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Nomenclature

avector of pitch line

a p p major and minor axes of gear cradle ellipse

afQ b f mAjor anA minor axes of pinion craele ellipse

d(P )  gear head cutter diameter

L Mean pitch cone distance

m12 gear ratio: m12  ') )/W (2)

mFl pinion cutting ratio

mp2 gear cutting ratio

n(F) n(P) unit normal to pinion and gear tooth surface

q direction angle of normal in coordinate system Sn

qF2 qP parameters of pinion and gear machine-tool setting

r (P), r (F) radius of generating surface measured in plane X M 0c c (i - 1, 2) m

uF , Up generating cone surface coordinate

(F) (P)(F, v surface E , Ep contact point velocity

(1) (2)v , v surface El . E2 contact point velocity

YA velocity of intersection point at gear cutter axis in plane H

vC velocity of intersection point at pinion cutter axis in plane H

W gear cutter width

p mean spiral angle

Y1 9 Y2 pinion and gear pitch angle

YR pinion root angle

6F9 6P orientation angle of pinion and gear cradle ellipses
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rotation angle of frame Sh relative to frame Sf about axis Z

TI rotation angle of frame Sf relative to frame Sn

A1, A2  pinion and gear dedendum angle

AE1, AL1  pinion machine-tool settings

eFs Op generating pinion and gear cone surface coordinates

P.1 motion parameter of cradle ellipse

PF' "P motion parameter of pinion and gear ellipses

11 plane of normals

Elf E2  pinion and gear tooth surfaces

F , E pgenerating surfaces of pinion and gear

F' p generating surfaces rotation angle

(F) (P) pinion and gear blade angle

(1), w(2) pinion and gear angular velocities

(F) (p)
w , w cradle angular velocities for cutting the pinion and gear

Cartesian Coordinate Frame

S 0 )  connected to tool cone, j = F, p
s

S(j )  conntected to cradle
c

S(i) connected to machine frame, i = 1, 2

m

Si S 2 connected to pinion, gear

Sh  fixed to machine, used for mesh of EF and E1
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Sf fixed to frame of gearbox, used for mesh of Z and 2

Sn  connected to plane of normals
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SU 4RY

Spiral bevel gears are used in many applications where mechanical

power must be transmitted between intersecting axes of drive shafts.

Namely, two such applications are the rear axle differential gearbox for

land vehicles and the transmissions used in helicopters. For spiral

bevel gears, there is a continuing need for ever stronger, lighter weight,

longer-lived and quieter running gears. Above all, a rapid and economical

manufacturing method is essential to the industries that use bevel gearing

in their products.

For many years, the Gleason Works (Dudley, 1962; Anon. Gleason Works,

1964 and 1980) has provided the machinery for manufacture of spiral bevel

gears. There are several important advantages to the Gleason methods of

manufacture over hobbing methods. The machines are rigid and produce gears

of high quality and consistency. The cutting methods may be used for both

milling and grinding. Grinding is especially important for producing

hardened high quality aircraft gears. Both milling and grinding are

possible with Gleason's method. The velocity of the cutting wheel does not

have to be related in any way with the machine's generating motion.

Generally speaking Gleason's method for generation of spiral bevel

gears does not provide conjugate gear tooth surfaces. This means that the

gear ratio is not constant during the tooth engagement cycle, and,

therefore, there are kinematical errors in the transformation of rotation

from the driving gear to the driven gear. The research that had been

performed by the Gleason Works was directed at the minimization of gear

kinematical errors and the improvement of gear bearing contact by using

special machine-tool settings. The determination of such machine-tool

setting is accomplished by a computer program. It is known that Oerlicon



(Switzerland) and Klingelnberg (West Germany) have developed methods for

generation of spiral bevel gears that can provide conjugate gear tooth

surfaces. The disadvantage of these methods is that the gear tooth

surfaces cannot be ground and the tooth element proportions are unfavorable

due to the constant height of the teeth.

The objective of the new method for generation of spiral bevel gears

presented herein was to find a way to eliminate the kinematical errors for

spiral bevel gears, obtain gears with higher contact ratio, and improve

bearing contact and conditions of lubrication, while using the existing

Gleason's equipment and retaining all the advantages of the Gleason system

of manufacturing such gears. The proposed method for generation is based

on the following:

(i) Four surfaces - two generating cone surfaces (Ep and F ) and gear

and pinion tooth surfaces (E2 and E1) are in continuous tangency at

every instant. The ratio of angular velocities in motion of the

above mentioned surfaces satisfies the requirement that the

generated pinion and gear transform rotation with zero kinematical

errors.

(ii) The cones have a common normal at the instantaneous point of contact

but their surfaces interfere with each other in the neighborhood of

contact point.

(iii) The point of contact of the above mentioned surfaces moves in a

plane (1l) that is rigidly connected to the gear housing. The normal

to the contacting surfaces lies in plane H and performs a parallel

motion in the process of meshing.

(iv) Due to the elasticity of gear tooth surfaces their contact is

spread over an elliptical area. The proposed method for generation
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provides that the instantaneous contact ellipse moves along but not

across the gear tooth surface. This provides improved conditions

for lubrication and a higher contact ratio will result.

(v) Until now, the reduction of kinematical errors of Gleason spiral

bevel gears was a subject of the computer search for the optimal

machine-tool settings. The computer program developed for this

purpose is called the TCA (Tooth Contact Analysis) program. The

proposed method is for direct determination of machine-tool settings

that result in zero kinematical errors because the gear tooth

surfaces are generated as conjugate gear tooth surfaces.

(vi) A new TCA program directed at the simulation of bearing contact and

the influence of errors of assembly and manufacturing has been

developed.

The contents of this report covers the new method for generation of

spiral bevel gears, their geometry, the bearing contact and simulation of

meshing. Special attention has been paid to the proposed principle of

performance of parallel motion by two related ellipses that results in the

desired parallel motion for the contact normal.

1. THE GLEASON MANUFACTURING METHOD

The gear cutter cuts a single space during a single index cycle. The

gear cutter is mounted to the cradle of the cutting machine. The machine

cradle with the cutter may be imagined as a crown gear that meshes with the

gear being cut. The cradle with the mounted head cutter rotates slowly

3



about its axis, as does the gear .iich is being cut. The combined process

generates the gear tooth surface. The cradle only rotates far enough so

that one space is cut out and then it rapidly reverses while the workpiece

is withdrawn from the cutter and indexed ahead in preparation for the

cutting the next tooth. The desired cutter velocity is provided while the

cutter spins about its axis which itself moves in a circular path.

We consider that two generating surfaces, ZF and Ep, are used for the

generation of the pinion tooth surface, El, and the gear tooth surface, E2,

respectively. Both sides of the gear tooth are cut simultaneously (duplex

method) but both sides of the pinion tooth are cut separately (single

method). The basic machine-tool settings provide that four surfaces, EF1

Ep, E1 and E2, are in contact at the main contact point. In the process of

meshing, surfaces EF and El, and respectively surfaces E and E2, contact

each other at every instant at a line (contact line) which is a spatial

curve. The shape of the contact line and its location on the contacting

surfaces is changed in the process of meshing. The generated pinion and

gear tooth surfaces are in contact at a point (contact point) at every

instant.

A head-cutter used for the gear generation is shown in Fig. 1.1. The

shapes of the blades of the head-cutter are straight lines which generate a

cone while the head-cutter rotates about axis C-C. The angular velocity

about axis C-C does not depend on the generation motion but only on the

desired cutting velocity. Two head-cutters are used for the pinion

generation; they are provided with one-sided blades and cut the respective

tooth sides separately. The head cutter is mounted to the cradle of the

machine. Fig. 1.2 shows schematically the positioning of the cradle of the

gear machine, the head cutter and the gear to-be generated.

4



2. GENERATING SURFACES AND COORDINATE SYSTEKS

The generating surface is a cone surface (Fig. 2.1). This surface is

generated in coordinate system S ) while the blades of the head-cutter
C

rotate about axis C-C (Fig. 1.1). The generation of gear tooth surfaces is

based on application of two tool surfaces, EF and Ep, which generate gears

1 and 2, respectively. The generating surfaces (generating cones) do not

(F) (P)coincide: they have different cone angles c and ip , and different

mean radii r(F) and rc(P ) (Fig. 2.1,a). Special machine-tool settings, AE

and ALI (Fig. 2.3,b), must be used for the generation of the pinion.

Considering the generation of gear 2 tooth surface we use the

following coordinate systems: i) S(  which is rigidly connected to the
C

generating surface Z (Fig. 2.1,b); (ii) the fixed coordinate system S(2)
P m

whicn is rigidly connected to the frame of the cutting machine, and (iii)

the coordinate system S2 which is rigidly connected to gear 2 (Fig. 2.2).

In the process of generation the generating surface rotates about the X
(2 )

m

- axis with the angular velocity W(P) while the gear blank rotates about

the Z2 axis with the angular velocity W (2)
. Axes X( 2 ) and Z2 intersect

each other and form the angle 90* + Y2 - A2, where A2 is the dedendum angle

for gear 2. Axis X( 2 ) is perpendicular to the generatrix of the root conem

of gear 2. The coordinate system Sf shown in Fig. 2.2 is rigidly connected

to the housing of the gears and will be used for the analysis of conditions

of meshing of the gears.

Considering the generation of the pinion we use the following

coordinate systems: (i) S(F ) which is rigidly connected to the generatingc

surface F' (ii) S1)m which is rigidly connected to the frame of the

cutting machine and (iii) S1 which is rigidly connected to the pinion (gear

(Fig. 2.3). Axes X(1) and Z do not intersect but cross each other; AE1

m



and AL are the corrections of machine-tool settings which are used for the

improvement of meshing of the gears. In the process of generation the

generating surface rotates about the X (I ) -axis with the angular velocity
m

(F)
W while the gear 1 blank rotates about the Z -axis with the angular

velocity w(i Axes X I and Z form the angle 900 - + AP where A is
111 1

(1)
the dedendum angle of gear 1; axis X is perpendicular to the generatrix

m

of the root cone of gear 1.

3. GENERATING TOOL SURFACES

The tool surface is a cone and is represented in the coordinate system

S 0 ) as follows (Fig. 2.1)S

XSj )  -r(J) ct ) - u cosi40
)

s c c j c

y() u.sin4JDsinO. (j = F, P) (3.1), Ys 3

Z( )  u sin (' cose.
sJ c J

1 1

where uj and a are the surface coordinates.

The coordinate system S(Q ) (j = F, P) is an auxiliary coordinate
c

system which is also rigidly connected to the tool (Fig. 2.1,b). To

represent the generating surfaces Z and E in coordinate system SQ ) we

use the following matrix equation

6
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C s

y (J)i) [M I y(i)
C Cs S

1 1

1 0 0 0 ()
s

- 0 cosq. +sinq. +b sinq y (3.2)
i i i ys

o +sinq cosq b cosq O
- j j J jS

o 0 0 1

Here: b. and q. are parameters which determine the location of the tool in

the coordinate system S j) Henceforth, the upper sign corresponds to the
c

generation of a left-hand spiral bevel gear that is shown in Fig. 2.1 and

lower sign for a right-hand spiral bevel gear.

Equations (3.1) and (3.2) yield

x ()=r()otqW(j - u.cospQ
c c c 31 c

y()= Uj sin pj) sin( e qj) + b sinq~ (3.3)

Z()= u.sin p'i) cos(O.;q) + b~ cosqj

where j = (F, P).

The unit normal to the generating surface (j =F, P') is represented

7I



by

n() fiNO) 3r(j )  3r(j ) i

( _)__0)_ -C ____, where N ~ _ (3.4)-c IN(j) I  ~c aej xu.

-C i

Using Eqs. (3.3) and (3.4) (provided u sinP ) 0 0), we obtain

nQ)c = sin )QcD + cosJ) [sin(a ;q )() + cos(e q ) k ( j ) ]  (3.5)
cC -c c j -J i-c

4. EQUATIONS OF MESHING BY CUTTIUG

Generation of ZI" We derive the equation of meshing of the generating

surface EF and the gear tooth surface E1 using the following procedure:

Step 1: First, we derive the family of surfaces EF that we represent in

the coordinate system %m .  Such a family is generated while the

coordinate system S(F) is rotated about the X(  -axis (Fig. 2.3). Wec m

recall that the generating surface EF is rigidly connected to S(F). Thec

coordinate transformation in transition from S(F) to S(1) is represented by
c m

the following matrix equation

x(1) x(F)
m c

(1) [M(1)(F) I (F)
Ym mc Yc

(4.1)
z(1) z(F)
m c

Here (Fig. 2.3):

8C * * . . ,



1 0 0 0

[M(1)(F)I 0 COSO sinF 0 (4.2)
m c

o -sineF cosOF 0

0 0 0 1

where F is the angle of rotation about the X ) -axis.
F m

Using Eqs. (4.1), (4.2) and (3.3), we obtain

S(1) r (F) ct' (F) (F)

m c c - uFco c

m m FC F FF F
(1) (F)snF+Finq

zM UF Sin F )c CsTF + bFcos(q F  Fi m F 1 F

where

TF = eF q F + OF

The upper sign corresponds to the right-hand spiral bevel pinion.

Equations (4.3), with parameter 0F fixed, represent a single surface of the

family of generating surfaces.

Step 2: The unit normal to the generating surface EF may be represented in

the coordinate systems Sm as follows:

N( )  Dr(1) Dr()

n = , where N -M- x m (44)
-M JN(I -M DoF F

~m



We may also use an alternative method for the derivation of the unit

normal. This method is based on the matrix equation.

[n( 1 ) ] i [L( 1 )(F)] [n(F )  (4.5)
m m C c

Matrix [L( 1 )(F)I may be determined by deleting the 4 th column and rows in

m c

matrix (4.2).

The column matrix [n (F ) Is given by vector equation (3.5).
c

After transformations, we obtain

sln4 (F)
c

in ( I ) ] = cos (F) sinTF (4.6)

m c F

cos F)COSTF

( F )

Step 3: We derive the equations of the relative velocity, v , as
-m

follows:

(Fl) f (F) _ v(1) (4.7)

vm vm m

where v(F) is the velocity of a point N on surface ZF and v i) is the

m ~ m

velocity of the same point N on surface E 1•

Vector v( F ) is represented by the equation
-m

v(F) = W(F)x r(1)  (4.8)
~m ~in -m

Here (Fig. 2.3):

10
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-W (F)

[w(F)] 0 (4.9)

m
0

Vector rm(1 is represented by equation (4.3).

Equations (4.8) and (4.9) yield

0

[v(F)J = (F) z) (4.10)
m m

(1)
-Ym

Gear 1 rotates about the Z - axis with the angular velocity

(Fig.2.3). Since (1) does not pass through the origin 0(1), of the~ m

coordinate system S(1), we substitute (1) by an equal vector which passes

through O(1) and the vector moment represented bym

0(I) x W(O)
m h ~

Then, we represent v(1) as follows
-m

v(1) . W(1)xr(1)+ 0(1)0 x w() (4.11)

~m ~m -m m h m

Here:

11
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Lsin A, sin(y1 - Ad)

0(00E and 1WO~ 1 W~ 0 (4.12)
in h 1 i

-AL1  cos(y 1 -A 1

where L =hM0

Equations (4.11) -(4.12) yield

mi -M -in

(v~ (1 -WO sin(y1  A1) 0 cos(y1 - A) -

x~l)(1) z (1)

1 (1) 1 (1) kl
-i -Mn -Mn

(1) LsinA A -AE1  1

sin(Y1 I A1) 0 cos(Y1 - Ad)

-N(l + AE,)cos(y1 - A,)

-WM X (~1 ) - LsinA )Cos(y1 - A1 ) (Z1 AL) sin(y1  Ad)

(Y()+ AE) sin(y1  A)

(4.13)

The final expression for v (F)is

12



[v() (1 A csY -A

m 1

W (F) z (1 + -~)(xl LsinA,)cos(-y - A,) - (z(1) + AL )sin' -A,
m 1 1 1 (zs

_WF ()+ ~) y + AE )sin(y1 - A1)

(4.14)

Step 4: The equation of meshing by cutting is represented by

n(1) . v(Fl) = 0 (4.15)

Using equations (4.15), (4.14), (4.6) and (4.3), we obtain

{-U F + [r(F) cot (F) _LsinA 1 - AL 1 tany, - Adco M sinTF

bF [sini(F) sin(q ~ + cos (F) sinOF m F1 - sin(y1 I A1)][ I CFTOF - c F cos(y 1 - A)

AE1 [sin (F) - cos (F) tan ( A)OT IS 1  1cosI F

flI(u F' 'F' O~F) - 0 (4.16)

Here:

= (F)

This equation relates the generating surface coordinates (u F9 OF) with the

angle of rotation F4).

13



Generation of E2' By using a similar procedure we may obtain the equation

of meshing for surface E and surface 2 as follows

Step 1: Equations of the family of generating surfaces Ep represented in

the coordinate system S(2 ) are:
m

x(2) r(p) 04(p) -ucs(p)
m c c P c
(2) u SinqP(sinT T b sin(q T 0 (4.17)

Ym P c p p p p

z( 2 )  u sinO(P)cost + bpcos(q__ m __p c pT )

Step 2: The unit normal to Z is represented in S(2 ) by the column matrixp m

sinOp
)

c

[n(2)] = cosp(P) sinT (4.18)
m c p

cos (p ) cost
c p

where

T p e + qp + 0p

The upper sign corresponds to the left-hand spiral bevel gear and the lower

to the right-hand spiral bevel gear.

Step 3: The velocities v( ), v( 2  and v(P2) are represented in S (2) as

follows

14



0

m

y 2)
m cos(Y 2 - A2)

I(2)] -W (2) _x(2) + -sn A - (2) snIv m -Csn 2)cos(y 2  2) m inY 2 -Ad)

(2)
ym sin( Y2 - A2)

(4.20)

(P2) (P) (2)

Step 4: The equation of meshing

n(2) (P2) 0

yields the following equation

f 2(up) a P, P) =

[u~ - (r (P cot P) + LiA)o (P)Isnu 1

b sin~q~ + it)i P + b cos k(P~in 'P2 - sin(Y 2 -A2) 0 (.2

sin6 p c cos(y 2-A 2) =0 (.2

Here:

W(P)
M P2 =(2)

15



5. ORIENTATION OF THE PINION CRADLE

Henceforth, we will consider two auxiliary coordinate systems Sf and

Sh, that are rigidly connected to the gear and pinion cutting machines,

respectively (Fig. 5.1).

Figure 2.2 shows coordinate system Sf that is rigidly connected to the I
gear cutting machine and to coordinate system S2m". Coordinate system S f

is also rigidly connected to the housing of the gear train and the meshing

of the generated pinion and gear will be also considered in coordinate

system S f* Axis Zf is the instantaneous axis of rotation of the pinion and

the gear - the pitch line (the line of tangency of the pinion and gear

pitch cones). The origin 0f of coordinate system Sf coincides with the
f(2f

points of intersection of 3 axes: X 2 )m , Z2 (Fig. 2.2) and z (Fig. 2.3).

Here: X (2) is the axis of rotation of the gear cradle; Z is the axis of
m

rotation of the gear being in mesh with the generating gear p and ZI

is the axis of rotation of the pinion being in mesh vith the generating

gear Z F and the gear member.

Figure 2.3 shows coordinate system Sh that is rigidly connected to the

pinion cutting machine and coordinate system SM. The origin 0h ofm

coordinate system Sh coincides with the origin Of but the orientation of

system Sh with respect to Sf represents a parameter of the nachine-tool

settings (proposed by Litvin, 1968). This parameter is designated by C

in Fig. 5.1.

The coordinate transformation in transition from Sh to Sf is based on

the following considerations.

(i) Consider two auxiliary coordinate systems, Sa and Sb, that are

rigidly connected to systems Sf and Sh, respectively (Fig. 5.1,a and

Fig. 5.1,b), axes Z a and Zb coincide with the pinion axis. Initially

coordinate system Sb coincides with Sa and system Sh with Sf.

16



(ii) Assume now that coordinate systems Sb and Sh are rotated about the

SZa -axis, the axis of the pinion, through the angle C (Fig. 5.1,c).

This angle determines the orientation of coordinate system Sh with

respect to Sf, or the orientation of the pinion cutting machine with

respect to the gear cutting machine. Matrix [Mfh] represents the

coordinate transformation in transition from Sh to Sf and is represented by

the following equation

[Mfh] = [Mfa] [MabI [Mbh]

22

cosecos Y1 + sin2yl sinecosy1  cosy 1siny 1(0 - cosE) 0

-sinccosy1  cosE sinesiny1  0

2 2

cosy1 siny (1 - cosE) -sincsinyI cossin 2y1 + cos Y1 0

0 0 0 1

(5.1)

6. PLANE OF NORNALS

It will be proven below that the generating surfaces Ep and EF contact

each other at a point that moves in the same plane, H. The generated

pinion and gear surfaces, Z and E 29 also contact each other at every

instant at a point that coincides with the point of tangency of surfaces Zf

and Zp. However, we have to emphasize that surfaces ZF and E1

(respectively, Ep and Z2) are in line contact and the instantaneous line of

contact moves over the contacting surfaces. The special property of the

method developed for generation of spiral bevel gears is that the contact

point moves in a plane (plane H) that is rigidly connected to the fixed

17



coordinate system Sf. Also, the common normal to the contacting surfaces

lies in plane 11 and, as it will be shown later, performs a parallel motion

in the process of meshing. Plane IT is called the plane of normals and it

is determined as the plane that passes through the instantaneous axis of

rotation, Zf, and the normal N to the generating surface Zp (Fig. 6.1).

The above normal passes through point N that is the main gear contact

point.

Figure 6.2 shows the orientation of coordinate system Sn with respect

to coordinate system Sf. Origin 0n coincides with origin 0f and axis Zf

coincides with the Z - axis. The coordinate transformation in transition
n

from Sn to Sf is given by the matrix

cosq -sinn 0

[Lfn] = sinn cosTi 0 (6.1)

0 0 1

The determination of angle n is based on the following considerations:

(1) unit vector i can be represented in coordinate system Sf by the

following matrix equation

cos -sinn 0 1

i (] = [Lf[L Ili I sine cos 0 0

0 0 1 0

Vcos 1
= sinrl (6.2)

L0

18
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(2) The unit normal n(P) to the generating surface Eis represented as

follows

[n) M -[ (2) In(2) 1(6.3)If I Lfm m~

Here (Fig. 2.2)

COSA 2  0 -sinA 2

[L fm 1 0 1 0(64

sinA 2 0 COSA2

Unit vector nm 2 is given by column matrix (4.18). Equations (6.3), (6.4)

and (4.18) yield

si P O' - co ()COST sinA
C 2 C p 2

[n(P)I cos (PIsinTp (6.5)

(P) (P)sinVP sinA 2+ cos OS cos COSA2

(3) Vectors i fn and f are mutual perpendicular, i.e., i~n f n = 0.

This yields that

tanO McosA -COST sinA
tanTI =- c 2 p 2 (6.6)sinT P

Here:

1P e + qP +

19



with the upper sign for the left-hand gear,

(P) = cc for the convex gear tooth side,

(P) = 1800 - ap for the concave gear tooth side

where a is the angle of the cutter blade.

Equation (6.6) determines the angle of orientation n of the plane of

normals (Fig. 6.2).

7. PERFORMANCE OF PARALLEL MOTION OF A STRAIGHT LINE PROVIDED BY TWO
RELATED ELLIPSES.

An important part of the proposed approach is a new technique directed

at the performance of a parallel motion of a straight line provided by two

related ellipses. By using this technique it becomes possible to provide a

parallel motion for the common normal to the gear-pinion tooth surfaces.

This motion is performed in a plane (the plane of normals) that is rigidly

connected to the gear housing and has the prescribed orientation.

It is well known that a translational motion of a straight line may be

performed by a parallelogram linkage (Fig. 7.1,a). Consider that a

straight line slides by its points A and C along two circles of equal

radii. Vectors VA and vC which represent the velocities of points A and C

of the moving straight line are equal. The moving straight line AC being

initially installed parallel to the center distance OD will keep its

original direction in the process of motion.

The discussed principle of translational motion of a straight line may

be extended for the case where the straight line slides along two mating

ellipses (Fig. 7.1,b). These ellipses have the same dimensions and

orientation and again the velocity vectors vA and vC are equal. Consider

that the moving straight line is initially installed parallel to OD where 0
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and D are the foci of symmetry of the ellipses. Then, with yA = yC the

moving straight line will keep its original direction in the process of

motion.

Figure 7.1(a) and Fig. 7.1(b) show a translational motion of a segment

of a straight line (AC) with constant length. A more general case is

represented in Fig. 7 .1(c). The straight line slides over two ellipses

whose dimensions and orientation are different. The length of segment AC

which slides along the ellipses is changed in the process of motion. The

problem is how to provide a parallel motion of the the moving straight

line. We call this motion a parallel one because the straight line has to

keep its initial parallel to line OD where 0 and D are the foci of symmetry

of two mating ellipses. Unlike the cases which are shown in Fig. 7.1(a)

and Fig. 7.1(b) the motion of straight line is not translation because the

velocities YA and Vc of the tracing points A and C are not equal. The

distance between the sliding points A and C is changed in the process of

motion. It will be proven that the required parallel motion of straight

line may be performed with certain relations between the dimensions and

orientation parameters of two guiding ellipses which are shown in Fig.

7 .1(c).

Consider that an ellipse (Fig. 7.2) is represented in coordinate

system S by the equations
• a

xa = 0, y apcoslp, za = bp sinjpi (7.1)

where ap and b are the lengths of the semimajor and semiminor axes, respec-

tively, D is the origin of coordinate S and the symmetry focus of the ellipse;

parameter ip determines the location of a point on the ellipse.
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Coordinate system S has the same origin as S and the orientation of

S with respect to S is given by angle 6p. To represent the ellipse inn a

coordinate system Sn we use the following matrix equation.

[r(P) [Mn r(P) (7.2)
n a

where

1 0 0 0

[M na = 0 cOS6p -sin6p 0 (7.3)

o sin 6p cOS6p 0

o0 o 0 1

Matrix equation (7.2) yields

x (P) (P) = apCOS6pCOSp bpsin6sinjp
n Yn -- a c b

z(P) a sinpCOSp + bpcOS 6psinp (7.4)

The symmetry focus of the mating ellipse is point 0 given by

coordinates: 0, c y(0), C3 =z
( ) (C2 and C3 are algebraiccorints:C = O 2 = Yn 3 n 2 3

values). The orientation of the ellipse is given by angle 6F (Fig. 7.2).

Equations of the mating ellipse are represented in coordinate system Sn as

follows

x(F) . 0 y(F) = aFcOS6FcospF - b sin6 F + C
n n FF F F C2

(F) b
Zn = aFsin6FcOSPF + bF COSFsinF + C3  (7.5)
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Consider point A of ellipse I is determined by parameter V PO" Point C

of ellipse 2 is determined with parameter p FO' Henceforth we will consider

such a motion where P - WPO = VF - IJFO = p." Line AC is drawn through

points A and C. Our goal is to provide that line AC will be parallel to

the center distance DO for any value of the motion parameter P- and perform

a parallel motion. The above-mentioned goal can be achieved with certain

relations between the ellipse parameters app bp, 6p. aF1 bF and 6F . We

start the derivation of these relations by considering the vector equation

DA(P) + AC(') = DO() + OC('J) (7.6)

Vector equation AC(1a) = ADO is satisfied with any value of V. if the

parallel motion of line AC is provided. (Where X is the constant required

to make the two vectors of equal magnitude.)

Equation (7.6) yields

(OC-DA) -j (X-1)(DO. j)
n _____ -n cosgq (7.7)

(OC-DA) -k (X-1)(DO.k ) sinq

Here: jn and k n are the unit vectors of axes Yn and Z , q is the angle

formed by axis Y and vector DO (Fig. 7.2). For the furthern

transformation we will represent p and p F as follows

PaP = 1 IPO + 1 ' PF =  FO +  (7.8)

Equations (7.7), (7.4), (7.5) and (7.8) yield

(b1 1sinq - a 11sinq - b2 1cosq + a2 1cosq)cospa

+ (-b1 2sinq + b22cosq + a12sinq - a2 2cosq)sinP = 0 (7.9)
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H r a 11  = a~~ J Pc s P - b sin6 sini p0

a 12 = a~~J iPO+ b sin6PcsP

a 21 =a Psin6 oP +bPC6Psijp

a 22  a ii PsniP - b Pcos6 Pcosi P (7.10)

Coefficients bIII b 12, b 21 and b 2have similar expressions.

Equations (7.9) must be satisfied for any value of the motion parameter pi.

This means that equation (7.9) will be satisfied for any value of pi if the

following two equations are satisfied simultaneously.

b11 sq-b 2 1 cosq -a 11 sinq +a 21cosq =0(.1

b 12s inq - b 22 cosq - a 12 sinq + a 22 cosq = 0 (7.12)

Equations (7.10), (7.11) and (7.12) yield a system of two pseudo-linear

equations in two unknowns (cosii~0 and sin'IFO) :

a i~- CS1F - b Fcos(q-6 F)sinjj FO d 1  (7.13)

b o~- csjF + a i~- snF = d2  (7.14)

Here:

d,=aPSnq6P)OIO- b Pcos~- snjP (7.15)

d2 = a~sin(q- 6 P)sinJP0 + b co s(q-
6 P)cosP PO (7.16)
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The solution of equations (7.13) and (7.14) for cosUFO and sinj1 FO is

as follows

aFd1 sin(q-6 F) + bFd2cos(q-6F) (7.17)
c°SIJFo f 2 2 2 2 (.7

aFsin (q- 6 F) + b FCOS (q - 6

aF d2sin(q_.F) - bFd1cos(q-6F) (7.18)
s lnFO 2 2 2 2 (7-6

aFsin (q- 6 F) + bFCOS (F- 6
F )

Equations (7.13) and (7.14) yield

2 2 + 2  2 d2 +2

aFsin (q-6F) + bFcos (q-6 d 2 2 (7.19)
F FF 1 2

Equations (7.19) relates 3 parameters of the mating ellipse: aF, bF

and 6 . (Parameters ap, bp, Sp of the first ellipse and q are considered

as given). Thus Eq. (7.19) can be satisfied with various combinations of

aF1 bF and 6F .
F F 

0

~aF
=f 2, b = 1.25, 6 = 200, f 2700, bFX ,fi 0

Example: a= p p 2 q = b PO = 11FO

Then we obtain: a F 2.2753, F = 34.3113*. These ellipses are shown ina F F

Fig. 7.2.

A linkage which may perform the described parallel motion of line AC is

shown in Fig. 7.3. Link I is in contact with two perpendicular slots and

DN = a DM = b where 2a and 2b are the lengths of the axes of ellipse

which is traced out by point A. Similarly, link 1' is in contact with two

other perpendicular slots, ON' = a F and OM' = bF9 point C traces out

ellipse 2. The orientation of a pair of slots with respect to the other

one is determined by the angle (6F - 65) (see Fig. 7.2). Links 1 and I'

rotate with the same angular velocity w = A. Line AC will perform a
dt

parallel motion if the ellipse parameters satisfy equation (7.19).
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8. GEAR MACHINE-TOOL SETTINGS

Input Data. The following data are considered as given to set up the gear

machine-tool settings.

N 2 the teeth number of the gear

y2' the gear pitch angle (Fig. 2.2)

A2, the gear dedendum angle (Fig. 2.2)

p, the mean spiral angle (Fig. 2.1)

L , Of Mo , the mean distance of the pitch cone (Fig. 2.2)

W , the point width of the gear cutter (Fig. 8.1)

(P), the blade angle of the gear cutter (Fig. 8.1)

Gear cutting ratio. The gear cutting ratio represents the ratio between the

angular velocities of the cradle and the generated gear and is designated

by

W(p)mp2 W (2) 81

Henceforth, we will consider the two coordinate systems, S(2 ) and Sf,

shown in Figure 2.2. Axis Zf is the pitch line of the mating spiral bevel

gears. It is also the instantaneous axis of rotation of the pinion and the

gear that transform rotation with constant angular velocity ratio. Assuming

that the generating cone surface, Zp, the gear tooth surface, Z2, and the

pinion tooth surface, Zl, are in continuous tangency at every instant, it

is required that the instantaneous axis of rotation by the gear cutting must
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coincide with the pitch line, axis Zf. Thus

(p2) . (p) -_ (2) =\kf (8.2)

This means that vectors w(p 2 ) and kf are collinear.
(- 2 (2 )

Vectors w(), (2) and kf are represented in coordinate system Sm

as follows

".. (Pl- 
-sin(y 2 - A2),

(p) = (2) = (2) 1
0 cos(y 2 -2)

sinA2 "

= (8.3)

_c osA2 .

Equations (8.2) and (8.3) yield that

- (P) + W (2) sin(y2 - A2) (8.4)

_W (2)cos(y2 - A2 ) 2

Equation (8.4) results in that

W(P) siny 2
mp2  (2) COSA 2  (8.5)
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Main Gear Contact Point. The main gear contact point is the center of the

bearing contact on the gear tooth surface. The location of this point can

be represented by the surface coordinates of the tool cone e and u •p p

We can vary the value of u by keeping e fixed and obtain the desired

location of the main gear contact point.

We start with the case when M* coincides with the pitch point M
o o

(Figure 8.2). In this case N on the cutter surface is the contact point

of the pinion and gear tooth surfaces since the normal at this point

intersects the instantaneous axis of rotation, Zf. The basic relations

for the left-hand gear for this case are as follows:

O = 900 - + qp = + qp (8.6)

LcosA sin(8P * q) LcosA cSSP(87

bP= -2 sine *p coS( 2 - qp)(.7

P p p

d LcosA sinqp - LcsA sinqp cs

__ 2 P p 2 p (8.7)2 *

sine coS(3p-- qp

p p

Sa - + LsinA tan c(p )  (8.9)

( d LcosA2 Los n sinq

r2 2 C (8.10)

2 2 *

p inp

r c( p )  
(p)

a - + asin (8.11)p 2cp cssinO
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For right-hand gear we need the following changes:

ep -2700 + Bp - qp = Tp - qp (8.6a)

LcosA 2 cosa LcosA 2 cosab ____ 2 P (8.7a)
p siln(e* - 1800) cos(p - qp)

p p

d LcosA2 sinqp LcosA 2 sinq

__E _ 2 pT (8. 8a)
2 sin(e* - 1800) cos(p - qp)

p p

Let us now consider point N whose surface coordinates of the tool cone
,

are e and
p

(P

u, o(P)N o(P)N*+N*N *+Up(.2- W = 0 N+ N N = u + Au p(8.12)

Point N will become the point of contact if the normal vector of this point

passes through M'. This requirement will be observed if the cradle is turned
0

at a certain angle p that is shown in Figure 8.3. We can determine angle p

using the equation of meshing of the generating gear and the generated gear,

equation (4.22), together with equations (8.5), (8.6), (8.7), (8.8), (8.9),

(8.10), (8.11), and (8.12). This yields

f2 (Aup, p )

AupCOS(p p) - LcosA2sin inp + LsinA2 cosc cos-cos(p + )] = 0

(8.13)
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The upper sign corresponds to the left-hand spiral bevel gear and the lower

to the right-hand spiral bevel gear. Based on trigonometry transformations

a closed form solution for p is obtained. That is

tan Op  -A A 2 + B 2 - C 2 (8.14)
2 C -B

Here:

A = cosA2sin(P) - sinA2 cosic(P)sin p + L sinp

Au

B = P cos - sin2A cOSc(P)cos pL p 2  c cgp

C - sinA 2cosc(P)cosSp

For gear concave side using the same equations except

W
a H -LsinA2tan c(P) (8.15)

22

and

d LcosA2sinq p
r - + a sn+ - LsinA2 tanp

)  (8.16)

we can get the same result.

Equation (8.14) determines the main gear contact points for both convex

side and concave side. In general, Au > 0 for gear convex side, and Au < 0P P

for gear concave side. The absolute value of Au for gear convex side is
P
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greater than that of Au for gear concave side.
p

Direction of the Contact Path. The direction of the contact path may be

determined by the direction of the tangent to the contact path at the main con-

tact point. This can be done by differentiating equation (4.22). In the pro-

cess of motion the contact normal performs a parallel motion. Thus parameter

T is a constant and this yields that
P

dT = 0 dp =-do (8.17)

Taking into account equations (8.17) and (8.5), we obtain after the differen-

tiation of equation (4.22) the following equation

du()(

du P sinT + b cos(q + 0 )sin' p ) - b cos Pcose tanA = 0dOp p p p p c p c p n 2 =d~p p

The upper sign corresponds to the left-hand gear and the lower to the right-hand

gear. At the main contact point we have that p = ep, cose = sin($p - q p),

Lco sA2Co sa
b = cos(c - q2 Then we obtain

p p

dusinT + Lcos osA cos(q + )sin (p )

d p p cos(gp - qp) Lco 2  p p c

sinA2 sin( - q )Cos(p ) ]= 0 (8.18)

This yields

E

tan q = - (8.19)
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Here:

•du()( 2

= ---u-P sinaSinTp ± LcosA2 sin P)cos sinp + LsinAcos (p)Cos2
-- p p 2  c p

du

E=-- cos sinT + LcosA sin(P)coS6 CoSp - LsinA, cos(P)sinp cosc
d p p 2 c p p 2 c p p

There is a particular case when the direction of the contact path is
du d

parallel to the root cone and thus -- -  0. For this case, however --d o p 2 d

becomes substantially larger than LcosA2  More favorable ratio for P
du 2LcosA 2

can be obtained by decreasing the value of dp but a more inclined path

of contact will occur. A reasonable value of P is about -0.5 for the

left-hand gear convex side, or -0.2 for the left-hand gear concave side.

Because both sides of the gear are cut by duplex method, the values of
du du
do for both sides are not independent, and we have to choose the value of --
p p

for both sides by a compromise.

9. BASIC PRINCIPLES FOR GENERATION OF CONJUGATE GEAR TOOTH SURFACES

INTRODUCTION

The method for generation of conjugate spiral bevel gear tooth surfaces

is based on the following principles:

(1) Four surfaces-two generating surfaces (Ep and EF) and pinion and gear

tooth surfaces (Z1 and E2) are in tangency at every instant. The ratio of

the angular velocities in motion of surfaces Ep, ZF , El and E2 must satisfy

the following requirements: (i) the above-mentioned surfaces must be in

pairs of contacting surfaces - Ep PF' El E2 - moves in plane 2 (Fig. 9.1)

in the process of meshing and the common normal to above-mentioned surfaces
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performs parallel motion in plane I.

Figure 9.1 shows the drawings that are represented in the plane of

normals, 11. Point A is the point of intersection of the gear head-cutter

axis with plane 11 and A is the initial position of the normal to surfaces

Ep and E2" Point D is the point of intersection of the gear cradle axis

with plane 11. Simultaneously point D is the point of intersection of

pinion and gear axes. Axes of the gear cradle and gear head-cutter are

parallel (the head-cutter axis is not tilted with respect to the axis of

(2)
the cradle). The cradle axis, X ( 2 , is perpendicular to the gear root conem

but it is inclined with respect to the plane of normals, TI.

Point C (Fig. 9.1) is the point of intersection of the pinion tool cone

axis with plane IT. Surface E F of the pinion tool cone will be in contact

with surface Ep (and Z 2 ) if the common normal to surfaces Ep and E2 passes

through point C. Simultaneously, the pinion surface, El, will be in

contact with TIF (and Ep and E2 ) at point N if the equation of meshing for

surfaces EI and TI is satisfied at N.

Point 0 that is shown in Fig. 9.1 is the point of intersection of the

pinion cradle axis with plane H. Point 0 does not coincide with point D of

the gear cradle axis. We recall that specific machine tool-settings for

the pinion, AE1 and AL1 , (Fig. 2.3) have to be used to provide conjugate

pinion and gear tooth surfaces. This method for generation provides the

collinearity of vectors DO and NA. We recall that the pinion cradle axis,

X( , is perpendicular to the pinion root cone but it is inclined with
m

(2)
respect to gear cradle axis, X , and plane R. The orientation of axes

X( 1 ) and X (2 ) with respect to each other and plane H depends on gear and
_nm

pinion dedendum angles, A1 and 2" The pinion cradle axis and the pinion

head-cutter axis are parallel (the pinion cutter is not tilted with respect
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to the pinion cradle).

Figure 9.1 shows the instantaneous positions of the contact normal N

and points A and C. In the process of meshing the normal performs a

parallel motion in plane R while point A (and respectively C) traces out an

ellipse with the ellipse symmetry center D (symmetry center 0,

respectively). The dimensions and orientation of the gear ellipse centered

at D are known since the gear machine settings are given. The dimensions

and orientation of the ellipse centered at 0 must be determined to provide

the desired parallel motion of the contact normal. Then it becomes

possible to determine the pinion machine-tool settings.

10. SATISFACTION OF THE EQUATIONS OF MESHING

Four surfaces - Ep, EF9 EI and Z2 - will be in contact within the

neighborhood of the instantaneous contact point if they have a common

normal and the following equations of meshing are satisfied at the point of

contact.

(1) The equation of meshing for surfaces E and E is represented as

follows (Fig. 9.1):

(12) ((12) r(N) N [(1 2 )r(N)N] 0v •~ N i r, NIN =0 (10.1)

(12 =(1)- 2)(1) (2)

Here: w(12)= () _ (2) where w and w() are the angular velocities
(12)

of the pinion and the gear, respectively. Vector w1 represents the

velocity in relative motion. Vector r (N) is the position vector of contact

point N and N is the contact normal. Vector w 12) must be directed along

the pitch line to provide transformation of rotation with the prescribed

angular velocity ratio.
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(2) The equation of meshing of surfaces E and E2 is represented by the

equation

[W(P2) r(N)N = 0 (10.2)

(P2) _(P) _(2)

Equation (10.2) is satisfied if w 2  = is collinear to the

unit vector a of the pitch line. This requirement is observed already

since the gear cutting ratio is determined with equation (8.5).

(3) The equation of meshing of tool surfaces Z and F is represented as

follows:

v(PF) . N ((P) - (F) ).N = {((P)x r(N))

(F) r(N) + - (F)

[(W(F) x r ) + (0x ]F N = 0 (10.3)

Deriving equation (10.3) we substitute the sliding vector W (F) that

passes through 0 (Fig. 9.1) by an equal vector that passes through D and

the vector moment represented by

m = DO x W(F)

In the process of motion the contact normal keeps its original direction that

is parallel to DO. Thus equation (10.3) yields

[ (PF) r(N ) N ]  [(W(P) W(F)) (N)r I= [w - w )r N]1 = 0 (10.4)

Equation (10.4) may be interpreted kinematically as a requirement that

vectors W (PF) r(N ) and N must line in the same plane, the plane of normals

T1. This means that

-W (P) - (F) )  i = 0 (10.5)
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where i is the unit vector of the X -axis that is perpendicular to plan R.~n n

It was mentioned above that the proposed method for generation is based

on the parallel motion of the contact normal that slides along two related

ellipses. It was assumed that this motion is performed with the following

conditions (see Section 7):

l=1 p-l F0 =liP-laP 0  d- dt = d-_ (10.6)

where PF and lp are the ellipse parameters.
dpF dlip

Let us prove that the requirement -- = -t- can be observed if

I(F) I = JW(P)I and equation (10.5) is satisfied.

Vectors W(F) and W(P) are directed along the X ( ) - and X (2) axes and

equation (10.5) may be represented as follows

W (F) . i = W(P) . 1 (10.7)

Since (= w we obtain that projections of vectors w(F) and w(P)

on the normal to the plane are equal.

This yields that

dp F dp dli

d t = ddt n

Here:

dl W(i(  • i ) = (i (2) " ) (10.8)
dt -m Zn 36
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nF d p
Vectors - and _ represent the angular velocities of links 1 and 1 (Fig.

dt dt

7.3) in their rotational motions. Equations (10.8) also yields that

i(1) n =1(2) • n (10.9)Sm n =m .n(10

Requirement (10.9) can be satisfied with a specific orientation of the

pinion cradle coordinate system, Sh, with respect to gear cradle coordinate

system, Sf. This orientation may be achieved with a certain value of angle

e (Fig. 5.1,c) that may be determined by using equation (10.9). The matrix

representation of equation (10.10) is given as follows:

[1 0 0[LnfI[Lfm(2)I 0 =

0

F']
[1 0 01 [Lnf][LfhI[Lhm ( 1) ]  0 (10.10)

0

Here,matrix [Lfm 2) is given by Eq. (6.4); matrix [L nf is the transpose

matrix of [Lfn] given by equation (6.1); matrix [LfhI is the sub-matrix of

[MfhI given by equatioa (5.1); matrix is represented as

follows (Fig. 2.3):

cosA I  0 sinA

[Lh ] = 0 1 0 (10.11)

-sinA1  0 cosA1

Equation (10.10) yields
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c cosA2 - sinyIsin(y 1 - A1) 0 (10.12)
cosY1cosE - sinctanfl cos(Y1 - A1)

Equations (10.12) provides two solutions for angle E and the smaller value

of C is to-be chosen.

11. EQUATIONS OF SURFACE TANGENCY AT THE MAIN CONTACT POINT

We consider that the coordinates of the main contact point N on surface

Z (Fig. 8.2) and the direction of the surface unit normal n(P) at point N

are known. We have to provide that surfaces Ep, E20 E1 and Z F will be in

tangency at the chosen point N. Surfaces Ep and Z2 are already in tangency

at N since the equation of meshing of E and E2 is satisifed at this point

(see Section 8). Then we have to provide the tangency of surfaces Z and

' 'Fand E and Z and

Equations of Tangency of E and E,

The tangency of generating surfaces Ep and EF at point N is provided if

the following equations are satisfied at N:

r (F)(uF' F' 'F' 6(F) q r(F), AE1 * ALl) = r(P) (11.1)

(F) (F) (P)
n 0Ff PFV ip , q )=n (11.2)

Here r(P) and n(P) are the given position vector and surface Ep unit

normal. Vector Eqs. (11.1) and (11.2) may be considered in any coordinate

(1)
system, for instance, in system Sm  . Vector Eq. (11.1) provides three

independent scalar equations but Eq. (11.2) provides only two ones since

InI = 1. Parameters uF and GF are the surface E F coordinates for the point

of tangency. Parameter cFt is the angle of cradle turn for the installment
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of the generating surface EF and it may be chosen of any value, including

F = 0. Parameters qF and bF determine the location and orientation of the

pinion head-cutter in coordinate system Sm(1) (Fig. 2.1); i(F) is the blade
m c

angle (Fig. 2.1); AE1 and AL are the machine-tool settings that have been

shown in Fig. 2.3; r(F ) is the radius of the head-cutter circle obtained by
c

the intersection of the head-cutter surface with plane X(1) = 0 (Fig. 2.1).
m

We may represent vector equations of tangency (11.1) and (11.2) as

fol lows

[r(F))I = [Mm(1) (2) [r(P)I = [Mm() (2) , (P)(m(1) m m m(2) M h[Mhf][Mfm ]rM (2)1 (11.3)

(F) (1) (2) (P) [LL (2) (P)
[n = [L 2[n ] = [h(1)h [[ ][L ][ (11.4)
Mm m M(2  m h hf fm m (2)

Matrix [Mfm (2) is represented by the following equation (Fig. 11.1)

cosA 2 0 -sinA 2  LsinA 2cosA 2

[Mfm(2 ] 0 1 0 0 (11.5)

sinA2 0 cosA 2  Lsin 2 &2

0 0 0 1

Matrix [Mhf] is the transpose matrix of matrix [Mfh I that is represented by

equation (5.1).

Matrix [M m(1) h  is represented as follows (Fig. 2.3)
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-osA, 0 -sinA1  Ls inA1 -

tM (1)] 0 1 0 -AE 1  (11.6)

sinA1  0 COSA I -a 1

-0 0 0 1

The column matrix [r (P] and [n IP~ are represented by equation (4.17) and

m(2) 
m(2)

(4.18). After matrix multiplications we obtain

b11 b12 b13 b14-

[Mm b 21 b 22 b23 b4 (11.7)

b31 b32 b33 b34

0 0 0 1 _

Here:

b 1 cosECOS(Y1 - A )cos(yl + A2) + sin(-yl - A)sin(y1 + A2)

b 12msinF-cos(y 1 -A,)

b1 -coSEcos(Y 1 - A1)sin(y1 + A2 ) + sin(y1  A A1)cos(yl + A2 )

b 14 = LsinA 1 + LsinA 2 b 11

b 21msinecos(y1 + A 2)

b22 'CS
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b23 = - sinEsin(yl + A2 )

b2 4 =- AEI+ LsinA2 b21

b 3 1  -cosgsin(y1 - A1)cos(y I + A2 ) + cos(Y 1 - AI)sin(y1 + A2 )

b32= sincsin(y1 - AI)

b = cossin(y1 - AI)sin(y, + A 2 ) + cos(Y1 - A )cos(y 1 + A 2 )

b34 =-AL1+ LsinA2 b31

Equations (11.3) and (11.4) are used for the determination of pinion

machine-tool settings.

12. PINION MACHINE-TOOL SETTINGS

The pinion machine-tool settings are represented by the following

parameters: r(F ) - the radius of the head-cutter circle measured in plane
C

X m(1- 0; bF and qF - parameters that determine the location of the

head-cutter in plane X = 0 with cF = 0 (see Fig. 2.1);

(F) 
(F)

CF -parameter that determines the blade angle; .F, ( - the ratio by

cutting; AE1 and AL1 -corrections of machine-tool settings that are shown

in Fig. 2.3.

The determination of the pinion machine-tool settings is baspd on the

equations that relate the parameters of the gear and pinion ellipses,

equations of tangency of the pinion and gear tooth surfaces at the main

contact point and the equation of meshing by pinion cutting. These

settings must be determined for the following 4 cases that are represented

in the plane of normals, by Fig. 12.1 and Fig. 12.2, respectively. Figure

41

1 10 1. .1.1



12.1(a) corresponds to the case where the gear is left-hand, the gear tooth

contacting surface is convex, r( F ) > r(M and CN > AN. Figure 12.1(b)
c c

corresponds to the case where the gear is left-hand, the gear tooth

contacting surface is concave, r(F ) < r(M and CN < AN.
c c

Drawings of Fig. 12.2 correspond to the cases where the gear is

right-hand and the gear tooth contacting surface is convex (Fig. 12.2,a)

and concave (Fig. 12.2,b). The difference between r(M and r(F ) with other
C c

parameters as given determines the required dimensions of the contacting

ellipse.

Determination of the Cutting Ratio mFl

It is mentioned above that the proposed method for generation provides:

(i) the simultaneous tangency of four surfaces: Ep, EFP El and Z2, where

Ep and ZF are the gear and pinion generating surfaces and Z and Z2 are the

generated pinion and gear tooth surfaces; (ii) the generating gears

(cradles) are rotated with the same angular velocities i.e. W M W ( F ) .

This yields the following equation for the pinion cutting ratio

m (F) W(P) mP2

0'(1) w(2). 2  m12

Here:
~siny 2

mp2 =os 2 (see equation 8.5)
P2 cosA 2

W(1) N2
mmN2

m 12 (2) -I

where N2 and N are the numbers of gear and pinion teeth.

The final expression for the pinion cutting ratio is
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Determination of bF

The procedure of computations of bF is based on the following steps:

(i) determination of semiaxes of the gear cradle ellipse, ap and bP: (ii)

determination of the parameter of orientation of the gear cradle ellipse,

6p; (iii) determination of the parameter of orientation of the pinion

cradle ellipse, 6F and, (iv) determination of bF.

Step i: Determination of semiaxes of the gear cradle ellipse.

The gear cradle ellipse is obtained by intersection of the cylinder

of radius bp (Fig. 2.1) with the plane of normals. The semiminor axis of the

cradle ellipse is the cylinder radius bp. The semimajor axis is represented

by the equation

= (12.2)ap i (2 ) •i

m

where the unit vector i (2) is collinear to the cylinder axis, i is the

unit vector that is perpendicular to the plane of normals. The scalar

product i (2) .i may be represented as follows

-in• _ i ( 2 ) .* i =

[1 0 0][Lm(2) f ][Lfn] [n (12.3)

'V-0.

Here, the column matrix represents the unit vector i in coordinate system-n

S and the row matrix represents the unit vector i 2) in S (2)n -m m

Equation (12.3) yields
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i . i - Cos ~Cos n (12.4)

and

a (12.5)
p- cosA2cosr(

Step 2: Determination of orientation of the gear cradle ellipse.

0
We designate with b the unit vector of the minor ellipse axis and with-p

p the angle that is formed by axis yn and the major ellipse axis (Fig.

12.3). Vectors b° and 1(2) are mutual perpendicular and this yields thatp -M

0 -

[1 0 0][Ln(2) ]]L -sinp sin6psinncosA2 + c0S6psinA - 0

m f f

cOS6P (12.6)

and

tan - tanA2  (12.7)
inl

Step 3: Determination of orientation of the pinion cradle ellipse.

The unit vector of minor axis of the pinion cradle ellinse, bF (Fio. 12.3)

is perpendicular to the cvlinder axis of radius b F* Thus

0
i m(1) .b
(1 " b, = 0 (12.8) -

The matrix representation of equation (12.8) is as follows:

,*.
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0

[1 0 0][L )  ][Lhf][Lfn] -sin6F = 0 (12.9)m h

CoS 6F

Equation (12.9) yields

tan6 A (12.10)
F B

where

A = cosesinyl - cosyltan(y, - A,) (12.11)

B = cosnsinE + sinn[cosccosyl + sinyltan(y1 - AI)] (12.12)

Step 4: Determination of bF

It is easy to prove that the ratio between the axes of both ellipses is the

same since

bF b _(2)
- = i( I  • i , -- = i 2  • i

a F Mn a P m -njP

and

I(I ) • i J(2) i (see Eq. (10.9))~m n -M n P'N-1

Thus:

b F  b p

aF  cosA2 cosl . ap =  s (12.13)2cos cosl =
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The parameters of both ellipses have been represented by equation (7.19) as

follows

2 2 ( b2  2 2 2 (12.14)a Fsin (q- 6 F  FCO (q - 6 F ) =d I + d 2 (.4).

(q F' F F 1 2

Equations (7.15), (7.16) and (12.12) yield that[ 2 1
2 2 2 2sin 2(q - 6 P)

d 2 cos (q - 6 ) + P (12.15)d1 P 2 = p2 2s
cos A osf

where q is the angle that is formed between vector DO and axis yn (Fig.

7.2). We recall that vector DO is collinear to the contact normal. Using

equations (12.14) and (12.15), we obtain

bF= b cs2 (q P)o 2s2 fl+ sin 2(q-6 P) 12(12.16)

P 2 2/

F = p cos (q F )Cos A2cos rl+ sin2(q -6F)

Determination of qF

The main idea of determination of qF is based on identification in

plane X = 0 of projections of two vectors: OC (Fig. 12.1 and Fig. 12.2)

and a that is the unit vector of 0() 0(F) (Fig. 12.4). We recall that
m s

points 00 ) and 0 lie on the axis of the cradle and 0 ( F ) and C lie on them s

axis of the pinion head-cutter (Fig. 12.4). Points 0 and C are the points

of intersection of pinion cradle axis, X (1), and the pinion head-cutter
m

axis, 0 F)C with the plane of normals, R. Plane H has been shown in
S

Fig. 6.1.

Unit vectors a and OC lie in the same plane. Here i( I) is the
(1)

unit vector of axis X I
Thus:
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[a tOCI a * (1) x OC) = 0 (12.17)

The determination of the qF is based on equation (12.17) and the

computational procedure may be presented as follows:

Step 1: Representation of vector a in coordinate system S (
m

Figure 12.5(a) and Fig. 12.5(b) show the orientation of unit vector a

(1)
in plane X) in two cases where the generating gear is left-hand

(generated gear is right-hand) and generating gear right-hand (generated is

left-hand), respectively. Vector a is represented by the following column

matrix:

0

= sinqF (12.18)

cosqF

Angle qF is measured clockwise. This angle is negative if measured

in opposite direction as shown in Fig. 2.1.

The generating gear generates the member-gear with the same direction of the

spiral (the member-gear is down with the respect to the generating gear as

it is shown in Fig. 2.2). The generating gear generates the pin 4 on with the

opposite direction of the spiril (the pinion is up with the respect to the

generating gear as it is shown in Fig. 2.3).

Step2: Representation of vector OC in coordinate system S . Using

equations (7.5) and (12.13) we may represent vector OC as follows:

I.
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0

OC = aFcos 6FcOspFO - bF sin6 Fsinj FO

aFsinFcOsPFO + b FCOS6 Fsin FO

-0 1 -0 )

a F COs6F coFO - sin6 FsinFO cosnCosA2 b 2 (12.19)

sin6F cOsFO + cos6 FsinFOCOSCOSA 2 b3

The sub-script "FO" in UFO indicates that the initial position of the

contact normal (at the main contact point) is considered.

Step 3: Representation of vector O-- in coordinate system S(1)____ m

The coordinate transformation in transition from S to S m is

represented by the product of matrices.

a 1 1  a1 2  a1 3

L (1) = a a a (12.20)Lm  h [hf [fn] = 21 a22 a23

a 3 1  a3 2  a3 3

Then vector OC may be represented as follows

+
a 12 b2 + a 13b 3

OC = a 2 b2 + a2 3 b3  (12.21)

a32b 2 + a 3 3 b 3

Step 4: Representation of the cross-product I
) x OG.

It is easy to verify that:
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im XOC -( 2b2+a3 b 3)(12.22)

a 22 b2 +a23 b3j

Step 5: Determination orqF

Equattoiu3 ,12.17), (12.18) and (12.22) yield

-sinq F(a 32 b2 +a33b3 +cosq F(a 2 2 b2 + a 2 3 b 3  0

Thus

tn a22b2 +a23 b3 (12.23)
"F a32b2 +a33 b3

Here:

*22 -sin~cosY 1sinl + cos~cosl (12.24)

*23 --sincsiny 1  (12.25)

a 3 2  sinn[cosccosy sin(y, - A,) - siny~cos(y1  A)

+ cosnsinesin(y1 - A1) (12.26)

*33 = cosy Icos(Y 1 - A1) + cos~sinylsin(y1 - A1) (12.27)

Expressio2 oband b3 have been represented by the column matrix (12.19)

in terms of iFO' Our purpose is to derive relations between p FO' Ip and

(N) (N)
Yn and z n Here: p Ois the parameter of the gear cradle axis for
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poit A(Fi. .1) y N)and z ()are coordinates of the main contact
n_ _ __ _ _ I

point. Equations (7.17) and (7.18) yield:

- tan (q ) - cosncosA

tnLFO 1 d(12 .28)

tan(q - 6 F + cosncosA 2

Here (see equations (7.15) and (7.16))

d 2 tan(q )tanviP+ coscosA2(1.9

d1 tan P P-OTC 2 (12.29)O

The determination of parameter V PO, is based on the following considerations

(Fig. 12.6)

0 A =0 N + NA (12.30)

n n

Equation (12.30) yields

(A) (N) -

Yn Yn = -AN cosq

z(A) z (N)= - sinq
n n

Thus:

z(A) z(N)

tan qa = 0 (12.31)

y(A) -Y(N)

n n

Using equations (7.4) and (12.5) we get

z(A) b /(inpcospo +cs inii' (12.32)
n = rIOA 2 o~s P0)
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y(A) = _bp _________P - sin5 sinlip (12.33)
n P b cosqcosA 2

y(N) and z(N ) are coordinates of the main contact point N in coordinateYn n

system Sn$ q determines the orientation of the contact normal in plane

= 0.
n

Using Eqs. (12.31) - (12.33) we may determine parameter PPO

Determination of Relation Between aE and AL.11

Parameters AE I and AL of the pinion machine-tool settings have been

shown in Fig. 2.3. Our goal is to prove that the proposed method for

generation relates AE and AL in a certain way.

Consider the drawing of Fig. 12.7. Point D coincides with the origins:

Oh of coordinate system Sh' 0f of coordinate system Sf (Fig. 5.1) and the

origin of coordinate system S . Point D is also shown in Fig. 9.1. Point
n

0 is the point of intersection of the pinion cradle axis with the plane of

normals, H. Vector DO must be collinear to the contact normal (Fig. 9.1).

Figure 12.7 shows a plane that is drawn through points 0(I), D and 0.
( _) (1m

Since vectors (1), 0(1) D and OD lie in the same plane, we have that

(1)

[O(1)DDO i m] 0 (12.34)

Vector 0 (1)D is represented by the column matrix (see Eq. 4.12))
m

m -LsinAl

O(1)D = 0(1) = AE (12.35)m m h I,

AL

Vector D- is collinear to the unit contact normal nf and is given by (see
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Eq. 4.6))

- (F)
sinpC

(F) O(F inF (12.36)
m

(o s F ) o s F=

c F

Equations (12.34) - (12.36) yield

LsinA 1  AEI AL1

s(F) (F) (F

sinc cos F)sinT cos( F)cos = 0 (12.37)
C C F c F

1 0 0

Equation (12.36) results in that

AE 1
tanT F  (12.38)

where

T = F ± qF +  F (12.39)

Determination of '(F) _ and AE
C -- F 1(F)

Parameter ( determines the blade angle of the pinion head-cutter.
C

Parameter T F with the known value of qF determines the cone surface

parameter . We may determine PF) and T by using the equations of

tangency at the main contact point represented as follows:
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rP) (F) (12.40)

(P) (F) (12.41)

Equations (12.40) and (12.41) provide the equality of Position-vectors

and unit surface normals, respectively at the main contact point for the

generating surfaces Zp and ZF . Vector equations (12.40) and (12.41)

provide three and two scalar equations, respectively, since lP(P), = IP(F),
(F) ad T

= 1. Using vector Eq. (12.41) we may determine parameters '( and 1. To
cF

determine AE1 we need only one scalar equation from the three ones provided

11by vector equations but the remaining two scalar equations should be

checked to ensure that they are satisfied with the determined machine-tool

settings.

13. INSTALLMENT OF MACHINE-TOOL SETTINGS

The installmert of the eccentric angle, EA, and cradle angle, CA, on

the Gleason cutting machine No. 26 and No. 116 provides the required values

of q. and b. (j = P, F).J

Consider that a left-hand gear is generated. Figure 13.1 shows two

positions of the eccentric and its center: before and after the

installment of the cradle angle, CA. The axis of the cradle is

perpendicular to the plane of drawings and pointed to the observer. The

axis of the head-cutter passes through the center of the cradle since the

eccentric angle is not installed yet. Figure 13.2 shows two positions of

the axis of the head-cutter: before and after the installment of the

eccentric angle. It is evident that angles qj, CA and EA are related by the

equation
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q =CA + go90 (j = P, F) (13.1)

b.E
-1 =00 sin (13.2)
2 c 2

where 00 c= k is the given constant value. Figures 13.3 and 13.4

correspond to the installment of a right-hand gear (the generating gear is

left-hand). Figure 13.3 shows the installment of the cradle angle (CA).

Figure 13.4 shows the installment of the eccentric angle and the relations

between angular parameters GA, EA and q .. Equations (13.1) and (13.2)

also for the case of generation of a right-hand gear hut the value of q.i is

larger than in the case of generation of a left-hand gear (see Fig. 13.2).

The installment of corrections of machine-tool settings AE 1and AL 1are

only applied for the generation of the pinion. These corrections are

installed on the Gleason's cutting machine by "the change of machine center

to back" and "the sliding base".

The correction AE 1represents the shortest distance between the crossed

axes of the pinion and the gear; AE Iis called "the offset" in Gleason

terminology (Fig. 13.5).

The correction AL Iis installed at the machine as a vector-sum of: Mi

the change of machine center to back (GB) and (ii) the sliding base (SB)

(Fig. 13.6a,b). The change of machine center to back is directed parallel

to the pinion axis and the sliding base is directed parallel to the cradle

axis. It is evident that

GB = coLyI SB = ALltanyR (13.3)

Here, y R is the root cone angle; GB is the machine center to back; SB is

the sliding base.
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CONCLUSION

The authors proposed a method for generation of spiral bevel gears with

conjugated gear tooth surfaces with the following properties:

(i) The transformation of rotation is performed with zero or almost

zero kinematical errors.

(ii) The contact point of gear tooth surfaces (the center of instantaneous

contact ellipse) moves in a plane (7) of a constant orientation

that passes through the pitch line of the gears.
i

(iii) The normal to the contacting surfaces moves in the process of motion

in plane 7 keeping its original orientation.

(iv) It is expected that due to the motion of the contact ellipse along

but not across the gear tooth surfaces the contact ratio will be

increased and the conditions of lubrication improved.

The authors developed a method of parallel motion of a straight line by

two ellipses with related dimensions and orientation.

A TCA program for the simulation of meshing and bearing contact for the

proposed gears has been developed. The advantage of the proposed gearing is

that the gears can be manufactured by the Gleason's equipment.

N1
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ANGLE - MACHINE
SETTING ANGLE

GEAR MACHINE
SETTING ANGLE

GEAR CUTTER RDU

GER UTTERADAL

GEAR GENERATING CONE I

RADIAL COORDINATE

ROTATION ANGLE OF F-FRAME
RELATIVE TO N-FRAME

*8A
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ROTATION ANGLE OF

H-FRAME RELATIVE
TO F-FRAME ABOUT
AXIS OF PINION

ORIENTATION ANGLES
OF GEAR AND PINION
CRADLE ELLIPSE

DIRECTION ANGLE OF
NORMAL IN N-FRAME

ROTATION ANGLE OF H-FRAME
RELATIVE TO F-FRAME ABOUT
ROTATION AXIS OF PINION

PNIOGUTTE ADAL7

INITIAL POSITIONS FOR GEAR
AND PINION CRADLE ELLIPSES

PINION MACHINE
SETTING ANGLE
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BLADE ANGLE OF

PINION CUTTER

PINION CONE SURFACE
ANGLE + GENERATING
SURFACE ROTATION
ANGLE - MACHINE

SETTING ANGLE

COORDINATES OF MAIN CONTACT POINT
IN PINION GENERATING SURFACE

CONVERT RADIANS
TO DEGREES

fOUTPUT OPTIMAL

/MACHINE /ETI

.1'
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NUMERICAL EXAMPLE

Basic Machine Settings

Gear (LH) Pinion (RH)

Both Sides Concave Convex

# of Teeth N 41 10 10

Mean Spiral Angle B 350

Dedendum Angle A 3053 1 141' 141

Mean Cone Dist. L 3.226

Cutter Radius r 3.957128371 3.895686894 4.034935029

Cutter Width W 0.08

0 0 0" Blade Angle a 20 16.7979304880 23.188994098

Machine Root Angle YR 72.4097056667 0 12.02362766670 12.02362766670i'°'

.Radial b 3.37751754380 3.31529203349 3.45277453402

0 C CSetting Angle q 73.68372394640 75.1337128849 71.9315208492

Machine Offest AE 0 0.005082532914 -0.009816930'1f

Mach. Ctr. to Back Xb 0 -0.00041258199 0.00062" ,.> -i

Sliding Base X s  0 -0.00008594705 0.,l 2'-

Ratio of Roll m 0.973756061793 0.237501478486 I 2t

* Orientation Angle -0.269060223t,

Tilt i 0

Swivel j0
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cradle axis

Y = 72.40970

gear axis

Vo o 20"

0.0

Lw 3. 226'

GEAR (LH)
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F1NON(CONCAVE)

L L 1 =024350236 Eff 0.005082532 9 14

Pinion axis

qT7.3728

CM,

''II I '



PINION (CONVEX)
cradle axis

12.026Y AE 0.009816930736

v Pinion 
axis

71912041

ok =23.188994098*
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TOOTH CONTACT AIGALVUs

GEAR CONVEX GEAR - CONCAUE
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C...
C... *

C... * MACHINE SETTINGS OF CONJUGATE SPIRAL BEVEL GEAR
C... *

C... * AUTHORS: FAYDOR LITVIN *

C... * WEI-JIUNG TSUNG *
C... * HONG-TAO LEE
C... *

C... *
C...

C
C PURPOSE
C
C To find the machine setting parameters for the generation of

C spiral bevel gears.
C

C NOTE
C
C This program is written in FORTRAN 77. It can be compiled by
C V compiler in IBM mainframe or FORTRAN compiler in VAX system.

C
C DESCRIPTION OF INPUT PARAMETERS
C
C ... J3 : JJ-1 for left-hand gear, JJ-2 for right-hand gear
C ... TNl : teeth number of pinion

C ... TN2 : teeth number of gear
C ... D1DG, DIMIN : dedendum angle of pinion (degree and arc minute,
C ... respectively)

C ... D2DG, D2MIN : dedendum angle of gear (degree and arc minute,
C... respectively)
C... GAMADG : shaft angle (degree)
C... BPDG : mean spiral angle (degree)
C... RL : mean cone distance
C... W : point width for gear finishing

C... ALFAP : blade angle of gear cutter (degree)
C... RCF1 : pinion cutter radius for pinion concave side
C... RCF2 : pinion cutter radius for pinion convex side
C... DUPI : a chosen value for pinion concave side to locate the
C main contact point at the desired location
C... DUP2 : a chosen value for pinion convex side to locate the
C main contact point at the desired location
C... DUPFEP : a chosen value for pinion concave side to get the
C desired direction of the contact path
C
C DESCRIPTION OF OUTPUT PARAMETERS
C
C... PHPDG : blade angle of gear cutter (degree)
C... PHFDG : blade angle of pinion cutter (degree)

C... RCP : radius of gear cutter (measured on cradle plane)
C... RCF : radius of pinion cutter (measured on cradle plane)
C... TPDG : the difference between the sum of gear cone surface

C angle coordinate and generating surface rotation
C angle, and machine setting angle (degree) (see

C equation (4.18) in report]
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C... TFDG : the difference between the sum of pinion cone
C surface angle coordinate and generating surface
C rotation angle, and machine setting angle (degree)
C... [see equation (4.3) in report]
C... BP : radial of gear cutter
C... BF : radial of pinion cutter

C... QPDG : machine setting angle of gear
C... QFDG : machine setting angle of pinion
C... NP2 : ratio of cradle angular velocity for cutting the
C gear and gear angular velocity
C... MFl : ratio of cradle angular velocity for cutting the
C pinion and pinion angular velocity
C... DE1 : machine offset for cutting the pinion
C... DLl : vector-sum of (1) the change of machine center to

C back and (2) the sliding base
C... FEEODG : generating surface rotation angle at initial main
C contact point
C... DELTADG : rotation angle of frame h relative to frame f about
C Zl

C
IMPLICIT REAL*8(A-H,O-Z)

C
C INPUT THE DESIGN DATA

C
DATA JJ/1/
DATA TNI,TN2/l0.D0O,41.D00/
DATA DlDG,DIMIN/I.DOO,41.DOO/

DATA D2DG,D2MIN/3.DOO,53.DOO/
DATA GAMADG, BPDG/90.DOO,35.DOO/
DATA RL/3.226D00/
DATA W/0.08D00/
DATA ALFAP/20.DOO/
DATA RCF1/3.86707929616DO0/

DATA RCF2/4.05714282715D00/
DATA DUP1/0. 042787628358701D00/
DATA DUP2/-0.0377637374416016731D00/
DATA DUPFEP/-0.526309620098410257DO0/

C
C CONVERT DEGREES TO RADIANS
C

CNST-4. D0*DATAN (1. D00) /180. D00
Dl- (D1DG+DlMIN/60.DOO) *CNST

D2 (D2DG+D2MIN/60.DOO) *CNST
BP=BPDG*CNST

C

C CALCULATE GAMAl AND GAMA2
C

GAMA=GAMADG*CNST
RM12-TN2/TN1
RM21-TNI/TN2

GMAlDATAN(DSIN(GAKA) / (RM12+DCOS(GAIA)))
GMA2-DATAN (DSIN (GAMA) / (RM21+DCOS (GAMiA)))
IF(GMAI .LT. 0.)THEN

GMA1-180. *CNST+GMA1

END IF
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IF(GMA2 ALT. O.)THEN
GMA2- 180. *CNST+GMA2

END IF
C
C SUBSTITUTE SIN AND COS FUNCTION BY A SHORT NAME
C

SNBP-DSIN (BP)
CSBP-DCOS (BP)
SND1-DS IN (Dl)
CSDlJDCOS (Dl)
SNRlD1-DSIN (GKAl-D1)
CSRID1-DCOS (GMAI-D1)
SNRlD2-DSIN (GKA1+D2)
CSR1D2-DCOS (GMA1+D2)
SNR2D2-DS IN (GMA2-D2)
CSR2D2-DCOS (GMA2-D2)
CSD2-DCOS (D2)
SND2=DSIN (D2)
CSGM1-DCOS (GIIA1)
SNGM1-DSIN (GMA1)
CSGM2-DCOS (GMA2)
SNGM2-DSIN (Gl4A2)

C
C CALCULATE CUTTING RATIOS
C

RMP2-SNGM2/CSD2
RMF1=TN1*SNGM2/ (TN2*CSD2)

C
C II11: THE PINION CONCAVE PART ANALYSIS, 11-2: THE PINION CONVEX PART
C ANALYSIS
C

DO 10000 11-1,2
IF(II .EQ. 1)THEN
RCF-RCFI
DUP-DUP 1
ELSE
RCF-RCF2
DUP-DUP 2

END IF
C
C CALCULATE PHP
C

IF(II .EQ .l)THEN
PHP-ALFAP*CNST
ELSE
PHP= (180.DOO-ALFAP) *CNST
END IF

SNPHP=DSIN (PHP)
CSPHP=DCOS (PHP)

C
C CALCULATE FEEP AT INITIAL MAIN CONTACT POINT
C

A-CSD2*SNPHP-SND2*CSPHP*SNBP+DUP*SNBP/RL
IF(JJ .EQ. 2)THEN
A- -A
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END I F
B=DUP*CSBP /RL-SND2*CSPHP*CSBP
C-SND2*CSPHP*CSBP
D-DSQRT (A*A+B*B-C*C)
E-C-B
Fi-DATAN ((-A+D) /E)
F2-DATAN ((-A-D) /E)
IF(DABS(F1) .LT. DABS(F2))THEN

FEE- 2. DOO*Fl
FEE- 2. DOO*F2

END IF
CSFEE-DCQS (FEE)
SNFEE-DSIN (FEE)

CI
C

IF(JJ .EQ. 1)THEN
TP-90. D00*CNST-BP+FEE
ELSE
TP-270 .DOO*CNST+BP+FEE
END IF
SNTP-DSIN (TP)
CSTP-DCOS (TP)

C
C CALCULATE QP
C

IF(II .EQ. 1)THEN
IF(JJ .EQ. 1)THEN
D-DUPFEP*SNBP*SNTP+RL*CSD2"*SNPHP*CSBP *StJFEE+RL*SN0J2 *CSlfP

# *CSBP*CSBP
ELSE
D-DUPFEP*SNBP*SNTP-RL*CSD2*SNPHP*CSBP*SNFEE+RL*SND2*CSPHP

# *CSBP*CSBP
END IF
E-DUFEP*CSBP*SNTP+RL*CSD2*SNPHP*CSBP*CSFEE-RL*SND2*CSPHP

#f *SNBP*CSBP
QP-DATAN (-E/D)
IF(QP ALT. 0.DOO)THEN
QP 180. DOO*CNST+QP

END IF
END IF
IF(JJ .EQ. l)THEN
SNQPFE-DSIN (QP-FEE)
CSQPFE-DCOS (QP-FEE)
THP-90. DOO*CNST+QP-BP
ELSE
SNQPFE-DSIN (QP+FEE)
CSQPFE-DCOS (QP+ FEE)
THP-270. DJ0*CNST..QP+BP

END IF
SNTHP-DSIN (THP)

C
C CALCULATE RCP
C
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CMG=RL*CSD2*DSIN (QP) /DCOS (eP-QP)
IF(II .EQ. 1)THEN
RCP=CMO-W/2.GDOG-RL*SND2*SNPHP/CSPHP
ELSE
RCP=CMO+W/2.DGG-RL*SND2*SNPHP/CSPHP
END IF

C
C CALCULATE RBP
C

RBP-RL*CSD2*CSBP/DCOS (BP-QP)
C
C CALCULATE UP
C

UP= (RCP*CSPHP/SNPHP+RL*SND2) *CSPHP+RBP* (SNPHP*SNQPFE-CSPHP*
#f SNTHP*SND2/CSD2) /SNTP

C
C CALCULATE RN
C

AN--SNPHP*CSD2+CSPHP*CSTP*SND2
BN-CS PHP *SNTP
RN-DATAN (AN/BN)
SNRN-DS IN (RN)
CSRN=DCGS (RN)

C
C CALCULATE DLTA
C

A-CSGM 1
B'=-SNRN/CSRN
C= (SNGM1*SNRIDI-CSD2) /CSRlD1
X1--B+DSQRT (A**2ie**2-C**2)
X2--B-DSQRT (A**2+e**2-C**2)
Y-C-A
AE'-X1/Y
BE-X2/Y
DLT2A-DATAN (AE)
DLT2B-DATAN (BE)
IF (DABS (DLT2A).LT.DABS (DLT2B) )THEN
DLTA-DLT2A*2. DOG
ELSE
DLTA=DLT2B*2. DOG

END IF
SNDLTA=DSIN (DLTA)
CSDLTA=DCOS (DLTA)

C
C CALCULATE DETAP

AOI.5ND2/CSD2
BOl--SNRN *s
DETAP-DATAN (AG 1/BOl)

C

C CALCULATE DTAFCI
A211-CSGMI*SNR1D1/CSR1D1-CSDLTA*SNGM1
B211--(SND)LTA*CSRN+SNRN*(CSDLTA*CSGMI+SNGM1*SNR1Dl/CSRIDl))
DETAF-DATAN (A21 1/B21 1)j
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CSDTAF=DCOS (DETAF)
SNDTAF=DSIN (DETAF)

C
C CALCULATE Q
C
C calculate normal vector at main contact point in F coordinate system
C

RNXF2=SNPHP*CSD2-CSPHP*CSTP*SND2
RN YF2=CSPHP *SNTP
RNZF2-SNPHP*SND2+CSPHP*CSTP*CSD2

C
C calculate normal vector at main contact point in N coordinate system
C

RNYN2= -SNRN*RNXF2+CSRN*RNY F2
RNZN2=RNZF2

C
Q=DATAN2 (-RNZN2, -RNYN2)
QAP=Q-DETAP
QAF=Q-DETAF
SNQAP=DSIN (QAP)
CSQAP=DCOS (QAP)
SNQAF=DSIN (QAF)
CSQAF-DCOS (QAF)

C
C CALCULATE BF
C

BF=DSQRT ((CSQAP**2*CSD2**2*CSRN**2+SNQAP**2)
# I (CSQAF**2*CSD2**2*CSRN**2+SNQAF**2)) *RBP

C
C CALCULATE P0
C

RAP=RBPI (CSD2*CSRN)
C
C calculute coordinate of main contact point in M coordinate system
C

RMX2=RCP *CSPHP /SNPHP-UP*CSPHP
RMYM2-UP *SNPHP *SNTP-.RB P*SNQP FE
RMZM2-UP*SNPHP*CSTP4+RBP*CSQPFE

C
C calculute coordinate of main contact point in F coordinate system
C

RMXF2-CSD2*RMXl12-SND2*RMZM2+RL*SND2*CSD2
RMYF2-RMYM2
RMZF2-SND2*RMXM2+CSD2*RMZM2+R L*SND2*SND2

C
C calculute coordinate of main contact point in N coordinate system
C

RMXN2-CSRN*RMXF2+SNRN*RMYF2
RMYN2---SNRN*RMXF2+CSRN*RMYF2
RMZN2-RMZF2

C
AG--RAP*SNQAP
BG-RBP*CSQAP
CG-RMYN2*DSIN (Q) -RMZN2*DCOS (Q)
Gi l--BG4-DSQRT (AG**2+BG**2-CG**2)
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G22--BG-DSQRT (AG**2+BG**2-CG**2)
G33-CG-AG
PO1=DATAN (Gi 11G33)
P02=DATAN (G22/G33)
IF(DABS(PO1) .LT.DABS(P02) )THEN

PO=P02*2. DOO
ELSE
PO=PO1*2.DOO

END IFI
CSPO=DCOS (P0)

C
C CALCULATE FO
C

AF=BF/ (CsD2*CSRN)I
RMF=AF**2
DD1 1=RAP*SNQAP*CSP0O-RBP*CSQAP*SNPO
DD22=RAP*SNQAP*SNPO+RBP*CSQAP*CSPO
SSS= (AF*SNQAF) **2+ (BF*CSQAF) **2
CSFQ= (AF*DDl 1*SNQAF4+BF*DD22*CSQAF) /SSS
SNFO= (AF*DD22*SNQAF-BF*DD1 1*CSQAF) /SSS
FO=DATAN2 (SN FO, CSFO)

C
C CALCULATE QF
C

AA22=-~SNDLTA*CSGM1 *SNRN+CSDLTA*CSRN
AA23=-SNDLTA*SNGM1
AA32=SNRN*(CSDLTA*CSGMI*SNR1D1-SNGMl*CSR1Dl)+CSRN*SNDLTA*SNRl1D
AA33=CSGNI *CSRIDI+CSDLTA*SNGMl*SNR iDi
BB22-AF* (CSDTAF*CSF0.-SNDTAF*SNF0*CSRN*CSD2)
BB33-AF* (SNDTAF*CSFO*CSDTAF*SNFO*CSRN*CSD2)
uuu-- (AA22*BB22+AA23*BB33)
DDD-AA3 2*BB22+A3 3 *BB33
QFFE-DATAN2(UUU,DDD)
QF-QFFE
SNQF=DS IN (QF)
CSQF-DCOS (QF)
SNQFFE=DSIN (QFFE)
CSQFFE-DCOS (QFFE)

C
C calculate normal vector at main contact point in H coordinate system
C

RNXH2- (CSDLTA*CSGMI*CSGM1+SNGMI*SNGM1)*RNXF2-SNDLTA*CSGMI*RNYF2

#f +CSGMl*SNGMl*(1 .D00-CSDLTA)*RNZF2
RNYH2-SNDLTA*CSGH1 *RNXF2+CSDLTA*RNYF2-SNDLTA*SNGM1 *RNZF2
RNZH2-CSGMI1*5JN4JM1 * (1 .DOO-CSDLTA) *RNXF2+SNDLTA*SNGM 1*RNYF2+

# (CSDLTA*SNGMI*SNGM1+CSGM1*CSGM1) *RNZF2 1"Mg
C
C CALCULATE PHF
C

PHF-DASIN (CSDI*RNXH2-SND1*RNZH2)
I F(I I . EQ. 2) THEN
PHF 180.DO*CNST-.PHF

END IF
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SNPHF=DSIN (PHF)
CSPHF=DCOS (PHF)

C
C CALCULATE TF
C

IF(II .EQ. 2) THEN
TF=DATAN2 (-RNYH2, -SND1 *RNXH2-CSD1 *RNZH2)
ELSE
TF=DATAN2 (RNYH2 ,SND1*RNXH2+CSD1*RNZH2)

END IF
SNTF=DS IN (TF)
CSTF=DCOS (TF)

C
C CALCULATE THF
C

THF=TF+QFFE
SNTHF=DSIN (THF)
CSTHF=DCOS (THF)

C
C CALCULATE UF
C
C calculute coordinate of main contact point in H coordinate system
C

RMXH2' (CSDLTA*CSGM1 *CSGM1+SNGM1 *SNGM1) *RMXF2-SNDLTA*CSGM1l(RMYF2
#+CSGM1*SNGM1*(1 .DOO-CSDLTA)*RMZF2

RMYH2=~SNDLTA*CSGM1 *RMXF2+CSDLTA*RMYF2..SNDLTA*SNGM1 *RMZF2
RMZH2=CSGM1*SNGM1* (1.DOO-CSDLTA) *RMXF2+SNDLTA*SNGM1*RMYF2+

# (CSDLTA*SNGM1*SNGM1+CSGM1*CSGM1) *RMZF2
C

UF= (RCF*CSPHF/SNPHF-RMXH2*CSD1+RMZH2*SND1-RL*SND1) /CSPHF
C
C CALCULATE DE1,DL1
C

DE 1=RMYH2-UF*SNPHF*SNTF+BF*SNQFFE
DL1=DE1*CSTF/SNTF

C
C CONVERT RADIANS TO DEGREES
C

PHPDG'=PHP/CNST
TPDG=TP/CNST
QPDG=QP /CNST
RNDG=RN/CNST
DLTADG-DLTA/CNST
DTAPDG=DETAP/CNST
DTAFDG=DETAF/CNST
QDG-Q/CNST
PODG=PO/CNST
FODG'F0/CNST
QFDG=QF/CNST

PHFDG'=PHF/CNST

TFDG-TF/CNST
FEEDG-FEE/CNST
WRITE (6,60000)
WRITE(6,60001)
WRITE(6,60002)10



IF(II.EQ.1) THEN
WRITE (6,60003)
ELSE
WRITE(6,60004)

END IF
WRITE (6,60002)
WRITE (6,60001)
WRITE (6,60000)
WRITE(6,90001)
WRITE (6.90002) PHPDG, PHFDG, RCP ,RCF, TPDG, TFDG
WRITE(6,90003)RBP,BF,QPDG,QFDG,RMP2,RMFI,DEI,DL1,FEEDG,DLTADG
WR ITE (6, 1) RNDG
WRITE (6, 20001)
WRITE (6,20002) DTAPDG, PODG, RBP ,RAP
WRITE (6,20003)

10000 WRITE(6,20004)DTAFDG,FODG,BF,AF
90003 FORMAT(1H ,'BP -',Gl8.12,15X,'BF -',G18.12,/

#I IH ,'QPDG =',G18.12,15X,'QFDG =',Gl8.12,/
#I 1H ,'MP2 =',Gl8.12,15X,'MF1 =',G18.12,I

#1H ,'DE1 =',G18.12,15X,'DL1 =',G18.12,/
#I IH 'FEE0DG=',G18.12,15X,'DELTA =',G18.12/)
1 FORMAT(lH ,'ROTATION ANGLE OF RN =',GlB.121)

20001 FORMAT(1H ,' GEAR CRADLE ELLIPSE PARAMETER 9/)

20002 FORMAT(1H ' GEAR ELLIPSE ORIENTATION-',G24.17,/

#N 1H'INITIAL POSITION=',G24.17,/
#I 1H 'MINOR AXIS=' ,G24.17,5X, 'MAJOR AXIS=',G24.17/)

20003 FORMAT(1H ,' PINION CRADLE ELLIPSE PARAMETER 'I
20004 FORMAT(lH ,'PINION ELLIPSE ORIENTATION=',G24.17,/

# 1H ,'INITIAL POSITION=',G24.17,/
#/ IH ,'MINOR AXIS=',G24.17,5X,'NAJOR AXIS=',G24.17/)

60000 FORMAT(1H1,' '
60001 FORMAT (1H,'')
60002 FORMAT(1H '*)

60003 FORMAT(1H ' CONCAVE PINION PART ANALYSIS*)
60004 FORMAT(IH ,' ~ CONVEX PINION PART ANALYSIS*)
90001 FORMAT(1H ,'GEAR PARAMETER',27X,'PINION PARAMETER')
90002 FORMAT(N ,'PHPDG -',Gl8.12,15X,'PHFDG =',G18.12,I

# 1H ,'RCP =',G18.12,15X,'RCF =',G18.12,/
# 1H ,'TPDG =',G1B.12,15X,'TFDG =',G18.12)
END
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C...
C ...

C... TOOTH CONTACT ANALYSIS OF SPIRAL BEVEL GEAR

C...

C... * AUTHORS: FAYDOR LITVIN *

C... * WEI-JIUNG TSUNG *

C... HONG-TAO LEE

C...
C...
C. . .

C

C PURPOSE
C

'C Tooth contact analysis of spiral bevel gears
C

C NOTE
C

C This program is written in FORTRAN 77. It can be compiled by
C V compiler in IBM mainframe.
C

C This program calls ZSPOW, a subroutine of IMSL package.

C
C DESCRIPTION OF INPUT PARAMETERS

C
C... JJ : JJ=1 for left-hand gear, JJ=2 for right-hand gear
C... II : II=1 for pinion concave side, 11-2 for pinion convex

C side

C... TNl : teeth number of pinion

C... TN2 : teeth number of gear

C... D1DG, DiMIN : dedendum angle of pinion (degree and arc minute,
C... respectively)

C... D2DG, D2MIN : dedendum angle of gear (degree and arc minute,
C... respectively)

C... GAMADG : shaft angle (degree)

C... RL : mean cone distance
C... PHPDG : blade angle of gear cutter (degree)

C... PHFDG : blade angle of pinion cutter (degree)
C... RCP : radius of gear cutter (measured on cradle plane)

C... RCF : radius of pinion cutter (measured on cradle plane)

C... TPDG : the difference between the sum of gear cone surface
C angle coordinate and generating surface rotation

C angle, and machine setting angle (degree) [see

C equation (4.18) in report]
C... TFDG : the difference between the sum of pinion cone

C surface angle coordinate and generating surface

C rotation angle, and machine setting angle (degree)

C... [see equation (4.3) in report]

C... BP : radial of gear cutter
C... BF : radial of pinion cutter
C... QPDG : machine setting angle of gear

C... QFDG : machine setting angle of pinion [ALWAYS consider it

C as a POSITIVE input even it is negative gotten from

C the output of maching setting program

C... MP2 : ratio of cradle angular velocity for cutting the

C gear and gear angular velocity

104



C ... MFl :ratio of cradle angular velocity for cutting the
C pinion and pinion angular velocity
C ... DEl machine offset for cutting the pinion
C ... DLl vector-sum of (1) the change of machine center to
C back and (2) the sliding base
C ... FEEODG :generating surface rotation angle at initial main
C contact point
C ... DELTADG :rotation angle of frame h relative to frame f about
C ZI
C ... DFEPDG :increment of FEPDG
C

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER NSIG,IER,ITMAX,M,MLQOP,N1,N2,N5,NSIG1
REAL*8 PARS(5) ,X(5) ,FNORM5,WK5 (75) ,MP2,MF1
EXTERNAL FCN , FCN2
COMMON/Al /CNST
COMMON/A2/DEl ,DLl ,RCP,RL,RCF,PHFDG
COMMON/A3/SNPHF,CSPHF,SNR1D1,CSR1Dl,SNBP,CSBP,SNR1D2,CSR1D2
COMMON/A4/W, ECENDG,DI STEC
COMMON/A5/SNGM , CSGMl ,GMA1, SNGM2, CSGM2, SND2 ,CSD2, SND1 ,CSD1
COMMQN/A6/SNTP, CSTP ,TP, TPDG, SNTF, CSTF, TF, TFDG
CQMIION/A7/SNDLTA, CSDLTA, SNPHP ,CSPHP ,SNR2D2, CSR2D2, DLTADG
COMMiON/A12/UF,BF,RBP,UP,RMFl ,RMP2
COMMON/A14/SNRN ,CSRN ,RNDG, RN
COMMQN/A18/SNQP,CSQP,QPDG,SNQF,CSQF,QFDG,QP,QF,QPO,QFO
CQMMON/A27/XFl, YFl ,ZFl ,XF2, YF2,ZF2
CQMMON/A32/AYN, AZN, BYN ,BZN ,CYN, CZN, DYN, DZN, RMYN, RMZN
COMMON/A33/PHP1,PHF1,PHP2,PHF2,PHP1DG,PHF1DG,PHP2DG,PHF2DG
COMMON/A34/FE , SNFE1 ,CSFE1 ,FE2, SNFE2 ,CSFE2, FEP ,FE221 ,FEl 11,
# FEPDG,FEFDG,FIIIDG,F221DG

COMMON/A35/SNTHP ,CSTHP, SNTHF, CSTHF, THPDG, THFDG
COMMON/A36/RK12,RK22,RK11,RK2l,UTX11,UTXl2,UTYll,UTY12,UTZ11,

# UTZ12,UTX21,UTX22,UTY21,UTY22,UTZ21,UTZ22
COMMON/A37/RNXF2,RNYF2,RNZF2,RNXF1 ,RNYFl ,RNZFl
COM4MON/A38/DEF, SIGMDG,ALPHDG,AXISA,AXISB,ERROR
COMMON/A40/GMENRA, PMENR1 ,PMENR2
COMMON/A49/SNQAP,CSQAP ,SNQAF,CSQAF
COMMON/A55/DETAP,DETAF, SNDTAP ,CSDTAP, SNDTAF, CSDTAF, DTAPDG, DTAFDG
COMMON/A77/Q,QDG,PODG,FODG,PMIN,PMAX,FMIN,FMAX

C
C INPUT DATA
C

JJ- 1

TN1-1O.DOO
TN2=41 .DOO
DlDG-l .DOO
DlMIN=41 .DOO
D2DG-3 .DOO

D2MIN-53 .DOO

GAMADG=90 .DOO

RL=3. 226D00
PHPDG=20. ODOO
PHFDG- 16. 7979304880D00
RCP-3 .83760775903D00
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RCF-3.867079296 16DOO
TPDG=53. 0019620800D00
TFDG-51 .5519731416D00
BP'=3.3775 1754380D00
BF=3. 31529203349D00
QPDG-73 .6837239464D00
QFDG=77. 1317508049D00
mp2-.973756061793D00
MF=. 237501478486D00
DEJ0. 508253291408D-02
DL10. 403530720434D-02
FEPODG=-1 .9980379199559D00
DLTADG=-. 269060223623D00
DFEPDG~1 .OODOO

C
C END OF INPUT DATA
C

DEF-O.OOO25DOO
N5-5
NSIGI1l2
I TMM-~200
RBP=BP
RMP2=MP2
RI1F1=MFI

C ...
C ... CONVERT DEGREE TO RADIANS
C ...

CNST=4.DOO*DATAN (1.DOO) /180.DOO
GAKA=GAMADG*CNST
QP-QPDG*CNST
PHP-PHPDG*CNST
PH F=PH FDG *CNS T
TP.=TPDG*CNS T
TF=TFDG*CNST
DLTA=DLTADG*CNST
QF-QFDG*CNST
FEPO-FEPODG*CNST
FEFO-O.DOG
D1 (DlDG-.DlMIN/60.DOO) *CNST
D2= (D2DG+D2MIN/60. DOG) *CNST
RM12-TN2/TNl
RM21-TN1/TN2
GMA1-DATAN4(DSIN (GAMA) /(RM12+DCOS (GAMA)))
GM4A2-DATAN (DS IN (GANlA) /(RN2 1 4DCOS (GAMA)))
m-=(360.DOO/ (2.ODOO*TN2)) /DFEPDG
CALL HEADl(JJ,II)

C ...
C ... SUBSTITUTE SIN AND COS FUNCTION BY A SHORT NAME

C ...
SNDI-DSIN (Dl)
CSD1-DCOS (Dl)
SNRIl1DSIN (GMAl-D1)
CSRlD1-DCOS (GMA1-D1)
SNR 1D2-DSIN (GMA1+D2)
CSRI1D2-DCOS (GMAI +D2)
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SNR2D2-DSIN (GMA2-D2)
CSR2D2-DCOS (GMA2-D2)
CSD2-DCOS (D2)
SND2-DSIN (D2)
CSGMl-DCOS (GMAl)
SNGMl=DSIN (GMAl)
CSGM2-DCOS (GMA2)
SNGM2-DSIN (GMA2)
SNPHP=DSIN (PH?)
CSPHP=DCOS (PHP)
SNQP=DSIN (QP)
CSQP-DCOS (QP)
SNTP=DSIN (TP)
CSTP=DCOS (TP)
SNDLTA-DS IN (DLTA)
CSDLTA-DCOS (DLTA)
SNQF=DSIN (QF)
CSQF-DCOS (QF)
SNPHF=DSIN (PlF)
CSPHF=DCOS (PHF)
SNTF-DS IN (TF)
CSTF=DCOS (TF)

C...
C ... TOOTH CONTACT ANALYSIS
C ... DETERMINATION OF THE KINEMATICAL ERROR, BEARING CONTACT
C...

TPO=TP
TFO=TF
QPO=QP
QFO=QF
RI NI TPM*DFEPDG
FEP=-R INITP*CNST+FEPO

C... INITIAL GUASS FOR ZSPOW
X(l)-TFO
X(2)-TPO
x (3) =-RINITP*CNST+FEF0
x (4) 0. ODOO*CNST
X(5)=O.ODOO*CNST
MLOOP,-M*2+1
MLOOPO=M+ 1
DO 99 J-1,MLOOPO
IF(JJ .EQ. 1)THEN
CALL ZSPOW(FCN1,NSIG1,N5,ITMAX,PAR5,X,FNORM5,WK5,IER)
ELSE
CALL ZSPOW(FCN2,NSIG1,N5,ITMAX,PAR5,X,FNORM5,WK5,IER)
END IF
CALL AIIGLE(X(1))
CALL ANGLE(X(2))
CALL ANGLE(X(3))
CALL ANGLE(X(4))
CALL ANGLE(X(5))
FEF-X (3)
FE2- (FEP-FEPO) /RMP2
FEI (FEF-FEFO) /RMF1
FE111X(4)
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FE221 -X (5)
FE2PR=FE2-FE22 1
FElPR=FEl-FEl111
FEPDG-FEP/CNST
FE1PRD-FElPR/CNST
FE2PRD-FE2PR/CNST
FEP-FEP4+DFEPDG*CNST

99 CONTINUE
FEIPRO-FE1PR
FE2PRO-FE2PR
RINITP-M*DFEPDG
FEP=-R INITP*CNST+FEPO
QPO=QPo
QFO=QFO

C ... INITIAL GUASS FOR ZSPOW
X(l)-TFO
X(2)-TPO
X (3) =-RINITP*cCNST+FEFO
X (4) 0. ODOO*CNST
X (5) 0. ODOO*CNST
MLOOP=M*2+l
DO 88 J-1,MLOOP
IF(JJ .EQ. 1)THEN
CALL ZSPOW(FCN1,NSIGI,N5,ITMAX,PAR5,X,FNORM5,WK5,IER)
ELSE
CALL ZSPOW(FCN2,NSIG1,N5,ITMA.X,PAR5,X,FNORM5,WK5,IER)
END IF
CALL ANGLE(X(1))
CALL ANGLE(X(2))
CALL ANGLE(X(3))
CALL ANGLE(X(4))
CALL ANGLE(X(5))
FEF=X (3)
FE2= (FEP-FEPO) /RMP2
FE1= (FEF-FEFO) /RMF1
SNFEI=DSIN (FEI)
CSFEl=DCOS (FEl)
SNFE2=DSIN (FE2)
CSFE2-DCOS (FE2)
SNTF-DSIN (x(1))
CSTF-DCOS(X(1))
SNTP=DSIN (x(2))
CSTP-DCOS (X (2))
FE1l1=X (4)
FE221=X (5)
FE2PR=FE2-FE22 1
FE1PR=FEl-FE1 11
ERROR=(FE2PR*3600.DOO-FE2PRO*36OO.DOO- (FEIPR*36OO.DOO-~FEIPRO*

#3600.DOO) *TN1/TN2) /CNST
TFDG-X (1) /CNST
TPDG-X (2) /CNST
FEFDG=X (3) /CNST
FEPDG- FEP /CNST
F1lIDGFIII/CNST
F221DG-FE22 1/CNST
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FElPRD-FE1PR/CNST
FE2PRD-FE2PR/CNST

C ...
C ... DETERMINATION OF THE BEARING CONTACT
C ...

CALL FNORM(DN1XTH,DN1XFE,DN1YTH,DN1YFE,DN1ZTH,DN1ZFE)
CALL PNORM(DN2XTH,DN2XFE,DN2YTH,DN2YFE,DN2ZTH,DN2ZFE)
CALL DUP (UPP, DUPTHP,DUPFEP)
CALL DUF (UFF, DUFTHF, DUFFEF)
CALL DR2(UPP,DUPTHP,DUPFEP,DX2THP,DX2FEP,DY2THP,DY2FEP,
# DZ2THP,DZ2FEP)

CALL DRi (UFF,DUFTHF,DUFFEF,DX1THF,DXlFEF,DY1THF,DY1FEF,

# DZ1THF,DZ1FEF)
CALL PC(DN2XTH,DN2XFE,DX2THP,DX2FEP,DN2YTH,DN2YFE,DY2THP,

# DY2FEP,X12,X22,RK12,RK22)
CALL PC (DN1XTH,DN1XFE,DX1THF,DX1FEF,DN1YTH,DN1YFE,DY1THF,
# DYlFEF,Xl1,X21,RKl.,RK2l)

CALL PD(DX2THP,DX2FEP,DY2THP,DY2FEP,DZ2THP,DZ2FEP,X12,
# PDX12,PDY12,PDZl2)

CALL PD(DX2THP,DX2FEP,DY2THP,DY2FEP,DZ2THP,DZ2FEP,X22,

#f PDX22, PDY22 ,PDZ 22)
CALL PD(DX1THF,DX1FEF,DY1THF,DY1FEF,DZ1THF,DZIFEF,X11,
# PDXll,PDYll,PDZ11)

CALL PD(DX1THF,DXlFEF,DY1THF,DYlFEF,DZlTHF,DZ1FEF,X21,
# PDX2l,PDY21,PDZ21)

CALL UNIT(PDX1l,PDYl1,PDZll ,UNIT1l,UXll,UY11,UZll)
CALL UNIT(PDX2l,PDY21,PDZ2l,UNIT21,UX21,UY2l,UZ21)
CALL UNIT(PDX12, PDYl2,PDZl2,UNITl2,UX12,UY12,UZ12)
CALL UNIT(PDX22,PDY22,PDZ22,UNIT22,UX22,UY22,UZ22)
CALL UTRANi (UXl1,UY11,UZll,UTXl1,uTYll,UTZll)
CALL UTRANI(UX21,UY21,UZ21,UTX21,UTY21,UTZ2l)
CALL UTRAN2(UXl2,UY12,UZ12,UTX12,UTYl2,UTZ12)
CALL UTRAN2(UX22,UY22,UZ22,UTX22,UTY22,UTZ22)
CALL AXIS(SIGMDG,AXISA,AXISB,ALPH,ALPHDG)
CALL WRITE2
FEP=FEP+DFEPDG'-'CNST

88 CONTINUE
STOP
END

C ...
C ... SUBROUTINE ANGLE
C ...

SUBROUTINE ANGLE (x
IMPLICIT REAL*8(A-H,O-Z)
COMMON/Al /CNST
CNST2=2 .DOO*CNST* 180. DOO
M-X/CNST2
RM-M
X-X-RM*CNST2
RETURN
END

C ...
C ... SUBROUTINE FCN1
C ...

SUBROUTINE FCN1 (X,F,N5,PAR5)
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IMPLICIT REAL*8 (A-H,O-z)
INTEGER N5
REAL*8 X(N5) ,F(N5) ,PAR5(N5)
COMMON/Al /CNST
COMMON/A2/DEI ,DLI ,RCP, RL, RCF, PHFDG
COM4MON/A3/SNPHF,CSPHF,SNR1Dl,CSR1D1,SNBP,CSBP,SNRID2,CSRID2
COMMON/A5/SNGM1 ,CSGM , GMA , SNGM2 ,CSGM2,*SND2 ,CSD2, SND , CSD1
COMMON/A6/SNTP ,CSTP, TP ,TPDG, SNTF, CSTF. TF, TFDG
COMMON/A7/SNDLTA, CSDLTA. SNPHP ,CSPHP, SNR2D2 ,CSR2D2 ,DLTADG
COMMON/Al2/UFBF,RBP,UP,RMF1 ,RMP2
CON.MON/A18/SNQP ,CSQP .QPDG, SNQF,CSQF ,QFDG. QP ,QF ,QPO, QFO
COMMON/A27/XFl ,YF1 ,ZFl ,XF2, YF2, ZF2
COtMON/A34/FE1,.SNFE1 ,CSFE , FE2, SNFE2,CSFE2, PEP, FE221 ,FEl 11,

FEPDG,FEFDC,Fl11DG,F221DG
COMMON/A35/SNTHP ,CSTHP ,SNTHF ,CSTHF, THPDG, THFDG
COMMON/A37/RNXF2 ,RNYF2 ,RNZF2 ,RNXF1 ,RNYF1 ,RNZF1
QF-QFO-X(3)
SNQF=DS IN (QF)
CSQF=DCOS (QF)
QP-QPO- PEP
SNQP=DSIN (QP)
CSQP-DCOS (QP)
FE1Il=X (4)
FE22 1=X (5)
SN221=DSIN(FE221)
CS221=DCOS(FE221)
SNi11l-DSIN(FE1 11)
CS111-DCOS(FElII)
SNTF=DS IN(X (1) )
CSTF-DCOS (X (1))
SNTP-DSINCX (2))
CSTP=DCOS(X(2))
THF-X (1)+QF
THP=X (2) +QP
THFDG=THF/CNST
THPDG-THP/CNST
SNTHF-DSIN (THF)
CSTHF-DCOS (THF)
SNTHP-DSIN (THP)
CSTHP=DCOS (THP)
uF1=((RCF*CSPHF/SNPHF-RL*SNDI-DLI*SNRIlD/CSRD1)*CSPHF*SNTF+

/t BF*(SNPHF*SNQP+CSPHF*SNTHF*(RMF1-SNR1Dl)/CSRlDl)-DEI*(
# SNPHF-CSPHF*CSTF*SNR1DI/CSRIDI) )/SNTF
XHI- (CSGMl*CSR1D1*CS11I1+SNGM1*SNRIDI) *(RCF*CSPIF/SNPHF-UF1*

# CSPHF-RL*SND1)+BF*(CSGM1*(SNQF*SNlIl-CSQF*CS111*
# SNRlDI)+SNGM1*CSQF*CSR1D1)+DL1*(SNGM1*CSR1DI-CSGM1*
# SNRlDI*CS11l)-SN111*DEI*CSGM1-UFl*SNPHF*(CSGMI*(SNTF*
#f SN111+CSTF*CS111*SNRIDI)-SNGMI*CSTF*CSRlDI)
YHI=CSR iDi SNi111 (RCF*CSPHF/SNPHF-UFl *CSPHF-RL*SNDl) -BF*(
#f SNQF*rCS111+CSQF*rSNll 1*SNRlDl)-DLI*SNR1D1*SN11 l+DE1*
#f CS111+UF1*SNPHF*(SNTF*CS111-CSTF*SN111*SNRlDl)
ZH1A (CSGM1*SNRlDI-SNGM1*CSRIDl*CS1 11) *(RCF*CSPHF/SNPHF-UF1*

#f CSPHF)+RL*SNDIvr(SNGMl*CSR1DI*CS1l11CSGMI*SNRDI)-BF*(SNGI
#f *(SNQF*SN1ll..CSQ*CS1ll*SNR1DI)..CSGMI*CSQF*CSRIDI)+
#f DL1*(SNGM1*SNR1D1*CSl111+CSGM1*CSR1DI),DEI*SN1 1 *SNGMI
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ZH1=ZHIA+UF1*SNPHF* (SNGMI* (SNTF*SN1 1 +CSTF*CS1I 1'*SNR1D1) iCSGM1*
It CSTF*CSRIDI)
XFI=(CSDLTA*CSGM1**2+SNGM1**2) "XH1+SNDLTA*CSGMI*YHI+ (1.ODOO-

4 CSDLTA) *CSGM1*cSNGMI*ZH1
YF 1=-SNDLTA*cCSGM1 *XHI+CSDLTA*YHI+SNDLTA*SNGM1 *ZHl
ZFI1(.ODOO-CSDLTA)*CSG1*SNGm1*XHI-SNDLTA*SNG11*YH1+

# (CSDLTA*SNGM1**2+CSGM1**2) *ZH1
XF2A-RBP* (CSPHP*SNTHP*SND2/CSD2-SNPHP*SNQP)*(CSPHP*CSR2D2
#f *CG2C21ST+SH*N22SG2ST-N22SPP
# CSGM2'cCS221*CSTP/SNTP+SNPHP*CSR2D2*SNGM2*CSTP/SNTP-SNPHP*
# CSGM2"'SN22 1) +CSPHP*CSGM2* (RCP*CSPHP+RL*SNPHP*SND2)*(SNTP*
# SN221+CSTP*~CS221*SNR2D2)

XF2-XF2A+RBP 'CSGM2* (SNQP*SN221+CSQP*CS221* SNR2D2) +RL*SND2*
# (CSGM2"CSR2D2*CS22I +SNGM2*SNR2D2) -RBP*CSR2D2*CSQP*cSNGM2
# +CSGN2*CSPHP*CSR2D2*CS22 1*(RCP*SNPHP-RL*CSPHP*SND2) -RCP*
# CSPHP*SNGM2* (CSPHP*CSR2D2*CSTP-SNPHP*SNR2D2) -RL*CSPHP*SND2
# *SNGM2-, (SNPHP*CSR2D2*CSTP4+CSPHP*SNR2D2)

YF2-CSPHP*CSR2D2*~SN221* (RL*CSPHP*SND2-RCP*~SNPHP) +RBP* (SNPHP*
4 SNQP-CSPHP*SNTHP*SND2/CSD2)*(SNPHP*CS221-SNPHP*SNR2D2*
4 SN221;*CSTP/SNTP+CSPHP*CSR2D2*SN221/SNTP)-RBP*(SNQP*CS221
4 CSQP;*SN221*SNR2D2) -RL*SND2*rSN221*CSR2D2+CSPHP* (RCP*

# CSPHP+RL*SNPHP*SND2) *(SNTP*CS221-~CSTP*SNR2D2*SN221)
ZF2A=~RBP* (SNPHP*SNQP-CSPHP*SNTHP*SND2/CSD2) *(CSPHP*SNR2D2*

# CSGM2/SNTP-CSPHP*CSR2D2*SNGM2*cCS221/SNTP+SNR2D2*SNPHP*
4 SNGM2*CS22 1*CSTP/SNTP+SNPHP*CSR2D2*CSGM2*CSTP/SNTP+SNPHP*
4 SNGM2*SN221)-RBP*SNGM2*(SNQP*SN221-CSQP*CS221*SNR2D2)

# +RBP*CCR2D2*CSQP*CSGM2
ZF2-ZF2A+SNGM2*CSPHP* (SNTP*SN221+CSTP*SNR2D2*CS221) *(RCP*CSPHP
# +RL*SNPHP*SND2) +SNGM2*CSR2D2*CS221* (RCP*CSPHP*SNPHP-RL*
4 SND2*CSPHP**2) +RCP*CSGH2*CSPHP* (CSPHP*CSR2D2*CSTP-SNpHP*

4 SNR2D2) +RL*CSPHP*SND2*CSGM2* (CSPHP*SNR2D2+SNPHP*CSR2D2*

# CSTP)+RL*SND2* (SNGM2*CSR2D2*CS221-SNR2D2*CSGM2)
RNXF2=CSPHP*CSGM2*SNTP*SN22 1+SNPHP* (SNGM2*SNR2D2+CSGM2*CSR2D2*
# CS22 1) -CSPHP*CSTP* (SNGM2*CSR2D2-CSGM2*SNR2D2*CS22 1)
RNYF2-CSPHP*CS22 1*SNTP-SN22 1 *(SNPHP*CSR2D2+CSPHP*SNR2D2*CSTP)
RNZF2-CSPHP*CSTP*e(CSGM2*CSR2D2+SNGM2*SNR2D2*CS221) +SNPHP* (
# SNGM2*CSR2D2*CS221-CSGM2*SNR2D2)+CSPHP*SNGM2*SN221*SNTP
RNXH1=-CSPHF*~CSGMI*SNTF*SN111+SNPHF*r(SNGM1*SNR1D1+CSGM1*

# CSR1D1l;CS111)+CSPHF*~CSTF*(SNGM1*CSRIDI-CSGM1*SNRlDl*I
RNYHI=CSPHF*SNTF*CS111+SNIII*(SNPHF*CSR1DI-CSPHF*SNR1D1*CSTF)
RNZHI=CSPHF*CSTF*(CSGMI*CSR1D1+SNGN1*SNR1DI*CS111)+SNPHF*(
# CSGM1*SNRlD1-SNGM1*CSRlD1*CS111)+CSPHF*SNGMI*SNTF*SN1lI
RNXFI=(CSDLTA*CSGMI**2+SNGM1**2)*RNXHI+SNDLTA*CSGMI*RNYH1+

# (1 .DOO-CSDLTA)*CSGM1*SNGM1*RNZI1
RNYFI=-SNDLTA*CSGMI*RNXH1+CSDLTA*RNYH1+SNDLTA*SNGM1*RNZH1
RNZFI-(1 .DOQ-CSDLTA)*CSGMI*SNGN1*RNXHI-SNDLTA*SNGM1*RNYH1+

# (CSDLTA*SNGMI**2+CSGMI**'2) *RNZHI
F( 1)-XF1--XF2
F (2) =YFI-YF2
F(3)-ZFI-ZF2
F(4)-RNXFI-RNXF2
F(5)-RNYFI-RNYF2
RETURN
END



C...
C... *** SUBROUTINE FCN2
C...

SUBROUTINE FCN2(X,F,N5,PAR5)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER N5
REAL*8 X (N5) ,F (N5) ,PARS (N5)
COMJIQN/A1/CNST
COMMQN/A2/DE1 ,DLl ,RCP,RL,RCF,PHFDG

COMMN/A3/SNPHF,CSPHF,SNRlD1,CSRID1,SNBP,CSBP,SNRlD2,CSRID2
COKMOIN/A5/SNGMl ,CSGKl ,GMAl ,SNGM2,CSGM2,SND2,CSD2,SNDI ,CSDI

COMIION/A7/SNDLTA, CSDLTA, SNPHP, CSPHP, SNR2D2, CSR2D2,*DLTADC
COMMON/A12/UF,BF,RBP,UP,RMFI ,RMP2

CQMMON/A18/SNQP,CSQP ,QPDG, SNQF ,CSQF,QFDG, QP ,QF ,QPO ,QFOI

COMMON/A27/XF1 ,YF1 ,ZFI,XF2,YF2,ZF2
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,1/ FEPDGFEFDG,F111DG,F221DG
COMIN/A35/SNTHP ,CSTHP ,SNTHF ,CSTHF,*THPDG, THFDG
QF-QFO+X (3)
SNQF-DS IN (QF)
CSQF-DCOS (QF)
QP=QPO+FEP
SNQP=DSIN (QP)
CSQP-DCOS (QP)
FE111-X(4)
FE221=X (5)
SN221-DSIN (FE221)
CS221-DCOS (FE221)
SNIII=DSIN(FEI II)
CS1 11=DCOS(FEIl 1)
SNTF-DS IN(X (1))
CSTF-DCOS (X(1))
SNTP-DSIN (X (2))
CSTP-DCOS (X (2))
THF-X(1) -QF
THP-X(2) -QP
THFDG-THF/CNST
THPDG=THP /CNST
SNTHF-DSIN (THF)
CSTHF-DCOS (THF)
SNTHP=DSIN (THP)
CSTP-DCOS (THP)
UFl=((RCF*CSPHF/SNPHF-RL*SND1-DL1*SNRlD1/CSRlDl) *CSPHF*SNTF+

# BF*(-SNPHF*SNQF+CSPHF*SNTHF*(RMF1-SNR1D1)/CSRID1)-DEI*(
#f SNPHF-~CSPHF*CSTF*SNRlDl/CSR1D1)) /SNTF
XH1I (CSGM1*CSR1D1*CSl111+SNGM1*SNR1D1) *(RCF*CSPHF/SNPHF-UF1*
#f CSPHF-RL*SND1)+BF*(CSGM1*(-SNQF*SNI11-CSQF*CS111*
#f SNR1Dl)+SNGM1*CSQF*CSRIDI)+DLI*(SNGM1*CSR1D1-CSGM1*
#f SPRD*CSl11)-SNI1I*DEI*CSGM1-UFI*SNPHF*(CSGMI*(SNTF*
#f SNII1+CSTF*CSIl1*SNRlD1)-SNGM1*CSTF*CSRlDl)
YHl=CSRlDI*SN 11* (RCF*CSPHF/SNPHF-UF1*CSPHF-RL*SND1)-~BF* (

#f -SNQF*CSl 1 +CSQF*SN11I1*SNR1D1)-~DLI*SNR1D1*SN1 11+DE1*
# CS111+UF1*SNPHF*(SNTF*CS111-CSTF*SN111*SNR1D1)
ZHIA- (CSGr *SNRID1-SNGMl*CSRlDl*CS1 11) *(RCF*CSPHF/SNPHF-UF1*

112

mill'~



#CSPHF)+RL*SND1*(SNGM1*CSR1D*CS111-~CSGM1*SNR1D1)-BF*(SNGM1
*(SQ*N1-CQ*S1*NR )CGICSFC~~)

# DL1*(SNGMI*SNR1Dl*CS111+CSGMI CSRD1)+DEl"SN111*cSNGMI

# CSTF'tSR1D1)
XF1= (CSDLTA*CSGMI**2+SNGM1**2) *XHI+SNDLTA*CSGM1*YH1+ (1 .DOO-

# CSDLTA) *CSGM1*SNGM1*zHl
YFI =-SNDLTA*CSGMI*XH1+CSDLTA*YH1+SNDLTA*~SNGM1 *ZH1
ZF1= (1 .DOO-CSDLTA) *CSGM1*SNGM1*XH1-SNDLTA*SNGM1*YH1+

# (CSDLTA*SNGM**2+CSGI1**2) *ZH1
XF2A=RBP' (CSPHP*SNTHP*SND2/CSD2+SNPHP*SNQP)*(CSPHP*CSR2D2
# *CSGM2*CS22 1/SNTP+CSPHP*SNR2D2*SNGM2/SNTP-SNR2D2*SNPHP*
#1 CSGM2*CS22 1*CSTP/SNTP+SNPHP*CSR2D2*SNGM2*CSTP/SNTP-SNPHP*
#i CSGM2*SN221) +CSPHP*CSGM2* (RCP*CSPHP+RL *SNPHP*SND2)*(SNTP*
# SN221+CSTP*CS221*SNR2D2)

XF2=XF2A+RBP*CSGM2* (-SNQP*SN221+CSQP*CS221*SNR2D2) +RL*SND2*
#/ (CSGM2*CSR2D2*CS221+SNGM2*SNR2D2) -RBP*CSR2D2*CSQP*SNGM2
# +CSGM2*CSPHP*CSR2D2*CS221 *(RCP*SNPHP-RL*CSPHP*SND2) -RCP*
# CSPHP*SNGM2* (CSPHP*CSR2D2*CSTP-SNPHP*SNR2D2) -RL*CSPHP*SND2
# *SNGM2* (SNPHP*CSR2D2*CSTP+CSPHP*SNR2D2)

YF2=CSPHP*CSR2D2*SN221 *(RL*CSPHP*SND2-RCP*SNPHP) +RBP* (-SNPHP*
#I SNQP-CSPHP*SNTHP*SND2/CSD2)*(SNPHP*CS221-~SNPHP*SNR2D2*
# SN221*CSTP/SNTP+CSPHP*CSR2D2*cSN221/SNTP) -RBP* (-SNQP*CS221
# +CSQP*SN22 1*SNR2D2) -RL*SND2*SN22 1*CSR2D2+CSPHP* (RCP*
# CSPHP+RL*SNPHP*SND2) *(SNTP*CS22 1-CSTP*SNR2D2*SN22 1)

ZF2A=RBP* (-SNPHP*SNQP-CSPHP*SNTHP*SND2/CSD2)* (CSPHP*SNR2D2*
# CSGM2/SNTP-CSPHP*CSR2D2*SNGM2*CS221/SNTP+SNR2D2*SNPHP*
# SNGM2*CS221*CSTP/SNTP+SNPHP*CSR2D2*CSGM2*CSTP/SNTP+SNPHP*
# SNGM2*5N221) -RBP*SNGM2* (-SNQP*SN221-CSQP*CS221*SNR2D2)
# +RBP*CSR2D2*CSQP*CSGH2
ZF2-ZF2A4SNGM2*CSPHP* (SNTP*SN221+CSTP*SNR2D2*CS221) *(RCP*CSPHP

# +RL*SNPHP*SND2) +SNGM2*CSR2D2*CS22 1 *(RCP*CSPHP*rSNPHP-RL*

# SND2*CSPHP**2) +RCP*CSGM2*CSPHP* (CSPHP*CSR2D2*CSTP-SNPHP*
# SNR2D2) 4RL*CSPHP*SND2*CSGM2* (CSPHP*SNR2D2+SNPHP*CSR2D2*
# CSTP) +RL*SND2* (SNGM2*CSR2D2*~CS221-SNR2D2*CSGM2)
RNXF2-CSPHP*CSGM2*~SNTP*SN221+SNPHP* (SNGM2*SNR2D2+CSGM2*CSR2D2*

#CS221) -CSPHP*CSTP* (SNGM2*CSR2D2-CSGM2*SNR2D2*CS221)
RNYF2=CSPHP*CS221*SNTP-SN221* (SNPHP*CSR2D2.+CSPHP*SNR2D2*CSTP)
RNZF2-CSPHP*CSTP* (CSGM2*CSR2D2+SNGM2*SNR2D2*CS221) +SNPHP* (
# SNGM2*CSR2D2*CS221-CSGM2*SNR2D2) +CSPHP*SNGM2*SN221*SNTP

RNXHI=-CSPHF*CSGM1*SNTF*SN111+SNPHF*(SNGM1*SNR1D1+CSGM1*

# CSRlDl*CS111)+CSPHF*CSTF*(SNGM1*cCSRlDl-CSGMI*SNR1Dl*
# CS111)

1RNYH1=CSPHF*SNTF*CS1 11+SN1 11* (SNPHF*CSRlD1-CSPHF*SNR1D1*CSTF)
RNZH1=CSPHF*CSTF*(CSGM1*CSR1Dl+SNGM1*SNRD1*CS111)+SNPHF*(

# CSGMI*SNR1D1-SNGM1*CSR1D1*CS111)+CSPHF*SNGM1*SNTFkSN111
RNXFI= (CSDLTA*CSGML**2+SNGM1**2) *RNXH1+SNDLTA*CSGM1*RNYH1+
#1 (1 .DOO-CSDLTA) *CSGM1*SNGM1*RNZH1
RNYFI--SNDLTA*CSGM1 *RNXH1+CSDLTA*RNYH1+SNDLTA*SNGM1 *RNZHI
RNZF1- (1.DOO-CSDLTA) *CSGM1*SNGMI*RNXH1-SNDLTA*SNGM1*RNYH1+
#/ (CSDLTA*SNGM1**2+CSGM1**2) *RNZHI
F(1)-XF1-XF2
F (2) =YFl-YF2
F (3) -ZF1-ZF2
F (4) -RNXF1-RNXF2
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F (5) -RNYFl-RNYF2
RETURN
END

C ...
C ... SUBROUTINE FNORM
C ...

SUBROUTINE FNORM (DNlXTH,DNlXFE, DN1YTH,DN1YFE,DN1ZTH,DN1ZFE)
IMPLICIT REAL*8(A-H,O-Z)
COMION/A3/SNPHF,CSPHF,SNRlD1,CSRlD1,SNBP,CSBP,SNRlD2,CSRID2
COMMON/A6/SNTP,CSTP,TP,TPDG,SNTF,CSTF,TF,TFDG
COMION/A12/UF, BF, RBP, UP ,RMF1 ,RMP2
COMMON/A34/FE1,SNFE1.CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,
# FEPDGFEFDG,FI1IDG,F221DG

DN 1XTlI=CSPHF*SNFE 1*CSTF+CSPHF*CSFE 1*SNRiDi *SNTF
DN1XFE=--SNPHF*SNFE1*CSR1D1/RMFl-CSPH.F*(CSFE1*SNTF/RMF14.SNFE1*

#CSTF)-CSPHF*SNRlDl*(-SNFE1*CSTF/RMF1-CSFE1*SNTF)
DN1 YTH-CSPHF*CSFEl*CSTF+CSPHF*SNFE1*SNR1D1*SNTF
DNIYFE-SNPHF*CSFE1*CSR1DI/RMFI+CSPHF*(-SNFE1*SNTF/RMF1+CSFE1*

#CSTF) -CSPHF*SNR iDl *(CSFE1*CSTF/RMF1-SNFEI*SNTF)
DN 1ZTH--CSPHF*CSRiDi *SNTF
DN 1ZFE--CSPHF*CSRlD1 *SNTF
RETURN
END

C ...
c ... SUBROUTINE PNORM
C ...

SUBROUTINE PNORM(DN2XTH,DN2XFE,DN2YTH,DN2YFE,DN2ZTH,DN2ZFE)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/A6/SNTP ,CSTP ,TP, TPDG, SNTF, CSTF, TF, TFDG
CO1MON/A7/SNDLTA, CSDLTA, SNPHiP, CSPHP, SNR2D2, CSR2D2 ,DLTADG
COtMON/A12/UF,BF,RBP,UP,RMF1 ,RMP2
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,

# FEPDG,FEFDG,F~l1DG,F221DG
DN2XTH-CSPHP* (SNFE2*CSTP-CSFE2*SNR2D2*SNTP)
DN2XFE--SNFE2*CSR2D2*SNPHP/RMP2+CSPHP* (CSFE2*SNTP/RMP2+SNFE2*

#CSTP) +CSpHp*SNR2D2* (-SNFE2*CSTP/RMP2-CSFE2*SNTP)
DN2YTH-CSFE2*CSPHP*CSTP+SNFE2*SNR2D2*CSPHP*SNTP
DN2YFE--CSFE2*CSR2D2*SNPHP/RMP2+CSPHP* (-SNFE2*SNTP/RMP2+

#CSFE2*CSTP) -CSPHP*SNR2D2* (CSFE2*CSTP/RMP2-SNFE2*SNTP)
DN2ZTH--CSPHP*CSR2D2*SNTP
DN2ZFE--CSPHP*CSR2D2*SNTP
RETURN
END

C ...
c ... SUBROUTINE DUP
C ...

SUBROUTINE DUP (UPP, DUPTHP ,DUPFEP)
IMPLICIT REAL*8(A-H,O-Z)
COMiMON/A2/DEl ,DL1 ,RCP,RL,RCF,PHFDG
COMIION/A5/SNGM1 ,CSGM1 ,GMA , SNGM2 ,CSGM2, SND2 ,CSD2 ,SNDl ,CSDl
COMMON/A6/SNTP,CSTP, TP,TPDG,SNTF,CSTF,TF, TFDG
COMIION/A7/SNDLTA, CSDLTA, SNPHP ,CSPHP, SNR2D2 ,CSR2D2 ,DLTADG
COMIION/A12/UF,BF,RBP,UP,RMF1 ,RMP2
COMIION/A18/SNQP ,CSQP, QPDG, SNQF, CSQF ,QFDG, QP ,QF, QPO, QFO
COMMON/A35/SNTHP, CSTHP, SNTHF ,CSTHF, THPDG, THFDG
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UPP=RBP* (SNPHP*SNQP-CSPHP*rSNTHP*SND2/CSD2) /SNTP+CSPHP* (RCP*
# CSPHP/SNPHP+RL*SND2)

DUPTHP-RBP*SNQP* (-SNPHP*CSTP+CSPHP*SND2/CSD2) /SNTP**2
DUPFEP=-RBP*SNTHP* (SNPHP-CSPHP*CSTP*SND2/CSD2) /SNTP*~*2
RETURN
END

C ...
C ... SUBROUTINE DUF
C ...

SUBROUTINE DUF(UFF,DUFTHF,DUFFEF)
IMPLICIT REAL*8 (A-H,O-z)
CONIION/A2/DE1 ,DL1 ,RCP,RL,RCF,PHFDG
COMMON/A3/SNPHF, CSPHF, SNR iD , CSR1D1 .SNBP.*CSBP, SNR1D2 ,CSR1D2
COKMON/A5/SNGM1 ,CSGMI,GMA1,SNGM2,CSGM2,SND2,CSD2,SND1,CSD1
COMMON/A6/SNTP ,CSTP, TP ,TPDG, SNTF, CSTF, TF, TFDG
COMJION/A12/UF,BF,RBP,UP,RMF1 ,RMP2
C0OMON/A18/SNQP,CSQP,QPDG,SNQF,CSQF,QFDG,QP,QF,QPO,QFO
COMMON/A35/SNTHP ,CSTHP, SNTHF, CSTHF, THPDG, THFDG
UFF=(BF*(SNPHF*SNQF4+CSPHF*SNTHF*:(RMFl/CSRlD1-SNRlDl/CsRlD1))-

# DEl *(SNPHF-CSPHF*CSTF*SNR iDi/CSR iDi) .CSPHF*SNTF* (RCF*
# CSPHF/SNPHF-RL*SNDlI-DL1*SNRIDl/CSRlD1) )/SNTF
DUFTHF= (-BF*SNQF*(SNPHF*CSTF+CSPHF*(RMFI/CSRIDI-SNRIDI/CSRlD

# ))-DE * (CSPHF*SNR lDl/CSR lDl-SNPHF*CSTF)) /SNTF**2
DUFFEF=(SNPHF+CSPHF*CSTF*(RMF1/CSRlDl-SNRIDl/CSRlDl) ) (-BF*

#SNTHF/SNTF**2) +DE1 (SNPHF*CSTF-~CSPHF*SNRLDl /CSR iDi)
#SNTF**2

RETURN
END

C ...
C... SUBROUTINE DR2
C...

SUBROUTINE DR2(UPP,DUPTHP,DUPFEP,DX2THP,DX2FEP,DY2THP,DY2FEP,

# DZ2THP,DZ2FEP)
IMPLICIT REAL*8 (A-H,O-z)
COMON/A2/DE1 ,DLl ,RCP,RL,RCF,PIIFDG
COMMON/A5/SNGM , CSGM1 ,GMA1 ,SNGM2 ,CSGM2, SND2 ,CSD2, SND , CSDl
COMION/A6/SNTP, CSTP, TP ,TPDG, SNTF, CSTF, TF, TFDG
COMJION/A7/SNDLTA,CSDLTA, SNPHP ,CSPHP, SNR2D2 ,CSR2D2 ,DLTADG
COMJION/A12/UF,BF,RBP,UP,RMF1 ,RMP2
COMIION/AI8/SNQP ,CSQP ,QPDG, SNQF ,CSQF ,QFDG, QP ,QF ,QPO, QFO
COMlION/A34/FE , SNFE1 ,CSFE1 ,FE2, SNFE2 ,CSFE2, FEP, FE221 ,FEl 11,

# FEPDG,FEFDG,Fl11DG,F221DG
DX2THP--CSPHP*CSFE2*CSR2D2*DUPTHP+SNPHP*SNFE2* (UPP*CSTP+SNTP

#*DUPTHP) 4CSFE2*SNR2D2*SNPHP* (-UPP*SNTP+CSTP*DUPTHP)
DX2FEP--RCP*CSR2D2*SNFE2* (CSPHP/SNPHP) /RMP2-CSPIIP*CSR2D2* (

# UPP*SNFE2/RMP2+CSFE2*DUPFEP) -RL*SND2*CSR2D2*SNFE2/RMP2
#-RBP*~(-SNFE2*CSQP+SNQP*CSFE2/RMP2) +RBP*SNR2D2* (CSFE2*
#SNQP-CSQP*SNFE2/RMP2) 4SNPHP* (UPP* (SNFE2*CSTP+SNTP*CSFE2
#/RMP2) 4SNTP*SNFE2*DUPFEP)

DX2FEP-DX2FEP+SNPHP*SNR2D2* (UPP* (-CSFE2*SNTP-CSTP*sNFE2/RMP2) +

#CSFE2*CSTP*DUPFEP)
DY2THP-SNFE2*CSR2D2*CSPHP*DUPTHP+SNPHP*CSFE2* (SNTP*DUPTHP+UPP
#f *CSTP) -SNPHP*SNFE2*SNR2D2* (.UPP*SNTP+CSTP*DUPTHP)
DY2FEPa-RCP*CSR2D2*CSFE2* (CSPHP/SNPHP) /RMP2+CSPHP*CSR2D2* (UPP*

#CSFE2IRMP2+SNFE2*DUPFEP) -RL*SND2*CSR2D2*CSFE2/RMP2-RBP*
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# (-CSFE2*CCSQP-SNFE2*SNQP/RMP2) -RBP*SNR2D2* (SNFE2*SNQP+
#t CSQP*CSFE2/RMP2)+SNPHP*(UPP*(CSFE2*CSTP-SNFE2*SNTP/RMP2
#t ) +CSFE2*SNTP*DUPFEP)

DY2FEP=DY2FEP-SNPHP*SNR2D2* (UPP* (-SNFE2*SNTP+CSTP*CSFE2/RMP2)
#t 4SNFE2*CSTP*DUPFEP)

DZ2THP=SNR2D2*CSPHP*DUPTHP+SNPHP*CSR2D2* (-UPP*SNTP+CSTP*
#t DUPTHP)

DZ2FEP=CSPHP*SNR2D2*DUPFEP+RBP*CSR2D2*SNQP+SNPHP*CSR2D2* (-UPP
#t *SNTP+CSTP*DUPFEP)

RETURN
END

C ...
C. . .. SUBROUTINE DR 1
C ...

SUBROUTINE DR1(UFF,DUFTHF,DUFFEF,DX1THF,DX1FEF,DYlTHF,DY1FEF,
#t DZlTHF,DZ1FEF)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/A2/DE1 ,DL1,RCP,RL,RCF,PHFDG
COMMON/A3/SNPHF ,CSPHF, SNRlD , CSR1D , SNBP ,CSBP ,SNRlD2 ,CSRlD2
COMMON/A5/SNGM , CSGM1 ,GMA1 ,SNGM2 ,CSGM2 ,SND2, CSD2, SND1 ,CSD1
COMMON/A6/SNTP ,CSTP ,TP ,TPDG, SNTF, CSTF, TF, TFDG
COMMON/Al2/UF, BF ,RBP,UP, RMF1 ,RMP2
COMMON/Al8/SNQP ,CSQP ,QPDG, SNQF ,CSQF ,QFDG ,QP ,QF, QPO ,QFO
COMMON/A34/FE1,SNFE1,CSFE1,FE2,SNFE2,CSFE2,FEP,FE221,FE111,
#t FEPDG,FEFDG,F111DG,F221DG
DXl THF=-CSPHF*CSFE1 *CSR1D1 *DUFTHF.-SNPHF*SNFE1 *(UFF*CSTF+SNTF*
#t DUFTHF) -SNPHF*CSFE1 *SNR1D * (-UFF*SNTF4+CSTF*DUFTHF)

DXlFEF=-RCF*CSRlD1*SNFE1*(CSPHF/SNPHF) /RMFl-CSPHF*CSR1D1*(
#t -UFF*SNFE1/RMF1+CSFE1*DUFFEF)+RL*SND1*CSR1D1*SNFEl/RmF
#t +BF*(-SNFEI*CSQF+SNQF*CSFEl/RMFI)-BF*SNRlD1*(CSFE1*SNQF
#t -CSQF*SNFEl/RMF1)4+DL1*SNFE1*SNRlD1/RMF1-DEI*CSFEl/RMF1
DX1FEF=DXlFEF-SNPHF*(UFF*(SNFE1*CSTF+SNTF*CSFE/RMF1)+
#t SNFE1 *SNTF*DUFFEF) -SNPHF*SNR iD * (UFF* (-CSFEl *SNTF..CSTF*
#t SNFE1/RMF1) +CSFE1*CSTF*DUFFEF)

DYl THF--~CSPHF*SNFE1 *CSR1D1 *DUFTHF+SNPHF*CSFE1* (UFF*CSTF4+SNTF*
#t DUFTHF) -SNPHF*SNFE1*SNRlDl* (-UFF*SNTF4+CSTF*DUFTHF)
DY1FEF=RCF*CSR1D1*CSFE1*(CSPHF/SNPHF) /RMF1-CSPHF*CSR1D1* (
#t UFF*CSFEl/RMF1+SNFE1*DUFFEF)-RL*SND1*CSR1D1*CSFEl/RmF1-
ft BF*(-CSFE1*CSQF-SNFE1*SNQF/RMFl)-BF*SNR1Dl*(SNFE1*SNQF
#t .$CSFE1*CSQF/RMFl) -DL1*CSFE1*SNRlDl/RMF -DFI*SNFEl/RMF1
DY1FEF-DYIFEF+SNPHF*(UFF* (CSFE1*CSTF-SNFE1*SNTFRMF1)+CSFE1*

#SNTF*DUFFEF)-SNPHF*SNR1D1* (UFF* (-SNFE1*SNTF4CSFE1*CSTF/
#t RMF1) iSNFE1*CSTF*DUFFEF)
DZ1THF--CSPHF*SNRlDl*DUFTHF+SNPHF*CSR1Dl* (-UFF*SNTF+CSTF*

#t DUFTHF)
DZIFEF--CSPHF*SNRIDI*DUFFEF+BF*CSRIDI*SNQF+SNPHF*CSRIDI*(

#t -UFF*SNTF+CSTF*DUFFEF)
RETURN
END

C ...
C ... SUBROUTINE PRINCIPAL CURVATURE
C ...

SUBROUTINE PC(D1,D2,D3,D4,D5,D6,D7,D8,Xl,X2,RK1,RK2)
IMPLICIT REAL*8(A-H,O-Z)
A-D1*D7-D5*D3
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B-D1 *D+D2*D7-D5*D4-D6*D3
C=D2*D8-D6*D4
Xl= (-B-DSQRT (B**2-4. ODOO*A*C)) 1(2. ODOO*A)
X2= (-B+DSQRT (B**2-4 .ODOO*A*C)) /(2. ODOO*A)
RK1=- (D1*Xl+D2) /(D3*Xl+D4)
RK2=- (Dl*X2+D2) /(D3'*X2+D4)
RETURN
END

C...
C... SUBROUTINE PRINCIPAL DIRECTION
C...

SUBROUTINE PD(Al,A2,A3,A4,A5,A6,PCO,PD1,PD2,PD3)
IMPLICIT REAL*8 (A-H, o-z)
PD1=Al*PCO+A2
PD2=A3*PCO+A4
PD3=A5 *PCO+A6
RETURN
END

C ...
C ... SUBROUTINE UNIT VECTOR OF PRINCIPAL DIRECTION
C...

SUBROUTINE UNIT(E1 ,E2,E3,UNITO,UNIT1 ,UNIT2,UNIT3)
IMPLICIT REAL*8(A-H,O-~Z)
UNITO=DSQRT (El** 2*2E*2
UNIT1=E1/UNITO
UNIT2=E2/UNITO
UNIT3=E3/UNITO
RETURN
END

C ...
C ... SUBROUTINE UTRAN1
C ...

SUBROUTINE UTRANl(Bl,B2,B3,UTl1,UT21,UT31)
IMPLICIT REAL*8 (A-H,O-z)
COMMON/A5 /SNGM , CSGMl ,GMA1 ,SNGM2, CSGM2, SND2, CSD2, SND1 ,CSD1
UT 1=Bl*CSGM1+B3*SNGM1
UT21=B2
UT31=Bl*(-SNGM1) +B3*CSGM1
RETURN
END

C ...
C ... SUBROUTINE UTRAN2
C ...

SUBROUTINE UTRAN2(Cl,C2,C3,UT12,UT22,UT32)
IMPLICIT REAL*8 (A-H, O-z)
COMMON/A5/SNGMl,CSGM1 ,GMAl ,SNGM2,CSGM2,SND2,CSD2,SND1 ,CSD1
UT12=Cl*CSGM2-C3*SNGM2
UT22=C2
UT32-Cl1*SNGM2+C3*CSGM2
RETURN
END

C ...
C ... SUBROUTINE ELLIPSE AXIS
C ...

SUBROUTINE AXIS(SIGMDG,AXISA,AXISB,ALPH,ALPHDG)
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IMPLICIT REAL*8(A-~H,O-Z)
REAL*8 SIGM(4
COMMON/Al /CNST

COMMON/A36/RKl2,RK22,RK11,RK21,UTX11,UTX12,UTYll,UTYl2,UTZ11,
# UTZl2,UTX2l,UTX22,UTY2l,UTY22,UTZ2l,UTZ22

COM4MON/A38/DEF,SIGMGG,ALPHGG,AXIAA,AXIBB,ERROR
AK2=RKl2+RK22

AKl=RKl 1+RK2l
G2=RK1 2-RK22

C... FOR LEFT-HAND GEAR
CS21= (UTXll*UTXl2+UTYl l'UTYl2+uTZl l*UTZl2)
IF(II.EQ.2)GO TO 1208

SN2l=UTXll*RNYF2*UTZl2+UTXl2*RNZF2*UTY1l+RNXF2*UTY12*UTZll1-

# (UTXl2*RNYF2*UTzll+RNXF2*UTY11*uTZ12+UTX11*RNZF2*UTY12)
GO TO 1209

1208 SN21=-(UTXll*RNYF2*UTZl2+UTXl2*RNZF2*UTYl+RNXF2*UTY2*cUTZll)

# + (UTXl2*RNYF2*UTzll+RNXF2*UTYll*uTZ12+UTXll*RNZF2*UTYl2)
1209 SIGM2l=DATAN2(SN21,CS2l)

5 CALL ANGLE(SIGM21)
CSSIGM=DCOS (SIGM2l)
SNSIGM=DSIN (SIGM21)
SIGMDG=SIGM2I/CiNST
AA= (AK1-AK2-DSQRT (Gi**2-2. ODOO*GlIcG2*DCOS (2. DOO*SIGM2l) +G2**2)
# )/4.ODOO
BB=(AK-AK2+DSQRT(Gl**2-2.DOO*G*G2*DCOS(2.DOO*SIGM21)+G2**2))

# /4.ODOO
AXISA=DSQRT (DABS (DEF/AA))
AXISB=DSQRT (DABS (DEF/BB))
RATIO=AXISA/AXISB
FF=Gl*DSIN (2.ODOO*SIGm2l)
HH=G2-Gl*DCOS (2. DOO*SIGM21)
ALPH2=DATAN2 (FF,HH)
ALPH=ALPH2/2. OODOO
CALL ANGLE (ALPH)
ALPHDG=ALPH/CNST
RETURN
END

C...
C ... ~ SUBROUTINE WRITE2 **

C ...
SUBROUTINE WRITE2
IMPLICIT REAL*8(A-H,O-Z)
COM1ON/A6/SNTP,CSTP,TP,TPDG,SNTF,CSTF,TF,TFDG
COMMON/A27/XF1 ,YF1,ZFl ,XF2,YF2,ZF2
COMNON/A34/FE , SNFE1 ,CSFE , FE2, SNFE2 ,CSFE2, FEP, FE221 ,FEJ 11,
# FEPDG,FEFDG,F111DG,F221DG

COMMON/A35/SNTHP ,CSTHP, SNTHF ,CSTHF, THPDG, THFDG
COMMON/A36/RK12,RK22,RKl1,RK2l,UTX1l,UTX12,UTYII,UTY12,UTZ11,

# UTZ12,UTX21,UTX22,UTY21,UTY22,UTZ21,UTZ22
COMMON/A38/DEF,SIGMDG,ALPHDG,AXISA,AXISB,ERROR
WRITE(6. 70002)

70002 FORMAT(1H 't**RESULT OF KINEMATIC ERROR & BEARING CONTACT**'/)
WRITE(6,70003)FEPDG,FEFDG,THPDG,THFDG,TPDG,TFDG,F221DG,F111DG
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70003 FORMAT(1H ,:: FEPDG=',G2O.12,IOX,'FEFDG=',G2O.12,' ::,
#1H1, THPDG=',G20.12,lOX,'THFDG=',G20.12,/

#t 1H ,' TPDG =',G20.12,1OX,'TFDG =',G20.12,/
#1H1, F221DG=',G20.12,9X,'FlllDG=',G20.12)

WRITE(6,70004)XF1,YF1,ZF1,XF2,YF2,ZF2
70004 FORMAT(1H ,'XF1=',G20.12,3X,'YF1=',G20.12,3X,'ZF1=',G20.12,/

# 1H ,'XF2=',G20.12,3X,'YF2=',G20.12,3X,'ZF2=',G20.12/)
WRITE (6,70005) ERROR

70005 FORMAT(1H ,'KINEMATIC ERR0R=' ,G20. 12/)
WRITE (6,70006)

70006 FORMAT(1H ,'RESULT OF PRINCIPAL CURVATURE')
WRITE (6,70007) RK12,RK22,RK11 ,RK21

70007 FORMAT(1H ,'GEAR : RK12=',G20.12,3X,'RK22=',G20.12,/

#1H ,'PINION: RK11=',G20.12,3X,'RK21=',G20.12/)
WRITE(6,70008)UTX11,UTY11,UTZ11,UTX21,UTY21,UTZ21

70008 FORMAT(1H ,'PINION UNIT VECTOR OF PRINCIPAL DIRECTION'/
# 1H ,'UTX11=',G20.12,'UTY11=',G20.12,'UTZ11=',G20.12,/

#1H ,'UTX21=',G20.12,'UTY21=',G20.12,'UTZ21=',G20.12/)
WRITE(6, 70009)UTX12,UTY12,UTZ12,UTX22,UTY22,UTZ22

70009 FORMAT(IH ,'GEAR UNIT VECTOR OF PRINCIPAL DIRECTION',/
# H ,'UTX12=',G20.12,'UTY12=',G20.12,'UTZ12=',G20.12,/
#1H ,'UTX22=',G20.12,'UTY22=',G20.12,'UTZ22=',G20.12/)

WRITE(6, 70010)SIGMDG,ALPHDG,AXISA,AXISB
70010 FORMAT(1H "'DIRECTION & DIMENSION OF ELLIPSE',!

#1H ,'SIGMDG=',G20.12,10X,'ALPHDG=',G20.12,/
#1H1 'AXISA=',G20.12,11X,'AXISB=',G20.12,/

RETURN
END

C...
C... SUBROUTINE HEADi
C...

SUBROUTINE HEADi (3.,11)
IMPLICIT REAL*8(A-H,0-Z)
WRITE (6,60000)
WRITE(6,60001)
WRITE (6,60002)
IF(JJ .EQ. 1)THEN
WRITE (6,60005)
ELSE
WRITE (6,60006)
END IF
WRITE (6,60002)
IF(II.EQ.2) GO TO 1
WRITE (6,60003)
GO TO 2

1 WRITE(6,60004)
2 WRITE(6,60002)
WRITE(6,60001)
WRITE(6,60000)

60000 FORMAT(1H1,' '
60001 FORMATO(H,' ')

60002 FORMAT(1H '*t

60003 FORKAT(1H , CONVEX PART ANALYSIS )

60004 FORMAT(1H ' CONCAVE PART ANALYSIS 1
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60005 FORMAT(1H " LEFT-HAND GEAR

60006 FORMAT(1H 1*RIGHT-HAND GEAR
RETURN
END

C ...

c ... WRITEO(II)
C ...

SUBROUTINE WRITEO(II)I
IMPLICIT REAL*8(A-~H,0-Z)
COMMON/A2/DE1 ,DL , RCP ,RL, RCF, PHFDG

COMMON/A6/SNTP ,CSTP ,TP ,TPDG, SNTF ,CSTF ,TF, TFDG

COMM0N/A33/PHP1,PHF1,PHP2,PHF2,PHPlDG,PHFDG,PHP2G,PHF2DG
IF(II.EQ.2)GO TO 1
PP-PHP 1DG
PF-PHFlDG
GO TO 90000

1 PP=PHP2DG
PF=PHF2DG

90000 WRITE(6,90001)
90001 FORMAT(1H ,'GEAR PARAMETER' ,27x, 'PINION PARAMETER')

WRITE(6,90002) PP,PF,RCP,RCF,TPDG,TFDG
90002 FORMAT(1H ,'PHPDG=',G20.12,15x,'PHFDG-',G20.12,/

# 1H ,'RCP =',G20.12,15X,'RCF -',G20.12,/

# 1H ,'TPDG -',G20.12,15X,'TFDG -',G20.12)
RETURN
END
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