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O 1. Introduction

The general problem considered in this note is how to locate a known object from
sensory data, especially when that object may be occluded by other (possibly un-
known) objects. In previous work [;rimson and Lozano-P6rez 84, 871 we described a
recognition system, called RAF (for Recognition and Attitude Finder). that identifies
and locates objects from noisy, occluded data. In that. work, we concentrated on a

particular subclass of rigid models. If the sensory data provided two-dimensional
geometric data, for example intensity edges from a visual image, we considered
the recognition of objects that consisted of sets of linear segments, or equivalently,
polygonal objects in which some edges are not included. If the sensory data was
three-dimensional, we considered the recognition of objects that consisted of sets of
planar fragments, or equivalently, polyhedral objects in which some of the faces are

not included.

In general, of course, we cannot guarantee that the recognition system will
be confronted only with polyhedral objects. Since the RAF system is reasonably
insensitive to noise, one could deal with curved objects by simply approximating
them with polyhedral models that are required to deviate from the actual object
by no more than some bounded amount. This has the effect of introducing some
additional error into the process, which the system has been able to tolerate. While
the RAF system has been successfully tested on a range of real data, including visual,
laser, sonar and tactile, using approximat ions to curved objects as well as polyhedral
ones Grimson and Lozano-P6rez 87, the assumption of polyhedral models is overly

restrictive.

In particular, one of the difficulties with using polyhedral approximations is
that they are not stable, so that several images of the same object may lead to

different approximations, due to small variations in the imaging. This may lead to
difficulties in matching, either causing incorrect match, or removing large portions
of an object from consideration. Moreover. systematic errors in the approximation

can have serious effects on the recognition process. Consider an object with a circular
hole, which is approximated in the model by a regular polygon. Now suppose that
we take an image of the part in some other orientation, and extract a polygonal
approximation of the visible edges of the object. The boundary of the hole will
again be approximated by a regular polygon. If, however, the approximations are
rotated relative to one another, this can lead to a drastic error in locating the part,
since matching the two descriptions will lead to a large error in the orientation of
the overall part.

In this note, we consider the problem of extending the method to deal directly
with two dimensional objects that inclide linear and curved segments. where the
curved segments can be approximniated bN circular arcs. "t d(escribe this extv(ilsili
h, RAF, %e imist pecify t li charact ,rist i. f lie object mod(els, the requireients
onIi the sensor) data. and the search lechrique ised to correctly identify the object

-=
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model fromt the sensory data. Owr goal Is to obtain a systerti that call pcirforin a-s

indicated in Figure 1.

MIRO

Figure 1. An example of recognizing curved objects. .A grey level image of a set of

overlapping parts has been processed. Each part has been identified by name, and the

position and orientation (pose) of the part has been identified. This is shown in the figure

by overlaying the computed pose of the object model, together with the identified name.

2. Recognition as constrained search

2.1 Definiitioni of a solutioni

Ouir do-ftinin 4f th re' ,it iii 1 (an hc -uui;IN tatcd W~e art, giveni a

-ft of daita fralitivieit. J oiici ff-h In !it hi,trr ,. an oliec or enlhject 1. anini

rnivasnired in a cnnr(iflate -%'*t.r~i ln tred alnonltt Hict vr-i \\(, are ako. gi'(fi at ct

o)f objet i riode.pc Itll.". 1' i f4 f'J C1 (k l- dclhiiii %%u Aill tiiikn fo)rial
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shortly) measured in a local coordinate frame specific to the model. A solution to
the recognition problem consists of determining the following components: a subset
of the sensory data fragments that are believed to come from a single object; an
identification of which object, selected from the library of known objects; the model
face associated with each data fragment in the subset; and finally the coordinate
frame transformation that maps the model from its local coordinate frame into the
sensor coordinate frame in such a manner that each data fragment correctly lies on
its assigned model face. In more formal terms, a solution is a three-tuple

~~object,, J(d,,,m.J ) , (d,-,, rm,), . . (d,,,, m3,J ), ( R,VO, s))

where object, is the name of the ith object in the library, the d,m pairings are
associations of a subset of the sensory data d with model faces m from object, and
R is a rotation matrix, v) is a translation vector and s is a scale factor such that a
vector Vm in model coordinates is transformed into a vector Vd in sensor coordinates

by

Vd - sRvm + t.

As has been described elsewhere [Grimson and Lozano-P6rez 84, 871, we ap-
proach the recognition problem as one of search. Thus, we first focus on finding
legitimate pairings of data and model fragments, for some subset of the sensory
data. We chose to structure this search process as a constrained depth first search,
using an interpretation tree ( IT). Each node of the tree describes a partial interpre-
tation of the data, and implicitly contains a set of pairings of data fragments and
model faces. Nodes at the first level of the tree contain assignments for the first
data fragment, nodes at the second level contain assignments for the first and second
data fragments, and so on. Each node branches at the next level in up to n -+ 1
wa)s. where n is the number of model faces in the object. The last branch is a wild
card or null branch and has the effect of excluding the data fragment corresponding
to the current level of the tree from part of the interpretation.

Given s data fragments, any leaf of the tree specif-es an interpretation
({(dI, m , ), (d2, my_,. 1, ... (d,., ,n,.) ) ,

where some of the Yn,, may be the wild card character. By excluding such matches,
the leaf yields a partial interpretation

{ d, m , ,(d,_,, (,) d, m,, )

where I - i i2 . < ik but these indices may not include the entire set from 1
to s. This interpretation may then be used to solve'for a rigid, scaled transformation
that rraps model races into corresponding data fragments, if such a transformation
exists. Thus, by searching for leaves of the tree and testing that the interpretation
there yields a legal transformation, we can find possible instances of object models
in Ihe l;,tia "l'hc process Is shown in Figrc 2.

Si,, iJi carch proc cs is irihercntI an, exponential problem, the key to an
(fficcicit sol i(n is to Ilse (onst rairts to remove large subtrees from consideration
without ha ing explicitly to explore thern. We next consider the explicit form of the
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ff4 1%h'* nj4Va

Interpretation: ((d m) (d2 rma (d 3 mM))

Figure 2. An Interpretation Tree. Each node of the tree defines a partial interpretation.where the level of each ancestor defines a sensory data point, and the branch leading to each
such node defines the corresponding model face. An example of a partial interpretation isshown, where d, denotes the a' data point and m, denotes the k"& model face.

sensory data, and the explicit form of the model faces, and then consider constraints
on the assignment of one to the other that can be used to restrict the search process.

2.2 Object models and sensory data

In this note, we restrict ourselves to two-dimensional, or laminar, objects, although
much of the work has been extended to three dimensions Grimson and Laiano-Pirez
84.87. We allow our two-dimensional object models to consist of two differmnt types
of components.

The first type of component is a linear edge fragment, consisting of two
endpoints, and a usit vector normal to the line between them, and pointing away
from the interior of the object. Formally. this is given by

linear, = (fl,, (b,.e,
Note that a point on the edge can be represented by

fit and b, - alt at
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where fi, is the unit normal vector, t, is a unit tangent vector, oriented so that it
points from b to e, and a, can vary from 0 to the length of the edge 1, (see Figure

3).

Figure 3. The representation of an edge. An edge is given by the pair

fi, and b, + at,, as [O.t I
where fi, is a unit normal vector, i, is a unit tangent vector, oriented so that it points from

b to e, b, is a vector to the base point of the edge, and a, can vary from 0 to the length
of the edge t,.

The second type of component is a circular arc, consisting of a center, a radius, a
pointing direction, and a range of angles. measured rrc .' ie to the x axis. Formally,

this is given by
circular, = (c,, r,, d, (.0, 1

The pointing direction, if known, is an indication of which side of the circular arc
is the interior of the object. Specifically, it indicates whether the circular arc is the

boundary of a hole, or if it is on the exterior of the object. An example of a circular

segment is shown in Figure 4.
We assume that both the sensory data fragments and the object models are

composed of such components. We will discuss shortly how to obtain such fragments

from grey level images.

2.3 Constraints between object models and sensory data

(iven such simple fragments, we now consider how to use them to reduce the search
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Figure 4. The representation ofa circular arc. An arc is defined by ;a center c,,,a radius

r,, a pointing direction .d, and -a range of Arvgles ,

process. We consider both unary and binary constraints. -Since-the transformation

from model to sensor -coordinates is one of the -things to be determined, -4we need
constraints that can compare coordinate frame independent measurements from
sensory and model fragments.

2.3.1 Unary constraints

Length constraint

Consider a linear data fragment,
linear, := W, (b.,ej))

and a possible matching model fragment

LINEURP -fi (111J -

We let 1, denote the length of the data fragment, and Lp denote the corresponding
length of the model fragment, where these lengths are given by

t. = ;b. - e.1, LP = !BP - Ep'.

We let
length-coasraint(i,p) = True if [, - L;, (L

capture the notion of the unary length constraint, where q. is a predefined upper
bound on the amount of error inherent in measiring the length of an edge.

This constraint sa)s that if the length of the i' linear data fragment is less
than the length of the p1h linear model fragment, subject to some bounded error,
then it is possible to consistently assign this data fragment to lie on this model one.

_. -
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Note that there is only an upper inequality in determining consistency, since a data
fragment could be partially occluded.

Radius, swept angle and pointing constraints

Now consider a circular data fragmeni.
circular, (C-.r,, d,, (o,. t,,))

and a possible matching model fragment
CIRCULAR,, = (C,. Rf,. D,,, (4),,, q0 ,)).

We can define three unary constraints in this case. We let

radius-constraint(i,p) = True iff Jr, - < _,

swept -angle-const ra int(i', p) -True iff0 01 < l, - - c

pointing-constraint(i,p) = True iff dand DI are known and identical.

Here, c, is a predefined upper bound on the amount of error inherent in measuring
the radius of a circular arc, and f, is an upper bound on the amount of error inherent

in measuring the angular extent of a circular arc.
These constraints say that if the radii of the ith data fragment and the pth model

agree to within some error, their ranges of swept angles agree to within some error,

and they are both either interior or exterior arcs, then it is possible to consistently

assign this data fragment to lie on this model one.

2.3.2 Binary constraints

Consider two linear data fragments,

linear, = (fi,,(b,,e,)) linear, = (fi,,(b,,e,))

and two possible matching model fragments

LINEAR,, = N, (B,, E,) LINEAR, (Nq, (Bq, Ej)

We need to derive a set of constraints that, will determine the consistency of assigning
the data fragments to lie on the model ones.

Angle constraint

Let 0,- denote the angle between fi, and ' , and let Opq denote the angle between

N , and Iqq. We let

hinary-angle-constraint(i,j-p,,q) - True iff O,, O,, 2t,,-O . 2(a

where all arithmetic comparisons are performed inodulo 2;r and where (,, is an upper
bound on the ainriint of error inherent in detertning the direction of a normal.

This saxs that if the angle bet ''l h t dala n rnials agrees %\i|1 the anglh
between the model normals. within sone error, then it is possible to c<onistentlv

asign these dtta fragments to lie on these model ones.

I hes(, d~ta lie Ill(.+( .~d,



Distance constraint

G iven t)wo data fragment s, I here is a range of (I ist.ances associat ed wit I, I he fafily of
vectors having tail on one edge and head on the other. .We can compute the range of
such distances, denoted by dj.,,jdh, 1 j'. in a straightforward manner. If i j, then
the minimum distance is () and the maximum distance is the length of the edge. In
the more general case. h(1 p(v. u) denote the distance between two points. Then the

maximum distance is given by

d ht nax{p(v'u),v {b e,}, ueJ bel}}•

For the minimum distance, we must also consider the possibility that the projection
from an endpoint of one edge in the direction of the normal ofthe second edge
intersects that edge, so that

di,1, - min{{p(v.u)iv, {b,, 1 }, u {| 3 }}
{p(v, b, -1v lb,, tv b (vb, e3}Jv c o,, ' }
{p(v, b) -- v 1b, i>,),v {b,,e}, v - Cb J , i}}

where we let ... denote the dot (or inner) product, of two vectors. For the model

fragments, we can compute similar ranges, which we denote by Dt.m, Dh;,q. We let

(listance-constraint(i.j,p. q) = True iff dj,, ,dh,i, 'I Dtmp - 2 c, Dhpq- 2c,

-where we assume that the position of an edge point is known to within an error
bound ,.

This says that if the range of distances between the data edges is rontained
within the range of distances between the model edges, subject to some error, then

* . it is possible to consistently assign these data fragments to lie on these model ones.

Coniponent constraint

*The third constraint concerns the separation of the two edge fragments. In particu-
1 lar, we consider the range of components of a vector between the two edge fragments.

in the direction of each of the edge normals. Algebraically. this is expressed by the

dot product

which reduces to
'1b, 1h) Ifi, 03 ,ij, fiz Ck + o, t

Of course, there is an equivalent constraint for components in the direction of i.
Note that this expression act ually determines a range of values, with extrema when
1); 0.(1' We denote this by

~~d,, 1)n{I, 1,,. fi, 0? i,.i, {ol t }

These ranges rar, bec comiipu ted bo th for pairs of data edges and pairs of model
(dges III the' ideal (aIC. (risIsi.I(v %kill I,1old oIlF if Ith data rantge is c(ltained
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within the model range (since the data edges may correspond to only parts of the

model edges). As in the case of the other constraints, we also need to account for
error in the measurements. We derive a simple method for doing this below.

n

d

8 S

2 0

Figure 5. Errors in computing the direction constraint. !-I The component of a vector
from one endpoint in the direction of the other edge's normal is given by the perpendicular
distance d to the extended edge. (b) Since the actual normal is only accurate to within

(a, one extreme case is given by rotating the extended edge about its midpoint by that
amount and finding the new perpendicular distance. (c) The other extreme is obtained by
considering the other endpoint.

Consider the base case, shown in Figure 5a. The perpendicular distance from the
endpoint of one edge to the other edge is shown as D-. In Figure 5b. the edge is
rotated by (a about its midpoint, and the new perpendicular distance X is shown.
We need to relate X to measurable values. We already have D-. Ve can also
measure Y, the distance from the midpoint of the edge to the perpendicular dropped
from the endpoint of the other edge, as shown. Straightforward trigonometry then
yields the new distance

X -- (L) " .situ, 1 ) c(j s.

,,,- + 1 + . . -



Since the position of the second edge is not known exactly, we must adjust this
expression, to yield one limit on the range of possible measurements:

D - ,, - (D' - Ssint.)cos -t

The other extreme is shown in Figure 5c. Trigonometric manipulation yields
the following upper bound

Dh,,, = (s- D' sin f,,)sin (,, -- D sec -,

Thus, given two model edges indexed by p,q, we can compute a ranige of possible
measurements (modulo known error bounds). by using D,-.,q and Dh1 q computed
over all the endpoints of the edges. We denote this range by Aljj,q. Mpq*.

We let
component-constraint(i,j,p,q) = True iff [d,,,d,, 2 ] - [Mq, Mpq:.

This says that if the range of distance components between the data edges is con-
tained within the corresponding range between the model edges, subject to some

error, then it is possible to consistently assign these data fragments to lie on these

model ones.

Circle center constraint

Now consider two circular data fragments,

circular, = (c,,r,,d,,(O,,tp)) circular,= (c,,r,,d,, (4,,tp,))

and two possible matching model fragments
C IRC UILAR,, = (C , R ,, D I, ,, *v,)) CIR CUJLAR , (C q, R , D q, (4,41 %kq)).

We need to derive a set of constraints that will determine the consistency of assigning
the data fragments to lie on the model ones.

The first constraint arises from considering the distance between the centers of
the two circles, given by p(c,,c ), in the case of the two data fragments. We let

center-constraint(i, j, p, q) = True iff p(c,, c,) E 'p(C,,, Cq) - 2 fcd, p(C,, Cq)-+ 2 ted;

where ,d is an upper bound on the amount of error inherent in measuring the
position of the center of a circular arc.

This says that if the distance between the centers of two data arcs is within
some bounded error of the distance between the centers of the model arcs, then it
is possible to consistently assign these data fragments to lie on these model ones.

Circle swept angle constraint

The ranges of swept angles of two fragments must also be const rained. We let

binary-swept-aigle-coistraint(i. j. p. q) True iff o, I, "V, J, 2f,

arid t , \P;, 4), 2

where as before (, is the anomunt of error inherent in rneasurinr the angular extent
of a circular arr. and the atigle. are ineasi rd ri oduluo 27r.
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This says that if the difference in the range of swept angles between two data
arcs is contained within the corresponding range of two model arcs, subject to some
error, then it is possible to consistently assign these data fragments to lie on these

model ones.

2.3.3 Cross type constraints

All of the binary constraints described above deal with the relationship between pairs
of data fragments of the same type, arid corresponding pairs of model fragments.

Note that there are other constraints possible. especially cross constraints between
fragments of opposite type.

Cross distance constraint

Consider a circular data fragment

circular,

and a linear data fragment

linear, (fi1, (b,, e))

and corresponding model fragments

1W CIRCULAR =(C,RF,,D,,(41, 0,)) LIIEARq = (1 q, (Bq, Eq))

The range of distances between the center of a circular fragment and a linear
fragment can be constrained, similar to the distance constraint between two linear
fragments. We let

Fjq p(Cp, Bq +~ ( cP - Bq. t, ) i.') If (c B, Tq) CI0, Lqj

min{p(C,Bq),p(Cp,Eq)} otherwis,

Fh,rq max{p(C,, Bq), p(C,,, Eq)}

and we let

cross-distance(i,jp,q) -True ifl'p(c,,b,) E -F ,, - (p, Fh,pq + (cd + 1,

and p(c,,eP1 ) Fp,~ - Cd - fp Fh,pq + fed - (p!

This says that if the range of distances from the center of the data circle to the
data edge is contained within the corresponding model range, subject to error, then-
it is possible to consistently assign these data fragments to lie on these model ones.

Cross component constraint

( ivei Ili, sa ite data arid noidel fragri i'ii .I as almvI , %v(w can consider the perpen-

dicuilar distalnce from the circle center to the e.xt ended line defined by the linear

M'glueuiA
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Using the same method described for the component coustraint bet ceeti two

linear fragments, we let

D ,,pq (D' - Ssin() cos (p

Dh,pq - (S - D - sint) sin, D- sect,,.

where in this case

D - : (B.1 Cl.I q.

We let

cross-component(ij.p.q) True iff -_ h) c,.ift, .Li VV DI.'ll.

This says that if the component of distance from the center of the data circle to

the data edge is contained within the corresponding model range, subject to error,

then it is possible to consistently assign these data ragments to lie on these model

ones.

Cross angle constraint

Let -1, r. be the angle between the unit normal vector of the linear edge and the

x axis, for the data and model linear fragments respectively. Then the range of

angles between the swept angles of the circular fragment and the unit normal must

be consistent.

We let

cross-angle(i,j,p,q) = True iff , -V,,t', - " 0 4, - - , AP, - r,

2.4 The constraints reduce the search

Given these unary and binary constraints, the constrained search process can be

straightforwardly specified. Suppose the search process is currently at some node at

level k in the interpretation tree and with a consistent partial interpretation given

by
{ (dI, m),), (d2,m,2 .. , )

We now consider the next data fragment dk, 1, and its possible assignment to model

face mk+ 1, where j- I varies from I to n

The following rules hold.

* If m31, is the wild card match, then the new interpretation

{(d . n,), (d2- rn, -. . ( - i

is consistent, and we continue downward in our search.

" If mjk I, is a linear edge scgm0et., we must verify that

length-constralit (k IJk, 1) 'l'ruc.

Moreover, for alli { 1.. k} such that d, is a li ar edg-e fragin: e.m \%,
verify that

Ifhi~ary-angle-'o)Jstrahzit (s. ' I i . j,. ) "'ruie

l ~ lV
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distance-constraiit (1, k - ) True

coniponent-constraint (1i, k -~ 1, J,. Jk,) True
comporxent-coiistrait(k 1-*. 1',Jk* 1.1,) True.

And, for all ie{.k such that do is a circular edge fragment, we must

verify that
cross-distaxice(i, k t 1. j,,,. k- ) =True

cross-coinponent (i, k -r 1.J'' . 1) =True

cross-angle(', k-.- 1, joJP -I) True.

0 If M A-1 is a circular arc segment, we must verify that

radius-constraint (k +t l, Jjk 1) =True

poiiiting-constraint(k -t 1,j,] True

swcpt-angle-constraint(k ~- Ik-. 1) =True.

Nloreover, for all i (- 11,. .. k} such that d, is a circular arc fragment, we must
verify that

biniary-swept-angle-constraint (?, k -, 1,j,jkI)s True

binary-swept-angle-constraint(k +t 1, ',jk 1, j,) True

cent er-constra int (i, k +~ 1,jik-1 True.
And, for all 1't{l. . ,k) such that d, is a linear edge fragment, we must verify
that

cross-distance(k - 1,i True

cross-compoiient (k +t 1, 1 ,Jk - iz.) - T1'rue

cross-angle(k -; 1. iJ, . True.

* If all of these constraints are true, then

is a consistent partial interpretation, and w~~e continue our depth first search. If
one of them is false, then the partial iriterpretat iori is inconsistent. In this case.

we increment the model face index 7'k. I by I an I rN again, until k n v.

If the search process is currently at some node at level k in the interpretation tree.
and has an inconsistent partial interpretation given ky

{ (d1 ,mr,1 ). (,12 , in,_),.. i),

then it is in tile process of backtrackintg. If Jk n i I (the wild card) we backtrack

up another level, otherwise we increment Jk and conltiniue.

2.5 Model tests

Once the search process reaches a leaf of the interpret atiori tree, we have accounted
for all of the data poits. We are riow rvad ' % to dei iriirif t he ierpretationi Ps ini
fac globaill.N Valid. To do 11i. we olefor a rigid I raii~furiiti~i ou ippiniv points

V i mmiod l (-cPordn;gt,-s into l vii ii mi '.fiiior or iiit'.

v1 ... V,, I 1
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where R is a rotation matrix, vo is a translation vector. and ; is -a scale factor. We
can solve for this transformation in a number of .ways te-g. Grimson and Lozano-

Perez 84, .87, Ayache and Faugeras -86j. The method described in [Ayache and
Faugeras 86 deals with finding transformations from line segments to line segments.
It is straightforward to extend the method to deal with transformations of sets of
points (the centers of the circular arcs) to sets of points. it our implementation

(described later) we solve for two transformations, one. based on the linear fragments
of the match, and one based on the circular fragments. %Ae t,, h require that he
two transformations be roughly identical.

Given such a transformation, which is usually some type of least squares fit.
we must then ensure that the interpretation actually satisfies it. We do this by

considering each of the linear data fragments assoc.ated with a real -model face in the
interpretation, and transforming the associated linear model -face by the computed
transform. For each such face, we then verify that the transformed fragment differs
in position and orientation from its associated data fragment -by amounts that are
less than some acceptable error bounds. These bounds on transform error can be
obtained from the predefined bounds on the sensor error JGrimson 86b!. For each of
the circular data fragments associated with a real model face in the interpretation,
we also transform the model fragment into sensor coordinates. In this case, we both
verify that the transformed center of the circular arc lies within some bounded error
of the center of the associated data fragment, and that the set of actual points lying
on the data circular arc, are within a bounded distance of some point among the
set of transformed model points. Any interpretation that passes such a model test
is a consistent interpretation of the data.

2.6 Additional search reductions

While the constrained search technique described above will succeed in finding all
consistent interpretations of the sensory data, for a given object model, it is not par-
t icularly computationally efficient. This is mostly due to the problem of segmenting
the data to determine subsets that belong to a single object. Indeed, for the case
of linear fragments only, if all of the sensory data do belong to one object, the de-

scribed method is known to be quite efficient, as has been verified both empirically
Grimson and Lozano-Perez 84, 871 and theoretically Grim-,m 1986a. In order to

improve the efficiency of the method, we add two additional methods to our search

process, both previously discussed for the case of linear fragments in Grimson and
Lozano-tNrez 87 , arid extended here to circular segments.

Hough transforms

The first is to use th u ligh irisforirn Ihiigh 6;2. Merlini dll Farhrr 75. ' klawek
78. Ballard 41 as a prepro)cessor to restrict tiir atientimi to rnrall portim, of t lie
search space. lii brief, thie lIiugh traicrforin workN a tollo%\s. (O' nsider a three
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dimensional configuration space, with axes denoting the x and y components of a
translation vector, along with a 0 axis which denotes an angle of rotation. Thus,
any point in this space defines a unique rigid transformation. We tesselate the space
into buckets, based on some sampling of the axes, say h.,, hy, h6.

Now, we consider a linear data edge, i and a linear model fragment, indexed by
q. Suppose that the data edge is shorter than the model edge. subject to the error

in measuring length (L. There is a unique angle, call it 0', needed in order to rotate
the model fragment so that its normal aligns with the data fragment's normal. Let
R,, denote the rotation matrix associated with this rotation angle. Ignoring for the
moment the effects of scaling, any point on the model edge can be transformed into

sensor coordinates, as

u = R- I Bq + 3q - v0].

Any translation v0 such that the endpoints of the transformed line lie within range
of the associated data line are possible valid translations. Since the data edge may
be partially occluded, it will in general be shorter than the model edge and hence
there will be a range of translations possible, corresponding to sliding the shorter

edge along the longer one.

These translations are given by the set of v0 that satisfy

(u - b,,6t,) -(,,I

for all 3 c ;0, Lq If we let vc, c,(Rfi,) - c,(Ri,) then the range of possible
translations is given by

c , BqIRi, (, max oLq (tRii,)}

{Bq IRii,~ 'I),, ii,) (1 - min {0, L (ti. Rfl) }
ct /Bq/ Ri,1  'b,,i e, ( Max q Ri)

B q, Ri L

Thus, for the given rotation 0', these expressions define a polygon in the translation
subspace of the Hough space. Any bucket in the tesselate Ilough space that intersects
this polygon denotes a possible transformation consistent with the given pairing of
data and model fragment. Thus, we place the pair (linear,,LINERq) into each
such bucket. This computation was done assuming a rotation 0' )ased on aligning
the (ata normal and the model normal. Since, in general. I ,, re may be error in the

data normal. Ae repeat the above process for a sampi ng of angles. chosen from the

ra ngii

If I he da Ia edge is longer I han thc mhod.l edge. subject Io the error ill iieastiring
h'ngth. then nothing is (lone.

4A OL- -LI&l .tVA 1 b ~ g Z
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A similar computation holds for the pairing of a circular data arc. z and a
circular model arc, q. Suppose that the radius of the data arc agrees with the radius

of the model arc, subject to the error in measuring such radii. Then, given a rotation

angle 0, the condition on the translation part of the transformation is simply given

by

(RCq -t v 0  -c,, RCq + V 0  C, 2- d

In general, as we sweep through all possible rotation angles. the position of this

circle of possible translation v,:ctors will trace out a helix in Hough space. However.

we need only consider the range of angles 0' such that the rotated range of swept

angles for the model arc will lie within the range of swept angles for the data arc,

subject to error in measuring such swept angles For each such angle. there will be a

set of translations associated with it. Now, as bef(,. -, for every bucket in the Hough

space that interesects the circle defined by the above condition. we place the pair

(circular,, CIRCULARq) into the bucket. If the radius of the data arc does not agree

with the radius of the model arc, subject to the error in measuring such radii, then

nothing is done.

We can repeat this process for all possible pairings of data elements to model

fragments, adding pairs to appropriate Hough buckets. Each such pair essentially

votes for the set of transformations with which it may be consistent. Having done

this, we can then rank the Hough buckets. We do this by assigning to each bucket

a measure, determined by the sum of the lengths of the lInear data edges assigned

to the bucket plus the sum of the arc lengths of the circular data edges assigned to

that bucket. This allows us to sort the Hough buckets, in decreasing order.

Now each bucket defines a new interpretation tree. It contains a number (usu-

ally much less than the total number) of data fragments, and associated with each

one is a set of possible matching model fragments. By adding the wild card character

as before, we can apply our constrained search process to this much smaller inter-

pretation tree, to obtain consistent interpretations. We can simply search through

the Hough buckets in sorted order until we obtain a valid interpretation.

Note that this process has ignored the effect of scale in the object transforma-

tion. We can incorporate scale in at least two different ways. The first would be

to add an additional dimension to our Hough space. and then to place data-model

pairs in this four dimensional space based on the set of translation, rotation and

scale factors consistent with such a pairing. A second method is to increase the num-

ber of buckets into which a data-nodel pair are placed by increasing t he bounds on

the distance allow'ed between a lough bucket and the set of translation and rota-

tion factors deemied consistent v ith a pairing. Bi placing bound. on the range of
possible scale factors. on( can determine appropriate bounrds on this distance. Not(,

that such a range of scale factors will only affect the I ran.slat ion components (f the

Htough space. In our iniplerevrmit at ion. we choove t he latter appr(,ach

Also riote t hat %, rieed riot use a I hmigh space % hise di imeniomialIi. rniatch(.es

the riumiler of degrees of freedom of th( object models, since w(, are not r.iNIng (il A,

the Hough Iraiform to dircctlII interpret th. (la t. ither, si, %c iil use thi",

LM = J - -- -- t k ' ,r.. ~ *
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Hough transforii ti, reducc the search space, we can u-, any nimber of dimensions

in our Hough space, trading off expense of computing the Hough transform against
the gain in reduction of the final search space.

Premature termination

We can add a second heuristic to our search method, which also drastically reduces

the effort involved. Suppose we have reached a leaf in one of our interpretation
trees, and the interpretation associated with it is consistent. Since many of the data
fragments in the interpretation are likely to have been assigned the wild card char-
acter, our search method would proceed to backtrack, attempting to find another
interpretation that accounted for more of the data. In many cases, this is a fruitless
task JGrimson and Lozano-P~rez 871. We can truncate this search, at the possible

risk of occasionally misinterpreting the data. In particular, we can apply a mea-
sure of goodness of match to each consistent interpretation. If that measure exceeds

some predefined threshold, then we can accept the interpretation, and terminate the

search in that particular interpretation tree. Reasonable measures of match include
the number of data fragments accounted for, and a measure of the percentage of the

object model accounted for, determined by the ratio of the sum of lengths of the

linear data fragments accounted for plus the sum of the arc lengths of the circular
Adata fragments accounted for, relative to the overall perimeter of the object model.

In our implementation, we use the perimeter method.

These two techniques can be combined to produce a very efficient recognition
system. We can search through the sorted Hough buckets, applying our constrained

search method to the interpretation tree defined by the bucket contents. If we find

an interpretation that exceeds our predefined measure of match, we can remove the
data fragments that have been accounted for, adjust our lough buckets accordingly,
and continue the process, until we have either identified all of the edges in the data,
or all of the lough buckets have been exhausted.

Note that in using a cutoff based on percent age of object accounted for. one

can weight the edges based on relative imlportaunce. possibly by using a measure of
saliency Turney. Mudge and Volz. 86

3. Getting the fragments from real data

We have asstmned that both the object mno el' aid l, hw cnsor data consist of sets
(,f c(lg( frugrient. both lifioar and circular. aI rl r( i ri/ed il ."ectioi 2.2 (;iV(n

MI ;11",11111|pt iil'. %%,e have develop d a cun.i raireld -(,,r(lh techriq e that %ill find

iit (rlari tio ii of thIe dtatn r'lative() o t d ie ridul \%v iiiii t show., h ( ever, that tle

a iiJ niion the formui of thlie muodels aiiol Mor. data is valid To doii t1his, we
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describe a method for obtaining linear and circular edge fragments from grey level
images. This will be used both to build the object models automatically, and to
process the input sensory data.

The first stage in our processing is the extraction of sharp intensity changes
in the grey-level input image. There is a large body of literature on the problem
of edge detection, and any of several different edge detectors would suffice for our

purposes. For a variety of reasons, we use a Marr-Hildreth Marr and lildreth 80
Laplacian of Gaussian edge detector. Applying this operator to the image reduces
the sensory input to an array of connected edge points, where a I in a pixel indicates
an edge point, and all other points are 0.

Next, we extract connected contours from this array. This can be done by a
simple tracing operation. Note that it is not critical if missing edge points cause the
tracing operation to fragment the edge contours into a set of smaller ones.

As we extract each edge point of a contour, we record two pieces of information.
an estimate of the local orientation of the edge at that point, and an estimate of the
change in arclength between the previous edge point and the current one. Since the!
measurements tend to be noisy, we smooth both of them b) recursive averaging.

This yields a transformed representation of the edge contour, now mapped into an
arclength-orientation (8-s) space Perkins, 78, 80, McKee and Aggarwal 77

The advantage of such a transformation is that the edge fragments are now
easily extracted. Note that a straight line in the original image space maps to a
horizontal line in (8-s) space, and a circular arc in the original image space maps
to a slanted line in (6-s) space. Thus. to extract our edge fragments, we simply
need to parse the (0-s) space representation. We do this by applying a simple split-
and-merge Horowitz andJ Pavlidis 76. Chen and Pavlidis 79 algorithm to extract
linear segments from the transformed representation. To do this, we must specify
a bound ., on the maximum deviation between the straight line and the contour
being approximated.

Any non-horizontal line identifies a circular arc. Note that to determine hori-
zontal from non-horizontal lines, we need a hound on the angle between the line and
the -;-axis. say (h. The radius of the cir( Iar arc is given by the inverse slope of the
linear segment in (E-s) space. To find the center of the circle, we use the following

method. First, we transform the circular segment back into the image space, and
choose a sarmpling of pairs of points frorn the transformed segment. Let 2f denote
the separation of the two points. Next, we construct a perpendicular bisector to

this chord The center of the circle must lie a distance % r2 . (2 along the bisector.
We can deteritine (oit which 41de of the chord th, center lies, by ensuring that, the
points betet'n the two sarnple points lie on the opposi.e ;ide of the chord. We can
cllect all tich I t ' ,thes vi.d cf-ters. ,ver ,orme set of sample poilnt, and use the

mildlxint of the o(Il.t c in t,, dte rr ir the, ir If, ceuter

"I'hi'-. 1, i 1 ii " lltate 4f th, c .n r of th, cirrle Sinc( the conmi atitoll

of Ih , ,ir le r;, , i , i .N I 0 l( .i . A i t. xI ud t ii, . lt hod I, I-'r t iirmiig tie

~>~K & ~.->~s~r %~§j ~ §~jjj.~%.%. ..
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above computation for a range of possible values for the radius. For each hypothe-
sized radius and center, we can measure the deviation of the data points from the
hypothesized circular, and select the circle with minimum error.

Given the circle center and the two endpoints of the circular arc in image coor-
dinates, we can determine the limits on the swept, angle straightforwardly. Finally,
if we know the sign of the contrast between the object and the background, we can
use the direction of the change in edge intensity across the edge to determine the
pointing direction ,f the arc.

To ensure that the computed fragments are optimal, we perform a second split-
and-merge stdge, this time in the image space. That is, given a circular fragment,
computed as above, we test that all of the data points lie within a given error range
of the hypothesized fragment. If they do not, we split the data points at the point
of maximum deviation, and perform the same computation on each of the subparts.

We are left with the horizontal lines in (0-s) space. To extract the linear edge
fragments, we transform all of the points along these lines back into the image space,
and run the split-and-merge algorithm again in this space. This allows us to extract
the endpoints of the linear fragments. The normal is orthogonal to the line between
the endpoints. If we know the sign of the contrast between the object and the
background, we can use the direction of the change in edge intensity across the edge
to determine the sign of the normal.

In our experience, this second split-and-merge stage in the image space is im-
portant. If we simply rely on the first split-and-merge operation, we have found
that the actual edges in the image space corresponding to the horizontal lines in the
(6-s) space have significant residual curvature. This is not surprising, since in one
case we are thresholding based on deviation in curvattire. and in the other, we are
thresholding based on deviation from linear. As a consequence, the second split-
and-merge stage results in the segmentation of horizontal (6-s) lines into several
image space lines, with much tighier fit.

4. Putting it all together

4.1 Building the library of objects

We now have t he pieces needed' to build our recognil ion engine. We begin by building
a librar% of mbj.ct iodels. Thik is acctrrplished Ib% plicliw Each part iM isolation
under a camera, and ruriirig the fragment ext ract ior pro, e (rilbed in Sect ion

3 This prodiirces a set of linear edge fra i(,ntts ard a v.i (f circular edge fragments.
((firrtd in ; local coordinate frame.

ecant iiprov t he eflicieic% of our recogr ItH at i ni by hdoing -,oni. preprt-
cessirig oti this representation. In particular, for etach object . %%e build a set of t ables

(apt u ri rg I lhe rrmodel halves of each of tIhe crst rai s. For each uliarv i nst rai nl. we
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build a one dimensional table, indexed by face number. in which we store the value
of the model half of the constraint. For example, for vhe length constraint, this
would involve computing and storing the length of each edge ips the error bound.

L,+ CL.-

For each binary constraint, we build a two dimensional table. in which we store the
value of the model half of the constraint. For example, for the angle constraint,

this would involve computing and storing the range of angles between a pair of edge

normals, adjusted for error,

epq-*eapq
This precomputation makes the search process significantly faster, since half the
computation is reduce to a table lookup.

Having built a model for a single object, we can straightforwardly build a second

model for the mirror reversal of the object. This gives us two models per object,
but allows us to recognize laminar objects in either stable orientation.

4.2 Processing the sensory data

Once we have constructed the library of objects, we are ready to process arbitrary
images of the objects. Using the process described in Section 3, we reduce a grey-
level image of a pile of parts to a set of linear and circular edge fragments. Next,
we apply a Hough transform to the data, for each model in the object library. This
yields a sorted list of Hough buckets for each model. We use our bound on the
goodness of match to remove any Hough buckets without sufficient contents from
consideration. Then, starting with the best lough bucket., as measured over all
the objects, we apply our constrained search, using premature termination to stop
when a sufficiently good interpretation is found. If such an interpretation is found

for the current Hough bucket, we remove the edge fragments accounted for from
consideration, adjust the contents of the Hough buckets for all objects, and resort
each list of Hough buckets. We then proceed as before, continuing until no further

Hough buckets remain. If no interpretation is found for a Hough bucket, we simply
move on to the next best bucket and continue. An example of such processing is
shown in Figure 1.

4.3 Unknown edge normals

In the preceeding discussion, we have assumed that we can identify the correct
direction of the normals to linear edge fragments. and the pointing direction of the
circular arcs. This operation relies on knowing the contrast between the background

and the objects If such information i availabhe. Ihe cont1rast acros; an iteiljt x
edge will determine these properties.

In man' cases. however, it is unreasonable to assume that this informat iotn ill
h.e krnocwn. We can extend our s)s.leuni I,, ,ual %i:h hi, case. (ne solui io Is based

II WIM
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on the following observation, and has been reported in Grimson and Lozano-Perez
871. As long as two edges do not cross or are not collinear. at least one edge must be
completely within one of the half planes bounded by the other. As a consequence,
the components along one of the edge normals of all possible separation vectors
will always have the same sign. Given a tentative pairing of two measured edge
fragments and two model edges, we can use this propertN to choose the sign of one
of the normals. The angle constraint can then be used to consistently select the
signs for other edges in that interpretation. This does allow the method to correctly
interpret data with unknown data edge normal signs, at a small increase in the

search cost.

A second solution is simply to double the number of sensory linear edge frag-
ments, one with each possible sign of the edge normal. The constraints will then
ensure that at most one of each such pair of edge fragments in included in the in-

terpretation, and the process can proceed as before. Here, the pointing direction

constraint is not used.

4.4 Other extensions

Although we have presented the system as recognizing objects from their occluding
boundaries, it is more broadly applicable than this. In particular. since we use an
edge detector to extract our primitives for matching, other object markings, such
as albedo or material changes, or surface texture, that are stable across a range Uf
imaging conditions would also suffice.

Three dimensional objects that are known to be in stable positions can also
be handled using this method. For each stable position, we can build an object
model by running the front end of the system. The assumption of stable position
removes the effects of perspective, and allows us to treat the problem as essentially
a two-dimensional one.

5. Testing

We have implemented and tested a version of the curved object recognition sys-
te'm. Our implemented version differs slightly from the description given above.
In particular, we have not included any of the cross constraints, relying only on
the constraints between segments of the same type. Our (exp(ctation is that the
non-inclusion of such constraints should at worst increase the search time spent in
finding correct interpret at ions. wit holt causing any incorrect int rprt at iol t i w
fou nd.

\%( lihav ru t Ie, -',vtci onu (icn'((,f inri, - inllar lo I hat sho w il I Fi-
ure I. I':a'hi Iliag' cosi.ted (J 'ix , r vrlappllg Iparti,. l lcd %kit h rn-l t1 loll from

__Ib"1E1WAAK~
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two different types of parts, and placed at random, with possible mirror reversals.

as shown. In each case, we asked the system to find as many interpretations as pos-

sible from the library of parts, where each part could appear an arbitrary number of

times. After each interpretation was found, the accounted for edges were removed

from the data, and the process was continued, until no further portions of the search

space remained unaccounted for.

For each image, the system was run in three different settings, using perimeter

percentage thresholds of .10, .20 and .50. For each such triple of settings, the system

was run with two different tesselations of the Hough space. In the coarse case.

the Hough sampling was 50 pixels in the translation components (where the entire

image was 576 by 454) and 36 degrees along the rotation axis. In the fine case, the

Hough sampling was 25 pixels in the translation comtponents and 18 degrees along
the rotation axis. Over 5 trials, the system had the performance indicated in the

following table.

Coarse Hough Fine Hough

Perimeter % .50 .20 .10 .50 .20 .10

Correct 2.8 5.2 4.8 2.6 5.2 1 5.4

Multiple 0.6 0.8 0.8 1.2
_ .2 0.6 0_ _ _

Mirror 06 0.2 0.2

Incorrect 0.4 0.8 0.2 0.2

Perimeter .66 .43 .38 .67 .4 .41

Real Nodes 741 473 585 867 754 576

Real Model Tests 236 149 203 344 341 245

Final Nodes 1942 1989 3252 1879 2385 6029

Final Model Tests 627 745 1571 787 1143 290

Parsing Time 290 290

Parsing Time 135 686

Search Time 90 106 135 75 398 434

" Search in Final Stage .72 .81 .85 .68 .76 .91

Each of the columns of the table indicates the results of using a different thresh-
old on the percentage of the perimeter of an object needed for a valid interpretation.

The correct line indicates the mean number of correct interpretations found over
the set of trials. The maximum number of valid interpret at ionq Is 6i per trial The

incorrect line indicates the mean number of incorrect int rprelat i1s ftinrld per
trial. We also indicate the mean number of multiple interpret at ions, that is. sit ua-

tions in which tIe sy'stelaI fOUnd nearly identical, correcti inter|r at ions. bda,.d ()i

= D! I
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different subsets of data, and we indicate the mean number of incorrect interpreta-
tions involving the mirror reversal of an object.

Note that in the case of a perimeter percentage of .20, the system found almost
all of the possible correct interpretations. Each of the incorrect interpretations
involved the larger object, in Figure 1, in which the circular structure was correctly
matched, but at the wrong orientation. Since the circle contributes a large amount
to the total object perimeter, only a small number of other edges were needed to
find a feasible but incorrect match. The interpretations that were not found all
involved the small object shown in Figure 1, and in all cases, the object was heavily
occluded. In the case of a perimeter percentage of .50 all the found interpretations
were correct. In the case of a perimeter percentage of. 10, the performance degraded
slightly, with more incorrect or mirror interpretations. This is not surprising, since
we are only requiring 100 of the object to be matched in situations involved a
reasonable amount of clutter. The perimeter line of the table indicates the average
percentage of the object's perimeter actually included in the interpretation.

The real nodes line and the real model tests line indicate the mean number
of nodes of the interpretation tree, and the mean number of model transformation
t( sts performed for each of the interpretations found. The final nodes and final
rr.del tests lines indicate the amount of search performed after the last interpre-
tlition was found in each trial. Not surprisingly, these numbers are much higher,
since considerably more effort is involved in verifying that no further interpretations
can be found using the remaining scattered data fragments.

The Time lines in the table indicate the mean time involved in parsing the
intensity edges into linear and circular fragments. in transforming these fragments

into the lough space, and in executing the actual search process. The times are
reported in seconds of elapsed time for an implementation on a Symbolics Lisp
Machine, without floating point hardware. The final line indicates the portion of
the search time that was spent in verifying that no further interpretations remained.
These timing statistics are intended only for compar:.,:,e purposes. A number of
optimizat ions of the code are possible, and would considerably reduce these numbers.
For instance. in the Hough transformation. we are using a very fine sampling of
rotation angles, yielding a large nurnber of nearly overlapping polygons in Htough
space, which are then intersected %%ith the butckets of the Iough space. Considerable
savings could be obtained by using a coarser sampling at the expense of possibly
missing a feasible Hough bucket on occasion. Similarly, in the parsing of the input
data. we are using an exhaustive search to find the best estimate of the radius and
center of the circular fragments. This accounts for 80(( f the tire reported. and
could clearly be sped up.

There are several interesting points about the described testing. First, note
that ruio~t t ile soarch i,- -pent in verifying that rio furtl her interpret otins exist. In

,ciiral. I h (,orrct( j(t crpret at ions arc fiound w+it lh vet,r litlc -earch. This suggc-lt
1 hat it s t<' ill fact hehates as a liv t hieize-anti-te.t syslen, ill which the Ilough
tr;isform ervc, t, hypothesize possible juterprelat i(ons, that are then verified by the
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constraint satinsfacti( )process. We l(te I hai the 1huigh trntisforin is sot ,ullicient.

alone, as we have frequently observed that the biggest Hough bucket did not result in

a correct interpretation. Moreover, there can be considerable diffusion in the Hough

space, due to the errors in the sensory data. As a consequence, a large number of

Hough buckets may have comparable sized contents. This is illustrated in Figure 6,
which shows the lough space for on(, of the objects of Figure 1, at two different

resolutions.

Second. we note that if the systeri (-all correctly identify most of the objects

in the scene, then it would seem that it should not have to spend considerable

time in additional search verifying that, no furth:,r interpretations exist, since in

general most of the data fragments should already be accounted for. As can be

seen from the table, however, considerable effort is spent in doing this. In part,

this follows from the fact that the interpretations found by the system frequently

do not account for all the data fragments arising from the object. This occurs

for several reasons. First, the (8-.) space segmentation scheme does not produce

canonical partitions of the input data. Hence, small deviations in the image may

cause a noticably different data segmentation, and soni, data edges may be different

enough from the model to be excluded from the interpretation. Our experience

suggests that this sensitivity may be more true of the (6-s) space segmentation

than of strictly polygonal segmentations. This sensitivity to segmentation could

be handled by increasing the error bounds discussed in the next section. This

is dangerous, however, since the increased bounds are also likely to cause more

accidental alignments of data fragments to be incorrectly interpreted. A better

solution would be to do additional verification in the imag(' space. That is, having

found a correct interpretation based on moderate error bounds, one could then

project the interpretation back into the image. and using looser bounds search for

additional data fragments that are in agreement with the projected object position.

.Many of the incorrect interpretat ions involved solutions in which the large cir-

cular hole of the large object shown in Figure I was niatched correctly, but the

overall orientation of the solution was Incorrect. Since there is an inherent ambigu-

ity' in the rotation of the object about the center of the hole, while at tile same time,
the perimeter of the hole contributes a large portion of the overall perimeter, if a
small portion of the object happens to align accidentally with some data fragment.

we can obtain an incorrect interpret at ion that accounts for a noticeable portion of
the object's perimeter. WAe ne(d some means of handling this problem. perhaps by

using a variant, of the Feat utre F'ocu met hod of Bolles 1982

Finally, note that the ditferent sainlpling, of tiec Ilmigh space did not lead to
significant ly different iperhrnilances in tevrii, o1 IIe ii iher o)f ltii'iretvat Ions.A",



25

con et. Noetesmaigofti eaueoe a broad ex .t OfL sae.Tebto

part shows the. same Hog paea fnrrstui



26

6. Free parameters and error bounds

In describing our recognition system, we have used a number of free parameters
and error bounds. \Vhile at first glance there appear to be a large ,iumber of such
free parameters. in fact. many of therr are interrelated, and only a few need to be
determined in order to run the systeri.

The first parameter is the bound on the accuracy of measuring the position
of an edge point f," This bound is a finction of tIic caniera syster and the edge
detector used. Since we are using a Marr-Hildreth operator. the accuracy of the
system could be determined frorn foriral analysis Berzins 84 , or could be measured
empirically. Note that since this is simply an upl-,r bound, we can be conservative
in our estimates.

Given this bound (P. a number of the other free parameters follow directly. For

example, suppose that the position of an edge point is known to within the error
bound (,. If L.,,, is a lower bound on the length of the edges, it is straightforward
to show that the maximum error in the measured angle between edge normals is
given by

f t an _

Lm?"

The bound on measuring the length of a linear fragment is also determined by
in particular, the worst case bound is given by

L  - 2ct,.

The error in measuring the radius of a circular arc t, will generally be on the
order of the error in measuring the position of an edge point ,. Since the radius is
determined by taking the slope of a line in E-s space. it is likely to be less than this,
but u-ing (, is a conservative bound. The error in measuring position of the center
of a circular arc tn,, will also typically be bounded by (,,. Similarly, a conservative
bound on the error in measuring the swept angle range is (' - (.

The bound on the split ani merge algorithm (,, is something that we must
set by hand. Note that so long as our models are built using the same value of the
parameter as that used i,, processing sensory data, and so long as this value is not
too large, the exact value is riot critical.

Setting the parameter that distinguishes straight lines from circular arcs. (h

can be done based on properties of th,, objects to be recognized. In particular. since

(h is a bound on the angle between the horizontal axis and a line in 6-s space, if
the radius of the largest ,irciilar arc oi any object is l ,,,.,, then %e can set

I

h..1

Thuii. th N;arn'nij error hwindJ. Ili liw alvgurit lni -.nm he dcrniied hty tiva-

suiririg thi(e accurii(' f Ilie -N,I ili ,lterlning Ili. p,,s ion Of an edge point,

by specif ing the ,nii,,uu,, length required for an edge fragment I, /.. and by.
sjiecif inig I lie Iii xiim mii radiu, of a circiiIar ar ,

n. L -,. 5~~
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There Vzone ot her threshold ill our s stemn. jaiinek the threshold used to de-
terminre anr acceptably sized interpretation. Wehv niae htormeasure

of an interpretation is the sum of the lengths of the linear data fragmients in thle
interpretation pius the sum of the arc lengths or thli circular data fragments inl the
interpretation. XWe use a threshold onl this mreasurv Iii t %o places: to remrove sniall
H-ough buckets from the search process. arid to prerliii re1% t erinate thle IT search
once an acceptable match is found. Iinfo, uriately I ler(' doe,, riot cvfii to be ally
principled way of setting this threshold. ( learlv. %%e canl i radl( Jffas posit Ives arid

fals negtive by aing it. since thle mrialler t lie, iin-rt.l d. r lie- itore I ikel v anl
incorrect interpret ation is accepted. wh0ille lite larger Ili threshiold. the moure l ikely
that correct interpretations will be flnisscd. rIn our (\ perlitinrt s. we have typically
left the threshold at 20 - 25("C of thle total perln it er of anr oblject.

Aldo note that a straightforward application of a thireshold on perirreter ig-
nores information about what portions of tilie oibjc~t are miatched. For example. an
interpretation accounting for .25 percent of the object . but In which all .25 percent
came from one end of the object. may be less, reliable t hai anl interpretation ]in which
the .25 percent is spread out over thle penrieter of thle oblject.

7. Relation to previous work

The literature on object recognitilon sN-terris iS ext ensie ardsrtches over a period

of at least twenity years. Of the varlet) of differenit technitiques e'xam~ined, a number
of authors have taken a simiilar view to ours that recogiiton can be structured as
an explicit search for a match between dat a element- and model elements, 'Aache
arid Faugeras 86. Baird 85. Bolles arid Cain 82, Bolle,.. loraud arid Ilan nah 83,
Browse 87. Drumheller 87, Faugeras and Ilebert 83. ion and Lozanio-Perez 84.
Goad 83. Kalvin et al. 86. Knoll and Jain 85, Lomv NGi. Munrray 87. P~ollard et al.

V87. Schwartz and Sharir 87. Stockman arid Esteva N- (If these, the work of Bolles
and his colleagues. Faugeras and his colleagues, and Ihat of Baird1 are closest to I t h
approach presented here.

Tire interpret at ion tree approach is an inst ance of thle consistent labeling prob-
lemt that has been stutdied extensively in Conipiit (r v isbn anl(] art ificial Intelligence
Waltz 75. Nlontanari 74. \lackworth 77. Freuder 78, 82. hlatralick and Shapiro 79.

Ilaralick arid Elliott 80. \Iack~ort i arid I-revider s5 Th':- Viper can be \ iewed as,
suggesting a particular consistenicy relation (thle (ori~t rarit on di(ist ances. angles.
arid] radii, arid] exptloring its Iperforiance. Anr alitr~iat i' approach to thle sohtition
of cilnisistelit labcin prolrm- r, thi tI' ,f' rci l \ rnrnihl'r 4f ijili hir, Liai

iivve tI gat ed I tIs a IliproacI ( ) it)I olp (c rt- i it ir I t 1( It, ;11d *irijgt rii, 52 1hiiii

iill( laugeras 8-1. lDavl. 79. hut fko%% -ki (,I al si Hitji kk 82 ,These t ichnliqrie,

are miore suit able for imrplemienii at loon rlb nriahincit.
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The use of a 0-, space or sormie equivalent I4) extract ret)reselslat iQII of ciirvet

laminar objects has been prevhotisIl investigated. Perkins 78. SO dcscribes a systeii
using similar representational fragments, exi racted from a --s space. as well as some
simple constraints for determining potential matches. These are then evaluated

using cross-correlation in O-s space. Other systems that use 0-, space to partition

input data into segments include Barrow arid lPopplesone 71. (lemens 86, Martin

and Aggarwal 79. McKee and Aggarwal 77. Ti'riey et al M5 The Curvature Primal
Sketch developed by Asada -ird Brady f;. and used in a recognition systern by
Ettinger 87 also use an explicit reresent at ior of chaiiges iII the edge contours as

a basis for matching objects.
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