Thus Y is the unit execution time.
f. A binary signal propagates along a wire in time A(W). Any long wires of
length, L, require respective buffer/drivers with area A-A(W) x O(L).

3.3 Signed-Digit Number Representation

In the most general sense, a redundant number system allows both an
increase in the number of positive digits and negative digits as follows.

w (nm): R x R x ... x R -- >Q (Ired

~n-1

ala ... a0 a1 a 2  a5 m > aid (2)

where the digits d. ER -I-r,,- 0,..., r 2-1,r2i (3

(rj I , 2 > ,

- -
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The representation described by Eqs. (1-3) is called redundant notation with
base d. The above mapping of the number representation (or notation), w red >
assigns to a sequence a .... a of digits a value from a range Q where Qmay be an integer, the rea s, or zero.

The general redundant representation does not lead to efficiencies in
algorithm computations or implementations. If subsequent restrictions (Sec
3.4) are placed upon the general redundant notation, very attractive
properties support efficient implementations. However, the basic properties
of Signed-Digit Number Representations (SDNR) are:

a. The radix, d, is a positive integer.
b. The SDNR of the algebraic quantity, zero, is unique if

Tr=n, (d- ) m and m-i > d-I)/2 (4)
c. Transformations between conventional representations and SDNR exist.
d. Totally parallel addition/subtraction are possible.
e. Addition and subtraction of two numbers are free of serial propagations of
carry/borrows.
f. SDNR numbers are positionally weighted.
g. The polarity of an SDNR number is given by the polarity of its most
significant non-zero digit.
h. No special treatment is needed for the most-significant position.
i. Addition/subtraction time is independent of operand length.

Avizienis [i], Atkins [8], Tung [9], Ercegovac [o], and Robertson [i]
have shown that SDNR can effectively operate in a general purpose digitalI computer for the following reasons.

1. Redundancy introduced into the adder-subtracter structure reduces (but
does not entirely eliminate) carry-borrow propagation leading to rapid
multiplication.
2. Full precision comparison of the divisor and partial remainder in division
algorithms is not required because quotient digits can be determined from
relatively few high order bits.
3. Negation is a simple logical complementing of the sign bits (e.g., unlike
two's complement notation which requires an additional step, adding an LSB
i"one"). As was seen in the ILLIAC III [8], such negation expedites execution
of floating-point addition and subtraction.
4. Variable lengtn operand formats and parallel vector arithmetic are
facilitated by basic properties of SDNR's. First and foremost, operations can
proceed from left-to-right (rather than right-to-left as required in l's, 2's
complement representations). Secondly, if appropriately implemented, the
position of the least-significant digit need not be known for adders and
subtracters.
5. Because a signed-digit combination adder/subtracter needs no carry/borrow
in the LSD, the ALU can be partitioned into identical and cascadable single
digit adder/subtracters. VLSI implementations tend to become highly regular.
6. Multiplication with SDNR tends to automatically produce rounded results
(of great importance in computationally intensive signal processing
applications). In fact, Robertson, based on worK by Rohatsch [12], has shown
that the probability of obtaining a rounded result is 5/6.
7. SDNR allows unusual algorithms such as wired-in significant-digit
aritnmetic [13] and dual notation algorithms capable of accepting both SDNR
and conventional operands (I's, 2's complement) to produce SDIR results [14].
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These observations lead to the implementation of a universal Aritnmetic
Building Element (ABE) capturing not only the preceding algorithms but also
efficiently separating functions of logic designs and arithmetic design [15].
8. Overflow detection can occur immediately following the production of most-
significant result digits (unlike conventional notation).

i 3.4 Efficient SDNR Realization

E Several implementations based on the SDNR have already been investigated
[11,16,17,18]. All of these, however, sought to satisfy general data
processing requirements of a mainframe computer. In contrast, signal
processing applications are generally multiplication/addition intensive. (Of
late, the utility of distributed arithmetic [19,20,21] has shed new light on
bit-wise algorithms, also essentially partial product and accumulation
intensive.)

*An allowed digit set (-1,0,1) which is a subset of the SDNR is assumed.
A redundant Signed Binary Number Representation (SBNR):

XnXn...XI --> X i in (-1,0,1) (5)

represents a number whose value is expressed as

n
sum X1 . 2 (6)
i=1

U The importance of SBNR is as follows:

A N a. Conversion of unsigned binary numbers to SBNR is unnecessary as they are
.' identical.

b. Since a two's complement binary r(X nXn_..X) 2 e
the number

)n-i

e 2n - 1 + sum X.2 -  (7), i=I

this same number can be expressed in SBNR by

(X nXn-1" 'X ) (a)

* because the sign bit X in 2's complement representation is considered to have
n

weight 2n- 
.  Hence, conversion from signed binary 2's complement

representation to SBNR is simply an inversion of the sign bit alone!

Avizienis [I] further demonstrated that the SBNR (radix d=2 with digitvalues -1,0,1) with a decreased redundancy requirement (invoking a two-step

addition by allowing the propagation of the transfer digit over two digital
positions to the left) requires only d+1 sum digits. In general, he showed
that the lower limit of required redundancy of one digit depends on the number
of digital positions the transfer digits propagate as follows.
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If GIVEN:

a. no redundancy utilized
b. si, sum digit Id values only)
THEN:

1 = + f(z , ... - 'z_ m, ) (9)siz. - ith ad nenTgit M,

yi = itn augend digit

If, however, s. in jd+1 values, then Eq. (9) becomes

.s i -f(zi,Yi,Zi 1,Yi+1,zi+2,Yi+2) (10)

and if si in {d+2 values or more}, then Eq. (9) becomes

1 i = f(ziYizi+i,y+i) (11)

Using these observations, a single cell can implement the one digit
adder/subtracter if certain choices for a redundant digit are always made.
Specifically, let any redundant binary digit be represented by two bits Xs and
Xd as follows where 1 = -1.

Table 1. Redundant Digit Selection Rule

Redundant Representation
Digit Sign Digit
X X X d

0 0 0

1 0 1

T 1 1

Invoking this TRIT realization for our SBNR further simplifies the cell
implementation without sacrificing the transfer digit propagation advantage.
Using this subset allows six types of intermediate results in the first of two
addition steps as defined in Table 2.

C
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Table 2. Intermediate Addition Step Classes

Next Lower Intermed.
Type Augend Addend Position Carry Sum(xi)  (YI) (xi -iYii) (c) (asi)

1 1 1 1 0

Both are
1 0 positive 1 T

2 At least one
0 1 is negative 0 1

0 0 0 0

1 T 0 0
4

T 1 0 0
Both are

0 T positive 0 T
5 At least one

1 0 is negative T 1

6 1 T T 0

The second step in an addition cycle adds s. and ci 1 from the next lower
position to obtain a sum digit zi with no carryhorrow generation required.

If we allow any redundant binary digit to be represented as X X with
the redundant digit selection rule as prescribed in Table 1, the Boolean
equations which govern selection and addition per Table 2 produce two critical
observations. The itn SBNR carries, C and Cd' depend only upon the ith, i-I
digits and i-1 carries. Hence, carry propagation extends only into the next
adjacent digit column. SBNR addition does not require full-word carry
propagation as in binary addition. SBNR addition makes systolic array
implementations straightforward. Pre-scrambling bits or words is not
required.

.w " A primitive cell suitable for large VLSI arrays and especially for

adaptive signal processors must have few interconnections beyond its nearest
neighbors and must have very simple controls. VLSI arrays effectively
function in a data-flow manner. Fortunately, many signal processing
algorithms can be implemented with distributed or bit-serial arithmetic.
Mactaggart and Jack [22], and others have shown that bit-serial
implementations offer a highly regular desi and lower power consumption tnan
conventional arithmetic. One such cell 16] is depicted in Figure 1. This
cell implements the basic addition/subtraction steps of Table 2 using the SBNR
of (-1,0,I) and the redundant digit selection rule of Table 1.

11 Ill W
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i 3.5 Matrix X Matrix Multiplication

rl Most of the computational effort expended by a digital signal processor
is devoted to matrix x matrix multiplication. Such matrix operations may be

either sums of word level products or sums of bit level products. We now know
mthat a strong relationship exists between word and bit level systolic arrays

[23]. if we treat such computational problems from the outset as bit level
manipulations, fast area efficient VMI arrays are possible [24,25]. In our
implementations, a systolic-like bit level approach is assumed where each

PON' processing cell is a multiplier and gated full adder. However, the multiplier
and adder utilize SBNR rather than 2's complement arithmetic for reasons
discussed earlier.

Another advantage to SBNR is the absence of special circuitry and

algorithms to handle signal operands. In 2's complement arithmetic, the Baugh
Wooley algorithm can be used (with an attendant high latency cost). In this
procedure, 2's complement words are treated as positive numbers if:

ii 1. A fixed correction term is added to the result for each word level

multiplication.
2. All partial products normally with a negative weighting are complemented.

Two's complement implementations on a systolic array require a negative
weighting flag or a tag on the partial products which must propagate
vertically down through the array. Hence, another latch and control line is
required for each columnar patn. Furtnermore, final addition of correction

R1
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terms requires an initialization of the accumulators in the adder trees to a
value, which is generally

(2m - 22m-1) x n (12)

In general, the number of systolic array cells required to multiply two

nxm matrices with elements m bits long in a fully parallel fasnion is a total
of

n x (2m + log 2n) (13)

cells where word growth is taken into account. However, McCanny and McWhirter
[26] have identified a procedure to halve the number of cells by removing
intermediate zero bits. The procedure is to permit only one set of words
within a given row to move at any time slot, keeping the other set of words
within the row at fixed sites. Then, in the next time slot, move the fixed
set of words and keep the previously moved set fixed. This alternation of
left/right moves can be maintained by latching bits using half the system
clock speeds. Successive rows in the array must move in anti-phase relative
to each other.

3.6 Device Redundancy and Fault-Tolerance

Any practical architectures designed today should be highly fault-
tolerant. Circuit redundancy and built-in-self-test are theoretically
achievable. Redundancy (of elements, not aritnmetic codes) does offer one

additional advantage to the chip builder. The system designer can run models
long before production of the new system starts. But, reliably high-yield
logic chips for these machines are often difficult to achieve because the
system designer always wants the very latest in technology. Redundancy in the
basic logic design can enhance the yield by a significant amount and greatly
reduce the wafer start requirements. When the yield increases and production
starts, this same redundancy is now available to improve reliability.

The model in Section 5.7 demonstrates the dependence of yield on the
nature of the defects and, together with gross yield estimates and the
appropriate nonredundant yield factor, it will serve as a reasonable starting
point to model actual yield data. The existence of complex local correlations
and some non-point-like defects will clearly complicate matters, although, in
many cases, a perturbative approach will be adequate to model the situation.
Understanding yield issues is important to architecture design.

3.7 Redundancy, Fault-Tolerance and Testing

Achieving high reliability in a complex device or system is a difficult
but critical task. The investigations for this project have included a
careful consideration of reliability and testability considerations. It is
now challenging for manufacturers to maintain a compound growth rate in per-
circuit reliability of 60%. Past methods are no longer valid. Tne
verification of machine reliability due to electronic components poses a
significant challenge to the future. For example, consider two realisti-
examples. Assume a computer with 1,C00 circuits/chip. Suppose that a
manufacturer buz.J.s 1,OCO macnnes to achieve 53K user power-on hours per
machine at the usual 1,OOC hour MT7F for tne electronics. This corresponds to

, 'V.' '( ~~~~-------- ..¥ P' ' r"¢ ' ' t  .. .........SL
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a 50 PPM cumulative fraction fail for the chips. To verify this failure rate
at a 90 percent confidence level, a manufacturer would have to test 80,000
chips to allow for one failure during testing. For an overall production,
this represents eight percent of a production run. Historical trends indicate
that the overall reliability rate improvement is approximately 2X each year.
By 1994, if we consider the constraints of the first example, the reliability
must be theoretically improved by 1,000 times. Verifying reliability to tne
same confidence level would require 80M chips, or 80 times the number of the
actual production run. Clearly, reliability, testing, and redundancy are
intimately coupled.

The following aspects of reliability were considered:

1. A major problem with all complex, newly designed devices which use a
sufficiently large chip area is poor yield. The yield can be significantly
improved by using redundancy. During the final manufacturing stages, devices
with only a few "bad" cells can be reconfigured to leave out bad cells.

2. A similar approach for fault-tolerance can be used for hard failures
in the field. In this case, reconfiguration has to be dynamic. This means
that after a cell had been detected to be faulty, the array configuration has
to be altered under program control.

3. To study the effectiveness of fault-tolerance and for optimizing
such designs, estimation of hard and soft failure rates is required. Because
the handling strategies can be different, hard and soft failures often have to
be considered separately. Preliminary estimates are based on empirical
techniques. Such estimates are not very accurate, but are still indispensable
when evaluating different design options.

Consideration of soft failures is especially important for Multi-Valued
Logic (MVL) devices. Because the voltage range is divided into more than two
regions, it will take much less energy (from electromagnetic noise or alpha-
particles, etc.) to cause an extraneous transition.

4. Testing, both by the manufacturer and in the field, is an integral
part of reliability strategy. It is now recognized that testing must be
considered during the design phase itself. Two aspects of testing will be
considered. Design-For-Testability (DFT) is to be used for easier and faster
test-pattern generation and applications. The other is Built-In-Self-Test
(BIST), which allows a system to exercise itself and verify correctly
operating hardware.

4.0 Technical Objectives

Succinctly, the technical objectives of this effort were:

* a. Determine intrinsic properties of SBNR embedded as PE's in a systolic
array via distributed arithmetic cells. Capitalize on the inherent modular
properties of residue numbers to be implemented in SBNR engines.

b. Establish highly modularized architectures using SBNP arithmetic engines
to increase information per wire ratios.

=U
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c. Determine engineering trade-offs of power, weight, and size for SBNR array
architectures to help a system designer and silicon floorplanner lay out
competitive VLSI devices.

4.1 Higher Radix Implementations

We considered at least one implementation of higher radix arithmetic,
namely ternary, which when viewed as a redundant or signed-digit number system
held promise for signal processing applications in which division-sparse
operations occur. We studied signed-digit number representations and basic
properties attractive to signal processing applications which manipulate
sequential data streams.

4.2 Systolic Array PE

We identified a realization of TRITS (ternary digits) which serves as
the primitive VLSI cell. The regular nature of tnis cell enhances systolic
array architectures. Multiple-valued encoding affords us the opportunity to
reduce ripple-through carries. Ternary arithmetic may have a balanced as well
as an unbalanced coding. Balanced encoding requires less gates when compared
to binary and unbalanced encodings. Unfortunately, logic delay increases
[27]. However, in the TRIT realizations utilized herein, a balanced encoding
coupled with redundancy in the encoding improves both logic delay and gate
count.

This Principal Investigator has considerable design experience with
systolic array PE's. He has designed control units for the first systolic
array (NCR 45CG72) and generated several signal processing algorithms for it
in conjunction with NCR (including LMS, LS and SVD for adaptive beamformer
applications). From the experiences, a basis for new and faster circuits can
be identified. One such candidate, SBNR PE suitable for a systolic array, is
shown in Figure 2. This is a derivative of the NCR cell with several critical
differences. First, additional latches and data paths exist. Second, RAM is
much larger at each cell. Third, internal cell pipelining is used to speed
effective instruction execution (not easily shown in a block diagram).
Fourth, the cell implements signed-digit arithmetic with fewer intracell
connections. Lastly, this single cell can do multiply, add, and subtract in
fewer steps. A systolic array module (SAM) of this PE is depicted in the
floorplan of Figure 3.

Figure 2. An SBNR Data Flow Cell
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4.3 Signal Processing Algorithm

There is an intimate coupling between word and bit level matrix x matrix
multiplication. A systolic implementation of comm-n algorithms invoking a
digit subset of redundant number representations, Signed Binary Number
Representations (SBNR) is easily realized with TRIT MVL. A significant
property of redundant number systems supports the production of left-to-right
(most-significant-digit to least-significant-digit) algorithms. Sips [28] has
demonstrated the utility of left-to-right algorithms for a general purpose
computer. We found this RTL property extremely beneficial for the ADC and DAC
interface.

We analyzed appropriate ADC and DAC SBNR realizations. It is important
to note that the realizations directly carry over from a property of redundant
numbers. This is vital for real-time signal processing (which is
predominantly analog sourced).

4.4 Fault-Tolerant Properties

jIt is important to identify PE's that are highly regular, have minimal
I/O pinout requirements, have minimal gate count, inter- and intra-circuit
connectivities and low power requirements that support a high degree of fault-
tolerance. VIZI technologists are fast developing wafer scale-integration. A
major problem with such assemblies is that some cells are lixely to be
defective. Hence, a major objective was to determine optimal reconfigurable
networks "around" such faults for our SBNR PE systolic arrays. The procedure
was to minimize the length of the longest wire in the system, thus minimizing
the communication time between cells. Channel width was also a major
consideration. The procedure assumed a probabilistic model of cell failure
since Leighton and Leiserson [29] have demonstrated many positive results. In
many ways this problem is similar to the graph-theoretic models used in the
bottleneck traveling salesman problem. Leiserson has already derived bounds
on wire length and channel width for two-dimensional arrays. We compared our
results witn these bounds. Leiserson nicely provides us with results [291

that show there is a simple, linear-time algorithm to connect most of the live
cells on an N-cell wafer into a linear array using wires of unit length 1,2,
or 3 channels of unit width 2.

5.0 Research Methodology

5.1 Optimized Fault-Tolerant Designs

A four-step procedure is used from the top-level down. At tne first and
highest step, use of an SBNR allows parallel and modularized operation of .VL
aritnmetic processors for fast execution of full precision, fixed-point
aritnmetic.

Second, a memory-intensive aritnmetic algorithm is employei wn-:

capitalizes on the snort internal word lengans of SBNR processors. .CM-based
-structures have been shown by Peled and Liu .30, to be extremely effective for

F:R filters. Tnis P! haz made tne same discovery for adaptive filters usi:.g
combinations of ROM's and RAM's. Third, memory accesses witnin processors can
be pipelined. Fourth, transistr-level simulation tools can be employed to

. design the nigh-speeJ memory ¢ir:uats. The :apability of identifying fa:le

K
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processor bits and maintaining correct DSP output in the presence of errors

arises from our use of an extensible algorithm for incorporating redundant
processor chips.

5.1.1 Reliability Models

Reliability models to evaluate computer systems must estimate multiple
system parameters (e.g., failure rate). The quality of the prediction model
rests on the estimates of its input parameters. In practice, extensive
testing and burn-in procedures produce a best point estimate with measures of
dispersion. In a crude way, we employ only a point estimate; e.g., the mean
or an upper or lower bound [31]. Depending on the dispersion in its input
parameters, a reliability estimate may or may not be acceptable. For many
types of computer components, where reliability is high and failures are low,
the uncertainty involved in determining a parameter in question such as the
failure rate may be large. A ultrareliability system necessitates
investigating the ensuing uncertainty in system reliability. Unfortunately,
this problem has not been well studied. Few available reliability evaluation
programs offer such sensitivity estimates.

Our model was as follows (see [32]). Assume that system lifetimes are
exponentially distributed. To consider the dispersion in parameter
estimation, stipulate that the failure rate L is a random variable. It is
doubly stochastic [33]. The system reliability at a given time, t, also
referred to here as tize point reliability, is then a random variable RL(t)
[with a particular value rL(t)], with the distribution in L. The variance of
R L(t) is crude but an effective dispersion measure to the random nature of L.
We now can exploit the model with variations in failure rate for useful
properties of exponential distributions. Use two approaches, an exact model
based on the complete distribution of L and an approximation of employs only

*tne first and second parameter distribution moments.

Iyer [32] has shown feasible exact and approximate models. The exactmodel is based on a gamma distribution and is easily extended to fault-
tolerant redundancy configurations, such as TMR, by substituting the

appropriate value for system reliability. Iyer develops first and second

moments for time point reliabilities.

5.2 Hypergrapn Models for Fault-Tolerant Systolic Arrays

We proposed and used a graph theoretic procedure similar to [341 to
measure tne VLSI effectiveness of our design strategy by the area required to
lay out the fault-tolerant processor arrays. We repeat the completeness here
in tne procedure in [34]. Three design strategies are described briefly.

1. Embed the desired array in a simple graph to model tecnniques that build a
fault-tolerant array. Each PE must contain a robust switching mechanism to

- .onfigure the good PE's into an array of the desired structure using nearest-
neignbor Zonnections.
2. Embed tne desired array in a grapn with multipoint edges to build a robust
array by running buses adjacent to the PE's and interconnecting the fault-free
PE's into tne banK of buses say, via alser-weIding,. Use eacn array link via
a iIstinct bus.

V V
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3. Embed the desired array into a "switched" graph, whose vertices are
partitioned into PE vertices and switch vertices. Try to realize inter-PE
connections through a switching network external to the PE's thereby allowing
one to bypass faulty PE's. In comparison studies by [35,36], no single design
strategy as yet appears to be uniformly superior to any other.

Because of the multi-faceted nature, a firm understanding of all three
strategies is vital. Methods 1 and 3 have been deeply studied [36-43'.

S Method 2 was proposed [37] and tangentially studied in [36J.

5.2.1 The Design Strategy

As in [34], we followed the same procedures. Assume a target array
structure. Construct a fault-tolerant array to simulate this structure. PE's
are represented by squares, and both wires and buses are represented by lines
as in Figure 4 [34]. Now construct some number of identical PE's that are
precisely the PE's that one would design for the ideal array, with the same
I/O interfaces. Next, lay the PE's out in a (logical, if not physical) row,
with lines coming out of their I/O ports running perpendicular to the row of
PE's. Then run some number of buses above the row of PE's. We are told (via
some unspecified mechanism) which of the PE's are faulty and which are fault-
free. Now use laser welding to connect I/O lines to buses in a way that
configures the fault-free PE's into an array of the desired structure.

Use the following area definition of [34]

area(array) = (PE-number) X (PE-width) X (Bus-depth)

Let Bus-depth be the maximum number of buses passing over any point in the
layout. (Ignore the contribution of the separate PE's.)

A solution array has two components: specification of the structure of
the array and of the configuration procedure. The procedure is an assignment
operation mapping ideal-array PE's onto actual PE's, as well as a mapping of
ideal-array edges/communication links to the buses that will simulate them.

5.3 Comparison of Error Detecting Codes

Several techniques to obtain fault tolerance through error detection
have been studied. Most of these schemes can be categorized as being hardware
redundant or time redundant. The hardware redundant systems (for example,
Triple Modular Redundancy [44] and quadded logic [45]) typically require
arithmetic to be computed in more than one processor. A checker compares tne
results to detect errors. These schemes require a factor of at least 2 or 3
in hardware redundancy.

The time redundant scheme requires that each result be calculated twice,
with the two answers compared to find errors. Two examples of this approach
are alternating logic [461 and recomputing with snifted operands [47]. In the
alternating logic technique, the result is recomputed from inverted operands
and should be the inverse of the original result. Recomputing with snifted
operands verifies that, when the operands are shifted, the result contains a
snifted version of the original bit pattern. Botn of these systems are
effective primarily for stuck-at faults.
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A more general approach than hardware or time redundancy is that ofU algorithm-based fault-tolerance (information redundancy) [48]. The central
idea in this technique is that the data are encoded at the system level in the
form of some error-correcting or error-detecting code, and the algorithms are
designed to operate on encoded input data and produce encoded output data.
The result is real-time error detection without a duplication of arithmetic
processors or a doubled processing cycle time. The primary entrants in tnis
category are the low-cost residue and inverse residue codes [49,50,51], the
checksum code [48,52,53], and tne weighted checksum code [54].

5.3.1 Residue Codes

Residue encoding is based on finding the remainder of a sum of operand
digits evaluated modulo N, where N is a predetermined base. The binary
operand is broken into sections of a bits; each section is considered a
digit. The base of the operand is found from the digit size: N - 2aI. For
a k-bit number, all k/a digits are added together, and the sum is evaluated
mod N. The remainder of this calculation is the residue code for tne
operand. The simple residue code will detect a fault in one bit, even after a
repetitive calculation like multiplication. It will also detect an error if
up to a consecutive bits are faulty [49].

Avizienis devised a scheme in which two or more residue digits are used
to detect and then locate an error [49]. Furthermore, the digits also check
each other--if only one residue digit indicates an error, then that residue isincorrect--only if both show an error will a fault in the number be corrected.

5.3.1.1 Signed-Digit Residue Code

The residue code has been extended to include numbers expressed in
signed-digit number representation [50]. When a single digit of an SDNR
number is faulty, any number of (not necessarily consecutive) bits within that
digit may be in error, and the fault will still be detected. The only
exceptions to this rule are errors which add or subtract the base N from tne
digit. For example, if a=4, and the signed digit is changed from (9) to (-
6), the error will go undetected. However, only a very specific change in the
bit pattern will camouflage the fault, so detection is highly- probable.
Furthermore, if the number is encoded in signed binary number representation,
more bits must be changed, and they must be changed to specific values of (i,
0,-i) to hide the error. The combination of SBNR and residue
encoding thus appears to have great fault-tolerance potential.

5.3.2 Checksum Codes

Unlike the research into residue codes, Abraham's studies of checksums
have been directed specifically at matrix encoding [48]. The checksums
approach attaches one or more checksums to the end of a row or column of a
matrix. These numbers then participate in all calculations as if they were
just data. The net effect on a systolic processor is simply an increase in
the size of each dimension of one or two rows. No special algorithms are
needed to taKe care of the error codes. Unfortunately, cnecksum coding was
introduced in the context of floating point computers. Fixed-point

. calculations "liKe tnose prevalent in nigh-speed dedicated signal processors;
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require a slightly more difficult coding scheme, because a full-precision
checksum would overflow a fixed-point system. In situations where the
implementation depends on the number system, this report assumes fixed-point
operations.

5.3.2.1 Unweighted Checksums

In the simplest checksum code, an unweighted checksum is formed by
adding together all elements in a row or column of a matrix. Overflow bits
from this addition are ignored. Depending on the applications, just row or
column encoding may be sufficient, or both may be needed. The unweighted
checksum will detect a single error in the row or column. It is effective in
LU decomposition, matrix inversion, matrix-vector multiplication, matrix-
scalar multiplication and singular value decomposition [48] [531.

5.3.2.2 Weighted Checksums

To achieve error correcting capability, the checksum must positionally
weight the addends. The result is the weighted checksum [54]. In this system
each element of a vector within the matrix is multiplied by a different
weighting factor before being added to form the checksum. The simplest
weighting scheme consists of powers of 2--tne elements e(i) would be
multiplied by weight 2 1 (left-shifted i bit positions), for example. For a
fixed-point system with numbers of length k bits, the sum would quickly
overflow, so it is added modulo a specific base. Unlike the residuek cde, the
base for weighted checksums is the largest prime number less than 2 + . For
16-bit systems, this number is 131 059, and for 32-bit, it is 8 589 934 583.

To allow correction of errors, the weighted checksum vector must be
augmented with a vector of unweighted checksums. Thus, as with residue
encoding, if one checksum detects an error, the checksum is incorrect; if they
both do, the error in the data may be located and corrected. The weighted
checksums technique can correct errors in matrix multiplication with a matrix,
vector or scalar, matrix inversion, and LU decomposition (by Gaussian
elimination).

5.3.3 Comparison of Fault-Tolerant Implementations

To compute any of the error-detecting codes described requires adder
trees to sum the digits or elements. In residue encoding, an end-around-carry
is generated within the adders. In checksum encoding, the overflow carries
are thrown away. In weighted checksum encoding, each level of addition is
performed modulo the prime base. Thus, for residue and unweighted checksum,
the areas are almost the same for a length-n column of additions--O(n)--and
the add time is identical--0(log1 n). For weighted checksum, each adder must
compare its sum to the base, ani subtract the base if necessary. The adder
can also be used for this subtraction, so the area remains 0(n), but the
double add cycle means that the relative time is 0(21og n)

In an nxn matrix with row Ind column encoding, the area-time complexity
for 1he first two cases is O(n log 2n). For the weighted checksums, it is
0(2n log n). Keep in mind that for error correcting capability, the A-T
product if the residue is doubled, while tnose of tne weighted and unweignted
cneCKsums are added together.
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Another consideration is the ease with which algorithms may be adapted
to allow fault-tolerance. In the case of residue encoding, the residue digits
must be handled separately, which increases algorithm complexity. The

checksums system, however, merely increases slightly the size of the input to

the algorithm, with no special treatment given the checksums themselves.
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Figure 4. The Fault-Tolerant Line Hypergraph [34]

5.4 Systolic Array PE Study

Systolic arrays may be configured as shown in Figure 4. They include
rectangular, hexagonal, or linear systolic arrays. The most likely use for
each configuration is indicated. In the application domain of beamformers for

towed arrays (for example) it is suggested by many researchers that a
triangular array is preferable. Unfortunate.,. all currently available
systolic arrays including the NCR GAPP (Geometric Arithmetic Parallel

Processor), incorporating 72 PE's are configurable in rectilinear (6 X 12
units) not triangular fashion. Hence, a triangular array configuration
although optimal from an algorithmic standpoint (e.g., recursive LS) does not

efficiently utilize commercial arrays.I
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Figure 5. Systolic Array Solutions
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Our methodology was to map a class of algorithms onto a non-existing
machine. To do so, we must first specify the design constraints such as
circuit switching speed, propagation delay throughput, maximum number of
gates, etc. Next, we must bound the algorithm classes. Within each class we
should first determine the greatest common denominator or building blocK. In
adaptive signal processors, the inner product processor appears to be a
suitable common denominator and starting point. Our strategy then is to
derive near optimal algorithms invoking this basic signal processing
operation, and then map the fast algorithms onto new VLSI circuits. of
course, not every algorithm may be based on this sole operation.

The methodology is a two-step process. In the first step, we want to
obtain fast adaptive signal processing algorithms. Here we will bound the
problem to study recursive and non-recursive adaptive algorithms. During this
step, we will be sensitive to the computational processes which are expensive,
such as matrix manipulations. Realizing that recursive algorithms contain
basic computational tasks, identical to non-recursive algorithms, we will
begin with non-recursive algorithms. Here, we want to identify inherent
parallelism possible with adaptive signal processing algorithms.

The inherent parallel nature of an algorithm is then displayed by
mapping the initial adaptive algorithm into a sequential set of tasks

. ~.(commonly called "straight-line" algorithms) to be represented by a directed
acyclic flow graph (DAG), each node being a task (multiply, divide, etc.) and
each edge or vertex representing a data dependency relation. That is,
briefly, predecessor nodes compute data needed by their successor nodes. From
this graphical setting, we can reduce the longest or critical path by hand (if
obvious) or by computer (using well-known graph reduction algorithms, c.f.
Chapter 6 of [55]). Any concurrency so identified will provide us with speed-
up via parallelism. One method to obtain concurrency is to use the adjacency

P matrix of the flowgraph to compute the earliest and latest precedence
relationships. Map these onto a resource matrix (machine environment such as
number of adders, subtracters, multipliers, convolvers, etc.) to identify
concurrency. Another method is the divide-and-conquer scheme proved
successfully in polynomial multiplication.

To date, the complexity of most signal processing algorithms has been
estimated from their number of multiplications and sometimes from their number
of additions. This is not always prudent. In fact, we should say an
algorithm is deemed to be efficient if its final implemented form takes
minimal time. The execution time consists of data snuffling operations as
well as arithmetic operations. Hence, algorithms with fewer mathematical
operations alone may not always be tne best in its final implemented form.
Fast algorithms identified in this step will most likely be modified later to
insure optimal implementation. However, these initial results will serve as a
good starting point. The best approach seems to be to first design an
algorithm which is efficient in terms of the number of mathematical
operations, and then modify it to take full advantage of VLSI characteristics.

As Lamagna r56] has pointed out, 'The straight-line algorithm paradigm
neglects the cost of the overhead associated with loop control and testing
operations, as well as the time required to fetcn and store information inside
a computer's memory. These costs can vary greatly from computer to computer

' :and will not even be tne same for two programming language compilers
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implemented on the same machine. Fortunately, the overall times of tne
algorithms studied are driven primarily by the underlying structure of theg. arithmetic operations performed, rather than such overhead considerations, so
the results obtained are generally accurate to within a small constant factor
for actual implementations."

A second step is to organize the VLSI for the fast adaptive algorithms.
One basic building block is the inner product processor. Rectangular and

q hexagonal geometries can be incorporated. We intend to organize the inner
product processor as efficiently as possible in array structures in order to
capture the inherent pipelining, parallelism, and recursive nature of the
adaptive signal algorithms. We anticipate that cyclic convolution and a
cyclic convolver may be quite beneficial in casting the algorithms into VLSI.

The basic multiplication step itself was examined. The employment of
distributed arithmetic implementation [30,57,58] successful for fixed-point

digital filters was evaluated on an area x time basis for adaptive algorithms.
Because adaptive algorithms, like filter algorithms, are essentially finite
state machines, the multiplication and addition steps can be replaced by a

partial table look-up of precalculated products. The analysis is, then, a
trade-off between multipliers and memory space on the chip. This comparative
analysis is not trivial since the recursive nature of IIR adaptive algorithms
forces us to compute an entire result before reloading data registers
(temporary scratcnpad space) to generate the next table look-up entry.
However, some pipelining is possible and can be exploited as much as possible.

U A tentative method to wire up the algorithms is to use the "evaluation-
interpolation" method successfully employed in [59] to obtain (area X time)

* optimal convolvers by observing the necessary algebraic steps and polynomial
evaluations that can be cast directly into a parallel computational process.
These algebraic steps, as organized, nicely prescribe optimal VLSI structures.
Computational tasks can be divided into those circuits which are amenable to
regular and simple interconnections and those which are not. Matrix
multiplication tasks obviously can be regularized. ADC, DAC, and other analog
computational tasks are not amenable to regular structures as we presently
know them. The control circuits (such as found in firmware-oriented
architectures) are amenable to regular implementations.

5.5 Error Tolerant Design with Multi-Valued Logic (MVL) Circuits

In this research, the effectiveness of MVL circuits realizing signed
binary number arithmetic must be considered with respect to the inherent
fault-tolerance of MVL circuits. Polylogic logic circuits, of which MVL is
one case, have been studied by Porter [60] for intrinsic error tolerance. Our
work plan is to use his technique to prove out low rejection rate and/or
reduced component stringency requirements. Here, logic circuit failures (such
as "stuck-at faults") and the effects of resistor, capacitor, and inductor
error values (necessary for hybrid signal processors which incorporate ADC's
and DAC's) should be studied. Note that possibly small fluctuations in

component values are not appropriate for binary circuits; however, they are
quite relevant and natural in MVL. Polylogic families include binary, multi-
value, and threshold logic.
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The procedure is to define a finite alphabet (R) and identify the set of
all possible values of switching tuplets (Rn). Then, multilinear mappings
onto the finite R are sought which eventually produce polynomic realizations
of the desired switching function. The major question is, "Does any mapping
exist, if component errors are modeled and included in our polylogic MVL
subset?" Porter has already shown that such mappings exist and, in fact,
several do. Hence, a circuit designer can choose among the more optimal
circuits, performing engineering trade-offs as needed. This is the
flexibility possible in this research to obtain fault-tolerant WVL circuits
that are optimal in tne sense of circuit complexity, power, and speed.

5.6 Design for Testability

Efficient test generation for logic circuits is a matter of prime
importance [61-63]. Yet most major fault detection problems are to be NP-
complete, generally. MVL is no exception. Hence, design for testability is
necessary. Built-In-Test (BIT) circuits are highly desired. The study by
Fujiwara and Toida [64] can be used to compare our fault-tolerant "testable"
designs with their benchmark complexities. They also provided clever
procedures to insert a few additional test-points into an arbitrary circuit to
make it easily testable. Heavy use of PLA's is made. Their studies show that
some circuits (linear circuits, decoders, parallel adders, ... ) can be
tested" in polynomial time.

5.7 Redundancy for Increased Yield

Typically, for a new and complex device, most of the chips from a
manufacturing batch contain defects. The yield is quite low. This can affect
both cost and reliability.

During the fabrication process, defects that can result in faults can
occur at any time during processing. For a chip at N circuits, there will be
1. fault-causing defects introduced during fabrication process step i. In
all we can expect to find L- E1.; fault-causing defects (14). If all these
defects are Poisson distributed, then the yield will be given by

Y . e-L (14)

assuming random point defects are our only yield detractors. In general,
fault-causing defects will not be randomly distributed but will be clustered.
Furtnermore, the clustering nature will vary from step to step. Nonetheless,
the assumption of gamma distributed defects, where the same clustering
parameter, a, characterizes all tne defects, leads to the following yield
formula (15) that has been successfully used to model a large body of data.

Y - (i * L0/a)-a (15)

where L 0 is the average number of fault-causing defects per chip. In the
limit that a--> Oo , (15) reduces to (14). In actual situations, a is
typically in the range 1/2 - 4, and the yield can be appreciably better than
predicted by (14). In tne case of redundant designs as may be required for
Wafer Scale Integration (WSI), the calculation of yield becomes more complex,
and tne role of clustering and correlation of defects becomes even more
important.
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Yield projections are a primary consideration in wafer scale
integration. Ketchen [65] develops a point defect yield model for a two-way
redundancy scheme appropriate for random logic. The model assumes that tne
fault-causing defects are randomly distributed locally but that the defect
density can vary across a wafer as well as from one wafer to another. Tne
importance of the distinction between on-wafer and wafer-to-wafer variations
in defect density is demonstrated. This model demonstrates tne dependence of
yield on the nature of the defects, and, together with gross yield estimates
and the appropriate nonredundant yield factor, it will serve as a good
starting point to model actual yield data. The existence of complex local
correlations and some non-point-liKe defects will clearly complicate matters;
although, in many cases, a perturbative approach is adequate to model the
situation.

9W Redundancy can be used to improve the yield significantly. Such methods
are commonly used for memory chips. Faulty components are left out of final
interconnection. The strategies used include eliminating affected row and

= column, or eliminating the affected half. A processor array can be
reconfigured in more complex arrays [66-68]. To obtain an array of specified
dimensions, one would then start with a larger and thus redundant array.
Redundancy does not always increase the yield, because the larger chip area
required tends to decrease the yield. Using Koren and Breuer's approach [66],
expressions for yields for both simple and fault-tolerant arrays can be
obtained, and optimal designs which maximize yield can be obtained. Faults
affecting both PE's and interconnections have to be considered.

5.8 Fault-Tolerance for Higher Reliability

Dynamic reconfiguration can be used to overcome hard faults occurring in
the field. Before any PE's are removed from active configuration, it would be
necessary to detect such failures. To control error propagation, such
detection should have low latency (time between error occurrence and external
fault manifestation). For concurrent testing, duplication is the most
effective technique; however, it can significantly reduce yield. It has been
shown that some self-checking with limited redundancy can significantly
improve yield [66].

Dynamic reconfiguration in processor arrays can be done in different
ways [67]. Because reconfiguration results in fewer PE's, there is some
degradation in performance. The effectiveness of different schemes depends on
efficiency of partitioning of algorithms for execution on reduced size arrays.
Trade-offs between reconfiguration strategies must consider optimizing,
reliability, coverage, performability [69] and computational availability.

Processor arrays can support a special form of fault-tolerance. in
real-time applications, successive data points can exhibit considerable
correlation. A sudden and significant change in a point array may suggest the
onset of a soft (temporary) or hard fault. Correctness of the value can be
confirmed by recomputation (which is a form of time redundancy); however, the
same faulty hardware, because of a hard or a long soft fault, is likely to
generate the same incorrect result. However, in a processed array,
recomputation can be done by mapping the process to a snifted set of PE's. in
tnis case, a faulty PE will almost always generate a different result.



26

A considerable degree of fault-tolerance can be achieved by encoding
information. Kuang and Abraham have described a scheme for matrix
multiplication with processor arrays whicn requires only limited hardware and
time redundancy [52]. Suitable SDNR arrays are available.

5.9 Hard/Soft Errors

Reliability with respect to hard and soft faults will be considered
separately. While methods exist which use the same measure to include effects
of both types of faults, such a measure can be hard to interpret.

For binary devices, the failure rate is generally estimated by using
techniques in MIL-HDBK 217 and its updates. The fact that the learning and
the quality factors alone can change the result drastically suggests that
exact results can not be expected. By characterizing L (see Section 5.1.1)

e itself by a statistical distribution, these limitations can be taken into
account.

It can be expected that the failure rate data for binary devices is not
directly applicable to ternary devices. The physical degradation, that will
not cause a logical failure in a binary device, may cause a failure in a
ternary device. On the other hand, a ternary device uses fewer logical nodes,
interconnections and specialty pins, which can significantly enhance
reliability. How the available data on failure rates for binary devices can
be adapted for ternary devices will be a problem to be examined.

The alpha-particles have been a major cause of soft failures. However,
now they can be very effectively combated by proper choice of encapsulating
material and by coating. Also, the new CHMOS technology is remarkably robust
against alpha-particles. Various types of noise [70] remain a problem. Here
reduced noise immunity makes noise an important consideration. Soft failure
rates due to such causes can be estimated satisfactorily, but assumptions
remain to be examined.

5.10 Design-For-Testability and Built-In-Self-Testing

Efficient test generation for logic circuits is now recognized to be a
matter of prime importance [61-63]. Yet most major fault detection problems
are generally NP-complete. The proposed MVL PE array is no exception.

In a regular array, there are two major testing considerations. One is
how to test a single PE element, assuming its inputs and outputs can be
directly accessed. Next, part of the problem is how to exercise each PE
element when they form a regular array. Some arrays possess a special feature
called C-testability [71]. A C-testable array can be tested by wiring a fixed
number of tests, regardless of the dimensions of the array. It has shown that

S"often arrays which are not C-testable, can be made so by using only minor
modifications 772].

Several scan-path techniques like LSSD have been suggested. These
reduce the problems of testing sequential circuits to that of testing purely
combinational circuits. This enormously simplifies test-pattern generation.
The scan-path techniques are also applicable for PE arrays. An implementation

I &i Al a &I L, I Z PC



I
27

has been described for a CMOS, two's complement serial convolver chip 7,13].
Applicability of Ternary-Scan-Design, as proposed in [74], for our proposed
scheme is relevant.

The study of Fujiwara and Tioda [64] compares fault-tolerant "testable"

design with benchmark complexities. They also provide clever procedures to
insert a few additional test-points into an arbitrary circuit to make it
easily testable. Heavy use of PLA's is made. Their studies show that some
circuits, decoders, parallel adders, ... can be "tested" in polynomial time.

Built-In-Self-Test circuitry allows a device to test itself without
using expensive test equipment. It is also valuable for assuring device
integrity in the field. For a PE array, BIST must be incorporated within each
element. it is also necessary to have the necessary circuits to support BIST
globally so that the interconnections are tested, and also the go/no go
information is routed to some external output or outputs.

5.11 Information Redundancy

Low cost residue and inverse residue codes for error detection in
signed-digit arithmetic were proposed for this project. These codes
capitalize on the fact that they can be used to check storage, transmission,

. [,and computing functions using the same checking algorithms. These algorithms
.,compute the module: a residue of messages, operands, and results in a serial

or parallel fashion. The residue digits are then tested to indicate whether
or not an error exists 50J.

As noted by Avizienis [501, the effectiveness of Signed Digit Residue
Codes (SDRC) can be assessed by observing that undetectable errors are caused
only by faults thtt change the value of the signed-digit number by a multiple
of 2 b_1 (where 2 is the radix). Such changes are highly unlikely. A
detailed study of effectiveness requires the full Knowledge of the internal
representation of digit values and an analysis of the effects of repeated-use
faults when they may affect the operands or the result.

The algorithms proposed in [50] only employ one residue digit for an
entire K digit SD operand. While this minimizes the cost of encoding, it may
be inconvenient in variable-precision operations that generate the most-
significant-digits of the results first and that are "chained", executing
further operations on high-significance-digits of an intermediate result X
even before the lower-significance-digits become available. The Serial
Checking Algorithm is completed only after all digits of X have been obtained,
tne residue digit X is tnem computed and compared to test for the presence of
an error.

V An error indization requires the cancellation of all results that have
used at least one digit of X. The cancellation must reach k+3 digit levels
downstream in the chain and identify all potentially erroneous results. Two
solutions may be applied to shorten the "span" of the cancellation that must: follow an error indication: (a) the segmentation of operands into check
segments, and (b) single-digit encoding that employs a checking element
within each aritnmetic unit that performs single-digit operations.

LL
.-- I,
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Segmentation divides the k-digit operand into cneck segments of p
digits length each and attaches one residue digit to the rignt end of eachU check segment, rather than using one residue digit at the end of the entire
operand. The cancellation span is reduced to P+3 digit levels downstream in
the chain. Furthermore, error detection effectiveness in the case of
repeated-use faults may be increased because of tne snorter length of tne
segment being checked. The cost of segmentation consists of the extra time
and storage required by the proliferation of residue digits.

r Single-Digi Encoding appears most suitable for VISI-implemented
arithmetic units that can execute the algorithms ;or dqits 05 S-D
representations with relatively large radices, such as r-2 , r-2 , r-10 , or
even greater values. Here each individual S-D representation digit carries
its residue digit modulo (r'-1), where

W r' - 2q when r 2 b, and b- kq (q>2) (16)

r" - 10 q when r - 10c , and c = Kq (qri) (17)

The single-digit encoding approach bis an extension of the segmentation
concept. Each digit of the radix r - 2 is treated similarly to a k digits
long segment of the radix 2q representation that is checked by one modulo 2q _
I residue digit. The evident advantage of this approach is the pinpointing of
the error to the single arithmetic unit.

5.12 Hardware Redundancy

Some drawbacks of arithmetic codes are their inability to detect errors
, in logical operations, and single errors in group carry-lookahead structures

[47]. Thi latter is not a problem if SBNR is used. Thus, hardware redundancy
has been recognized as the most effective technique to identify faults in
logical operations. In [471, Patel and Fung describe a technique in which
coding and decoding functions (in the form of shift left and shift right) are
employed. Here, the aritnmetic/logic operation is performed twice. The first
time it is performed without shifting, and the results are stored in a general
register. The second time, the inverse snift operation is executed and then
compared with the contents of the storage register. A mismatch indicates an
error in computation.

The hardware redundancy technique described has been implemented in
binary number systems. Nevertheless, it is prudent to assume that it, or any
other binary technique, can be adapted to SBNR architectures. Of course, a
trade-off study of cost versus circuit complexity should also be completed.

The binary fault-tolerant ALU implemented by Patel and Fung can be
constructed using a CMOS family of ternary logic circuits. These circuits,

* proposed by Mouftan and Heung L5, use two power supplies, each below tne
transistors threshold voltage, and do not include resistors. All transistors
are 5 microm x 5 microm. The tnresnold voltages for the p-channe: and n-

, Ichannel enhancement-type transistors are -1v and 1v. They have opposite
polarity for tne depletion-type devices. Witn tne use of voltage power
supplies below the transistors turn-on voltage and the exclusion of resistors,
it is possible to implemen, trl's ciruitry in VLS". Added features inciude

I
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low power consumption, high speed, and comparable perfor an ce to tne r b a -v3counterparts.
For tne ALU proposed in 4-'to be fault-tolerant, tne enooder, de:o er,

and comparator circuitry must be Totally Self-Checking 'TSC). They can be
implemented with PLA's. One advantage of using PLA's is that tneir reguilar
structure simplifies analysis of the effects of faults on their output and
therefore facilitates test vector generation and determination of faul!
coverage.

The most elementary fault model used for PLA's includes three types of
faults:

.I •1. Stuck-at faults on an input line, product term line, or output line.
2. A snort between two adjacent or crossing lines tnat forces both of them to
the same logic value.
3. A missing or extra crosspoint device in the AND array or in tne OR array.

Since breaks in lines (that are not equivalent to stuck-at faults) are
one of tne main causes of failures in VLSI circuits 76-7, it is clear that
the above simple fault model does not accurately reflect the possible physical
defects in an MOS PLA. A more complete fault model is given in " t

6.0 Research Results of Current Period

j 6.1 SBNR Arcnitectures

This P! nas been investigating the Least-Mean-Square (LMS) adaptive
filter algorithm for signal processors [79-817. Recently, these studies have
focused on redundant arithmetic implementations in distributed and systolic
array architectures [20,82,831J. It has been discovered that some of the
inherent borrow/carry propagation properties tend to make implementations very
compact and modular. This tends to suggest that fault-tolerant properties
abound for SBNR realizations. As early as the ILLIAC I1, AtKins .8n snowed
that higher radix implementations (of which SBNR is a reduced yet very
powerful subset) produced superior fault-tolerant arithmetic engines wnen
using redundant or signed number codes.

The papers in tne Appendix by corporate personnel nave demonstrated some
of the advantages to SBNR. Note particularly that others are identifying
similar advantages. Sicuranza and Ramponi 94 also exploit memory-orene!

structures properly matching the cnaracteristics of distributed arithmetic for
adaptive nonlinear filters described by truncated discrete Vo'terra series.

* Their use of offset binary code (a form of SBNR) and address splitting
(available to SBNR) establisned eflicient, altnough dedicated, architectures.

* They, as well as us, show that the memory dimension is not (2n) words
because of the dramatic reductions possible with SBNR and symmetry.

Anotner promising approach to efficient implementations of reduniant
number realizations is described by Owens and :rwin '8r". Here, a prim:t.ve
cell, including its operation suite, are used in a 'F- ap;liat.n
demonstrating the highly regular array structures acnieving gDod A-- bounds.

*. .They partitioned functions into "interface, storage, or artnmetc" to
S.." implement iigit-on-line algoritrms. We Ian exoLcit :.. sate J -cn-n>

U

* R n e tn. '9
W, j* 9 - ~ ***** \~~~ . .
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properties for ultra-fast processing of analog signals. For example,
digital signal processing can begin as soon as the MSB (which is
the first bit) is conve.ted by the ADC! For bit serial distributed

arithmetic scnemes, Linderman r 6' has shown now cloc rates of -' Y-,z are
possible here. Denyer '8 ,, Denyer and Rensnaw nc_, Jaggernautn, et. al.
"2, and others rB9' make similar promising discoveries about bit-ser:al
implementations. Particularly encouraging is tne CUSP digltaL s:gnaL
processor, VLSI of Linderman, et. al. :90., since this de ice is a sixteen
20-bit serial multiplier by 24 serial adder/subtracter, driven by a MHz
two-phase non-overlapp.ng clocK. This device again exemplifies tne power of
bit-serial approaches.

t. . Design of SBNR Array Multiplier

Te need for nign-speed computation has spurred much resear in D
various forms of parallel prccessing. The two most common of these
arnitectures in signal processing applications are tne pipe.:nel processor
and the array processor. Developments in parallelism nave become quite
popular witn the revival of interest in the Signed-Digit Number Representation
(SDNR) characterized by Avizienis r-. :mplementation of the faster

architectures in VLS: is a concern for devices needing powerful processing in
limited space 'e.g., mobile, self-contained and space-based venicles.

The design described below, and shown in Figure 6, is a systolic array

for matrix multiplication which is compatible with digit online architectures

Tnis array is similar to one described by Irwin _92- in wnicn twoj vectors to oe multiplied enter the array most-ignificant-bit-first--the
distinguisning cnaracteristic of online networks. The array uses tne
Processing Element (PE), diagrammed in Figure 7, and shown scnematically in
Figures 8 and 9, to perform bitwise vector multiplication. For matrix x

' matrix multiplication a parallel multiply/accumulate element may be
substituted for the bit-level PE. In such a large scale system, asynchronous
operation may be faster than the clocked method shown.

If the array is used for vector multiplication, it performs tn-
operation

IIA 2 ... Am F

- , wnere A :. , A2, 2 .

A.

B

.acn *ector elent is a wor J* cn 3irn g of n s:. gn -t rv b 1s , wnCre e?r
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Figure 6. Systolic Array Multiplier
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Figure 7. Functional Diagram of Array Cell
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Figure 9. Carry Generation Circuit
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are exp&nded in'to bit representation, one can see tnat tne systolic array is8actually performing matrix multiplication on the bits of the vectors:

A'- A 2,- A m -- B 1n1 0* B 1 B 0
1 2n1 2n1mn1 1,n-1 1 ,1 1 2,0

A, 1 A 2 1 . . B B '
A10 202 M0 mi-1 2. BM1 2 .0i

C 1 1  C 1 2  . C 1 ,n9
C 2 . 1  C2 ,2  * 2,*(19

C 1  C n 2  . * *

The bits of tne answer are found by adding C along the lower-left-to-upper-
right diagonals:
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'-C2 '

C 1c C1,2 C 1 . C n 2 a " n- 1n n n C20)

+ C2,1 C2,2 ... . . . n n-1  (20)
#3,.,+C 3 1  ... .

+ Cn, 1

To see how this happens, refer to Figure 6. On the first clock cycle, A
and B 1 (the MSBs of A1  and B1 , respectively) are shifted into the bott6m
cell, ?aultiplied, and added to C1  (initially zero). All the other MSV's are

.W shifted into their first cells. On the next cycle, CI 1 shifts up, and adds
to the product of A2 2 and B2 2. The products C1 2 and t2 1 are formed to the
right and left, respectively: of C The entry C is started just below
C Subsequent clock cycles shift'1 he multiplican in, and the anser out

in he order shown in Figure 6.

The total time for this calculation is given by

T = (2n + m -1)t, (21)

where t is the time for each clock cycle. Since this is a digit online
network, calculation is started on the MSB's before the LSB's are needed.
Another significant measure of performance is the time between the entry into
the array of the MSB's, and the exit from the array of the answer MSB. This
time may be calculated by

TMSB ( (n + m - 1)t. (22)

:n VLSI applications, the number of elements and the number of
interconnections are botn significant. These values are given by

NE - n2 -2n + 2nm - m + 1 (23)

and
N= 5n2 - 18n + 10nm - 9m + 12. (24)

Note that all of the equations are also true for the matrix x matrix
multiplication, in the fully digit online case. If the data are shifted in
parallel, more interconnections will be needed.

..I4
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6.1.1.1 Observations

Reports by Mouftah 193] and Aytac [94], on which much of the PE is
based, indicate that the addition logic may be too slow for many applications.
The speed is not known absolutely, however, because tne logic gates presented
in the reports are based on use of 5 um line widths. Implementation of the
array multiplier would be in 2 or 1 micron technology, which could result in a
significant speed increase.

Another possible problem is the transmission of two control signals,
carry and neg, through the array. Though these signals should be local, they
are not synchronized with tne clock, and may not be nearest-neighbor
transmittable. Further research into this problem will probably yield a
satisfactory local-communication solution.

Future work in this area could include a comparison between this network
and alternative matrix multipliers, including pipelined parallel or digit
online multipliers, binary and higher-radix implementations, and different
array configurations. In addition, the PE cell should be simulated using a
MOS simulation program, and characterized in terms of speed and area. Using
this data, or making logical assumptions about it, the speed and area of the
entire network will be calculated from the formulas presented earlier. In
addition, the speed and area of alternative PE's should be investigated and

ZI compared.

6.1.2 Digit Online Vector Multiplier Using SBNR Adder Tree

In pipelined signal processing systems, the maximum rate of data flow
through the pipe is determined by the slowest element. Traditional pipelined
systems consist of a few slow elements, connected by parallel data paths. In
digit online systems F91], a redundant number system is used to allow data to
flow as a stream of bits, with the most-significant-bit leading the stream.

Irwin and Owens have identified many advantages to tnis mode of
operation. The first is that the bit-stream approach allows the system to
perform bit-level operations on the data. Since the slowest of these
operations is much faster than the slowest word parallel computation, a much
faster clock rate may be used, possibly increasing data throughput. The
second advantage of digit online architectures is that result bits can begin
streaming out of a processor after only a small online delay from the start of
the input data. The result can then be used in the next processor. This
effect allows several links in the processing chain to operate simultaneously
on results generated from a single data word. Thus, the effective throughput
of an element is determined more by its online delay (latency) than the total
time of computation. The third advantage of digit online systems is that of
cnip pinout. Since the data are transmitted in bit-serial mode, the number of
pins on a chip does not depend on the length of the data words.

Space Tecn has investigated a digit online multiplier that computes the
fixed-point inner product of two vectors. The vector elements arrive
simultaneously on separate data patns in bit-serial format. The multiplier
can accept either the most- or least-significant-bit-first with no change in
calculation time. The answer bits appear in tne same order as tne input. The
multiplier uses Signed Binary Number Eepresentation (SBN?) to allow fully

.. '41
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m.

parallel addition internally and to make it compatible with digit onlineS systems.

Inner Products

;n many digital signal processing applications, the pr mary function of
the processor is finding the inner product of two vectors: a b - c.
For two vectors a and b, each composed of m elements, ai and b., the inner
product is defineE as: -

m
c = i a. b. (25)

iii i

When each element is defined by an n-bit signed binary word, the vector
multiplication can be decomposed into a matrix inner product on the bits of
the vectors. Thus, if each element a1 is represented as

n-1a 2 k ai, k(26)
k=O

then the inner product of the vectors can be rewritten as

m n-1 n-1
c = T I I 2

j k a k bivj  (27)
i-1 k=O j=O b,

It is this function that the vector multiplier implements.

6.1.2.1 Vector Multiplier Structure

Figure 10 shows the architecture of the vector multiplier. The bits of
vector A appear on the m-wide bus at the top. When the first bit appears, the
MSB line is brought high, thus latching the MSB's of A into the first partial

-1 product cell. At the same time, the first bits of B appear at the cell (AB1 ),
and are multiplied by the corresponding bits of A. The results are added, and
the sum appears at the bottom of AB . The architecture for this operation is
similar to the Takagi multiplier [95 I

In the next clock cycle, the MSB signal is latched to the right, thus
latching the bits on the A bus into the second cell. The MSB's of vector B
also latch into the second cell, and the next bits of B appear at ABI . Thus,
AB contains A and Bn 1, while AB, contains A and B These partial
2 -un.n-I f--products are t e calcu ated. The product from the first cycle is latched

into the top of the adder tree.

On the third cycle, the two second-level partial products from AB1 and
AB2 are added together in the m-wide parallel adder. The B bits are right-
snifted, and the third bits of A are latched into AB The MSB partial
product moves down to the next-lev-el adder.

S.%
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Similarly, each subsequent clock cycle generates tne next-lower bit3position of the product. Each of these cascades through the adder tree until
it hits the data skew block.

The function of this element is to shift the incoming words to tneir
proper bit position in the result. The skewed word is then added to the
cumulative sum to produce the final sum. The result is shifted out of tne
bit-select latch.

6.1.2.2 Area and Time Complexities

The area and ttme factors of this multiplier a e excellent for single-
chip implementation. The area complexity is 0(mn+m5), whicn is better than
that of the bit-level systolic array [96]. The time for calculation is 2n
clock cycles, but the latency is just nlog2n, and is not dependent on m. For
the case of m-16 and n-16, this multiplier takes 76,600 transistors, which is
half tne number needed for 16 paralleled Takagi multipliers. If the latency
were reduced to something less than n, the next stage of the pipeline could

* operate on the inner product as it was being calculated. This reduction may
or may not be possible, however.

in addition, the architecture seems too hardware intensive for a
* pipelined system. Further research should be done to try and use recursive

properties to reduce or eliminate the full-parallel elements and/or the adder
tree. The next step is investigation into alternatives, specifically, a
structure like that proposed by Rhyne and Strader [97]. Any alternatives
found should be characterized with respect to this and other architectures.
If none are found to be better, more comparisons should be made between this
multiplier and the alternatives.

6.1.3 Systolic LMS Architecture

Recursive least-mean-square algorithms have wide application in many
types of estimation problems. One such application is adaptive beamforming.
Beamforming is commonly used in radar and sonar applications, both in
transmitting directed wavefronts and receiving from selected directions.

A trade-off exists between the speed of adaptation and the stability of
the formed beam [98]. In general, the more recursions needed for adaptation,
the more stable is the steady-state performance. However, an increase in
system throughput will speed up the adaptation without affecting the steady-
state stability. The architecture proposed by Space Tecn provides tne
increased throughput needed for high bandwidth communications.

6.1.3.1 Recursive LMS Algorithm

Widrow's LMS algorithm consists of an adaptively weignted input stage
" and a weight update stage. We m:.ified the algorithm to allow pipelinIng

... , but tne architecture included two systolic array processors. An
alternative design uses a pip~linable algorithm, but only a single systolic
array. To see how the algorithm works, define tne following variables:

"#oC
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K a system word length in bits
N number of receiving antennas
S a x n bit matrix of input samples
W -k x n bit matrix of weighting coefficients

- bit vector of filter output
d - bit vector of input reference signal
e - d - y = bit vector of filter error
u convergence rate factor

(The value of a bit vector is just the vector multiplied by powers of two:

y = 2  k-2 ...2 1

The output of tne filter is given by

y. ST W (28)

The filter weights, W, are determined by iteratively comparing tne filter
output to the training signal, d. This difference, when multiplied by the
input matrix, gives the line of steepest descent toward convergence [98]. Tne
equation to calculate the new filter weights is

.  Wj'Wj_1 +2uej_ISj_.• (29)

Left multiplying this equation by the current input gives

ST W. =S T W +j_ SjT Sj_Sj 0 I 2uej-1S•

If we assume that the inputs are uncorrelated (i.e.
E [S. Sj I] = 0), then we can make the following approximation:

s TW = sT._ sjTs..(0
S S j -W Ij_1 + 2uej_1 S (30)

snlAndrews implemented a similar function using two systolic arrays, one to
calculate y. for S., and one to update W i1 . The architecture below uses a
single sys?-lic array, combined with a smal number of latches, serial adders,
and serial multipliers. Also, since the weights have been removed in Equation
3, no weight-update phase is required.

6.1.3.2 Architecture Details

The arrangement shown in Figure 11 implements thn LMS algoritnm of \30'.
The systolic array multiplies the input by itself, S S. The output from the
array is on K parallel lines, all of equal significance. Thus, at any clock
cycle, each line carries a value in the same bit position as all the otner

lines.
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These wires are fed into a synchronous, bit-serial adder tree tnat
accumulates all of he partial products. The result of this accumulation is
tne inner product S'S, which is fed into a bit-serial multiplier §t tne same
time as tne product ue. The x2 factor results from bringing S'S into tne
multiplier one clock cycle ahead of ue, thus performing a left shift on the
product. The resulting value is the steepest-descent gradient of the error
surface. The new output is formed by adding the error value to the old

output.
If all arithmetic is performed with length-K operands and results, the

latency of the architecture is

latency = N + + (31)

and a new sample may be entered every K clock cycles. The clock period is
determined by the speed of tne serial multiplier. If Signed Binary Number

Representation is used, all arithmetic inside the multiplier may be done in
parallel, with a total delay of 35t, regardless of word length (t delay of

one transistor). Total device count for the circuit is:

KxN Multiply - accumulators
K+1 Serial adders

2 Serial multipliers

Kx(N+2) Latches

Thus, the device-latency product is O(N2K + NKlog2K).

6.1.3.3 An Adaptive Beamformer Application

Digital adaptive beamforming is commonly applied in communications.
Applications range from voice communication over VHF/HF bands in the tens of
iHz up to secure spread-spectrum data links with RF bandwidths in the 10 MHz
area L99]. The latter case places strict requirements on the throughput of
the processor. To allow sampling at the Nyquist rate each linK in the pipe
must have a bit delay no greater than 50/K nsec. For a 16-bit word length,
eacn Processing Element must accept a new bit every 3 nsec, corresponding to a
clock rate of 333 MHz.

This rate would be extremely difficult to sustain if the circuit were
spread over a large board. Fortunately, the proposed architecture is
primarily a systolic array with an adder tree, so the interconnections are
regular and nearest-neighbor. Thus, most, if not all, of the circuit may be
implemented on a single VLSI chip.

V

|J4N



6.1.4 Time and Area Calculations for SBNR Array Multiplier

ft This section describes Space Tech's studies of a systolic array
architecture which uses %MVL and a SBNR to multiply two vectors. 7ne
architect.ire is compatible with digit online pipelined networks i9 -n wnicn
data are transmitted serially and most-significant-bit-first. The arrdy

structure makes chip layout easy, and the local communication patns redu2e
interconnection area. Therefore, tnis systolai array snould be easy t
implement in VLSI.

6.1.4.1 Array Structure
'a

The fundamental operation performed by tne processor is tne e7r :,
multiplication

A A Am .f.B,

B
2 CAB 3+A BAB

21 2+ +

Lmi
To maximize speed, one can use a systolic array of PE's in whicn many bit-
level calculations occur simultaneously. Such a structure is shown in Figure
12. In tnis case, tne vectors are four words long, and the words are three
bits long.

Vectors a and b are shifted in from the bottom, most-significant-bit-
%first. The result c comes out the top, as snown. All carries from additions
P5 are transmitted asynchronously to tne upper right of each cell. The PE to the

upper right always holds one portion of the next-higher bit. The "horn" that
extends up and to the right from the central multiplying core is present to
add up the carries from lower-order bits. (Since the array uses SDNR
arithmetic, a cell's carry depends only on its operands and tne neg control
signal from the lower cell, and not on the carry coming in to the cell. This
limits carry propagation to a single cell, .nd gives signed binary a
significant speed advantage over conventional binary.) As tne answer is
shifted out of the top, an adder tree adds up the bits that occupy each
position of significance. The final result is then sniited out of the adder
tree.

,''M
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The method of operation of the array is shown in Figure 13. Cn -:he
first clock cycle \Figure 13a), tne MSB's of A and B are shifted into the
bottom cell and multiplied together. :he result is added to C4 (initially
zero), and the carry travels up and to the right where it is added to C.

(also zero). A control signal n@g is also propagated to C to be used in the ?

addition. At tne same time, all the otner bits in tn first row 'A
A7 ... and B 2' B3 ,2 , ... ) are snifted into their first cells 2fi'
mk Iiplied by zero.

On the second clock cycle (shown in Figure 13b), the new C and C, are
snifted up, C, is added to A J x B2 2, and that carry is addeA to C ,ascarr ge e a e ! ~ th *termd tn
before. Any "carr generated )om the term (C propagates up and o tne
right into C In addition, the termsC6 •

C3  A x B1,2 (33)

and

3 1 A,2 x B1,1 
(34

are generated just below, and on either side of, C . The shift registers at
tne top of the array ensure that all bits of a liven significance arrive
simultaneously.

The equations below give the number of different cells required to
construct a systolic array that will multiply two m-word vectors, where eacn
word is n bits long and is represented in SBNR. The number of mult-ply-
accumulate PE's (hexagons in Figure 12) is given by

PE - n + (2n-1)(m-1); 3 5

the number of adders (diamonds) is

Add = 1/2 [ n(n-1) + (n+m-1)(nm-2) - 1 (36)

and the number of shift registers (squares) is

Reg = (3n+m-4) 2 + (n+m-2). (37)

The total multiplication time for the array is

T = (2n~m)t, where t = clock period. (38)

In pipelined systems, another important measure is the latency--tne time
from the start of the incoming data to the start of the outgoing. For tne
array tnis number is

-(n-m)t.

Thus, the MSB's of the vectors are clocKed in, and 'n-m) cycles later, the
answer MSB is clocKed out. Every cycle after that, two more bits can be ma~e
available, or they can be buffered and streamei out. The latter metnod gives

a total multiply time of 3n~m, cycles.

"S . i'"" '" """"--" "•<



6.1.4.2 Processing Element Circuit

The tnree types of cells needed, tneir functions, and their I," patns
are shown in Figure 14. Figure 14a is the Ternary Multiply-Accumulate Cell
(TMAC), which forms tne core of the array. Part b is a PE whicn does not

I-", multiply any numbers, it simply adds the previous sum to zero and generates a
new sum and carry. The shift register in Figure 3c is used to align carries
with new rows, or to align the answer bits at the output.

4The TY.AC in Figure 14a multiplies the incoming A and B bits, and adds
them to the incoming sum C. The output signals, carrv and neg, are
generated from AB and C for use in the PE to the upper right. The next C is a
function of AB, C and the carry and neg signals from the lower-left PE. On
the next clock cycle, the sum and two multiplicands are shifted to the next
higner cells.

The ternary adder cell in Figure 14b adds tne incoming C to zero, since
there is no AB term. In SDNR, unlike binary, this addition can generate a
carry. So the adder cell operation is the same as that of the TMAC, except
that no multiplication is necessary. As a secondary function, if the adder PE
is in tne patn of the B coefficients, it acts as a shift register for them.

" The ternary latch cells (Figure 14c) act as one-cycle delays for
wnatever they are latching. Sometimes a latch cell will transmit a C value
vertically. Sometimes it will take a carry from one column, and turn it into
a sum, C, in the next column. The latches that are in the path of the B
coefficients will also shift them.

Figure 15 summarizes the ternary CMOS logic gates developed by Mouftan93, Huertas 71OO], and Balla r101] that were used in the design of the PE's.
Also shown is an S-gate (switch gate) which is a pair of transmission gates
that pass one of two inputs based on the control signal.

The circuit used to implement the TMAC, and its truth tables, are shown
in Figure 16. The inputs are latched into the flip-flops at the bottom. From
there, A and B are multiplied and the neg signal is generated. Using A, B
and C, the TMAC generates the carry, and with the carry coming up from the
next lower cell, it generates the sum. The total time, from the rising edge
of the clock to the stable sum, is no longer than 17 transistor delays. This
amounts to about 17 ns in 5 micron tecnnology. During the low phase of the
clock cycle, A and B are latched into the outputs. The sum is not latched
because it will stay stable for much longer tnan the latches of the next cell

Irequire to shift it. The TMAC uses 212 transistors.

The circuit for the adder (not shown) is similar to the TMAC, except
that the circuitry which multiplies A and B is gone, and all inputs with A, B,

or AB are grounded. Some of tne combinational logic is also simplified. The
adder uses 98 transistors.

Tne latch circuit consists only of two flip-flops. One latches a value
in on the positive clock level, and the other latches it out when the clock is
negative. The latch circuit requires 32 transistors.

Xmc-. x
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R Figure 16. Ternary Multiply-Accumulate Cell
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6.1 .4.3 Observations

One can calculate the number of transistors needed to implement a
specific array using the equations of Section 6.1.4.1. The total number is
given by

transistors - (PE)(trans. per PE) + (Add)(trans. per Add) (40)
+ (Reg)(trans. per Reg)

Table 3 gives the number of CMOS transistors in the array for different vector
sizes and word lengths. Those readers who are familiar with current VLSI
capability will recognize that, despite a highly regular structure and low
interconnection area, most of the numbers given are larger than can be
implemented on a single chip. Even among those that are small enough, though,
tne chip yield will be rather low.

.
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Table 3. Area and Time Data for Systolic Array

Word 'Vector Sys. ArraylTimel ,Sys. ArraylMultiplier
:LengthlLengtn Number of : to.'Totaj1Area-Time !Area-Time ,
Sn 'm 'TransistorsIMSB !Time Product, Product,I 16 1 130,9331 24T 32 4.20x16' 1.45x io 632 275,2051 40 48 13.2xI106 2.90x106

8 64 688,1651 72, 80 55.1I0 0 5.80x,06

bits 1 128 2,011,7491 1361 144 290.xl0 11.6xi06
"256 6,649,5731 2641 272 : 1.81x109  23.2x106

I I 6i512 1 23,887,845, 5201 528 12.6XI09 16.___0
16 1 172,5971 26i 36 , 6.21xi0 I

i 32 339,717: 421 52 : 17.7x106
10 64 1 798,3731 741 84 1 67.1x1O6 1

bits 128 1 2,213,3491 138 148 3 2 8.x1O9

1 256 1 7,033,957 2661 276 1.94x109
" 512 1 24,637,7971 5321 542 13.4xi09

1 16 1 219,045, 28, 40 T 8.76x106
32 409,0131 441 56 22.9x1O61

1 12 64 1 913,3651 761 88 1 80.4x106
bits 128 2,419,7331 1401 152 1 368.x1061

256 7,423,1251 2681 280 1 2.08xi09
____ 512 25,392,5331 5341 546 _ _13.9x109

16 270,277i 30, 44 1 11.9x06
32 483,0931 461 60 1 29.00 OI

14 b 64 1,033,141, 78 92 95.1xO

bits 128 2,630,9011 1421 156 410.x1069
256 7,817,0771 2701 284 2.22xi0

_._ 512 26,152,053: 536 550 14.4xi0
" 16 i 326,293, 321 48 , 15.7xi 06 1 6

32 , 561,957 481 64 36.OxlO 20.OxiO
16 1 64 ' 1,157,7011 801 96 1 111.x10 6  40.0x106

1 bits 1281 2,846,8531 1441 160 1 455.x1O 6 80.Ox106

" 2561 8,215,8131 2721 288 1 2.37x10 1 160.1106
. 512, 26,916,3571 5381 554 1 14.9xi0 320.x106

in clock cycles.

Unfortunately, this extra space does not buy a faster processor. The
time for a 16-bit multiply of length-16 vectors is 48 clock cycles. That
amounts to about 816 ns. The time for the same multiply implemented with 16

. <parallelled 16-bit multipliers [95] is 120 ns. That multiplier setup requires
. , only 350,000 transistors, a size increase of 10 percent over the array. Ten

percent is a small price in area for a seven-fold speedup.

To compare area and time trade-offs, one uses the area-time product.
The second column from the rignt in Table 3 contains the area-time products
for tne systolic array. The last column represents the comparative numbers
from the Takagi multiplier. Note that at the closest, these numbers are
separated by a factor of 1.5, and tnat that distance increases with vector
length.
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This relationship is easily seen from the colplxities of the two
architectures. The area of the systolic array is O(n m ), while the area of
the parallel multiplier is O(mn log 2 n). From this, one can see that the area
of the multiplier increases faster with n than the area of the systolic array.
Unfortunately, the array starts out so much bigger, and the multiplier cannot
easily catch up. The time complexity of the array is O(n+m). Since the PE's
in the parallel multiplier operate simultaneously, the multiply time is
independent of m, and further, the multiply time is not strongly dependent on
n, being only O(log2n).

2mlTh multiplier actually has a h ghlr-order area-time complexity,
0(nmlogn), than the systolic array, O(n +m ). However, the basic cell in
the systolic array is more complex than its counterpart in the multiplier.
Since the array is clocked, each cell must contain a latch for each data bit
going in. In addition, many of the ternary logic gates in the array use more
transistors than the binary gates in the multiplier, which adds even more

area. The result of these factors is that the area-time product remains lower
for the multiplier than for the array as long as the word length is less than
97 bits.

Figure 17 compares the area-time products for the systolic array and the
parallel multiplier for n<128 and m<n. The objective of a lower area-time
product for the systolic array is achieved, but only over a limited range.
The curves show that when m=0.5n, and n>97, the area-time product of the
systolic array is lower than that of the parallel multiplier. One can also
see how the stronger dependence on n is causing a sharper upward slope in the
multiplier curves, relative to those of the array. In fact, for n>128, the
area-time product of the array is lower than that of the multiplier for values
of m as high as 0.75n. The other two curves will also catch up if n is made
larger.

Unfortunately, word lengths of 100 bits or more are very rare. This
fact limits the applicability of the array architecture described to extremelyIhigh precision operations. To make the systolic array competitive for shorter
words, its hardware must be simplified. A two-fold reduction in the number of
transistors in each cell would halve the area-time product at every point,
placing the systolic array significantly lower than the multiplier on the
area-time graph. This reduction would allow the systolic array to outperform
the parallel multiplier on word lengths as low as 26 bits. For maximum
benefit, the vector length should be kept to around half the word length.

6.1.4.4 Recommendations For Future Research

Optimization of the PE circuit is essential for implementation as a
vector multiplier. As was snown in Section 6.1.4.3, a two-fold reduction in
PE hardware would make the systolic array useful for much smaller word lengths
(such as 32 bits). For that reason, future research should concentrate on
characterizing various cell configurations such as signed binary logic, ECL,
I2L and CCD gates. The design in another technology might yield significant
savings in nardware.

The results suggest that this architecture might be better suited to
word-level multiplication of matrices, using constant precision operands and
results. Such a setup would eliminate the extensive hardware otherwise needed

o A
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Figure 17. Area-Time Products for Systolic Array and Multiplier
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Sto handle carries out of the multiplication core. Data transmission between

the cells could be pipelined or parallel. If it is deemed necessary to obtain
a higher-precision product, either more time could be allowed for the serial
transmission of the extra bits, or additional lines could be added between
cells for parallel communication.

To augment the streamlining of the systolic array, research should
continue in alternative architectures, both pipeline and parallel. Tne
objective is a vector multiplier that can operate on long vectors (>32 words)

composed of short words (8 - 16 bits). The best multiplier would be able to
handle variable-length operands without any serious slowing. Included in this

, . investigation should be other forms of systolic arrays, and combinations of
p. parallel and pipeline structures.
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6.2 Fault-Tolerant Architectures

6.2.1 Residue Number Systems (RNS)

A major competitive number system offering high reliability modular:ty
. and thus capable of fault-tolerance is the Residue Number System (RNS). As

summarized by Jenkins [102], an RNS is defined by a set of moduli, M
"m m,...,mLI which are pairwise relatively prime integers (i.e., no pair from
the set contains a common non-unity factor). Natural numbers in the range R -
[OM-1], with M = m m2 ...mL, are encoded by L residue digits xx 2 ...x,, where
x1 - (X)mod mi, i - l,...,L, where X in R. Residue arithmetic is defined by

12 ..xL) * (YlyR."YL) (zlz 2 "'zL) (4,

the z1  = (x1 * Yl)mod m , where * is one of addition, subtraction, or
I%- multiplication. Note thatRNS arithmetic has a natural modular structure that

leads to modularity and parallelism in tne hardware.

S'- The lack of communication among digits in residue arithmetic suggests
tnat if an error occurs in one digit it cannot be propagated into otner digit
positions during subsequent operations involving addition, subtraction, or
multiplication. This property provides a basis for fault-tolerance that is
inherent in the basic algebraic structure, and which can be used to obtain
fault-tolerant hardware architectures. During some of the more difficult RNS
operations such as scaling, division, or magnitude comparison, there is
interaction between residue digits and this error isolation property is not
preserved. Therefore, the fault-tolerant properties of RNS arithmetic are
particularly useful for certain types of signal processing applications wnere

. most of the computation consists of addition, subtraction, and multiplication.
Two-dimensional digital filtering used in image enhancement and feature
extraction is an example of a computation intensive operation that is ideally
suited for RNS techniques.

The nonweighted structure of the RNS code is another basic property tnat
makes residue arithmetic useful in the design of fault-tolerant hardware

structureF. If a particular residue digit is consistently erroneous, the
corresponding faulty module can be identified by RNS error checking techniques
and disconnected without affecting the other modules. If the original RN3
contains enough dynamic range, the reduced processor can continue functioning
with a reduced dynamic range. This concept is called soft failure because the
processor does not catastrophically fail when a hardware failure occurs, but

P rather tne faulty module is disabled, and the remaining modules continue
. functioning in a useful although restricted manner. If desirable, error

correction can be used to replace the function of the faulty module provideJ

enough redundancy is designed into the code.

6.2.1.1 Residue Number implementations

Applications of RNS theory to general purpose computers, as well as tne
. use of redundant residue digits to provide error detection/correction in RNS

structures, has been researched for a number of years. More recently,
advances in VLSI circuit technology have renewed interest in RNS applications
to 2igital Signal Processing (DS. Altnougn some problems still exist witn

e ..
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magnitude comparison, division, scaling, and related operations, tecnnological

improvements nave provided economical ways to work around tnese snort o0 ngs.
Pau [103 recently examined sucn implementations and nas shown remarkable
fault-tolerant capabilities for the realization of high-performance DSP
systems. He showed how system reliability can be ennanced by a parallel

processor structure partitioning word length among processors (just as we
propose to do for SBNR). His implementations of Redundant Residue Number
Systems (RRNS) ennanced identification of faulty processors and modular system
degradation. As we also propose, he showed the efficacy of short word length
of the residues. A clue to his gracefully degradable design is tne
incorporation of pipelined memory accesses optimized for speed. SBNR
realization nandily captures tne same pipelined enhancements. Even more so,

- since SBNR has elements in (-1,0,1) instead of several primed modules as found
2% in RNS. We believe tnat tne use of redundancz residue codes for fault-

tolerance capability already examined by r104-107. carry over directly to SBNR~realizations.

6.2.2 Graceful Degradation )IC0]

Mipping algoritnms onto processor arrays has been widely investigated
todate '67,109-113,. Some general observations can be made form these
efforts. Even though the dynamic reallocation of data/instructions is

-.complicated and relatively slow, dynamic array configuration is just as
injurious in tne graceful degradation issue. Even an array witn complete

*. reconfigurability is difficult. in our architectural studies proposed herein,
*. tne large array configurations exacerbate tnese issues. Hence, greater

~ concern for graceful degradation issues are necessary.

Tnere exist alternative solutions, device redundancy being one of them.
Another is to attempt to map smaller algorithms onto the same configuration
size, assuming that spare processors are freed up for fault-tolerant purposes.

,'] provides a critical assessment. As Fortes notes, when we examine
Classic architectures such as the XPP, ILLIAC 115', CHIP, Diogenes arrays,
NCR 4SCG-2, PC Systolic machines, turbo boards, and hardware accelerators, a
consensus draws the conclusion tnat, unless a functioning replica of tne

"original array is up, graceful degradation is impossible. Other solutions to

graceful degradation encompass algoritnm rescheduling metnods 71 16 ] and
c"assic error detection correction schemes 52]. Also, 7117. reports on a
clever connectnvity preservation scheme for VLSI multiprocessor systems.

** 6. . Wafer Scale integration

PacKagei integrated device reliability is improved witn less pin out
:1 3 . Input/output pads are susceptible to electrostatic discharge,especially on MOS circuits. Also, relative '_/ pad area in small-scale C's

is nign. Driver area is high and they are power nogs. Finally, I/ pins are
mecnanicai failure prone.

PDin estimates for each package is providei by Rent's Rule. Rent's Rule
ap~lies especially to small sub-modules embedded in larger systems. When tte
package ccntains a major subsystem or tne entire system, Rent's Fule 1s
overbiased. Consequently, WS: is particularly attractive for a complete
processor integraticn.

"- " - . -.



integrating tnese cnips on one wafer is space ef:icient because of
inter-package connections. Shorter lines nave less self-capacitance. :h-s
reduces tne size and power consumption of line drivers. Since connections
dominate most circuit layouts, WS! can substantially speed systems, reduce
total internal power requirements and improve density. Nevertheless, caution
is advised because the interconnections have not disappeared altogether.

Board-level system designers address signal quality, noise, and power-
distribution problems. In the dense layout found in VLSI or WSI they become
just as acute at even lower frequencies. The increase in interconnection
density also produces interline coupling problems caused by mutual
capacitance. Interline coupling can arise between adjacent lines on a given
layer as well as between lines on overlapping layers (most dangerous on long
runs of parallel lines). The decreased separation between lines in WSI,
compared with that in other packaging arrangements, plagues designers. Hence,
long parallel runs are to be avoided in layout. To fabricate a WS system tne
size of a full wafer demands either a repair capability, a tolerance for
failure, or a combination of both. (Consider the HP RISC chip set.)
Tolerance for failure implies redundancy in some form, while repair capability

Y. implies intervention in tne fabrication process. Yet, the wafer-yield
enhancement resulting from this redundancy or intervention is still the most
attractive benefit of WSI.

" 6.4 Reliable MVL Systolic Arrays

Some very complex algoritnms have already been implemented on systolic
arrays by Kung, Leiserson, and Andrews. Only recently have MVL systolic array
implementations been studied. Andrews has established tne efficacy of MVL
arrays for tne least-mean-square algorithm which is much simpler than the

* proposed applications to be studied herein. However, Moraga [119] has
. demonstrated MVL array effectiveness for Christenson transforms (a Walsh

transform is a subset) computations. He shows how a Christenson spectrum of
n-ary, n-place, p-valued functions are configured in a MVL systolic system.
Note, these are complex valued functions.)

His VLSI PE's behave as an MIMD machine, unlike all other array studies
V wnich are S3MD. This useful study provides us witn important clues to develop

our algorithms and some very important preliminary results as discussed next.
Moraga conveniently provides us with an algorithm to generate a complete test

set for detecting stucK-type KVL faults.

in a binary solution, 72 bit ALU's generate 32 bit additions and complex
multiplications, producing 2 bit truncated results. 32 bit data and
.intermediate results would nave to be stored./transferred between cells (nence,

at least 32 wires are needed for cell interconnections). in an MVL design,
Moraga _ '9 snows tnat we can use digit arguments and tne most complex
operation is a digit subtraction mod p. Exact results for the spectral
elements are obtained a3 p . n digit worls. Hence, even for a 6-place, 5-
valued 'n-ary/ function, we require less than 32 digits. Cne-out-of-p coding
and paras'llu' i tating of counters is tnen rea'ized in a snorter time than tna-
required for tne multiplication of two 16 x !" bit "complex) numbers. Two
important advantages are now evident witn ML in s-stolic arrays. First, far
less interconnecticns between cells occur. 2econd, simpler and faster

.ircuits can be used in tne PE. Note, the -out-of-p coding and parallel

'6.z" .... ...... )* - . * *,. 9**



update counter scheme is another realization of distributed arithmetic. We
can incorporate tnese same promising contributions witnin our S3.,n% H's.

Reliable MVL circuits can then be analyzed using the M-difference calculus
proposed by Lu and Lee '12C' for fault-detection of single and multiple s-;c<-

at faults in MVL, based on earlier work .121,122'.

6.5 Ternary Logic

Three-valued or ternary logic may have an edge on binary logic L27-.
The information per wire ratio is higher; the complexity of interconnections
can be reduced; chip area reductions appear likely; and efficient error-
detection and error-correction codes can be employed. Serial arithmetic

* operations are faster. As sucn, these advantages encouraged study. L123-12q

offer several realizations. Given a dynamic range, the ternary circuit
complexity [101] is comparable to that of corresponding binary circuits.
Nevertheless, the associated reduction in tne word length tends to ameliorate
tne pin-limitation problems.

A new family of ternary logic circuits based on botn depletion and
enhancement types of complementary MOS transistors (DECMOS) has been shown to
be useful in the design of ternary digital systems. Witn the use of voltage
power supplies below the transistors threshold voltage and the exclusion of
resistors, it is possible to implement tns circuitry in VLSI. Also tnis
offers a low power consumption, high speed and comparable performance to tne
binary counterpart circuitry. New ternary logic circuits based on tne use of
Depletion/Enhancement Complementary Metal-Oxide-Semiconductor (DECMOS)
Integrated Circuits has been demonstrated. The circuits use two power
supplies each below the transistors threshold voltage and do not include any
resistor. The circuit design of basic ternary operators (inverters, NAND,

IN NOR) and an example on the use of these basic ternary operators as buildin&
blocks in the design of a ternary full adder is now available [751. In L75

the Simple Ternary Inverter (STI), the Positive Ternary Inverter (PTI) and the
Negative Ternary inverter (NTI) are tnree possible ternary operators.

6.6 Taxonomy of Fault-Tolerant Schemes [78]

6.6.1 Fault-Tolerant Nodes
-I

In tnis scheme, spare PE's are placed at each array node. The spare
PE's may be arranged in a number of different ways. Figure 18 illustrates tne
case wnere tnree PE's and a checker are placed at each node.

6.6.2 Temporal Redundancy

In many systolic arrays, the PE's are idle for a large percentage of tne
time. The basis of the temporal redundancy scheme is to replace a faulty PE
by an idle neighbor, on a cyclic basis [13UK.

Alternatively, this idle time can be created by setting up each PE witn
two 3eparate inputs and forcing the PE to devote half of its cycles to each of
these inputs 131]. Appropriate steering circuits must also be provided as
illustrated in Figure 19.

'V.
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Figre 8. odeRedndacyFigure 19. Temporal Redundancy
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:nterconnection Reconfiguration

Witn interconnection reconfiguration, fault-tolerance is provided by
rerouting inter-PE connections, thereby bypassing faulty cells. The
programmable interconnect required can be provided by a wire joining and
fusing process or by using active switches.

Tne fuse and join technologies require extra processing steps for tneir
implementation. However, area overhead is reduced. Furthermore, since no
switcnes .e involved, propagation delays may be smaller. On the other hand,
using active switcnes to provide the reconfigurable routing does not involve
any special processing steps. It also offers tne potential for reliability
er-nancement whicn is absent in other technologies.

6.6. Switcn Types

Three types of switcnes can be used in tnese schemes [132]:

1. Using the PE as a Connecting Element (CE) only, thereby bypassing
its normal function.

2. Multiplexing PE I/O ports so that PE's can communicate with a fixed
cnoice of near-neighbor PE's (LI = Local interconnections).

3. Using external switches that can be as flexible as desired (G =

3eneral Tnterconnection).

Wi.,n tnese tnree switch types the area overhead, programming difficulty and
reconfiguration flexibility increase from the CE to the GI switch.

6.6.5 Row Bypass

:n tne row bypass scheme [133], a complete row of PE's is bypassed,
using : switches. An example of such a scheme is illustrated in Figure 20.
_1s scneme is suitable to situations witn high PE yield, such as bit-serial
arrays.

.6 Rcw Criented

In the row oriented schemes, columns are organized tnrough tne rows,
-e taKing one and only one column element from each and every row. The unused

elements in each row are tnen bypassed using GI switcnes. Schemes wnere
columns are organized through LI switches are described in [134,135,13J.
ach of trhese papers describes simple circuits which enable tne
reconfiguration around faulty PE's to be carried out completely internally and
automatically.

Schemes where columns are organized tnrough GI switches can be found
in .17, tne simplest of wnich is illustrated in Figure 21. Because G
switches are used, no simple internal reconfiguration scheme has been found.
The switcnes must be programmel externally.

A: ..1,
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6.6.7 
2D Perturbation

In tnis scheme, the PE's are "perturbed", in both directions, but by
only a small number of PE sites. A scheme described in [138] using CE and LI
switches only is illustrated in Figure 22.

6.6.8 Interstitial Redundancy

In an interstitial scheme, as illustrated in Figure 23, spare PE's are
provided between node sites [139]. The spare PE's are switched into the array
as required, using LI type switches. With similar complexity to the row LI
column schemes, this scheme performs slightly better than those when the PE
yields are between 65% and 80%.

6.6.9 Hierarchical Scheme

In 140j, a GI switched scheme is described. Here PE's are organized
into blocks of 12 of which only 4 are required. If 4 good PE's could not be
organized from tne block then the whole column of blocks would be bypassed.
For PE yields between 40% and 60% this scheme performs best out of all the
schemes presented. In fact, Hedlund intended the scheme to be used for an
array where 33% of the PE's were faulty on the average.

On comparison of tne schemes, temporal redundancy appears to be
efficient only in situations where PE idle time already exists. Interstitial
redundancy has application for certain yield classes. For tne reconfiguration
schemes, tne more complex the switch type, the greater the flexibility
afforded 'ut also tne greater the area overhead. In fact, the more complex
and flexible scnemes only become useful for lower yields.

p
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A Systolic SBNR Adaptive Signal Processor
MICHAEL ANDREWS

4trwt-Ai new Mmeajua for tot * signal fieocesung units is 11. SIGNED DIGIT NLm.BER RLEPRESENTATIONS
101oposd "ke shac* , a ipsi subahtl of signed digit manabor ttpmsen- (SDNR)
inoen iSUNR's). Tha signed bomu mamber tepmeenoa tSONR) cW-Sw,, all a( de .ifficiettea of SDNR arwt' ', but also makes citit In the most general sense, a redundant number st.stem
rm~iua less compii. Faanhermam. a mnarai iierfw. bet""e anal"g allows both an increase in the number of positive and
aid digital nmbeirs is provded. IU e tnal to-nli procowsun matiam ot negative digits as follows.
,S5NR wilu., thew S1 RiM. An aM/h otm ilesiq~ lor VLSI imple. Deiton1

. eciiaem of five dif~u tiatinve, VLSI cib said Orantatons. ws~:R XR X ... X Q(1

1. INTRODUCTIONre
URT t a e ta lgi aa~~.a,- ad' (2)

111 T [1 a notedta multi-valued lgc(MVL)
Hmay show promiuse in the future for VLSI. At present. w

binary systems are facing interconnect problems which eetedgt
appear to be insurmountable. Silicon areas devoted to d, E R;- +1, - . .0. 1,..-.r
intrachip connections now consume twice the area of active > r,0 (3)
logic elements on the chip [21. Array implementations
cause a severe escalation of interconnect area. Likewise. off The representation described by (1). (,2). and (3) is called
chip connections are generating new and complex thermal redundant notation with base d. The basic properties of

and echnica prblem fo th boad dsignr. uch general SDNR are identified in Table I. Av izienis [31.
factors seek denser information content to interconnection Atkins[1 tung 11. cev11.an d Rfetiey obertsin ( heeale
ratios. In this paper, a redundant arithmetic solution is sonta DRcnefcieyoeaei eea
propo~ed and coupled with MVL relieves some of the purpose digital computer for the reasons noted. Howe~er.

silconare ieffciecie wth onvntina biaryarih-the general redundant representation does not lead to
msicnae. nfiiniswt cnetoa iayaih efficient implementations unless restrictions are placed

We examine one implementation of ternary arithmetic upon the number set.
which when viewed as redundant numbers holds promise Ill. EFFICIENT SDNR REALIZATION
for division-sparse signal processing applications. Section
11 briefly describes basic digit number properties attractive Several implementations based on the SDNR ha~e al-

to sgna prcesingwhih maipuateseqental ataready been investigated [81-(11[). all of which sought to
streams. Section III discloses an efficient TRIT ternarystifgeradaaposinrquem tsfamanae
digits realization which serves as the primitive VLSI cell, computer. In contrast, signal processing applications are
The realization utilizes a balanced encoding coupled with mlilcto/diinitnie nefcetSN
encoded redundancy to improve both logic delay and gate realization is possible if we select the following redundant
count. signed binary number representation (SBINR).

Section IV identifies the intimate coupling between word
* and bit level matix x matrix multiplication. Section V de- X. A' -10I)(

scribes a systolic implementation of the least mean square--
* . (LMS) algorithm invoking signed binary number represen- with the notation X, for X A, (I for - 1). The redundant

tations (SBNR's). which is easily realized with MVL. The representation for Iis 01 or IT while for - I it is 01 or II
LMS algorithm is a difficult adaptive signal processing If we assume a two digit SBNR. nine states are possible

* benchmark because in-place coefficient methods do not coventig the range - 3 to - 3 with all representations

.applv Section VI identifies appropriate ADC and DAC unique except for I and - I which are (01 or I1 and ml or
SBNR realizations. Section ViI contrasts comparable real. 11),. respectively Of the 27-state inputs for ai fjil aidder
aUations. truth table iwe.. three states each for the io dit toe

addx, and v, and the camr out from the presious
.Nnv.~ eevd'aactL1R eiedSpebr~ ~ , co lumn (c, ). only six distinct cases descrbed in Taihle 11

.. r Ab noe bv the USArrra' IesearO. Offite uander Gran( are necessarv if we alwavs represent I as 01 and 1asII
TheC ,9 irc 0 *i1 5peTehCrranFotCls.CO.i5 Furthermore, in four entries (1. 3. 4. and 6) the camr out is
[ ' iE..E Log umber 445 completely determined by x, and Hence, an adder need

0098-4094, 86,, 0200-0230S01 00 C1986 IEEE
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idT It 94

Figl, 2. Primitive cell (infernal data flo%% I

TABLE 11
IN41kPMkL)IATv A1DDITION ShPC LSS

Ncat Lower Intermcd
Augcnd Addoend Position Carry Sumi

Tvpo: %,) 1a, () 0,".I ) Ii)

I I 1 0'iBoth am pouativec1 0I At lcatoione
U ib Negative

0 0 0 0

4 0 0

Both are positive
Fig, I Primitive hitemAl~ cell. I tWas n

TABLEI 1 0
SDNR PitopLRinis

7 mtr S)N Uiqe i- iv Fig. 2 represents the cell conceptually with dashed lines
I a~ 1)/2 indicating the -daa flow" internal to the cell where North.

Addon uhiaaaon hi~h~sp~r~a~d ~ai rnnin~tl..jrs South. East. and West (N, SE, W) data paths are available.
horroiA proapagaion ind ,pcrjtwro Intercell connections shall only be to the nearest neighbors.

tamei independcien t 'AoraJ kngih Furthermore, latches on the north and east are incorpo-

W... ignifi,.nt digit No spmaxl trcainment rated in the cell to aid systolic latching of operand bits
DgtPomalionaliv imcighted ih ign The cell is now utilized in a systolic array where the

Dig tidominant operation of n xn matrix multilplication is
NsgaiiwiSimple logical uomicniriiinn of invoked.

u.gfl hitio

5.ahk: iengihporands IIlandh-d caoaily hv righi-tio-leti IV. MATRIX X MATRIX MULTIPLICATION

rwthd,%Matnx operations may be either sums of word level
-%luiiipiasIawon Tendbi to prodwc rourndcd re'.aljtz products or sums of bit level products. Furthermore, a

O'crlaw deicco Imrmcdiaicl'a follow% prodiicn .if strong relationship exists between word and bit level ss.s-
ink-Ki signifiant digit tolu. arrays [121. Treated as bit level manipulations. fast

EndJ-around ariN None hence ungie digit ALU h.ix%~ area efficient VLSI arrays are possible [131. [141. In our
are idocital makng VLSI highI% SBNR implementations. a systolic-like bit level Approach is

* _______________________________________ assumed where each processing cell is a multiplier and

gated full adder.
%.. oniv consider carry in for cases 2 and 5 in order to generate To understand this word/bit dualism, we consider the

%.o arry out. For these two cases, carry out depend-. on implementations at the word level and show how bit lcei
whether the previous A, or Y,, is negative. From these similarities apply. Multiplication of two Pi x n Matrices.
c tonsiderations. the VLSI circuit proposed by Takagi er a/ S - (i,~ and H - (h,,) to form the matinx product

11in Fig. I suffices. Y' - (,,) becomes
A primitive cell suitable for large VLSI array~s and

espciuallyv for adaptive signal processors must have few A Ih ij n~12 0)l
interconnections beyond its nearest neighbors and very -

~Aa simple controls. Fortunately. many -ignal processing Without any loss of generality, Y may be considered As
algorithms can be implemented with bit-senal anthmetic. independent vectors y. The aggregate of or mali-tx x %ector
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* i k 1t .4 1 l.'. ],k - I .W.i i t

3"-- -'I 0 0 \

/ ~r-. l q7-i "

I n h 0 0 2
12 0

7 1 0 all 1

Fi&. 3 nieraction of the hiLts in words sl, and h, to form i,,

product evaluations, each of the type in (6) comprises the
Matim Y. / /

A'~,~~ (6) A / /

However, each of (6) is also an aggregate of n inner , /, ,
product evaluations of the type .. / -"-- ,

A " i $ 4 . (7) Fig. 4 Panid prduct generauon of maiax main, multipication.

Multiplication of two matmces now becomes a series of
unit multiplications of (7) and an accumulation of relevant equivalent to spacing input parallelograms with guard-
product terms. For this reason, systolic arrays use a multi- bands filled in with zero bits.
pher/accumulhtor PE_ Equation (7) can be partitioned The shaded areas which move down vertically generac:
further into a senes of bit level sum of products. The partial products such that successive cells at a given loc:a-
coefficient of each power of two in the result now becomes tion in the shaded diamond area accumulate all terms in
a convolution of the coefficients in the two operands. This
important disLovery allows us to organize the input signal ,.0 . s (

itreams so that operations at the bit level are pipehned A -1

onto our array, as in Fig. 3. The tantamount constraint is The full sum of products is formed by the accumulation of
that the physical significance position in the array must be diamonds emerging from the bottom. A pipelined tree of
,tatic w& that partial products are accumulated correctly. adder cells connected to the bottom edge generates the lull
N. ie do not require the complicated carry/borrow strategies sum which can be clocked out least significant bit first or

' found in two's complement systems because our SBNR has most significant bit first (SBNR only). The full sum is then
a ininimal carry/borrow distance. computed every 2m + I clock cycles.

Of Consider the multiplication of two 4 x 4 matrices as in It is important to note that the symmetry of diamonds in
Z, IFig 3 This diagram portrays the interaction of the bits of Fig. 4 carries over directly into regular VLSI cells with few

two sets of words, t , and h,,. which compute _v, Each intercell connections, resulting in an extremely efficient
square is a gated full adder unit of cells in Fig. 2. The data VLSI computational array. If SBNR numbers are not used.
words in Fig. 3 have been expanded into their respective carry./borrow logic and intercell data paths would be
individual bits And the k th row is associated with the k th complicated by the same level of complexity necessarv to
"et of words. Words s, enter from the right wtuile words fabricate full carry lookahead adders (where cam propa-
h,, enter from the left in a bit serial manner. Although we gate logic grows as a function of wordlength). In an SBNR
show the least significant bits (st. h',) entering ahead of implementation. only nearest neighbor cell paths and same
the next significant bits (s ,. h, 1), the MSB's can also enter cell replication are required.
first in SBNR. Lpon forrung partial products. the inter- Another advantage to SBNR is :he absence of specialg mediate results, Y are passed vertically downward, circuitrv and algorithms to handle signed operands In

On a larger scale, the panial products v are generated two's complement anthmetic. the Baugh Woole-, algonthm
as in Fig. 4 in the shaded areas. Dashed lines adjacent to can be used [151. In this procedure, two's complement
the parallelogram edges are guardbands to allow for growth words are treated as positive numbers if 1) a fixed correc-
generated by carry bits. For rn-bit operands. m + tion term is added to the result for each word level multi-
1, 2 og02 . bits are necessary These guard bands are plication, and 2) all partial products normally with a

:- 4 k .€ ,'' ,.,.' ,. ." ."-".".. '""".'''.,- ,.' ". , _'., . . .'N '.","e ."0. ,"-
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d TABLE III
Val 4ADAPvIVE FILTER SCALEX3

h (n) - n th coefficient of an N-point digital adapuve filter.
f (k ) - k th pa tial product used in the output accumulauon.

ht Upditn) - X-bit input signal sample present at point nI of an Y-point digital filter.
%11ta yN -- dilptal filter output.d - input training signal to digital adaptive filter.

e-d-y-error i.ample generated by digital adaptive filter

a a Filter Output (Scalar)

.rram oritionScalnr)

ra ,a "itlain Slaal scaar)TABLE IV
Ftg S. Adapuve sigal procsor. ADAPT'iE FILTa MATJCES

00) (2.s(n). .s(N))
negative weighting are complemented. Two's complement HTr (h(l), A(2).. h*.), .A(N))
implementations on a systolic array require a negative Fr (f(l).f(2), .f(k), f(K))

-'te hchms X r ( 2 . ).i.e.. the set of the first K negativeweghting flag or a tag on tepartial products whc utinteger powers of 2.
propagate vertically down through the array. Hence, - the N x K array ofbit values which reiults when a K-bit
another latch and control line is required for each col- input signal vector is stored in an N-point digital filter.
umnar path. Furthermore, final addition of correction terms
requires an initialization of the accumulators in the adder Define the column vector F as
trees.

Fat BTH (12)
' V. AN [MPLEMENTATION OF THE LMS ALGORITHM and substituting (10) in (11), using the property of matrix

4 An N-sampled LMS adaptive filter as depicted in Fig. 5 transposition, we have
captures a signal, S, into a transversal rilter whose scalar y-XF(3

:" output, y, is obtained by convolving S with adapting = xTF (13)
coefficients ff. An error signal, e, derived from the filter where the filter coefficients, F, is a set of partial products.
output and a training signal, d, drives the LMS weight The LMS algorithm updates
update algorithm. The transversal filter has a set of N F'-F+2ueB TX (14)3 registers each of length K bits which provides storage for
the N x K array of bit values, 5, for the signal S. Bold. where u is a convergence rate factor. Equations (13) and
faced characters are vectors or matrices. The independent (14) form the iterative computational tasks of the filter.

~: time variable, t, is omitted, but is implicit to discussions. Cowan et al. [16) have observed that the output filter
Necessary ftIlter scalars and matrices are defined in Tables formulation of (13) when compared with (11) reveals the
III and IV. essential elements of the distributed arithmetic architecture

S The signal vector, S, can be partitioned into the BN X K of the LMS algorithm depicted in Fig. 6. The input (ana-
array as in (9). log-to-digital converter) signals are presented serially to a

set of N cascaded K-bit shift registers. As this serial bit
0~ 0 ~ 0 stream enters the shift registers, the shift register parallel

2 N outputs generate K N-bit address words on the RAM1 3address bus. Each AM datum is then right-shifted K bits
$2 and accumulated. The accumulation is complete after K

dy - ,' memory accesses. Finally, an output sample is converted to
-: an output analog signal. As in our implementation, the

distributed arithmetic architecture uses no hardware multi-
pliers. Using (14) in a matrix by matrix multiplication

4 S 2 . . . t I scheme naturally captures the bit-serial word-parallel power
of systolic arrays behaving as SIMD data-flow engines.

such that s/: 1 r j s N, 0 4 1 r k (9) An additional circuit reduction is possible when we
where a superscript denotes a sampling moment and a utilize the latches in the primitive cells of Fig. 2 to store the

subscript denotes a bit position in a K-bit word. The signal input signal, S. Now, external RAM is no longer required.
vector can be expressed as As a result, the VLSI implementation is more compact.

Furthermore, vector and matrix transposition operations
S - BX. (10) are easily accomplished by routing signals in the orthogo-

The output of the filter is given by the convoluuon nal direction since the primitive cells have NS and EW
bidirectional ports saving considerable time. A circuit to

Y - SrH (11) implement the LMS algorithm is shown in Fig. 7.
where the column vector H represents the set of N filter This architecture utlizes two n x m cell systolic arrays

coefficients. and an adder tree. The upper array computes the filter
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K-Sit Sol"' 1 UFE SHIFT SLM ADC d( t)

Fiu. 6. Distnibud arithmetic architectil.

binary logic

15bloory logic 4,

tormary us

AMR Fi. 8. 3-valued curcwt.

A A

S--Fig. 9. Signed digit digital-to-anaog conventer.
Fi.7. Systofic LMS architectume

The ADC realization is greatly simplified by noting that
output y X XTF while the lower array updates the filter our TRIT representations require no positive number re-
coefficients. With two systolic array-, as configured in Fig. coding. Negative numbers nced only change the represen-
7, filter output and weight update can be pipeiined so that tation of the leading "one" to "I" J91. Two's complement
the total computational delay from signal input sample, S, binary numbers carry straight across to SBN R except forp to output signal sample, y, is no greater than one-bit the leading digit and only if the number is negative. As a
conversion of the ADC. An expensive ADC flash con- result, any ADC can be directly used which generates
version is not necessary. binary numbers (biased, offset, one's or two's complement,

sign-magnitude). It is noteworthy to observe that these
VI. ADC AND DAC MmroDs ADC/DAC efficiencies do not carry over for SDNR num-

It is easily seen that a balanced reCtindant encoded bers.
* number, A 3d can be represented by a "positive" part and a
- *negative" part, A 'and A -, respectively, as in (15). VII. COMPAAnTVE PER.FORMAANCE

A,4- * +A-(15) In this section, the LMS systolic SBNR architecture is
2 A~-~+ Acompared to tour other archittctures. These cases are: 1)

where the operator "+" is the normal arithmetic oper- conventional 2's complement binary full-p .rallel
ation. For example, the signed digit number, 1101, is the adder/multipiers, 2) distributed arithmetic variation of (1)
sum of using bit-wise adders across the filter taps, 3) - dundant

1101 (22.,.~23 2~)arithmnetic cells replacing the adders/multipliers of (1). and
411-9 -2) -. (16)2" 4) bit-sequential anthmei' cels replacing the adders/mul-

-4-9--. (16 tipliers of (1).
This property makes digital- to-analog conversion trivial. The LMS algorithm can be implemented in any of these
The circuit of Fig. 8 displays the essential components [171. architectures with either sparse or fully paral/'pipelined

Separating A,4 as above then permits us to simply add hardware. When implemented with 2N multipliers and 2N
Lhe part together in a conventional adder whose result is adders as in Case I above, no faster implementation is
-epresented in Lhe number system compatible with the possible. However, for most applications, 2N multipliers
interconnected DAC as in Fig. 9. are overwhelmingly expensive in VLSI real estate.
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if s SAMPLESComparable architectures are depicted in Fig. 10. Case 1
. /(Fig. 10(a)) utilizes the most hardware (2N multipliers and

2N adders) in the conventional fully parallel sense. Case 2
is essentially the Cowan architecture of Fig. 6. Case 3 (Fig.
10(c)) is a redundant arithmetic cell proposed by Chow [101
where an SDNR implementation is assumed. Here, each
cell incorporates two signed-digit adders and one signed-
digit multiplier where signed-digits obey the properties of
(1)-(4). Case 4 (Fig. 10(b)) is a bit-sequential cell approach
also replacing the adders/multipliers of Case 1. This

.. " arrangement proposed by Sips [18] makes use of redundant
arithmetic but not as efficiently as SBNR implementations
because higher radices require more wire interconnect space.

__I_,_ _ 4zs.,....___ Th'e Sips bit-sequential cell can be configured in a linear
%COEFFICIENT MAT two-dimensional array for +, -, x, and -a- operations.

(&) Fig. 10(b) depicts the individual full adder (FA) cell with a
D flip-flop for latching operands, a 3-input AND gate, and

- ~a 2-input XOR gate. If east/west as well as north/south
paths are necessary, an additional flip-flop is required. The

-.. XOR gate obtains the complemented operand (for negative
values). Control lines XTL and XTL' load successively new

o' operand bits into the adjacent column for systolic addition
as shown in the lower portion of the figure.

The SDNR cell depicted in Fig. 10(c) has been proposed
F,. 7 by Chow for radix 16 members of the set

I (-10, -9,...,0,1,2,..., +9). The cell operations are
described in Appendix A. Similar to the Sips cell, it uses

So, redundant numbers, but in a two-level adder scheme. The

second adder converts signed-digit numbers to conven-
tional binary. Irwin and Owens [19) show that a systolic

A array of such cells can perform digit addition/subtraction
in four gate delays, multiplication in six gate delays and

,.-, - shifting in zero gate delays. This systolic array has one
r severe drawback. Owens [201 shows that the redundant

n-0 number set must be symmetric (i.e., 1r11 - Irz in (3)) and
S_.multiplication operand digits must be fractions. As yet, no

rapid integer, nonsymmetric multiplication algorithms exist
for SDNR.

CARRY PROPAGATION ADDER Gate costs listed in Table V for MOS realizations for
(b) each primitive logic element are used to derive the relative

area/time complexities of typical CAD library cells needed
for each architecture contrasted. We assume that the full
adder (FA) circuits require 18 MOSFET's, 4 cells, 3 levels,
and 11 intraconnections. Latches are fabricated from D-
type flip-flops each requiring 16 MOSFET's, 8 cells, 7
levels, and 9 intraconnections [21, p. 207]. Dynamic shift

-. = registers require 8 MOSFETs, 4 cells, 2 levels, and 9
intraconnections per bit [21, p. 222]. Static MOS RAM
cells each use 6 MOSFETs, 4 cells, I level, and 10

, intraconnections [21, p. 249]. An N-input NAND (N < 4)
gate requires N + I MOSFET's, N + I cells, I level, and

, N + 2 intraconnections (21, p. 144].
Any VLSI chip is composed of interconnection area

effective chip area occupied by library cells, and an over-
head area. Assuming then that a silicon compiler is used,

(C) the area and time complexities for common library cells of
Fig. 10 (a) A uflly paralel convenuionaJ achitectue. (b) Sips bit- Kronlof [221 are relevant here. Table VI in conjunction

sequential acliture. () Redundant anhmeuc cell atreture with Table V relates the wordlength K to the L successive

ei
. , * *P,. -~ .A'~jJ'l ~ ~ *p
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TABLE V

MOS REAUZA'nONs OF BOOLEAN FUNCTIONS

Function *MOSFETs Cells Levels lntraconaections

Invener 2 1 1 2
NAND N+1 N+1 I N+2
Buffered NANO N+5 N+5 3 N+5

NOR Nw1 N+I I N2
XOR 3N+ 3 3N 4-3 3 3N +6

.% 2- Bit Half Adder 15 4 3 9
S2-Bit Full Adder 18 4 3 11

1-Bit RAM (Stauc) 6 4 1 10
I-Bit ROM 2 1 1 5
1-Bit Shift Register 8 4 2 9
D-Flip Flop 16 8 7 9
D-Flip-Flop (Master Slave) 32 16 14 20
S-R Latch 6 4 2 6

TABLE VI
LsmAity CELL R.ELAnvi AaT/rMw Coumptxiins

Component Type Area Compl. Time Compl.

Parallel Multiplier (B x B) B2 B
Accumulator (K - LB + 2)

-adder (Brent-Kung) K log K + I log K + I
-sifter. e.g. K 1

Adders (Brent-Kung) B log B + I log B +
P Coefficient Memory BL 1

Pipeline Register BL I
Register. Ports. e.&. B I
LB out of 2B switch (MUX's) LB(L + 2B) I
Iteration Control (Counter) L log L I
Queue Elements BL I
Systolic Cells

Chow (SDNR) 4 2

Sips 1 I
S3NR 1 1

TABLE VII

COMARISON OF ABCHITECTURAL CosP-LUTn SYSrouc ARY

Conventional Redundant Redundant

Binary Dismbuted Bit-Sequential Anth. Aruth.
(2N multipliers) Anthmetic Cells Cells Cells

(2N adders) (Cowan) (Sips) (Chow) (SBNR)

(ate Complejuty 0(2mN) C(kN ) (Am) 0(km) 0(kN)

Latev.y N + 1 kN bit 8 +one one ADC one ADC
memory shfts ADC bit digit bit

writes conversion conversion conversion

VLSI Amenable structure irregular moderate yes yes yes

Estimated not appropriate not appropriate 400 lon 10
Pin Count/Cell

AreaComplexity >2K(B2+KlogK+I 2KIogK+12K K ]ogK + I 2(B/r.)' KlogK + 1

+ K+BL) +2BL+2B + BlogB+I+2B +4(BlogB+l) +BlogB -l

Time Complexity > max(B orlog K + 1) log B -- I IogB + I +2log K + I mB B

'Assumes each cell is a 4-bit slice.
m - number of (igits n a word.
k - number of bits in each shift register (k < m).
'IV - number of filter ccefficients.
8 - small positive constant (3 or 4) less than the time to complete a fulJ bit-parallel operation.

.,. .,.. ,..,.._ .: .. ,., . .; ... ,.,...,.,.,...:,,..:...:,. ,.- .: ;.. ... , ,. ,,,,t
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bit fields of B where receipt of the MSB from the ADC. In view of these
properties, we conclude that the SBNR systolic array is a
competitive if not superior alternative to other implemen-

For two's complement numbers in binary rued-point rep- tations. We anticipate future signal processing architec-
i resnation, the real value, X, can be represented by an tures will take advantage of SBNR.

unsigned binary integer value, Xb, and the MSB bit, X. as APPENDIX A
-" SDNR CHOW CEL. OPERATIONS

-X-b2LI -- 2X 0 . (18) The SDNR cell of Fig. 10(c) is capable of addition,

Hence, a wordlength K has LB bits. The area penalty of ubtraction, multiplication, and assimnlauon (which assists

wires is proportional to B and to the square root of the data conversion). All operands are assumed to be normal-

effective chip area. Power distribution lines and bonding ized floating-point numbers of the form
pads constitute the overhead area. An SBNR cell is as- X-r E x). rI (A-1)
sumed to have unity area and Lime complexity because ,-
each cell is basically a "one-bit" device. The Chow cellessentually has an are complexity four times the SBNR where E. is an integer with an e-bit two's complement
ecusey is DnR areaclxitbiay asurtimes 4h Sbis representation. In the following operations, t' and w' arebecause its SDNR realization basically assumes 4 bits per transfer digits which perform the same intermediate

sw",, digit on a radix 16 representation. The time complexity isgits whch peror the same intermdiate
" double because another level of logic depth is required. carry/boeow functions as our SBNR Z,,, Zp, and C,

Using Table VI. the area/time complexities of each of C,, bits except that t and w' digits each require multiple

the five architectures can be compared. Table VII also lists lines (e.g., a radix 16 SDNR digit can be represented with 5
the gate complexity latency, VLSl-suitabhty, and pin bits, one for sign and four for magnitude).
thegtcmpleDefinitions
count/cell. w. -Kr - 1)/21.

t., " Kr - 1)/21 if p - K r- 1)/21 is even,
VIII. CONCLUSIONS -Kr - 1)/21+ 1, otherwise.

-' The conventional binary architecture is hardware inten- u K -p2 - w,)/rl
sive yet is ultimately the fastest. The distributed arithmetic X, -KP + um,.a + - t,)/rl.
is a compromise between speed and silicon space. How- D, contains digits from 0 to r - 1.
ever, a regular design for VLSI is not easily achieved since D(,. + contains digits from 0 to r - 1.
no repetitive cell is utilized as in the three systolic imple- D, U D 5- 1 + contains digits from p to r - 1.

mentations. Of these, the SBNR systolic implementation is Input Digits
S highly regular, possessing very short signalling wires. Fur- The input digits a, b, and c belong to the digit sets

thermore, local control in this self-timed synchronous sys- D,, U D,_ 1) +. D0, and D,, respectively.
tem eliminates the need for global control lines which The transfer digits t' and w' belong to the digit sets

degrade performance of synchronous systems as in the D1,_, , and D(.. 1 , respectively.
' conventional binary architecture. The borrow 0i' is either 0 or 1.

A number system entirely composed of signed-bits Functions of the Three Levels
(-1,0.1) amenable to ternary valued circuits has been [MI If M-MULT-I
proposed for signal processing units where add/multiply then ru + w - bc with u in D(, and w in
cycles dominate. Such SBNR implementations can be con- D'. ,

. figured as a systolic array to perform n x n matrix oper- else u .- b and w - 0.

ations. Because the carry/borrow distance is minimal for [SI] If SI-ADD-I

SBNR, intercell communication is reduced. As a result, then rx + t- a + w' + u,
extensive carry-propagation, lookahead hardware is no else rx + .- a - w' - u.
longer required and mathematical operations are no longer In either case, x is in D(,_) and t is in D,.,
dependent on wordlengh as in conventional two's comple- [S2] If ASSIM -1

ment binary systems. Thus synchrony so vital to systolic then - rf + s- a - ft' with s in D(,_ , + and f
arrays is more easily achieved and true data-flow SIMD is 0 or 1.

machines result, else s -' + x.

Although the area and time complexities of the three
systolic arrays are comparable, the latency (time interval 1se-edocs

from input signal to output signal) is smallest for the T[a1s Compuurs, vol. C-33o pp. 1160-1179, Dec 1984
SBNR array. Furthermore, the SBNR offers a successful 121 S. Tnmberger. "Automaung ctup layout," IEEE Specrnam. pp

28-35. June 1982.
fault tolerant implementation [4], [101. The estimated pin 131 A. Awaiers, "S ed-di i numberfs representauons for fast aiai-

% r count/cel is smallest for the SBNR array. This is because tel anthmeuc," RE Trasu. Electrm. Computeri, vol. EC-IO, pp.
389-400, Sept. 1%1.

the left-to-right (MSB-to-LSB) computing property of 141 D E. ALin.s, "Desip of the Arithmetic Units of ILLIAC III: Use
SBNR numbers allows us to begin computations upon of Redundancy and Higser Radix Methods." IEEE Tramu. Con-

-. ."d. .. . ,- ' a ," . -d . e , '..,' t .% % % , ,% . % . . . . ... . . ..... ." , . ." ,". ' ." : , , '.edr J4e.d % . , r."Lei 2 % %' - '-'. " . , -. .
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EFY'ICILNT NUMBER SYSTEMS FOH HIGH SPEED VLJI SIGNAL PRCCESSOhL
Michael Andrews

Space Tech Corporation
Fort Collins, Colorado

ABSTRACT oo
A comparative study of various number systems i c

the relutive merits for real-time sidnal processing <,> .. y,
signed digit, redundant number, and a new repr i kd11Qd-
binary number representation (SBNR) are contrasteu circuit
complexity. It is shown thit thu SBNR system h speed, gte
complexity and reguliirity attributes amenable to V. .oorpl.ns aru
proposed for minimal interuell connectivitius, a prere ite for ;ystollc
array impl . entations. A test case realizing the least-squares ulcoritinm
in a oyatolic urrhy for aduptive beumformint applications inuicatua
Comparative differences. Executing a square-root free Givens rotation
mutrix operation Iteratively in a two systolic array configuration
demortstrates real time signal procezsing for beamforming.

INTRODUCT ION
A comparative architecture study was performed in order to implement

the scaled Givens rotation solution to the least-squares minimization
problem. Thiree architectures are examined: a) Conventional Systolic
Array, b) Distributed Arithmetic Array, and c) SBNR Systolic Array.
Important considerations in adaptive beamformint algoritlun to architecture
mapping include gate count estimates for some of the architecturo:s and
tables tor performing these eotimates. A systolic architecture tar an
ad-ptivw buamformer tracKing system is developed for performing recursive
least-squares minimization.

Thu purpose of this project is to identify engineering trade-offs and
Interconnection strategies capable of acnieving real-time implementation
of signal processing altcorithwu via limited user-proerammable mvchanisms
(u.d. , f'rmwurv). F'icgib t: tirtnw;,&1u-OLtV['Lmt tid aruhitu;Lur :u. dedicatvd to
signal processing can then be identified. The specific test algorithin
performs an orthot:otal triantulurization of the data matrix uaing a
pipelined sequence of Givens rotations and generates the required residual
without having to solve the associated triangular linear syeLum by back-

* substitution.

Array Architectures
Systolic array architectures remain diverse. At the extreme ends are

the WARP array and the GAPP array. WARP utilizes 68000 microprocessors in
each processing ulement (PE). CAPP uses a 1 bit ALU with 128 bit RAM as
each PE. Although more primitive (bdoQO is a It) bit parallel unginv),
GAPP is a single chip of 72 PE's. Because of its high speed ani
availability, GAPP is viable. Between these outlying architectures lit-
conventional and distributed arithmetic processing cell compositions.

This work was sponsored in part by Army Research .Office Contract #DAAG2,j-
85-C-0025. The views, opinions, and findings contained in this repurt ,rv
those of the author and should not be construed as an official Department
of the Army position, policy or decision, unless so designated by other
documentation.



A study of basic PE's was made. A new PE utilizing a primitive cell
is proposed for a systolic array PE. Anotner alternative PE based on a
distributed arithmetic cell wae studied. This cell increases computation
speed by reducing multiplication to table-lookup of partial products and a
series of snift/add operations.

Beamforming Architectures
An antenna beam is a collection of point sources or receptors wriere

geometry governs the characteristic equations of the system. For u
uniformly spaced line array as depicted in Figure 1, the following form
applies:

N-i
G(a) -Z gne - 2 v (ndcos(a)/A) (i)

ri-O

Equation I has the basic form of a DFT. When we consider that cos a
(k/N) (/a), the buamformer output at anglus ak is computable by the r'T
a follows.

N-I
GGk k a -j2 wk/N (2)

From this we can easily see that a 2-D temporal-spatial Fourier transform
can form beams in the nonuniformly spaced look directions. Adaptive
beamforming must then cause the beam pattern to favor certain spatial or
spectral prumeters.

SOURCE

R

aJ

Figure 1 Line Array Beamformind

Adaptive Beamformer and Tracker jystem
Feintuch, et. al. i , investigated an adaptive tracking system wnicn

employed the LMS algorithm to minimize thv error between two beums of a
split array. The weights generated are analyzed to determine the max

'*2



weight. It rougnly corresponds to the delay between the phase centers of

the two beams. The phase or t.ime-delay is tznen used to proviae a bearing
estimate (for adaptive nulling, etc.).

We consider a leaet-square implementation of the adaptive tracker to
conbtruct icoutplet..iy systolic adaptive beamformer/trdcker from tnc
systolic ivens rotation, DFT, and backsubstitutiofl architectures.
ifeintuch provides a .4uitdble starting point for incorporating
adaptability. Zimply stated, we use the peuks between weights to
electronically stcer the beami to force nulls at ,jammer andles. A time-
domain least-squareu adaptive trncking system can be configured as shown
in Figurc 12. Two inputs are required for the adaptive tracker. Mult~ple
time "snapshots" of these samples are collected to formn the L(rn) arid X(n)
and coinputeL; the weight vector W(ui) which minim~izes tfle la~t-squar,-
norm:

E(n) - :e(n): - :;X(n)W(n)-jn):: (3)

The largest tap of the weight vector is then found and provides the phase

bearing estimate.

Least -
Square*
Func tion
Block

X
69

qW

Figure 2 Least-Squares Time Domain Adaptive Tracker

In the frequency domain solution, shown in Figure 2, domain inputs
undergo a Fourier transform. Multiple time "snapshots" of one half the
array are taken to produce a matrix of frequency components for the LS
algorithm. The largest tap over the frequency weights is uelected and tile

phase provides a bearing estimate which is~ used to 3teer the beam.

Systolic Adaptive Beamformer and Tracking System
Figure 3 shows a complete frequency-domairi adaptive bteumforinter indL

tracking system. The computational intensive components of the system are
systolic array modules.

W- 3 .- er.
% %'
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FIRST ARRAY HALF

Y BY(w)
SYSTOLIC
FREQUENCY 1

Y DOMAIN BY(W
Ne BEAMFUKMLI(

LEAST-SQUARES
SYSTOLIC

0 ARRAY W

SECOND ARRAY HALF

SSYSTOLIC BX(w 1

FREQUENC'Y
DOMAIN

XNe BEAMFORMR BX(WNe) D

e. INTERPOLATOR

Figure 3 Frequency Domain kdaptive Beamformpr and Tracker

The K-point DFT modules of the system perform a Fourier transform of
the time domain input data. A system, consideration at this point is the

Fourier transform throughput. The phase shift multiply is driven by tile
phase estimate from the adaptive tracker. Each frequency component from

the Fourier transform is multiplied by the term

e iwmTm

where TM is a function of the steering angle. A multiplier array operates
at this function block. A conventional ditributed arithmetic enLine or
SBUR distributed arithmetic endine may be ideul for this array since Wm is
only position dependent and the steer angle is tne only variable had non-

position dependent quantity in the computation of T fq, d fLxed sensor
array. Hence, an ultra fast table looK-up o1 e Iwm in can occur basud
solely on the steering angle.

4
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An adder array is used to form the frequency bins of the beam. Since
the beam ia ,lraay in the frequency domain after the summing operation,

the bins can be fed directly to the LS algorithm. The LS block consists
of a Givens rotation systolic array and a backsubstitution array to
compute.- tie weights. .The peak of the weight vector can be found using a

quadratic inrtrpoiitoJr. The interpolator performs a quadratic fit to tne
largest weigitt element and the two adjacent weights in trie frequency

- domain.

Systolic Array Least Squares Solution
McWhirter' rpov a set of 'j primitive cells arrart ged in aproposes

triangular systolic array which performs recursive least-squares
minimization. Orthogonal triungularization of the data matrix is
performed using a pipelined sequence of square-rout free Givens rot-tions.

The uquare-root frec Uivens rotation triangular systolic array is shewn in

Figure 4. The associated primitive cells are given in Figure I. To
provide a common 1wrformance tustbud, the conventional binary, %BNR , and
distributed arithmetic arcnitvctur%..s were studied based on an
implementation of this systolic array.

P. Barlow and Ispen 4 developed a scaled Givens rotation systolic
aldorithm. The scaled Givens rotation algorithm operates on banded
matrices of width w - p + q + I where p is the number of superdlagonals
and q is the number of subdiagonals. Assuming a rows in the banded
matrix and s righit hand side vectors, the number of computation steps are
given by:

2m + 3(q-l) + z 1 1 (4)

The individual cell complexity (the number of equations solved at each
cell) is approximately the same as those for the square-root free Givens
rotation. Only one diviaion operatioit is required in the 3caled Givens
rotation and many of the multiplies are reduced to shift operations. Both

scaled Givens rotations and square-root free Givens rotations have
processor utilizations of approximately 50%.

Conventional Binary Implementation
The G;A1PiN is a commrciv ally available systolic array cluviu

providing 72 conventional binary processinv elements, dimensioned as a 6 X
12 rectilinear array. The square-root free or scaled Giveiis rot.tion is

easily implemented on this device. In order to obtain realistic speed

estimates for a conventional binary implementation of the square-root free

Give ,s rotation, code for the GAPP device has been written in a C-like
language known as GALTM.

.d The GAL square-root free Givens rotation code requires approximately

(2r + c + 1)('5n 2 + 224n + 156) (5)

instruction cycles where n is the bit length of. tn input operands, r i;3
the number of matrix rows, and c is the number of matrix columns. The

latency from first input to first residual output is

(c + r 1 1)(83n 2 +224n + 15b) (6)

5
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Figure 4 Systolic Array for Recursive Least-Squares Minimization
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The time to complete tne entire iantrix reuaction increases linearly
with the size of tue arruy. The number of elements processeu, however,
increases as the square of the array size. To estimate the proceS3irn

power of the GAPP solution, compute the nuinber of array elements processec* pe. iistructon :ycle. Assumino a fixel worl iznetn, tne word renetn
dependent term is a constant K = 65n 2 * 2..n + 1 6. The number of arra±i
elements processed per cycle is:

rc/(2r + c 1 I)k elements/cycle

It can be seun that for square matrices (r - c) the number of elements
procesaud per cycle increasua quadr:;tically as thu array sAzv increased.
Impruvement in speted n.ay be obtitincd if coricurruncy Qarr be achievuu in
the operation of trie three cell types of McWhirter's algorithm. A
proxmi:siri dulution is to use three separate arrays (one for each cvll
type), ana caretully synchronize data flow between the -rrays.

SbNR Implementation
A mesh connected systolic arrhy of SBUR cells is used to implement

McWhrter's algorithm. A single 3bNR cell is shown in Figure 6. It
consists of an appr'opriate set of registers which act as input to an
intermediate SBNI ALU and a final SBNR ALU.

It is possible to derive trio minimum execution speed and latency for
this particular SBNH implementation of McWhirter's systolic array by
considering the data dependencies in the equations. The maximum data

'*. dependency patn length for the boundary, internal, and final cells are 5,
2, and 10, respectively. Using the 2N+1 formula for latency, we cart

i3 compute latencies and speed estimates for each cell.

The maximum boundary cell latency is 11 cycles. At the internal
cell, tne maximum latency is 5 cycles. At the final cell, the maximum

" latency is 3 cycles. If r is the number of rows and c is the number of
columns, then the maximum lateacy to the first residual is:

L(c,r) - i (c - r- 1)

The execution time for the entire Givens rotation is:

S(c,r,n) - (2r + c * 1)(ii - n - (9)

where n is the bit length of the operands. Notice that the execution time
is linearly oependent O(n)) on the bit length of the operands where the
GAPP array execution time is quadratically dependent (O(n2 )). This is a

- result of the reduction of multiplication complexity in ;8NH arithmetic.

Distributed Arithmetic Implementation
Thc guoai in distributed arithmetic architectures is to reduce

- computation time by performing table look-up to produc, partial
computation results. For example, multiplication can be reduct.d to a

1% table look-up of partial productL, followed by a series of shift and adds
to obtain the final result. In an N bit by N bit multiply, it is possible
to divide each operand into k segments. By cumbining each segment of one
operand with every other segment of the other operand, an address in HAM

V 7
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-',of each pdrtial product is formed. The partid'. products are looked up
and, tnrougn a svrxLes of sniftj anu adds, acumulated to form t;,t fiald
product. T-uble 1 sziows a compurison of ai typical N bit mult;ply US.ng conventional. binary versus distributed arithmetic.
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Figure 6 An Z.BNR Primitive Cell for a 2-D Mesh Connected Array



Table I N Bit By N Bit Multiply Comparison

Conventional Distributed
Binary Arithmetic

Operations Operations

a shifts k2-1 shifts
n adds k2-1 adds
n2 ands (bit-wise) k2 table look-ups

If RAM access speed is greater than the computation time for n2 AND
operations, then distributed arithmetic provides better performance tfan
conventional arithmetic for k < n. There is a trade-off between table
size and computation speed. The table size for any distributed arithmetic
multiplier is 2 2n/lk words. While computation time is directly
proportional to k, the table is indirectly proportional to k (i.e., large
k implies lar'er computation time but smaller table size).

An n bit distributed arithmnetic computational element is shown in
Figure 7. This computational element is a single bit ALU with the special
feature that a table address register can be loaded and a partial product
retrieved for further computation.

k

XSHIFT SHF

I. 'L
::K- BIT S HIFT Lvm •Tni

REGISTERS S&

'Ia

Figure 7 Distributed Arithmetic Primitive :lemcnt A -

This cell can be incorporated in a mesh-connecte: s d
perform the Givens rotation by McWhirter's algo-Lrm.
assumed to operate like tne bit-sequential cell of tr.e W

that the multiplication is no longer 0 r ,' but ,
latency and execution tame can be made Dy ?rn: "
estimates made for GAPP. Thuj tlie latenc : v
arithmeti; implementation of McWhirter s rgo._-t

(c r + 1)(224n + 156)

.4..
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arnd the execution time is approximately

(2r + c + )(224n + 156) 01i)

COMPARATIVE AN~ALYSIS
A comparison of systolic primitive elements is presented in Table 2.

Five architectures are examined.
a. Conventional binary bit sequential cell (GAPP)
b. Conventional binary (complex cell)
c. Distributed arithmetic

3d. Signed binary number representation (complex cell)
e. Signed binary number representation (mesh-connected PE's)

The architectures were contrasted assuming a squarv-root free Givens
rotation implementution to obtain speed and latency estimates. The
conventional binary (complex cell) and 3JbNR (complex cell) are both

and th 8i ms-once Ewhich, by the way, is VLSI amenable,
hav O~) ad 0l)sped ad ltenyrespectively. The distributed
aritmetc achiectue ehibts ~n)speed and latency.

The conventional binary (complex cell) is superior in terms of speed
and latency only. The distributed arithmetic and SBNR (mesh-connected PE)
architectures have excellent speed and latency and both are VLSI amenable.
Distributed arithmetic bandwidth i~s smaller than 313NH (mesh-connected PE)
bandwidth, however, SBNR (mesh-connected PE) has a superior latency. For
adaptive beazaformer implementation, both architectures are viable.

Table 2 Comparison of Systolic Array*Architectures

Complexity and Performance Cell' Type
Conventional Conventional Distributed
Binary BLiary Arithmetic
Bit Seq. Cell (1 Adders)'

(GAPP) (U Multipliers)

Speed (2r'c'i)(83n2 +224n+156) 3(2ri~c~1) (2r~ce1)(224a'156)

Latency (ric.1)(b3n2 224n+1) 3(r~c.1) (r'~c'-1(224n+1)

Cell Simple Complex Simple
Complexity

1/O Bandwidth c cn c

VLSI Amenable Yes structure Yes
irregular

Algorithm No yes No

DedicatedI

Gate Counts --

la



I. For Boundary Cell. Internal cell requires 2 Adders, 2 Multipliers.I Final cell requires 1 Multiplier.

SBNR SBNR3 Coimplex cell) (mesh-connected PE's)

Speed (2r+c.1 )(20+n) O(n)

Latency 20(r~c.1) 0(0)

Cell Complex SimpleSComplexity (multiple SBNR PE's)

Io /0 Bandwidth 2c 2c

5VLSI Amenable structure Yes
irregular

Algorithm Yes No
Dedicated

Gate Count rc(276d + 710g rc~t87 + 1oe2w+ 42w + 4* 6w)

Table 2 Notation:

r - rows of rectilinear matrix
c - columns of rectilinear matrix

n - word length
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3 VLSI-MVL IMPLEMENTATION OF A PAST ARITHMETIC CELL WITH SBNR

David M. James
Space Tech Corporation

215 East Oak Street, Suite 2 q
Fort Collins, CO 80526

ABSTRACT

To meet the demands of high-speed si within
the size constraints of VLSI implementati .rithmetic
processing element is described. This elemen gned Binary
Number Representation (SBNR) to achieve fully 4el addition.
The result is an adder, suitable for use in v applications,
whose throughput is independent of word length. Use of SBNR also
reduces intrachip connection area, thus allowing a higher device
density to give each chip correspondingly greater processing
power.I

INTRODUCTION

While the demand for faster, more powerful signal processors
has increased, the space allotted them has decreased. A need
exists, therefore, for very fast arithmetic circuits that can be
very densely integrated. This requires that the circuits
designed consume little- power and require little area for devices
and interconnections. In addition, a system should be found that
allows fast arithmetic processing with little added chip area.

Conventional adders add two numbers from lowest digit-place
to highest, propagating carry down the length of the number.
Thus, the length of time for the addition depends on the word
length. This paper describes an adder that meets the
requirements for VLSI implementation. The adder uses signed
binary number representation (SENR) to achieve totally parallel,
carry-free addition. The logic circuits used were developed to
allow VLSI implementation of multiple valued logic. The adder is
compared to conventional designs to show a speed increase for
various operand lengths.

ADDITION IN SIGNED BINARY NUMBER REPRESENTATION

A redundant number representation is one in which several
different digit combinations can represent the same number. The

This work was sponsored in part by Army Research Office Contract
#DAAG29-83-C-0025. The views, opinions, and findings contained
in this report are those of the author and should not be
construed as an official Department of the Army position, policy
or decision, unless so designated by other documentation.
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signed digit number representation (SDNR)1  uses positive and
negative digits to represent a number. This special coding allows
faster arithmetic, because the carry propagation distance is
limited to one digit position. Standard number systems require
that the carry into a digit be known before the carry out can be
generated. SDNR does not require such foreknowledge, so
arithmetic is performed in parallel. A signed digit number set
of radix r would consist of the digits

x I i CZ lK2 1, ,1 - -) -K 1 where k < r.

j This digit set represents a redundant number

X a xnrn'1 + Xn-1 r n -2 + .. 2 + x2 r + x1"

When this type of number system is used in an arithmetic unit,

propagation of carry is limited to two digit places. Since the
carry does not propagate down the entire length of the number, an
addition is done in constant time, independent of the length of
the operands, n.

The radix-two a bset of SDNR is called signed binary number
representation--SBNR. (It is also referred to as redundant
binary representation.) The digits of SBNR belong to the set

xi e l,0,1

I where T repres.nts -1. or example, the binary number 1011

1(23)+0(22)+1(21)+1(20) - 1110 can be represented in SBNR as

Though circuit implementations of SBNR are not, in general,
as simple as those of binary, they are much simpler than
implementations of the higher radices. Therefore, SBNR provides
a reasonable compromise between the parallel arithmetic
advantages of SDNR, and the simpler structure of binary circuits.

In addition, conversions between binary and SBNR are simple.
or instance, two's complement numbers are converted to SBNR

merely by changing the sign of the most significant bit. Numbers
in SBNR are recoded into binary by subtracting the negative bits
from the positive in a conventional binary adder. The system
should be designed such that any slowdown caused by the binary
adder is offset by the speedup offered by using SBNR arithmetic.

Table 1 WS the addition rules for - derived

from Avizienis. Six types of input bit pattei .uentified.
Notice that in all cases, the carry out is inaependent of the

carry in. In most cases, the carry is independent of the
previous bits. In the rest, the carry depends only upon the
signs of the next-lower operand bits. If both bits are negative

I



3 (Negi-1), the carry out is the lesser of the two operand bits;
otherwise, it is the greater.

For example, to add two SBNR numbers -- 10102 =1010 and

111 12 - -91 0 -- first the adder generates the carries, then uses

5the carry to find the final sum:

operandl 101101 - 1010
operand2 7T1 W -91
carry 00110

sum 00011 - 110

,n Neg Carry Final
S B (Signs o next- Out SumType Ai B i lower digits Ci1 l

i i
<1 : C i

I I
0 T I I B~c>Io (both previous 13 <2> bits nonnegative) _

0 1 0 B+Cy

IBB (one previous ,

<3 B : JO bit negative) -,-

<3> 1 1

0 T 0 1+cyj

< ___>_ bits__ nonnegative) _____ ____

T B 1+Cy

B I I B ±

(one previous
<_ _>__ _ _,__ ,bit negative)

, I 0 I I + y

<6> 1 T T , T ,Cy.
I I B I

Table 1. Truth table for SBNR addition.

I
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When the input is (0,1) or (0,1), however, the signs of the
next-lower bits must be known to generate sum and carry. Since

the sum of the next-higher bit depends on the carry, and the

carry depends on the next-lower bits (and not on the next-lower
carry), one can see that signal propagation is limited to two bit

places. This eliminates the delays of carry-ripple adders and
the interconnection complexities of carry look-ahead adders.

UMULTIPLE VALUED LOGIC
The last decade has seen a growing interest 1 0 in the

computational applications of multivalued logic (MVL). Much
_f the motivation for this research stems from the reduction in
area and pinout offered by MVL. An increase in the number of
logic levels on a single wire causes a decrease in the number of
wires. This decrease reduces both the interconnection area on a

chip and the number of pins required to transfer data to the rest

of the MVL system.

N.Since there are three logic levels in SBNR (1,0,7), the best

MVL system to use should have three states. Those echnologies
in which logic levels are represented by current (I L, ECL) or
charge (CCD) hold the greatest promise for radices higher than

four. Voltage-mode iogics (CMOS, NMOS, TTL) seem better suited

to the lower radices.

VLSI IMPLEMENTATION OF MVL

Only the low-power families (CMOS, NMOS, CCD) will allow a
great enough packing density for VLSI. Of these families, CMOS
circuits have received the most attention. Unfortunately, it is
difficult to transfer the advantages of binary CMOS--high speed

and low static power dissipation--to MVL implementations. Early
designs required resistors to generate the center voltage, which

Cslowed down the gates and increased e 1 3 power dissipated.

However, some of the more recent research has succeeded in
creating low-power all-transistor designs, at the cost of higher
gate complexity. The circuits operate on voltages of (+5, 0, -5)
volts to achieve logic levels (, 0,

e4 4
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Figure la. Negative Ternary NOR. Figure lb. Positive Ternary NOR.
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Figure 1c. Negative Ternary NAND. Figure id. Positive Ternary NAND.
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Figure le. T-gate. Figure if. S-gate.

091

Figure 1g. Positive Ternary Cycling Gate. Figure lh. Negative Ternary Cycling Gate.

Figure li. Positive Ternary inverter. Figure lj. Negative Ternary Inverteor.
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These gates, and their truth tables, are summarized in

Figure 1. The circuit configurations of the ternary NAND, NOR
and inverter are all identical to their binary counterparts.
Their functional difference is a result of changing the
parameters of the transistors. The T-gate (transmission gate)
selects one of three inputs based on a control signal. The S-
gate (switch gate) consists of two pass-transistor pairs and an
inverter: when the control signal goes low, one input is passed
through its shorted pass transistors to the output; when the
control is high, the second set of pass transistors shorts to
allow the other input through. The X' and X" gates add one and
subtract one, respectively, mod 3.

These gates are combined to form a ternary adder cell which
uses SBNR to perform the function

C iA i+Bi

The state signal NEG tells the cell when one of the next-lower
1

digits is negative. It is the negative ternary NAND of Ai and

Bi . Thus, when an operand is negative, NEG 1 1 , otherwise,
NEGi+1 -. This signal controls the sum and carry, as shown in

Table 1. The logic diagram of the arithmetic cell is pictured in

* Figure 2.

CYP
3, 

r

Figure 2. Ternairy adder cett
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The implementation of the cell requires 112 transistors with

+5 V power supplies, and the longest signal path is 11 transistor
delays, t, long. The ternary gates used have been tested using
four micron design rules. In that case, each transistor delay
was about 1 .5 nsec. If the gates could be implemented using a
gate widj of one micron, each transistor delay would be about
0.1 nsec . Thus the total time from the appearance of the
operands to the appearance of the answer could be as low as 1.1
nsec. Since the addition is totally parallel, a row of these
cells operating simultaneously could add two n-width words in the
same 1.1 nsec as a single bit.

Conventional ripple-carry adders (length n) consist of n
full-adder cells connected in parallel. Carry from the addition
of the first bit moves to the second, where it is used to find
the carry to the third. The minimum ce I es for this operation has
a gate delay of two transistor delays. Thus, the total add
time is 2nt. The SBNR adder is a factor 0.18n faster than the
ripple-carry adder, for n>5.

Brent and Kung 16 considered a scheme for implementing carry
lookahead adders in VLSI. In this paper, they demonstrated a
network that computed a length-n sum in (4t)log n seconds. This
setup is faster than the carry-ripple circuit, but slower than
the SBNR adder by (0.36)log2 n for n>6.

The area complexities of both the SBNR adder and the ri pple
carry adder are 0(n) (though the SBNR adder requires about three
times the area of the ripple carry adder). The area of the
carry-lookahead adder is 0(n log 2 n). Thus, the area-time
complexities for the adders are:

SBNR------O(n
Ripple-carry - - 0(n),
Carry-lookahead- 0(n 1og2 )'

The lowest of these is the SBNR, making it the logical choice for
implementation in VLSI. Furtner study is needed to determine
whether the three-level system is desirable. A binary-encoded
SBNR system might provide the same area-time advantages as
ternary while eliminating the negative power supply.

SUMMARY AND CONCLUSIONS

Use of SBNR to eliminate carry propagation has resulted in a
totally parallel adder. The adder has been shown to be faster

ithan conventional binary implementations. A comparison of the
speed increase provided is given in Table 2. In high-precision

systems, use of SBNR can provide a significant increase in
processor speed and system throughput.

*8
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Worde Ripple Carry
ength SBNR ' Carry Lookahead
n I Adder i Adder Adder

r 6
11 16 12

16 32 16
32 64 20
64 11 128 24

Table 2. Number of gate delays for various word lengths.

One disadvantage of SBNR is the added complexity of the bit-
level adder circuits. Another problem is conversion back to
binary. The usual method is to separate the poitive digits from
the negative, and then add the two numbers in a conventional
adder. This brings back the old prob 11 .pm of carry propagation.
However, a new method proposed by Chen converts an SBNR number
to binary in a time proportional to the longest string of
consecutive zeros in the number. This method could make the SBNR
adder viable for a larger class of problems.

In a system that uses SBNR exclusively, of course, no
conversion need taxe place. In most systems, however, custom-
designing all components to operate under SBNR is too expensive.
Thus, SBNR should be used only in applications where the
conversion overhead is negligible compared to the computation

* time saved.

Such an application is an adder tree for multioperand
addition. 18 In this case, a large number of operands can be
added together in SBNR, converting only the final result to
binary. A similar application is paralle11 multiplication, with

parallel accumulation of partial products. 1 In this case, bit-
level multiplications are performed on the operands, the partial
products are added in an SBNR adder tree, and the result isconverted using one carry lookahead adder.
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Processor capability for hardware implementation of Kalman filters'

A Kalman filter is a set of nxm croprocessor, which has 70K transistors, Since no software environment exists for
matrices and n vectors that compute multiplies (16 x 16) in 6.75 micro- any array processor, the DCM-like ar-
equations similar to those in the first six seconds and adds in I microsecond. No chitectures remain clearly superior.
equations below, conventional processor has several 68000 I. J. M. Cioffi and T. Kailath, "A
2e(1+ 1 ) =,4.€(t) +K(0)Iy(t) -¢t(r)] chips on a single substrate; such devices Classification of Fast Fixed-Order RLS
+ Bu () .t(10 =) are optimistically forecasted for 1995. At Algorithms," 1984 Digital Signal Pro-present, only one commercial array cessing Workshop, Chatham, Mass.

where K(1) is the filter gain given by processor chip is available (NCR's Oct. 1984, pp. 1.1. 1-1.1.2.
GAPP, #NCR45CG72). This state-of- 2. W. Hsu, Y. J. Leung, M. A. Shan-

K() =[AI(1)cCT+SI[CT,()CT+RI - I the-art array is a 6 x 12 set of PEs with blatt, "Simulating VLSI Systolic Array
one-bit (not eight or 16) ALUs. As an Structures for Fast Matrix Triangula-

r(t) is the state error covariance, that algorithm designer for this chip, this tion," 13th Annual Pittsburgh Conf. on
is, writer has found no software tools Modeling and Simulation, Pittsburgh,
r(t) !Ell.?t) -x(t)llf(t) -x(t)IT I available, no test circuits, and no Pa., Apr. 1982.

y(t-I).y(-2),.yto) emulators. A study of support tools 3. A. L. Fisher, H. T. Kung, and K.(software and hardware) for any array Sarocky, "Experience with the CMU
processor and a thorough comparison of Programmable Systolic Chip," Proc.

(1) satisfies the following Riccati dif- SIMD (single instruction multiple data), SPIE Symp. Real.Time Signal Process-
ference equation: MIMD, array processors and data flow ing VI, Vol. 495, Aug., 1984.
E(t+ I) =AE()AT+Q-K(t) machines (which are SIMD-like) are 4. H. T. Kung and 0. Menzilcioglu,

[CT(i)CT+R]K(t) TE(o) =TO  desperately needed. "Warp: A Programmable Systolic Array
The brief compariion herein shows Processor," Proc. SPIE Symp. Real-

Several published papers imply that that the current multiprocessor architec- Time Signal Processing VII, Vol. 495,
thes equations can be computed in tures (e. g., the WSMR-DCM 5 ) are still Aug. 1984.
nlogn time using array processors. 1.2.3.4 superior. This is primarily because hard- 5. M. Andrews and R. E. Boring, "Firm
Such works present only a partial pic- ware mult/div/add cycles are 400 times ware Engineering for Cascadable Micro-
ture. The larger question is, "How many faster than any available or conjectured computer Module," Space Tech Corpor-
proess are needed?" The most array processor PE. The DCM performs ation Final Report for Battelle Colum-prcessors aa 16 x 16 multiplication in 220 nsec bus Laboratories, TR#BAT- 1171-84-
serious concern is, "What is the com- (plexity of each processor?" (compared to 6.75 microseconds re- WSMR, Dec. 1984.

quired by the equivalent PEs necessary
A reasonable figure-of-merit (FOM) to do Kalman filtering). Futhermore, a Michael Andrewsshould be support environment with hardware/ Space Tech Corporation

software already exists. An txm Kalman 2324 Manchester Court
[number of compu- '[number of *[processor filter would be executable in approx- Fort Collins, CO 80526
ational stepsl processorsi complexityl imately n2 logn steps in an architecture

such as the DCM. Assuming, then, that 'This siudy was sponsored by the U.S. DeaD rtmentThis treatise only addresses the processor the processor complexity is equivalent, of The Army under Contract IDAADO'7.& -C-0139.The views, opinions, arid flndings contained in thiscomplexity issue, since other papers have the FOM for each approach (systolic ar- paper are those of the author.
sufficiently studied the remaining two ray versus DCM) is
factors. Claims made for an Ofnlogn]
bound to the number of computational FOM DCM = [n 2 IognlI [ I] The Open Channel i a forum for the

4t steps assume a large array of processing exchange of technial ideas. We
elements, or PEs. In fact, raxm PEs are while the systolic approach reported by welcome all contributions (short of libel
required as a minimum. This reputed Kailath, Kung, and others is or obscenity), but please double spaceebound does not take into account the at- them and keep them to a maximum oftendant communications and control cir- FOMarray = (nlognl[n2 1111 1000 words. Send everything to JimAuendtr ofmmthe caarrayp cssr l cHaynes, Computer Center, UC Santacuitry of the array processor. Hence. Cruz, CA 95a064.

The complexity of these O[nlogni type
PEs is equivalent to that of a 68000 mi- FOM array = n times FOM DCM
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Concurrency and Parallelism - Future of Computing

M. Andrews and J. S. Walicki

Abstreet: This paper discusses paealleliam and con- Therefore, it is not surprising that the future of computing
currency in the light of current computing practices. lies in increased exploitation of concurrency in computing tasks.
A special case of SIMD machines, also known a Concurrent computation implies these, not necessarily disjoint,
systolic array*, is analysed. A new architectural clas of activities:
engine, the GAPP systolic array, is studied in the
application domains of signal and image proc - parallel ocurring in different resources in the same time inter-
ing. Also included are database and associative pro- val,
causing cases. Some interesting conclusions can be
drawn from a PE which can also be viewed s an simultaneos. taking place st the same moment,

intelligent memory. pipelissed activated in overlapped time frames.

1 Introduction The highest level of parallel activities takes place among
multiple tasks/programs. This level requires the development
of parallel procesable algorithms which depends on the effi-

The computer age is very short but rather turbulent. No other cient allocation of limited resources to individual tanks. The
field of technology has been changing so dramatically. Increases next level of parallelism may occur among procedures or pro-
in speed and efficiency of computing we unprecedented. Cor- gram segments within the same program which requires de-
putere of the first two generations of computer evolution (1940's composition of a program into multiple tasks. The next lower
to early 1960's) were primarily used for data processing. Com- level exploits concurrency among multiple instructions. Such
puting strategies applied to that type of processing were simply a concurrency is revealed by data dependency analysis. Ad-
extensions oftrditional human processing of data. That is, the ditionally, vectorixation of sufficiently large scalar operations
processing was sequential in nature, but relatively fast due to can be performed. These three levels of parallelism are most
increases in speed of execution. This human oriented model of often dealt with in software. The lost and the lowest level of
computing was clearly reeted in Von Neumann's definition parallelism is concerned with concurrency of operations within
of a digital computer. each instruction, and it in usually implemented in hardware

However, data intensive applications, like weather analy- We can identify several kinds of parallelism even in single pro-

sis/prediction and various apects of signal processing, pushed ceesor systems. Parallelism can be exploited, or induced, by
the classical computer architecture to speed limits imposed by using multiple functIonal units. For example, CDC-6600

an existing technology, has 10 functional unita performing arithmetic and logic oper-
ations. The units are independent and can operate in par-
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Walicki is with Computer Science Dept., Colorado State Univer- achieved, in both large processors and modern microproces-
sity, Fort Colins, CO 60523. sore, by overlapping (pipelining) the fetch, decode and executr
This study was sponsored by the U.S. Army Research Office un- phases. Finally, Overlapping of CPU and I/O operatIonp
der rant DAAG29.S3-C.002S. The U.S. Government es-uiiie no can be performed by using separate I/O controllers.
responsibility for the information pesented. In this paper we want to examine an SIMD architectur,

which holds promise of a new threshold of computer architec
tures which will impact the marketplace for some time. Thi,
architecture is configured about a VLSI primitive cell of 72 pr&

ceaing elements regularly organized. The term 'primitive cell
is a misnomer since the PE contains 72 individual ALU's. W,
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I Paalle arcitocuresThe WSD Organisation has no& been implemented in pf ac-
tic* and is is included in this claesafication for the sake of com-

he basic architectural classes of parallel machines are pletenes. In the WSBD concept a processors, controlled by
distinct instruction streams, opera". on the sam date. stream.

* pipeines computers The output of one processor becomes the input to the next

a array prcssr rocessrdherfore, this scheme can be efficiently realized

" m l i po c a e o y s e m 
F iw ly , th e b N W .( O rg a n is a tio n i n th e m o t c h a lle n g in g

and the most promisnag in terms of speed and efficiency. The

pipeline Computer performs Overlapped computastlo ex proper b.DAD architecture consists of closely intseracting pro.

luit temporal paralellsn. An array processor achiaeves Comore which operate on the daoa streame derived from the
patlasl pai-allollni by using synchronised aithmeic logic sam data spa"e shared by al processors. It is possible to en.

,nce A multiprocessor system achieves asynchronous par. vision the system in which processors operWa on independent
-;1eUnM in a et Of interacting proceesors With shared resources data sets. This type of organization me called multiple SISD
HwanS4). The above Classification is by no means perfect. since it is a set of independent S1SD machines. Examples of

e developments in the area of systolic system. blur distinc- closely coupled machines of this kind are: C.mmnp, Cray-2 ad

ooaogall three types of parallel systems. Cray XMP, Denelcor HEP, Burroughs D-825.

Different taexonomies arise depending on the primary fea-
ure chosen to distinguish among different architectures. Three 1.1.2 Feng's classification

najor classifications wre those of Flynn (Flynfift), Feng (Feng77) ThclsicaonppsebyFnisaedntedgreo

md Hadler(Han77).parallelism. If Pi is the number of bits processed within the ilk

cycle of total T processor cycles, thon the aeraege peralkim
I.. Flynn' Cscieflcatlon degree is

Thshistorically first classification is based on the interaction = T
of instruction and data stream. The stream is a sequence of Since, in general, an average parallelism degree is lss then the
item. (data or instructions) operated upon by a single pro- hypothetical maximum parallelism degree P, the stilisetios rae

S ceesor. This leads to classes of structures determined by the a can be defined as
multiplicity of the functional units devoted to servicing the in-
struction and data streams. Flynn identifies the following four a T .

types of machines: 

TO

SISD single instruction stream-single data stream The maximum degree of parallelism P is equal to the prod.
uct of the wordlength w and the bit-nlice length M. A size

SIMD single instruction stream-multiple data stream of the bit-slice is determined by the number of bits that can
be proceesed by a system in the sam instance. For example,

MXSD multiple instruction stream-single data. stream a processing unit has two four-stage pipelines, which yields

WM multiple instruction stream-multiple data stream 3 bit-slice. In Fong's taxonomy the relationship between the
wordlangth and size of the bit-slice determines a machine class.

*IDacietr stesmlscmoe fasnl Machines like Staten and MPP have a short wordlength and

prcesing arcit(Etur is cothel sipt Compd of ar singl very long bit-slices. On the other side of the spectrum are

U roessing. uni (is) a contrluntur (CU and larg meryenmag- machines with a relatively long wordlength and short bit-slice.

uofM ) hi sas the eitnmahestructur of the lrgcms ercntag IBM 370/168, PDP-11 sad Cray-I belong to this class. Accord-
rj~ f te eistng achnes Man oftheunirocesos (ISD ini to Fong's claseification particular mixtures of the bit-slice

f ~machines) are pipelined, that is, instructions are overlapped size and the wordlength give rise to four classes of processing
in their sequential execution. Exemplary machins with one mtos hc r itdblw
functional unit are: IBM 7090, PDP VAXII/730. Examples mtos hc r itdblw

of existing SISD machines with multiple functional unite are SSwr-erabtsra
111M 3W1/Vl, 111M370/16SUP, CDC 60, CDC Star-100, FPS wodsrabteil

'* AP-1201.1, cray-1, CD)C Cjrber-205. WPBS word-parallel, bit-serial

KSIUMD stimchinee have multiple processing slemenitn gov- WSBP word-serial, bit-parallel

erned by the same control unit. The processors respond to the

Sam instruction stream but usually operate on different data WPDP word-parallel, bit-parallel

subsets. The memory is shared and usually contains several

memory modules. This clams of machines is exemplified by ar- The first category (WSI3S) includes the first generation com-'

%~' ay pocessors and systolic arrays. The following machines be- puters with bit-serial arithmetic. Most COntemporary machines

long to thi class. Burroughs' llliac-IV and BSP, Staa, MPP are of that hind, also called word-alice computers.WB ug

(Mmasvely parallel processor by Goodyear Aerospace) nifis the fastest, fully Parallel processingin which whole blocks

of bite are processed at a tume
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and transmit data in the synchronisedl fashion. Systolic ey.
LIS ~ndlr'selasI~talStoe awe mature cellular systems in which elementary process

TWe clidlocatios ts basnd on tSU degree of parallelism and ing units k E's) ae relatively complex. The PE'same usually

pipeinig peset i th hadwar ofa cmpuef.Thre hrd- placed in the nodes of the simple one or two-dimensional grid.

piptin subssat ine adrd:o optr he ad Tight coupling and pipelining ability of the Systolic systems re-
waresubyste ar coeideed:suit in constant-time processing. A More rigorous description

" onral nit CU)of a Systolic system follows (Lend3).

A systoic sytm is a synchronous network of processors.
" arithmestic lIc unit (ALU) Each processor is composed of a constant number of Moore ma.

3 bit-level circuit (BU .- ara maiaiC~ ic 7i chines (state-autput FSMs) which are defined by the quintuple

A computer C can be assigned the figure of merit T(C): Q - set of internal states

T(C) =(K x K,D x D,W x W) I.- set of input symbols

Whereo - set of output Symbols

9 state transition function

X - tbe mmumber of CPU's P - Output fuactiom: OeQ +1)i (( +1)

D - the number of ALUs (of PZe) under contro of a CU
W IN 9 Woo kag of s An ar u*Systolic sYsteow only Moore maichines are allowed. In-
W - te wee lemgh of ALU usio of Mealy machie produces sem-sysolic system. if

W'- the number at pipelinel stMe in all ALUm@ MealY machines were included and connected together, then
logic signals could ripple through Several Machines in one clock

D'- the number ot AL~s that cam be pupelined (chaining) Period. The exclusion of Mealy machines is important because
K' -thenumer (CU9tha ca bepiphasi (mcroipoin. it guarantees that the clock period does not grow with System

K' - en umbe $iCet a a b e ei mn co i ei- s@. Thus a clock Period becom es a m easure of tim e which is
indeendent of system site. The structure of a Systolic system
S is given by a miachIne graph G = (V,E), where V is a set of

The Rfiadler's taxonomy can he explained on the emple Moor machines and E is a set of edges linking the machism.
of the Cammp miatipemo syste"m developed at Carnegie. The uselghboehood of a machine wi e V is the set of machines
Mellon Ubiversity. The C-mm9 consists of 16 PDP-11 Mini- with which it communicates:
computers, shared Memory modules and 16 by 16 crossar in-
teewonnection network. The systm is unique because it can Neigh(ii) wejvu) e Eov(w, ii) 6 E)
operat in various configurations. The normal mode a( oper-
414401 is the 1MIM4D. Howeve, under control of synchronizing For S to be Systolic, it it required that the Moore machines be
unit it cell Operat in the 81MD mode, and if all proceeor small in the ense that Q. 1.0. and Neigh(v) are bounded,
are cascaded so that they operate on the eaams data stream which implies that the system s may grow, but individual pro-
the NWSD mode results. All three Operating modes can be coesors may notl It Id important toPeere inequality between
characterized in the following way a Propagation delay between Proceesors and a processor delay.

For that reason the systolic Systems with only nearest neigh.

T(C-Mm) 1,,16) + (I X 16, 1, 16) + (1, 16, 16) bor connections are especially attractive Since a propagation
delay is insignificant. Therefore, the global communication in
Systolic systems should be avoided as it imposes difficult tim.,

2 Geometric. Regularlty and Systolic Sys- ing reetrictions and contributes to additional circuit complexity
teinaand area.

On the other hand, the global communication is convenient
Regularity at computer strure is appealing not only for --. because it provides an elicient way for initializing PEe (bind-
thetk rese, but it als0 has distinct functional advantages, casting) and gathering status information. Fortunately, the
This fact wa recognised early in the computer oea when the 01889eliconeversion lfroe due to Leaseron allows one to de-
concep ofcellular interconneiction arrays was developed for the sign semi-systolic systems (with broadcasting) and implement

purpose of data switching. Processing elements of these arrays equivalent Systolic structures.
were relatively primitive sad contained on the order of te.-
eMentArY gates. Such limited Processing capabilities were not 2.1 Application of Systolic Systems
overly rMtUctv asO longS aste main goal was switching ofdata.
Developments in the field of VLSI and increased interest in net- Coptioatskaruullaecmuebudo IO

working Ofre le isth P n s a nor ofsyte mhchn c o bn e bound. In general, if the total number of operations is larger

conep O aalleytlim pip40inig andc inprcsoeco. uthe than the total number of input and output elements, then the
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S computation is compute-bound. The systolic system solve ef. a call arithmetic functions which can be performed is one
ficietlY comput..bounid problems. A large spectrum of prob.. cycle
Ism bas been attacked using the systolic approach. The fo1-
lowringi a brief list of major types of applicatons: 9 asrs negh o co unications only

Matrix arithmetic: The CAPP is just such a chip. Its cell features awe Ulu&-
trateid a Fig. 1. Hene . we an 4 PE's with nearest neighbor

matrx-votor ultilic-ioncoupling and a single global broadcast, lin. These line reduce
Owari-sasux muliplictionthe VLSI interconnect, spae to a realistic amuat.

imiltplictionOf particular note is the ability of the CAPP device to be
Strix triagulization (Solution of linear systems) cascaded. That slne make the CAPP ignificantly power-

ful. Several CAPP applications have been reported which cas-
sQR decomposition (eigenvalues, lesateuare coniput cad mutil CAPP devce in imnaagnal,and data processo

Uo") ing tasim. Furthermaore, each FE has an autonomous 128-bit

"W eolution of triangular linear system., RAM. If cascaded properly, a CAPF array can not only pro.
cse, but also perform frame buffering posibly at video rates.

Non-numeric applications: This is important to many image processing applications where
fram buffering in required. In that case, the cascaded GAPPa
store Ws well on procae'both simultaneously. In practice, a de-" data structures (Stacks, queue, priority queue, searching siger should view a CAPP armay a intelligent memory. Thin

and sowung) then opens the design space to even larger opportunities.

" graph Algorithms Each processing element in the CAPF array consiete of a

language procesing (string matching, regular exrsin) bit-serial. ALU, 128 x 1 individually addressabe RAM and 4
single bit latche. The 1/0 latch allows commnunication through

dynmi programming the FE without interrupting the ALU, and the remaining latches
hold inputs to the ALU. The CAPP operates a a 5flvfl mb-" encoders (polynomial division) chine, that a instructions are broadcast to each call fr an

" relational daabs pr~os external consrol store, leaded in turn from the host computer.
Proper address sequencing can be providedi by any general ad-

Finallydress sequencer. The instructions directed to the processingFialenormously important class of real-time applica- elements coam"s of a 13-it control lid which specilles the at-toscontains primarily digita signal processing tooks. it is ray connectivity ad arithmetic/logic; operations, mad a 7-bit
worth noting that the systlcic system allow real-time (or near RAM address. Tbess instructions can be sent to the CAPF
that) implementations of powerful signal processing algorithms arry at the rate of 10 MIPS. The whole array has a global
(LMS and Kalman adaptive filtering). Some of the signal pro. broadcast of input data and a global output. One CAPP ar-
ceasing applications are (Urqu&4, C&aAnf4, Ward.14, Spei&S): ray device can function as a modular component in a larger

5 FI, hRfiltringarray, thus enabling word or bit-length growth ot an array as
a FI, II Mteingneeded. Computations are performed in bit-arial arithmetic.'

a 1D and 2D FFT All primitive arithmetic operations eecuite in a single proces-
sor cycle. Each proaesso accept. data from RAM. from each

a ID and 2D convolution and correlation of its four ners" neighbors, or from coestant. data provided by

systvefiteinlicmth point of view Of the interconnection network tax-

ogy. In Flynn's clasification it is a SIMD device. It can be des.
3 GAPP - iled s a word-parallel, hit-srial (WPES) machine according3 GA P -it-lvel ystoic arayto Fang's taxonomy, and the Hinadler's figure of merit is

The GAPP - Geometric Arithmetic Parallel Processor (NCR45( T(C APP) to (12 x 1, 12 x 12,1 x 1)
may be considered to be the forerunner of many new systolicUprocessing elements. However, it is the firt device torcpt 3.1 Appl~cations of GAPP Processor
the value of bit-level implementations. Any systolic array, in
order to be effective, should have 3.1.1 Adaptive Filtering

* complete and very regular PE's Classical techniques aimed at increasing a signal-to-noise ratio
(SNR) usually employ information derived from a single sig-

e snyP' on a chpaepsil nal sensor. No additional information i provided, other than
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the signal and perhaps statistcal. properties of both signal and at the same time. Theme partial products can be accumulated
noise. Haover, chances for the restoration of the original sig- using the adder tree constructed from MSI adders. If, however,
nal can be increased if multiple measurements of the signal the least significant bit x0 interact& with the most significant
wave ae available. An array of sensors provides such an op- bit of w then the partial products of equal significance appear
portunity. The array generates parallel streams of data and skewed and then the linear chain of full adders can be used
the information in this form can be processed using the GAPP to accumulate the final output. If the second option is chosen
arrays. Processing of signals ariving from the sensor array then a single row of PE's of a second processing array can be

9 can be accomplished most efficiently if processing method is used to accumulate partial products.

thod It is possible to partition the LMS adaptation the computations of the output sample y(k) and the scaled er-r~s int tre The ast ensquasfr e roMS)alorh 5 h eon ra mpeetroeain 2 ny4 hti

ile into the basic operations suitable for the processor array ror 26.e(k) Them partial products are accumulated in the ele-
implementation (Andrlic). ment of the first row. Because of the additional skewing of the

SOperatin 1: weight input vector wr"L partial products leaving the first array, the delay is needed be-

tween the accumulating PE's. In the GAPP device thi can be
Opew'eaien 9: sum partial products to get y(k) easily accomplished by storing the elementary sums in the local
Operae, S: compute error e(k) RAM locations. An error value e(k) is computed by subtract-

Opevetism 4: scale error 2,.e(k) = C ing the output sample from the reference sample d(k) which

Oevo. 5: updat weights w - w + Cw is shifted into the fourth row of the array simultaneously with
the loading operation of the third row. The result of this oper-

It can be seen from the above list of operations that they ation remains in the fourth row and is shifted according to the
can be grouped into two distinct phass - compute &ad update. value of 2A.. The quantity obtained in this step is the scaled

error value and it is sent to the host controller. The controller
The bsic processing steps listed above require a variety uses this value to scale (shift) the original coefficients residing

of elementary matrix operations. Operation 1 requires multi- in the main array. However, before this operation is performed
plication of two vectors. Operation 5 calls for multiplication the original weights must be saved in the RAM locations. The
of a vector by walr and for addition of two vectors. Oper- scaled weights ae also uploaded into the local RAM, and then
ations 2, 3 and 4 require operations on scalars. The values both quantities are summed (w - w+26.w) yielding the new
to be operated on ar reVssnted by k-bit words. Existing updated coefficients, which are used to compute a new output
proem (systolic) arrays poses a esrial srchitecture, mainly sample and the process is repeated.
because it is still prohibitively expensive to build fully parallel
single-wafer multi-procmsor array. Therefore, the operations

mentioned above have to be performed at the bit level. 3.1.2 Hardware Database Machine

Efficient is of the processor array is important in order to
make up for kses caused by the use of serial arithmetic. As
Urquhars and Wood (Urqu84) show the array utilization de-
pends on properly feeding the elements to be processed. Par- e support simple and complex queries

ticularly, if one matrix of arguments is kept static on the pro, 9 provide JOIN and SEMI-JOIN macros

cemr array and the other matrix is entered properly skewed,
then the array is 10D% efficient. In our case it is quite natural * order data rapidly
to keep the coefficients w fixed in the array, while bit-eresms of
input samples x march in from the array sensors. The arange- * invoke fixed and variable length record format

mert described above is a basis for the implementation of the
first operation, namely formation of the inner product w~x. In If the GAPP is cascaded as a set of basic building blocks s

the next step partial products are summed yielding an output shown in Fig. 2. The aggregate system forms an efficient and

sample y. In the third step the etror sample is generated by regular database machine. Much of the normal software opera-

subtracting (in a single adder) the y stream from the d stream. tions are handled directly in hardware. The comparator block

The d stream is a serialized sample of a reference signal. The accepts an input comparand or Record B as 6-bit wide words

obtained value of the arror is scaled in the next operation (4). on the CMS lines. Input record A is entered on the S (south)

This is accomplished easily by properly shifting e(k). The last lines. The comparand is stored in EW registers. Any time

step involve multiplying a vector by a scalar and addition of the data stream matches the comparand the GO (global out-

vectors (bit matrices). The firt operation in this step is the put) line goes high. At S million characters per second, this

multiplication of the weight vector w by the scaled error e(k). exact match operation searches text files for specific words at

Since all weights ae sced by the same scaler value it amounts blinding speeds.

to shifting original weights by a number of places determined
by the value of 2A.(k). The last step requires adding the old 3.1.3 GAPP as Associative Device
weights to the scaled values obtained in the previous operation.
Them stop complete the update pham and a new input sample An aociative memory operates on the basis of matchig

is procesed in the AMstl- the contents not the address of the information. The asocia-

I the least significant bits of x and w interact fir then tive search can be accomplished efficiently if all memory cells

partial prod ucts of equal egnificance leave the edge of the array
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wre check"d for a desired information in pante. The essocia. baed, imaging systacti hae" "n abilty tO pY informatin
lava (or content addresnbl) numory can be built from CAPP in teal time.

devices (We1184).
The associative memory unit consists of a sociative wra 4 Future of SINM ProcOssIU9 COnclu-

mad an associative array Controller unit. The associative array
0 campoeof clls, each with atag bit. If thetus ofa cll is sions
seml then the cell is & responder. Each call holds one entry. The
calls perform specific functions.- compare, read and write. We have presented both thmeiaad practical aspects of
The contr" unit has two important registers . comparand parallel Computing, specifically computing based on SIMD struc-
-- d maa reters. tutu.. As technology reaches its Physical reduction limits, the

The CAPP devau combined with an aptopriate Contrai structural changes in computing becoe. more and more t--
structure form a complete aseociative array. The associative ca.i sovosb o htraiepoesn fiae

wray coneists of a cascaded wray of GAPP devices. Each ele. adother complex signals cannot be accomnplished without

ment of GAPP is utilised as a bit-aerial associative cell. Since structural concurracy end Parallelism
each element is seurial in nature, multibit words wre emulated SIu4D machine. of the future will have many bit-intensive
by using the local 128bit RAM which also serves as storage like features. However them features will remain transparent
fo an intermediate operations. The NS (north-soutb) rehister to the ueer. We e just now discovering the rich coupling
perform various data functions and stores the tag bit. The among matrix-nnpulation for multiplicaias especially when
tags are combined and form the Global Output signal provid. we examine the word- and bit-lvel operation.. McCanny at &I
ing a responder signal to the control unit. I/0 functions are (CaanB3) have reported that most of the current research effort
performed through the CM but. Input data is usually loaded ha. been expended at the word and system level for systolic et-
a word-suriel, bit-parallel but operation of the array is word- rays. However, they show that the systolic Wrray approah at
parallel, bit-msriaJ, therefore, thu torser turning operation on the bit level is nearly identical to that at the word level. Moat
data must be performed which could be done using CAPP de- importantly, they show that many important signal Process-
vices or specialized circuitry. Global input to every cell in the ing and data processing application. can be implemate using
array is esily accommplished by using the op code lines to the regular structure of one or two primitive culls. Andrew.
command the C register to load 1/0. (Andrila,b) has further shown that auch eimilarities between

Control routie for besi function. (compa, write, read) the bit- and word-levels, malke carry/borrow distances; shoirt-

an written in the regietar-tranefer like language. hrm thems sued if special number reefusentationis an invoked.

basic function more complex operations can be build, like eoxact The thrust of thess studies show that we can treat such
match', 'limit mearch' and 'maximumn value march'. In this mathematical intensive applications at the bit-leyel, captur-
specifc implementation. an A bit'exact matchi'mearch of entire ing the power of VLSI along the way. Thus maintaining data
array is performed in 4.4 microsuconds, and A bit read of a lowe at the bit-level have no signifiant impedimenta if tion-
responider can be accompliaee in 3.2 microeuconds. conventional nmbaer systemis are realised. This observation

may even pave the way for TRITes or ternary valued loic. In a

3.1.4 imag M~In~Inrecent paper by Hurs (Hurad), such multi-valued logic (MVL)
Lin~ mmpsdalas shows great promise for VLSI. His argumunte corretly identify

The APP evic we oriinaly cacavd ~ th presnt limitations of conventional binary logic. First, we
The APPdevie ws oiginllyconeive fo th puroseo are bwaing into the packaging thermal limits of VLSI. Second,

image procesinguso it is not surprisig that the - uc&') ao~ seen esltimatoechi inctercthatcsion reel satecustifor
ful apiainofths CAPP af nthat doan(ap~ a m recaatio"n ci incterconhat ion real is ocurringr
The GAPP architecture is radically different from coeivential iipwlncosmsorthnafofheviabed.
image processing structures. Them system required a frmi on-chMip , wie coma. muicoyeanifg the avalae ie.or
buffer to stor an image, a high speed image processor, and Asao rnet, e MOntonnudciosl rataininth afdsnm infor.
another frame buffer for storing the processed image. Thebto*otn oitroaeto aisafre yML
memoty-processie traneausion bandwidth limits throughput Although at BAt we are inclined to dismiss bit-level research
of conventional system. GAPP deal. with this problem by a a backwards step, current stuies now show that many mak-I providing cooe processor per pixel. Thus, all pixels can be pro. trm manipulations make word-level operations nearly identical
cesed in parallel. The local processor RAM offes the -a- to bit-level operations. From thi basic observation, many re-
biluty of eliminating framne buff.. entirely, instead, suffiienly sarcber have concluded that systolic waeys may haive practa.
long surial-woparalle shift registers on input and output aides Cal implications sooner than expected. it war surmised that the
of the procesing aray can be used. The SIPO registers my primiutive cell in the wray ust be very powerful. Hence, one
be al" built from a row of GAPPS. The shift registers are immediately aticipate a VLSI structure with several hundred
long enough tA contain one full video line which is shifted into UGGOs (or equivalent). Now, we Can m that effective pipelin-
the CAPP wray during the horizontal retrace. Bit. of each ing at the bit level permit& us to bit-level primitive cella in

pixel are stored during each cycle in the local RAM cells. Each a computationelly powerful machine. The NCR CAPP (Guo.
processor location is read into thu CM register Prior to each metric Arithmetic Parallel Procemor) is one such realization.
Cm-CmS shift so that the Are& video line is shifted up and We contend that it holds promise of many new commercially
written into the next higher row of PFe as each new video line available sysaolic devices to come.

ilfad into the bottom row of processing elements. The CAPP
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Therefore, multi-valued logic may support new and denser (HirsI4J Hurst S. L., 'Multi-valued Logic, Its Status and Its
VLSI structures. If we continue to explore the other number Future,' IEEE Trans. on Computers. Vol C-3, no. 12,Bsystems, even grester information densities may be posble. Do 1984
We can only conclude that the Illiac IIl may have been way (GsPPU4e) NCR Technical Note NCR45CG72, Geometric Arith-
aihead of its time (it used redundant numbers in the ALU!). metic Parallel Proceesor,Fort Collins, CO 80523, 1984.

Finally, it can be noted that the existing systolic systems A tlcAnrwM.sdWik JS'Pale mee-
(like the CAPP) awe really the irst generation of many new gen- (rilc nrw .am aak Prle mlmn
orations of prallel devices. Additionally to obvious increases in taton of the LMS Algorithm' to be presented at the nt.

density (number of PFe per wafer) and in computational power, Con(. on Parallel Processing, 1985
we can also expect distribution of control functions which are (W91184) Wallis L.N'tilising the GAPP in Associative Procee.
now handled by one meeter controller. This distribution of son Applications,' NCR Internal Report, Fort Collins,
control will result in systolic devices crossing the line between CO, 1984.
SIMO sad MIMD concepts, which is also to be expected as the
creation of 'intelligent' MIMD structure is probably one of the (GappU4b) CAPP Application Note No.1, NCR, Fort Collins,
major goals in the design of computing systems. CO., 1914.
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COMPARATIVE IMPLEMENTATIONS OF THE LMS
ALGORITHM

MICHAEL A.-1RFW ~t
Space Tech Corporation, 2324 Manches~ter Court. Fort Collins. Colorado 90526. U.S.A.

Abstract-A stud olavailabie hardware algorithms %-a made in order to design addpti'.e signal
processor% %ith VLSI. A suitable model in'oking % nchron . topology. and granularit1 has~
b'een chosen ito if~l'~igatc design figures-oI-mcrit fur each implementation. At pieccnt. redun-
darntarithmetic is being cont rusted. basically because carry-free operations ate possible ieuliing
in a speed up. This paper foc.uses on models and primitise computiaional elements for Ihc kai-
mein-s44uaie iLSVISt aIgoiiihm embedded in counvcntional tw4os comiplemlent, bat-erial oi dis.
tribuied arithmetic. and redundant arithmetic processors.

1. INTRODUCTION

A technology-independent architectural study for adaptive signal processors is being
pursued. The basic approach is to analyLe thc hard wa re/soft ware tra~le-off's of* con-
ventional (von Neumann) and nonconventional (parallel, pipeline. vector. arra . Lind
custom processors) in an attempt to identify optimal structures (of'ordcr area x im
which are computationally fast. yet flexible. Regular and simple interconnections and
geometries among high-performance parallel structures are sought. A two-step process
is assumed-, tirst the sequential algorithms are to be speeded up (-seekinig inherent par-
allelism) and second, fast algorithms are to be mapped onto new VLSI architeclitres
(via recursion and pipeliningi. The purpose of this research is to proude theoretical
design tools and interconnection strategies capable of achieving real-time implemen-
tation of adaptive algorithms via limited user programmable mechanism', leg.
firmware).

In this effort. design rules for establishing implementation techniques, which e\-
ecute nonrecursive and recursive adaptive algorithms, must be stated. The design rules
should identify structures -suitable for VLSI. Trade-off,. between various hardware
techniques are then possible. This study has particular relevance to the problem of

* realizing a minimized system architecture for monolithic adaptive signal processors.
VLSI devices capable of being organized by the proposed rules could possess high
bandwidth. low, power attributes in a microminiature configuration to enhance Per-
formance of adaptive antennae arrays, spectrum analyzI ers. acoustics. cryptograph\
(adaptive keys). image processing, and communications.

1* I Opportiinit ' and the chiallenges
VLSI technology opens unprecedented opportunities for syntheSiLing comple\

computational algorithms from various fields of engineering. It is now possible to in-
tegrate a huge amount of hardware on a small silicon area. However. many traditional
computer design concepts are no longer justified tech nologicall y, and this leads to the
formulation of new and challenging problems. A distinct characteristic of VLSI de\ ices
is that the data communication and its VLSI interconnect area dominate the cost and
performance. In contrast, traditional parallel processing finis memories and the Pro-
cessors dominating other design factors.

DESIGNING WITH VLSI

VLSI has now circumrnibed classical methodologies of digital system design. The
traditional criteria of' component count. whether applied to processors or to simpler

'Staf Senii



120 M. ANIALAS

devices, are no longer adequate to establish a scale of comparison among .arlous
solutions to a given problem. Indeed, number-of-elements criteria are substanti.ali
based on the fact that processing elements and their interconnections are realizci b'
different media. This difference disappears in VLSI. which -integrates" both pro-
cessing elements and their interconnection in a two-dimensional geometry. the surface
of the silicon chip. A meaningful figure-of-merit is represented by the area occupiedi
by the total system, thus capturing the complexity of both computation and data com-

munication(i 1. As a result, the VLSI solution to a given computational problem involes
the conception of an interconnection architecture, its layout, and the desikn of an
algorithm for that architecture. For any given problem. it is of great interest to explore
the trade-offs between the production cost (area) and the incremental cost (time) of'a
dedicated circuit develor, , to solve that problem. The area of a chip can be partitioned
into interconnect or wire area A(b), gate area A(g). and wire pad area Atp). And it
appears, so far, that wire area dominates gate area. At least for the class of transitive
functions (cyclic shifts, matrix product, integer product. and linear transformsl. Vuil-
lemin[2] has shown such VLSI circuits must satisfy

A > A(g)N + A(p)B + A(6)B,

where A is the chip area. N is the number of inputs, and B is the average bandv, idth
(bits per second passing through the chip pins). Interestingly. Rent's rule[3-5 is par-
tially substantiated here. (A Rent's rule relation states that bandwidth is an increasing
function of area.) Vuillemin's result substantially supports claims that interconnect area
is VLSI expensive. Furthermore. circuits based on a recursive construction are par-
ticularly well suited to automated design.

2.1 The set of VLSI design goals
This research is concerned with the study of algorithms for VLSI arrays. and

focuses on the transformation of sequential/quasirecursive programs into VLSI algo-
rithms. To do so, it is necessary to define a set of objectives. Although only a partial
list, the following objectives are considered to be important:

I. Correctness and accuracy of the algorithm.
2. Small computation time; computation time includes processing time and commu-

nication time, but not necessarily control time (which should be transparent).
3. Small number and size of interprocessor communication links attempting to min-

imize the excessive interconnect area on current VLSI.
4. Modularity and simplicity of cells. hopefully very similar.
5. Small number of processing cells which may achieve regularity.

Of course. for specific applications the relative weights of these objecti%.s do v'ar,
depending on many factors including technology. yields. manufacturing limit,. die si/e.
power, and speed. Obviously. the accuracy of the result is a prime concern of the
design. The processing time results from the requirements of the algorithm. Here.
architects often seek trade-offs. In VLSI systems, the communication time is ;it letst
as important as the processing time. because physical distance is relatively long. Dc-
signers, therefore, search for algorithms which are neither computationall, nor com-
munication saturated. Many researchers contend that "balanced" algorithms can be
mapped more easily onto high-performance VLSI architectures. For instance. Kungl6
has indicated that interprocessor communication links consume a great deal of silicon
area, time. and energy. In that event, it is desirable to have as few links as possible.
and moreover, to restrict the data communication only to adjacent cells which ma% be
achieved by adequate transformations of algorithms. This goal. however. places a hea,, %
constraint on the architecture. A higher modularity as well as the simplicity of the cells
lead to a smaller design cost.

A hardware model (G. F. T). Transformation of algorithms can proceed N hen a
hardware model is specified. A model proposed by Moldovan[7] is useful to transform
the abstract features of the algorithm into the hardware. We assume the folloming
features for VLSI networks.
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1. The network consists of a planar mesh connected network of processing cells.
Nonplanar meshes are still academic matters.

2. The cells can be of different types and perform different functions. but a minimal
set is desirable.

3. The interconnections between cells are buses which transfer parallel words and
represent a topology.

4. The timing operation of the network is synchronous.

Moldovan proposes an organization and operation for VLSI arrays which can be for-
mally described by a set of 3-tuples (G. F. T). This set appears to be a promising
starting point because it takes into consideration the three dominant design factors
(topology, granularity, and synchrony).

The network geometry G refers to the topology. The position of each processing
cell in a plane is to be described by its Cartesian coordinates. Arbitrarily choosing a
small enough grid makes it feasible to represent these coordinates by integers. Inter-
connections between cells is now a matter reasonably described by the position of
terminal cells. These interconnections support the flow of data through a network of
links. As with all current VLSI structures, a simple and regular geometry is desirable.

The functions F associated with each processing cell represent the granularity of
arithmetic/logic expressions of a cell. Most VLSI implementations assume that each
cell consists of a small number of registers, ALU. and control logic. Several different
types of processing cells might be implemented in the same topology: however, one

reasonable design goal is to reduce the number of cell types and. hence. their
granularity.

The network timing T specifies the processing instant of a cell. As a matter of
synchrony, obviously, a correct timing means that the appropriate data arrives at des-
tination cells at the correct time. The data stream speeds through a network defined
as the ratio between the distance of a communication link over the communication
time. Often, networks with constant data speeds are preferable solely because they
require less control logic.

2.2 VLSI Figure-of-merit
To provide a meaningful gauge for the evaluation of a given design. a computational

model of VLSI has been developed through the initial efforts of Mead and Conway[81
and Thompsonl9]; later refinements have been proposed by Brent and Kungl 101 and
Vuillemin12j. We briefly recall the model with amendments.

A circuit is a graph whose nodes are 1/O ports or gates connected by wires. A wire
has minimal width q and, at most. L wires overlap at any point (planarity): a gate has
minimal area and computes a Boolean function of two inputs: an iO port has some

minimal area and each input bit i, available just once. As regards computation time.
the combined gate computation and result transmission (on a wire between two nodes)
takes some time R dependent upon the technology. One relevant global time parameter
is the output period P of the circuit. defined as the maximum time betwkeen t(vo suc-
cessive data passages at any output port when the circuit is used in a pipelined fashion
at the highest data rate. Another measure is the time T which elapscd between the
beginning and the end of one computation by the chip for one instance (rather than
repeated instances) of a given problem. On the basis of arguments on the information
transfer inside the VLSI chip of area A realizing the circuit, natural measures of com-
plexity in the given module are the area-time products AP and AP.

If we define the problem size as the larger of the total number of bits used to
specify either the input or the output, a simple argument by Vuillemin[2] shows that
the circuit area A. period P. and problem size N satisfy the relationships

and AP- > N

AP > N

I



1 2 2 M A N D R E W Sfor such fundamental problems as integer multiplication. merging. cyclic shift. cyclic

and open convolution, and linear transform. Computing time Tand period P are ob-

viously related to T > P so the above inequalities imply AT 2 > ,V and A T > N. Several
of the above mentioned problems have been considered elsewhere[O. 12. 131. and
circuits have been proposed which are optimal with respect to the AP2 or AP measure.
This study is devoted to seeking design rules implementing adaptive signal processors
which are optimal with respect to area x time.

3. THE ALGORITHM SPACE

3.1 Adaptive algorithms
The theory of adaptive algorithms is relatively well developed and many algorithm,

have been proposedl 14-35]. However. many of these algorithms are computationall[
complex and are really only suitable for non-real-time implementation on digital com-
puters. In our study, the algorithms to be used should be as simple as possible (to
reduce user-programmability requirements) and also be tolerant of device noisles (to
help increase computational speed). This background material is given as a guide to
the eventual selection of a class of adaptive algorithms suitable for real-time processor
implementation.

In general, as a filter, an elemental adaptive signal processor may be viewed as a
system supplied with two inputs, a signal input and a desired output. The signal is
applied to the input of a FIR (finite impulse response) filter with a programmable (time
variable) impulse response. The impulse response of this filter is adjusted in such a
way that the filter output approximates the desired output as closely as possible. IIR
(infinite impulse response) realizations are also possible where internal fecdtorAard as
well as feedback signal paths exist. For discussion purposes, we loosely classifl the
former as nonrecursive algorithms and the latter as recursive algorithms.

3.1.1 Nonrecursive algorithms. In the elementary case described now. a popular
updating algorithm used is the Widrow least-mean-square (LMS) algorithm which up-
dates the weight vector W to minimize the mean-square error between some desired
signal d(t) and the filter output y(it). A derivation of the algorithm may be found in
Ref. [16]. Briefly stated, the updated weight vector H' is given by H' = H - 2uc tiN
where H is the previous value of the weight vector, S is the signal vector. i is a
convergence factor, e(t) = d(t) - y(t) is the error output. and d(t) is the desired or
training signal. Proofs of the convergence of this algorithm assuming perfect device
parameters may also be found in Ref. [36]. A nonrecursive adaptive filter structure is
displayed in Fig. 1.

Currently, the "sliding window" exact least-squares algorithms (also knoN'n as a
sliding window covariance) has more superior tracking properties than the LNIS (gra-
dient) algorithm[37?. Hence, our studies on nonrecursive algorithms to be cast into
VLSI schemes shall include those from LMS to the sliding window formulations.

3.1.2 Recursive algorithms. The previously described algorithm is one of many
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nonrecursive algorithms. Adaptive IIR or recursive adaptive formulations also enjoy,
a wide selection of algorithms. Popular among these are the:

I. Stearns-White recursive gradient algorithm.
2. Feintuch gradient approximation algorithm.
3. Soderstrand-Gitlin recursivelike echo canceler algorithm.

As with many recursive structures, due to the presence of poles, maintaining stability
during adaptation becomes crucial[27]. In addition, the LMS error surface is nicely
quadratic with respect to the weights. The IIR algorithms' corresponding performance
surface is nonquadratic and may contain multiple minima(341.

Let us formulate a system identification problem as in Fig. 2. The transfer functions
are defined as

H A(z) = = (1)
B(Z) I - biz-I b- ..

A A(z ) ti) + Iz-, + +

B(:) I - - ... z ....

This adaptive processor attempts to adjust the coefficients of H(z) so that the minimum
mean-square output error Ewe2) is obtained.

Update algorithms for the weights take on the form

H,-i = H, + MR-'(-Vj. (3)

where

H is an adaptive weight vector,
P V, is the performance surface gradient vector,

M is a diagonal matrix of convergence factors,
R is a correlation matrix (elements determined by selected adaptive algorithm).

The weight vector and gradient vector are, respectively.

Hk= Iejo 61a0  1 * b b,, IT (4)

V Ele") i Ee 2 ) .Ee 2 ) T.

The Stearns-White algorithm first proposed in 19751321 is a gradient algorithm
similar to the LMS technique. However, the parametcr update method uses a recursi'e
calculation of the gradient. This approach is compuzationally expensive because of the
complicated nature of the error function ct in recursive filters. Here, the instantaneous
output error is used as a local estimate of its own mean value. The adaptive updates

Fig. 2. A it dentlfication problem

1 '11-11 wV 114 1 1, 1 1 1 11 'r C I'1
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are expressed as

a,(k) = - ae(k) u(k - n) + 6,A ,a(k - i).6

6e(k)
be(k) = - (k - in) + . b,(k)b,,,(k i),

where the instantaneous output error is

e(k) = y(k) - 9(k) (8)

and the matrices of convergence factors, correlation matrix, and gradient vector
become

M = diagi uo "" unP" I. 9,

R = I = Identity matrix, (10)

'Ok = e(k) I ao(k) ... a,(k)b (k) ... bk) .  (I)

Feintuch[35] proposes a greater simplification to reduce computations per iteration
with a gross approximation of the gradient. This algorithm is based on the assumption
that the covariance terms which arise in taking the expected value of the squared output
error are constants when differentiated with respect to the coefficient vector H. As a
result, the gradient vector can be estimated as

VTk = e(t)XT(t)k. (12)

where

X (t),k = u . Uk- k .. I. (13)

The third algorithm is a modification of the Gitlin algorithm{331. A new error func-
tion is defined to which the LMS algorithm is applied. In all IIR cases. we must rec-
ognize that we are incurring much larger computational costs than with the simple LMS
structure alone. But there are strong results that suggest that fewer filter coefficients
are needed for llRs. Therefore, fewer multipliers may be necessary, thus reducing the
computational costs somewhat.

Soderstrand[17] makes a revealing comparison among these choices based on equal
cost implementation. Here. he assumes that the multiplier is the overwhelmingly ex-
pensive element in any physical realization, so his comparisons rest on each imple-
mentation with identical numbers of multipliers. Although the results are qualitative.
we can make the following observations on the relative merits of the LMS nonrecurlsile
algorithm and the three identified above. For 63 multiplier realizations, the LMS al-
gorithm performs as well as the best recursive choice (Soderstrand-Gitlin). Unfortu-
nately, we cannot unreservedly choose an LMS over recursive methods based on Sod-
erstrand's work. Even though he measures performance of the algorithm by ho, close
their respective filter parameters converge to the least-mean-square approximations to
five test cases, he has offered no quantitative measures.

3.2 Effectiveness of redundant arithmnetic
Ercegovac[381 has proposed fast computational methods amenable for efficient

hardware level implementation as viable alternatives to parallel algorithms implemented
and to implementation-dependent algorithms, primarily operating in a fixed-point num-
ber representation system. We can generally classify fast methods as: (l those imple-
mented with multiple general purpose processors and with the corresponding algo-
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rithms, and (2) those implemented with special purpose processors with algorithms
embedded in the hardware (operation) level.

When considering a computational method for possible implementation, we are
concerned with: (1) the application domain, (2) the required set of algorithms, and (3)
the required set of primitive operators. With these, we can then associate a set of
desired or required properties; for instance, the speed, the complexity, and the cost
of implementation, the fault tolerance capability, numerical characteristics of the al-
gorithms, etc. The objective of this study is to define a method that would have a
sufficient generality to adaptive signal processor applications and such functional prop-
erties in order to justify a hardware level implementation.

Ercegovac's method is compatible in many respects with the method invoking
multiple processors because the computational algorithm is simple and problem in-
variant. There is no shift operator, which in the previously proposed methods must
have a variable shift capability (e.g. distributed arithmetic schema of Peled and LiuI39].
Roberts[401, Cowan et aI.[411, and others42-44]). When a redundant representation
is introduced in order to increase the speed of computation, a variable shift operator
can considerably affect the complexity of implementation.

It can be demonstrated that certain arithmetic expressions, multiple products and
sums, inner products, integral powers, and solving of systems of linear equations under
certain conditions are among the possible applications. Basic arithmetics, in particular.
multiplication and division, can be performed by this method. Furthermore, it has a
useful functional property in that the results are generated in a digit-by-digit fashion
with the most significant digits appearing first so that an overlap of computations can
be utilized. Equally noteworthy is the fact that AD conversion gives the most significant
digit first so overlapped signal processing is possible.

3.3 Basic divisionimultiplication in redundant arithmetic
Let us consider problems of division and multiplication in a computational envi-

ronment whereby basic arithmetic algorithms satisfy an "on-line" property. In other
words, to generate the jth digit of the result. it will be necessary and sufficient to have
the operands available up to the (j + 8)th digit, where the index difference 6 is a small
positive constant. At first, we will accumulate 8 initial digits of the operands before
we can produce the first digit of the result. Subsequently, one digit of the result is
produced upon receiving one digit of each of the operands. Remarkably, 6 is the on-
line delay which can be arbitrarily small. Such algorithms are attractive because of the
inherent speed up due to their potential to perform an overlapped sequence of oper-
ations. Fast variable precision arithmetic is also possible. The on-line property will
implement a left-to-right digit-by-digit type of algorithm using a redundant represen-
tation for the results.

Consider an m-digit radix r number N nr '. In the conventional repre-
sentation. each digit ni can take any value from the digit set 10. i .... r - 1,. Such
representations, which allow only values in the digit set, are nonredundant since there
is a unique representation for each (representable) number. By contrast, number sys-
tems that allow more than r values in the digit set are redundant, and often speed up
arithmetic operationsl45. 461. Note that a redundant number representation may be
required for on-line algorithms. In a nonredundant number system, addition and sub-
traction incur a carry propagation penalty. Redundancy limits the carry propagation
to one digital position [cf. Ref. (451, an on-line algorithm for addition (and subtraction
with 8 = I, and an on-line algorithm for multiplication with 8 = I1.

3.4 The computational algorithmn u.sing redundant arithnietic
Suppose a linear system of L equations is given. An algorithm for solving a system

L is desired whereby an iterative, digit-by-digit method occurs. That is, the algorithm
generates one digit of each of the elements of the solution vector in one step. Some
redundant number representation definitions are no" appropriate.

tI
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DEFINITION I3 An rn-digit radix r representation of a number.I x I< 1. is a pol nomial expansion

x=sgn x x,r' (14)

where x, E D V i, and D is a digit set.

DEFINITION 2
Given the radix r, a set of consecutive integers D including zcro is

(1) nonredundant if its cardinality satisfies I 1. r
(2) redundant if I D I > r

DEFINITION 3

A symmetric redundant digit set is defined as

D, -p, -(p 1 )....1, 0.1. p -, lp}. (15)

where

DEFINITION 4

A symmetric redundant digit set Lip is said to be

I DI, r + 1. (17)

i.e. p = jr (assuming an even radix r):
(2) maximally redundant if I D r -1

i.e. p = r - 1. Let D and D, denote nonredundant and redundant digit sets.
respectively. Then the representation of a numberx is nonredundant or redundant
depending on whether x, E D or r, E DP.

4. ON-LINE MLLTIPLICATION

The following describes an on-line algorithm for multiplication w hich can be made
compatible with on-line division. It is a type of incremental multiplication (using digital
differential analyzersl47. 48], combined %kith the redundant numbers).

Let

X X,~ .r.(9

Y r(20)

be the radix r representations of the positi,e multiplicand and the multiplier. respec-
tively. Define

j 4- r Y, (22)

ilk
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to be the j-digit representations of the operands X and Y, available at the /th step by
definition of an on-line algorithm. The corresponding partial product is then

X, Y, = X, -'Y, - + (X, + Y, 'x,)r-'. 23)

Let P, be the scaled partial product. i.e.

P, = X1 Y.r j , (24)

so that the recursion of the multiplication algorithm can be expressed as

Pi = rP 1 -+ X.y + Y,-,.x-. (25)

Let Po = 0. Then the scaled product P,, = XYr'" can be generated in in steps of eqn
(25). Note that if a nonredundant number system is used in representing the partial
products. the digits of the desired product appear in a right-to-left fashion, as determined
by the conventional carry propagation requirements. However. for a redundant number
representation, left-to-right generation of the product digits is possible and desirable.
Furthermore. the execution time to perform a recursive step vill be independent ot
the operand precision because carry-free addition is possible. We now essentially de-
scribe the applicability of Ref. L491 to our current %,ork.

We will use a symmetric redundant digit set which is

D, -p. - (p - 1). . , 0. 1. p - 1, p). (26)

where

jr p r- . (27)

According to the general computational method of Ref. [50], the basic recursion (25)

for the multiplication is

wi, = ,',, - d,.,X. ,) X , Y, - (28)

where the digits d, E D,, are determined by the selection function

d, = S(i.,) = sgn i, i I -,I + J1. 129)

Then, from (25) and (28). the following relation can be obtained by induction:

P,= - , d'-" (301

Substitutingj = n in (30) and rearranging. we obtain

n- I

P... = X'Y'r'" = r'" , d,r -' i- (,,, 131)

or

X'Y = , d,r-' + (w,,, - d,,,)r... (32)

According to the selection function S(w,) ,%here i w,,, - d,,, 1 . S;" d,r - is no,
the redundant representation of the most significant half of the product XV. . Con% er-
gence of the algorithm is now guaranteed.

"1.~V-~-.~ .-- -,
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Let us assume that the selection function (29) can produce the digit d, such that
d,5 < p. This condition is satisfied provided that

I % I <p P' - . (33)

where =I 2,. m. We next bound M on the values of the operands X and Y to
ensure that (32) holds. Let, X Y < Ml. Noting that i i,- d, < i and x

x, p. from 133) we obtain

is, Ii jr - M.(341

Rearranging (32) %&e obtain

2 4P

Notice thit in a minimalls redundant system ip =r,2). the required operand bound
must be

X . Y <- . (30)

whereas in a maiiimall\ redundant sy.stem lp = r 1)H. the required operand bound
must be

N Y < i. (37)

These hounds ire not tight In binar% i:idix. X Y:<' suffices.
The time required for the computation of' it is made independent of the precision

of the corresponding operands h% allovwing

-d, < I.

which implement-, a carry-propagaiion-free addition per (29). This last obsersation is
most critical to the redundant arithmetic LNIS implementation.

4.1I LMS t1L!P1(j1 co (li t flillf

In subsequent discussion-,. all one-dimensional matrices are represented b column
vectors. Boldf'aced characters are iectors or matrices As usual, the superscript /I icters
to the transpo!se of a column %ector or matriX, and printed \sectors represent updated
vectors, (The variable t. denoting time. is omitted from subsequent expressions, but
is implicit to discussions.) The necessary scalars are defined as.

hun I= nih csueticient (it an '*-point digital tran'serail tilier
fit = kth partial product used in the output aicunulaiti&n ot i ,tinhuted .inmeti, tiit

%ni= &-init input s.ignai sample presentiat pointli of si n \-poitnt ditiit.sI filter
% = digiial tiller output
d = input training signal ito digital adapt i~e filier

t= d - %= error sdrmple generated b digital adaptise filterft

These scalars form the followAing matrices;

S, (,M %1t. s21. st. ill. 't it

H, O I )JI. iul 2i 1 . hl,;. Mi \ )
Ft ifi i i 621. .~ JiA, A it

X, 1 1,2 ' 2 i.i e the set oft he 11irst A ncgati~ C integer pn~ers of2
B =the % A- K rras oi hit %alues %hiirn results Ahen a A-ti' input signal se~lt is. torej in in \-on

digta flte Bi, mere)'. S de..omnpoej ,nto somroent hit,

KiM1111
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Consider a set of N registers, each of length K bits which provides storage for the
N x K array of bit values. This array is represented by the N x K matrix of binary
values B. We then view a classical N-point transversal filter as capturing signal vector
S containing N K-bit components. The signal vector can be expressed as

B S - BX, (39)

where it is assumed that the signal is coded in offset binary, wherein logical 0 takes
the value - I. The output of the filter is given by the convolution

- = SrH, (40)

where the column vector H represents the set of N filter coefficients. Define the column
vector F as

F = BTH, (41)

and substituting (39) in (40), using the property of matrix transposition we have

y = XrF, (42)

where F is a set of partial products.
Cowan et al.141] has observed that the output filter formulation of (42) when com-

pared with (40) reveals the essential elements of the distributed arithmetic architecture
of the LMS algorith,- depicted in Fig. 3. Simply stated. Fig. 3 is a summation over K-
bit planes rather th, -ver N filter points. Only the basic hardware configuration for
a fixed-response distributed arithmetic filter is depicted in Fig. 3. The input ADC (an-
alog-to-digital converter) signals are presented serially to a set of N cascaded K-bit
shift registers. As this serial bit stream enters the shift registers, the shift register parallel
outputs generate K N-bit address words on the RAM address bus. Each RAM datum
is then right shifted k bits and accumulated. The accumulation is complete after K
memory accesses. Finally, an output sample is converted to an output analog signal.
Since the filter coefficients F are adaptable, the buffer/sum block will generate the
coefficient updates to the RAM.

4.2 Conventional binar, ALU
The LMS algorithm can be implemented in conventional twos complement arith-

metic architectures using hardware intensively or sparsely. Obviously, if the algorithm
is implemented w.ith 2N multipliers and 2N adders (very intensivei, no faster com-
putation speeds can be achieved. The on-line delay is approximately equal to that of

it)

SHIF

" --- *t

K-BIT SHIT SHIFTSL" D d (t)
REGISTE[RS -sutm

I~ Fg 3 Di,,tributed arithren , ,r :hite~ture
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the slowest computational element (adder, multiplier, ADC). In practice, we realisti-
cally expect a trade-off between computation speed and the amount of hardware.

Two cases are considered: case I with a one adder and one multiplier element and
case 2 with 2N adders and 2N multipliers (where ,V is the number of filter coefficient.,).
In both cases, multipliers and adders process twos complement numbers in parallel in-

bit fashion. The architecture of Fig. 4 is assumed in either case, except that the adders
and multipliers are replicated 2N times for case 2.

Of great interest is the minimum sampling time T of each implementation. This
figure-of-merit is a function of the following processing element periods:

T,, rn-bit, twos complement addition cycle,

if T. = memory write cycle time,

T, = memory read cycle time,

T, = one-bit shift,

T,, = m-bit multiplication of two operands.

Assume that the LMS algorithm invokes the equations

= ST H (filter output), (43)

e = d - Y (filter error), (44)

H' = H + tieS (weight update). (45)

where upper case and lower case denote vectors and scalars, respectively. The filter
convergence rate is determined by the scalar it. In practice, u is simplified to 2A, K E
{O. - I. - 2. - 3, . . .}. We make the assumptions that analog-to-digital conversion time
TA,. and digital-to-analog conversion time T3AC are relatively short:

TDAC, TADc , processing time of slowest computational element. (46)

RAM

SS

es

Fig 4 Cunentionji binr archilcture

D
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Let A, A.. and A .4 represent the chip area for the rn-bit parallel adder. multiplier.B and memory.
Case 1: One two-, complement rn-bit parallel adder and one ni-bit multiplier.

T =2.N(T, + T, + T, + Tj) + uNT, + Ta. (47)

The area x time figure of merit, FOM. can be no better than

FOM :-: (A, + &, + A51 )[2N(T,. + T, + T_. + Tj + uNT, + Tj. (48)

Case 2: 2N multipliers and rn-bit parallel adders. After an initial delay (N - I
sampling% to fill the memory). it is possible to produce a filter output at every sampling
instant. Here. eqn (46) may no longer apply. Even so. signal conversion can be pipelined
with data processing causing only a slight penalty:

T =T,+Tm + 3 T,, + T,, (49)

FOM -- 2N(A,, + + A,,w) (T, + T., + 3L~ + T j. (50)

The FOMs in both cases arc lower limits because no interconnect area is considered.
However, the bound in eqn (48) is much tighter than the bound in eqn (50), Simply
because case 2 utilizes 2(N - 1) more computational elements than case 1.

4.3 Bit-sequential cell
SipsJ441 has proposed a primitive bit-iequential cell and a linear two-dimensional

processing clement (for addition. subtraction. multiplication, and diision as show n in
Fig. 5. Multiplication is based on the well-known technique of' incremental multipli-

XrAL s in C

D

XTA

COM

sout

Fig. 5 Bit-sequentidi ceo .irchitecture
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cation[49] in which the MSB is produced first. Figure 5 depicts an individual full adder
(FA) cell and a bitwise floor plan to execute the basic algorithms of the product pairs
AB and CD, essentially using a systolic array with one-bit full adders. Processing begins
in the upper right corner and proceeds downward through the array.

Each cell is comprised of a D flip-flop, 3-input AND gate, 2-input XOR gate. and
a full adder. The XOR gate is provided for obtaining the complemented operand (if the
operand has a ne--.tive weight). Two operands are provided to each cell via the "'A"
and "b" lines. Control lines XTL and XTL' load successively each new bit of the
operand in the next column (to perform the systoliclike addition).

The basic feature of this architecture configured with the bit-sequential cell is that
all operations have the same operation time and that the operation time is linearl,
dependent on the number of bits of the operands. The hardware complexit described
in Ref. 151] has been shown to be of O(m) complexity.

4.4 Redundant arithmetic cell
A digit slice proposed in Ref. (51] can be used as the basic computational redundant

arithmetic cell. The cell is a three-level digit slice capable of implementing addition.
subtraction, multiplication [using eqn (32)1, and division. A restriction on the digit
ranges per (36) applies here. It is important to note that the basic LMS algorithm
implemented with these cells can operate on the most significant digit first. Hence. this
computational feature makes best use of an analog-to-digital converter which first pro-
duces the most significant digit. In this case, processing and conversion can be
overlapped.

The cell depicted in Fig. 6 assumes that the input digits a. b. and c E D belong
and that the data outputs consist of a result digit s and three transfers v. t, and v.
Primed digits are intermediate transfers between cells. The cell performs the followking
functions.

I. Product of b andc:

ru + w bc where r is the radix. (51)

2. Multidigit addition of a, w', u:

rx + t -a + 'u. 52)I
a b c

MULT

W, u -W
U W

M-adder

M -adder V1

Fig 6 Redundant arithmen. cell irchilectuic
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Table I Comparison of architectural complexit,

Conventional
binar),

2.N multipliers) Distributed Redundant
i2. addersi drithmetic arithmetic cell iti-sequential cell

Gdte COMPlitI 012 nyiN I 014N Of M) 01Irn
Latency N - I memor5 4NX bit shifts one ADC bit 6- I ADC bit

rites, conversion conversion
VLSI asmenable structure irregulair es es yes
F siimaicd pin technology it', hnoligy l0111 4()t

count/cell sensitive %ensilie

t Assumes each cell is a 4-bit slice.
in number of digits in a word.
k number of bit% in each shift register iA < nyi)

N number of filter coefficients
& small positi% e constant 13 or 4) less than Tei. the time to complete ai full bit-parallel operation

3. Multidigit subtraction.

rx + I -- a- - -+U. (53)

4. Assimilation ( maintenance of signed digit code):

-rv -t 5- a - Y' whereN.E (0, 1). (54)

The digit slice is configured in a linear one-dimensional array. In left-to-right fashion.
any intercell transfers propagate via the vv, t'. and ''lines. Results appear at the bottom
of each cell. With the floor plan for the basic adder/multiplier unit, few bridges or vias

* are anticipated. Thus. "stray" transistors caused by metallic bridges can be minimized.

5. SUMMARY

Four architectures are compared for their suitability for VLSI implementation of
the LMS algorithm:

1. Conventional twos complement binary full-parallel adder/ multipliers.
2. Distributed arithmetic variation of I 1) using bitwise adders across the filter taps.
3. Redundant arithmetic cells repi-cing the adders/ multipliers of (1).
4. Bit-sequential arithmetic cells replacing the adders/mult ipliers of t I).

Table I lists, the relative complexity of each architecture. The conventional architecture
has the overw helmingly highest gate complexity. but also a very short laten:y. Latency
i-, the w4aiting intersal before actual computed results appear at the output. The con-
%entional architecture is also very general purpose and can support other algorithms
much more cons eniently. As expected, increasing hardware tends to expand the ap-
plication base of an architecture. Howeser. no analysis of control unit requirements
has been made. A future paper %%Ill compare control, communications, and data trans-
pori requirements,

It is important to note that the area time figure-of-merit for all architectures applied
to the LMS algorithm comply with either eqrls (4h) or 150) Only the individual vall es
of .4, and T, %ill change dependent on the particular technology -Each FOM is very
optimistic since the interconnection area between the PEs has not been considered.
Such important factors at- heing -studied and Aill be reported in a future paper.

4, kncl.hdiectt-Thi% %ork his been supporled in pirt h'v AR() Researat Graif *D.AA29-)3-C-i)02-5
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Parallel Implementation of the LMS Algorithm

M. Andrews and J. S. Walicki'

Abstract: Fast and accurate adaptive filtering implemented in the digital hardware is
necessary in many areas of communication and general signal processing. This paper
discusses the realization of the least mean square algorithm for adaptive filtering on
a rectangular systolic array. Two such arrays are needed for six coefficient, twelve-bit
adaptive filter. Extension to a larger filter, or higher resolution can be easily accom-
plished by cascading processing arrays. The implementation proposed here is oriented
towards the 72-processor array manufactured by the NCR Corporation. Efficient uti-
lization of the processing array is accomplished by proper feeding of input data arriving
from a sensor array. Processing is performed at the bit level and the vector operations
of the original LMS algorithm become matrix operations. The processing is divided
into two phases - compute and update. In the first phase a new output of the filter
is computed, and filter cofficients are updated according to the LMS rule in the nextF phase. Effects of the finite-word length are discussed but with 12-bit representation of
signals these effects are not severe.

1 Introduction

.1.1 Adaptive Filtering and the LMS Algorithm

It is well known that any transmission of information is vulnerable to degradation caused by
various types of interferences (noises). These noises may be accidental like the RF interference or
intentional like electronic countermeasures. In any case, the reduction of interference is important.

Classical techniques aimed at increasing a signal-to-noise ratio (SNR) usually employ informa-
tion derived from a single signal sensor. No additional information is provided, other than the signal
and perhaps statistical properties of both signal and noise. However, chances for the restoration
of original signal can be increased if multiple measurements of the signal wave are available. An
array of sensors provides such an opportunity. Such a sensor array attracted our interests because
it generates a vector of signal components which can be processed in parallel.

'J. Walicki is with Computer Science Department, Colorado State University, Fort Collins, CO 80523;
M. Andrews is with Space Tech Corp., Fort Collins, CO 80526

1 This study was sponsored by the U.S. Army Research Office under grant DAAG29-83-C-0025.
The U.S. Government assumes no responsibility for the information presented

I1



The goal of such processing is well defined - produce a signal as close the original signal as
possible (allowing for the least mean square error, for example) without prior knowledge of the
signal/noise properties. This goal can be achieved if the processing is self-optimizing, that is,
if processing parameters are continuously modified so that the error criterion mentioned above
is satisfied. An adaptive array is therefore an array of sensor elements plus an adaptive control
algorithm.

The implementation of the adaptive control algorithm can be viewed as a problem of realizing

a normal digital filter with changing filter weights. Several performance measures exist and the
nature of the adaptive algorithm depends on the selection of particular measure. Adoption of the
mean square error for the criterion of optimality leads to the elegant Wiener solution for optimal
weights.

If an array produces output y(t) which is obtained by weighing input vector x(t) then an error
signal is a difference between a reference signal d(t) and the output y(t):

c(t) = d(t) - w Tx(t) (1)

The expected value of the squared error is then:

E(C2(t)) = d2(t) _ 2wTr d+ wTR.w (2)

where R. is the autocorrelation matrix of input signal, and rzd is the correlation vector of input
and reference signals. If d(t) = s(t) then d2 (t) = S which is a signal power. It can be shown that
the value of w which minimizes E(c2(t)) must satisfy the Wiener-Hopf equation:

WO t= R 1r. d (3)

For the adaptive array described above the performance measure (MSE) is a quadratic function
of the weights. Therefore the performance measure is a bowl-shaped surface and the goal of theadaptive processor is to find a bottom of that bowl. It can be accomplished by any 'hill climbing'

method. The idealized version of the 'hill climbing' is the method of steepest descent which assumes
that the statistics of the signal environment are perfectly known. In many practical situations,
however, the signal statistics are stationary but unknown. For such problems the Widrow's Least
Mean Square (LMS) algorithm described in the next section is particularly useful (Monz80).

1.2 Implementations of Digital Filters and the LMS algorithm

Filtering by means of digital hardware offers many advantages such as repeatability and con-
trolability, but also presents a problem of fast and efficient execution, especially if implemented on
a classical SISD digital processor. Attempts at speeding-up the processing had been directed at
improving the execution efficiency via nontraditional arithmetic such as the residue number system
or the distributed arithmetic (Pele74,CowaS1,Cowa83).

Efficient realization of digital filters aimed at increasing speed and reducing power consumption
has been investigated by Peled (Pele74). He proposed storing a finite number of results of interme-
diate arithmetic operations of a filter, and using them to obtain output samples. In that scheme

2
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only additions and shifts are necessary. Elimination of multipliers speeds up and simplifies the
execution. The intermediate results are stored in ROM which is addressed by proper combination
of bits of the digitized input signal. Cowan and others (Cowa8l,83) proposed implementation of
an adaptive filter using the distributed arithmetic. Again the major increase in execution speed
is obtained by prestoring all possible intermediate results, and the ROM is substituted by RAM
since updated weights of the adaptive filter affect the prestored intermediate results. Both Peled
and Cowan deal with single input stream.

Ercegovac (Erce77)proposed a fast computational method which exploits the redundant num-
• lber representation system. The method utilizes only fixed-point additions without overflow, and

therefore, no roundoff errors occur. However, errors due to the finite precision representation have
to be handled by extending the working precision. The E-method, as it is called, generates one

I . digit of each of the elements of the solution vector in one step, starting with the most significant
hdigits. The main feature of this method is fast evaluation of polynomials, rational functions and

arithmetic expressions in a fixed-point number representation system. The redundant arithmetic
has been used in the digit slice proposed in (Chow83). The cell is a three-level digit slice capable of
implementing basic arithmetic operations. The digit slice is configured as a linear one-dimensional
array. Results appear at the bottom of each cell. It is worth noting that the basic LMS algorithm
implemented with these cells can operate on the most significant digit first. Hence , this computa-
tional feature makes best use of an analog-to-digital converter which produces the most significant
digit first.

In what follows we propose a fully parallel (SIM) architecture for realization of an adaptive
filter array which processes multiple input streams. This approach became feasible with advent of
processor arrays (also called systolic arrays). This presentation describes a proposed architecture
in general terms. However, the 72 processor array manufactured by NCR directly realizes the
structure presented here.

Section 2 describes the discrete LMS algorithm from the point of view of processor array imple-
mentation, and proposes basic phases of processing. In the section 3 implementation of the basic
operation phases is discussed. Section 4 deals with effects of the finite wordlength. Section 5 offers
a summary and conclusions.

2 Parallel LMS algorithm

An array of sensors generates vectors of samples in response to a signal wavefront entering the
F array. This input vector is then fed into the pattern forming array where every input sample is

scaled by the appropriate weight factor. Contributions of individual weighted samples are summed
yielding the single output sample:

n

yQ)= wix(k) (4)
i= 1

The error sample e(k) is then obtained:

e(k) d(k) -y(k) (5)
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The error value is scaled by the convergence factor and the resulting value is used in the LMS rule
of coefficients update:

w(k + 1) = w(k) + 2A,e(k)x(k) (6)

where A, is a scalar constant controlling rate of convergence and stability. The equation above
offers a simple prescription for the weight adjustment - the new weight vector is determined by
adding the input signal vector scaled by the error value to the old weight vector. It can be shown
that after a sufficient number of iterations the LMS solution converges to the Wiener solution.

It is possible to partition the LMS adaptation rule into the basic operations suitable for the
processor array implementation.

Operation 1: weight input vector wTx

Operation 2: sum partial products to get y(k)

Operation 8: compute error e(k)

Operation 4: scale error 2Ae(k) = C

Operation 5: update weights w -w + Cw

It can be seen from the above list of operations that they can be grouped into two distinct phases
- compute and update. It is worth noting that this grouping is not only a matter of convenience but
also that there exists an underlying reason for such an arrangement. The operation of weighting the
input vector is a convolution like operation. This fact places specific restrictions upon the system
under consideration. Namely, the system has to be linear and shift(time)-invariant. In practice it
means that the weight coefficients must not change once filter convergence is reached. Therefore,
the computations are performed with constant coefficients which change only during the update
phase.

r". The basic processing steps listed above require a variety of elementary matrix operations. Op-
' eration 1 requires multiplication of two vectors. Operation 5 calls for multiplication of a vector by

scalar and for addition of two vectors. Operations 2, 3 and 4 require operations on scalars. The val-
ues to be operated on are represented by k-bit words. Existing processor (systolic) arrays are serial
architectures, mainly because it is still prohibitively expensive to build a fully parallel single-wafer
multi-processor arrays. Therefore, the operations mentioned above have to be performed at the bit
level. As the result the vector operations become operations on matrices of binary representations
of signal samples!

Efficient use of a processor array is thus important in order to make up for losses caused by
the use of serial arithmetic. As Urquhart and Wood (Urqu84) show, array utilization depends
on properly feeding in samples to be processed. Particularly, if one matrix of arguments is kept
static on the processor array and the other matrix is entered properly skewed, then the array is
100% efficient. In our case it is quite natural to keep the coefficients w fixed in the array, while
bit-streams of input samples x march in from array sensors. The arrangement described above is
a basis for the implementation of the first operation, namely formation of the inner product wTx.

The second operation, that of summing partial products in order to obtain a value of the output
sample y(t), is accomplished by using an adder tree. If weight coefficients and input samples interact
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in such a way that the least significant bits are processed first, then the output from the adder tree
is a serial stream of bits with the least significant bit leading.

In the third step, the error sample is generated by subtracting the y stream from the d stream.3 The d stream is a serialized sample of a reference signal.

The computed value of the error is scaled in the next operation (4). This is accomplished easily
by properly shifting the e(k).

The remaining fifth step is the most complex, since it involves multiplying a vector by a scalar
and addition of vectors (bit matrices). The first operation in this step multiplies the weight vector
w by the scaled error e(k). Since all weights are scaled by the same scalar value it merely requires

a simple shifting of old weights by a number of places prescribed by the value of 21, e(k). This
operation can be performed in a separate processor array with original weights doubled just for
the purpose of that processing. Or, given a sufficiently powerful processing element (as we will see
in the next section), it is possible to scale weights in situ. The last step requires us to add the
old weights to the scaled values obtained in the previous operation. Again, given an appropriate
processing element (like the processor array mentioned in the introduction), this operation can
be done in the original array. These steps complete the update phase and a new input sample is
processed as in the first step.

The next section contains a detailed description of the architecture of the LMS adaptor. This
implementation is general but can be easily implemented in the NCR's 72 processor array.

3 Architecture of the LMS Processor

SThis section describes the overall architecture of the LMS processor. The heart of the system
is a processor array whose main functions are: the storage of adaptive coefficients (weights) and
generation of an output sample y(k).

Without loss of generality let us assume that the input vector is generated by a six-element sen-
sor array, and that both input samples and weight coefficients are represented as 12-bit quantities.

*, It can also be assumed that these quantities are positive and less then 1.0. Extension to the two's
complement representation is rather straightforward (Cowa8l,McCa84).

These assumptions allow direct implementation of the 72-processor (6 x 12) array manufactured
by the NCR Corp. The Geometric Arithmetic Parallel Processor (GAPP-II) is a rectangular systolic
array processor chip which can be cascaded in both north/south and east/west orientations. Each
1-bit processor element (PE) can communicate with its four neighbors. Each PE consists of a
bit-serial ALU, 128 x 1 individually addressable RAM and 4 single bit latches. The I/O latch
allows communication through the PE without interrupting the ALU, the remaining latches hold
inputs to the ALU. The GAPP operates as a SIMD machine. That is, instructions are broadcast
to each cell from an external control store, loaded in turn from the host computer. Proper address
sequencing can be provided by any general address sequencer like the microprogrammable AMD
2910 sequencer. The instructions directed to the processing elements consist of a 13-bit control
field which specifies the array connectivity and arithmetic/logic operations, and 7-bit RAM address.
These instructions can be sent to the GAPP array at the rate of 10 MIPS. The array has a global
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broadcast of input data and a global output. One GAPP array device can function as a modular
component in a larger array, thus enabling word or bit-length growth of an array as needed. In LMS
applications it may be desirable to increase the number of coefficients, which can be achieved by
simply cascading another array expanding a filter to 12 coefficients. Likewise, cascading one array
in the direction of input stream, increases the wordlength from 12 to 24 bits. (Davi84,Gapp84).

The following diagram schematically shows operation of the first processor array which contains
coefficients in RAM locations and computes wTx.

o 1 2 W9 W 0lO l 11 9 2 1 0
0  W .. 0  0  0  10 0 0  0  00 1 2 9 10 11 11 10 9 2 1 0

S2 . 9 10 111 0 9- 2. 1 0
5 10 11 11 10

U3  U 3  U 3 . W3 U 3  U 3  3- 5  Z3  3

~4 ~4 4. 4 w 4  41 10 1 4 Z4  Z4  * 4  4 Z 4

T we I9 0 wW'  11 X 1 10  X 9 2 1

The 's are bits of a digital representation of the weight coefficient w. which are stored in the
RAM locations of the individual processing elements. Partial products appear on the bottom edge
of the array, represented here by w' bits. Every processing element performs the following basic
operations:

Yaouth4 - Ynorth + ZectagZaccun tuated

If the least significant bits of x and w interact first, then partial products of equal significance
leave the edge of the array at the same time. These partial products can be accumulated using
the adder tree constructed from MSI adders. If, however, the least significant bit X0 interacts with
the most significant bit of w then, the partial products of equal significance appear skewed and
the linear chain of full adders can be used to accumulate the final output. If the second option is
chosen then a single row of PE's of a second processing array can be used to accumulate partial
products. In order to handle properly the operations in the main array guard bands of 1og2n bits
are appended to the input parallelogram.

The second array implements operations 2, 3 and 4. That is, the computations of the output
sample y(k) and the scaled error 2Ae(k). As it was mentioned above, the first step is to sum partial
products arriving from the main processing array. These partial products are accumulated in the
elements of the first row. Because of the additional skewing of the partial products leaving the first
array, the delay is needed between the accumulating PE's. In the GAPP device this can be easily
accomplished by storing the elementary sums in the local RAM locations. Properly accumulated
result y(k) leaves the east processing element and is fed into the third row of processing elements
of the second array (see Fig.1). This is the end of the compute phase. The remaining processing is
devoted to updating the coefficient weights.

lie An error value e(k) is computed by subtracting the output sample from the reference sample
'd(k) which is shifted into the fourth row of the array simultaneously with the loading operation of

the third row. The result of this operation remains in the fourth row and is shifted according to
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the value of 2,^,. The quantity obtained in this step 1s the scaled error value and it is sent to the
host controller.

The controller uses this value to scale (shift) the original coefficients residing in the main
array. However, before this operation is performed the original weights must be saved in the RAM
locations. The scaled weights are also uploaded into the local RAM, and then both quantities are
summed (w - w-+2 .w) yielding the new updated coefficients, which are used to compute a new
output sample, and the computation processes is repeated.

4 Effects of the Finite Wordlength

The derivation of the LMS algorithm presented in the previous sections assumes the infinite
precision arithmetic. Under this assumption the only source of inaccuracy is the fundamental prin-
ciple of the algorithm. That is, the fact that the gradient which steers towards the optimal solution
cannot be computed accurately, but it has to be estimated. However, practical implementations
have to deal with effects of the limited wordlength, especially those that use relatively few bits
(8-16).

Effects of the finite wordlength manifest themselves in various stages of processing, or even
before the actual processing begins as is the case with the quantization noise. Assuming the 12-bit
representation, it can be shown that the input signal-to-noise ratio is around 70 dB. If the noise is
white and the processing is realized without an error, then the mean and the variance of output

noise are:
mpOM1,= m, 1: h(n) (7)

fl00
Va2 = Orz 1: 1 h(,n) 12 8)

where h(n) is the impulse response of the linear filter (Oppe75).

In the real implementation of the LMS algorithm there exist two types of noise. The gradient

noise caused by estimating the gradient with a finite amount of input data, and noise caused by
imprecise results of intermediate processing operatious due to the finite wordlength. The operations
of addition and multiplication at each weight adaptation cycle are affected by random errors e, and
e, Additionally, the iterative nature of the algorithm causes noise errors to accumulate during
every compute/update cycle:

, , e 1(9)

Let's define

Wj = j+ - I ,) (10)

Then

4 , ' ,+ ,- -e/x (-1

Wj. I= W, + e,,, + + e,, +L
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It can be safely assumed that the errors e. and e, are uncorrelated (Andr77,Andr83). The
computation noise causes deviation of updated weights from the optimal values wopt resulting in
the difference V1 = ' - Wo (12)

The j I difference is then

v, =w+2Ae(j)x+e , , , 1+ea,* + Wopt (13)

And finally from 12:
V.+ 1 =V + "LC(j)xj + e, i+ e 1 (14)

Equation 14 accounts for both the gradient estimation noise and the computational noise.
Computer simulations based on the presented model lead to the following conclusions (Andr78).
The LMS algorithm can be successfully implemented in a short digital word (8-12 bits) but large
values of the convergence factor 2AL are needed to ensure convergence and unbiased behavior of the
adaptive filter. The testbed realization of the 8-bit adaptive filter by Cowan and others (Cowa83)
also confirms these conclusions. Therefore the 12-bit realization of the LMS on the systolic array
should not suffer from the relatively short wordlength.

5 Summary and Conclusions

We have presented the systolic implementation of the LMS algorithm. The proposed architec-

ture is fully parallel and operates on the bit level which efficiently exploits the serial representation
of data. Even in the basic structure of two elementary arrays (GAPP devices) the relatively high
resolution of 12 bits is achieved. Cascading more devices allows for increase in the resolution and
a filter size. Fast and accurate adaptive filtering by means of the digital hardware becomes more
important as the communication and intelligence needs increase. For example the array processor
like the one described here may digitally control individual radiating elements of large phased ar-
ray radars and the same time digitally enhance desired signals by eliminating clutter and jamming
signals.

The GAPP architecture is ideally suited to distributed arithmetic implementations of many
signal processing algorithms. Our LMS filter is more demanding than fixed-coefficient filters because
weights change with each iteration. The local memory of the GAPP array allows storing and
updating the filter coefficients. In conclusion, GAPP devices add a new dimension to parallel
implementations.
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Alternative arithmetic engines are being analysed to determine applicability to
K adaptive signal processors. Synchrony, topology, and granularity are important

design figures of merit for any VLSI implementation. In this paper, redundant

arithmetic is considered with the desirable attributes, basically because carry-free

operations are possible resulting in a speed-up. A primitive computational element
is discussed for the least-mean-square (LKS) algorithm embedded in redundant

arithmetic processors.

The basic approach has been to analyse the hardware/software trade-offs of
conventional (von Neumann) and non-conventional (parallel, pipeline, vector, array,
and custom processors) in an attempt to identify optimal structures (of order area x
time) which are computationally fast yet flexible. Regular and simple

interconnections and geometries among high-performance parallel structures were
sought. A two step process can be assumed; first the sequential algorithms are
speeded up (seeking inherent parallelism) and second, fast algorithms are to be
mapped onto new VLSI architectures (via recursion and pipelining). The current
research is to provide theoretical design tools and interconnection strategies

capable of achieving real-time implementation of adaptive algorithms via limited
user-programmable mechanisms (e.g., firmware).

- The traditional criteria of component count, whether applied to processors or

to simpler devices, are no longer adequate to establish a scale of comparison among
various solutions to a given VLSI problem. Indeed, number-of-elements criteria are

ubstactially based on the fact that processing elements and their interconnection

are realized by different media. This difference disappears in VLSI, which

"integrates" both processing elements and their interconnections in a two-

dimensional geometry. As a result, the VLSI solution to a given computational

U. problem involves the conception of an interconnection architecture, its layout, and
the design of an algorithm for that architecture. It is useful to examine the
trade-offs between the production cost (area) and the incremental cost (time) of a
dedicated circuit developed to solve that problem. The area of a chip can be
partitioned into interconnect or wire area, A(w), gate area, A(g), and wire pad
area, A(p). At least for the class of transitive functions (cyclic shifts, matrix

V product, integer product, and linear transforms), Vuillemin has shown such VLSI
circuits satisfy

A > A(g)N + A(p)B + A(v)B where in practice A(w)>>A(g),A(p)

where A is the chip area, N is the number of inputs, and B is the average bandwidth

(bits per second passing through the chip pins).
A good arithmetic unit for digital signal proc saing, in addition to the above,

should have the following:

1. As modules, the ALLJ number of modules and the precision of the operands should
not affect the time to perform one arithmetic step such as addition, subtraction,

multiplication, and division.

2. Each digit produced should not be dependent on very many adjacent digits to
eliminate excessive carry propagation and hardware error checking. "Column"
operations help detect and correct hardware errors independently.
3. Round-off error from truncation should have no bias.
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4. The leading digit or sign bit should be processed just like any other digit.
5. Overflow should be detected early. At best, overflow could be detectable whe
the first few digits or leading digits are generated.
Points two and five should not be taken lightly. Signal processing application
frequently require robust implementations which can operate in harsh environments
Faulty units need to be self-checking and correcting. Furthermore, the wide dynami
range of signal inputs as found in radar often causes overflow in conventional two':
complement engines, thereby invoking elaborate dynamic scaling operations
Detecting the overflow at the onset of the most significant digit productio;
minimsiem the scaling overhead and subsequent pipeline flushes.

The redundant number digit slice proposed in [Ij and cascaded as 4-digit slicet
into a module incorporates all of the attributes listed above. Depicted in Fig.
is a 15-digit module with three levels. The function of each level is described iL
Table i.

Fig. I A 15-Digit Bedundant Number Module

Table I Digit Slice Functions
Multiplication ru + w (- bc
Addition rx + t <- a w' * u

or rz + t C- a - w - u
Assimilate -rb a - a - b'

or a <- to + x

The digit slices can be configured easily into VLSI. The inputs are a, b, and c.
The output in a. Interalice transfers include w, t, and be for eastward direction
and we, t , and be for westward direction. All of these are intermediate results
used in adjacent digit positions. The assimilate function assists in the conversion
from redundant to non-redundant number representation. It has already been shown
that a digit slice with 400 gates constructed with 16 cascaded sum-of-products
circuits can implement redundant arithmetic in radix-16 with 10 as the maximum digit
[I]. Current research is exploring the processing delay, latency, and execution
time of the redundant number system processors [2].

[I C. Chow, A Variable Precision Processor Module," Proceedings of the 1963 IEEE
International Conference on Computer Design.
[2] M. Andrews, "Comparative Implementations of the LNS Algorithm," to be published
in International Journal of Computers and Electrical lngineering, 1964.

This work was sponsored by Space Tech Corporation under a grant from the Army
Research Office (IDAA29-63-C-O025).
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