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A
Abstract. Determining the identity and pose of occluded objects from noisy data

is a critical part of a system’s intelligent interaction with an unstructured environment.
Previous work has shown that local measurements of the position and surface orientation
of small patches of an object’s surface may be used in a constrained search process to solve
this problem, for the case of rigid polygonal objects using two-dimensional sensory data, or
rigid polyhedral objects using three-dimensional data. This note extends the recognition
system to deal with the problem of recognizing and locating curved objects. The extension
is done in two dimensions, and applies to the recognition of two-dimensional objects from
two-dimensional data, or to the recognition of three-dimensional objects in stable positions
from two-dimensional data.
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1. Introduction

The general problem considered in this note is how to locate a known object from
sensory data, especially when that object may be occluded by other (possibly un-
known) objects. In previous work |Grimson and Lozano-Pérez 84, 87| we described a
recognition system, called RAF (for Recognition and Attitude Finder). that identifies
and locates objects from noisy, occluded data. In that work. we concentrated on a
particular subclass of rigid models. If the sensory data provided two-dimensional
geometric data, for example intensity edges from a visual image, we considered
the recognition of objects that consisted of sets of linear segments, or equivalently,
polygonal objects in which some edges are not included. If the sensory data was
three-dimensional, we considered the recognition of objects that consisted of sets of
planar fragments, or equivalently, polyhedral objects in which some of the faces are
not included.

In general, of course, we cannot guarantee that the recognition system will
be confronted only with polyhedral objects. Since the RAF system is reasonably
insensitive 1o noise, one could deal with curved objects by simply approximating
them with polyhedral models that are required to deviate from the actual object
by no more than some bounded amount. This has the effect of introducing some
additional error into the process, which the system has been able to tolerate. While
the RAF system has been successfully tested on a range of real data, including visual,
laser. sonar and tactile. using approximations to curved objects as well as polyhedral
ones Grimson and Lozano-Pérez 87!, the assumption of polyhedral models is overly
restrictive.

In particular, one of the difficulties with using polyhedral approximations is
that they are not stable, so that several images of the same object may Icad to
different approximations, due to small variations in the imaging. This may lead to
difficulties in matching, either causing incorrect matchs< »r removing large portions
of an object from consideration. Moreover. systematic errors in the approximation
can have serious effects on the recognition process. Consider an object with a circular
hole, which is approximated in the model by a regular polygon. Now suppose that
we take an image of the part in some other orientation, and extract a polygonal
approximation of the visible edges of the object. The boundary of the hole will
again be approximated by a regular polygon. If, however, the approximations are
rotated relative to one another, this can lead to a drastic error in locating the part,
since matching the two descriptions will Jead to a large error in the orientation of
the overall part.

In this note, we consider the problem of extending the method to deal directly
with two dimensional objects that include lincar and curved segments. where the
curved segments can be approximated by circular ares. To deseribe this extension
to RAF. we must specify the characteristies of the object models, the requirements

on the sensory data. and the search techmgue used to correctly identify the object




model from the sensory data. Our goal is to obtain a system that can perform as @
indicated 1n Figure |.
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Figure 1. An example of recognizing curved objects. A grey level image of a set of
overlapping parts has been processed. Each part has been identified by name. and the
position and orientation (pose) of the part has been identified. This is shown in the figure
by overlaying the computed pose of the object model. together with the identified name.

2. Recognition as constrained search

2.1 Definition of a solution

Our definition of the recommtion problem can be sinply ~stated  We are given a
~et of data fragments. cbtamed froan the boundary ol an object or objects and
measured 1n a coordinate <vstem centered about the vensor. We are also given a ~et

of object models. specihied Ly a ~ct of faces (whose definition we will make formal

-
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shortly) measured in a local coordinate frame specific to the model. A solution to
the recognition problem consists of determining the following components: a subset
of the sensory data fragments that are believed to come from a single object; an
( identification of which object, selected from the library of known objects; the model
N face associated with each data fragment in the subset; and finally the coordinate
frame transformation that maps the model from its local coordinate frame into the
sensor coordinate frame in such a manner that each data fragment correctly lies on
its assigned model face. In more formal terms, a solution is a three-tuple

: AObjeCt‘x‘r {(dh * me )v (dlc' mJ:)’ tet (du ’ m]k )} 9 (R7v0’ s))

\ where object, is the name of the 1** object in the library, the d, m pairings are

’ associations of a subset of the sensory data d with model faces m from object, and
R 1s a rotation matrix, v is a translation vector and s is a scale factor such that a

:‘ vector v, in model coordinates is transformed into a vector v in sensor coordinates

:", by

‘,i Vg = SRVm + t.

' As has been described elsewhere [Grimson and Lozano-Pérez 84, 87|, we ap-
proach the recognition problem as one of search. Thus, we first focus on finding

* legitimate pairings of data and model fragments, for some subset of the sensory

: data. We chose to structure this search process as a constrained depth first search,

! using an interpretation tree ( IT). Each node of the tree describes a partial interpre-

“ tation of the data, and implicitly contains a set of pairings of data fragments and

- model faces. Nodes at the first level of the tree contain assignments for the first

;' data fragment, nodes at the second level contain assignments for the first and second

N data fragments, and so on. Each node branches at the next level in up to n + 1

i ways. where n is the number of model faces in the object. The last branch is a wild
card or null branch and has the effect of excluding the data fragment corresponding

P to the current level of the tree from part of the interpretation.

:: Given s data fragments, any leaf of the tree specifies an interpretation

': {(dl’mh)V(d‘l‘mJ:)v'-~(d-“*m1.)}*

' where some of the m,, may be the wild card character. By excluding such matches,
the leaf yields a partial interpretation

; {(dll’mJl)’(d’.“mJ‘-')""(d‘k’m]k)}

’ where 1 < 1) < 13 <. ... < 1, but these indices may not include the entire set from 1

\ to 8. This interpretation may then be used to solve for a rigid, scaled transformation

‘ that maps model faces into corresponding data fragments, if such a transformation

: exists. Thus, by searching for leaves of the tree and testing that the interpretation

X there yields a legal transformation, we can find possible instances of object models

:' in the darta. The process< s shown in Figure 2.

:‘ Since this search process is inherently an exponential problem. the key to an

) efficient solution is to nse constraints to remove large subtrees from consideration

N @ without having explicitly to explore them. We next consider the explicit form of the
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Interpretation: ((d lml) (d 2m) (da m.))

Figure 2. An Interpretation Tree. Each node of the tree defines a partial interpretation,
where the level of each ancestor defines a sensory data point, and the branch leading to each
such node defines the corresponding model face. An example of a partial interpretation is
shown, where d, denotes the 1** data point and m, denotes the k'* model face.

sensory data, and the explicit form of the model faces. and then consider constraints
on the assignment of one to the other that can be used to restrict the search process.

2.2 Object models and sensory data

In this note, we restrict ourselves to two-dimensional. or laminar. objects, although
much of the work has been extended to three dimensions Grimson and Loaano-Pérez
84. 87 . We allow our two-dimensional abject models to consist of two different types
of components.

The first type of component is a linear edge fragment, consisting of two
endpoints. and a usit vector normal to the line between them, and pointing away
from the interior of the object. Formally. this is given by

linear, = (a,,(b.e,)).

-

Note that a point on the edge can be represented by t@
n, and b, -~ a,t,. a,= 0.¢ ‘

ﬂb_\;?i :
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where 1, is the unit normal vector, t, is a unit tangent vector, oriented so that it
points from b to e, and a, can vary from O to the length of the edge £, (see Figure
3).

Figure 3. The representation of an edge. An edge is given by the pair
i, and b, + a,t,, a, €[0.4]
where i, is a unit normal vector, t, is a unit tangent vector, oriented so that it points from

b to e, b, is a vector to the base point of the edge, and a, can vary from O to the length
of the edge ¢,.

The second type of component is a circular arc, consisting of a center, a radius, a
pointing direction, and a range of angles. measured r¢!..*ive to the z axis. Formally,
this is given by
circular, = (e¢,,r,,d,.(®,.v,)) .

The pointing direction, if known, is an indication of which side of the circular arc
is the interior of the object. Specifically, it indicates whether the circular arc is the
boundary of a hole, or if it is on the exterior of the object. An example of a circular
segment is shown in Figure 4.

We assume that both the sensory data fragments and the object models are
composed of such components. We will discuss shortly how to obtain such fragments
from grey level images.

2.3 Constraints between object models and sensory data

Given such simple fragments, we now consider how to use them to reduce the search




Figure 4. The representation of a circular arc. An arc is defined by :a center c,,a radius
r,, a pointing direction d,, and a range of angles (¢,,v,).

process. We consider both unary and binary constraints. Since the transformation
from model to sensor .coordinates is one of the things to be determined, we need

v ) . .

v constraints that can compare coordinate frame independent measurements from
: sensory and model-fragments.

&

2.3.1 Unary constraints O

:

) Length constraint

» Consider a linear data fragment,

;.-; linear, = (#,,(b,,e,))

o and a possible matching model fragment

‘. LINERR, = (N, (B,.E,)) .

We let ¢, denote the length of the data fragment, and L, denote the corresponding

. length of the model fragment, where these lengths are given by

¢

; ¢, = b, - e Ly:}BP_EPl‘

! We let
_ length-comstraint(i,p) = True iff €, < L, -~ ¢,

:j capture the notion of the unary length constraint, where ¢ is a predefined upper
:, bound on the amount of error inherent in measuring the length of an edge.

: This constraint says that if the length of the t'* linear data fragment is less
! than the iength of the p'" linear model fragment, subject to some bounded error,
o then it is possible to consistently assign this data fragment to lie on this model one.
o
A
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Note that there is only an upper inequality in determining consistency, since a data
fragment could be partially occluded.

Radius, swept angle and pointing constraints

Now consider a circular data fragment,
circular, (c,.r,,d, (0, %))
and a possible matching model fragment
CIRCULAR, = (C,.R,.D, . (®,,¥,)).

We can define three unary constraints in this case. We let

radius-constraint(s, p) = True iff [r, - R,| < ¢,

swept-angle-constraint(z,p) ~ True iff v, — ¢, < ¥, - &, — ¢,
pointing-constraint(i, p) = True iff d;and D, are known and identical.

Here, ¢, is a predefined upper bound on the amount of error inherent in measuring
the radius of a circular arc, and ¢ is an upper bound on the amount of error inherent
in measuring the angular extent of a circular arc.

These constraints say that if the radii of the /** data fragment and the p* model
agree to within some error, their ranges of swept angles agree to within some error,
and they are both either interior or exterior arcs, then it is possible to consistently
assign this data fragment to lie on this model one.

2.3.2 Binary constraints

Consider two linear data fragments,
linear, = (1,,(b,,e,)) linear, = (0,,(b,,e,;))
and two possible matching model fragments
LINEAR, = (N,,(B,,E,))  LINEAR, - (N,,(B,,E,)).

We need to derive a set of constraints that will determine the consistency of assigning
the data fragments to lie on the model ones.

Angle constraint

Let 6,, denote the angle between 1, and 1, and let 6,, denote the angle between
N, and N,. We let

binary-angle-constraint(:,5.p,¢) - True iff 6,, ¢ ©,, 2¢,.9,, - 2¢

where all arithmetic comparisons are performed modulo 27 and where ¢, is an upper
bound on the amount of error inherent in determing the direction of a normal.

This says that if the angle between the data normals agrees with the angle
between the model normals. within <ome error. then it is possible to consistently
assign these data fragments to lie on these model ones.
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Distance constraint

Given two data fragments, there is a range of distances associated with the family of
vectors having tail on one edge and head on the other. :‘We can compute the range of
such distances, denoted by id,,;.dy ,,|. in a straightforward manner. If i = j, then
the minimum distance ix ) and the maximun: distance is the length of the edge. In
the more general case, let p{v.u) denote the distance between two points. Then the
maximumn distance is given by

dn., max{p(v.u)v- {b,.e,},u¢ {b,:e,}}.
For the minimum distance, we must also consider the possibility that the projection
from an endpoint of one edge in the direction of the normal of 'the seeond -edge
intersects that edge, so that
dii; = min{{p(v.u)iv. {b, e, },uc {b;.e}}

Ap(v.b, - (v - b,,f,>*i,)w - §b,:e;}. (v gbu:‘z> € {0/¢,}3

Ap(v.b, - (v~ bt 0t ) v s fbe}, v - byut,) € 0€,}}
where we let < ... > denote the dot (or inner) product of two vectors. For the model
fragments. we can compute similar ranges, which we denote by ‘D ,,, D}, ,.,. We let

distance-constraint(:. j,p.q) = True iff ., . dn,; C Depg — 2¢4. Ppopg ~ 2¢,.]
where we assume that the position of an edge point is known to within an error
bound ¢,,.
This says that if the range of distances between the data edges i1s rontained

within the range of distances between the model edges, subject to some error, then
1t is possible to consistently assign these data fragments to lie on these model ones.

Component constraint

The third constraint concerns the separation of the two edge fragments. In particu-
lar, we consider the range of components of a vector between the two edge fragments,
in the direction of each of the edge normals. Algebraically. this is expressed by the
dot product

b, - a;t;, b, -a,t, 0,
which reduces to
b, b,n, - a,t, 0, a, < 10. £,
Of course. there is an equivalent constraint for components in the direction of ,.
Note that this expression actually determines a range of values. with extrema when
a, 0.6,  We denote this by
d min{ b, b

[N

0, o, ten, o, {0.6,})

di,, mmi{b b, o, t,m, a, - {0.6}}

These ranges can be computed both for pairs of data edges and pairs of model

vdges I the adeal casel consistency will hold only (of the data range is contained
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within the model range (since the data edges may correspond to only parts of the
model edges). As in the case of the other constraints. we also need to account for
error in the measurements. We derive a simple method for doing this below.

n |

Figure 5. Errors in computing the direction constraint. -} The component of a vector
from one endpoint in the direction of the other edge's normal is given by the perpendicular
distance d to the extended edge. {b) Since the actual normal is only accurate to within
€a, One extreme case is given by rotating the extended edge about its midpoint by that
amount and finding the new perpendicular distance. (c) The other extreme is obtained by
considering the other endpoint.

Consider the base case, shown in Figure 5a. The perpendicular distance from the
endpoint of one edge to the other edge is shown as D-. In Figure 5b. the edge is
rotated by ¢, about its midpoint, and the new perpendicular distance X is shown.
We need to relate X to measurable values. We already have D-. We can also
measure 5, the distance from the midpoint of the edge to the perpendicular dropped
from the endpoint of the other edge. as shown. Straightforward trigonometry then
vields the new distance

X _ (l)' - Nsine,) cose,.

P
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Since the position of the second edge is not known exactly. we must adjust this
expression, to yield one limit on the range of possible measurements:

L (P _ ]
D;,, = (D Ssine,)cose, - g,

The other extreme is shown in Figure 5¢. Trigonometric manipulation yields
the following upper bound
D,f,pq = (S — D+ sin (u) sine, + D* sece, ~ ¢,
Thus, given two model edges indexed by p.gq. we can compute a range of possible
measurements (modulo known error bounds). by using D, ~and D, pq Computed

.9
over all the endpoints of the edges. We denote this range by M, .My "
We let
component-constraint (i, j,p,¢) = True iff |, . d; )| < Mg, Mii ..

This says that if the range of distance components between the data edges is con-
tained within the corresponding range between the model edges, subject to some
error, then it is possible to consistently assign these data fragments to lie on these
model ones.

Circle center constraint

Now consider two circular data fragments,
circular, = (c,,r,,d,,(0,,¥,;)} circular, = (c,,r,.d,.(4,.v,))
and two possible matching model fragments
CIRCULAR, = (C,,R,.D,,(®,,¥,))  CIRCULAR, - (C,,R,.D,, (¢, ¥,)).
We need to derive a set of constraints that will determine the consistency of assigning
the data fragments to lie on the model ones.

The first constraint arises from considering the distance between the centers of
the two circles, given by p(c,,¢,), in the case of the two data fragments. We let
center-constraint(:. ,p.q) = True iff p(c,,c;) € p(C,.C,)-2¢.4,p(C,,C,)+2¢.4
where ¢.4 is an upper bound on the amount of error inherent in measuring the
position of the center of a circular arc.

This says that if the distance between the centers of two data arcs is within

some bounded error of the distance between the centers of the model arcs, then it
is possible to consistently assign these data fragments to lie on these model ones.

Circle swept angle constraint

The ranges of swept angles of two fragments must also be constrained. We let
binary-swept-angle-constraint(:. j.p.q)  Trueiffo, +, < ®. W . 2
and v, o, "W, & 2
where as before ¢, 1s the amount of error inherent in measuring the angular extent

of a circular arc. and the angles are measured modulo 2r.
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This says that if the difference in the range of swept angles between two data
arcs is contained within the corresponding range of two model arcs, subject to some
error, then it is possible to consistently assign these data fragments to lie on these
model ones.

2.3.3 Cross type constraints

All of the binary constraints described above deal with the relationship between pairs
of data fragments of the same type, and corresponding pairs of model fragments.
Note that there are other constraints possible. especially cross constraints between
fragments of opposite type.

Cross distance constraint

Consider a circular data fragment
circular, = (c,,r,,d,. (¢, ¥,))
and a linear data fragment
linear, (n,,(b,,e)))
and corresponding model fragments

CIRCULAR, = (C,,R,, D,,{®,,¥,))  LINEAR, = (Nq, (Bq,Eq)).

The range of distances between the center of a circular fragment and a linear
fragment can be constrained, similar to the distance constraint between two linear
fragments. We let

Frpq = p(Cp By + <Cp - Bq*i‘q> Tq) if <C}' - Bq’i‘q> € [0, Ly

min{p(C,,B,),p(C,.E,)} otherwise
Fh-”‘l = max{p(cp$ Bq)v p(Cpa Eq)}

and we let

cross-distance(t, j.p,q) = True iff p(c,,b;) € (Fopq - €cd — €p. Frpg + €ca+ €]
and p(c,,e,) € 1Fpq — (cd = €p. Fhpg + €ca~ €pl.

This says that if the range of distances from the center of the data circle to the
data edge is contained within the corresponding model range, subject to error, then-
it is possible to consistently assign these data fragments to lie on these model ones.

Cross component constraint

Given the same data and model fragments as above, we can consider the perpen-

dicular distance from the circle center to the extended line defined by the linear

segiment.,
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Using the same method described for the component constraint between two
linear fragments, we let
Di,, = (D* — Ssine,) cose, — ¢,
D; ,, - (S - D* sine,)sine, ~ D sece, - ¢,
where in this case
- .. Al N
p-- (B, C.N,).
We let

cross-component (i, j.p.q) = True iff < b, - ¢, - Dy Dp .
This says that if the component of distance from the center uf the data circle to
the data edge is contained within the corresponding model range, subject to error,
then it is possible to consistently assign these data {ragments to lie on these model

ones.

Cross angle constraint

Let v,,T, be the angle between the unit normal vector of the linear edge and the
z axis, for the data and model linear fragments respectively. Then the range of
angles between the swept angles of the circular fragment and the unit normal must
be consistent.

We let

cross-angle(i, j.p.q) = True iff (¢, 7,0, - 7,] ¢ @, - T, - .. ¥, - T, 4 ¢l

2.4 The constraints reduce the search

Given these unary and binary constraints, the constrained search process can be
straightforwardly specified. Suppose the search process is currently at some node at
level k in the interpretation tree and with a consistent partial interpretation given
by
{(dl‘m]l)’(d27m}:)‘ . "(dk‘mﬂ)} .

We now consider the next data fragment dy . ;, and its possible assignment to madel
face m,, ., where j;., variesfrom1ton * I

The following rules hold.
o Ifm,  isthe wild card match, then the new interpretation

{(di.m,,).(de.m, ). .. (dx.1.m,, )}
is consistent, and we continue downward in our scarch.
o Ifm, , isalinear edge scgment, we must verify that
length-constraint(k - 1.4 .} Truc.
Moreover. for all 1+ {1.. ..k} such that 4, is a lincar edge fragiment. we must
verify that

binary-angle-constraint{s. bk « V.. 0 .1)  True




13

distance-constraint(i,k -+ 1, j,.5:.1) = True
component-constraint(s,k ~ 1, j,.ji.y) = True
component-constraint(k + 1.1, 3 .,.) = True.
And, for all i & {1,....k} such that d, is a circular edge fragment, we must
verify that
cross-distance(i, k + 1.7, jx.1) = True
cross-component (i, k + 1.j,.ji,1) = True
cross-angle(i, k + 1,7, 5, .;) True.
e 1lm,  isacircular arc segment, we must verify that
radius;constraint(k + 1,Jk+1) = True
pointing-constraint(k + I, j,.,) = True
swept-angle-constraint(k ~ 1, ji. ) = True.
Moreover, for all i € {1,...,k} such that d, is a circular arc fragment, we must
verify that
binary-swept-angle-constraint(:,k + 1, j,, Jk+1) = True
binary-swept-angle-constraint(k + 1.1, jx4,,7) = True
center-constraint(i, k + 1, 5, jx. ) = True.
And, for all 1 € {1, ..., k} such that d, is a linear edge fragment, we must verify
that
cross-distance(k ~ 1,1, j;,17.) = True
cross-component(k + 1,7, jx.7.) = True
cross-angle(k + 1.7, 5x.17,) - True.
e If all of these constraints are true. then
{(dr,m,,), (d2em,o). . (deerom, )

is a consistent partial interpretation. and we continue our depth first search. If
one of them is false, then the partial interpretation is inconsistent. In this case,
we increment the model face index 7, .; by 1 an | try again, until .y = n+1.
If the search process is currently at some node at level k in the interpretation tree.
and has an inconsistent partial interpretation given by
{(dy,m;,). (d2.m, ), .. (dx,m,, )}
then it is in the process of backtracking. If jx - n t 1 (the wild card) we backtrack
up another level, otherwise we increment j; and continue.

2.5 Model tests

Once the search process reaches a leafl of the interpretation tree, we have accounted
for all of the data points. We are now ready to determine il the interpretation isn
fact globally valid. To do this, we solve for a rigid tran<formation mapping points

V,, in model conrdimates mto potnts vV an sensor coordinates,

v, kv, - v,
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where R is a rotation matrix, v is a translatien vector. and s is a scale factor. We
can solve for this transformation in a number of ways 1e:g.  Grimson and Lozano-
Pérez 84, 87, Ayache and Faugeras -86,. The method described in [Ayache and
Faugeras 86 deals with finding transformations from line segments to line segments.
It is straightforward to extend the method to deal with transformations of sets of
points (the centers of the circular arcs) to sets of points. In our implementation
(described later) we solve for two transformations, one based on the linear fragments
of the match, and one based on the circular fragments. We then require that the
two transformations be roughly identical.

Given such a transformation, which is usually some type of least squares fit.
we must then ensure that the interpretation actually satisfies it. We do this by
considering each of the linear data fragments assoc.uted with a real model face in the
interpretation, and transforming.the associated linear model face by the computed
transform. For each such face, we then verify that the transformed fragment differs
in position and orientation from its associated data fragment -by amounts that are
less than some acceptable error bounds. These bounds on transform error can be
obtained from the predefined bounds on the sensor error |Grimson 86b'. For each of
the circular data fragments associated with a real model face in the interpretation,
we also transform the model fragment into sensor coordinates. \In this case, we both
verify that the transformed center of the circular arc lies within some bounded error
of the center of the associated data fragment, and that the set of actual points lying
on the data circular arc. are within a bounded distance of some point among the
set of transformed model points. Any interpretation that passes such a model test
is a consistent interpretation of the data.

2.6 Additional search reductions

While the constrained search technique described above will succeed in finding all
consistent interpretations of the sensory data. for a given object model. it is not par-
ticularly computationally efficient. This is mostly due to the problem of segmenting
the data to determine subsets that belong to a single object. Indeed. for the case
of linear fragments only. if all of the sensory data do belong to one object. the de-
scribed method i1s known to be quite efficient, as has been verified both empirically
Grimson and Lozano-Pérez 84, 87| and theoretically Grimson 1986a . In order to
improve the efficiency of the method, we add two additional methods to our search
process, both previously discussed for the case of lincar fragments in Grimson and
Lozano-Pérez 87 , and extended here to circular segments.

Hough transforins

The first is to use the Hough transforin Hough 62, Merlin and Farber 75, Sklansky
78. Ballard 81 as a preprocessor to restrict our attention to small portions of the

search space. In bnef. the Hough transform works as follows. Consider a three
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dimensional configuration space, with axes denoting the r and y components of a
translation vector, along with a # axis which denotes an angle of rotation. Thus,
any point in this space defines a unique rigid transformation. We tesselate the space
into buckets, based on some sampling of the axes, say h,, hy, hq.

Now, we consider a linear data edge, 1 and a linear model fragment, indexed by
g. Suppose that the data edge is shorter than the model edge. subject to the error
in measuring length ¢,. There is a unique angle, call it ', needed in order to rotate
the model fragment so that its normal aligns with the data fragment’s normal. Let
R.. denote the rotation matrix associated with this rotation angle. Ignoring for the
moment the effects of scaling, any point on the model edge can be transformed into
sensor coordinates, as

u= R B, + 8T, - vl

Any translation v such that the endpoints of the transformed line lie within range
of the associated data line are possible valid translations. Since the data edge may
be partially occluded, it will in general be shorter than the model edge and hence
there will be a range of translations possible, corresponding to sliding the shorter
edge along the longer one.

These translations are given by the set of vo that satisfy

{u- b, B,) € [-¢,¢)]

(u - b,,i,> € [—eL,Z, -+ (Lj
for all 3 € 10,L,. If welet vq = c,(Rn,) ~ c,(Rt,) then the range of possible
translations is given by

Cp ["Bq.Rﬁ,‘z - (b,,M,) - ¢, - max {U. L, <Tq’Rﬁ'>}’
]
T, Rt.)},

/\'Bq,Rf,» b,.t,; : ¢, - min {(). L, <T,Rt,>}]

B, R#,) - 'bo,) + ¢ - min{0. L, (T, Ri
$ / $ . (1
cy € [/\Bq.Rt,/‘ (b,,t,) - & € 4 max l L <

Thus, for the given rotation @', these expressions define a polygon in the translation
subspace of the Hough space. Any bucket in the tesselate Hough space that intersects
this polygon denotes a possible transformation consistent with the given pairing of
data and model fragment. Thus, we place the pair (linear,, LINEAR,) into each
such bucket. This computation was done assuming a rotation @' based on aligning
the data normal and the model normal. Since, in general. tucre may be error in the
data normal. we repeat the above process for a sampling of angles. chosen from the
range

g 0,

If the data edge s longer than the model edge. subject to the error in measuring

length. then nothing is done.
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A similar computation holds for the pairing of a circular data arc. 1 and a
circular model arc, ¢g. Suppose that the radius of the data arc agrees with the radius
of the model arc, subject to the error in measuring such radii. Then. given a rotation
angle 8, the condition on the translation part of the transformation is simply given
by

(RCy+ vy~ ¢,,RCy +vy ¢, % 2,

In general, as we sweep through all possible rotation angles. the position of this
circle of possible translation voctors will trace out a helix in Hough space. However.
we need only consider the range of angles 8’ such that the rotated range of swept
angles for the model arc will lie within the range of swept angles for the data arc,
subject to error in measuring such swept angles For each such angle. there will be a
set of translations associated with it. Now, as befc:~, for every bucket in the Hough
space that interesects the circle defined by the above condition. we place the pair
(circular,, CIRCULAR,) into the bucket. If the radius of the data arc does not agree
with the radius of the model arc, subject to the error in measuring such radii, then
nothing is done.

We can repeat this process for all possible pairings of data elements to model
fragments, adding pairs to appropriate Hough buckets. Each such pair essentially
votes for the set of transformations with which it may be consistent. Having done
this, we can then rank the Hough buckets. We do this by assigning to each bucket
a measure, determined by the sum of the lengths of the linear data edges assigned W
to the bucket plus the sum of the arc lengths of the circular data edges assigned to
that bucket. This allows us to sort the Hough buckets, in decreasing order.

Now each bucket defines a new interpretation tree. It contains a number (usu-
ally much less than the total number) of data fragments, and associated with each
one is a set of possible matching model fragments. By adding the wild card character
as before, we can apply our constrained search process to this much smaller inter-
pretation tree, to obtain consistent interpretations. We can simply search through
the Hough buckets in sorted order until we obtain a valid interpretation.

Note that this process has ignored the effect of scale in the object transforma-
tion. We can incorporate scale in at least two different ways. The first would be
to add an additional dimension to our Hough space. and then to place data-model
pairs in this four dimensional space based on the set of translation. rotation and
scale factors consistent with such a pairing. A second method is to increase the num-
ber of buckets into which a data-model pair are placed by increasing the bounds on
the distance allowed between a Hough bucket and the set of translation and rota-
tion factors deemed consistent with a pairing. By placing bounds on the range of
possible scale factors. one can determine appropriate bounds on this distance. Note
that such a range of scale factors will only affect the translation components of the
Hough space. In our implementation, we choose the latter approach

Also note that we need not use a Hough space whose dimensionahity matches

the numbor ()f degr(-e-s ()f frv(-d()m ()f (.h(’ ()l)j(‘(" Hl(l(i(‘l.\ﬁ Sill(‘(' we are not rvl\ing on —'n. b
. o
%t

the Hough transform to directly mterpret the data. Rather, since we only use the .
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Hough transforin to reduce the search space, we can use any number of dimensions
in our Hough space, trading off expense of computing the Hough transform against
the gain in reduction of the final search space.

Premature termination

We can add a second heuristic to our search method, which also drastically reduces
the effort involved. Suppose we have reached a leafl in one of our interpretation
trees. and the interpretation associated with it is consistent. Since many of the data
fragments in the interpretation are likely to have been assigned the wild card char-
acter, our search method would proceed to backtrack, attempting to find another
interpretation that accounted for more of the data. In many cases, this is a fruitless
task [Grimson and Lozano-Pérez 87!. We can truncate this search, at the possible
risk of occasionally misinterpreting the data. In particular, we can apply a mea-
sure of goodness of match to each consistent interpretation. If that measure exceeds
some predefined threshold, then we can accept the interpretation, and terminate the
search in that particular interpretation tree. Reasonable measures of match include
the number of data fragments accounted for, and a measure of the percentage of the
object model accounted for. determined by the ratio of the sum of lengths of the
linear data fragments accounted for plus the sum of the arc lengths of the circular
data fragments accounted for, relative to the overall perimeter of the object model.
In our implementation, we use the perimeter method.

These two techniques can be combined to produce a very efficient recognition
system. We can search through the sorted Hough buckets. appiying our constrained
search method to the interpretation tree defined by the bucket contents. If we find
an interpretation that exceeds our predefined measure of match, we can remove the
data fragments that have been accounted for, adjust our Hough buckets accordingly,
and continue the process, until we have either identified all of the edges in the data,
or all of the Hough buckets have been exhausted.

Note that in using a cutoff based on percentage of object accounted for. one
can weight the edges based on relative importance. possibly by using a measure of

saliency Turney. Mudge and Volz. 86 .

3. Getting the fragn]eﬁts from real data

We have assumned that both the object models and the sensory data consist of sets
of edge ragments. both lincar and cireular. as charactenized in Section 2.2 Given
such assnmptions. we have developed a constramed scarch technique that will find
interpretations of the data relative to the model. We must show however, that the

asswnption on the form of the models and sensory data s valid. Toe do this. we
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describe a method for obtaining linear and circular edge fragments from grey level
images. This will be used both to build the object models automatically, and to
process the input sensory data.

The first stage in our processing is the extraction of sharp intensity changes
in the grey-level input image. There is a large body of literature on the problem
of edge detection. and any of several different edge detectors would suffice for our
purposes. For a variety of reasons, we use a Marr-Hildreth Marr and Hildreth 80
Laplacian of Gaussian edge detector. Applying this operator to the image reduces
the sensory input to an array of connected edge points. where a 1 in a pixel indicates
an edge point, and all other points are 0.

Next, we extract connected contours from this array. This can be done by a
simple tracing operation. Note that it is not critical if missing edge points cause the
tracing operation to fragment the edge contours into a set of smaller ones.

As we extract each edge point of a contour, we record two pieces of information.
an estimate of the local orientation of the edge at that point. and an estimate of the
change in arclength between the previous edge point and the current one. Since the: .
measurements tend to be noisy, we smooth both of them by recursive averaging.
This yields a transformed representation of the edge contour. now mapped into an
arclength-orientation (8-s) space Perkins, 78, 80, McKee and Aggarwal 77 .

The advantage of such a transformation is that the edge fragments are now
easily extracted. Note that a straight line in the original image space maps to a
horizontal line in (8-s) space, and a circular arc in the original image space maps
to a slanted line in (6-s) space. Thus. to extract our edge fragments, we simply
need to parse the {©-s) space representation. We do this by applying a simple split-
and-merge Horowitz and Pavlidis 76, Chen and Pavlidis 79' algorithm to extract
linear segments from the transformed representation. To do this, we must specify
a bound ¢,,,, on the maximum deviation between the straight line and the contour
being approximated.

Any non-horizontal hne identifies a circular arc. Note that to determine hori-
zontal from non-horizontal lines. we need a brund on the angle between the line and
the s-axis. say ¢5. The radius of the circi 1ar arc is given by the inverse slope of the
linear segment in (O-s) space. To find the center of the circle. we use the following
method. First. we transform the circular segment back into the image space, and
choose a sampling of patrs of points from the transformed segment. Let 2¢ denote
the separation of the two points. Next, we construct a perpendicular bisector to
this chord  The center of the circle must lie a distance 'r? - €2 along the bisector.
We can determine on which side of the chord the center lies. by ensuring that the
points between the two sample points lie on the opposite side of the chord. We can
collect all such hypothesized centers. aver <ome et of sample points and use the
imdpoint of the collection to determine the circle center

Thic gives us an estimate of the center of the circle. Sinee the computation

of the aircle radins nuny be nosy. we can oxtend this method by perfornmimg the

X

Ay ".‘\-."."."."',.\'. __‘,. "t RS X
LA DA J‘ :1 i ‘;{LL%&'&" ﬁmm




'i'

+ . 19
¥

N m abhove computation for a range of possible values for the radius. For each hypothe-
A ' sized radius and center, we can measure the deviation of the data points from the
. hypothesized circular, and select the circle with minimum error.

‘:l Given the circle center and the two endpoints of the circular arc in image coor-
::: dinates, we can determine the limits on the swept angle straightforwardly. Finally,
e if we know the sign of the contrast between the object and the background, we can
N use the direction of the change in edge intensity across the edge to determine the
- pointing direction of the arc.

) To ensure that the computed fragments are optimal, we perform a second split-
::;-: and-merge stage, this time in the image space. That is, given a circular fragment,
"::: computed as above. we test that all of the data points lie within a given error range
of the hypothesized fragment. If they do not, we split the data points at the point
" of maximum deviation, and perforin the same computation on each of the subparts.
":: We are left with the horizontal lines in (©-s) space. To extract the linear edge
.ﬁ‘ ' fragments, we transform all of the points along these lines back into the image space,
o and run the split-and-merge algorithm again in this space. This allows us to extract
o the endpoints of the linear fragments. The normal is orthogonal to the line between
o the endpoints. If we know the sign of the contrast between the object and the
" background. we can use the direction of the change in edge intensity across the edge
‘; to determine the sign of the normal.

\

' . In our experience, this second split-and-merge stage in the image space is im-
* “ portant. If we simply rely on the first split-and-merge operation, we have found
that the actual edges in the image space corresponding to the horizontal lines in the

Q"

) .. . vr - - .. . .
o (©-s) space have significant residual curvature. This is not surprising, since in one
l .
2 case we are thresholding based on deviation in curvature. and in the other, we are
Ty . .- . .
¥y thresholding based on deviation from lincar. As a consequence, the second split-
¢ - . - . .

4 and-merge stage results in the segmentation of horizontal (8-s) lines into several
“ image space lines. with much tighter fit.
i
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i 4. Putting it all together
i
::, 4.1 Building the library of objects
a
b ' A . . . . . v . . .
& We now have the pieces needed to build onr recognition engine. We begin by building
: a library of object models. Thix is accomplished by placing each part in isolation
0 under a camera, and running the fragment extraction pros s deseribed 1n Section
i L . .
y 3. This produces a set of linear edge fracments and a <et of circular edge fragments,
o defined in a local coordinate frame.
Y% \\. . "I . .o ) . l] . . .
N ¢ can imiprove the efliciency of our recognition sy stem by doing some prepro
'R . . . . . .

v cessing on this representation. In particular. for cach object. we build a set of tables
-~ v capturing the model halves of each of the constraints. For cach unary constraint, we
2
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) build a one dimensional table, indexed by face mumber. in which we store the value
of the model half of the constraint. For exampile, for the length constraint. this

o would involve computing and storing the length of each edge plus the error bound,

:;Q L,, + €.

’:: For each binary constraint, we build a two dimensional table. in which we store the

) value of the model half of the constraint. For example. for the angle constraint,

a this would involve computing and storing the range of angles between a pair of edge

B normals, adjusted for error,

;: ©pg ~ €a.Opq + €a)-

This precomputation makes the search process significantly faster, since half the
computation is reduce to a table lookup.

i;;a Having built a model for a single object, we can straightforwardly build a second
::‘, model for the mirror reversal of the object. This gives us two models per object,
:z‘ but allows us to recognize laminar objects in either stable orientation.

[

A 4.2 Processing the sensory data

o,

.E: Once we have constructed the library of objects, we are ready to process arbitrary
K images of the objects. Using the process described in Section 3, we reduce a grey-
X level image of a pile of parts to a set of linear and circular edge fragments. Next, @
. we apply a Hough transform to the data, for each model in the object library. This
:;: yields a sorted list of Hough buckets for each model. We use our bound on the
S; goodness of match to remove any Hough buckets without sufficient contents from
:':: consideration. Then, starting with the best Hough bucket, as measured over all
N

the objects, we apply our constrained search, using premature termination to stop
when a sufficiently good interpretation is found. If such an interpretation is found

) for the current Hough bucket, we remove the edge fragments accounted for from
;:"’, consideration, adjust the contents of the Hough buckets for all objects, and resort
o:: each list of Hough buckets. We then proceed as before. continaing until no further
:fg Hough buckets remain. If no interpretation is found for a Hough bucket, we simply
s move on to the next best bucket and continue. An example of such processing is
A. shown in Figure 1.
]
::, 4.3 Unknown edge normals

;

. In the preceeding discussion. we have assumed that we can identify the correct
::{ direction of the normals to linear edge fragments. and the pointing direction of the
r::' circular ares. This operation relies on knowing the contrast between the background
i:' and the objects. If such information i< available. the contrast across an mtensity
o edge will determine these properties.

. In many cases. however. it is unrceasonable to assume that this information will @
,;, Le known. We can extend our system to deal with this case. One solutian is based
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on the following observation, and has been reported in [Grimson and Lozano-Pérez
87]. As long as two edges do not cross or are not collinear, at least one edge must be
completely within one of the half planes bounded by the other. As a consequence,
the components along one of the edge normals of all possible separation vectors
will always have the same sign. Given a tentative pairing of two measured edge
fragments and two model edges. we can use this property to choose the sign of one
of the normals. The angle constraint can then be used to consistently select the
signs for other edges in that interpretation. This does allow the method to correctly
interpret data with unknown data edge normal signs, at a small increase in the
search cost.

A second solution is simply to double the number of sensory linear edge frag-
ments, one with each possible sign of the edge normal. The constraints will then
ensure that at most one of each such pair of edge fragments in included in the in-
terpretation, and the process can proceed as before. Here, the pointing direction
constraint is not used.

4.4 Other extensions

Although we have presented the systemn as recognizing objects from their occluding
boundaries, it is more broadly applicable than this. In particular. since we use an
edge detector to extract our primitives for matching, other object markings, such
as albedo or material changes, or surface texture, that are stable across a range of
imaging conditions would also suffice.

Three dimensional objects that are known to be in stable positions can also
be handled using this method. For each stable position, we can build an object
model by running the front end of the system. The assumption of stable position
removes the effects of perspective, and allows us to treat the problem as essentially
a two-dimensional one.

5. Testing

We have implemented and tested a version of the curved object recogmition sys-
tem. Our implemented version differs slightly from the description given above.
In particular, we have not included any of the cross constraints, relying only on
the constraints between segments of the same type. Our expectation is that the
non-inclusion of such constraints should at worst increase the scarch time spent in
finding correct interpretations. without causing any incorrect interpretations to he
found.

We have run the system on o sequence of images <similar to that <shown i Fip-

ure b Fach image consisted of six overlapping parts, selected with repetition from
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two different types of parts, and placed at random, with possible mirror reversals.
as shown. In each case, we asked the system to find as many interpretations as pos-
sible from the library of parts, where each part could appear an arbitrary number of
times. After each interpretation was found, the accounted for edges were removed
from the data, and the process was continued, until no further portions of the search
space remained unaccounted for.

For each image, the system was run in three different settings, using perimeter
percentage thresholds of .10, .20 and .50. For each such triple of settings, the system
was run with two different tesselations of the Hough space. In the coarse case.
the Hough sampling was 50 pixels in the translation components (where the entire
image was 576 by 454) and 36 degrees along the rotation axis. In the fine case, the
Hough sampling was 25 pixels in the translation coiaponents and 18 degrees along
the rotation axis. Over 5 trials, the system had the performance indicated in the

. following table.

Coarse Hough Fine Hough
Perimeter % 50 J 20 | .10 50 20 .10
Correct 28 | 5.2 48 2.6 52 | 54
Multiple .06 0.8 08 1.2
Mirror | 0.2 06 02 | 02
Incorrect 0.4 0.8 0.2 ‘T 0.2
Perimeter 66 43 38 67 40 41
Real Nodes 741 473 585 867 754 | 576
Real Model Tests 236 149 203 344 341 | 245
- — - — — : }
Final Nodes 1942 L 1980 | 3252 | 1879 | 2385 = 6029
Final Model Tests 627 | 745 . 1571 | 787 [ 1143 290
Parsing Time 290 290
- — - —— - — 4 — - ——— . — e — — -ﬁ
L Parsing Time 135 686
Search Time % | 106 135 75 1 398 434
% Search in Final Stage 72 IL .81 l 85 68 \ 76 91

Each of the columns of the table indicates the results of using a different thresh-
old on the percentage of the perimeter of an object needed for a valid interpretation.
The correct line indicates the mean number of correct interpretations found over
the set of trials. The maximum number of valid interpretations is 6 per trial The
incorrect line indicates the mean number of incorrect interpretations found per
trial. We also indicate the mean number of multiple interpretations, that is. situa-
tions in which the system found nearly identical, correct mterpretations, based on
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different subsets of data, and we indicate the mean number of incorrect interpreta-
tions involving the mirror reversal of an object.

Note that in the case of a perimeter percentage of .20, the system found almost
all of the possible correct interpretations. Each of the incorrect interpretations
involved the larger object in Figure 1, in which the circular structure was correctly
matched. but at the wrong orientation. Since the circle contributes a large amount
to the total object perimeter, only a small number of other edges were needed to
find a feasible but incorrect match. The interpretations that were not found all
involved the small object shown in Figure 1, and in all cases, the object was heavily
occluded. In the case of a perimeter percentage of .50 all the found interpretations
were correct. In the case of a perimeter percentage of .10, the performance degraded
slightly, with more incorrect or mirror interpretations. This is not surprising, since
we are only requiring 10% of the object to be matched in situations involved a
reasonable amount of clutter. The perimeter line of the table indicates the average
percentage of the object’s perimeter actually included in the interpretation.

The real nodes line and the real model tests line indicate the mean number
of nodes of the interpretation tree, and the mean number of model transformation
tests performed for each of the interpretations found. The final nodes and final
rodel tests lines indicate the amount of search performed after the last interpre-
tation was found in each trial. Not surprisingly, these numbers are much higher,
since considerably more effort is involved in verifying that no further interpretations
can be found using the remaining scattered data fragments.

The Time lines in the table indicate the mean time involved in parsing the
intensity edges into linear and circular fragments. in transforming these fragments
into the Hough space, and in executing the actual scarch process. The times are
reported in seconds of elapsed time for an implementation on a Symbolics Lisp
Machine, without floating point hardware. The final line indicates the portion of
the search time that was spent in verifying that no further interpretations remained.
These timing statistics are intended only for comparw..:ve purposes. A number of
optimizations of the code are possible, and would considerably reduce these numbers.
For instance. in the Hough transformation. we are using a very fine sampling of
rotation angles, vielding a large number of nearly overlapping polygons in Hough
space, which are then intersected with the buckets of the Hough space. Considerable
savings could be obtained by using a coarser sampling at the expense of possibly
missing a feasible Hough bucket on occasion. Similarly, in the parsing of the input
data. we are using an exhaustive search to find the best estimate of the radius and
center of the circular fragments. This accounts for 80% of the time reported. and
could clearly be sped up.

There are scveral interesting points about the described testing. First, note
that most of the search is <pent in verifving that no further interpretations extst. In
eeneral. the correet interpretations are found with very little search. This suggests
that the systemin fact behaves as a hypothesize-and-test system., in which the Hough

transforin serves to hypothesize possible interpretations, that are then venified by the
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constraint satisfaction process. We note that the Hough transform is not suflicient
alone, as we have frequently observed that the biggest Hough bucket did not result in
a correct interpretation. Moreover, there can be considerable diffusion in the Hough
space, due to the errors in the sensory data. As a consequence, a large number of
Hough buckets may have comparable sized contents. This is illustrated in Figure 6,
which shows the Hough space for one of the objects of Figure 1, at two different
resolutions.

Second, we note that if the system can correctly identify most of the objects
in the scene. then it would seem that it should not have to spend considerable
time in additional search verifying that no furth-r interpretations exist, since in
general most of the data fragments should already be accounted for. As can be
seen from the table, however, considerable eflort is spent in doing this. In part,
this follows from the fact that the interpretations found by the system frequently
do not account for all the data fragments arising from the object. This occurs
for several reasons. First, the (©-s) space segmentation scheme does not produce
canonical partitions of the input data. Hence. small deviations in the image may
cause a noticably different data segmentation, and some data edges may be different
enough from the model to be excluded from the interpretation. Our experience
suggests that this sensitivity may be more true of the (©-s) space segmentation
than of strictly polygonal segmentations. This sensitivity to segmentation could
be handled by increasing the error bounds discussed in the next section. This
is dangerous, however, since the increased bounds are also likely to cause more
accidental alignments of data fragments to be incorrectly interpreted. A better
solution would be to do additional verification in the image space. That is, having
found a correct interpretation based on moderate error bounds, one could then
project the interpretation back into the image. and using looser bounds search for
additional data fragments that are in agreement with the projected object position.

Many of the incorrect interpretations involved solutions in which the large cir-
cular hole of the large object shown in Figure | was matched correctly, but the
overall orientation of the solution was incorrect. Since there is an inherent ambigu-
ity in the rotation of the object about the center of the hole, while at the same time,
the perimeter of the hole contributes a large portion of the overall perimeter, if a
small portion of the object happens to align accidentally with some data fragment.
we can obtain an incorrect interpretation that accounts for a noticeable portion of
the object’s perimeter. We need some means of handling this problem. perhaps by
using a vanant of the Feature Focus method of Bolles 1982

Finally. note that the different samplings of the Hough space did not lead to

significantly different performances in terms of the number of imterpretations.
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Figure 6. Samplings of the Hough space. The top part shows the Hough space for the
smaller object of Figure 1, sampled at a coarse resolution. Each frame represents a different
orientation, increasing from left to right. Within each frame, the contents of each of the
translation buckets is shown, with the size of the dot indicating the size of the buckets
contents. Note the smearing of this measure over a broad ex:~nt of the space. The bottom
part shows the same Hough space at a finer resoiution.




6. Free parameters and error bounds

In describing our recognition system, we have used a number of free parameters
. and error bounds. While at first glance there appear to be a large number of such
i free parameters. in fact. many of them are interrelated. and only a few need to be
determined in order to run the systen.

(] The first parameter is the bound on the accuracy of measuring the position
: of an edge point ¢,. This bound is a function of the camera system and the edge
: detector used. Since we are using a Marr-Hildreth operator. the accuracy of the
\ system could be determined fromn fortmal analysis Berzins 84 | or could be measured
empirically. Note that since this is simply an upper bound, we can be conservative
‘ 1n our estimates.
: Given this bound ¢,,. a number of the other free parameters follow directly. For
\ example, suppose that the position of an edge point is known to within the error
i, bound ¢,. If L,,,, is a lower bound on the length of the edges. it is straight{forward
: to show that the maximum error in the measured angle between edge normals is
. given by
f o
oA ¢, - tan ! [_(’i
“min
The bound on measuring the length of a linear fragiment is also determined by :
¢,. in particular. the worst case bound is given by %
‘ e " 2¢,.
; The error in measuring the radius of a circular arc ¢, will generally be on the
) order of the error in measiuring the position of an edge point ¢,,. Since the radius is
X determined by taking the slope of a line in B©-s space. it is likely to be less than this,
- but using ¢, is a conservative bound. The error in measuring position of the center
';‘ of a circular arc ¢.; will also typically be bounded by ¢,. Similarly, a conservative
N bound on the error in measuring the swept angle range is ¢, = ¢,.
‘!: The bound on the split and merge algorithm ¢.,, is something that we must
‘»‘ set by hand. Note that so long as our models are built using the same value of the
parameter as that used in processing sensory data, and so long as this value is not
~ too large, the exact value is not critical.
. Setting the parameter that distinguishes straight lines from circular arcs, ¢,
0 can be done based on properties of the objects to be recognized. In particular. since
¢+ 1s a bound on the angle between the horizontal axis and a line in 6-s space, if
5 the radius of the largest circular arc on any object is R,,,;, then we can set
::. Ch ! :
5 Ry
l.: Thus. the varions error bonnds in the algoritban can be determined by mea-
i suring the accuracy of the system in determning the position of an edge point,
" .. by specifving the minimum length required for an edge fragment L., and by e
\ specifying the maxemui radius of a circular are K, , . *
"
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:E:’. "‘j There 1= one other threshold in our system. namely the threshold used to de-
. termine an acceptably sized interpretation. We have indicated that our measure
- of an interpretation is the sum of the lengths of the lincar data fragments in the
I interpretation plus the sum of the arc lengths of the circular data fragments in the
h‘ interpretation. We use a threshold on this measure in two places: to remove small
:1':2 Hough buckets from the search process. and to prematurely terminate the 1T search
" once an acceptable match is found. Unfoitunately. there does not scem to be any
R principled way of setting this threshold. Clearly. we can trade of false positives and
}",:; false negatives by varying it. since the smaller the threshold. the more likely an
L_;‘:l: incorrect interpretation is accepted. while the larger the threshold. the more likely
'::;: that correct interpretations will be missed. In our experiments. we have typically
. left the threshold at 20 - 25°C of the total perimeter of an object.
e Aldo note that a straightforward application of a threshold on perimeter ig-
:f ': nores information about what portions of the object are matched. For example. an
f!‘::t. interpretation accounting for .25 percent of the object. but in which all .25 percent
:f::: came from one end of the object. may be less reliable than an interpretation in which
o the .25 percent is spread out over the perimeter of the object.
e
b2
'%,g
;::?'. e 7. Relation to previous work
e | | ) | | .
;::‘ The literature on object recognition systems is extensive. and stretches over a period
' of at least twenty years. Of the variety of different techniques examined, a number
::,.,: of authors have taken a similar view to ours that recognition can be structured as
) an explicit search for a match between data element= and model elements "Ayache
ety and Faugeras 86. Baird 85, Bolles and Cain 82. Bolles. Horaud and Hannah 83,
’;". Browse 87, Drumheller 87, Faugeras and Hebert »3. ion and Lozano-Pérez 84,
] Goad 83. Kalvin et al. 86. Knoll and Jain 85. Lowe %6, Murray 87. Pollard et al.
"".‘ 87. Schwartz and Sharir 87, Stockman and Esteva 84 Of these. the work of Bolles
L and his colleagues, Faugeras and his colleagues. and that of Baird are closest to the
‘;‘: approach presented here.
?‘:: The interpretation tree approach is an instaunce of the consistent labeling prob-
i'\‘ \ !em that has been studied extensively in computer vision and grtiﬁcia] mtoll(igonco
h::: Waltz 75. Montanari 74, Mackworth 77, Freuder 78. R2. Haralick and Shapiro 79,
— Haralick and Elliott 80, Mackworth and Frender X5 0 This paper can he viewed as
Ry suggesting a particular consistency relation (the constramts on distances. angles.
;::l'. and radii) and exploring its performance. \n alternative approach to the solution
«' of consistent labeling problems i the use of relanation A namber of anthors hive
‘::::‘ imvestigated this approach 1o ohject recogmtion \vache and Paugoras 22 Bhanu
v and Faugeras 84, Davis 79, Rutkowski et al =1 Ruthowskr 82 These techmques
;3,: @ are more suitable for inplementation on parallel machines.
|
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The use of a B©-= space or some equivalent 1o extract representations of curved
laminar objects has been previously investigated. Perkins 78, 20 describes a system
using similar representational fragments, extracted from a 6-~ space. as well as sorme
simple constraints for determining potential matches. These are then evaluated
using cross-correlation in B-s space. Other systems that use -~ space to partition
input data into segments include Barrow and Popplestone 71, Clemens 86, Martin
and Aggarwal 79. Mchee and Aggarwal 77. Turney ct al. 85 . The Curvature Primal
Sketch developed by Asada and Brady %6 . and used in a recognition systemn by

Ettinger 87 also uses an exphcit representation of changes n the edge contours as
a basis for matching objects.
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