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1. Introduction

If G is a zraph with vertex set V = 1.... n the adjacency matrix of G

is adj(G) = A = ] with a.. = I if ti.4 is an edge, and a.. = 0 otherwise.

(Note that a.. = 0 for all i.) Conversely if M is a symmetric nonnegative nxr'n

matrix, the associated graph of M is G = Pr(M) with vertex set V ...... I.

having as edges all 'i,j for which m. 0 and i # j. We denote the eigen-
iJ

values of A by XI(A) > X2 (A) > ... and the multiplicity of ot in the spectrum

of A by mult(ot:A). We may also speak of the eigenvalues and eigenvectors of

a graph, meaning those of its adjacency matrix.

The close relationship between graphs and nonnegative symmetric matrices

has been exploited to illuminate some matrix concepts. (See Varga, 1962.)

If we define the concept of irreducible matrix to include the xlI zero matrix,

then we have the following (Varga 1962, p. 46).

Theorem A. Let B be a nonnegative symmetric matrix. (1) B is irreducible if

and only if gr(B) is connected. (2) B - B *...Bk is a direct sum of k ir-

reducible matrices if and only if gr(B) is a union of k connected components,

Gi .... G and G i C gr(Bi). 0

Recently, some algorithms have been proposed that use the eigenvectors

of a graph to partition its vertices in certain ways (Barnes, 1982, Aspvall

and Gilbert, 1984). The objective of this paper is to study how the connect-

ivity structure of a graph is revealed by its eigenvectors and its spectrum.

We will freely use familiar properties of matrices such as the extremal

nature of eigenvalues of symmetric matrices, the interlacing theorem,

monotonicity of spectral radius of nonnegative matrices, Perron-Frobenius

theory, etc. (See Varga (1962) and Lancaster and Tismenetsky (1985).)

Most of the results of this paper depend on the following lemma.



ABSTRACT

Let A be Ctie ;I.acencv matrix of a connected graph G. If z is a column

vector, we say that a vertex of G is positive, nonnegative, null, etc. if

the corresponding entry of z has that property. For z such that Az -:otz,

we bound the number of components in the subgraph induced by positive vertices.

For eigenvectors z having a null element, we bound the number of components

in the graph induced by non-null vertices. Finally, bounds are established

for the number of null elements in an eigenvector, for the multiplicity of

an eigenvalue and for the magnitudes of the second and last eigenvalues of

a general or a bipartite graph.
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Lemma. Let B be a principal square submatrix of a real symmetric matrix A, and

suppose that B B B1*... Bk where the Bi are irreducible. If (B) d for

i = I.... ,k. tiltn k(A) also.

Proof. Each eienvalue of a B. is an e+.envalue of B. Thus the 'k 5;

eigenvalues of B, each at Least as larg.e as -; hence Ak(B) 3. The conclusion

follows by the interlacing theorem: 'k(A) > Xk(B).

Note that a strict inequality for the 1 (Bi) yields a strict inequality

for Ak(A) also.0

2. Fiedler's Theorem

The first step in studying graph structure with eigenvectors was taken

by Fiedler (1975). The following is a version of his Theorem 2.1.

Theorem B. Let A be an irreducible nonnegative symmetric nxn matrix, n > 2,

and z be a column such that Az > az, a - X (A), s > 2. If

.f A .{ T C

with x > 0, y > 0, and if B - B10.. .OBk where the Bi are irreducible, then k < s.C3

In order to rephrase this theorem in terms of graphs, let us define

comp(G) to be the number of connected components of a graph G, and, for an

n Xl column z, let

P(z) - ;i:z i > 0}, NW(z) - {i:zi < 0}, O(z) - {i:z i a 0}.

When these are interpreted as subsets of a vertex set, we may speak of positive,

negative or null vertices. (Dependence on z will be suppressed when no con-

fusion results.) Angle brackets around a set of vertices mean the subgraph

induced by that set.



Theorem B'. Let G be a connected graph on n > 2 vertices, A - adj(G), and z a

column such that Az > az, a - A (A), s > 2. Then
~S

comp ' PV ',) < maxi:\ikA) , x:. 0

Proof. Suppose vertices nIumbered so that matrices B, C and x from Theorem B mav

be partitioned as

BC } k x = [ k k

where the B are irreducible. The hypothesis Az > az implies that Bi x -

Ci y> axi for each i. Since A is irreducible, no Ci is 0. Thus Ciy > 0

with inequality in some element, and hence Bixi > ax with strict inequality

in some element. Therefore, for each i 1 1,...,k,

x B x > axTxiii i i

and X1 (Bi) > a. From the lemma, Ak(A) > a; thus k < max{i:Xi(A) > a). 9
Several corollaries can be extracted from the proof of the theorem.

Corollary 1. If a 0 0, then no component of <P10> (a) is a singleton, or

(b) contains vertices only from 0.

Proof. If the ith component were a singleton, its 1lX adjacency matrix would

be Bi = 0; but then Eq. (1) would be false. Similarly, if the ith component

contained vertices from 0 alone, then xi would be 0, and again Eq. (1) would

be false. (]

The other corollary depends on the fact that all connected graphs

with spectral radius less than 2 are known (Smith, 1970). The four smallest

spectral radii are 0, 1, v, (i+1 )/2, belonging to the paths on 1, 2, 3

and 4 vertices respectively.

Corollary 2. For a in the indicated range, comp(<P V 0>) does not exceed the

upper bounds shown.
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Range Bound I Bound 2

(a) a . max{i:.i(A) O0 -

(b) 0 < I max{i:X . (A) > 1) (n-l)/2

(c) i A max~i:.\(A) ,7 (n-l)/3

Proof: (a) Referring back to the proof of Theorem B, and to Eq. (1), we see

that X (Bi) > 0, because each Bi is the adjacency matrix of a connected

subgraph of G.

(b) If all the B. have a positive spectral radius, they must all

have spectral radius at least equal to 1. Also, each Bi must have at least

two rows, and D has at least one row. Hence the number of the Bi is at

most (n-l)/2. A similar argument holds for case (c). More cases could be

added, but :heir significance and usefulness decrease. I]

The next theorem indicates the role played by the null vertices in

holding together the components of <Pt>. They affect the bound on the

number of components only if a is an eigenvalue of A.

Theorem 1. Let A and z be as in Theorem B'. Then

comp(<P>) < max{i:Ai(A) > a}.

Proof. We use the notation of Theorem B and its proof, except that x > 0,

y > 0. As before, Bixi - Ciy > axi , but now Ciy could be zero, so we have

only

Bixi  ax. (2)

for each i. Thus XI(Bi) > a, and the conclusion follows from the lemma. Q

Note that the proofs of Theorem 1 and Theorem B' make no use of the

implied inequality C Tx - Dy > -ay, which we may thus safely ignore. With this

observation it becomes easy to bound the number of components of any induced

subgraph of a connected graph.



Theorem L. Let G be a connected grail.".. U a proper subset .)t vertices, and

define 5 to be the minimum degree of vertices in <U>. Then

comp(,U,) K max~i: i(A) >

Proof. Let A adj(G) and suppose that vertices are numbered so that

U = ,i ...... -, . Define z by z. = 1, i = 1.... ; z. = 0, i = m+l, ... ,n.

Then (e is a column of l's)e:] [B C]
[ 0 , A - C

where B = adj(<L>). Since each entry of Be is the degree of the corresponding

vertex, Be > 6e. If B = B ... 0 Bk , also Bke > 6e and then XI(Bi) > 6 for

each i. By the lemma,Xk(A) > 6 , which is equivalent to the conclusion of the

t.ieorem. 0

Corollary L. If H is any induced subgraph of a connected graph G, then

comp(H) < max {i: Ai(A) > 0} .

Proof. If B. is the adjacency matrix of any component of H , then A1(Bi) > 0. 0

This corollary is similar to a theorem of Cvetkovic' (1971) in which U is

chosen to be a maximum set of independent vertices, so that adj (U) - 0. (See

Cvetkovicet al. (1980) pp. 88-89.)

3. Partitions Determined by Eigenvectors

If the vector z in Theorem B'or Theorem I is an eigenvector and a- A (A)5

then in place of an inequality we have the equality Az - oz, which holds also

if z is replaced by -z. Thus the conclusions are strengthened to say that

<P U 0> and < N U 0 > have at most s-i components in the case of Theorem B',

and that <P> and <N> have at most s+m-l components in the case of Theorem I.

Here s - min 'J: Ai(A) - a} and m - mult(t: A). For an eigenvector, much more

can be learned about the null vertices.

• ' ' I M 1 "OM



Theorem 3. Let G be connected, A = adj (G) , Az - Lz s =min- i: X(A) ix

m - mult(i-:A). Suppose that 0(z) is nonempty and is contained in the set of

null vertice~s :7or every eigenvector associated with x~ . her. one of these

two cases hblds.

a No edge joins a vertex or P to one of N , and

m + I < comp(<PJV N>) < s + m - 1.

~b) Some edge joins a vertex of P to one of N ,and

comp(<P 'j N>) < s + m - 2.

Proof. Let vertices of G be numbered so that

r 1AP APN APol

z = -fl A- A, A No1  3

L[o1 A OP A ON A 0

where A~ P adj(<P>) etc. Then the partitioned form of Az a z yields

Ax - APN y~ acx

A_,y - AN x ty ,(4)

A OPx-A ONy .

OP ON

where~~ ~ ~ Aac B 0. Sreuil.Noeta ahuppois eitht pstv o eaie

th he hypoheis ipis thatA P

B.-XI(Bi) - 1, .. k.

By the lemma and Theorem B, A k(A) > a~ and k < s + m -I



Nw Let , A -' A....I k" Then every eigen'.'ec A correspond.n: .

to a must have the form

1

Z =

k 'k
U -

because B.u.z. = tu.". is necessarv, and the eigenvector of B. corresponding

to . is unique up to a scalar multiplier. Furthermore, the - must satisfy

C u ;- + ... + Cu: = 0
I l'l k kk

No C. can be 0, and no u. can have a zero element. Thus we have a system of1 1.

equations whose coefficient matrix has rank I at least. The nullity of this

system is m = mult(a:A), so

1 +m< k.

(b) The hypothesis is that A,P = AT #0. Suppose P is a permutation matrix
PN

such that

B 1-
A~AN I Tu1

B B y = p . p

,ANP AN B -Y
- k ~ . -j Uk

where each Bi is irreducible, and Biu i = auui . There must be h > I of the B i,

say B ... , Bh for which u. has elements of both signs. Thus,

,.I(B ) > 1, i , ..., h,

and so X h(B) > a.

Let M - mult (cA:B), so that

h < k < M.

Since at least h eigenvalues of B exceed a and exactly M eigenvalues of B

equal ot, we have X h+M(B) > a , or

h + M < s + m - 1.

Because 2h < h + M, we conclude that

h < (s + m - 1)/2.



K " s - M - -11

k = comp(sPLN>) < s + m - 2. 0

Corollary. If *i < 0 then case (a) is impossible, and in case (b)

comp -P. '4>) < max i ",.(A) -%0

Proof. In case ( , (B.) = for all i. This is false if t< 0, because B.

is nonnegative. The bound cited comes from Corollary I of Theorem 2. D]

Theorem 3 is particularly interesting when s = 2 (a = A(A)), for

then the bounds in case (a) are equal. The proof of part (b) of the following

theorem from Powers (1987) uses techniques that do not appear to generalize.

Theorem C. Under the hypotheses of Theorem 3, with s = 2, one of these two

cases holds

(a) No edge joins a vertex of P to one of N, and comp(<PUN>) = m + 1.

(b) Some edge joins a vertex of P to one of N, and <PUN>, <P>,<N> are all

connected. 0

Examples. In Fig. 1, three graphs are shown that illustrate Theorem 2. The

first graph has X3 = X4 = 0. The vertices are labelled with eigenvector

components. To satisfy the hypotheses a, b and a + b must be nonzero. For

any of these choices, comp<PI/N> - 3, which is the lower bound of part (a)

of the Theorem. The second graph, similarly labelled, also has X3  A A4 ' 0,

and again a, b and a + b must be nonzero. In this case, comp<PUIN> - 4,

which is the upper bound of part (a). This graph also illustrates Corollary

2 of Theorem B'. The first two eigenvalues are A1  2.45 and A2  0.80, so

bound 1 of case (b) predicts one component for <PL0>.

Case (b) of the Theorem is illustrated by the third graph's eigen-

value A - 1, which is simple. There are two components in <PUN>, thusIS 3

realizing the upper bound s + m - 2 - 2. Since A1 a 2.08, A2 = 1.57, both

bounds in Corollary 2 of Theorem B' also predict at most two components for

<PUO>. These examples came from Powers (1986 ab).



4. Inequalities for Null Elements, Eigenvalues and Multiplicities

The number of null elements in an eigenvector of an adjacency matrix turns

out to fit some surprising bounds. A similar study could be made for any non-

negative irreducible symmetric matrix.

Theorem 4. Let A =adj(G), G a connected graph on n > 2 vertices, Az - iz,

cx < X 1(A), and C 0 0(z) I Then

< n 2, 1< ci < 0

{n - 2 l L <i <-1

Proof. Let h and k be such that z >z>z for all i. First suppose ai > 0.h- i> Zk

Then
n

lZ h Z a hJ zJ Z' a hJ +J Z" a JzJ

where the first sum includes indices for which z J> 0 and the second those

for which z1 J< 0. Thus

OLz < 71 a z -1zh- hi j < h

OL Z k El a" akJ Iz I < (V - 1)Iz k'

where t I jP(z) I, v - IN(z)I. The -1 enters because A has 0's on its diagonal.

From these inequalities it follows first that
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-." , '- , nd then that

< - 1 n- I

The conclusion of the theorem for a > 0 follows from the latter equation.

Next, if t<-1, then

l a" < : t o < \) I
Y ' ahj j- k'

*D, 'z < -' a z < Z
k - kj j- Zh

By multiplying the inequalities we find

< < V- , whence (7)

<_ (8)
2 2

The conclusion of the theorem for a < -1 is immediate.

Finally, an eigenvector corresponding to a < XI(A) is orthogonal to a

positive vector and thus must have - > 1, v > I or - < n - 2 . []

This theorem yields a number of interesting corollaries on bounds for

graph eigenvalues.

Corollary I. If G is a graph on n vertices, then

n-3_ if n is odd,

n- _ I if n is even

The bound is achieved if n is odd and is asymptotically sharp if n is even.

Proof. The bounds follow from Eq. (5). For n - 2m + 1, take two copies of

the complete graph on m vertices, K , and add a vertex n adjacent to onem

vertex in each of the K . The second eigenvalue of this graph is easilym

found to be m - I - (n-3)/2. The corresponding eigenvector has z n- 0.

nJ



l• " ir n = 2m, take two copies of K and add an edge from a vertex of one
m

Km to a vertex of the other. The second eigenvalue of the resulting graph is

12
-(m-3 + ,m +2m-3)

-rn-I- I

Corollarv 2. If G is a graph on n vertices, then

nn 2 - if n odd

Ln if n even

Both bounds are achieved.

Proof. The bounds follow from Eq. (7). Both are achieved by complete

bipartite graphs: K if n = 2m; Kmm+ if n = 2m + 1. D
mn,mmml

Corollary 3. If G is a connected bipartite graph on n vertices, then

J 27, if n is odd

if n is even

Both bounds are achieved.

Proof. In a bipartite graph, X1  -X n. The result then follows from

Corollary 2. 0

Corollary 4. If G is a bipartite graph on n vertices, and if v = [n/41,

then

( d if n - 4v or 4v + 1

A2 G) (_+i) if n - 4v + 2 or 4v + 3.

Proof. Let A be the adjacency matrix of G, z an eigenvector corresponding to

L= X2(A), and suppose that z and A are as in Eq. (3). From Eq. (4) it is

easily seen that A2 (A) < X1 (Ap) and X2 (A) < Xl(AN). Let H be a component

p



of P~for which (H) =\(A~ and analogously X1 (H) (A) Then

A,() in{X I(H P)1l(H)}

The smaller of H Iand H) has at most [n/21 vertices. Now application of

Corollary 3 gives the desired result.

Corollary 5. If a is an eigenvalue of A = adj (G) , where G is a connected

graph, then

~n-2ci-l, 0 < 01

mult(aL:A) < n-1, -1 <cz< 0

a -l

Proof. If a is an eigenvalue witn multiplicity m, a corresponding eigen-

vector can be constructed with m - 1 zero entries. The result follows by

replacing in Theorem 4 by m - 1. 0
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a -b a+b b 0 a

b -a 0 a+b 0 -a-b

(i) (ii)

1 1 0 -1 -1 1 1

(iii)
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