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l. Introduction

If G is a araph with vertex set V = {l,...,n}, the adjacency matrix of G
is adj(G) = A = {aij] with aij =1 if (i,j* is an edge, and aij = 0 otherwise.
{Note that a, - Q ror all i.) Conversely 1if M is a svmmetric nonnegative axn
matrix, the associated graph of M is G = gr(M) with vertex set V = -1,...,n"
having as edges all -i,j - for which Ty » 0 and i # ;. We denote the eigen-
values of A by Al(A) > AZ(A) 2 ... and the multiplicity of o in the spectrum
of A by mult(x:A). We may also speak of the eigenvalues and eigenvectors of

a graph, meaning those of its adjacency matrix.

The close relationship between graphs and nonnegative symmetric matrices
has been exploited to illuminate some matrix concepts. (See Varga, 1962.)
I. we define the concept of irreducible matrix to include the lxl zero matrix,
then we have the following (Varga 1962, p. 46).
Theorem A. Let B be a nonnegative symmetric matrix. (1) B is irreducible if
and only if gr(B) is connected. (2) B =B 0...OBk is a direct sum of k ir-

l

reducible matrices if and only if gr(B) is a union of k connected components,

G Gk’ and Gi = gr(Bi).[]

ERLEE
Recently, some algorithms have been proposed that use the eigenvectors
of a graph to partition its vertices in certain ways (Barnes, 1982, Aspvall

and Gilbert, 1984). The objective of this paper is to study how the connect-

ivity structure of a graph is revealed by its eigenvectors and its spectrum..

We will freely use familiar properties of matrices such as the extremal
nature of eigenvalues of symmetric matrices, the interlacing theoream,
monotonicity of spectral radius of nonnegative matrices, Perron-Frobenius

theory, etc. (See Varga (1962) and Lancaster and Tismenetsky (1985).)

Most of the results of this paper depend on the following lemma.
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ABSTRACT

N

Let A be the udilacency matrix of a conoected graph G. 1f z is a c¢olumn
vector, we sav that a vertex of G is positive, nonnegative, null, etc. if ci

the corresponding entry of z has that property. For z such that Az £ az,

we bound the number of components in the subgraph induced bv positive vertices.
For eigenvectors z having a null element, we bound the number of components
in the graph induced by non-null vertices. Finally, bounds are established
for the number of null elements in an eigenvector, for the multiplicity of

- an eigenvalue and for the magnitudes of the second and last eigenvalues of

a general or a bipartite graph.
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Lemma., Let B be a principal square submatrix of a real symmetric matrix A, and

suppose that B = B 0...08k where the Bi are irreducible, If kl(Bi) > 3 for

1
i=1,...,k, then \k(A) ~ ¢ oalso.
Proof. Each eigenvalue of a Bi is an ei.envalue of B. Thus the * 5.1 are &
eigenvalues or B, each at least as large as 2; hence Kk(B) > 2. The conclusion

follows by the interlacing theorem: kk(A) > Ak(B).
Note that a strict inequality Jur the Al(Bi) yields a strict inequality

for Ak(A) also.(d

2. Fiedler's Theorem

The first step in studving graph structure with eigenvectors was taken

by Fiedler (1975). The following is a version of his Theorem 2.1.

Theorem B. Let A be an irreducible nonnegative symmetric nxn matrix, n > 2,

and z be a column such that Az > az, a = A_(A), s 2 2. If

L-y c DJ

with x > 0, y > O, and if B = B.#®...8B, where the B, are irreducible, then k < s.(

1 k i
In order to rephrase this theorem in terms of graphs, let us define
comp(G) to be the number of connected components of a graph G, and, for an

n Xl column z, let

P(z) = ¢i:z, > 0}, N(2) = {i:zi < 0}, 0(z) = {i:z1 = 0}.

i

When these are interpreted as subsets of a vertex set, we may speak of positive,
negative or null vertices. (Dependence on z will be suppressed when no con-

fusion results.) Angle brackets around a set of vertices mean the subgraph

induced by that set.




Theorem B'. Let G be a connected graph on an > 2 vertices, A = adj(G), and z a
column such that Az > az, a = AS(A). s > 2. Then
comp(- FU+; < max:i:ki\A) > . (d

Proof. Suppose vertices numbered so that matrices B, C and X from Theorem 8 mav

be partitioned as

i \ { (c)
iBl l\li 'Cl‘
B = ' x =1l ] C=|.
B, lka Ck
where the Bi are irreducible. The hypothesis Az > az implies that Bixi -

Ciy 2 axg for each i. Since A is irreducible, no Ci is 0. Thus Ciy >0

with inequality in some element, and hence Bixi > ax, with strict inequality

in some element. Therefore, for each i = 1,...,k,

T T
xiBixi > ax x, (L)

and Al(Bi) > a. From the lemma, A, (A) > a; thus k < max{izki(A) >a}. 0O
Several corollaries can be extracted from the proof of the theorem.
Corollary 1. If a > O, then no component of <Py0> (a) is a singleton, or
(b) contains vertices only from 0.
Proof. If the ith component were a singleton, its 1xl adjacency matrix would
be Bi = 0; but then Eq. (1) would be false. Similarly, if the ith component
contained vertices from 0 alone, then X, would be 0, and again Eq. (1) would
be false. [J
The other corollarv depends on the fact that all connected graphs
with spectral radius less than 2 are known (Smith, 1970). The four smallest
spectral radii are 0, 1, v2, (1+/5)/2, belonging to the paths on 1, 2, 3
and 4 vertices respectively.

Corollary 2. For a in the indicated range, comp(<P V (>) does not exceed the

upper bounds shown.




Range Bound 1 Bound 2
(a) a - 1 max{i:Ai(A) > 0} -
(by 0 < a1l max{i:ki(A) > 1! (n=-1)/2
(¢) 1 z maxzi:ki(A) ivf: (n=1)/3

|7
-
’

-

Proof: (a) Referring back to the proof of Theorem B, and to Eq. (1), we see
that Al(Bi) > 0, because each Bi is the adjacency matrix of a connected
subgraph of G.

(b) If all the Bi have a positive spectral radius, they must all
have spectral radius at least equal to l. Also, each Bi must have at least
two rows, and D has at least one row. Hence the number of the Bi is at
most (n-1)/2. A similar argument holds for case (¢). More cases could be
added, but cheir significance and usefulness decrease. [ ]

The next theorem indicates the role played by the null vertices in
holding together the components of <PW>. They affect the bound on the
number of components only if a is an eigenvalue of A.

Theorem 1. Let A and z be as in Theorem B'. Then

comp(<P>) < max{i:d (4) > a}.

Proof. We use the notation of Theorem B and its proof, except that x > O,

y > 0. As beifore, Bixi - Ciy > ax, . but now Ciy could be zero, so we have

only

Bixi 2 axy 2)

for each i. Thus Al(Bi) > a, and the conclusion follows from the lemma. 0
Note that the proofs of Theorem 1 and Theorem B' make no use of the
implied inequality CTx - Dy > -ay, which we may thus safely ignore. With this

observation it becomes easy to bound the number of components of any induced

subgraph of a connected graph.




. Theorem ). Let G be a connected grapii, U a preper subset of vertices, and

define 5 to be the minimum degree of vertices in <U>. Then
comp (<U~) < max{i:xi(A) > §.

Proof. Let A = adj(G) and suppose that vertices are numbered so that
U= +1,...,a:;. Define z by z, = 1, i =1,...,m; z, = 0, i = m+l,...,n.

Then (e is a column of 1's)

where B = adj(<lL>). Since each entry of Be is the degree of the corresponding

vertex, Be > Je. If B =B& ... & Bk’ also B

1 e > de and then Al(Bi) > ¢ for

k

each 1. By the lemma,Ak(A) > &, which is equivalent to the conclusion of the

t.eorem. [

Corollary 1. If H is any induced subgraph of a connected graph G, then

comp(H) < max {i: A (a) > 0} .

Proof. If Bi is the adjacency matrix of any component of H , then Al(Bi) >0. O
This corollary is similar to a theorem of Cvetkovid (1971) in which U is

chosen to be a maximum set of independent vertices, so that adj (U) = 0. (See

Cvetkovid,et al.(1980) pp. 88-89.)

3. Partitions Determined by Eigenvectors

If the vector z in Theorem B'or Theorem | is an eigenvector and = AS(A)
then in place of an inequality we have the equality Az = az, which holds also
if z is replaced by -z. Thus the conclusions are strengthened to say that
<PuU 0> and <N U 0> have at most s-1 components in the case of Theorem B',
and that <P> and <N> have at most s+m-l components in the case of Theorem 1.

Here s = min {i: Ai(A) =3} and m = mult(a: A). For an eigenvector, much more

can be learned about the null vertices.
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Theorem 3. Let G be connected, A = adj(G), Az = 22 s = min‘ i: Ai(A) = 35,
m = mult(x:A). Suppose that 0(z) is nonempty and is contained in the set of
null vertices for every eigenvector associated with 1. Then one of these
two cases hnlds.
*a) No edge joins a vertex of P to one of N, and

m+ 1l < comp(<PU N> <s+m~1.
(%) Some edge joins a vertex of P to one of N , and

comp(<P U N>) < s +m -2

Proof. Let vertices of G be numbered so that

:'v M« Ap Apx APO-I
. t
{
S B A= oA Ay Al (3)
y ;
‘ Lo Aop  Aox 4o |

2 where AP = adj(<P>) etc. Then the partitioned form of Az = az yields

Ap % = Mgy % ax,

ANY T Ap T (4)

AOP X - A = 0.

-~ T m o~ -

on ¥

(aj The hypothesis is that ANP = Agv = 0. Suppose that
- - iy = r o - -
p O 1B | * !
: B = ’ = . * R V s = *
l'| o ‘ * . ' .
: : NJoow B) Ly U
- where each Bi is irreducible. Note that each ug is either positive or negative;

thus B1 uy = 3ui implies that

a = Al(Bi), 1t =1, ..., k.

By the lemma and Theorem B, A, (A) > a2 and k < s +m - 1.




o ]

* Now lec lAOP AOVI ={C1, ceen L, . Then every eigenvect 'r ot A corresponding

to x must have the form

Yy 51]

because Biuifi = Juiii is necessaryv, and the eigenvector of Bi corresponding
to : is unique up to a scalar multiplier. Furthermore, the 's must satissv

.+ Cu . =0,

C,u + K% K

Sl g B

No Ci can be 0, and no u, can have a zero element. Thus we have a system of

equations whose coefficient matrix has rank 1 at least. The nullity of this

system is m = mult(a:A), so

l +m < k.

(b) The hypothesis is that AVP = AgV # 0. Suppose P is a permutation matrix

such that _

=
r R TR R Pl}
T IS 3 I
Ao AN RG o,
where each Bi is irreducible, and Biui = du,. There must be h > 1 of the Bi»

say Bl’ cees Bh, for which uy has elements of both signs. Thus,

Al(Bi) > 3, i=1, ..., h,

and so Xi§B) > .,
Let M = mult (a:B), so that
h <k <M,
Since at least h eigenvaiues of B exceed & and exactly M eigenvalues of B
equal a, we have Xh+M(B) > a4, or
h+M< s+m- 1.

Because 2h < h + M, we conclude that

h< (s+m-1)/2.
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k = comp(<PUN>) < s +m~-2. 3

Corollary. If 2 < 0 then case (a) is impossible, and in case (b)

1

comp(<P. N> < max - i: \i(A) 240

Prootf. In case (a\,\l(si)
9

is nonnegative. The bound cited comes from Corollary | of Theorem 2. 1

for all i. This is false if <0, because Bi

Theorem 3 is particularly interesting when s = 2 (a1 = RZ(A)), for
then the bounds in case (a) are equal. The proof o§ part (b) of the following
theorem from Powers (1987) uses techniques that do not appear to generalize.
Theorem C. Under the hypctheses of Theorem 3, with s = 2, one of these two
cases holds
(a) No edge joins a vertex of P to one of N, and comp(<PyN>) = m + 1.
(b) Some edge joins a vertex of P to one of N, and <P UN>, <P>,<N> are all
connected. Ej
Examples. In Fig. 1, three graphs are shown that illustrate Theorem 2. The
first graph has A3 = AA = 0. The vertices are labelled with eigenvector
components. To satisfy the hypotheses a, b and a + b must be nonzero. For
any of these choices, comp<PUN> = 3, which is the lower bound of part (a)
of the Theorem. The second graph, similarly labelled, also has A3 = Aa =0,
and again a, b and a + b must be nonzero. In this case, comp<PUN> = 4,
which is the upper bound of part (a). This graph also illustrates Corollary

2 of Theorem B'. The first two eigenvalues are A, = 2.45 and Az z 0.80, so

1
bound 1 of case (b) predicts one component for <Pl 0>,

Case (b) of the Theorem is illustrated by the third graph's eigen-
value A3 = 1, which is simple. There are two components in <PY/ N>, thus
realizing the upper bound s + m - 2 = 2. Since Al  2.08, Az z 1.57, both

bounds in Corollary 2 of Theorem B' also predict at most two components for

<PV 0>. These examples came from Powers (1986 a,b).
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4. 1Inequalities for Null Elements, Eigenvalues and Multiplicities

The number of null elements in an eigenvector of an adjacency matrix turns

out to fit some surprising bounds. A similar study could be made for any non-

negative irreducible symmetric matrix.
Theorem 4. Let A = adj(G), G a connected graph on n > 2 vertices, Az = az,
a<X(A), and g = [0(z) | . Then

n-2-2ua, a >0
0

£< ¢n-2, -l<a <
n - 2|a| a < -1
Proof. Let h and k be such that zZ, 22,22 for all i. First suppose 2 > 0.
Then
n
az, = . a,, 2z, = L'a z, + " a , z
h ™ % T hj 3 hj *3
where the first sum includes indices for which zj > 0 and the second those
for which zJ < 0. Thus
- - -
1z < ahj zj < ( l)zh

aizk‘ 5, ™ akj \Zj| _<_ (v - 1)|Zk\

. The -l enters because A has 0's on its diagonal.

where T = [P(z)|, Vv = [N(2)

From these inequalities it follows first that
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. : ind then that ,

’
3
o]
|

a1 <
The conclusion of the theorem for x>0 follows from the latter equation.
Next, if 1< -1, then

{ajz, < "a iz, |

A

b v{zki

-~

, | ]
iz, < a2, "z

| A

By multiplyving the inequalities we find

|x] < /vT , whence (7)
| v+ n- 5

1 yrhvo > 8
ja] < 5 > . (8)

The conclusion of the theorem for & < -1 is immediate.
Finally, an eigenvector corresponding to a < kl(A) is orthogonal to a
positive vector and thus must have 7> 1, v> 1l or ;< n - 2. E]
This theorem yields a number of interesting corollaries on bounds for
graph eigenvalues.
Corollary I. If G is a graph on n vertices, then
n-3

- if n is odd,

%% - 1 if n is even

The bound is achieved if n is odd and is asymptotically sharp if n is even.
Proof. The bounds follow from Eq. (5). For n = 2m + 1, take two copies of
the complete graph on m vertices, Km, and add a vertex n adjacent to one
vertex in each of the Km. The second eigenvalue of this graph is easily

found to be m - ! = (n-3)/2. The corresponding eigenvector has z = 0.
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li
for no= 'm, take two cuopies of Km and add an edge from a vertex of one

Km to a vertex of the other. The second eigenvalue of the resulting graph is

LG = t(m-3 + vmi+2m-3)
> l
=m- | - m . D
Corollary 2. If Gis a graph on n vertices, then
s 2
"ol it n odd
,\n(G) i
- % if n even

Both bounds are achieved.

Proof. The bounds follow from Eq. (7). Both are achieved by complete

. . . , - . K . o =
bipartite graphs: Km,m if n = 2m; oo+l PE 0D 2m + 1. [

Corollary 3. If G is a connected bipartite graph on n vertices, then

Vnz-l

2

if n is odd

A (G) <

n . .
2 if n is even

Both bounds are achieved.

Proof. 1In a bipartite graph, Al = —Xn. The result then follows from

Corollary 2. []

Corollary 4. If G is a bipartite graph on n vertices, and if v = [n/4],

then

v if n = 4y or 4v + 1
A, (6) <
vo(vtl) if n = 4v + 2 or 4v + 3.

Proof. Let A be the adjacency matrix of G, z an eigenvector corresponding to

a = AZ(A), and suppose that z and A are as in Eq. (3). From Eq. (4) it is

easily seen that AZ(A) < Al(AP) and AZ(A) < Xl(AN)- Let HP be a component




P

P~ F ic = H =
of <P> for which \l(HP) \l(AP). and analogously Al( N) \l(AN)' Then

A, (8) < min{A (Hp)ua (HOL.

The smaller of Hl and H: has at most [n/2] vertices. Now application of
Coroliary 3 gives the desired result. C:

Corollary 5. If x is an eigenvalue of A = adj(G), where G is a connected
graph, then

n-2a-~-1, 0 <a
mult(a:A) < (n-1, -l <a< 0
n-2ja{+l, a < -1
Proof. If o is an eigenvalue witn multiplicity m, a corresponding eigen-

vector can be constructed with m - 1 zero entries. The result follows by

replacing ; in Theorem 4 by m - 1. Cj
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