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SECTION 1

INTRODUCTION

The distortion of a strong blast wave propagating in an inhomo-

geneous medium has been the subject of a variety of investigations. A

summary of the older work is given by Zel'dovich and Raizer.' Kompaneets2

looked at the problem of the propagation of an initially spherical blast

wave from a point source in an atmosphere stratified in one dimension with

exponentially changing density. He assumed strictly radial flow along

with a hypothesis of uniform pressure in the interior of the expanding

region driving a thin shock front containing all the swept up mass. This

resulted in a simple analytic solution for the shock front motion.

Raizer 3 found a self-similar solution for an impulsive source for planar

shock propagation in an exponential medium; Grover and Hardy 4 have

reported this solution along with numerical results including spherical

geometry (with the source at the center of the spherical density varia-

tion). Laumbach and Probstein 5  have given an improved version of

Kompaneet's calculation by avoiding any ad hoc assumption about the pres-

sure field while retaining the assumption of radial flow. They do assume

a strong blast wave and solve the hydrodynamic equations for a point

source under an assumption which takes the bulk of the mass, from inside

the current polar angle, to be concentrated near the shock. This is used

to truncate expansions behind the shock. The result is then an approxima-

tion to both the shock location and profiles of hydrodynamic variables

behind the shock which is a function of polar angle, scale height and

energy.



In the limit of a homogeneous atmosphere (horizontal propaga-

tion), the solution of Laumbach and Probstein provides a good approxima-

tion to the well-known strong blast wave solution given by Taylor 6 and

Sedov. 7  The Taylor-Sedov solution can be put in similarity form so that

the hydrodynamic variables at any time and location can be expressed as a

product of a power to time and a fixed profile which is a function of only

a similarity variable which may be taken as the radius over the radius to

the shock. Obviously the resulting separation of variables greatly simp-

lifies the solution of the problem. However, as indicated by Laumbach and

Probstein, the general case of an exponentially changing ambient density

does not admit to a similarity solution.

The Taylor-Sedov solution is not fully useful for the realistic

problem of a point energy source in a uniform atmosphere because it

assumes that radiation energy and transport are insignificant. Elliott8

has studied the circumstances under which this restriction may be lifted.

tHe finds that when radiation transport is added to the energy conservation

equation by the radiation diffusion approximation, the resulting equations

sometimes still allow a similarity solution. If the temperatures are high

enough for the radiant flux to affect significantly the hydrodynamics but

sufficiently low that the radiation energy and pressure are small compared

to the material values, a particular form for the diffusion coefficient

will give a similarity solution. Remarkably enough, the form needed is

quite similar to that seen experimentally. We shall exploit this fact in

constructing approximate solutions for flow fields for a class of atmo-

spheric explosions.

In this paper the flow fields influenced by radiation diffusion

behind a strong shock from an energy point source will be found for an

atmosphere mildly stratified in density. That is, the first order pertur-

bation in the flow induced by a noninfinite scale height will be deter-

mined. It is found that both the uniform atmosphere case, done by

2



Elliott8 , and the first order perturbation, with an expansion coefficient

inversely proportional to the scale height, allow similarity solutions for

which the dependent variables can be expressed as the product of a power

of time, functions of the similarity variable and simple angular func-

tions. In fact, it can be shown that such similarity solutions exist to

all orders of the expansion although this paper will be concerned only

with the first order. However, each order requires a different similarity

transformation.

The motivation for pursuit of this problem lies in the determin-

ation of the residual flow fields which influence the rise and distortion

of fireballs from low-altitude explosions. A realistic calculation of all

features of such flow requires much more than the current calculation. At

very early times, explosion dynamics are dominated by radiation transport

which is not diffusive and for which the radiant energy is important.

Once the radiation sphere cools sufficently, a shock is launched from its

surface of the radiation sphere. This strong shock propagates through the

ambient atmosphere in a manner described by the current calculation. In a

stratified atmosphere the propagation is distorted by a more rapid motion

into lower densities. Ultimately, the shock propagation is weakened by

spherical divergence so that it is no longer a strong shock. At this

point the current calculation will no longer be appropriate. Ultimately

the expansion of this region will cease when the pressure is reduced to

ambient levels. When this pressure equilibrium fireball condition is

reached, there will be a portion of the fluid through which the strong

shock propaqated which later is nearly isothermal due to diffusion of

radiation behind the shock. It is precisely this region for which the

circulation, induced by mild atmospheric stratification, which can be cal-

culated using the methods of this paper. This region will have its circu-

lation frozen and convected with the flow. This circulation is important

in providing the characteristic torus at later times as the now underdense

pressure equilibrium fireball undergoes buoyant rise. For the current

calculation, only the strong shock flow fields will be found.

3



SECTION 2

RADIATION HYDRODYNAMIC EQUATIONS

2.1 GENERAL CASE.

The equations for inviscid hydrodynamic flow for an ideal fluid

in the presence of a radiant energy flux are taken to be

ap/t + V.(PO) = 0 (1)

W/it + ( .v) = - (Vp)/p + (2)

ap/at + ypv. + v.vp + (y-I)V.F = 0 (3)
]+

where y is the adiabatic exponent and F is the radiant flux. In the radi-

ation diffusion approximation, the flux is proportional to the temperature

gradient as

+

F : - n v T (4)

where n is the diffusion coefficient which is inversely proportional to

an opacity, K, given by

6cT' (5)
3pn

where a is the Stefan-Boltzmann constant. This radiation diffusion

approximation is valid when the photon mean free paths are small compared

with the hydrodynamic dimensions of interest in the problem and the

radiant energy and pressure are small compared with the corresponding

hydrodynamic quantities. The latter conditions permit the introduction of

an ideal fluid equation of state which completes the set of equations.

Apart from early times, these equations should provide a reasonable

description for low-altitude explosions.

4
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The above equations appear everywhere except at the shock front.

At the shock the hydrodynamic variables must meet Hugoniot jump condi-

tions9 which enforce mass, momentum and energy conservation through the

shock. Under the conditions assumed, these will now be expressed in

terms of the local ambient density pa and the local shock velocity vs as

p(v s - v) = Pa vs (6)

v 0 (7)

P Pa VsVL (8)

(v - v )2  F v2

Y_+ s _ -= S (9)
(y-1)p 2 Pa Vs 2

where it is assumed that F p = p v = v11 = 0 outside the shock. Here p=O

is the strong shock assumption while F=O indicates that no radiant energy

escapes the region so that total energy inside the shock will be conserv-

ed. Note that ii and -.- indicate parallel and perpendicular to the local

shock surface so that the location of the shock front, including itL

velocity, is a part of the solution to the problem. In principle, the

above equations will provide for strong shock motion generated for any

ambient density pa and opacity once the condition of total energy conser-

vation is imposed. However, solutions are available only for a limited

set of cases where similarity conditions are met. (For the case where the

strong shock condition is dropped, numerical solutions have been found by

Brode1 ° for the case of uniform ambient density and no diffusion.)

2.2 ZEROTH ORDER.

In the limit of uniform ambient density, which is the zeroth

order case for an expansion in a parameter inversely proportional to the

scale height, the solution for spherically symmetric strong shock problem

5



is known from Taylor6 and Sedov7 for no diffusion. It is evident from

dimensional arguments that there is a similarity solution which has the

properties that the shock radius R(t) is proportional to t2/5 , while the

density, fluid velocity, and pressure can be expressed as a power of t

(the powers are 0, -3/5, and -6/5, respectively) multiplied by profiles

which are functions only of a similarity variable which can be taken as

the ratio of the radius, r) to the shock radius, R(t). Relatively simple

closed form solutions for the profiles exist.

When radiation diffusion is included for the constant ambient

density case, it is not generally possible to find similarity solutions

for the equations. However, Elliott8 has demonstrated that for a diffu-

sion coefficient with a suitable dependence on temperature, the similarity

form can be maintained. It is easy to show that the diffusion term in the

energy equation (3) will give the same separation into a power of time

times a scaled profile, as do the other terms, using the same powers as

indicated by Taylor provided that the diffusion coefficient, n, is propor-

tional to 1/6th power of the temperature, T. It may be any function of

the density. This means the opacity must be proportional to T17/6 but may

have any density dependence. It turns out that for temperatures below

about 10 eV, the range of interest for the current problem, the Rosseland

mean opacity rises sharply approximately like T3 while decreasing with

density. For calculational purposes, the diffusion coefficient will be

taken as

n k k T1/6  (10)

where k= -1.6 as estimated for air densities between 10-3 and 10-4

gm/cm 3 which gives a - 8.7 x 10-5 in cgs units.

Elliott has given a technique for solving the similarity equa-

tions which involves carrying out the first integral of the energy equa-

tion analytically and making a change of variables which converts all the

6



unknown boundary values to appear at the (unknown) shock location. The
equations are then integrated outward from the origin to find the scaled

location of the shock front at which the Hugoniot conditions are met. The

only drawback to this procedure is that the required scaling of the

diffusion coefficient is dependent on the solution so it is necessary to

first find a solution with a scaled coefficient and then determine the

physical coefficient to which it corresponds. As a result it necessary to

iterate to find the solution for a given physical coefficient. In prac-

tice, this is not a problem since there is a smooth relation between the

scaled and physical coefficients. A part of the solution also consists of

finding the constant of proportionality between the shock radius, R, and

t2/5. This is a function of E (total energy), pa' y, and n and it can be

determined by integrating the solution profiles for internal and kinetic

energy and equating the sum to the total energy. For Taylor's case (n =

0) it is known that for y = 1.2 (which is a reasonable value for ionized

air) the energy relation is

E = 11.0 pa R2R3 (11)

and

R = a t2/S which gives a in terms of E.

For a Pa of 5 • 10- 4 gm/cm 3 (which corresponds to approximately

one scale height above sea level) and an energy of 40 kT (or 1.67 . 1021

ergs) the (dimensionless) coefficient of 11.0 is reduced to 10.2 by inclu-

sion of diffusion indicating a moderate effect near the shock which serves

to increase the shock speed. (The example used is similar to that labeled

as K = 0.5 in Elliott's case.) Although the effects of diffusion near the

shock are modest, the effects in the center of the fireball are pronounced

as the temperature is forced to be fairly uniform over the bulk of the

volume. This is illustrated by the plots of density, velocity, pressure
and temperature shown in Figures 1-4. The plots show the profiles taken
as a function of the similarity variable x = r/R(t) where

7
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Figure 1. Density similarity profile.

3x1O 4

2104

0
0 .2 .4 .6 . ~ 1.0

x r/R(t)

Figure 2. Velocity Similarity profile.



4.10'

3-10'

2-10'

1-10

0 .2 .4 .6 .8 1.0

x =rIR(t)

Fiqure 3. Pressure similarity Profile.

3

3
'( 10

0
0 .2 .4 .6 .8 1.0

.9x r/R(t)

Fiqure 4. Temperature similarity profile.

9

Eli-



p(r,t) = p1(x) (12)

v(r,t) = vj(x) t- 3/5 (13)

p(rt) = pl(x) t"6 /5  (14)

T(r,t) = T1(x) t-6/5 (15)

where T is not independent but given by the ideal gas equation of state

p = pR T (16)

Here R is the gas constant given by the product of Boltzmann's constant

and Avogadro's number over the mean molecular weight of the constitutents

which has been taken as thirty for the numerical example.

The solutions including diffusion differ from the Taylor's case

in that the temperature now is nearly uniform in the interior while the

pressure and density go to nonzero values at the origin. Near the origin

the pressure goes like the fourth power of x plus a constant, the density

goes like the second power of x plus a constant while the velocity, to

lowest order, goes like the third power of x. Near the shock, the

solutions are similar to those without diffusion although the speed of the

front in increased somewhat by the outward flow of radiant energy.

From the present considerations, it is important that there

exists an easily obtained solution which strongly resembles that for a

physical fireball which can serve a the basis for a perturbation expansion

to determine the character of the effects of mild stratification of the

ambient medium.

2.3 FIRST ORDER.

In ambient density which is not constant, the solution given

above is no longer correct. However, if the density changes only slightly

10
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over the region defined by the shock position, it is expected that this

solution will be approximately correct. This fact can be exploited for

the case of the atmosphere, whose density variation is almostly exclusive-

ly in the vertical direction and can be described locally as exponential

with a constant characteristic scale height, H, which is imposed by an

equilibrium between gravity and ambient pressure forces. The dynamical

Equations 1-3 are still appropriate for this nonconstant density provided

that gravitational forces. are not important for development of the strong

shock and associated flow. Since strong shock conditions are imposed,

this is true. However, the effects of an exponential ambient density will

alter the Hugoniot conditions in a mild way (so long as R(t) ( H) exclu-
sively through the altitude dependence of pa* Since the density is not

spherically symmetrical, the resulting flow will now have a polar angle

dependence, including a nonradial velocity, and the possibility of vortic-

ity where there was none before.

Previous work 1-5 indicates that when a strong shock propagates

in an exponential atmosphere, the motion into decreasing density is

enhanced while that in increasing density is diminished. The initially

spherical pulse is thus distorted by the upward expansion which can, for a

small H, result in the upwardly moving shock accelerating all the way

through the top of the atmosphere (where the hydrodynamic equations are,

of course, not valid). For a large, but finite, scale height, a mild dis-

tortion of the spherical pulse is expected. This distortion will now be

described as a small perturbation about the constant density solution and

an expansion for perturbed solution will be found.

The ambient density and its leading term is

ia = P0 exp (-z/H) = p0 exp(-r cose/H) - p0 (1-r cose/H) (17)

where p0 is the ambient density at z=O, a is the polar anqle and r is the
spherical radius. The form of the expanded density suggests the expansion

V 11



of the perturbed solution in a Fourier series in order to define the angu-

lar dppendence. When this is done, it is readily found that the series

for all the dependent variables, including the boundary conditions, trun-

cate to the following form provided that higher order terms are ignored:

P P + f (r,t) cose (18)
P

p = P1 + fp (rt) cose (19)

vr = vi + fv (r,t) cose (20)

ve  fe(r,t) sine (21)

The position of the perturbed shock front is described by an auxilliary

function G(r,et)=O where

G = R(t) - r + fR(t) cose (22)

so fR is the perturbation in shock front location in the vertical direc-

tion. The (linearized) equations which the f(r,t) functions obey are:

if 0 + (i a (r2 fv) + I fa) + fp (-Li1. (r 2v))

at r 2 ar r r2 ar

(23)
af+ v-.-+f a=:O
ar v ar

iafv afv av:_ afE  fpap_ ,(4
If+ v -+ f v 1 a + s- 12 (24)
at ar V pr p ar 2 ar

afo af 8  v f e  f
• + v 2 + v f (25)
at ar r pr

12



af+ Y Pr'- (r'f ) + I f )+ yf (L 3 (r'v))
atr2 r r 0 ~ r2 ar

+ V a D+ f 9
3r var

+ (1 a 6 )aT 7/' ka( k-i
7 Y-1 ar ar P

(26)

+ ac -Z a (f T11/6)
ar 6 arT

+ P kfI. .L- r 2 (L-(! T"16 f -- i1 T'"6 f1
r2 ar ar6 T)r 2 6  T

+ k f pk-1 1. L- (r 2 _L_ (T 7/6))l = 0
P r2 ar ar

Here the subscript, one, has been dropped from the leading order terms.

The boundary conditions to this order, as applied at the perturbed shock

location, are

v f R =Rf0  (27)

av f PO(- R +(28)
'a) + ( )ar fR + f~pv+ v)1 RR)

;r Rar R p

+t (_ f + f (R - -vfR +f

y- r R T r V R R T)29

+- 7L 7/ a TI /6 o- v )-av f + f +-L fk T-16(T +f (0R P __ f Rf
0 Y-1 ar ar P ar 6 ar R ~ (0

+ 11/6 Qk(2T~ f + af)+ .al pk 11/6 (R-- fR)j = j P
arR ar ar R

13



where the temperature perturbation fT has been used as an alternative to

the pressure through the first order terms in the equation of state. It

must be pointed out that higher order terms, such as f 2, will contain
Fourier contributions which are independent of angle and which will thus

couple the zeroth and second order terms. However, when only first order

terms are kept, the only terms constant in angle are those from the zeroth

order.

The perturbation equations for four f functions consist of a

linear set of four coupled homogeneous second order partial differential

equations in two dependent variables subject to four linear but inhomoqe-

neous boundary conditions applied at a position fixed by fR which is to be

determined. The task of solvinq would be formidable except for one fact.

It is possible to find a similarity solution to the perturbed equations in

a manner completely analogous to that seen at zeroth order! It is a
straightforward matter to verify that when the f's are written as

f (r,t) = t2/5 g (x) (31)

f p(rt) = t-4/1 gp (x) (32)

fv (r,t) = t-1/s gv(x) (33)

f e(r,t) = t-'/5 q6 (x) (34)

and

f R(t) = t4/1 9 (35)

where x = r/R(t) as before, the equations are reduced to similarity form
in the variable x. Consequently, the problem is reduced to solving a set

of coupled second order linear differential equations in one dependent

variable. The equations are

v_ -2x) g, + g _ 2 q g +_gv +
a 5 P a v P ax V ax

(36)
- q(Lx v + v' - q (0'/a)

P ax a

14



q,6v 2x - _ .g 1) (37)

a 5 axp ax 5

(.. g + 9' , R*. __a 2_L'
a v ap2 oa a 5 p2 a

(38)

- p ( [ p - + T' T-
ap p 2 T2

R*[Pxg) - g xp) + T ( 2 xg') + go(- 6 T - 2 xT')]

5 T 5 5~ 5 55 5

+ yp (gv/a + Za(qv + go) ) + yR*(p gT + T qp)(a-x v + v'/a)
yp(' axZ.(q+c ax

+ v R*(p gi/a + gTp'/a + T gp/a + go T'/a) + gvp'/a

+ (y -a )7/6)I
7 y-1

7 TI/6 T'(k(k-l)pk-2q p'/a + kpk-lgp/a)
6a (39)

+ kpk-lp-'/a)(I- gT T-5/6 T'/a + I T1/6 g'/a)
36 6-T-S6  /a)

+ kg p k- 1 (l Tl 6 P/a + 2- 1 51 6(T'/a)2 + T 16

p 6ax 36 6a7

* 2 kL. g2 T-5/6(T'/a) + 76a T1/6 g')

ax 36 96a6T
+ + 7°k___ T'l6 T'la2 " -11

+ 36 2- q.(T'/a)2 + gT T-5/ 6 (T" /a2)'

+ -7 P __-la2  T-s/6T, q.. + T1/6 g./a2 - 14  Tc/) kT .  :
6 6a2 T 6a 2x2

where the equation of state at this order is

T : _ (40)

15



The Hugonoit conditions applied at x=1 are

v gR = ag8  (41)

PR = ) + .g) PO(v R Z.-.a2) (42)

+ g o( 2a (I' + gv) + A. v g-2 al )(35 a 5 R 5 HPO(Z a5 5H (3

YRT* 'IT /a + g + (4 g - g v'gR/a)(2 a - v)
'y-1 9 T -19 v-vg

+ 5a (R )7 /6 [T T' /6 k-1k( gR/a + g ) + 1- pk T 5/6(T'q /a +
2p0 a Y-1 a P 6a R

(44)

+ T-- k T1/6(A - 2gR) + T / 6 pk (T' gR/a 2 + g'/a)] a
a H a 25 R

In the presence of the perturbation, the total energy must be

unchanged. This condition is automatically imposed at this order by the

symmetry of the angular dependence. The total momentum must also be

constant (and equal to zero) in the presence of the perturbation. This

condition is not automatically satisfied and it serves as an additional

condition. The vertical momentum integral is

1
Z - gRv(l) P(1) + a f x2dx fgv + Pgv " (45)

0

The second order energy equation can be trivially changed into

two first order equations if the dependent variable

fq = dfT/dX (46)

is introduced and the second derivative of fT is replaced by dfq/dX.
There are then five first order equations with two unknown parameters

which fix the values at x=1. These are f q(1) and gR Note that qR along

16
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with the zeroth order solutions fully fix the Hugoniot conditions at this

order. In principle, there can be a family of solutions in these two

parameters for which only parameter can be specified independently and

still allow the momentum to vanish. Consequently, one more condition can

be imposed on physical grounds. The required condition is that the

perturbation in the temperature, fT' vanish at the origin. If it does

not, there will be a discontinuity in temperature there in crossing the

horizontal plane of the source since the coefficient of fT is cose which

changes sign across the plane. Now it is possible, in principle, to solve

the equations by exploring the solutions in the parameters f q(1) and

and selecting that which causes the total momentum and fT(O) to vanish.

17



SECTION 3

SOLUTIONS TO SIMILARITY EQUATIONS

The set of five coupled linear first order differential equa-

tions, which contain the known zeroth order functions as variable coeffi-

cients, can be integrated numerically through standard techniques. How-

ever, the presence of the diffusion term makes integration from the shock

front to the origin very unstable. The term has a corresponding stabiliz-

ing effect for outward integration. Unfortunately, the natural specifica-

tion of boundary conditions at x=1 calls for inward integration. In

principle, it is possible to solve the equations by choosing parametric

inner starting conditions and searching for that set of parameters which

lead to matching of the boundary conditions upon outward integration. In

practice, the coupled nature of the boundary conditions in conjunction

with numerical inaccuracy makes this very difficult because a nearly

singular set of conditions must be met.

Since the five coupled equations are linear and homogeneous, it

is possible, at least in principle, to find a set of five independent

solutions which can be summed with with arbitrary coefficents to form the

general solution. The boundary conditions are linear in the dependent

variables so, given the qeneral solution, the coefficients can be solved

for using a simple system of linear equations. The only problem is thus

in finding a set of independent solutions.

Independent solutions will give different small x behavior. The

character of the small x behavior of the zeroth order solutions is known;

this can be used to determine possible behavior of the perturbed solu-

tions. Once this is determined, numerical continuations out to the

18



boundary and appropriate combinations to fit the Hugoniot conditions along

with momentum conservation can be found. The zeroth order solutions have

the following form:

Z 3 +

P P x( + 1Jx2  + 
47)

P Px(1 + vx + 
(

Ti  T x(1 - ox 2 + ..

where the sub-x quantities along with p and v are known constants. Using

the leading order terms along with the equations of motion, a set of five

arbitrary coefficients, A, B, C, D and E, define the small x behavior is

available from independent solutions to the perturbed equations:

gv = A x-1/2 + B + E x- 3

g = -3/4 A X-1/2 - B + 1/2 E x- 3

gT =  C x + D x-2  + ET (48)

gp = a Px/5px B x + aPx/2 E x- 2

g = 0 x (a px /5px B - C/TX) x + px(-D/T x+ a px/2PxE)X
2

gq= C -2Dx -3

where T is a nonzero constant which can be expressed in terms of the

xeroth order parameters. Of course, each of the five independent solu-

tions, A-E, will produce some nonzero behavior for each of the dependent

variables. However, only the dominant or divergent terms are exhibited

above. The five independent solutions have been found numerically by

inteqration outward from some small value of x using the small x behavior

from each in turn as the initial condition. In some cases it is necessary

to specify the leading order term for each of the five dependent variables

in order to assure getting independent solutions.

19



There are six constants, A-E plus 9R' available which are to be

determined with four boundary conditions at x=1, a net zero momentum and

the requirement of a continuous temperature at the origin. The last

condition requires that there be no contribution from the 0 solution. It

is trivial to determine the constants from the resulting linear conditions

and the solutions are shown in Figures 5-8 for the particular constants

indicated in the previous section. The solution has no contribution from

the E component and gives qR = 0.69 a2/4H. This means that the perturbed

temperature vanishes at the origin. Since 9T is multiplied by cos 6 to

form the temperature, gT must vanish at x=O, otherwise there would be a

temperature discontinuity along the axis through the origin. Such a dis-

continuity would be unphysical since the diffusion term must smooth out

this behavior.

P20
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SECTION 4

VORTICITY AND VELOCITY AT PRESSURE EQUILIBRIIJ

The vorticity generated in the interior of the early-time fire-

ball by the passage of the blast wave can result in late-time flow fields

which may be important for subsequent dynamics. Aspects of this behavior

have been given in detail in our previous report''. We now briefly review

the key features of that report.

The vorticity in the flow field comes exclusively from the

exponential perturbation of the ambient atmosphere, that is the first
order flow calculated in the previous section. This vorticity is

= V x v =(f /r + fv/r + afr/ ar)sin e

A (49)

- t3/5 W(x) sine e

where w(x) contains the residual scaled dependence on position. At small

ranges, x < 1, we note that the zeroth order temperature is nearly con-

stant according to equation (47). Since the convection of the vorticity

with the flow is generally described by

(at + v-v] Wlp = W/P • Vv + vT x vS (50)

where S is entrooy, a uniform temperature, T, causes the last term toS+ 4

vanish. Consequently, noting that v is in the radial direction and is

in the € direction, the equation reduces to

a/atft-3 /sK/ow = v/oI,/r - a/ar- 3/5  (51)

23
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The behavior of v and p forces

W(X) = WO X - 3 / 2  (52)

where wo is a constant, if the vorticity convection is to be satisfied for

no temperature gradient. The small x behavior of w is, in fact, exactly
+

this based on the use of equation (47). Equation (51) thus means W can be

written as a function of r alone, independent of t. This means that, at

small x, the vorticity is constant at a fixed position given by r and a

during the strong blast wave phase of the motion.

Following the strong blast phase, a residual fireball remains

which is nearly isothermal. The fireball expands until it is nearly in

pressure equilibrium with the surrounding air. At this point the initial

flow fields are greatly altered throuqh the doing of work on expansion;

however, there will be residual flow associated with the blast wave gener-

ated vorticity imposed by the initial gradient in the ambient atmosphere.

It is this pressure equilibrium flow field which we wish to estimate.

The altered vorticity distribution resulting from the nearly

uniform expansion of the isothermal fireball can be found from equation

(50) by taking vT=O and using w from equation (49) as the initial vortic-

ity. The pre-pressure equilibrium velocity field now must be that which

is dictated by fireball expansion; we ignore the contribution of the per-

turbed flow. Under this condition the vorticity equation can be written

as

D/Dt(w//r) = 0 (53)

so that the final , distribution can be expressed in terms of the uniform

. expansion and the intial distribution. As indicated in Reference 11 the
final vorticity at pressure equilibrium becomes
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Wf = wo(pf/pi)1/6(a/r)3/2 sine e(54)

where the density ratio, pf/pi' is that of the final expanded fireball to

that before expansion but after the blast wave has set up the vorticity.

The generation of velocities from the final vorticity field can

be accomplished by noting that once pressure equilibrium has been reached,

the subsequent flow is nearly incompressible. Consequently, the residual

rotational velocity field can be written in terms of a vector potential,

A, where +

Vv A (55)

and A is given in terms of the vorticity as

+
A = (4n)-1 f d3 r' + (r')/Ir-r'1 (56)

4 4

so that given W, v can be determined.

The estimated velocity fields as well as the vorticity are

smaller than suggested by the results in Reference 11 by a factor of about

ten; the previous calculation overestimated wo by this amount. However

this just scales the results so the structure seen before was correct.

The calculation of Reference 11 differed from the current one in that it

assumed a zeroth order temperature profile rather than including the radi-

ation diffusion term. Examples of the pressure distribution velocity

profiles found using the radiation diffusion term for the 40 kT example at

low altitude are shown in Figures 9-11 for three different polar angles.

The central vertical velocity is about 8 meters/second.

.
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SECTION 5

DISCUSSION

A similarity solution for the first order perturbation of a

nearly spherical strong blast wave, generated by a point source in a

mildly stratified medium, has been found. The hydrodynamic equations, in

two spatial dimensions, include a radiation diffusion approximation to

radiation transport such that it is appropriate for the problem of low

altitude 3tmospheric explosions. The form for radiation diffusion is of

such a character to allow both the unperturbed and perturbed solutions to

exhibit a similarity form. The resulting cylindrically symmetric numeri-

cal solution provides the flow in both radial and polar directions as well

as a description of the distortion of the nonspherical shock front. It is

determined that the stratified atmosphere allows an increase in shock

speed in the direction of decreasing density and to lowest order, the

additive correction factor can be written as a constant coefficent times

a2/4H - t 4 / 15 cos e where a is the polar angle and t is the time. The

simplified calculations by Kompaneets gave a constant coefficent of one

while the better calculation of Laumbach and Probstein, which still

assumed radial flow, gave the constant as 0.75. The current calculation

gives 0.69 indicatinq that the inclusion of nonradial flow tends to reduce

the distortion of the shock front.

The perturbed flow fields have nonzero vorticity, in contrast to

the radial flow case. This vorticity is qenerated by the passage of the

blast wave through the nonuniform atmosphere. Since the hot interior of

the fireball tends to have a rather uniform temperature, any circulation

qenerated before the material passes inside will remain and be convected

alonq with the larqer zeroth order flow field. This can provide a means

; . . . - . A .



for determining the flow fields in some of the material at times after the

strong shock assumption or the perturbation expansion cease to be valid.

The residual vorticity may be the dominant flow at times the order of one

second after the fireball has ceased expanding and reached an approximate

pressure equilibrium. The vorticity then may play a significant role in

the subsequent rise and torusing of the fireball.

The use of a perturbation expansion limits the value of the cur-

rent result t0 cases and times for which the shock radius is small com-

pared to a scale height. However, the application of a similarity solu-

tion qreatly reduces the work required. It might be wondered if the

result here for a perturbation similarity solution can be extended so as

to permit the calculation of higher order terms to expand the set of cases

which can be studied. The answer is yes and it can be demonstrated that

all orders in the perturbation expansion can be expressed in similarity

form so that the solution is the product of a power of time multiplied by

a function of the same similarity variable along with a further function

of polar angle. The resulting problem is tractable but it is not as nice

as the first order case in that the angular terms now contain contribu-

tions to lower Fourier orders. For example, the second order terms supply

terms independent of angle as well as terms proportional to cos(2e).

Furthermore, the perturbation equations become even more ponderous with

increasing order as one would expect. The appendix provides details of

the second order perturbation equations.
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APPENDIX

EXTENSION OF SIMILARITY PERTURBATION TECHNIQUE

A.1 GENERAL FORM.

As illustrated in the main body of the note, it is possible to

solve the first order pertubation problem of a strong blast wave in a

mildly stratified atmosphere by finding the zeroth order solution, which

is known to permit a similarity solution, and using it as the basis for a

perturbation to the lowest order in the stratification parameter. The

remarkable feature of these first order equations is that they also admit

a similarity solution in the same similarity variable as used for zeroth

order. In this appendix we shall demonstrate that this result continues

to hold for all orders of the perturbation expansion and the character of

the required functions are provided at arbitrary order; the resulting

equations for the second order perturbation will explicitly written down.

For this purpose we shall ignore the complications associated with the

radiation diffusion term. However, the same line of reasoning holds in

that case as well if the form of the opacity is chosen so as to permit the

similarity solution at zeroth order.

The hydrodynamic equations outside the shock are

aa + = 0

av + ( =.V)V = - I Vp (57)
;tp

-+ + -+

;P + ypVV + v.vp 0
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where viscosity is ignored and an ideal gas equation of state

p = pR T (58)

is assumed.

For a strong shock the boundary conditions which must be met at

the (unknown) location of the shock front are

p(s) _ y+l
a

vL(s) = ( ) ) 1 2  (59)

vN (s) ) 0

aG 1 ((Y+l)p(s))/
t IvG 2p a

where G(r,t) = 0 defines the shock location, s, and pa is the ambient

density.

The parallel and perpendicular directions are relative to the

local shock front.

For a uniform atmosphere with zero external ambient pressure

(which defines the strong shock condition) the solution must be express-

able in similarity form since there are no length scales associated with

the problem. It can easily be shown that the solution can be written as

p = PO(X)t-6/5

- = O o(x) (60)

v = Vo(x)t
- 3/ 5

r
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and

G = at2/s - r

where a is dictated by the total energy in the problem.

The similarity variable x is the ratio of the radius, r, to the

shock radius, at2/5, and the time dependence is separable. By symmetry,

there is no angular dependence.

Consider the problem imposed by a pertubation in the ambient

density so that it is no longer uniform but is a function of only one

cartesian dimension. For a realistic atmosphere, the dependence is

usually taken as

Pa = Pb exp(-z/H) (61)

where the scale height H completely characterizes the variation. (For the

following discussion, any mild analytic variation of density which can be

expressed in terms of a single length parameter is equivalent: the result

is not unique to exponential density variation.) The scale height enters

the problem exclusively through the appearence of ambient density in

boundary conditions.

The expansion of the ambient density is

,I = Pb r cose + I (r cOse 2 ... 2 (62)
a b H 2 H

where the natural expansion parameter which appears is r/H and so the

usual small perturbation restriction suggests that the truncated results
can be expected to valid only if the radius of the shock is much less than

the scale height.
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The angular dependence of the perturbation terms in the density

are simply factorable powers of cos(o). Consequently, since the perturba-

tion expansion hydrodynamic equations, and boundary conditions, involve at

most multiplication and differentiation, it will always be possible to

express the solutions any order in terms of a truncated Fourier series;

the number of Fourier terms must increase with increasing perturbation

order.

Consider a candidate series for the perturbation series which

has the similarity form with individual terms showing separable angular

and time dependence:

p = po(X) + p1(xe)tP
l + p2(X,O)tP2

p = Po(X)t-6/5 + Pl(XO)tPl + P2(x,e)tP
2 +

Vr = Vo(X)t-3/s + vl(xo)tvl + v2(x,e)tv
2 + (63)

ve = o1(x,O)t61 + 02(x,e)t
02 +

and an auxiliary function, G, giving the position of the shock front

G = at2/5 + GI(e)tGI + G2 (o)t
G2 + ... -r (64)

where r is the shock position at polar angle a for G(r,e,t)=O. (Note that

vG defines the normal to the shock front.) The similarity variable is

x = r/R(t) where R(t)=at2/s is the zeroth order shock position. We now

ask if such a similarity form can provide a solution to the equations

toqether with boundary conditions.
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Consider that the proposed solution is inserted into the full

equations and the resulting equations are expanded and written as a sim of

terms, each beinq a particular order in the perturbation series, each as

coefficent of powers of the expansion parameter, 1/H. If our proposed

similarity condition is to be met, the individual orders must have the

same factorable time dependence in each of its contributions from all

appropriate orders of the dependent variables. However, the different

orders may not, in fact, cannot, have the same time dependence.

In order for this to be true certain restrictions are required

based on the character of the original equations. For example, the con-

tinuity equation will require that the nth order density contribution

less one power of time must have the time power as the product of the

ith order in density and the (n-i)th order of velocity aside from the

effects of the divergence operation. It is easily seen that the diver-

gence operation can be expressed as an operation in the x and e variables

along with a division by R(t) which is independent of order. Consequent-

ly, since the i=n case is proper (-1, for at = -3/5, for v0 plus -2/5,

for 1/R(t) -- all of which is independent of the nth order density

power), it remains only to assure that this holds for n~i. It is evident

that this requires that the increments in the powers of time for succes-

sive orders of both density and velocity must be equal and equal for all

orders. Inspection of the other hydrodynamic equations indicates this

must be true for all the dependent variables. Note that this behavior

forces the product of an arbitrary number of such series to hold the same

property - that of uniform time power increments between orders.

Note that we have not yet imposed any conditions concerning the

boundary behavior, which must include ambient density variation. We have

only determined an allowable form for a perturbation expansion which meets

the similarity condition. It remains to be seen that this is consistent

with the perturbed density and boundary conditions. The expansion of the

ambient density can be written as
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p : Pb(I - x at2 / 5 cose/H + (x at2 /5 cosO/H) 2 /2 - .. (65)

which suggests that the desired power of time increment must be 2/5. How-

ever, it must be remembered that the shock conditions are imposed at the

actual shock front whose perturbed location (not x=1) is to be determined

as a part of the solution. Generally the evaluation of an nth order

hydrodynamic variable, say the pressure, at the shock will have the form:

+. fitfi aPn-i + y y fktfkfjtfj a2pn-k-J + y y y ...1 r k j k i ar2  (66)

all evaluated at x=1. Since the 9/ar supplies a extra t-2/5  dependence,

all terms at nth order will have the same power of time if the increment

in the powers of the expansion of G is 2/5 just as for the ambient dens-

ity.

Consequently, the variables evaluated at the shock front all

have the desired behavior of associating a single power of time with a

particular order while incrementing that power uniformly by 2/5 with each

order. Since the leading order has the appropriate power for all of the
boundary conditions, all orders must also. Therefore the postulated form

for perturbation similarity solutions exists for the problem at hand. The

dependence of the dependent variables at arbitrary nth order can now be

written as

o - Pn (X,O)t 2n/ 5

p- Pn (x,e)t2n/
5-6/5

v - Vn(x,g)t 2n/5-3/5 (67)

G - Gn(e)t
2 n /5 + 2 /5
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In fact, as indicated before, the angular dependence for each term is

separable in the above expressions and the nth order dependence can be

expressed as a truncated Fourier series terminating at cos(ne) or sin(ne)

dependino on the parity of the variable.

A.2 SPECIFIC EQUATIONS AT 2nd ORDER.

The form and solution for the first order perturbation terms

have been given in the main text for a specific case. At higher orders

the expansions becomes increasingly complex and it is doubtful if there is

utility in forminq the general term. However, it is illustrative to go

one step further and explicitly provide the second order equations since

this brings out the essential features of the angular dependence. To be

consistent with the main text the expansion is taken to be

(r,t) 00 Q(x) + g (x) t- 2 / 5 cose + h

p(pt) po(x) -6 /' + gp(x) t-4/5 cose + h

v r(-,t) - v0(x)3/5 + gr(x) t- /5 cose + hr

v a(,t) : ge(x) t- 1/5 cose + he

g(+,t) R(t) + gR(x) t-4/5coso + hR(t,Oe) r (68)
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The second order perturbed equations are thus

ah~ + prl -a (r 2h)+ '- (CS he + .1hOl+ cos2ef fi.2 j_ (r2 fr) +
at r r r sine ae ~r 2  r r e

+ h [1- 1- (r 2V) + V -2- + COS2ef ..... 2 + h __P - sin i fefP 0
P, r 2 ap ar r ar rar r e

+h yp[L. L- (r 2h )+ I(COse he + aO + ycos 26f [L L. (r 2fr+

at+ r2 ar r) r sine ae P r2 ar r re

+ yh [.L. L. (r 2V) + V 2.P + Cos 2ef r s. + h r2 - in f 6 f o
0r2 ap ar rar rar r ep

! h r a h + +h a f Ia+vi n 2
+ v L +COS 2e f L r h ar ~s2
a;rr ar r

LP h + f~ cos2e') + cos2e fP afP-1 ahp
Sar p ~2 2 ar p ar

ah 2  ah afe vhe sine coseff
__ + sine case + v h- + sine case fr r. + 6 ____

at r ar rar r r

-LPP (69)

1 h P.2 sine case
rp ae ro p
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The second order boundary conditions are

hRap +coso a 2p fl cs° f f 2

h + cose 2 + COS2 h= l h R Cos20 + R_ COS2e1Rr 2 ar2  r p Y-1 H 2H2

-sine cose(f + 2-V + va = -R(h + ar f cos° sine) f ffsine coso
r 3r R e e ar fRcssiO- fRf n cos

__ a2v f2 cos 26 + f afe cos 2e + h + sin2 fof
ar R 2 ar2  Rar r R aR

?p 1/2 h -I2P fcos20+ i afp

1..R 2_ hR+ fRcos2 O--.- Y+l b 2 P ar 2p ar2  P ap

+ -'j * 2 cos2 efo

+ cos2 (_Rp_ +l)fR + R 2 cOs 2e + sinq~a f2 + Cs 2f R + -lH p ar R 2H2  R2  R H p p

S_ cos2 ((Il p f)2 + + R!222
=-8 p r p H

ThR Y+1 iaY hR + 1-av 2 cos 2e + f 'fr cos 2e + h + sin 2e fof

2 ar R r2RRr R eR

(70)
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The similarity form for the solution provides a hr time dependence which

allows the equations to be simplified. Furthermore, the angular depend-

ence can be shown to allow only the following form

he = t1 / 5 H sine cose

h = t1/ 5 (H cos 2o + J)

hp = t-2/ (Hp cos2e + J ) (71)

hr = t1/5 (Hr sine cose + Jr)

hR = tG/S(HR sine cose + JR)

Using both the time and angular separable dependence, the equations can

finally be written in the similarity variable x as
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4 j 2 xj' + of- J . L H i +  (L - v + v

5 p 5 0 ax r a ax Y ax a

+ _ j + r - 1- fo f 0
a P a ax P

4 H - 2 xH' + p [2 H + 3- He + fo r + aL + ax

5 o 5 I ax r a ax ax. a ax

_ H v + + _H' + L f. + Hr + I f f : 0

+ ax a a P a P a ax

2 j- 2 xj +yL- 1 Hi +YJ (Lv +Iv'I
p P 5 + Jr a ax e P ax a

5 ~5 a

+ v_ j + L p, - L f f = 0
a a ax

"'H' f'

H- 2 xH' + YPx H + __L + a- Hel + yfp(L_ f + ._L 4 L f

5 P5 P ax r a ax P ax r a axe

f H f f

+ HP 2  v + ! ') + v-H' + __E. fa + -L p I + e 0
P(ax a a P a P a ax

xH + vH, ff =2H ff
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Where the boundary conditions are

L*+ j =0
a

HR +f fR 1f a2~
+ H + 7_

a 2a2  a P 0Y-1 H H~

fff -R V - 2v -a(H,+ LR fI ' -ff

R r a r vR 0 a fRe

12 ff 2  3 j
LRvI+ j+ feR 2 2 ap R p

a r a (Y'P 2 I fp. R aR + i

3.v' + R v" + fR fi +H

a2  a2
r pI I 2Lk H~ + +RP + LR !p+L ( _ +

(Y+l)PO 2 ap R P a2  p a H p a

2H J Hp p

-I (.L f + ( +

8 app H

6 j Rj =Y+l (j YIL + .. + ____

5 R R 2 R a r a

6 H-?H' =y++ f Hr'+fR v"+
R 5 R 2 Ra a 2Rr a

all evaluated at x=1. Prime indicates derivative with respect to x.
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