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SUMMARY

Nonlinear flutter of a two-dimensional airfoil undergoing plunging
and pitching motions is studied using a time marching finite difference
scheme. The structural nonlinearity considered is of the type due to a spring
with preload and freeplay. Flutter is determined from solutions of the
structural dynamic equations of motion when either divergent or limited
amplitude oscillations are encountered. Case studies using various airfoil
parameters and values of preload and freeplay are carried out. The effect of
initial condition, which is important in nonlinear problems, is investigated
by varying the displacement from equilibrium of the pitch angle at the
beginning of the airfoil motion. For nonzero values of the preload, three
types of oscillatory motion are possible, namely: damped, limited amplitude
and divergent. The divergent flutter boundary is practically identical to that
for the linear flutter case. The location of the limit-cycle flutter boundary
varies for different airfoil and spring parameters. For zero preload, damped
oscillations are not encountered even for air speeds down to 15 percent
of the linear flutter speed which is the lowest used in this study. The limited
amplitudes of the pitch and plunge motions are found to be independent
of initial angular displacement. The characteristics of the oscillations and
the development of higher harmonics in the various regions defined by the
flutter boundary curves are investigated.
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RESUME

L'a~roklasticit non-lin6aire d'un profil d'aile bidiniensionnel
subissant des mouvements de tangage est 6tudi~e au moyen d'un schema en
differences finies en fonction du temps. La non-lin6aritk structurale 6tudi~e
est celle produite par un ressort pr6charg6 et i jeu libre. L'a~ro6lasticitk
est d6termin~e i partir des solutions aux 6quations dynamiques structurales
de mouvement lorsqu'il y a oscillations i amplitude limitke ou divergente.
Des 6tudes de cas sont men6es A partir de divers param~tres de profil d'aile
et de diverses valeurs de pr~charge et de jeu libre. On 6tudie 1'effet de l'6tat
initial, important dans les probl~mes de non-linharit6, en faisant varier le
mouvement par rapport au point d'6quilibre de l'angle de tangage d~s que le
profil d'aile commence a se d~placer. Pour des valeurs de pr~charge diff6-
rentes de z6ro, trois types d'oscillation sont possibles, soit: oscillation
amortie, oscillation A amplitude limI~ et oscillation divergente. La limite
d'a6ro~lasticit6 divergente est pratiquement identique A celle de l'a6ro-
61asticit6 lin6aire. L'emplacement des oscillations limites d'aro~lasticit6
vanie en fonction des param~tres de profil d'aile et de ressort. Pour une
precharge nulle, aucune oscillation amortie nWest relev6e, m~me dans le cas
de vitesses a6rodynamiques ramen6es i 15 pour-cent de la vitesse d'a~ro-
6lasticit6 lin6aire, laquelle est la plus faible utilis~e dans le cadre de N'tude.
On a trouv6 que les amplitudes limit~es des mouvements de tangage 6taient
ind~pendantes du d6placement angulaire initial. Les caract~ristiques des
oscillations et la production d'harmoniques sup~rieures dans les diverses
zones d6limit~es par les courbes limites d'a~ro~lasticit6 sont 6tudi6es.

(iv)
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1.0 Introduction

The assumption of structural linearity is frequently made to

enable the use of analytical methods in determining the divergence and

flutter characteristics of aerodynamic surfaces. Linear theory will

predict the magnitude of dynamic pressure or flight velocity above

which the system under consideration becomes unstable and the motion

grows exponentially in time. However, aircraft structures often

exhibit nonlinearities which affect not only the flutter speed, but

also the characteristics of flutter motion. An understanding of the

nonlinear behaviour of the system is crucial to the efficient and safe

design of aircraft wings and control surfaces.

Reference 1 gives an excellent discussion of the various

types of nonlinearities and some of the methods used to treat them. In

general, structural nonlinearities can be categorized as either

distributed or concentrated. Only the latter is considered in this

study because they are more important. An example of this type of

nonlinearity, which is investigated in this report, is the freeplay

representing a loose hinge or linkage of a control system. The

response characteristics are usually functions of the amplitude of

oscillation. The system stiffness behaviour changes with amplitude of

motion and at some particular flight speed the motion can be

self-excited and attain a limited amplitude. The appearance of the

phenomenon of limit-cycle flutter is important from the design

viewpoint. These oscillations may occur within the divergencP and

flutter flight envelope, but the amplitude, frequency and duration of

these limit-cycle oscillations may have an important impact on the

structural integrity of the aerodynamic surfaces.

REM%



2

Woolston et al (Ref. 2) studied the effects of structural

nonlinearities on the flutter of a two-dimensional airfoil using an

analog computer. There are serious drawbacks in the use of an analog

computer to analyse nonlinear flutter and accuracy is often not as

great as one would desire. An alternate analytical approach was

suggested by Shen (Ref. 3) using the well known Kryloff and Bogoliuboff

(Ref. 4) method in nonlinear vibration theory. The original limitation

of weak nonlinearities was removed by adopting a modification given by

Popov (Ref. 5). Only rigid surfaces with single nonlinearity were

treated. Extensions to multiple nonlinearities (Ref. 6, 7) and

inclusion of higher harmonic terms (Ref. 8) have been reported in

recent studies.

Another method of investigating nonlinear flutter is by

numerical time integration of the structural equations of motion. This

has the advantage that no assumptions on the type of motion have to be

made beforehand. Also, the effect of initial conditions, which is

important in nonlinear problems, can readily be investigated.

Flutter analyses of two-dimensional airfoils with aerodynamic

nonlinearities and structural nonlinearities of the type due to a cubic

spring have been studied by Lee and LeBlanc (Refs. 9 and 10). In that

study, Houbolt's (Ref. 11) finite difference scheme was found to be

efficient and of sufficient accuracy in determining flutter

boundaries. Following the approach used in Ref. 10, the aeroelastic

equations for a two-dimensional airfoil performing plunging and

pitching motions are written in this report in finife difference form

using incompressible aerodynamics in the time domain given by Wagner's

function. The effect of initial conditions on nonlinear flutter is

~ r -. I N. I %- - .I
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studied by varying the displacement from equilibrium of the pitch angle

at the beginning of the airfoil motion. Divergent and limit-cycle

flutter are investigated using different airfoil parameters and values

of spring preload and freeplay. The characteristics of the oscilla-

tions and the development of higher harmonics in the various regions

defined by the flutter boundary curves are analysed. The results are

useful not only in assessing the validity and accuracies of the method

of harmonic balance (Refs. 3-8) commonly used in the study of nonlinear

flutter, but also in understanding the impact of limit-cycle

oscillations on the structural integrity of aerodynamic surfaces.

2.0 Analysis
5;

2.1 Two-Degree-of-Freedom Motion of a 2-D Airfoil

Figure 1 shows the notations used in the analysis of a

two-degree-of-freedom motion of an airfoil oscillating in pitch and in

plunge. The plunging deflection is denoted by h, positive in the

downward direction, a is the pitch angle about the elastic axis,

positive with the nose up. The elastic axis is located at a distance

ahb from the midchord, while the mass centre is located at a distance

x b from the elastic axis. Both distances are positive when measured

towards the trailing edge of the airfoil. The aeroelastic equations of

motion for linear springs have been derived by Fung (Ref. 12). For

nonlinear restoring moment from a spring with preload and freeplay in

the torsional degree of freedom (Figure 2), they can be written as

follows:



4

mh + Sa + C hh + Khh = P  (1)

Sh + I a + C a + F(a) = R (2)

where the dot represents differentiation with respect to time. S is

the airfoil static moment about the elastic axis, F(a) is a nonlinear

function representing the restoring moment, P and R are the externally

applied force and moment respectively. The symbols m, Ch Kh  Iand

C are the airfoil mass, linear damping coefficient, linear spring

constant, wing mass moment of inertia about the elastic axis, and

torsional damping constant respectively.

Define & = h/b, x = S/bm, w = (Kh/m) w = (K /I ),

ra = (I a/mb2)I, 4r = Ch/2(mKh)4 , 4 = Ca/2(1 aK) Here K is the

torsional spring constant for the linear part of the moment-

displacement curve shown in Figure 2. Equations (1) and (2) can be

written in nondimensional form as follows:

&%-( + + 24 +) + &() = p(i) (3)

+ a"(i) + 24 + L F[a(i)] = r(i) (4)

r2  U*2

where p(T) and r(t) are the nondimensional force and moment

respectively. The prime denotes differentiation with respect to the

non-dimensional time i defined as
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-Ut (5)

In Eqs. (3) and (4), w is given by

W (6)

w
a

From Figure 2., F(a) can be written as

Ja + VfO - hf. a < hf.

F(a) = VfO hf+.5 a Sh f. (8)

al + Vfo - hf- h f- < C

For incompressible flow, Fung (Ref. 12) gives the following

expressions for p(ir) and r(r):

p()= - 1["i- E(0a(0

2 f *(tO)[c'(O)+(o-a)a(0-)0()l](9

0
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r(2) = 2O)]O(T)

+f O(T-o)[ax'(o)+&"(c)+(J-a h)x" (a)]Idol

0

1 . .1 ,.

+r- taxh[ (r)-aha"()]-(-a)'() - ga (T)} (10)

where p is the airfoil-air mass ratio, and the Wagner's function 0(i)

is given by

() = -ae - ce ()

and for incompressible flow, the constants I = 1, a = 0.165, b =

0.0455, c = 0.335 and d = 0.3 are given in Ref. 12.

2.2 Finite Difference Scheme

For a system with few structural components or the number of

vibration modes is small, higher order methods such as the eighth order

scheme reported in Ref. 13 does not offer any distinct advantage over

Houbolt's (Ref. 11) scheme which is simpler and less cumbersome to use.

For this reason, Houbolt's method is used in the present analysis. The

derivatives at time i+AM are replaced with backward difference formulas

using values at three previous points. For example,

a"(T+A) -1 2 (12)

-~ ~ ~ ~ ~ ~~~~t 2N2(+&-a()4(- -a 2 ](
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and

a'i+r =~ [11aU(+At)-18a(T)+9(Tr-A-)-2a( -2AT)] (13)

Similar expressions can be written for ~"rA)and ~'(+t. In

difference form, Eqs. (3) and (4) can be expressed as:

P 11a(1+Ar) + P 12 &(+T (14)

P21 + U*-2 FP ]a(T+AT) + 2 &(T+AT) 2- - 2 F a(15)

In Eq. (15), F[a(T)] has been replaced with F p(a;a)a(r+Al)

+ F (a), where

1 a < hf+) h f- a

F P(a;a) =(16)

p I otherwise
and

VfO- f. a < f

F E(ax) *f h.5a !5h f- (17)

Herc a is an estimait e of a w'hic~h cari be obtainled, for

fxample., by linf-ar ext rapri at or of a from ito 1+A1 P P P

X nd X,, art, given i Appenidix A.
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Renaming the coefficients in Eqs. (14) and (15) yields the

following:

( a(T+AT) X1 (18)
[P] =(8

&( +A ) X2

which has for solution

I(i+M) = M-1 X (19)

[P] can take on one of the two forms whereas {X} can take on one of

three forms depending on the estimated value of a(T+AT).

2.3 Starting Procedure

Houbolt's scheme requires values of a and & at times i-2AM,

r-At and T in order to determine their values at t+Ai. At time t = 0,

a special starting procedure is required. A Taylor series is used to

obtain the following:

A 2 3

a(-AT) a(O) - ATa'(0) + - a"(0) + O(AT ) (20)

A2 3

a(AT) = a(O) + Ara'(O) + A T2 a(0) + (AT3 ) (21)

with similar expressions for &(-Ai) and &(Ai). The expressions for

and X2 in Appendix A have terms depending on the first and second

derivatives of a and 4, and these derivatives are given as follows:

At ,,3

a'(-AT) = a'(0) - Aia"(0) + 2-a (0) + O(AT 3 (22)
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a I(AT) a a') + AT all(O) + ~ al"(O) + O(AT 3 (23)

and

all(-AT) =a"(O) - AT a"'(O) + 2a IV(0) + O(AT 3 (24)

2

with expressions of the & derivatives written in the same form as those

given in Eqs. (22) to (25). The initial conditions a(Oj, a'(0), &(0)

and &'(0) are known, and the higher derivatives can be obtained from

Eqs. (3) and (4) and are given by:

IQ0)](~ (26)

I&(n) (O) ly ()I

which has for solution I (n) (0) IQ - Y(n) ( 7

&()()Y2(in) (n

Here n = 2, 3 and 4. Q ill Q12 ' Q21 ' Q2 2 ' Y 1 ()and Y 2()are given in

Appendix B. For the next step, Houbolt's scheme can be used since a

and & at t = -61, 0 and AT are known.

V 2.4 A Recurrence Formula

In Eq. (18), the terms X Iand X 2contain integrals which have

to be evaluated at each time step. To reduce the amount of

'rll1 1 1 1 1 1 1 11 1 P

2 2 MM
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computations, a recurrence formula is used. Using Simpson's rule, the

integral II(t+rA) in Eq. (A6) of Appendix A can be written as

Ii(T+AT) = ebAT (T) + L- {9X(T+AT) + 19X(t)e bA

- 5X(i-Ar)e-2bat + X(- 2At)e
- 3bAt (28)

where X is defined in Eq. (A8).

The starting value for lI(AT) is given by

Il(AT) = -- 12X(Ai) + 5X(O)e -b'T - X(-At)e - 2 b Ai (29)

Expressions for I 2(t+Ai) and 12 (AT) are obtained by substituting b for

d in the above equations.

3.0 Results and Discussions

In this report, only nonlinearities in the pitch degree of

freedom are considered. The elastic axis of the airfoil is placed at

the I chord location (that is, ah = -0.5), r and x are kept constant

at 0.5 and 0.25 respectively. The two properties of the airfoil being

varied are p and w. The effects of preload and freeplay are

investigated by varying the values of Vfo, hf. and hf_. Table 1 shows

the combinations of parameters used in this study.

A comparison of cases 1, 2 and 3 shows the effect of preload

for constant freeplay, while cases 2, 4 and 5 show the effect of

freeplay for constant preload. Cases 6 and 7 are with zero preload and

the effect of varying p can be obtained from cases 2, 8 and 9. The

results for increasing w to a value of 0.8 are given in cases 10 to 16

Ir



where the values of preload and freeplay are kept the same as those for

cases 1 to 5, 8 and 9 in which w = 0.2. These computations are carried

out primarily to study the effect of w on the binary flutter of the

airfoil.

3.1 Effect of Preload on Flutter Boundary

Figures 3 to 5 show the flutter boundaries for cases 1 to 3.

The values of p and w are kept constant at 100 and 0.2 respectively.

The freeplay is 0.50 with the preload VfO set at 0.250, 0.50 and 10

respectively. Throughout this study, it is assumed that hf. = Vfo so

that the restoring moment is zero when the displacement a = 0.

To determine the flutter boundary, Eq. (19) is solved for

given initial conditions. In this report, only a(O) is varied and

&(0) = t'(0) = a'(0) = 0. The procedure is to find the linear flutter

speed U* first, and this is equivalent to solving the problem for

hf_ = hf.. In the nonlinear case, once a(O) is specified, a value of

U* usually greater than U* is selected and a and & are obtained by the
L

time marching finite difference scheme. For the type of structural

nonlinearity considered, the solution is divergent for U* > U*, and the

nonlinear divergent flutter speed is, within the numerical accuracy,

the same as U* for these three cases considered. It is observed that
L

for a(O) > VfO decreasing U* below U* results in limit-cycle flutter.
f L

The oscillation is self-excitated and maintains a constant amplitude

which is self-limited. The boundaries between divergent and

limit-cycle flutter in Figures 3 to 5 are practically vertical lines at

U*/U* = 1 for values of a(O) ranging from -l0O to 200.
L

As U* decreases, a value will be reached where any further

decrease will result in damped oscillations of the airfoil. Boundaries

m R or e|
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can be identified on the c(0) versus U*/U* plots separating the regions

of limit-cycle flutter with the stable regions where the oscillations

decay.

Figures 3 to 5 also show that for a freeplay of 0.50 the

region of limit-cycle flutter decreases with increasing values of the

preload. Another observation is the non-symmetry of the boundaries

between decaying oscillation and limit-cycle flutter with initial

displacement a(O). For values of initial displacement less than the

preload, the system moves on the linear part of the moment-

displacement curve shown in Figure 2, and at velocities below the

linear flutter speed, the system is stable. Increasing a(O) will have

a destablizing effect, but this is only restricted to the limited

amplitude oscillation regions.

Figure 3 shows pockets in the damped oscillation region where

the airfoil oscillates with constant amplitude. This limit-cycle

flutter behaviour is only observed for the smallest preload value of

0.250 and is not detected in the other two cases. The regions of

limited amplitude oscillations are determined using a binary search

*complemented with linear grid scans. This by no means assures that all

such regions especially the small ones have been identified, but those

that are found can be considered to be quite accurately defined.

Figures 6a to 6j show the time behaviour of a in the various

regions corresponding to the locations marked 1 to 10 in Figure 3.

Figure 6a is for initial displacement a(0) = 80 and U* = 0.7U*. The

airfoil damps out fairly rapidly and the oscillations are mainly sinu-

soidal and no noticeable harmonics are detected. This is a typical a

'I%
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decay curve sufficiently far from any limit-cycle futter region. The

same behaviour is also observed for the oscillations.

Figure 6b corresponds to location 2 in Figure 3 where

a(0) = 80 and U*/U* = 0.78. This type of oscillatory behaviour of a is
L

typical in those pockets where limit-cycle flutter occurs. A strong

second harmonic is always present.

At initial displacment a(0) = 80 and U*/U* = 0.81,
L

corresponding to location 3 in Figure 3, the a decay curve is shown in

Figure 6c. Higher harmonics can be detected from the oscillatory

motion of the airfoil, and this is often the case in the proximity of

the limit-cycle flutter regions. Figure 6d is also in the damped

oscillation region but it is very close to the limit-cycle flutter

boundary. This corresponds to location 4 in Figure 3 with initial

displacement c(0) = 80 and U*/U* = 0.82. The airfoil oscillates in
L

pitch (also in plunge) at approximately constant amplitude for a number

of cycles (nearly twenty in this case) and suddenly damps out. This is

often encountered very close to the limit-cycle flutter boundary.

Figure 6e shows the time variation of c in the limit-cycle

flutter region for a(0) = 80 and U*/U* = 0.S3 corresponding to location

5 in Figure 3. Again, being close to the flutter boundary, the

appearance of a second harmonic can be detected. Sufficiently far away

from the- limit-cycle flutter boundary, the curves shown in Figures 6f

and 6g for limited amplitude oscillations corresponding to locations 6

and 7 in Figure 3 indicate the motion of the airfoil to be practically

sinusoidal. This type of motion is typical even if U*/U* is close to

the divergent flutter boundary.

W ' .
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Figure 6h shows the a oscillations at location 8 on Figure 3

for a(O) = -0.3° and U*/U* = 0.99785. For this value of initial
L

displacement, the airfoil motion is on the linear part of the moment-

displacement curve shown in Figure 2. This type of decay curve is

typical for linear flutter (Ref. 10).

The behaviour of the airfoil motion inside the limit-cycle

flutter region at location 9 in Figure 3 is given in Figure 6i. The

values of a(0) and U*/U* are -1.5' and 0.78 respectively. The

oscillations behave in a similar manner as those given in Figure 6b.

This is characterized by the presence of a strong second harmonic

component. It is noted that in all pockets of limnit-cycle flutter

within the damped oscillation region, the oscillations of the airfoil

are similar to those given in Figure 6b and 6i.

It is observed in Figure 3 that there are bulges on the

limit-cycle flutter boundary. For example, for positive values of c(0)

and 0.825 < U*/U*< 0 86, the oscillations can either be of limited

amplitude or damped depending on the value of a(0). Figure 6j shows

the time variation of a corresponding to location 10 in Figure 3 where

a(O) = 1.5 and U*/U* = 0.84.

In Figures 7-9, the limited amplitudes cA and &A are plotted

against the speed ratio U*/U* for cases 1-3. It is found that they are

independent of the initial displacement a(0). In Figure 7, the curves

have breaks at U*/U* approximately equal to 0.825. To the left of this

value of U*/U*, the amplitudes are obtained from the limit- cycle

flutter pockets inside the damped oscillation region. The curves do

not oin smoothly with those for U*/U* greater than 0.825 and this

'IL
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is due to the diff'erent oscillatory motion of the airfoil as shown in

Figures 6b and 6f. A comparison of the amplitudes for U*/U* > 0.87 in
L

Figure 7 with those in Figures 8 shows that they are identical.

Similarly, the results in Figure 9 coincide with those in Figure 7 for

U*/U* > 0.915. This indicates that the variations of the limited

amplitudes aA and &A with speed ratio for various values of preload,

but with the freeplay fixed, lie on the same curves. The values of

U*/UL where the curves begin depend on the values of the preload.

Throughout this study, the value of the time step AT is taken

to be 1/128 of the shorter period of the two coupled modes of

oscillation of the airfoil in the absence of aerodynamic forces. The

periods of the coupled modes are obtained from Equation (3) and (4) for

-. F[a(i)1 = a(T), and p( ) = r(T) = 0. In numerical time integration

schemes, Bathe and Wilson (Ref. 14) pointed out that the amplitude

decays due to numerical errors and is dependent on AT. The value of AT

used in this study is found to be sufficiently small to give good

accuracies in determining the flutter boundaries while ensuring the

computation time is not excessive.

3.2 Effect of Freeplay on Flutter Boundary

To investigate the effect of freeplay on the flutter

boundary, results for cases 2, 4 and 5 of Table 1 are shown in Figures

*4, i(; and 11. The preload is constant at 0.50, and the values of the

freeplay are 0.250 , 0.50 and 10 respectively. The boundaries between

Ld-vr.r.: and 1 imit- vcle flutter are all located at U*/1 1

D' r'.a~;i ng h. fr re(play will decrease the limited amplitude
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oscillation region and move the limit-cycle flutter boundary closer to

the divergent flutter boundary. In the limit, as the freeplay tends to

zero, the two flutter boundaries coincide at U*/U* = 1 which is to be
L

expected since the system is acted on by linear spring forces. Because

of the preload, the flutter boundaries are not symmetrical about

a(0) = 0.

The limited amplitudes aA and &A motions are given in Figures

8, 12 and 13. They are independent of the initial displacement a(0),

but for given speed ratio, higher amplitudes are obtained when the

values of the freeplay are increased. The curves in Figure 13 have

breaks at U*/U* approximately equal to 0.825. The amplitudes for U*/U*

< 0.825 are determined from the pockets of limit- cycle flutter in the

damped oscillation region. The presence of a strong second harmonic is

always observed in the oscillatory motion of the airfoil inside these

pockets (see Figs. 6b and 6i). This is quite unlike the motions for

U*/U* > 0.825 where the oscillations are mainly sinusoidal.L

It is interesting to note that when Figure 3 is compared with

Figure 11, the flutter boundaries are identical if the vertical scale

for a(0) in Figure 3 is multiplied by a factor of 2 which is the ratio

of the two values of preload. Similarly, the limited amplitudes aA and

A in Figure 7 when multiplied by 2 match those given in Figure 13.

From the limited results of the two cases considered here, it appears

that for a particular combination of preload and freeplay, similar

results are obtained for other values of preload and freeplay if the

ratio of preload to freeplay is kept the same. The flutter boundary

curves can be made identical if the vertical scales are

Mil %
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multiplied by factors equal to the ratio of the preloads. Also, the

limited amplitudes of the plunge and pitch oscillations differ from

those with other values of preload and free play by the same factors.

3.3 Effect of Zero Preload on Flutter Boundary

For zero preload, cases 6 and 7 of Table 1 are investigated

for a freeplay of 10. The difference bewtween these two cases is in

the location of the equilibrium position. Case 6 gives the equilibrium

of the airfoil at a point on the linear portion of the moment-

displacement curve (Figure 2) just ahead of the freeplay, while in case

7, the equilibrium position is centered in the freeplay.

The flutter boundary for case 6 is given in Figure 14. The

boundary originates at U*/U* = 1 and c(0) = 0 and rapidly becomes aLa

straight line at U*/U* = 0.995. Unlike the previous cases with

positive preload, the figure shows only two regions, namely; divergent

and limit-cycle flutter. In this study, no numerical computations have

been carried out for U*/U* < 0.15 since the number of cycles needed to
L

determine the limited amplitude becomes larger and larger as the speed

ratio decreases, and no drastic change in the behaviour of the airfoil

motion is anticipated.

The limited amplitudes cA and &A are plotted in Figure 15.

The curves are discontinuous at U*/U* = 0.69 and Figure 16 show typical

pitch oscillations of the airfoil near the discontinuity (Figure 16b)

and at a fair distance away (Figure 16a). The mean value of a is not a

constant but depends on U*/U*, and the oscillatory motion of the

airfoil is non-symmetrical about the mean. For U*/U* slightly greater
L

than 0.69, a small second harmonic can be detected, but further
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increase in U*/U* results in oscillations which are practically

sinusoidal. For U*/U* > 0.69, the mean value of a is a constant 0.50

which is half the value of the freeplay.

For zero preload and equilibrium position centered in the

freeplay, the flutter boundary and limited amplitude curves are

identical to Figures 14 and 15 illustrating their dependence only on

the value of the freeplay. The mean motion for U*/U* < 0.69 is usually

slightly above a = 0 although for some values of U*/U* and a(0), it can

be slightly below a = 0. However, for U*/U* > 0.69 the mean value of a
L

is always zero. Similar to case 6, a large second harmonic is present

in the oscillatory motion of the airfoil for U*/U* < 0.69. The

magnitude of the second harmonic is less pronounced in the vicinity of

U*/U* = 0.69 and as U*/U* increases, its value diminishes. The
L L

oscillations appear mainly sinusoidal with no noticeable harmonics when

U*/U* > 0.8.
L

3.4 Effect of Airfoil-Air Mass Ratio p on Flutter Boundary

The effect of airfoil-air mass ratio on the flutter boundary

for p = 50, 100 and 250 are shown in Figures 17, 4 and 18 respectively.

The preload and freeplay are both 0.50 in all three cases.

The boundaries for divergent flutter are all approximately at

U*/ - 1 for all three values for p, while those for limit-cycle flut-
L

ter move towards U*/U = I for increasing p. At p = 250, pockets of

limited amplitude oscillations appear in the damped oscillation region.

The oscillatory motions of the airfoil in the various regions on the

flutter boundary curves are similar to those givwn in Figure 6.

I
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The limited amplitudes aA and &A are given in Figures 19, 8

and 20 for the three values of p considered. Comparison of the curves

for xA shows that the limited amplitude between the limit-cycle and

divergent flutter boundaries practically does not change with P and no

differences can be detected. On the other hand, &A is found to

increase with p. This behaviour where p has an effect on the plunge

degree of freedom but with no noticeable effect on the pitch motion is

also observed for a cubic nonlinearity in the restoring moment reported

in Ref. 10.

3.5 Effect of Uncoupled Plunge to Pitch Natural Frequency Ratio W

on Flutter Boundary

3.5.1 Effect of Preload for Constant Freeplay

In cases 10 to 12 given in Table 1, the value of w is 0.8 and

the preload is set at 0.250, 0.50 and 10 for a constant freeplay of

0.5 °  The flutter boundaries are shown in Figures 21 to 23, and

(;omparison with Figures 3 to 5 for the corresponding values of preload

and freeplay at w = 0.2 gives the effect of w on the oscillatory motion

of the airfoil.

From Figures 3 and 21, bringing the plunge and pitch

11m.olapled natural frequencies closer to each other seem to eliminate

th,, pockets where limit-cycle flutter occurs. The bulges on the limit-

'.vie flutter boundary grow with the preload for w = 0.8. Similar to

", )r ervat lons from cases 1 to 3, it is found that the limited

imp i It ,itf (I '11(d 'A given in Figures 24-26 are independent on initial

:i:: i .mt':1t rr (o) and pr-load lowve.r, their values are smaller than

ho r , for w = rj. for thr. same, value, of the freeplay.

gC-
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3.5.2 Effect Freeplay for Constant Preload

Figures 27, 22 and 28 show the effect of varying the freeplay

on the limit-cycle flutter boundaries for a fixed preload of 0.50 and

frequency ratio w = 0.8. Similar to the results for W = 0.2,

increasing the freeplay will increase the region where limited

amplitude oscillation occurs. It is observed that the bulges on the

flutter boundary curves for a(0) > 0 diminish as the freeplay is

increased. Also, the pockets of limited amplitude oscillations which

occur inside the damped oscillation region, as found in case 5, are not

present when w = 0.8.

The limited amplitudes aA and &A are given in Figures 29, 25

and 30 for values of freeplay 0.250, 0.50 and 1.00 respectively.

Z:
*-, Again, they are independent of initial displacement a(0). For a given

speed ratio, higher amplitudes are obtained for larger values of

freeplay. The breaks in the curves, similar to those shown in Figures

13 for w = 0.2, are not found in the corresponding case for w = 0.8

given in Figure 30 because pockets of limited amplitude oscillations

are not encountered. Comparisons with results for w = 0.2 given in

Fii'ures 12, 8 and 13 show that the amplitudes of oscillation at

limit-cycle flutter attain a larger value for the smaller ratio of the

natural frequencies w.

In section 3.2, it is observed that at w = 0.2 and for a

particular combination of preload and freeplay, the results can be used

for other values of preload and freeplay as long as the ratio of

preload to freeplay is the same. The vertical scale of the flutter

boundaries and limited amplitudes a A arid rA have to be mult ipi (,d hy .a

factor equal to the ratio of the preload,. T) if, reT- I s f or L')

show the same behaviour.

~ ~,'. . N.
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.5.9 Effect of Airfoil-Air Mass Ratio p

'h't (It-( t ot p on the flutter boundaries can be obained from

S>,..s 'I, 1 5 .. <ii.( 1 of Table 1 and the results are showri in Figures

_. , 52. T. vert I a] port ions o' the boundaries do not appear

I .. :. ! t i .v . Th most pronource(d charges oc( ur in the

, t :11 I V( IO 1t f 1l tt ir "t ' rv P ockets of 1 imi ted amp it ude,

............ .. "... .5 %I~ .t, selot, sIli In Figure 18 for p = 250 are not

P I tmpl it, ide. (IA gi'.'el r in Figures .25a, 3)a arid ,a

S , ! l v arg,. 11(.r. p is decreased from 2S0 to 50.

. 1 . 1 r A m , st 111 Ti Arn 11t ode. t for t ht, plunge dtlrf,,e
A

. h a1; in ' 17111 is inl coltrast to the r-esults

- . . t i , ( hall oI' Ill (I A 1t h p is det (e t at) It arid

mr it ,t Aml 1  i ud- i I lit iois

, at ,I tht, p ,rio(d of osi illat ,ilo s ill t it' limit-

.4; r- v i. It. F -i , .s to 37

Sfor . , , w 1 ." art sh1o10 T; Ii gUre , f' ,r

-o Th . '. i I I, , f I fr a v \ T I( ,iie d . t 1

S:: t r 1 t I I in th .po ket s i -rt 1 mi , t

* .1 t tn rl tht1+ ilrIii I It i on regV il 71 pli f r wI

it t i1r ,1 1 Is a. la i a iimum i s red- a l t -d
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preload of 0.50 and the values of freeplay being 0.50 and 10

respectively. The two curves are identical for 0.885 _< U*/U < 1.0,

arid the curve for the 10 freeplay extends to U*/U* = 0.835 which is the
L

location of the limit-cycle flutter boundary. Examination of the

os, illations for- these two cases shows that the second harmonic is too

small to be detec ted even near the limit-cycle flutter boundary.

At zero preload with equilibrium at a point on the linear

port i, ii of the momernt -(isplacemerit curve just ahead of the freeplay

of TabiVe 1 Figure 37 shows the period of oscillations for

= and I' freeplay. A discontinuity in the curvf occurs

1) =hi h Is ou Ihe. same+ location as that observed in-i the

I im ed ampI t !( curve.s givetr it: Figur- 15. For U,/U ', < 0.69, the

ct. 1 at tons at i hara tent zed by kinks' indtcat ing the presen( c of

"argke harmon:( s ,iei. 1 is betwen 0.tb9 and 1.0, the usual

b havit c, 0, t lat o1 0 . i observe d, that 1s, smaI S v oC ,

" dnm( t s a . .. 'ec n*,; : i. im..: v flutter boundary bu w, -1.

.i .ts ITA i+c te, .ipiv a I i" is in reased. For p) e(.

.: r !I:,, : re t ' ,' , : r " 1o 1 the results are, sim r ,

t' St g.* .K~'+ . , 'g I -

I T

S. \'t.::' ~ r .r.7 I i1' a. 1f 1~ 1
r
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For nonzero values of the preload, three types of oscilla-

tions are possible, namely; damped, limited amplitude and divergent.

Divergent flutter occurs when the nondimensional speed of the airflow

past the airfoil U' is greater than the linear flutter speed U*. In

spite of the presence of a structural nonlinearity of the type

considered, the nonlinear divergent flutter speed is, within the

numerical accuracy, equal to U* for the cases studied. For U* less
L

than L"', limited amplitude oscillations occur until a value of 1.> is

reached where further decrease will result in damped oscillations. The

location of the limit-cycle flutter boundary depends on the airfoil

parameters in addition to the values of the spring preload and

f r e e p v

For some combinations of preload and freeplay, there are

po kits if limit-cycle flutter in the damped oscillation regions. The

O51.illationci inside these pockets are characterized by the presence of

a "rgo- s.ctar harmonics. Bringing the uncoupled natural frequencies of

', tw- mod-, closer to each other seem to eliminate these pockets, but

iarg:,, h ,,.> are det c ted or, the limit-cw Ie flutter boundary. The

-,s ir. tht, limit(,d amplitude region are mainly sinusoidal

x .i Tv n.ar the 1imet-(.v(Ie flutter boundary where se and

ttT,/ :i ,. Are. obse, rvel

1 mit (, amp: t dt..p . and a of the, p1 unge atd p i Ith

* e V or ' : i i i i f 1 ;,; aramf t c r 1 are d(- I" I,itT.: I oT! the]

f . i v r .. t, 5 '. a ri o t 1 i eI Ti t he va i 114 -

.. .-. 6" .'Lm, " 
-N



24

of the freeplay are increased. Changes in preload and initial

displacement do not appear to have any effect on them. The amplitudes

also vary with the ratio of the uncoupled natural frequencies of the

plunge to pitch motions W. For the lower value of w = 0.2 considered

in this study, larger oscillatory motions in both degrees of freedom

are observed than those at w = 0.8. Varying the airfoil-air mass ratio

p at w = 0.2 does not have any noticeable effect on xA' but &A is found

to increase with p. At w = 0.8, aA decreases slightly with increasing

p while the corresponding decrease in A is much larger.

The period of oscillations at the lower value of w = 0.2

decreases as U is increased from the limit-cycle flutter boundary

urt iil a minimum is reached. Thereafter, it increases at a gradual rate

towards the diverg .it flutter boundary. At the higher value of

w = 0.8, only a gradual increase of the period from the limit-cycle

flutter boundary to the divergent flutter boundary is observed.

For zero preload, only divergent and limit-cycle flutter are

oi,.rved. The divergent flutter boundary occurs very close to that for

tife linear flutter case. Results for w = 0.2 and p = 100 show that

zoare ir eperdert of the equilibrium position of the freeplay. The

limited amplitude, curves versus speed ratio have a discontinuity. For

sjed ratio less than its value at the discontinuity, the oscillations

arf, cnaracterized by the presence of second harmonics, while in the

r.Oi Ion b-'tweeI the di oit i11itV and the dive rgent flutter boundary,

oc ciliations ire pratira 11 siir isoidal. The variations of the

47.
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period of oscillations with speed ratio in these two regions are quite

different. A rapid increase of the period with increasing speed ratio

is seen up to the discontinuity. Thereafter, the period changes very

little as the divergent flutter boundary is approached.

The results presented in this study on the response

characteristics of a two degree of freedom nonlinear system with

preload and freeplay are useful to the understanding of the impact of

limit-cycle oscillations on the structural integrity of aerodynamic

surfaces. They can also be used to assess the validity and accuracies

of the method of harmonic balance commonly used in the study of

nonlinear flutter.

_N)
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Table 1 List of Airfoil and Nonlinear Spring Parameters used in Case

Studies

Case w Vfo hf. hf-

1 100 0.2 0.250 0.250 0.750

2 100 0.2 0.50 0.50 1.00

3 100 0.2 1.00 1.00 1.50

4 100 0.2 0.50 0.50 0.750

5 100 0.2 0.50 050 1.50

6 100 0.2 0.00 0.00 1.00

7 100 0.2 0.00 -0.50 0.50

8 50 0.2 0.50 0.50 1.00

9 250 0.2 0.50 0.50 1.00

10 100 0.8 0.250 0.250 0.750

11 100 0.8 0.50 0.50 1.00

12 100 0.8 1.00 1.00 1.50

13 100 0.8 0.50 0.50 0.750

14 100 0.8 0.50 0.50 1.50

15 50 0.8 0.50 0.50 1.00

16 250 0.8 0.50 0.50 1.00

A ,,

.4
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APPENDIX A

The coefficients Pill P12' P21' P22 and the terms X and X2

in Eqs. (14) and (15) are given as follows:

" 2 2 a [11 + [-ah] [22k-9(a+c)]

1+ [16k - 11(a+c)] (A-1

2
_ 2 ( p)+ 1 w

P2 2 (+0 + 1 [22p U ' + 222-9(a+c)] + - (A-2)
12 (A)2 U.*2

_ 2 1 -2 2
P2 1  2 - [r (1+8a )] + )1]

+ 1 [22 prU* 1 + r 2(1-ah) [11-( +ah)22-9(a+c)}]]
6pAL( 0 h 2h

1 r 2 (+ah)[16--11(a+c) ]  (A-3)

_ 2 -2 1 -2
. 22 )2 [Ir (px -a1 )] 6PAT r (2+ah)[22k-9(a+c)] (A-4)

5 3 9 )

X, p )( - + 4pl [4 +('-ah [8Z-5(a+c)] L (a+c)} a(T

.2 (px a 4PMc -1h4

'I;

. A J F% % %'
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+ 5 ?. (l+P) + 3 8 w*- + 82-5(a~c)]l &(T)

vdl) 4Ai &~

4t (p.x -ah 3-- [1+('-a )[2k-2(a+c)I] - 2- (a~cjl c(i-Al)

4 (+ + 3 '2CPw l+2Q-2(a+)] &(-T)

P- T 2 +21IAT

+ 2(px-ah + 1A [4±(I-ah)182k9(a+c)]I - (- a+c)l acit-2Ai)

+ 1 11p + 8i u 1 + 8k-9(a+c)]} (i-2Ai)

P A )2 ( 1 ) + 12p A T [ v~ w~

+12JM [bae + -d [&"(x)+('-a 11) cX"(ij+cx'(')]

5Ai -2bAT 2dAT

Al - 3bAT -3dMi

+ 2 teb(T±AT)±ce d(i±AT) ] [&'()( h '(O)+ cx(O)]

2 bae 2 h)-dO)at ~

+-2ae- ~ (1) + 2ce- ~ 2 (T) (A-5)
1

where f ',(a)e- b(t-a) d A6

1hr 2 ft X (c) e- da (A--,)

0
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and X(a) =+ (-'-ah) a"(aY) + a'(o) (A-8)

I POT)2 18 h 21+ )] + P

+ 143 [8pC U* 1 + r- 2 (1a) [4-('+ah) (8k-5[a+c])I]

5 -2 3 -2*+ POT 2 r a( Pxc -c..) - Z,,TrC (12+a h [8k-5(a+c)]}&(t)

v a 4i2 8 a h

3* 1 2(-a ) [1-(I+a) (22.-2[a+c])]]2pi a cc h h

+p a - (!2+ah) (a+c)l a('t-A't)

- 4 r-2 p a)- 3-L -2 La
pA)2 ccr h 2x-ah a-~ r (ah) 2-2ac]4'-A

+ 1 2 1 [r-2 (1+8a 2] + I]

p(A'T)28 a h

1 1~A' [2~U +r(I-a) [4-(I+ah)[8k-9(a+c)]]]

+L 1V- 2 
1.~ (a+c)} a('T-2AT)

4pa 2+h)

1 -2 1 -221 r i(px -ah - !+ a [8k-9(a+c)]l &('T-2At)
( 2 a a h jPi a2h

-19AT -2 (+a)(e-bAT -dAt
12 2 h +c ~()(-h) a"('t)+a'(t)

5A-i r-2 (A2+ah [aej2bAT+ce 2 dAit [&"('T-A')+(L-ah a"('t-AT)+ax'('-AT)]

+ 2 t

%.9
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(!+ )i -a -3bMi+c -3dMt2-A
12pa - (ae 2ch ) [&"(i-2Ai)+(I--a h )x" (i -2Ai ) + cx' (i- i)

2 ~~(ae b(i+A) diA)!a+ce(T) [&'(O)+(!La )c'(O)+cx(O)]

p cx 2 h C

(A-9)

l.1j*p Md

IS
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APPENDIX B

In Eq. (26), the elements of [Q] and jy (n) I are:

Q I (Ox -a) (B-i)
11 p a h

Q1 1 ('+P-) (B-2)

11 1 2+(B3
Q21 2 (8 +ah) +(-3

Q -2O P- ah) (B-4)

y (2) p [1(2ah) [22-2(a+c)]]a'0

[2p & u-., +2k-2(a+c)] &'(0) -- [2k-(a+c)]m(O)

- &( ) (B-5)

(2) 1 1 r2 l.a1~r 2 ~ 1 'O
2 p [2p C~ a (X ah) L ahkaJ

+1 [2 1 22+] 'o 1 -2 ~ Q('aO
+ a (2+a h [2-(~ )]&()+-r OI(2a h [2-2ac)

- F (X(O)] (B-6)
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y (3) 1[1+(I-a ) [2k-2(a+c)I] a"(0) -![2p wU* 1 +2k-2(a+c)] &"(0)
I h'

2

- [2k-2(a+c) + (1-ah)(2ab+2cd)] a'(0) - 2b2d 1 ,0

-- (2ab+2cd) a(O) (B-7)

~(3) 12p u 1 
+ 

2 1-a ) [1-(I+a )[2k-2(a+c)]]J a"(0)

y2p [2p aLU L( h

* 1r-2 (+a) [2k-2(a+c)] &"(0)

* -2 (jPah) [2k-2(a+c) + (!-ah)(2ab+2cd)I a'(0)

* -2 (I+a ) (2ab+2cd)[& (O)+a(O)] - 1d a(]
pa h U2d

(B-8)

1(4) [1+(I-ah [2k-2(a+c)I] m"'(0)

-I[2p & U* 1+2k-2(a+c)] V''(O)

-1[2k-2(a+c) + (12-ah)(2ab+2cd)] a"(0)
ph

2

-![2ab+2cd] + w-}4"O

[2a+2c -(12-a h)(2ab +2cd )] (O

+ 1 [2ab 2+2cd 2  [V.(0>,Cx(0)] (B-9)

L...
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*(4) 1 1 (--\) [1-(+ 2-(acj21 "'0X2 P- [2p CL a 2 ah L2ahLacIJ

* Ir [r(i+a ) [2ki-2(a+c)>] ~'O
p aL 2

*I I-r (21+a ) [2k-2(a+c) + (!~-ah )(a+c~ "0
p a h2h

* I r 2 (!+ah) (2ab+2cd -&" (b+2 2 )]a(0)
p a 2ahh

1 -c2 2 2

- 1ra 2 1+ah)(2ab 2+2cd 2)[&'(O)+(0()]

- [a(O)] (B-10)
U." di

. r " -* *
.5e

Q' A
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